=——¥ \["
386 UNIX® System V
Release 3.1
._ Programmer’s Guide
Volume |

©1987 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

DEC, PDP, VAX and VT100 are trademarks of Digital Equipment Corporation.
DOCUMENTER’S WORKBENCH is a trademark of AT&T.

TELETYPE, UNIX and WRITER’S WORKBENCH are registered

trademarks of AT&T.

AT&T Products and Services
To order documents from the Customer Information Center:
« Within the continental United States, call 1-800-432-6600
« Outside the continental United States, call 1-317-352-8556

« Send mail orders to:

AT&T Customer Information Center
Customer Service Representative
P.O. Box 19901

Indianapolis, Indiana 46219

To sign up for UNIX system or AT&T computer courses:
« Within the continental United States, call 1-800-221-1647
+ Outside the continental United States, call 1-609-639-4458

To contact marketing representatives about AT&T computer hardware pro-
ducts and UNIX software products:

« Within the continental United States, call 1-800-372-2447

« Outside the continental United States, call collect 1-215-266-2973 or
1-215-266-2975

To find out about UNIX system source licenses:

» Within the continental United States, except North Carolina, call 1-800-
828-UNIX

« In North Carolina and outside the continental United States, call
1-919-279-3666

« Or write to:

Software Licensing
Guilford Center

P.O. Box 25000
Greensboro, NC 27420

Table of Contents

S]Ualu0J Jo 3|qeL

Table of Contents

Iintroduction
Introduction

XXiii

Programming in A UNIX System
Environment: An Overview

Introduction 1-1
UNIX System Tools and Where You Can Read About

Them 1-4
Three Programming Environments 1-7
Summary 1-9
Programming Basics
Introduction 2-1
Choosing a Programming Language 2-2
After Your Code Is Written 2-7
The Interface Between a Programming Language and

the UNIX System 2-11
Analysis/Debugging 2-43
Program Organizing Utilities 2-66
Application Programming
Introduction 31
Application Programming 3-2
Language Selection 3-5

TABLE OF CONTENTS i

Table of Contents

Advanced Programming Tools 3-13
Programming Support Tools 3-21
Project Control Tools 3-34
liber, A Library System 3-38
4 awk
Introduction 4-1
Basic awk 4-2
Patterns 4-12
Actions 4-20
Output 4-38
Input 4-43
Using awk with Other Commands and the Shell 4-49
Example Applications 4-52
awk Summary 4-58

5 lex

An Overview of lex Programming 5-1
Writing lex Programs 5-3
Running lex under the UNIX System 5-18
6 yacc
Introduction 6-1
Basic Specifications 6-4
Parser Operation 6-13
Ambiguity and Conflicts 6-18
Precedence 6-24
Error Handling 6-28
The yacc Environment 6-32
Hints for Preparing Specifications 6-34
Advanced Topics 6-38
Examples 6-45

ii PROGRAMMER’S GUIDE

Table of Contents

File and Record Locking

Introduction 7-1
Terminology 7-2
File Protection 7-4
Selecting Advisory or Mandatory Locking 7-18
8 Shared Libraries
Introduction 8-1
Using a Shared Library 8-2
Building a Shared Library 8-16
Summary 8-60
9 Interprocess Communication
Introduction 9-1
Messages 9-2
Semaphores 9-38
Shared Memory 9-75
10 Extended Terminal Interface
Overview 10-1
What is ETI? 10-5
Basic ETI Programming 10-9
Simple Input and Output 10-18
Windows 10-58
Panels 10-69
Compiling and Linking Panel Programs 10-70
Creating Panels 10-71
Elementary Panel Window Operations 10-72
Moving Panels to the Top or Bottom of the Deck 10-75
Updating Panels on the Screen 10-76
Making Panels Invisible 10-78

TABLE OF CONTENTS

Table of Contents

Fetching Panels Above or Below Given Panels 10-80
Setting and Fetching the Panel User Pointer 10-82
Deleting Panels 10-85
Menus 10-86
Compiling and Linking Menu Programs 10-87
Overview: Writing Menu Programs in ETI 10-88
Creating and Freeing Menu Items 10-92
Two Kinds of Menus: Single- and Multi-Valued 10-95
Manipulating Item Attributes 10-97
Setting the Item User Pointer 10-102
Creating and Freeing Menus 10-105
Manipulating Menu Attributes 10-107
Displaying Menus 10-111
Menu Driver Processing 10-129
Manipulating the Menu User Pointer 10-152
Setting and Fetching Menu Options 10-155
Forms 10-159
Compiling and Linking Form Programs 10-160
Overview: Writing Form Programs in ETI 10-161
Creating and Freeing Fields 10-168
Manipulating Field Attributes 10-172
Setting the Field Foreground, Background, and Pad
Character 10-184
Some Helpful Features of Fields 10-186
Manipulating Field Options 10-194
Creating and Freeing Forms 10-198
Manipulating Form Attributes 10-202
— Displaying Forms 10-205
Form Driver Processing 10-213
Setting and Fetching the Form User Pointer 10-240
Setting and Fetching Form Options 10-242
Creating and Manipulating Programmer-Defined Field
Types 10-245
Other ETI Routines 10-258
Routines for Drawing Lines and Other Graphics 10-259
Routines for Using Soft Labels 10-261
Working with More than One Terminal 10-263
Working with terminfo Routines 10-265

iv PROGRAMMER’S GUIDE

Table of Contents

Working with the terminfo Database 10-271

TAM Transition Library 10-283

Compiling and Running TAM Applications under ETI 10-284

Tips for Polishing TAM Application Programs

Running under ETI 10-285

How the TAM Transition Library Works 10-286

Program Examples 10-295
11 Common Object File Format (coff)

The Common Object File Format (COFF) 1141
42 The Link Editor

The Link Editor 121

Link Editor Command Language 12-4

Notes and Special Considerations 12-22

Syntax Diagram for Input Directives 12-32
13 make

Introduction 13-1

Basic Features 13-2

Description Files and Substitutions 13-7

Recursive Makefiles 13-11

Source Code Control System File Names: the Tilde 13-17

Command Usage 13-21

Suggestions and Warnings 13-24

Internal Rules 13-25
14 Source Code Control System

(sccs)
Introduction 14-1

TABLE OF CONTENTS v

Table of Contents

SCCS For Beginners 14-2
Delta Numbering 14-7
SCCS Command Conventions 14-10
SCCS Commands 14-12
SCCS Files 14-37

15

sdb—the Symbolic Debugger

Introduction 15-1
Using sdb 15-2
16 Iint
Introduction 16-1
Usage 16-2
lint Message Types 16-4
17 C Language :
Introduction 17-1
Lexical Conventions 17-2
Storage Class and Type 17-6
Operator Conversions 17-9
Expressions and Operators 17-12
Declarations 17-23
Statements 17-37
External Definitions 17-43
Scope Rules 17-45
Compiler Control Lines 17-47
Types Revisited 17-51
Constant Expressions 17-56
Portability Considerations 17-57
Syntax Summary 17-58

vi PROGRAMMER’S GUIDE

Table of Contents

18

C Programmer’s Productivity

Tools
Introducing the C Programmer’s Productivity Tools 18-1
cscope 18-4
lprof 18-30
Profiling Examples 18-48
19 Fmii
Introduction 19-1
The Forms and Menus Language Interpreter 19-2
The Forms and Menus Definition Language 19-21
FMLI and the UNIX Operating System 19-56
The Manual Pages 19-59

Index to Utilities

Appendix A: Index to Utilities A-1
G Glossary

Glossary G-1

Index

TABLE OF CONTENTS vii

List of Figures

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-9:
Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:

Figure 2-15:
Figure 2-15:

Using Command Line Arguments to Set Flags

Using argv[n] Pointers to Pass a File Name

C Language Standard I/O Subroutines

String Operations

Classifying ASCII Character-Coded Integer Values

Conversion Functions and Macros

Manual Page for gets(3S)

How gets Is Used in a Program

A Version of stdio.h (Sheet 1 of 2)

A Version of stdio.h (Sheet 2 of 2)
Environment and Status System Calls
Process Status
Example of fork
Example of a popen pipe

Signal Numbers Defined in
/usr/include/sys/signal.h

Source Code for Sample Program (Sheet 1 of 4)
Source Code for Sample Program (Sheet 2 of 4)

LIST OF FIGURES

2-13
2-14
2-17
2-18
2-19
2-20
2-22
2-24
2-25
2-26
2-33
2-34
2-37
2-39

2-41
2-44
2-45

ix

7

List of Figures

Figure 2-15:
Figure 2-15:
" Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-20:
Figure 2-20:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-21:
Figure 2-22:
Figure 2-23:
Figure 2-24:
Figure 2-25:
Figure 2-25:
Figure 2-25:
Figure 2-25:
Figure 2-25:

Source Code for Sample Program (Sheet 3 of 4)
Source Code for Sample Program (Sheet 4 of 4)
cflow Output, No Options

cflow Output, Using r Option

cflow Output, Using ix Option

cflow Output, Using r and ix Options
ctrace Output (Sheet 1 of 3)

ctrace Output (Sheet 2 of 3)

ctrace Output (Sheet 3 of 3)

cxref Output, Using ¢ Option (Sheet 1 of 5)
cxref Output, Using ¢ Option (Sheet 2 of 5)
cxref Oﬁtput, Using ¢ Option (Sheet 3 of 5)
cxref Output, Using ¢ Option (Sheet 4 of 5)
cxref Output, Using ¢ Option (Sheet 5 of 5)
lint Output

prof Output

make Description File

nm Output, with f Option (Sheet 1 of 5)
nm Output, with f Option (Sheet 2 of 5)
nm Output, with f Option (Sheet 3 of 5)
nm Output, with f Option (Sheet 4 of 5)
nm Output, with f Option (Sheet 5 of 5)

x PROGRAMMER’S GUIDE

2-46
2-47
2-48
2-49
2-50
2-51
2-53
2-54
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-64
2-67
2-70
2-7
2-72
2-73
2-74

Figure 3-1:
Figure 3-2:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 8-1:

Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:

The fentlh Header File

Object File Library Functions (Sheet 1 0f 2)
Object File Library Functions (Sheet 2 0f 2)
awk Program Structure and Example

The Sample Input File countries

awk Comparison Operators

awk Regular Expressions

awk Built-in Variables

awk Built-in Arithmetic Functions

awk Built-in String Functions

awk printf Conversion Characters

getline Function

Creation and Use of a Lexical Analyzer with lex

a.out Files Created Using an Archive Library and a
Shared Library

Processes Using an Archive and a Shared Library
A Branch Table in a Shared Library

Imported Symbols in a Shared Library

File log.c

File poly.c

File stats.c

Header File maux.h

Specification File

LIST OF FIGURES

List of Figures

3-16
3-25
3-26

4-2

4-4
4-14
4-18
4-20
4-23
4-24
4-39
4-47

5-2

8-9
8-10
8-13
8-32
8-51
8-52
8-53
8-54
8-57

xi

List of Figures

Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-4:
Figure 9-4:
Figure 9-5:
Figure 9-5:
Figure 9-5:
Figure 9-5:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-6:
Figure 9-7:
Figure 9-8:
Figure 9-9:
Figure 9-9:
Figure 9-9:

ipc_perm Data Structure

Operation Permissions Codes

Control Commands (Flags)

msgget() System Call Example (Sheet 1 of 3)
msgget() System Call Example (Sheet 2 of 3)
msgget() System Call Example (Sheet 3 of 3)
msgctl() System Call Example (Sheet 1 of 4)
msgctl() System Call Example (Sheet 2 of 4)
msgctl() System Call Example (Sheet 3 of 4)
msgctl() System Call Example (Sheet 4 of 4)
msgop() System Call Example (Sheet 1 of 7)
msgop() System Call Example (Sheet 2 of 7)
msgop() System Call Example (Sheet 3 of 7)
msgop() System Call Example (Sheet 4 of 7)
msgop() System Call Example (Sheet 5 of 7)
msgop() System Call Example (Sheet 6 of 7)
msgop() System Call Example (Sheet 7 of 7)
Operation Permissions Codes

Control Commands (Flags)

semget() System Call Example (Sheet 1 of 3)
semget() System Call Example (Sheet 2 of 3)
semget() System Call Example (Sheet 3 of 3)

xii PROGRAMMER’S GUIDE

9-5

9-8

9-9
9-13
9-14
9-15
9-20
9-21
9-22
9-23
9-31
9-32
9-33
9-34
9-35
9-36
9-37
9-46
9-46
9-50
9-51
9-52

Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-10:
Figure 9-11:
Figure 9-11:
Figure 9-11:
Figure 9-11:
Figure 9-12:
Figure 9-13:
Figure 9-14:
Figure 9-15:
Figure 9-15:
Figure 9-15:
Figure 9-16:
Figure 9-16:
Figure 9-16:
Figure 9-16:
Figure 9-16:

semctl() System Call Example (Sheet 1 of 7)
semctl() System Call Example (Sheet 2 of 7)
semctl() System Call Example (Sheet 3 of 7)
semctl() System Call Example (Sheet 4 of 7)
semctl() System Call Example (Sheet 5 of 7)
semctl() System Call Example (Sheet 6 of 7)
semctl() System Call Example (Sheet 7 of 7)
semop(2) System Call Example (Sheet 1 of 4)
semop(2) System Call Example (Sheet 2 of 4)
semop(2) System Call Example (Sheet 3 of 4)
semop(2) System Call Example (Sheet 4 of 4)
Shared Memory State Information

Operation Permissions Codes

Control Commands (Flags)

shmget(2) System Call Example (Sheet 1 of 3)
shmget(2) System Call Example (Sheet 2 of 3)
shmget(2) System Call Example (Sheet 3 of 3)
shmctl(2) System Call Example (Sheet 1 of 6)
shmctl(2) System Call Example (Sheet 2 of 6)
shmctl(2) System Call Example (Sheet 3 of 6)
shmctl(2) System Call Example (Sheet 4 of 6)
shmctl() System Call Example (Sheet 5 of 6)

LIST OF FIGURES

List of Figures

9-60
9-61
9-62
9-63
9-64
9-65
9-66
9-71
9-72
9-73
9-74
9-78
9-82
9-82
9-86
9-87
9-88
9-93
9-94
9-95
9-96
9-97

List of Figures

Figure 9-16:
Figure 9-17:
Figure 9-17:
Figure 9-17:
Figure 9-17:
Figure 10-1:
Figure 10-2:

Figure 10-3:

Figure 10-3:

Figure 10-4:

Figure 10-5:
Figure 10-6:
Figure 10-7:

Figure 10-7:

Figure 10-7:

Figure 10-8:

Figure 10-9:
Figure 10-10:

xiv PROGRA

shmctl(2) System Call Example (Sheet 6 of 6)
shmop() System Call Example (Sheet 1 of 4)
shmop() System Call Example (Sheet 2 of 4)
shmop() System Call Example (Sheet 3 of 4)
shmop() System Call Example (Sheet 4 of 4)
A Simple ETI Program

The Purposes of initscr(), refresh(), and endwin()
in a Program

The Relationship between stdscr and a Terminal
Screen

The Relationship Between stdscr and a Terminal
Screen (continued)

Multiple Windows and Pads Mapped to a Physical
Screen

Input Option Settings for ETI Programs
Using wnoutrefresh() and doupdate()

The Relationship Between a Window and a Termi-
nal Screen

The Relationship Between a Window and a Termi-
nal Screen (continued)

The Relationship Between a Window and a Termi-
nal Screen (continued)

Sample Routines for Low-Level ETI (curses) Inter-
face

Example Using Panel User Pointer

A Sample Menu

9-98
9-103
9-104
9-105
9-106

10-6

10-11

10-15

10-16

10-17
10-54
10-60

10-61

10-62

10-63

10-67
10-83
10-86

Figure 10-11: Sample Menu Program to Create a Menu in ETI
Figure 10-12: Creating an Array of Items

Figure 10-13: Using item_value() in Menu Processing
Figure 10-14: Using an Item User Pointer

Figure 10-15: Changing the Items Associated With a Menu
Figure 10-16: Examples of Menu Format (2, 2)

Figure 10-17: Examples of Menu Format (3, 2)

Figure 10-18: Examples of Menu Format (4, 3)

Figure 10-19: Menu Functions Write to Subwindow, Application
to Window

Figure 10-20: Creating a Menu with a Border
Figure 10-21: Sample Routines Displaying and Erasing Menus

Figure 10-22: Sample Routine that Translates Keys into Menu
Requests

Figure 10-23: Integer Ranges for ETI Key Values and MENU
Requests

Figure 10-24: Sample Menu Output (2)
Figure 10-25: Sample Program Calling the Menu Driver

Figure 10-26: Using an Initialization Routine to Generate Item
Prompts

Figure 10-27: Returning Cursor to its Correct Position for Menu
Driver Processing

Figure 10-28: Example Setting and Using A Menu User Pointer
Figure 10-29: Sample Form Display

List of Figures

10-90
10-93
10-96
10-103
10-108
10-114
10-114
10-115

10-120
10-121
10-127

10-131

10-135
10-136
10-139

10-144

10-149
10-153
10-159

LIST OF FIGURES xv

List of Figures

Figure 10-30: Code To Produce a Simple Form

Figure 10-31: Example Shifting All Form Fields a Given Number

of Rows
Figure 10-32: Setting a Field to TYPE_ENUM of Colors
Figure 10-33: Using the Field Status to Update a Database
Figure 10-34: Using the Field User Pointer to Match Items
Figure 10-35: Creating a Form

Figure 10-36: Form Functions Write to Subwindow, Application
to Window

Figure 10-37: Creating a Border Around a Form
Figure 10-38: Posting and Unposting a Form
Figure 10-39: A Sample Key Virtualization Routine
Figure 10-40: Sweepstakes Form Output

Figure 10-41: An Example of Form Driver Usage

Figure 10-42: Sample Termination Routine that Updates a
Column Total

Figure 10-43: Field Initialization and Termination to Highlight
Current Field

Figure 10-44: Example Manipulating the Current Field

Figure 10-45: Example Changing and Checking the Form Page
Number

Figure 10-46: Repositioning the Cursor After Printing Page
Number

Figure 10-47: Pattern Match Example Using form User Pointer

Figure 10-48: Creating a Programmer-Defined Field Type

xvi PROGRAMMER’S GUIDE

10-164

10-174
10-179
10-189
10-192
10-200

10-208
10-209
10-211
10-216
10-223
10-227

10-232

10-233
10-235

10-237

10-238
10-241
10-248

Figure 10-49: Creating TYPE_HEX with Padding and Range
Arguments

Figure 10-50: Creating a Next Choice Function for a Field Type

Figure 10-51: Sending a Message to Several Terminals
Figure 10-52: Typical Framework of a terminfo Program

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 1 of 4)

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 2 of 4)

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 3 of 4)

Figure 10-53: Translations from TAM to ETI Function Calls
(Sheet 4 of 4)

Figure 10-54: TAM High-Level Functions

Figure 10-55: Translation Between TAM Escape Sequences and

Virtual Key Values
Figure 11-1: Object File Format
Figure 11-2: File Header Contents
Figure 11-3: File Header Flags
Figure 11-4: File Header Declaration
Figure 11-5: Optional Header Contents
Figure 11-6: UNIX System Magic Numbers
Figure 11-7: aouthdr Declaration
Figure 11-8: Section Header Contents

Figure 11-9: Section Header Flags

LIST OF FIGURES

List of Figures

10-253
10-256
10-264
10-266

10-286

10-287

10-288

10-289
10-290

10-293
11-2
11-4
11-5
11-6
11-7
11-8
119

11-10

11-11

XV

List of Figures

Figure 11-10:
Figure 11-11:
Figure 11-12:
Figure 11-13:
Figure 11-14:
Figure 11-15:
Figure 11-16:
Figure 11-17:
Figure 11-18:
Figure 11-19:
Figure 11-20:
Figure 11-21:
Figure 11-22:
Figure 11-23:
Figure 11-24:
Figure 11-25:
Figure 11-26:
Figure 11-27:
Figure 11-28:
Figure 11-29:
Figure 11-30:
Figure 11-31:

Section Header Declaration
Relocation Section Contents
Relocation Types

Relocation Entry Declaration
Line Number Grouping

Line Number Entry Declaration

COFF Symbol Table

Special Symbols in the Symbol Table

Special Symbols (.bb and .eb)
Nested blocks

Example of the Symbol Table
Symbols for Functions

Symbol Table Entry Format
Name Field

Storage Classes

Storage Class by Special Symbols
Restricted Storage Classes
Storage Class and Value

Section Number

Section Number and Storage Class
Fundamental Types

Derived Types

xviii PROGRAMMER’S GUIDE

11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30
11-31
11-32

Figure 11-32:
Figure 11-33:
Figure 11-34:
Figure 11-35:
Figure 11-36:
Figure 11-37:
Figure 11-38:
Figure 11-39:
Figure 11-40:
Figure 11-41:
Figure 11-42:
Figure 11-43:
Figure 11-43:
Figure 11-44:
Figure 12-1:
Figure 12-2:
Figure 12-2:
Figure 12-2:
Figure 12-2:
Figure 13-1:
Figure 13-2:
Figure 13-2:

Type Entries by Storage Class
Symbol Table Entry Declaration
Auxiliary Symbol Table Entries
Format for Auxiliary Table Entries for Sections
Tag Names Table Entries
Table Entries for End of Structures
Table Entries for Functions
Table Entries for Arrays
End of Block and Function Entries
Format for Beginning of Block and Function
Entries for Structures, Unions, and Enumerations
Auxiliary Symbol Table Entry (Sheet 1 of 2)
Auxiliary Symbol Table Entry (Sheet 2 of 2)
String Table
Operator Symbols
Syntax Diagram for Input Directives (Sheet 1 of 4)
Syntax Diagram for Input Directives (Sheet 2 of 4)
Syntax Diagram for Input Directives (Sheet 3 of 4)
Syntax Diagram for Input Directives (Sheet 4 of 4)
Summary of Default Transformation Path
make Internal Rules (Sheet 1 of 5)

make Internal Rules (Sheet 2 of 5)

LIST OF FIGURES

List of Figures

11-33
11-35
11-36
11-37
11-38
11-38
11-39
11-39
11-40
11-40
11-41
11-42
11-43
11-44

12-5
12-32
12-33
12-34
12-35
13-13
13-25
13-26

xix

List of Figures

Figure 13-2:
Figure 13-2:
Figure 13-2:
Figure 14-1:
Figure 14-2:
Figure 14-3:
Figure 14-4:
Figure 15-1:
Figure 15-1:
Figure 15-1:
Figure 17-1:
Figure 17-2:
Figure 18-1:
Figure 18-2:
Figure 18-3:
Figure 18-4:
Figure 18-5:
Figure 18-6:
Figure 18-7:
Figure 18-8:
Figure 18-9:

make Internal Rules (Sheet 3 of 5)

make Internal Rules (Sheet 4 of 5)

make Internal Rules (Sheet 5 of 5)

Evolution of an SCCS File

Tree Structure with Branch Deltas

Extended Branching Concept

Determination of New SID

Example of sdb Usage (Sheet 1 of 3)
Example of sdb Usage (Sheet 2 of 3)
Example of sdb Usage (Sheet 3 of 3)

Escape Sequences for Nongraphic Characters
Computer Hardware Characteristics

The cscope Menu of Tasks

Menu Manipulation Commands

Requesting a Search for a Text String

cscope Lists Lines Containing the Text String
Commands for Use After Initial Search

Examining a Line of Code Found by cscope

Requesting a List of Functions that Call alloctest

cscope Lists Functions that Call alloctest

cscope Lists Functions that Call mymalloc

Figure 18-10: Viewing dispinit in the Editor

xx PROGRAMMER’S GUIDE

13-27
13-28
13-29
14-7
14-8
14-9
14-20
15-13
15-14
15-15
17-4
177
18-7
18-8
18-9
18-10
18-11
18-12
18-13
18-14
18-15
18-16

Figure 18-11:
Figure 18-12:
Figure 18-13:
Figure 18-14:
Figure 18-15:
Figure 18-16:
Figure 18-17:
Figure 18-18:
Figure 18-19:
Figure 18-20:
Figure 18-21:
Figure 18-22:
Figure 18-23:
Figure 18-24:
Figure 18-25:
Figure 18-26:
Figure 18-27:

Using cscope to Fix the Problem

Commands for Selecting Lines to be Changed
Changing a Text String

cscope Prompts for Lines to be Changed
Marking Lines to be Changed

cscope Displays Changed Lines of Text
Escaping from cscope to the Shell

Example of lprof Output

Example of Output Produced by the x Option
Example of Iprof s Output

prof Output

Iprof Output for the Function CAfind

Iprof Output for New Version of Function CAfind

prof Output for New Version of lprof
Iprof Summary Output for a Test Suite
Fragment of Output from lIprof x

Output from lIprof x for Function putdata

Figure 19-1: Alternate Keystrokes For Pseudo Keys

Figure 19-2: FMLI Objects

LIST OF FIGURES

List of Figures

18-17
18-21
18-22
18-23
18-24
18-25
18-26
18-38
18-40
18-42
18-49
18-51
18-55
18-57
18-58
18-60
18-61

19-3

19-56

Introduction

Purpose

This guide is designed to give you information about programming in a
UNIX system environment. It does not attempt to teach you how to write
programs. Rather, it is intended to supplement texts on programming
languages by concentrating on the other elements that are part of getting pro-
grams into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing programmers, especially those
who have not worked extensively with the UNIX system. No special level of
programming involvement is assumed. We hope the book will be useful to
people who write only an occasional program as well as those who work on
or manage large application development projects.

Programmers in the expert class, or those engaged in developing system
software, may find this guide lacks the depth of information they need. For
them we recommend the Programmer’s Reference Manual.

Knowledge of terminal use, of a UNIX system editor, and of the UNIX
system directory/file structure is assumed. If you feel shaky about your
mastery of these basic tools, you might want to look over the User’s Guide
before tackling this one. The material is organized into two volumes and
nineteen chapters.

The C Connection

The UNIX system supports many programming languages, and C com-
pilers are available on many different operating systems. Nevertheless, the
relationship between the UNIX operating system and C has always been and
remains very close. Most of the code in the UNIX operating system is C, and
over the years many organizations using the UNIX system have come to use C
for an increasing portion of their application code. Thus, while this guide is
intended to be useful to you no matter what language(s) you are using, you
will find that, unless there is a specific language-dependent point to be made,
the examples assume you are programming in C.

INTRODUCTION xxiii

Introduction

Hardware/Software Dependencies

The text reflects the way things work on your computer running UNIX
System V at the Release 3.1 level. If you find commands that work a little
differently in your UNIX system environment, it may be because you are run-
ning under a different release of the software. If some commands do not
seem to exist at all, they may be members of packages not installed on your
system. Appendix A describes the command packages available on your com-
puter. If you do find yourself trying to execute a non-existent command,
check Appendix A, then talk to the administrators of your system.

Notation Conventions

Whenever the text includes examples of output from the computer and/or
commands entered by you, we follow the standard notation scheme that is
common throughout UNIX system documentation:

B Commands that you type in from your terminal are shown in bold
type.

B Text that is printed on your terminal by the computer is shown in
constant width type. Constant width type is also used for code sam-
Ples because it allows the most accurate representation of spacing.
Spacing is often a matter of coding style, but is sometimes critical.

B Comments added to a display to show that part of the display has
been omitted are shown in italic type and are indented to separate
them from the text that represents computer output or input. Com-
ments that explain the input or output are shown in the same type font
as the rest of the display.

Italics are also used to show substitutable values, such as, filename,
when the format of a command is shown.

B There is an implied RETURN at the end of each command and menu
response you enter. Where you may be expected to enter only a
RETURN (as in the case where you are accepting a menu default), the
symbol <CR> is used.

xxiv PROGRAMMER’S GUIDE

Introduction

B In cases where you are expected to enter a control character, it is
shown as, for example, CTRL-D. This means that you press the d key
on your keyboard while holding down the CTRL key.

