

AT&T

VOLUME 2

SYSTEM CALLS
AND LIBRARY ROUTINES

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

Steven V. Earhart: Editor

HOLT, RINEHART AND WINSTON
New York Chicago San Francisco Philadelphia

Montreal Toronto London Sydney Tokyo
Mexico City Rio de Janeiro Madrid

* Trademark of AT&T.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document, AT&T assumes
no liability to any party for any loss or damage caused by errors or omissions or statements of any kind in the
UNIX* Programmer's Manual, its updates, supplements, or special editions, whether such errors are
omissions or statements resulting from negligence, accident, or any other cause. AT&T further assumes no
liability arising out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. AT&T disclaims all warranties
regarding the information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

AT&T reserves the right to make changes without further notice to any products herein to improve
reliability, function or design.

This document was set on an AUTOLOGIC, Inc. APS-5 phototypesetter driven by the TROFF formatter
operating under the UNIX system on an AT&T 3B20 computer.

* Trademark of AT&T.

Copyright© 1986 AT&T
All rights reserved.
Address correspondence to:
383 Madison Avenue
New York, NY 10017

No part of this publication may be reproduced, transmitted or used in any form or by an means -- graphic,
electronic, mechanical or chemical, including photocopying, recording in any medium, taping, by any
computer or information storage and retrieval systems, etc. without prior permission in writing from
AT&T.

Library of Congress Cataloging-in-Publication Data

UNIX programmer's manual.

At head of title: AT&T
Includes index.
Contents: v. 1. Commands and utilities - v. 2.

System calls and library routines - v. 3. System
administration facilities.

1. UNIX (Computer operating system) I. Earhart,
Steven V. II. American Telephone and Telegraph Company.
QA76.76.063U548 1986 005.4'3 86-311

Select Code 320-032
ISBN 0-03-009314-7

Printed in the United States of America

Published simultaneously in Canada

67809098765432

CBS COLLEGE PUBLISHING
Holt, Rinehart and Winston
The Dryden Press
Saunders College Publishing

* Trademark of AT&T.

ATs.T

VOLUME 2

SYSTEM CALLS
AN"D LIBRARY ROUTINES

UNIX*
programmer's manual

CBS COLLEGE PUBLISHING'S
UNIX SYSTEM LIBRARY

PREFACE

The UNIX Programmer's Manual describes most of features of UNIX System
V. It does not provide a general overview of the UNIX system nor details of
the implementation of the system.

Not all commands, features, or facilities described in this series are available in
every UNIX system implementation. For specific questions on a machine
implementation of the UNIX system, consult your system administrator.

The UNIX Programmer's Manual is available in several volumes.

• Volume 1 contains the Commands and Utilities (sections 1 and 6).

• Volume 2 contains the System Calls and Library Routines (sections 2, 3,
4, and 5).

• Volume 3 contains the System Administration Facilities (section 1M, 7,
and 8).

UNIX Programmer's Manual System Calls and Library Routines-i

TRADEMARKS

UNIX, TELETYPE, and DOCUMENTER'S WORKBENCH are trademarks of AT&T.

DEC, VAX, PDP, and MASSBUS are trademarks of Digital Equipment Corporation.

HP is a trademark of Hewlett-Packard, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc.

ii-System Calls and Library Routines UNIX Programmer's Manual

INTRODUCTION

The UNIX Programmer's Manual Volume 2: System Calls and Library Rou­
tines is divided into four sections:

2-System Calls

3-Library Routines

4-File Formats

5-Miscellaneous Facilities

Section 2 (System Calls) describes the entries into the UNIX system kernel,
including the C language interface.

Section 3 (Library Routines) describes the library routines available on most
systems. The binary versions usually reside in various system libraries in the
directories /lib and /usr/lib. See intro(3) for descriptions of these libraries and
the files in which they are stored. Section 3 is divided into the following
libraries:

3C. C and Assembler Library Routines

3S. Standard I/O Library Routines

3M. Mathematical Library Routines

3X. Miscellaneous Routines

3F. FORTRAN Library Routines

Section4 (File Formats) documents the structure of particular kinds of files; for
example, the format of the output of the link editor is given in a.out (4).
Excluded are files used by only one command. In general, the C language
struct declarations corresponding to these formats can be found in the direc­
tories /usr /include and .usr /include/sys.

Section5 (Miscellaneous Facilities) contains a variety of things. Included are
descriptions of character sets, macro packages, etc.

UNIX Programmer's Manual System Calls and Library Routines-iii

Each section consists of a number of independent entries of a page or so each.
The name of the entry appears in the upper corners of its page(s). Entries
within each section are alphabetized, with the exception of the introductory
entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, under its "major"
\~ame.

All entries use a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its
purpose.

The SYNOPSIS part summarizes the use of the program described. A
few conventions are used:

Boldface strings are literals and are typed just as they appear.

Italic strings usually represent substitutable argument prototypes and
program names found elsewhere in the UNIX Programmer's Manual.

Square brackets () around an argument prototype indicate that the
argument is optional. When an argument prototype is given as "name"
or "file", it always refers to a file name.

Ellipses ••• are used to show that the previous argument prototype may
be repeated.

A final convention is used by the commands themselves. An argument
beginning with minus -, plus +, or equal sign = is often taken to be a
flag argument, even if it appears in a position where a file name could
appear. Files that begin with -, +, or = should therefore be avoided.

The DESCRIPTION part discusses the subject.

The EXAMPLE(S) part provides example(s) of usage.

The FILES part shows the file names that are built into the program.

iv-System Calls and Library Routines UNIX Programmer's Manual

The DIAGNOSTICS part discusses the diagnostic indications that may be pro­
duced. Messages that are self-explanatory are not listed.

The BUGS section describes known deficiencies that exist on some implementa­
tions.

The SEE ALSO section suggests related utilities or information to consult.

The WARNINGS part describes potential pitfalls.

A table of contents and a permuted index precede Section 2. The table of con­
tents lists each major entry with a brief description and the page number that
the entry begins on.

The permuted index is used by searching the middle column for a key word or
phrase. The right column contains the name of the utility along with the sec­
tion number. The left column of the permuted index contains additional useful
information about the utility or command.

Throughout this volume references to sections 1 and 6 can be found in UNIX
Programmer's Manual Volume 1: Commands and Utilities. References to
sections 1 M, 7, and 8 will be found in the UNIX Programmer's Manual
Volume 3: System Administration Facilities.

UNIX Programmer's Manual System Calls and Library Routines-v

TABLE OF CONTENTS

2. System Calls
intro-introduction to system calls and error numbers • . . 1
access-determine accessibility of a file 13
acct-enable or disable process accounting . . 15
alarm-set a process alarm clock 17
brk-change data segment space allocation . 18
chdir-change working directory 19
chmod -change mode of file . . . • 20
chown-change owner and group of a file . . . •. . 22
chroot-change root directory 23
close-close a file descriptor 24
creat-create a new file or rewrite an existing one . 25
dup-duplicate an open file descriptor • 27
exec-execute a file 28
exit-terminate process . 32
fcntl-file control 34
fork-create a new process • • 38
getpid-get process group, and parent process IDs 40
getuid-get real, ~ffective user, real, & effective group IDs . 41
IOctl-control devIce. 42
kill-send a signal to a process or a group of processes 43
link-link to a file ...•................. 45
lseek-move read/write file pointer 47
mknod-make a directory, or a special or ordinary file . 48
mount-mount a file system 50
msgctl-message control operations 51
msgget-get message queue . 53
msgop-message operations 55
nice-change priorIty of a process • 59
open-open for readmg or writing. . . 60
pause-suspend process until signal 63
pipe-create an mterprocess channel. 64
plock-lock process, text, or data in memory • 65
profil-execution time profile . . . • . . . • • 67
ptrace-process trace• • . 68
read -read from file. . . . ••.• . 72
semctl-semaphore control operations • 74
semget-get set of semaphores • . 77
semop-semaphore operations 79
setpgrp-set process group 10 • . . • • • • 83
setUld-set user and group IDs 84
shmctl-shared memory control operations . . • . . 85
shmget-get shared memory se~ment ...•.....•.•. 87
shm0r.-shared memory operatIons • . . . 89
signa -specify what to do upon receipt of a signal. • 91
stat-get file status . • • • • . 95
stime-set time. 97
sync-upda~e super-block • 98
tIme-get tIme . . • • . . • 99
times-get process and child process times . 100
ulimit-get and set user limits . • 101
umask-set and get file creation mask • 102
umount-unmount a file system • 103

UNIX Programmer's Manual System Calls and Library Routines-vii

una me-get name of current UNIX system • •
unlink-remove directory entry
ustat-get file system statistics. . • . . . • .
uti me-set file access and modification times. .
wait-wait for child process to stop or terminate
write-write on a file • • . • . . • • • .

3. Library Routines

· 104
.•. 105

· 107
.. 108

• 110
••• 112

intro-introduction to subroutines and libraries. • • • . 115

3C. C and Assembler Library Routines
a641-convert between long integer and base-64 ASCII string • . 119
abort-generate an lOT fault . . • . • • • • . . • . 120
abs-return integer absolute value • . . 121
bsearch-binary search a sorted table.•. 122
clock-report CPU time used •. . 125
conv-translate characters •..•.. . . • . 126
crypt-generate DES enc~yption .. ' • . 127
chme-convert date and hme to strmg 129
ctype-c1assify characters . • • • . 131
dial-establish an out-going terminal line connection 133
drand48-generate uniformly distributed pseudo-random numbers 136
ecvt-convert floating-point number to strmg . . • . . • . 139
end-last locations in program. 140
frexp-manipulate parts of floating-point numbers . • . 141
ftw-walk a file tree • . . • • . 142
getcwd-get path-name of current working directory . 144
getenv-return value for environment name 145
getgrep.t-get gr~up file entry . . • •. . 146
getIogm-get logm name . . . • . . . • . . . 148
getopt-get option letter from argument vector . . 149
getpass-read a password • • . 150
getpw-get name from UID • .••..•. 151
getpwent-get password file entry • • .. . 152
getut-access utmp file entry • 154
hsearch-manage hash search tables . • • . • •. 156
Btol-convert behyeen 3-byte integers and long integers. •. 160
lockf-record lockmg on files • . . •. •. 161
lsearch-linear search and update 164
malloc-main memory allocator . . . • • . . . 166
memory-memory operations • • . . 168
mktemp-make a unique file name . . 170
monitor-prepare execution profile • • . . . 172
nlist-get entries from name list •. .. 173
perror-system error messages. • . . • . . . • 174
putenv-change or add value to environment. . 175
putpwent-wnte password file entry . • 176
qsort-quicker sort. . . • . • • . . • • 177
ra~d-slmple random-number generator. . • . • • • • 178
setJmp-non-local goto . • . . • . . • • • . 179
sleep-suspend execution for interval •• .• 180
ssignal-software signals . . • . . . • • • • • • • • 181
stdipc-standard interprocess communication package. • 183
string-string operations • . . • . • . • • • 184

viii-System Calls and Library Routines UNIX Programmer's Manual

strtod-convert string to double-precision number
strtol-convert string to integer • • . . • • • • .
swab-swap bytes • • • . • • • • . . • . . • •
tsearch-manage binary search trees . . • •
ttyname-find name of a terminal • . • • .
ttyslot-find the slot in the utmp file of the current user

3S. Standard 1/0 Library Routines

• 187
• 188

• • • 189
.•• 190

· 194
• • • . • 195

ctermid-generate file name for terminal . . . 197
cuserid-get character login name of the user . • • • . . 198
fclose-close or flush a stream • • . . 199
ferror-stream status inquiries. 200
fopen-open a .stream• . 201
fread-bmary mput/output . . . • • • • . . 203
fseek-reposItion a file pointer in a stream. 204
getc-get character or word from a stream . . •. . 205
gets-get a string from a stream 207
popen-initiate pipe to/from a process . 208
prmtf-print formatted output 209
putc-put character or wora on a stream . 213
puts-put a string on a stream. . • 215
scanf-convert formatted input 216
setbuf-assign buffering to a stream 220
stdio-standard bufferea input/output package . • • . . . 222
system-issue a shell command • • 224
tmpfile-create a temporary file . • • 225
tmpnam-create a name for a temporary file•. . 226
ungetc-push character back into mput stream. . . . • . . . • 228
vprintf-print formatted output of a varargs argument list .. 229

3M. Mathematical Library Routines
bessel-Bessel functions••...•...•.
erf-error function and complementary error function . • .
exp-exponential, logarithm, power, square root functions
floor-floor, ceiling, remainder, absolute value functions
gamma-log gamma function • • • • .
hypot-Euclidean distance function. • .
matherr-error-handling function
sinh-hyperbolic functions ...••
trig-trIgonometric functions

3X. Miscellaneous Routines

.231

.232

.233
• 235
• 236
• 237
• 238
.241
.242

assert-verify program assertion • 245
curses-CR T s~reen handling and optimization packa8e 246
ldahread-read the archive header of member of archIve file . . • 253
ldclose-close a common object file. . . • • • . • • 254
ldfhread-read the file header of a common object file ••... 255
ldgetname-get symbol name for common object file symbol entry 256
ldlread-manipulate line # entries of common object file function 258
ldlseek-seek to line # entries of a section of a common object file 260
ldohseek-seek to the optional file header of common object file • 261
ldopen-open a common object file for reading. . . . • . . . • 262
Idrseek-seek to relocation entries of section of common object file 264
ldshread-read named section header of common object file . . . 265

UNIX Programmer's Manual System Calls and Library Routines-ix

ldsseek-seek to indexed/named section of common object file . . 266
ldtbindex-compute the index of symbol table entry ...•.. 267
ldtbread-read an indexed symbol table entry • 268
ldtbseek-seek to the symbol table of a common object file. . . . 269
logname-return login name of user • . . 270
malloc-fast main memory allocator • . . 271
plot-graphics interface subroutines 274
regcmp-compile and execute regular expression • . . 276
sputl-access long integer data in a macliine-independent fashion. 279
vprintf-print formatted output of a varargs argument list . • . . 280

3F. FORTRAN Library Routines
abort-terminate Fortran program
abs-Fortran absolute value
acos-Fortran arccosine intrinsic function
aimag-Fortran imaginary part of complex argument .
aint-Fortran integer part intrinsic function
asin-Fortran arcsme mtrinsic function • . . .
atan-Fortran arctangent intrinsic function
atan2-Fortran arctangent intrinsic function
bool-Fortran Bitwise Boolean functions

.283

.284

.285

.286

.287

. 288

.289

.290

.291

.292 conjg-Fortran complex conjugate intrinsic function
cos-Fortran cosine intrinsic function
cosh-Fortran hyperbolic cosine intrinsic function
dim-positive difference intrinsic functions
dprod-double precision product intrinsic function

.•.. 293
.294
.295
.296

exp-Fortran exponential intrinsic function . • .
ftype-explicit Fortran type conversion
getarg-return Fortran command-line argument
getenv-return Fortran environment variable .. .
largc-return the number of command line arguments ..•.
index-return location of Fortran substring
len-return length of Fortran string•..
log-Fortran natural logarithm intrinsic function
logl0-Fortran common logarithm intrinsic function

.297

.298
· 301
.302
.303
.304
.305
.306
.307
.308 max-Fortran maximum-value functions

mc1ock-return Fortran time accounting
mil-Fortran Military Standard (MIL-STD-1753)
min-Fortran minimum-value functions

· ..•. 309
· .•.. 310

· 312
mod-Fortran remaindering intrinsic functions
rand-random number generator
round-Fortran nearest integer functions . . .

· 313
· 314
· 315

sign-Fortran transfer-of-sign intrinsic function
signal-specify Fortran action on receipt of a system signal
sin-Fortran sine intrinsic function

. . . 316

si-nh-Fortran hyperbolic sine intrinsic function . . • •

· 317
· 318
· 319
.320 sqrt-Fortran square root intrinsic function . • .

strcmp-string comparison intrinsic functions .
system-issue a shell command from Fortran
tan-Fortran tangent intrinsic function

. . 321
· .••. 322

tanh-Fortran hyperbolic tangent intrinsic function . . . • • •
· 323
.324

x-System Calls and Library Routines UNIX Programmer's Manual

4. File Formats
intro-introduction to file formats 325
a.out-common assembler and link editor output 326
acct-per-process accounting file format 334
ar-common archive file format 336
checklist-list of file ~ystems processed by fsck. 338
co~e-format of co~e Image file 339
cplO-format of ~plO at:chlve • . . 340
dlr-format of dIrectones 342
errfile-error-Iog file format 343
filehdr-file heaoer for common object files 348
fs-format of system volume 350
fspec-format specification in text files 353
gettydefs-speed and terminal settings used by getty . . . 355
gps-graphical primitive string, format of graphical files. .. 357
group-group file . 360
mittab-script for the init process • 361
inode-format of an i-node . . . • 365
issue-issue identification file 366
ldfcn-common object file access routines 367
linenum-line number entries in a common object file . . . 371
master-master device information table . 373
mnttab-mounted file system table 375
passwd -password file . . • • 376
plot-graphics interface•.. . . • 378
pnch-file format for card images 380
profile-setting up an environment at login time 381
reloc-relocatlOn information for a common object file . . . 382
sccsfile-format of SCCS file 385
scnhdr-section header for a common object file 389
syms-common object file symbol table format 390
term-format of compiled term file.•.... 394
terminfo-terminal capability data base. 397
utmp-utmp and wtmp entry formats . . . 418

5. Miscellaneous Facilities
intro-introduction to miscellany. 421
ascii-map of ASCII character set • 422
environ-user environment • • 424
eqnchar-special character definitions for eqn and neqn ... 425
fcntl-file control options • • • 427
font-description fifes for device-independent troff 428
man-macros for formatting entries in this manual 434
math-math functions and constants 437
mm-the MM macro package for formatting documents 438
mosd-the OSDD adapter macro package •.....•...• 439
mptx-the macro package for formatting a I?ermuted index . . • 442
mv-a troff macro package for typesetting vlewgraphs and slides • 443
prof-profile within a function • • . . . • . . 446
regexp-regular expression compile and match routines . • 448
stat-oata returned by stat system call . . • . . • . . . • 453
term-conventional names for terminals. •. . . • 455
troff-description of output language . • . •. • 457
types-primItive system data types . • • • • . . . • 461

UNIX Programmer's Manual System Calls and Library Routines-xi

values-machine-de1?endent values . . •
varargs-handle varIable argument list . . • .

• •• 462
•••••• 464

xii-System Calls and Library Routines UNIX Programmer's Manual

PERMUTED INDEX

13tol, Ito13: convert between
long integer and base-641

program.
Fortran absolute value.

value.
abs: return integer

dabs, cabs, zabs: Fortran
Ifloor, ceiling, remainder,

uti me: set file
accessibility of a file.

sputl, sgetl:
Idfcn: common object file

Isetutent, endutent, utmpname:
access: determine

enable or disable process
acct: per-process

mclock: return Fortran time
process accounting.

file format.
sin, cos, tan, asin,
intrinsic function.

formattingl mosd: the OSDD
putenv: change or

imaginary part of complexl
part intrinsic function.

alarm: set a process
clock.

change data segment space
realloc, calloc: main memory
mallinfo: fast main memory

natural logarithm I log,
logarithm intrinsicl 10g10,

Fortranl max, maxO,
max, maxO, amaxO, maxI,

Fortranl min, minO,
min, minO, aminO, min I,

remaindering intrinsicl mod,
rshift: Fortran Bitwisel

Fortran nearest integerl
link editor output.

format.
acos, dacos: Fortran
cpio: format of cpio

ar: common
header of a member of an

an archivel Idahread: read the
asin, dasin: Fortran

atan2, datan2: Fortran
atan, datan: Fortran

imaginary part of complex
return Fortran command-line

varargs: handle variable
formatted output of a varargs
formatted output of a varargs
getopt: get option letter from
the number of command line

ascii: map of
set.

UNIX Programmer's Manual

3-byte integers and long I 0 0 0 13tol (3C)
a641, 164a: convert between 0 a641 (3C)
abort: generate an lOT fault. 0 0 abort(3C)
abort: terminate Fortran 0 0 abort(3F)
abs, iabs, dabs, cabs, zabs: 0 0 0 absl3F)
abs: return integer absolute abs 3C)
absolute value. • 0 • 0 • 0 abs 3C)
absolute value. abs, iabs, abs 3F)
absolute value functions. 0 0 • • floor (3M)
access and modification times. utime(2)
access: determine 0 • 0 • 0 access (2)
access long integer data in al 0 • sputl (3X)
access routines. 00 0 0 • 0 Idfcn(4)
access utmp file entry. getut(3C)
accessibility of a file. access (2)
accountmg. acct: • 0 • acct(2)
accounting file format. acct(4)
accounting. 0.. 0 • mclock (3 F)
acct: enable or disable • 0 0 0 • acct(2)
acct: per-proces& accounting acct(4)
acos, atan, atan2:1 o. 0 • trig(3M)
acos, dacos: Fortran arccosine acos(3F)
!ldapter macro package for mosd(S)
add value to environment. putenv(3C)
aimag dimag: Fortran 0 • 0 0 0 aimag(3F)
aint, Clint: Fortran integer aint (3 F)
alarm clock. • 0 • 0 0 0 0 0 • alarm (2)
alarm: set a process alarm alarm (2)
allocation. brk, sbrk: 0 0 0 0 • brk(2)
allocator. malloc, free, 0 0 0 • malloc(3C)
allocator. Icalloc, mallopt, 0 • • malloc(3X)
alog, dlog, clog: Fortran • • 0 • log (3 F)
aloglO, dloglO: Fortran common logIO(3F)
amaxO, maxI, amaxl, dmaxl: 0 max (3 F)
amaxl, dmaxl: Fortranl 0 0 max(3F)
aminO, minI, aminI, dminl: min(3F)
amin I, dmin I: F ortranl min (3 F)
amod, dmod: Fortran 0 0 0 mod (3 F)
and, or t xor, not, Ishift, 0 0 • • boo 1 (3 F)
anint, anint, nint, idnint: 0 0 round (3 F)
a.out: common assembler and 0 0 a.out(4)
ar: common archive file • 0 ar(4)
arccosine intrinsic function. o. acos (3 F)
archive. 0 0 0 • 0 • 0 0 0 • • cpio(4)
archive file format. • 0 • 0 ar(4)
archive file. !the archive . . . 0 ldahread (3X)
archive header of a member of 0 Idahread(3X)
arcsine intrinsic function. 0 asin(3F)
arctangent intrinsic function. 0 0 atan2(3F)
arctangent intrinsic function. atan (3F)
argument. Idimag: Fortran o. aimag(3F)
argument. getarg: getarg(3F)
argument list. . 0 • varargs (5)
argument list. Iprint vprintf(3S)
argument list. Iprint. vprintf(3X)
argument vector. • 0 0 0 0 getopt(3C)
arguments. iargc: return largc(3F)
ASCII character set. o. 0 • 0 asc!! (5)
ascii: map of ASCII character ascn(5)

System Calls and Library Routines-xiii

long integer and base-64
and/ ctime, localtime, gmtime,

trigonometric/ sin, cos, tan,
intrinsic function.

output. a.out: common
assertion.

assert: verif:x program
setbuf, setvbuf:

sin, cos, tan, a~in,. ac~sJ
arctangent mtrmslCI
arctangent intrinsic/

cos, tan, asm, acos, atan,
double-precision/ strtod,

integer. strtol, atol,
integer. strtol,

ungetc: push character
terminal capability data

between long integer and
jO, jl, jn, yO, :xl, yn:

fread, fWrIte:
bsearch:

tfind, tdelete, twalk: manage
btest, ibset, ibclr, mvbits:

/not, lshift, rshift: Fortran
rshift: Fortran Bitwise

space allocation.
sorted table.

lieor, ishft, ishftc, ibits1 stdio: standara
setbuf, setvbuf: assign

swab: swap
value. abs, iabs, dabs,

data returned by stat system
malloc, free, realloc,

fast/ maUoc, free, realloc,
intro: introduction to system

terminfo: terminal
pnch: file format for
function. cos, dcos,

ceiling, remainder,/ floor,
/ceil, fmod, fabs: floor,

intrinsic/ exp, dexp,
RiRe: create an interprocess

/aole, cmplx, dcmplx, ichar,
stream. ungetc: push

and neqn. eqnchar: sRecial
user. cuseria: get

/ getchar, fgetc, getw: get
/putchar, fputc, putw: put

ascii: map' of ASCII
tolower, toascti: translate

- iscntrl, isascii: classify
directory.

systems processed by fsck.
times: get process and

terminate. wait: wait for

of a file.

isgraph, iscntrl, isascii:
status/ ferror, feof,

alarm: set a process alarm

ASCII string. /convert between a641(3C)
asctime, tzset: convert date . . • ctime(3C)
asin, acos, atan, atan2:. . trig(3M)
asin, dasin: Fortran arcsine • asm (3F)
assembler and link editor • a.out(4)
assert: verify program . • • - assert (3Xj
assertion.•• assert(3X
assign buffering to a stream. setbuf(3S
atan, atan2: trIgonometric/ . • • trig(3M)
atan, datan: Fortran . • •. atan(3F)
atan2, datan2: Fortran atan2(3F)
atan2: trigonometric/ sin, . trig(3M)
atof: convert string to . • strtod (3C)
atoi: convert string to .. strtol (3C)
atol, atoi: convert string to strtol(3C)
back into input stream. • ungetc(3S)
base. terminfo: . . • . . . • • terminfo(4)
base-64 ASCII string. / convert • a641 (3 C)
Bessel functions. .•..•.. bessel(3M)
binary input/output. ••••. fread(3S)
binary search a sorted table. .. bsearch(3C)
binar:x search trees. tsearch, tsearch (3C)
bit field manipulation/ /ibits, . . mil(3F)
Bitwise Boolean functions. . bool(3F)
Boolean functions. /lshift, .•. bool(3F)
brk, sbrk: change data segment . brk(2)
bsearch: binary search a . • . • bsearch (3 C)
btest, ibset, ibclr, mvbits:/ •. . mil(3F)
buffered input/output package. • stdio(3S)
buffering to a stream. • setbuf(3S)
bytes. • • • • swab(3C)
cabs, zabs: Fortran absolute •. abs (3 F)
call. stat: .•.•..•.•. stat(5)
calloc: main memory' allocator. . malloc(3C)
calloc, mallopt, mallinfo: . •. maUoc(3X)
calls and error numbers. • . . • intro(2)
capability data base. term info (4)
card images. • • pnch(4)
ccos: Fortran cosine intrinsic cos(3F)
ceil, fmod, fabs: floor, . . . • • floor(3M)
ceiling, remainder, absolute/ floor (3M)
cexp: rortran exponential ..• exp(3F)
channel. • • . .• pipe (2)
char: explicit Fortran type/ ftype(3F)
character back into input • ungetc(3S)
character definitions for eqn eqnchar(5)
character login name of the cuserid (3S)
character or word from a/ • • • getc(3S)
character or word on a stream. putC\3S)
character set. ..•... ascii 5)
characters. / toupper, • .• conv 3C)
characters. /fsprint, isgraph, ctype(3C)
chdir: change working • •• chdir(2)
checklist: list of file • • • • . • checklist (4)
child process times. • . • times (2)
child process to stop or. . wait (2)
chmod: change mode of file. •• chmod (2)
chown: change owner and group chown(2)
chroot: change root directory. • • chroot(2)
classify characters. /isprint, •• ctype(3C)
clearerr, fileno: stream . . • • • ferror(3S)
clock. alarm (2)

xiv-System Calls and Library Routines UNIX Programmer's Manual

logarithml log, alog, dlog,
Idclose, Idaclose:

close:
descriptor.

fclose, mush:
/real, float, sngl, dble

i system: issue a shel
iargc: return the number of

system: issue a shell
getarg: return Fortran

ar:
editor outQut. a.out:

logl0, alogl0, dlogl0: Fortran
routines. Idfcn:

Idopen, Idaopen: open a
lline number entries of a
Idclose, Idaclose: close a
read the file header of a
entries of a section of a

the optional file header of a
len tries of a section of a

I section header of a
an indexed/named section of a

of a symbol table entry of a
symbol table entry of a

seek to the symbol table of a
line number entries in a

relocation information for a
scnhdr: section header for a

Iretrieve symbol name for
table format. syms:

filehdr: file header for
ftok: standard interprocess

1ge, 19t, lIe, lIt: string
expression. regcmp, regex:
regexp: regular expression

term: format of
erf, erfc: error function and

Fortran imaginary part of
conjg, dconjg: Fortran

table entry of a/ ldtbindex:
conjugate intrinsic function.

conjg, dconjg: Fortran complex
an out-going terminal line
math: matn functions and

ioctl:
fcnt!: file

msgctl: message
semctl: semaphore

shmctl: shared memory
fcntl: file

terminals. term:
char: explicit Fortran type
integers andl 13tol, ItoI3:

and base-64 ASCIII a641, 164a:
I gmtime, asctime, tzset:

to string. ecvt, fcvt, gcvt:
scanf, fscanf, sscanf:

strtod, a tof:
strtol, atol, atoi:

file.

UNIX Programmer's Manual

clock: report CPU time used. clock(3C)
clog: Fortran natural ..• log (3 F)
close a common object file. Idclose(3X)
close a file descriptor. .. close (2)
close: close a file .•••. close (2)
close or flush a stream.. fclose(3S)
cmplx, dcmplx, ichar,char:1 ftype(3F)
command from Fortran. •. system (3 F)
command line arguments. . iargc(3F)
command. . . • . . . • • system (3S)
command-line argument. • . getarg(3F)
common archive file format. ar(4)
common assembler and link a.out(4)
common lo~arithm intrinsicl . • logI0(3F)
common object file access. ldfcn (4)
common object file forI •. Idopen(3X)
common object file function. ldlread (3X)
common object file. . • • • . • Idclose(3X)
common object file. Idfhread: Idfhread(3X)
common object file. Inumber Idlseek(3X)
common object file. Iseek to Idohseek(3X)
common object file. • • • • Idrseek(3X)
common object file. • • •. ldshread (3 X)
common object file. Iseek to Idsseek(3X)
common object file. /the index . Idtbindex (3X)
common object file. lindexed Idtbread (3X)
common object file. Idtbseek: Idtbseek(3X)
common object file. linenum: linenum (4)
common object file. reloc: ••• reloc(4)
common object file. • • • scnhdr(4)
common object file symbol! Idgetname(3X)
common object file symbol syms(4)
common object files. • • • . filehdr(4)
communication package. • • stdipc(3C)
comparison intnnsicl ••. strcmp(3F)
compile and execute regular regcmp(3X)
compile and match routines. regexp(5)
compiled term file.. . • • • • • term~4)
complementary error function. • erf(3M)
complex argument. Idimag: aimag(3F)
complex conjugate intrinsic/ .• conjg{3F)
compute the index of a symbol • ldtomdex (3X)
conjg, dconjg: Fortran complex . conjg(3F)
conjugate intrinsic function. conjg(3F)
connection. dial: establish dialOC)
constants. .•.• math (5)
control device. • • ioctl (2)
control. fcnt! (2)
control operations. msgctI(2)
control operations. semct! (2)
control operations. • • shmctI(2)
control options. . . • fcntl (5)
conventional names for •••• term (5)
conversion. Idcmplx, ichar, •• ftype(3F)
convert between 3-byte •. 13tol (3C)
convert between long integer • • a641 (3C)
convert date and time to/. ctime (3 C)
convert floating-point number . • ecvt(3C)
convert formatted input. .• scanf(3S)
convert string to/ • • • • • strtod (3 C)
convert string to integer. . . • • strtol (3C)
core: format of core Image core (4)

System Calls and Library Routines-xv

core: format of
cosine intrinsic function.

atan2: trigonometric/ sin
hyperbolic cosine intrinsic!

functions. sinh,
cos, dcos, ccos: Fortran

/dcosh: Fortran hyperbolic
cpio: format of

clock: report
rewrite an existing one.

file. tmpn!lm, tempnam:
an eXlstmg one. creat:

fork:
tmpfile:

channel. pipe:
umask: set and get file

optimization package. curses:
generate DES encryption.

function. sin, dsin,
intrinsic/ sqrt, dsqrt,

for terminal.
asctime, tzset: convert date/

uname: get name of
slot in the utmp file of the
getcwd: get path-name of

and optimization package.
name of the user.

absolute value. abs, iabs,
intrinsic function .. acos,

. intrinsic function. asin,
terminfo: terminal capability

/sgetl: access long integer
plock: lock process, text, or

call. stat:
brk, sbrk: change

types: primitive system
intrinsic function. atan,

intrinsic function. atan2,
/ asctime, tzset: convert
/idint, real, float, sngl,

/float, sngl, dble, cmpfx,
conjugate intrinsic/ conjg,

intrinsic function. cos,
cosine intrinsic/ cosh,

difference intrinsic/ dim,
eqnchar: special character

set key , encrypt: generate
device-independent/ font:

language. troff:
close: close a file

dup: duplicate an open file
file. access:

master: master
ioctl: control

font: description files for
exponential intrinsic/ exp,

terminal line connection.
dim, ddim, idim: positive

difference intrinsic/
of com'plex argument. aimag,

mtrinsic function. aint,

core image file. • • . • . • core (4)
cos, dcos, ccos: Fortran • • cos (3F)
cos, tan, asin, acos, atan, . • trig(3M)
cosh, dcosh: Fortran . • cosh (3F)
cosh, tanh: hyperbolic. .. sinh (3M)
cosine intrinsic function. cos (3F)
cosine intrinsic function. . • . . cosh (3F)
cpio archive. • . • • • • • cp!0(4)
cpio: format of cpio archive. cplO(4)
CPU time used. ...•• clock (3 C)
creat: create a new file or. creat(2)
create a name for a temporary . tmpnam(3S)
create a new file or rewnte. creat(2)
create a new process. •.••• fork (2)
create a temporary file. tmpfile(3S)
create an interprocess pipe (2)
creation mask. ••.. umask(2)
CRT screen handling and ••• curses(3X)
crypt, setkey, t?ncrypt:. '. .• crypt (3C)
csm: Fortran sme mtrmslc sin{3F)
csqrt: Fortran square root. sqrt (3 F)
ctermid: generate file name ctermid (3S)
ctime, localtime, gmtime, ctime(3C)
current UNIX system. • •• uname(2)
current user. /find the • .. ttyslot(3C)
current working directory.. getcwd(3C)
curses: CRT screen handling • . curses(3X)
cuserid: get character login. cuserid (3S)
dabs, cabs, zabs: Fortran .• abs(3F)
dacos: Fortran arccosine • • acos(3F)
dasin: Fortran arcsine • asin (3F)
data base. • . • . • • • . • • terminfo(4)
data in a machine-independent/ . sputl (3X)
data in memory.• plock (2)
data returned by stat system. stat(5)
data segment space allocation. • brk(2)
data types. • • . • • • • • • . types (5)
datan: Fortran arctangent. atan(3F)
datan2: Fortran arctangent • • . atan2(3F)
date and time to strins. ..•• ctime(3C)
dble, cmplx, dcmplx, lchar,! .• ftype(3F)
dcmplx, lchar, char: explicit/ ftype(3F)
dconjg: Fortran complex. • conjg(3F)
dcos, ccos: Fortran cosine cos{3F)
dcosh: Fortran hyperbolic .•• cosh(3F)
ddim, idim: positive • • • dim(3F)
definitions for eqn and neqn. •• eqnchar(5)
DES encryption. crypt, .• crypt(3C)
description files for •. • • font (5)
description of output • troff(5)
descriptor. . • • . • . • close (2)
descriptor. • • • • . • dup(2)
determine accessibility of a access (2)
device information table. • . • • master(4)
device. •.•...•.• ioctl (2)
device-independent troff. • font (5)
dexp, cexp: Fortran . .• • exp(3F)
dial: estaolish an out-going diall3Cj
difference intrinsic/ • • dim 3F
dim, ddim, idim: positive ..•• dim 3F
dimag: Fortran imaginary part • aimag(3F)
dint: Fortran integer part .• aint(3F)

xvi-System Calls and Library Routines UNIX Programmer's Manual

dir: format of
chdir: change working

chroot: change root
unlink: remove

path-name of current working
ordinary file. mknod: make a

acct: enable or
hypot: Euclidean

Ilcong48: generate uniformly
logarithm/ log; alog,

logarithm/ 10gIO, alogIO,
max, maxO, amaxO, max I, amax I,

min, minO, aminO, minI, aminI,
intrinsic/ mod amod,

nearest integer! anint,
macro package for formatting
macro package for formatting

intrinsic function. dprod:
/atof: convert string to

product intrinsic functlon.
nrand48, mrand48, jrand48,1
transfer-of-sign/ sIgn, isign,

intrinsic function. sm,
intrinsic function. sinh,

root intrinsic/ sqrt,
intrinsic function. tan,

tangent intrinsic/ tanh,
descriptor.

descriptor. dup:
floating-point number to/

program. end, etext,
common assembler and link

/user, real grouy, and
and/ I getegid: get rea user,

accounting. acct:
encryption. crypt, setk~y,

setkey, encrypt: generate DES
locations in program.

I getgrgid, getgrnam, setgrent,
Igetpwuio, getpwnam, setpwent,

utmp/ Ipututline, setutent,
nlist: get

file. linenum: line number
man: macros for formatting

filet Imanipulate line number
Ildnlseek: seek to line number

/ldnrseek: seek to relocation
utmp, wtmp: utmp and wtmp

fgetgrent: get group file
fgetpwent: get passwora file
utmpname: access utmp file

object file symbol table
/the index of a symbol table

/read an indexed symbol table
putpwent: write password file

unlink: remove directory

profile: setting up an
environ: user

getenv: return value for
putenv: change or add value to

UNIX Programmer's Manual

dir: format of directories. ••• dir(4)
directories. . . dir(4)
directory. • chdir (2)
directory. •.... chroot (2)
directory entry. . . • • unlink(2)
directory. getcwd: get • • . . • getcwd(3C)
directory, or a specIal or . mknod(2)
disable process accounting. . acct(2)
distance function. . • . . • • • hypot(3M)
distributed pseudo-randoml .• drand48 (3C)
dlog, clo~: Fortran natural • • . log(3F)
dloglO: Fortran common ..•• logIO(3F)
dmaxI: Fortran maximum-valuel max(3F)
dminI: Fortran minimum-value/ min (3 F)
dmod: Fortran remaindering •. mod(3F)
dnint, nint, idnint: Fortran . • . round (3F)
documents. mm: the MM .•. mm (5)
documents. Ithe OSDD adapter mosd(5)
double precision product . . • . dProd!3F)
double-precision number.. strtod 3C)
dprod: double precision .. dprod 3F)
drand48, erand48, Irand48,. drand48 (3C)
dsign: Fortran ..• • . sign(3F)
dsin, csin: Fortran sine .. sin (3 F)
dsinh: Fortran hyperbolic sine . sinh (3 F)
dsqrt, csqrt: Fortran square .. sqrt (3 F)
dtan: Fortran tangent • . tan(3F)
dtanh: Fortran hyperbolic . tanh (3 F)
dup: duplicate an open file. dup(2)
duplicate an open file .. dup(2)
ecvt, fcvt, gcvt: convert. ecvt (3C)
edata: last locations in • . • . . end (3 C)
editor output. a.out: . a.out(4)
effective group IDs. . • . . getuid (2)
effective user, real group, getuid(2)
enable or disable process acct (2)
encrypt: generate DES crypt (3 C)
encryption. crypt, . . • . . . • crypt (3 C)
end, etext, edata: last . . • • • end (3 C)
endgrent, fgetgrent: get group/ • getgrent(3C)
endpwent, fgetpwent: getl .. getpwent(3C)
endutent, utmpname: access .. getut(3C)
entries from name list. . .. nlist(3C)
entries in a common object . • . linenum(4)
entries in this manual. • man (5)
entries of a common object Idlread(3X)
entries of a section of al . . • • Idlseek(3X)
entries of a section of al Idrseek(3X)
entry formats. ...•.• utmp(4)
entry. /setgrent, endgrent, getgrent(3C)
entry. Isetpwent, endpwent, .. getpwent(3C)
entry. /setutent, endutent, • . . getut(3C)
entry. Isymbol name for common Idgetname(3X)
entry of a common object file. • ldtbindex (3X)
entry of a common object file. • Idtbread (3X)
entry. • • . • . • • . • . • • putpwent(3C)
entry. • • . • . • • • . unhnk(2)
environ: user environment. environ (5)
environment at login time. . • • profile (4)
environment. • . . . • . environ (5)
environment name. . •..•• getenv(3C)
environment. • • . • • .• putenv(3C)

System Calls and Library Routines-xvii

getenv: return Fortran
cliaracter definitions for

definitions for eqn and neqn.
mrand48, jrand48,! drand48,

complementary error function.
complementary error/ erf,

format.
system error/ perror,

complementary / erf, erfc:
function and complementary

sys _ errlist, sys _ nerr: system
to system calls and

math err:
errfile:

terminal line/ dial:
in program. end,

hypot:
execlp, execvp: execute a/

execvp: execute/ execl, execv,
execl, execv, execle, execve,

execve, execlp, execvp:
regcmp, regex: compile and

sl~ep: suspend
momtor: prepare

profil:
execvp: execute a/ execl,

execute/ execl, execv, execle,
/execv, execle, execve, execlp,

a new file or rewrite an
process.

exit
exponential intrinsic/

exponential, logarithm,!
cmplx, dcmplx, icfiar, char:

exp, dexp, cexp: Fortran
exp, ~og, log 1 0, pow, sqrt:
routmes. regexp: regular

compile and execute regular
remamder,! floor1 ceil, fmod,

data in a machine-mdependent
/ calloc, mallopt, mallinfo:

abort: generate an lOT
a stream.

floating-point number! ecvt,
fopen, freopen,

status inquiries. ferror,
fileno: stream status/

stream. fclose,
word from a/ getc, getchar,

/ getgrnam, setgrent, endgrent,
/ getpwnam, setpwent, endpwent,

stream. gets,
times. utime: set

ldfcn: common object
determine accessibility of a

chmod: change mode of
change owner and group of a

fcntl:
fcntl:

core: format of core image

environment variable. •.••. getenV(3Fj
eqn and neqn. /special eqnchar(5
eqnchar: special character eqnchar(5
erand48, Irand48, nrand48,. drand48 (3C)
erf, erfc: error function and •• erf(3M)
erfc: error function and. erf(3M)
errfile: error-log file • errfile(4)
errno, sys errlist, sys nerr: • perror(3C)
error function and -. • .. erf(3M)
error function. /erfc: error. erf(3M)
error messages. / errno, .•.. perror(3C)
error numbers. /introduction mtro(2)
error-handling function. ...• matherr(3M)
error-log file format.• errfile(4)
establish an out-going . .• dial (3C)
etext, edata: last locations. end (3 C)
Euclidean distance function. .. hypot(3M)
execl, execv, execle, execve, eXeC!2)
execle, execve, execlp, • .. exec 2)
execlp, execvp: execute a/ exec 2)
execute a file. / execle, exec(2)
execute regular expression. . . . regcmp(3X)
execution for interval. . . sleep (3 C)
execution profile. •. . .• monitor(3C)
execution time profile. . .. profil (2)
execv, execle, execve, execlp, exeC!2)
execve, execlp, execvp: . . . exec 2)
execvp: execute a file. . exec 2)
existing one. creat: create .•• creat(2)
exit, exit: terminate ... exit (2)
exit:-terminate I>focess. • . . . exit (2)

exp, dexp, cexp: Fortran . exp(3F)
eXPi

log, loglO, pow, sqrt: ... exp(3M)
exp icit Fortran type/ ldble, ftype (3 F)
exponential intrinslc/ exp(3F)
exponential, logarithm, power,! . exp(3M)
expression compile and match . regexp(5)
expression. r~g.cmp, regex:. regcmp(3X)
fabs: floor). ceding, floor (JM)
fashion.. access long integer sputl (3X)
fast main memory allocator. .. malloc(3X)
fault. ..•• . . • . . abort(3C)
fclose, fHush: close or flush . fclose(3S)
fcntl: file control. fcntl (2)
fcntl: file control options. . • fcntl (5)
fcvt, gcvt: convert . • . .. ecvt(3C)
fdopen: open a stream. •... fopen (3S)
feof, clearerr, fileno: stream ferrOr~3S)
ferror, feof, clearerr, ferror 3S)
fHush: close or flush a • .. fclose 3S)
fgetc, getw: get character or •. getc(3S)
fgetgrent: get group filet .. getgrent(3C)
fgetpwent: get password file/ . . getpwent (3C)
fgets: get a string from a .. gets(3S)
file access and modification . utime(2)
file access routines. . . Idfcn(4)
file. access: .•. access (2)
file. . • • • chmod (2)
file. chown: • . chown (2)
file control. •.. fcntl (2)
file control options. • . fcntl (5)
file. core (4)

xviii-System Calls and Library Routines UNIX Programmer's Manual

umask: set and get
close: close a

dUQ: duplicate an open
endgrent, fgetgrent: get grouQ

fgetpwent: get passwora
utmpname: access utmp

putpwent: write passwora
execlp, execvp: execute a

Idaopen: open a common object
acct: per-process accounting

ar: common archive
errfile: error-log

pnch:
intro: introductIon to

entries of a common object
group: group
files. filehdr:

file. Idfhread: read the
Idohseek: seek to the optional

issue: issue identification
of a member of an archive

close a common object
file header of a common obJect

a section of a common obJect
file header of a common obJect

a section of a common obJect
header of a common obJect
section of a common obJect

table entry of a common obJect
table entry of a common obJect

table of a common obJect
entries in a common object

link: link to a
or a special or ordinary

ctermid: generate
mktemp: make a unique

/find the slot in the utmp
one. creat: create a new

passwd: password
Irewind, ftell: reposition a

Iseek: move read/write
read: read from

for a common object
sccsfile: format of SCCS

header for a common object
stat, fstat: get

/symbol name for common object
syms: common object

volume.
mount: mount a

ustat: get
mnttab: mounted

umount: unmount a
fsck. checklist: list of

term: format of compiled term
tmpfile: create a temporary

create a name for a temporary
ftw: walk a

write: write on a
common object files.
ferror, feof, clearerr,

file header for common object

UNIX Programmer' s Manual

file creation mask. . . umask(2)
file descriptor. • . close (2)
file descriptor. ..• • . dup(2)
file entry. /setgrent, . getgrent(3C)
file entry. /endpwent, • . getpwent(3C)
file entry. /endutent, getut(3C)
file entry.•... putpwent(3C)
file. /execv1 execle, execve,. exec(2)
file for reaaing. Idopen,. . Idopen(3X)
file format.•.. acct(4)
file format.•..•. ar(4)
file format.•.•. errfile(4)
file format for card images. .• pnch(4)
file formats.•. mtro(4)
file function. /line number • • . Idlread (3X)
file. . • . • • group(4)
file header for common object • filehdr(4)
file header of a common Object . Idfhread (3X)
file header of a common object/ Idohseek(3X)
file. . • . • issue (4)
file. /read the archive header ldahread (3 X)
file. Idclose, Idaclose: • . Idclose(3X)
file. ldfhread: read the ...• ldfhread (3X)
file. /line number entries of .• Idlseek(3X)
file. /seek to the optional Idohseek(3X)
file. /relocation entries of ... Idrseek(3X)
file. /indexed/named section Idshread (3X)
file. Ito an indexed/named . • . Idsseek(3X)
file. /the index of a symbol .. Idtbindex (3X)
file. /read an indexed symbol . • Idtbread (3X)
file. /seek to the symbol • . . . Idtbseek(3X)
file. linenum: line number ... linenum(4)
file. . . . •• link (2)
file. /make a directory, mknod(2)
file name for terminal.. .. ctermid (3S)
file name. ..•... .• mktem.Q(3C)
file of the current user. ttyslot OC)
file or rewrite an existing creat(2)
file. • • • . passwd(4)
file pointer in a stream. fseek(3S)
file pointer.• Iseek(2)
file. . • . . • . • • • read (2)
file. /relocation information .. reloc(4)
file. • •. .• sccsfile(4)
file. scnhdr: section . • . . . • scnhdr(4)
file status. • • • • . • .. stat (2)
file symbol table entry. . • Idgetname(3X)
file symbol table format. .. syms(4)
file system: format of system . . fs(4)
file system. ••..•..•. mount (2)
file system statistics. ustat(2)
file system table. ..• .• mnttab(4)
file system. •••.• umount (2)
file systems processed by . • checklist (4)
file..•.. .. term (4)
file. • . . • •• tmpfile(3S)
file. tmpnam, tempnam: tmpnam (3S)
file tree. . • • • . •• .• ftW(3Cp,
file. • • • . • . . . write(2
filehdr: file header for filehdr 4)
fileno: stream status/ • • ferror(3S)
files. filehdr: • . . . filehdr(4)

System Calls and Library Routines-xix

troff. font: description files for device-independent. font (5)
format specification in text files. fspec: •••.••••• fspec(4)
string, format of graphical files. /graphical primitive gps(4)

lockf: record locking on files. •••.••.••• Iockf(3C)
ttyname, isatty: find name of a terminal.. ttyname(3C)

of the current user. ttyslot: find the slot in the utm~ file •• ttyslot(3C)
int, ifix, idint, real, float! sngl, dble, cmplx,l • ftype (3 F)

ecvt, fcvt, gcvt: convert floatmg-point number tot . ecvt(3C)
/modf: manipulate parts of floating-point numbers. •• frexP(3Cl
floo~ ceilin~, remainder,! floor, ceil, fmod, fabs: . • floor (3M

noor, cell, fmod, fabs: floor, ceiling, remainder,! floor (3 M
fclose, fllush: close or flush a stream. • • . • • • • • fclose(3S)

remainder,! floor, ceil, fmod, fabs: floor, ceiling,. • floor(3M)
device-independent troff. font: description files for • • . • font(S~

stream. fopen, freopen, fdopen: open a fopen 3S)
fork: create a new process.. fork (2

per-process accounting file format. acct: . . . • . •• acct(4
ar: common archive file format. •••••..•••. ar(4)

errfile: error-log file format. •••••.. . errfile(4)
pncn: file format for card images. . pnch(4)

inode: format of an i-node. mode (4)
term: format of compiled term file.. term (4)
core: format of core ima~e file. •.• c. 0~e(4)
c~io: format of cpio arcnlVe. cplO(4)

oir: format of directories.. dlr(4)
/graphical primitive string, format of graQhical files. . • gps(4)

sccsfile: format of SCCS file. .•• sccsfile(4)
file system: format of system volume. ••• fs(4)
files. fspec: format specification in text • • • fspec(4)

object file symbol table format. syms: common syms(4)
intro: introduction to file formats. • . • • . . • intro(4)

wtmQ: utmp and wtmp entry formats. utmp, . • . • • • • • utm~(4)
scanf, fscanf, sscanf: convert formatted input. .•••• scanf(3S)

/vfprintf, vsprintf: print formatted output of a varargs/ • vprintf(3S)
/vIQrintf, vsprintf: print formatted output of a varargs/ vprintf(3X)

fprintf, sprintf: print formatted output. printf, • • • • printf(3S)
mptx: the macro package for formatting a permuted index. mptx (S)

mm: the MM macro package for formatting documents. • . • • . mm (S)
OSDD adapter macro package for formatting documents. /the mosd(S)

manual. man: macros for formatting entries in this . • . • maneS)
abs, iabs, dabs, cabs, zabs: Fortran absolute value. •.•• abs(3F)

system/ signal: specify Fortran action on receipt of a signal(3F)
function. acos, dacos: Fortran arccosine intrinsic • . • acos(3F)
function. asin, dasin: Fortran arcsine intrinsic • • •• asin(3F)

function. atan2, datan2: Fortran arctangent intrinsic atan2(3F)
function. atan, datan: Fortran arctangent intrinsic .• atan(3F)

or·, xor, not, lshift, rshift: Fortran Bitwise Boolean/ and, . bool(3F)
getarg: return Fortran command-line argument. getar~(3F)

10gIO, afoglO, dlogIO: Fortran common logarithm/ •• 10glO 3F)
intrinsic/ conjg, dconjg: Fortran complex conjugate. conjg 3F)
function. cos, dcos, ccos: Fortran cosine intrinsic •• cos OF)

getenv: return Fortran environment variable. getenv (3 F)
function. exp, dexp, cexp: Fortran exponential intrinsic exp(3F)

intrinsic! cosh, dcosh: Fortran hyperbolic cosine •.• cosh(3F)
intrinsic/ sinh, dsinh: Fortran hyperbolic sine •••. sinh (3 F)

intrinsic/ tanh, dtanh: Fortran hyperbolic tangent • • • tanh(3F)
complex/ aimag, dimag: Fortran imaginary part of ••• aimag (3 F)

function. aint, dint: Fortran inte~er part intrinsic • . aint(3F)
amaxO, maxI, amaxI, dmaxI: Fortran maxlmum-value/ /maxO, max (3 F)

land subroutines from the Fortran Military Standard/ •. mil(3F)
aminO, minI, aminI, dminI: Fortran minimum-value/ IminO, min(3F)

log, alog, dlog, clog: Fortran natural logarithm/ • . . log (3F)

xx-System Calls and Library Routines UNIX Programmer's Manual

anint, dnint, nint, idnint:
abort: terminate

functions. mod, amod, dmod:
function. sin, dsm, csin:

function. sqrt, dsqrt, csqrt:
len: return length of

index: return location of
issue a shell command from

function. tan, dtan:
mclock: return

intrinsic/ sign, isign, dsign:
/ dcmplx, ichar, char: exphcit

formatted output. printf,
word on a/ putc, putchar,

stream. puts,
input/output.

memory allocator. manoc,
mallopt, mallinfo:/ malloc,

stream. fopen
parts of floating-pomtl

getw: get character or word
gets, fgets: get a string

getopt: get option letter
read: read

system: issue a shell command
nlist: get entries

/functions and subroutines
getpw: get name

formatted input. scanf,
of file systems processed by
reposition a file pointer inl

text files.
stat,

pOinter in a/ fseek, rewind,
communication package.

Fortran arccosine intrinsic
Fortran integer part intrinsic

error I erf, erfc: error
Fortran arcsine intrinsic

Fortran arctangent intrinsic
Fortran arctangent intrinsic
com~lex conjugate intrinsic

ccos: Fortran cosine intrinsic
hyperbolic cosine intrinsic
precision product intrinsic
and complementary error

Fortran exponential intrinsic
gamma: log gamma

hypot: Euclidean distance
of a common object file

common logarithm intrinsic
natural logarithm intrinsic

matherr: error-handling
prof: profile within a

transfer-of-sign intrinsic
csin: Fortran sine intrinsic

hyperbolic sine intrinsic
Fortran square root intrinsic

Fortran tangent intrinsic
hyperbolic tangent intrinsic

math: math

UNIX Programmer's Manual

Fortran nearest integer/ . • . • round (3 F)
Fortran program. • . • • • . • abort (3 F)
Fortran remaindering intrinsic • mod(3F)
Fortran sine intrinsic •.. sin (3 F)
Fortran square root intrinsic .• sqrt(3F)
Fortran string. ••. . • • len (3 F)
Fortran substring. index (3 F)
Fortran. system: ••• system(3F)
Fortran tangent intrinsic . • tan (3 F)
Fortran time accounting. .• mclock(3F)
Fortran transfer-of-sign sign (3F)
Fortran type conversion. . • • . ftype (3 F)
(printf, sprintf: print ..• printf(3S)
tputc, putw: pu.t character or . . putc(3S)
{puts: put a strIng on a .• puts(3S)
tread, Twrite: binary . • .• fread(3S)
free, realloc, calloc: main • malloc(3C)
free, realloc, calloc, • . • . . • malloc(3X)
freopen, fdopen:. open a .•.. fopen (3S)
frexp, ldexp, modf: manipulate frexn(3C)
from a stream. /fgetc, getc(3S)
from a stream. . . . • gets (3S)
from argument vector. • getont(3C)
from file. .•..• read (2)
from Fortran. ..• system(3F)
from name list. • . . • . nlist (3C)
from the Fortran Military/ • mi1(3F)
from UID ..•.••..••. getpw(3C)
fscanf, sscanf: convert • . . • . scanf(3S)
fsck. checklist: list checklist (4)
fseek, rewind, ftell: ..•• fseek~3S)
fspec: format specification in fspec 4)
fstat: get file status. . • . stat (2
ftell: reposition a file •.. fseek 3S)
ftok: standard interprocess stdipc(3C)
ftw: walk a file tree. • . .. ftwOC)
function. acos, dacos: •..•• acos(3F)
function. aint, dint: . • . • • • aint (3 F)
function and complementary erf(3M)
function. asin, dasin: •.. asin(3F)
function. atan2, datan2: • • • • atan2(3F)
function. atan, datan: . •. 'atan(3F)
function. /dconjg: Fortran • conjg(3F)
function. cos, dcos, . . . cos OF)
function. /dcosh: Fortran • cosh (3F)
function. dprod: double •• dprod(3F)
function. terror function . • . . erf(3M)
function. exp, dexp, cexp: exp(3F)
function. .••..••. gamma(3M)
function. ••...•.. hypot(3M)
function. /line number entries ldlread (3X)
function. /dloglO: Fortran . • • loglO(3F)
function. /dlog, clog: Fortran log (3 F)
function. ...••. •. matherr(3M)
function. prof(5)
function. /dsign: Fortran sign (3 F)
function. sin, osin, •.•. sin (3 F)
function. /dsinh: Fortran .•• sinh (3 F)
function. sqrt, dsqrt, csqrt: . sqrt(3F)
function. tan, dtan: • • .. tan (3 F)
function. /dtanh: Fortran • tanh (3 F)
functions and constants. math (5)

System Calls and Library Routines-xxi

/field manipulation intrinsic
jO, jI, jn, yO, yI, yn: Bessel

Fortran Bitwise Boolean
positive difference intrinsic

logarithm, power, square root
remainder, absolute value

dmaxI: Fortran maximum-value
dminI: Fortran minimum-value

Fortran remaindering intrinsic
Fortran nearest integer

sin~, cosh, tan~: hyper~ol!c
stnng compan~on mtrms!c
atan, atan2: tngonometnc

fread,
gamma: log

number to string. ecvt, fcvt,
abort:

crypt,· se~key, encrypt:
termmal. ctermld:

/srand48, seed48, Icong48:
srand: simple random-number

rand, srand: random number
gets, fgets:

uhmit:
the user. cuserid:

getc, getchar, fgetc, getw:
nlist:

umask: set and
stat, fstat:

ustat:
/setgrent, endgrent, fgetgre!lt:

, getlogm:
msgget:
getpw:

system. uname:
argument vector. getopt:

/setpwent, endpwent, fgetpwent:
working directory. getcwd:

times. times:
and/ getpid, getpgrp, getppid:

/geteuid, getgia, getegid:
semget:
shmget:

time:
command-line argument.

get character or word from at.
character or word from/ getc,

current working directory.
getuid, geteuid, getgio,

environment variable.
environment name.

real user, effective/ getuid,
user,! getuid, geteuidJ setgrent, endgrent,/

endgrent,! getgrent,
getgrent, getgrgid,

argument vector.

process group, and/ getpid
process, process group, and!

functions and subroutines from/ miI(3F)
functions. •.•.•••••• bessel (3 M)
functions. /lshift, rshift: .. bool (3 F)
functions. dim, ddim, idim: •• dim(3F)
functions. /sqrt: exponential, •• exp(3M)
functions. /floor, ceiling, •• floor (3M)
functions. /maxI, amaxI, ..• max (3 F)
functions. /minI, aminI,. min (3 F)
functions. mod, amod, dmod: •• mod (3 F)
functions. /nint, idnint: •••• round (3 F)
functions. ..•.•.••.• sinh (3M)
functions. /lgt, lle, llt: • . . • • strcmp(3F)
functions. /tan, asin; acos,. trig (3M)
fwrite: binary input/output. fread(3S)
gamma function. gamma (3M)
gamma: log gamma function. gamma (3M)
gcvt: convert floating-point. ecvt (3C)
generate an lOT fault. •• abort(3C)
generate DES encryption. . .• crypt (3C)
generate file name for . . . • • ctermid (3S)
generate uniformly distributed/ . drand48 (3C)
generator. rand, .•••• rand (3C)
generator. irand, rand(3F)
get a string from a stream. . • . gets (3S)
get and set user limits. •• ulimit(2)
get character login name of •• cuserid (3S)
get character or word from a/ . getc(3S)
get entries from name list. nlist (3C)
get file creation mask. • • • •• umask(2)
get file status.•. stat (2)
get file system statistics. . . • . ustat(2)
get gro~p file entry. • . • . • • getgrent(3C)
get logm name. • . • . •. getlogin (3C)
get message queue. ..•. msgget (2)
get name from UID. . •.•. getpw(3C)
get name of current UNIX una me (2)
get option letter from ••• getopt (3C)
get password file entry. . . getpwent(3C)
get path-name of current. getcwd(3C)
get process and child process • • times (2)
get process, process group, • • • getpid (2)
get real user, effective user,! getuid(2)
get set of semaphores. . .• semget(2)
get s~ared memory segment. shmget (2)
get time. •..••.•• time (2)
getarg: return Fortran . • • • • getarg(3F)
getc, getchar, fgetc, getw: getc (3S2
getchar, fgetc, getw: get •. getc(3S
getcwd: get path-name of getcwd 3C)
getegid: get real user,l •• getuid (2)
getenv: return Fortran . •• getenv (3 F)
getenv: return value for •. getenv(3C)
geteuid, getgid, getegid: get •• getuid (2)
getgid, getegid: get real •••• getuid (2)
getgrent, getgrgla, getgrnam, •• getgrent!3Cl
getgrgid, getgrnam, setgrent,. getgrent 3C
getgr~am, setgr«?nt, endgrent,! getgrent 3C
getIogm: get logm name. • • • • getlogin (3 C)
getopt: get option letter from •• getopt(3C)
getpass: read a password.. getpass(3C)
getpgrp, getppid: get process, • • getpid (2)
getpld, getpgrp, getpPld: get getpid (2)

xxii-System Calls and Library Routines UNIX Programmer's Manual

group, and/ getpid, getpgrp,

setpwent, endpwent,!
getpwent getpwuid,

endpwent,7 getpwent,
a stream.

and terminal settings used by
settings used by getty.
getegid: get real user,!

pututhne, setutent,!
setutent, endutent,! getutent,

setutent,! getutent, getutid,
from a/ getc, getchar, fgetc,

convert/ ctime, localtlme,
setjmp, longjmr: non-local

string, format 0 graphical!
primitive string, format of
format of graphical/ gps:

plot:
subroutines. plot:

/user, effective user, real
/ getppid: get process, process

endgrent, fgetgrent: get
group:

setpgrp: set pJocess
real group and effective

setuid, setgld: set user and
chown: cliange owner and
a signal to a process or a

ssignal,
varargs:

package. curses: CRT screen
hcreate, hdestroy: manage

search tables. hsearch,
tables. hsearch, hcreate,

file. scnhdr: section
files. filehdr: file

file. ldfhread: read the file
/ seek to the optional file

/read an indexed/named section
ldahread: read the archive

manage hash search tables.
cosh, dcosh: Fortran

sinh, cosh, tanh:
sinh, dsinh: Fortran

tanh, dtanh: Fortran
function.

Fortran absolute value. abs,
ishftc, ibits, btest,! ior,

command line arguments.
/ishftc, ibits, btest, ibset,

/not, ieor, ishft, ishftc,
/ishft, ishftc, ibits, btest,

/sngl, dble, cmplx, dcmplx,
setpgrp: set process group

issue: issue
intrinsic/ dim, ddim,

dble, cmplx,! int, ifix,
integer/ anint, dnint, nint,
group, and parent process
group, and effective group

UNIX Programmer's Manual

getppid: get process, process getpid (2)
getpw: get name from UID. •• getPW(3C~
getpwent, getpwuid, getpwnam, . getpwent 3Cl
getpwnam, setpwent, en<lpwent,! getpwent 3C
getpwuid, getpwnam, setpwent, . getpwent 3C
gets, fgets: get a string from . gets (3S)
getty. getty<lefs: speed gettydefs(4)
gettydefs: speed and terminal • • gettydefs(4)
getuid, geteuid, ~etgid, ..•• getuid (2)
getutent, getutid, getutline,. getut!3Cl
getutid, getutline, pututline, getut 3C
getutline, pututline, • . .. getut 3C
getw: get character or word getc(3S)
gmtime, asctime, tzset: •. ctime(3C)
goto. •.•••.•..... setjmI(3C)
gps: graphical primitive. gPS!4
graphical files. /graphical gps 4
graphical primitive string, gps 4
graphics interface. plot (4)
graphics interface . • • .. plot(3X)
group, and effective group/. getuid(2)
group, and parent process IDs. getpid (2)
group file entry. /setgrent, . . . getgrent(3C)
group file. . . • group (4)
group: ~roup file. . • . .• group (4)
group ID. ..•.•.. setpgrp(2)
group IDs. /effective user, getUldU)
group IDs. • • . . • . • . • • setuid (2)
group of a file. • • • • . . • • chown (2)
group of processes. /send .•• kilI(2)
gsignal: software signals. ssignaI(3C)
handle variable argument list. varargs(5)
handling and optimization ..• curses(3X)
hash search taoles. hsearch, •• hsearch!3Cl
hcreate, hdestroy: manage hash • hsearch 3C
hdestroy: manage hash search hsearch 3C
header for a common object •• scnhdr(4)
header for common object .•. filehdr(4)
header of a common object . • • ldfhread (3X)
header of a common obJect/ .• Idohseek(3X)
header of a common obJect/ ldshread (3X)
header of a member of anI . • . ldahread (3X)
hsearch, hcreate, hdestroy: • • . hsearch (3C)
hyperbolic cosine intrinsic/ . • . cosh (3 F)
hyperbolic functions. ..• sinh (3M)
hyperbolic sine intrinsic/ . sinh(3F)
hyperbolic tangent intrinsic/ •• tanh(3F)
hypot: Euclidean distance ... hypot(3 M)
iaos, dabs, cabs, zabs: . •. abs(3F)
iand, not, ieor, ishft, • . •. miI(3F)
iargc: return the number of •. iargc (3 F)
ibclr, mvbits: bit field/ • . mm!3Fl
ibits, btest, ibset, ibclr,!. mil 3F
ibset, ibclr, mvbits: bit/ .. mil 3F
ichar, char: explicit Fortran/ • • ftype (3 F)
ID. . • . • . • . • • .. setpgfl~(2)
identification file. . . . issue (4)
idim: positive difference • • dim(3F)
idint, real, float, sngl,. • • ftype(3F)
idnint: Fortran nearest • round (3 F)
IDs. / get process, process .•. getpid (2)
IDs. /effective user, real getuid(2)

System Calls and Library Routines-xxiii

setgid: set user and group
btest, ibset,l ior, iand, not,

sngl, dble, cmplx,l int,
core: format of core

pnch: file format for card
aimag, dimag: Fortran

for formatting a permuted
of a/ ldtbindex: com.Rute the

Fortran substring.
a common/ ldtbread: read an

Idshread, Idnshread: read an
ldsseek, Idnsseek: seek to an

inittab: script for the
process. popen, pclose:

process.

inode: format of an
sscanf: convert formatted
push character back into

fread, fwrite: binary
stdio: standard buffered

fileno: stream status
sngl, dble, cmplx, dcmplx,l

abs: return
1l64a: convert between long

sputl, sgetl: access long
nint, Idnint: Fortran nearest
function. aint, dint: Fortran

atol, atoi: convert string to
/lto13: convert between 3-oyte

3-byte integers and long
plot: graphics
plot: graphics

pIpe: create an
package.' ftok: standard

sleep: suspend execution for
acos, dacos: Fortran arccosine

dint: Fortran integer part
asin, dasin: Fortran arcsine
datan2: Fortran arctangent
datan: Fortran arctangent

Fortran complex conjugate
dcos, ccos: Fortran cosine
Fortran hyperbolic cosine
double precision product

cexp: Fortran exponential
Fortran common logarithm
Fortran natural logarithm

Fortran transfer-of -sign
sin, dsin, csin: Fortran sine

dsinh: Fortran hyperbolic sine
csqrt: Fortran square root
tan, dtan: Fortran tangent
Fortran hyperbolic tangent

/mvbits: bit field manij)ulation
idim: positive difference

dmod: Fortran remailidering
lIe, lIt: string comparison

formats.
miscellany.

subroutines and libraries.
calls and error numbers.