B The dollar sign, $, and pound sign, #, symbols are the standard
default prompt signs for an ordinary user and root. $ means you are
logged in as an ordinary user. # means you are logged in as root.

B When the # prompt is used in an example, it means the command
illustrated may be used only by root.

Command References

When commands are mentioned in a section of the text for the first time, a
reference to the manual section where the command is formally described is
included in parentheses: command(section). Numbered sections are located
in the following manuals:

Sections (1, 1M), (7), (8) User's /System Administrator’s Reference Manual
Sections (1), (2), (3), (4), (5) Programmer’s Reference Manual

Information in the Examples

While every effort has been made to present displays of information just
as they appear on your terminal, it is possible that your system may produce
slightly different output. Some displays depend on a particular machine con-
figuration that may differ from yours. Changes between releases of the UNIX
system software may cause small differences in what appears on your termi-
nal.

Where complete code samples are shown, we have tried to make sure
they compile and work as represented. Where code fragments are shown,
while we cannot say that they have been compiled, we have attempted to
maintain the same standards of coding accuracy for them.

INTRODUCTION xxv

MB3IAIBAQ

1 Programming in A UNIX System
Environment: An Overview

Introduction 1-1
The Early Days 1-1
UNIX System Philosophy Simply Stated 1-3

UNIX System Tools and Where

You Can Read About Them 1-4
Tools Covered and Not Covered in this Guide 1-4
The Shell as a Prototyping Tool 1-5
Three Programming Environments 1-7
Single-User Programmer 1-7
Application Programming 1-8
Systems Programmers 1-8
Summary 1-9

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW i

Introduction

The 1983 Turing Award of the Association for Computing Machinery was
given jointly to Ken Thompson and Dennis Ritchie, the two men who first
designed and developed the UNIX operating system. The award citation said,
in part:

"The success of the UNIX system stems from its tasteful selec-
tion of a few key ideas and their elegant implementation. The
model of the UNIX system has led a generation of software
designers to new ways of thinking about programming. The
genius of the UNIX system is its framework which enables
programmers to stand on the work of others."

As programmers working in a UNIX system environment, why should we
care what Thompson and Ritchie did? Does it have any relevance for us
today?

It does because if we understand the thinking behind the system design
and the atmosphere in which it flowered, it can help us become productive
UNIX system programmers more quickly.

The Early Days

You may already have read about how Ken Thompson came across a DEC
PDP-7 machine sitting unused in a hallway at AT&T Bell Laboratories, and
how he and Dennis Ritchie and a few of their colleagues used that as the ori-
ginal machine for developing a new operating system that became UNIX.

The important thing to realize, however, is that what they were trying to
do was fashion a pleasant computing environment for themselves. It was not,
"Let’s get together and build an operating system that will attract world-wide
attention."

The sequence in which elements of the system fell into place is interest-
ing. The first piece was the file system, followed quickly by its organization
into a hierarchy of directories and files. The view of everything, data stores,
programs, commands, directories, even devices, as files of one type or another
was critical, as was the idea of a file as a one-dimensional array of bytes with
no other structure implied. The cleanness and simplicity of this way of look-
ing at files has been a major contributing factor to a computer environment
that programmers and other users have found comfortable to work in.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-1

Introduction

The next element was the idea of processes, with one process being able
to create another and communicate with it. This innovative way of looking at
running programs as processes led easily to the practice (quintessentially
UNIX) of reusing code by calling it from another process. With the addition
of commands to manipulate files and an assembler to produce executable pro-
grams, the system was essentially able to function on its own.

The next major development was the acquisition of a DEC PDP-11 and
the installation of the new system on it. This has been described by Ritchie as
a stroke of good luck, in that the PDP-11 was to become a hugely successful
machine, its success to some extent adding momentum to the acceptance of
the system that began to be known by the name of UNIX.

By 1972 the innovative idea of pipes (connecting links between processes
whereby the output of one becomes the input of the next) had been incor-
porated into the system, the operating system had been recoded in higher
level languages (first B, then C), and had been dubbed with the name UNIX
(coined by Brian Kernighan). By this point, the "pleasant computing environ-
ment" sought by Thompson and Ritchie was a reality; but some other things
were going on that had a strong influence on the character of the product then
and today.

It is worth pointing out that the UNIX system came out of an atmosphere
that was totally different from that in which most commercially successful
operating systems are produced. The more typical atmosphere is that
described by Tracy Kidder in The Soul of a New Machine. In that case, dozens
of talented programmers worked at white heat, in an atmosphere of extremely
tight security, against murderous deadlines. By contrast, the UNIX system
could be said to have had about a ten year gestation period. From the begin-
ning it attracted the interest of a growing number of brilliant specialists, many
of whom found in the UNIX system an environment that allowed them to
pursue research and development interests of their own, but who in turn con-
tributed additions to the body of tools available for succeeding ranks of UNIX
programmers.

Beginning in 1971, the system began to be used for applications within
AT&T Bell Laboratories, and shortly thereafter (1974) was made available at
low cost and without support to colleges and universities. These versions,
called research versions and identified with Arabic numbers up through 7,
occasionally grew on their own and fed back to the main system additional
innovative tools. The widely-used screen editor vi(1), for example, was added
to the UNIX system by William Joy at the University of California, Berkeley.
In 1979 acceding to commercial demand, AT&T began offering supported

1-2 PROGRAMMER’S GUIDE

Introduction

versions (called development versions) of the UNIX system. These are identi-
fied with Roman numerals and often have interim release numbers appended.
The current development version, for example, is UNIX System V Release 3.0.

Versions of the UNIX system being offered now by AT&T are coming
from an environment more closely related, perhaps, to the standard software
factory. Features are being added to new releases in response to the expressed
needs of the market place. The essential quality of the UNIX system, how-
ever, remains as the product of the innovative thinking of its originators and
the collegial atmosphere in which they worked. This quality has on occasion
been referred to as the UNIX philosophy, but what is meant is the way in
which sophisticated programmers have come to work with the UNIX system.

UNIX System Philosophy Simply Stated

For as long as you are writing programs on a UNIX system you should
keep this motto hanging on your wall:

* ¥k ¥ K K K K K K K K K K X ¥ K K K K X X

* *
* Build on the work of others *
* *

E R K R I I R LR K R L R R R R R

Unlike computer environments where each new project is like starting
with a blank canvas, on a UNIX system a good percentage of any program-
ming effort is lying there in bins, and lbins, and /usr/bins, not to mention
etc, waiting to be used.

The features of the UNIX system (pipes, processes, and the file system)
contribute to this reusability, as does the history of sharing and contributing
that extends back to 1969. You risk missing the essential nature of the UNIX
system if you do not put this to work.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-3

UNIX System Tools and Where You Can
Read About Them

The term "UNIX system tools" can stand some clarification. In the nar-
rowest sense, it means an existing piece of software used as a component in a
new task. In a broader context, the term is often used to refer to elements of
the UNIX system that might also be called features, utilities, programs, filters,
commands, languages, functions, and so on. It gets confusing because any of
the things that might be called by one or more of these names can be, and
often are, used in the narrow way as part of the solution to a programming
problem.

Tools Covered and Not Covered in this Guide

The Programmer’s Guide is about tools used in the process of creating pro-
grams in a UNIX system environment, so let us take a minute to talk about
which tools we mean, which ones are not going to be covered in this book,
and where you might find information about those not covered here. Actu-
ally, the subject of things not covered in this guide might be even more
important to you than the things that are. We could not possibly cover every-
thing you ever need to know about UNIX system tools in this one volume.

Tools not covered in this text:

B the login procedure

B UNIX system editors and how to use them

B how the file system is organized and how you move around in it

B shell programming

Information about these subjects can be found in the User’s Guide and a
number of commercially available texts.

Tools covered here can be classified as follows:

B utilities for getting programs running

B utilities for organizing software development projects

B specialized languages

1-4 PROGRAMMER’S GUIDE

UNIX System Tools

B debugging and analysis tools

B compiled language components that are not part of the language syn-
tax, for example, standard libraries, systems calls, and functions.

The Shell as a Prototyping Tool

Any time you log in to a UNIX system machine you are using the shell.
The shell is the interactive command interpreter that stands between you and
the UNIX system kernel, but that is only part of the story. Because of its abil-
ity to start processes, direct the flow of control, field interrupts and redirect
input and output, it is a full-fledged programming language. Programs that
use these capabilities are known as shell procedures or shell scripts.

Much innovative use of the shell involves stringing together commands to
be run under the control of a shell script. The dozens and dozens of com-
mands that can be used in this way are documented in the User’s Reference
Manual. Time spent with the User’s Reference Manual can be rewarding. Look
through it when you are trying to find a command with just the right option
to handle a knotty programming problem. The more familiar you become
with the commands described in the manual pages, the more you will be able
to take full advantage of the UNIX system environment.

It is not our purpose here to instruct you in shell programming. What we
want to stress here is the important part that shell procedures can play in
developing prototypes of full-scale applications. While understanding all the
nuances of shell programming can be a fairly complex task, getting a shell
procedure up and running is far less time-consuming than writing, compiling,
and debugging compiled code.

This ability to get a program into production quickly is what makes the
shell a valuable tool for program development. Shell programming allows
you to "build on the work of others" to the greatest possible degree, since it
allows you to piece together major components simply and efficiently. Many
times even large applications can be done using shell procedures. Even if the
application is initially developed as a prototype system for testing purposes
rather than being put into production, many months of work can be saved.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-5

UNIX System Tools

With a prototype for testing, the range of possible user errors can be
determined—something that is not always easy to plan out when an applica-
tion is being designed. The method of dealing with strange user input can be
worked out inexpensively, avoiding large re-coding problems.

A common occurrence in the UNIX system environment is to find that an
available UNIX system tool can accomplish with a couple of lines of instruc-
tions what might take a page and a half of compiled code. Shell procedures
can intermix compiled modules and regular UNIX system commands to let
you take advantage of work that has gone before.

1-6 PROGRAMMER’S GUIDE

Three Programming Environments

We distinguish among three programming environments to emphasize
that the information needs and the way in which UNIX system tools are used
differ from one environment to another. We do not intend to imply a hierar-
chy of skill or experience. Highly-skilled programmers with years of experi-
ence can be found in the "single-user" category, and relative newcomers can
be members of an application development or systems programming team.

Single-User Programmer

Programmers in this environment are writing programs only to ease the
performance of their primary job. The resulting programs might well be
added to the stock of programs available to the community in which the pro-
grammer works. This is similar to the atmosphere in which the UNIX system
thrived; someone develops a useful tool and shares it with the rest of the
organization. Single-user programmers may not have externally imposed
requirements, or co-authors, or project management concerns. The program-
ming task itself drives the coding very directly. One advantage of a timeshar-
ing system such as UNIX is that people with programming skills can be set
free to work on their own without having to go through formal project appro-
val channels and perhaps wait for months for a programming department to
solve their problems.

Single-user programmers need to know how to:
M select an appropriate language

B compile and run programs

use system libraries

analyze programs

debug programs

M keep track of program versions

Most of the information to perform these functions at the single-user level
can be found in Chapter 2.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-7

Three Programming Environments

Application Programming

Programmers working in this environment are developing systems for the
benefit of other, non-programming users. Most large commercial computer
applications still involve a team of applications development programmers.
They may be employees of the end-user organization or they may work for a
software development firm. Some of the people working in this environment
may be more in the project management area than working programmers.

Information needs of people in this environment include all the topics in
Chapter 2, plus additional information on:

B software control systems

B file and record locking

B communication between processes
B shared memory

B advanced debugging techniques

These topics are discussed in Chapter 3.

Systems Programmers

These are programmers engaged in writing software tools that are part of,
or closely related to the operating system itself. The project may involve writ-
ing a new device driver, a data base management system or an enhancement
to the UNIX system kernel. In addition to knowing their way around the
operating system source code and how to make changes and enhancements to
it, they need to be thoroughly familiar with all the topics covered in
Chapters 2 and 3.

1-8 PROGRAMMER’S GUIDE

Summary

In this overview chapter we have described the way that the UNIX system
developed and the effect that has on the way programmers now work with it.
We have described what is and is not to be found in the other chapters of this
guide to help programmers. We have also suggested that in many cases pro-
gramming problems may be easily solved by taking advantage of the UNIX
system interactive command interpreter known as the shell. Finally, we iden-
tified three programming environments in the hope that it will help orient the
reader to the organization of the text in the remaining chapters.

PROGRAMMING IN A UNIX SYSTEM ENVIRONMENT: AN OVERVIEW 1-9

Programming Basics

soiseg buiwweiboud

Programming Basics

Introduction 21

Choosing a Programming

Language 2-2

Supported Languages in a UNIX System
Environment 2-2
a C Language 2-3
m Assembly Language 2-4

Special Purpose Languages 2-4
m awk 2-4
m lex 2-5
m yacc 2-5
s M4 2-6
m bc and dc 2-6
m curses 2-6

After Your Code Is Written 27

Compiling and Link Editing 2-8
s Compiling C Programs 2-8
s Compiler Diagnostic Messages 2-9
m Link Editing 2-9

The Interface Between a

Programming Language and the

UNIX System 2-11

Why C Is Used to Illustrate the Interface

PROGRAMMING BASICS

2-11

Programming Basics

How Arguments Are Passed to a Program 2-12
System Calls and Subroutines 2-15
m Categories of System Calls and Subroutines 2-15
m Where the Manual Pages Can Be Found 2-21

m How System Calls and Subroutines Are Used in
C Programs 2-21
Header Files and Libraries 2-27
Object File Libraries 2-28
Input/Output 2-29
m Three Files You Always Have 2-29
m Named Files 2-30
m Low-Level I/O and Why You Should Not Use It 2-32
System Calls for Environment or Status Information 2-32
Processes 2-33
m system(3S) 2-35
m exec(2) 2-35
m fork(2) 2-36
a Pipes 2-38
Error Handling 2-40
Signals and Interrupts 2-40
Analysis/Debugging 2-43
Sample Program) 2-43
cflow 2-48
ctrace 2-51
cxref 2-55
lint 2-61
prof 2-62
size 2-64
strip 2-64
sdb 2-64
Program Organizing Utilities 2-66
The make Command 2-66
The Archive 2-68

ii PROGRAMMER’S GUIDE

Programming Basics

Use of SCCS by Single-User Programmers 2-74

PROGRAMMING BASICS iii

Introduction

The information in this chapter is for anyone just learning to write pro-
grams to run in a UNIX system environment. In Chapter 1 we identified one
group of UNIX system users as single-user programmers. People in that
category, particularly those who are not deeply interested in programming,
may find that this chapter (plus related reference manuals) tells them as much
as they need to know about coding and running programs on a UNIX system
computer.

Programmers whose interest does run deeper, who are part of an applica-
tion development project, or who are producing programs on one UNIX sys-
tem computer that are being ported to another, should view this chapter as a
starter package.

PROGRAMMING BASICS 2-1

Choosing a Programming Language

How do you decide which programming language to use in a given situa-
tion? One answer could be, "I always code in HAIRBOL, because that’s the
language I know best." Actually, in some circumstances that is a legitimate
answer. But assuming more than one programming language is available to
you, that different programming languages have their strengths and
weaknesses, and assuming that once you have learned to use one program-
ming language it becomes relatively easy to learn to use another, you might
approach the problem of language selection by asking yourself questions like
the following:

B What is the nature of the task this program is to do?

Does the task call for the development of a complex algorithm, or is
this a simple procedure that has to be done on a lot of records?

B Does the programming task have many separate parts?

Can the program be subdivided into separately compilable functions,
or is it one module?

B How soon does the program have to be available?

Is it needed right now, or do I have enough time to work out the most
efficient process possible?

B What is the scope of its use?

Am [the only person who will use this program, or is it going to be
distributed to the whole world?

Is there a possibility the program will be ported to other systems?

B What is the life expectancy of the program?

Is it going to be used just a few times, or will it still be going strong
five years from now?

Supported Languages in a UNIX System
Environment

By "supported languages" we mean those offered by AT&T for use on
your computer running UNIX System V Release 3.1. Since these are
separately purchasable items, not all of them will necessarily be installed on

2.2 PROGRAMMER’S GUIDE

Language Selection

your machine. On the other hand, you may have languages available on your
machine that came from another source and are not mentioned in this discus-
sion. Be that as it may, in this section and the one to follow we give brief
descriptions of the nature of (a) C programming language, and (b) a number
of special purpose languages.

C Language

The C language is intimately associated with the UNIX system since it was
originally developed for use in recoding the UNIX system kernel. If you need
to use a lot of UNIX system function calls for low-level I/O, memory or dev-
ice management, or inter-process communication, C language is a logical first
choice. Most programs, however, do not require such direct interfaces with
the operating system, so the decision to choose C might better be based on
one or more of the following characteristics:

M a variety of data types: character, integer, long integer, float, and dou-
ble

B low-level constructs (most of the UNIX system kernel is written in C)

B derived data types such as arrays, functions, pointers, structures, and
unions

B multi-dimensional arrays

B scaled pointers and the ability to do pointer arithmetic

B bit-wise operators

M a variety of flow-of-control statements: if, if-else, switch, while, do-
while, and for

M a high degree of portability

C is a language that lends itself readily to structured programming. It is
natural in C to think in terms of functions. The next logical step is to view
each function as a separately compilable unit. This approach (coding a pro-
gram in small pieces) eases the job of making changes and/or improvements.
If this begins to sound like the UNIX system philosophy of building new pro-
grams from existing tools, it is not just coincidence. As you create functions
for one program, you will surely find that many can be picked up or quickly
revised for another program.

PROGRAMMING BASICS 23

Language Selection

A difficulty with C is that it takes a fairly concentrated use of the language
over a period of several months to reach your full potential as a C program-
mer. If you are a casual programmer, you might make life easier for yourself
if you choose a less demanding language.

Assembly Language

The closest approach to machine language, assembly language is specific
to the particular computer on which your program is to run. High-level
languages are translated into the assembly language for a specific processor as
one step of the compilation. The most common need to work in assembly
language arises when you want to do some task that is not within the scope
of a high-level language. Since assembly language is machine-specific, pro-
grams written in it are not portable.

Special Purpose Languages

In addition to the above formal programming languages, the UNIX system
environment frequently offers one or more of the special purpose languages
listed below.

Since UNIX system utilities and commands are packaged in functional
NOTE| groupings, it is possible that not all the facilities mentioned will be available
on all systems.

awk

awk (its name is an acronym constructed from the initials of its develop-
ers) scans an input file for lines that match pattern(s) described in a specifica-
tion file. On finding a line that matches a pattern, awk performs actions also
described in the specification. It is not uncommon that an awk program can
be written in a couple of lines to do functions that would take a couple of
pages to describe in a programming language like FORTRAN or C. For exam-
ple, consider a case where you have a set of records that consist of a key field
and a second field that represents a quantity. You have sorted the records by
the key field, and you now want to add the quantities for records with dupli-
cate keys and output a file in which no keys are duplicated.

2-4 PROGRAMMER’S GUIDE

Language Selection

The pseudo-code for such a program might look like this:

Read the first record into a hold area;
Read additional records until EOF;
{
If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}

At EOF, write out the last record from the hold area.

An awk program to accomplish this task would look like this:

{ qty[$1] += $2 }
END { for (key in qty) print key, qtyl[key] }

This illustrates only one characteristic of awk; its ability to work with associa-
tive arrays. With awk, the input file does not have to be sorted, which is a
requirement of the pseudo-program.

lex

lex is a lexical analyzer that can be added to C programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar,
which is a system of rules defining the structure of a language. lex can pro-
duce C language subroutines that recognize regular expressions specified by
the user, take some action when a regular expression is recognized, and pass
the output stream on to the next program.

yacc
yacc (Yet Another Compiler Compiler) is a tool for describing an input
language to a computer program. yacc produces a C language subroutine that
parses an input stream according to rules laid down in a specification file.
The yacc specification file establishes a set of grammar rules together with
actions to be taken when tokens in the input match the rules. lex may be
used with yacc to control the input process and pass tokens to the parser that
applies the grammar rules.

PROGRAMMING BASICS 2-5

Language Selection

M4

M4 is a macro processor that can be used as a preprocessor for assembly
language and C programs. It is described in Section (1) of the Programmer’s
Reference Manual.

bc and dc

bc enables you to use a computer terminal as you would a programmable
calculator. You can edit a file of mathematical computations and call bc to
execute them. The bc program uses dc. You can use dc directly, if you want,
but it takes a little getting used to since it works with reverse Polish notation.
That means you enter numbers into a stack followed by the operator. bc and
dc are described in Section (1) of the User’s Reference Manual.

curses

Actually a library of C functions, curses is included in this list because the
set of functions just about amounts to a sub-language for dealing with termi-
nal screens. If you are writing programs that include interactive user screens,
you will want to become familiar with this group of functions.

In addition to all the foregoing, do not overlook the possibility of using
shell procedures.

2-6 PROGRAMMER’S GUIDE

After Your Code Is Written

The last two steps in most compilation systems in the UNIX system
environment are the assembler and the link editor. The compilation system
produces assembly language code. The assembler translates that code into the
machine language of the computer the program is to run on. The link editor
resolves all undefined references and makes the object module executable.
With most languages on the UNIX system the assembler and link editor pro-
duce files in what is known as the Common Object File Format (COFF). A
common format makes it easier for utilities that depend on information in the
object file to work on different machines running different versions of the
UNIX system.

In the Common Object File Format an object file contains:
B a file header

B optional secondary header

B a table of section headers

data corresponding to the section header(s)

relocation information

line numbers

a symbol table

a string table

An object file is made up of sections. Usually, there are at least two:
.text, and .data. Some object files contain a section called .bss. (.bss is an
assembly language pseudo-op that originally stood for "block started by sym-
bol.") .bss, when present, holds uninitialized data. Options of the compilers
cause different items of information to be included in the Common Object File
Format. For example, compiling a program with the -g option adds line
numbers and other symbolic information that is needed for the sdb (Symbolic
Debugger) command to be fully effective. You can spend many years pro-
gramming without having to worry too much about the contents and organi-
zation of the Common Object File Format, so we are not going into any
further depth of detail at this point. Detailed information is available in
Chapter 11 of this guide.

PROGRAMMING BASICS 2.7

Compiling and Link Editing

Compiling and Link Editing

The command used for compiling depends on the language used; for C
programs, cc both compiles and link edits.

Compiling C Programs

To use the C compilation system you must have your source code in a file
with a file name that ends in the characters .c, as in mycode.c. The command
to invoke the compiler is:

cc mycode.c

If the compilation is successful, the process proceeds through the link edit
stage and the result will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation.
The most used options are:

-c causes the compilation system to suppress the link edit
phase. This produces an object file (mycode.o) that can be
link edited at a later time with a cc command without the
-c option.

-g causes the compilation system to generate special informa-
tion about variables and language statements used by the
symbolic debugger sdb. If you are going through the stage
of debugging your program, use this option.

-0 causes the inclusion of an additional optimization phase.
This option is logically incompatible with the -g option.
You would normally use -O after the program has been
debugged, to reduce the size of the object file and increase
execution speed.

-p causes the compilation system to produce code that works
in conjunction with the prof(1) command to produce a
runtime profile of where the program is spending its time.
Useful in identifying which routines are candidates for
improved code.

-0 outfile tells cc to tell the link editor to use the specified name for
the executable file, rather than the default a.out.

2-8 PROGRAMMER’S GUIDE

Compiling and Link Editing

Other options can be used with cc. Check the Programmer’s Reference
Manual.

If you enter the cc command using a file name that ends in .s, the compi-
lation system treats it as assembly language source code and bypasses all the
steps ahead of the assembly step.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that do not com-
pile. The messages are generally quite understandable, but in common with
most language compilers they sometimes point several statements beyond
where the actual error occurred. For example, if you inadvertently put an
extra ; at the end of an if statement, a subsequent else will be flagged as a
syntax error. In the case where a block of several statements follows the if,
the line number of the syntax error caused by the else will start you looking
for the error well past where it is. Unbalanced curly braces, { }, are another
common producer of syntax errors.

Link Editing

The 1d command invokes the link editor directly. The typical user, how-
ever, seldom invokes 1d directly. A more common practice is to use a
language compilation control command (such as cc) that invokes 1d. The link
editor combines several object files into one, performs relocation, resolves
external symbols, incorporates startup routines, and supports symbol table
information used by sdb. You may, of course, start with a single object file
rather than several. The resulting executable module is left in a file named
a.out.

Any file named on the 1d command line that is not an object file (typi-
cally, a name ending in o) is assumed to be an archive library or a file of link
editor directives. The 1d command has some 16 options. We are going to
describe four of them. These options should be fed to the link editor by speci-
fying them on the cc command line if you are doing both jobs with the single
command, which is the usual case.

-0 ouffile provides a name to be used to replace a.out as the name of
the output file. Obviously, the name a.out is of only tem-
porary usefulness. If you know the name you want to use
to invoke your program, you can provide it here. Of
course, it may be equally convenient to do this:

mv a.out progname

PROGRAMMING BASICS 29

Compiling and Link Editing

-Ix

-L dir

-u symnaie

when you want to give your program a less temporary
name.

directs the link editor to search a library libx.a, where x is
up to nine characters. For C programs, libc.a is automati-
cally searched if the cc command is used. The -lx option is
used to bring in libraries not normally in the search path
such as libm.a, the math library. The -lx option can occur
more than once on a command line, with different values
for the x. A library is searched when its name is encoun-
tered, so the placement of the option on the command line
is important. The safest place to put it is at the end of the
command line. The -lx option is related to the -L option.

changes the libx.a search sequence to search in the speci-
fied directory before looking in the default library direc-
tories, usually /lib or /usr/lib. This is useful if you have
different versions of a library and you want to point the
link editor to the correct one. It works on the assumption
that once a library has been found no further searching for
that library is necessary. Because -L diverts the search for
the libraries specified by -lx options, it must precede such
options on the command line.

enters symname as an undefined symbol in the symbol
table. This is useful if you are loading entirely from an
archive library, because initially the symbol table is empty
and needs an unresolved reference to force the loading of
the first routine.

When the link editor is called through cc, a startup routine (typically
/lib/crt0.0 for C programs) is linked with your program. This routine calls
exit(2) after execution of the main program.

The link editor accepts a file containing link editor directives. The details
of the link editor command language can be found in Chapter 12.

2-10 PROGRAMMER’S GUIDE

The Interface Between a Programming
Language and the UNIX System

When a program is run in a computer, it depends on the operating system
for a variety of services. Some of the services such as bringing the program
into main memory and starting the execution are completely transparent to
the program. They are, in effect, arranged for in advance by the link editor
when it marks an object module as executable. As a programmer you seldom
need to be concerned about such matters.

Other services, however, such as input/output, file management, and
storage allocation do required work on the part of the programmer. These
connections between a program and the UNIX operating system are what is
meant by the term UNIX system /language interface. The topics included in
this section are:

B How arguments are passed to a program
System calls and subroutines

Header files and libraries

Input/Output

Processes

Error Handling, Signals, and Interrupts

Why C Is Used to lllustrate the Interface

Throughout this section C programs are used to illustrate the interface
between the UNIX system and programming languages, because C programs
make more use of the interface mechanisms than other high-level languages.
What is really being covered in this section then is the UNIX system/C
Language interface. The way that other languages deal with these topics is
described in the user’s guides for those languages.

PROGRAMMING BASICS 2-11

The UNIX System/Language Interface

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on
the command line. When the program is run as a command, arguments on
the command line are made available to the function main in two parameters,
an argument count and an array of pointers to character strings. (Every C
program is required to have an entry module by the name of main.) Since
the argument count is always given, the program does not have to know in
advance how many arguments to expect. The character strings pointed at by
elements of the array of pointers contain the argument information.

The arguments are presented to the program traditionally as argc and
argv, although any names you choose will work. argc is an integer that gives
the count of the number of arguments. Since the command itself is con-
sidered to be the first argument, argv[0], the count is always at least one.
argv is an array of pointers to character strings (arrays of characters ter-
minated by the null character \0).