IDs. setuid, .••. setuid (2)
ieor, ishft, ishftc, ibits, • mil (3 F)
ifix, idint, real, float, ftype(3F)
image file. • • . . • . core (4)
images.•..•••• pnch (4)
imaginary part of complex/ aimag(3F)
index. /the macro package • • . m.Rtx~5)
index of a symbol table entry Idtbindex (3 X)
index: return location of . • . • index (3 F)
indexed symbol table entry of • ldtbread (3 X)
indexed/named section header/ • Idshread(3X)
indexed/named section of a/ .• Idsseek(3X)
init process. ...••. inittab(4)
initiate pipe to/from a . .• popen (3S)
inittab: script for the init • mittab(4)
inode: format of an i-node. . inOdel4)
i-node. .•.... inode 4)
input. scanf, fscanf, • scanf 3S)
input stream. ungetc: . • ungetc(3S)
input/output. . • . . fread(3S)
input/output package. . . stdio(3S)
inquiries. /feof, clearerr, ferror(3S)
int, ifix, idint, real, float, . ftype(3F)
integer absolute value. . •. aDs (3 C)
integer and base-64 ASCII/ a641 (3 C)
integer data in a/ . . • sputl (3X)
integer functions. /dnint, round (3F)
integer part intrinsic . aint (3 F)
integer. strtol, •.•.• . strtol (3 C)
integers and long integers. 13tol (3C)
integers. /convert between· 13toI(3C)
interface. ..•••.. plot (4)
interface subroutines. •• plot(3X)
interprocess channel. •. . pipe (2)
interprocess communication stdipc(3C)
interval. • . • . • . . sleep(3C)
intrinsic function. . acos(3F)
intrinsic function. aint, aint(3F)
intrinsic function. . asin(3F)
intrinsic function. atan2, . atan2(3F)
intrinsic function. atan, •... atan(3F)
intrinsic function. /dconjg: conjg(3F)
intrinsic function. cos, . •• cos OF)
intrinsic function. / dcosh: . cosh (3 F)
intrinsic function. dprod: . dprod (3 F)
intrinsic function. /dexp, exp(3F)
intrinsic function. /dloglO: 10gl0(3F)
intrinsic function. /clog: •• log(3F)
intrinsic function. /dsign: ..• sign (3 F)
intrinsic function. sin (3 F)
intrinsic function. sinh, sinh (3 F)
intrinsic function. /dsqrt, sqrt(3F)
intrinsic function. • .. .• tan (3 F)
intrinsic function. / dtanh: tanh (3 F)
intrinsic functions and/ miI(3F)
intrinsic functions. /ddim, dim (3 F)
intrinsic functions. /amod, • mod (3F)
intrinsic functions. /lgt, .• strcm~(3F)
intro: introduction to file . intro 4)
intro: introduction to intro 5)
intro: introduction to •••.• !ntro(3)
intro: introduction to system mtro(2)

xxiv-System Calls and Library Routines UNIX Programmer's Manual

intro:
intro:

and libraries. intro:
and error numbers. intro:

ishftc, ibits, btest, ibset,l
abort: generate an
number generator.

/islower, isdigit, isxdigit;
isdigitz isxdigit, isalnum,!

/ispnnt, isgraph, iscntrl,
termmal. ttyname,

/ispunct, isprint, isgraph,
isalpha, isupper, islower,
/isspace, ispunct, isprint,

ibset,l ior, iand, not, ieor,
ior, iand, not, ieor,. ishft,

transfer-of-sign/ sign,
isalnum,l isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isafnum, iss pace,
/isdigit, isxdigit, isalnum,

Fortran. system:
system:

issue:
file.

isxdigit, isalnum,l isalpha,
/isupper, islower, isdigit,

functions.
functions. jO,

functions. jO, j 1 ,
Ilrand48, nrand48, mrand48}

process or a group of
3-byte integers and long/

integer and oase-64/ a641,
troff: description of output
nrand48, srand48, seea48,

object file. ldclose
header of a member of anI

file for reading. ldopen,
common object file.

of floating-point! frexp,
access routines.

of a common object file.
name for common object filet
line number entries/ ldlread,

number/ ldlread, ldlinit;
manipulate line number!
line number entries of a/

entries of a section/ ldlseek,
entries of a section/ ldrseek,

indexed/named/ ldshread,
indexed/ named/ ldsseek;
file header of a common!

object file for reading.
relocation entries of al

indexed/ named section header /
indexed/named section of a/
of a symbol table entry of a/

symbol table entry of a/
table of a common object/

string.

UNIX Programmer's Manual

introduction to file formats. intrO!4j
introduction to miscellany. •• intro S
introduction to subroutines intro 3
!ntroduction to system calls intro 2
10Ctl: control devIce. . • .. ioctl (2)
ior, iand

i
not, ieor, ishft, . • • • mil (3 F)

lOT fau t. • • • • • • • abort (3 C)
irand, rand, srand: random rand (3F)
isalnum, isspace, ispunct,l .•. ctyp.e!3Cl
isalpha, isup~er, islower, . ctype 3C
isascii: classify characters. ctype 3C
isatty: find name of a .•. ttyname(3C)
iscntrl, isascii: classify/ ctype!3Cl
isdigit, isxdigit, isalnum,l ctype 3C
isgraph, iscntrl, isascii:/ cty'p,e 3C
ishft, ishftc, ibits, btest, • . mIl (3 F)
ishftc, ibits, btest, ibset,l mi1(3F)
isign, dsign: Fortran . • sign (3 F)
islower, isdigit, isxdigit, ctype!3Cj
isprint, isgra'ph, iscntrl,l ctype 3C
ispunct, isprmt, isgraph,l ctype 3C
isspace, ispunct, isprint,l •. ctype 3C
issue a shell command from system (3 F)
issue a shell command. system (3S)
issue identification file. . • !ssue(4)
issue: issue identification .• Issue (4)
isupper, islower, isdigit, ctype (3 C)
isxdIgit, isalnum, isspace,l ctype(3C)
jO, jl, jn, yO, yl, yn: Bessel bessel!3Ml
J 1, jn, yO, yl, yn: Bessel .. bessel 3M
In, yO, yl, yn: Bessel .. bessel 3M
jrand48, srand48, seed48,1 • • . drand48(3C)
kill: send a signal to a •• . kill (2)
13tol, lto13: convert between .• 13to1(3C)
164a: convert between long. a641 (3 C)
language.• trotf(S)
Icong48: generate uniformly/ .. drand48(3C)
ldaclose: close a common ..• Idclose(3X)
ldahread: read the archive . • . ldahread (3 X)
ldaopen: open a common object • ldopen (3X)
ldclose, ldaclose: close a .•.• ldclose(3X)
ldexp, modf: manipulate parts . frexp(3C)
ldfcn: common object file. ldfcn (4)
ldfhread: read the file header • . ldfhread (3 X)
ldgetname: retrieve symbol . • • Idgetname(3X)
ldlinit, ldlitem: manipulate. ldIread!3Xl
ldlitem: manipulate line .. ldlread 3X
ldlread, ldlinit, ldlitem: .• ldlread 3X
ldlseek, ldnlseek: seek to . • . • Idlseek(3X)
ldnlseek: seek to line number Idlseek(3X)
ldnrseek: seek to relocation • . . Idrseek(3X)
ldnshread: read an ...••• Idshread(3X)
ldnsseek: seek to an . . . • • . ldsseek(3X)
ldohseek: seek to the optional . • ldohseek(3X)
ldopen, ldaopen: open a common Idopen(3X)
ldrseek, ldnrseek: seek to • • • • Idrseek(3X)
ldshread, ldnshread: read an •• ldshread (3X)
ldsseek, ldnsseek: seek to an .• ldsseek(3X)
ldtbindex: compute the index . • ldtbindex(3X)
ldtbread: read an indexed ••. ldtbread (3X)
ldtbseek: seek to the symbol •. Idtbseek(3X)
len: return length of Fortran len (3 F)

System Calls and Library Routines-xxv

len: return
getopt: get option

update. lsearch
comparison intrinsic!

comparison intrinsic/ 1ge,
to subroutines and

ulimit: get and set user
return the numoer of command

an out-going terminal
common object file. linenum:

/ldlinit, ldlitem: manipulate
ldlseek, ldnlseek: seek to

lsearch, lfind:
in a common object file.

a.out: common assembler and

link:
nlist: get entries from name

by fsck. checklist:
handle variable argument

output of a varargs argument
output of a varargs argument

intrinsic/ 1ge, 19t,
intrinsic/ 1ge, 19t, lIe,

tzset: convert date/ ctime,
index: return

end, etext, edata: last
memory. plock:

files.
lockf: record

natural logarithm intrinsic/
gamma:

exponential, logarithm,! exp;
common loganthm intrinsic!
logarithm, P9wer,/ exp, log,

/alogIO, dlogIO: Fortran common
/dlog, clog: Fortran natural

/loglO, pow, sqrt: expon~ntial,
getlogm: get

cuserid: get character
logname: return

setting up an environment at
user.

a641, 164a: convert between
sputl, sgetl: access

between 3-byte integers and
setjmp,

jrand48'/ drand48, erand48,
and update.

pointer.
Bitwise/ and, or, xor, not,

integers and long/ l3tol,
values:

/access long integer data in a
permuted index. mptx: the
documents. mm: the MM
mosd: the OSDD adapter

viewgraphs and/ mv: a troff
in this manual. man:

malIoc, free, realloc, calloc:
/mallopt, mallinfo: fast

or ordinary file. mknod:

length of Fortran string. • . . . len (3 F)
letter from argument vector. getopt(3C)
lfind: linear search and •. lsearch (3 C)
1ge, 19t, lle, lIt.: string .•. strcmp (3 F)
19t, lIe, llt: stnng .••. strcmp(3F)
libraries. /introduction. intro(3)
limits. • • • . • . • . . . • • ulimit(2)
line arguments. iargc: . .. iargc (3 F)
line connection. / establish dial (3C)
line number entries in a linenum(4)
line number entries of a/ . ldlread OX)
line number entries of a/ ... Idlseek(3X)
linear search and update. ... Isearch(3C)
linenum: line number entries linenum (4)
l!nk e~itor output. ..•. a.out(4)
lInk: lInk to a file. . • • link(2)
link to a file. . . . • • .. link(2)
list. • • . • . . . • • .. nlist (3C)
list of file systems processed .. checklist (4)
list. varargs: varargs(5)
list. /print formatted vprintf!3S)
list. /print formatted. vprintf 3X)
lle, lIt: string comparison strcmp 3F)
llt: string comparison ... strcmp 3 F)
localtime, gmtIme, asctime, ctimeOC)
location of Fortran substring. . . index (3 F)
locations in program. .•. end (3C)
lock process? text, or data in plock (2)
lockf: recora locking on .• Iockf(3C)
locking on files. • . • lockf(3C)
log, alog, dlog, clog: Fortran .• log(3F)
log gamma function. •...• gamma (3M)
log, logIO, pow, sqrt: ••. •. exp(3M)
logIO, aloglO, dloglO: Fortran logIO(3F)
loglO.;pow .. sqrt: .exponel).tial, •. exp(3M)
loganthm mtrmslc functIon. logIO(3F)
logarithm intrinsic function. •. log (3 F)
logarithm, power, square root/ exp(3M)
login name. .•.•. . • getlogin (3C)
login name of the user. cusend (3S)
login name of user. • •...• logname(3X)
login time. profile: .•.••• profile (4)
logname: return login name of Iogname(3X)
long integer and base-64 ASCII/ a641 (3C)
long integer data in a/ . • . . • sputl (3 X)
long integers. /ltol3: convert l3toI(3C)
longjrnp: non-local goto. •. setjmp(3C)
Irana48, nrand48, mrand48, drand48 (3C)
lsearch, lfind: linear search . • . lsearch OC)
lseek: move read/write file Iseek(2)
lshift, rshift: Fortran ...•. bool(3F)
ltol3: convert between 3-byte 13toI(3C)
machine-dependent values.. values (5)
machine-independent fashion.. . sputl (3X)
macro package for formatting a • mptx (5)
macro package for formatting . mm (5)
macro package for formatting/ • mosd (5)
macro package for typesetting . mv(5)
macros for formatting entries man (5)
main memory allocator. . ..• malloc(3C)
main memory allocator. •. malloc(3X)
make a directory, or a special mknod (2)

xxvi-System Calls and Library Routines UNIX Programmer's Manual

mktemp:
/realloc, calloc, mallopt,
main memory allocator.

mallopt, mallinfo: fast main/
maifoc, free, realloc, calloc,

entries in this manual.
/tfind, tdelete, twalk:

hsearch, hcreate, hdestroy:
of! ldlread, ldlinit, ldlitem:

frexp, ldexp, modf:
ibclr, mvbits: bit field

for formatting entries in this
ascii:

set and get file creation
table. master:

information table.
regular expression compile and

math:
constants.
function.

dmaxl: Fortran maximum-value/
dmaxl: Fortran/ max,

max, maxO, amaxO,
/maxl, amaxl, dmaxl: Fortran

accounting.
memcpy, memset: memoryl

memset: memory/ memccpy,
operations. memccpy, memcbr,

memccpy, memcnr, memcmp,
free, realloc, calloc: malO

mallopt, mallinfo: fast main
shmctl: shared

memcmp, memcpy, memset:
shmop: shared

lock process, text, or data in
shmget: get shared

/memchr, memcmp, memcpy,
msgctl:
msgop:

msgget: get
sys nerr: system error

subroutines from the Fortran
the Fortran Military Standard

dminl: Fortran minimum-value/
dminI: Fortran/ min,

min, minO, aminO,
/minI, aminI, dminl: Fortran

special or ordinary file.
name.

formatting documents. mm: the
formatting documents.

table.
remaindering intrinsic/

chmod: change
floating-point/ frexp, IdexPl

utime: set file access ana
profile.

package for formatting/
mount:

mnttab:
lseek:

UNIX Programmer's Manual

make a unique file name. . .. mktem

r
(3C)

mallinfo: fast main memory / malloc 3X)
malloc, free, realloc, calloc: malloc 3C)
malloc, free, realloc, calloc, malloc 3X)
mallopt, mallinfo: fast main/ malloc 3X)
man: macros for formatting man(5)·
manage binary search trees. .. tsearch (3C)
manage hash search tables. . • • hsearch(3C)
manipulate line number entries . Idlread(3X)
manipulate parts of! ••••• frexp(3C)
manipulation intrinsic/ /ibset, miH3F)
manual. man: macros man (5)
map of ASCII character set. ascii (5)
mask. umask:•. umask (2)
master device information . master (4)
master: master device master(4)
match routines. regexp: •.•. regexf:35)
math functions and constants. math 5
math: math functions and math 5
matherr: error-handling •..• matherr(3M)
max, maxO, amaxO, maxI, amaxl, max (3 F)
maxO, amaxO, maxI, amaxl, •. max!3F)
maxI, amaxl, dmaxI: Fortran/ max 3F)
maximum-value functions. max 3F)
mclock: return Fortran time .. mclock(3F)
memccpy, memchr, memcmp, . memory(3C)
memchr, memcmp, memcpy, •. memory (3C)
memcmp, memcpy, memset: memory memory (3C)
memcpy, memset: memory/ memor

t
(3C)

memory allocator. malloc, malloc 3C)
memory allocator. /calloc,. malloc 3X)
memory control operations.. shmctl 2)
memory operations. /memchr, • memory(3C)
memory operations. shmout2)
memory. plock: .••.. plock t2)
memory segment. . • • • . shmget (2)
memset: memory operations. •• memory (3 C)
message control operations. . msgctH2)
message operations. msgop(2)
message queue. . . . • .. msgget (2)
messages. /errno, sys errlist, perrOr~3C)
Military Standard/ land mil (3F
(MIL-STD-1753).. /from •.• mi1(3F
min, minO, aminO, minI, aminI, min!3F~
minO, aminO, minI, aminI, ... min 3F
minI, aminI, dminl: Fortran/ min 3F
minimum-value functions. . .• min 3F
mknod: make a directory, or a mknod 2)
mktemp: make a unique file mktemp(3C)
MM macro package for . . • . mm (5)
mm: the MM macro package for mm (5)
mnttab: mounted file system .. mnttab(4)
mod, amod, dmod: Fortran mod (3F)
mode of file. . . • . . • . • • chmod (2)
modf: manipulate parts of frexp(3C)
modification times. ••.••• utime(2)
monitor: prepare execution • • • monitor (3C)
mosd: the OSDD adapter macro mosd(5)
mount a file system. . . • • • • mount(2)
mount: mount a file system. mount (2)
mounted file system table. . mntta:b(4)
move read/WrIte file pointer. Iseek(2)

System Calls and Library Routines-xxvii

formatting a permuted index.
/erand48, Irand48, nrand48,

operations.

typesetting viewgraphs and/
/ibits, btest, ibset, ibclr,

log, alog, dlog, clog: Fortran
/dnint, nint: idnint: Fortran

definitions for eqn and
process.

integer! anint, dnint,
list.

setjmp, longjmp:
ibits, btest,7 ior, land,

Bitwise Boolean/ and, or, xor,
drand48, erand48, Irand48,

ldfcn: common
ldopen, ldaopen: open a common

number entries of a common
ldaclose: close a common

the file header of a common
of a section of a common
file header of a common

of a section of a common
section header of a common

section of a common
symbol table entry of a common
symbol table entry of a common

the symbol table of a common
number entries in a common

information for a common
section header for a common

entry. /symbol name for common
format. syms: common
file header for common

reading. ldopen, ldaopen:
fopen, freopen, fdopen:

dup: duplicate an
9pen:

wrItmg.
memcmp, memcpy, memset: memory

msgctl: message control
msgop: message

semctl: semaphore control
semop: semaphore

shmctl: shared memory control
shmop: shared memory

strcspn, strtok: string
CRT screen handling and

vector. getopt: get
common/ ldohseek: seek to the

fcntl: file control
Fortran Bitwise Boolean/ and,

a directory, or a special or
formatting/ mosd: the

dial: establish an
assembler and link editor

troff: description of
/vsprintf: print formatted
/vsprintf: print formatted

sprintf: print formatted

mptx: the macro package for .• mptx(5)
mrand48, jrand48, srano48,1. drand48 (3 C)
msgctl: message control .••• msgctl (2)
msgget: get message queue. msgget (2)
msgop: message operations. •• msgop(2)
my: a troff macro package for • mv(5)
mvbits: bit field manipulation/ miI(3F)
natural logarithm intrinsic/ .• log(3F)
nearest integer functions. • •• round (3F)
neqn. /speclal character .• eqnchar(5)
nice: change priority of a. mce(2)
nint, idnint: Fortran nearest round (3F)
nlist: get entries from name nlist (3C)
non-local 80to. .•.•.• setjmp(3C)
not, ieor,t Ishft: ishftc, •.• mil(3F)
not, lshirt, rshlft: Fortran. booI(3F)
nrand48

i
mrand48, jrand48,1 drand48 (3C)

object fi e access routines. •.• ldfcn (4)
obJect file for reading. • .• ldopen (3X)
obJect file function. !line. ldlread OX)
obJect file. ldclose, Idclose(3X)
obJect file. ldfhread: read Idfhread(3X)
obJect file. /number entries .• Idlseek(3X)
obJect file. Ito the optional Idohseek(3X)
obJect file. /entries ••.. Idrseek(3X)
obJect file. /indexed/named ldshread (3 X)
obJect file. /indexed/named Idsseek(3X)
obJect file. /the index of a • Idtbindex(3X)
obJect file. tread an indexed ldtbread (3X)
obJect file. /seek to . • •. Idtbseek(3X)
obJect file. linenum: line •• linenum(4)
obJect file. /relocation • reloc(4)
object file. scnhdr: ••.. scnhdr(4)
obJect file symbol table Idgetname(3X)
obJect file symbol table • • Syms(4~
object files. filehdr: . • .• filehdr 4)
open a common object file for ldopen 3X)
open a stream. . • . • .• fopen (3S)
open file descriptor. . . .• dup(2)
open· for reading or writing. open (2)
open: open for reading or ••• open (2)
operations. memccpy, memchr" • memory (3 C)
operations. msgctl (l)
operations. msgop(2)
operations. semctl (2)
operations. . . • • • • semop(2)
operations. . • shmctl (2)
operations. . . • • • • . • . • shmop(2)
operations. /strpbrk, strspn, string (3C)
optimization package. curses: .• curses(3X)
option letter from argument getopt (3C)
optional file header of a .. Idohseek(3X)
options. ••.. . • • • . • fcntl (5)
or, xor, not, lshift, rshift: . • • • booI(3F)
ordinary file. mknod: make .• mknod (2)
OSDD adapter macro package for mosd (5)
out-going terminal line? • dial (3 C)
output. a.out: common . a.out(4)
output language. •.•.•.. troff(5)
output of a varargs argument/ • vprintf(3S)
output of a varargs argument/ vprintf(3X)
output. printf, fprintf, printf(3S)

xxviii-System Calls and Library Routines UNIX Programmer's Manual

chown: change owner and group of a file. 0 0 0 chown (2)
handling and optimization package. curses: CRT screen 0 0 curses(3X)

permuted! mptx: the macro package for formatting a mptx(5)
documents. mm: the MM macro package for formatting 0 0 mm(5)
mosd: the OSDD adapter macro package for formattingl mosd(5)

viewgraphsl my: a troff macro package for typesetting 0 mv(5)
stal!dard buffered input/~utput package. stdio: 0 0 0 0 0 stdio(3S)

Inter process commUnIcation package. ftok: standard stdipc(3C)
process, process group, and parent process IDs. Iget 0 0 getpid(2)

passwd: password file. passwd (4)
lendpwent, fgetpwent: get password file entry. 0 0 getpwent(3C)

putpwent: wrlte password file entry~ 0 putpwent(3C)
passwd: password file. 0 0 passwd (4)

getpass: read a password. 0 0 0 0 0 0 0 0 getpass (3C)
directory. getcwd: get path-name of current working 0 getcwd(3C)

signal. pause: suspend process until pause(2)
a process. popen, pclose: initiate pipe to/from popen(3S)

macro package for formatting a permuted index. mptx: .the mptx (5)
format. acct: per-process accountIng file . 0 0 acct(4)

sys_nerr: system errorl perror, errno, sys errhst, 0 0 0 0 perror(3C)
channel. pipe: create an inlerprocess pipe (2)

popen .. pel~se: initiate pipe to/from a process. 0 0 0 0 popen(3S)
aata In memory. plock: lock process, text, or plock(2)

plot: graphics interface. plot (4)
subroutines. plot: graphics interface 0 0 plot(3X)

images. pnch: file format for card pnch (4)
ftell: reposition a file pointer in a stream. Irewind, fseek(3S) .

lseek: move read/write file pointer. 0 0 0 0 0 0 • 0 0 Iseek(2)
to/from a process. popen, pelose: initiate pipe 0 popen(3S)

functions. dim, ddim, idim: positive difference intrInsic aim(3F)
logarithm,! exp, log, 10gIO, pow, sqrt: exponential, 0 0 • 0 0 exp(3M)

Isqrt: exponential, logarithm, power1 square root functions. exp(3M)
function. dprod: double precislOn product intrinsic . 0 0 dprod(3F)

monitor: prepare execution profile. monitor(3C)
graphicall gps: graphical primitive string, format of 0 gps(4)

types: primitive system data types. types(5)
vprintf, vfprintf, vspnntf: print formatted output of al 0 0 vprintf(3S)
vprintf, vfprintf, vsprintf: print formatted output of al vprintf(3X)

printf, fprintf, sprintf: print formatted output. 0 0 printf(3S)
print formatted output. printf, fprintf, sprintf: printf(3S)

nice: change priority of a process. 0 nice(2)
acct: enable or disable process accounting. acct(2)

alarm: set a process alarm elock. 0 0 0 0 0 0 alarm (2)
times. times: get process and child process 0 times(2)

exit, exit: terminate process. 0 0 0 0 0 0 0 0 exit (2)
for1:: create a new process. 0 0 0 0 0 0 0 0 0 0 0 fork (2)

I getpgrp, getppid: get process, process group, and parentI 0 getpid (2)
setpgrp: set process group ID. 0 0 0 0 0 setpgq~(2)

process group, and- parent process IDs. Iget process, getpld(2)
inittab: script for the init process. 0 0 0 0 0 0 0 Inittab(4)
nice: change priority of a process. 0 0 0 0 0 0 0 nice(2)

kill: send a signal to a process or a group ofl 0 0 0 kill (2)
initiate pipe to/from a process. popen, pelose: . 0 0 0 0 popen (3S)

getpid, getpgrp, getppid: get process, process group" andl getpid(2)
memory. plock: lock process, text, or data In 00 0 0 p,lock(2)

times: get process and child process times. 0 0 0 0 0 0 times (2)
wait: wait for child process to stop or terminate. wait (2)

ptrace: process trace. 0 0 0 0 0 0 0 0 ptrace (2)
pause: suspend process until signal. 0 0 0 0 pause(2)

list of file systems processed by fsck. checklist: 0 0 checklist (4)
to a process or a group of processes. !send a signal 0 0 0 0 kil1(2)

dprod: double precision product intrinsic function. 0 0 0 dprod(3F)

UNIX Programmer's Manual System Calls and Library Routines-xxix

function.
profile.

monitor: prepare execution
profil: execution time

environment at login time.
prof:

/generate uniformly distributed

stream. ungetc:
put character or word on a/

character or word o~ a/ putc,
enVIronment.

entry.
stream.

getutent, getutid, getutline,
a/ putc, putchar, fputc,

msgget: get message
qsort:

generator. irand,
random-number generator.

irand, rand, srand:
rand, srand: simple

getpass:
entry of a common/ ldtbread:
header! ldshread,ldnshread:

read:

member of ant ldahread:
common object file. ldfhread:
open a common object file for

open: open for
lseek: move

cmplx,/ int, ifix, idint,
allocator. malloc, free,

mallinfo: fast/ malloc, free,
specify what to do upon

/specify Fortran action on
lockf:

execute regular expression.
regular expression. regcmp,
compile ana match routines.

match routines. regexp:
regex: compile and execute

for a common object file.
ldrseek, ldnrseek: seek to

common object file. reloc:
/fmod, fabs: floor, ceiling,

mod, amod, dmod: Fortran
unlink:
clock:

stream. fseek, rewind, ftell:
common object filet ldgetname:

argument. getarg:
variable. getenv:

accounting. mclock:
abs:

strin~. len:
substring. mdex:

logname:
line arguments. iargc:

name. getenv:

prof: profile within a prof(5)
profil: execution time profil (2)
profile. •...•• . • monitor(3C)
profile. •••...• profil (2)
profile: setting up an. . • profile(4)
profile within a function. prof(5)
pseudo-random numbers. •.• orand48 (3C)
ptrace: process trace. ..••• ptrace (2)
push character back into input • ungetc(3S)
putc, putchar, fputc, putw: . • • putc(3S)
putchar, fputc, putw:!ut •. putc(3S)
putenv: cnange or ad value to putenv(3C)
putpwent: WrIte password file • • putpwent (3C)
puts, fputs: put a string on a . puts (3S)
pututlme, setutent, endutent,/ . getut(3C)
putw: put character or word on putc(3S)
qsort: quicker sort. • • qsort(3C)
queue. .•.•. msgget (2)
quicker sort. • • . • • . • • • qsort(3C)
rand, srand: random number rand (3F)
rand, srand: simple .•.•.. rand !3C)
random number generator.. rand 3F)
random-number generator.. rand 3C)
read a password. .•....• getpass(3C)
read an indexed symbol table . • Idtbread(3X)
read an indexed/named section Idshread(3X)
read from file. •••••.•• read (2)
read: read from file. . . •. read (2)
read the archive header of a .• Idahread(3X)
read the file header of a ldfhread (3X)
reading. ldopen, ldaopen: ••. ldopen (3X)
reading or writing. •• open (2)
read/write file pomter.. • . lseek (2)
real, float, sngl, dble, ••• ftype(3F)
realloc, calloc: main memory malloc(3C)
realloc, calloc, mallopt, •. malloc(3X)
receipt of a signal. sIgnal: signal (2)
receipt of a system signal. signal (3 F)
record locking on files. • •. lockf(3C)
regcmp, regex: compile and regcmp(3X)
regex: compile and execute regcmp(3X)
regexp: regular expression ••. regexp(5)
regular expression compile and • regexp(5)
regular expression. regcmp, • regcmp(3X)
reloc: relocation information • reloc(4)
relocation entries of a/ •.•. Idrseek(3X)
relocation information for a •• reloc(4)
remainder, absolute value/ floor(3M)
remaindering intrinsic/ •• mod (3 F)
remove directory entry. •• unlink (2)
report CPU time used. •.•• clock (3C)
reposition a file pointer in a fseek(3S)
retrieve symbol name for •.•• Idgetname(3X)
return Fortran command-line getarg(3F)
return Fortran environment •• getenv (3 F)
return Fortran time • • •• mclock (3 F)
return integer absolute value. • • abs(3C)
return length of Fortran • • • . len (3 F)
return location of Fortran ••• index (3F)
return login name of user. . •• 10gname(3X)
return the number of command iargc(3F)
return value for environment • . getenv(3C)

xxx-System Calls and Library Routines UNIX Programmer's Manual

stat: data
file pointer in a/ fseek,

creat: create a new file or
chroot: change

logarithm, power, square
/dsqrt, csqrt: Fortran square

common object file access
expression compile and match

and, or, xor, not, lshift,
space allocation. brk,

formatted input.
sccsfile: format of

common object file.
optimization/ curses: CRT

inittab:
bsearch: binary

lsearch, lfind: linear
hcreate, hdestroy: manage hash

tdelete, twalk: manage binary
object file. scnhdr:

object/ tread an indexed/named
Ito line number entries of a

Ito relocation entries of a
/seek to an indexed/named

/mrand48 jrand48, srand48,
section of) ldsseek, ldnsseek:

a section/ ldlseek, ldnlseek:
a section/ ldrseek, ldnrseek:

header of a common/ ldohseek:
common object file. ldtbseek:

shmget: get shared memory
brk, sbrk: change data

semctl:
semop:

semget: get set of
operations.

a group_ of processes. kill:
buffering to a stream.

IDs. setuid,
getgrent, getgrgid, getgrnam,

goto.
encryption. crypt,

getpwent, getpwuid, getpwnam,
login time. profile:

gettydefs: speed and terminal
group IDs.

/ getutid, getutline, pututline,
stream. setbuf,

data in a/ sputl,
operations. shmctl:

shmop:
shmget: get

system: issue a
system: issue a

operations.
segment.

operations.
transfer-of -sign intrinsic/

UNIX Programmer's Manual

returned by stat system call. stat(5~
rewi~d, ftell: ,reposition a. fseek 3S)
rewnte an eXlstmg one. •. creat 2)
root directory. ••.... chroot (2)
root functions. /exponential, exp(3M)
root intrinsic functIOn. . . sqrt(3F)
routines. ldfcn: . . • . •. ldfcn (4)
routines. regexp: regular .. regexp(5)
rshift: Fortran Bitwlse/. boo1(3F)
sbrk: change data segment . . • brk(2)
scanf), fscanf, sscanf: convert .. scanf(3S)
SCC;:, file. • . . • . • .. sccsfile(4)
sccsfile: format of SCCS file. sccsfile(4)
scnhdr: section header for a .. scnhdr(4)
screen handling and • . .. curses(3X)
script for the init process. . inittab(4)
search a sorted table. bsearch(3C)
search and update. . lsearch (3C)
search tables. hsearch, .. hsearch{3C)
search trees. tsearch, tfind,. tsearch (3C)
section header for a common scnhdr(4)
section header of a common Idshread(3X)
section of a common object/ Idlseek{3X)
section of a common obJect/ Idrseek(3X)
section of a common obJect/ Idsseek(3X)
seed48, Icong48: generate/ . drand48 (3C)
seek to an indexea/named .•. Idsseek{3X)
seek to line number entries of . Idlseek(3X)
seek to relocation entries of •. Idrseek{3X)
seek to the optional file •.•. Idohseek{3X)
seek to the symbol table of a Idtbseek(3X)
segment. •....... shm.,get (2)
segment space allocation.. brkt2)
semaphore control operations. • semctl (2)
semaphore operations. . .• semop(2)
semal?hores. .•..... semget(2)
semctl: semaphore control. semctl (2)
semget: get set of semaphores. . semget(2)
semop: semaphore operations. semop(2)
send a signal to a I?rocess or •. kill (2)
setbuf, setvbuf: assign . • . . • setbuf(3S)
setgid: set user and group ..• setuid(2)
setgrent, endgrent, fgetgrent:/ . getgrent (3C)
setJmp, longjmp: non-local .• setJmp{3C)
setkey, encrypt: generate DES cryptOC)
setpgrp: set I?rocess group ID. • setpgrp(2)
setpwent, enopwent, fgetpwent:/ getpwent{3C)
setting up an environment at . . prolile(4)
settings used by getty. . • .• gettydefs(4)
setuid, setgid: set user and . • . setUld (2)
setutent, endutent, utmpname:/ • getut(3C)
setvbuf: assign buffering to a setbuf{3S)
sgetl: access long integer •. sputl(3X)
shared memory control .. shmctl (2)
shared memory operations.. shmop(2)
shared memory segment. •. shmget (2)
shell command from Fortran. • • system{3F)
shell command. • . • . .• system (3S)
shmctl: shared memory control shmctl (2)
shmget: get shared memory shmget (2)
shmop: shared memory •• shmop (2)
sign, Isign, dsign: Fortran sign (3F)

System Calls and Library Routines-xxxi

pause: suspend process until
what to do upon receipt of a
action on receipt of a system

on receipt of a system/
upon receipt of a signal.
of processes. kill: send a
ssignal, gsignal: software

generator. rand, srand:
atan, atan2: trigonometric/

intrinsic function.
sin, dsin, csin: Fortran

/dsinh: Fortran hyper~olic
functlons.

hyperbolic sine intrinsic/
interval.

for typesetting viewgraphs and
current! ttyslot: find the
int, ifix, idint, real, float,

ssignal, gsignal:
qsort: qUIcker

bsearch: binary search a
brk, sbrk: change data segment

fspec: format
receipt of a system/ signal:

receipt of a signal. signal:
used by getty. gettyaefs:

output. printf, fprintf,
integer data in a

square root intrinsic/
power,/ exp, log, 10glO, pow,

exponential, logarithm, power,
sqrt, dsqrt, csqrt: Fortran

generator. Irand, rand,
genera tor. rand,

/nrand48, mrand48, jrand48,
input. scanf, fscanf,

signals.
package. stdio:

communication package. ftok:
/from the Fortran Military

system call.

stat: data returned by
ustat: get file system

feof, clearerr, fileno: stream
stat, fstat: get file

input/output package.

wait for child process to
strncmp, strcpy, strncpy'/

/strcpy strncpy, strlen,
strncpy,l strcat, strncat,

/strncat, strcmp, strncmp,
/strrchr, strpbrk, strspn,

mush: close or flush a
fopen, freopen, fdopen: open a

reposition a file pointer in a
get character or word from a

fgets: get a string from a
put character or word on a

puts, fputs: put a string on a
setvbuf: assign buffering to a

signal. ••••.• . • pause (2)
signal. signal: specify .•. Signal!2)
signal. /specify Fortran .• signal 3F)
signal: specify Fortran action signal 3F)
signal: specify what to do. signal 2)
signal to a process or a group kill (2)
signals. .•.....•... ssignaI(3C)
simple random-number rand (3C)
sin, cos, tan, asin, acos, .. tri~(3 M)
sin, dsin, csin: Fortran sine sin 3F)
sine intrinsic function. . •. sin 3 F)
sine intrinsic function. . . . sinhl3F)
sinh, cosh, tanh: hyperbolic . sinh 3M)
sinh, dsinh: Fortran sinh 3F)
sleep: suspend execution for •. sleel'(3C)
slides. /a troff macrofackage mv{5)
slot in the utmp file 0 the . • . ttyslot (3C)
sngl, dble,. cmplx, dcmplx,/. ftype(3F)
software sIgnals.•. sSIgnaI(3C)
sort. .•... gsort (3C)
sorted table. .•...•.•. osearch (3C)
space allocation. .•.•... brk(2)
specification in text files. . • . • fspec(4)
speci(y Fortran action on. signaH3F)
specify what to do upon. signal(2)
speed and terminal settings gettydefs(4)
sprintf: print formatted ..•• printf(3S)
sputI, sgetI: access long sputl (3X)
sqrt, dsqrt, csqrt: Fortran ... sqrt(3F)
sqrt: exponentlal, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
square root intrinsic/ sqrt(3F)
srand: random number rand (3F)
srand: simple random-number rand (3C)
srand48, seed48,z lcong48:/ . . • drand48 (3C)
sscanf: convert Iormatted .•. scanf(3S)
ssignal, gsignal: software . . • . ssignal (3C)
standard buffered input/output stdio(3S)
standard interprocess• stdipc(3C)
Standard (MIL-STD-1753).. milOF)
stat: data returned by stat statl5j
stat, fstat: get file status. . stat 2
stat system call. stat 5
statistics. .•...... ustat (2)
status inquiries. ferror, . • ferror(3S)
status. stat (2)
stdio: standard buffered stdio(3S)
stime: set time. stime (2)
stop or terminate. wait: wait(2!
strcat, strncat, strcmp, string 3Cl
strchr, strrchr, strpbrk,/ string 3C
strcmp, strncmp, strcpy, string 3C
strcpy, strncpy, strlen,l string 3C
strcspn, strtoK:: string/ . string 3C
stream. fclose, •.. . . fclose 3S)
stream. .•..•.••. fopen (3S)
stream. fseek, rewind, ftell: fseek (3S)
stream. /getchar, fgetc, getw: • getc(3S)
stream. gets, • . • • gets (3S)
stream. /putchar, fputc, putw: putc(3S)
stream.•....• puts(3S)
stream. setbuf, • . . • setbuf(3S)

xxxii-System Calls and Library Routines UNIX Programmer's Manual

/feof, dearerr, fileno:
push character back into input

long integer and base-64 ASCII
1ge, 19t, lle, lIt:

convert date and time to
floating-point number to
gps: graphical primitive

gets, fgets: get a
len: return length of Fortran

puts, fputs: put a
strspn, strcspn, strtok:

number. strtod, atof: convert
strtol, atol, atoi: convert

/strncmp, strcpy, strncpy,
strcpy, strncpy,/ strcat,
strcat, strncat, strcmp,

/strcmp, strncmp, strcpy,
/ stffen, strchr, strrchr,
/strncpy, strlen, strchr,

/strchr, strrchr, strpbrk,
to double-precision number.

/strpbrk, strspn, strcspn,
string to integer.

intro: introduction to
/intrinsic functions and
plot: graphics interface

return location of Fortran
sync: update

interval. sleep:
pause:

swab:
filet ldgetname: retrieve

name for common object file
object/ /compute the index of a

ldtbread: read an indexed
syms: common object file

object/ ldtbseek: seek to the
symbol table format.

error / perror, errno,
perror, errno, sys errlist,

binary search a sorted
for common object file symbol

/ compute the index of a symbol
file. tread an indexed symbol

common object file symbol
master devIce information

mnttab: mounted file system
ldtbseek: seek to the symbol

hdestroy: manage hash search
trigonometric/ sin, cos,

intrinsic function.
tan, dtan: Fortran

/dtanh: Fortran hyperbolic
hyperbolic tangent mtrinsic/

sinh, cosh,
search trees. tsearch, tfind,

temporary file. tmpnam,
tmpfile: create a

tempnam: create a name for a
terminals.

UNIX Programmer's Manual

stream status inquiries. . ferror(3S)
stream. ungetc: • . • . • . . . ungetc(3S)
string. /164a: convert between a641 (3C)
string comparison intrinsic/ .. strcmp(3F)
string. /asctime, tzset: • .• ctimeOC)
string. /fcvt, gcvt: convert . • • ecvt(3C)
string, format of graphical! •. gps(4)
string from a stream. gets(3S)
string. . . . • • len (3 F)
string on a stream. .••. puts (3S)
string operations. /strpbrk, . • • string (3C)
string to double-precisIOn strtod (3C)
string to integer. ••. • • strtolOC)
strlen, strchr, strrchr,l • string 3C
strncat, strcmp, strncmp, string 3C
strncmp, strcpy, strncpy'/ . string 3C
strncpy, strlen, strchr,l string 3C
strpbrk, strspn, strcspn'/ • . string 3C
strrchr, strpbrk, strspn

7
/ string 3C

strspn, strcspn, strtok: . • string 3C
strtod, atof: convert string strtod 3C)
strtok: string operations. string 3C)
strtol, atol, at01: convert strtolOC)
subroutines and libraries.. intro(3)
subroutines from the Fortran/ mi1(3F)
subroutines. •••. plot(3X)
substring. index: mdex(3F)
super-block. sync(2)
suspend execution for ..• sleepOC)
suspend process until signal. .. pause (2)
swab: swap bytes. . • . . . • . swab(3C)
swap bytes. .•....... swab(3C)
symbol name for common object Idgetname(3X)
symbol table entry. /symbol .. Idgetname(3X)
symbol table entry of a common Idtbindex(3X)
symbol table entry of a common/ ldtbread (3X)
symbol table format. •..•. syms(4)
symbol table of a common Idtbseek(3X)
syms: common object file . syms(4)
sync: update super-block.. sync(2)
sys_errlist, sys_nerr: system •• perror(3C)
sys nerr: system error/. perror(3C)
table. bsearch: • • •. bsearch(3C)
table entry. /symbol name ... Idgetname(3X)
table entry of a common object/ ldtbindex (3X)
table entry of a common object . Idtbread(3X)
table format. syms: syms(4)
table. master: •.•... master (4)
table. • • • mnttab(4)
table of a common object file. . Idtbseek(3X)
tables. hsearch, hcreate, •. hsearch(3C)
tan, asin, acos, atan, atan2: trig(3M)
tan, dtan: Fortran tangent . tan (3 F)
tangent intrinsic functIOn. tan (3 F)
tangent intrinsic function. .•. tanh OF)
tanh, dtanh: Fortran ..• tanh(3F)
tanh: hyperbolic functions. . . . sinh OM)
tdelete, twalk: manage binary . tsearch (3C)
tempnam: create a name for a . tmpnam(3S)
temporary file. •.•... tmpfile(3S)
temporary file. tmpnam, .. tmpnam (3S)
term: conventional names for term (5)

System Calls and Library Routines-xxxiii

term: format of compiled
file ..

terminfo:
generate file name for

dial: establish an out-going
getty. gettydefs: speed and

isatty: find name of a
term: conventional names for

abort:
exit, exit:

for child process to stop or
data base.

fspec: format specification in
plock: lock process,

binary search trees. tsearch,
mclock: return Fortran

profil: execution
up an environment at login

stime: set
time: get

tzset: convert date and
clock: report CPU

l rocess times.
get process an child process

file access and modification
file.

for a temporary file.
/tolower, toupper, tolower,

popen, pclose: initIate pipe
toupper, tolower, toupper,
toascii: translate/-toupper,

translate/ toupp'er, tolower
j to lower, toascIi: translate

- ptrace: process
sign, isign, dsign: Fortran

/ toupper, tolower, toascii:
- - ftw: walk a file

twalk: manage binary search
tan, asin, acos, atan, atan2:

language.
files for device-independent

typesetting viewgraphsl mv: a
twalk: manage binary search/

a terminal.
utmp file of the current/

tsearch, tfind, tdelete,
ichar, char: explicit Fortran

types.
types: primitive system data

mv: a troff macro package for
/localtime, gmtime, asctime,

getpw: get name from
limits.

creation mask.

UNIX system.
into input stream.

/seed48, lcong48: generate
mktemp: make a

entry.
umount:

term file..t. term (4)
term: format of compiled term term (4)
terminal capability data base. . terminfo(4)
terminal. ctermid: •.•... ctermid (3S)
terminal line connection. . • dial (3C)
terminal settings used by .•• gettydefs (4)
terminal. ttyname, .. ttyname(3C)
terminals. •.•.••. . term (S)
terminate Fortran program. .. abort(3F)
terminate process. ..•... exit(2)
terminate. wait: wait ..••• wait(2)
terminfo: terminal capability . . terminfo(4)
text files. •.••.•.••. fspec(4)
text, or data in memory. •. plock (2)
tfind, tdelete, twalk: manage .. tsearch (3C)
time accounting. • • . • . mclock(3F)
time: get time. ..• . • time(2)
time profile. •.. . . profil (2)
time. profile: setting profile(4)
time. .•.•.. . . stime (2)
time. ••...... time(2)
time to string. /asctime, . . ctime(3C)
time used. . • . . • • clock(3C)
times: get process and child .. t!mes (2)
times. times: . . • . • . • . . tImes (2)
times. utime: set .•••••. utime(2)
tmpfile: create a temporary . tmpfile(3S)
tmpnam, tempnam: create a name tmpnam (3S)
toascii: translate characters. .• conv(3C)
to/from a process. ••.. popen (3S)
tolower, toascii: translate/ • . . conV!3Cl

folower, _toupper, _tolow.<?r, conv 3C
_toupper, tolower, toaSCll: conv 3C
toupper, tOlower, _toupper, conv 3C
trace. . • . • . • . . ptrace (2
transfer-of-sign intrinsic/ sign (3 F)
translate characters. . . conv(3C)
tree. .••..... ftw(3C)
trees. /tfind, tdelete,• tsearch (3C)
trig<.cmometric functions. /cos, . trig{3M)
troff: description. of. output. troff(S)
troff. font: descnptIOn • .. font (S)
troff macro package for .•.. mv (S)
tsearch, tfind, tdelete, . .. tsearch (3C)
ttyname, isatty: find name of . . ttyname(3C)
ttyslot: find the slot in the. ttyslot (3C)
twalk: manage binary search/ . tsearch (3C)
type converSIon. /dcmplx, ... ftype~3F)
types: primitive system data types S)
types. . • . . • • ty~s S)
typesetting viewgraphs and/ mv(S)
tzset: convert date and timet . . ctime(3C)
UID. . ••.••..••.. getpw(3C)
ulimit: get and set user ulimit(2)
umask: set and get file . • . . . umask(2)
umount: unmount a file system. • umount (2)
uname: get name of current .. uname(2)
ungetc: push character back ungetc(3S)
umformly distributed/ . • . drand48 (3C)
unique file name. . ••...• mktemj)(3C)
unlink: remove directory .. unlink {2)
unmount a file system. . umount (2)

xxxiv-System Calls and Library Routines UNIX Programmer's Manual

lfind: linear search and
sync:

setuid, setgid: set
character login name of the

/getgid, getegid: get real
environ:

ulimit: get and set
logname: return logm name of

/get real user, effective
the utmp file of the current

statistics.
modification times.

utmp, wtmp:
endutent, utmpname: access

ttyslot: find the slot in the
entry formats.

/pututline, setutent, endutent,
abs: return integer absolute

cabs, zabs: Fortran absolute
getenv: return

ceiling, remainder, absolute
putenv: change or add

values.
values: machine-dependent

/print formatted output of a
/print formatted output of a

argument list.
varargs: handle

return Fortran environment
option letter from argument

assert:
formatted output of! vprintf,
formatted output off vprintf,

macro package for typesetting
file system: format of system
print formatted output of a/
print formatted output of a/
output of! vprintf, v{printf,
output of! vprintf, vfprintf,

or terminate. wait:
to stop or terminate.

ftw:
signal. sign~l: specify

chdlr: change
get path-name of current

write:
putpwent:

open: open for reading or
utmp, wtmp: utmp and

formats. utmp,
Fortran Bitwise/ and, or,

jO,jl,jn,
j0,J 1, jn, yO,

jO, jl, jn, yO, yl,
abs, iabs, dabs, cabs,

update. lsearch, .• .•. lsearch (3C)
update super-block. . . sync(2)
user and group IDs. setuid (2)
user. cuserid: get . • • cuserid (3S)
user, effective user, real! getuid(2)
user environment. . . environ (S)
user limits. ulimit(2)
user. •..•.... 10gname(3X)
user, real group, and/ . . getuid(2)
user. /find the slot in . ttyslot(3C)
ustat: get file system. ustat (2)
utime: set file access and . • . . uti me (2)
utmp and wtmp entry formats. • utmp(4)
utmp file entry. /setutent, ... getut(3C)
utmp file of tlie current user. tty slot (3C)
utmp, wtmp: utmp and wtmp • . utmp(4)
utmpname: access utmp file! getut (3C)
value. • . . • . • • . . • abs(3C)
value. abs, iabs, dabs, . .. abs(3F)
value for environment name. .. getenv(3C)
value functions. /fabs: floor, floor(3M)
value to environment. •.. putenv(3C)
values: machine-dependent • values(5)
values. ..•...•. values (5)
varargs argument list. . • vprintf<3S)
varargs argument list. . vprintf(3X)
varargs: handle variable .. varargs(S)
variable argument list. • varargs(S)
variable. getenv: ..• • getenv(3F)
vector. getopt: get .•. getopt (3C)
verify ~rogram assertion. .. assert (3 X)
v{printf, vsprintf: print vprintf(3S)
vfprintf, vsprintf: print . .. vprintf(3X)
viewgraphs and shdes. /troff mv(S)
volume. •....•. .• fs(4)
vprintf, v{printf, vsprintf: vPrintf13S)
vprintf, vfprintf, vsprintf: vprintf 3X)
vsprintf: print formatted vprintf 3S)
vsprintf: print formatted . . . • vprintf 3X)
wait for child process to stop wa!t (2)
wait: wait for child process. walt (2)
walk a file tree. . • • . . . • • ftw(3C)
what to do upon receipt of a .. signal (2)
working directory. ... clidir(2)
working directory. getcwd: . getcwd (3C)
write on a file. ••••. write (2)
write password file entry. putpwent(3C)
write: write on a file.. write (2)
writing. ••• . . • . . open (2)
wtmp entry formats. •.. utmp(4)
wtmp: utmp and wtmp entry utmp-(4)
xor, not, lsllift, rshift: .•. bool (3 F)
yO, yl, yn: Bessel fl.!nctions. .• bessel!3Ml
yl, yn: Bessel fl.!nctIons. •• bessel 3M
yn: Bessel functIons. • • .• bessel 3M
zabs: Fortran absolute value. • • abs(3F)

UNIX Programmer's Manual System Calls and Library Routines-xxxv

INTRO(2) INTRO(2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include < errno.h >

DESCRIPTION
This section describes all of the system calls. Most of these calls
have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. This is almost always -1;
the individual descriptions specify the details. An error number is
also made available in the external variable errno. Errno is not
cleared on successful calls, so it should be tested only after an
error has been indicated.

Each system call description attempts to list all possible error
numbers. The following is a complete list of the error numbers
and their names as defined in <errno.h>.

EPERM Not owner
Typically this error indicates an attempt to modify a file
in some way forbidden except to its owner or super-user.
It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file
should exist but doesn't, or when one of the directories in
a path name does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified
by pid in kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which
the user has elected to catch, occurred during a system
call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this
error condition.

5 EIO I/O error
Some physical I/O error has occurred. This error may in
some cases occur on a call following the one to which it
actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not

UNIX Programmer's Manual System Calls and Library Routines-l

INTRO(2) INTRO(2)

exist, or beyond the limits of the device. It may also occur
when, for example, a tape drive is not on-line or no disk
pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5,120 bytes is presented to a
member of the exec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has
the appropriate permissions, does not start with a valid
magic number [see a.out (4) 1.

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read
(respectively, write) request is made to a file which is open
only for writing (respectively, reading).

10 ECHILD No child processes
A wait was executed by a process that had no existing or
unwaited-for child processes.

11 EAGAIN No more processes
A fork failed because the system's process table is full or
the user is not allowed to create any more processes.

12 ENOMEM Not enough space
During an exec, brk, or sbrk, a program asks for more
space than the system is able to supply. This is not a tem­
porary condition; the maximum space size is a system
parameter. The error may also occur if the arrangement
of text, data, and stack segments requires too many seg­
mentation registers, or if there is not enough swap space
during a fork.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden
by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to
use an argument of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was
required, e.g., in mount.

2-System Calls and Library Routines UNIX Programmer's Manual

INTRO(2) INTRO(2)

16 EBUSY Device or resource busy
An attempt was made to mount a device that was already
mounted or an attempt was made to dismount a device on
which there is an active file (open file, current directory,
mounted-on file, active text segment). It will also occur if
an attempt is made to enable accounting when it is
already enabled. The device or resource is currently una-
vailable. .

17 EEXIST File exists
An existing file was mentioned in an inappropriate con­
text, e.g., link.

18 EXDEV Cross-device link
A link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system
call to a device; e.g., read a write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is
required, for example in a path prefix or as an argument
to ehdir (2).

21 EISDIR Is a directory
An attempt was made to write on a directory.

22 EINV AL Invalid argument
Some invalid argument (e.g., dismounting a non-mounted
device; mentioning an undefined signal in signal, or kill;
reading or writing a file for which lseek has generated a
negative pointer) was attempted. The math functions
described in the (3M) entries of this manual causes the
invalid argument to be set.

23 ENFILE File table overflow
The system file table is full, and temporarily no more
opens can be accepted.

24 EM FILE Too many open files
No process may have more than 20 file descriptors open at
a time. When a record lock is being created with lentl,
there are too many files with record locks on them.

25 ENOTTY Not a character device
An attempt was made to ioetl(2) a file that is not a spe­
cial character device.

UNIX Programmer's Manual System Calls and Library Routines-3

INTRO(2) ·INTRO(2)

26 ETXTBSY Text file busy
An attempt was made to execute a pure-procedure pro­
gram that is currently open for writing. Also an attempt
to open for writing a pure-procedure program that is being
executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size
(1,082,201,088 bytes) or ULIMIT; see ulimit(2).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space
left on the device. In fentl, the setting or removing of
record locks on a file cannot be accomplished because
there are no more record entries left on the system.

29 ESPIPE Illegal seek
An lseek was issued to a pipe.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a
device mounted read-only.

31 EMLINK Too many links
An attempt to make more than the maximum number of
links (1000) to a file.

32 EPIPE Broken pipe
A write on a pipe for which there is no process to read the
data. This condition normally generates a signal; the error
is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is
out of the domain of the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is not
representable within machine precision.

35 ENOMSG No message of desired type
An attempt was made to receive a message of a type that
does not exist on the specified message queue; see
msgop(2).

4-System Calls and Library Routines UNIX Programmer's Manual

INTRO(2) INTRO(2)

36 EIDRM Identifier Removed
This error is returned to processes that resume execution
due to the removal of an identifier from the file system's
name space [see msgct[(2) , semct[(2), and shmct[(2)].

45 EDEADLK Deadlock
A deadlock situation was detected and avoided.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a posi­
tive integer called a process ID. The range of this ID is from 1 to
30,000.

Parent Process ID
A new process is created by a currently active process; see fork (2).
The parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This
ID is the process ID of the group leader. This grouping permits
the signaling of related processes; see kill (2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This
grouping is used to terminate a group of related processes upon
termination of one of the processes in the group; see exit (2) and
signa/(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer
called a real user ID.

Each user is also a member of a group. The group is identified by
a positive integer called the real group ID.

An active process has a real user ID and real group ID that are set
to the real user ID and real group ID, respectively, of the user
responsible for the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group
ID that are used to determine file access permissions (see below).
The effective user ID and effective group ID are equal to the
process's real user ID and real group ID respectively, unless the
process or one of its ancestors evolved from a file that had the set-

UNIX Programmer's Manual System Calls and Library Routines-5

INTRO(2) INTRO(2)

user-ID bit or set-group ID bit set; see exec (2).

Super-user
A process is recognized as a super-user process and is granted spe­
cial privileges if its effective user ID is O.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are spe­
cial processes and are referred to as procO and procJ .

ProcO is the scheduler. Procl is the initialization process (init).
Proc 1 is the ancestor of every other process in the system and is
used to control the process structure.

File Descriptor
A file descriptor is a small integer used to do I/O on a file. The
value of a file descriptor is from 0 to 19. A process may have no
more than 20 file descriptors (0-19) open simultaneously. A file
descriptor is returned by system calls such as open (2) , or pipe (2) .
The file descriptor is used as an argument by calls such as read(2) ,
write (2) , ioctI(2), and close (2) .

File Name
Names consisting of 1 to 14 characters may be used to name an
ordinary file, special file, or directory.

These characters may be selected from the set of all character
values excluding \0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, l, or I as part of file
names because of the special meaning attached to these characters
by the shell. See sh (1). Although permitted, it is advisable to
avoid the use of unprintable characters in file names.

Path Name and Path Prefix
A path name is a null-terminated character string starting with an
optional slash (J) , followed by zero or more directory names
separated by slashes; optionally followed by a file name.

More precisely, a path name is a null-terminated character string
constructed as follows:

<path-name> ::=<file-name> I <path-prefix> < file-name> 1/
<path-prefix> ::== < rtprefix> 1/ <rtprefix>
< rtprefix > ::== < dirname > / I < rtprefix > < dirname > /

where <file-name> is a string of 1 to 14 characters other than
the ASCII slash and null, and <dirname> is a string of 1 to 14
characters with the same restrictions} that names a directory.

6-System Calls and Library Routines UNIX Programmer's Manual

INTRO(2) INTRO(2)

If a path name begins with a slash, the path search begins at the
root directory. Otherwise, the search begins from the current
working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated
as if" it named a non-existent file.

Directory
Directory entries are called links. By convention, a directory con­
tains at least two links, 0 and 00, referred to as dot and dot-dot
respectively. Dot refers to the directory itself and dot-dot refers to
its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory
and a current working directory for the purpose of resolving path
name searches. The root directory of a process need not be the
root directory of the root file system.

File Access Permissions
Read, write, and execute/search permissions on a file are granted
to a process if one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches the user ID of
the owner of the file and the appropriate access bit of the
"owner" portion (0700) of the file mode is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group ID
of the process matches the group of the file and the
appropriate access bit of the "group" portion (070) of the
file mode is set.

The effective user ID of the process does not match the
user ID of the owner of the file, and the effective group ID
of the process does not match the group ID of the file, and
the appropriate access bit of the "other" portion (07) of
the file mode is set.

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer
created by a msgget (2) system call. Each msqid has a message
queue and a data structure associated with it. The data structure

UNIX Programmer's Manual System Calls and Library Routines-7

INTRO(2) INTRO(2)

is referred to as msqid_ds and contains the following members:

struct
ushort
ushort
ushort
ushort
time_t
time_t
time t

ipcyerm msgyerm;
msg_qnum;
msg_qbytes;
msgJspid;
msgJrpid;
msg_stime;
msgJtime;
msg_ctime;

/* operation permission struct */
/* number of msgs on q */
/* max number of bytes on q */
/* pid of last msgsnd operation */
/* pid of last msgrcv operation */
/* last msgsnd time ./
/. last msgrcv time ./
/. last change time ./
/. Times measured in secs since • /
/. 00:00:00 GMT, Jan. 1, 1970 ./

Msgyerm is an ipcyerm structure that specifies the message
operation permission (see below). This structure includes the fol­
lowing members:

ushort cuid; /. creator user id ./
ushort cgid; /. creator group id ./
ushort uid; /* user id ./
ushort gid; /* group id ./
ushort mode; /. r/w permission ./

Msg_qnum is the number of messages currently on the queue.
Msg_ qbytes is the maximum number of bytes allowed on the
queue. MsgJspid is the process id of the last process that per­
formed a msgsnd operation. MsgJrpid is the process id of the last
process that performed a msgrcv operation. Msg_stime is the time
of the last msgsnd operation, msg_rtime is the time of the last
msgrcv operation, and msg_ctime is the time of the last msgctl (2)
operation that changed a member of the above structure.

Message Operation Permissions
In the msgop (2) and msgctl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

8-System Calls and Library Routines UNIX Programmer's Manual

INTRO(2) INTRO(2)

The effective user ID of the process matches
msg~rm.lcluid in the data structure associated with
msqid and the appropriate bit of the "user" portion
(0600) of msg...J)erm.mode is set.

The effective user ID of the process does not match
msg...J)erm.lcluid and the effective group ID of the process
matches msg...J)erm.lclgid and the appropriate bit of the
"group" portion (060) of msg...J)erm.mode is set.

The effective user ID of the process does not match
msg...J)erm.lcluid and the effective group ID of the process
does not match msg....Perm.lclgid and the appropriate bit of
the "other" portion (06) of msg...Jlerm.mode is set.

Otherwise, the corresponding permissions are denied.

Semaphore Identifier
A semaphore identifier (semid) is a unique positive integer created
by a semget (2) system call. Each semid has a set of semaphores
and a data structure associated with it. The data structure is
referred to as semid _ds and contains the following members:

struct
ushort
time t
time t

ipc J>erm sem J>erm;
sem_nsems;
sem_otime;
sem_ctime;

I * operation permission struct * I
I * number of sems in set *1
1* last operation time *1
1* last change time *1
1* Times measured in secs since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

Sem""perm is an ipcJ>erm structure that specifies the semaphore
opera tion permission (see below). This structure includes the fol­
lowing members:

ushort cuid; 1* creator user id *1
ushort cgid; 1* creator group id *1
ushort uid; 1* user id *1
ushort gid; 1* group id *1
ushort mode; 1* rIa permission *1

The value of sem_Dsems is equal to the number of semaphores in
the set. Each semaphore in the set is referenced by a positive
integer referred to as a sem_num. Sem_num values run sequen­
tially from 0 to the value of sem_nsems minus 1. Sem_otime is the
time of the last semop (2) operation, and sem_ctime is the time of
the last semetl (2) operation that changed a member of the above
structure.

UNIX Programmer's Manual System Calls and Library Routines-9

INTRO(2) INTRO(2)

A semaphore is a data structure that contains the following
members:

ushort
short
ushort
ushort

semval;
sempid;
semncnt;
semzcnt;

1* semaphore value *1
1* pid of last operation *1
1* # awaiting semval > cval *1
1* # awaiting semval == 0 *1

Semval is a non-negative integer. Sempid is equal to the process
ID of the last process that performed a semaphore operation on
this semaphore. Semnent is a count of the number of processes
that are currently suspended awaiting this semaphore's semval to
become greater than its current value. Semzent is a count of the
number of processes that are currently suspended awaiting this
semaphore's semval to become zero.

Semaphore Operation Permissions
In the semop (2) and semetl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
semjlerm.lcluid in the data structure associated with
semid and the appropriate bit of the "user" portion
(0600) of semjlerm.mode is set.

The effective user ID of the process does not match
semjlerm.lcluid and the effective group ID of the process
matches semjlerm.lclgid and the appropriate bit of the
"group" portion (060) of semJlerm.mode is set.

The effective user ID of the process does not match
semjlerm.lcluid and the effective group ID of the process
does not match semjlerm.lclgid and the appropriate bit of
the "other" portion (06) of semjlerm.mode is set.

Otherwise, the corresponding permissions are denied.

10-System Calls and Library Routines UNIX Programmer's Manual

INTRO(2) INTRO(2)

Shared Memory Identifier
A shared memory identifier (shmid) is a unique positive integer
created by a shmget (2) system call. Each shmid has a segment of
memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as
shmid _ds and contains the following members:

struct
int
ushort
ushort
short
time t
time t
time t

ipc -perm shm --'perm;
shm_segsz;
shm_cpid;
shmJpid;
shm_nattch;
shm_atime;
shm_dtime;
shm_ctime;

/ * operation permission struct * /
/* size of segment */
/* creator pid */
/ * pid of last operation * /
/* number of current attaches */
/* last attach time */
/ * last detach time * /
/ * last change time * /
/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 */

Shm~rm is an ipc-perm structure that specifies the shared
memory operation permission (see below). This structure includes
the following members:

ushort cuid; / * creator user id * /
ushort cgid; /* creator group id */
ushort uid; /* user id */
ushort gid; /* group id */
ushort mode; / * r /w permission * /

Shm _segsz specifies the size of the shared memory segment.
Shm _ cpid is the process id of the process that created the shared
memory identifier. Shm Jpid is the process id of the last process
that performed a shmop(2) operation. Shm_nattch is the number
of processes that currently have this segment attached. Shm_atime
is the time of the last shmat operation, shm_dtime is the time of
the last shmdt operation, and shm_ctime is the time of the last
shmctl (2) operation that changed one of the members of the above
structure.

Shared Memory Operation Permissions
In' the shmop (2) and shmctl (2) system call descriptions, the per­
mission required for an operation is given as "{token}", where
"token" is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user

UNIX Programmer's Manual System Calls and Library Routines-II

INTRO(2)

00060
00006

INTRO(2)

Read, Write by group
Read, Write by others

Read and Write permissions on a shmid are granted to a process if
one or more of the following are true:

The effective user ID of the process is super-user.

The effective user ID of the process matches
shmj)erm.lc1uid in the data structure associated with
shmid and the appropriate bit of the "user" portion
(0600) of shmj)erm.mode is set.

The effective user ID of the process does not match
shm j»erm.lc1uid and the effective group ID of the process
matches shmj»erm.lc1gid and the appropriate bit of the
"group" portion (060) of shmj)erm.mode is set.

The effective user ID of the process does not match
shm j»erm.lc1uid and the effective group ID of the process
does not match shmj»erm.lc1gid and the appropriate bit of
the "other" portion (06) of shmj)erm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
close (2) , ioctI(2), open (2), pipe(2), read (2), write (2) , intro(3).

12-System Calls and Library Routines UNIX Programmer's Manual

ACCESS (2) ACCESS (2)

NAME
access - determine accessibility of a file

SYNOPSIS
int access (path, amode)
char • path;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the
named file for accessibility according to the bit pattern contained
in amode, using the real user ID in place of the effective user ID
and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 read
02 write
01 execute (search)
00 check existence of file

Access to the file is denied if one or more of the following are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] Read, write, or execute (search) permission is

[ENOENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCESS]

[EFAULT]

requested for a null path name.
The named file does not exist.
Search permission is denied on a component of the
path prefix.
Write access is requested for a file on a read-only
file system.
Write access is requested for a pure procedure
(shared text) file that is being executed.
Permission bits of the file mode do not permit
the requested access.
Path points outside the allocated address
space for the process.

The owner of a file has permission checked with respect to the
"owner" read, write, and execute mode bits Members of the file's
group other than the owner have permissions checked with respect
to the "group" mode bits, and all others have permissions checked
with respect to the "other" mode bits.

UNIX Programmer's Manual System Calls and Library Routines-I3

ACCESS (2) ACCESS (2)

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Oth­
erwise, a value of -I is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2), stat(2).

14-System Calls and Library Routines UNIX Programmer's Manual

ACCT(2) ACCT(2)

NAME
acct - enable or disable process accounting

SYNOPSIS
iot acct (path)
char • path;

DESCRIPTION
Acct is used to enable or disable the system process accounting
routine. If the routine is enabled, an accounting record will be
written on an accounting file for each process that terminates.
Termination can be caused by one of two things: an exit call or a
signal; see exit (2) and signaI(2). The effective user ID of the cal­
ling process must be super-user to use this call.

Path points to a path name naming the accounting file. The
accounting file format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no
errors occur during the system call.

Acct will fail if one or more of the following are true:

[EPERM]

[EBUSY]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

[EFAULT]

The effective user of the calling process is not
super-user.

An attempt is being made to enable accounting
when it is already enabled.

A component of the path prefix is not a directory.

One or more components of the accounting file
path name do not exist.

A component of the path prefix denies search
permission.

The file named by path is not an ordinary file.

Mode permission is denied for the named
accounting file.

The named file is a directory.

The named file resides on a read-only file system.

Path points to an illegal address.

UNIX Programmer's Manual System Calls and Library Routines-IS

ACCT(2) ACCT(2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -I is returned and errno is set to indicate the error.

SEE ALSO
exi t (2), signal (2), acct (4) .

"16-System Calls and Library Routines UNIX Programmer's Manual

ALARM (2) ALARM (2)

NAME
alarm - set a process alarm clock

SYNOPSIS
unsigned alarm (sec)
unsigned sec;

DESCRIPTION
Alarm instructs the alarm clock of the calling process to send the
signal SIGALRM to the calling process after the number of real
time seconds specified by sec have elapsed; see signal (2).

Alarm requests are not stacked; successive calls reset the alarm
clock of the calling process.

If sec is 0, any previously made alarm request is canceled.

RETURN VALUE
Alarm returns the amount of time previously remaining in the
alarm clock of the calling process.

SEE ALSO
pa use (2), signal (2) .

UNIX Programmer's Manual System Calls and Library Routines-I 7

BRK(2) BRK(2)

NAME
brk, sbrk - change data segment space allocation

SYNOPSIS
int brk (endds)
ehar *endds;

ehar *sbrk (jner)
int iner;

DESCRIPTION
Brk and sbrk are used to change dynamically the amount of space
allocated for the calling process's data segment; see exec (2) . The
change is made by resetting the process's break value and allocat­
ing the appropriate amount of space. The break value is the
address of the first location beyond the end of the data segment.
The amount of allocated space increases as the break value
increases. The newly allocated space is set to zero.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated
space accordingly. [ncr can be negative, in which case the amount
of allocated space is decreased.

Brk and sbrk will fail without making any change in the allocated
space if one or more of the following are true:

Such a change would result in more space being allocated
than is allowed by a system-imposed maximum (see
ulimit (2». [ENOMEM]

Such a change would result in the break value being
greater than or equal to the start address of any attached
shared memory segment (see shmop (2» .

RETURN VALUE
Upon successful completion, brk returns a value of 0 and sbrk
returns the old break value. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec (2), shmop (2), ulimit (2) .

IS-System Calls and Library Routines UNIX Programmer's Manual

CHDIR(2) CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char .path;

DESCRIPTION
Path points to the path name of a directory. Chdir causes the
named directory to become the current working directory, the
starting point for path searches for path names not beginning with
I.

Chdir will fail and the current working directory will be
unchanged if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

RETURN VALUE

A component of the path name is not a directory.

The named directory does not exist.

Search permission is denied for any component of
the path name.

Path points outside the allocated address space of
the process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -I is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

UNIX Programmer's Manual System Calls and Library Routines-19

CHMOD(2) CHMOD(2)

NAME
chmod - change mode of file

SYNOPSIS
iot chmod (path, mode)
char .path;
iot mode;

DESCRIPTION
Path points to a path name naming a file. Chmod sets the access
permission portion of the named file's mode according to the bit
pattern contained in mode.

Access permission bits are Interpreted as follows:

04000
02000
01000
00400
00200
00100
00070
00007

Set user ID on execution.
Set group ID on .execution.
Save text image after execution.
Read by owner.
Write by owner.
Execute (search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the
file or be super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit
01000 (save text image on execution) is cleared.

If the effective user ID of the process is not super-user and the
effective group ID of the process does not match the group ID of
the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000
prevents the system from abandoning the swap-space image of the
program-text portion of the. file when its last user terminates.
Thus, when the next user of the file executes it, the text need not
be read from the file system but can simply be swapped in, saving
time.

Chmod will fail and the file mode will be unchanged if one or
more of the following are true:

[ENOTDIR]

[ENOENT]

A component of the path prefix is not a directory.

The named file does not exist.

20-System Calls and Library Routines UNIX Programmer's Manual

CHMOD(2)

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

RETURN VALUE

CHMOD(2)

Search permission is denied on a component of
the path prefix.

The effective user ID does not match the owner
of the file and the effective user ID is not super­
user.

The named file resides on a read-only file system.