If you plan to pass runtime parameters to your program, you need to
include code to deal with the information. Two possible uses of runtime
parameters are:

B as control data. Use the information to set internal flags that control
the operation of the program.

B to provide a variable file name to the program.

Figures 2-1 and 2-2 show program fragments that illustrate these uses.

2-1£ PROGRAMMER’S GUIDE

The UNIX System/Language Interface

#include <stdio.h>

main(arge, argv)
int argc;
char *argv[];
{
void exit();
int oflag = FALSE;

int pflag = FALSE; /* Function Flags */
int rflag = FALSE;
int ch;
while ((ch = getopt(argc,argv, "opr")) != EOF)

{
/* For options present, set flag to TRUE */
/* If no options present, print error message */

switch (ch)
{
case ‘o0’:
oflag = 1;
break;
case 'p’:
pflag = 1;
break;
case ‘r’:
rflag = 1;
break;
default:
(void)fprintf (stderr,
"Usage: %s [-opr]\n", argv([0]);
exit(2);

Figure 2-1: Using Command Line Arguments to Set Flags

PROGRAMMING BASICS 2-13

The UNIX System/Language Interface

clude <stdio.h>

main(arge, argv)
int argc;
char *argv(];
{

FILE *fopen(), *fin;
void perror(), exit();

if (argec > 1)
{
if ((fin = fopen(argv[1], "r")) == NULL)
{
/* First string (%s) is program name (argv[0]) */
/* Second string (%s) is name of file that could */
/* not be opened (argv[1]) */

(void)fprintf (stderr,
"%s: cannot open %s: ",
argvi0], argv[1]);

perror("");

exit(2);

N

Figure 2-2: Using argv[n] Pointers to Pass a File Name

The shell, which makes arguments available to your program, considers
an argument to be any non-blank characters separated by blanks or tabs.
Characters enclosed in double quotes ("abc def") are passed to the program
as one argument even if blanks or tabs are among the characters. It goes
without saying that you are responsible for error checking and otherwise mak-
ing sure the argument received is what your program expects it to be.

2-14 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

A third argument is also present, in addition to argc and argv. The third
argument, known as envp, is an array of pointers to environment variables.
You can find more information on envp in the Programmer’s Reference Manual
under exec(2) and environ(5).

System Calls and Subroutines

System calls are requests from a program for an action to be performed by
the UNIX system kernel. Subroutines are precoded modules used to supple-
ment the functionality of a programming language.

Both system calls and subroutines look like functions such as those you
might code for the individual parts of your program. There are, however,
differences between them:

B At link edit time, the code for subroutines is copied into the object file
for your program; the code invoked by a system call remains in the
kernel.

B At execution time, subroutine code is executed as if it was code you
had written yourself; a system function call is executed by switching
from your process area to the kernel.

This means that while subroutines make your executable object file larger,
runtime overhead for context switching may be less and execution may be fas-
ter.

Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:

B file access

B file and directory manipulation

B process control

B environment control and status information

You can generally tell the category of a subroutine by the section of the
Programmer’s Reference Manual in which you find its manual page. However,

the first part of Section 3 (3C and 3S) covers such a variety of subroutines it
might be helpful to classify them further.

PROGRAMMING BASICS 2-15

The UNIX System/Language Interface

B The subroutines of sub-class 3S constitute the UNIX system/C
Language standard I/0O, an efficient I/O buffering scheme for C.

B The subroutines of sub-class 3C do a variety of tasks. They have in
common the fact that their object code is stored in libc.a. They can be
divided into the following categories:

o string manipulation

o character conversion

o character classification

o environment management

O memory management

Figure 2-3 lists the functions that compose the standard I/O subroutines.

Frequently, one manual page describes several related functions. The left
hand column contains the name that appears at the top of the manual page;

the other names in the same row are related functions described on the same
manual page.

Figure 2-4 lists string-handling functions that are grouped under the head-
ing string(3C) in the Programmer’s Reference Manual.

Figure 2-5 lists macros that classify ASCII character-coded integer values.
These macros are described under the heading ctype(3C) in Section 3 of the
Programmer’s Reference Manual.

Figure 2-6 lists functions and macros that are used to convert characters,
integers, or strings from one representation to another.

2-16 PROGRAMMER’S GUIDE

Function Name(s)

The UNIX System/Language Interface

Purpose

close

ferror
fopen
fread
fseek

getc

gets
popen

printf
putc

puts
scanf
setbuf
system

tmpfile
tmpnam

ungetc

vprintf

fflush
feof
freopen
fwrite
rewind

getchar

fgets
pclose

fprintf
putchar

fputs

fscanf
setvbuf

tempnam

viprintf

clearerr
fdopen

ftell

fgetc

sprintf
fputc

sscanf

vsprintf

fileno

getw

putw

close or flush a stream
stream status inquiries
open a stream

binary input/output
reposition a file pointer in a
stream

get a character or word from a
stream

get a string from a stream

begin or end a pipe to/from a
process

print formatted output

put a character or word on a
stream

put a string on a stream
convert formatted input
assign buffering to a stream

issue a command through the
shell

create a temporary file

create a name for a temporary
file

push character back into input
stream

print formatted output of a
varargs argument list

For all functions: #include <stdio.h>

The function name shown in bold gives the location in
the Programmer’s Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines

PROGRAMMING BASICS 2-17

The UNIX System/Language Interface

String Operations

strcat(s1, s2)
strncat(s1, s2, n)
stremp(sl, s2)
strncmp(sl, s2, n)

strcpy(sl, s2)

strncpy(sl, s2, n)

strdup(s)
strchr(s, ¢)
strrchr(s, ¢)
strlen(s)

strpbrk(sl, s2)

strspn(sl, s2)
strespn(sl, s2)

strtok(s1, s2)

append a copy of s2 to the end of s1.
append n characters from s2 to the end of sl.

compare two strings. Returns an integer less than,
greater than, or equal to 0 to show that s1 is lexico-
graphically less than, greater than, or equal to s2.

compare n characters from the two strings. Results are
otherwise identical to stremp.

copy s2 to s1, stopping after the null character (\0) has
been copied.

copy n characters from s2 to s1. s2 will be truncated if
it is longer than n, or padded with null characters if it is
shorter than n.

returns a pointer to a new string that is a duplicate of
the string pointed to by s.

returns a pointer to the first occurrence of character c in
string s, or a NULL pointer if c is not in s.

returns a pointer to the last occurrence of character c in
string s, or a NULL pointer if c is not in s.

returns the number of characters in s up to the first null
character.

returns a pointer to the first occurrence in sl of any
character from s2, or a NULL pointer if no character
from s2 occurs in s1.

returns the length of the initial segment of s1, which
consists entirely of characters from s2.

returns the length of the initial segment of s1, which
consists entirely of characters not from s2.

look for occurrences of s2 within s1.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations

2-18 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

Classify Characters

isalpha(c) is ¢ a letter

isupper(c) is ¢ an uppercase letter

islower(c) is ¢ a lowercase letter

isdigit(c) is ¢ a digit [0-9]

isxdigit(c) is ¢ a hexadecimal digit [0-9], [A-F] or [a-f]

isalnum(c) is ¢ an alphanumeric (letter or digit)

isspace(c) is ¢ a space, tab, carriage return, new-line, vertical tab,
or form-feed

ispunct(c) is ¢ a punctuation character (neither control nor
alphanumeric)

isprint(c) is ¢ a printing character, code 040 (space) through 0176
(tilde)

isgraph(c) same as isprint except false for 040 (space)

iscntrl(c) is ¢ a control character (less than 040) or a delete char-
acter (0177)

isascii(c) is ¢ an ASCII character (code less than 0200)

For all functions: #include <ctype.h>
Nonzero return == true; zero return == false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

PROGRAMMING BASICS 2-19

The UNIX System/Language Interface

Function Name(s) Purpose

a64l 164a convert between long integer and
base-64 ASCII string

ecvt fevt gevt convert floating-point number to string

13tol Itol3 convert between 3-byte integer and
long integer

strtod atof convert string to double-precision
number

strtol atol atoi convert string to integer

conv(30): Translate Characters

toupper lowercase to uppercase

—toupper macro version of toupper

tolower uppercase to lowercase

—_tolower macro version of tolower

toascii turn off all bits that are not part of a standard ASCII character;

intended for compatibility with other systems

For all conv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

2-20 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

Where the Manual Pages Can Be Found

System calls are listed alphabetically in Section 2 of the Programmer’s
Reference Manual. Subroutines are listed in Section 3. We have described ear-
lier what is in the first subsection of Section 3. The remaining subsections of
Section 3 are:

B 3M—functions that make up the Math Library, libm
B 3X—various specialized functions

B 3N—Networking Support Utilities

How System Calls and Subroutines Are Used in C
Programs

Information about the proper way to use system calls and subroutines is
given on the manual page, but you have to know what you are looking for
before it begins to make sense. To illustrate, a typical manual page [for
gets(3S)] is shown in Figure 2-7.

PROGRAMMING BASICS 2-21

The UNIX System/Language Interface

NAME
gets, fgets - get a string from a stream
SYNOPSIS
#include <stdio.h>
char =*gets (s)
char #s;
char =*fgets (s, n, stream)
char #s;
int n;
FILE *stream;
DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the
array pointed to by s, until a new-line character is read or an end-of-
file condition is encountered. The new-line character is discarded and
the string is terminated with a null character.
Fgets reads characters from the stream into the array pointed to by s,
until n-1 characters are read, or a new-line character is read and
transferred to s, or an end-of-file condition is encountered. The string
is then terminated with a null character.
SEE ALSO
ferror(3S),
fopen(35),
fread(3S),
getc(3S),
scanf(3S).
DIAGNOSTICS

If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned. If a
read error occurs, such as trying to use these functions on a file that
has not been opened for reading, a NULL pointer is returned. Other-
wise s is returned.

Figure 2-7: Manual Page for gets(3S)

2-22 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

As you can see from the illustration, two related functions are described
on this page: gets and fgets. Each function gets a string from a stream in a
slightly different way. The DESCRIPTION section tells how each operates.

It is the SYNOPSIS section, however, that contains the critical information
about how the function (or macro) is used in your program. Notice in
Figure 2-7 that the first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/O header
file into your program (generally right at the top of the file). There is some-
thing in stdio.h that is needed when you use the described functions.

Figure 2-9 shows a version of stdio.h. Check it to see if you can understand
what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a manual page that
documents system calls or subroutines is the formal declaration of the func-
tion. The formal declaration tells you:

the type of object returned by the function
In our example, both gets and fgets return a character pointer.
the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. gets
expects a character pointer. (The DESCRIPTION section sheds light on
what the tokens of the formal declaration stand for.)

how the function is going to treat those objects
The declaration
char *s;

in gets means that the token s enclosed in the parentheses will be con-
sidered to be a pointer to a character string. Bear in mind that in the C
language, when passed as an argument, the name of an array is con-
verted to a pointer to the beginning of the array.

PROGRAMMING BASICS 2-23

The UNIX System/Language Interface

We have chosen a simple example here in gets. If you want to test your-
self on something a little more complex, try working out the meaning of the
elements of the fgets declaration.

While we are on the subject of fgets, there is another piece of C esoterica
that we will explain. Notice that the third parameter in the fgets declaration
is referred to as stream. A stream, in this context, is a file with its associated
buffering. It is declared to be a pointer to a defined type FILE. Where is FILE
defined? Right! In stdio.h.

To finish off this discussion of the way you use functions described in the
Programmer’s Reference Manual in your own code, in Figure 2-8 we show a
program fragment in which gets is used.

gude <stdio.h>

main()

{

char sarray[80];
for(;s;)
{
if (gets(sarray) != NULL)

/* Do something with the string */

_ /

Figure 2-8: How gets Is Used in a Program

You might ask, "Where is gets reading from?" The answer is, "From the
standard input." That generally means from something being keyed in from
the terminal where the command was entered to get the program running, or
output from another command that was piped to gets. How do we know
that? The DESCRIPTION section of the gets manual page says, "gets reads
characters from the standard input...." Where is the standard input defined?

2-24 PROGRAMMER’S GUIDE

In stdio.h.

#ifndef _NFILE
#define _NFILE20

#define BUFSIZ1024
#define _SBFSIZ 8

typedef struct {
int
unsigned char
unsigned char
char
char

} FILE;

#define _JOFEF
#define _IOREAD
#define _TOWRT
#define _IONBF
#define _IOMYBUF
#define _IOEOF
#define _IOERR
#define _IOLEF
#define _TORW

#ifndef NULL
#define NULL
#endif
#ifndef EOF
#define EOF
#endif

_ent;
*_ptr;
* base;
_flag;
_file;

0000 /* _TOLBF means that a file’s output */
0001 /* will be buffered line by line. */
0002 /* In addition to being flags, _IONBF,*/
0004 /* _JOLBF and IOFBF are possible */
0010 /* values for "type" in setvbuf. */
0020
0040
0100
0200

(=1

Figure 2-9: A Version of stdio.h (Sheet 1 of 2)

The UNIX System/Language Interface

PROGRAMMING BASICS

2-25

NiX Sysiemjianguage interiace

#define stdin
#define stdout
#define stderr

#define _bufend(p)
#define _bufsiz(p)

#ifndef lint
#define getc(p)
#define putc(x, p)

#define getchar()
#define putchar(x)
#define clearerr(p)
#define feof(p)
#define ferror(p)

#define L ctermid
#define L cuserid
#define P_tmpdir

#define L _tmpnam

#endif

#define fileno(p)
#endif
extern FILE _iob[_NFILE];

(8_iob[0])
(8_diob[1])
(8_iob[2])

_bufendtabl (p)->_file]
(_bufend(p) - (p)->_base)

(-=(p)->_cnt < 0 ? _filbuf(p) : (int) *(p)—>_ptr++)
(-=(p)->_cnt < 0 ?

_flsbuf((unsigned char) (x), (p)) :

(int) (*(p)->_ptr++ = (unsigned char) (x)))
getc(stdin)

putc((x), stdout)

((void) ((p)—>_flag &= (_IOERR | _IOEOF)))
((p)—>_flag & _IOEOF)

((p)—>_flag & _TIOERR)

(p)—>_file

extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();

extern long ftell();

extern void rewind(), setbuf();

extern char *ctermid(), *cuserid(), *fgets(), *gets(), *tempnam(), *tmpnam();
extern unsigned char * bufendtab[];

9

9

" fusr/tmp/™

(sizeof (P_tmpdir) + 15)

Figure 2-9: A Version of stdio.h (Sheet 2 of 2)

2-26 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

Header Files and Libraries

In the earlier parts of this chapter there have been frequent references to
stdio.h, and a version of the file itself is shown in Figure 2-9. stdio.h is the
most commonly used header file in the UNIX system/C environment, but
there are many others.

Header files carry definitions and declarations that are used by more than
one function. Header file names traditionally have the suffix .h, and are
brought into a program at compile time by the C-preprocessor. The prepro-
cessor does this because it interprets the #include statement in your program
as a directive; as indeed it is. All keywords preceded by a pound sign (#) at
the beginning of the line are treated as preprocessor directives. The two most
commonly used directives are #include and #define. We have already seen
that the #include directive is used to call in (and process) the contents of the
named file. The #define directive is used to replace a name with a token-
string. For example,

#define _NFILE 20

sets to 20 the number of files a program can have open at one time. See
cpp(1) for the complete list.

In the pages of the Programmer’s Reference Manual there are about 45 dif-
ferent .h files named. The format of the #include statement for all these
shows the file name enclosed in angle brackets (<>), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places
for the file. In most systems the standard place is in the /usr/include direc-
tory. If you have some definitions or external declarations that you want to
make available in several files, you can create a .h file with any editor, store it
in a convenient directory and make it the subject of a #include statement
such as the following:

#include "../defs/rec.h"

PROGRAMMING BASICS 2-27

The UNIX Systemjianguage interface

It is necessary, in this case, to provide the relative path name of the file
and enclose it in quotation marks (" "). Fully-qualified path names (those that
begin with /) can create portability and organizational problems. An alterna-
tive to long or fully-qualified path names is to use the -Idir preprocessor
option when you compile the program. This option directs the preprocessor
to search for #include files whose names are enclosed in " ", first in the
directory of the file being compiled, then in the directories named in the -I
option(s), and finally in directories on the standard list. In addition, all
#include files whose names are enclosed in angle brackets (< >) are first
searched for in the list of directories named in the -I option and finally in the
directories on the standard list.

Object File Libraries

It is common practice in UNIX system computers to keep modules of com-
piled code (object files) in archives; by convention, designated by a .a suffix.
System calls from Section 2, and the subroutines in Section 3, subsections 3C
and 3S, of the Programmer’s Reference Manual that are functions (as distinct
from macros) are kept in an archive file by the name of libc.a. In most sys-
tems, libc.a is found in the directory /lib. Many systems also have a direc-
tory /usr/lib. Where both /lib and /usr/lib occur, /usr/lib is apt to be
used to hold archives that are related to specific applications.

During the link edit phase of the compilation and link edit process, copies
of some of the object modules in an archive file are loaded with your execut-
able code. By default the cc command that invokes the C compilation system
causes the link editor to search libc.a. If you need to point the link editor to
other libraries that are not searched by default, you do it by naming them
explicitly on the command line with the -1 option. The format of the -1 option
is -1x where x is the library name, and can be up to nine characters. For
example, if your program includes functions from the curses screen control
package, the option

-lcurses

will cause the link editor to search for /lib/libcurses.a or
/usr/lib/libcurses.a and use the first one it finds to resolve references in your
program.

2-28 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

In cases where you want to direct the order in which archive libraries are
searched, you may use the -L dir option. Assuming the -L option appears on
the command line ahead of the -1 option, it directs the link editor to search
the named directory for libx.a before looking in /lib and /usr/lib. This is
particularly useful if you are testing out a new version of a function that
already exists in an archive in a standard directory. Its success is due to the
fact that once having resolved a reference, the link editor stops looking. That
is why the -L option, if used, should appear on the command line ahead of
any -1 specification.

Input/Output

We talked some about I/O earlier in this chapter in connection with sys-
tem calls and subroutines. A whole set of subroutines constitutes the C
language standard 1/O package, and there are several system calls that deal
with the same area. In this section we want to get into the subject in a little
more detail and describe for you how to deal with input and output concerns
in your C programs. First off, let us briefly define what the subject of I/O
encompasses. It has to do with

B creating and sometimes removing files
B opening and closing files used by your program
B transferring information from a file to your program (reading)

B transferring information from your program to a file (writing).

In this section we will describe some of the subroutines you might choose
for transferring information, but the heaviest emphasis will be on dealing with
files.

Three Files You Always Have

Programs are permitted to have several files open simultaneously. The
number may vary from system to system; the most common maximum is 20.
—NFILE in stdio.h specifies the number of standard I/O FILEs a program is
permitted to have open.

Any program automatically starts off with three files. If you will look
again at Figure 2-9, about midway through you will see that stdie.h contains
three #define directives that equate stdin, stdout, and stderr to the address
of _iob[0], —_iob[1], and _iob[2], respectively. The array _iob holds informa-
tion dealing with the way standard I/O handles streams. Itis a

PROGRAMMING BASICS 2-29

The UNIX System/Language Interface

representation of the open file table in the control block for your program.
The position in the array is a number that is also known as the file descriptor.
The default in UNIX systems is to associate all three of these files with your
terminal.

The real significance is that functions and macros that deal with stdin or
stdout can be used in your program with no further need to open or close
files. For example, gets, cited above, reads a string from stdin; puts writes a
null-terminated string to stdout. There are others that do the same (in
slightly different ways: character at a time, formatted, etc.). You can specify
that output be directed to stderr by using a function such as fprintf. fprintf
works the same as printf except that it delivers its formatted output to a
named stream, such as stderr. You can use the shell’s redirection feature on
the command line to read from or write into a named file. If you want to
separate error messages from ordinary output being sent to stdout and thence
possibly piped by the shell to a succeeding program, you can do it by using
one function to handle the ordinary output and a variation of the same func-
tion that names the stream to handle error messages.

Named Files

Any files other than stdin, stdout, and stderr that are to be used by your
program must be explicitly connected by you before the file can be read from
or written to. This can be done using the standard library routine fopen.
fopen takes a path name (which is the name by which the file is known to the
UNIX file system), asks the system to keep track of the connection, and
returns a pointer that you then use in functions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program
you need to have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the
name of a particular file to the pointer with a statement in your program like
this:

fin = fopen("filename", "r");
where filename is the path name to open. The "r" means that the file is to
be opened for reading. This argument is known as the mode. As you might
suspect, there are modes for reading, writing, and both reading and writing.

Actually, the file open function is often included in an if statement that takes
advantage of the fact that fopen returns a NULL pointer

2-30 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

if it cannot open the file. An example is:

if ((fin = fopen("filename", "r")) == NULL)
(void) fprintf(stderr,"%s: Unable to open input file %s\n",argv[0],"fil "

Once the file has been successfully opened, the pointer fin is used in
functions (or macros) to refer to the file. For example:
int c;
c = getc(fin);
brings in a character at a time from the file into an integer variable called c.
The variable c is declared as an integer even though we are reading characters

because the function getc() returns an integer. Getting a character is often
incorporated into some flow-of-control mechanism such as:

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro
getc are all defined in stdio.h. getc and others that make up the standard I/O
package keep advancing a pointer through the buffer associated with the file;
the UNIX system and the standard I/O subroutines are responsible for seeing
that the buffer is refilled (or written to the output file if you are producing
output) when the pointer reaches the end of the buffer. All these mechanics
are mercifully invisible to the program and the programmer.

The function fclose is used to break the connection between the pointer in
your program and the path name. The pointer may then be associated with
another file by another call to fopen. This re-use of a file descriptor for a dif-
ferent stream may be necessary if your program has many files to open. For
output files it is good to issue an fclose call because the call makes sure that
all output has been sent from the output buffer before disconnecting the file.
The system call exit closes all open files for you. It also gets you completely
out of your process, however, so it is safe to use only when you are sure you

PROGRAMMING BASICS 2-31

The UNIX System/Language Interface

are completely finished.

Low-Level 1/O and Why You Should Not Use It

The term low-level I/O is used to refer to the process of using system
calls from Section 2 of the Programmer’s Reference Manual rather than the
functions and subroutines of the standard I/O package. We are going to post-
pone until Chapter 3 any discussion of when this might be advantageous. If
you find as you go through the information in this chapter that it is a good fit
with the objectives you have as a programmer, it is a safe assumption that
you can work with C language programs in the UNIX system for a good many
years without ever having a real need to use system calls to handle your I/O
and file accessing problems. The reason low-level I1/0 is perilous is because it
is more system-dependent. Your programs are less portable and probably no
more efficient.

System Calis for Environment or Status
Information

Under some circumstances you might want to be able to monitor or con-
trol the environment in your computer. There are system calls that can be
used for this purpose. Some of them are shown in Figure 2-10.

2-32 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

Function Name(s) Purpose
chdir change working directory
chmod change access permission of a file
chown change owner and group of a file

getpid getpgrp getppid | get process IDs
getuid geteuid getgid get user IDs

ioctl control device

link unlink add or remove a directory entry
mount umount mount or unmount a file system
nice change priority of a process

stat fstat get file status

time get time

ulimit get and set user limits

uname get name of current UNIX system

Figure 2-10: Environment and Status System Calls

As you can see, many of the functions shown in Figure 2-10 have
equivalent UNIX system shell commands. Shell commands can easily be
incorporated into shell scripts to accomplish the monitoring and control tasks
you may need to do. The functions are available, however, and may be used
in C programs as part of the UNIX system/C Language interface. They are
documented in Section 2 of the Programmers’ Reference Manual.

Processes

Whenever you execute a command in the UNIX system you are initiating
a process that is numbered and tracked by the operating system. A flexible
feature of the UNIX system is that processes can be generated by other
processes. This happens more than you might ever be aware of. For exam-
ple, when you log in to your system, you are running a process, very probably
the shell. If you then use an editor such as vi, take the option of invoking the

PROGRAMMING BASICS 2-33

The UNIX System/Language Interface

shell from vi and execute the ps command; you will see a display something
like that in Figure 2-11 (which shows the results of a ps -f command):

UlD PID PPID C STIME TTY TIME COMMAND
abc 24210 1 0 06:13:14 tty29 0:05 -sh

abc 24631 24210 O 06:59:07 tty29 0:13 vi c2.uli

abc 28441 28358 80 09:17:22 tty29 0:01 ps -f

abc 28358 24631 2 09:15:14 tty29 0:01 sh -i

Figure 2-11: Process Status

As you can see, user abc (who went through the steps described above)
now has four processes active. It is an interesting exercise to trace the chain
that is shown in the Process ID (PID) and Parent Process ID (PPID) columns.
The shell that was started when user abc logged on is Process 24210; its
parent is the initialization process (Process ID 1). Process 24210 is the parent
of Process 24631, and so on.

The four processes in the example above are all UNIX system shell level
commands, but you can spawn new processes from your own program.
(Actually, when you issue the command from your terminal to execute a pro-
gram you are asking the shell to start another process, the process being your
executable object module with all the functions and subroutines that were
made a part of it by the link editor.)

You might think, "Well, it’s one thing to switch from one program to
another when I'm at my terminal working interactively with the computer; but
why would a program want to run other programs, and if one does, why
wouldn't I just put everything together into one big executable module?"

Overlooking the case where your program is itself an interactive applica-
tion with diverse choices for the user, your program may need to run one or
more other programs based on conditions it encounters in its own processing.
(If it is the end of the month, go do a trial balance, for example.) The usual
reasons why it might not be practical to create one monster executable are:

M The load module may get too big to fit in the maximum process size
for your system.

2-34¢ PROGRAMMER’S GUIDE

The UNIX System/Language Interface

B You may not have control over the object code of all the other
modules you want to include.

Suffice it to say, there are legitimate reasons why this creation of new
processes might need to be done. There are three ways to do it:

B system(3S)—request the shell to execute a command.
B exec(2)—stop this process and start another.

B fork(2)—start an additional copy of this process.

system(3S)

The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)
char *string;

The function asks the shell to treat the string as a command line. The string
can therefore be the name and arguments of any executable program or UNIX
system shell command. If the exact arguments vary from one execution to the
next, you may want to use sprintf to format the string before issuing the sys-
tem command. When the command has finished running, system returns the
shell exit status to your program. Execution of your program waits for the
completion of the command initiated by system and then picks up again at
the next executable statement.

exec(2)

exec is the name of a family of functions that includes execv, execle,
execve, execlp, and execvp. They all have the function of transforming the
calling process into a new process. The reason for the variety is to provide
different ways of pulling together and presenting the arguments of the func-
tion. An example of one version (execl) might be:

execl("/bin/prog2", "prog", progargl, progarg2, (char *)0);

PROGRAMMING BASICS 2-35

The UNIX System/Language Interface

For execl the argument list is

/bin/prog2 path name of the new process file

prog the name the new process gets in its argv[0]
progargl, arguments to prog2 as char *'s

progarg2

(char %0 a null char pointer to mark the end of the arguments

Check the manual page in the Programmer’s Reference Manual for the rest
of the details. The key point of the exec family is that there is no return from
a successful execution: the calling process is finished, the new process over-
lays the old. The new process also takes over the Process ID and other attri-
butes of the old process. If the call to exec is unsuccessful, control is returned
to your program with a return value of —1. You can check errno (see below)
to learn why it failed.

fork(2)

The fork system call creates a new process that is an exact copy of the cal-
ling process. The new process is known as the child process; the caller is
known as the parent process. The one major difference between the two
processes is that the child gets its own unique process ID. When the fork pro-
cess has completed successfully, it returns a 0 to the child process and the
child’s process ID to the parent. If the idea of having two identical processes
seems a little funny, consider this:

B Because the return value is different between the child process and the
parent, the program can contain the logic to determine different paths.

B The child process could say, "Okay, I'm the child. I'm supposed to
issue an exec for an entirely different program."