Path points outside the allocated address space of
the process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chown (2), mknod (2) .

UNIX Programmer's Manual System Calls and Library Routines-21

CHOWN(2) CHOWN(2)

NAME
chown - change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char * path;
int owner, group;

DESCRIPTION
Path points to a path name naming a file. The owner ID and
group ID of the named file are set to the numeric values contained
in owner and group respectively.

Only processes with effective user ID equal to the file owner or
super-user may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID
and set-group-ID bits of the file mode, 04000 and 02000 respec­
tively, will be cleared.

Chown will fail and the owner and group of the named file will
remain unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

RETURN VALUE

The named file does not exist.

Search permission is denied on a component of
the path prefix.

The effective user ID does not match the owner
of the file and the effective user ID is not super­
user.

The named file resides on a read-only file system.

Path points outside the allocated address space of
the process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).
chown(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

22-System Calls and Library Routines UNIX Programmer's Manual

CHROOT(2) CHROOT(2)

NAME
chroot - change root directory

SYNOPSIS
int chroot (path)
char .path;

DESCRIPTION
Path points to a path name naming a directory. Chroot causes
the named directory to become the root directory, the starting
point for path searches for path names beginning with I. The
user's working directory is unaffected by the chroot system call.

The effective user ID of the process must be super-user to change
the root directory.

The .• entry in the root directory is interpreted to mean the root
directory itself. Thus, .. cannot be used to access files outside the
subtree rooted at the root directory.

Chroot will fail and the root directory will remain unchanged if
one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EPERM]

[EFAULT]

RETURN VALUE

Any component of the path name is not a direc­
tory.

The named directory does not exist.

The effective user ID is not super-user.

Path points outside the allocated address space of
the process.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chdir(2).

UNIX Programmer's Manual System Calls and Library Routines-23

CLOSE (2) CLOSE (2)

NAME
close - close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a ereat, open, dup, fentl,
or pipe system call. Close closes the file descriptor indicated by
fildes. All outstanding record locks owned by the process (on the
file indicated by fildes) are removed.

Close will fail if fildes is not a valid open file descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcnt1(2), open(2), pipe(2).

24-System Calls and Library Routines UNIX Programmer's Manual

CREAT(2) CREAT(2)

NAME
creat - create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char .path;
int mode;

DESCRIPTION
Creat creates a new ordinary file or prepares to rewrite an existing
file named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and
owner are unchanged. Otherwise, the file's owner ID is set to the
effective user ID, of the process the group ID of the process is set
to the effective group ID, of the process and the low-order 12 bits
of the file mode are set to the value of mode modified as follows:

All bits set in the process's file mode creation mask are
cleared. See umask (2).

The "save text image after execution bit" of the mode is
cleared. See chmod (2).

Upon successful completion, the file descriptor is returned and the
file is open for writing, even if the mode does not permit writing.
The file pointer is set to the beginning of the file. The file descrip­
tor is set to remain open across exec system calls. See fcntl (2).
No process may have more than 20 files open simultaneously. A
new file may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EACCES]

[EROFS]

[ETXTBSY]

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

Search permission is denied on a component of
the path prefix.

The path name is null.

The file does not exist and the directory in which
the file is to be created does not permit writing.

The named file resides or would reside on a
read-only file system.

The file is a pure procedure (shared text) file
that is being executed.

UNIX Programmer's Manual System Calls and Library Routines-25

CREAT(2)

[EACCES]

[EISDIR]

[EMFILE]

[EFAULT]

[EN FILE]

RETURN VALUE

CREAT(2)

The file exists and write permission is denied.

The named file is an existing directory.

Twenty (20) file descriptors are currently open.

Path points outside the allocated address space of
the process.

The system file table is full.

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2) , c1ose(2) , dup(2) , fcnt1(2), Iseek(2) , open (2) , read (2) ,
umask(2) , write (2) .

26-System Calls and Library Routines UNIX Programmer's Manual

DUP(2) DUP(2)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
int dup (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl,
or pipe system call. Dup returns a new file descriptor having the
following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file
pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across exec system
calls. See fcntl (2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Twenty (20) file descriptors are currently open.

RETURN VALUE
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
creat(2), c1ose(2), exec(2), fcntH2), open(2), pipe(2).

UNIX Programmer's Manual System Calls and Library Routines-27

EXEC (2) EXEC (2)

NAME
execl, execv, execle, execve, execlp, execvp - execute a file

SYNOPSIS
int execl (path, argO, argl, ... , argn, 0)
char *path,*argO, *argl, ... , *argn;

int execv (path, argv)
char * path, *argv[1;

int execle (path, argO, argl, ... , argn, 0, envp)
char *path, *argO, *argl, ..• , *argn, *envp[1;
int execve (path, argv, envp)
char * path, *argv[1, *envp[1;

int execlp (file, argO, argl, ... , argn, 0)
char * file, *argO, *argl, •.. , '*argn;

int execvp (file, argv)
char * file, *argv[1;

DESCRIPTION
Exec in all its forms transforms the calling process into a new pro­
cess. The new process is constructed from an ordinary, executable
file called the new process file. This file consists of a header (see
a.out (4», a text segment, and a data segment. The data segment
contains an initialized portion and an uninitialized portion (bss).
There can be no return from a successful exec because the calling
process is overlaid by the new process.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int argc;
char "argv, .. envp;

where argc is the argument count and argv is an array of charac­
ter pointers to the arguments themselves. As indicated, argc is
conventionally at least one and the first member of the array
points to a string containing the name of the file.

Path points to a path name that identifies the new process file.

File points to the new process file. The path prefix for this file is
obtained by a search of the directories passed as the environment
line "PATH =" (see environ (5». The environment is supplied by
the shell (see sh (I».

28-System Calls and Library Routines UNIX Programmer's Manual

EXEC (2) EXEC (2)

ArgO, arg 1, ... , argn are pointers to null-terminated character
strings. These strings constitute the argument list available to the
new process. By convention, at least argO must be present and
point to a string that is the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings.
These strings constitute the argument list available to the new pro­
cess. By convention, argv must have at least one member, and it
must point to a string that is the same as path (or its last com­
ponent). Argv is terminated by a null pointer.

Envp is an array of character pointers to null-terminated strings.
These strings constitute the environment for the new process.
Envp is terminated by a null pointer. For exec! and execv, the C
run-time start-off routine places a pointer to the environment of
the calling process in the global cell:

extern char •• environ;
and it is used to pass the environment of the calling process to the
new process.

File descriptors open in the calling process remain open in the new
process, except for those whose c1ose-on-exec flag is set; see
!cnt[(2). For those file descriptors that remain open, the file
pointer is unchanged.

Signals set to terminate the calling process will be set to terminate
the new process. Signals set to be ignored by the calling process
will be set to be ignored by the new process. Signals set to be
caught by the calling process will be set to terminate new process;
see signal (2) .

If the set-user-ID mode bit of the new process file is set (see
chmod (2», exec sets the effective user ID of the new process to
the owner ID of the new process file. Similarly, if the set-group-ID
mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real
user ID and real group ID of the new process remain the same as
those of the calling process.

The shared memory segments attached to the calling process will
not be attached to the new process (see shmop (2».

Profiling is disabled for the new process; see profil (2).

The new process also inherits the following attributes from the cal­
ling process:

UNIX Programmer's Manual System Calls and Library Routines-29

EXEC (2)

nice value (see nice (2»
process ID
parent process ID
process group ID
semadj values (see semop (2»
tty group ID (see exit (2) and signal (2»
trace flag (see ptrace (2) request 0)

EXEC (2)

time left until an alarm clock signal (see alarm (2))
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2»
utime, stime, cutime, and cstime (see times (2))

Exec will fail and return to the calling process if one or more of
the following are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY]

[ENOMEM]

[E2BIG]

One or more components of the new process path
name of the file do not exist.

A component of the new process path of the file
prefix is not a directory.

Search permission is denied for a directory listed
in the new process file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execution per­
mission.

The exec is not an execlp or execvp, and the new
process file has the appropriate access permission
but an invalid magic number in its header.

The new process file is a pure procedure (shared
text) file that is currently open for writing by
some process.

The new process requires more memory than is
allowed by the system-imposed maximum MAX­
MEM.

The number of bytes in the new process's argu­
ment list is greater than the system-imposed limit
of 5120 bytes.

30-System Calls and Library Routines UNIX Programmer's Manual

EXEC (2)

[EFAULT]

[EFAULT]

RETURN VALUE

EXEC (2)

The new process file is not as long as indicated
by the size values in its header.

Path, argv, or envp point to an illegal address.

If exec returns to the calling process an error has occurred; the
return value will be -1 and errno will be set to indicate the error.

SEE ALSO
alarm(2), exit(2), fork(2), nice(2), ptrace(2), semop(2), signa1(2),
times(2), ulimit(2), umask(2), a.out(4) , environ(5).
sh(1) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-31

EXIT (2) EXIT (2)

NAME
exit, _exit - terminate process

SYNOPSIS
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following conse­
quences:

All of the file descriptors open in the calling process are
closed.

If the parent process of the calling process is executing a
wait, it is notified of the calling process's termination and
the low order eight bits (i.e., bits 0377) of status are
made available to it; see wait (2).

If the parent process of the calling process is not executing
a wait, the calling process is transformed into a zombie
process. A zombie process is a process that only occupies
a slot in the process table. It has no other space allocated
either in user or kernel space. The process table slot that
it occupies is partially overlaid with time accounting infor­
mation (see <sys/proc.h» to be used by times.

The parent process ID of all of the calling process's exist­
ing child processes and zombie processes is set to 1. This
means the initialization process (see intro (2» inherits
each of these processes.

Each attached shared memory segment is detached and
the value of shm_nattach in the data structure associated
with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a
semadj value (see semop (2», that semadj value is added
to the semval of the specified semaphore.

If the process has a process, text, or data lock, an unlock
is performed (see plock (2».

An accounting record is written on the accounting file if
the system's accounting routine is enabled; see acct (2) .

32-System Calls and Library Routines UNIX Programmer's Manual

EXIT (2) EXIT (2)

If the process ID, tty group ID, and process group ID of
the calling process are equal, the SIGHUP signal is sent to
each process that has a process group ID equal to that of
the calling process.

The C function exit may cause cleanup actions before the process
exits. The function _exit circumvents all cleanup.

SEE ALSO
acct (2), intro (2), plock (2), semop (2), signal (2), wait (2).

WARNING
See WARNING in signal (2).

UNIX Programmer's Manual System Calls and Library Routines-33

FCNTL(2) FCNTL(2)

NAME
fcntl - file control

SYNOPSIS
#include <fcntl.h>

int fcntl (fildes, cmnd, arg)
int fildes, cmnd, arg;

DESCRIPTION
Fcntl provides for control over open files. Fildes is an open file
descriptor obtained from a creat, open, dup, fcntl, or pipe system
call.

The commands available are:

F_GETFD

F_SETFD

F_GETFL

F_SETFL

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater
than or equal to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file
descriptors share one file pointer) .

Same access mode (read, write, or read/write).

Same file status flags (i.e., both file descriptors
share the same file status flags).

The close-on-exec flag associated with the new file
descriptor is set to remain open across exec (2)
system calls.

Get the close-on-exec flag associated with the file
descriptor fildes. If the low-order bit is 0 the file
will remain open across exec, otherwise the file
will be closed upon execution of exec.

Set the close-on-exec flag associated with fildes to
the low-order bit of arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can
be set; see fcnt[(5).

F _GETLK Get the first lock which blocks th~ lock descrip­
tion given by the variable of type struct flock
pointed to by argo The information retrieved
overwrites the information passed to fentl in the

34-System Calls and Library Routines UNIX Programmer's Manual

FCNTL(2)

F SETLKW

FCNTL(2)

flock structure. If no lock is found that would
'prevent this lock from being created, then the
structure is passed back unchanged except for the
lock type which will be set to F _UNLCK.

Set or clear a file segment lock according to the
variable of type struct flock pointed to by arg [see
fcntl(5) 1. The cmd F _SETLK is used to establish
read (F _RDLCK) and write (F _ WRLCK) locks, as
well as remove either type of lock (F _ UNLCK) .
If a read or write lock cannot be set, fcntl will
return immediately with an error value of -1.

This cmd is the same as F _SETLK except that if a
read or write lock is blocked by other locks, the
process will sleep until the segment is free to be
locked.

A read lock prevents any process from write locking the protected
area. More than one read lock may exist for a given segment of a
file at a given time. The file descriptor on which a read lock is
being placed must have been opened with read access.

A write lock prevents any process from read locking or write lock­
ing the protected area. Only one write lock may exist for a given
segment of a file at a given time. The file descriptor on which a
write lock is being placed must have been opened with write
access.

The structure flock describes the type (I_type), starting offset
(I_whence), relative offset (J_start) , size (lJen) , and process id
(J yid) of the segment of the file to be affected. The process id
field is only used with the F _GETLK cmd to return the value for a
block in lock. Locks may start and extend beyond the current end
of a file, but may not be negative relative to the beginning of the
file. A lock may be set to always extend to the end of file by set­
ting I Jen to zero (0). If such a lock also has I_start set to zero
(0), the whole file will be locked. Changing or unlocking a seg­
ment from the middle of a larger locked segment leaves two
smaller segments for either end. Locking a segment that is
already locked by the calling process causes the old lock type to be
removed and the new lock type to I take affect. All locks associated
with a file for a given process are removed when a file descriptor
for that file is closed by that process or the process holding that
file descriptor terminates. Locks are not inherited by a child

UNIX Programmer's Manual System Calls and Library Routines-35

FCNTL(2) FCNTL(2)

process in a !ork(2) system call. '

Fcntl will fail if one or more of the following are true:

[EBADF]

[EMFILE]

[EINFILE]

[EINVAL]

[EACCESS]

[EMFILE]

[ENOSPC]

[EDEADLK]

RETURN VALUE

Fildes is not a valid open file descriptor.

Cmd is F _DUPFD and 20 file descriptors are
currently open.

Cmd is F _DUPFD and arg is negative or greater
than 20.

Cmd is F _GETLK, F _SETLK, or SETLKW and arg
or the data it points to is not valid.

Cmd is F _SETLK the type of lock (I_type) is a
read (F _RDLCK) or write (F _ WRLCK) lock and
the segment of a file to be locked is already write
locked by another process or the type is a write
lock and the segment of a file to be locked is
already read or write locked by another process.

Cmd is F _SETLK or F _SETLKW, the type of lock
is a read or write lock and there are no more file
locking headers available (too many files have
segments locked).

Cmd is F _SETLK or F _SETLKW, the type of lock
is a read or write lock and there are no more file
locking headers available (too many files have
segments locked) or there are no more record
locks available (too many file segments locked).

Cmd is F _SETLK, when the lock is blocked by
some lock from another process and sleeping
(waiting) for that lock to become free, this
causes a deadlock situation.

Upon successful completion, the value returned depends on cmd as
follows:

F_DUPFD

F_SETFD
F_GETFL

A new file descriptor.
Value of flag (only the low-order bit is
defined).
Value other than -1.
Value of file flags.

36-System Calls and Library Routines UNIX Programmer's Manual

FCNTL(2)

F_SETFL
F_GETLK
F_SETLK
F_SETLKW

Value other than -1.
Value other that -1.
Value other than -1.
Value other than -1.

FCNTL(2)

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
c1ose(2), exec(2), open(2), fcntl(S).

UNIX Programmer's Manual System Calls and Library Routines-37

FORK (2) FORK(2)

NAME
fork - create a new process·

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child
process) is an exact copy of the calling process (parent process) .
This means the child process inherits the following attributes from
the parent process:

environment
close-on-exec flag (see exec (2»
signal handling settings (i.e., SIG~FL, SIG):NG, function
address)
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value (see nice (2))
all attached shared memory segments (see shmop (2»
process group ID
tty group ID (see exit (2) and signal (2»
trace flag (see ptrace (2) request 0)
time left until an alarm clock signal (see alarm (2»
current working directory
root directory
file mode creation mask (see umask (2»
file size limit (see ulimit (2»

The child process differs from the parent process in the following
ways:

The child process has a unique process ID.

The child process has a different parent process ID (i.e.,
the process ID of the parent process).

The child process has its own copy of the parent's file
descriptors. Each of the child's file descriptors shares a
common file pointer with the corresponding file descriptor
of the parent.

All semadj values are cleared (see semop (2».

Process locks, text locks and data locks are not inherited
by the child (see plock (2)) .

38-System Calls and Library Routines UNIX Programmer's Manual

FORK(2) FORK (2)

The child process's utime, stime, cutime, and cstime are
set to o. The time left until an alarm clock signal is reset
to o.

Fork will fail and no child process will be created if one or more
of the following are true:

[EAGAIN]

[EAGAIN]

RETURN VALUE

The system-imposed limit on the total number of
processes under execution would be exceeded.

The system-imposed limit on the total number of
processes under execution by a single user would
be exceeded.

Upon successful completion, fork returns a value of 0 to the child
process and returns the process ID of the child process to the
parent process. Otherwise, a value of -1 is returned to the parent
process, no child process is created, and errno is set to indicate the
error.

SEE ALSO
exec (2) , nice (2) , plock (2) , ptrace(2) , semop(2) , shmop(2) , sig­
na1(2), times (2), ulimit (2), umask (2), wait (2) .

UNIX Programmer's Manual System Calls and Library Routines-39

GETPID(2) GETPID(2)

NAME
getpid, getpgrp, getppid - get process, process group, and parent
process IDs

SYNOPSIS
int getpid ()

int getpgrp ()

int getppid ()

DESCRIPTION
Getpid returns the process ID of the calling process.

Getpgrp returns the process group ID of the calling process.

Getppid returns the parent process ID of the calling process.

SEE ALSO
exec (2) , fork (2) , intro(2), setpgrp(2), signa1(2).

40-System Calls and Library Routines UNIX Programmer's Manual

GETUID(2) GETUID(2)

NAME
getuid, geteuid, getgid, getegid - get real user, effective user, real
group, and effective group IDs

SYNOPSIS
unsigned short getuid ()

unsigned short geteuid ()

unsigned short getgid ()

unsigned short getegid ()

DESCRIPTION
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.

Getgid returns the real group ID of the calling process.

Getegid returns the effective group ID of the calling process.

SEE ALSO
in tro (2), setuid (2) .

UNIX Programmer's Manual System Calls and Library Routines-41

IOCTL(2) IOCTL(2)

NAME
ioctl - control device

SYNOPSIS
ioctl (fildes, request, arg)
int fildes, request;

DESCRIPTION
Ioctl performs a variety of functions on character special files
(devices). The write-ups of various devices in Section 7 of the
UNIX Programmer's Manual-Volume 3: System Administration
Facilities discuss how ioctl applies to them.

Ioct! will fail if one or more of the following are true:

[EBADF]

[ENOTTY]

[EINVAL]

[EINTR]

RETURN VALUE

Fildes is not a valid open file descriptor.

Fildes is not associated with a character special
device.

Request or arg is not valid. See Section 7 of the
UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.

A signal was caught during the ioctl system call.

If an error has occurred, a value of -1 is returned and errno is set
to indicate the error.

SEE ALSO
termio(7) in the UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.

42-System Calls and Library Routines UNIX Programmer's Manual

KILL (2) KILL(2)

NAME
kill - send a signal to a process or a group of processes

SYNOPSIS
int kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends a signal to a process or a group of processes. The pro­
cess or group of processes to which the signal is to be sent is
specified by pid. The signal that is to be sent is specified by sig
and is either one from the list given in signal (2), or O. If sig is 0
(the null signal), error checking is performed but no signal is actu­
ally sent. This can be used to check the validity of pid.

The real or effective user ID of the sending process must match the
real or effective user ID of the receiving process, unless the
effective user ID of the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are spe­
cial processes (see intro (2» and will be referred to below as procO
and proc1, respectively.

If pid is greater than zero, sig will be sent to the process whose
process ID is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and
proc1 whose process group ID is equal to the process group ID of
the sender.

If pid is -1 and the effective user ID of the sender is not super­
user, sig will be sent to all processes excluding procO and procl
whose real user ID is equal to the effective user ID of the sender.

If pid is -1 and the effective user ID of the sender is super-user,
sig will be sent to all processes excluding procO and procl.

If pid is negative but not -1, sig will be sent to all processes
whose process group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the fol­
lowing are true:

[EINVAL]

[EINVAL]

[ESRCH]

Sig is not a valid signal number.

Sig is SIGKILL and pid is 1 (procl).

No process can be found corresponding to that
specified by pid.

UNIX Programmer's Manual System Calls and Library Routines-43

KILL (2)

[EPERM]

RETURN VALUE

KILL(2)

The user ID of the sending process is not super­
user, and its real or effective user ID does not
match the real or effective user ID of the receiv­
ing process.

Upon successful completion, a vallie of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getpid (2), setpgrp (2), signal (2) .
kilI(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

44-System Calls and Library Routines UNIX Programmer's Manual

LINK(2) LINK(2)

NAME
link - link to a file

SYNOPSIS
int link (pathl, path2)
char .pathl, .path2;

DESCRIPTION
Path] points to a path name naming an existing file. Path2 points
to a path name naming the new directory entry to be created.
Link creates a new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the fol­
lowing are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[ENOENT]

[EACCES]

[EROFS]

[EFAULT]

[EMLINK]

A component of either path prefix is not a direc­
tory.

A component of either path prefix does not exist.

A component of either path prefix denies search
permission.

The file named by path] does not exist.

The link named by path2 exists.

The file named by path] is a directory and the
effective user ID is not super-user.

The link named by path2 and the file named by
path] are on different logical devices (file sys­
tems).

Path2 points to a null path name.

The requested link requires writing in a directory
with a mode that denies write permission.

The requested link requires writing in a directory
on a read-only file system.

Path points outside the allocated address space of
the process.

The maximum number of links to a file would be
exceeded.

UNIX Programmer's Manual System Calls and Library Routines-45

LINK(2) LINK (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
unlink (2) .

46-System Calls and Library Routines UNIX Programmer's Manual

LSEEK(2) LSEEK(2)

NAME
lseek - move read/write file pointer

SYNOPSIS
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or
Jcntl system call. Lseek sets the file pointer associated with fildes
as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location
plus offset.

If whence is 2, the pointer is set to the size of the file plus
offset.

Upon successful completion, the resulting pointer location, as
measured in bytes from the beginning of the file, is returned.

Lseek will fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe or fifo.

[EINV AL and SIGSYS signal]
Whence is not 0, 1, or 2.

[EINVAL] The resulting file pointer would be negative.

Some devices are incapable of seeking. The value of the file
pointer associated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the
file pointer value is returned. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcnt1(2), open(2).

UNIX Programmer's Manual System Calls and Library Routines-47

MKNOD(2) MKNOD(2)

NAME
mknod - make a directory, or a special or ordinary file

SYNOPSIS
iot mkood (path, mode, dev)
char • path;
iot mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by
path. The mode of the new file is initialized from mode. Where
the value of mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file

0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the follow-
ing

0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the pro­
cess. The group ID of the file is set to the effective group ID of the
process.

Values of mode other than those above are undefined and should
not be used. The low-order 9 bits of mode are modified by the
process's file mode creation mask: all bits set in the process's file
mode creation mask are cleared. See umask (2). If mode indi­
cates a block or character special file, dev is a configuration­
dependent specification of a character or block I/O device. If
mode does not indicate a block special or character special device,
dev is ignored.

Mknod may be invoked only by the super-user for file types other
than FIFO special.

48-System Calls and Library Routines UNIX Programmer's Manual

MKNOD(2) MKNOD(2)

Mknod will fail and the new file will not be created if one or more
of the following are true:

[EPERM]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

RETURN VALUE

The effective user ID of the process is not super­
user.

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The directory in which the file is to be created is
located on a read-only file system.

The named file exists.

Path points outside the allocated address space of
the process.

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod (2), exec (2), umask (2), fs (4) .
mkdir(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System' Calls and Library Routines-49

MOUNT (2) MOUNT (2)

NAME
mount - mount a file system

SYNOPSIS
int mount (spec, dir, rwftag)
char *spec, *dir;
int rwftag;

DESCRIPTION
Mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dir. Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writ­
ing is permitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EBUSY]

[EBUSY]

RETURN VALUE

The effective user ID is not super-user.

Any of the named files does not exist.

A component of a path prefix is not a directory.

Spec is not a block special device.

The device associated with spec does not exist.

Dir is not a directory.

Spec or dir points outside the allocated address
space of the process.

Dir is currently mounted on, is someone's current
working directory, or is otherwise busy.

The device associated with spec is currently
mounted.

There are no more mount table entries.

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
umount(2).

50-System Calls and Library Routines UNIX Programmer's Manual

MSGCTL(2) MSGCTL(2)

NAME
msgctl - message control operations

SYNOPSIS
#ioclude <sys/types.h>
#ioclude <sys/ipc.h>
#ioclude <sys/msg.h>

iot msgctl (msqid, cmd, buf)
iot msqid, cmd;
struct msqid_ds *buf;

DESCRIPTION
Msgctl provides a variety of message control operations as
specified by cmd. The following cmds are available:

IPC_SET

Place the current value of each member of the
data structure associated with msqid into the
structure pointed to by buf. The contents of this
structure are defined in intro (2). {READ}

Set the value of the following members of the
data structure associated with msqid to the
corresponding value found in the structure
pointed to by buf:

msgJ'erm. uid
msgJ'erm.gid
msgJ'erm.mode /* only low 9 bits */
msg_qbytes

This cmd can only be executed by a process that
has an effective user ID equal to either that of
super user or to the value of msg..."erm.uid in the
data structure associated with msqid. Only
super user can raise the value of msg_qbytes.

IPC _RMID Remove the message queue identifier specified by
msqid from the system and destroy the message
queue and data structure associated with it. This
cmd can only be executed by a process that has
an effective user ID equal to either that of super
user or to the value of msg..."erm.uid in the data
structure associated with msqid.

Msgctl will fail if one or more of the following are true:

[EINVAL] Msqid is not a valid message queue identifier.

UNIX Programmer's Manual System Calls and Library Routines-51

MSGCTL(2)

[EINVAL]

[EACCES]

[EPERM]

[EPERM]

[EFAULT]

RETURN VALUE

MSGCTL(2)

Cmd is not,a valid command.

Cmd is equal to IPC_STAT and {READ} operation
permission is denied to the calling process (see
intro (2».

Cmd is equal to IPC_RMID or IPC_SET. The
effective user ID of the calling process is not
equal to that of super user and it is not equal to
the value of msgJerm.uid in the data structure
associated with msqid.

Cmd is equal to IPC_SET, an attempt is being
made to increase to the value of msg_qbytes, and
the effective user ID of the calling process is not
equal to that of super user.

Buf points to an illegal address.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgget(2), msgop(2).

52-System Calls and Library Routines UNIX Programmer's Manual

MSGGET(2) MSGGET(2)

NAME
msgget - get message queue

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h >
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

DESCRIPTION
Msgget returns the message queue identifier associated with key.

A message queue identifier and associated message queue and data
structure (see intro (2» are created for key if one of the following
are true:

10 Key is equal to IPC_PRIVATE.

Key does not already have a message queue identifier asso­
ciated with it, and (msgflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new message
queue identifier is initialized as follows:

MsgJerm.cuid, msgJerm.uid, msgJerm.cgid, and
msgJerm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of msgJerm.mode are set equal to
the low-order 9 bits of msgflg.

Msg_ qnum, msgJspid, msgJrpid, msg_ stime, and
msg_rtime are set equal to O.

Msg_ctime is set equal to the current time.

Msg_qbytes is set equal to the system limit.

Msgget will fail if one or more of the following are true:

[EACCES]

[ENOENT]

A message queue identifier exists for key, but
operation permission (see intro (2» as specified
by the low-order 9 bits of msgflg would not be
granted.

A message queue identifier does not exist for key
and (msgflg & IPC_CREAT) is "false".

UNIX Programmer's Manual System Calls and Library Routines-53

MSGGET(2)

[ENOSPC]

[EEXIST]

RETURN VALUE

MSGGET(2)

A message queue identifier is to be created but
the system-imposed limit on the maximum
number of allowed message queue identifiers sys­
tem wide would be exceeded.

A message queue identifier exists for key but
«msgflg& IPC_CREAT) & msgflg &
IPC_EXCL» is "true".

Upon successful completion, a non-negative integer, namely a mes­
sage queue identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), msgctI(2), msgop(2).

54-System Calls and Library Routines UNIX Programmer's Manual

MSGOP(2) MSGOP(2)

NAME
msgop - message operations

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h >
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgftg)
int msqid;
struct msgbu' *msgp;
int msgsz, msgftg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgftg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgftg;

DESCRIPTION
Msgsnd is used to send a message to the queue associated with the
message queue identifier specified by msqid. {WRITE} Msgp
points to a structure containing the message. This structure is
composed of the following members:

long mtype; /* message type */
char mtext[]; /* message text */

Mtype is a positive integer that can be used by the receiving pro­
cess for message selection (see msgrcv below). Mtext is any text
of length msgsz bytes. Msgsz can range from 0 to a system­
imposed maximum.

Msgftg specifies the action to be taken if one or more of the fol­
lowing are true:

The number of bytes already on the queue is equal to
msg_ qbytes (see intro (2)) .

The total number of messages on all queues system-wide is
equal to the system-imposed limit.

These actions are as follows:

If (msgftg & IPC_NOWAIT) is "true", the message will
not be sent and the calling process will return immedi­
ately.

UNIX Programmer's Manual System Calls and Library Routines-55

MSGOP(2) MSGOP(2)

If (msgflg & IPC_NOWAIT) is "false", the calling process
will suspend execution until one of the following occurs:

The condition responsible for the suspension no
longer exists, in which case the message is sent.

M sqid is removed from the system (see
msgct/(2». When this occurs, errno is set equal
to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to be
caught. In this case the message is not sent and
the calling process resumes execution in the
manner prescribed in signal (2».

M sgsnd will fail and no message will be sent if one or more of the
following are true:

[EINVAL]

[EACCES]

[EINVAL]

[EAGAIN]

[EINVAL]

[EFAULT]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling pro­
cess (see intro (2)) .

Mtype is less than 1.

The message cannot be sent for one of the rea­
sons cited above and (msgflg & IPC_NOWAIT) is
"true".

Msgsz is less than zero or greater than the
system-imposed limit.

Msgp points to an illegal address.

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see intro (2».

Msg_ qnum is incremented by 1.

MsgJspid is set equal to the process ID of the calling pro­
cess.

Msg_stime is set equal to the current time.

Msgrcv reads a message from the queue associated with the mes­
sage queue identifier specified by msqid and places it in the struc­
ture pointed to by msgp. {READ} This structure is composed of
the following members:

long mtype;
char mtext[];

56-System Calls and Library Routines

/. message type • /
/. message text • /

UNIX Programmer's Manual

MSGOP(2) MSGOP(2)

Mtype is the received message's type as specified by the sending
process. Mtext is the text of the message. Msgsz specifies the size
in bytes of mtext. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg & MSG_NOERROR) is
"true". The truncated part of the message is lost and no indica­
tion of the truncation is given to the calling process.

Msgtyp specifies the type of message requested as follows:

If msgtyp is equal to 0, the first message on the queue is
received.

If msgtyp is greater than 0, the first message of type
msgtyp is received.

If msgtyp is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of
msgtyp is received.

Msgflg specifies the action to be taken if a message of the desired
type is not on the queue. These are as follows:

If (msgflg & IPC_NOWAIT) is "true", the calling process
will return immediately with a return value of -1 and
errno set to ENOMSG.

If (msgflg & IPC_NOWAIT) is "false", the calling process
will suspend execution until one of the following occurs:

A message of the desired type is placed on the
queue.

M sqid is removed from the system. When this
occurs, errno is set equal to EIDRM, and a value
of -1 is returned.

The calling process receives a signal that is to be
caught. In this case a message is not received
and the calling process resumes execution in the
manner prescribed in signal (2».

Msgrcv will fail and no message will be received if one or more of
the following are true:

[EINVAL]

[EACCES]

[EINVAL]

Msqid is not a valid message queue identifier.

Operation permission is denied to the calling pro­
cess.

Msgsz is less than 0.

UNIX Programmer's Manual System Calls and Library Routines-57

MSGOP(2)

[E2BIG]

MSGOP(2)

Mtext is greater than msgsz and (msgfig &
MSG_NOERROR) is "false".

[ENOMSG] The queue does not contain a message of the
desired type and (msgtyp & IPC_NOWAIT) is
"true" .

[EFAVLT] M sgp points to an illegal address.

Upon successful completion, the following actions are taken with
respect to the data structure associated with msqid (see intro (2».

Msg_ qnum is decremented by 1.

Msg_lrpid is set equal to the process ID of the calling pro­
cess.

Msg_rtime is set equal to the current time.

RETURN V ALVES
If msgsnd or msgrcv return due to the receipt of a signal, a value
of -1 is returned to the calling process and errno is set to EINTR.
If they return due to removal of msqid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the return value is as follows:

Msgsnd returns a value of O.

Msgrcv returns a value equal to the number of bytes actu­
ally placed into mtext.

Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
intro (2), msgctl (2), msgget (2), signal (2) .

58-System Calls and Library Routines UNIX Programmer's Manual

NICE(2) NICE(2)

NAME
nice - change priority of a process

SYNOPSIS
int nice Oncr)
int incr;

DESCRIPTION
Nice adds the value of incr to the nice value of the calling process.
A process's nice value is a positive number for which a more posi­
tive value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are
imposed by the system. Requests for values above or below these
limits result in the nice value being set to the corresponding limit.

[EPERM] Nice will fail and not change the nice value if
incr is negative or greater than 40 and the
effective user ID of the calling process is not
super-user.

RETURN VALUE
Upon successful completion, nice returns the new nice value minus
20. Otherwise, a value of -1 is returned and errno is set to indi­
cate the error.

SEE ALSO
exec(2).
nice(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-59

OPEN (2) OPEN (2)

NAME
open - open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oftag [, mode])
char • path;
int ofiag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file
descriptor for the named file and sets the file status flags according
to the value of oflag. Oflag values are constructed by or-ing flags
from the following list (only one of the first three flags below may
be used):

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_NDELAY This flag may affect subsequent reads and writes.
See read (2) and wr-ite (2).

When opening a FIFO with O_RDONLY or
O_WRONLY set:

If O_NDELAY is set:

An open for reading-only will return
without delay. An open for writing-only
will return an error if no process currently
has the file open for reading.

If ° _NDELA Y is clear:

An open for reading-only will block until a
process opens the file for writing. An open
for writing-only will block until a process
opens the file for reading.

When opening a file associated with a communica­
tion line:

If O_NDELAY is set:

The open will return without waiting for
carrier.

60-System Calls and Library Routines UNIX Programmer's Manual

OPEN (2) OPEN (2)

If ° _NDELA Y is clear:

The open will block until carrier is present.

° -.APPEND If set, the file pointer will be set to the end of the
file prior to each write.

O_CREAT If the file exists, this flag has no effect. Otherwise,
the owner ID of the file is set to the effective user ID
of the process, the group ID of the file is set to the
effective group ID of the process, and the low-order
12 bits of the file mode are set to the value of mode
modified as follows (see creat (2)) :

O_TRUNC

All bits set in the file mode creation mask
of the process are cleared. See umask (2).

The "save text image after execution bit"
of the mode is cleared. See chmod (2) .

If the file exists, its length is truncated to 0 and the
mode and owner are unchanged.

If O_EXCL and O_CREAT are set, open will fail if
the file exists.

The file pointer used to mark the current position within the file is
set to the beginning of the file.

The new file descriptor is set to remain open across exec system
calls. See fcntl (2).

The named file is opened unless one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EISDIR]

[EROFS]

A component of the path prefix is not a directory.

0_ CREA T is not set and the named file does not
exist.

A component of the path prefix denies search
permission.

Oflag permission is denied for the named file.

The named file is a directory and oflag is write
or read/write.

The named file resides on a read-only file system
and oflag is write or read/write.

UNIX Programmer's Manual System Calls and Library Routines-61

OPEN (2)

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[EEXIST]

[ENXIO]

[EINTR]

[ENFILE]

RETURN VALUE

OPEN (2)

Twenty (20) file descriptors are currently open.

The named file is a character special or block
special file, and the device associated with this
special file does not exist.

The file is a pure procedure (shared text) file
that is being executed and oflag is write or
read/write.

Path points outside the allocated address space of
the process.

O_CREAT and O_EXCL are set, and the named
file exists.

O_NDELAY is set, the named file is a FIFO,
0_ WRONL Y is set, and no process has the file
open for reading.

A signal was caught during the open system call.

The system file table is full.

Upon successful completion, the file descriptor is returned. Other­
wise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
chmod(2) , close(2), creat(2) , dup(2), fcntI(2), Iseek(2) , read (2) ,
umask(2) , write (2) .

62-System Calls and Library Routines UNIX Programmer's Manual

PAUSE (2) PAUSE (2)

NAME
pause - suspend process until signal

SYNOPSIS
pause ()

DESCRIPTION
Pause suspends the calling process until it receives a signal. The
signal must be one that is not currently set to be ignored by the
calling process.

If the signal causes termination of the calling process, pause will
not return.

If the signal is caught by the calling process and control is
returned from the signal-catching function (see signal (2», the cal­
ling process resumes execution from the point of suspension; with a
return value of -1 from pause and errno set to EINTR.

SEE ALSO
alarm (2), kill (2), signal (2), wait (2).

UNIX Programmer's Manual System Calls and Library Routines-63

PIPE (2) PIPE (2)

NAME
pipe - create an interprocess channel

SYNOPSIS
iot pipe (fildes)
iot fildesl21;

DESCRIPTION
Pipe creates an 110 mechanism called a pipe and returns two file
descriptors, jildeslO] and jildes111 FildeslO] is opened for read­
ing and jildes l 1] is opened for writing.

Up to 5120 bytes of data are buffered by the pipe before the writ­
ing process is blocked. A read only file descriptor jildes[O]
accesses the data written to jildesll1 on a first-in-first-out (FIFO)
basis.

[EMFILE]

[ENFILE]

RETURN VALUE

Pipe will fail if 19 or more file descriptors are
currently open.

The system file table is full.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
read (2), write (2) .
she}) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

64-System Calls and Library Routines UNIX Programmer's Manual

PLOCK (2) PLOCK (2)

NAME
plock - lock process, text, or data in memory

SYNOPSIS
#ioclude <sys/Iock.h>

iot plock (op)
iot op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text
lock), its data segment (data lock), or both its text and data seg­
ments (process lock) into memory. Locked segments are immune
to all routine swapping. Plock also allows these segments to be
unlocked. The effective user ID of the calling process must be
super-user to use this call. Op specifies the following:

PROCLOCK - lock text and data segments into memory
(process lock)

TXTLOCK - lock text segment into memory (text
lock)

DATLOCK - lock data segment into memory (data
lock)

UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or
more of the following are true:

[EPERM]

[EINVAL]

[EINVAL)

[EINVAL)

[EINVAL)

The effective user ID of the calling process is not
super-user.

Op is equal to PROCLOCK and a process lock, a
text lock, or a data lock already exists on the cal­
ling process.

Op is equal to TXTLOCK and a text lock, or a
process lock already exists on the calling process.

Op is equal to DATLOCK and a data lock, or a
process lock already exists on the calling process.

Op is equal to UNLOCK and no type of lock
exists on the calling process.

UNIX Programmer's Manual System Calls and Library Routines-65

PLOCK (2) PLOCK (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling
process. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec (2), exit (2), fork (2).

66-System Calls and Library Routines UNIX Programmer's Manual

PROFIL(2) PROFIL(2)

NAME
profil - execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
int bufsiz, offset, scale;

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by
buJsiz. After this call, the user's program counter (pc) is exam­
ined each clock tick (60th second); offset is subtracted from it,
and the result multiplied by scale. If the resulting number
corresponds to a word inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with
binary point at the left: 0177777 (octal) gives a 1-1 mapping of
pc's to words in buff; 077777 (octal) maps each pair of instruction
words together. 02(octal) maps all instructions onto the beginning
of buff (producing a non-interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered
ineffective by giving a buJsiz of O. Profiling is turned off when an
exec is executed, but remains on in child and parent both after a
fork. Profiling will be turned off if an update in buff would cause
a memory fault.

RETURN VALUE
Not defined.

SEE ALSO
monitor (3C) .
prof(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-67

PTRACE(2) PTRACE(2)

NAME
ptrace - process trace

SYNOPSIS
int ptrace <request, pid, addr, data>;
int request, pid, addr, data;

DESCRIPTION
Ptraee provides a means by which a parent process may control
the execution of a child process. Its primary use is for the imple­
mentation of breakpoint debugging; see sdb (1). The child process
behaves normally until it encounters a signal (see signal (2) for the
list), at which time it enters a stopped state and its parent is
notified via wait(2). When the child is in the stopped state, its
parent can examine and modify its "core image" using ptraee.
Also, the parent can cause the child either to terminate or con­
tinue, with the possibility of ignoring the signal that caused it to
stop.

The request argument determines the precise action to be taken by
ptraee and is one of the following:

o This request must be issued by the child process if it
is to be traced by its parent. It turns on the child's
trace flag that stipulates that the child should be left
in a stopped state upon receipt of a signal rather
than the state specified by June; see signal (2). The
pid, addr, and data arguments are ignored, and a
return value is not defined for this request. Peculiar
results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent pro­
cess. For each, pid is the process ID of the child. The child must
be in a stopped state before these requests are made.

1, 2 With these requests, the word at location addr in
the address space of the child is returned to the
parent process. If I and D space are separated (as
on some computers), request 1 returns a word from I
space, and request 2 returns a word from D space.
If I and D space are not separated (as on the 3B20
computer and some other computers), either request
1 or request 2 may be used with equal results. The
data argument is ignored. These two requests will
fail if addr is not the start address of a word, in

68-System Calls and Library Routines UNIX Programmer's Manual

PTRACE(2)

3

PTRACE(2)

which case a value of -1 is returned to the parent
process and the parent's errno is set to EIO.

With this request, the word at location addr in the
child's USER area in the system's address space (see
< sys/user.h >) is returned to the parent process.
Addresses in this area generally range from 0 to
2048 on the 3B20 computer and others. The data
argument is ignored. This request will fail if addr is
not the start address of a word or is outside the
USER area, in which case a value of -1 is returned
to the parent process and the parent's errno is set to
EIO.

4, 5 With these requests, the value given by the data
argument is written into the address space of the
child at location addr. If I and D space are
separated (as on some computers) request 4 writes a
word into I space, and request 5 writes a word into
D space. If I and D space are not separated (as on
the 3B20 computer and others), either request 4 or
request 5 may be used with equal results. Upon suc­
cessful completion, the value written into the address
space of the child is returned to the parent. These
two requests will fail if addr is a location in a pure
procedure space and another process is executing in
that space, or addr is not the start address of a
word. Upon failure a value of -1 is returned to the
parent process and the parent's errno is set to EIO.

6 With this request, a few entries in the child's USER
area can be written. Data gives the value that is to
be written and addr is the location of the entry.
The few entries that can be written are:

the general registers (i.e., registers 0-11 on
the 3B20 computer, registers 0-7 on some
others, and registers 0-15 on some other
machines)

the condition codes of the Processor Status
Word on the 3B20 computer

the floating point status register and six
floating point registers on some computers

UNIX Programmer's Manual System Calls and Library Routines-69

PTRACE(2) PTRACE(2)

certain bits of the Processor Status Word on
some computers (i.e, bits 0-4 and 8-11)

certain bits of the Processor Status Long­
word on the some computers (i.e., bits 0-7,
16-20, and 30-31).

7 This request causes the child to resume execution.
If the data argument is 0, all pending signals includ­
ing the one that caused the child to stop are can­
celed before it resumes execution. If the data argu­
ment is a valid signal number, the child resumes
execution as if it had incurred that signal, and any
other pending signals are canceled. The addr argu­
ment must be equal to 1 for this request. Upon suc­
cessful completion, the value of data is returned to
the parent. This request will fail if data is not 0 or
a valid signal number, in which case a value of -1 is
returned to the parent process and the parent's errno
is set to EIO.

8 This request causes the child to terminate with the
same consequences as exit (2).

9 This request sets the trace bit in the Processor
Status Word of the child (i.e., bit 4 on some com­
puters) and then executes the same steps as listed
above for request 7. The trace bit causes an inter­
rupt upon completion of one machine instruction.
This effectively allows single stepping of the child.
On the 3B20 computer, there is no trace bit; and this
request returns an error.

To forestall possible fraud, ptrace inhibits the set-user-id facility
on subsequent exec (2) calls. If a traced process calls exec, it will
stop before executing the first instruction of the new image show­
ing signal SIGTRAP.

GENERAL ERRORS
Ptrace will in general fail if one or more of the following are true:

[EIO]

[ESRCH]

Request is an illegal number.

Pid identifies a child that does not exist or has
not executed a ptrace with request O.

70-System Calls and Library Routines UNIX Programmer's Manual

PTRACE(2) PTRACE(2)

SEE ALSO
exec (2), signal (2), wait (2) .
sdb(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-71

READ (2) READ (2)

NAME
read - read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char .buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcnt!,
or pipe system call.

Read attempts to read nbyte bytes from the file associated with
fildes into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the
file given by the file pointer associated with fildes. Upon return
from read, the file pointer is incremented by the number of bytes
actually read.

Devices that are incapable of seeking always read from the current
position. The value of a file pointer associated with such a file is
undefined.

Upon successful completion, read returns the number of bytes
actually read and placed in the buffer; this number may be less
than nbyte if the file is associated with a communication line (see
ioctl (2) and termio (7», or if the number of bytes left in the file is
less than nbyte bytes. A value of 0 is returned when an end-of-file
has been reached.

When attempting to read from an empty pipe (or FIFO):

If O_NDELAY is set, the read will return a O.

If 0 _NDELAY is clear, the read will block until data is
written to the file or the file is no longer open for writing.

When attempting to read' a file associated with a tty that has no
data currently available:

If O_NDELAY is set, the read will return a O.

If 0 _NDELAY is clear, the read will block until data
becomes available.

72-System Calls and Library Routines UNIX Programmer's Manual

READ (2) READ (2)

Read will fail if one or more of the following are true:

[EBADF]

[EFAULT]

[EINTR]

RETURN VALUE

Fildes is not a valid file descriptor open for read­
ing.

Buf points outside the allocated address space.

A signal was caught during the read system call.

Upon successful completion a non-negative integer is returned indi­
cating the number of bytes actually read. Otherwise, a -1 is
returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcnt1(2), ioct1(2), open(2), pipe(2).
termio(7) in the UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.

UNIX Programmer's Manual System Calls and Library Routines-73

SEMCTL(2) SEMCTL(2)

NAME
semctl - semaphore control operations

SYNOPSIS
#include < sys/types.h >
#include < sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semon {

} arg;

int val;
struct semid _ ds .buf;
ushort .array;

DESCRIPTION
Semctl provides a variety of semaphore control operations as
specified by cmd.

The following cmds are executed with respect to the semaphore
specified by semid and semnum:

GETV AL Return the value of semval (see intro (2».
{READ}

SETV AL Set the value of semval to argo val. {ALTER}
When this cmd is successfully executed, the
semadj value corresponding to the specified
semaphore in all processes is cleared.

GETPID Return the value of sempid. {READ}

GETNCNT Return the value of semncnt. {READ}

GETZCNT Return the value of semzcnt. {READ}

The following cmds return and set, respectively, every semval in
the set of semaphores.

GETALL

SETALL

Place semvals into array pointed to by
arg.array. {READ}

Set semvals according to the array pointed
to by arg.array . {ALTER} When this cmd is
successfully executed the semadj values
corresponding to each specified semaphore in
all processes are cleared.

74-System Calls and Library Routines UNIX Programmer's Manual

SEMCTL(2) SEMCTL(2)

The following emds are also available:

IPC_STAT Place the current value of each member of
the data structure associated with sernid into
the structure pointed to by arg.buf. The
contents of this structure are defined in
intro (2). {READ}

Set the value of the following members of
the data structure associated with semid to
the corresponding value found in the struc­
ture pointed to by arg.buf:
sem ...,Perm.uid
sem ...,Perm.gid
sem ...,Perm.mode /. only low 9 bits • /

This cmd can only be executed by a process
that has an effective user ID equal to either
that of super-user or to the value of
sem...,Perm.uid in the data structure associ­
ated with semid.

IPC_RMID Remove the semaphore identifier specified
by semid from the system and destroy the
set of semaphores and data structure associ­
ated with it. This cmd can only be executed
by a process that has an effective user ID
equal to either that of super-user or to the
value of sem...,Perm.uid in the data structure
associated with semid.

Semetl will fail if one or more of the following are true:

[EINVAL]

[EINVAL]

[EINVAL]

[EACCES]

[ERANGE]

UNIX Programmer's Manual

Semid is not a valid semaphore
identifier.

Semnum is less than zero or greater than
sem_nsems.

Cmd is not a valid command.

Operation permission is denied to the
calling process (see intro (2)) .

Cmd is SETV AL or SET ALL and the
value to which semval is to be set is
greater than the system imposed max­
imum.

System Calls and Library Routines-75

SEMCTL(2)

. [EPERM]

[EFAULT]

RETURN VALUE

SEMCTL(2)

Cmd is equal to IPC_RMID or IPC_SET
and the effective user ID of the calling
process is not equal to that of super-user
and it is not equal to the value of
semj»erm.uid in the data structure asso­
ciated with semid.

Arg.buf points to an illegal address.

Upon successful completion, the value returned depends on cmd as
follows:

GETVAL
GETPID
GETNCNT
GETZCNT
All others

The value of semval.
The value of sempid.
The value of semncnt.
The value of semzcnt.
A value of O.

Otherwise, a value of -1 is returned and errno is set to indicate
the error .

. SEE ALSO
intro (2), semget (2), semop (2) .

76-System Calls and Library Routines UNIX Programmer's Manual

SEMGET(2) SEMGET(2)

NAME
semget - get set of semaphores

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >
#include <sys/sem.h>

int semget (key, nsems, semftg)
key_t key;
int nsems, semftg;

DESCRIPTION
Semget returns the semaphore identifier associated with key.

A semaphore identifier and associated data structure and set con­
taining nsems semaphores (see intro (2» are created for key if one
of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a semaphore identifier associ­
ated with it, and (semflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new sema­
phore identifier is initialized as follows:

Sem j)erm.cuid, sem j»erm.uid, sem j»erm.cgid, and
sem j)erm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of semj)erm.mode are set equal to
the low-order 9 bits of semflg.

Sem_nsems is set equal to the value of nsems.

Sem_otime is set equal to 0 and sem_ctime is set equal to
the current time.

Semget will fail if one or more of the following are true:

[EINVAL]

[EACCES]

[EINVAL]

Nsems is either less than or equal to zero or
greater than the system-imposed limit.

A semaphore identifier exists for key, but opera­
tion permission (see intro (2» as specified by the
low-order 9 bits of semflg would not be granted.

A semaphore identifier exists for key, but the
number of semaphores in the set associated with
it is less than nsems and nsems is not equal to

UNIX Programmer's Manual System Calls and Library Routines-77

SEMGET(2)

[ENOENT]

[ENOSPC]

[ENOSPC]

[EEXIST]

RETURN VALUE

SEMGET(2)

zero.

A semaphore identifier does not exist for key and
(semflg & IPC_CREAT) is "false".

A semaphore identifier is to be created but the
system-imposed limit on the maximum number of
allowed semaphore identifiers system wide would
be exceeded.

A semaphore identifier is to be created but the
system-imposed limit on the maximum number of
allowed semaphores system wide would be
exceeded.

A semaphore identifier exists for key but (
(semflg & IPC _ CREAT) and (semflg &
IPC_EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a
semaphore identifier, is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), semctl (2), semop(2).

78-System Calls and Library Routines UNIX Programmer's Manual

SEMOP(2) SEMOP(2)

NAME
semop - semaphore operations

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h>
#include <sys/sem.h>

int semop (semid, sops, nsops)
int semid;
struct sembuf **sops;
int nsops;

DESCRIPTION
Semop is used to automatically perform an array of semaphore
operations on the set of semaphores associated with the semaphore
identifier specified by semid. Sops is a pointer to the array of
semaphore-operation structures. Nsops is the number of such
structures in the array. The contents of each structure includes
the following members:

short sem_num; 1* semaphore number */
short sem_op; /* semaphore operation */
short semJlg; /* operation flags */

Each semaphore operation specified by sem_op is performed on the
corresponding semaphore specified by semid and sem_num.

Sem_op specifies one of three semaphore operations as follows:

If sem_op is a negative integer, one of the following will
occur: {ALTER}

If semval (see intro (2» is greater than or equal
to the absolute value of sem_op, the absolute
value of sem_op is subtracted from semval. Also,
if (semJlg & SEM_UNOO) is "true", the abso­
lute value of sem_op is added to the calling
process's semadj value (see exit (2» for the
specified semaphore.

If semval is less than the absolute value of
sem_op and (semJlg & IPC_NOWAIT) is "true",
semop will return immediately.

If semval is less than the absolute value of
sem_op and (semJlg & IPC_NOWAIT) is
"false", semop will increment the semncnt

UNIX Programmer's Manual System Calls and Library Routines-79

SEMOP(2) SEMOP(2)

associated with th,e specified semaphore and
suspend execution of the calling process until one
of the following conditions occur.

Semval becomes greater than or equal to the
absolute value of sem_op. When this occurs,
the value of semncnt associated with the
specified semaphore is decremented, the absolute
value of sem _op is subtracted from semval and,
if (semJlg & SEM_UNOO) is "true", the abso­
lute value of sem_op is added to the calling
process's semadj value for the specified sema­
phore.

The semid for which the calling process is
awaiting action is removed from the system (see
semct/(2». When this occurs, errno is set
equal to EIDRM, and a value of -1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semncnt.associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in signal (2) .

If sem_op is a positive integer, the value of sem_op is
added to semval and, if (semJlg & SEM_UNOO) is
"true", the value of sem_op is subtracted from the calling
process's semadj value for the specified semaphore.
{ALTER}

If sem_op is zero, one of the following will occur:
{READ}

If semval is zero, semop will return immediately.

If semval is not equal to zero and (semJlg &
IPC_NOWAIT) is "true", semop will return
immediately.

If semval is not equal to zero and (semJlg &
IPC_NOWAIT) is "false", semop will increment
the semzcnt associated with the specified sema­
phore and suspend execution of the calling pro­
cess until one of the following occurs:

80-System Calls and Library Routines UNIX Programmer's Manual

SEMOP(2) SEMOP(2)

Semval becomes zero, at which time the value
of semzcnt associated with the specified sema­
phore is decremented.

The semid for which the calling process is
awaiting action is removed from the system.
When this occurs, errno is set equal to EIDRM,
and a value of -1 is returned.

The calling process receives a signal that is to
be caught. When this occurs, the value of
semzcnt associated with the specified semaphore
is decremented, and the calling process resumes
execution in the manner prescribed in signal (2).

Semop will fail if one or more of the following are true for any of
the semaphore operations specified by sops: .

[EINVAL] Semid is not a valid semaphore identifier.

[EFBIG] Sem_num is less than zero or greater than or
equal to the number of semaphores in the set
associated with semid.

[E2BIG]

[EACCES]

[EAGAIN]

[ENOSPC]

[EINVAL]

[ERANGE]

[ERANGE]

[EFAULT]

Nsops is greater than the system-imposed max­
imum.

Operation permission is denied to the calling pro­
cess (see intro (2)) .

The operation would result in suspension of the
calling process but (semJig & IPC_NOWAIT) is
"true" .

The limit on the number of individual processes
requesting an SEM_UNDO would be exceeded.

The number of individual semaphores for which
the calling process requests a SEM_UNDO would
exceed the limit.

An operation would cause a semval to overflow
the system-imposed limit.

An operation would cause a semadj value to
overflow the system-imposed limit.

Sops points to an illegal address.

UNIX Programmer's Manual System Calls and Library Routines-81

SEMOP(2)

RETURN VALUE

SEMOP(2)

Upon successful completion, the value of sempid
for each semaphore specified in the array pointed
to by sops is set equal to the process ID of the
calling process.

If semop returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If it
returns due to the removal of a semid from the system, a value of
-1 is returned and errno is set to EIDRM.

Upon successful completion, the value of semval at the time of the
call for the last operation in the array pointed to by sops is
returned. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

SEE ALSO
exec (2) , exit (2) , fork (2) , intro(2) , semct1(2), semget(2).

82-System Calls and Library Routines UNIX Programmer's Manual

SETPGRP(2)

NAME
setpgrp - set process group ID

SYNOPSIS
int setpgrp ()

DESCRIPTION

SETPGRP(2)

Setpgrp sets the process group ID of the calling process to the pro­
cess ID of the calling process and returns the new process group
ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec (2) , fork (2) , getpid (2), intro(2), kiI1(2), signa1(2).

UNIX Programmer's Manual System Calls and Library Routines-83

SETUID(2) SETUID(2)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and
effective user (group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but
its real user (group) ID is equal to uid (gid) , the effective user
(group) ID is set to uid (gid).

If the effective user ID of the calling process is not super-user, but
the saved set-user (group) ID from exec(2) is equal to uid (gid) ,
the effective user (group) ID is set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling
process is not equal to uid (gid) and its effective user ID is not
super-user. [EPERM]

The uid is out of range. [EINV AL]

RETURN VALUE
Upon successful completion, a value of 0 is returned.. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
getuid (2), intro(2).

84-System Calls and Library Routines UNIX Programmer's Manual

SHMCTL(2) SHMCTL(2)

NAME
shmctl - shared memory control operations

SYNOPSIS
#include < sys/types.h >
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, cmd, buf)
int shmid, cmd;
struct shmid_ds .buf;

DESCRIPTION
Shmctl provides a variety of shared memory control operations as
specified by cmd. The following cmds are available:

Place the current value of each member of
the data structure associated with shmid
into the structure pointed. to by buf. The
contents of this structure are defined in
[EINV AL] intro (2). {READ}

IPC _SET Set the value of the following members of
the data structure associated with shmid to
the corresponding value found in the struc­
ture pointed to by but:
shm -perm. uid
shm -perm.gid
shm-perm.mode /. only low 9 bits ./

This cmd can only be ~xecuted by a process
that has an effective user ID equal to either
that of super-user or to the value of
shmJerm.uid in the data structure associ­
ated with shmid.

IPC _ RMID Remove the shared 'memory identifier
specified by shmid from the system and des­
troy the shared memory segment and data
structure associated with it. This cmd can
only be executed by a process that has an
effective user ID equal to either that of
super-user or to the value of shm Jerm.uid
in the data structure associated with shmid.

SHM_LOCK Lock the shared memory segment specified
by shmid in memory. This cmd can only be

UNIX Programmer's Manual System Calls and Library Routines-85

SHMCTL(2) SHMCTL(2)

executed by a process that has an effective
usr ID equal to super-user.

SHM_UNLOCK
Unlock the shared memory segment
specified by shmid. This cmd can only be
executed by a process that has an effective
usr ID equal to super-user.

Shmctl will fail if one or more of the following are true:

Shmid is not a valid shared memory identifier.
[EINVAL]

Cmd is not a valid command. [EINV AL]

Cmd is equal to IPC_STAT and {READ} operation
permission is denied to the calling process [see
intro (2) 1. [EACCES]

Cmd is equal to IPC_RMID or IPC_SET and the
effective user ID of the calling process is not equal
to that of super-user and it is not equal to the
value of shm~rm.uid in the data structure asso­
ciated with shmid. [EPERM]

Cmd is equal to SHM_LOCK or SHM_UNLOCK
and the effective user ID of the calling process is
not equal to that of super-user. [EPERM]

Cmd is equal to SHM_UNLOCK and the shared­
memory segment specified by shmid is not locked
in memory. [EINVAL] Buf points to an illegal
address. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
shmget (2), shmop (2) .

86-System Calls and Library Routines UNIX Programmer's Manual

SHMGET(2) SHMGET(2)

NAME
shmget - get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmftg)
key_t key;
int size, shmftg;

DESCRIPTION
Shmget returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and
shared memory segment of size size bytes (see intro (2» are
created for key if one of the following are true:

Key is equal to IPC_PRIVATE.

Key does not already have a shared memory identifier
associated with it, and (shmflg & IPC_CREAT) is "true".

Upon creation, the data structure associated with the new shared
memory identifier is initialized as follows:

Shm ..])erm.cuid, shm ..])erm.uid, shm ~rm.cgid, and
shm..])erm.gid are set equal to the effective user ID and
effective group ID, respectively, of the calling process.

The low-order 9 bits of shm ~rm.mode are set equal to
the low-order 9 bits of shmflg. Shm_segsz is set equal to
the value of size.

Shm Jpid, shm --"attch, shm _ atime, and shm _ dtime are set
equal to o.
Shm _ ctime is set equal to the current time.

Shmget will fail if one or more of the following are true:

[EINV AL] Size is less than the system-imposed minimum or
greater than the system-imposed maximum.

[EACCES] A shared memory identifier exists for key but
operation permission (see intro (2» as specified
by the low-order 9 bits of shmflg would not be
granted.

UNIX Programmer's Manual System Calls and Library Routines-87

SHMGET(2)

[EINVAL]

[ENOENT]

[ENOSPC]

[ENOMEM]

[EEXIST]

RETURN VALUE

SHMGET(2)

A shared memory identifier exists for key but the
size of the segment associated with it is less than
size and size is not equal to zero.

A shared memory identifier does not exist for key
and (shmflg & IPC_CREAT) is "false".

A shared memory identifier is to be created but
the system-imposed limit on the maximum
number of allowed shared memory identifiers sys­
tem wide would be exceeded.

A shared memory identifier and associated
shared memory segment are to be created but the
amount of available physical memory is not
sufficient to fill the request.

A shared memory identifier exists for key but (
(shmflg & IPC_CREAT) and (shmflg &
IPC_EXCL)) is "true".

Upon successful completion, a non-negative integer, namely a
shared memory identifier is returned. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
intro(2), shmctI(2), shmop(2).

88-System Calls and Library Routines UNIX Programmer's Manual

SHMOP(2) SHMOP(2)

NAME
shmop - shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char .shmat (shmid, shmaddr, shmftg)
int shmid;
char .shmaddr
int shmftg;

int shmdt (shmaddr)
char .shmaddr

DESCRIPTION
Shmat attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment
of the calling process. The segment is attached at the address
specified by one of the following criteria:

If shmaddr is equal to zero, the segment is attached at the
first available address as selected by the system.

If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "true", the segment is attached at the
address given by (shmaddr (shmaddr modulus
SHMLBA».

If shmaddr is not equal to zero and (shmflg &
SHM_RND) is "false", the segment is attached at the
address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_ROONLY)
is "true" {READ}, otherwise it is attached for reading and writing
{READ/WRITE} .

Shmat will fail and not attach the shared memory segment if one
or more of the following are true:

[EINVAL]

[EACCES]

[ENOMEM]

Shmid is not a valid shared memory identifier.

Operation permission is denied to the calling pro­
cess (see intro (2)) .

The available data space is not large enough to
accommodate the shared memory segment.

UNIX Programmer's Manual System Calls and Library Routines-89

SHMOP(2)

[EINVAL]

[EINVAL]

[EMFILE]

[EINVAL]

[EINVAL]

RETURN VALUES

SHMOP(2)

Shmaddr is not equal to zero, and the value of
(shmaddr - (shmaddr modulus SHMLBA» is an
illegal address.

Shmaddr is not equal to zero, (shmflg &
SHM~ND) is "false", and the value of shmaddr
is an illegal address.

The number of shared memory segments
a ttached to the calling process would exceed the
system-imposed limit.

Shmdt detaches from the calling process's data
segment the shared memory segment located at
the address specified by shmaddr.

Shmdt will fail and not detach the shared
memory segment if shmaddr is not the data seg­
ment start address of a shared memory segment.

Upon successful completion, the return value is as follows:

S hmat returns the data segment start address of the
attached shared memory segment.

Shmdt returns a value of o.
Otherwise, a value of -1 is returned and errno is set to indicate
the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctI(2), shmget(2).

90-System Calls and Library Routines UNIX Programmer's Manual

SIGNAL (2) SIGNAL (2)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
#include < signal.h >
int (* signal (sig, fune» ()
int sig;
void (*fune> ();

DESCRIPTION
Signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. Sig
specifies the signal and June specifies the choice.

Sig can be assigned anyone of the following except SIGKILL:

SIGHUP 01 hangup
SIGINT 01 interrupt
SIGQUIT 03* quit
SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* lOT instruction
SIGEMT 07* EMT instruction
SIGFPE 08* floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* bus error
SIGSEGV 11* segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRI 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 18 dea th of a child

(see WARNING below)
SIGPWR 19 power fail

(see WARNING below)

See below for the significance of the asterisk (*) in the above list.

Func is assigned one of three values: SIG_DFL, SIG_IGN, or a
Junction address. The actions prescribed by these values are as
follows:

SIG_DFL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is

UNIX Programmer's Manual System Calls and Library Routines-91

SIGNAL (2) SIGNAL (2)

to be terminated with all of the consequences outlined
in exit (2). In addition a "core image" will be made in
the current working directory of the receiving process if
sig is one for which an asterisk appears in the above
list and the following conditions are met:

The effective user ID and the real user ID of
the receiving process are equal.

An ordinary file named core exists and is
writable or can be created. If the file must be
created, it will have the following properties:

a mode of 0666 modified by the file
creation mask (see umask (2»

a file owner ID that is the same as
the effective user ID of the receiving
process.

a file group ID that is the same as
the effective group ID of the receiv­
ing process

SIG _IGN - . ignore signal
The signal sig is to be'ignored.

Note: the signal SIGKILL cannot be ignored.

Junction address - catch signal
Upon receipt of the signal sig, the receiving process is to
execute the signal-catching function pointed to by June.
The signal number sig will be passed as the only argu­
ment to the signal-catching function. Additional argu­
ments are passed to the signal-catching function for
hardware-generated signals. Before entering the signal­
catching function, the value of June for the caught signal
will be set to SIG_DFL unless the signal is SIGILL,
SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the
receiving process will resume execution at the point it was
interru pted.

When a signal that is to be caught occurs during a read,
a write, an open, or an ioetl system call on a slow device
(like a terminal; but not a file), during a pause system
call, or during a wait system call that does not return

92-System Calls and Library Routines UNIX Programmer" s Manual

SIGNAL (2) SIGNAL (2)

immediately due to the existence of a previously stopped
or zombie process, the signal catching function will be
executed and then the interrupted system call may return
a -1 to the calling process with errno set to EINTR.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending
SIGKILL signal.

Signal will fail if sig is an illegal signal number, including SIG­
KILL. [EINV AL]

RETURN VALUE
Upon successful completion, signal returns the previous value of
June for the specified signal sig. Otherwise, a value of -1 is
returned and errno is set to indicate the error.

SEE ALSO
kilI(2), pause(2), ptrace(2), wait(2), setjmp(3C).
kilI(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

WARNING
Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system,
these signals will continue to behave as described below; they are
included only for compatibility with other versions of the UNIX
system. Their use in new programs is strongly discouraged ..

For these signals, June is assigned one of three values: SIG_DFL,
SIG_IGN, or a Junction address. The actions prescribed by these
values of are as follows:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG _IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process's child processes will not create zombie
processes when they terminate; see exit (2).

Junction address - catch signal
If the signal is SIGPWR, the action -to be taken is the

UNIX Programmer's Manual System Calls and Library Routines-93

SIGNAL (2) SIGNAL (2)

same as that described above for June equal to Junction
address. The same is true if the signal is SIGCLD
except, that while the process is executing the signal­
catching function, any received SIGCLD signals will be
queued and the signal-catching function will be con­
tinually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait{2) , and
exit (2» in the following ways:

wait If the June value of SIGCLD is set to SIG _IGN and a
wait is executed, the wait will block until all of the
calling process's child processes terminate; it will then
return a value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the June value
of SIGCLD is set to SIG_IGN, the exiting process will
not create a zombie process.

When processing a pipeline, the shell makes the last process in
the pipeline the parent of the proceeding processes. A process
that may be piped into in this manner (and thus become the
parent of other processes) should take care not to set SIGCLD to
be caught.

94-System Calls and Library Routines UNIX Programmer's Manual

STAT (2) STAT (2)

NAME
stat, fstat - get file status

SYNOPSIS
#ioclude < sys/types.h >
#ioclude <sys/stat.h>

iot stat (path, buf)
char *path;
struct stat *buf;

iot fstat (fildes, buf)
iot fildes;
struct stat *buf;

DESCRIPTION
Path points to a path name naming a file. Read, write, or execute
permission of the named file is not required, but all directories
listed in the path name leading to the file must be searchable.
Stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by
the file descriptor jildes, obtained from a successful open, creat,
dup, fcntl, or pipe system call.

Buf is a pointer to a stat structure into which information is
placed concerning the file.

The contents of the structure pointed to by buf include the follow­
ing members:
ushort st_mode; 1* File mode; see mknod(2) *1
ino t stjno;
dey t st_dev; .

dey t stJdev;

short st_nlink;
ushort st_uid;
ushort st~id;
off t st_size;
time t st_atime;
time t st_mtime;
time t st_ctime;

UNIX Programmer's Manual

1* Inode number *1
1* ID of device containing *1
1* a directory entry for this file *1
1* ID of device *1
1* This entry is defined only for *1
I * character special or block special files *1
1* Number of links *1
1* User ID of the file's owner *1
1* Group ID of the file's group *1
I * File size in bytes *1
1* Time of last access *1
1* Time of last data modification *1
1* Time of last file status change *1
1* Times measured in seconds since *1
1* 00:00:00 GMT, Jan. 1, 1970 *1

System Calls and Library Routines-95

STAT (2) STAT (2)

st atime Time when file data was last accessed. Changed by
the following system calls: creat (2) , mknod (2) ,
pipe (2), utime (2), and read (2) .

st mtime Time when data was last modified. Changed by the
following system calls: creat (2), mknod (2), pipe (2) ,
utime (2), and write (2) .

st ctime Time when file status was last changed. Changed by
the following system calls: chmod (2), chown (2),
creat (2) , link (2) , mknod (2) , pipe (2) , unlink (2) ,
utime (2), and write (2) .