B The parent process could say, "My child is going to be execing a new
process. I'll issue a wait until I get word that that process is finished."

To take this out of the storybook world where programs talk like people and
into the world of C programming (where people talk like programs), your
code might include statements like this:

2-36 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

#include <errmo.h>

int ch stat, ch pid, status;
char *progarg1;

char *progarg2;

void exit();

extern int errno;

if ((ch pid = fork()) < 0)
{
/* Could not fork...
check errno
*/
}
else if (ch pid == 0) /% child */
{
(void)execl("/bin/prog2", "prog" ,progarg1,progarg2, (char *)0);
exit(2); /* execl() failed */

else /* parent */

while ((status = wait(&ch stat)) != ch pid)
{
if (status < 0 && errno == ECHILD)
break;
errmo = 0;

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec’d process, the
parent knows the ID. What this boils down to is a way of leaving one pro-
gram to run another, returning to the point in the first program where pro-
cessing left off. This is exactly what the system(3S) function does. As a
matter of fact, system accomplishes it through this same procedure of forking
and execing, with a wait in the parent.

PROGRAMMING BASICS 2-37

The UNIX System/Language Interface

Keep in mind that the fragment of code above includes a minimum
amount of checking for error conditions. There is also potential confusion
about open files and which program is writing to a file. Leaving out the pos-
sibility of named files, the new process created by the fork or exec has the
three standard files that are automatically opened: stdin, stdout, and stderr.
If the parent has buffered output that should appear before output from the
child, the buffers must be flushed before the fork. Also, if the parent and the
child process both read input from a stream, whatever is read by one process
will be lost to the other. That is, once something has been delivered from the
input buffer to a process the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of one program
and the input of another, when working with commands executed by the shell
is well established in the UNIX system environment. For example, to learn
the number of archive files in your system you might enter a command like:

echo /lib/*.a /usr/lib/*.a i wc -w

that first echoes all the files in /lib and /usr/lib that end in .a, then pipes the
results to the we¢ command, which counts their number.

A feature of the UNIX system/C Language interface is the ability to estab-
lish pipe connections between your process and a command to be executed by
the shell, or between two cooperating processes. The first uses the popen(3S)
subroutine that is part of the standard I/O package; the second requires the
system call pipe(2).

popen is similar in concept to the system subroutine in that it causes the
shell to execute a command. The difference is that once having invoked
popen from your program, you have established an open line to a con-
currently running process through a stream. You can send characters or
strings to this stream with standard I/O subroutines just as you would to
stdout or to a named file. The connection remains open until your program
invokes the companion pclose subroutine.

2-38 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

A common application of this technique might be a pipe to a printer spooler.

For example:

#include <stdio.h>

main()
{
FILE *pptr;
char *outstring;

if ((pptr = popen("lp","w")) != NULL)
{
for(;;)
{
/* Organize output */

(void)fprintf(pptr, "%s\n", outstring);

pclose(pptr) ;
}

Figure 2-13: Example of a popen pipe

PROGRAMMING BASICS

2-39

The UNIX System/Language Interface

Error Handling

Within your C programs you must determine the appropriate level of
checking for valid data and for acceptable return codes from functions and
subroutines. If you use any of the system calls described in Section 2 of the
Programmer’s Reference Manual, you have a way in which you can find out the
probable cause of a bad return value.

UNIX system calls that are not able to complete successfully almost
always return a value of -1 to your program. (If you look through the system
calls in Section 2, you will see that there are a few calls for which no return
value is defined, but they are the exceptions.) In addition to the -1 that is
returned to the program, the unsuccessful system call places an integer in an
externally declared variable, errno. You can determine the value in errno if
your program contains the statement

#include <errno.h>

The value in errno is not cleared on successful calls, so your program
should check it only if the system call returned a —1. Errors are described in
intro(2) of the Programmer’s Reference Manual.

The subroutine perror(3C) can be used to print an error message (on
stderr) based on the value of errno.

Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words refer
to messages passed by the UNIX system to running processes. Generally, the
effect is to cause the process to stop running. Some signals are generated if
the process attempts to do something illegal; others can be initiated by a user
against his or her own processes, or by the super-user against any process.

There is a system call, kill, that you can include in your program to send
signals to other processes running under your user-id. The format for the kill
call is:

kill(pid, sig)

where pid is the process number against which the call is directed, and sig is
an integer from 1 to 19 that shows the intent of the message. The name
"kill" is something of an overstatement; not all the messages have a "drop

2-40 PROGRAMMER’S GUIDE

The UNIX System/Language Interface

dead" meaning. Some of the available signals are shown in Figure 2-14 as

they are defined in <sys/signal.h>.

/* hangup */

/* interrupt (rubout) */

/* quit (ASCII FS) */

/* illegal instruction (not reset when caught)*/
/* trace trap (not reset when caught) */

/* IOT instruction */

/* used by abort, replace SIGIOT in the future */
/* EMT instruction */

/* floating point exception */

/* kill (camnot be caught or ignored) */

/* bus error */

/* segmentation violation */

/* bad argument to system call */

/* write on a pipe with no one to read it */

/* alarm clock */

/* software termination signal from kill */

/* user defined signal 1 */

/* user defined signal 2 */

/* death of a child */

/* power-fail restart */

/* SIGWIND and SIGPHONE only used in UNIX/PC */

20*/ /* window change */
21*%/ /* handset, line status change */

/* pollable event occurred */

#define SIGHUP 1
#define SIGINT 2
#define SIGQUIT 3
#define SIGILL 4
#define SIGTRAP 5
#define SIGIOT 6
#define SIGAERT 6
#define SIGEMT 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGBUS 10
#define SIGSEGV 11
#define SIGSYS 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGUSR1 16
#define SIGUSR2 17
#define SIGCLD 18
#define SIGPWR 19
/*#define SIGWIND
/*#define SIGPHONE
#define SIGPOLL 22
#define NSIG 23
#define MAXSIG 32

/* The valid signal number is from 1 to NSIG-1 */
/* size of u signal[], NSIG-1 <= MAXSIG*/

/* MAXSIG is larger than we need now. */

/* In the future, we can add more signal */

/* mumber without changing user.h */

Figure 2-14: Signal Numbers Defined in /usr/include/sys/signal.h

PROGRAMMING BASICS

2-41

The UNIX System/Language Interface

The signal(2) system call is designed to let you code methods of dealing
with incoming signals. You have a three-way choice. You can (a) accept
whatever the default action is for the signal, (b) have your program ignore the
signal, or (c) write a function of your own to deal with it.

2-42 PROGRAMMER’S GUIDE

Analysis/Debugging

The UNIX system provides several commands designed to help you dis-
cover the causes of problems in programs and to learn about potential prob-
lems.

Sample Program

To illustrate how these commands are used and the type of output they
produce, we have constructed a sample program that opens and reads an
input file and performs one to three subroutines according to options specified
on the command line. This program does not do anything you could not do
quite easily on your pocket calculator, but it does serve to illustrate some
points. The source code is shown in Figure 2-15. The header file, recdef.h, is
shown at the end of the source code.

The output produced by the various analysis and debugging tools illus-
trated in this section may vary slightly from one installation to another. The
Programmer’s Reference Manual is a good source of additional information
about the contents of the reports.

PROGRAMMING BASICS 2-43

Analysis/Debugging

/* Main module -- restate.c */

#include <stdio.h>
#include "recdef.h"

#define TRUE 1
#define FALSE 0

main(arge, argv)

int argc;

char *argv[];

{
FILE *fopen(), *fin;
void exit();
int getopt();
int oflag = FALSE;
int pflag = FALSE;
int rflag = FALSE;
int ch;
struct rec first;
extern int opterr;
extern float oppty(), pft(), rfe();

/* restate.c is continued on the next page */

Figure 2-15: Source Code for Sample Program (Sheet 1 of 4)

2-44 PROGRAMMER’S GUIDE

Analysis/Debugging

/* restate.c continued */

if (axrgc < 2)

{
(void) fprintf(stderr, "%s: Must specify option\n",argv[0]);
(void) fprintf(stderr, "Usage: %s -rpo\n", argv[0]);
exit(2);

}

opterr = FALSE;
while ((ch = getopt(argc,argv,"opr")) != EOF)
{
switch(ch)
{
case '0’:
oflag = TRUE;
break;
case 'p’:
pflag = TRUE;
break;
r':
rflag = TRUE;
break;
default:
(void) fprintf(stderr, "Usage: %s -rpo\n",argv[0]);
exit(2);

’

case

}
}
if ((fin = fopen("info","r")) == NULL)
{
(void) fprintf(stderr, "%s: cannot open input file %s\n",argv(0],"info");
exit(2);

Figure 2-15: Source Code for Sample Program (Sheet 2 of 4)

PROGRAMMING BASICS 2-45

Analysis/Debugging

/* restate.c continued */

if (fscanf(fin, "%sUERERERERE%E" ,first.pname,&first. ppx,
&first.dp,&first.i,&first.c,&first.t,&first.spx) 1= 7)
{
(void) fprintf(stderr,"%s: cammot read first record from %s\n",
argv[0],"info");
exit(2);
}

printf ("Property: %s\n",first.pname);

if(oflag)
printf (" Opportunity Cost: $%#5.2f\n",oppty(&first));

if (pflag)
printf (" Anticipated Profit(loss): $%#7.2f\n",pft(&first));

if(rflag)
printf (" Return on Funds Employed: %#3.2f%%\n",rfe(&first));

/* End of Main Module -- restate.c */

/* Opportunity Cost -- oppty.c */
#include "recdef.h"

float
oppty(ps)
struct rec *ps;

{
return(ps->i/12 * ps—>t * ps—>dp);

Figure 2-15: Source Code for Sample Program (Sheet 3 of 4)

2-46 PROGRAMMER’S GUIDE

Analysis/Debugging

/% Profit -- pft.c */
#include "recdef.h"

float
pft(ps)
struct rec *ps;
{
return(ps->spx - ps—>ppx + ps—>c);
}

/* Return on Funds Employed -- rfe.c */
#include "recdef.h"

float
rfe(ps)
struct rec *ps;
{
return(100 * (ps—>spx - ps—>c) / ps—>Spx);

/* Header File —— recdef.h */

struct rec { /* To hold input */

char pname[25];

float ppx;

float dp;

float ij;

float c;

float t;

float spx;

Figure 2-15: Source Code for Sample Program (Sheet 4 of 4)

PROGRAMMING BASICS 2-47

Analysis/Debugging

cflow

cflow produces a chart of the external references in C, yacc, lex, and
assembly language files. Using the modules of our sample program, the com-
mand

cflow restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-16.

~

main: int(), <restate.c 11>
fprintf: <>

exit: <>

getopt: <>

fopen: <>

fscanf: <>

printf: <>

oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>
rfe: float(), <rfe.c 8>

=2 0V 030U WN

o

-

Figure 2-16: cflow Output, No Options

2-48 PROGRAMMER’S GUIDE

Analysis/Debugging

The -r option looks at the caller:callee relationship from the other side. It
produces the output shown in Figure 2-17.

1 exit: <>

2 main : <>

3 fopen: <>

4 main : 2

5 fprintf: <>

6 main : 2

7 fscanf: <>

8 main : 2

9 getopt: <>

10 main : 2

1 main: int(), <restate.c 11>
12 oppty: float(), <oppty.c 7>
13 main : 2

14 pft: float(), <pft.c 7>

15 main : 2

16 printf: <>

17 main : 2

18 rfe: float(), <rfe.c 8>

19 main : 2

Figure 2-17: cflow Output, Using -r Option

PROGRAMMING BASICS 2-49

Analysis/Debugging

The -ix option causes external and static data symbols to be included.
Our sample program has only one such symbol, opterr. The output is shown
in Figure 2-18.

/main: int(), <restate.c 11>

fprintf: <>

exit: <>

opterr: <>

getopt: <>

fopen: <>

fscanf: <>

printf: <>

oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>
rfe: float(), <rfe.c 8>

2 VOOV WN

- O

Figure 2-18: cflow Output, Using -ix Option

2-50 PROGRAMMER’S GUIDE

Analysis/Debugging

Combining the -r and the -ix options produces the output shown in
Figure 2-19.

~

1 exit: <>

2 main : <>

3 fopen: <>

4 main : 2

5 fprintf: <>

6 main : 2

7 fscanf: <>

8 main : 2

9 getopt: <>

10 main : 2

1 main: int(), <restate.c 11>
12 oppty: float(), <oppty.c 7>
13 main : 2

14 opterr: <>

15 main : 2

16 pft: float(), <pft.c 7>
17 main : 2

18 printf: <>

19 main : 2

20 rfe: float(), <rfe.c 8>
21 main : 2

Figure 2-19: cflow Output, Using -r and -ix Options

ctrace

ctrace lets you follow the execution of a C program statement by state-
ment. ctrace takes a .c file as input and inserts statements in the source code
to print out variables as each program statement is executed. You must direct
the output of this process to a temporary .c file. The temporary file is then
used as input to cc. When the resulting a.out file is executed, it produces out-
put that can tell you a lot about what is going on in your program.

PROGRAMMING BASICS 2-51

Analysi#lbebuggihg

Options givé you the ability to limit the number of times through loops.
You can also include functions in your source file that turn the trace off and
on so you can limit the output to portions of the program that are of particular
interest.

ctrace accepts only one source code file as input. To use our sample pro-
gram to illustrate, it is necessary to execute the following four commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c

ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names
that are convenient for you. The names must end in .c, since the files are
used as input to the C compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c
Now the command
ct.run -opr

produces the output shown in Figure 2-20. The command above will cause
the output to be directed to your terminal (stdout). It is probably a good idea
to direct it to a file or to a printer so you can refer to it.

2-52 PROGRAMMER’S GUIDE

Analysis/Debugging

8 main(argc, argv)
23 if (argc < 2)
/* argc == 2 */
30 opterr = FALSE;
/* FALSE == 0 */
/* opterr == 0 */
31 while ((ch = getopt(argc,argv,"opr")) != EOF)
/* argc == 2 */
/* argv == 15729316 */
/* ch == 111 or 0o’ or "t" */

32 {
33 switch(ch)
/* ch == 111 or ‘o’ or "t" */

35 case ‘o’:
36 oflag = TRUE;

/* TRUE == 1 or "h" */

/* oflag == 1 or "h" */
37 break;
48 }

31 while ((ch = getopt(argc,argv,"opr")) != EOF)
/* argc == 2 */
/% argv == 15729316 */
/% ch == 112 or ‘p’ */

32 {
33 switch(ch)
/* ch == 112 ox 'p’ */
38 case 'p’:
39 pflag = TRUE;
/* TRUE == 1 or "h" */
/* pflag == 1 or "h" */
40 break;
48 3}

Figure 2-20: ctrace Output (Sheet 1 of 3)

PROGRAMMING BASICS 2-53

Analysis/Debugging

31 while ((ch = getopt(argc,argv,"opr")) != EOF)
/* argc == 2 */
/* argv == 15729316 */
/* ch == 114 or 'x’ */

32
33 switch(ch)
/* ch == 114 or '’ */
41 case ‘r’:
42 rflag = TRUE;
/¥ TRUE == 1 or "h" */
/* rflag == 1 or "h" */
43 break;
48 }

31 while ((ch = getopt(argc,argv,"opr")) != EOF)
/* argc == 2 */
/* == 15729316 */
/* == -1 %/
49 if ((fin = fopen("info","r")) == NULL)
/* £in == 140200 */
54 if (fscanf(fin, "%sUEAERERERE%E" ,£irst.pname,8first. ppx,
&first.dp,&8first.i,&first.c,&first.t,&first.spx) I= 7)
/% fin == 140200 */
/* first.pname == 15729528 */
61 printf("Property: %s0,first.pname);
/* first.pname == 15729528 or "Linden Place" */ Property: Linden Place

63 if(oflag)

/* oflag == 1 oxr "h" */
64 printf (" Opportunity Cost: $%#5.2£0,oppty(8&first));
5 oppty(ps)

8 return(ps->i/12 * ps—>t * ps—>dp);
/* ps—>i == 1069044203 */
/* ps—>t == 1076494336 */
/* ps—>dp == 1088765312 */ Opportunity Cost: $4476.87

Figure 2-20: ctrace Output (Sheet 2 of 3)

2-54 PROGRAMMER’S GUIDE

Analysis/Debugging

/

66 if(pflag)

/* pflag == 1 or "h" */
67 printf (" Anticipated Profit(loss): $%#7.2f£0,pft(&first));
5 pft(ps)

8 return(ps—>spx - ps—>ppx + ps—>C);
/* ps->spx == 1091649040 */
/* ps—>ppx == 1091178464 */
/* ps->c == 1087409536 */ Anticipated Profit(loss): $85950.00

69 if(rflag)

/* rflag == 1 or "h" */
70 printf (" Return on Funds Employed: %#3.2£%%0,rfe(&first));
6 rfe(ps)

9 return(100 * (ps—>spx - ps—>C) / pS—>Spx);
/% ps—>spx == 1091649040 */
/* ps—>c == 1087409536 */ Return on Funds Employed: 94.00%

/* return */

Figure 2-20: ctrace Output (Sheet 3 of 3)

Using a program that runs successfully is not the optimal way to demon-
strate ctrace. It would be more helpful to have an error in the operation that
could be detected by ctrace. This utility might be most useful in cases where
the program runs to completion, but the output is not as expected.

cxref

cxref analyzes a group of C source code files and builds a cross-reference
table of the automatic, static, and global symbols in each file. The command

cxref -c -0 cx.op restate.c oppty.c pft.c rfe.c

produces the output shown in Figure 2-21 in a file named, in this case, cx.op.
The ~-c option causes the reports for the four .c files to be combined in one
cross-reference file.

PROGRAMMING BASICS 2-55

Analysis/Debugging

restate.c:

oppty.c:

pft.c:

rfe.c:
SYMBOL

BUFSIZ

L ctermid
L _cuserid

L _tmpnam

P_tmpdir

_TOEOF
_IOERR
_IOFEBF
_TOLBF
_IQMYBUF
_TONBF
_IOREAD
_IORW
_IOWRT
_NFILE
_SBFSIZ

FILE

/usr/include/stdio.h
/usr/include/stdio.h
restate.c

restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

LINE

*9

49 *50

31

* 15 16 17 30
*29 73 74
12

*80

*81

*83

46 *47

49

*82

*5 36 39 42
*41

*42

*36

*43

*40

*39

*37

*44

*38

2 *3 73
*16

Figure 2-21: cxref Output, Using -¢ Option (Sheet 1 of 5)

2-56 PROGRAMMER’S GUIDE

Analysis/Debugging

SYMBOL
_base
_bufend()

_bufendtab
_bufsiz()

cnt

:f ile
_flag
_dob

_ptr
arge

clearerr()
ctermid()

cuserid()

exit()

fdopen()

FILE
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c
/usr/include/stdio.h
restate.c

restate.c

restate.c

restate.c

./recdef.h

pft.c

restate.c

rfe.c '

restate.c

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
./recdef.h
oppty.c

restate.c
restate.c

/usr/include/stdio.h

LINE
*26

*57
*78

*58

*20

*28

*27

*73

25 26 45 51 57
*21

8

*9 23 31

8

*10 25 26 31 45 51 57
*6

8

55

9

*18 31 33

*67
*77
*77
—
8

55

*13 27 46 52 58

*74

Figure 2-21: cxref Output, Using -c Option (Sheet 2 of 5)

PROGRAMMING BASICS 2-57

Analysis/Debugging

SYMBOL
feof ()

ferror()
fgets()
fileno()
fin

first
fopen()

fprintf

freopen()

fscanf
ftell()

getc()

getchar()

getopt()

gets()

lint
main()

FILE
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
restate.c
restate.c
/usr/include/stdio.h
restate.c

restate.c

/usr/include/stdio.h
restate.c

/usr/include/stdio.h

/usr/include/stdio.h

/usr/include/stdio.h

restate.c

/usr/include/stdio.h
./recdef.h

oppty.c

restate.c
/usr/include/stdio.h

restate.c

LINE

*68

*69

*77

*70

*12 49 54

*19 54 55 61 64 67 70
*74

12 49

25 26 45 51 57

*74
54

*75

*61

*65

*14 31

*77
*5

55
60

*8

Figure 2-21: cxref Output, Using ~¢ Option (Sheet 3 of 5)

2-58 PROGRAMMER’S GUIDE

Analysis/Debugging

SYMBOL
oflag
oppty()

opterr
P

*62 63 64 67 *67 68 *68 69 *69 70 *70

pdp11
pflag
pft()

popen()

printf

patc()

putchar()

FILE
restate.c

oppty.c

restate.c

restate.c
/usr/include/stdio.h

/usr/include/stdio.h
restate.c

pft.c
restate.c
./recdef.h
restate.c

/usr/include/stdio.h
./recdef .h
pft.c
restate.c
restate.c
oppty.c
oppty.c
pft.c
pft.c
rfe.c
rfe.c

/usr/include/stdio.h

/usr/include/stdio.h
./recdef .h

oppty.c

pft.c

restate.c

rfe.c

LINE
*15 36 63

*5

*21 64

*20 30

*57 *58 *61 62

11
*16 39 66

*5
*21 67
*2
54 61

*74
*3

54
61 64 67 70

*6 8

*6 8

*7 9

*62

*66

*1

19

Figure 2-21: cxref Output, Using -¢ Option (Sheet 4 of 5)

PROGRAMMING BASICS 2-59

Analysis/Debugging

SYMBOL
rewind()

rfe()

rflag
sei;bu.f ()

stderr

stdin
stdout

tempnam()
tmpfile()
‘tpnam()
u370

u3b
u3b5

FILE
/usr/include/stdio.h

restate.c
rfe.c
restate.c

/usr/include/stdio.h
./recdef.h

pft.c

restate.c

rfe.c
/usr/include/stdio.h
restate.c
/usr/include/stdio.h
/usr/include/stdio.h
./recdef.h

oppty.c

restate.c

/usr/include/stdio.h
/usr/include/stdio.h

/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h
/usr/include/stdio.h

LINE
*76

*21 70
*6
*17 42 69

*76
*8
8
55
9
*55
25 26 45 51 57
*53
*54
*7
8
55

*77
*74

*77

5

8 19

8 19

8 19

*62 63 64 66 *66

Figure 2-21: cxref Output, Using -c Option (Sheet 5 of 5)

2-60 PROGRAMMER’S GUIDE

Analysis/Debugging

lint
lint looks for features in a C program that are apt to cause execution

errors, that are wasteful of resources, or that create problems of portability.
The following command produces the output shown in Figure 2-22:

lint restate.c oppty.c pft.c rfe.c

Ctate.c:

restate.c

function returns value which is always ignored
printf

Figure 2-22: lint Output

lint has options that will produce additional information. Check the
User’s Reference Manual. The error messages give you the line numbers of
some items you may want to review.

PROGRAMMING BASICS 2-61

Analysis/Debugging

prof

prof produces a report on the amount of execution time spent in various
portions of your program and the number of times each function is called.
The program must be compiled with the -p option. When a program that was
compiled with that option is run, a file called mon.out is produced. mon.out
and a.out (or whatever name identifies your executable file) are input to the
prof command.

The sequence of steps needed to produce a profile report for our sample
program is as follows:

Step 1: Compile the programs with the -p option:

cc -p restate.c oppty.c pft.c rfe.c

Step 2: Run the program to produce a file mon.out.
a.out -opr

Step 3: Execute the prof command:
prof a.out

The example of the output of this last step is shown in Figure 2-23. The
figures may vary from one run to another. You will also notice that programs
of very small size, like that used in the example, produce statistics that are not
overly helpful.

2-62 PROGRAMMER’S GUIDE

Analysis/Debugging

Name

msec/call

%Time Seconds Cumsecs #Calls

0.03
0.04
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05

0.03
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

50.0

atof

20.0

write

2.

20.0

fwrite

5.

10.0

monitor

0.0

creat
printf

profil

0.0
0.0

0.

0.

0.0

filbuf

doscan

fscanf
strchr

oppty

O OO oo

0.0
0.0
0.0
0.0
0.0

strcmp
ldexp

0.0
0.0

0.

getenv

fopen

0.0

0.

0.0

P

findio

0.

0.0
0.0

open
main

0.

0.

0.0

read

0.

0.0
0.0

0.0

strepy
ungetc

0.

0

14

t

0.0

pft

0.

0.0

rfe

0.

0.0

xflsbuf

0.0
0.0

wrtchk

findbuf

0.0

isatty

ioctl

0.

0.0

0.

0.0

malloc

0.

0.0

0.0
0.0

sbrk

0.

0.0

getopt

0.

0.0

Figure 2-23: prof Output

PROGRAMMING BASICS 2-63

Analysis/Debugging

size
size produces information on the number of bytes occupied by the three
sections (text, data, and bss) of a common object file when the program is

brought into main memory to be run. Here are the results of one invocation
of the size command with our object file as an argument.

11832 + 3872 + 2240 = 17944

Do not confuse this number with the number of characters in the object
file that appears when you do an Is -1 command. That figure includes the
symbol table and other header information that is not used at run time.

strip

strip removes the symbol and line number information from a common
object file. When you issue this command, the number of characters shown
by the Is -1 command approaches the figure shown by the size command, but
still includes some header information that is not counted as part of the .text,
.data, or .bss section. After the strip command has been executed, it is no
longer possible to use the file with the sdb command.

sdb

sdb stands for Symbolic Debugger, which means you can use the sym-
bolic names in your program to pinpoint where a problem has occurred. You
can use sdb to debug C programs. There are two basic ways to use sdb: by
running your program under control of sdb, or by using sdb to rummage
through a core image file left by a program that failed. The first way lets you
see what the program is doing up to the point at which it fails (or to skip
around the failure point and proceed with the run). The second method lets
you check the status at the moment of failure, which may or may not disclose
the reason the program failed.

2-64 PROGRAMMER’S GUIDE

Analysis/Debugging

Chapter 15 contains a tutorial on sdb that describes the interactive com-
mands you can use to work your way through your program. For the time
being we want to tell you just a couple of key things you need to do when
using it.

1. Compile your program(s) with the -g option, which causes additional
information to be generated for use by sdb.

2. Run your program under sdb with the command:
sdb myprog - srcdir
where myprog is the name of your executable file (a.out is the
default), and srcdir is an optional list of the directories where source

code for your modules may be found. The dash between the two
arguments keeps sdb from looking for a core image file.

PROGRAMMING BASICS 2-65

Program Organizing Utilities

The following three utilities are helpful in keeping your programming
work organized effectively.

The make Command

When you have a program that is made up of more than one module of
code you begin to run into problems of keeping track of which modules are
up-to-date and which need to be recompiled when changes are made in
another module. The make command is used to ensure that dependencies
between modules are recorded so that changes in one module results in the
re-compilation of dependent programs. Even control of a program as simple
as the one shown in Figure 2-15 is made easier through the use of make.

The make utility requires a description file that you create with an editor.
The description file (also referred to by its default name: makefile) contains
the information used by make to keep a target file current. The target file is
typically an executable program. A description file contains three types of
information:

dependency information tells the make utility the relationship between
the modules that comprise the target program.

executable commands needed to generate the target program. make
uses the dependency information to determine
which executable commands should be passed to
the shell for execution.

macro definitions provide a shorthand notation within the descrip-
tion file to make maintenance easier. Macro
definitions can be overridden by information
from the command line when the make com-
mand is entered.

The make command works by checking the "last changed" time of the
modules named in the description file. When make finds a component that
has been changed more recently than modules that depend on it, the specified
commands (usually compilations) are passed to the shell for execution.

2-66 PROGRAMMER’S GUIDE

Program Organizing Utilities

The make command takes three kinds of arguments: options, macro
definitions, and target file names. If no description file name is given as an
option on the command line, make searches the current directory for a file
named makefile or Makefile. Figure 2-24 shows a makefile for our sample
program.

CKITS = restate.o oppty.o pft.o rfe.o

all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

$(OBJECTS): ./recdef.h

clean:
rm -f $(OBJECTS)

clobber: clean
rm —-f restate

-

Figure 2-24: make Description File

The following things are worth noticing in this description file:

B It identifies the target, restate, as being dependent on the four object
modules. Each of the object modules in turn is defined as being depen-
dent on the header file, recdef.h, and by default, on its corresponding
source file.

B A macro, OBJECTS, is defined as a convenient shorthand for referring
to all of the component modules.

Whenever testing or debugging results in a change to one of the com-
ponents of restate, for example, a command such as the following should be
entered:

make CFLAGS=-g restate

PROGRAMMING BASICS 2-67

Program Organizing Utilities

This has been a very brief overview of the make utility. There is more on
make in Chapter 3, and a detailed description of make can be found in
Chapter 13.

The Archive

The most common use of an archive file, although not the only one, is to
hold object modules that make up a library. The library can be named on the
link editor command line (or with a link editor option on the cc command
line). This causes the link editor to search the symbol table of the archive file
when attempting to resolve references.

The ar command is used to create an archive file, to manipulate its con-
tents and to maintain its symbol table. The structure of the ar command is a
little different from the normal UNIX system arrangement of command line
options. When you enter the ar command you include a one-character key
from the set drqtpmx that defines the type of action you intend. The key
may be combined with one or more additional characters from the set
vuaibcls that modify the way the requested operation is performed. The
makeup of the command line is

ar -key [posname] afile [name]...

where posname is the name of a member of the archive and may be used with
some optional key characters to make sure that the files in your archive are in
a particular order. The dfile argument is the name of your archive file. By
convention, the suffix .a is used to indicate the named file is an archive file.
(libc.a, for example, is the archive file that contains many of the object files of
the standard C subroutines.) One or more nanes may be furnished. These
identify files that are subjected to the action specified in the key.

We can make an archive file to contain the modules used in our sample
program, restate. The command to do this is

ar -rv rste.a restate.o oppty.o pft.o rfe.o

If these are the only .o files in the current directory, you can use shell
metacharacters as follows:

ar -rv rste.a *.0

2-68 PROGRAMMER’S GUIDE

Program Organizing Utilities

Either command will produce this feedback:

a - restate.o

a - oppty.o

a - pft.o

a - rfe.o

ar: creating rste.a

The nm command is used to get a variety of information from the symbol
table of common object files. The object files can be, but do not have to be,
in an archive file. Figure 2-25 shows the output of this command when exe-
cuted with the -f (for full) option on the archive we just created. The object
files were compiled with the -g option.

PROGRAMMING BASICS 2-69

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value Class Type Size | Line | Section
.Ofake strtag | struct 16
restate.c file
—cnt 0 | strmem int
—ptr 4 | strmem *Uchar
—base 8 | strmem *Uchar
—flag 12 | strmem char
_file 13 | strmem char
.eos endstr 16
rec strtag struct 52
pname 0 | strmem char[25] 25
ppx 28 | strmem float
dp 32 | strmem float
i 36 | strmem float
c 40 | strmem float
t 44 | strmem float
spx 48 | strmem float
.eos endstr 52
main 0 | extern int() 520 text
.bf 10 | fen 11 | .text
argc 0 | argm't int
argv 4 | argm't **char
fin 0 | auto *struct-.0fake 16
oflag 4 | auto int
pflag 8 | auto int
rflag 12 | auto int
ch 16 | auto int
Figure 2-25: nm Output, with -f Option (Sheet 1 of 5)

2-70 PROGRAMMER’S GUIDE

Symbols from rste.a[restate.o]

Name | Value | Class Type

first 20 | auto struct-rec 52
.ef 518 | fen

FILE typdef | struct-.Ofake 16
text 0 | static 31
.data 520 | static

.bss 824 | static

—iob 0 | extern

fprintf 0 | extern

exit 0 | extern

opterr 0 | extern

getopt 0 | extern

fopen 0 | extern

fscanf 0 | extern

printf 0 | extern

oppty 0 | extern

pft 0 | extern

rfe 0 | extern

Figure 2-25: nm Output, with -f Option (Sheet 2 of 5)

61

39
4

Program Organizing Utilities

Size I Line | Section

text

Jtext
.data
.bss

PROGRAMMING BASICS 2-71

Program Organizing Utilities

Symbols from rste.a[oppty.o]

Name Value | Class Type Size | Line | Section
oppty.c file

rec strtag struct 52

pname 0 | strmem char[25] 25

pPpX 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

spx 48 | strmem float

.eos endstr 52

oppty 0 | extern float() 64 text
.bf 10 | fen 7 | .text
ps 0 | argm’t *struct-rec 52

ef 62 | fcn 3 | .text
text 0 | static 4 1| .text
.data 64 | static .data
.bss 72 | static .bss

Figure 2-25: nm Output, with -f Option (Sheet 3 of 5)

2-72 PROGRAMMER’S GUIDE

Symbols from rste.a[pft.o]

Program Organizing Utilities

Name | Value Class Type Size | Line | Section
pft.c file

rec strtag struct 52

pname 0 | strmem char|[25] 25

PpPX 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

spx 48 | strmem float

..e0s endstr 52

pft 0 | extern float() 60 text
..bf 10 | fen 7 | .text
ps 0 | argm’t | *struct-rec 52

.ef 58 | fen 3 | .text
..text 0 | static 4 text
..data 60 | static .data
..bss 60 | static .bss

Figure 2-25: nm Output, with -f Option (Sheet 4 of 5)

PROGRAMMING BASICS

2-73

Program Organizing Utilities

Symbols from rste.a[rfe.o]

Name | Value Class Type Size | Line | Section
rfe.c file

rec strtag struct 52

pname 0 | strmem char{25] 25

PpPX 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

spx 48 | strmem float

.eos endstr 52

rfe 0 | extern float() 68 text

.bf 10 | fen 8 | .text

ps 0 | argm’t *struct-rec 52

.ef 64 | fen 3 | .text

text 0 | static 4 1| .text

.data 68 | static .data
.bss 76 | static .bss

Figure 2-25: nm Output, with -f Option (Sheet 5 of 5)

For nm to work on an archive file all of the contents of the archive have
to be object modules. If you have stored other things in the archive, you will

get the message:

mm: rste.a bad magic

when you try to execute the command.

Use of SCCS by Single-User Programmers

The UNIX system Source Code Control System (SCCS) is a set of pro-
grams designed to keep track of different versions of programs. When a pro-
gram has been placed under control of SCCS, only a single copy of any one
version of the code can be retrieved for editing at a given time. When

2-74 PROGRAMMER’S GUIDE

Program Organizing Utilities

program code is changed and the program returned to SCCS, only the
changes are recorded. Each version of the code is identified by its SID, or
SCCS IDentifying number. By specifying the SID when the code is extracted
from the SCCS file, it is possible to return to an earlier version. If an early
version is extracted with the intent of editing it and returning it to SCCS, a
new branch of the development tree is started. The set of programs that make
up SCCS appear as UNIX system commands. The commands are:

admin
get
delta
prs
rmdel
cdc
what
scesdiff
comb
val

It is most common to think of SCCS as a tool for project control of large
programming projects. It is, however, entirely possible for any individual user
of the UNIX system to set up a private SCCS system. Chapter 14 is an SCCS
user’s guide.

PROGRAMMING BASICS 2-75

Application Programming

Buiwweiboid uoneosiddy

Application Programming

Introduction 3-1
Application Programming 3-2
Numbers 3-2
Portability 3-2
Documentation 3-3
Project Management 3-4
Language Selection 3-5
Influences 3-5
Special Purpose Languages 3-6
m What awk Is Like 3-6
m How awk Is Used 3-7
m Where to Find More Information 3-7
m What lex and yacc Are Like 3-7
m How lex Is Used 3-8
m Where to Find More Information 3-10
m How yacc Is Used 3-10
m Where to Find More Information 3-12
Advanced Programming Tools 3-13
Memory Management 3-13
File and Record Locking 3-14
m How File and Record Locking Works 3-15
m lockf 3-17
m Where to Find More Information 3-17

APPLICATION PROGRAMMING i

Application Programming

Interprocess Communications 3-17
m IPC get Calls 3-18
m IPC ctl Calls 3-19
m IPC op Calls 3-19
m Where to Find More Information 3-19
Programming Terminal Screens 3-19
m curses 3-20
m Where to Find More Information 3-20
Programming Support Tools 3-21
Link Editor Command Language 3-21
m Where to Find More Information 3-22
Common Object File Format 3-22
m Where to Find More Information 3-23
Libraries 3-23
m The Object File Library 3-23
m Common Object File Interface Macros (1dfcn.h) 3-27
m The Math Library 3-27
m Shared Libraries 3-30
m Where to Find More Information 3-31
Symbolic Debugger 3-31
m Where to Find More Information 3-31
lint as a Portability Tool 3-32
® Where to Find More Information 3-33
Project Control Tools 3-34
make 3-34
m Where to Find More Information 3-35
SCCS 3-35
m Where to Find More Information 3-37
liber, A Library System 3-38

PROGRAMMER’S GUIDE

Introduction

This chapter deals with programming where the objective is to produce
sets of programs (applications) that will run on a UNIX system computer.

The chapter begins with a discussion of how the ground rules change as
you move up the scale from writing programs that are essentially for your
own private use (we have called this single-user programming), to working as
a member of a programming team developing an application that is to be
turned over to others to use.

There is a section on how the criteria for selecting appropriate program-
ming languages may be influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely-
related topics that are of importance to programmers working in the applica-
tion development environment. Most of these mirror topics that were dis-
cussed in Chapter 2, Programming Basics, but here we try to point out aspects
of the subject that are particularly pertinent to application programming.

They are covered under the following headings:

M Advanced Programming Tools
deals with such topics as File and Record Locking, Interprocess Com-
munication, and programming terminal screens.

B Programming Support Tools
covers the Common Object File Format, link editor directives, shared
libraries, Symbolic Debugger (sdb), and lint.

B Project Control Tools
includes some discussion of make and SCCS.

The chapter concludes with a description of a sample application called
liber that uses several of the components described in earlier portions of the
chapter.

APPLICATION PROGRAMMING 3-1

Application Programming

The characteristics of the application programming environment that make
it different from single-user programming have at their base the need for
interaction and for sharing of information.

Numbers

Perhaps the most obvious difference between application programming
and single-user programming is in the quantities of the components. Not only
are applications generally developed by teams of programmers, but the
number of separate modules of code can grow into the hundreds on even a
fairly simple application.

When more than one programmer works on a project, there is a need to
share such information as:
B the operation of each function

B the number, identity, and type of arguments expected by a function

B if pointers are passed to a function, are the objects being pointed to
modified by the called function, and what is the lifetime of the
pointed-to object

B the data type returned by a function

In an application, there is an odds-on possibility that the same function
can be used in many different programs, by many different programmers.
The object code needs to be kept in a library accessible to anyone on the pro-
ject who needs it.

Portability

When you are working on a program to be used on a single model of a
computer, your concerns about portability are minimal. In application
development, on the other hand, a desirable objective often is to produce code
that will run on many different UNIX system computers. Some of the things
that affect portability will be touched on later in this chapter.

3-2 PROGRAMMER’S GUIDE

Application Programming

Documentation

A single-user program has modest needs for documentation. There
should be enough to remind the program’s creator how to use it, and what the
intent was in portions of the code.

On an application development project there is a significant need for two
types of internal documentation:

B comments throughout the source code that enable successor program-
mers to understand easily what is happening in the code. Applications
can be expected to have a useful life of 5 or more years, and frequently
need to be modified during that time. It is not realistic to expect that
the same person who wrote the program will always be available to
make modifications. Even if that does happen, the comments will
make the maintenance job a lot easier.

B hard-copy descriptions of functions should be available to all members
of an application development team. Without them it is difficult to
keep track of available modules, which can result in the same function
being written over again.

Unless end-users have clear, readily-available instructions in how to
install and use an application they either will not do it at all (if that is an
option) or do it improperly.

The microcomputer software industry has become ever more keenly aware
of the importance of good end-user documentation. There are cases on record
where the success of a software package has been attributed in large part to
the fact that it had exceptionally good documentation. There are also cases
where a pretty good piece of software was not widely used due to the inacces-
sibility of its manuals. There appears to be no truth to the rumor that in one
or two cases, end-users have thrown the software away and just read the
manual.

APPLICATION PROGRAMMING 3-3

Application Programming

Project Management

Without effective project management, an application development project
is in trouble. This subject will not be dealt with in this guide, except to men-
tion the following three things that are vital functions of project management:

B tracking dependencies between modules of code
B dealing with change requests in a controlled way

B seeing that milestone dates are met.

3-4 PROGRAMMER’S GUIDE

Language Selection

In this section we talk about some of the considerations that influence the
selection of programming languages and describe three of the special purpose
languages that are part of the UNIX system environment.

Influences

In single-user programming the choice of language is often a matter of
personal preference; a language is chosen because it is the one the program-
mer feels most comfortable with.

An additional set of considerations comes into play when making the
same decision for an application development project.

Is there an existing standard within the organization that should be
observed?

A firm may decide to emphasize one language because a good sup-
ply of programmers is available who are familiar with it.

Does one language have better facilities for handling the particular
algorithm?

One would like to see all language selection based on such objec-
tive criteria, but it is often necessary to balance this against the
skills of the organization.

Is there an inherent compatibility between the language and the UNIX
operating system?

This is sometimes the impetus behind selecting C for programs
destined for a UNIX system machine.

Are there existing tools that can be used?

If parsing of input lines is an important phase of the application,
perhaps a parser generator such as yacc should be employed to
develop what the application needs.

APPLICATION PROGRAMMING 3-5

Language Selection

Does the application integrate other software into the whole package?

If, for example, a package is to be built around an existing data
base management system, there may be constraints on the variety
of languages the data base management system can accommodate.

Special Purpose Languages

The UNIX system contains a number of tools that can be included in the
category of special purpose languages. Three that are especially interesting
are awk, lex, and yacc.

What awk Is Like

The awk utility scans an ASCII input file record by record, looking for
matches to specific patterns. When a match is found, an action is taken. Pat-
terns and their accompanying actions are contained in a specification file
referred to as the program. The program can be made up of a number of
statements. However, since each statement has the potential for causing a
complex action, most awk programs consist of only a few. The set of state-
ments may include definitions of the pattern that separates one record from
another (a newline character, for example), and what separates one field of a
record from the next (white space, for example). It may also include actions to
be performed before the first record of the input file is read, and other actions
to be performed after the final record has been read. All statements in
between are evaluated in order, for each record in the input file. To para-
phrase the action of a simple awk program, it would go something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.

Then, look through the input file.

Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

3-6 PROGRAMMER’S GUIDE

Language Selection

The directions for finding the patterns and for describing the actions can
get pretty complicated, but the essential idea is as simple as the two sets of
statements above.

One of the strong points of awk is that once you are familiar with the
language syntax, programs can be written very quickly. They do not always
run very fast, however, so they are seldom appropriate if you want to run the
same program repeatedly on a large quantities of records. In such a case, it is
likely to be better to translate the program to a compiled language.

How awk Is Used

One typical use of awk would be to extract information from a file and
print it out in a report. Another might be to pull fields from records in an
input file, arrange them in a different order, and pass the resulting rearranged
data to a function that adds records to your data base. There is an example of
a use of awk in the sample application at the end of this chapter.

Where to Find More Information

The manual page for awk is in Section (1) of the User’s /System
Administrator’s Reference Manual. Chapter 4 of this guide contains a descrip-
tion of the awk syntax and a number of examples showing ways in which
awk may be used.

What lex and yacc Are Like

The utilities lex and yacc are often mentioned in the same breath because
they perform complementary parts of what can be viewed as a single task:
making sense out of input. The two utilities also share the common charac-
teristic of producing source code for C language subroutines from specifica-
tions that appear on the surface to be quite similar.

Recognizing input is a recurring problem in programming. Input can be
from various sources. In a language compiler, for example, the input is nor-
mally contained in a file of source language statements. The UNIX system
shell language most often receives its input from a person keying in com-
mands from a terminal. Frequently, information coming out of one program is
fed into another where it must be evaluated.

The process of input recognition can be subdivided into two tasks: lexical
analysis and parsing, and that is where lex and yacc come in. In both utili-
ties, the specifications cause the generation of C language subroutines that
deal with streams of characters; lex generates subroutines that do lexical
analysis while yacc generates subroutines that do parsing.

APPLICATION PROGRAMMING 3-7

Language Selection
To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabulary of
a language as distinguished from its grammar or structure.

Parsing is the act of describing units of the language grammatically.
Students in elementary school are often taught to do this with sen-
tence diagrams.

Of course, the important thing to remember here is that in each case the
rules for our lexical analysis or parsing are those we set down ourselves in the
lex or yacc specifications. Because of this, the dividing line between lexical
analysis and parsing sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that
these parts of what may be a large programming project can be separately
maintained. The generated source code is processed by the C compiler to pro-
duce an object file. The object file can be link edited with others to produce
programs that then perform whatever process follows from the recognition of
the input.

How lex Is Used

A lex subroutine scans a stream of input characters and waves a flag each
time it identifies something that matches one or another of its rules. The
waved flag is referred to as a token. The rules are stated in a format that
closely resembles the one used by the UNIX system text editor for regular
expressions. For example,

[\t]+

describes a rule that recognizes a string of one or more blanks or tabs (without
mentioning any action to be taken). A more complete statement of that rule
might have this notation:

[\t]+ ;

which, in effect, says to ignore white space. It carries this meaning because
no action is specified when a string of one or more blanks or tabs is recog-
nized. The semicolon marks the end of the statement.

3-8 PROGRAMMER’S GUIDE

Language Selection

Another rule, one that does take some action, could be stated like this:

[0-9]+ {
i = atoi(yytext);
return(NER) ;
}

This rule depends on several things:

NBR must have been defined as a token in an earlier part of the lex
source code called the declaration section. (It may be in a header file
which is #include’d in the declaration section.)

i is declared as an extern int in the declaration section.

It is a characteristic of lex that things it finds are made available in a
character string called yytext.

Actions can make use of standard C syntax. Here, the standard C
subroutine, atoi, is used to convert the string to an integer.

What this rule boils down to is lex saying, "Hey, I found the kind of
token we call NBR, and its value is now in i."

To review the steps of the process:

1. The lex specification statements are processed by the lex utility to
produce a file called lex.yy.c. (This is the standard name for a file
generated by lex, just as a.out is the standard name for the executable
file generated by the link editor.)

2. lex.yy.c is transformed by the C compiler (with a -c option) into an
object file called lex.yy.o that contains a subroutine called yylex().

3. lex.yy.o is link edited with other subroutines. Presumably one of
those subroutines will call yylex() with a statement such as:

while((token = yylex()) != 0)

and other subroutines (or even main) will deal with what comes back.

APPLICATION PROGRAMMING 3-9

Language Selection

Where to Find More Information
The manual page for lex is in Section (1) of the Programmer’s Reference
Manual. A tutorial on lex is contained in Chapter 5 of this guide.

How yacc Is Used
The yacc subroutines are produced by pretty much the same series of
steps as lex:

1. The yacc specification is processed by the yacc utility to produce a file
called y.tab.c.

2. y.tab.c is compiled by the C compiler producing an object file, y.tab.o,
that contains the subroutine yyparse(). A significant difference is that
yyparse() calls a subroutine called yylex() to perform lexical analysis.

3. The object file y.tab.o may be link edited with other subroutines, one
of which will be called yylex(.

There are two things worth noting about this sequence:

1. The parser generated by the yacc specifications calls a lexical analyzer
to scan the input stream and return tokens.

2. While the lexical analyzer is called by the same name as one produced
by lex, it does not have to be the product of a lex specification. It can
be any subroutine that does the lexical analysis.

What really differentiates these two utilities is the format for their rules.
As noted above, lex rules are regular expressions like those used by UNIX
system editors. yacc rules are chains of definitions and alternative definitions,
written in Backus-Naur form, accompanied by actions. The rules may refer to
other rules defined further down the specification. Actions are sequences of C
language statements enclosed in braces. They frequently contain numbered
variables that enable you to reference values associated with parts of the rules.

3-10 PROGRAMMER’S GUIDE

Language Selection

An example might make that easier to understand:

ccenNLMBER

%%

expr : numb { $$ = $1; }
| expr '+’ expr { $% = $1+ $3; }
| expr ‘-’ expr {$$ = $1-83; 1
| expr '*’ expr { $8 = $1 % $3; }
| expr '/' expr {$5=8$1/ %35}
| (" expr ")’ { $$ = $2;)

numb : NUMBER { $%$ = $1; }

This fragment of a yacc specification shows
B NUMBER identified as a token in the declaration section
B the start of the rules section indicated by the pair of percent signs

B a number of alternate definitions for expr separated by the | sign and
terminated by the semicolon

B actions to be taken when a rule is matched

B within actions, numbered variables used to represent components of
the rule:

$$ means the value to be returned as the value of the whole rule

$n means the value associated with the nth component of the rule,
counting from the left

B numb defined as meaning the token NUMBER. This is a trivial exam-
ple that illustrates that one rule can be referenced within another, as
well as within itself.

As with lex, the compiled yacc object file will generally be link edited with
other subroutines that handle processing that takes place after the parsing—or
even ahead of it.

APPLICATION PROGRAMMING 3-11

Language Selection

Where to Find More Information

The manual page for yacc is in Section (1) of the Programmer’s Reference
Manual. A detailed description of yacc may be found in Chapter 6 of this
guide.

3-12 PROGRAMMER’S GUIDE

Advanced Programming Tools

In Chapter 2 we described the use of such basic elements of programming
in the UNIX system environment as the standard I1/0O library, header files,
system calls and subroutines. In this section we introduce tools that are more
apt to be used by members of an application development team than by a
single-user programmer. The section contains material on the following
topics:

B memory management

B file and record locking

M interprocess communication
|

programming terminal screens.

Memory Management

There are situations where a program needs to ask the operating system
for blocks of memory. It may be, for example, that a number of records have
been extracted from a data base and need to be held for some further process-
ing. Rather than writing them out to a file on secondary storage and then
reading them back in again, it is likely to be a great deal more efficient to hold
them in memory for the duration of the process. (This is not to ignore the
possibility that portions of memory may be paged out before the program is
finished; but such an occurrence is not pertinent to this discussion.) There are
two C language subroutines available for acquiring blocks of memory and
they are both called malloc. One of them is malloc(3C), the other is
malloc(3X). Each has several related functions that do specialized tasks in the
same area. They are:

B free—to inform the system that space is being relinquished

M realloc—to change the size and possibly move the block

B calloc—to allocate space for an array and initialize it to zeros

In addition, malloc(3X) has a function, mallopt, that provides for control

over the space allocation algorithm, and a structure, mallinfo, from which the
program can get information about the usage of the allocated space.

APPLICATION PROGRAMMING 3-13

Advanced Programming Tools

malloc(3X) runs faster than the other version. It is loaded by specifying
-Imalloc

on the c¢(1) or 1d(1) command line to direct the link editor to the proper
library. When you use malloc(3X), your program should contain the state-
ment

#include <malloc.h>
where the values for mallopt options are defined.

See the Programmer’s Reference Manual for the formal definitions of the
two mallocs.

File and Record Locking

The provision for locking files, or portions of files, is primarily used to
prevent the sort of error that can occur when two or more users of a file try to
update information at the same time. The classic example is the airlines reser-
vation system where two ticket agents each assign a passenger to Seat A,

Row 5 on the 5 o’clock flight to Detroit. A locking mechanism is designed to
prevent such mishaps by blocking Agent B from even seeing the seat assign-
ment file until Agent A’s transaction is complete.

File locking and record locking are really the same thing, except that file
locking implies the whole file is affected; record locking means that only a
specified portion of the file is locked. (Remember, in the UNIX system, file
structure is undefined; a record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process
places a read lock on a file, other processes can also read the file but all are
prevented from writing to it, that is, changing any of the data. If a process
places a write lock on a file, no other processes can read or write in the file
until the lock is removed. Write locks are also known as exclusive locks. The
term shared lock is sometimes applied to read locks.

Another distinction needs to be made between mandatory and advisory
locking. Mandatory locking means that the discipline is enforced automati-
cally for the system calls that read, write, or create files. This is done through
a permission flag established by the file’s owner (or the super-user). Advisory
locking means that the processes that use the file take the responsibility for
setting and removing locks as needed. Thus mandatory may sound like a
simpler and better deal, but it is not so. The mandatory locking capability is

3-14 PROGRAMMER’S GUIDE

Advanced Programming Tools

included in the system to comply with an agreement with /usr/group, an
organization that represents the interests of UNIX system users. The principal
weakness in the mandatory method is that the lock is in place only while the
single system call is being made. It is extremely common for a single transac-
tion to require a series of reads and writes before it can be considered com-
plete. In cases like this, the term atomic is used to describe a transaction that
must be viewed as an indivisible unit. The preferred way to manage locking
in such a circumstance is to make certain the lock is in place before any I/O
starts, and that it is not removed until the transaction is done. That calls for
locking of the advisory variety.

How File and Record Locking Works

The system call for file and record locking is fentl(2). Programs should
include the line

#include <fcntl.h>

to bring in the header file shown in Figure 3-1.

APPLICATION PROGRAMMING 3-15

Advanced Programming Tools

b

#define

#define

#define

short
short
long
long
short
short

/* Flag values accessible to open{2) and fcntl{2) */
/* (The first three can only be set by open) */

0

1

2

04 /* Non-blocking I/0 */

010 /* append (writes guaranteed at the end) */

020/* synchronous write option */

/* Flag values accessible only to open(2) */

00400 /* open with file create (uses third open arg)*/
01000 /% open with truncation */
02000 /* exclusive open */

/% Duplicate fildes */

/* Get fildes flags */

/* Set fildes flags */

/* Get file flags */

Set file flags */

/* Get file lock */

/* Set file lock */

/* Set file lock and wait */

/* Check legality of file flag changes */

OO0 U WN o
N
*

#define O_RDONLY
#define O WRONLY
#define O _RDWR
#define - O _NDELAY
#define O_APPEND
#define O_SYNC
#define O_CREAT
#define O_TRUNC
#define O_EXCL
/% fentl(2) requests */
#define F_DUPFD
#define F_GETFD
#define F_SETFD
#define F_GETFL
#define F_SETFL
#define F_GETLK
#define F_SETIK
#define F_SETLKW
#define F_CHKFL

/* file segment locking set data type - information passed to system by user */
struct flock {

1_type;

1 whence;

1 start;

1 len; /% len = 0 means until end of file */
1 sysid;

1 pid;

/* file segment locking types */

/* Read lock */

F_RDLCK

01

/* Write lock */

F_WRLCK

02

/* Remove lock(s) */

F_UNLCK

03

Figure 3-1: The fcntl.h Header File

3-16 PROGRAMMER’S GUIDE

Advanced Programming Tools

The format of the fcntl(2) system call is

int fentl(fildes, cmd, arg)
int fildes, cmd, arg;

fildes is the file descriptor returned by the open system call. In addition to
defining tags that are used as the commands on fcntl system calls, fentl.h
includes the declaration for a struct flock that is used to pass values that con-
trol where locks are to be placed.

lockf

A subroutine, lockf(3), can also be used to lock sections of a file or an
entire file. The format of lockf is:

#include <unistd.h>

int lockf (fildes, function, size)
int fildes, function;
long size;

fildes is the file descriptor; function is one of four control values defined in
unistd.h that let you lock, unlock, test and lock, or simply test to see if a lock
is already in place. size is the number of contiguous bytes to be locked or
unlocked. The section of contiguous bytes can be either forward or backward
from the current offset in the file. [You can arrange to be somewhere in the
middle of the file by using the lseek(2) system call.]

Where to Find More Information

There is an example of file and record locking in the sample application at
the end of this chapter. The manual pages that apply to this facility are
fcntl(2), fentl(5), lockf(3), and chmod(2) in the Programmer’s Reference
Manual. Chapter 7 of this guide is a detailed discussion of the subject with a
number of examples.