Stat will fail if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of
the path prefix.

Bul or path points to an invalid address.

Fstat will fail if one or more of the following are true:

[EBADF]

[EFAULT]

RETURN VALUE

Fildes is not a valid open file descriptor.

Bul points to an invalid address.

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2) , chown(2) , creat(2) , link(2) , mknod(2) , pipe (2) ,
read (2), time (2), unlink (2), u time (2) , write (2) .

96-System Calls and Library Routines UNIX Programmer's Manual

STIME(2)

NAME
stime - set time

SYNOPSIS
int stime (tp)
long *tp;

DESCRIPTION

STIME(2)

Stime sets the system's idea of the time and date. Tp points to
the value of time as measured in seconds from 00:00:00 GMT
January 1, 1970.

[EPERM]

RETURN VALUE

Slime will fail if the effective user ID of the cal­
ling process is not super-user.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

UNIX Programmer's Manual System Calls and Library Routines-97

SYNC (2) SYNC (2)

NAME
sync - update super-block

SYNOPSIS
void sync ()

DESCRIPTION
Sync causes all information in memory that should be on disk to
be written out. This includes modified super blocks, modified i­
nodes, and delayed block I/O.

It should be used by programs which examine a file system, for
example jsck, dj, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon
return from sync.

98-System Calls and Library Routines UNIX Programmer's Manual

TIME(2) TIME(2)

NAME
time - get time

SYNOPSIS
long time «(tong .) 0)

long time (tloc)
long .tloc;

DESCRIPTION
Time returns the value of time in seconds since 00:00:00 GMT,
January 1, 1970.

If tloe (taken as an integer) is non-zero, the return value is also
stored in the location to which tloe points.

[EFAULT] Time will fail if tloe points to an illegal address.

RETURN VALUE
Upon successful completion, time returns the value of time. Oth­
erwise, a value of -1 is returned and errno is set to indicate the
error.

SEE ALSO
stime(2).

UNIX Programmer's Manual System Calls and Library Routines-99

TIMES (2) TIMES (2)

NAME
times - get process and child process times

SYNOPSIS
#include < sys/types.h>
#include < sys/times.h>

long times (buffer)
struct tms • buffer;

DESCRIPTION
Times fills the structure pointed to by buffer with time-accounting
information. The following are the contents of this structure:

struct tms {

};

time t tms_utime;
time t tms _stime;
time t tms_cutime;
time t tms _ cstime;

This information comes from the calling process and each of its
terminated child processes for which it has executed a wait. All
times are in 60ths of a second on DEC processors, 100ths of a
second on AT &T processors.

Tms_utime is the CPU time used while executing instructions in
the user space of the calling process.

Tms _stime is the CPU time used by the system on behalf of the
calling process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the
child processes.

Tms _cstime is the sum of the tms _stimes and tms _cstimes of the
child processes.

[EFAULT] Times will fail if buffer points to an illegal address.

RETURN VALUE
Upon successful completion, times returns the elapsed real time, in
60ths (IOOths) of a second, since an arbitrary point in the past
(e.g., system start-up time). This point does not change from one
invocation of times to another. If times fails~ a -1 is returned
and errno is set to indicate the error.

SEE ALSO
exec (2), fork (2), time (2), wait (2) .

100-System Calls and Library Routines UNIX Programmer's Manual

ULIMIT(2) ULIMIT(2)

NAME
ulimit - get and set user limits

SYNOPSIS
long ulimit (cmd, newlimid
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The cmd
values available are:

1 Get the file size limit of the process. The limit is in units of
512-byte blocks and is inherited by child processes. Files of
any size can be read.

2 Set the file size limit of the process to the value of new limit.
Any process may decrease this limit, but only a process with
an .effective user ID of super-user may increase the limit.
Ulimit will fail and the limit will be unchanged if a process
with an effective user ID other than super-user attempts to
increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk (2).

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, a value of -I is returned and errno is set to indicate
the error.

SEE ALSO
brk(2), write (2) .

UNIX Programmer's Manual System Calls and Library Routines-I 0 1

UMASK(2)

NAME
umask - set and get file creation mask

SYNOPSIS
iot umask (cmask)
iot cmask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to cmask and
returns the previous value of the mask. Only the low-order 9 bits
of cmask and the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(!), she!) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

102-System Calls and Library Routines UNIX Programmer's Manual

UMOUNT(2) UMOUNT(2)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
Umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. Spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its
ordinary interpretation.

Umount may be invoked only by the super-user.

Umount will fail if one or more of the following are true:

[EPERM]

[ENXIO]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT]

RETURN VALUE

The process's effective user ID is not super-user.

Spec does not exist.

Spec is not a block special device.

Spec is not mounted.

A file on spec is busy.

Spec points to an illegal address.

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

UNIX Programmer's Manual System Calls and Library Routines-l03

UNAME(2) UNAME(2)

NAME
uname - get name. of current UNIX system

SYNOPSIS
#include < sys/utsname.h>

int uname(name)
struct utsname *name;

DESCRIPTION
Uname stores information identifying the current UNIX system in
the structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose
members are:

char sysname[9];
char nodename[9];
char release[9];
char version[9];
char machine[9];

Uname returns a null-terminated character string naming the
current UNIX system in the character array sysname. Similarly,
nodename contains the name that the system is known by on a
communications network. Release and version further identify the
operating system. Machine contains a standard name that
identifies. the hardware that the UNIX system is running on.

[EFAULT] Uname will fail if name points to an invalid address.

RETURN VALUE
Upon successful completion, a non-negative value is returned.
Otherwise, -1 is returned and errno is set to indicate the error.

SEE ALSO
uname(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

104-System Calls and Library Routines UNIX Programmer's Manual

UNLINK (2) UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
int unlink (path)
char .path;

DESCRIPTION
Unlink removes the directory entry named by the path name
pointed to be path.

The named file is unlinked unless one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[ETXTBSY]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of
the path prefix.

Write permission is denied on the directory con­
taining the link to be removed.

The named file is a directory and the effective
user ID of the process is not super-user.

The entry to be unlinked is the mount point for a
mounted file system.

The entry to be unlinked is the last link to a pure
procedure (shared text) file that is being exe-
cuted.

The directory entry to be unlinked is part of a
read-only file system.

Path points outside the process's allocated
address space.

When all links to a file have been removed and no process has the
file open, the space occupied by the file is freed and the file ceases
to exist. If one or more processes have the file open when the last
link is removed, the removal is postponed until all references to the
file have been closed.

UNIX Programmer's Manual System Calls and Library Routines-I05

UNLINK (2) UNLINK (2)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
close (2), link (2), open (2) .
rm(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

106-System Calls and Library Routines UNIX Programmer's Manual

USTAT(2) USTAT(2)

NAME
ustat - get file system statistics

SYNOPSIS
#include < sys/types.h >
#include < ustat.h >

int ustat (dev, buf)
int dev;
struct ustat *buf;

DESCRIPTION
Ustat returns information about a mounted file system. Dev is a
device number identifying a device containing a mounted file sys­
tem. Buf is a pointer to a ustat structure that includes to follow­
ing elements:

daddr t C tfree; /. Total free blocks ./
ino t f_tinode; /. Number of free inodes ./

/. Filsys name • / char f_fname[6];
char f_fpack[6]; /. Filsys pack name ./,

Ustat will fail if one or more of the following are true:

[EINVAL]

[EFAULT]

RETURN VALUE

Dev is not the device number of a device contain­
ing a mounted file system.

Buf points outside the process's allocated address
space.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2), fs(4).

UNIX Programmer's Manual System Calls and Library Routines-l07

UTIME(2) UTIME(2)

NAME
utime - set file access and modification times

SYNOPSIS
#include <sys/types.h>
int uti me (path, times)
char .path;
struct utimbuf -times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access
and modification times of the named file.

If times is NULL, the access and modification times of the file are
set to the current time. A process must be the owner of the file or
have write permission to use utime in this manner.

If times is not NULL, times is interpreted as a pointer to a utim­
buf structure and the access and modification times are set to the
values contained in the designated structure. Only the owner of
the file or the super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. I, 1970.

struct utimbuf {

};

time t actime;
time_t modtime;

/ * access time * /
/* modification time */

Utime will fail if one or more of the following are true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

The named file does not exist.

A component of the path prefix is not a directory.

Search permission is denied by a component of
the path prefix.

The effective user ID is not super-user and not
the owner of the file and times is not NULL.

The effective user ID is not super-user and not
the owner of the file and times is NULL and
write access is denied.

The file system containing the file is mounted
read-only.

[EFAULT] Times is not NULL and points outside the
process's allocated address space.

108-System Calls and Library Routines UNIX Programmer's Manual

UTIME(2)

[EFAULT]

RETURN VALUE

UTIME(2)

Path points outside the process's allocated
address space.

Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

UNIX Programmer's Manual System Calls and Library Routines-l09

WAIT (2) WAIT (2)

NAME
wait - wait for child process to stop or terminate

SYNOPSIS
iot wait (stat Joe>
iot ·stat Joe;

iot wait «iot .)0)

DESCRIPTION
Wait suspends the calling process until until one of the immediate
children terminates or until a child that is being traced stops,
because it has hit a break point. The wait system call will return
prematurely if a signal is received and if a child process stopped or
terminated prior to the call on wait, return is immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information
called status are stored in the low order 16 bits of the location
pointed to by stat _loc. Status can be used to differentiate
between stopped and terminated child processes and if the child
process terminated, status identifies the cause of termination and
passes useful information to the parent. This is accomplished in the
following manner:

If the child process stopped, the high order 8 bits of status
will contain the number of the signal that caused the pro­
cess to stop and the low order 8 bits will be set equal to
0177.

If the child process terminated due to an exit call, the low
order 8 bits of status will be zero and the high order 8 bits
will contain the low order 8 bits of the argument that the
child process passed to exit; see exit (2).

If the child process terminated due to a signal, the high
order 8 bits of status will be zero and the low order 8 bits
will contain the number of the signal that caused the ter­
mination. In addition, if the low order seventh bit (i.e., bit
200) is set, a "core image" will have been produced; see
signal (2).

If a parent process terminates without waiting for its child
processes to terminate, the parent process ID of each child process
is set to 1. This means the initialization process inherits the child
processes; see intro (2) .

Wait will fail and return immediately if one or more of the follow­
ing are true:

110-System Calls and Library Routines UNIX Programmer's Manual

WAIT (2)

[ECHILD]

[EFAULT]

RETURN VALUE

WAIT (2)

The calling process has no existing unwaited-for
child processes.

Stat Joe points to an illegal address.

If wait returns due to the receipt of a signal, a value of -1 is
returned to the calling process and errno is set to EINTR. If wait
returns due to a stopped or terminated child process, the process
ID of the child is returned to the calling process. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signa1(2).

WARNING
See WARNING in signal (2).

UNIX Programmer's Manual System Calls and Library Routines-Ill

WRITE (2) WRITE (2)

NAME
write - write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl,
or pipe system call.

Write attempts to write nbyte bytes from the buffer pointed to by
buf to the file associated with the fildes .

On devices capable of seeking, the actual writing of data proceeds
from the position in the file indicated by the file pointer. Upon
return from write, the file pointer is incremented by the number of
bytes actually written.

On devices incapable of seeking, writing always takes place start­
ing at the current position. The value of a file pointer associated
with such a device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer
will be set to the end of the file prior to each write.

Write will· fail and the file pointer will remain unchanged if one or
more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for writ-
ing.

[EPIPE and SIGPIPE signal]

[EFBIG]

[EFAULT]

[EINTR]

An attempt is made to write to a pipe that is not
open for reading by any process.

An attempt was made to write a file that exceeds
the process's file size limit or the maximum file
size. See ulimit (2) .

Buf points outside the process's allocated address
space.

A signal was caught during the write system call.

If a write requests that more bytes be written than there is room
for (e.g., the ulimit (see ulimit (2» or the physical end of a
medium), only as many bytes as there is room for will be written.

112-System Calls and Library Routines UNIX Programmer's Manual

WRITE (2) WRITE (2)

For example, suppose there is space for 20 bytes more in a file
before reaching a limit. A write of 512 bytes will return 20. The
next write of a non-zero number of bytes will give a failure return
(except as noted below).

If the file being written is a pipe (or FIFO) and the 0 _NDELA Y
flag of the file flag word is set, then write to a full pipe (or FIFO)
will return a count of O. Otherwise (O_NDELAY clear), writes to
a full pipe (or FIFO) will block until space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, -1 is returned and errno is set to indicate
the error.

SEE ALSO
creat(2), dup(2), Iseek(2), open(2), pipe(2), ulimit(2).

UNIX Programmer's Manual System Calls and Library Routines-113

INTRO(3) INTRO(3)

NAME
intro - introduction to subroutines and libraries

SYNOPSIS
#include < stdio.h >

#include <math.h>

DESCRIPTION
This section describes functions found in various libraries, other
than those functions that directly invoke UNIX system primitives,
which are described in Section 2 of this volume. Certain major
collections are identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those
marked (3S), constitute the Standard C Library libc, which
is automatically loaded by the C compiler, cc(I). The link
editor ld(l) searches this library under the -Ie option.
Declarations for some of these functions may be obtained
from #include files indicated on the appropriate pages.

(3S) These functions constitute the "standard 110 package" [see
stdio (3S) 1. These functions are in the library libc, already
mentioned. Declarations for these functions may be
obtained from the #include file <stdio.h>.

(3M) These functions constitute the Math Library, !ibm. They
are automatically accessed by the F77 compiler to imple­
ment the intrinsic math functions described in section 3F.
They are not automatically loaded by the C compiler,
cc (I); however, the link editor searches this library under
the -1m option. Declarations for these functions may be
obtained from the #include file <math.h>. Several gen­
erally useful mathematical constants are also defined there
[see math (5) 1.

(3X) Various specialized libraries. The files in which these
libraries are found are given on the appropriate pages.

(3 F) These functions constitute the F77 intrinsic functions
library, libF77 , which includes the standard FORTRAN
intrinsic functions as a subset. These functions are
automatically available to the FORTRAN programmer and
require no special invocation of the compiler.

DEFINITIONS
A character is any bit pattern able to fit into a byte on the
machine. The null character is a character with value 0,
represented in the C language as '\0'. A character array is a

UNIX Programmer's Manual System Calls and Library Routines-1l5

INTRO(3) INTRO(3)

FILES

sequence of characters. A null-terminated character array is a
sequence of characters, the last of which is the null character. A
string is a designation for a null-terminated character array. The
null string is a character array containing only the null character.
A NULL pointer is the value that is obtained by casting 0 into a
pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as 0 in
<stdio.h>; the user can include an appropriate definition if not
using < stdio.h > .

Many groups of FORTRAN intrinsic functions have generic func­
tion names that do not require explicit or implicit type declaration.
The type of the function will be determined by the type of its
argument(s). For example, the generic function max will return
an integer value if given integer arguments (maxO), a real value if
given real arguments (amax1), or a double-precision value if given
double-precision arguments (dmaxI).

llib/libc.a
llib/libm.a
lusr llib/libF77.a

SEE ALSO
intro(2), stdio(3S), math (5).
ar(O, cc(1), f77(0, Id(O, lint (1) , nm(1) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities.

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return
the conventional values 0 or ±HUGE (the largest-magnitude
single-precision floating-point numbers; HUGE is defined in the
<math.h> header file) when the function is undefined for the
given arguments or when the value is not representable. In these
cases, the external variable errno [see lntro (2)] is set to the value
EDOM or ERANGE. As many of the FORTRAN intrinsic func­
tions use the routines found in the Math Library, the same conven­
tions apply.

WARNING
Many of the functions in the libraries call and lor refer to other
functions and external variables described in this section and in
section 2 (System Calls). If a program inadvertantly defines a
function or external variable with the same name, the presumed

116-System Calls and Library Routines UNIX Programmer's Manual

INTRO(3) INTRO(3)

library version of the function or external variable may not be
loaded. The !intO) program checker reports name conflicts of this
kind as "multiple declarations" of the names in question.
Definitions for sections 2, 3C, and 3S are checked automatically.
Other definitions can be included by using the -I option (for exam­
ple, -1m includes definitions for the Math Library, section 3M).
Use of lint is highly recommended.

UNIX Programmer's Manual System Calls and Library Routines-I 17

A64L(3C) A64L(3C)

NAME
a641, 164a - convert between long integer and base-64 ASCII
string

SYNOPSIS
long a641 (s)
char *S;

char *164a 0)
long I;

DESCRIPTION

BUGS

These functions are used to maintain numbers stored inbase-64
ASCII characters. This is a notation by which long integers can be
represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are . for 0, / for 1, 0
through 9 for 2-11, A through Z for 12-37, and a through z for
38-63.

A641 takes a pointer to a null-terminated base-64 representation
and returns a corresponding long value. If the string pointed to by
s contains more than six characters, a641 will use the first six.

L64a takes a long argument and returns a pointer to the
corresponding base-64 representation. If the argument is 0, 164a
returns a pointer to a null string.

The value returned by 164a is a pointer into a static buffer, the
contents of which are overwritten by each call.

UNIX Programmer's Manual System Calls and Library Routines-119

ABORT (3C) ABORT (3C)

NAME
abort - generate an lOT fault

SYNOPSIS
int abort ()

DESCRIPTION
Abort first closes all open files if possible, then causes an lOT sig­
nal to be sent to the process. This usually results in termination
with a core dump.

It is possible for abort to return control if SIGIOT is caught or
ignored, in which case the value returned is that of the kill (2) sys­
tem call.

SEE ALSO
exit (2), kill (2), signal (2) .
sdb(1) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory
is writable, a core dump is produced and the message "abort -
core dumped" is written by the shell.

120-System Calls and Library Routines UNIX Programmer's Manual

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs 0)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

BUGS

ABS(3C)

In two's-complement representation, the absolute value of the
negative integer with largest magnitude is undefined. Some imple­
mentations trap this error, but others simply ignore it.

SEE ALSO
ftoor(3M).

UNIX Programmer's Manual System Calls and Library Routines-121

BSEARCH (3C) BSEARCH (3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include < search.h >
char *bsearch «char *) key, (char *) base, nel, sizeof (*key),
compar)
unsigned nel;
int (*compar) ();

DESCRIPTION
Bsearch is a binary search routine generalized from Knuth (6.2.0
Algorithm B. It returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in
increasing order according to a provided comparison function. Key
points to a datum instance to be sought in the table. Base points
to the element at the base of the table. Nel is the number of ele­
ments in the. table. Compar is the name of the comparison func­
tion, which is called with two arguments that point to the elements
being compared. The function must return an integer less than,
equal to, or greater than zero as accordinly the first argument is to
be considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes
consisting of a string and its length. The table is ordered alpha­
betically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the
corresponding node and prints out the string and its length, or
prints an error message.

#include < stdio.h >
#include <search.h>

#define TABSIZE

struct node {

};

char *string;
int length;

1000

/* stored in the table */

struct node table[TABSIZE); /* table to be searched */

122"';'System Calls and Library Routines UNIX Programmer's Manual

BSEARCH(3C) BSEARCH (3C)

NOTES

*/
int

struct node *node .l'tr, node;
int node_compare(); /* compare 2 nodes */
char str_space[20]; /* space to read string into */

node. string - str _space;
while (scanf("%s", node.string) !- EOF) {

node.l'tr - (struct node *)bsearch«char *)(&node),
(char * hable, T ABSIZE,

sizeof(struct node) , node_compare);
if (node .l'tr !- NULL) {

} else {

(void)printf("string == %20s, length == %d\n",
node .l'tr-> string, node .l'tr-> length) ;

(void)printf("not found: %s\n", node.string);

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
struct node *node 1, *node2;
{

return strcmp(nodel-> string, node2- > string);

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison func~ion need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

UNIX Programmer's Manual System Calls and Library Routines-123

BSEARCH (3C) BSEARCH (3C)

SEE ALSO
hsearch (3C), lsearch (3 C) , qsort (3C), tsearch (3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the
table.

124-System Calls and Library Routines UNIX Programmer's Manual

CLOCK (3C) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used
since the first call to clock. The time reported is the sum of the
user and system times of the calling process and its terminated
child processes for which it has executed wait (2) or system (3S).

The resolution of the clock is 10 milliseconds on AT&T 3B com­
puter processors, 16.667 milliseconds on Digital Equipment Cor­
poration processors.

SEE ALSO

BUGS

times (2), wait (2), system (3S).

The value returned by clock is defined in microseconds for compa­
tibility with systems that have CPU clocks with much higher reso­
lution. Because of this, the value returned will wrap around after
accumulating only 2147 seconds of CPU time (about 36 minutes).

UNIX Programmer's Manual System Calls and Library Routines-125

CONV(3C) CONV(3C)

NAME
toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#joclude < ctype.h >
jot toupper (d
jot c;

jot tolower (d
jot c;

jot _toupper (d
jot C;

jot tolower (d
jot c;

jot toascii (d
jot c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the
integers from -I through 255. If the argument of toupper
represents a lower-case letter, the result is the corresponding
upper-case letter. If the argument of tolower represents an
upper-case letter, the result is the corresponding lower-case letter.
All other arguments in the domain are returned unchanged.

The macros _to upper and _tolower, are macros that accomplish
the same thing as to upper and tolower but have restricted
domains and are faster. _toupper requires a lower-case letter as
its argument; its result is the corresponding upper-case letter. The
macro _to lower requires an. upper-case letter as its argument; its
result is the corresponding lower-case letter. Arguments outside
the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not
part of a standard ASCII character; it is intended for compatibility
with other systems.

SEE ALSO
ctype(3C), getc(3S).

126-System Calls and Library Routines UNIX Programmer's Manual

CRYPT (3C) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate DES encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

void setkey (key)
char *key;

void encrypt (block, ed8ag)
char *block;
int ed8ag;

DESCRIPTION
Crypt is the password encryption function. It is based on the NBS
Data Encryption Standard (DES), with variations intended (among
other things) to frustrate use of hardware implementations of the
DES for key search.

Key is a user's typed password. Salt is a two-character string
chosen from the set [a-zA-ZO-9.11; this string is used to perturb
the DES algorithm in one of 4096 different ways, after which the
password is used as the key to encrypt repeatedly a constant string.
The returned value points to the encrypted password. The first
two characters are the salt itself.

The set key and encrypt entries provide (rather primitive) access to
the actual DES algorithm. The argument of set key is a character
array of length 64 containing only the characters with numerical
value 0 and 1. If this string is divided into groups of 8, the low­
order bit in each group is ignored; this gives a 56-bit key which is
set into the machine. This is the key that will be used with the
above mentioned algorithm to encrypt or decrypt the string block
with the function encrypt.

The argument to the encrypt entry is a character array of length
64 containing only the characters with numerical value 0 and 1.
The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected
to the DES algorithm using the key set by set key . If edflag is
zero, the argument is encrypted; if non-zero, it is decrypted.

UNIX Programmer's Manual System Calls and Library Routines-127

CRYPT (3C) CRYPT (3C)

SEE ALSO

BUGS

getpass (3 C) , passwd (4) .
login (I) , passwd(I) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

The return value points to static data that are overwritten by each
call.

128-System Calls and Library Routines UNIX Programmer's Manual

CTIME(3C) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset - convert date and time to
string

SYNOPSIS
#include < time.h>

char *ctime (clock)
long * clock;

struct tm *Iocaltime (clock)
long * clock;

struct tm *gmtime (clock)
long * clock;

char *asctime <tm)
struct tm *tm;

extern long timezone;

extern int daylight;

extern char *tzname[2);

void tzset ()

DESCRIPTION
Ctime converts a long integer, pointed to by clock, representing
the time in seconds since 00:00:00 GMT, January 1, 1970, and
returns a pointer to a 26-character string in the following form.
All the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

Localtime and gmtime return pointers to "tm" structures,
described below. Localtime corrects for the time zone and possible
Daylight Savings Time; gmtime converts directly to Greenwich
Mean Time (GMT), which is the time the UNIX system uses.

Asctime converts a "tm" structure to a 26-character string, as
shown in the above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" struc­
ture, are in the <time.h> header file. The structure declaration
is:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;

1* seconds (0 - 59) *1
I*minutes (0 - 59) *1
1* hours (0 - 23) *1

UNIX Programmer's Manual System Calls and Library Routines-129

CTIME(3C) CTIME(3C)

};

int tm_mday;
int tm_mon;
int tmyear;
int tm_wday;
int tmyday;
int tm jsdst;

/* day of month (1 - 31) */
/* month of year (0 - 11) */
/* year - 1900 */
/* day of week (Sunday = 0) */
/* day of year (0 - 365) */

Tm_isdst is non-zero if Daylight Savings Time is in effect.

The external long variable timezone contains the difference, in
seconds, between GMT and local standard time (in EST, timezone
is 5*60*60); the external variable daylight is non-zero if and only
if the standard U.S.A. Daylight Savings Time conversion should be
applied. The program knows about the peculiarities of this conver­
sion in 1974 and 1975; if necessary, a table for these years can be
extended.

If an environment variable named TZ is present, asctime uses the
contents of the variable to override the default time zone. The
value of TZ must be a three-letter time zone name, followed by a
number representing the difference between local time and
Greenwich Mean Time in hours, followed by an optional three­
letter name for a daylight time zone. For example, the setting for
New Jersey would be EST5EDT. The effects of setting TZ are thus
to change the values of the external variables timezone and day­
light; in addition, the time zone names contained in the external
variable

char .tznameI2] == { "EST", "EDT" };

are set from the environment variable TZ. The function tzset sets
these external variables from TZ; tzset is called by asctime and
may also be called explicitly by the user.

Note that in most installations, TZ is set by default when the user
logs on, to a value in the local/etc/profile file (see profile (4».

SEE ALSO

BUGS

time (2), getenv (3C), profile (4), environ (5) .

The return values point to static data whose content is overwritten
by each call.

130-System Calls and Library Routines UNIX Programmer's Manual

CTYPE(3C) CTYPE(3C)

NAME
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#ioclude < ctype.h >
iot isalpha (c)
iot c;

DESCRIPTION
These macros classify character-coded integer values by table
lookup. Each is a predicate returning nonzero for true, zero for
false. Isascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF
(-1 - see stdio(3S».

isalpha

isupper

islower

is digit

isxdigit

isalnum

iss pace

ispunct

isprint

isgraph

iscntrl

isascii

c is a letter.

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9l

c is a hexadecimal digit [0-9], [A-F] or [a-fl

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, new-line, verti­
cal tab, or form-feed.

c is a punctuation character (neither control nor
alphanumeric) .

c is a printing character, code 040 (space)
through 0176 (tilde).

c is a printing character, like isprint except false
for space. '

c is a delete character (0177) or an ordinary con­
trol character (less than 040).

c is an ASCII character, code less than 0200.

UNIX Programmer's Manual System Calls and Library Routines-13I

CTYPE(3C) CTYPE(3C)

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the
function, the result is undefined.

SEE ALSO
stdio(3S), ascii (5).

132-System Calls and Library Routines UNIX Programmer's Manual

DIAL(3C) DIAL (3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include < dial.h >
int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
Dial returns a file-descriptor for a terminal line open for
read/write. The argument to dial is a CALL structure (defined in
the <dial.h> header file).

When finished with the terminal line, the calling program must
invoke undial to release the semaphore that has been set during
the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
int baud;
int
char
char
int
char

speed;
*line;
*telno;
modem;
*device;

/* pointer to termio attribute struct */
/* transmission data rate */
/* 212A modem: low=300, high=1200 */
/* device name for out-going line */
/* pointer to tel-no digits string */
/* specify modem control for direct lines */
/*Will hald the name of the device used
to make a connection * /

int dev Jen; /* The length of the device used
to make connection * /

} CALL;

The CALL element speed is intended only for use with an outgoing
dialed call, in which case its value should be either 300 or 1200 to
identify the 113A modem, or the high- or low-speed setting on the -
212A modem. Note that the 113A modem or the low-speed setting
of the 212A modem will transmit at any rate between 0 and 300
bits per second. However, the high-speed setting of the 212A
modem transmits and receivers at 1200 bits per secound only. The
CALL element baud is for the desired transmission baud rate. For
example, one might set baud to 110 and speed to 300 (or 1200).
However, if speed set to 1200 baud must be set to high (1200).

UNIX Programmer's Manual System Calls and Library Routines-I33

DIAL(3C) DIAL (3C)

FILES

If the desired terminal line is a direct line, a string pointer to its
device-name should be placed in the line element in the CALL
structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element
need not be specified as it will be determined from the L-devices
file.

The telno element is for a pointer to a character string represent­
ing the telephone number to be dialed. Such numbers may consist
only of symbols described on the acu (7). The termination symbol
will be supplied by the dial function, and should not be included in
the telno string passed to dial in the CALL structure.

The CALL element modem is used to specify modem control for
direct lines. This element should be non-zero if modem control is
required. The CALL element attr is a pointer to a termio struc­
ture, as defined in the termio.h header file. A NULL value for this
pointer element may be passed to the dial function, but if such a
structure is included, the elements specified in it will be set for the
outgoing terminal line before the connection is established. This is
often important for certain attributes such as parity and baud-rate.

The CALL element device is used to hold the device name (cuI..)
that establishes the connection.

The CALL element dev _len is the length of the device name that is
copied into the array device.

lusr Ilib/uucp/L-devices
lusrlspoolluucp/LCK .. tty-device

SEE ALSO
uucp(IC) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.
alarm (2), read (2), write (2) .
acu(7) , termio(7) in the UNIX System Administrator Reference
Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure
will be returned. Mnemonics for these negative indices as listed
here are defined in the <dial.h> header file.

INTRPT
D_HUNG
NO_ANS

-I
-2
-3

1* interrupt occurred *1
1* dialer hung (no return from write) *1
1* no answer within 10 seconds *1

1 34-System Calls and Library Routines UNIX Programmer's Manual

DIAL(3C) DIAL(3C)

ILL BD
A_PROB
L PROB
NO Ldv
DV NT A
DV_NT_K
NO_BD_A
NO_BD_K

-4
-5
-6
-7
-8
-9
-10
-11

/* illegal baud-rate */
/* acu problem (open 0 failure) */
/* line problem (open 0 failure) */
/* can't open LDEVS file */
/* requested device not available */
/ * requested device not known * /
/* none available at requested baud */
/* no device known at requested baud */

WARNINGS

BUGS

Including the <diaI.h> header file automatically includes the
<termio.h> header file.

The above routine uses <stdio.h>, which causes it. to increase the
size of programs, not otherwise using standard 110, more than
might be expected.

An alarm (2) system call for 3600 seconds is made (and caught)
within the dial module for the purpose of "touching" the LCK .. file
and constitutes the device allocation semaphore for the terminal
device. Otherwise, uucp (1 C) may simply delete the LCK .. entry
on its 90-minute clean-up rounds. The alarm may go off while the
user program is in a read (2) or write (2) system call, causing an
apparent error return. If the user program expects to be around
for an hour or more, error returns from reads should be checked
for (errno = = EINTR), and the read possibly reissued.

UNIX Programmer's Manual System Calls and Library Routines-135

DRAND48 (3C) DRAND48 (3C)

NAME
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48,
seed48, 1cong48 - generate uniformly distributed pseudo-random
numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubO
unsigned short xsubil31;

long Irand48 ()

long nrand48 (xsubO
unsigned short xsubil31;

long mrand48 ()

long jrand48 (xsubO
unsigned short xsubil31;

void srand48 (seedvaO
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16vl31;

void Icong48 (param)
unsigned short param[71;

DESCRIPTION
This family of functions generates pseudo-random numbers using
the well-known linear congruential algorithm and 48-bit integer
arithmetic.

Functions drand48 and erand48 return non-negative double­
precision floating-point values uniformly distributed over the inter­
val [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers
uniformly distributed over the interval [0, 231).

Functions mrand48 and jrand48 return signed long integers uni­
formly distributed over the interval [_231 , 231).

Functions srand48, seed48 and lcong48 are initialization entry
points, one of which should be invoked before either drand48,
lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied
automatically if drand48, lrand48 or mrand48 is called without a
prior call to an initialization entry point.) Functions erand48,

136-System Calls and Library Routines UNIX Programmer's Manual

DRAND48 (3C) DRAND48 (3C)

nrand48 and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer
values, X;, according to the linear congruential formula

X n+1 == (aXn + C) mod m n ~O.

The parameter m = 248 ; hence 48-bit integer arithmetic is per­
formed. Unless lcong48 has been invoked, the multiplier value a
and the addend value c are given by

a = 5DEECE66D 16 = 273673163155 8

c=B I6 =13 8 ·

The value returned by any of the functions drand48, erand48,
lrand48, nrand48, mrand48 or jrand48 is computed by first gen­
erating the next 48-bit Xi in the sequence. Then the appropriate
number of bits, according to the type of data item to be returned,
are copied from the high-order (leftmost) bits of Xi and
transformed into the returned value.

The functions drand48, lrand48 and mrand48 store the last 48-bit
Xi generated in an internal buffer; that is why they must be initial­
ized prior to being invoked. The functions erand48, nrand48 and
jrand48 require the calling program to provide storage for the suc­
cessive Xi values in the array specified as an argument when the
functions are invoked. That is why these routines do not have to
be initialized; the calling program merely has to place the desired
initial value of Xi into the array and pass it as an argument. By
using different arguments, functions erand48, nrand48 and
jrand48 allow separate modules of a large program to generate
several independent streams of pseudo-random numbers, i.e., the
sequence of numbers in each stream will not depend upon how
many times the routines have been called to generate numbers for
the other streams.

The initializer function srand48 sets the high-order 32 bits of Xi to
the 32 bits contained in its argument. The low-order 16 bits of Xi
are set to the arbitrary value 330E16 . .

The initializer function ~eed48 sets the value of Xi to the 48-bit
value specified in the argument array. In addition, the previous
value of Xi is copied into a 48-bit internal buffer, used only by
seed48, and a pointer to this buffer is the value returned by
seed48. This returned pointer, which can just be ignored if not
needed, is useful if a program is to be restarted from a given point

UNIX Programmer's Manual System Calls and Library Routines-137

DRAND48 (3C) DRAND48 (3C)

NOTES

at some future time - use the pointer to get at and store the last
Xi value, and then use this value to reinitialize via seed48 when
the program is restarted.

The initialization function lcong48 allows the user to specify the
initial X;, the multiplier value a, and the addend value c. Argu­
ment array elements param[O-21 specify X;, paramf3-51 specify
the multiplier a, and param[61 specifies the 16-bit addend c.
After lcong48 has been called, a subsequent call to either srand48
or seed48 will restore the "standard" multiplier and addend
values, a and c, specified on the previous page.

On most computers, the routines are coded in portable C. The
source code for the portable version can even be used on computers
which do not have floating-point arithmetic. In such a situation,
functions drand48 and erand48 do not exist; instead, they are
replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubil3J, m;

Functions irand48 and krand48 return non-negative long integers
uniformly distributed over the interval [0, m -1].

SEE ALSO
rand(3C).

138-System Calls and Library Routines UNIX Programmer's Manual

ECVT(3C) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt (value, ndigit, buf)
double value;
int ndigit;
char *buf;

DESCRIPTION
Eevt converts value to a null-terminated string of ndigit digits and
returns a pointer thereto. The high-order digit is non-zero, unless
the value is zero. The low-order digit is rounded. The position of
the decimal point relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the
returned digits). The decimal point is not included in the returned
string. If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero.

Fevt is identical to eevt, except that the correct digit has been
rounded for printf "%f' (FORTRAN F-format) output of the
number of digits specified by ndigit.

Gevt converts the value to a null-terminated string in the array
pointed to by buf and returns buf. It attempts to produce ndigit
significant digits in FORTRAN F-format if possible, otherwise E­
format, ready for printing. A minus sign, if there is one, or a
decimal point will be included as part of the returned string.
Trailing zeros are suppressed.

SEE ALSO
printf(3S) .

BUGS
The values returned by eevt and fevt point to a single static data
array whose content is overwritten by each call.

UNIX Programmer's Manual System Calls and Library Routines-139

END(3C) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with
interesting contents. The address of etext is the first address
above the program text, edata above the initialized data region,
and end above the uninitialized data region.

When execution begins, the program break (the first location
beyond the data) coincides with end, but the program break may
be reset by the routines of brk (2), maUoc (3C), standard
input/output (stdio(3S», the profile (-p) option of ceO), and so
on. Thus, the current value of the program break should be deter­
mined by sbrk(O) (see brk (2».

SEE ALSO
brk(2), malloc(3C), stdio(3S).
cc(I) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

140-System Calls and Library Routines UNIX Programmer's Manual

FREXP(3C) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int .eptr;

double Idexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, .iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n

, where
the "mantissa" (fraction) x is in the range 0.5 ~ Ix I < 1.0, and
the "exponent" n is an integer. Frexp returns the mantissa of a
double value, and stores the exponent indirectly in the location
pointed to by eptr. If value is zero, both results returned by frexp
are zero.

Ldexp returns the quantity value * 2exp
.

M odf returns the signed fractional part of value and stores the
integral part indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE is returned (according to
the sign of value), and errno is set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set
to ERANGE.

UNIX Programmer's Manual System Calls and Library Routines-141

FTW(3C) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include < ftw.h>

int ftw (path, fn, depth)
char * path;
int (*fn) ();
int depth;

DESCRIPTION
Ftw recursively descends the directory hierarchy rooted in path.
For each object in the hierarchy, ftw calls fn, passing it a pointer
to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat (2» containing infor­
mation about the object, and an integer. Possible values of the
integer, defined in the <ftw.h> header file, are FTW _F for a file,
FTW _D for a directory, FTW _DNR for a directory that cannot be
read, and FTW _NS for an object for which stat could not success­
fully be executed. If the integer is FTW _DNR, descendants of that
directory will not be processed. If the integer is FTW _NS, the stat
structure will contain garbage. An example of an object that
would cause FTW _NS to be passed to fn would be a file in a direc­
tory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invoca­
tion of fn returns a nonzero value, or some error is detected within
ftw (such as an 110 error). If the tree is exhausted, ftw returns
zero. If fn returns a nonzero value, ftw stops its tree traversal and
returns whatever value was returned by fn. If ftw detects an
error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth
argument limits the number of file descriptors so used. If depth is
zero or negative, the effect is the same as if it were 1. Depth must
not be greater than the number of file descriptors currently avail­
able for use. Ftw will run more quickly if depth is at least as
large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

142-System Calls and Library Routines ,UNIX Programmer's Manual

FTW(3C) FTW(3C)

BUGS
Because ftw is recursive, it is possible for it to terminate with a
memory fault when applied to very deep file structures.
It could be made to run faster and use less storage on deep struc­
tures at the cost of considerable complexity.
Ftw uses maUoe (3 C) to allocate dynamic storage during its opera­
tion. If ftw is forcibly terminated, such as by /ongjmp being exe­
cuted by fn or an interrupt routine, ftw will not have a chance to
free that storage, so it will remain permanently allocated. A safe
way to handle interrupts is to store the fact that an interrupt has
occurred, and arrange to have fn return a nonzero value at its next
invocation. '

UNIX Programmer's Manual System Calls and Libi"ary'ROtitines-143

GETCWD(3C) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char .getcwd (buf, size)
char .buf;
int size;

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The
value of size must be at least two greater than the length of the
path-name to be returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space
using maUoc (3C) . In this case, the pointer returned by getcwd
may be used as the argument in a subsequent call tofree.

The function is implemented by using popen (3S) to pipe the out­
put of the pwd(l) command into the specified string space.

EXAMPLE

SEE ALSO

char *cwd, * getcwd 0 ;

if «cwd == getcwd«char *)NULL, 64» ==== NULL) {
perror("pwd") ;
exit (I);

printf("%s\n", cwd);

malloc(3C), popen(3S).
pwd(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an
error ocurrs in a lower-level function.

144-System Calls and Library Routines UNIX Programmer's Manual

GETENV(3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char * name;

DESCRIPTION

GETENV(3C)

Getenv searches the environment list (see environ (5» for a string
of the form name ==value, and returns a pointer to the value in the
current environment if such a string is present, otherwise a NULL
pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

UNIX Programmer's Manual System Calls and Library Routines-145

GETGRENT(3C) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get
group file entry

SYNOPSIS
#include < grp.h>

struct group -getgrent ()

struct group -getgrgid (gid)
int gid;

struct group -getgrnam (name)
char -name;

void setgrent ()

void endgrent ()

struct group -fgetgrent (f)
FILE -f;

DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an o~ject
with the following structure containing the broken-out fields of a
line in the fetcfgroup file. Each line contains a "group" structure,
defined in the <grp.h> header file.

struct group {
char -gr_name; f* the name of the group *f

};

char
int
char

gr....,passwd; f the encrypted group password *1
gr~id; 1* the numerical group ID *f
**gr_mem; 1* vector of pointers to member names *1

Getgrent when first called returns a pointer to the first group
structure in the file; thereafter, it returns a pointer to the next
group structure in the file; so, successive calls may be used to
search the entire file. Getgrgid searches from the beginning of the
file until a numerical group id matching gid is found and returns a
pointer to the particular structure in which it was found. Get­
grnam searches from the beginning of the file until a group name
matching name is found and returns a pointer to the particular
structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to
allow . repeated searches. Endgrent may be called to close the
group file when processing is complete.

146-System Calls and Library Routines UNIX Programmer's Manual

GETGRENT(3C) GETGRENT(3C)

FILES

Fgetgrent returns a pointer to the next group structure in the
stream j, which matches the format of /etc/group.

fetcfgroup

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use <stdio.h>, which causes them to increase
the size of programs, not otherwise using standard 110, more than
might be expected.

All information is contained in a static area, so it must be copied if
it is to be saved.

UNIX Programmer's Manual System Calls and Library Routines-147

GETLOGIN(3C) GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
char .getlogin ();

DESCRIPTION

FILES

Getlogin returns a pointer to the login name as found in
/etc/utmp. It may be used in conjunction with getpwnam to
locate the correct password file entry when the same user ID is
shared by several login names. .

If getlogin is called within a process that is not attached to a ter­
minal, it returns a NULL pointer. The correct procedure for deter­
mining the login name is to call cuserid, or to call get/ogin and if
it fails to call getpwuid.

/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent(3C), utmp(4).

DIAGNOSTICS

BUGS

Returns the NULL pointer if name is not found.

The return values point to static data whose content is overwritten
by each call.

148-System Calls and Library Routines UNIX Programmer's Manual

GETOPT(3C) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv;
char *optstring;

extern char *optarg;
extern int optind;

DESCRIPTION
Getopt retunrs the next option letter in argv that matches a letter
in optstring. Optstring is a string of recognized option letters; if a
letter is followed by a colon, the option is expected to have an
argument that mayor may not be separated from it by white
space. Optarg is set to point to the start of the option argument.

Getopt places in optind the argv index of the next argument to be
processed. Because optind is external, it is normally initialized to
zero automatically before the first call to getopt.

When all options have been processed, getopt returns EOF. The
special option -- may be used to delimit the end of the options;
EOF will be returned, and -- will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question
mark (?) when it encounters an option letter not included in opt­
string.

WARNING
The above routine uses <stdio.h> which causes it to increase the
size of programs, not otherwise using standard 110, more than
might be expected.

SEE ALSO
getopt(l) .

UNIX Programmer's Manual System Calls and Library Routines-149

GETPASS(3C) GETPASS (3C)

NAME
getpass - read a password

SYNOPSIS
char .getpass (prompt)
char .prompt;

DESCRIPTION

FILES

Getpass reads up to a newline or EOF from the file /dev/tty, after
prompting on the standard error output with the null-terminated
string prompt and disabling echoing. A pointer is returned to a
null-terminated string of at most 8 characters. If /dev/tty cannot
be opened, a NULL pointer is returned. An interrupt will ter­
minate input and send an interrupt signal to the calling program
before returning.

/dev/tty

SEE ALSO
crypt(3C) .

WARNING

BUGS

The above routine uses <stdio.h>, which causes it to increase the
size of programs not otherwise using standard 110, more than
might be expected.

The return value points to static data whose content is overwritten
by each call.

I50-System Calls and Library Routines UNIX Programmer's Manual

GETPW(3C) GETPW(3C)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buC)
int uid;
char .buf;

DESCRIPTION

FILES

Getpw searches the password file for a user id number that equals
uid, copies the line of the password file in which uid was found
into the array pointed to by buj, and returns o. Getpw returns
non-zero if uid cannot be found.

This routine is included only for compatibility with prior systems
and should not be used; see getpwent (3C) for routines to use
instead.

/etc/passwd

SEE ALSO
getpwent (3C), passwd (4).

DIAGNOSTICS
Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h> , which causes it to increase,
more than might be expected, the size of programs not otherwise
using standard I/O.

UNIX Programmer's Manual System Calls and Library Routines-I51

GETPWENT(3C) GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent -
get password file entry

SYNOPSIS
#include < pwd.h>

struct passwd .getpwent ()

struct passwd .getpwuid (uid)
int uid;

struct passwd .getpwnam (name)
char .name;

void setpwent ()

void endpwent ()

struct passwd .fgetpwent (f)
FILE .f;

DESCRIPTION
Getpwent, getpwuid and getpwnam each returns a pointer to an
object with the following structure containing the broken-out fields
of a line in the /etc/passwd file. Each line in the file contains a
"passwd" structure, declared in the <pwd.h> header file:

struct passwd {
char
char

};

int
int
char
char
char
char

. char

·pw_name;
·pw -passwd;
pw_uid;
pw~id;

·pw_age;
.pw _comment;
·pw~ecos;

.pw_dir;

.pw_shell;

This structure is declared in <pwd.h> so it is not necessary to
redeclare it.

The pw _comment field is unused; the others have meanings
described in passwd (4).

Getpwent when first called returns a pointer to the first passwd
structure in the file; thereafter, it returns a pointer to the next
passwd structure in the file; so successive calls can be used to

152-System Calls and Library Routines UNIX Programmer's Manual

GETPWENT(3C) GETPWENT(3C)

FILES

search the entire file. Getpwuid searches from the beginning of
the file until a numerical user id matching uid is found and
returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the partic­
ular structure in which it was found. If an end-of-file or an error
is encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to
allow repeated searches. Endpwent may be called to close the
password file when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the
streamj, which matches the format of /etc/passwd.

letclpasswd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING

BUGS

The above routines use < stdio.h > , which causes them to increase
the size of programs, not otherwise using standard 110, more than
might be expected.

All information is contained in a static area, so it must be copied if
it is to be saved.

UNIX Programmer's Manual System Calls and Library Routines-I53

I

GETUT(3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmp­
name - access utmp file entry

SYNOPSIS
#include < utmp.h >
struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp *getutline (line)
struct utmp * line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a struc­
ture of the following type:

struct utmp {
char ut_user[S]; /* User login name */
char utjd[4]; /* /etc/inittab id (usually line #) */
char utJine[12]; /* device name (console, lnxx) */
short ut""pid; /* process id */
short ut_type; /* type of entry */
struct exit_status {

short e_termination; /* Process termination status *1
short e_exit; /* Process exit status */

} ut_exit; /* The exit status of a process
* marked as DEAD _PROCESS. */

time_t ut_time; /* time entry was made */
};

Getutent reads in the next entry from a utmp-like file. If the file
is not already open, it opens it. If it reaches the end of the file, it
fails.

Getutid searches forward from the current point in the utmp file
until it finds an entry with a ut _type matching id - > ut _type if

154-System Calls and Library Routines UNIX Programmer's Manual

GETUT(3C) GETUT(3C)

FILES

the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW _TIME. If the type specified in id is IN IT_PROCESS,
LOGIN_PROCESS, USER_PROCESS or DEADYROCESS, then
getutid will return a pointer to the first entry whose type is one of
these four and whose ut _id field matches id - > ut _id. If the end
of file is reached without a match, it fails.

Getutline searches forward from the current point in the utmp file
until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS which also has a ut_line string matching the
line - > ut _line string. If the end of file is reached without a
match, it fails.

Pututline writes out the supplied utmp structure into the utmp
file. It uses getutid to search forward for the proper place if it
finds that it is not already at the proper place. It is expected that
normally the user of pututline will have searched for the proper
entry using one of the getut routines. If so, pututline will not
search. If pututline does not find a matching slot for the new
entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This
should be done before each search for a new entry if it is desired
that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file exam­
ined, from fetcfutmp to any other file. It is most often expected
that this other file will be fetc/wtmp. If the file does not exist, this
will not be apparent until the first attempt to reference the file is
made. Utmpname does not open the file. It just closes the old file
if it is currently open and saves the new file name.

fetc/utmp
fetc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer. is returned upon failure to read, whether for per­
missions or having reached the end of file, or upon failure to write.

UNIX Programmer's Manual System Calls and Library Routines-ISS

HSEARCH (3C) HSEARCH (3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include < search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (neI)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

Hsearch is a hash-table search routine generalized from Knuth
(6.4) Algorithm D. It returns a pointer into a hash table indicat­
ing the location at which an entry can be found. Item is a struc­
ture of type ENTRY (defined in the <search.h> header file) con­
taining two pointers: item.key points to the comparison key, and
item.data points to any other data to be associated with that key.
(Pointers to types other than character should be cast to pointer­
to-character,) Action is a member of an enumeration type
ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that
no entry should be made. Unsuccessful resolution is indicated by
the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called
before hsearch is used. Nel is an estimate of the maximum
number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain
mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by
another call to hcreate.

Hsearch uses open addressing with a multiplicative hash function.
However, its source code has many other options available which
the user may select by compiling the hsearch source with the fol­
lowing symbols defined to the preprocessor:

DIV Use the remainder modulo table size as the
hash function instead of the multiplicative
algorithm.

156-System Calls and Library Routines UNIX Programmer's Manual

HSEARCH (3C) HSEARCH (3C)

USCR Use a User Supplied Comparison Routine for
ascertaining table membership. The routine
should be named hcompar and should behave
in a mannner similar to strcmp (see
string (3C».

CHAINED Use a linked list to resolve collisions. If this
option is selected, the following other options
become available.

START Place new entries at the begin­
ning of the linked list (default
is at the end).

SORTUP Keep the linked list sorted by
key in ascending order.

SORTDOWN Keep the linked list sorted by
key in descending order.

Additionally, there are preprocessor flags for obtaining debugging
printout (-DDEBUG) and for including a test driver in the calling
routine (-DDRIVER). The source code should be consulted for
further details.

EXAMPLE
The following example will read in strings followed by two
numbers and store them in a hash table, discarding duplicates. It
will then read in strings and find the matching entry in the hash
table and print it out.

#include < stdio.h >
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. */

} ;
#define NUM_EMPL 5000 /* # elements in search table */

main{)
{

/ * space to store strings * /
char string_space[NUM_EMPL*20];
/* space to store employee info*/
struct info info_space[NUM_EMPL];
/* next avail space in string_space */

UNIX Programmer's Manual System Calls and Library Routines-IS7

HSEARCH(3C) HSEARCH(3C)

SEE ALSO

char .str ...,ptr - string_space;
/. next avail space in info_space ./
struct info .info...,Ptr info,-space;
ENTRY item, .foundjtem, .hsearch();
/. name to look for in table ./
char name_toJind[301;
int i == 0;

/. create table ./
(void) hcreate(NUM_EMPL);
while (scanf("%s%d%d", str...,ptr, &info...,ptr-> age,

&info...,ptr->room) !- EOF && i++ < NUM_EMPL)
/. put info in structure, and structure in item ./
item.key - str ...,ptr;
item. data - (char • }info ...,ptr;
str ...,ptr +- strlen (str ...,ptr) + 1 ;

info...,ptr++;
/. put item into table ./
(void) hsearch (item, ENTER);

/. access table ./
item.key - name_to_find;
while (scanf("%s", item.key) !- EOF) {

if «found_item - hsearch(item, FIND» !- NULL) {
/. if item is in the table ./
(void)printf("found %s, age - %d, room == %d\n",

found_item-> key,

} else {

«struct info .)foundjtem->data)-> age,
«struct info .)foundjtem->data)-> room);

(void)printf("no such employee %s\n",
name_to _find)

bsearch(3C), Isearch(3C) , malloc(3C), malloc(3X), string (3C) ,
tsearch (3 C) .

I58-System Calls and Library Routines UNIX Programmer's Manual

HSEARCH (3C) HSEARCH(3C)

DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and
the item could not be found or the action is ENTER and the table
is full.

Hcreate returns zero if it cannot allocate sufficient space for the
table.

WARNING
Hsearch and hcreate use maUoc (3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

UNIX Programmer's Manual System Calls and Library Routines-159

L3TOL(3C) L3TOL(3C)

NAME
13tol, Itol3 - convert' between 3-byte integers and long integers

SYNOPSIS
void 13tol Op, cp, 0)
loog *Ip;
char *cp;
iot 0;

void ltol3 (cp, Ip, 0)

char *cp;
loog *Ip;
iot 0;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a charac­
ter string pointed to by cp into a list of long integers pointed to by
lp.

Lto13 performs the reverse conversion from long integers Up) to
three-byte integers (cp).

These functions are useful for file-system maintenance where the
block numbers are three bytes long.

SEE ALSO
fs(4).

BUGS
Because of possible differences in byte ordering, the numerical
values of the long integers are machine-dependent.

160-System Calls and Library Routines UNIX Programmer's Manual

LOCKF(3C) LOCKF(3C)

NAME
lockf - record locking on files

SYNOPSIS
include < unistd.h >

lockf (fildes, function, size) long size; int fildes, function;

DESCRIPTION
The lockf call will allow sections of a file to be locked (advisory
write locks). (Mandatory or enforcement mode record locks are
not currently available.) Locking calls from other processes which
attempt to lock the locked file section will either return an error
value or be put to sleep until the resource becomes unlocked. All
the locks for a process are removed when the process terminates.
[See fcnt[(2) for more information about record locking']

Fildes is an open file descriptor. The file descriptor must have
0_ WRONL Y or 0 _RDWR permission in order to establish a lock
with this function call.

Function is a control value which specifies the action to be taken.
The permissible values for function are defined in <unistd.h> as
follows:

#define
#define
#define
#define

F_ULOCK
F_LOCK
F_TLOCK
F_TEST

o /* Unlock previously locked section */
1 /* Lock section for exclusive use */
2 /* Testllock section for exclusive use */
3 /* Test for other processes locks */

All other values of function are reserved for future extensions and
will result in an error return if not implemented.

F _TEST is used to detect if a lock by another process is present on
the specified section. F _LOCK and F _ TLOCK both lock a section of
a file if the section is available. F _UNLOCK removes locks from a
section of the file.

Size is the number of contiguous bytes to be locked or unlocked.
The resource to be locked starts at the current offset in the file and
extends forward for positive size and backward for negative size.
If size is zero, the section from current offset through the largest
file offset is locked (i.e., from current offset through the present or
any future end-of-file). An area need not be allocated to a file in
order to be locked, as such locks may exist past end-of-file.

UNIX Programmer's Manual System Calls and Library Routines-161

LOCKF(3C) LOCKF(3C)

The sections locked with F _LOCK or F _TLOCK may, in whole or in
part, contain or be contained by a previously locked section for the
same process. When this occurs, or if adjacent sections occur, the
sections are combined into a single section. If the request requires
that a new element be added to the table of active locks and this
table is already full, an error is returned, and the new section is
not locked.

F _LOCK and F _TLOCK requests differ only by the action taken if
the resource is not available. F _LOCK will cause the calling pro­
cess to sleep until the resource is available. F _TLOCK will cause
the function to return a -I and set errno to [EACCESS] error if
the section is already locked by another process.

F _ULOCK requests may, in whole or in part, release one or more
locked sections controlled by the process. When sections are not
fully released, the remaining sections are still locked by the pro­
cess. Releasing the center section of a locked section requires an
additional element in the table of active locks. If this table is full,
an [EDEADLK] error is returned and the requested section is not·
released.

A potential for deadlock occurs if a process controlling a locked
resource is put to sleep by accessing another process's locked
resource. Thus calls to lock or fcntl scan for a deadlock prior to
sleeping on a locked resource. An error return is made if sleeping
on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The
alarm (2) command may be used to provide a timeout facility in
applications which require this facility.

ERRORS
The lockf utility will fail if one or more of the following are true:

[EBADF]
Fildes is not a valid open descriptor.

[EACCESS]
Cmd is F _ TLOCK or F _TEST and the section is already
locked by another process.

162-System Calls and Library Routines UNIX Programmer's Manual

LOCKF(3C) LOCKF(3C)

[EDEADLK]
Cmd is F _LOCK or F _ TLOCK and a deadlock would occur.
Also the cmd is either of the above or F ULOCK and the
number of entries in the lock table would exceed the
number allocated on the system.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

CAVEATS
Unexpected results may occur in processes that do buffering in the
user address space. The process may later read/write data which
is/was locked. The standard I/O package is the most common
source of unexpected buffering.

SEE ALSO
c1ose(2), creat(2), fcnt1(2), intro(2), open(2), read(2), write(2).

UNIX Programmer's Manual System Calls and Library Routines-163

LSEARCH (3C) LSEARCH (3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include < search.h >

char -Isearch «char -)key, (char -)base, nelp, sizeof(-key),
compar)
unsigned -nelp;
int (-compar) ();

char -)find «char -)key, (char -)base, nelp, sizeof(-key), com­
par)
unsigned -nelp;
iot (-compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1)
Algorithm S. It returns a pointer into a table indicating where a
datum may be found. If the datum does not occur, it is added at
the end of the table. Key points to the datum to be sought in the
table. Base points to the first element in the table. Nelp points to
an integer containing the current number of elements in the table.
The integer is incremented if the datum is added to the table.
Com par is the name of the comparison function which the user
must supply (strcmp, for example). It is called with two argu­
ments that point to the elements being compared. The function
must return zero if the elements are equal and non-zero otherwise.

Lfind is the same as [search except that if the datum is not found,
it is not added to the table. Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table
should be of type pointer-to-element, and cast to type pointer-to­
character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

164-System Calls and Library Routines UNIX Programmer's Manual

LSEARCH (3C) LSEARCH (3C)

EXAMPLE
This fragment will read in ~ T ABSIZE strings of length ~
ELSIZE and store them in a table, eliminating duplicates.

#inc1ude <stdio.h>
#inc1ude <search.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *lsearch();
unsigned nel == 0;
int strcmp ();

while (fgetsOine, ELSIZE, stdin) !== NULL &&
nel < T ABSIZE)

(void) IsearchOine, (char *hab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch (3C), hsearch (3 C) , tsearch (3C) .

DIAGNOSTICS

BUGS

If the searched for datum is found, both [search and !find return a
pointer to it. Otherwise, !find returns NULL and [search returns
a pointer to the newly added element.

Undefined results can occur if there is not enough room in the
table to add a new item.

UNIX Programmer's Manual System Calls and Library Routines-165

MALLOC(3C) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
MaUoe and free provide a simple general-purpose memory alloca­
tion package. MaUoe returns a pointer to a block of at least size
bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated
by maUoe; after free is performed this space is made available for
further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by maUoe is
overrun or if some random number is handed to free.

MaUoe allocates the first big enough contiguous reach of free
space found in a circular search from the last block allocated or
freed, coalescing adjacent free blocks as it searches. It calls sbrk
(see brk (2» to get more memory from the system when there is
no suitable space already free.

ReaUoe changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes. If no free block of size bytes is available in the storage
arena, then reaUoe will ask maUoe to enlarge the arena by size
bytes and will then move the data to the new space.

ReaUoe also works if ptr points to a block freed since the last call
of maUoe, reaUoe, or eaUoe; thus sequences of free, maUoe and
reaUoe can exploit the search strategy of maUoe to do storage
compaction.

CaUoe allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

166-System Calls and Library Routines UNIX Programmer's Manual

MALLOC(3C) MALLOC(3C)

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS

NOTE

M alloc, realloc and calloc return a NULL pointer if there is no
available memory or if the arena has been detectably corrupted by
storing outside the bounds of a block. When this happens the
block pointed to by ptr may be destroyed.

Search time increases when many objects have been allocated; that
is, if a program allocates but never frees, then each successive allo­
cation takes longer. For an alternate, more flexible implementa­
tion, see malloe (3X).

UNIX Programmer's Manual System Calls and Library Routines-167

MEMORY (3C) MEMORY (3C)

NAME
memccpy, memchr, memcmp, memcpy, memset - memory opera­
tions

SYNOPSIS
#include < memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2;
int c, n;

char *memchr (s, c, n)
char *S;
int c, n;

int memcmp (sl, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char *sl, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas
(arrays of characters bounded by a count, not terminated by a null
character) . They do not check for the overflow of any receiving
memory area.

Memccpy copies characters from memory area s2 into sl, stopping
after the first occurrence of character c has been copied, or after n
characters have been copied, whichever comes first. It returns a
pointer to the character after the copy of c in sl, or a NULL
pointer if c was not found in the first n characters of s2.

M emchr returns a pointer to the first occurrence of character c in
the first n characters of memory area s, or a NULL pointer if c
does not occur.

Memcmp compares its arguments, looking at the first n characters
only, and returns an integer less than, equal to, or greater than 0,
according as sl is lexicographically less than, equal to, or greater
than s2.

168-System Calls and Library Routines UNIX Programmer's Manual

MEMORY (3C) MEMORY (3C)

NOTE

BUGS

Memcpy copies n characters from memory area s2 to st. It
returns st.

M emset sets the first n characters in memory area s to the value
of character c. I t returns s.

For user convenience, all these functions are declared in the
optional <memory.h> header file.

M emcmp uses native character comparison, which is unsigned on
on some machines. Thus the sign of the value returned when one
of the characters has its high-order bit set is implementation­
dependent.

Character movement is performed differently in different imple­
mentations. Thus overlapping moves may yield surprises.

UNIX Programmer's Manual System Calls and Library Routines-169 .

MKTEMP(3C) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char .mktemp (template)
char • template;

DESCRIPTION
Mktemp replaces the contents of the string pointed to by template
by a unique file name, and returns the address of template. The
string in template should look like a file name with six trailing Xs;
mktemp will replace the Xs with a letter and the current process
ID. The letter will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO
getpid (2), tmpfile OS), tmpnam OS) .

BUGS
It is possible to run out of letters.

170-System Calls and Library Routines UNIX Programmer's Manual

MONITOR (3C) MONITOR (3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include < mon.b>

void monitor (Jowpc, bigbpc, buffer, bufsize, nfune)
int (*Iowpc)(), (*bigbpc)();
WORD * buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc -p automatically includes
calls for monitor with default parameters; monitor needn't be
called explicitly except to gain fine control over profiling.

Monitor is an interface to profil (2). Lowpc and highpc are the
addresses of two functions; buffer is the address of a (user sup­
plied) array of bufsize WORDs (defined in the <mon.h> header
file) . Monitor arranges to record a histogram of periodically sam­
pled values of the program counter, and of counts of calls of cer­
tain functions, in the buffer. The lowest address sampled is that of
lowpc and the highest is just below highpc. Lowpc may not equal ° for this use of monitor. At most nfunc call counts can be kept;
only calls of functions compiled with the profiling option -p of
cc(1) are recorded. (Except on the PDP-ll, the C Library and
Math Library supplied when cc -p is used also have call counts
recorded.)

For the results to be significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more
than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ({int (*) 0) 2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end (3C).

To stop execution monitoring and write the results on the file
mon.out, use

monitor «int (*) 0)0, 0, 0, 0, 0);

Prof(1) can then be used to examine the results.

UNIX Programmer's Manual System Calls and Library Routines-171

MONITOR (3C)

FILES
mon.out
llib/libp/libc.a
llib/libp/libm.a

SEE ALSO
profil (2), end (3 C) .

MONITOR (3C)

cc(I), prof(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

172-System Calls and Library Routines UNIX Programmer's Manual

NLIST(3C) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include < n1ist.h >
int nlist (file-name, nO
char -file-name;
struct nlist -nl;

DESCRIPTION

NOTES

Ntist examines the name list in the executable file whose name is
pointed to by file-name, and selectively extracts a list of values
and puts them in the array of nlist structures pointed to by nl.
The name list nl consists of an array of structures containing
names of variables, types and values. The list is terminated with a
null name; that is, a null string is in the name position of the
structure. Each variable name is looked up in the name list of the
file. If the name is found, the type and value of the name are
inserted in the next two fields. The type field will be set to 0
unless the file was compiled with the -g option. If the name is not
found, both entries are set to O. See a.out (4) for a discussion of
the symbol table structure.

This function is useful for examining the system name list kept in
the file lunix. In this way programs can obtain system addresses
that are up to date.

The <ntist.h> header file is automatically included by
<a.out.h> for compatability. However, if the only information
needed from <a.out.h> is for use of ntist, then including
<a.out.h> is discouraged. If <a.out.h> is included, the line
"#undef n _name" may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does
not contain a valid name list.

Ntist returns -1 upon error; otherwise it returns O.

UNIX Programmer's Manual System Calls and Library Routines-I73

PERROR(3C) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *S;

extern int errno;

extern char *sys _ errlisd J;

extern int sys _ nerr;

DESCRIPTION
Perror produces a message on the standard error output, describ­
ing the last error encountered during a call to a system or library
function. The argument string s is printed first, then a colon and
a blank, then the message and a new-line. To be of most use, the
argument string should include the name of the program that
incurred the error. The error number is taken from the external
variable errno, which is set when errors occur but not cleared
when non-erroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sys _errlist is provided; errno can be used as an index in
this table to get the message string without the new-line. Sys_nerr
is the largest message number provided for in the table; it should
be checked because new error codes may be added to the system
before they are added to the table.

SEE ALSO
intro(2).

174-System Calls and Library Routines UNIX Programmer's Manual

PUTENV(3C) PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
String points to a string of the form "name = value." Putenv
makes the value of the environment variable name equal to value
by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environ­
ment, so altering the string will change the environment. The
space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space
via mal/oc for an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenv manipulates the environment pointed to by environ, and
can be used in conjunction with getenv. However, envp (the third
argument to main) is not changed.
This routine uses mal/oc (3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabet­
icalorder.
A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while string is still
part of the environment.

UNIX Programmer's Manual System Calls and Library Routines-l 75

PUTPWENT(3C) PUTPWENT(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include < pwd.h>

int putpwent (p, f)
struct passwd .p;
FILE .f;

DESCRIPTION
Putpwent is the inverse of getpwent (3C). Given a pointer to a
passwd structure created by getpwent (or getpwuid or getpwnam) ,
putpwent writes a line on the stream j, which matches the format
of /etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its
operation, otherwise zero.

SEE ALSO
getpwent (3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the
size of programs, not otherwise using standard 110, more than
might be expected.

176-System Calls and Library Routines UNIX Programmer's Manual

QSORT(3C) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort ({char *) base, nel, sizeof (*base), compar)
unsigned nel;
int (*compar)();

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts
a table of data in place.

Base points to the element at the base of the table. Nel is the
number of elements in the table. Compar is the name of the com­
parison function, which is called with two arguments that point to
the elements being compared. As the function must return an
integer less than, equal to, or greater than zero, so must the first
argument to be considered be less than, equal to, or greater than
the second.

The pointer to the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary
data may be contained in the elements in addition to the values
being compared.
The order in the output of two items which compare as equal is
unpredictable.

SEE ALSO
bsearch (3C), lsearch (3C), string (3C).
sortO) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-177

RAND (3C) RAND (3C)

NAME
rand, srand ~ simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTE

Rand uses a mUltiplicative congruential random-number generator
with period 232 that returns successive pseudo-random numbers in
the range from 0 to 215_1.

Srand can be called at any time to reset the random-number gen­
erator to a random starting point. The generator is initially seeded
with a value of 1.

The spectral properties of rand leave a great deal to be desired.
Drand48 (3C) provides a much better, though more elaborate,
random-number generator.

SEE ALSO
drand48 (3C) .

178-System Calls and Library Routines UNIX Programmer's Manual

SETJMP(3C) SETJMP(3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include < setjmp.h >
int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

Setjmp saves its stack environment in env (whose type, jmp_but,
is defined in the <setjmp.h> header file) for later use by
longjmp. It returns the value O.

Longjmp restores the environment saved by the last call of setjmp
with the corresponding env argument. After longjmp is com­
pleted, program execution continues as if the corresponding call of
setjmp (which must not itself have returned in the interim) had
just returned the value val. Longjmp cannot cause setjmp to
return the value O. If longjmp is invoked with a second argument
of 0, setjmp will return I. All accessible data had values as of the
time longjmp was called.

SEE ALSO
signal(2} .

WARNING
If longjmp is called even though env was never primed by a call to
setjmp, or when the last such call was in a function which has
since returned, absolute chaos is guaranteed.

UNIX Programmer's Manual System Calls and Library Routines-179

SLEEP (3C) SLEEP (3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of
seconds specified· by the argument. The actual suspension time
may be less than that requested for two reasons: (1) Because
scheduled wakeups occur at fixed I-second intervals, (on the
second, according to an internal clock) and (2) because any caught
signal will terminate the sleep following execution of that signal's
catching routine. Also, the suspension time may be longer than
requested by an arbitrary amount due to the scheduling of other
activity in the system. The value returned by sleep will be the
"unslept" amount (the requested time minus the time actually
slept) in case the caller had an alarm set to go off earlier than the
end of the requested sleep time, or premature arousal due to
another caught signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling sleep. If the sleep time
exceeds the time till such alarm signal, the process sleeps only
until the alarm signal would have occurred. The caller's alarm
catch routine is executed just before the sleep routine returns. But
if the sleep time is less than the time till such alarm, the prior
alarm time is reset to go off at the same time it would have
without the intervening sleep.

SEE ALSO
alarm (2), pause (2), signal (2) .