Interprocess Communications

In Chapter 2 we described forking and execing as methods of communi-
cating between processes. Business applications running on a UNIX system
computer often need more sophisticated methods. In applications, for exam-
ple, where fast response is critical, a number of processes may be brought up
at the start of a business day to be constantly available to handle transactions

APPLICATION PROGRAMMING 3-17

Advanced Programming Tools

on demand. This cuts out initialization time that can add seconds to the time
required to deal with the transaction. To go back to the ticket reservation
example again for a moment, if a customer calls to reserve a seat on the

5 o’clock flight to Detroit, you do not want to have to say, "Yes, sir. Just
hang on a minute while I start up the reservations program." In transaction-
driven systems, the normal mode of processing is to have all the components
of the application standing by waiting for some sort of an indication that there
is work to do.

To meet requirements of this type the UNIX system offers a set of nine
system calls and their accompanying header files, all under the umbrella name
of Interprocess Communications (IPC).

The IPC system calls come in sets of three; one set each for messages,
semaphores, and shared memory. These three terms define three different
styles of communication between processes:

messages communication is in the form of data stored in a buffer.
The buffer can be either sent or received.

semaphores communication is in the form of positive integers with a
value between 0 and 32,767. Semaphores may be con-
tained in an array the size of which is determined by the
system administrator. The default maximum size for the
array is 25.

shared memory communication takes place through a common area of
‘ main memory. One or more processes can attach a seg-
ment of memory and as a consequence can share what-
ever data is placed there.

The sets of IPC system calls are:

msgget semget shmget
msgctl semctl shmctl
msgop semop shmop

IPC get Calls

The get calls each return to the calling program an identifier for the type
of IPC facility that is being requested.

3-18 PROGRAMMER’S GUIDE

Advanced Programming Tools

IPC ctl Calls

The ctl calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET), and removing (IPC_RMID) the values in
data structures associated with the identifiers picked up by the get calls.

IPC op Calls

The op manual pages describe calls that are used to perform the particular
operations characteristic of the type of IPC facility being used. msgop has
calls that send or receive messages. semop (the only one of the three that is
actually the name of a system call) is used to increment or decrement the
value of a semaphore, among other functions. shmop has calls that attach or
detach shared memory segments.

Where to Find More Information

An example of the use of some IPC features is included in the sample
application at the end of this chapter. The system calls are all located in Sec-
tion (2) of the Programmer’s Reference Manual. Do not overlook intro(2).
It includes descriptions of the data structures that are used by IPC facilities. A
detailed description of IPC, with many code examples that use the IPC system
calls, is contained in Chapter 9 of this guide.

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your
application is provided by two parts of the UNIX system. The first of these,
terminfo, is a data base of compiled entries that describe the capabilities of
terminals and the way they perform various operations.

The terminfo data base normally begins at the /usr/lib/terminfo direc-
tory. Members of this directory are themselves directories, generally with
single-character names that are the first character in the name of the terminal.
The compiled files of operating characteristics are at the next level down the
hierarchy. For example, the entry for a Teletype 5425 is located in both the
file /usr/lib/terminfo/5/5425 and the file /usr/lib/terminfo/t/tty5425.

Describing the capabilities of a terminal can be a painstaking task. Quite
a good selection of terminal entries is included in the terminfo data base that
comes with your computer. However, if you have a type of terminal that is
not already described in the data base, the best way to proceed is to find a
description of one that comes close to having the same capabilities as yours

APPLICATION PROGRAMMING 3-19

Advanced Programming Tools

and building on that one. There is a routine (setupterm) in curses(3X) that
can be used to print out descriptions from the data base. Once you have
worked out the code that describes the capabilities of your terminal, the
tic(1M) command is used to compile the entry and add it to the data base.

curses

After you have made sure that the operating capabilities of your terminal
are a part of the terminfo data base, you can then proceed to use the routines
that make up the curses(3X) package to create and manage screens for your
application.

The curses library includes functions to:
B define portions of your terminal screen as windows

B define pads that extend beyond the borders of your physical terminal
screen and let you see portions of the pad on your terminal

B read input from a terminal screen into a program
M write output from a program to your terminal screen

B manipulate the information in a window in a virtual screen area and
then send it to your physical screen.

Where to Find More Information

In the sample application at the end of this chapter, we show how you
might use curses routines. Chapter 10 of this guide contains a tutorial on the
subject. The manual pages for curses are in Section (3X), and those for ter-
minfo aré in Section (4) of the Programmer’s Reference Manual.

3-20 PROGRAMMER’S GUIDE

Programming Support Tools

This section covers UNIX system components that are part of the pro-
gramming environment, but that have a highly specialized use. We refer to
such things as:

B link edit command language
Common Object File Format
libraries

Symbolic Debugger

lint as a portability tool.

Link Editor Command Language

The link editor command language is for use when the default arrange-
ment of the 1d output will not do the job. The default locations for the stan-
dard Common Object File Format sections are described in a.out(4) in the
Programmer’s Reference Manual.

On an 80386 Computer, when an a.out file is loaded into memory for
execution, the text segment starts at location 0x0, and the data section starts at
the next segment boundary after the end of the text. The stack begins at
OxBFFFFFFF and grows to lower memory addresses.

The link editor command language provides directives for describing dif-
ferent arrangements. The two major types of link editor directives are
MEMORY and SECTIONS. MEMORY directives can be used to define the
boundaries of configured and unconfigured sections of memory within a
machine, to name sections, and to assign specific attributes (read, write, exe-
cute, and initialize) to portions of memory. SECTIONS directives, among a lot
of other functions, can be used to bind sections of the object file to specific
addresses within the configured portions of memory.

Why would you want to be able to do those things? Well, the truth is
that in the majority of cases you do not have to worry about it.

APPLICATION PROGRAMMING 3-21

Programming Support Tools

The need to control the link editor output becomes more urgent under two,
possibly related, sets of circumstances.

1. Your application is large and consists of a lot of object files.

2. The hardware your application is to run on is tight for space.

Where to Find More Information
Chapter 12 of this guide gives a detailed description of the subject.

Common Object File Format

The details of the Common Object File Format have never been looked on
as stimulating reading. In fact, they have been recommended to hard-core
insomniacs as preferred bedtime fare. However, if you are going to break into
the ranks of really sophisticated UNIX system programmers, you are going to
have to get a good grasp of COFF. A knowledge of COFF is fundamental to
using the link editor command language. It is also good background
knowledge for tasks such as:

B setting up archive libraries or shared libraries
M using the Symbolic Debugger

The following system header files contain definitions of data structures of
parts of the Common Object File Format:

<syms.h> symbol table format

<linenum.h> line number entries

<ldfen.h> COFF access routines

<filehdr.h> file header for a common object file

<a.out.h> common assembler and link editor output
<scnhdr.h> section header for a common object file
<reloc.h> relocation information for a common object file

<storclass.h> storage classes for common object files

The object file access routines are described below under the heading
"The Object File Library."

3-22 PROGRAMMER’S GUIDE

Programming Support Tools

Where to Find More Information
Chapter 11 of this guide gives a detailed description of COFF.

Libraries

A library is a collection of related object files and/or declarations that sim-
plify programming effort. Programming groups involved in the development
of applications often find it convenient to establish private libraries. For
example, an application with a number of programs using a common data
base can keep the I/O routines in a library that is searched at link edit time.

Prior to Release 3.0 of the UNIX System V the libraries, whether system
supplied or application developed, were collections of common object format
files stored in an archive (filename.a) file that was searched by the link editor
to resolve references. Files in the archive that were needed to satisfy
unresolved references became a part of the resulting executable.

Beginning with Release 3.0, shared libraries are supported. Shared
libraries are similar to archive libraries in that they are collections of object
files that are acted upon by the link editor. The difference, however, is that
shared libraries perform a static linking between the file in the library and the
executable that is the output of 1d. The result is a saving of space, because all
executables that need a file from the library share a single copy. We go into
shared libraries later in this section.

In Chapter 2 we described many of the functions that are found in the
standard C library, libc.a. The next two sections describe two other libraries,
the object file library and the math library.

The Object File Library

The object file library provides functions for the access and manipulation
of object files. Some functions locate portions of an object file such as the
symbol table, the file header, sections, and line number entries associated with
a function. Other functions read these types of entries into memory. The
need to work at this level of detail with object files occurs most often in the
development of new tools that manipulate object files. For a description of
the format of an object file, see "The Common Object File Format" in
Chapter 11. This library consists of several portions.

APPLICATION PROGRAMMING 3-23

Programming Support Tools

The functions (see Figure 3-2) reside in /lib/libld.a and are loaded during the
compilation of a C language program by the -1 command line option:

cc file -11d

which causes the link editor to search the object file library. The argument
-11d must appear after all files that reference functions in libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

3-24 PROGRAMMER’S GUIDE

Programming Support Tools

Function Reference Brief Description

ldaclose ldclose(3X) Close object file being processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for reading.

ldclose ldclose(3X) Close object file being processed.

ldfhread 1dfhread(3X) Read file header of object file being
processed.

ldgetname | ldgetname(3X) | Retrieve the name of an object file sym-
bol table entry.

Idlinit 1dlread(3X) Prepare object file for reading line
number entries via ldlitem.

ldlitem 1dlread(3X) Read line number entry from object file
after 1dlinit.

ldlread ldlread(3X) Read line number entry from object file.

1dlseek 1dlseek(3X) Seeks to the line number entries of the
object file being processed.

ldnlseek 1dlseek(3X) Seeks to the line number entries of the
object file being processed given the
name of a section.

ldnrseek ldrseek(3X) Seeks to the relocation entries of the
object file being processed given the
name of a section.

ldnshread | ldshread(3X) Read section header of the named sec-

tion of the object file being processed.

Figure 3-2: Object File Library Functions (Sheet 1 0f 2)

APPLICATION PROGRAMMING 3-25

Programming Support Tools

Function Reference Brief Description

ldnsseek ldsseek(3X) Seeks to the section of the object file
being processed given the name of a
section.

ldohseek | ldohseek(3X) Seeks to the optional file header of the
object file being processed.

ldopen ldopen(3X) Open object file for reading.

ldrseek ldrseek(3X) Seeks to the relocation entries of the
object file being processed.

ldshread ldshread(3X) Read section header of an object file
being processed.

ldsseek ldsseek(3X) Seeks to the section of the object file
being processed.

ldtbindex | ldtbindex(3X) | Returns the long index of the symbol
table entry at the current position of the
object file being processed.

ldtbread 1dtbread(3X) Reads a specific symbol table entry of
the object file being processed.

ldtbseek 1dtbseek(3X) Seeks to the symbol table of the object
file being processed.

sgetl sputl(3X) Access long integer data in a-machine-
independent format.

sputl sputl(3X) Translate a long integer into a

machine-independent format.

Figure 3-2: Object File Library Functions (Sheet 2 0f 2)

3-26 PROGRAMMER’S GUIDE

Programming Support Tools

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file access rou-
tines is based on the defined type LDFILE, which is in the header file ldfcn.h
[see 1dfcn(4)]. The primary purpose of this structure is to provide uniform
access to both simple object files and to object files that are members of an
archive file.

The function 1dopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure. The fields of the LDFILE structure may be
accessed individually through the following macros:

B TYPE—returns the magic number of the file, which is used to distin-
guish between archive files and object files that are not part of an
archive.

B IOPTR—returns the file pointer, which was opened by ldopen(3X) and
is used by the input/output functions of the C library.

B OFFSET—returns the file address of the beginning of the object file.
This value is non-zero only if the object file is a member of the archive
file.

B HEADER—accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro translates a
reference to an LDFILE structure into a reference to its file descriptor field.
The available macros are described in ldfcn(4) in the Programmer’s Reference
Manual.

The Math Library

The math library package consists of functions and a header file. The
functions are located and loaded during the compilation of a C language pro-
gram by the -1 option on a command line, as follows:

cc file -1m
This option causes the link editor to search the math library, libm.a. In
addition to the request to load the functions, the header file of the math

library should be included in the program being compiled. This is accom-
plished by including the line:

#include <math.h>

APPLICATION PROGRAMMING 3-27

Programming Support Tools

near the beginning of each file that uses the routines.
The functions are grouped into the following categories:
B trigonometric functions
B Bessel functions
B hyperbolic functions
B miscellaneous functions
Trigonometric Functions

These functions are used to compute angles (in radian measure), sines,
cosines, and tangents. All of these values are expressed in double-precision.

Function | Reference Brief Description

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.
cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate Bessel functions of the first and second kinds of
several orders for real values. The Bessel functions are {0, j1, jn, y0, y1, and
yn. The functions are located in section bessel(3M).

Hyperbolic Functions
These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

Function | Reference I Brief Description
cosh sinh(3M) | Return hyperbolic cosine.
sinh sinh(3M) | Return hyperbolic sine.
tanh sinh(3M) | Return hyperbolic tangent.

3-28 PROGRAMMER’S GUIDE

Programming Support Tools

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural loga-
rithm, exponential, and absolute value. In addition, several are provided to
truncate the integer portion of double-precision numbers.

Function Reference Brief Description

ceil floor(3M) Returns the smallest integer not less
than a given value.

exp exp(3M) Returns the exponential function of a
given value.

fabs floor(3M) Returns the absolute value of a given
value.

floor floor(3M) Returns the largest integer not greater
than a given value.

fmod floor(3M) Returns the remainder produced by the
division of two given values.

gamma gamma(3M) | Returns the natural log of the absolute
value of the result of applying the
gamma function to a given value.

hypot hypot(3M) Return the square root of the sum of
the squares of two numbers.

log exp(3M) Returns the natural logarithm of a
given value.

log10 exp(3M) Returns the logarithm base ten of a
given value.

matherr matherr(3M) | Error-handling function.

pow exp(3M) Returns the result of a given value
raised to another given value.

sqrt exp(3M) Returns the square root of a given

value.

APPLICATION PROGRAMMING 3-29

Programming Support Tools

Shared Libraries

As noted above, beginning with UNIX System V Release 3.0, shared
libraries are supported. Not only are some system libraries (libc and the net-
working library) available in both archive and shared library form, but also
applications have the option of creating private application shared libraries.

The reason why shared libraries are desirable is that they save space, both
on disk and in memory. With an archive library, when the link editor goes to
the archive to resolve a reference, it takes a copy of the object file that it
needs for the resolution and binds it into the a.out file. From that point on
the copied file is a part of the executable, whether it is in memory to be run or
sitting in secondary storage. If you have a lot of executables that use, say,
printf (which just happens to require much of the standard I/0O library) you
can be talking about a sizeable amount of space.

With a shared library, the link editor does not copy code into the execut-
able files. When the operating system starts a process that uses a shared
library, it maps the shared library contents into the address space of the pro-
cess. Only one copy of the shared code exists, and many processes can use it
at the same time.

This fundamental difference between archives and shared libraries has
another significant aspect. When code in an archive library is modified, all
existing executables are uneffected. They continue using the older version
until they are re-link edited. When code in a shared library is modified, all
programs that share that code use the new version the next time they are exe-
cuted.

All this may sound like a really terrific deal, but as with most things in
life there are complications. To begin with, in the paragraphs above we did
not give you quite all the facts. For example, each process that uses shared
library code gets its own copy of the entire data region of the library. It is
actually only the text region that is really shared. So the truth is that shared
libraries can add space to executing a.out’s even though the chances are good
that they will cause more shrinkage than expansion. What this means is that
when there is a choice between using a shared library and an archive, you
should not use the shared library unless it saves space. If you were using a
shared libc to access only stremp, for example, you would pick up more in
shared library data than you would save by sharing the text.

3-30 PRLGRAMMER’S GUIDE

Programming Support Tools

The answer to this problem, and to others that are somewhat more com-
plex, is to assign the responsibility for shared libraries to a central person or
group within the application. The shared library developer should be the one
to resolve questions of when to use shared and when to use archive system
libraries. If a private library is to be built for your application, one person or
organization should be responsible for its development and maintenance.

Where to Find More Information

The sample application at the end of this chapter includes an example of
the use of a shared library. Chapter 8 of this guide describes how shared
libraries are built and maintained.

Symbolic Debugger

The use of sdb was mentioned briefly in Chapter 2. In this section we
want to say a few words about sdb within the context of an application
development project.

sdb works on a process, and enables a programmer to find errors in the
code. It is a tool a programmer might use while coding and unit testing a pro-
gram, to make sure it runs according to its design. sdb would normally be
used prior to the time the program is turned over, along with the rest of the
application, to testers. During this phase of the application development
cycle, programs are compiled with the -g option of cc to facilitate the use of
the debugger. The symbol table should not be stripped from the object file.
Once the programmer is satisfied that the program is error-free, strip(1) can
be used to reduce the file storage overhead taken by the file.

If the application uses a private shared library, the possibility arises that a
program bug may be located in a file that resides in the shared library. Deal-
ing with a problem of this sort calls for coordination by the administrator of
the shared library. Any change to an object file that is part of a shared library
means the change affects all processes that use that file. One program’s bug
may be another program’s feature.

Where to Find More Information

Chapter 15 of this guide contains information on how to use sdb. The
manual page is in Section (1) of the Programmer’s Reference Manual.

APPLICATION PROGRAMMING 3-31

Programming Support Tools

lint as a Portability Tool

It is a characteristic of the UNIX system that language compilation systems
are somewhat permissive. Generally speaking it is a design objective that a
compiler should run fast. Most C compilers, therefore, let some things go
unflagged as long as the language syntax is observed statement by statement.
This sometimes means that while your program may run, the output will have
some surprises. It also sometimes means that while the program may run on
the machine on which the compilation system runs, there may be real difficul-
ties in running it on some other machine.

That is where lint comes in. lint produces comments about inconsisten-
cies in the code. The types of anomalies flagged by lint are:

B cases of disagreement between the type of value expected from a
called function and what the function actually returns

B disagreement between the types and number of arguments expected by
functions and what the function receives

B inconsistencies that might prove to be bugs

B things that might cause portability problems
Here is an example of a portability problem that would be caught by lint.

Code such as this:
int i = lseek(fdes, offset, whence)

would get by most compilers. However, Iseek returns a long integer
representing the address of a location in the file. On a machine with a 16-bit
integer and a bigger long int, it would produce incorrect results, because i
would contain only the last 16 bits of the value returned.

Since it is reasonable to expect that an application written for a UNIX sys-
tem machine will be able to run on a variety of computers, it is important that
the use of lint be a regular part of the application development.

3-32 PROGRAMMER’S GUIDE

Programming Support Tools

Where to Find More Information

Chapter 16 of this guide contains a description of lint with examples of
the kinds of conditions it uncovers. The manual page is in Section (1) of the
Programmer’s Reference Manual.

APPLICATION PROGRAMMING 3-33

Project Control Tools

Volumes have been written on the subject of project control. It is an item
of top priority for the managers of any application development team. Two
UNIX system tools that can play a role in this area are described in this sec-
tion.

make

The make command is extremely useful in an application development
project for keeping track of what object files need to be recompiled as changes
are made to source code files. One of the characteristics of programs in a
UNIX system environment is that they are made up of many small pieces,
each in its own object file, that are link edited together to form the executable
file. Quite a few of the UNIX system tools are devoted to supporting that
style of program architecture. For example, archive libraries, shared libraries
and even the fact that the cc command accepts .o files as well as .c files, and
that it can stop short of the 1d step and produce .o files instead of an a.out,
are all important elements of modular architecture. The two main advantages
of this type of programming are that

B A file that performs one function can be re-used in any program that
needs it.

B When one function is changed, the whole program does not have to be
recompiled.

On the flip side, however, a consequence of the proliferation of object files
is an increased difficulty in keeping track of what does need to be recompiled,
and what does not. make is designed to help deal with this problem. You
use make by describing in a specification file, called makefile, the relationship
(that is, the dependencies) between the different files of your program. Once
having done that, you conclude a session in which possibly a number of your
source code files have been changed by running the make command. make
takes care of generating a new a.out by comparing the time-last-changed of
your source code files with the dependency rules you have given it.

make has the ability to work with files in archive libraries or under con-
trol of the Source Code Control System (SCCS).

3-34 PROGRAMMER’S GUIDE

Project Control Tools

Where to Find More Information

The make(1) manual page is contained in the Programmer’s Reference
Manual. Chapter 13 of this guide gives a complete description of how to use
make.

SCCS

SCCS is an abbreviation for Source Code Control System. It consists of a
set of 14 commands used to track evolving versions of files. Its use is not lim-
ited to source code; any text files can be handled, so an application’s docu-
mentation can also be put under control of SCCS. SCCS can:

B store and retrieve files under its control

B allow no more than a single copy of a file to be edited at one time

B provide an audit trail of changes to files

B reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through commands
that are part of the SCCS package can files be made available in a user’s
directory for editing, compiling, etc. From the point at which a file is first
placed under SCCS control, only changes to the original version are stored.

For example, let us say that the program, restate, that was used in several
examples in Chapter 2, was controlled by SCCS.

APPLICATION PROGRAMMING 3-35

Project Control Tools

One of the original pieces of that program is a file called oppty.c that looks
like this:

/ /* Opportunity Cost -- oppty.c */

#include "recdef.h"

float

oppty(ps)
struct rec *ps;

{
return(ps->i/12 * ps—->t * ps—->dp);

}

N

If you decide to add a message to this function, you might change the file
like this:

/* Opportunity Cost -- oppty.c */

#include "recdef.h"
#include <stdio.h>

float

oppty(ps)

struct rec *ps;

{
(void) fprintf(stderr, "Opportunity calling\n");
return(ps->i/12 * ps->t * ps->dp);

336 PROGRAMMER’S GUIDE

Project Control Tools

SCCS saves only the two new lines from the second version, with a coded
notation that shows where in the text the two lines belong. It also includes a
note of the version number, lines deleted, lines inserted, total lines in the file,
the date and time of the change, and the login id of the person making the
change.

Where to Find More Information

Chapter 14 of this guide is an SCCS user’s guide. SCCS commands are in
Section (1) of the Programmer’s Reference Manual.

APPLICATION PROGRAMMING 3-37

liber, A Library System

To illustrate the use of UNIX system programming tools in the develop-
ment of an application, we are going to pretend we are engaged in the
development of a computer system for a library. The system is known as
liber. The early stages of system development, we assume, have already been
completed; feasibility studies have been done, the preliminary design is
described in the coming paragraphs. We are going to stop short of producing
a complete detailed design and module specifications for our system. You will
have to accept that these exist. In using portions of the system for examples
of the topics covered in this chapter, we will work from these virtual specifica-
tions.

We make no claim as to the efficacy of this design. It is the way it is only
in order to provide some passably realistic examples of UNIX system program-
ming tools in use.

liber is a system for keeping track of the books in a library. The
hardware consists of a single computer with terminals throughout the library.
One terminal is used for adding new books to the data base. Others are used
for checking out books and as electronic card catalogs.

The design of the system calls for it to be brought up at the beginning of
the day and remain running while the library is in operation. The system has
one master index that contains the unique identifier of each title in the library.
When the system is running, the index resides in memory. Semaphores are
used to control access to the index. In the pages that follow fragments of
some of the system’s programs are shown to illustrate the way they work
together. The startup program performs the system initialization; opening the
semaphores and shared memory; reading the index into the shared memory;
and kicking off the other programs. The id numbers for the shared memory
and semaphores (shmid, wrtsem, and rdsem) are read from a file during ini-
tialization. The programs all share the in-memory index. They attach it with
the following code:

3-38 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

/* attach shared memory for index */

if ((int)(index = (INDEX *) shmat(shmid, NULL, 0)) == -1)

{
(void) fprintf(stderr, "shmat failed: %d\n", errno);
exit(1);

Of the programs shown, add-books is the only one that alters the index.
The semaphores are used to ensure that no other programs will try to read the
index while add-books is altering it. The checkout program locks the file
record for the book so that each copy being checked out is recorded
separately, and the book cannot be checked out at two different checkout sta-
tions at the same time.

The program fragments do not provide any details on the structure of the
index or the book records in the data base.

/ /* liber.h - header file for the

* library system.

*/
typedef ... INDEX; /* data structure for book file index */
typedef struct { /* type of records in boock file */

char title[30];
char author([30];

} BOOK;

int shmid;
int wrtsem;
int rdsem;
INDEX *index;

int book file;
BOOK book_buf;

-

APPLICATION PROGRAMMING 3-39

SAMPLE APPLICATION: liber

continued

/* startup program */

/*

1. Open shared memory for file index and read it in.

2. Open two semaphores for providing exclusive write access to index.

. Stash id’'s for shared memory segment and semaphores in a file
where they can be accessed by the programs.

4. Start programs: add-books, card-catalog, and checkout running

on the various terminals throughout the library.

* ok Kk ok kK
w

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include "liber.h"

void exit();
extern int errno;

key t key;
int shmid;
int wrtsem;
int rdsem;
FILE *ipc file;

main()

{

if ((shmid = shmget(key, sizeof (INDEX), IPC CREAT | 0666)) == -1)

{
(void) fprintf(stderr, "startup: shmget failed: errno=%d\n", errno);
exit(1);

}

if ((wrtsem = semget(key, 1, IPC CREAT | 0666)) == -1)

{
(void) fprintf(stderr, "startup: semget failed: errno=%d\n", errno);
exit(1);

}

3-40 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

continued

if ((rdsem = semget(key, 1, IPC CREAT | 0666)) == -1)

{
(void) fprintf(stderr, "startup: semget failed: errmo=%d\n", errmo);
exit(1);

}

(void) fprintf(ipc file, "%d\n%d\n%d\n", shmid, wrtsem, rdsem);

/*

* Start the add-books program runmning on the terminal in the

* basement. Start the checkout and card-catalog programs

* rumning on the various other terminals throughout the library.
*/

}
/* card-catalog program*/

/-I>

* 1. Read screen for author and title.

* 2. Use semaphores to prevent reading index while it is being written.
* 3. Use index to get position of book record in book file.

* 4, Print book record an screen or indicate book was not found.

* 5. Go to 1.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#include <fcntl.h>
#include "liber.h"

void exit();
extern int errno;
struct sembuf sop[1];

main() {

.

APPLICATION PROGRAMMING 3-41

SAMPLE APPLICATION: liber

continued
while (1)
{
/-l-
* Read author/title/subject information from screen.
*/
/*
* Wait for write semaphore to reach 0 (index not being written).
*/
sop[0].sem op = 1;
if (semop(wrtsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errmo);
exit(1);
}
/*

* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/

sop[0].sem op = 0;

if (semop(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

}

/* Use index to find file pointer(s) for book(s) */

/* Decrement read semaphore */
sop[0].sem op = -1;

if (semop(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

}

/*

* Now we use the file pointers found in the index to
* read the book file. Then we print the information
* on the book(s) to the screen.
*/ "

} /* while */

/* checkout program*/

3-42 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

continued

/-)(-
* 1. Read screen for Dewey Decimal number of book to be checked out.
* 2. Use semaphores to prevent reading index while it is being written.
* 3, Use index to get position of book record in book file.
* 4. If book not found print message on screen, otherwise lock
* book record and read.
* 5, If book already checked out print message on screen, otherwise
* mark record "checked out" and write back to book file.
* 6. Unlock book record.
* 7, Go to 1.
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#include <fecntl.h>
#include "liber.h"

void exit();

long lseek();

extern int errno;
struct flock flk;
struct sembuf sop[1];
long bookpos;

main()

{

while (1)

{
/*
* Read Dewey Decimal number from screen.
*/

APPLICATION PROGRAMMING 3-43

SAMPLE APPLICATION: liber

3-44

continued
/*
* Wait for write semaphore to reach 0 (index not being written).
*/

sop[0].sem flg = 0;
sop[0].sem op = 0;

if (semop(wrtsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

}

/*

* Increment read semaphore so potential writer will wait
* for us to finish reading the index.

*/

sop[0].sem op = 1;

if (sarpp(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errmno);
exit(1);

}

/*

* Now we can use the index to find the book’s record position.
* Assign this value to "bookpos".
*/

/* Decrement read semaphore */

sop[O].setn_qp = -1

if (semop(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errmo);
exit(1);

}

/* Lock the book’s record in bocok file, read the record. */
flk.1 type = F_WRLCK;

flk.1 whence = 0;

flk.1l_start = bookpos;

flk.1 len = sizeof(BOOK);

if (fontl(book file, F_SETLKW, &flk) == -1)

PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

. Read a new book entry fram screen.

. Use semaphore "wrtsem" to block new readers.

* ok ok ok ok ok Xk
NOoO s WN

. Go to 1.

continued

(void) fprintf(stderr, "trouble locking: %d\n", errno);

exit(1);
}
if (1lseek(bock file, bookpos, 0) == -1)
{
Error processing for 1seek;
}
if (read(book file, 8book buf, sizeof(BOOK)) == -1)
{
Error processing for read;
}
/*

* If the book is checked out inform the client, otherwise
* mark the book’s record as checked out and write it

* back into the bock file.

*/

/% Unlock the book’s record in book file. */

flk.1 type = F_UNLCK;

if (foentl(bock file, F SETIK, &flk) == -1)

{
(void) fprintf(stderr, "trouble unlocking: %d\n", errmno);
exit(1);

}

} /* while */

add-books program*/

Insert book in book file.

Wait for semaphore "rdsem" to reach 0.
Decrement wrtsem.

APPLICATION PROGRAMMING 3-45

SAMPLE APPLICATION: liber

continued

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include "liber.h"

void exit();

extern int errmo;
struct sembuf sop[1];
BOOK bookbuf

main()

{

for (33)

{

/*
* Read information on new book from screen.
*/

addscr (&bookbuf) ;

/* write new record at the end of the bookfile.
* Code not shown, but

* addscr() returns a 1 if title information has
* been entered, 0 if not.

*/

/*

* Increment write semaphore, blocking new readers from

* accessing the index.

*/

sop[0].sem flg = 0;

sop[0].sem op = 1;

if (semop(wrtsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

3-46 PROGRAMMER'’S GUIDE

SAMPLE APPLICATION: liber

continued

/*
* Wait for read semaphore to reach 0 (all readers to finish
* using the index).

*/

sop[0].sem op = 0;

if (semop(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

}

/*

* Now that we have exclusive access to the index we
* insert our new book with its file pointer.
*/

/* Decrement write semaphore, permitting readers to read index. */
sop[0].sem op = -1;
if (semop(wrtsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1);

} /% for */

The example following, addscr(), illustrates two significant points about
curses screens:

1. Information read in from a curses window can be stored in fields that
are part of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function
where the record is processed.

APPLICATION PROGRAMMING 3-47

SAMPLE APPLICATION: liber

/* addscr is called from add-books.
* The user is prampted for title
* information.
*/

#include <curses.h>

WINDOW *cmdwin;

addscr (bb)
struct BOOK *bb;
{

int cj

initscr();
nonl();
noecho();
cbreak();

cndwin = newwin(6, 40, 3, 20);
mvprintw(0, 0, "This screen is for adding titles to the data base");
mvprintw(1, 0, "Enter a to add; q to quit: ");
refresh();
for (;;)
{
refresh();
c = getch();
switch (¢) {
case ‘a’:
werase (cmdwin) ;
box(amdwin, ‘|’, '=');
mvwprintw(cmdwin, 1, 1, "Enter title: ");
wmove (cmdwin, 2, 1);
echo();
wrefresh(cmdwin) ;
wgetstr (cmdwin, bb->title);
noecho();
werase (cmdwin) ;
box(emdwin, ‘|, '=');
mvwprintw(camdwin, 1, 1, "Enter author: ");
wove (cmdwin, 2, 1);
echo();
wrefresh(cmdwin) ;
wgetstr (cmdwin, bb->author);
noecho() ;
werase (andwin) ;

3-48 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

continued

wrefresh(cmdwin) ;
endwin();
return(1);
case 'q’:
erase();
endwin();
return(0);
}
}
}
#
Makefile for liber library system
#
CC = cc
CFLAGS = O

all: startup add-books checkout card-catalog

startup: liber.h startup.c
$(CC) $(CFLAGS) -o startup startup.c

add-books: add-boocks.o addscr.o
$(CC) $(CFLAGS) -o add-books add-books.o addscr.o

add-books.o: liber.h

checkout: liber.h checkout.c
$(CC) $(CFLAGS) -o checkout checkout.c

card-catalog: liber.h card-catalog.c
$(CC) $(CFLAGS) -o card-catalog card-catalog.c

APPLICATION PROGRAMMING 3-49

X
=
©

awk

Introduction 4-1
Basic awk 4-2
Program Structure 4-2
Usage 4-3
Fields 4-4
Printing 4-5
Formatted Printing 4-6
Simple Patterns 4-7
Simple Actions 4-8

m Built-in Variables 4-8

m User-defined Variables 4-9

m Functions 4-9
A Handful of Useful One-liners 4-10
Error Messages 4-11
Patterns 4-12
BEGIN and END 4-12
Relational Expressions 4-13
Regular Expressions 4-15
Combinations of Patterns 4-18
Pattern Ranges 4-19
Actions 4-20
Built-in Variables 4-20
Arithmetic 4-20

awk i

awk

Strings and String Functions 4-23
Field Variables 4-28
Number or String? 4-29
Control Flow Statements 4-30
Arrays 4-33
User-Defined Functions 4-36
Some Lexical Conventions 4-37
Output 4-38
The print Statement 4-38
Output Separators 4-38
The printf Statement 4-39
Output into Files 4-40
Output into Pipes 4-41
Input 4-43
Files and Pipes 4-43
Input Separators 4-43
Multi-line Records 4-44
The getline Function 4-44
Command-line Arguments 4-47
Using awk with Other Commands
and the Shell 4-49
The system Function 4-49
Cooperation with the Shell 4-49
Example Applications 4-52
Generating Reports 4-52
Additional Examples 4-54
m Word Frequencies 4-54
® Accumulation 4-55

PROGRAMMER’S GUIDE

m Random Choice 4-55

m Shell Facility 4-56

m Form-letter Generation 4-57
awk Summary 4-58
Command Line 4-58
Patterns 4-58
Control Flow Statements 4-58
Input-output 4-59
Functions 4-59
String Functions 4-60
Arithmetic Functions 4-60
Operators (Increasing Precedence) 4-61
Regular Expressions (Increasing Precedence) 4-61
Built-in Variables 4-62
Limits 4-62
Initialization, Comparison, and Type Coercion 4-83

awk

Introduction

This chapter describes the new version of awk eleased in UNIX System

NOTE| V Release 3.1 and described in nawk(1). An earlier version is described
in awk(1). The new version will become the default in the next major

I UNIX system release. Until then, you should read nawk for awk in this
chapter.

Suppose you want to tabulate some survey results stored in a file, print
various reports summarizing these results, generate form letters, reformat a
data file for one application package to use with another package, or count the
occurrences of a string in a file. awk is a programming language that makes it
easy to handle these and many other tasks of information retrieval and data
processing. The name awk is an acronym constructed from the initials of its
developers; it denotes the language and also the UNIX system command you
use to run an awk program.

awk is an easy language to learn. It automatically does quite a few things
that you have to program for yourself in other languages. As a result, many
useful awk programs are only one or two lines long. Because awk programs
are usually smaller than equivalent programs in other languages, and because
they are interpreted, not compiled, awk is also a good language for prototyp-
ing.

The first part of this chapter introduces you to the basics of awk and is
intended to make it easy for you to start writing and running your own awk
programs. The rest of the chapter describes the complete language and is
somewhat less tutorial. For the experienced awk user, there’s a summary of
the language at the end of the chapter.

You should be familiar with the UNIX system and shell programming to
use this chapter. Although you don’t need other programming experience,
some knowledge of the C programming language is beneficial, because many
constructs found in awk are also found in C.

awk 4-1

Basic awk

This section provides enough information for you to write and run some
of your own programs. Each topic presented is discussed in more detail in
later sections.

Program Structure

The basic operation of awk(1) is to scan a set of input lines one after
another, searching for lines that match any of a set of patterns or conditions
you specify. For each pattern, you can specify an action; this action is per-
formed on each line that matches the pattern. Accordingly, an awk program
is a sequence of pattern-action statements, as Figure 4-1 shows.

S/tl'uctul'ei

pattern { action }
pattern { action }

Example:

$1 == "address" { print $2, $3 }

Figure 4-1: awk Program Structure and Example

The example in the figure is a typical awk program, consisting of one
pattern-action statement. The program prints the second and third fields of
each input line whose first field is address. In general, awk programs work
by matching each line of input against each of the patterns in turn. For each
pattern that matches, the associated action (which may involve multiple steps)
is executed. Then the next line is read and the matching starts over. This
process typically continues until all the input has been read.

4-2 PROGRAMMER’S GUIDE

Basic awk

Either the pattern or the action in a pattern-action statement may be omit-
ted. If there is no action with a pattern, as in

$1 == "name"
the matching line is printed. If there is no pattern with an action, as in
{ print $1, $2 }

the action is performed for every input line. Since patterns and actions are
both optional, actions are enclosed in braces to distinguish them from pat-
terns.

Usage

There are two ways to run an awk program. First, you can type the com-
mand line

awk ‘pattern-action statements’ optional list of input files

to execute the pattern-action statements on the set of named input files. For
example, you could say

awk ’{ print $1, $2 }’ filel file2

Notice that the pattern-action statements are enclosed in single quotes. This
protects characters like $ from being interpreted by the shell and also allows
the program to be longer than one line.

If no files are mentioned on the command line, awk(1) reads from the
standard input. You can also specify that input comes from the standard
input by using the hyphen (—) as one of the input files. For example,

awk ’{ print $3, $4 }’ filel -
says to read input first from filel and then from the standard input.

The arrangement above is convenient when the awk program is short (a
few lines). If the program is long, it is often more convenient to put it into a
separate file and use the -f option to fetch it:

awk -f program file optional list of input files

For example, the following command line says to fetch and execute mypro-
gram on input from the file filel:

awk ~f myprogram filel

awk 4-3

Basic awk

Fields

‘ awk normally reads its input one line, or record, at a time; a record is, by
default, a sequence of characters ending with a newline. awk then splits each
record into fields, where, by default, a field is a string of non-blank, non-tab
characters.

As input for many of the awk programs in this chapter, we use the file
countries, which contains information about the ten largest countries in the
world. Each record contains the name of a country, its area in thousands of
square miles, its population in millions, and the continent on which it is
found. (Data are from 1978; the U.S.S.R. has been arbitrarily placed in Asia.)
The white space between fields is a tab in the original input; a single blank
separates North and South from America .

g 8650 262 Asia

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

Figure 4-2: The Sample Input File countries

This file is typical of the kind of data awk is good at processing — a mixture
of words and numbers separated into fields by blanks and tabs.

The number of fields in a record is determined by the field separator.
Fields are normally separated by sequences of blanks and/or tabs, so that the
first record of countries would have four fields, the second five, and so on.
It’s possible to set the field separator to just tab, so each line would have four
fields, matching the meaning of the data; we’ll show how to do this shortly.
For the time being, we'll use the default: fields separated by blanks and/or

4-4 PROGRAMMER’S GUIDE

Basic awk

tabs. The first field within a line is called $1, the second $2, and so forth.
The entire record is called $0.

Printing
If the pattern in a pattern-action statement is omitted, the action is exe-

cuted for all input lines. The simplest action is to print each line; you can
accomplish this with an awk program consisting of a single print statement

{ print }
so the command line
awk ’{ print }' countries

prints each line of countries, copying the file to the standard output. The
print statement can also be used to print parts of a record; for instance, the
program

{ print $1, $3 }
prints the first and third fields of each record. Thus
awk ’{ print $1, $3 }’ countries

produces as output the sequence of lines:

Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

awk 4-5

Basic awk

When printed, items separated by a comma in the print statement are
separated by the output field separator, which by default is a single blank.
Each line printed is terminated by the output record separator, which by
default is a newline.

In the remainder of this chapter, we only show awk programs, without the
NOTE| command line that invokes them. Each complete program can be run either
by enclosing it in quotes as the first argument of the awk command, or by

| putting it in a file and invoking awk with the -f flag, as discussed in "awk
Command Usage." In an example, if no input is mentioned, the input is
assumed to be the file countries.

Formatted Printing

For more carefully formatted output, awk provides a C-like printf state-
ment

printf format, expr,, expr,, . . ., expr,

which prints the expr;’s according to the specification in the string format. For
example, the awk program

{ printf "%10s %6d\n", $1, $3 }

prints the first field ($1) as a string of 10 characters (right justified), then a
space, then the third field ($3) as a decimal number in a six-character field,
then a newline (\n). With input from the file countries, this program prints
an aligned table:

4-6 PROGRAMMER’S GUIDE

Basic awk

/ USSR 262

Canada 24
China 866
UsA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

With printf, no output separators or newlines are produced automatically;
you must create them yourself by using \n in the format specification. "The
printf Statement" in this chapter contains a full description of printf.

Simple Patterns

You can select specific records for printing or other processing by using
simple patterns. awk has three kinds of patterns. First, you can use patterns
called relational expressions that make comparisons. For example, the opera-
tor == tests for equality. To print the lines for which the fourth field equals
the string Asia, we can use the program consisting of the single pattern

$4 == "Asia"
With the file countries as input, this program yields

USSR 8650 262 Asia
China 3692 866 Asia
India 1269 637 Asia

The complete set of comparisons is >, >=, <, <=, == (equal to) and !=
(not equal to). These comparisons can be used to test both numbers and
strings. For example, suppose we want to print only countries with a popula-
tion greater than 100 million. The program

$3 > 100

awk 4-7

Basic awk

is all that is needed. (Remember that the third field in the file countries is the
population in millions.) It prints all lines in which the third field exceeds 100.

Second, you can use patterns called regular expressions that search for
specified characters to select records. The simplest form of a regular expres-
sion is a string of characters enclosed in slashes:

/Us/

This program prints each line that contains the (adjacent) letters US anywhere;
with the file countries as input, it prints

USSR 8650 262 Asia
USA 3615 219 North America

We will have a lot more to say about regular expressions later in this chapter.

Third, you can use two special patterns, BEGIN and END, that match
before the first record has been read and after the last record has been pro-
cessed. This program uses BEGIN to print a title:

BEGIN { print "Countries of Asia:" }
/Asia/ { print " "o$1}

The output is

Countries of Asia:
USSR
China
India

Simple Actions

We have already seen the simplest action of an awk program: printing
each input line. Now let’s consider how you can use built-in and user-defined
variables and functions for other simple actions in a program.

Built-in Variables

Besides reading the input and splitting it into fields, awk(1) counts the
number of records read and the number of fields within the current record;
you can use these counts in your awk programs. The variable NR is the
number of the current record, and NF is the number of fields in the record.
So the program

4-8 PROGRAMMER’S GUIDE

Basic awk

{ print NR, NF }

prints the number of each line and how many fields it has, while
{ print NR, $0 }

prints each record preceded by its record number.

User-defined Variables

Besides providing built-in variables like NF and NR, awk lets you define
your own variables, which you can use for storing data, doing arithmetic, and
the like. To illustrate, consider computing the total population and the aver-
age population represented by the data in the file countries:

{ sum = sum + $3 }
END { print "Total population is", sum, "million"
print "Average population of”, NR, "countries is", sum/NR }

awk initializes sum to zero before it is used.
NOTE

The first action accumulates the population from the third field; the second
action, which is executed after the last input, prints the sum and average:

Total population is 2201 million
Average population of 10 countries is 220.1

Functions

awk has built-in functions that handle common arithmetic and string
operations for you. For example, there’s an arithmetic function that computes
square roots. There is also a string function that substitutes one string for
another. awk also lets you define your own functions. Functions are
described in detail in the section " Actions" in this chapter.

awk 4-9

Basic awk

A Handful of Useful One-liners

Although awk can be used to write large programs of some complexity,
many programs are not much more complicated than what we’ve seen so far.
Here is a collection of other short programs that you may find useful and
instructive. They are not explained here, but any new constructs do appear
later in this chapter.

4-10

Print last field of each input line:
{ print $NF }

Print 10th input line:
= 10

Print last input line:
{ 1line = $0}
END { print line }

Print input lines that don’t have four fields:
NF 1= 4 { print $0, "does not have 4 fields" }

Print input lines with more than four fields:
NF > 4

Print input lines with last field more than 4:
$NF > 4

Print total number of input lines:
END { print NR }

Print total number of fields:
{ nf = nf + NF }
END { print nf }

Print total number of input characters:
. { nc = nc + length($0) }
END { print nc + NR }
(Adding NR includes in the total the number of newlines.)

Print the total number of lines that contain the string Asia:
/Asia/ { nlines++ }
END { print nlines } :
(The statement nlines++ has the same effect as nlines = nlines
+ 1)

PROGRAMMER’S GUIDE

Basic awk

Error Messages

If you make an error in your awk program, you generally get an error
message. For example, trying to run the program

$3 < 200 { print ($1}

generates the error messages

awk: syntax error at source line 1
context is

$3 < 200 { print { >>> $1 } <<<
awk: illegal statement at source line 1
1 extra (

Some errors may be detected while your program is running. For example, if
you try to divide a number by zero, awk stops processing and reports the
input record number (NR) and the line number in the program.

awk 4-11

Patterns

In a pattern-action statement, the pattern is an expression that selects the
records for which the associated action is executed. This section describes the
kinds of expressions that may be used as patterns.

BEGIN and END

BEGIN and END are two special patterns that give you a way to control
injtialization and wrap-up in an awk program. BEGIN matches before the
first input record is read, so any statements in the action part of a BEGIN are
done once, before the awk command starts to read its first input record. The
pattern END matches the end of the input, after the last record has been pro-
cessed.

The following awk program uses BEGIN to set the field separator to tab
(\t) and to put column headings on the output. The field separator is stored
in a built-in variable called FS. Although FS can be reset at any time, usually
the only sensible place is in a BEGIN section, before any input has been read.
The program’s second printf statement, which is executed for each input line,
formats the output into a table, neatly aligned under the column headings.
The END action prints the totals. (Notice that a long line can be continued
after a comma.)

BEGIN { FS = "™\t"
printf "%10s %6s %5s %s\n",
"COUNTRY", "AREA", "POP", "CONTINENT" }
{ printf "%10s %64 %54 %s\n", $1, $2, $3, $4
area = area + $2; pop = pop + $3 }
END { printf "\n%10s %64 %5d\n", "TOTAL", area, pop }

With the file countries as input, this program produces

4-12 PROGRAMMER’S GUIDE

Patterns

COUNTRY AREA POP CONTINENT
USSR 8650 262 Asia
Canada 3852 24 North Averica
China 3692 866 Asia
USA 3615 219 North America
Brazil 3286 116 South America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 South America
Sudan 968 19 Africa
Algeria 920 18 Africa

TOTAL 30292 2201

Relational Expressions

An awk pattern can be any expression involving comparisons between
strings of characters or numbers. awk has six relational operators, and two
regular expression matching operators, ~ (tilde) and !~, which are discussed
in the next section, for making comparisons. Figure 4-3 shows these operators
and their meanings. '

awk 4-13

Patterns

Operator Meaning

< less than
<= less than or equal to
== equal to

1= not equal to
>= greater than or equal to
> greater than

~ matches

L does not match

Figure 4-3: awk Comparison Operators

In a comparison, if both operands are numeric, a numeric comparison is
made; otherwise, the operands are compared as strings. (Every value might
be either a number or a string; usually awk can tell what is intended. The
section "Number or String?" contains more information about this.) Thus,
the pattern $3>100 selects lines where the third field exceeds 100, and the
program

$1 >= ngn
selects lines that begin with the letters S through Z, namely,

USSR 8650 262 Asia
USA 3615 219 North America
Sudan 968 19 Africa

In the absence of any other information, awk treats fields as strings, so
the program

$1 == $4

compares the first and fourth fields as strings of characters, and with the file
countries as input, prints the single line for which this test succeeds:

Australia 2968 14 Australia

If both fields appear to be numbers, the comparisons are done numerically.

4-14 PROGRAMMER’S GUIDE

Patterns

Regular Expressions

awk provides more powerful patterns for searching for strings of charac-
ters than the comparisons illustrated in the previous section. These patterns
are called regular expressions, and are like those in egrep(1) and lex(1). The
simplest regular expression is a string of characters enclosed in slashes, like

/Asia/

This program prints all input records that contain the substring Asia. (If a
record contains Asia as part of a larger string like Asian or Pan-Asiatic, it is
also printed.) In general, if re is a regular expression, then the pattern

/re/
matches any line that contains a substring specified by the regular expression

re.

To restrict a match to a specific field, you use the matching operators
(matches) and !~ (does not match). The program

$4 ~ /Asia/ { print $1}

prints the first field of all lines in which the fourth field matches Asia, while
the program

$4 1~ /Asia/ { print $1 }
prints the first field of all lines in which the fourth field does not match Asia .
In regular expressions, the symbols
$.[1+201

are metacharacters with special meanings like the metacharacters in the UNIX
shell. For example, the metacharacters * and $ match the beginning and end,
respectively, of a string, and the metacharacter . ("dot") matches any single
character. Thus,

VAN 74

matches all records that contain exactly one character.

awk 4-15

Patterns

A group of characters enclosed in brackets matches any one of the
“enclosed characters; for example, /[ABC]/ matches records containing any
one of A, B, or C anywhere. Ranges of letters or digits can be abbreviated
within brackets: /[a-zA-Z]/ matches any single letter.

If the first character after the [is a #, this complements the class so it
matches any character not in the set: /[*a-zA-Z]/ matches any non-letter.
The program

$2 1~ /A[0-9]1+%/

prints all records in which the second field is not a string of one or more digits
(» for beginning of string, [0-91+ for one or more digits, and $ for end of
string). Programs of this nature are often used for data validation.

Parentheses () are used for grouping and the symbol | is used for alterna-
tives. The program

/(apple|cherry) (pie|tart)/

matches lines containing any one of the four substrings apple pie, apple
tart, cherry pie, or cherry tart.

To turn off the special meaning of a metacharacter, precede it by a \
(backslash). Thus, the program

/O\$/
prints all lines containing b followed by a dollar sign.

In addition to recognizing metacharacters, the awk command recognizes
the following C programming language escape sequences within regular
expressions and strings:

\b backspace

\f formfeed

\n newline

\r carriage return

\t tab

\ddd octal value ddd

\" quotation mark

\¢ any other character c literally

For example, to print all lines containing a tab, use the program

Nt/

4-16 PROGRAMMER’S GUIDE

Patterns

awk interprets any string or variable on the right side of a ~or!~ as a
regular expression. For example, we could have written the program

$2 17 /A[0-9]+%/
as

BEGIN { digits = "A[0-9]+$" }
$2 1~ digits

Suppose you wanted to search for a string of characters like ~[0-9]+$
When a literal quoted string like "~[0-9]+$" is used as a regular expression,
one extra level of backslashes is needed to protect regular expression meta-
characters. This is because one level of backslashes is removed when a string
is originally parsed. If a backslash is needed in front of a character to turn off
its special meaning in a regular expression, then that backslash needs a
preceding backslash to protect it in a string.

For example, suppose we want to match strings containing b followed by
a dollar sign. The regular expression for this pattern is b\$. If we want to
create a string to represent this regular expression, we must add one more
backslash: "b\\$". The two regular expressions on each of the following
lines are equivalent:

X~ "b\\$" x =~ /b\$/
x ~ "b\$" x ~ /b$/
x ~ "b$" x ~ /b$/
x 7 M\t" b I\ 74

The precise form of regular expressions and the substrings they match is
given in Figure 4-4. The unary operators * +, and ? have the highest pre-
cedence, then concatenation, and then alternation | . All operators are left
associative. r stands for any regular expression.

awk 4-17

Patterns

Expression Matches
c any non-metacharacter c
\¢C character c literally
A beginning of string
$ end of string
. any character but newline
[s] any character in set s
[s] any character not in set s
r* zero or more t's
r+ one or more 1’s
r? zero or one r
(r) r
rirs r, then r, (concatenation)
rilrs rq or r, (alternation)

Figure 4-4: awk Regular Expressions

Combinations of Patterns

A compound pattern combines simpler patterns with parentheses and the
logical operators || (or), && (and), and ! (not). For example, suppose we
want to print all countries in Asia with a population of more than 500 million.
The following program does this by selecting all lines in which the fourth field
is Asia and the third field exceeds 500:

$4 == "Asia" && $3 > 500
The program
$4 == "Asia" || $4 == "Africa"

selects lines with Asia or Africa as the fourth field. Another way to write
the latter query is to use a regular expression with the alternation operator | :

$4 ~ /~(Asia|Africa)$/

4-18 PROGRAMMER’S GUIDE

Patterns

The negation operator ! has the highest precedence, then &é&, and finally
|I. The operators && and || evaluate their operands from left to right;
evaluation stops as soon as truth or falsehood is determined.

Pattern Ranges
A pattern range consists of two patterns separated by a comma, as in

paty, pat, (...}

In this case, the action is performed for each line between an occurrence of
pat, and the next occurrence of pat, (inclusive). As an example, the pattern

/Canada/, /Brazil/

matches lines starting with the first line that contains the string Canada up
through the next occurrence of the string Brazil:

Canada 3852 24 North America
China 3692 866 Asia

USA 3615 219 North America
Brazil 3286 116 South America

Similarly, since FNR is the number of the current record in the current input
file (and FILENAME is the name of the current input file), the program

FNR == 1, FNR == 5 { print FILENAME, $0 }

prints the first five records of each input file with the name of the current
input file prepended.

awk 4-19

Actions

In a pattern-action statement, the action determines what is to be done
with the input records that the pattern selects. Actions frequently are simple
printing or assignment statements, but they may also be a combination of one
or more statements. This section describes the statements that can make up
actions.

Built-in Variables

Figure 4-5 lists the built-in variables that awk maintains. Some of these
we have already met; others are used in this and later sections.

Variable Meaning Default
ARGC number of command-line arguments -
ARGV array of command-line arguments -
FILENAME | name of current input file -
FNR record number in current file -

FS input field separator blanké&tab
NF number of fields in current record -

NR number of records read so far -
OFMT output format for numbers %.6g
OFS output field separator blank
ORS output record separator newline
RS input record separator newline
RSTART index of first character matched by match() -
RLENGTH | length of string matched by match() -
SUBSEP subscript separator "\034 "

Figure 4-5: awk Built-in Variables

Arithmetic

Actions can use conventional arithmetic expressions to compute numeric
values. As a simple example, suppose we want to print the population den-
sity for each country in the file countries. Since the second field is the area in
thousands of square miles and the third field is the population in millions, the

4-20 PROGRAMMER’S GUIDE

Actions

expression 1000 * $3 / $2 gives the population density in people per square
mile. The program

{ printf "%10s %6.1€\n", $1, 1000 * $3 / $2 }

applied to the file countries prints the name of each country and its popula-
tion density:

/ USSR 30

.3

Canada 6.2
China 234.6

USA 60.6
Brazil 35.3
Australia 4.7
India 502.0
Argentina 24.3
Sudan 19.6
Algeria 19.6

Arithmetic is done internally in floating point. The arithmetic operators
are +, -, *, /, % (remainder) and * (exponentiation; ** is a synonym). Arith-
metic expressions can be created by applying these operators to constants,
variables, field names, array elements, functions, and other expressions, all of
which are discussed later. Note that awk recognizes and produces scientific
(exponential) notation: 1e6, 1E6, 10e5, and 1000000 are numerically equal.

awk has assignment statements like those found in the C programming
language. The simplest form is the assignment statement ‘
v=e¢

where v is a variable or field name, and e is an expression. For example, to
compute the number of Asian countries and their total population, we could
write

$4 == "Asia" {pop =pop + $3; n=n+ 1}
END { print "population of", n,
"Asian countries in millions is", pop }

awk 4-21

Actions

Applied to countries, this program produces
population of 3 Asian countries in millions is 1765

The action associated with the pattern $4 == "Asia" contains two assignment
statements, one to accumulate population and the other to count countries.
The variables are not explicitly initialized, yet everything works properly
because awk initializes each variable with the string value " " and the
numeric value 0.