180-System Calls and Library Routines UNIX Programmer's Manual

SSIGNAL(3C) SSIGNAL (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include < signal.h >
int (.ssignal (sig, action» ()
int sig, (.action) ();

int gsignal (sig)
int sig;

DESCRIPTION
Ssignal and gsignal implement a software facility similar to sig­
na[(2). This facility is used by the Standard C Library to enable
users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with
integers in the inclusive range 1 through 15. A call to ssignai asso­
ciates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be
taken.

The first argument to ssignai is a number identifying the type of
signal for which an action is to be established. The second argu­
ment defines the action; it is either the name of a (user-defined)
action function or one of the manifest constants SIG_DFL (default)
or SIG _IGN (ignore). Ssignai returns the action previously esta­
blished for that signal type; if no action has been established or the
signal number is illegal, ssignai returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG _DFL and the action function is entered
with argument sig. Gsignai returns the value returned to it
by the action function.

If the action for sig is SIG_IGN, gsignai returns the value 1
and takes no other action.

If the action for sig is SIG _DFL, gsignai returns the value 0
and takes no other action.

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

UNIX Programmer's Manual System Calls and Library Routines-I81

SSIGNAL(3C) SSIGNAL(3C)

SEE ALSO
signal(2).

NOTES
There are some additional signals with numbers outside the range
1 through 15 which are used by the Standard C Library to indi­
cate error conditions. Thus, some signal numbers outside the
range 1 through 15 are legal, although their use may interfere
with the operation of the Standard C Library.

182-System Calls and Library Routines UNIX Programmer's Manual

STDIPC(3C) STDIPC(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include < sys/ipc.h >

key _t ftok (path, id)
char .path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply
a key to be used by the msgget (2), semget (2), and shmget (2) sys­
tem calls to obtain interprocess communication identifiers. One
suggested method for forming a key is to use the ftok subroutine
described below. Another way to compose keys is to include the
project ID in the most significant byte and to use the remaining
portion asa sequence number. There are many other ways to
form keys, but it is necessary for each system to define standards
for forming them. If some standard is not adhered to, it will be
possible for unrelated processes to unintentionally interfere with
each other's operation. Therefore, it is strongly suggested that the
most significant byte of a key in some sense refer to a project so
that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subse­
quent msgget, semget, and shmget system calls. Path must be the
path name of an existing file that is accessible to the process. fd is
a character which uniquely identifies a project. Note that ftok will
return the same key for linked files when called with the same id
and that it will return different keys when called with the same file
name but different ids.

SEE ALSO
intro (2), msgget (2), semget (2), shmget (2) .

DIAGNOSTICS
Ftok returns (key _t) -1 if path does not exist or if it is not acces­
sible to the process.

WARNING
If the file whose path is passed to ftok is removed when keys still
refer to the file, future calls to ftok with the same path and id will
return an error. If the same file is recreated, then ftok is likely to
return a different key than it did the original time it was called.

UNIX Programmer's Manual System Calls and Library Routines-I83

STRING (3C) STRING (3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, strchr,
strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include < string.h >
char .strcat (sl, s2)
char .sl, .s2;

char .strncat (sl, s2, n)
char .sl, .s2;
int n;

int strcmp (sl, s2)
char .sl, .s2;

int strncmp (sl, s2, n)
char .sl, .s2;
int n;

char .strcpy (sl, s2)
char .s1, .s2;

char .strncpy (sl, s2, n)
char .sl, .s2;
int n;

int strlen (s)
char .s;

char .strchr (s, c)
char .s;
int c;

char .strrchr (s, c)
char .s;
int c;

char .strpbrk (sl, s2)
char .sl, .s2;

int strspn (sl, s2)
char .sl, .s2;

int strcspn (sl, s2)
char .sl, .s2;

char .strtok (sl, s2)
char .sl, .s2;

184-System Calls and Library Routines UNIX Programmer's Manual

STRING (3C) STRING (3C)

DESCRIPTION
The arguments sl, s2 and s point to strings (arrays of characters
terminated by a null character). The functions strcat, strncat,
strcpy, and strncpy all alter sl. These functions do not check for
overflow of the array pointed to by sl.

Strcat appends a copy of string s2 to the end of string sl. Strncat
appends at most n characters. Each returns a pointer to the null­
terminated result.

Strcmp compares its arguments and returns an integer less than,
equal to, or greater than 0, according as sl is lexicographically less
than, equal to, or greater than s2. Strncmp makes the same com­
parison but looks at at most n characters.

Strcpy copies string s2 to sl, stopping after the null character has
been copied. Strncpy copies exactly n characters, truncating s2 or
adding null characters to sl if necessary. The result will not be
null-terminated if the length of s2 is n or more. Each function
returns sl.

Strlen returns the number of characters in s, not including the ter­
minating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of
character c in string s, or a NULL pointer if c does not occur in
the string. The null character terminating a string is considered to
be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any
character from string s2, or a NULL pointer if no character from
s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string
sl which consists entirely of characters from (not'from) string s2.

Strtok considers the string sl to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string s2. The first call (with pointer sl
specified) returns a pointer to the first character of the first token,
and will have written a null character into'sl immediately follow­
ing the returned token. The function keeps track of its position in
the string between separate calls, so that subsequent calls (which
must be made with the first argument a NULL pointer) will work
through the string sl immediately following that token. In this
way subsequent calls will work through the string sl until no
tokens remain. The separator string s2 may be different from call

UNIX Programmer's Manual System Calls and Library Routines-I8S

STRING (3C) STRING (3C)

NOTE

BUGS

to call. When no token remains in sl, a NULL pointer is returned.

For user convenience, all these functions are declared in the
optional <string.h> header file.

Strcmp and strncmp use native character comparison, which is
signed on most machines and unsigned on other machines. Thus
the sign of the value returned when one of the characters has its
high-order bit set is implementation-dependent.

Character movement is performed differently in different imple­
mentations. Thus overlapping moves may yield surprises.

186-System Calls and Library Routines UNIX Programmer's Manual

STRTOD(3C) STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, "ptr;

double atof (str)
char *str;

DESCRIPTION
Strtod returns as a double-precision floating-point number the
value represented by the character string pointed to by str. The
string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of "white-space" characters
(as defined by isspace in ctype (3C)), then an optional sign, then a
string of digits optionally containing a decimal point, then an
optional e or E followed by an optional sign or space, followed by
an integer.

If the value of ptr is not (char ")NULL, a pointer to the charac­
ter terminating the scan is returned in the location pointed to by
ptr. If no number can be formed, .ptr is set to str, and zero is
returned.

Atoj(str) is equivalent to strtod(str, (char ")NULU.

SEE ALSO
ctype (3C), scanf(3S), strtol (3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE is returned
(according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and
errno is set to ERANGE.

UNIX Programmer's Manual System Calls and Library Routines-I87

STRTOL(3C) STRTOL(3C)

NAME
strtol, atol, atoi ~ convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, "ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
Strtol returns as a long integer the value represented by the char­
acter string pointed to by str. The string is scanned up to the first
character inconsistent with the base. Leading "white-space" char­
acters (as defined by isspace in ctype (3C» are ignored.

If the value of ptr is not (char **)NULL, a pointer to the charac­
ter terminating the scan is returned in the location pointed to by
ptr. If no integer can be formed, that location is set to str, and
zero is returned.

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign, leading zeros are
ignored, and "Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After
an optional leading sign a leading zero indicates octal conversion,
and a leading "Ox" or "OX" hexadecimal conversion. Otherwise,
decimal conversion is used.

Truncation from long to int can, of course, take place upon assign­
ment or by an explicit cast.

Ato/(str) is equivalent to strto/(str, (char **) NULL, 10).

Atoi(str) is equivalent to (int) strto/(str, (char **) NULL, 10).

SEE ALSO
ctype (3 C) , scanf(3S), strtod (3C).

BUGS
Overflow conditions are ignored.

188-System Calls and Library Routines UNIX Programmer's Manual

SWAB (3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char .from, .to;
int nbytes;

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed
to by to, exchanging adjacent even and odd bytes. It is useful for
carrying binary data between PDP-II s and other machines.
Nbytes should be even and non-negative. If nbytes is odd and
positive swab uses nbytes-I instead. If nbytes is negative, swab
does nothing.

UNIX Programmer's Manual System Calls and Library Routines-I89

TSEARCH (3C) TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include < search.h>

char .tsearch ({char .) key, (char ..) rootp, compar)
int (.compar) ();

char .tfind «char .) key, (char ..) rootp, compar)
int (.compar) ();

char .tdelete ({char .) key, (char ••) rootp, compar)
int (.compar) ();

void twalk «char .) root, action)
void (.action) ();

DESCRIPTION
Tsearch, tfind, tdelete, and twalk are routines for manipulating
binary search trees. They are generalized from Knuth (6.2.2)
Algorithms T and D. All comparisons are done with a user­
supplied routine. This routine is called with two arguments, the
pointers to the elements being compared. It returns an integer less
than, equal to, or greater than 0, according to whether the first
argument is to be considered less than, equal to or greater than the
second argument. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a
datum to be accessed or stored. If there is a datum in the tree
equal to *key (the value pointed to by key), a pointer to this found
datum is returned. Otherwise, *key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must
store the data. Rootp points to a variable that points to the root of
the tree. A NULL value for the variable pointed to by rootp
denotes an empty tree; in this case, the variable will be set to point
to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a
pointer to it if found. However, if it is not found, tfind will return
a NULL pointer. The arguments for tfind are the same as for
tsearch.

Tdelete deletes a node from a binary search tree. The arguments
are the same as for tsearch. The variable pointed to by rootp will
be changed if the deleted node was the root of the tree. Tdelete

190-System Calls and Library Routines UNIX Programmer's Manual

TSEARCH (3C> TSEARCH (3C>

returns a pointer to the parent of the deleted node, or a NULL
pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a
walk below that node.> Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three
arguments. The first argument is the address of the node being
visited. The second argument is a value from an enumeration data
type typedef enum { preorder, postorder, endorder, leaf} VISIT;
(defined in the <search.h> header file), depending on whether
this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Simi­
larly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing
a pointer to each string and a count of its length. It then walks
the tree, printing out the stored strings and their lengths in alpha­
betical order.

#include <search.h>
#include <stdio.h>

struct node {

};

char *string;
int length;

/* pointers to these are stored in the tree */

char string_space[lOOOO]; /* space to store strings */
struct node nodes[SOO]; /* nodes to store */
struct node *root - NULL; /* this points to the root */

main()
(

char *strptr - string_space;
struct node *nodeptr - nodes;
void print_node(), twalk();
int i - 0, node_compare();

UNIX Programmer's Manual System Calls and Library Routines-191

TSEARCH(3C) TSEARCH (3C)

. /
int

while (gets(strptr) !- NULL & & i++ < 500)
/. set node ./
nodeptr-> string - strptr;
nodeptr-> length - strlen (strptr);
/. put node into the tree ./
(void) tsearch({char .)nodeptr, & root,

node_compare) ;
/. adjust pointers, so we don't overwrite tree ./
strptr +- nodeptr-> length + 1;
nodeptr++;

twalk (root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field .

node_compare (node 1 , node2)
struct node .node1, .node2;
{

./
void

return strcmp (node 1-> string, node2- > string);

This routine prints out a node, the first time
twalk encounters it.

print_node (node, order, level}
struct node .. node;
VISIT order;
int level;
{

SEE ALSO

if (order -- preorder II order -- leaf)
(void)printf("string = %20s, length"" %d\n",

(.node) - > string, (.node) - > length) ;

bsearch (3C), hsearch (3 C) , lsearch (3 C) .

192-System Calls and Library Routines UNIX Programmer's Manual

TSEARCH (3C) TSEARCH (3C)

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough
space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp
is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it.
If not, tfind returns NULL, and tsearch returns a pointer to the
inserted item.

WARNINGS

BUGS

The root argument to twalk is one level of indirection less than
the rootp arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which
tree nodes are visited. Tsearch uses preorder, postorder and
endorder to respectively refer to visting a node before any of its
children, after its left child and before its right, and after both its
children. The alternate nomenclature uses preorder, inorder and
postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

If the calling function alters the pointer to the root, results are
unpredicta ble.

UNIX Programmer's Manual System Calls and Library Routines-193

TTYNAME(3C) TTYNAME(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char .ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

FILES

Ttyname returns a pointer to a string containing the null­
terminated path name of the terminal device associated with file
descriptor fildes .

Isatty returns 1 if fildes is associated with a terminal device, 0
otherwise.

/dev/·

DIAGNOSTICS

BUGS

Ttyname returns a NULL pointer if fildes does not describe a ter­
minal device in directory Idev.

The return value points to static data whose content is overwritten
by each call.

194-System Calls and Library Routines UNIX Programmer's Manual

TTYSLOT (3C) TTYSLOT (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

Ttyslot returns the index of the current user's entry in the
letc/utmp file. This is accomplished by actually scanning the file
letc/inittab for the name of the terminal associated with the stan­
dard input, the standard output, or the error output (0, 1 or 2).

/ etc/ ini tta b
/etc/utmp

SEE ALSO
getut (3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while search­
ing for the terminal name or if none of the above file descriptors is
associated with a terminal device.

UNIX Programmer's Manual System Calls and Library Routines-195

- I

I

CTERMID (3S) CTERMID (3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include < stdio.h >
char *ctermid (s)
char *s;

DESCRIPTION

NOTES

Ctermid generates the path name of the controlling terminal for
the current process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static
area, the contents of which are overwritten at the next call to cter­
mid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L_ctermid ele­
ments; the path name is placed in this array and the value of s is
returned. The constant L_ctermid is defined in the <stdio.h>
header file.

The difference between ctermid and ttyname (3 C) is that ttyname
must be handed a file descriptor and returns the actual name of
the terminal associated with that file descriptor, while ctermid
returns a string (/dev/tty) that will refer to the terminal if used as
a file name. Thus ttyname is useful only if the process already has
at least one file open to a terminal.

SEE ALSO
ttyname(3C) .

UNIX Programmer's Manual System Calls and Library Routines-197

CUSERID (3S) CUSERID (3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include < stdio.h >
char *cuserid (s)
char *s;

DESCRIPTION
Cuserid generates a character-string representation of the login
name that the owner of the current process is logged in under. If
s is a NULL pointer, this representation is generated in an internal
static area, the address of which is returned. Otherwise, s is
assumed to point to an array of at least L_cuserid characters; the
representation is left in this array. The constant L_cuserid is
defined in the < stdio.h > header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL
pointer; if s is not a NULL pointer, a null character (\0) will be
placed at sloJ.

SEE ALSO
getlogin (3C), getpwent (3C).

198-System Calls and Library Routines UNIX Programmer's Manual

FCLOSE(3S) FCLOSE(3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#ioclude < stdio.h >
iot fclose (stream)
FILE -stream;

iot mush (stream)
FILE -stream;

DESCRIPTION
Fclose causes any buffered data for the named stream to be writ­
ten out, and the stream to be closed.

Fclose is performed automatically for all open files upon calling
exit (2).

Fflush causes any buffered data for the named stream to be writ­
ten to that file. The stream remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as
trying to write to a file that has not been opened for writing) was
detected.

SEE ALSO
close (2), exit (2), fopen (3S), setbuf(3S).

UNIX Programmer's Manual System Calls and Library Routines-199

FERROR(3S) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include < stdio.h >
int ferror (stream)
FILE • stream;

int feof (stream)
FILE .stream;

void clearerr (stream)
FILE .stream;

int fileno (stream)
FILE .stream;

DESCRIPTION

NOTE

Ferror returns non-zero when an I/O error has previously occurred
reading from or writing to the named stream, otherwise zero.

Feo! returns non-zero when EOF has previously been detected
reading the named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on
the named stream.

Fileno returns the integer file descriptor associated with the named
stream; see open (2) .

All these functions are implemented as macros; they cannot be
declared or redeclared.

SEE ALSO
open (2), fopen (3S) .

200-System Calls and Library Routines UNIX Programmer's Manual

FOPEN(3S) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >
FILE -Copen (file-name, type)
char -file-name, -type;

FILE -Creopen (file-name, type, stream)
char -file-name, -type;
FILE -stream;

FILE -Cdopen (fildes, type)
int fildes;
char -type;

DESCRIPTION
Fopen opens the file named by file-name and associates a stream
with it. Fopen returns a pointer to the FILE structure associated
with the stream.

File-name points to a character string that contains the name of
the file to be opened.

Type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or
create for writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream.
The original stream is closed, regardless of whether the open ulti­
mately succeeds. Freopen returns a pointer to the FILE structure
associated with stream.

Freopen is typically used to attach the preopened streams associ­
ated with stdin, stdout and stderr to other files.

UNIX Programmer's Manual System Calls and Library Routines-20l

FOPEN(3S) FOPEN(3S)

Fdopen associates a stream with a file descriptor. File descriptors
are obtained from open, dup, creat, or pipe (2), which open files
but do not return pointers to a FILE structure stream. Streams are
necessary input for many of the Section 3S library routines. The
type of stream must agree with the mode of the open file.

When a file is opened for update, both input and output may be
done on the resulting stream. However, output may not be
directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an inter­
vening fseek, rewind, or an input operation which encounters end­
of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it
is impossible to overwrite information already in the file. Fseek
may be used to reposition the file pointer to any position in the file,
but when output is written to the file, the current file pointer is
disregarded. All output is written at the end of the file and causes
the file pointer to be repositioned at the end of the output. If two
separate processes open the same file for append, each process may
write freely to the file without fear of destroying output being writ­
ten by the other. The output from the two processes will be inter­
mixed in the file in the order in which it is written.

SEE ALSO
creat(2), dup(2) , open (2) , pipe(2), fclose(3S), fseek(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer on failure.

202-System Calls and Library Routines UNIX Programmer's Manual

FREAD (3S) FREAD (3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include < stdio.h >
int {read (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int {write (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION
Fread copies, into an array pointed to by ptr, nitems items of data
from the named input stream, where an item of data is a sequence
of bytes (not necessarily terminated by a null byte) of length size.
Fread stops appending bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been
read. Fread leaves the file pointer in stream, if defined, pointing
to the byte following the last byte read if there is one. Fread does
not change the contents of stream.

Fwrite appends at most nitems items of data from the array
pointed to by ptr to the named output stream. Fwrite stops
appending when it has appended nitems items of data or if an
error condition is encountered on stream. Fwrite does not change
the contents of the array pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo­
function sizeof specifies the length of an item pointed to by ptr. If
ptr points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO
read(2), write (2) , fopen(3S), getc(3S), gets(3S), printf(3S),
putc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If
size or nitems is non-positive, no characters are read or written
and 0 is returned by both fread and fwrite .

UNIX Programmer's Manual System Calls and Library Routines-203

FSEEK(3S) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#incIude < stdio.h >
int fseek (stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *stream;

DESCRIPTION
Fseek sets the position of the next input or output operation on the
stream. The new position is at the signed distance offset bytes
from the beginning, from the current position, or from the end of
the file, according as ptrname has the value 0, 1, or 2.

Rewind (stream) is equivalent to fseek (stream, OL, 0), except that
no value is returned.

Fseek and rewind undo any effects of ungetc (3S).

After fseek or rewind, the next operation on a file opened for
update may be either input or output.

Ftell returns the offset of the current byte relative to the beginning
of the file associated with the named stream.

SEE ALSO
Iseek(2) , . fopen (3S), popen (3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero. An
improper seek can be, for example, an fseek done on a file that has
not been opened viafopen; in particular,fseek may not be used on
a terminal, or on a file opened via popen (3S) .

WARNING
Although on the UNIX system an offset returned by ftell is meas­
ured in bytes, and it is permissible to seek to positions relative to
that offset, portability to non-UNIX systems requires that an offset
be used by fseek directly. Arithmetic may not meaningfully be
performed on such an offset.

204-System Calls and Library Routines UNIX Programmer's Manual

GETC(3S) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#ioclude < stdio.h >
iot getc (stream)
FILE *stream;

iot getchar ()

iot fgetc (stream)
FILE *stream;

iot getw (stream)
FILE *stream;

DESCRIPTION
Getc returns the next character (i.e., byte) from the named input
stream, as an integer. It also moves the file pointer, if defined,
ahead one character in stream. Getchar is defined as getc(stdin).
Getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro.
Fgetc runs more slowly than getc, but it takes less space per invo­
cation and its name can be passed as an argument to a function.

Getw returns the next word (i.e., integer) from the named input
stream. Getw increments the associated file pointer, if defined, to
point to the next word. The size of a word is the size of an integer
and varies from machine to machine. Getw assumes no special
alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S),
scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an
error. Because EOF is a valid integer, ferror(3S) should be used
to detect getw errors.

WARNING
If the integer value returned by getc, getchar, or fgetc is stored
into a character variable and then compared against the integer
constant EOF, the comparison may never succeed, because sign­
extension of a character on widening to integer is machine­
dependent.

UNIX Programmer's Manual System Calls and Library Routines-205

GETC(3S) GETC(3S)

BUGS
Because it is implemented as a macro, getc treats incorrectly a
stream argument with side effects. In particular, getc(*f++) does
not work sensibly. Fgetc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

206-System Calls and Library Routines UNIX Programmer's Manual

GETS (3S) GETS (3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include < stdio.h >
char *gets (s)
char *s;

char *fgets (s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into
the array pointed to by s, until a new-line character is read or an
end-of-file condition is encountered. The new-line character is dis­
carded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to
by s, until n-l characters are read, or a new-line character is read
and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If
a read error occurs, such as trying to use these functions on a file
that has not been opened for reading, a NULL pointer is returned.
Otherwise s is returned.

UNIX Programmer's Manual System Calls and Library Routines-207

POPEN(3S) POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include < stdio.h >
FILE *popen (command, type)
char *command, * type;

int pclose (stream)
FILE * stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings
containing, respectively, a shell command line and an 110 mode,
either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed.
The value returned is a stream pointer such that one can write to
the standard input of the command, if the 110 mode is w, by writ­
ing to the file stream; and one can read from the standard output
of the command, if the 110 mode is r, by reading from the file
stream.

A stream opened by popen should be closed by pclose, which waits
for the associated process to terminate and returns the exit status
of the command.

Because open files are shared, a type r command may be used as
an input filter and a type w as an output filter.

SEE ALSO
pipe (2), wait (2), fclose (3S), fopen (3S), system (3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be
created, or if the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a "popen ed"
command.

If the original and "popen ed" processes concurrently read or write
a common file, neither should use buffered 110, because the
buffering gets all mixed up. Problems with an output filter may be
forestalled by careful buffer flushing, e.g. with fflush; see
Iclose (3S) .

208-System Calls and Library Routines UNIX Programmer's Manual

PRINTF(3S) PRINTF(3S)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include < stdio.h >
int printf (format [, arg] ...)
char .format;

int fprintf (stream, format [, arg] ...)
FILE .stream;
char .format;

int sprintf (s, format [, arg] ...)
char .s, format;

DESCRIPTION
Printf places output on the standard output stream stdout.
Fprintf places output on the named output stream. Sprint! places
"output," followed by the null character (\0), in consecutive bytes
starting at *s; it is the user's responsibility to ensure that enough
storage is available. Each function returns the number of charac­
ters transmitted (not including the \0 in the case of sprint!), or a
negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under
control of the format. The format is a character string that con­
tains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching of zero or more args. The results are
undefined if there are insufficient args for the format. If the for­
mat is exhausted while args remain, the excess args are simply
ignored.

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the
conversion specification.

An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or right,
if the left-adjustment flag '-', described below, has been
given) to the field width. If the field width for an s
conversion is preceded by a 0, the string is right adjusted
with zero-padding on the left.

UNIX Programmer's Manual System Calls and Library Routines-209

PRINTF(3S) PRINTF(3S)

A precision that gives the minimum number of digits to
appear for the d, 0, U, x, or X conversions, the number of
digits to appear after the decimal point f9r the e and f
conversions, the maximum number of significant digits for
the g conversion, or the maximum number of characters to
be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit
string; a null digit string is treated as zero.

An optional I (ell) specifying that a following d, 0, U, x, or
X conversion character applies to a long integer arg. A I
before any other conversion character is ignored.

A character that indicates the type of conversion to be
applied.

A field width or precision may be indicated by an asterisk (.)
instead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the args specifying
field width or precision must appear before the arg (if any) to be
converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within
the field.
The result of a signed conversion will always begin
with a sign (+ or -).
If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result. This
implies that if the blank and + flags both appear, the
blank flag will be ignored.
This flag specifies that the value is to be converted to
an "alternate form." For c, d, s, and U conversions, the
flag has no effect. For 0 conversion, it increases the
precision to force the first digit of the result to be a
zero. For x or X conversion, a non-zero result will
have Ox or OX prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a
decimal point appears in the'result of these conversions
only if a digit follows it). For g and G conversions,
trailing zeroes will not be removed from the result
(which they normally are).

2IO-System Calls and Library Routines UNIX Programmer's Manual

PRINTF(3S) PRINTF(3S)

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation (x
and X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion.
The precision specifies the minimum number of digits
to appear; if the value being converted can be
represented in fewer digits, it will be expanded with
leading zeroes. (For compatibility with older versions,
padding with leading zeroes may alternatively be
specified by prepending a zero to the field width. This
does not imply an octal value for the field width.) The
default precision is 1. The result of converting a zero
value with a precision of zero is a null string.

f The float or double arg is converted to decimal nota­
tion in the style ,,[- 1ddd.ddd," where the number of
digits after the decimal point is equal to the precision
specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point
appears.

e,E The float or double arg is converted in the style
"[- 1d.ddde±dd," where there is one digit before the
decimal point and the number of digits after it is equal
to the precision; when the precision is missing, six
digits are produced; if the precision is zero, no decimal
point appears. The E format code will produce a
number with E instead of e introducing the exponent.
The exponent always contains at least two digits.

g,G The float or double arg is printed in style for e (or in
style E in the case of a G format code), with the preci­
sion specifying the number of significant digits. The
style used depends on the value converted: style e will
be used only if the exponent resulting from the conver­
sion is less than -4 or greater than the precision.
Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

c The character arg is printed.
s The arg is taken to be a string (character pointer) and

characters from the string are printed until a null char­
acter (\0) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so all

UNIX Programmer's Manual System Calls and Library Routines-211

PRINTF(3S) PRINTF(3S)

characters up to the first null character are printed. A
NULL value for arg will yield undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width,
the field is simply expanded to contain the conversion result.
Characters generated by printf and fprintf are printed as if
pute (3S) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02,"
where weekday and month are pointers to null-terminated strings:

printf("%s, %s %d, %d:%.2d", weekday, month, day, hour, min);

To print 7r to 5 decimal places:

printf("pi = %.Sf', 4 * atan(1.0»;

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

212-System Calls and Library Routines UNIX Programmer's Manual

PUTC(3S) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include < stdio.h >
int putc (c, stream)
int c;
FILE *stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *stream;

int putw (w, stream)
int w;
FILE *stream;

DESCRIPTION
Pute writes the character e onto the output stream (at the position
where the file pointer, if defined, is pointing). Putehar(c) is
defined as pute (e, stdout). Pute and putehar are macros.

Fpute behaves like pute, but is a function rather than a macro.
Fpute runs more slowly than pute, but it takes less space per invo­
cation and its name can be passed as an argument to a function.

Putw writes the word (i.e. integer) w to the output stream (at the
position at which the file pointer, if defined, is pointing). The size
of a word is the size of an integer and varies from machine to
machine. Putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of Jreopen
(see Jopen (3S» will cause it to become buffered or line-buffered.

When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as written; when
it is buffered, many characters are saved up and written as a
block. When it is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed
(that is, as soon as a new-line character is written or terminal

UNIX Programmer's Manual System Calls and Library Routines-213

PUTC(3S) PUTC(3S)

input is requested). Setbuj(3S) or Setbuj(3S) may be used to
change the stream's buffering strategy.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S),
setbuf(3S) .

DIAGNOSTICS

BUGS

On success, these functions each return the value they have writ­
ten. On failure, they return the constant EOF. This will occur if
the file stream is not open for writing or if the output file cannot
be grown. Because EOF is a valid integer, jerror (3S) should be
used to detect putw errors.

Because it is implemented as a macro, pute treats incorrectly a
stream argument with side effects. In particular, putc(c, .f+ +>;
doesn't work sensibly. Fpute should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent, and may not be
read using getw on a different processor.

214-System Calls and Library Routines UNIX Programmer's Manual

PUTS (3S) PUTS (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include < stdio.h >
int puts (s)
char .s;

int fputs (s, stream)
char .s;
FILE .stream;

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by
a new-line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines
try to write on a file that has not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while !puts does not.

UNIX Programmer's Manual System Calls and Library Routines-21S

SCANF(3S) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include < stdio.h >
int scanf (formnat [, pointer] ...)
char *formnat;

int fscanf (streamn, formnat [, pointer] ...)
FILE *streamn;
char *formnat;

int sscanf (s, formnat ,pointer] ...)
char *s, *formnat;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads
from the named input stream. Sscanf reads from the character
string s. Each function reads characters, interprets them accord­
ing to a format, and stores the results in its arguments. Each
expects, as arguments, a control string format described below,
and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which
are used to direct interpretation of input sequences. The control
string may contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds)
which, except in two cases described below, cause input to be
read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character *, an optional
numerical maximum field width, an optional I (ell) or h indi­
cating the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was indi­
cated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped.

An input field is defined as a string of non-space characters; it
extends to the next inappropriate character or until the field width,
if specified, is exhausted. For all descriptors except "[" and "c",

216-System Calls and Library Routines UNIX Programmer's Manual

SCANF(3S) SCANF(3S)

white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no pointer argument is given. The
following conversion codes are legal:

% a single % is expected in the input at this point; no
assignment is done.

d a decimal integer is expected; the corresponding argument
should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding
argument should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument
should be an integer pointer.

x a hexadecimal integer is expected; the corresponding argu­
ment should be an integer pointer.

e,f,g a floating point number is expected; the next field is con­
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, fol­
lowed by an optional exponent field consisting of an E or
an e, followed by an optional +, -, or space, followed by
an integer.

s a character string is expected; the corresponding argument
should be a character pointer pointing to an array of char­
acters large enough to accept the string and a terminating
\0, which will be added automatically. The input field is
terminated by a white-space character.

c a character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next non-space
character, use % Is. If a field width is given, the
corresponding argument should refer to a character array;
the indicated number of characters is read.
indicates string data and the normal skip over leading
white space is suppressed. The left bracket· is followed by
a set of characters, which we will call the scanset, and a
right bracket; the input field is the maximal sequence of
input characters consisting entirely of characters in the
scanset. The circumflex (A), when it appears' as the first
character in the scanset, serves as a complement operator

UNIX Programmer's Manual System Calls and Library Routines-217

SCANF(3S) SCANF(3S)

and redefines the scanset as the set of all characters not
contained in the remainder of the scanset string. There
are some conventions used in the construction of the scan­
set. A range of characters may be represented by the con­
struct first -last, thus [0123456789] may be expressed
[0-9]. Using this convention, first must be lexically less
than or equal to last, or else the dash will stand for itself.
The dash will also stand for itself whenever it is the first
or the last character in the scanset. To include the right
square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a
circumflex) of the scanset, and in this case it will not be
syntactically interpreted as the closing bracket. The
corresponding argument must point to a character array
large enough to hold the data field and the terminating \0,
which will be added automatically. At least one character
must match for this conversion to be considered successful.

The conversion characters d, u, 0, and x may be preceded by I or h
to indicate that a pointer to long or to short rather than to int is in
the argument list. Similarly, the conversion characters e, f, and g
may be preceded by I to indicate that a pointer to double rather
than to ftoat is in the argument list. The I or h modifier is ignored
for other conversion characters.

Scan! conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string.
In the latter case, the offending character is left unread in the
input stream.

Scanf returns the number of successfully matched and assigned
input items; this number can be zero in the event of an early
conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i, n; float x; char name[50];
n - scanf("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-l thompson

will assign to n the value 3, to i the value 25, to x the value 5.432,
and name will contain thompson\O. Or:

218-System Calls and Library Routines UNIX Programmer's Manual

SCANF(3S) SCANF(3S)

int i; float x; char name[50];
(void) scanf ("%2d%f%.d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0
in name. The next call to getchar (see getc (3S» will return a.

SEE ALSO

NOTE

getc (3S), printf(3S), strtod (3C), strtol (3C).

Trailing white space (including a new-line) is left unread unless
matched in the control string.

DIAGNOSTICS

BUGS

These functions return EOF on end of input and a short count for
missing or illegal data items.

The success of literal matches and suppressed assignments is not
directly determinable.

UNIX Programmer's Manual System Calls and Library Routines-219

SETBUF(3S) SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >

void setbuf (stream, buf)
FILE .stream;
char .buf;

int setvbuf (stream, buf,- type, size)
FILE .stream;
char .buf;
int type, size;

DESCRIPTION
Setbuf may be used after a stream has been opened but before it
is read or written. It causes the array pointed to by buf to be used
instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells
how big an array is needed:

char buf(BUFSIZ];

Setvbuf may be used after a stream has been opened but before it
is read or written. Type determines how stream will be buffered.
Legal values for type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full,
or input is requested.

causes input/output to be completeiy unbuffered.

If buf is not the NULL pointer, the array it points to will be used
for buffering, instead of an automatically allocated buffer. Size
specifies the size of the buffer to be used. The constant BUFSIZ in
<stdio.h> is suggested as a good buffer size. If input/output is
unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

220-System Calls and Library Routines UNIX Programmer's Manual

SETBUF(3S) SETBUF(3S)

DIAGNOSTICS

NOTE

If an illegal value for type or size is provided, setvbuf returns a
non-zero value. Otherwise, the value returned will be zero.

A common source of error is allocating buffer space as an
"automatic" variable in a code block, and then failing to close the
stream in the same block.

UNIX Programmer's Manual System Calls and Library Routines-221

STDIO(3S) STDIO(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#incIude <stdio.h>

FILE *stdin, *stdout, *stderr;

DESCRIPTION
The functions described in the entries of sub-class 3S of this
manual constitute an efficient, user-level I/O buffering scheme.
The in-line macros gete (3S) and pute (3S) handle characters
quickly. The macros getehar and putehar, and the higher-level
routines fgete, fgets, fprintf, fpute, fputs, fread, fseanj, fwrite,
gets, getw, print!, puts, putw, and seanf all use or act as if they
use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream and is declared
to be a pointer to a defined type FILE. Fopen (3S) creates certain
descriptive data for a stream and returns a pointer to designate the
stream in all further transactions. Normally, there are three open
streams with constant pointers declared in the <stdio.h> header
file and associated with the standard open files:

stdin
stdout
stderr

standard input file
standard output file
standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error
by most integer functions that deal with streams (see the indivi­
dual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used
by the particular implementation.

Any program that uses this package must include the header file
of pertinent macro definitions, as follows:

#include < stdio.h >

The functions and constants mentioned in the entries of sub­
class 3S of this manual are declared in that header file and need
no further declaration. The constants and the following "func­
tions" are implemented as macros (redeclaration of these names is
perilous): gete, get char , pute, putehar, ferror, feof, clearerr, and
fileno.

222-System Calls and Library Routines UNIX Programmer's Manual

STDIO(3S) STDIO(3S)

SEE ALSO
open (2) , close (2) , lseek (2) , pi pe (2) , read (2) , write (2) ,
ctermid(3S), cuserid(3S), fclose(3S), ferror(3S), fopen(3S),
fread(3S), fseek(3 S), getc(3S), gets(3S), popen(3S), printf(3S),
putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S),
tmpfile(3S), tmpnam (3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly
including program termination. Individual function descriptions
describe the possible error conditions.

UNIX Programmer's Manual System Calls and Library Routines-223

SYSTEM (3S) SYSTEM (3S)

NAME
system - issue a shell command

SYNOPSIS
#include < stdio.h >
int system (string)
char • string;

DESCRIPTION

FILES

System causes the string to be given to sh (1) as input, as if the
string had been typed as a command at a terminal. The current
process waits until the shell has completed, then returns the exit
status of the shell.

Ibin/sh

SEE ALSO
exec(2).
sh(1) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

DIAGNOSTICS

/'

System forks to create a child process that in turn exec's Ibin/sh
in order to execute string. If the fork or exec fails, system returns
a negative value and sets errno.

224-System Calls· and Library Routines UNIX Programmer's Manual

TMPFILE (3S) TMPFILE (3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include < stdio.h >
FILE .tmpfile ()

DESCRIPTION
Tmpfile creates a temporary file using a name generated by
tmpnam (3S), and returns a corresponding FILE pointer. If the file
cannot be opened, an error message is printed using perror (3C),
and a NULL pointer is returned. The file will automatically be
deleted when the process using it terminates. The file is opened
for update ("w+").

SEE ALSO
creat(2) , unlink(2), fopen(3S), mktemp(3C) , perror(3C),
tmpnam (38).

UNIX Programmer's Manual System Calls and Library Routines-225

TMPNAM(3S) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#incIude < stdio.h>

char *tmpnam (s)
char .s;

char .tempnam (dir, pfx)
char .dir, .pfx;

DESCRIPTION
These functions generate file names that can safely be used for a
temporary file.

Tmpnam always generates a file name using the path-prefix
defined as P _tmpdir in the <stdio.h> header file. If s is NULL,
tmpnam leaves its result in an internal static area and returns a
pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the
address of an array of at least L_tmpnam bytes, where L_tmpnam
is a constant defined in < stdio.h >; tmpnam places its result in
that array and returns s.

Tempnam allows the user to control the choice of a directory. The
argument dir points to the name of the directory in which the file
is to be created. If dir is NULL or points to a string which is not
a name for an appropriate directory, the path-prefix defined as
P _tmpdir in the <stdio.h> header file is used. If that directory is
not accessible, /tmp will be used as a last resort. This entire
sequence can be up-staged by providing an environment variable
TMPDIR in the user's environment, whose value is the name of the
desired temporary-file directory.

Many applications prefer their temporary files to have certain
favorite initial letter sequences in their names. Use the pfx argu­
ment for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the
temporary-file name.

Tempnam uses maUoe (3 C) to get space for the constructed file
name, and returns a pointer to this area. Thus, any pointer value
returned from tempnam may serve as an argument to free (see
maUoe (3C)) .

226-System Calls and Library Routines UNIX Programmer's Manual

TMPNAM(3S) TMPNAM(3S)

NOTES

If tempnam cannot return the expected result for any reason, i.e.
mal/oc (3C) failed, or none of the above mentioned attempts to
find an appropriate directory was successful, a NULL pointer will
be returned.

These functions generate a different file name each time they are
called.

Files created using these functions and either jopen(3S) or
creat (2) are temporary only in the sense that they reside in a
directory intended for temporary use, and their names are unique.
It is the user's responsibility to use unlink (2) to remove the file
when its use is ended.

SEE ALSO

BUGS

creat(2) , unlink(2), fopen(3S), malloc(3C) , mktemp(3C),
tmpfile (3S) .

If called more than 17,576 times in a single process, these func­
tions will start recycling previously used names.
Between the time a file name is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using these
functions or mktemp, and the file names are chosen so as to render
duplication by other means unlikely.

UNIX Programmer's Manual System Calls and Library Routines-227

UNGETC(3S) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include < stdio.h >
int ungetc (c, stream)
int c;
FILE *stream;

DESCRIPTION
Ungetc inserts the character c into the buffer associated with an
input stream. That character, c, will be returned by the next
getc(3S) call on that stream. Ungetc returns c, and leaves the file
stream unchanged.

One character of pushback is guaranteed, provided something has
already been read from the stream and the stream is actually
buffered. In the case that stream is stdin, one character may be
pushed back onto the buffer without a previous read statement.

If c equals EOF, ungetc does nothing to the buffer and returns
EOF.

Fseek (3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

228-System Calls and Library Routines UNIX Programmer's Manual

VPRINTF (3S) VPRINTF (3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs
argument list

SYNOPSIS
#include < stdio.h >
#include < varargs.h >
int vprintf (format, ap)
char -format;
vaJist ap;

int vfprintf (stream, format, ap)
FILE -stream;
char -format;
vaJist ap;

int vsprintf (s, format, ap)
char -s, -format;
va_list ap;

DESCRIPTION
vprint/, v/print/, and vsprint/ are the same as print/, /print/, and
sprint/ respectively, except that instead of being called with a vari­
able number of arguments, they are called with an argument list
as defined by varargs (5) .

EXAMPLE
The following demonstrates how v/print/ could be used to write an
error routine.

#include <stdio.h>
#include <varargs.h>

/*
* error should be called like
* error(function_name, format, argl, arg2 .. .);
*/

/*Y ARARGSO*/
void
error (va _alist)
/* Note the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

UNIX Programmer's Manual System Calls and Library Routines-229

VPRINTF (3S)

SEE ALSO

va Jist args;
char .fmt;

va _start (args) ;

VPRINTF (3S)

/. print out name of function causing error ./
(voidHprintf(stderr, "ERROR in %s: ", va_arg(args, char .»;
fmt - va _arg (args, char .);
/. print out remainder of message ./
(void)vfprintf(fmt, args);
va _end (args);
(void) abort ();

vprintf(3X), varargs(S).

230-System Calls and Library Routines UNIX Programmer's Manual

BESSEL (3M) BESSEL (3M)

NAME
jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
#iocIude <math.h>

double jO (x)
double x;

double j 1 (x)
double x;

double jo (0, x)
iot 0;
double x;

double yO (x)

double x;

double y 1 (x)
double x;

double yo (0, x)
iot 0;
double x;

DESCRIPTION
JO and j J return Bessel functions of x of the first kind of orders 0
and 1 respectively. In returns the Bessel function of x of the first
kind of order n.

YO and y J return Bessel functions of x of the second kind of ord­
ers 0 and 1 respectively. Yn returns the Bessel function of x of
the second kind of order n. The value of x must be positive.

DIAGNOSTICS
Non-positive arguments cause yO, yJ and yn to return the value
-HUGE and to set errno to EDOM. In addition, a message indi­
cating DOMAIN error is printed on the standard error output.

Arguments too large in magnitude cause jO, jJ, yO and yJ to
return zero and to set errno to ERANGE. In addition, a message
indicating TLOSS error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
math err (3 M) .

UNIX Programmer's Manual System Calls and Library Routines-231

ERF(3M) ERF(3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
x

Erf returns the error function of x, defined as ~ f e -t
2
dt. ,,-rr 0

Erfc, which returns 1.0 - erf(x) , is provided because of the
extreme loss of relative accuracy if erf(x) is called for large x and
the result subtracted from 1.0 (e.g., for x == 5, 12 places are lost).

SEE ALSO
exp(3M).

232-System Calls and Library Routines UNIX Programmer's Manual

EXP(3M) EXP(3M)

NAME
exp, log, 10glO, pow, sqrt - exponential, logarithm, power, square
root functions

SYNOPSIS
#include < math.h>

double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns eX.

Log returns the natural logarithm of x. The value of x must be
positive.

Log I 0 returns the logarithm base ten of x. The value of x must
be positive.

Pow returns xY. If x is zero, y must be positive. If x is negative,
y must be an integer.

Sqrt returns the non-negative square root of x. The value of x
may not be negative.

DIAGNOSTICS
Exp returns HUGE when the correct value would overflow, or 0
when the correct value would underflow, and sets errno to
ERANGE.

Log and [ogIO return -HUGE and set errno to EDOM when x is
non-positive. A message indicating DOMAIN error (or SING error
when x is 0) is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non­
positive, or when x is negative and y is not an integer. In these
cases a message indicating DOMAIN error is printed on the stan­
dard error output.

UNIX Programmer's Manual System Calls and Library Routines-233

EXP(3M) EXP(3M)

When the correct value for pow would overflow or underflow, pow
returns ±HUGE or 0 respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A
message indicating DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

234-System Calls and Library Routines UNIX Programmer's Manual

FLOOR (3M) FLOOR(3M}

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value
functions

SYNOPSIS
#include < math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION
Floor returns the largest integer (as a double-precision number)
not greater than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by
y: zero if y is zero or if xly would overflow; otherwise the number
f with the same sign as x, such that x == iy + f for some integer
i, and Ifl < Iy I.
Fabs returns the absolute value of x, I x I.

SEE ALSO
abs(3C).

UNIX Programmer's Manual System Calls and Library Routines-235

GAMMA (3M) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include < math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION
00

Gamma returns In(lr(x) 1>, where r(x) is defined as J e-ttX-1dt.
o

The sign of r(x) is returned in the external integer signgam. The
argument x may not be a non-positive integer.

The following C program fragment might be used to calculate r:

if «y = gamma(x» > LN_MAXDOUBLE)
error();

y = signgam • exp (y);

where LN_MAXDOUBLE is the least value that causes exp (3M) to
return a range error, and is defined in the <values.h> header file.

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno
is set to EDOM.· A message indicating SING error is printed on the
standard error output.

If the correct value would overflow, gamma returns HUGE and sets
errno to ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

236-System Calls and Library Routines UNIX Programmer's Manual

HYPOT(3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x * x 1r y * y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and
sets errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M) .

UNIX Programmer's Manual System Calls and Library Routines-237

MATH ERR (3M) MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION
Matherr is invoked by functions in the Math Library when errors
are detected. Users may define their own procedures for handling
errors, by including a function named matherr in their programs.
Matherr must be of the form described above. When an error
occurs, a pointer to the exception structure x will be passed to the
user-supplied matherr function. This structure, which is defined in
the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argI, arg2, retval;

};

The element type is an integer describing the type of error that
has occurred, from the following list of constants (defined in the
header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
partial loss of significance

The element name points to a string containing the name of the
function that incurred the error. The variables arg] and arg2 are
the arguments with which the function was invoked. Retval is set
to the default value that will be returned by the function unless
the user's matherr sets it to a different value.

If the user's matherr function returns non-zero, no error message
will be printed, and errno will not be set. If matherr is not sup­
plied by the user, the default error-handling procedures, described
with the math functions involved, will be invoked upon error (sum­
marized in the table below). In every case, errno is set to EDOM
or ERANGE and the program continues.

238~System Calls and Library Routines UNIX Programmer's Manual

MATHERR(3M) MATHERR(3M)

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x-> type) {
case DOMAIN:

/* change sqrt to return sqrt(-argO, not 0 */
if (!strcmp(x->name, "sqrt"» (

x->retval = sqrt(-x->argO;
return (0); /* print message and set errno */

case SING:
/* all other domain/sing errors, print message & abort */
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n",

x->name, x->argl, x->retvaI);
return (1); /* take no other action * /

return (0); /* all other errors, execute default procedure */

UNIX Programmer's Manual System Calls and Library Routines-239

MATHERR(3M) MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW

errno EDOM EDOM ERANGE ERANGE

BESSEL: - - - -
yO, yl, yn (arg ~ 0) M,-H - - -
EXP: - - H 0

LOG, LOGIO:

(arg < 0) M,-H - - -
(arg = 0) - M,-H - -

POW: - - ±H 0
neg •• non-int M,O - - -

0 .. non-pos
SQRT: M,O - - -
GAMMA: - M,H H -
HYPOT: - - H -
SINH: - - ±H -
COSH: - - H -
SIN, COS, TAN:- - - - M,O
ASIN, ACOS, ATAN3: M 0 - - - -

ABBREVIATIONS
• As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned.

240-System Calls and Library Routines UNIX Programmer's Manual

SINH(3M) SINH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#incIude < math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyberbolic sine,
cosine and tangent of their argument.

DIAGNOSTICS
Sinh and cosh return HUGE (and sinh may return -HUGE for
negative x) when the correct value would overflow and set errno to
ERANGE.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M) .

UNIX Programmer's Manual System Calls and Library Routines-241

TRIG(3M) TRIG (3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of
their argument, x, measured in radians.

Asin returns the arcsine of x, in the range -1r/2 to 1r/2.

Acos returns the arccosine of x, in the range 0 to 1r.

Atan returns the arctangent of x, in the range -1r/2 to 1r/2.

Atan2 returns the arctangent of y/x, in the range -1r to 1r, using
the signs of both arguments to determine the quadrant of the
return value.

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is far from
zero. For arguments sufficiently large, these functions return zero
when there would otherwise be a complete loss of significance. In
this case a message indicating TLOSS error is printed on the stan­
dard error output. For less extreme arguments causing partial loss
of significance, a PLOSS error is generated but no message is
printed. In both cases, errno is set. to ERANGE.

242-System Calls and Library Routines UNIX Programmer's Manual

TRIG(3M) TRIG(3M)

If the magnitude of the argument of asin or acos is greater than
one, or if both arguments of atan2 are zero, zero is returned and
errno is set to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr (3M).

SEE ALSO
matherr(3M) .

UNIX Programmer's Manual System Calls and Library Routines-243

ASSERT (3X) ASSERT (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include < assert.h >
assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When
it is executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message,
xyz is the name of the source file and nnn the source line number
of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1»,
or with the preprocessor control statement "#define NDEBUG"
ahead of the "#include <assert.h>" statement, will stop asser­
tions from being compiled into the program.

SEE ALSO
abort(3C).
cpp(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-245

CURSES (3X) CURSES (3X)

NAME
curses - CRT screen handling and optimization package

SYNOPSIS
#include < curses.h >
cc [flags] files -lcurses [libraries]

DESCRIPTION
These routines give the user a method of updating screens with
reasonable optimization. In order to initialize the routines, the
routine initscrO must be called before any of the other routines
that deal with windows and screens are used. The routine
endwinO should be called before exiting. To get character-at-a­
time input without echoing, (most interactive, screen oriented­
programs want this) after calling initscrO you should call "nonlO;
cbreakO; noechoO;"

The full curses interface permits manipulation of data structures
called windows which can be thought of as two dimensional arrays
of characters representing all or part of a CRT screen. A default
window called stdscr is supplied, and others can be created with
newwin. Windows are referred to by variables declared "WIN­
DOW *", the type WINDOW is defined in curses.h to be a C struc­
ture. These data structures are manipulated with functions
described below, among which the most basic are move, and addch.
(More general versions of these functions are included with names
beginning with 'w', allowing you to specify a window. The rou­
tines not beginning with 'w' affect stdscr'> Then refreshO is
called, telling the routines to make the users CRT screen look like
stdscr.

Mini-Curses is a subset of curses which does not allow manipula­
tion of more than one window. To invoke this subset, use -DMINI­
CURSES as a cc option. This level is smaller and faster than full
curses.

If the environment variable TERMINFO is defined, any program
using curses will check for a local terminal definition before check­
ing in the standard place. For example, if the standard place is
lusr IIib/terminfo, and TERM is set to "vtl 00", then normally the
compiled file is found in lusrllib/terminfo/v/vtlOO. (The "v" is
copied from the first letter of "vtl 00" to avoid creation of huge
directories'> However, if TERMINFO is set to
lusr Imark/myterms, curses will first check
lopusr/mark/myterms/v/vtlOO, and if that fails, will then check

246-System Calls and Library Routines UNIX Programmer's Manual

CURSES (3X) CURSES (3X)

lusrllib/terminfo/v/vtlOO. This is useful for developing experi­
mental definitions or when write permission in lusrllib/terminfo is
not available.

SEE ALSO
terminfo(4) .

FUNCTIONS
Routines listed here may be called when using the full curses.
Those marked with an asterisk may be called when using Mini­
Curses.

addch(ch)*

addstr (str) *

attroff(attrs) *

attron (attrs) *

attrset (attrs) *

baudrate<) *

beep 0 *
box (win, vert, hod

clear 0
clearok (win, bf)

clrtobot()

clrtoeol()

cbreakO*

delay_output (ms)*

delch()

deleteln()

del win (win)

doupdate()

echo 0 *

endwin()*

erase()

erasechar()

fixterm()

flash 0
flushinpO*

getch()*

getstr (str)

gettmode()

getyx (win, y, x)

UNIX Programmer's Manual

add a character to stdscr (like putchar)

(wraps to next line at end of line)

calls addch with each character in str

turn off attributes named

turn on attributes named

set current attributes to attrs

current terminal speed

sound beep on terminal

draw a box around edges of win

vert and hor are chars to use for vert. and

hor. edges of box

clear stdscr

clear screen before next redraw of win

clear to bottom of stdscr

clear to end of line on stdscr

set cbreak mode

insert ms millisecond pause in output

delete a character

delete a line

delete win

update screen from all wnooutrefresh

set echo mode

end window modes

erase stdscr

return user's erase character

restore tty to "in curses" state

flash screen or beep

throwaway any typeahead

get a char from tty

get a string through stdscr

establish current tty modes

get (y, x) co-ordinates

System Calls and Library Routines-247

CURSES (3X)

hasJcO

hasJIO

idlok(win, bf)*

inch()

initscrO*

insch(c)

insertln()

intrflush (win, bf)

keypad (win, bf)

killcharO

leaveok(win, flag)

10ngnameO

meta (win, flag) *

move(y, x)*

mvaddcb(y, x, ch)

CURSES (3X)

true if terminal can do insert character

true if terminal can do insert line

use terminal's insert/delete line if bf !- 0

get char at current (y, x) co-ordinates

initialize screens

insert a char

insert a line

interrupts flush output if bf is TRUE

enable keypad input

return current user's kill character

OK to leave cursor anywhere after refresh if

flag!-O for win, otherwise cursor must be left

at current position.

return verbose name of terminal

allow meta characters on input if flag ! 0

move to (y, x) on stdscr

move(y, x) then addcb(ch)

mvaddstr(y, x, str) similar ...

mvcur(oldrow, oldcol, newrow, newcoOlow level cursor motion

mvdelcb(y, x) like delch, but move(y, x) first

mvgetcb(y, x)

mvgetstr(y, x)

mvinch (y, x)

mvinsch (y, x, c)

mvprintw(y, x, fmt, args)

mvscanw(y, x, fmt, args)

mvwaddcb(win, y, x, ch)

mvwaddstr(win, y, x, str)

mvwdelcb(win, y, x)

mvwgetcb(win, y, x)

mvwgetstr (win, y, x)

mvwin(win, by, bx)

mvwincb(win, y, x)

etc.

mvwinscb(win, y, x, c)

mvwprintw(win, y, x, fmt, args)

mvwscanw(win, y, x, fmt, args)

newpad(nlines, ncols) create a new pad with given dimensions

newterm (type, fd) set up new terminal of given type to output on fd

newwin(Iines, cols, beginj', begin_x) create a new window

nlO * set newline mapping

nocbreak()*

nodelay(win, bf)

unset cbreak mode

enable nodelay input mode through getch

248-System Calls and Library Routines UNIX Programmer's Manual

CURSES (3X)

noechoO*

nonlO*

norawO*

overlay(winl, win2)

overwrite(winl, win2)

unset echo mode

unset newline mapping

unset raw mode

overlay wini on win2

overwrite win 1 on top of win2

CURSES (3X)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcoI)

like prefresh but with no output until doupdate called

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcoI)

printw (fmt, arg I, arg2, .. J
rawO*

refresh()*

resetterm () *

resetty()*

saveterm () *

savettyO*

scanw(fmt, argl, arg2, .. J
scroll (win)

scrollok(win, flag)

set_term (new)

setscrreg(t, b)

setterm (type)

refresh from pad starting with given upper left corner

with output to given portion of screen

printf on stdscr

set raw mode

make current screen look like stdscr

set tty modes to "out of curses" state

reset tty flags to stored value

save current modes as "in curses" state

store current tty flags

scanf through stdscr

scroll win one line

allow terminal to scroll if flag !- 0

now talk to terminal new

set user scrolling region to lines t through b

establish terminal with given type

setupterm(term, filenum, errret)

standendO* clear standout mode attribute

standout 0 * set standout mode attribute

subwin(win, lines, cols, begin""y, begin_x) create a subwindow

touchwin(win) change all of win

traceoff() turn off debugging trace output

traceon()

typeahead (fd)

unctrl (ch) *

waddch (win, ch)

waddstr(win, str)

wattroff(win, attrs)

wattron(win, attrs}

wattrset(win, attrs)

wc1ear (win)

wc1rtobot (win)

wclrtoeol (win)

wdelch (win, c)

wdeleteln (win)

UNIX Programmer's Manual

turn on debugging trace output

use file descriptor fd to check typeahead

printable version of ch

add char to win

add string to win

turn off attrs in win

turn on attrs in win

set attrs in win to aUrs

clear win

clear to bottom of win

clear to end of line on win

delete char from win

delete line from win

System Calls and Library Routines-249

CURSES (3X) CURSES (3X)

werase (win)

wgetch (win)

wgetstr(win, str)

winch (win)

winsch (win, c)

winsertln (win)

erase win

get a char through win

get a string through. win

get char at current (y, x) in win

insert char into win

insert line into win

wmove(win, y, x) set current (y, x) co-ordinates on win

wnoutrefresh{win) refresh but no screen output

wprintw(win, fmt, argI, arg2, ..) printf on win

wrefresh{win) make screen look like win

wscanw(win, fmt, argI, arg2, .. J scanf through win

wsetscrreg(win, t, b) set scrolling region of win

wstandend(win) clear standout attribute in win

wstandout (win) set standout attribute in win

TERMINFO LEVEL ROUTINES

fixterm()

These rou tines should be called by programs wishing to deal
directly with the terminfo database. Due to the low level of this
interface, it is discouraged. Initially, setupterm should be called.
This will define the set of terminal dependent variables defined in
terminfo(4). The include files <curses.h> and <term.h> should
be included to get the definitions for these strings, numbers, and
flags. Parmeterized strings should be passed through tparm to
instantiate them. All terminfo strings (including the output of
tparm) should be printed with tputs or putp . Before exiting,
resetterm should be called to restore the tty modes. (Programs
desiring shell escapes or suspending with control Z can call reset­
term before the shell is called and jixterm after returning from the
shell.)

restore tty modes for terminfo use
(called bysetupterm)

resetterm () reset tty modes to state before program entry

read in database. Terminal type is the setupterm(term, fd, rc)

tparm(str, pI, p2, ... , p9)

tputs(str, affcnt, putc)

character string term, all output is to UNIX System file

descriptor fd. A status value is returned in the

integer pointed to by rc: 1 is normal. The simplest

call would be setupterm(O. 1. 0) which uses all the defaults.

instantiate string str with parms Pi

apply padding info to string str.

affcnt is the number of lines affected, or 1 if

not applicable. Putc is a putchar-like function

to which the characters are passed, one at a time.

putp(str) handy function that calls tputs(str, 1, putchar).

250-System Calls and Library Routines UNIX Programmer's Manual

CURSES (3X) CURSES (3X)

vidputs(attrs, put c) output the string to put terminal in video attribute

mode aUrs, which is any combination of the attributes

vidattr(attrs)

listed below. Chars are passed to putchar-like function pUle.

Like vidputs but outputs through putchar

TERM CAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that
use termcap. Their parameters are the same as for termcap.
They are emulated using the terminfo database. They may go
away at a later date.
tgetent (bp, name)
tgetflag (id)
tgetnum{id)
tgetstr (id, area)
tgoto(cap, col, row)
tputs(cap, aifcnt, fn)

ATTRIBUTES
The following video
attron,attroff,attrset.
A STANDOUT
A_UNDERLINE
A REVERSE
A BLINK
A DIM
A BOLD
A BLANK
A PROTECT
A ALTCHARSET

FUNCTION KEYS

look up termcap entry for name
get boolean entry for id
get numeric entry for id
get string entry for id
apply parms to given cap
apply padding to cap calling fn as putchar

attributes can be passed to the functions

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Blanking (invisible)
Protected
Alternate character set

The following function keys might be returned by getch if keypad
has been enabled. Note that not all of these are currently sup­
ported, due to lack of definitions in terminfo or the terminal not
transmitting a unique code when the key is pressed.

Name
KEY_BREAK
KEY DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY BACKSPACE
KEY_FO

Value Key name
0401 break key (unreliable)
0402 The four arrow keys ...
0403
0404
0405
0406
0407
0410

Home key (upward+left arrow)
backspace (unreliable)
Function keys. Space for 64 is reserved.

UNIX Programmer's Manual System Calls and Library Routines-25I

CURSES (3X) CURSES (3X)

KEY_F(n) (KEY _FO+(n» Formula for fn.
KEY_DL 0510 Delete line
KEY_IL 0511 Insert line
KEY_DC 0512 Delete character
KEY_IC 0513 Insert char or enter insert mode
KEY_EIC 0514 Exit insert char mode
KEY_CLEAR 0515 Clear screen
KEY_EOS 0516 Clear to end of screen
KEY_EOL 0517 Clear to end of line
KEY_SF 0520 Scroll 1 line forward
KEY_SR 0521 Scroll 1 line backwards (reverse)
KEY_NPAGE 0522 Next page
KEY_PPAGE 0523 Previous page
KEY_STAB 0524 Set tab
KEY_CTAB 0525 Clear tab
KEY_CATAB 0526 Clear all tabs
KEY_ENTER 0527 Enter or send (unreliable)
KEY_SRESET 0530 soft (partial) reset (unreliable)
KEY_RESET 0531 reset or hard reset (unreliable)
KEY_PRINT 0532 print or copy
KEY_LL 0533 home down or bottom (lower left)

WARNING
The plotting library plot OX) and the curses library curses OX)
both use the names eraseO and move 0 . The curses versions are
macros. If you need both libraries, put the plot OX) code in a
different source file· than the curses OX) code, and/or #undef
moveO and eraseO in the p[ot{3X) code.

252-System Calls and Library Routines UNIX Programmer's Manual

LDAHREAD(3X) LDAHREAD (3X)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#incIude < stdio.h >
#incIude < ar.h>
#incIude < filehdr.h >
#incIude < Idfcn.h >

int Idahread Odptr, arhead}
LDFILE .Idptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr} is the archive file magic number, ldahread reads
the archive header of the common object file currently associated
with ldptr into the area of memory beginning at arhead.

Ldahread returns SUCCESS or FAILURE. Ldahread will fail if
TYPE([dptr} does not represent an archive file, or if it cannot read
the archive header.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4), ar(4).

UNIX Programmer's Manual System Calls and Library Routines-253

LDCLOSE(3X) LDCLOSE (3X)

NAME
ldclose, ldaclose - close a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <ldfcn.h>

int Idclose Odptr)
LDFILE *ldptr;

int Idaclose Odptr)
LDFILE *ldptr;

DESCRIPTION
Ldopen (3X) and ldclose are designed to provide uniform access to
both simple object files and object files that are members of
archive files. Thus an archive of common object files can be pro­
cessed as if it were a series of simple common object files.

If TYPE ([dptr) does not represent an archive file, ldclose will close
the file and free the memory allocated to the LDFILE structure
associated with ldptr. If TYPE(ldptr) is the magic number of an
archive file, and if there are any more files in the archive, ldclose
will reinitialize OFFSET ([dptr) to the file address of the next
archive member and return FAILURE. The LDFILE structure is
prepared for a subsequent ldopen (3X). In all other cases, ldclose
returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the
LDFILE structure associated with ldptr regardless of the value of
TYPE([dptr). Ldaclose always returns SUCCESS. The function is
often used in conjunction with ldaopen.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
fclose(3S),ldopen(3X),ldfcn(4).

254-System Calls and Library Routines UNIX Programmer's Manual

LDFHREAD(3X) LDFHREAD(3X)

NAME
ldfbread - read the file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <Idfcn.h>

int Idfhread Odptr, filehead)
LDFILE .Idptr;
FILHDR .filehead;

DESCRIPTION
Ldfhread reads the file header of the common object file currently
associated with ldptr into the area of memory beginning at
filehead.

Ldfhread returns SUCCESS or FAILURE. Ldfhread will fail if it
cannot read the file header.

In most cases the use of ldfhread can be avoided by using the
macro HEADER([dptr) defined in Idfcn.h (see ldfcn (4». The
information in any field, fieldname, of the file header may be
accessed using HEADER (Idptr) .fieldname.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-255

LDGETNAME (3X) LDGETNAME(3X)

NAME
ldgetname - retrieve symbol name for common object file symbol
table entry

SYNOPSIS
#include ' < stdio.h >
#include < filehdr.h >
#include < syms.h >
#include <Idfcn.h>

char .Idgetname Odptr, symboO
LDFILE .Idptr;
SYMENT .symbol;

DESCRIPTION
Ldgetname returns a pointer to the name associated with symbol
as a string. The string is contained in a static buffer local to
ldgetname that is overwritten by each call to ldgetname, and
therefore must be copied by the caller if the name is to be saved.

As of UNIX System V Release 2.0, the common object file format
has been extended to handle arbitrary length symbol names with
the addition of a "string table". Ldgetname will return the symbol
name associated with a symbol table entry for either a pre-UNIX
System V Release 2.0 object file or a UNIX System V Release 2.0
object file. Thus, ldgetname can be used to retrieve names from
object files without any backward compatibility problems. Ldget­
name will return NULL (defined in stdio.h) for an object file if the
name cannot be retrieved. This situation can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string
table,

if the string table appears not to be a string table (for
example, if an auxiliary entry is handed to ldgetname that
looks like a reference to a name in a non-existent string
table), or

if the name's offset into the string table is past the end of
the string table.

Typically, ldgetname will be called immediately after a successful
call to ldtbread to retrieve the name associated with the symbol
table entry filled by ldtbread.

256-System Calls and Library Routines UNIX Programmer's Manual

LDGETNAME (3X) LDGETNAME (3X)

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), ldopen (3X), ldtbread (3X), Idtbseek(3X), ldfcn (4).

UNIX Programmer's Manual System Calls and Library Routines-257

LDLREAD(3X) LDLREAD (3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a com­
mon object file function

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Iinenum.h>
#include < Idfcn.h >

int IdlreadOdptr, fcnindx, Iinenum, Iinent>
LDFILE .Idptr;
long fcnindx;
unsigned short Iinenum;
LINENO linent;

int Idlinit Odptr, fcnindx)
LDFILE .Idptr;
long fcnindx;

int Idlitem Odptr, Iinenum, Iinent)
LDFILE .Idptr;
unsigned short Iinenum;
LINENO linent;

DESCRIPTION
Ldlread searches the line number entries of the common object file
currently associated with ldptr. Ldlread begins its search with the
line number entry for the beginning of a function and confines its
search to the line numbers associated with a single function. The
function is identified by fcnindx, the index of its entry in the
object file symbol table. Ldlread reads the entry with the smallest
line number equal to or greater than linenum into linent.

Ldlinit and ldlitem together perform exactly the same function as
ldlread. After an initial call to ldlread or ldlinit. ldlitem may be
used to retrieve a series of line number entries associated with a
single function. Ldlinit simply locates the line number entries for
the function identified by fcnindx. Ldlitem finds and reads the
entry with the smallest line number equal to or greater than line­
num into linent.

Ldlread, ldlinit, and ldlitem each return either SUCCESS or
FAILURE. Ldlread will fail if there are no line number entries in
the object file, if fcnindx does not index a function entry in the

258-System Calls and Library Routines UNIX Programmer's Manual

LDLREAD (3X) LDLREAD (3X)

symbol table, or if it finds no line number equal to or greater than
linenum. Ldlinit will fail if there are no line number entries in the
object file or if fcnindx does not index a function entry in the sym­
bol table. Ldlitem will fail if it finds no line number equal to or
greater than linenum.

The programs must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbindex(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-259

LDLSEEK (3X) LDLSEEK (3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a
common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >
int Idlseek Odptr, sectindx>
LDFILE *ldptr;
unsigned short sectindx;

int Idnlseek Odptr, sectname)
LDFILE *Idptr;
char *sectname;

DESCRIPTION
Ldlseek seeks to the line number entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnlseek seeks to the line number entries of the section specified
by sect name .

Ldlseek and ldnlseek return SUCCESS or FAILURE. Ldlseek will
fail if sectindx is greater than the number of sections in the object
file; ldnlseek will fail if there is no section name corresponding
with *sectname. Either function will fail if the specified section
has no line number entries or if it cannot seek to the specified line
number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

260-System Calls and Library Routines UNIX Programmer's Manual

LDOHSEEK(3X) LDOHSEEK(3X)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <ldfcn.h>

int Idohseek Odptr)
LDFILE .ldptr;

DESCRIPTION
Ldohseek seeks to the optional file header of the common object
file currently associated with ldptr.

Ldohseek returns SUCCESS or FAILURE. Ldohseek will fail if the
object file has no optional header or if it cannot seek to the
optional header.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfhread(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-261

LDOPEN(3X) LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfcn.h >
LDFILE *Idopen ~filename, Idptr)
char * filename;
LDFILE *Idptr;

LDFILE *Idaopen (filename, oldptr)
char *filename;
LDFILE *oldptr;

DESCRIPTION
Ldopen and ldclose OX) are designed to provide uniform access
to both simple object files and object files that are members of
archive files. Thus an archive of common object files can be pro­
cessed as if it were a series of simple common object files.

If ldptr has the value NULL, then ldopen will open filename and
allocate and initialize the LDFILE structure, and return a pointer
to the structure to the calling program.

If ldptr is valid and if TYPE(fdptr) is the archive magic number,
ldopen will reinitialize the LDFILE structure for the next archive
member of filename.

Ldopen and ldclose OX) are designed to work in concert. Ldclose
will return FAILURE only when TYPE(fdptr) is the archive magic
number and there is another file in the archive to be processed.
Only then should ldopen be called with the current value of ldptr.
In all other cases, in particular whenever a new filename is opened,
ldopen should be called with a NULL ldptr argument.

The following is a prototype for the use of ldopen and
ldclose OX).

262-System Calls and Library Routines UNIX Programmer's Manual

LDOPEN(3X) LDOPEN(3X)

f. for each filename to be processed • f

ldptr = NULL;
do
{

if ((Idptr = ldopen (filename, ldptr» != NULL)
{

}

f. check magic number .f
f. process the file .f

} while (Idc1ose(Idptr) == FAILURE);

If the value of oldptr is not NULL, Ida open will open filename
anew and allocate and initialize a new LDFILE structure, copying
the TYPE, OFFSET, and HEADER fields from oldptr. Ldaopen
returns a pointer to the new LDFILE structure. This new pointer is
independent of the old pointer, oldptr. The two pointers may be
used concurrently to read separate parts of the object file. For
example, one pointer may be used to step sequentially through the
relocation information, while the other is used to read indexed
symbol table entries.

Both ldopen and ldaopen open filename for reading. Both func­
tions return NULL if filename cannot be opened, or if memory for
the LDFILE structure cannot be allocated. A successful open does
not insure that the given file is a common object file or an archived
object file.

The program must be loaded with the object file access routine
library)ibld.a.

SEE ALSO
fopen (3S), Idc1ose(3X), ldfcn (4).

UNIX Programmer's Manual System Calls and Library Routines-263

LDRSEEK (3X) LDRSEEK(3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a com­
mon object file

SYNOPSIS
#include < stdio.h >
#include < fi.lehdr.h >
#include < Idfcn.h >
int Idrseek Odptr, sectindx}
LDFILE .ldptr;
unsigned short sectindx;

int Idnrseek Odptr, sectname}
LDFILE .Idptr;
char .sectname;

DESCRIPTION
Ldrseek seeks to the relocation entries of the section specified by
sectindx of the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by
sectname.

Ldrseek and Idnrseek return SUCCESS or FAILURE. Ldrseek will
fail if sectindx is greater than the number of sections in the o~ject
file; ldnrseek will fail if there is no section name corresponding
with sect name. Either function will fail if the specified section has
no relocation entries or if it cannot seek to the specified relocation
entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

264-System Calls and Library Routines UNIX Programmer's Manual

LDSHREAD (3X) LDSHREAD (3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a
common object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < scnhdr.h >
#include < Idfcn.h>

int Idshread Odptr, sectindx, secthead)
LDFILE *Idptr;
unsigned short sectindx;
SCNHDR *secthead;

int Idnshread Odptr, sectname, secthead)
LDFILE *Idptr;
char *sectname;
SCNHDR *secthead;

DESCRIPTION
Ldshread reads the section header specified by sectindx of the
common object file currently associated with Idptr into the area of
memory beginning at sect head.

Ldnshread reads the section header specified by sectname into the
area of memory beginning at sect head.

Ldshread and Idnshread return SUCCESS or FAILURE. Ldshread
will fail if sectindx is greater than the number of sections in the
object file; Idnshread will fail if there is no section name
corresponding with sect name . Either function will fail if it cannot
read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-265

LDSSEEK (3X) LDSSEEK (3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common
object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include <Idfcn.h>

int Idsseek Odptr, sectindx>
LDFILE .Idptr;
unsigned short sectindx;

int Idnsseek Odptr, sectname)
LDFILE .Idptr;
char .sectname;

DESCRIPTION
Ldsseek seeks to the section specified by sectindx of the common
object file currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

Ldsseek and ldnsseek return SUCCESS or FAILURE. Ldsseek will
fail if sectindx is greater than the number of sections in the object
file; ldnsseek will fail if there is no section name corresponding
with sectname. Either function will fail if there is no section data
for the specified section or if it cannot seek to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idshread(3X), Idfcn(4).

266-System Calls and Library Routines UNIX Programmer's Manual

LDTBINDEX(3X) LDTBINDEX (3X)

NAME
ldtbindex - compute the index of a symbol table entry of a com­
mon object file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h>
#include < Idfcn.h >

long Idtbindex (Jdptr)
LDFILE .Idptr;

DESCRIPTION
Ldtbindex returns the (long) index of the symbol table entry at the
current position of the common object file associated with ldptr.

The index returned by Idtbindex may be used in subsequent calls
to Idtbread (3X). However, since Idtbindex returns the index of
the symbol table entry that begins at the current position of the
object file, if Idtbindex is called immediately after a particular
symbol table entry has been read, it will return the index of the
next entry.

Ldtbindex will fail if there are no symbols in the object file, or if
the object file is not positioned at the beginning of a symbol table
entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X), Idopen(3X), Idtbread(3X), Idtbseek(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-267

I

LDTBREAD(3X) LDTBREAD (3X)

NAME
ldtbread - read an indexed symbol table entry of a common object
file

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < syms.h >
#include < Idfcn.h >
int Idtbread Odptr, symindex, symbol)
LDFILE -ldptr;
long symindex;
SYMENT -symbol;

DESCRIPTION
Ldtbread reads the symbol table entry specified by symindex of the
common object file currently associated with Idptr into the area of
memory beginning at symbol.

Ldtbread returns SUCCESS or FAILURE. Ldtbread will fail if
symindex is greater than the number of symbols in the object file,
or if it cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of
zero.

The program must be loaded with the object file access routine
library libld.a.

SEE ALSO
Idclose(3X), Idopen(3X) , Idtbseek(3X) , Idgetname(3X) , Idfcn(4).

268-System Calls and Library Routines UNIX Programmer's Manual

LDTBSEEK (3X) LDTBSEEK(3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include < stdio.b >
#include < filebdr.b >
#include < Idfcn.b >
int Idtbseek Odptr)
LDFILE *Idptr;

DESCRIPTION
Ldtbseek seeks to the symbol table of the object file currently
associated with ldptr.

Ldtbseek returns SUCCESS or FAILURE. Ldtbseek will fail if the
symbol table has been stripped from the object file, or if it cannot
seek to the symbol table.

The program must be loaded with the object file access routine
library Iibld.a.

SEE ALSO
Idclose(3X) , Idopen(3X), Idtbread(3X), Idfcn(4).

UNIX Programmer's Manual System Calls and Library Routines-269

LOGNAME(3X)

NAME
logname - return login name of user

SYNOPSIS
char *Iogname()

DESCRIPTION

LOGNAME(3X)

Logname returns a pointer to the null-terminated login name; it
extracts the $LOGNAME variable from the user's environment.

This routine is kept in IIiblIibPW.a.

FILES
! etc! profile

SEE ALSO

BUGS

profile(4), environ(5).
env(l), 10gin(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

The return values point to static data whose content is overwritten
by each call.

This method of determining a login name is subject to forgery.

270-System Calls and Library Routines UNIX Programmer's -,Manual

MALLOC(3X) MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory
allocator

SYNOPSIS
#include < malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION
MaUoc and free provide a simple general-purpose memory alloca­
tion package, which runs considerably faster than the maUoc (3C)
package. It is found in the library "malloc", and is loaded if the
option "-lmalloc" is used with ceO) or ldO).

MaUoc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated
by mal/oc; after free is performed this space is made available for
further allocation, and its contents have been destroyed (but see
maUopt below for a way to change this behavior).

Undefined results will occur if the space assigned by maUoc is
overrun or if some random number is handed to free.

ReaUoc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes.

CaUoc allocates space for an array .. >of nelem elements of size
elsize. ' The' space is initialized to zeros.

UNIX Programmer' s Manual System Calls and Library ROlltines-271

MALLOC(3X) MALLOC(3X)

Mallopt provides for control over the allocation algorithm. The
available values for emd are:

M_MXFAST Set maxfast to value. The algorithm allocates all
blocks below the size of maxfast in large groups
and then doles them out very quickly. The default
value for maxfast is O.

M_NLBLKS Set numlblks to value. The above mentioned
"large groups" each contain numlblks blocks.
Numlblks must be greater than O. The default
value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller
than maxfast are considered to be rounded up to
the nearest multiple of grain. Grain must be
greater than O. The default value of grain is the
smallest number of bytes which will allow align­
ment of any data type. Value will be rounded up to
a multiple of the default when grain is set.

M_KEEP Preserve data in a freed block until the next mal­
loe, realloe, or ealloe. This option is provided only
for compatibility with the old version of maUoe and
is not recommended.

These values are defined in the < malloe.h > header file.

Mallopt may be called repeatedly, but may not be called after the
first small block is allocated.

M allinfo provides instrumentation describing space usage. It
returns the structure:

struct mallinfo {
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

/* total space in arena * /
/* number of ordinary blocks * /
/* number of small blocks * /
/* space in holding block headers * /
1* number of holding blocks * /
/* space in small blocks in use * /
/* space in free small blocks * /
/* space in ordinary blocks in use * /
/* space in free ordinary blocks * /
/* space penalty if keep option * /
/* is used */

272-System Calls and Library Routines UNIX Programmer's Manual

MALLOC(3X) MALLOC(3X)

This structure is defined in the < malloc.h > header file.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
M alloc, realloc and calloc return a NULL pointer if there is not
enough available memory. When realloc returns NULL, the block
pointed to by ptr is left intact. If mallopt is called after any allo­
cation or if cmd or value are invalid, non-zero is returned. Other­
wise, it returns zero.

WARNINGS
This package usually uses more data space than malloc (3 C) .
The code size is also bigger than maUoc (3C) .
Note that unlike maUoc (3 C) , this package does not preserve the
contents of a block when it is freed, unless the M_KEEP option of
maUopt is used.
Undocumented features of maUoc (3C) have not been duplicated.

UNIX Programmer's Manual System Calls and Library Routines-273

PLOT (3X) PLOT (3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
openpl ()

erase ()

label (s)
char *s;

line (xl, yl, x2, y2)
int xl, yl, x2, y2;

circle (x, y, r)
int x, y, r;

arc (x, y, xO, yO, xl, yt>
int x, y, xO, yO, xl, yl;

move (x, y)
int x, y;

cont (x, y)
int x, y;

point (x, y)
int x, y;

Iinemod (s)
char *s;

space (xO, yO, xl, yt>
int xO, yO, xl, yl;

c10sepl ()

DESCRIPTION
These subroutines generate graphic output in a relatively device­
independent manner. Space must be used before any of these
functions to declare the amount of space necessary. See plot(4).
Openpl must be used before any of the others to open the device

\ for writing. Closepl flushes the output.

Circle draws a circle of radius r with center at the point (x, y).

Arc draws an arc of a circle with center at the point (x, y)
between the points (xO, yO) and (xl, yl).

String arguments to label and linemod are terminated by nulls
and do not contain new-lines.

274-System Calls and Library Routines UNIX Programmer's Manual

PLOT (3X) PLOT (3X)

FILES

See plot (4) for a description of the effect of the remaining func­
tions.

The library files listed below provide several flavors of these rou­
tines.

lusr llib/libplot.a
lusr llibllib300.a
lusr llibllib300s.a
lusr llib/lib450.a
lusr llib/lib40 14.a

produces output for tplot (I G) filters
for DASI 300
for DASI 300s
for DASI 450
for TEKTRONIX 4014

WARNINGS
In order to compile a program containing these functions in file.c
it is necessary to use "cc file.c -lplot".

In order to execute it, it is necessary to use "a.out I tplot".

The above routines use <stdio.h>, which causes them to increase
the size of programs, not otherwise using standard 110, more than
might be expected.

SEE ALSO
plot(4).
graph (I G) , stat (I G) , tplot (I G) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-275

REGCMP(3X) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char *regcmp (stringl [, string2, ... 1, (char .)0)
char *stringl, *string2, ..• ;

char *regex (re, subject[, retO, ... J)
char *re, * subject, *retO, ••. ,

extern char * __ Iocl;

DESCRIPTION
Regcmp compiles a regular expression and returns a pointer to the
compiled form. Malloc(3C) is used to create space for the vector.
It is the user's responsibility to free unneeded space so allocated.
A NULL return from regcmp indicates an incorrect argument.
Regcmp (I) has been written to generally preclude the need for
this routine at execution time.

Regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. Regex
returns NULL on failure or a pointer to the next unmatched char­
acter on success. A global character pointer _locI points to
where the match began. Regcmp and regex were mostly borrowed
from the editor, ed(l); however, the syntax and semantics have
been changed slightly. The following are the valid symbols and
their associated meanings.

[) *."
$

These symbols retain their current meaning.

Matches the end of the string; \0 matches a new-line.

Within brackets the minus means through. For example,
[a-zl is equivalent to [abcd ... xyzl. The - can appear
as itself only if used as the first or last character. For
example, the character class expression [1-1 matches the
characters 1 and -.

+ A regular expression followed by + means one or more
times. For example, [0 -91 + is equivalent to
[0 -9)[0 -91*.

{m} {m,} {m,u}
Integer values enclosed in {} indicate the number of
times the preceding regular expression is to be applied.
The value m is the minimum number and u is a number,
less than 256, which is the maximum. If only m is

276-System Calls and Library Routines UNIX Programmer's Manual

REGCMP(3X) REGCMP(3X)

present (e.g., {m}), it indicates the exact number of times
the regular expression is to be applied. The value {m,} is
analogous to {m,infinity}. The plus (+) and star (.)
operations are equivalent to {l,} and to,} respectively.

(•••)$n The value of the enclosed regular expression is to be
returned. The value will be stored in the (n + l)th argu­
ment following the subject argument. At most ten
enclosed regular expressions are allowed. Regex makes
its assignments unconditionally.

(..•) Parentheses are used for grouping. An operator, e.g., .,
+, {}, can work on a single character or a regular
expression enclosed in parentheses. For example,
(a* (cb+) *)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor == regex«ptr == regcmp(II"\n", 0», cursor);
free(ptr);

This example will match a leading new-line in the subject string
pointed at by cursor.

Example 2:
char retO[9];
char .newcursor, *name;

name == regcmp("([A-Za-z][A-za-zO-9J{0,7})$O", 0);
newcursor == regex(name, "123Testing321 ", retO);

This example will match through the string "Testing3" and will
return the address of the character after the last matched charac­
ter (cursor+ 11). The string "Testing3" will be copied to the char­
acter array retO.

Example 3:
#include "file.i"
char .string, .newcursor;

newcursor == regex (name, string);

UNIX Programmer's Manual System Calls and Library Routines-277

REGCMP(3X) REGCMP(3X)

This example applies a precompiled regular expression in file.i (see
regcmp(1» against string.

This routine is kept in /lib/libPW.a.

SEE ALSO
malloc(3C) .

BUGS

ed(l), regcmp(l) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The fol­
lowing user-supplied replacement for maUoc (3C) reuses the same
vector saving time and space:

/. user's program ./

char·
malloc(n)
unsigned n;
{

static char rebufi512];
return (n < = sizeof rebuf) ? rebuf : NULL;

278-System Calls and Library Routines UNIX Programmer's Manual

SPUTL(3X) SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent
fashion.

SYNOPSIS
void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char * buffer;

DESCRIPTION
Sputl takes the four bytes of the long integer value and places
them in memory starting at the address pointed to by buffer. The
ordering of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address
pointed to by buffer and returns the long integer value in the byte
ordering of the host machine.

The combination of sputl and sgetl provides a machine­
independent way of storing long numeric data in a file in binary
form without conversion to characters.

A program which uses these functions must be loaded with the
object-file access routine library Iibld.a.

UNIX Programmer's Manual System Calls and Library Routines-279

VPRINTF(3X) VPRINTF(3X)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs
argument list

SYNOPSIS
#include < stdio.h >
#include < varargs.h >
int vprintf (format, ap)
char .format;
vaJist ap;

int vfprintf (stream, format, ap)
FILE • stream;
char .format;
vaJist ap;

int vsprintf (s, format, ap)
char .s, • format;
vaJist ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and
sprintf respectively, except that instead of being called with a vari­
able number of arguments, they are called with an argument list
as defined by varargs (5).

EXAMPLE
The following demonstrates how vfprintf could be used to write an
error routine.

#include < stdio.h >
#include <varargs.h>

* error should be called like
* error (function_name, format, argl, arg2 .. ,);
*/

/*V ARARGSO*/
void
error (va _ alist)
/* Note the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

280-System Calls and Library Routines UNIX Programmer's Manual

VPRINTF(3X)

SEE ALSO

va Jist args;
char .fmt;

va _start (args);

VPRINTF (3X)

/. print out name of function causing error ./
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char .»;
fmt - va_arg(args, char .);
/. print out remainder of message ./
(voidhfprintf(fmt, args);
va _end (args) ;
(void)abort();

printf(3S), varargs(S).

UNIX Programmer's Manual System Calls and Library Routines-281

ABORT(3F)

NAME
abort - terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION

ABORT (3F)

Abort terminates the program which calls it, closing all open files
truncated to the current position of the file pointer. The abort
usually results in a core dump.

DIAGNOSTICS
When invoked, abort prints "Fortran abort routine called" on the
standard error output. The message "abort - core dumped" is sent
to the terminal.

SEE ALSO
abort (3 C) .

UNIX Programmer's Manual System Calls and Library Routines-283

ABS (3F) ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs - Fortran absolute value

SYNOPSIS
integer ii, i2
real rt, r2
double precision dpt, dp2
complex cxt, cx2
double complex dxt, dx2

r2 = abs(rt)

i2 = iabsOt)
i2 = absOt)

dp2 = dabs(dpt)
dp2 = abs(dpt)

cx2 = cabs (cxt)
cx2 = abs(cxt)

dx2 = zabs(dxt)
dx2 = abs(dxt)

DESCRIPTION
Abs is the family of absolute value functions. labs returns the
integer absolute value of its integer argument. Dabs returns the
double-precision absolute value of its double-precision argument.
Cabs returns the complex absolute value of its complex argument.
Zabs returns the double-complex absolute value of its double­
complex argument. The generic form abs returns the type of its
argument.

SEE ALSO
ftoor(3M).

284-System Calls and Library Routines UNIX Programmer's Manual

ACOS(3F) ACOS(3F)

NAME
acos, dacos - Fortran arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = acos(r1)

dp2 = dacos(dp1)
dp2 = acos (dp 1)

DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos
returns the double-precision arccosine of its double-precision argu­
ment. The generic form acos may be used with impunity as its
argument will determine the type of the returned value.

SEE ALSO
trig(3M).

UNIX Programmer's Manual System Calls and Library Routines-285

AIMAG(3F) AIMAG(3F)

NAME
aimag, dimag - Fortran imaginary part of complex argument

SYNOPSIS
real r
complex cxr
double precision dp
double complex cxd

r = aimag(cxr)

dp = dimag(cxd)

DESCRIPTION
Aimag returns the imaginary part of its single-precision complex
argument. Dimag returns the double-precision imaginary part of
its double-complex argument.

286-System Calls and Library Routines UNIX Programmer's Manual

AINT(3F) AINT(3F)

NAME
aint, dint - Fortran integer part intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = aint(rt)

dp2 = dint(dpl)
dp2 = aint(dpt)

DESCRIPTION
Aint returns the truncated value of its real argument in a real.
Dint returns the truncated value of its double-precision argument
as a double-precision value. Aint may be used as a generic func­
tion name, returning either a real or double-precision value
depending on the type of its argument.

UNIX Programmer's Manual System Calls and Library Routines-287

ASIN(3F) ASIN(3F)

NAME
asin, dasin - Fortran arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = asin (r 1)

dp2 = dasin(dp1)
dp2 = asin(dp1)

DESCRIPTION
Asin returns the real arcsine of its real argument. Dasin returns
the double-precision arcsine of its double-precision argument. The
generic form asin may be used with impunity as it derives its type
from that of its argument.

SEE ALSO
trigOM).

288-System Calls and Library Routines UNIX Programmer's Manual

ATAN(3F) ATAN(3F)

NAME
atan, datan - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = atan (r 1)

dp2 = datan(dpl)
dp2 = atan(dp1)

DESCRIPTION
Atan returns the real arctangent of its real argument. Datan
returns the double-precision arctangent of its double-precision
argument. The generic form atan may be used with a double­
precision argument returning a double-precision value.

SEE ALSO
trig(3M).

UNIX Programmer's Manual System Calls and Library Routines-289

ATAN2(3F) ATAN2(3F)

NAME
atan2, datan2 - Fortran arctangent intrinsic function

SYNOPSIS
real rl, r2, r3
double precision dpl, dp2, dp3

r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)
dp3 = atan2(dpl, dp2)

DESCRIPTION
Atan2 returns the arctangent of argllarg2 as a real value. Datan2
returns the double-precision arctangent of its double-precision
arguments. The generic form atan2 may be used with impunity
with double-precision arguments.

SEE ALSO
trigOM).

290-System Calls and Library Routines UNIX Programmer's Manual

BOOL(3F) BOOL(3F)

NAME
and, or, xor, not, lshift, rshift - Fortran Bitwise Boolean functions

SYNOPSIS
integer i, j, k
real a, b, c

k = andO, j)
c = orCa, b)
j = xorO, a)
j = notCH
k = lshift 0, j)
k ~ rshiftO, j)

DESCRIPTION

NOTE

BUGS

The generic intrinsic Boolean functions and, or and xor return the
value of the binary operations on their arguments. Not is a unary
operator returning the one's complement of its argument. Lshift
and rshift return the value of the first argument shifted left or
right, respectively, the number of times specified by the second
(integer) argument.

The Boolean functions are generic; that is, they are defined for all
data types as arguments and return values. Where required, the
compiler will generate appropriate type conversions.

Although defined for all data types, use of Boolean functions on
any but integer data is bizarre and will probably result in unex­
pected consequences.

The implementation of the shift functions may cause large shift
values to deliver weird results.

SEE ALSO
mil(3F).

UNIX Programmer's Manual System Calls and Library Routines-291

CONJG(3F) CONJG(3F)

NAME
conjg, dconjg - Fortran complex conjugate intrinsic function

SYNOPSIS
complex cxt, cx2
double complex dxl, dx2

cx2 = conjg(cxt)

dx2 = dconjg(dxl)

DESCRIPTION
Conjg returns the complex conjugate of its complex argument.
Dconjg returns the double-complex conjugate of its double­
complex argument.

292-System Calls and Library Routines UNIX Programmer's Manual

COS (3F) COS(3F)

NAME
cos, dcos, ccos - Fortran cosine intrinsic function

SYNOPSIS
real rt, r2
double precision dpt, dp2
complex cxt, cx2

r2 = cos(rt)

dp2 = dcos(dpt)
dp2 = cos(dpt)

cx2 = ccos(cxt)
cx2 = cos(cxt)

DESCRIPTION
Cos returns the real cosine of its real argument. Dcos returns the
double-precision cosine of its double-precision argument. Ccos
returns the complex cosine of its complex argument. The generic
form cos may be used with impunity as its returned type is deter­
mined by that of its argument.

SEE ALSO
trig (3M) .

UNIX Programmer's Manual System Calls and Library Routines-293

COSH (3F) COSH (3F)

NAME
cosh, dcosh - Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = cosh(rl)

dp2 = dcosh(dpt)
dp2 = cosh(dpt)

DESCRIPTION
Cosh returns the real hyperbolic cosine of its real argument.
Dcosh returns the double-precision hyperbolic cosine of its
double-precision argument. The generic form cosh may be used to
return the hyperbolic cosine in the type of its argument.

SEE ALSO
sinh(3M).

294-System Calls and Library Routines UNIX Programmer's Manual

DIM(3F)

NAME
dim, ddim, idim - positive difference intrinsic functions

SYNOPSIS
integer at, a2, a3
a3 = idim(at, a2)

real at, a2, a3
a3 = dim(at, a2)

double precision at, a2, a3
a3 = ddim(at, a2)

DESCRIPTION
These functions return:

a 1 -a2 if a 1 > a2
o if al <= a2

DIM (3F)

UNIX Programmer's Manual System Calls and Library Routines-295

DPROD(3F)

NAME
dprod - double precision product intrinsic function

SYNOPSIS
real aI, a2

double precision a3

a3 = dprod(al, a2)

DESCRIPTION

DPROD(3F)

Dprod returns the double precision product of its real arguments.

296-System Calls and Library Routines UNIX Programmer's Manual

EXP(3F) EXP(3F)

NAME
exp, dexp, cexp - Fortran exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 - expert)

dp2 - dexp(dpl)
dp2 exp(dpt)

cx2 cexp(cxt)
cx2 exp(cxl)

DESCRIPTION
Exp returns the real exponential function eX of its real argument.
Dexp returns the double-precision exponential function of its
double-precision argument. Cexp returns the complex exponential
function of its complex argument. The generic function exp
becomes a call to dexp or cexp as required, depending on the type
of its argument.

SEE ALSO
exp(3M).

UNIX Programmer's Manual System Calls and Library Routines-297

FTYPE(3F) FTYPE(3F)

NAME
int, ifix, idint, real, float, sngl, dble, cmplx, dcmplx, ichar, char -
explicit Fortran type conversion

SYNOPSIS
integer i, j
real r, s
double precision dp, dq
complex cx
double complex dcx
character.1 ch

int(r)
= int(dp)
= int(cx)
= int(dcx)
= ifix(r)

idint(dp)

r = real (0
r = real (dp)
r = reaJ(cx)
r = real (dcx)
r = f1oat(j)
r = sngJ(dp)

dp = dble(j)
dp = dble(r)
dp dble(cx)
dp = dble(dcx)

cx cmplx(j)
cx = cmplx(j, j)
cx = cmplx(r)
cx cmplx(r, s)
cx = cmplx(dp)
ex ~ cmplx(dp, dq)
cx = cmplx(dcx)

dcx = dcmplx(O
dcx = dcmplx (j, j)
dcx = dcmplx(r)
dcx = dcmplx(r, s)
dcx = dcmplx(dp)
dcx = dcmplx (dp, dq)
dcx dcmplx(cx)

298-System Calls and Library Routines UNIX Programmer's Manual

FTYPE(3F)

i = ichar(ch)
ch = char(i)

DESCRIPTION

FTYPE(3F)

These functions perform conversion from one data type to another.

The function iot converts to integer form its real, double precision,
complex, or double complex argument. If the argument is real or
double precision, iot returns the integer whose magnitude is the
largest integer that does not exceed the magnitude of the argument
and whose sign is the same as the sign of the argument (i.e. trun­
cation). For complex types, the above rule is applied to the real
part. ifix and idiot convert only real and double precision argu­
ments respectively.

The function real converts to real form an integer, double preci­
sion, complex, or double complex argument. If the argument is
double precision or double complex, as much precision is kept as
is possible. If the argument is one of the complex types, the real
part is returned. float and sogl convert only integer and double
precision arguments respectively.

The function dble converts any integer, real, complex, or double
complex argument to double precision form. If the argument is of
a complex type, the real part is returned.

The function cmplx converts its integer, real, double precision, or
double complex argument (s) to complex form.

The function dcmplx converts to double complex form its integer,
real, double precision, or complex argument(s).

Either one or two arguments may be supplied to cmplx and
dcmplx . If there is only one argument, it is taken as the real part
of the complex type and an imaginary part of zero is supplied. If
two arguments are supplied, the first is taken as the real part and
the second as the imaginary part.

The function ichar converts from a character to an integer depend­
ing on the character's position in the collating sequence.

The function char returns the character in the ith position in the
processor collating sequence where i is the supplied argument.

UNIX Programmer's Manual System Calls and Library Routines-299

FTYPE(3F)

For a processor capable of representing n characters,

ichar (char (i)) = i for 0 ~ i < n, and

FTYPE(3F)

char (ichar (ch)) = ch for any representable character ch.

300-System Calls and Library Routines UNIX Programmer's Manual

GETARG(3F)

NAME
getarg - return Fortran command-line argument

SYNOPSIS
character-N c
integer i

call getarg(i, c)

DESCRIPTION

GETARG(3F)

Getarg returns the i-th command-line argument of the current
process. Thus, if a program were invoked via

foo arg t arg2 arg3

getarg(2, c) would return the string "arg2" in the character vari­
able c.

SEE ALSO
getopt (3C).

UNIX Programmer's Manual System Calls and Library Routines-30t

GETENV(3F)

NAME
getenv - return Fortran environment variable

SYNOPSIS
character. N c

call getenv("VARIABLE_NAME", c)

DESCRIPTION

GETENV(3F)

Getenv returns the character-string value of the environment vari­
able represented by its first argument into the character variable of
its second argument. If no such environment variable exists, all
blanks will be returned.

SEE ALSO
getenv(3C), environ (5) .

302-System. Calls and Library Routines UNIX Programmer' s Manual

IARGC(3F) IARGC(3F)

NAME
iargc - return the number of command line arguments

SYNOPSIS
integer i

i = iargc()

DESCRIPTION
The iargc function returns the number of command line arguments
passed to the program. Thus, if a program were invoked via

foo argl arg2 arg3

iargc () would return 3.

SEE ALSO
getarg (3 F) .

UNIX Programmer's Manual System Calls and Library Routines-303

INDEX (3F) INDEX (3F)

NAME
index - return location of Fortran substring

SYNOPSIS
character. NI chI
character. N2 ch2
integer i

i = index(chI, ch2)

DESCRIPTION
Index returns the location of substring ch2 in string chI. The
value returned is the position at which substring ch2 starts, or 0 if
it is not present in string chI. If N2 is greater than N 1, a zero is
returned.

304-System Calls and Library Routines UNIX Programmer's Manual

LEN (3F)

NAME
len - return length of Fortran string

SYNOPSIS
character. N ch
integer i

i == len(ch)

DESCRIPTION
Len returns the length of string ch.

LEN (3F)

UNIX Programmer's Manual System Calls and Library Routines-305

LOG (3F) LOG(3F)

NAME
log, alog, dlog, clog - Fortran natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxt, cx2

r2 == alog(rt)
r2 == log(rt)

dp2 == dlog(dpt)
dp2 log (dpt)

cx2 == cIog(cxt)
cx2 == log(cxt)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog
returns the double-precision natural logarithm of its double­
precision argument. Clog returns the complex logarithm of its
complex argument. The generic function log becomes a call to
a log , dlog, or clog depending on the type of its argument.

SEE ALSO
exp(3M).

306-System Calls and Library Routines UNIX Programmer's Manual

LOGIO(3F) LOGIO(3F)

NAME
logIO, alogIO, dlogIO - Fortran common logarithm intrinsic func­
tion

SYNOPSIS
real rl, r2
double precision dp 1, dp2

r2 = alogl0(rt)
r2 = logI0(rt)

dp2 = dlogl0(dpt)
dp2 = logI0(dpl)

DESCRIPTION
AlogIO returns the real common logarithm of its real argument.
DlogIO returns the double-precision common logarithm of its
double-precision argument. The generic function logIO becomes a
call to alogIO or dlogIO depending on the type of its argument.

SEE ALSO
exp(3M).

UNIX Programmer's Manual System Calls and Library Routines-307

MAX(3F) MAX (3F)

NAME
max, maxO, amaxO, maxI, amaxI, dmaxI - Fortran maximum­
value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = max(j, j,k)
c = max(a, b)
dp = max (a, b, c)
k = maxO(i, j)
a = amaxO(j, j, k)
i = maxI (a, b)
d = amaxl (a, b, c)
dp3 = dmaxl (dpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their argu­
ments (of which there may be any number). Max is the generic
form which can be used for all data types and takes its return type
from that of its arguments (which must all be of the same type).
MaxO returns the integer form of the maximum value of its
integer arguments; amaxO, the real form of its integer arguments;
maxI, the integer form of its real arguments; amaxI, the real
form of its real arguments; and dmaxI, the double-precision form
of its double-precision arguments.

SEE ALSO
min(3F).

308-System Calls and Library Routines UNIX Programmer's Manual

MCLOCK(3F)

NAME
mclock - return Fortran time accounting

SYNOPSIS
integer i

i = mclock()

DESCRIPTION

MCLOCK(3F)

Mclock returns time accounting information about the current
process and its child processes. The value returned is the sum of
the current process's user time and the user and system times of
all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

UNIX Programmer's Manual System Calls and Library Routines-309

MIL(3F) MIL(3F)

NAME
ior, iand, not, ieor, ishft, ishftc, ibits, btest, ibset, ibclr, mvbits -
bit field manipulation intrinsic functions and subroutines from the
Fortran Military Standard (MIL-STD-1753).

SYNOPSIS
integer i, k, I, m, n, len
logical b

ior(m, n)
iand(m, n)

= not(m)
ieor(m, n)
ishft(m, k)

= ishftc (m, k, len)
i ibits(m, k, len)
b = btest(n, k)
i = ibsetCn, k)
i = ibclr (n, k)
call mvbits(m, k, len, n, n

DESCRIPTION
ior, iand, not, ieor - return the same results as and, or, not, xor
as defined in boo[(3F).

ish/t, ish/te - m specifies the integer to be shifted. k specifies the
shift count. k > 0 indicates a left shift. k = 0 indicates no shift.
k < 0 indicates a right shift. In ish/t, zeros are shifted in. In
ish/te, the rightmost len bits are shifted circularly k bits. If k is
greater than the machine word-size, ish/te will not shift.

Bit fields are numbered from right to left and the rightmost bit
position is zero. The length of the len field must be greater than
zero.

ibits - extract a subfield of len bits from m starting with bit posi­
tion k and extending left for len bits. The result field is right
justified and the remaining bits are set to zero.

btest - The kth bit of argument n is tested. The value of the
function is .TRUE. if the bit is 1 and .FAISE. if the bit is O.

ibset - the result is the value of n with the kth bit set to 1.

ibclr - the result is the value of n with the kth bit set to O.

310-System Calls and Library Routines UNIX Programmer's Manual

MIL(3F) MIL(3F)

mvbits - len bits are moved beginning at position k of argument m
to position I of argument n.

SEE ALSO
bool(3f) .

UNIX Programmer's Manual System Calls and Library Routines-311

MIN(3F) MIN(3F)

NAME
min, minO, aminO, minI, aminI, dminI - Fortran minimum-value
functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dpl, dp2, dp3

I = minH, j, k)
c = min(a, b)
dp = min (a, b, c)
k = minO 0, j)
a = aminO 0, j, k)
i = minI (a, b)
d = aminl (a, b, c)
dp3 = dminl (dpl, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their argu­
ments (of which there may be any number). Min is the generic
form which can be used for all data types and takes its return type
from that of its arguments (which must all be of the same type).
MinO returns the integer form of the minimum value of its integer
arguments; aminO, the real form of its integer arguments; mini,
the integer form of its real arguments; amini, the real form of its
real arguments; and dmini, the double-precision form of its
double-precision arguments.

SEE ALSO
max(3F).

3I2-System Calls and Library Routines UNIX Programmer's Manual

MOD(3F) MOD(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k == modO, j)

r3 == amod(rl, r2)
r3 == mod (rl, r2)

dp3 == dmod(dpl, dp2)
dp3 == mod(dpl, dp2)

DESCRIPTION
Mod returns the integer remainder of its first argument divided by
its second argument. Amod and dmod return, respectively, the
real and double-precision whole number remainder of the integer
division of their two arguments. The generic version mod will
return the data type of its arguments.

UNIX Programmer's Manual System Calls and Library Routines-313

RAND (3F) RAND(3F)

NAME
irand, rand, srand - random number generator

SYNOPSIS
integer iseed, i, irand
double precision x, rand

call srand (iseed)

i == irand()

x == rand()

DESCRIPTION
[rand generates successive pseudo-random integers in the range
from 0 to 2**15-1. Rand generates pseudo-random numbers dis­
tributed in [0, 1.01. Srand uses its integer argument to re­
initialize the seed for successive invocations of irand and rand.

SEE ALSO
rand(3C).

314-System Calls and Library Routines UNIX Programmer's Manual

ROUND (3F) ROUND (3F)

NAME
anint, dnint, nint, idnint - Fortran nearest integer functions

SYNOPSIS
integer i
real rl, r2
double precision dpl, dp2

r2 = anint(rl)
i = nint(rl)

dp2 = anint(dpl)
dp2 = dnint(dpl)

i = nint(dpl)
i = idnint(dpl)

DESCRIPTION
Anint returns the nearest whole real number to its real argument
(i.e., int(a+O.S) if a ~ 0, int(a-O.S) otherwise). Dnint does the
same for its double-precision argument. Nint returns the nearest
integer to its real argument. Idnint is the double-precision version.
Anint is the generic form of anint and dnint , performing the same
operation and returning the data type of its argument. Nint is
also the generic form of idnint.

UNIX Programmer's Manual System Calls and Library Routines-31S

SIGN (3F) SIGN (3F)

NAME
sign, isign, dsign - Fortran transfer-of-sign intrinsic function

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dp I, dp2, dp3

k = isign 0, j)
k = sign(i, j)

r3 = sign(rl, r2)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION
/sign returns the magnitude of its first argument with the sign of
its second argument. Sign and dsign are its real and double­
precision counterparts, respectively. The generic version is sign
and will devolve to the appropriate type depending on its argu­
ments.

316-System Calls and Library Routines UNIX Programmer's Manual

SIGNAL (3F) SIGNAL (3F)

NAME
signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i, intfc
external intfc

call signaHi, intfc}

DESCRIPTION
The argument i specifies the signal to be caught. Signal allows a
process to specify a function to be invoked upon receipt of a
specific signal. The first argument specifies which fault or excep­
tion. The second argument specifies the function to be invoked.
NOTE: The interrupt processing function, intfc, does not take an
argument.

SEE ALSO
kill (2), signal (2) .

UNIX Programmer's Manual System Calls and Library Routines-317

SIN(3F) SIN(3F)

NAME
sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS
real rt, r2
double precision dpt, dp2
complex cxt, cx2

r2 = sin(rt)

dp2 = dsin(dpt)
dp2 = sin(dpt)

cx2 csin(cxt)
cx2 = sin(cxt)

DESCRIPTION
Sin returns the real sine of its real argument. Dsin returns the
double-precision sine of its double-precision argument. Csin
returns the complex sine of its complex argument. The generic sin
function becomes dsin or csin as required by argument type.

SEE ALSO
trigOM).

3I8-System Calls and Library Routines UNIX Programmer's Manual

SINH(3F) SINH(3F)

NAME
sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rt)

dp2 = dsinh(dpt)
dp2 = sinh(dpt)

DESCRIPTION
Sinh returns the real hyperbolic sine of its real argument. Dsinh
returns the double-precision hyperbolic sine of its double-precision
argument. The generic form sinh may be used to return a
double-precision value when given a double-precision argument.

SEE ALSO
sinh(3M).

UNIX Programmer's Manual System Calls and Library Routines-319

SQRT(3F) SQRT(3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2 = sqrt(rl)

dp2 = dsqrtCdpl)
dp2 = sqrt(dpl)

cx2 = csqrt(cxl)
cx2 sqrt(cxl)

DESCRIPTION
Sqrt returns the real square root of its real argument. Dsqrt
returns the double-precision square root of its double-precision
argument. Csqrt returns the complex square root of its complex
argument. Sqrt, the generic form, will become dsqrt or csqrt as
required by its argument type.

SEE ALSO
exp(3M).

320-System Calls and Library Routines UNIX Programmer's Manual

STRCMP(3F) STRCMP(3F)

NAME
Ige, Igt, lIe, lIt - string comparison intrinsic functions

SYNOPSIS
character*N aI, a2
logical I

I Ige(al, a2)
I = Igt(al, a2)
I Ue(al, a2)
I = Udal, a2)

DESCRIPTION
These functions return .TRUE. if the inequality holds and .F ALSE.
otherwise.

UNIX Programmer's Manual System Calls and Library Routines-321

SYSTEM(3F)

NAME
system - issue a shell command from Fortran

SYNOPSIS
character. N c

call system(c)

DESCRIPTION

SYSTEM (3F)

System causes its character argument to be given to sh (1) as
input, as if the string had been typed at a terminal. The current
process waits until the shell has completed.

SEE ALSO
exec (2) , system (3S).
sh(1) in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

322-System Calls and Library Routines UNIX Programmer's Manual

TAN (3F) TAN (3F)

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tan(rt)

dp2 = dtan(dpt)
dp2 = tan(dpl)

DESCRIPTION
Tan returns the real tangent of its real argument. Dtan returns
the double-precision tangent of its double-precision argument. The
generic tan function becomes dtan as required with a double­
precision argument.

SEE ALSO
trig(3M).

UNIX Programmer's Manual System Calls and Library Routines-323

TANH (3F) TANH (3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = tanb(rl)

dp2 = dtanb(dpt)
dp2 = tanb(dpt)

DESCRIPTION
Tanh returns the real hyperbolic tangent of its real argument.
Dtanh returns the double-precision hyperbolic tangent of its
double-precision argument. The generic form tanh may be used to
return a double-precision value given a double-precision argument.

SEE ALSO
sinh(3M).

324-System Calls and Library Routines UNIX Programmer's Manual

INTRO(4) INTRO(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct
declarations for the file formats are given where applicable. Usu­
ally, these structures can be found in the directories /usr/include
or /usr /include/sys.

References of the type name (1 M) refer to entries found in Section
1 of the UNIX Programmer's Manual-Volume 3: System
Administration Facilities. References of the type Name(1) refer
to entries found in Section 1 of the UNIX Programmer's
M anual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-325

A.OUT(4) A.OUT(4)

NAME
a.out - common assembler and link editor output

DESCRIPTION
The file name a.out is the output file from the assembler as (1) and
the link editor ld(1). Both programs will make a.out executable if
there were no errors in assembling or linking and no unresolved
external references.

A common object file consists of a file header, a UNIX system
header, a table of section headers, relocation information,
(optional) line numbers, a symbol table, and a string table. The
order is given below.

File header.
UNIX system header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last three parts of an object file (line numbers, symbol table,
and string table) may be missing if the program was linked with
the -s option of ld (1) or if they were removed by strip (1). Also
note that the relocation information will be absent if there were no
unresolved external references after linking. The string table exists
only if the symbol table contains symbols with names longer than
eight characters.

The sizes of each section (contained in the header, discussed
below) are in bytes and are even.

When an a.out file is loaded into memory for execution, three logi­
cal segments are set up: the text segment, the data segment {ini­
tialized data followed by uninitialized, the latter actually being

326-System Calls and Library Routines UNIX Programmer's Manual

A.OUT(4) A.OUT(4)

initialized to all O's), and a stack. On the 3B20 computers and
other machines the text segment starts at location 0 in the core
image or at the beginning of the next virtually addressable block
past location O. Any reference to 0 causes a memory fault (see the
-z option of fd(l). On the 3B5 or 3B2 computers the text seg­
ment starts at location Ox80800000.

The a.out file produced by fd (1) by default has a number called
the magic number 0413 in the first field of the UNIX system
header. The headers (file header, UNIX system header, and sec­
tion headers) are loaded at the beginning of the text segment and
the text immediately follows the headers in the user address space.
The first text address will equal the size of the headers, and will
vary depending upon the number of section headers in the a.out
file.

In an a.out file with three sections Ctext, .data, and .bss), the first
text address is at OxA8 on most machines, OxBO on the 3B20 com­
puter, and Ox808000A8 on the 3B5 computer and 3B2 computer.
The text segment is not writable by the program; if other processes
are executing the same a.out file, the processes will share a single
text segment.

The data segment starts at the next segment boundary (I28k on
the 3B20, 512k on the 3B5 and 3B2 computers) past the last text
address. The first data address is determined by the following: If
an a.out file were split into 8k chunks, one of the chunks would
contain both the end of text and the beginning of data. When the
core image is created, that chunk will appear twice; once at the
end of text and once at the beginning of data (with some unused
space in between). The duplicated chunk of text that appears at
the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the
page size without having to realign the beginning of the data sec­
tion to a page boundary. Therefore the first data address is the
sum of the next segment boundary past the end of text plus the
remainder of the last text address divided by 8k.

On the 3B20 computer a magic number of 0410 or 0407 in the
UNIX system header indicates that the file was produced by a link
editor from an earlier release of the UNIX system. An a.out file
with either of these magic numbers will still be executable,
although support for files with the magic number 0407 may be
dropped in a future release. The magic number 0407 indicates
that the text segment is not write-protected or shared, and the

UNIX Programmer's Manual System Calls and Library Routines-327

A.OUT(4) A.OUT(4)

data segment is contiguous with the text segment. If the magic
number is 0410, the text segment is write-protected and sharable.
In both of these types of a.out files, the header is not loaded; the
text segment starts at location 0 in the core image.

On the 3B20 computer, the stack begins at the end of the data sec­
tion and grows toward higher addresses. On the 3B2 computer the
stack begins at location OxC0020000 and grows toward higher
addresses. On the 3B5 computer the stack begins at location
OxFOOOOO and grows toward higher addresses. The maximum
stack size on the 3B5 computer is 512k. On some computers, the
stack begins at the end of memory and grows toward lower
addresses. On some other machines the stack is automatically
extended as required. The data segment is extended only as
requested by the brk (2) system call.

The value of a word in the text or data portions that is not a refer­
ence to an undefined external symbol is exactly the value that will
appear in memory when the file is executed. If a word in the text
involves a reference to an undefined external symbol, the storage
class of the symbol-table entry for that word will be marked as an
"external symbol", and the section number will be set to O. When
the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the word
in the file.

File Header
The format of the filehdr header is

struct filehdr
{

};

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
fJlags;

1* magic number *1
1* number of sections *1
1* time and date stamp *1
1* file ptr to symtab *1
1* # symtab entries *1
1* sizeof(opt hdr) *1
1* flags *1

328-System Calls and Library Routines UNIX Programmer's Manual

A.OUT(4) A.OUT(4)

UNIX System Header
The format of the UNIX system header on all machines other than
the 3B20 computer is

typedef struct aouthdr
{

short
short
long
long
long
long
long
long

} AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
entry;
text_start;
data_start;

/* magic number */
/* version stamp */
/* text size in bytes, padded */
/* initialized data (.data) */
/* uninitialized data (.bss) */
/* entry point */
/* base of text used for this file */
/* base of data used for this file */

The format of the 3B20 computer UNIX system header is

typedef struct aouthdr
{

short
short
long
long
long
long
long
long
long
long

} AOUTHDR;

magic;
vstamp;
tsize;
dsize;
bsize;
dum1;
dum2;
entry;
text _start;
data_start;

UNIX Programmer's Manual

/* magic number */
/* version stamp */
/* text size in bytes, padded */
/* initialized data (.data) */
/* uninitialized data (.bss) */
/* unused fill space included */
/* for historical reasons */
/* entry point */
/* base of text used for this file */
/* base of data used for this file */

System Calls and Library Routines-329

A.OUT(4) A.OUT(4)

Section Header
The format of the section header is

struct scnhdr
{

};

Relocation

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_name[SYMNMLEN];I* section name *1
s--.paddr; 1* physical address *1
s _ vaddr; I * virtual address * I
s_size;
s_scnptr;
sJelptr;
sJnnoptr;
s_nreloc;
s_nlnno;
s_flags;

I * section size *1
1* file ptr to raw data *1
1* file ptr to relocation *1
1* file ptr to line numbers *1
1* # reloc entries *1
1* # line number entries *1
1* flags *1

Object files have one relocation entry for each relocatable refer­
ence in the text or data. If relocation information is present, it
will be in the following format:

struct reloc
{

long r_vaddr; 1* (virtual) address of reference *1
long r_symndx; 1* index into symbol table *1
short r_type; 1* relocation type *1

};

The start of the relocation information is S Jelptr from the section
header. If there is no relocation information, sJelptr is o.

330-System Calls and Library Routines UNIX Programmer's Manual

A.OUT(4) A.OUT(4)

Symbol Table
The format of each symbol in the symbol table is

#define SYMNMLEN 8
#define FILNMLEN 14
#define SYMESZ 18 /* the size of a SYMENT * /

struct syment
{

};

union
{

char
struct
{

long
long

_ny;
char

} _n;
unsigned long
short
unsigned short
char
char

#define n _name
#define n _zeroes
#define n offset
#define n _ nptr

/... get a symbol name * /

_n_namdSYMNMLEN]; /* name of symbol */

_n_zeroes;
_n_offset;

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

/* == OL if in string table */
/* location in string table */

/* allows overlaying */

/* value of symbol */
/* section number */
/ * type and derived type * /
/* storage class */
/* number of aux entries */

n. n name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptrll]

Some symbols require more information than a single entry; they
are followed by auxiliary entries that are the same size as a sym­
bol entry. The format follows.

UNIX Programmer's Manual System Calls and Library Routines-331

A.OUT(4) A.OUT(4)

union auxent {
struet {

};

long x _ tagndx;
union {

struet {
unsigned short x Jnno;
unsigned short x -.size;

} xJnsz;
long x _fsize;

} x mise;
un~n {

struet {
long x Jnnoptr;
long x_endndx;

} x fen;
stru~t {

unsigned short x_dimen[DIMNUM);
} x_ary;

} x_fenary;
unsigned short x _tvndx;

} x_sym;

struet {
ehar x _fname[FILNMLEN);

} x_file;

struet {
long x _senlen;
unsigned short x _ nreloe;
unsigned short x _ nlinno;

} x_sen;

struet {
long

} x_tv;

unsigned short
unsigned short

x_tvfill;
x tvlen;
x=tvran[2);

332-System Calls and Library Routines UNIX Programmer's Manual

A.OUT(4) A.OUT(4)

Indexes of symbol table entries begin at zero. The start of the
symbol table is f_symptr (from the file header) bytes from the
beginning of the file. If the symbol table is stripped, f_symptr is O.
The string table (if one exists) begins at f_symptr + (f_nsyms *
SYMESZ) bytes from the beginning of the file.

SEE ALSO
brk(2) , filehdr(4) , Idfcn(4) , linenum(4) , reloc(4) , scnhdr(4) ,
syms(4).
as(t), ccO), ld(t) in the UNIX Programmer's Manual-Volume
1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-333

ACCT(4) ACCT(4)

NAME
acct· - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
Files produced as a result of calling acct (2) have records in the
form defined by < sys/acct.h > , whose contents are:

typedef ushort comp_t; /* "floating point" */
/* 13-bit fraction, 3-bit exponent */

struct acct

char ac_flag; /* Accounting flag */
char ac_stat; /* Exit status */
ushort ac_uid;
ushort ac~id;

dev t ac_tty;
time_t ac_btime; / * Beginning time * /
comp_t ac_utime; /* acctng user time in clock ticks */
comp_t ac_stime; / * acctng system time in clock ticks * /
comp_t ac_etime; /* acctng elapsed time in clock ticks */
comp_t ac_mem; / * memory usage in clicks * /
comp_t acJo; /* chars trnsfrd by read/write */
comp_t aCJw; /* number of block reads/writes */
char ac_comm[S]; /* command name */

};

extern struct
extern struct

acct
inode

#define AFORK 01
#define ASU 02
#define . ACCTF 0300

acctbuf;
acctp; / inode of accounting file */

/* has ;executed fork, but no exec */
/* used super-user privileges */
/* record type: 00 - acct */

In ac flag, the AFORK flag is turned on by each fork (2) and
turned off by an exec (2). The ac _comm field is inherited from the
parent process and is reset by any exec. Each time the 'system
charges the process with a clock tick, it also adds to ac_mem the
current process size, computed as follows:
(data size) + (text size) / (number of in-core processes using text)

334-System Calls and Library Routines UNIX Programmer's Manual

ACCT(4) ACCT(4)

The value of ac _ mem / (ac _stime + ac _utime) can be viewed as an
approximation to the mean process size, as modified by text­
sharing.

The structure tacct.h, which resides with the source files of the
accounting commands, represents the total accounting format used
by the various accounting commands:

/.
• total accounting (for acct period), also for day
./

struct tacct {
uid_t ta_uid; /- userid ./
char taJlame[S]; /- login name ./
float ta_cpu[2]; /- cum. cpu time, p/np (mins) ./
float ta_kcore[2]; /- cum kcore-minutes, p/np ./
float ta_con[2]; /- cum. connect time, p/np, mins ./
float ta_du; /- cum. disk usage -/
long ta...,pc; /- count of processes ./
unsigned short ta_sc; /. count of login sessions ./
unsigned short ta_dc; /- count of disk samples ./
unsigned short taJee; /- fee for special services ./

};

SEE ALSO

BUGS

acct (2), exec (2), fork (2) .
acct(1M) in the UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.
acctcom(1) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

The ac_mem value for a short-lived command gives little informa­
tion about the actual size of the command, because ac_mem may
be incremented while a different command (e.g., the shell) is being
executed by the process.

UNIX Programmer's Manual System Calls and Library Routines-335

AR(4) AR(4)

NAME
ar - common archive file format

DESCRIPTION
The archive command ar(I) is used to combine several files into
one. Archives are used mainly as libraries to be searched by the
link editor ld(I).

Each archive begins with the archive magic string.

#define ARMAG "!<arch>\n"
#define SARMAG 8

/* magic string */
/* length of magic string */

Each archive which contains common object files (see a.out (4»
includes an archive symbol table. This symbol table is used by the
link editor ld(I) to determine which archive members must be
loaded during the link edit process. The archive symbol table (if it
exists) is always the first file in the archive (but is never listed)
and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members.
Each file member is preceded by a file member header which is of
the following format:

#define ARFMAG "'\n"

struct ar hdr
{ -

};

char
char
char
char
char
char
char

ar _ namelI6];
ar _ date[12];
ar uid[6];
ar~id[6];
ar model8];
ar -size[10];
ar=fmag[2];

/* header trailer string */

/* file member header */

/* '/' terminated file member */
/* file member date */
/* file user identification */
/* file group identification */
/* file member mode (octal) */
/* file member size */
/ * header trailer string * /

All information in the file member headers is in printable ASCII.
The numeric information contained in the headers is stored as
decimal numbers (except for ar _mode which is in octal). Thus, if
the archive contains printable files, the archive itself is printable.

The ar _name field is blank-padded and slash (/) terminated. The
ar _date field is the modification date of the file at the time of its

336-System Calls and Library Routines UNIX Programmer's Manual

AR(4) AR(4)

insertion into the archive. Common format archives can be moved
from system to system as long as the portable archive command
ar (1) is used. Conversion tools such as convert{ 1) exist to aid in
the transportation of non-common format archives to this format.

Each archive file member begins on an even byte boundary; a new­
line is inserted between files if necessary. Nevertheless the size
given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a
zero length name (i.e., ar _ namelO] ==== '1'). The contents of this
file are as follows:

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes
* "the number of symbols".

• The name string table. Length: ar _size - (4 bytes *
("the number of symbols" + 1».

The number of symbols and the array of offsets are managed with
sgetl and sputl. The string table contains exactly as many null
terminated strings as there are elements in the offsets array. Each
offset from the array is associated with the corresponding name
from the string table (in order). The names in the string table are
all the defined global symbols found in the common object files in
the archive. Each offset is the location of the archive header for
the associated symbol.

SEE ALSO
sputI(3X), a.out(4).
ar(1), convert(l), Id(l), strip(l) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

CAVEATS
The common archive structure is not compatible between the
PDP-II and the IBM-370, due to the different file formats. See
convert (1) to convert between machines.

Strip (1) will remove all archive symbol entries from the header.
The archive symbol entries must be restored via the ts option of
the ar (1) command before the archive can be used with the link
editor ld (1) .

UNIX Programmer's Manual System Calls and Library Routines-337

CHECKLIST (4) CHECKLIST (4)

NAME
checklist - list of file systems processed by fsck

DESCRIPTION
Checklist resides in directory lete and contains a list of, at most,
15 special file names. Each special file name is contained on a
separate line and corresponds to a file system. Each file system
will then be automatically processed by the fsck (1 M) command.

SEE ALSO
fsck(IM) in the UNIX Programmer's Manual-Volume 3: System
Administration Facilities.

338-System Calls and Library Routines UNIX Programmer's Manual

CORE (4) CORE (4)

NAME
core - format of core image file

DESCRIPTION
The UNIX system writes out a core image of a terminated process
when any of various errors occur. See signal (2) for the list of rea­
sons; the most common are memory violations, illegal instructions,
bus errors, and user-generated quit signals. The core image is
called core and is written in the process's working directory (pro­
vided it can be; normal access controls apply). A process with an
effective user ID different from the real user ID will not produce a
core image.

The first section of the core image is a copy of the system's per­
user data for the process, including the registers as they were at
the time of the fault. The size of this section depends on the
parameter usize, which is defined in lusr/include/sys/param.h.
The remainder represents the actual contents of the user's core
area when the core image was written. If the text segment is
read-only and shared, or separated from data space, it is not
dumped.

The format of the information in the first section is described by
the user structure of the system, defined in
lusr/include/sys/user.h. The important stuff not detailed therein
is the locations of the registers, which are outlined in
lusr linclude/sys/reg.h.

SEE ALSO
setuid (2), signal (2) .
crash(IM) in the UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.
sdb(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-339

CPIO(4) CPIO(4)

NAME
cpio - format of cpio archive

DESCRIPTION
The header structure, when the -c option of cpio (1) is not used,
is:

struct {

} Hdr;

short h_magic,
h_dev;

ushort h jno,
h_mode,
h_uid,
h~id;

short h _ nlink,
h..Jdev,
h_mtime[2],
h namesize,
h=filesize[2]; .

char h_namelh_namesize rounded to word];

When the -c option is used, the header information is described
by:

sscanf(Chdr, "%60%60%60%60%60%60%60%60% 1110%60% 1110%s",
&Hdr.h_magic, &Hdr.h_dev, &Hdr.hjno, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h~id, &Hdr.h_nlink, &Hdr.hJdev,
&Longtime, &Hdr.h _ namesize, &Longfile,Hdr .h_ name);

Longtime and Longfile are equivalent to Hdr.h_mtime and
Hdr.hJilesize, respectively; The contents of each file are recorded
in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h_dev
through h _ mtime have meanings explained in stat (2). The length
of the null-terminated path name h_name, including the null byte,
is given by h_namesize.

The last record of the archive always contains the name
TRAILER!!!. Special files, directories, and the trailer are recorded
with hJilesize equal to zero.

340-System Calls and Library Routines UNIX Programmer's Manual

CPIO(4) CPIO(4)

SEE ALSO
stat (2) .
cpio(I) , find(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-341

DIR(4) DIR(4)

NAME
dir - format of directories

SYNOPSIS
#include < sys/ dir.h >

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user
may write into a directory. The fact that a file is a directory is
indicated by a bit in the flag word of its i-node entry (see Is (4».
The structure of a directory entry as given in the include file is:

#ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino_t djno;
char d_name[DIRSIZ1;

};

By convention, the first two entries in each directory are for . and
... The first is an entry for the directory itself. The second is for
the parent directory. The meaning of .. is modified for the root
directory of the master file system; there is no parent, so .. has the
same meaning as ..

SEE ALSO
fs(4).

342-System Calls and Library Routines UNIX Programmer's Manual

ERR FILE (4) ERRFILE(4)

NAME
errfile - error-log file format

DESCRIPTION
When hardware errors are detected by the system, an error record
is generated and passed to the error-logging daemon for recording
in the error log for later analysis. The default error log is
lusr ladm/errfile.

The format of an error record depends on the type of error that
was encountered. Every record, however, has a header with the
following format:

struct errhdr {
short

};

short
time t
int

e_type;
eJen;
e_time;
e_cpu;

/ * record type * /
/ * bytes in record (inc hdr) * /
/* time of day */
/ * proc recording error* /

The permissible record types are as follows:

#define E _ GOTS 010 /* start for UNIX System
* Release 3.0*/

#define E_GORT 011 /* start for UNIX system/RT */
#define E _STOP 012 /* stop */
#define E_TCHG 013 / * time change * /
#define E_CCHG 014 /* configuration change */
#define E _ BLK 020 /* block device error */
#define E_STRAY 030 /* stray interrupt */
#define E_PRTY 031 /* memory parity */
#define E_PIO 041 /* 3B20 computer programmed

* I/O */
#define E_IOP 042 /* 3B20 computer 110

* processor * /
#define E _ NI 0100 / * NI20 error * /

Some records in the error file are of an administrative nature.
These include the startup record that is entered into the file when
logging is activated, the stop record that is written if the daemon is
terminated "gracefully", and the time-change record that is used
to account for changes in the system's time-of-day. These records
have the following formats:

UNIX Programmer's Manual System Calls and Library Routines-343

ERR FILE (4)

struct estart {
short e_cpu;
struct utsname e_name;

#ifndef u3b
short
long
short

#endif
#ifdef u3b

int
#endif
};

e_mmr3;
e_syssize;
e_bconf;

ERRFILE(4)

/* CPU type */
/* system names */

/* contents mem mgmt reg 3 */
/* 11/70 system memory size */
/ * block dev configuration * /

/ * kbytes per array * /

#define eend errhdr /* record header */

struct etimchg {
time_t e_ntime; /* new time */

};

Stray interrupts cause a record with the following format to be
logged:

struct estray {
#ifdef u3b

uint
#else

physadr
short

#endif
};

e_saddr;

e_saddr;
e_sbacty;

/* stray loc or device addr */

/* stray loc or device addr */
/* active block devices */

Memory subsystem error on 3B20 computer cause the following
record to be generated:

struct eparity {
#ifdef u3b

int

#else
short

#endif
};

e....parreg[3]; /* 3B computer memory
* registers */

e....parreg[4]; /* memory subsys registers */

344-System Calls and Library Routines UNIX Programmer's Manual

ERRFILE(4) ERRFILE(4)

Memory subsystem errors on V AX-111780 processors cause the fol­
lowing record to be generated:

struct ememory {
int
int

};

e_sbier;
e_memcad;

Error records for block devices have the following format:

struct eblock {
#ifdef u3b

ushort
struct iostat {

long
long
ushort

short
daddr t
uint
union ptbl {

int page[64];

io_ops;
io_misc;
io_unlog;
e_stats;
e_bftags;
e_bnum;
e_bytes;

/* device number */

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc */
/* logical block number */
/* number bytes to transfer */

/* page table entries */
union ptbl *pnext;

struct ptbl
uint
uint
uint

#endif

UNIX Programmer's Manual

eytbl;
eytbl;
e_voff;
e_stat1;
e_stat2;

/* page table for transfer */
/* offset into page table */
/* status word 1 */
/* status word 2 */

System Calls and Library Routines-345

ERR FILE (4)

#ifndef u3b
dev_t
physadr
short
struct iostat {

long
long
ushort

short
short
daddr t
ushort
paddr_t
ushort
short

#endif
#ifdef vax

e_dev;
eJegloc;
e_bacty;

io_ops;
io_misc;
io_unlog;
e_stats;
e_bflags;
e_cyloff;
e_bnum;
e_bytes;
e_memadd;

struct mba _regs {
long, mba ~ csr;
long mba_ cr;
long mba_sr;
long mba_var;
long mba_vcr;

} eJllba;
#endif
};

ERRFILE(4)

/* true major + minor dev # */
/* controller address */
/* other block I/O activity */

/* number read/writes */
/* number "other" operations */
/* number unlogged errors */

/* read/write, error, etc */
/* logical dev start cyl */
/* logical block number */
/* number bytes to transfer */
/* buffer memory address */
/* number retries */
/* number device registers */

The following values are used in the e_bflags word:

#define E_WRITE 0 /* write operation */
#define E_READ 1 /* read operation */
#define E_NOIO 02 /* no I/O pending */
#define E_PHYS 04 /* physical I/O */
#define E_MAP 010 /* Unibus map in use */
#define E_ERROR 020 /* I/O failed */

346-System Calls and Library Routines UNIX Programmer's Manual

ERRFILE(4) ERRFILE(4)

The following error records are for the 3B20 computer only:

struct epio { /* programmed I/O error */
char e_chan; /* which channel */
char e_dev; /* which devon channel */
uint e_chstat; / * channel status * /
uint e_cmd; / * pio command * /

struct eiop { /* 1/0 processor Gop) error */
char e_unit; /* unit number */
uint e_wordO; / * iop report word * /
uint e_wordl; /* iop report word */

The "true" major device numbers that identify the failing device
are as follows:

Digital Equipment
#define RKO 0
#define RPO 1
#define RFO 2
#define TMO 3
#define TCO 4
#define HPO 5
#define HTO 6
#define HSO 7
#define RLO 8
#define HP 1 9
#define HP2 10
#define HP3 11

SEE ALSO

AT&T
#define DFCO
#define 10PO
#define MTO

o
1
2

errdemon (1 M) in the UNIX Programmer's M anual-Volume 3:
System Administration Facilities.

UNIX Programmer's Manual System Calls and Library Routines-347

FILEHDR(4) FILEHDR(4)

NAME
filehdr - file header for common object files

SYNOPSIS
#include < filehdr.h >

DESCRIPTION
Every common object file begins with a 20-byte header. The fol­
lowing C struct declaration is used:

struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f_magic;
f_nscns ;
f_timdat;
f_symptr;
f_nsyms;
f_opthdr;
f_flags;

/* magic number */
/* number of sections */
/* time & date stamp */
/* file ptr to symtab */ '* # symtab entries */
/* sizeof(opt hdr) */
/* flags */

F _symptr is the byte offset into the file at which the symbol table
can be found. Its value can be used as the offset in fseek (3S) to
position an 110 stream to the symbol table. The UNIX system
optional header is 36 bytes on the 3B20 computer, 28 bytes other­
wise. The valid magic numbers are given below:

#define N3BMAGIC 0550 /* 3B20 computer */
#define NTVMAGIC 0551 /* 3B20 computer */

#define V AXWRMAGIC 0570
#define VAXROMAGIC 0575

/* writable text segments */
/* read only sharable segments */

The value in f_timdat is obtained from the time (2) system call.
Flag bits currently defined are:

#define F _RELFLG 00001 /* relocation entries stripped */
#define F _EXEC 00002 /* file is executable */
#define F _LNNO 00004
#define F _ LSYMS 00010
#define F _ MINMAL 00020
#define F _UPDATE 00040
#define F _ SW ABD 00100
#define F _AR16WR 00200

348-:-System Calls and Library Routines

/* line numbers stripped */
/* local symbols stripped */
/* minimal object file */
/* update file, ogen produced */
/* file is "pre-swabbed" */
/* 16 bit DEC host */

UNIX Programmer's Manual

FILEHDR (4) FILEHDR (4)

#define F _AR32WR 00400 /* 32 bit DEC host */
#define F _AR32W 01000 /* non-DEC host */
#define F _PATCH 02000 /* "patch" list in opt hdr */

SEE ALSO
time(2), fseek(3S), a.out(4).

UNIX Programmer's Manual System Calls and Library Routines-349

FS(4) FS(4)

NAME
file system - format of system volume

SYNOPSIS
#include < sys/filsys.h >
#include <sys/types.h>
#include <sys/param.h>

DESCRIPTION
Every file system storage volume has a common format for certain
vital information. Every such volume is divided into a certain
number of 512-byte long sectors. Sector 0 is unused and is avail­
able to contain a bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

* Structure of the >super-block
*1

struct filsys
(

ushort sjsize; /. size in blocks of i-list ./
daddr_t sjsize; /. size in blocks of entire volume ./
short s_nfree; /. number of addresses in sjree ./
daddr t s jree[NICFREE); /. free block list • /
short s_ninode; /. number of i-nodes in sjnode ./
ino_t sjnode[NICINOD); /. free i-node list ./
char s_flock; /. lock during free list manipulation ./
char sjlock; /. lock during i-list manipulation ./
char sjmod; /. super block modified flag ./
char sJonly; /. mounted read-only flag ./
time_t s_time; /. last super block update ./
short s_dinfo[4); /. device information ./
daddr_t s_tfree; /. total free blocks./
ino_t s_tinode; /. total free i-nodes ./
char sjname[6); /. file system name ./
char sjpack[6); /. file system pack name ./
long s_fill[13); /. ADJUST to make sizeof filsys be 512 • /
long s_magic; /. magic # to denote new file system • /
long s_type; /. type of new file system • /

};

350-System Calls and Library Routines UNIX Programmer's Manual

FS(4) FS(4)

#define FsMAGIC Oxfd187e20

#define Fs 1 b /. 512 byte block • /
#define Fs2b 2 /. 1024 byte block ./

S _type indicates the file system type. Currently, two types of file
systems are supported: the original 512-byte oriented and the new
improved l024-byte oriented. S_magic is used to distinguish the
original 512-byte oriented file systems from the newer file systems.
If this field is not equal to the magic number, FsMAGIC, the type
is assumed to be Fs 1 b, otherwise the s _type field is used. In the
following description, a block is then determined by the type. For
the original 512-byte oriented file system, a block is 512 bytes.
For the 1024-byte oriented file system, a block is 1024 bytes or
two sectors. The operating system takes care of all conversions
from logical block numbers to physical sector numbers.

S Jsize is the address of the first data block after the i-list; the i­
list starts just after the super-block, namely in block 2; thus the i­
list is s _isize-2 blocks long. S Jsize is the first block not poten­
tially available for allocation to a file. These numbers are used by
the system to check for bad block numbers; if an "impossible"
block number is allocated from the free list or is freed, a diagnos­
tic is written on the on-line console. Moreover, the free array is
cleared, so as to prevent further allocation from a presumably cor­
rupted free list.

The free list for each volume is maintained as follows. The s Jree
array contains, in sJreel1], ... , sJreels_nfree-ll, up to 49
numbers of free blocks. SJreelO] is the block number of the head
of a chain of blocks constituting the free list. The first long in
each free-chain block is the number (up to 50) of free-block
numbers listed in the next 50 longs of this chain member. The
first of these 50 blocks is the link to the next member of the chain.
To allocate a block: decrement s_nfree, and the new block is
s Jreels _ nfree 1. If the new block number is 0, there are no blocks
left, so give an error. If s _ nfree became 0, read in the block
named by the new block number, replace s_nfree by its first word,
and copy the block numbers in the next 50 longs into the s Jree
array. To free a block, check if s_nfree is 50; if so, copy s_nfree
and the s Jree array into it, write it out, and set s _ nfree to O. In
any event set sJreels_nfreel to the freed block's number and
increment s _ nfree .

UNIX Programmer's Manual System Calls and Library Routines-351

FS(4)

FILES

FS(4)

S _tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s..Jnode array.
To allocate an i-node: if s _ ninode is greater than 0, decrement it
and return s_inodels_ninodel If it was 0, read the i-list and place
the numbers of all free i-nodes (up to 100) into the s_inode array,
then try again. To free an i-node, provided s_ninode is less than
100, place its number into s_inodels_ninode] and increment
s_ninode. If s_ninode is already 100, do not bother to enter the
freed i-node into any table. This list of i-nodes is only to speed up
the allocation process; the information as to whether the i-node is
really free or not is maintained in the i-node itself.

S _tinode is the total free i-nodes available in the file system.

S .flock and s _ilock are flags maintained in the core copy of the
file system while it is mounted and their values on disk are imma­
terial. The value of sJmod on disk is likewise immaterial; it is
used as a flag to indicate that the super-block has changed and
should be copied to the disk during the next periodic update of file
system information.

S Jonly is a read-only flag to indicate write-protection.

S _time is the last time the super-block of the file system was
changed, and is the number of seconds that have elapsed since
00:00 Jan. 1, 1970 (GMT). During a reboot, the s_time of the
super-block for the root file system is used to set the system's idea
of the time.

S Jname is the name of the file system and s Jpack is the name of
the pack.

I-numbers begin at 1, and the storage for i-nodes begins in block
2. Also, i-nodes are 64 bytes long. I-node '1 is reserved for future
use. I -node 2 is reserved for the root directory of the file system,
but no other i-number has a built-in meaning. Each i-node
represents one file. For the format of an i-node and its flags, see
inode (4).

/usr /include/ sys/filsys.h
/usr/include/sys/stat.h

SEE ALSO
inode(4).
fsck(IM), fsdb(IM), mkfs(IM) in the UNIX Programmer's
Manual- Volume 3: System Administration Facilities.

352-System Calls and Library Routines UNIX Programmer's Manual

FSPEC(4) FSPEC(4)

NAME
fspec - format specification in text files

DESCRIPTION
It is sometimes convenient to maintain text files on the UNIX sys­
tem with non-standard tabs, (i.e., tabs which are not set at every
eighth column). Such files must generally be converted to a stan­
dard format, frequently by replacing all tabs with the appropriate
number of spaces, before they can be processed by UNIX system
commands. A format specification occurring in the first line of a
text file specifies how tabs are to be expanded in the remainder of
the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and : > .
Each parameter consists of a keyletter, possibly followed immedi­
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.
The value of tabs must be one of the following:

1. a list of column numbers separated by commas,
indicating tabs set at the specified columns;

2. a - followed immediately by an integer n, indi­
cating tabs at intervals of n columns;

3. a - followed by the name of a "canned" tab
specifica tion.

Standard tabs are specified by t -8, or equivalently,
tl,9,17,25,etc. The canned tabs which are recognized
are defined by the tabs (1) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is
performed after tabs have been expanded, but before
the margin is prepended.

mmargin The m parameter specifies a number of spaces to be
prepended to each line. The value of margin must be
an integer.

d The d parameter takes no value. Its presence indi­
cates that the line containing the format specification
is to be deleted from the converted file.

e The e parameter takes no value. Its presence indi­
cates that the current format is to prevail only until

UNIX Programmer's Manual System Calls and Library Routines-353

FSPEC(4) FSPEC(4)

another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are
t -8 and mO. If the s parameter is not specified, no size checking
is performed. If the first line of a file does not contain a format
specification, the above defaults are assumed for the. entire file.
The following is an example of a line containing a format
specification:

• <:t5,10,15 s72:> •

If a format specification can be disguised as a comment, it is not
necessary to code the d parameter.

Several UNIX system commands correctly interpret the format
specification for a file. Among them is gath (see send (I C» which
may be used to convert files to a standard format acceptable to
other UNIX system commands.

SEE ALSO
ed(I), newform(I), send(IC), tabs(I) in the UNIX Programmer's
M anual-Volume 1: Commands and Utilities.

354-System Calls and Library Routines UNIX Programmer's Manual

GETTYDEFS (4) GETTYDEFS (4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty OM) to
set up the speed and terminal settings for a line. It supplies infor­
mation on what the login prompt should look like. It also supplies
the speed to try next if the user indicates the current speed is not
correct by typing a <break> character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next­
label

Each entry is followed by a blank line. The various fields can con­
tain quoted characters of the form \b, \0, \c, etc., as well as \nnn,
where nnn is the octal value of the desired character. The various
fields are:

label This is the string against which getty tries to match
its second argument. It is often the speed, such as
1200, at which the terminal is supposed to run, but
it need not be (see below).

initial-flags These flags are the initial ioct[(2) settings to which
the terminal is to be set if a terminal type is not
specified to getty. The flags that getty understands
are the same as the ones listed in
/usr/ioclude/sys/termio.h (see termio(7». Nor­
mally only the speed flag is required in the initial­
flags. Getty automatically sets the terminal to raw
input mode and takes care of most of the other
flags. The initial-flag settings remain in effect until
getty executes login (1).

final-flags These flags take the same values as the initial-flags
and are set just prior to getty executes login. The
speed flag is again required. The composite flag
SANE takes care of most of the other flags that
need to be set so that the processor and terminal
are communicating in a rational fashion. The other
two commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final
close.

UNIX Programmer's Manual System Calls and Library Routines-355

GETTYDEFS(4) GETTYDEFS (4)

FILES

login-prompt This entire field is printed as the login-prompt.

next-label

Unlike the above fields where white space is ignored
(a space, tab or new-line), they are included in the
login-prompt field.

If this entry does not specify the desired speed,
indicated by the user typing a <break> character,
then getty will search for the entry with next-label
as its label field and set up the terminal for those
settings. Usually, a series of speeds are linked
together in this fashion, into a closed set; For
instance, 2400 linked to 1200, which in turn is
linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs
the default entry. It is also used if getty can not find the specified
label. If /etc/gettydefs itself is missing, there is one entry built
into the command which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying
/etc/gettydefs, it be run through getty with the check option to be
sure there are no errors.

/ etc/ gettydefs

SEE ALSO
ioct1(2) .
getty(IM), termio(7) in the UNIX Programmer's Manual­
Volume 3: System Administration Facilities.
10gin(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

356-System Calls and Library Routines UNIX Programmer's Manual

GPS(4) GPS(4)

NAME
gps - graphical primitive string, format of graphical files

DESCRIPTION
GPS is a format used to store graphical data. Several routines
have been developed to edit and display GPS files on various dev­
ices. Also, higher level graphics programs such as plot (in
stat (1 G» and vtoc (in toe (1 G» produce GPS format output files.

A GPS is composed of five types of graphical data or primitives.

GPS PRIMITIVES
lines The lines primitive has a variable number of points

from which zero or more connected line segments are
produced. The first point given produces a move to
that location. (A move is a relocation of the graphic
cursor without drawing.} Successive points produce
line segments from the previous point. Parameters are
available to set color, weight, and style (see below).

arc The arc primitive has a variable number of points to
which a curve is fit. The first point produces a move to
that point. If only two points are included, a line con­
necting the points will result; if three points a circular
arc through the points is drawn; and if more than
three, lines connect the points. (In the future, a spline
will be fit to the points if they number greater than
three.} Parameters are available to set color, weight,
and style.

text . The text primitive draws characters. It requires a sin-
gle point which locates the center of the first character
to be drawn. Parameters are color, jont, textsize, and
textangle.

hardware The hardware primitive draws hardware characters or
gives control commands to a hardware device. A single
point locates the beginning location of the hardware
string.

comment A comment is an integer string that is included in a
GPS file but causes nothing to be displayed. All GPS
files begin with a comment of zero length.

GPS PARAMETERS
color Color is an integer value set for are, lines, and text

primitives.

UNIX Programmer's Manual System Calls and Library Routines-357

GPS(4) GPS(4)

weight Weight is an integer value set for arc and lines primi­
tives to indicate line thickness. The value 0 is narrow
weight, 1 is bold, and 2 is medium weight.

style Style is an integer value set for lines and arc primitives
to give one of the five different line styles that can be
drawn on TEKTRONIX 4010 series storage tubes.
They are:

o solid
1 dotted
2 dot dashed
3 dashed
4 long dashed

font An integer value set for text primitives to designate the
text font to be used in drawing a character string.
(Currently font is expressed as a four-bit weight value
followed by a four-bit style value.)

textsize Textsize is an integer value used in text primitives to
express the size of the characters to be drawn.
Textsize represents the height of characters in absolute
universe-units and is stored at one-fifth this value in
the size-orientation (so) word (see below).

textangle Textangle is a signed integer value used in text primi­
tives to express rotation of the character string around
the beginning point. Textangle is expressed in degrees
from the positive x-axis and can be a positive or nega­
tive value. It is stored in the size-orientation (so) word
as a value 256/360 of it's absolute value.

ORGANIZATION
GPS primitives are organized internally as follows:

lines cw points sw
arc cw points sw
text cw point sw so [string]
hardware cw point [string]
comment cw [string]

cw Cw is the control word and begins all primitives. It
consists of four bits that contain a primitive-type code
and twelve bits that contain the word-count for that
primitive.

358-System Calls and Library Routines UNIX Programmer's Manual

GPS (4) GPS (4)

point(s) Point(s) is one or more pairs of integer coordinates.

sw

so

string

SEE ALSO

Text and hardware primitives only require a single
point. Point(s) are values within a Cartesian plane or
universe having 64K (-32K to +32K) points on each
axis.

Sw is the style-word and is used in lines, arc, and text
primitives. For all three, eight bits contain color infor­
mation. In arc and lines eight bits are divided as four
bits weight and four bits style. In the text primitive
eight bits of sw contain the font.

So is the size-orientation word used in text primitives.
Eight bits contain text size and eight bits contain text
rotation.

String is a null-terminated character string. If the
string does not end on a word boundary, an additional
null is added to the GPS file to insure word-boundary
alignment.

graphics (I G) , stat (I G) , toc(IG) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-359

GROUP (4) GROUP (4)

NAME
group - group file

DESCRIPTION

FILES

Group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a new-line. If the password
field is null, no password is demanded.

This file resides in directory fetc. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical group ID's to names.

/etc/group

SEE ALSO
crypt(3C), passwd(4).
newgrp(l), passwd(1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

360-System Calls and Library Routines UNIX Programmer's Manual

INITTAB(4) INITTAB(4)

NAME
inittab - script for the init process

DESCRIPTION
The inittab file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's pro­
cess dispatching activities is the line process /etc/getty that ini­
tiates individual terminal lines. Other processes typically
dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent
~nd have the following format:

id:rsta te:action :process

Each entry is delimited by a newline, however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up to
512 characters per entry are permitted. Comments may be
inserted in the process field using the sh (1) convention for com­
ments. Comments for lines that spawn gettys are displayed by the
who (1) command. It is expected that they will contain some
information about the line such as the location. There are no lim­
its (other than maximum entry size) imposed on the number of
entries within the inittab file. The entry fields are:

id This is one or two characters used to uniquely identify an
entry.

rstate This defines the run-level in which this entry is to be pro­
cessed. Run-levels effectively correspond to a
configuration of processes in the system. That is, each
process spawned by init is assigned a run-level or run­
levels in which it is allowed to exist. The run-levels are
represented by a number ranging from 0 through 6. As
an example, if the system is in run-levell, only those
entries having a 1 in the rstate field will be processed.
When init is requested to change run-levels, all processes
which do not have an entry in the rstate field for the tar­
get run-level will be sent the warning signal (SIGTERM)
and allowed a 20-second grace period before being forci­
bly terminated by a kill signal (SIGKILL). The rstate
field can define multiple run-levels for a process by
selecting more than one run-level in any combination
from 0 -6. If no run-level is specified, then the process
is assumed to be valid at all run-levels 0 -6. There are
three other values, a, band c, which can appear in the

UNIX Programmer's Manual System Calls and Library Routines-361

INITTAB(4) INITTAB(4)

rstate field, even though they are not true run-levels.
Entries which have these characters in the rstate field are
processed only when the telinit (see init (I M» process
requests them to be run (regardless of the current run­
level of the system). They differ from run-levels in that
init can never enter run-level a, b or c. Also, a request
for the execution of any of these processes does not
change the current run-level. Furthermore, a process
started by an a, b or c command is not killed when init
changes levels. They are only killed if their line in
letc/inittab is marked off in the action field, their line is
deleted entirely from letc/inittab, or init goes into the
SINGLE USER state.

action Key words in this field tell init how to treat the process
specified in the process field. The actions recognized by
init are as follows:

respawn

wait

If the process does not exist then start the
process, do not wait for its termination (con­
tinue scanning the inittab file), and when it
dies restart the process. If the process
currently exists then do nothing and continue
scanning the inittab file.

Upon init's entering the run-level that
matches the entry's rstate, start the process
and wait for its termination. All subsequent
reads of the inittab file while init is in the
same run-level will cause init to ignore this
entry.

once Upon init's entering a run-level that matches
the entry's rstate, start the process, do not
wait for its termination. When it dies, do
not restart the process. If upon entering a
new run-level, where the process is still run­
ning from a previous run-level change, the
program will not be restarted.

boot The entry is to be processed only at init's
boot-time read of the inittab file. [nit is to
start the process, not wait for its termination;
and when it dies, not restart the process. In
order for this instruction to be meaningful,

362-System Calls and Library Routines UNIX Programmer's Manual

INITTAB(4) INITTAB(4)

the rstate should be the default or it must
match init's run-level at boot time. This
action is useful for an initialization function
following a hardware reboot of the system.

bootwait The entry is to be processed only at init's
boot-time read of the inittab file. Init is to
start the process, wait for its termination
and, when it dies, not restart the process.

powerfail Execute the process associated with this
entry only when init receives a power fail sig­
nal (SIGPWR see signal (2».

powerwait Execute the process associated with this
entry only when init receives a power fail sig­
nal (SIGPWR) and wait until it terminates
before continuing any processing of inittab.

off If the process associated with this entry is
currently running, send the warning signal
(SIGTERM) and wait 20 seconds before forci­
bly terminating the process via the kill signal
(SIGKILL). If the process is nonexistent,
ignore the entry.

ondemand This instruction is really a synonym for the
respawn action. It is functionally identical to
respawn but is given a different keyword in
order to divorce its association with run­
levels. This is used only with the a, b or c
values described in the rstate field.

initdefault An entry with this action is only scanned
when init initially invoked. Init uses this
entry, if it exists, to determine which run­
level to enter initially. It does this by taking
the highest run-level specified in the rstate
field and using that as its initial state. If the
rstate field is empty, this is interpreted as
0123456 and so init will enter run-level 6.
Also, the initdefault entry cannot specify that
init start in the SINGLE USER state. Addi­
tionally, if init does not find an initdefault
entry in letc/inittab, then it will request an
initial run-level from the user at reboot time.

UNIX Programmer's Manual System Calls and Library Routines-363

INITTAB(4) INITTAB(4)

FILES

sysinit Entries of this type are executed before init
tries to access the console. It is expected
that this entry will be only used to initialize
devices on which init might try to ask the
run-level question. These entries are exe­
cuted and waited for before continuing.

process This is a sh command to be executed. The entire process
field is prefixed with exec and passed to a forked sh as sh
-c 'exec command'. For this reason, any legal sh syntax
can appear in the process field. Comments can be
inserted with the; #comment syntax.

letc/inittab

SEE ALSO
exec (2), open (2), signal (2) .
getty(IM), init(IM) in the UNIX Programmer's Manual-Volume
3: System Administration Facilities.
sh(I), who(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

364-System Calls and Library Routines UNIX Programmer's Manual

INODE(4) INODE(4)

NAME
inode - format of an i-node

SYNOPSIS
#include < sys/types.h >
#include <sys/ino.h>

DESCRIPTION

FILES

An i-node for a plain file or directory in a file system has the fol­
lowing structure defined by <sys/ino.h>.

1* Inode structure as it appears on a disk block. *1
struct dinode
{

ushort di _mode; 1 * mode and type of file *1
short di_nlink; 1* number of links to file *1
ushort di_uid; 1* owner's user id *1
ushort d(gid; 1* owner's group id *1
off t di_size; 1* number of bytes in file *1
char di _ addr[40]; 1* disk block addresses *1
time t di_atime; 1* time last accessed *1
time t di_mtime; 1* time last modified *1
time t di_ctime; 1* time of last file status change *1

};
1*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.

For the meaning of the defined types oJJ) and time t see
types (5).

1 usr lincludel sys/ino.h

SEE ALSO
stat(2), fs(4), types(5).

UNIX Programmer's Manual System Calls and Library Routines-365

ISSUE (4) ISSUE (4)

NAME
issue - issue identification file

DESCRIPTION

FILES

The file fete/issue contains the issue or project identification to be
printed as a login prompt. This is an ASCII file which is read by
program getty and then written to any terminal spawned or
respawned from the lines file.

/etc/issue

SEE ALSO
10gin(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

366-System Calls and Library Routines UNIX Programmer's Manual

LDFCN(4) LDFCN(4)

NAME
ldfcn - common object file access routines

SYNOPSIS
#include < stdio.h >
#include < filehdr.h >
#include < Idfen.h >

DESCRIPTION
The common object file access routines are a collection of func­
tions for reading an object file that is in the 3820 computer (com­
mon) object file format. Although the calling program must know
the detailed structure of the parts of the object file that it
processes, the routines effectively insulate the calling program from
knowledge of the overall structure of the object file.

The interface between the calling program and the object file
access routines is based on the defined type LDFILE, defined as
struct Idfile, declared in the header file Idfen.h. The primary pur­
pose of this structure is to provide uniform access to both simple
object files and to object files that are members of an archive file.

The function /dopen (3X) allocates and initializes the LDFILE
structure and returns a pointer to the structure to the calling pro­
gram. The fields of the LDFILE structure may be accessed indivi­
dually through macros defined in Idfen.h and contain the following
information:

j

LDFILE *ldptr;

TYPE (Idptr)

IOPTR(Idptr)

OFFSET (Idptr)

The file magic number used to distinguish
between archive members and simple object files.

The file pointer returned by jopen and used by
the standard input/output functions.

The file address of the beginning of the object
file; the offset is non-zero if the object file is a
member of an archive file.

HEADER(Idptr) The file header structure of the object file.

The object file access functions themselves may be divided into
four categories:

(0 functions that open or close an object file

UNIX Programmer's Manual System Calls and Library Routines-367

LDFCN(4)

ldopen (3X) and ldopen OX)
open a common object file

ldclose OX) and ldclose (3X)
close a common object file

LDFCN(4)

(2) functions that read header or symbol table informa­
tion

ldahread OX)
read the archive header of a member of
an archive file

ldfhread OX)
read the file header of a common object
file

ldshread OX) and ldshread OX)
read a section header of a common object
file

ldtbread OX)
read a symbol table entry of a common
object file

ldgetname OX)
retrieve a symbol name from a symbol
table entry or from the string table

0) functions that position an object file at (seek to) the
start of the section, relocation, or line number information
for a particular section.

ldohseek OX)
seek to the optional file header of a com­
mon object file

ldsseek OX) and ldsseek OX)
seek to a section of a common object file

ldrseek OX) and ldrseek OX)
seek to the relocation information for a
section of a common object file

ldlseek (3X) and ldlseek OX)
seek to the line number information for a
section of a common object file

ldtbseek OX)
seek to the symbol table of a common
object file

(4) the function ldtbindex OX) which returns the index of
a particular common object file symbol table entry.

368-System Calls and Library Routines UNIX Programmer's Manual

LDFCN(4) LDFCN(4)

These functions are described in detail on their respective manual
pages.

All the functions except Idopen(3X),ldgetname(3X), Idopen(3X),
and Idtbindex (3X) return either SUCCESS or FAILURE, both con­
stants defined in IdfeD.h. Ldopen (3X) and Idopen (3X) both
return pointers to an LDFILE structure.

Additional access to an object file is provided through a set of
macros defined in IdfeD.h. These macros parallel the standard
input/output file reading and manipulating functions, translating a
reference of the LDFILE structure into a reference to its file
descriptor field.

The following macros are provided:

G ETC (ldptr)
FGETC(ldptr)
GETWOdptr)
UNGETC(c, ldptr)
FGETS(s, n, ldptr)
FREAD {(char *) ptr, sizeof (*ptr), nitems, ldptr)
FSEEK Odptr, offset, ptrname)
FTELLOdptr)
REWIND (ldptr)
FEOFOdptr)
FERROROdptr)
FILENOOdptr)
SETBUFOdptr, buf)
STROFFSETOdptr)

The STROFFSET macro calculates the address of the string table
in a UNIX system release 5.0 object file. See the manual entries
for the corresponding standard input/output library functions for
details on the use of the rest of the macros.

The program must be loaded with the object file access routine
library libld.a.

WARNING
The macro FSEEK defined in the header file IdfeD.h translates into
a call to the standard input/output function fseek (3S). FSEEK
should not be used to seek from the end of an archive file since the
end of an archive file may not be the same as the end of one of its
object file members!

UNIX Programmer's Manual System Calls and Library Routines-369

LDFCN(4) LDFCN(4)

SEE ALSO
fseek(3S), Idahread(3X) , Idclose(3X) , Idgetname(3X),
Idfhread(3X), Idlread(3X), Idlseek(3X), Idohseek(3X),
Idopen(3X), Idrseek(3X), Idlseek(3X), Idshread(3X) ,
Idtbindex(3X), Idtbread(3X), Idtbseek(3X), intro(5).

370-System Calls and Library Routines UNIX Programmer's Manual

LINENUM(4) LINENUM(4)

NAME
linenum - line number entries in a common object file

SYNOPSIS
#include < Iinenum.h >

DESCRIPTION
Compilers based on pee generate an entry in the object file for
each C source line on which a breakpoint is possible (when
invoked with the -g option; see ee(I». Users can then reference
line numbers when using the appropriate software test system (see
sdb(l». The structure of these line number entries appears
below.

struct lineno
{

} ;

union
{

long
long

l_symndx;
l-paddr ;
l_addr;

unsigned short I Jnno ;

Numbering starts with one for each function. The initial line
number entry for a function has l_lnno equal to zero, and the sym­
bol table index of the function's entry is in l_symndx. Otherwise,
l_lnno is non-zero, and I yaddr is the physical address of the code
for the referenced line. Thus the overall structure is the following:

I addr Ilnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

UNIX Programmer's Manual System Calls and Library Routines-371

LINENUM(4)

SEE ALSO
a.out(4).

LINENUM(4)

ccO), sdb(I) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

372-System Calls and Library Routines UNIX Programmer's Manual

MASTER (4) MASTER (4)

NAME
master - master device information table

DESCRIPTION
This file is used by the conjig(1M) program to obtain device infor­
mation that enables it to generate the configuration files. The file
consists of 3 parts, each separated by a line with a dollar sign ($)
in column 1. Part 1 contains device information; part 2 contains
names of devices that have aliases; part 3 contains tunable param­
eter information. Any line with an asterisk (.) in column 1 is
treated as a comment.

Part 1 contains lines consisting of at least 10 fields and at most 13
fields, with the fields delimited by tabs and/or blanks:

Field 1: device name (8 chars. maximum).
Field 2: interrupt vector size (decimal, in bytes).
Field 3: device mask (octal)-each "on" bit indicates

that the handler exists:
000100 ini tializa tion handler
000040 power-failure handler
000020 open handler
000010 close handler
000004 read handler
000002 write handler
000001 ioctl handler.

Field 4: device type indicator (octal):

Field 5:
Field 6:
Field 7:
Field 8:

UNIX Programmer's Manual

000400 VAX-U/780 massbus
adapter
000200 allow only one of these
devices
000100 suppress count field in the
conf.c file
000040 suppress interrupt vector
000020 required device
000010 block device
000004 character device
000002 floating vector
000001 fixed vector.

handler prefix (4 chars. maximum).
device address size (decimal).
major device number for block-type device.
major device number for character-type
device.

System Calls and Library Routines-373

MASTER (4)

Field 9:

Field 10:
Fields 11-13:

MASTER (4)

maximum number of devices per controller
(decimal).
maximum bus request level (4 through 7).
optional configuration table structure
declarations (8 chars. maximum).

Part 2 contains lines with 2 fields each:

Field 1:
Field 2:

alias name of device (8 chars. maximum).
reference name of device (8 chars. max­
imum; specified in part 1).

Part 3 contains lines with 2 or 3 fields each:

Field 1:

Field 2:

Field 3:

parameter name (as it appears in descrip­
tion file; 20 chars. maximum)
parameter name (as it appears in the conf.c
file; 20 chars. maximum)
default parameter value (20 chars. max­
imum; parameter specification is required if
this field is omitted)

Devices that are not interrupt-driven have an interrupt vector size
of zero. The 040 bit in Field 4 causes config (1 M) to record the
interrupt vector although the low.s (univec.c on the VAX-11/780)
file will show no interrupt vector assignment at those locations
{interrupts here will be treated as strays}.

SEE ALSO
config(1M} in the UNIX Programmer's Manual-Volume 3: Sys­
tem Administration Facilities.

374-System Calls and Library Routines UNIX Programmer's Manual

MNTTAB(4) MNTTAB(4)

NAME
mnttab - mounted file system table

SYNOPSIS
#include < mnttab.h >

DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices,
mounted by the mount (1 M) command, in the following structure
as defined by < mnttab.h > :

struct mnttab {

};

char
char
short
time t

mt_dev[32];
mt_filsys[32];
mtJoJlg;
mt_time;

Each entry is 70 bytes in length; the first 32 bytes are the null­
padded name of the place where the special file is mounted; the
next 32 bytes represent the null-padded root name of the mounted
special file; the remaining 6 bytes contain the mounted special
file's read/write permissions and the date on which it was
mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/src/uts/cf/conf.c, which
defines the number of allowable mounted special files.

SEE ALSO
mount(1M), setmnt(1M) in the UNIX Programmer's Manual­
Volume 3: System Administration Facilities.

UNIX Programmer's Manual System Calls and Library Routines-375

PASSWD(4) PASSWD(4)

NAME
passwd - password file

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user ID
numerical group ID
GCOS job number, box number, optional GCOS user ID
initial working directory
program to use as shell

This is an ASCII file. Each field within each user's entry is
separated from the next by a colon. The GCOS field is used only
when communicating with that system, and in other installations
can contain any desired information. Each user is separated from
the next by a new-line. If the password field is null, no password
is demanded; if the shell field is null, the shell itself is used.

This file resides in directory lete. Because of the encrypted pass­
words, it can and does have general read permission and can be
used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a
64-character alphabet (., 1,0-9, A-Z, a-z), except when the
password is null, in which case the encrypted password is also null.
Password aging is effected for a particular user if his encrypted
password in the password file is followed by a comma and a non­
null string of characters from the above alphabet. (Such a string
must be introduced in the first instance by the super-user.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who
attempts to login after his password has expired will be forced to
supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m have
numerical values in the range 0-63 that correspond to the 64-
character alphabet shown above (i.e., I == 1 week; z == 63 weeks).
If m == M == 0 (derived from the string. or ..) the user will be
forced to change his password the next time he logs in (and the
"age" will disappear from his entry in the password file). If m >

376-System Calls and Library Routines UNIX Programmer's Manual

PASSWD(4) PASSWD(4)

FILES

M (signified, e.g., by the string .!) only the super-user will be able
to change the password.

/etc/passwd

SEE ALSO
a64I(3C), crypt(3C), getpwent(3C), group(4).
10ginO), passwd(l) in the UNIX Programmer's Manual-Volume
1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-377

PLOT (4) PLOT (4)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in
plot OX) and are interpreted for various devices by commands
described in tplot{IG). A graphics file is a stream of plotting
instructions. Each instruction consists of an ASCII letter usually
followed by bytes of binary information. The instructions are exe­
cuted in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last desig­
nated point in an I, m, D, or p instruction becomes the "current
point" for the next instruction.

Each of the following descriptions begins with the name of the
corresponding routine in plot OX).

m move: The next four bytes give a new current point.

D cont: Draw a line from the current point to the point given by
the next four bytes. See tplot (I G).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes
to the point given by the following four bytes.

t label: Place the following ASCII string so that its first charac­
ter falls on the current point. The string is terminated by a
new-line.

e erase: Start another frame of output.

f linemod: Take the following string, up to a new-line, as the
style for drawing further lines. The styles are "dotted",
"solid", "longdashed", "shortdashed", and "dotdashed".
Effective only for the -T4014 and -Tver options of tplot{IG)
(TEKTRONIX 4014 terminal and Versatec plotter).

s space: The next four bytes give the lower left corner of the
plotting area; the following four give the upper right corner.
The plot will be magnified or reduced to fit the device as
closely as possible.

Space settings that exactly fill the plotting area with unity scaling
appear below for devices supported by the filters of tplot (I G).
The upper limit is just outside the plotting area. In every case the
plotting area is taken to be square; points outside may be display­
able on devices whose face is not square.

378-System Calls and Library Routines UNIX Programmer's Manual

PLOT (4)

SEE ALSO

DASI300
DASI300s
DASI450
TEKTRONIX 4014
'Versatec plotter

plot OX) , gps(4), term(5).

space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0, 4096, 4096);
space(O, 0,3120, 3120);
space(O, 0, 2048, 2048);

PLOT (4)

graph(IG), tplot(IG) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

WARNING
The plotting library plot OX) and the curses library curses OX)
both use the names eraseO and move 0 . The curses versions are
macros. If you need both libraries, put the plot OX) code in a
different source file than the curses OX) code, and/or #undef
moveO and eraseO in the plot (3X) code.

UNIX Programmer's Manual System Calls and Library Routines-379

PNCH(4)

NAME
pnch - file format for card images

DESCRIPTION
The PNCH format is a convenient representation for files consist­
ing of card images in an arbitrary code.

A PNCH file is a simple concatenation of card records. A card
record consists of a single control byte followed by a variable
number of data bytes. The control byte specifies the number
(which must lie in the range 0-80) of data bytes that follow. The
data bytes are 8-bit codes that constitute the card image. If there
are fewer than 80 data bytes, it is understood that the remainder
of the card image consists of trailing blanks.

SEE ALSO
send(IC) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

380-System Calls and Library Routines UNIX Programmer's Manual

PROFILE (4) PROFILE (4)

NAME
profile - setting up an environment at login time

DESCRIPTION

FILES

If your login directory contains a file named .profile, that file will
be executed (via exec .profile) before your session begins; .profiles
are handy for setting exported environment variables and terminal
modes. If the file /etc/profile exists, it will be executed for every
user before the .profile. The following example is typical (except
for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 22
Tell me when new mail comes in
MAIL=/usr Imaillmyname
Add my Ibin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
echo "terminal: \c"
read TERM
case $TERM in

esac

300)
300s)
450)
hp)
745 1735)
43)
4014 1 tek)
*)

$HOME/.profile
I etcl profile

stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty cr2 nlO tabs; tabs;;
stty crO nlO tabs; tabs;;
stty crl nIl -tabs; TERM=745;;
stty cr 1 nlO -tabs;;
stty crO nlO -tabs ff1; TERM=4014; echo "\33;";;
echo "$TERM unknown";;

SEE ALSO
environ (5), term (5) .
env(1), login (1) , maiI(l) , sh(l), stty(l) , su(1) in the UNIX
Programmer's Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-381

RELOC(4) RELOC(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
#include < reloc.h >

DESCRIPTION
Object files have one relocation entry for each relocatable refer­
ence in the text or data. If relocation information is present, it
will be in the following format.

struct
{

} ;

/*

reloc

long
long
short

r_vaddr ; /* (virtual) address of reference */
r_symndx; /* index into symbol table */
r_type ; /* relocation type */

* All generics
* reloc. already performed to symbol in the same section

o

/*
* 3B computer generic
* 24-bit direct reference

*
*
*
*
*/

#define
#define
#define
#define
#define

/*

24-bit "relative" reference
16-bit optimized "indirect" TV reference
24-bit "indirect" TV reference
32-bit "indirect" TV reference

R_DIR24 04
R_REL24 05
R_OPT16 014
R_IND24 015
R_IND32 016

* On most processors

*
*/

#define R_RELBYTE 017

382-System Calls and Library Routines UNIX Programmer's Manual

RELOC(4) RELOC(4)

#define R_RELWORD
#define R_RELLONG
#define R _PCRBYTE
#define RYCRWORD
#define R _PCRLONG

020
021
022
023
024

As the link editor reads each input section and performs reloca­
tion, the relocation entries are read. They direct how references
found within the input section are treated.

The reference is absolute, and no relocation is neces­
sary. The entry will be ignored.

A direct, 24-bit reference to a symbol's virtual
address.

A "PC-relative", 24-bit reference to a symbol's vir­
tual address. Relative references occur in instruc-
tions such as jumps and calls. The actual address
used is obtained by adding a constant to the value of
the program counter at the time the instruction is
executed.

An optimized, indirect, 16-bit reference through a
transfer vector. The instruction contains the offset
into the transfer vector table to the transfer vector
where the actual address of the referenced word is
stored.

An indirect, 24-bit reference through a transfer vec­
tor. The instruction contains the virtual address of
the transfer vector, where the actual address of the
referenced word is stored.

An indirect, 32-bit reference through a transfer vec­
tor. The instruction contains the virtual address of
the transfer vector, where the actual address of the
referenced word is stored.

R_RELBYTE A direct 8-bit reference to a symbol's virtual
address.

A direct 16-bit reference to a symbol's virtual
address.

UNIX Programmer's Manual System Calls and Library Routines-383

RELOC(4)

R_RELLONG

RELOC(4)

A direct 32-bit reference to a symbol's virtual
address.

R_PCRBYTE A "PC-relative", 8-bit reference to a symbol's virtual
address.

A "PC-relative", 16-bit reference to a symbol's vir­
tual address.

A "PC-relative", 32-bit reference to a symbol's vir­
tual address.

On most processors relocation of a symbol index of -1 indicates
that the relative difference between the current segment's start
address and the program's load address is added to the relocatable
address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler
and automatically utilized by the link editor. A link editor option
exists for removing the relocation entries from an object file.

SEE ALSO
a.out(4), syms(4).
ld(l), strip(l) in the UNIX Programmer's Manual-Volume 1:
Commands and Utilities.

384-System Calls and Library Routines UNIX Programmer's Manual

SCCSFILE (4) SCCSFILE (4)

NAME
sccsfile - format of SCCS file

DESCRIPTION
An file is an ASCII file. It consists of six logical parts: the check­
sum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter­
mixed with control lines).

Throughout an file there are lines which begin with the ASCII
SOH (start of heading) character (octal 00 I) . This character is
hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character.

Entries of the form

represent a five-digit string (a number between 00000 and 99999).

Each logical part of an file is described in detail below.

Checksum
The checksum is the first line of an file. The form of the
line is:

@h

The value of the checksum is the sum of all characters,
except those of the first line. The @h provides a magic
number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of
the form:

@s II
@d <type> <sees ID> yr/mo/da hr:mi:se <pgmr>
@i •••

@x •••

@g •••

@m < number>

UNIX Programmer's Manual System Calls and Library Routines-385

sees FILE (4) SCCSFILE (4)

@c <comments> .••

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line
(@d) contains the type of the delta (currently, normal: D,
and removed: R), the ID of the delta, the date and time of
creation of the delta, the login name corresponding to the
real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respec­
tively.

The @i, @x, and @g lines contain the serial numbers of
deltas included, excluded, and ignored, respectively. These
lines are optional.

The @m lines (optional) each contain one number associ­
ated with the delta; the @c lines contain comments associ­
ated with the delta.

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of
users who may add deltas to the file, separated by new­
lines. The lines containing these login names and/ or
numerical group IDs are surrounded by the bracketing
lines @u and @U. An empty list allows anyone to make a
delta. Any line starting with a ! prohibits the succeeding
group or user from making deltas.

Flags-----
Keywords used internally (see admin (1) for more infor­
mation on their use). Each flag line takes the form:

@f <flag> < optional text>

The following flags are defined:
@f t < type of program>

386-System Calls and Library Routines UNIX Programmer's Manual

sees FILE (4)

@fv
@fi
@fb
@fm
@ff
@fc
@fd
@fn
@fj
@fl
@fq
@fz

< program name>
< keyword string>

<module name>
<floor>
<ceiling>
< default-sid>

< lock-releases>
< user defined>

sees FILE (4)

< reserved for use in interfaces>

The t flag defines the replacement for the % Y %
identification keyword. The v flag controls prompting for
numbers in addition to comments; if the optional text is
present it defines an number validity checking program.
The i flag controls the warning/error aspect of the "No id
keywords" message. When the i flag is not present, this
message is only a warning; when the i flag is present, this
message will cause a "fatal" error (the file will not be got­
ten, or the delta will not be made). When the b flag is
present the -b keyletter may be used on the get com­
mand to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the
%M% identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be
added. The c flag defines the "ceiling" release; the release
above which no deltas may be added. The d flag defines
the default to be used when none is specified on a get
command. The n flag causes delta to insert a "null" delta
(a delta that applies no changes) in those releases that are
skipped when a delta is made in a new release (e.g., when
delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base . The I flag
defines a list of releases that are locked against editing
(get (1) with the -e keyletter). The q flag defines the
replacement for the %Q% identification keyword. The z
flag is used in certain specialized interface programs.

UNIX Programmer's Manual System Calls and Library Routines-387

sees FILE (4) sees FILE (4)

Comments
Arbitrary text is surrounded by the bracketing lines @t

and @T. The comments section typically will contain a
description of the file's purpose.

Body-----

SEE ALSO

The body consists of text lines and control lines. Text
lines do not begin with the control character, control lines
do. There are three kinds of control lines: insert, -delete,
and end, represented by:

@I
@D
@E

respectively. The digit string is the serial number
corresponding to the delta for the control line.

admin(I), delta (I) , get(I), prs(I) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

388-System Calls and Library Routines UNIX Programmer's Manual

SCNHDR(4) SCNHDR(4)

NAME
scnhdr - section header for a common object file

SYNOPSIS
#include < scnhdr .h>

DESCRIPTION
Every common object file has a table of section headers to specify
the layout of the data within the file. Each section within an
object file has its own header. The C structure appears below.

struct scnhdr
{

} ;

char
long
long
long
long
long
long
unsigned short
unsigned short
long

s_namelSYMNMLEN]; /. section name ./
s yaddr; /. physical address ./
s _ vaddr; /. virtual address ./
s_size;
s_scnptr;
sJelptr;
sJnnoptr;
s_nreloc;
s_nlnno;
s_flags;

/. section size ./
/. file ptr to raw data ./
/. file ptr to relocation ./
/. file ptr to line numbers ./
/. # reloc entries ./
/. # line number entries ./
/. flags ./

File pointers are byte offsets into the file; they can be used as the
offset in a call to fseek OS). If a section is initialized, the file con­
tains the actual bytes. An uninitialized section is somewhat
different. It has a size, symbols defined in it, and symbols that
refer to it. But it can have no relocation entries, line numbers, or
data. Consequently, an uninitialized section has no raw data in
the object file, and the values for s _scnptr, s Jelptr, s Jnnoptr,
s_nreloc, and s_nlnno are zero.

SEE ALSO
fseekOS), a.out(4).
Id(O in the UNIX Programmer's Manual-Volume 1: Commands
and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-389

SYMS(4) SYMS(4)

NAME
syms - common object file symbol table format

SYNOPSIS
#include < syms.h>

DESCRIPTION
Common object files contain information to support symbolic
software testing (see sdb (1». Line number entries, linenum (4),
and extensive symbolic information permit testing at the C source
level. Every object file's symbol table is organized as shown below.

File name 1.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 1.

File name 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static externs for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members
of the structure hold the name (null padded), its value, and other
information. The C structure is given below.

390-System Calls and Library Routines UNIX Programmer's Manual

SYMS(4) SYMS(4)

#define SYMNMLEN 8
#define FILNMLEN 14

struct syment
{

};

union
{

char
struct
{

long
long

} _n_n;
char

_n;
long
short
unsigned short
char
char

#define n name
#define n zeroes
#define n _offset
#define n _ nptr

1* all ways to get symbol name *1

_n_namelSYMNMLEN]; 1* symbol name *1

_n_zeroes;
_n_offset;

n_value;
n_scnum;
n_type;
n_sclass;
n_numaux;

1* == OL when in string table *1
1* location of name in table *1

1* allows overlaying *1

1* value of symbol *1
1* section number *1
I * type and derived type *1
1* storage class *1
1* number of aux entries *1

n. n name
_n._n_n._n_zeroes
_n._n_n._n_offset
_n._n_nptrll]

Meaningful values and explanations for them are given in both
syms.h and Common Object File Format. Anyone who needs to
interpret the entries should seek more information in these sources.
Some symbols require more information than a single entry; they
are followed by auxiliary entries that are the same size as a sym­
bol entry. The format follows.

UNIX Programmer's Manual System Calls and Library Routines-391

SYMS(4) SYMS(4)

union auxent
{

struet
{

struet
{

struet
{

struet
{

long
union
{

x_tagndx;

struet
{

unsigned short x Jnno;
unsigned short x _size;

} xJnsz;
long x _fsize;

} x_mise;
union
{

struet
{

long x Jnnoptr;
long x _endndx;

} x_fen;
struet
{

unsigned short x_dimen[DIMNUM];
x_ary;
x_fenary;

unsigned short x_tvndx;
x_sym;

ehar x _fname[FILNMLEN];
x_file;

long x _senlen;
unsigned short x _ nreloe;
unsigned short x _ nlinno;
x_sen;

long x_tvfill;

392-System Calls and Library Routines UNIX Programmer's Manual

SYMS(4)

};

unsigned short x _tvlen;
unsigned short x_tvran[2];
x_tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
a.out(4),linenum(4).

SYMS(4)

sdb(I) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

CAVEATS
On machines in which longs are equivalent to ints (3B20 com­
puter), they are converted to ints in the compiler to minimize the
complexity of the compiler code generator. Thus the information
about which symbols are declared as longs and which, as ints, does
not show up in the symbol table.

UNIX Progra~mer' s Manual System Calls and Library Routines-393

TERM (4) TERM(4)

NAME
term - format of compiled term file.

SYNOPSIS
term

DESCRIPTION
Compiled terminfo descriptions are placed under the directory
lusr llib/terminfo. In order to avoid a linear search of a huge
UNIX system directory, a two-level scheme is used:
lusr/lib/terminfo/c/name where name is the name of the terminal,
and c is the first character of name. Thus, act4 can be found in
the file lusr/lib/terminfo/a/act4. Synonyms for the same terminal
are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8 or more bit byte is assumed, but no assumptions
about byte ordering or sign extension are made.

The compiled file is created with the compile program, and read
by the routine setupterm. Both of these pieces of software are
part of curses (3X). The file is divided into six parts: the header,
terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short
integers in the format described below. These integers are (1) the
magic number (octal 0432); (2) the size, in bytes, of the names
section; (3) the number of bytes in the boolean section; (4) the
number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes,
of the string table.

Short integers are stored in two 8-bit bytes. The first byte con­
tains the least significant 8 bits of the value, and the second byte
contains the most significant 8 bits. (Thus, the value represented
is 256*second+first.) The value -1 is represented by 0377, 0377,
other negative value are illegal. The -1 generally means that a
capability is missing from this terminal. Machines where this does
not correspond to the hardware read the integers as two bytes and
compute the result.

The terminal names section comes next. It contains the first line
of the terminfo description, listing the various names for the termi­
nal, separated by the 'I' character. The section is terminated with
an ASCII NUL character.

394-System Calls and Library Routines UNIX Programmer's Manual

TERM (4) TERM (4)

The boolean flags have one byte for each flag. This byte is either
o or 1 as the flag is present or absent. The capabilities are in the
same order as the file < term.h > .

Between the boolean section and the number section, a null byte
will be inserted, if necessary, to ensure that the number section
begins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capabil­
ity takes up two bytes, and is stored as a short integer. If the
value represented is -I, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a
short integer, in the format above. A value of -I means the capa­
bility is missing. Otherwise, the value is taken as an offset from
the beginning of the string table. Special characters in "X or \c
notation are stored in their interpreted form, not the printing
representation. Padding information $ <nn> and parameter infor­
mation %x are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each string is
null terminated.

Note that it is possible for setupterm to expect a different set of
capabilities than are actually present in the file. Either the data­
base may have been updated since setupterm has been recompiled
(resulting in extra unrecognized entries in the file) or the program
may have been recompiled more recently than the database was
updated (resulting in missing entries). The routine setupterm
must be prepared for both possibilities - this is why the numbers
and sizes are included. Also, new capabilities must always be
added at the end of the lists of boolean, number, and string capa­
bilities.

As an example, an octal dump of the description for the Micro­
term ACT 4 is included:

microtermlact41microterm act iv,
cr=="M, cudl=="J, ind=="J, bel=="G, am, cubl=="H,
ed=='" -' el=="", clear=="L, cup=="T%pl %c%p2%c,
cols#80, lines#24, cufl =="X, cuul =="Z, home=="],

UNIX Programmer's Manual System Calls and Library Routines-395

TERM (4) TERM (4)

FILES

000032001 \0025 \0 \b \0212 \0 "\0 m i c r

020 0 t e r m I act 4 I m i c r 0

040 t e r mac t i v \0 \0 001 \0 \0

~WWWWWWWWWWWWWWWW

100 \0 \0 P \0 377 377 030 \0 377 377 377 377 377 377 377 377

120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0

140 \b \0 377 377 377 377 \0 \0026 \0 030 \0 377 377 032 \0

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377

200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377

540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0 037 \0

560 024 % P 1 % c % p 2 % c \0 \0 \0 035 \0

600 \b \0 030 \0 032 \0 \0 \0

Some limitations: total compiled entries cannot exceed 4096 bytes.
The name field cannot exceed 128 bytes.

/usr/lib/terminfo/*/* compiled terminal capability data base

SEE ALSO
curses (3X), terminfo (4) .

396-System Calls and Library Routines UNIX Programmer's Manual

TERM INFO (4) TERMINFO(4)

NAME
terminfo - terminal capability data base

SYNOPSIS
lusr lliblterminfo/* 1*

DESCRIPTION
Terminfo is a data base describing terminals, used, e.g." by vi (1)
and curses OX). Terminals are described in terminfo by giving a
set of capabilities which they have, and by describing how opera­
tions are performed. Padding requirements and initialization
sequences are included in terminfo.

Entries in terminfo consist of a number of ',' separated fields.
White space after each ',' is ignored. The first entry for each ter­
minal gives the names which are known for the terminal, separated
by 'I' characters. The first name given is the most common abbre­
viation for the terminal, the last name given should be a long name
fully identifying the terminal, and all others are understood as
synonyms for the terminal name. All names but the last should be
in lower case and contain no blanks; the last name may well con­
tain upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece of
hardware making up the terminal should have a root name chosen,
thus "hp2621". This name should not contain hyphens, except
that synonyms may be chosen that do not conflict with other
names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the
mode. Thus, a vt100 in 132 column mode would be vt100-w. The
following suffixes should be used where possible:

Suffix Meaning
-w Wide mode (more than 80 columns)

Example
vt100-w

-am With auto. margins (usually default) vt100-am
-nam Without automatic margins
-n Number of lines on the screen
-na No arrow keys (leave them in local)
-np Number of pages of memory
-rv Reverse video

CAPABILITIES

vt100-nam
aaa-60
c100-na
c100-4p
c100-rv

The variable is the name by which the programmer (at the ter­
minfo level) accesses the capability. The capname is the short
name used in the text of the database, and is used by a person

UNIX Programmer's Manual System Calls and Library Routines-397

TERMINFO(4) TERMINFO(4)

updating the database. The i.code is the two letter internal code
used in the compiled database, and always corresponds to the old
termcap capability name.

Capability names have no hard length limit, but an informal limit
of 5 characters has been adopted to keep them short and to allow
the tabs in the source file caps to line up nicely. Whenever possi­
ble, names are chosen to be the same as or similar to the ANSI
X3.64-1979 standard. Semantics are also intended to match those
of the specification.

(p) indicates that padding may be specified

(G) indicates that the string is passed through tparm with
parms as given (#;).

(*) indicates that padding may be based on the number of
lines affected

(#) . d' h .th i In lcates tel parameter.

Variable Cap- I. Description
Booleans name Code

auto Jeft _margin, bw bw cubl wraps from column 0 to last column

auto Jight _margin, am am Terminal has automatic margins

beehive ~litch, xsb xb Beehive (f1-escape, f2-ctrl C)

ceol_standout~litch, xhp xs Standout not erased by overwriting (hp)

eat_newline~litch, xenl xn newline ignored after 80 cols (Concept)

erase_overstrike, eo eo Can erase overstrikes with a blank

generic_type, gn gn Generic line type (e.g." dialup, switch).

hard_copy, hc hc Hardcopy terminal

has_meta _key, km km Has a meta key (shift, sets parity bit)

has_statusJine, hs hs Has extra "status line"

insert_null~litch, in in Insert mode distinguishes nulls

memory_above, da da Display may be retained above the screen

memory_below, db db Display may be retained below the screen

move jnsert _mode, mir mi Safe to move while in insert mode

move_standout _mode, msgr ms Safe to move in standout modes

over_strike, os os Terminal overstrikes

status Jine _esc_ok, eslok es Escape can be used on the status line

teleray ~litch, xt xt Tabs ruin, magic so char (Teleray 1061)

tilde~litch, hz hz Hazeltine; can not print "'s

transparent_underline, ul ul underline character overstrikes

398-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO(4) TERMINFO (4)

xon_xoff, xon xo Terminal uses xon/xoff handshaking

Numbers:

columns, cols co Number of columns in a line

iniUabs, it it Tabs initially every # spaces

lines, lines li Number of lines on screen or page

lines _ oC memory, 1m 1m Lines of memory if > lines. 0 means varies

magic_cookie ...zlitch, xmc sg Number of blank chars left by smso or rmso

padding_baud Jate, pb pb Lowest baud where cr/nl padding is needed

virtual_terminal, vt vt Virtual terminal number (UNIX system)
width_statusJine, wsl ws No. columns in status line

Strings:

back_tab, cbt bt Back tab (P)

bell, bel bl Audible signal (bell) (P)

carriage Jeturn, cr cr Carriage return (P*)

change_scroll Jegion, csr cs change to lines #1 through #2 (vt100) (PG)

clear_all_tabs, the ct Clear all tab stops (P)

clear_screen, clear cl Clear screen and home cursor (P*)

clr_eol, el ce Clear to end of line (P)

clr_eos, ed cd Clear to end of display (P*)

column_address, hpa ch Set cursor column (PG)

command_character, cmdch CC Term. settable cmd char in prototype

cursor_address, cup cm Screen rel. cursor motion row #1 col #2 (PG)

cursor_down, cud 1 do Down one line

cursor_home, home ho Home cursor (if no cup)

cursor jnvisible, civis vi Make cursor invisible

cursor Jeft, cubl Ie Move cursor left one space

cursor _ mem _address, mrcup CM Memory relative cursor addressing

cursor_normal, cnorm ve Make cursor appear normal (undo vs/vi)

cursor Jight, cufl nd Non-destructive space (cursor right)

cursor_toJl, 11 11 Last line, first column (if no cup)

cursor_up, cuul up Upline (cursor up)

cursor_visible, cvvis vs Make cursor very visible

delete_character, dchl dc Delete character (P*)

delete Jine, dll dl Delete line (P*)

dis_statusJine, dsl ds Disable status line

down _ halfjine, hd hd Half-line down (forward 112 linefeed)

enter _ alt _ charset _mode, smacs as Start alternate character set (P)

enter_blink_mode, blink mb Turn on blinking

UNIX Programmer's Manual System Calls and Library Routines-399

TERMINFO (4) TERMINFO(4)

enter_bold_mode, bold md Turn on bold (extra bright) mode

enter _ ca _mode, smcup ti String to begin programs that use cup

enter_delete_mode, smdc dm Delete mode (enter)

enter_dim _mode, dim mh Turn on half-bright mode

enter jnsert _mode, smir im Insert mode (enter);

enter -protected_mode, prot mp Turn on protected mode

enter Jeverse_mode, rev mr Turn on reverse video mode

enter _secure_mode, invis mk Turn on blank mode (chars invisible)

enter_standout _mode, smso so Begin stand out mode

enter_underline _mode, smul us Start underscore mode

erase_chars ech ec Erase #1 characters (PG)

exit _ alt _ charset _mode, rmacs ae End alternate character set (P)

exit_attribute _mode, sgrO me Turn off all attributes

exit _ ca _mode, rmcup te String to end programs that use cup

exit_delete_mode, rmdc ed End delete mode

exit jnsert _mode, rmir ei End insert mode

exit:...standout _mode, rmso se End stand out mode

exit_underline _mode, rmul ue End underscore mode

flash_screen, flash vb Visible bell (may not move cursor)

formJeed, ff ff Hardcopy terminal page eject (P*)

from_status Jine, fsl fs Return from status line

init _1 string, isl i1 Terminal initialization string

init _ 2string, is2 i2 Terminal initialization string

init _ 3string, is3 i3 Terminal initialization string

initJile, if if Name of file containing is

insert_character, ichl ic Insert character (P)

insert Jine, ill al Add new blank line (P*)

insert -padding, ip ip Insert pad after character inserted (P*)

keL backspace, kbs kb Sent by backspace key

keLcatab, ktbc ka Sent by clear-all-tabs key

keLclear, kclr kC Sent by clear screen or erase key

keLctab, kctab kt Sent by clear-tab key

keLdc, kdchl kD Sent by delete character key

key_dl, kdll kL Sent by delete line key

key_down, kcudl kd Sent by terminal down arrow key

keLeic, krmir kM Sent by rmir or smir in insert mode

keLeol, kel kE Sent by clear-to-end-of-line key

key_eos, ked kS Sent by clear-to-end-of-screen key

keyJO, kfO kO Sent by function key fO

keyJl, kfl kl Sent by function key f1

400-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO(4) TERMINFO(4)

keyjl0, kfl0 lea Sent by function key f1 0

keyj2, kf2 k2 Sent by function key f2

keyj3, kf3 k3 Sent by function key f3

keyj4, kf4 k4 Sent by function key f4

keyj5, kf5 k5 Sent by function key f5

keyj6, kf6 k6 Sent by function key f6

keY)I, kf1 k7 Sent by function key f7

keyj8, kf8 k8 Sent by function key fS

keLf9, kf9 k9 Sent by function key f9

key_home, khome kh Sent by home key

keyjc, kichl kI Sent by ins char/enter ins mode key

keyjl, kill kA Sent by insert line

keyJeft, kcubl kI Sent by terminal left arrow key

keyJl, kIl kH Sent by home-down key

key_npage, knp kN Sent by next-page key

keyypage, kpp kP Sent by previous-page key

keYJight, kcufl kr Sent by terminal right arrow key

key_sf, kind kF Sent by scroll-forward/down key

key_sr, kri kR Sent by scroll-backward/up key

key_stab, khts kT Sent by set-tab key

keLup, kcuul ku Sent by terminal up arrow key

keypad Jocal, rmkx ke Out of "keypad transmit" mode

keypad _ xmit, smkx ks Put terminal in "keypad transmit" mode

labjO, lfO 10 Labels on function key fO if not fO

labjl, lfl II Labels on function key fl if not fl

lab_flO, lflO la Labels on function key flO if not flO

lab_f2, lf2 12 Labels on function key f2 if not f2

labj3, lf3 13 Labels on function key f3 if not f3

labj4, If4 14 Labels on function key f4 if not f4

labj5, If5 15 Labels on function key f5 if not f5

labj6, If6 16 Labels on function key f6 if not f6

lab_f7, lf7 17 Labels on function key f7 if not f7

lab_fS, IfS 18 Labels on function key fS if not fS

lab_f9, If9 19 Labels on function key f9 if not f9

meta_on, smm mm Turn on "meta mode" (8th bit)

meta_off, rmm mo Turn off "meta mode"

newline, nel nw Newline (behaves like cr followed by If)

pad_char, pad pc Pad character (rather than null)

parm_dch, dch DC Delete #1 chars (PG·)

parm _delete Jine, dl DL Delete #1 lines (PG·)

UNIX Programmer's Manual System Calls and Library Routines-401

TERMINFO (4) TERMINFO(4)

parm_ down_cursor, cud DO Move cursor down #1 lines (PG*)

parmjch, ich IC Insert #1 blank chars (PG*)

parmjndex, indn SF Scroll forward #1 lines (PG)

parmjnsert Jine, il AL Add #1 new blank lines (PG*)

parm Jeft _cursor, cub LE Move cursor left #1 spaces (PG)

parmJight _cursor, cuf RI Move cursor right #1 spaces (PG*)

parmJindex, rin SR Scroll backward #1 lines (PG)

parm_ up_cursor, cuu UP Move cursor up #1 lines (PG*)

pkey_key, pfkey pk Prog funct key #1 to type string #2

pkeyJocal, pftoc pi Prog funct key #1 to execute string #2

pkeLxmit, pfx px Prog funct key #1 to xmit string #2

print_screen, mcO ps Print contents of the screen

prtr_off, mc4 pf Turn off the printer

prtr_on, mc5 po Turn on the printer

repeat_char, rep rp Repeat char #1 #2 times. (PG*)

reset _1 string, rsl rl Reset terminal completely to sane modes.

reset _ 2string, rs2 r2 Reset terminal completely to sane modes.

reset_3string, rs3 r3 Reset terminal completely to sane modes.

resetJile, rf rf Name of file containing reset string

restore_cursor, rc rc Restore cursor to position of last sc

row_address, vpa cv Vertical position absolute (set row) (PG)

save_cursor, sc sc Save cursor position (P)

scrolljorward, ind sf Scroll text up (p)

scroll Jeverse, ri sr Scroll text down (P)

set_attributes, sgr sa Define the video attributes (PG9)

set_tab, hts st Set a tab in all rows, current column

set_window, wind wi Current window is lines #1-#2 cols #3-#4

tab, ht ta Tab to next 8 space hardware tab stop

to_status Jine, tsl ts Go to status line, column #1

underline_char, uc uc Underscore one char and move past it

up_halfJine, hu hu Half-line up (reverse 112 linefeed)

init.J>rog, iprog iP Path name of program for init

keLal, kal Kl Upper left of keypad

keLa3, ka3 K3 Upper right of keypad

keLb2, kb2 K2 Center of keypad

keLcl, kcl K4 Lower left of keypad

key_c3, kc3 K5 Lower right of keypad

prtr_non, mc5p pO Turn on the printer for #1 bytes

A Sample Entry

The following entry, which describes the Concept-lOO, is among
the more complex entries in the terminfo file as of this writing.

402-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4)

concepti 00 1 c 1 001 concept 1 c 1041 c 1 00-4p 1 concept 100,

am, bel-"G, blank-\EH, blink-\EC, clear-"U<2*> , cnorm-\Ew,

cols#SO, cr-"M$<9>, cubl-"H, cudl-"J, cufl-\E-,

cup-\Ea%pl %' '%+%c%p2%' '%+%c,

TERMINFO (4)

cuul-\E;, cvvis-\EW, db, dchl-\E"A$<16*>, dim-\EE, dll-\E"B$<3*>,

ed-\E"C$<16*>, el-\E"U$<16>, eo, fiash-\Ek$<20>\EK, ht-\t$<S>,

ill-\EAR$<3*>, in, ind-AJ, .ind-AJ$<9>, ip-$<16*>,

is2-\EU\Ef\E7\E5\ES\El\ENH\EK\E\2oo\Eo&\200\Eo\47\E,

kbs-Ah, kcubl-\E>, kcudl-\E<, kcufl-\E-, kcuul-\E;,

kfl-\E5, kf2-\E6, kf3-\E7, khome-\E?,

lines#24, mir, pb#9600, prot-\EI, rep-\Er%pl%c%p2%' '%+%c$<.2*>,

rev-\ED, rmcup-\Ev $<6>\Ep\r\n, rmir-\E\200, rmkx-\Ex,

rmso-\Ed\Ee, rmul-\Eg, rmul-\Eg, sgrO-\EN\200,

smcup-\EU\Ev Sp\Ep\r, smir-\EAp, smkx-\EX, smso-\EE\ED,

smul-\EG, tabs, ul, vt#S, xenl,

Entries may continue onto multiple lines by placing white space at
the beginning of each line except the first. Comments may be
included on lines beginning with "#". Capabilities in terminfo are
of three types: Boolean capabilities which indicate that the termi­
nal has some particular feature, numeric capabilities giving the
size of the terminal or the size of particular delays, and string
capabilities, which give a sequence which can be used to perform
particular terminal operations.

Types of Capabilities

All capabilities have names. For instance, the fact that the Con­
cept has automatic margins (i.e., an automatic return and linefeed
when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric
capabilities are followed by the character '#' and then the value.
Thus cols, which indicates the number of columns the terminal
has, gives the value '80' for the Concept.

Finally, string valued capabilities, such as el (clear to end of line
sequence) are given by the two-character code, an '=', and then a
string ending at the next following ','. A delay in milliseconds
may appear anywhere in such a capability, enclosed in $< .. >
brackets, as in el=\EK$ < 3 >, and padding characters are supplied
by tputs to provide this delay. The delay can be either a number,
e.g., '20', or a number followed by an '*', i.e., '3*'. A ,*, indicates
that the padding required is proportional to the number of lines
affected by the operation, and the amount given is the per­
affected-unit padding required. (In the case of insert character,

UNIX Programmer's Manual System Calls and Library Routines-403

TERMINFO (4) TERMINFO(4)

the factor is still the number of lines affected. This is always one
unless· the terminal has xenl and the software uses it.) When a '*'
is specified, it is sometimes useful to give a delay of the form '3.5'
to specify a delay per unit to tenths of milliseconds. (Only one
decimal place is allowed.)

A number of escape sequences are provided. in the string valued
capabilities for easy encoding of characters there. Both \E and \e
map to an ESCAPE character, AX maps to a control-x for any
appropriate x, and the sequences \n \1 \r \t \b \f \s give a newline,
linefeed, return, tab, backspace, formfeed, and space. Other
escapes include \ A for ", \ \ for \, \, for comma, \: for :, and \0 for
null. (\0 will produce \200, which does not terminate a string but
behaves as a null character on most terminals.) Finally, charac­
ters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do
this, put a period before the capability name. For example, see the
second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The
most effective way to prepare a terminal description is by imitating
the description of a similar terminal in terminfo and to build up a
description gradually, using partial descriptions with vi to check
that they are correct. Be aware that a very unusual terminal may
expose deficiencies in the ability of the terminfo file to describe it
or bugs in vi. To easily test a new terminal description you can set
the environment variable TERMINFO to a pathname of a direc­
tory containing the compiled description you are working on and
programs will look there rather than in lusrRiblterminfo. To get
the padding for insert line right (if the terminal manufacturer did
not document it) a severe test is to edit letc/passwd at 9600 baud,
delete 16 or so lines from the middle of the screen, then hit the 'u'
key several times quickly. If the terminal messes up, more pad­
ding is usually needed. A similar test can be used for insert char­
acter.

Basic Capabilities

The number of columns on each line for the terminal is given by
the cols numeric capability. If the terminal is a CRT, then the
number of lines on the screen is given by the lines capability. If
the terminal wraps around to the beginning of the next line when
it reaches the right margin, then it should have the am capability.

404-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4) TERM INFO (4)

If the terminal can clear its screen, leaving the cursor in the home
position, then this is given by the clear string capability. If the
terminal overstrikes (rather than clearing a position when a char­
acter is struck over) then it should have the os capability. If the
terminal is a printing terminal, with no soft copy unit, give it both
hc and os. (os applies to storage scope terminals, such as TEK­
TRONIX 4010 series, as well as hard copy and APL terminals,) If
there is a code to move the cursor to the left edge of the current
row, give this as cr. (Normally this will be carriage return, control
M,) If there is a code to produce an audible signal (bell, beep,
etc) give this as bel.

If there is a code to move the cursor one position to the left (such
as backspace) that capability should be given as cubl. Similarly,
codes to move to the right, up, and down should be given as cuft,
cuul, and cudl. These local cursor motions should not alter the
text they pass over, for example, you would not normally use
'cuft= ' because the space would erase the character moved over.

A very important point here is that the local cursor motions
encoded in terminfo are undefined at the left and top edges of a
CRT terminal. Programs should never attempt to backspace
around the left edge, unless bw is given, and never attempt to go
up locally off the top. In order to scroll text up, a program will go
to the bottom left corner of the screen and send the ind (index)
string.

To scroll text down, a program goes to the top· left corner of the
screen and sends the ri (reverse index) string. The strings ind and
ri are undefined when not on their respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin
which have the same semantics as ind and ri except that they take
one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge
of the screen when text is output, but this does not necessarily
apply to a cuft from the last column. The only local motion which
is defined from the left edge is if bw is given, then a cubl from the
left edge will move to the right edge of the previous row. If bw is
not given, the effect is undefined.- This is useful for drawing a box
around the edge of the screen, for example. If the terminal has
switch selectable automatic margins, the terminfo file usually
assumes that this is on; i.e., am. If the terminal has a command

UNIX Programmer's Manual System Calls and Library Routines-405

TERMINFO(4) TERM INFO (4)

which moves to the first column of the next line, that command
can be given as nel (newline). It does not matter if the command
clears the remainder of the current line, so if the terminal has no
er and If it may still be possible to craft a working nel out of one
or both of them.

These capabilities suffice to describe hardcopy and glass-tty termi­
nals. Thus the model 33 teletype is described as

33 : tty33 : tty: model 33 teletype,

be1=~G, eo1s#72, er=~M, eud1=~J, he, ind=~J, os,

while the Lear Siegler ADM-3 is described as

adm3: 3 : lsi adm3,
am, be1=AG, e1ear=~Z, eo1s#80, er=AM, cub1=AH, eud1=AJ,

ind=~J, 1ines#24,

Parameterized Strings

Cursor addressing and other strings reqUIrmg parameters in the
terminal are described by a parameterized string capability, with
print/OS) like escapes % x in it. For example, to address the cur­
sor, the cup capability is given, using two parameters: the row and
column to address to. (Rows and columns are numbered from
zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory reI a tive cursor
addressing, that can be indicated by mreup.

The parameter mechanism uses a stack and special % codes to
manipulate it. Typically a sequence will push one of the parame­
ters onto the stack and then print it in some format. Often more
complex operations are necessary.

The % encodings have the following meanings:
%% outputs '%'

%d print popO as in printf

%2d print popO like %2d

%3d print popO like %3d

%02d

%03d as in printf

%c print popO gives %c

%s print pop 0 gives %s

%p[1-9] push ith parm

%P[a-z] set variable [a-z] to popO

%g[a-z] get variable [a-z] and push it

406-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4)

%'c'

%{nn}

char constant c

integer constant nn

TERMINFO(4)

%+ %- %* %1 %m

arithmetic (%m is mod): push(popO op popO)

%& %1 %A bit operations: push(popO op popO)

%= %> %< logical operations: push (pop 0 op popO)

%! % - unary operations push (op pop 0)

%i add I to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

else-irs are possible ala Algol 68:

%? c i %t b i %e c2 %t b2 %e c3 %t b3 %e c4 %t b4 %e %;

ci are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the
usual order. That is, to get x-5 one would use "%gx%{5}%-".

Consider the Hewlett-Packard 2645, which, to get to row 3 and
column 12, needs to be sent \E&aI2c03Y padded for 6 mil­
liseconds. Note that the order of the rows and columns is inverted
here, and that the row and column are printed as two digits. Thus
its cup capability is cup=6\E&%p2%2dc%pl %2dY.

The Microterm ACT-IV needs the current row and column sent
preceded by a AT, with the row and column simply encoded in
binary, cup=AT%pl %c%p2%c. Terminals which use %c need to be
able to backspace the cursor (cubt) , and to move the cursor up
one line on the screen (cuul). This is necessary because it is not
always safe to transmit \n AD and \r, as the system may change or
discard them. (The library routines dealing with terminfo set tty
modes so that tabs are never expanded, so \t is safe to send. This
turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus cup=\E=%pl %' '%+%c%p2%'
'%+%c. After sending '\E=', this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the
sum on the stack in place of the two previous values) and outputs
that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing,
these can be given as single parameter capabilities hpa {horizontal

UNIX Programmer's Manual System Calls and Library Routines-407

TERMINFO(4) TERMINFO (4)

position absolute) and vpa (vertical position absolute). Sometimes
these are shorter. than the more general two parameter sequence
(as with the hp2645) and can be used in preference to cup. If
there are parameterized local motions (e.g., move n spaces to the
right) these can be given as cud, cub, cur, and cuu with a single
parameter indicating how many spaces to move. These are pri­
marily useful if the terminal does not have cup, such as the TEK­
TRONIX 4025.

Cursor Motions

If the terminal has a fast way to home the cursor (to very upper
left corner of screen) then this can be given as home; similarly a
fast way of getting to the lower left-hand corner can be given as U;
this may involve going up with cuul from the home position, but a
program should never do this itself (unless II does) because it can
make no assumption about the effect of moving up from the home
position. Note that the home position is the same as addressing to
(0,0): to the top left corner of the screen, not of memory. (Thus,
the \EH sequence on Hewlett-Packard terminals cannot be used
for home.)

Area Clears

If the terminal can clear from the current position to the end of
the line, leaving the cursor where it is, this should be given as el.
If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined
from the first column of a line. (Thus, it can be simulated by a
request to delete a large number of lines, if a true ed is not avail­
able.)

Insert/delete line

If the terminal can open a new blank line before the line where the
cursor is, this should be given as ill; this is done only from the first
position of a line. The cursor must then appear on the newly
blank line. If the terminal can delete the line which the cursor is
on, then this should be given as dll; this is done only from the first
position on the line to be deleted. Versions of ill and dll which
take a single parameter and insert or delete that many lines can be
given as it and dl. If the terminal has a settable scrolling region
(like the vt100) the command to set this can be described with the
csr capability, which takes two parameters: the top and bottom
lines of the scrolling region. The cursor position is, alas, undefined
after using this command. It is possible to get the effect of insert

408-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO(4) TERMINFO (4)

or delete line using this command - the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the
top or bottom of the screen can also be done using ri or ind on
many terminals without a true insert/delete line, and is often fas­
ter even on terminals with those features.

If the terminal has the ability to define a window as part. of
memory, which all commands affect, it should be given as the
parameterized string wind. The four parameters are the starting
and ending lines in memory and the starting and ending columns
in memory, in that order.

If the terminal can retain display memory above, then the da capa­
bility should be given; if display memory can be retained below,
then db should be given. These indicate that deleting a line or
scrolling may bring non-blank lines up from below or that scrolling
back with ri may bring down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using terminfo. The
most common insert/delete character operations affect only the
characters on the current line and shift characters off the end of
the line rigidly. Other terminals, such as the Concept 100 and the
Perkin Elmer Owl, make a distinction between typed and untyped
blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can determine the kind of
terminal you have by clearing the screen and then typing text
separated by cursor motions. Type abc def using local cursor
motions (not spaces) between the abc and the def. Then position
the cursor before the abc and put the terminal in insert mode. If
typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distin­
guish between blanks and untyped positions. If the abc shifts over
to the def which then move together around the end of the current
line and onto the next as you insert, you have the second type of
terminal, and should give the capability in, which stands for insert
null. While these are two logically separate attributes (one line vs.
multiline insert mode, and special treatment of untyped spaces) we
have seen no terminals whose insert mode cannot be described with
the single attribute ..

UNIX Programmer's Manual System Calls and Library Routines-409

TERMINFO (4) TERMINFO (4)

Terminfo can describe both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tionon the .current line. Give as smir the sequence to get into
insert mode. Give as rmir the sequence to leave insert mode. Now
give as iehl any sequence needed to be sent just before sending the
character to be inserted. Most terminals with a true insert mode
will not give iehl; terminals which send a sequence to open a
screen position should give it here. (If your terminal has both,
insert mode is usually preferable to iehl. Do not give both unless
the terminal actually requires both to be used in combination.) If
post insert padding is needed, give this as a number of milliseconds
in ip (a string option). Any other sequence which may need to be
sent after an insert of a single character may also be given in ip.
If your terminal needs both to be placed into an 'insert mode' and
a special code to precede each inserted character, then both
smir/rmir and iehl can be given, and both will be used. The ieh
capability, with one parameter, n, will repeat the effects of iehl n
times.

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g., if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability mir to speed up inserting in this
case. Omitting mir will affect only speed. Some terminals (not­
ably Datamedia's) must not have mir because of the way their
insert mode works.

Finally, you can specify dehl to delete a single character, deh with
one parameter, n, to delete n characters, and delete mode by giv­
ing smde and rmde to enter and exit delete mode (any mode the
terminal needs to be placed in for dehl to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as eeh with one
parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these
can be represented in a number of different ways. You should
choose one display form as standout mode, representing a good,
high contrast, easy-on-the-eyes, format for highlighting error mes­
sages and other attention getters. (If you have a choice, reverse
video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and

410-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4) TERMINFO (4)

rmso, respectively. If the code to change into or out of standout
mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then xmc should be given to tell
how many spaces are left.

Codes to begin underlining and end underlining can be given as
smul and rmul respectively. If the terminal has a code to underline
the current character and move the cursor one space to the right,
such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink
(blinking) bold (bold or extra bright) dim (dim or half-bright)
invis (blanking or invisible text) prot (protected) rev (reverse
video) sgrO (turn off all attribute modes) smacs (enter alternate
character set mode) and rmacs (exit alternate character set mode).
Turning on any of these modes singly mayor may not turn off
other modes.

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking 9 parameters. Each
parameter is either 0 or 1, as the corresponding attribute is on or
off. The 9 parameters are, in order: standout, underline, reverse,
blink, dim, bold, blank, protect, alternate character set. Not all
modes need be supported by sgr, only those for which correspond­
ing separate attribute commands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which affect
the display algorithm rather than having extra bits for each char­
acter. Some terminals, such as the Hewlett-Packard 2621,
automatically leave standout mode when they move to a new line
or the cursor is addressed. Programs using standout mode should
exit standout mode before moving the cursor or sending a newline,
unless the msgr capability, asserting that it is safe to move in stan­
dout mode, is present.

If the terminal has a way of flashing the screen to indicate an
error quietly (a bell replacement) then this can be given as flash; it
must not move the cursor.

If the cursor needs to be made more visible than normal when it is
not on the bottom line (to make, for example, a non-blinking
underline into an easier to find block or blinking underline) give
this sequence as cvvis. If there is a way to make the cursor com­
pletely invisible, give that as civis. The capability cnorm should be
given which undoes the effects of both of these modes.

UNIX Programmer's Manual System Calls and Library Routines-411

TERMINFO(4) TERM INFO (4)

If the terminal needs to be in a special mode when running a pro­
gram that uses these capabilities, the codes to enter and exit this
mode can be given as smeup and rmeup. This arises, for example,
from terminals like the Concept with more than one page of
memory. If the terminal has only memory relative cursor address­
ing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to
work properly. This is also used for the TEKTRONIX 4025, where
smeup sets the command character to be the one used by terminfo.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability uI. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not pos­
sible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted Hewlett-Packard 2621
keys) . If the keypad can be set to transmit or not transmit, give
these codes as smkx and rmkx. Otherwise the keypad is assumed
to always transmit. The codes sent by the left arrow, right arrow,
up arrow, down arrow, and home keys can be given as keubl,
keuft, keuul, keudl, and khome respectively. If there are function
keys such as fO, fl, ... , fl 0, the codes they send can be given as
kfO, kft, .•• , kftO. If these keys have labels other than the default
fO through flO, the labels can be given as If 0, 1ft, .•• , IftO. The
codes transmitted by certain other special keys can be given: kll
(home down), kbs (backspace), ktbe (clear all tabs), kctab (clear
the tab stop in this column), kclr (clear screen or erase key),
kdehl (delete character), kdll (delete line), krmir (exit insert
mode), kel (clear to end of line), ked (clear to end of screen),
kiehl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down),
kri (scroll backward/up), khts (set a tab stop in this column). In
addition, if the keypad has a 3 by 3 array of keys including the
four arrow keys, the other five keys can be given as kal, ka3, kb2,
kel, and ke3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

412-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4) TERMINFO (4)

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the
next tab stop can be giv~n as ht (usually control n. A "backtab"
command which moves leftward to the next tab stop can be given
as ebt. By convention, if the teletype modes indicate that tabs are
being expanded by the computer rather than being sent to the ter­
minal, programs should not use ht or ebt even if they are present,
since the user may not have the tab stops properly set. If the ter­
minal has hardware tabs which are initially set every n spaces
when the terminal is powered up, the numeric parameter it is
given, showing the number of spaces the tabs are set to. This is
normally used by the tset command to determine whether to set
the mode for hardware tab expansion, and whether to set the tab
stops. If the terminal has tab stops that can be saved in nonvola­
tile memory, the terminfo description can assume that they are
properly set.

Other capabilities include isl, is2, and is3, initialization strings for
the terminal, iprog, the path name of a program to be run to ini­
tialize the terminal, and if, the name of a file containing long ini­
tialization strings. These strings are expected to set the terminal
into modes consistent with the rest of the terminfo description.
They are normally sent to the terminal, by the tset program, each
time the user logs in. They will be printed in the following order:
is1; is2; setting tabs using tbe and hts; if; running the program
iprog; and finally is3. Most initialization is done with is2. Special
terminal modes can be set up without duplicating strings by put­
ting the common sequences in is2 and special cases in isl and is3.
A pair of sequences that does a harder reset from a totally unk­
nown state can be analogously given as rsl, rs2, rf, and rs3, analo­
gous to is2 and if. These strings are output by the reset program,
which is used when the terminal gets into a wedged state, Com­
mands are normally placed in rs2 and rf only if they produce
annoying effects on the screen and are not necessary when logging
in. For example, the command to set the vt100 into 80-column
mode would normally be part of is2, but it causes an annoying
glitch of the screen and is not normally needed since the terminal
is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given
as tbe (clear all tab stops) and hts (set a tab stop in the current
column of every row). If a more complex sequence is needed to
set the tabs than can be described by this, the sequence can be

UNIX Programmer's Manual System Calls and Library Routines-413

TERMINFO(4)

placed in is2 or if.

Delays

TERM INFO (4)

Certain capabilities control padding in the teletype driver. These
are primarily needed by hard copy terminals, and are used by the
tset program to set teletype modes appropriately. Delays embed­
ded in the capabilities cr, ind, cubl, If, and tab will cause the
appropriate delay bits to be set in the teletype driver. If pb (pad­
ding baud rate) is given, these values can be ignored at baud rates
below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a
pad, then this can be given as pad. Only the first character of the
pad string is used.

If the terminal has an extra Hstatus line" that is not normally used
by software, this fact can be indicated. If the status line is viewed
as an extra line below the bottom line, into which one can cursor
address normally (such as the Heathkit h 19's 25th line, or the
24th line of a vt100 which is set to a 23-line scrolling region), the
capability hs should be given. Special strings to go to the begin­
ning of the status line and to return from the status line can be
given as tsl and fsl. (fsl must leave the cursor position in the same
place it was before tsl. If necessary, the sc and rc strings can be
included in tsl and fsl to get this effect.) The parameter tsl takes
one parameter, which is the column number of the status line the
cursor is to be moved to. If escape sequences and other special
commands, such as tab, work while in the status line, the flag
eslok can be given. A string which turns off the status line (or
otherwise erases its contents) should be given as dsl. If the termi­
nal has commands to save and restore the position of the cursor,
give them as sc and rc. The status line is normally assumed to be
the same width as the rest of the screen, e.g., cols. If the status
line is a different width (possibly because the terminal does not
allow an entire line to be loaded) the width, in columns, can be
indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can be indi­
cated with hu (half-line up) and hd (half-line down). This is pri­
marily useful for superscripts and subscripts on hardcopy termi­
nals. If a hardcopy terminal can eject to the next page (form
feed), give this as If (usually control L).

414-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO (4) TERMINFO(4)

If there is a command to repeat a given character a given number
of times (to save time transmitting a large number of identical
characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus,
tparm(repeat_char, 'x', 10) is the same as 'xxxxxxxxxx'.

If the terminal has a settable command character, such as the
TEKTRONIX 4025, this can be indicated with emdeh. A prototype
command character is chosen which is used in all capabilities.
This character is given in the emdeh capability to identify it. The
following convention is supported on some UNIX systems: The
environment is to be searched for a CC variable, and if found, all
occurrences of the prototype character are replaced with the char­
acter in the environment variable.

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and network,
should include the gn (generic) capability so that programs can
complain that they do not know how to talk to the terminal. (This
capability does not apply to virtual terminal descriptions for which
the escape sequences are known.>

If the terminal uses xon/xoff handshaking for flow control, give
xon. Padding information should still be included so that routines
can make better decisions about costs, but actual pad characters
will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting
the 8th bit of any character transmitted, this fact can be indicated
with km. Otherwise, software will assume that the 8th bit is par­
ity and it will usually be cleared. If strings exist to turn this
"meta mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be indicated
with 1m. A value of Im#O indicates that the number of lines is· not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX. system vir­
tual terminal protocol, the terminal number can be given as vt.

Media copy strings which control an auxiliary printer connected to
the terminal can be given as meO: print the contents of the screen,
me4: turn off the printer, and meS: turn on the printer. When
the printer is on, all text sent to the terminal will be sent to the

UNIX Programmer's Manual System Calls and Library Routines-415

TERMINFO(4) TERMINFO(4)

printer. It is undefined whether the text is also displayed on the
terminal screen when the printer is on. A variation mcSp takes
one parameter, and leaves the printer on for as many characters as
the value of the parameter, then turns the printer off. The param·
eter should not exceed 255. All text, including mc4, is tran­
sparently passed to the printer while an mcSp is in effect.

Strings to program function keys can be given as pfkey, pfloc, and
pfx. Each of these strings takes two parameters: the function key
number to program (from 0 to 10) and the string to program it
with. Function key numbers out of this range may program
undefined keys in a terminal dependent manner. The difference
between the capabilities is that pfkey causes pressing the given key
to be the same as the user typing the given string; pfloc causes the
string to be executed by the terminal in local; and pfx causes the
string to be transmitted to the computer.

Glitches and Braindamage

Hazeltine terminals, which do not allow ,-, characters to be
displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap,
such as the Concept and vtl 00, should indicate xenl.

If el is required to get rid of standout (instead of merely writing
normal text on top of it), xbp should be given.

Teleray terminals, where tabs turn all characters moved over to
blanks, should indicate xt (destructive tabs). This glitch is also
taken to mean that it is not possible to position the cursor on top
of a "magic cookie", that to erase standout mode it is instead
necessary to use delete and. insert line.

The Beehive Superbee, which is unable to correctly transmit the
escape or control C characters, has xsb, indicating that the f1 key
is used for escape and f2 for control C. (Only certain Super bees
have this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more
capabilities of the form xx.

Similar Terminals

If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability
use can be given with the name of the similar terminal. The capa­
bilities given before use override those in the terminal type invoked

416-System Calls and Library Routines UNIX Programmer's Manual

TERMINFO(4) TERMINFO(4)

FILES

by use. A capability can be cancelled by placing xx@ to the left
of the capability definition, where xx is the capability. For exam­
ple, the entry

2621-nl, smkx@, rmkx@, use==2621,

defines a 2621-nl that does not have the smkx or rmkx capabilities,
and hence does not turn on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for
different user preferences.

/usrllib/terminfo/? /* files containing terminal descriptions

SEE ALSO
curses (3 X) , printf(3S), term (5).
tic(1M) in the UNIX Programmer's Manual-Volume 3: System
Administration Facilities.

UNIX Programmer's Manual System Calls and Library Routines-417

UTMP(4) UTMP(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include < utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such
commands as who (I), write (I), and [ogin(I), have the following
structure as defined by <utmp.h>:

#define
#define
#define

UTMP_FILE

WTMP_FILE

ut_name

"/etc/utmp"
"I etc/wtmp"
ut_user

struct utmp {
char
char
char
short
short
struct

ut_userl8];
utjd[4];
utJine[12];
ut""pid;
ut_type;
exit_status {

short
short

} ut_exit;

e_termination;
e_exit;

};

1* Definitions for ut_type *1
#define EMPTY 0
#define RUN_LVL

#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT _PROCESS 5
#define LOGIN_PROCESS 6
#define USER_PROCESS 7
#define DEAD _PROCESS 8
#define ACCOUNTING 9

1* User login name *1
1* letc/inittab id (usually line #) *1
1* device name (console, lnxx) *1
I * process id * I
1* type of entry *1

1* Process termination status *1
1* Process exit status *1
1* The exit status of a process
* marked as DEAD_PROCESS. *1

1* time entry was made *1

#define UTMAXTYPE ACCOUNTING

418-System Calls and Library Routines UNIX Programmer's Manual

UTMP(4) UTMP(4)

FILES

/* Special strings or formats used in the "utJine" field when *l
/* accounting for something other than a process */
/* No string for the utJine field can be more than 11 chars + */
/ * a NULL in length * /
#define RUNLVL_MSG "run-level %c"
#define BOOT_MSG "system boot"
#define OTIME_MSG "old time"
#define NTIME MSG "new time"

/usr /include/utmp.h
/etc/utmp
/etc/wtmp

SEE ALSO
getut(3C).
login (1) , who(l), write(1) in the UNIX Programmer's Manual­
Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-419

INTRO(S)

NAME
intro - introduction to miscellany

DESCRIPTION

INTRO(S)

This section describes miscellaneous facilities such as macro pack­
ages, character set tables, etc.

UNIX Programmer's Manual System Calls and Library Routines-421

ASCII (5) ASCII (5)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and
hexadecimal equivalents of each character, to be printed as
needed. It contains:

000 nul 001 soh 002 stx 003 etx
004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt
014 np 015 cr 016 so 017 si
020 dIe 021 dcl 022 dc2 023 dc3
024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc
034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 #
044 $ 045 % 046 & 047 '
050 (051) 052 * 053 +
054, 055 - 056. 057 /
0600 061 1 0622 063 3
0644 065 5 0666 0677
0708 071 9 072 : 073 ;
074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C
104 D -105 E 106 F 107 G
110H 111 I 112J 113K
114 L 115 M 116N 1170
120 P 121 Q 122 R 123 S
124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [
134 \ 135] 136 " 137 -
140 ' 141 a 142 b 143 c
144 d 145 e 146 f 147 g
150 h 151 i 152 j 153 k
154 I 155 m 156 n 1570
160 P 161 q 162 r 163 s
164 t 165 u 166 v 167 w
170 x 171 Y 172 z 173 {

422-System Calls and Library Routines UNIX Programmer's Manual

ASCII (5) ASCII (5)

174 175 } 176 - 177 del

00 nul 01 soh 02 stx 03 etx
04 eot 05 enq 06 ack 07 bel
08 bs 09 ht Oa nl Ob vt
Oc np Od cr Oe so Of si
10 dIe 11 dc1 12 dc2 13 dc3
14 dc4 15 nak 16 syn 17 etb
18 can 19 em 1a sub 1b esc
1c fs 1d gs Ie rs If us
20 sp 21 ! 22 " 23 #
24 $ 25 % 26 & 27 '
28 (29) 2a * 2b +
2c, 2d - 2e • 2f /
300 31 1 322 33 3
344 35 5 366 37 7
38 8 399 3a : 3b;
3c < 3d == 3e> 3f?
40 @ 41 A 42 B 43 C
44 D 45 E 46 F 47 G
48 H 49 I 4a J 4b K
4c L 4dM 4eN 4fO
50 P 51 Q 52 R 53 S
54 T 55 U 56 V 57W
58 X 59 Y 5a Z 5b [
5c \ 5d 1 5e" 5f -
60 ' 61 a 62 b 63 c
64 d 65 e 66 f 67 g
68 h 69 i 6a j 6b k
6c I 6dm 6e n 6f 0

70 P 71 q 72 r 73 s
74 t 75 u 76 v 77 w
78 x 79 y 7a z 7b {
7c 7d} 7e - 7f del

FILES
/usr/pub/ascii

UNIX Programmer's Manual System Calls and Library Routines-423

ENVIRON(S) ENVIRON(S)

NAME
environ - user environment

DESCRIPTION
An array of strings called the "environment" is made available by
exec(2) when a process begins. By convention, these strings have
the form "name==value". The following names are used by various
commands:

PATH The sequence of directory prefixes that sh(l), time (I),
nice (1), nohup (I), etc., apply in searching for a file
known by an incomplete path name. The prefixes are
separated by colons (:). Login (0 sets
PATH = : Ibin:lusr Ibin.

HOME Name of the user's login directory, set by login(1) from
the password file passwd (4).

TERM The kind of terminal for which output is to be prepared.
This information is used by commands, such as mm (1) or
tplot (I G), which may exploit special capabilities of that
terminal.

TZ Time zone information. The format is xxxnzzz where xxx
is standard local time zone abbreviation, n is the
difference in hours from GMT, and zzz is the abbreviation
for the daylight-saving local time zone, if any; for exam­
ple, ESTSEDT.

Further names may be placed in the environment by the export
command and "name=value" arguments in sh (1), or by exec (2).
It is unwise to conflict with certain shell variables that are fre­
quently exported by .profile files: MAIL, PSt, PS2, IFS.

SEE ALSO
exec(2).
env(1) , login (1) , sh(1), mm(I), nice(1), nohup(1) , time(I),
tplot(1G) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

424-System Calls and Library Routines UNIX Programmer's Manual

EQNCHAR(S) EQNCHAR(S)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnehar [files] I troff [options]

neqn /usr/pub/eqnehar [files] I nroff (1) [options]

eqn -Taps /usr/pub/apseqnehar [files] I troff [options]

eqn -Teat /usr/pub/eateqnehar [files] I otroff [options]

DESCRIPTION
Eqnchar contains troff(I) and nroff(I) character definitions for
constructing characters that are not available on a phototypesetter.
These definitions are primarily intended for use with eqn (1) and
neqn; eqnchar contains definitions for the following characters:

ciplus ciplus II II square square

citimes citimes langle langle circle circle

wig wig rangle rangle blot blot
-wig -wig hbar hbar bullet bullet

> wig > wig ppd ppd prop prop

<wig <wig <-> <- empty empty

= wig ==wig <=> ~> member member

star star 1< 1< nomem nom em

bigstar bigs tar I> I> cup cup
=dot ==dot ang ang cap cap

orsign orsign rang rang incl incl

andsign andsign 3dot 3 dot subset subset
=del =del thl thl supset supset

oppA oppA quarter quarter ! subset !subset

oppE oppE 3quarter 3quarter ! supset!supset
angstrom angstrom degree degree scrLscrL

==< ====< ==> ==>
Apseqnchar is a version of eqnchar tailored for the Autologic
APS-5 phototypesetter. This will not look optimal on other photo­
typesetters. Similarly, cateqnchar is the old eqnchar tailored for
the Wang CAT and the old otroff. Until a phototypesetter­
independent version of eqnchar is available, eqnchar should be a
link to the default version on each system. The standard default is
apseqnchar.

UNIX Programmer's Manual System Calls and Library Routines-425

EQNCHAR(S)

FILES
/usr/pub/eqnchar
/usr/pub/apseqnchar
/usr/pub/cateqnchar

SEE ALSO

EQNCHAR(S,)

eqn (1), nroff(1), troff(1) in the UNIX Programmer's M anual­
Volume 1: Commands and Utilities.

426-System Calls and Library Routines UNIX Programmer's Manual

FCNTL(5) FCNTL(5)

NAME
fcnt! - file control options

SYNOPSIS
#include < fcntl.h >

DESCRIPTION
The fcnt[(2) function provides for control over open files. The
include file describes requests and arguments to fcntl and
open (2).

/. Flag values accessible to open(2) and fcntH2) ./
/. (The first three can only be set by open) ./
#define 0 _RDONL Y 0
#define O_WRONLY 1
#define O_RDWR 2
#define ° _NDELA Y 04 /. Non-blocking I/O ./
#define O_APPEND 010 /. append (writes guaranteed at the end) ./

/. Flag values accessible only to open(2) ./
#define
#define
#define

O_CREAT
O_TRUNC
O_EXCL

/. fcntH2) requests ./
#define F_DUPFD
#define F_GETFD
#define F_SETFD
#define F_GETFL
#define F_SETFL
#define F_GETLK
#define F_SETLK
#define F_SETLKW

00400
01000
02000

/. open with file create (uses third open arg) ./

/. open with truncation ./
/. exclusive open ./

0 /. Duplicate fildes ./
I /. Get fildes flags ./
2 /. Set fildes flags ./
3 /. Get file flags ./
4 /. Set file flags ./
5 /. Get blocking file locks ./
6 /. Set or clear file locks and fail on busy */
7 /*Set or clear file locks and wait on busy */

/* file segment locking control structure */

struct flock

short I_type;

short I_whence;

long I_start;

long !Jen; /* if 0 then until EOF */

int l""pid; /* returned with F _GETLK */

/* file segment locking types */
#define F _RDLCK 01 /. Read lock ./

#define F _ WRLCK 02 /* Write lock */
#define F _UNLCK 03 /. Remove locks */

SEE ALSO
fcnt1(2), open (2) .

UNIX Programmer's Manual System Calls and Library Routines-427

FONT (5) FONT (5)

NAME
font - description files for device-independent troff

SYNOPSIS
troff - Tptty •••

DESCRIPTION
For each phototypesetter supported by troff(I) and available on
this system, there is a directory containing files describing the dev­
ice and its fonts. This directory is named lusrlIib/font/devptty
where ptty is the name of the phototypesetter .. Currently the only
ptty supported is aps for the Autologic APS-5.

For a particular phototypesetter, ptty, the ASCII file DESC in the
directory lusrlIib/font/devptty describes its characteristics. Each
line starts with a word identifying the characteristic and followed
by appropriate specifiers. Blank lines and lines beginning with a #
are ignored.

The legal lines for DESC are:

res num

hor num

vert num

unitwidth num

sizescale num

paperwidth num

paperlength. num

sparel num

spare2 num

sizes num num ...

fonts num name ...

resolution of device in basic incre­
ments per inch

smallest unit of horizontal motion

smallest unit of vertical motion

pointsize in which widths are
specified

scaling for fractional pointsizes

width of paper in basic increments

length of paper in basic increments

available for use

available for use

list of pointsizes available on
typesetter

number of initial fonts followed by
the names of the fonts. For exam­
ple:
fonts 4 RIB S

charset this always comes last in the file
and is on a line by itself. Follow­

. ing it is the list of special character

428-System Calls and Library Routines UNIX Programmer's Manual

FONT(S) FONT(S)

names for this device. N ames are
separated by a space or a newline.
The list can be as long as neces­
sary. N ames not in this list are
not allowed in the font description
files.

Res is the basic resolution of the device in increments per inch.
Hor and vert describe the relationships between motions in the hor­
izontal and vertical directions. If the device is capable of moving
in single basic increments in both directions, both hor and vert
would have values of 1. If the vertical motions only take place in
multiples of two basic units while the horizontal motions take place
in the basic increments, then hor would be 1, while vert would be
2. Unitwidth is the pointsize in which all width tables in the font
description files are given. Troff automatically scales the widths
from the unitwidth size to the pointsize it is working with. Sizes­
cale is not currently used and is 1. Paperwidth is the width of the
paper in basic increments. The APS-S is 6120 increments wide.
Paperlength is the length of a sheet of paper in the basic incre­
ments.

For each font supported by the phototypesetter, there is also an
ASCII file with the same name as the font (e.g., R, I, CW). The
format for a font description file is:

name name name of the font, such as R or CW

internalname name

special

ligatures name ... 0

sparel

spacewidth num

charset

internal name of font

sets flag indicating that the font is
special

Sets flag indicating font has liga­
tures. The list of ligatures follows
and is terminated by a zero.
Accepted ligatures are:
ff fi ft ffi m.
available for use

width of space if something other
than 1/3 of \ (em is desired as a
space.

The charset must come at the end.
Each line following the word char­
set describes one character in the

UNIX Programmer's Manual System Calls and Library Routines-429

FONT (5) FONT(5)

font. Each line has one of two for­
mats:
name width kerning code
name

where name is either a single ASCII character or a special
character name from the list found in DESC. The width
is in basic increments. The kerning information is 1 if the
character descends below the line, 2 if it rises above the
letter 'a', and 3 if it both rises and descends. The kerning
information for special characters is not used and so may
be o. The code is the number sent to the typesetter to
produce the character. The second format is used to indi­
cate that the character has more than one name. The
double quote indicates that this name has the same values
as the preceding line. The kerning and code fields are not
used if the width field isa double quote character.

Troff and its postprocessors read this information from
binary files produced from the ASCII files by a program
distributed with troff called makedev. For those with a
need to know, a description of the format of these files fol­
lows:

The file DESC.out starts with the dev structure, defined
by dev.h:
/*

dev.h: characteristics of a typesetter
* /

struct dev {
short filesize; /* number of bytes. in file, * /

/* excluding dev part */
short res; /* basic resolution in goobies/inch * /
short hor; /* goobies horizontally * /
short vert;
short unitwidth; /* size at which widths are given*/
short nfonts; /* number fonts physically available * /
short nsizes; /* number of pointsizes * /
short sizescale; /* scaling for fractional pointsizes * /
short paperwidth; /* max line length in units * /
short paperlength; /* max paper length in units */
short nchtab; /* number of funny names in chtab * /
short lchname; /* length of chname table * /

430-System Calls and Library Routines UNIX Programmer's Manual

FONT(5) FONT (5)

short sparel; /* in case of expansion */
short spare2;
};

Filesize is just the size of everything in DESC.out exclud­
ing the dey structure. Nfonts is the number of different
font positions available. Nsizes is the number of different
pointsizes supported by this typesetter. Nchtab is the
number of special character names. Lchname is the total
number of characters, including nulls, needed to list all
the special character names. At the end of the structure
are two spares for later expansions.

Immediately following the dey structure are a number of
tables. First is the sizes table, which contains nsizes + 1
shorts(a null at the end), describing the pointsizes of text
available on this device. The second table is the
funny _char _index_table. It contains indices into the the
table which follows it, the funny _char_strings. The
indices point to the beginning of each special character
name which is stored in the funny _char _strings table. The
funny _char _strings table is lchname characters long, while
the funny _char _index _table is nchtab shorts long.

Following the dey structure will occur nfonts Vont} .out
files, which are used to initialize the font positions. These
Vont} .out files, which also exist as separate files, begin
with a font structure and then are followed by four char­
acter arrays:

struct font { /* characteristics of a font * /
char nwfont; /* number of width entries * /
char specfont; /* 1 -= special font * /
char ligfont; /* 1 -- ligatures exist on this font * /
char sparel; /* unused for now */
char namefondl01; /* name of this font, e.g., R */
char intname[101; /* internal name of font, in ASCII */
};

The font structure tells how many defined characters there
are in the font, whether the font is a "special" font and if
it contains ligatures. It also has the ASCII name of the
font, which should match the name of the file it appears
in, and the internal name of the font on the typesetting
device (intname) . The internal name is independent of
the font position and name that troff knows about. For

UNIX Programmer's Manual System Calls and Library Routines-431

FONT (5) FONT (5)

example, you might say mount R in position 4, but when
asking the typesetter to actually produce a character from
the R font, the postprocessor which instructs the typesetter
would use intname.

The first three character arrays are specific for the font
and run in parallel. The first array, widths, contains the
width of each character relative to unitwidth. Unitwidth
is defined in DESC. The second array, kerning, contains
kerning information. If a character rises above the letter
'a', 02 is set. If it descends below the line, 01 is set. The
third array, codes, contains the code that is sent to the
typesetter to produce the character.

The fourth array is defined by the device description in
DESC. It is the fontJndex-.Jable. This table contains
indices into the width, kerning, and code tables for each
character. The order that characters appear in these three
tables is arbitrary and changes from one font to the next.
In order for troff to be able to translate from ASCII and
the special character names to these arbitrary tables, the
font _index _table is created with an order which is con­
stant for each device. The number of entries in this table
is 96 plus the number of special character names for this
device. The value 96 is 128 - 32, the number of printable
characters in the ASCII alphabet. To determine whether
a normal ASCII character exists, troff takes the ASCII
value of the character, subtracts 32, and looks in the
font _index _table. If it finds a 0, the character is not
defined in this font. If it finds anything else, that is the
index into widths, kerning, and codes that describe that
character.

To look up a special character name, for example \ (pi, the
mathematical plus sign, and determine whether it appears
in a particular font or not, the following procedure is fol­
lowed. A counter is set to 0 and an index to a special
character name is picked out of the counter'th position in
the funny _char _index_table. A string comparision is per­
formed between funny _char_strings [
funny _char Jndex _table [counter J J and the special char­
acter name, in our example pi, and if it matches, then
troff refers to this character as (96 + counter). When it
wants to determine whether a specific font supports this

432-System Calls and Library Routines UNIX Programmer's Manual

FONT(5) FONT (5)

character, it looks injont_index_table[(96+counter)], (see
below), to see whether there is a 0, meaning the character
does not appear in this font, or number, which is the index
into the widths, kerning, and codes tables.

Notice that since a value of 0 in thejontjndex_table indi­
cates that a character does not exist, the Oth element of
the width, kerning, and codes arrays are not used. For
this reason the Oth element of the width array can be used
for a special purpose, defining the width of a space for a
font. Normally a space is defined by troffto be 1/3 of the
width of the \ (em character, but if the Oth element of the
width array is non-zero, then that value is used for the
width of a space.

SEE ALSO
troff(5).

FILES

troff(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

lusrllib/font/dev{X} IDESC.out description file for photo-
typesetter X
lusrllib/font/dev{X}/ {font} .out font description files for photo­
typesetter X

UNIX Programmer's Manual System Calls and Library Routines-433

MAN(5) MAN (5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

troff -man [-rsl] files

DESCRIPTION
These troff(I) macros are used to layout the format of the entries
of this manual. A skeleton entry may be found in the file
/usr/man/u_man/manO/skeleton. These macros are used by the
man(1) command.

The default page size is 8.5"x 11", with a 6.5"X 10" text area; the
-rsl option reduces these dimensions to 6"x9" and 4.75"x8.375",
respectively; this option (which is not effective in nroff(I)) also
reduces the default type size from 1 O-point to 9-point, and the
vertical line spacing from 12-point to 10-point. The -rV2 option
may be used to set certain parameters to values appropriate for
certain Versatec printers: it sets the line length to 82 characters,
the page length to 84 lines, and it inhibits underlining; this option
should not be confused with the -Tvp option of the man(1) com­
mand, which is available at some UNIX system sites.

Any text argument below may be one to six "words". Double
quotes ("") may be used to include blanks in a "word". If text is
empty, the special treatment is applied to the next line that con­
tains text to be printed. For example, .1 may be used to italicize a
whole line, or .SM followed by .B to make small bold text. By
default, hyphenation is turned off for nroff(I), but remains on for
troff(I)·

Type font and size are reset to default values before each para­
graph and after processing font- and size-setting macros, e.g., .1,
.RB, .SM. Tab stops are neither used nor set by any macro except
.DT and .TH.

Default units for indents in are ens. When in is omitted, the pre­
vious indent is used. This remembered indent is set to its default
value (7.2 ens in troff(I), 5 ens in nroffthis corresponds to 0.5" in
the default page size) by.TH, .P, and .RS, and restored by .RE.

.TH t sen Set the title and entry heading; t is the title, s is the
section number, c is extra commentary, e.g., "local",
n is new manual name. Invokes .DT (see below).

434-System Calls and Library Routines UNIX Programmer's Manual

MAN(5)

. SU text

. SS text
• B text
• 1 text
. SM text
.RI a b

.P

.UP in

.TP in

.IP t in

.RS in

.RE k

.PMm

.DT

• PD v

Place subhead text, e.g., SYNOPSIS, here .
Place sub-subhead text, e.g., Options, here .
Make text bold .
Make text italic .

MAN(S)

Make text 1 point smaller than default point size .
Concatenate roman a with italic b, and alternate
these two fonts for up to six arguments. Similar mac­
ros alternate between any two of roman, italic, and
bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size, and
indent .. PP is a synonym for .P.
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag. The next
line that contains text to be printed is taken as the
tag. If the tag does not fit, it is printed on a separate
line.
Same as .TP in with tag t; often used to get an
indented paragraph without a tag.
Increase relative indent (initially zero). Indent all
output an extra in units from the current left margin.
Return to the kth relative indent level (initially, k==l;
k==O is equivalent to k==l); if k is omitted, return to
the most recent lower indent level.
Produces proprietary markings; where m may be P
for PRIVATE, N for NOTICE, DP for BELL LABORA­
TORIES PROPRIETARY, or DR for BELL LABORA­
TORIES RESTRICTED.
Restore default tab settings (every 7.2 ens in troff(l) ,
5 ens in nroff(l)).
Set the interparagraph distance to v vertical spaces .
If v is omitted, set the interparagraph distance to the
default value (O.4v in troff(l) , Iv in nroff(l)).

The following strings are defined:

\·R @ in troff(l), (Reg.) in nroff.
\·S Change to default type size.
\.(Tm Trademark indicator.

The following number registers are given default values by .TU:

IN Left margin indent relative to subheads (default is 7.2
ens in troff(l), S ens in nroff(l)).

UNIX Programmer's Manual System Calls and Library Routines-435

MAN(S) MAN(S)

LL
PD

Line length including IN.
Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned
above,. there are defined a number of internal macros, strings, and
number registers. Except for names predefined by troff (J) and
number registers d, m, and y, all such internal names are of the
form XA, where X is one of),), and }, and A stands for any
alphanumeric character.

If a manual entry needs to be preprocessed by eqn (1) (or neqn) ,
and/or tbl(l) , it must begin with a special line (described in
man(1», causing the man command to invoke the appropriate
preprocessor(s).

The programs that prepare the Table of Contents and the Per­
muted Index for this Manual assume the NAME section of each
entry consists of a single line of input that has the following for­
mat:

name[, name, name .. .1 \- explanatory text

The macro package increases the inter-word spaces (to eliminate
ambiguity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one
can replace, for example, the bold font by the constant-width font
(CW). Of course, if the input text of an entry contains requests
for other fonts (e.g., .1, .RB, \fI), the corresponding fonts must be
mounted.

/usr Ilib/tmac/ tmac.an
/usr/lib/macros/cmp.n.[dt1.an
/usr /lib/ macros/ucmp.n.an
/usr/man/[uaptman/manO/skeleton

SEE ALSO

BUGS

eqn(1), man(1), nroff(l), tbI(l) , tc(1), troff(1) in the UNIX
Programmer's M anual-Volume 1,' Commands and Utilities.

If the argument to .TH contains any blanks and is not enclosed by
double quotes (""), there will be strange irregular dots on the out­
put.

436-System Calls and Library Routines UNIX Programmer's Manual

MATH (5) MATH (5)

NAME
math - math functions and constants

SYNOPSIS
#include < math.h >

DESCRIPTION

FILES

This file contains declarations of all the functions in the Math
Library (described in Section 3M), as well as various functions in
the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the mat herr (3 M)
error-handling mechanisms, including the following constant used
as an error-return value:

HUGE The maximum value of a single-precision
floating-point number.

The following mathematical constants are defined for user conveni-
ence:

ME

M_LOG2E

M_LOGIOE

M_LN2

M_LNIO

M PI

M_SQRT2

M_SQRTl_2

The base of natural logarithms (e).

The base-2 logarithm of e.

The base-IO logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

7r, the ratio of the circumference of a circle
to its diameter. (There are also several
fractions of 7r, its reciprocal, and its square
root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants," see
the description of the <values.h> header file.

lusrlinclude/math.h

SEE ALSO
intro(3), matherr(3 M) , values (5).

UNIX Programmer's Manual System Calls and Library Routines-437

MM(S) MM(S)

NAME
mm - the MM macro package for formatting documents

SYNOPSIS
mm [options 1 [files 1
nrolf -mm [options 1 [files 1
nrolf -em [options 1 [files 1

mmt [options 1 [files 1
trolf -mm [options 1 [files 1

DESCRIPTION

FILES

This package provides a formatting capability for a very wide
variety of documents. It is the standard package used by the BTL
typing pools and documentation centers. The manner in which a
document is typed in and edited is essentially independent of
whether the document is to be eventually formatted at a terminal
or is to be phototypeset. See the references below for further
details.

The -mm option causes nroff(I) and troff(I) to use the non­
compacted version of the macro package, while the -em option
results in the use of the compacted version, thus speeding up the

. process. of loading the macro package.

lusr llibl tmacl tmac.m

lusrllib/macros/mm[ntl

lusr/lib/macros/cmp.n.[dtJ.m
lusr/lib/macros/ucmp.n.m

pointer to the non-compacted ver- \
sion of the package
non-compacted version of the
package
compacted version of the package
initializers for the compacted ver­
sion of the package

SEE ALSO
mm(I), mmt(I) , nroff(I), troff(I) in the UNIX Programmer's
Manual- Volume 1: Commands and Utilities.

438-System Calls and Library Routines UNIX Programmer's Manual

MOSD(5) MOSD(5)

NAME
mosd - the OSDD adapter macro package for formatting docu­
ments

SYNOPSIS
osdd [options] [files]

mm - mosd [options] [files]

nroff -mm -mosd [options] [files]

nroff -em -mosd [options] [files]

mmt - mosd [options] [files]

troff -mm -mosd [options] [files]

DESCRIPTION
The OSDD adapter macro package is a tool used in conjunction
with the MM macro package to prepare Operations Systems
Deliverable Documentation. Many of the OSDD Standards are
different from the default format provided by MM. The OSDD
adapter package sets the appropriate MM options for automatic
production of the OSDD Standards. The OSDD adapter package
also generates the correct OSDD page headers and footers, heading
styles, Table of Contents format, etc.

OSDD document (input) files are prepared with the MM macros.
Additional information which must be given at the beginning of
the document file is specified by the following string definitions:

.ds H I document-number

.ds H2 section-number

.ds H3 issue-number

.ds H4 date

.ds H5 rating

The document-number should be of the standard IO-character for­
mat. The words "Section" and "Issue" should not be included in
the string definitions; they will be supplied automatically when the
document is printed. For example:

.ds HI OPA-IPI35-01

.ds H2 4

.ds H3 2
automatically produces

OPA-IPI35-01
Section 4
Issue 2

UNIX Programmer's Manual System Calls and Library Routines-439

MOSD(5) MOSD(5)

as the document page header. Quotation marks are not used in
string definitions.

If certain information is not to be included in a page header, then
the string is defined as null; e.g.,

.ds H2
means that there is no section-number.

The OSDD Standards require that the Table of Contents be num­
bered beginning with Page 1. By default, the first page of text
will be numbered Page 2. If the Table of Contents has more than
one page, for example n,then either -rPn + 1 must be included as
a command line option or .or P 0 must be included in the docu­
ment file. For example, if the Table of Contents is four pages
then use -rP5 on the command line or .or P 4 in the document
file.

The OSDD Standards require that certain information such as the
document rating appear on the Document Index or on the Table of
Contents page if there is no index. By default, it is assumed that
an index has been prepared separately. If there is no index, the
following must be included in the document file:

~rDiO .
This will ensure that the necessary information is included on the
Table of Contents page.

The OSDD Standards require that all numbered figures be placed
at the end of the document. The .Fg macro is used to produce full
page figures. This macro produces a blank page with the appropri­
ate header, footer, and figure caption. Insertion of the actual
figure on the page is a manual operation. The macro usage is

.Fg page-count "figure caption"
where page-count is the number of pages required for a multi-page
figure (default 1 page).

The .Fg macro cannot be used within the document unless the final
.Fg in a series of figures is followed by a .SK macro to force out
the last figure page.

The Table of Contents for OSDD documents (see Figure 4 in Sec­
tion 4.1 of the OSDD Standards) is produced with:

.Tc
System Type
System Name
Document Type
.Td

440-System Calls and Library Routines UNIX Programmer's Manual

MOSD(5) MOSD(5)

FILES

The .Tc/.Td macros are used instead of the .TC macro from MM.

The .PM macro may be used to generate proprietary markings -
see the MM document for legal styles.

The .P macro is used for paragraphs. The Np register is set
automatically to indicate the paragraph numbering style. It is
very important that the .P macro be used correctly. All para­
graphs (including those immediately following a .R macro) must
use a .P macro. Unless there is a .P macro, there will not be a
number generated for the paragraph. Similarly, the .P macro
should not be used for text which is not a paragraph. The .SP
macro may be appropriate for these cases, e.g., for "paragraphs"
within a list item.

The page header format is produced automatically in accordance
with the OSDD Standards. The OSDD Adapter macro package
uses the .TP macro for this purpose. Therefore the .TP macro nor­
mally available in MM is not available for users.

/usr /lib/ tmac/tmac.osd

SEE ALSO
mm(5).
mm(1), mmt(I), nroff(I), troff(1) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-441

MPTX(5) MPTX(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff -mptx [options] [files]

troff -mptx [options] [files]

DESCRIPTION

FILES

This package provides a definition for the .xx macro used for for­
matting a permuted index as produced by ptx (1). This package
does not provide any other formatting capabilities such as headers
and footers. If these or other capabilities are required, the mptx
macro package may be used in conjuction with the MM macro
package. In this case, the -mptx option must be invoked after
the -mm call. For example:

nroff -cm -mptx file
or

mm -mptx file

/usr/libltmacltmac.ptx pointer to the non-compacted version of
the package

/usr/lib/macros/ptx non-compacted version of the package

SEE ALSO
mm(5).
mm(1), nroff(l), ptx(1) , troff(1) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

442-System Calls and Library Routines UNIX Programmer's Manual

MV(5) MV(5)

NAME
mv - a troff macro package for typesetting viewgraphs and slides

SYNOPSIS
mvt [-a] [options] [files]

troff [-a] [-rXl] -mv [options] [files]

DESCRIPTION
This package makes it easy to typeset viewgraphs and projection
slides in a variety of sizes. A few macros (briefly described below)
accomplish most of the formatting tasks needed in making tran­
sparencies. All of the facilities of troff(1), eqn (1), and tbl (1) are
available for more difficult tasks.

The output can be previewed on most terminals, and, in particular,
on the TEKTRONIX 4014.· For this device, specify the -rXl
option (this option is automatically specified by the mvt
command-q.v.-when that command is invoked with the -T4014
option). To preview output on other terminals, specify the -a
option.

The available macros are:

.VS [n] [i) [d) Foil-start macro; foil size is to be 7" x7"; n is
the foil number, i is the foil identification, d is
the date; the foil-start macro resets all param­
eters (indent, point size, etc.) to initial default
values, except for the values of i and d argu­
ments inherited from a previous foil-start
macro; it also invokes the .A macro (see
below).

The naming convention for this and the follow­
ing eight macros is that the first character of
the name (V or S) distinguishes between view­
graphs and slides, respectively, while the
second character indicates whether the foil is
square (S), small wide (w), small high (h), big
wide (W), or big high (H). Slides are "skin­
nier" than the corresponding viewgraphs: the
ratio of the longer dimension to the shorter
one is larger for slides than for viewgraphs.
As a result, slide foils can be used for view­
graphs, but not vice versa; on the other hand,
viewgraphs can accommodate a bit more text.

UNIX Programmer's Manual System Calls and Library Routines-443

MY(5)

.Yw [n] [i] [d]

• Vh [n] [i] [d]
• YW [n] [i] [d]
. VH [n] [;] [d]
• Sw [n] [i] [d]
• Sb [n] [i] [d]
• SW [n] [i] [d]
• SH [n] [i] [d]
. A [x]

.B [m [s]]

.c

.D

. T

.1

.S

[m [s]]

[m [s]]

string
[in] [a [x]]

[p] [I]

MY(5)

Same as .YS, except that foil size is 7" wide x
5" high .
Same as .YS, except that foil size is 5"x7" .
Same as .YS, except that foil size is 7"x5.4" .
Same as .VS, except that foil size is 7" x9" .
Same as .VS, except that foil size is 7"x5" .
Same as .VS, except that foil size is 5" x7" .
Same as .VS, except that foil size is 7"x5.4" .
Same as .VS, except that foil size is 7" x9" .
Place text that follows at the first indentation
level (left margin) ; the presence of x
suppresses the Yz line spacing from the preced­
ing text.
Place text that follows at the second indenta­
tion level; text is preceded by a mark; m is the
mark (default is a large bullet); s is the incre­
ment or decrement to the point size of the
mark with respect to the prevailing point size
(default is 0); if s is 100, it causes the point
size of the mark to be the same as that of the
default mark.
Same as .B, but for the third indentation level;
default mark is a dash.
Same as .B, but for the fourth indentation
level; default mark is a small bullet.
String is printed as an over-size, centered title .
Change the current text indent (does not
affect titles); in is the indent (in inches unless
dimensioned, default is 0); if in is signed, it is
an increment or decrement; the presence of a
invokes the .A macro (see below) and passes x
(if any) to it.
Set the point size and line length; p is the
point size (default is "previous"); if p is 100,
the point size reverts to the initial default for
the current foil-start macro; if p is signed, it is
an increment or decrement (default is 18 for
.YS, .VH, and .SH, and 14 for the other foil­
start macros); I is the line length (in inches
unless dimensioned; default is 4.2" for .Yb,
3.8" for .Sh, 5" for .SH, and 6" for the other
foil-start macros).

444-System Calls and Library Routines UNIX Programmer's Manual

MV(5)

FILES

MV(5)

.DF n f [n f .. .1 Define font positions; may not appear within a
foil's input text (i.e., it may only appear after
all the input text for a foil, but before the next
foil-start macro); n is the position of font f; up
to four "n f" pairs may be specified; the first
font named becomes the prevailing font; the
initial setting is (H is a synonym for G):

.DF 1 H 2 I 3 B 4 S
.DV [a] [b] [c1 [d] Alter the vertical spacing between indentation

levels; a is the spacing for .A, b is for .D, c is
for .C, and d is for .D; all non-null arguments
must be dimensioned; null arguments leave the
corresponding spacing unaffected; initial set­
ting is:

.DV .5v .5v .5v Ov
.U stri [str2] Underline strl and concatenate str2 (if any)

to it.

The last four macros in the above list do not cause a break; the .1
macro causes a break only if it is invoked with more than one
argument; all the other macros cause a break.

The macro package also recognizes the following upper-case
synonyms for the corresponding lower-case troff requests:

.AD .BR .CE .FI .HY .NA .NF .NH .NX .SO .SP
.TA .TI

The Tm string produces the trademark symbol.

The input tilde (-) character is translated into a blank on output.

See the user's manual cited below for further details.

/usr/lib/tmac/tmac.v
/usr /lib/ macros/vmca

SEE ALSO

BUGS

eqn(1), mmt(1), tbI(l) , troff(l) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

The .VW and .SW foils are meant to be 9" wide by 7" high, but
because the typesetter paper is generally only 8" wide, they are
printed 7" wide by 5.4" high and have to be enlarged by a factor
of 9/7 before use as viewgraphs; this makes them less than totally
useful.

UNIX Programmer's Manual System Calls and Library Routines-445

PROF(5) PROF(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include < prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the
same as a function entry point. Execution of the mark will add to
a counter for that mark, and program-counter time spent will be
accounted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

Name may be any combination of up to six letters, numbers or
underscores. Each name in a single compilation must be unique,
but may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined
before the header file <prof.h> is included. This may be defined
by a preprocessor directive as in the synopsis, or by a command
line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK(name) statements may be left
in the source files containing them and will be ignored.

EXAMPLE
In this example, marks can be used to determine how much time is
spent in each loop. Unless this example is compiled with MARK
defined on the command line, the marks are ignored.

#include < prof.h >

foo()
{

int i, j;

MARK (loop 1);
for (i = 0; i < 2000; i++) {

446-System Calls and Library Routines UNIX Programmer's Manual

PROF(5) PROF(5)

}
MARK (Ioop2);
for (j = 0; j < 2000; j++) {

SEE ALSO
profil (2), monitor (3C).
prof(l) in the UNIX Programmer's Manual-Volume 1: Com­
mands and Utilities.

UNIX Programmer's Manual System Calls and Library Routines-447

REGEXP(5) REGEXP(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT <declarations>
#define GETCO <getc code>
#define PEEKCO <peekc code>
#define UNGETC(c) <ungetc code>
#define RETURN (pointer) < return code>
#define ERROR(vaI) <error code>

#include < regexp.h >

char *compile (jnstring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;
int eof;

int step (string, expbuf)
char * string, *expbuf;

extern char *Iocl, *loc2, *Iocs;

extern int eircf, sed, nbra;

DESCRIPTION
This page describes general-purpose regular expression matching
routines in the form of ed(I), defined in /usr/include/regexp.h.
Programs such as ed(I), sed(I), grep(I), bs(I), expr(I), etc.,
which perform regular expression matching use this source file. In
this way, only this file need be changed to maintain regular expres­
sion compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared
before the "#include <regexp.h>" statement. These macros are
used by the compile routine.

GETCO

PEEKC()

Return the value of the next character in
the regular expression pattern. Successive
calls to GETC() should return successive
characters of the regular expression.

Return the next character in the regular
expression. Successive calls to PEEKCO
should return the same character (which
should also be the next character returned
by GETC(».

448-System Calls and Library Routines UNIX Programmer's Manual

REGEXP(S) REGEXP(S)

UNGETC(c) Cause the argument c to be returned by
the next call to GETCO (and PEEKCO).
No more that one character of pushback is
ever needed and this character is
guaranteed to be the last character read by
GETCO. The value of the macro
UNGETC(c) is always ignored.

RETURN (pointer)

ERROR (vat)

This macro is used on normal exit of the
compile routine. The value of the argu­
ment pointer is a pointer to the character
after the last character of the compiled reg­
ular expression. This is useful to programs
which have memory allocation to manage.

This is the abnormal return from the -com­
pile routine. The argument val is an error
number (see table below for meanings).
This call should never return.

ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 "\digit" out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \ (\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \J.
45 } expected after \.
46 First number exceeds second in \{ \J.
49 [) imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile
routine but is useful for programs that pass down different pointers
to input characters. It is sometimes used in the INIT declaration
(see below). Programs which call functions to input characters or
have characters in an external array can pass down a value of
«char *) 0) for this parameter.

UNIX Programmer's Manual System Calls and Library Routines-449

REGEXP(5) REGEXP(5)

The next parameter expbuf is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbuf-expbuf) bytes, a call to
ERROR (50) is made.

The parameter eof is the character which marks the end of the
regular expression. For example, in ed (1), this character is usu­
ally a I.

Each program that includes this file must have a #define statement
for INIT. This definition will be placed right after the declaration
for the function compile and the opening curly brace ({). It is
used for dependent declarations and initializations. Most often it
is used to set a register variable to point the beginning of the regu­
lar expression so that this register variable can be used in the
declarations for GETCO, PEEKCO and UNGETCO. Otherwise it
can be used to declare external variables that might be used by
GETCO, PEEKCO and UNGETCO. See the example below of
the declarations taken from grep (1) .

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call to
step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns non-zero if the given string matches the
regular expression, and zero if the expressions do not match. If
there is a match, two external character pointers are set as a side
effect to the call to step. The variable set in step is loel. This is
a pointer to the first character that matched the regular expres­
sion. The variable loc2, which is set by the function advance,
points to the character after the last character that matches the
regular expression. Thus if the regular expression matches the
entire line, locI will point to the first character of string and loc2
will point to the null at the end of string.

Step uses the external variable eircf which is set by compile if the
regular expression begins with "'. If this is set then step will try to

450-System Calls and Library Routines UNIX Programmer's Manual

REGEXP(5) REGEXP(5)

match the regular expression to the beginning of the string only.
If more than one regular expression is to be compiled before the
first is executed the value of circ! should be saved for each com­
piled expression and circ! should be set to that saved value before
each call to step.

The function advance is called from step with the same arguments
as step. The purpose of step is to step through the string argu­
ment and call advance until advance returns non-zero indicating a
match or until the end of string is reached. If one wants to con­
strain string to the beginning of the line in all cases, step need not
be called; simply call advance.

When advance encounters a • or \{ \J sequence in the regular
expression, it will advance its pointer to the string to be matched
as far as possible and will recursively call itself trying to match the
rest of the string to the rest of the regular expression. As long as
there is no match, advance will back up along the string until it
finds a match or reaches the point in the string that initially
matched the • or \(\J. It is sometimes desirable to stop this back­
ing up before the initial point in the string is reached. If the
external character pointer locs is equal to the point in the string at
sometime during the backing up process, advance will break out of
the loop that backs up and will return zero. This is used by ed(1)
and sed (1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like
s/y.llg do not loop forever.

The additional external variables sed and nbra are used for special
purposes.

EXAMPLES
The following is an example of how the regular expression macros
and calls look from grep (1) :

#define INIT register char *sp == instring;·
#define GETCO (*sp++)
#define PEEKC () (*sp)
#define UNGETC(c) (--sp)
#define RETURN(c) return;
#define ERROR(c) regerrO

#include < regexp.h >

(void) compile(*argv, expbuf, &expbuflESIZE], '\0');

UNIX Programmer's Manual System Calls and Library Routines-451

REGEXP(S) REGEXP(S)

FILES

if (stepOinebuf, expbuf»
succeed();

/usr /include/ regexp.h

SEE ALSO

BUGS

bs(1), ed(l), expr(1), grep(l), sed(1) in the UNIX Programmer's
Manual-Volume 1: Commands and Utilities.

The handling of cire! is kludgy.
The actual code is probably easier to understand than this manual
page.

452-System Calls and Library Routines UNIX Programmer's Manual

STAT(5) STAT (5)

NAME
stat - data returned by stat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION
The system calls stat and Jstat return data whose structure is
defined by this include file. The encoding of the field st _mode is
defined in this file also.

1*
* Structure of the result of stat
*1

struct stat
{

dev_t st_dev;
ino t stJno;
ushort st_mode;
short st_nlink;
ushort st_uid;
ushort st--.Bid;
dey t st_rdev;
off t st_size;
time t st_atime;
time t st_mtime;
time t st_ctime;

};

#define S_IFMT 0170000 1* type of file *1
#define S_IFDIR 0040000 1* directory *1
#define S_IFCHR 0020000 1* character special *1
#define S_IFBLK 0060000 1* block special *1
#define S_IFREG 0100000 1* regular *1
#define S_IFIFO 0010000 1* fifo *1
#define S_ISUID 04000 1* set user id on execution *1
#define S_ISGID 02000 1* set group id on execution *1
#define S_ISVTX 01000 1* save swapped text *1
#define S_IREAD 00400 1* read permission, owner *1
#define S_IWRITE 00200 1* write permission, owner *1
#define S_IEXEC 00100 1* exec/search permission, owner *1

UNIX Programmer's Manual System Calls and Library Routines-453

STAT(5)

FILES
lusr/include/sys/types.h
I usr I includel sysl sta t.h

SEE ALSO
stat (2), types (5) ..

454-System Calls and Library Routines

STAT(5)

UNIX Programmer's Manual

TERM (5) TERM (5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., tabs (1), man (1)
and are maintained as part of the shell environment (see sh (1),
profile (4), and environ (5)) in the variable STERM:

1520 Datamedia 1520
1620 DIABLO 1620/others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard 2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard 2640 series
2645 Hewlett-Packard 264n series (other than the 2640 series)
300 DASIIDTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASIIDTC/GSI 300s
382 DTC 382
300s-12
3045
33
37
40-2
40-4
4540
3270
4000a
4014
43
450
450-12
735
745
dumb

sync

hp

same, in 12-pitch mode
Datamedia 3045
TELETYPE@ Model 33 KSR
TELETYPE Model 37 KSR
TELETYPE Model 40/2
TELETYPE Model 40/4
TELETYPE Model 4540
IBM Model 3270
Trendata 4000a
TEKTRONIX 4014
TELETYPE Model 43 KSR
DASI 450 (same as Diablo 1620)
same, in 12-pitch mode
Texas Instruments TI735 and TI725
Texas Instruments TI745
generic name for terminals that lack reverse
line-feed and other special escape sequences
generic name for synchronous TELETYPE
4540-compatible terminals
Hewlett-Packard (same as 2645)

UNIX Programmer's Manual System Calls and Library Routines-455

TERM(S) TERM(S)

lp
tn1200
tn300

generic name for a line printer
User Electric TermiNet 1200
User Electric TermiNet 300

Up to 8 characters, chosen from [-a-zO-91, make up a basic ter­
minal name. Terminal sub-models and operational modes are dis­
tinguished by suffixes beginning with a -. N ames should gen­
erally be based on original vendors, rather than local distributors.
A terminal acquired from one vendor should not have more than
one distinct basic name.

Commands whose behavior depends on the type of terminal should
accept arguments of the form -Tterm where term is one of the
names given above; if no such argument is present, such commands
should obtain the terminal type from the environment variable
$TERM, which, in turn, should contain term.

SEE ALSO

BUGS

profile(4), environ(5).
man(1), mm(1), nroff(1), tplot(1G), sh(I), stty(I), tabs(1) in the
UNIX Programmer's Manual-Volume 1: Commands and Utili­
ties.

This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some­
what fitfully.

456-System Calls and Library Routines UNIX Programmer's Manual

TROFF(5) TROFF(5)

NAME
troff - description of output language

DESCRIPTION
The device-independent troJf outputs a pure ASCII description of
a typeset document. The description specifies the typesetting dev­
ice, the fonts, and the point sizes of characters to be used as well
as the position of each character on the page. A list of all the
legal commands follows. Most numbers are denoted as n and are
ASCII strings. Strings inside of (I are optional. TroJf may pro­
duce them, but they are not required for the specification of the
language. The character \0 has the standard meaning of "newline"
character. Between commands white space has no meaning.
White space characters are spaces and newlines. All commands
which have an arbitary length numerical parameter or word must
be followed by white space. For example, the command to specify
point size, s###, must be followed by a space or newline.

sn The point size of the characters to be gen­
erated.

fn

ex

Cxyz

The font mounted in the specified position
is to be used. The number ranges from 0
to the highest font presently mounted. 0 is
a special position, invoked by troJf, but not
directly accessible to the troff user. N or­
mally fonts are mounted starting at position
1.

Generate the character x at the current
location on the page; x is a single ASCII
character.

Generate the special character xyz. The
name of the character is delimited by white
space. The name will be one of the special
characters legal for the typesetting device
as specified by the device specification
found in the file DESC. This file resides in
a directory specific for the typesetting dev­
ice. (See font (5) and lusr IIib/foot/dev*')

Hn Change the horizonal position on the page
to the number specified. The number is in
basic units of motions as specified by
DESC. This is an absolute "goto".

UNIX Programmer's Manual System Calls and Library Routines,....457

TROFF(S)

hn

Vn

vn

nnx

nb a

w

pn

{

}

TROFF(S)

Add the number specified to the current
horizontal position. This is a relative
"goto".

Change the vertical position on the page to
the number specified (down is positive).

Add the number specified to the current
vertical position.

This is a two-digit number followed by an
ASCII character. The meaning is a combi­
nation of hn followed by ex. The two digits
nn are added to the current horizontal posi­
tion and then the ASCII character, x, is
produced. This is the most common form
of character specification.

This command indicates that the end of a
line has been reached. No action is
required, though by convention the horizon­
tal position is set to O. Troff will specify a
resetting of the x,y coordinates on the page
before requesting that more characters be
printed. The first number, b, is the amount
of space before the line and the second
number, a, the amount of space after the
line. The second number is delimited by
white space.

A w appears between words of the input
document. No action is required. It is
included so that one device can be emulated
more easily on another device.

Begin a new page. The new page number
is included in this command. The vertical
position on the page should be set to O.

Push the current .environment, 'which means
saving the current point size, font, and
location on the page.

Pop a saved environment.

txxxxx Print the string of characters, xxxxx, using
the natural width of each character to
determine the next x coordinate. Troff

4S8-System Calls and Library Routines UNIX Programmer's Manual

TROFF(5)

.... \n

TROFF(5)

does not currently produce this form of
command. It is not recommended. The
characters will probably be too close
together.

A line beginning with a pound sign is a
comment.

DI x y\n Draw a line from the current location to
x ,y. At the end of the drawing operation
the current location will be x ,y.

Dc d\n Draw a circle of diameter d with the left­
most edge being at the current location (x,
y). The current location after drawing the
circle will be x+d ,y, the rightmost edge of
the circle.

De dx dy\n Draw an ellipse with the specified axes. dx
is the axis in the x direction and dy is the
axis in the y direction. The leftmost edge
of the ellipse will be at the current location.
After drawing the ellipse the current loca­
tion will be x+dx,y.

Da x y r\n Draw a counterclockwise arc from the
current location to x,y using a circle of
radius r . The current location after draw­
ing the arc will be x ,y .

D- x y x y ... \n Draw a spline curve (wiggly line) between
each of the x,y coordinate pairs starting at
the current location. The final location will
be the final x ,y pair of the list. Currently
there may be no more than 36 X,y pairs to
this command.

x ilnitl\n Initialize the typesetting device. The
actions required are dependent on the dev­
ice. An init command will always occur
before any output generation is attempted.

x T device\n The name of the typesetter is device. This
is the same as the argument to the -T
option. The information about the
typesetter will be found in the directory
/usrlIib/font/dev{device} •

UNIX Programmer's Manual System Calls and Library Routines-459

TROFF(S)

x r[es) n h v\n

x p[ause)\n

x shop)\n

x tlrailer)\n

x flontJ n name\n

x H[eightJ n\n

x SliantJ n \n

TROFF(S)

The resolution of the typesetting device in
increments per inch is n. Motion in the
horizontal direction can take place in units
of h basic increments. Motion in the verti­
cal direction can take place in units of v
basic increments. For example, the APS-S
typesetter has a basic resolution of 723
increments per inch and can move in either
direction in 723rds of an inch. Its
specification is:
x res 723 11

Pause. Cause the current page to finish but
do not relinquish the typesetter.

Stop. Cause the current page to finish and
then relinquish the typesetter. Perform any
shutdown and bookkeeping procedures
required.

Generate a trailer. On some devices no
operation is performed.

Load the font name into position n.

Set the character height to n points. This
causes the letters to be elongated or shor­
tened. It does not affect the width of a
letter.

Set the slant to n degrees. Only some
typesetters can do this and not all angles
are supported.

460-System Calls and Library Routines UNIX Programmer's Manual

TYPES (5) TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in UNIX system
code; some data of these types are accessible to user code:

typedef struct { int r[11; } * physadr;
typedef long daddr _ t;
typedef char * caddr_t;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef ushort ino_t;
typedef short cnt_t;
typedef long time t;
typedef int labeltll01;
typedef short dev _t;
typedef long off_t;
typedef long paddr _t;
typedef long key _t;

The form daddr _t is used for disk addresses except in an i-node on
disk, see Is (4). Times are encoded in seconds since 00:00:00 GMT,
January I, 1970. The major and minor parts of a device code
specify kind and unit number of a device and are installation­
dependent. Offsets are measured in bytes from the beginning of a
file. The labeCt variables are used to save the processor state
while another process is running.

SEE ALSO
fs(4).

UNIX Programmer's Manual System Calls and Library Routines-461

VALUES (5) VALUES (5)

NAME
values - machine-dependent values

SYNOPSIS
#include < values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined
for particular processor architectures.

The model assumed for integers is binary representation (one's or
two's complement), where the sign is represented by the value of
the high-order bit.

BITS (type) The number of bits in a specified type (e.g.,
int).

HIBITS

HIBITL

HIBITI

MAXSHORT

MAXLONG

MAXI NT

The value of a short integer with only the
high-order bit set (in most implementa­
tions, Ox8000).

The value of a long integer with only the
high-order bit set (in most implementa.­
tions, Ox80000000).

The value of a regular integer with only the
high-order bit set (usually the same as
HIBITS or HIBITL).

The maximum value of a signed short
integer (in most implementations, Ox7FFF
= 32767).

The maximum value of a signed long
integer (in most implementations,
Ox7FFFFFFF == 2147483647).

The maximum value of a signed regular
integer (usually the same as MAXSHORT
or MAXLONG).

MAX FLOAT, LN_MAXFLOAT The maximum value of a
single-precision floating-point
number, and its natural loga­
rithm.

462-System Calls and Library Routines UNIX Programmer's Manual

VALUES (5) VALUES (5)

FILES

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a
double-precision floating-point
number, and its natural loga­
rithm.

MINFLOAT,LN_MINFLOAT The minimum positive value of
a single-precision floating-point
number, and its natural loga­
rithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of
a double-precision floating-point
number, and its natural loga­
rithm.

FSIGNIF

DSIGNIF

lusr linc1ude/values.h

The number of significant bits in the
mantissa of a single-precision floating-point
number.

The number of significant bits in the
mantissa of a double-precision floating­
point number.

SEE ALSO
intro(3), math(5).

UNIX Programmer's Manual System Calls and Library Routines-463

I

VARARGS(S) VARARGS(S)

NAME
varargs - handle variable argument list

SYNOPSIS
#inelude < varargs.h>

va_alist

va_del

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argu­
ment lists (such as print!(3S» but do not use varargs are
inherently nonportable, as different machines use different
argument-passing conventions.

va _ alist is used as the parameter list in a function header.

va_del is a declaration for va_atist. No semicolon should follow
va_del.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va _ arg will return the next argument in the list pointed to by pvar.
Type is the type the argument is expected to be. Different types
can be mixed, but it is up to the routine to know what type of
argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end, are pos­
sible.

SEE ALSO
exec (2) , printf(3S).

464-System Calls and Library Routines UNIX Programmer's Manual

VARARGS(5) VARARGS(5)

EXAMPLE

BUGS

This example is a possible implementation of exec! (2).

#include <varargs.h>
#define MAXARGS 100

/. execl is called by
execI(file, argl, arg2, ... , (char .)0);

./
execl (va _ alist)
va dcl
{ -

vaJist ap;
char .file;
char .args[MAXARGS];
int argno 0;

va _start (ap);
file == va_arg(ap, char .);
while «args[argno++] =- va_arg(ap, char .» !== (char .)0)

va_end(ap);
return execv (file, args);

It is up to the calling routine to specify how many arguments there
are, since it is not always possible to determine this from the stack
frame. For example, exec! is passed a zero pointer to signal the
end of the list. Printf can tell how many arguments are there by
the format.
It is non-portable to specify a second argument of char, short, or
float to va _ arg, since arguments seen by the called function are
not char, short, or float. C converts char and short arguments to
int and converts float arguments to double before passing them to
a function.

UNIX Programmer's Manual System Calls and Library Routines-465

]
]

]
]
]

VOLUME1
1. Commands and Utilities

VOLUME 3
1M. System Administration Commands
and Applications Programs

VOLUME 2
2. System Calls

VOLUME 2
3. Library Routines

VOLUME 2
3C. C and Assembler Library Routines

VOLUME 2
3S. Standard 1/0 Library' Routines

VOLUME 2
3M. Mathematical Library Routines

VOLUME2
3X. Miscellaneous Routines

VOLUME 2
3F. FORTRAN Library Routines

VOLUME 2
4. File Formats

VOLUME2
5. Miscellaneous Facilities

VOLUME1
6. Games

VOLUME 3
7. Special Files

VOLUME 3
8. System Maintenance Procedures

Other Volumes
of the

UNIX* Programmer's Manual

Volume1
Commands and Utilities, contains the
manual pages for the commands and
applications programs that can be invoked
directly by the user or by command language
procedures. Manual pages describe the
purpose and use of the UNIX system
commands, warn of potential problems, give
examples, and tell where to find related
information.

Volume 3
System Administration Facilities, contains
the commands used by UNIX system
administrators. It describes system
maintenance commands and application
programs, special files , and system
maintenance procedures.

Volume 4
Documentation Preparation, describes and
explains the commands and macros needed
to input and format a document. It provides
examples of advanced UNIX system editing .
commands and the stream editor (sed), a
non-interactive content editor. Also ;
described are the text processors used to
format text, nroff and troff, and the
preprocessors, tbl and eqn used to prepare
tables and typeset mathematics.

VolumeS
Languages and Support Tools, describes
languages and software tools that aid the
UNIX system user. There is detailed
information on the uses of the following
languages and programming support tools:
Fortran and C programming languages,
make. SCCS. M4 Macro Processor, awk,
Link Editor, Common Object File Format.
Arbitrary Precision Desk CalculatCir
Language. Interactive Desk Calculator,
Lexical Analyzer Generator, yacc, RJE, and
UUCP.

Select Code 320-032
ISBN 0-03-009314-7

	000001
	000002
	000003
	000004
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	xBack