The assignments in the previous program can be written more concisely
using the operators += and ++:

$4 == "Asia" { pop += $3; +n }

The operator += is borrowed from the C programming language:
pop += $3

has the same effect as
pop = pop + $3

but the += operator is shorter and runs faster. The same is true of the ++
operator, which adds one to a variable.

The abbreviated assignment operators are +=, -=, *=, /=, %=, and *=.
Their meanings are similar:

vop=e
has the same effect as
v="uvope.
The increment operators are ++ and --. As in C, they may be used as
prefix (++x) or postfix (x++) operators. If x is 1, then i=++x increments x,

then sets i to 2, while i=x++ sets i to 1, then increments x. An analogous
interpretation applies to prefix and postfix --.

Assignment and increment and decrement operators may all be used in
arithmetic expressions.

We use default initialization to advantage in the following program, which
finds the country with the largest population:

maxpop < $3 { maxpop = $3; country = $1 }
END { print country, maxpop }

Note, however, that this program would not be correct if all values of $3 were

4-22 PROGRAMMER’S GUIDE

Actions

negative.

awk provides the built-in arithmetic functions shown in Figure 4-6.

Function Value Returned

atan2(y,x) | arctangent of y /x in the range -w to =
cos(x) cosine of x, with x in radians

exp(x) exponential function of x

int(x) integer part of x truncated towards 0
log(x) natural logarithm of x

rand() random number between 0 and 1
sin(x) sine of x, with x in radians

sqrt(x) square root of x

srand(x) x is new seed for rand()

Figure 4-6: awk Built-in Arithmetic Functions

x and y are arbitrary expressions. The function rand() returns a pseudo-
random floating point number in the range (0,1), and srand(x) can be used to
set the seed of the generator. If srand() has no argument, the seed is derived
from the time of day.

Strings and String Functions

A string constant is created by enclosing a sequence of characters inside
quotation marks, as in "abc" or "hello, everyone". String constants may
contain the C programming language escape sequences for special characters
listed in "Regular Expressions" in this chapter.

String expressions are created by concatenating constants, variables, field
names, array elements, functions, and other expressions. The program

{ print NR ":" $0 }

prints each record preceded by its record number and a colon, with no blanks.
The three strings representing the record number, the colon, and the record
are concatenated and the resulting string is printed. The concatenation opera-
tor has no explicit representation other than juxtaposition.

awk 4-23

Actions

awk provides the built-in string functions shown in Figure 4-7. In this
table, r represents a regular expression (either as a string or as /r/), s and ¢
string expressions, and 7 and p integers.

Function Description

gsub(r, s) substitute s for r globally in current record,
return number of substitutions

gsub(r, s, t) substitute s for r globally in string ¢,
return number of substitutions

index(s, #) return position of string f in s, 0 if not present

length(s) return length of s

matchds, 1) return the position in s where r occurs, 0 if not present

split(s, a) split s into array 4 on FS, return number of fields

split(s, a, 1) split s into array a on r, return number of fields

sprintf(fmt, expr-list) | return expr-list formatted according to format
string fmt

sub(z, s) substitute s for first r in current record, return
number of substitutions

sub(r, s, t) substitute s for first r in ¢, return number of
substitutions

substr(s, p) return suffix of s starting at position p

substr(s, p,)

return substring of s of length n starting at
position p

Figure 4-7: awk Built-in String Functions

The functions sub and gsub are patterned after the substitute command in
the text editor ed(1). The function gsub(r, s, t) replaces successive occurrences
of substrings matched by the regular expression r with the replacement string
s in the target string t. (As in ed, the leftmost match is used, and is made as
long as possible.) It returns the number of substitutions made. The function
gsub(r, s) is a synonym for gsub(r, s, $0). For example, the program

{ gsub(/USA/, "United States"); print }

transcribes its input, replacing occurrences of USA by United States. The sub
functions are similar, except that they only replace the first matching substring

in the target string.

4-24

PROGRAMMER’S GUIDE

Actions

The function index(s, f) returns the leftmost position where the string ¢
begins in s, or zero if ¢ does not occur in 5. The first character in a string is at
position 1. For example,

index("banana", "an")
returns 2.

The length function returns the number of characters in its argument
string; thus,

{ print length($0), $0 }

prints each record, preceded by its length. ($0 does not include the input
record separator.) The program

length($1) > max { max = length($1); name = $1 }
END { print name }

applied to the file countries prints the longest country name: Australia.

The match(s, r) function returns the position in string s where regular
expression r occurs, or 0 if it does not occur. This function also sets two
built-in variables RSTART and RLENGTH. RSTART is set to the starting
position of the match in the string; this is the same value as the returned
value. RLENGTH is set to the length of the matched string. (If a match does
not occur, RSTART is 0, and RLENGTH is -1.) For example, the following
program finds the first occurrence of the letter i followed by at most one
character followed by the letter a in a record:

{ if (match($0, /i.?a/))
print RSTART, RLENGTH, $0 }

It produces the following output on the file countries:

awk 4-25

Actions

17 2 USSR 8650 262 Asia

26 3 Canada 3852 24 North America
3 3 China 3692 866 Asia

24 3 USA 3615 219 North America
27 3 Brazil 3286 116 South America
8 2 Australia 2968 14 Australia

4 2 India 1269 637 Asia

7 3 Argentina 1072 26 South America
17 3 Sudan 968 19 Africa

6 2 Algeria 920 18 Africa

match() matches the left-most longest matching string. For example, with
NOTE| the record

j AsiaaaAsiaaaaan
as input, the program
{ if (match($0, /a+/)) print RSTART, RLENGTH, $0 }

matches the first string of a’s and sets RSTART to 4 and RLENGTH to 3.

The function sprintf(format, expr,, expr,, . . ., expr,) returns (without
printing) a string containing expry, expr,, . . ., expr, formatted according to
the printf specifications in the string format. "The printf Statement" in this
chapter contains a complete specification of the format conventions. The
statement

X = sprintf("%10s %6d", $1, $2)

assigns to x the string produced by formatting the values of $1 and $2 as a
ten-character string and a decimal number in a field of width at least six; x
may be used in any subsequent computation.

4-26 PROGRAMMER’S GUIDE

Actions

The function substr(s, p, n) returns the substring of s that begins at posi-
tion p and is at most n characters long. If substr(s, p) is used, the substring
goes to the end of s; that is, it consists of the suffix of s beginning at position
p. For example, we could abbreviate the country names in countries to their
first three characters by invoking the program

{ $1 = substr($1, 1, 3); print }

on this file to produce

USS 8650 262 Asia

Can 3852 24 North America
Chi 3692 866 Asia

USA 3615 219 North America
Bra 3286 116 South America
Aus 2968 14 Australia

Ind 1269 637 Asia

Arg 1072 26 South America
Sud 968 19 Africa

Alg 920 18 Africa

Note that setting $1 in the program forces awk to recompute $0 and, there-
fore, the fields are separated by blanks (the default value of OFS), not by tabs.

Strings are stuck together (concatenated) merely by writing them one after
another in an expression. For example, when invoked on file countries,

{s=s substr($1, 1, 3) " " }
END { print s }

prints
USS Can Chi USA Bra Aus Ind Arg Sud Alg

by building s up a piece at a time from an initially empty string.

awk 4-27

Actions

Field Variables

The fields of the current record can be referred to by the field variables $1,
$2, . . ., SNF. Field variables share all of the properties of other variables —
they may be used in arithmetic or string operations, and they may have
values assigned to them. So, for example, you can divide the second field of
the file countries by 1000 to convert the area from thousands to millions of
square miles:

{ $2 /= 1000; print }

or assign a new string to a field:

BEGIN { FS = OFS = "\t" }
$4 == "North America" { $4 = "NA" }
$4 == "South America" { $4 = "SA" }

{ print }

The BEGIN action in this program resets the input field separator FS and the
output field separator OFS to a tab. Notice that the print in the fourth line of
the program prints the value of $0 after it has been modified by previous
assignments.

Fields can be accessed by expressions. For example, $(NF-1) is the second
to last field of the current record. The parentheses are needed: the value of
$NF-1 is 1 less than the value in the last field.

A field variable referring to a nonexistent field, for example, $(NF+1), has
as its initial value the empty string. A new field can be created, however, by
assigning a value to it. For example, the following program invoked on the
file countries creates a fifth field giving the population density:

BEGIN { FS
{ %5

OFS = "™\t" }
1000 * $3 / $2; print }

The number of fields can vary from record to record, but there is usually
an implementation limit of 100 fields per record.

4-28 PROGRAMMER’S GUIDE

Actions

Number or String?

Variables, fields and expressions can have both a numeric value and a
string value. They take on numeric or string values according to context. For
example, in the context of an arithmetic expression like

pop += $3
pop and $3 must be treated numerically, so their values will be coerced to
numeric type if necessary.
In a string context like
print $1 ":" $2
$1 and $2 must be strings to be concatenated, so they will be coerced if neces-
sary.
In an assignment v = e or v op = ¢, the type of v becomes the type of e.
In an ambiguous context like
$1 == $2

the type of the comparison depends on whether the fields are numeric or
string, and this can only be determined when the program runs; it may well
differ from record to record.

In comparisons, if both operands are numeric, the comparison is numeric;
otherwise, operands are coerced to strings, and the comparison is made on the
string values. All field variables are of type string; in addition, each field that
contains only a number is also considered numeric. This determination is
done at run time. For example, the comparison "$1 == $2" will succeed on
any pair of the inputs

1 1.0 +1 0.%e+1 10E-1 001

but fail on the inputs

(null) 0
(null) 0.0

0a 0

1e50 1.0e50

awk 4-29

Actions

There are two idioms for coercing an expression of one type to the other:

number " " concatenate a null string to a number to coerce it
to type string
string + 0 add zero to a string to coerce it to type numeric

Thus, to force a string comparison between two fields, say

$1 nn == $2 nn

The numeric value of a string is the value of any prefix of the string that
looks numeric; thus the value of 12.34x is 12.34, while the value of x12.34 is
zero. The string value of an arithmetic expression is computed by formatting
the string with the output format conversion OFMT.

Uninitialized variables have numeric value 0 and string value "". Nonex-
istent fields and fields that are explicitly null have only the string value " ";
they are not numeric.

Control Flow Statements

awk provides if-else, while, do-while, and for statements, and statement
grouping with braces, as in the C programming language.

The if statement syntax is
if (expression) statement; else statement,

The expression acting as the conditional has no restrictions; it can include the
relational operators <, <=, >, >=, ==, and !=; the regular expression match-
ing operators ~ and !~ ; the logical operators ||, &é&, and !; juxtaposition for
concatenation; and parentheses for grouping.

In the if statement, the expression is first evaluated. If it is non-zero and
non-null, statement; is executed; otherwise statement, is executed. The else
part is optional.

A single statement can always be replaced by a statement list enclosed in
braces. The statements in the statement list are terminated by newlines or
semicolons.

4-30 PROGRAMMER’S GUIDE

Actions

Rewriting the maximum population program from " Arithmetic Functions"
with an if statement results in

{ if (maxpop < $3) {
maxpop = $3
country = $1

}
}
END { print country, maxpop }

The while statement is exactly that of the C programming language:
while (expression) statement

The expression is evaluated; if it is non-zero and non-null the statement is exe-
cuted and the expression is tested again. The cycle repeats as long as the
expression is non-zero. For example, to print all input fields one per line,

{ 1i=1

while (i <= NF) {
print $i

i++

The for statement is like that of the C programming language:
for (expression |; expression; expression,) statement

It has the same effect as

awk 4-31

Actions

expression |

while (expression) {

statement
expression

SO
{ for (i = 1; i <= NF; i++) print $i }

does the same job as the while example above. An alternate version of the
for statement is described in the next section.

The do statement has the form
do statement while (expression)

The statement is executed repeatedly until the value of the expression becomes
zero. Because the test takes place after the execution of the statement (at the
bottom of the loop), it is always executed at least once. As a result, the do
statement is used much less often than while or for, which test for completion
at the top of the loop.

The following example of a do statement prints all lines except those
between start and stop.

/start/ {
do {
getline x
} while (x !~ /stop/)
}
{ print }

4-32 PROGRAMMER’S GUIDE

Actions

The break statement causes an immediate exit from an enclosing while or
for; the continue statement causes the next iteration to begin. The next state-
ment causes awk to skip immediately to the next record and begin matching
patterns starting from the first pattern-action statement.

The exit statement causes the program to behave as if the end of the
input had occurred; no more input is read, and the END action, if any, is exe-
cuted. Within the END action,

exit expr

causes the program to return the value of expr as its exit status. If there is no
expr, the exit status is zero.

Arrays

awk provides one-dimensional arrays. Arrays and array elements need
not be declared; like variables, they spring into existence by being mentioned.
An array subscript may be a number or a string.

As an example of a conventional numeric subscript, the statement
x[NR] = $0

assigns the current input line to the NRth element of the array x . In fact, it is
possible in principle (though perhaps slow) to read the entire input into an
array with the awk program

{ x[NR] = $0 }
END { ... processing... }

The first action merely records each input line in the array x, indexed by line
number; processing is done in the END statement.

Array elements may also be named by nonnumeric values. For example,
the following program accumulates the total population of Asia and Africa
into the associative array pop. The END action prints the total population of
these two continents.

awk 4-33

Actions

/Asia/ { pop["Asia"] += $3 }
/Africa/ { pop["Africa"] += $3 }
END { print "Asian population in millions is", pop["Asia"]

print "African population in millions is",
pop["Africa"] }

On the file countries, this program generates

Asian population in millions is 1765
African population in millions is 37
In this program if we had used pop[Asia] instead of pop["Asia"] the expres-

sion would have used the value of the variable Asia as the subscript, and
since the variable is uninitialized, the values would have been accumulated in

mp["ll] .

Suppose our task is to determine the total area in each continent of the
file countries. Any expression can be used as a subscript in an array refer-
ence. Thus

area[$4] += $2

uses the string in the fourth field of the current input record to index the array
area and in that entry accumulates the value of the second field:

BEGIN { FS = mt" }
{ area[$4] += $2 }
END { for (name in area)

print name, area[name] }

Invoked on the file countries, this program produces

4-34 PROGRAMMER’S GUIDE

Actions

Africa 1888

North America 7467
South America 4358
Asia 13611
Australia 2968

This program uses a form of the for statement that iterates over all
defined subscripts of an array:

for (i in array) statement

executes statement with the variable i set in turn to each value of i for which
array[i] has been defined. The loop is executed once for each defined sub-
script, which are chosen in a random order. Results are unpredictable when i
or array is altered during the loop.

awk does not provide multi-dimensional arrays, but it does permit a list of
subscripts. They are combined into a single subscript with the values
separated by an unlikely string (stored in the variable SUBSEP). For example,

for (i = 1; i <= 10; i++)
for (j = 1; j <= 105 j++)
arr[i,j] = ...

creates an array which behaves like a two-dimensional array; the subscript is
the concatenation of i, SUBSEP, and j.

You can determine whether a particular subscript i occurs in an array arr
by testing the condition 7 in arr, as in

if ("Africa" in area) ...

This condition performs the test without the side effect of creating
area["Africa"], which would happen if we used

if (area["Africa"] != "") ...

Note that neither is a test of whether the array area contains an element with
value "Africa" .

awk 4-35

Actions

It is also possible to split any string into fields in the elements of an array
using the built-in function split. The function

split("s1:s2:83", a, ":")

splits the string s1:s2:s3 into three fields, using the separator : , and stores
s1in a[1], s2in a[2], and s3in a[3] . The number of fields found, here
three, is returned as the value of split. The third argument of split is a regu-
lar expression to be used as the field separator. If the third argument is miss-
ing, FS is used as the field separator.

An array element may be deleted with the delete statement:

delete arrayname[subscript]

User-Defined Functions
awk provides user-defined functions. A function is defined as

function name(argument-list) {
statements
}

The definition can occur anywhere a pattern-action statement can. The argu-
ment list is a list of variable names separated by commas; within the body of
the function these variables refer to the actual parameters when the function is
called. There must be no space between the function name and the left
parenthesis of the argument list when the function is called; otherwise it looks
like a concatenation. For example, the following program defines and tests
the usual recursive factorial function (of course, using some input other than
the file countries):

4-36 PROGRAMMER’S GUIDE

Actions

function fact(n) {
if (n <= 1)
return 1
else
return n * fact(n-1)
}
{ print $1 "! is " fact($1) }

Array arguments are passed by reference, as in C, so it is possible for the
function to alter array elements or create new ones. Scalar arguments are
passed by value, however, so the function cannot affect their values outside.
Within a function, formal parameters are local variables but all other variables
are global. (You can have any number of extra formal parameters that are
used purely as local variables.) The return statement is optional, but the
returned value is undefined if it is not included.

Some Lexical Conventions

Comments may be placed in awk programs: they begin with the charac-
ter # and end at the end of the line, as in

print x, y # this is a comment

Statements in an awk program normally occupy a single line. Several
statements may occur on a single line if they are separated by semicolons. A
long statement may be continued over several lines by terminating each con-
tinued line by a backslash. (It is not possible to continue a "..." string.) This
explicit continuation is rarely necessary, however, since statements continue
automatically if the line ends with a comma (for example, as might occur in a
print or printf statement) or after the operators &é& and ||.

Several pattern-action statements may appear on a single line if separated
by semicolons.

awk 4-37

Output

The print and printf statements are the two primary constructs that gen-
erate output. The print statement is used to generate simple output; printf is
used for more carefully formatted output. Like the shell, awk lets you redirect
output, so that output from print and printf can be directed to files and pipes.
This section describes the use of these two statements.

The print Statement
The statement
print expr, expr,, . . ., expr,

prints the string value of each expression separated by the output field separa-
tor followed by the output record separator. The statement

print

is an abbreviation for
print $0

To print an empty line use

m-int nn

Output Separators

The output field separator and record separator are held in the built-in
variables OFS and ORS. Initially, OFS is set to a single blank and ORS to a
single newline, but these values can be changed at any time. For example, the
following program prints the first and second fields of each record with a
colon between the fields and two newlines after the second field:

BEGIN { OFs = ":"; ORS = "\n\n" }
{ print $1, $2 }

Notice that
{ print $1 $2 }

prints the first and second fields with no intervening output field separator,
because $1 $2 is a string consisting of the concatenation of the first two fields.

4-38 PROGRAMMER’S GUIDE

Output

The printf Statement

awk’s printf statement is the same as that in C except that the * format
specifier is not supported. The printf statement has the general form
printf format, expr,, expr,, . . ., expr,

where format is a string that contains both information to be printed and
specifications on what conversions are to be performed on the expressions in
the argument list, as in Figure 4-8. Each specification begins with a %, ends
with a letter that determines the conversion, and may include

- left-justify expression in its field

width pad field to this width as needed; fields that begin
with a leading 0 are padded with zeros
.prec maximum string width or digits to right of

decimal point

Character Prints Expression as

c single character

d decimal number

e [-]d.ddddddE[+-]dd

f [-]ddd.dddddd

g e or f conversion, whichever is shorter, with
nonsignificant zeros suppressed

unsigned octal number

s string

X unsigned hexadecimal number

% print a %; no argument is converted

Figure 4-8: awk printf Conversion Characters

awk 4-39

Output

Here are some examples of printf statements along with the correspond-
ing output:

/:Lntf "%dr, 99/2 49

pr:
printf "%e", 99/2 4.950000e+01
printf "%f", 99/2 49.500000
printf "%6.2f", 99/2 49.50
printf "%g", 99/2 49.5

printf "%o", 99 143

printf "%060", 99 000143
printf "%x", 99 63

printf "|%s|", "January" |January|
printf "[%10s|", "January" | January |
printf "|%-10s|", "January" |January |
printf "|%.3s|", "January" |Jan|
printf "|%10.3s|", "January" | Jan|
printf "|%-10.3s|", "January" |Jan |
printf "9" %

o

The default output format of numbers is %.6g; this can be changed by assign-
ing a new value to OFMT. OFMT also controls the conversion of numeric
values to strings for concatenation and creation of array subscripts.

Output into Files

It is possible to print output into files instead of to the standard output by
using the > and >> redirection operators. For example, the following pro-
gram invoked on the file countries prints all lines where the population (third
field) is bigger than 100 into a file called bigpop, and all other lines into
smallpop:

$3 > 100 { print $1, $3 >"bigpop" }
$3 <= 100 { print $1, $3 >"smallpop" }

Notice that the file names have to be quoted; without quotes, bigpop and
smallpop are merely uninitialized variables. If the output file names were
created by an expression, they would also have to be enclosed in parentheses:

$4 ~ /North America/ { print $1 > ("tmp" FILENAME) }

4-40 PROGRAMMER’S GUIDE

Output

This is because the > operator has higher precedence than concatenation;
without parentheses, the concatenation of tmp and FILENAME would not work.

Files are opened once in an awk program. If > is used to open a file, its
NOTE| original contents are overwritten. But if >> is used to open a file, its
contents are preserved and the output is appended to the file. Once the
| file has been opened, the two operators have the same effect.

Output into Pipes

It is also possible to direct printing into a pipe with a command on the
other end, instead of into a file. The statement

print | "command-line"
causes the output of print to be piped into the command-line.

Although we have shown them here as literal strings enclosed in quotes,
the command-line and file names can come from variables and the return
values from functions, for instance.

Suppose we want to create a list of continent-population pairs, sorted
alphabetically by continent. The awk program below accumulates the popula-
tion values in the third field for each of the distinct continent names in the
fourth field in an array called pop. Then it prints each continent and its popu-
lation, and pipes this output into the sort command.

BEGIN { FS = ™\t" }
{ pop[$4] += $3 }
END { for (c in pop)
prjnt c ll:ll mp[c] | "Sort“ }

Invoked on the file countries, this program yields

awk 4-41

Output

Africa:37

Asia: 1765
Australia: 14
North America:243
South America: 142

In all of these print statements involving redirection of output, the files or
pipes are identified by their names (that is, the pipe above is literally named
sort), but they are created and opened only once in the entire run. So, in the
last example, for all ¢ in pop, only one sort pipe is open.

There is a limit to the number of files that can be open simultaneously.
The statement close(file) closes a file or pipe; file is the string used to create it
in the first place, as in

close("sort")

When opening or closing a file, different strings are different commands.

4-42 PROGRAMMER’S GUIDE

Iinput

The most common way to give input to an awk program is to name on
the command line the file(s) that contains the input. This is the method we’ve
been using in this chapter. However, there are several other methods we
could use, each of which this section describes.

Files and Pipes

You can provide input to an awk program by putting the input data into a
file, say awkdata, and then executing

awk ‘program’ awkdata

awk reads its standard input if no file names are given (see "Usage" in this
chapter); thus, a second common arrangement is to have another program
pipe its output into awk. For example, egrep(1) selects input lines containing
a specified regular expression, but it can do so faster than awk since this is the
only thing it does. We could, therefore, invoke the pipe

’

egrep 'Asia’ countries | awk ". ..

egrep quickly finds the lines containing Asia and passes them on to the awk
program for subsequent processing.

Input Separators

With the default setting of the field separator FS, input fields are
separated by blanks or tabs, and leading blanks are discarded, so each of these
lines has the same first field:

field1 field2
field1
field1

When the field separator is a tab, however, leading blanks are not discarded.

awk 4-43

Input

The field separator can be set to any regular expression by assigning a
value to the built-in variable FS. For example,

BEGIN { FS = "(,[\\t]*)|([\\t]+)" }

sets it to an optional comma followed by any number of blanks and tabs. FS
can also be set on the command line with the -F argument:

awk -F'G[\t]) | [\t]+) ".. .’

behaves the same as the previous example. Regular expressions used as field
separators match the left-most longest occurrences (as in sub()), but do not
match null strings.

Multi-line Records

Records are normally separated by newlines, so that each line is a record,
but this too can be changed, though only in a limited way. If the built-in
record separator variable RS is set to the empty string, as in

BEGIN { RS =""}

then input records can be several lines long; a sequence of empty lines
separates records. A common way to process multiple-line records is to use

Bmm { RS 3 ll"; FS - "\I‘-\" }

to set the record separator to an empty line and the field separator to a new-
line. There is a limit, however, on how long a record can be; it is usually
about 2500 characters. "The getline Function" and " Cooperation with the
Shell" in this chapter show other examples of processing multi-line records.

The getline Function

awk’s facility for automatically breaking its input into records that are
more than one line long is not adequate for some tasks. For example, if
records are not separated by blank lines, but by something more complicated,
merely setting RS to null doesn’t work. In such cases, it is necessary to
manage the splitting of each record into fields in the program. Here are some
suggestions.

4-44 PROGRAMMER’S GUIDE

The function getline can be used to read input either from the current
input or from a file or pipe, by redirection analogous to printf. By itself, get-~
line fetches the next input record and performs the normal field-splitting
operations on it. It sets NF, NR, and FNR. getline returns 1 if there was a
record present, 0 if the end-of-file was encountered, and -1 if some error
occurred (such as failure to open a file).

To illustrate, suppose we have input data consisting of multi-line records,
each of which begins with a line beginning with START and ends with a line
beginning with STOP. The following awk program processes these multi-line
records, a line at a time, putting the lines of the record into consecutive entries
of an array

£[1] £f[2] ... f[nf]

Once the line containing STOP is encountered, the record can be processed
from the data in the f array:

/ASTART/ {
£f[nf=1] = $0
while (getline && $0 !~ /ASTOP/)
f[+tnf] = $0
now process the data in f[1]...f[nf]

Notice that this code uses the fact that && evaluates its operands left to right
and stops as soon as one is true.

awk 4-45

The same job can- also be done by the following program:

/ASTART/ §& nf== { £[nf=1] = $0 }

nf > 1 { f[+nf] = $0 }

/~STOP/ { # now process the data in £[1]...f[nf]
nf =0

The statement
getline x

reads the next record into the variable x. No splitting is done; NF is not set.
The statement

getline <"file"
reads from file instead of the current input. It has no effect on NR or FNR,
but field splitting is performed and NF is set. The statement

getline x <"file"
gets the next record from file into x; no splitting is done, and NF, NR and
FNR are untouched.

If a filename is an expression, it should be in parentheses for evaluation:
NOTE

while (getline x < (ARGV[1] ARGV[2])) { ...}

This is because the < has precedence over concatenation. Without
parentheses, a statement such as

getline x < "tmp" FILENAME

sets x to read the file tmp and not tmp <value of FILENAME>. Also, if you
use this getline statement form, a statement like

while (getline x < file) { ... }

loops forever if the file cannot be read, because getline returns -1, not
zero, if an error occurs. A better way to write this test is

4-46 PROGRAMMER'’S GUIDE

Input

while (getline x < file > 0) { ... }

It is also possible to pipe the output of another command directly into get-
line. For example, the statement

while ("who" | getline)
n++

executes who and pipes its output into getline. Each iteration of the while
loop reads one more line and increments the variable n, so after the while
loop terminates, n contains a count of the number of users. Similarly, the
statement

"date" | getline d

pipes the output of date into the variable d, thus setting d to the current
date. Figure 4-9 summarizes the getline function.

Form Sets
getline $0, NF, NR, FNR
getline var var, NR, FNR
getline <file $0, NF
getline var <file var
cmd | getline $0, NF
cmd | getline var | var

Figure 4-9: getline Function

Command-line Arguments

The command-line arguments are available to an awk program: the array
ARGV contains the elements ARGV[0], . . ., ARGV[ARGC-1]; as in C,
ARGC is the count. ARGV[0] is the name of the program (generally awk);
the remaining arguments are whatever was provided (excluding the program
and any optional arguments).

awk 4-47

Input

3

The following command line contains an awk program that echoes the argu-
ments that appear after the program name:

awk ’
BEGIN {
for (i = 1;i < ARGGC; i++)
printf "%s ", ARGV[i]
printf "\n"
} 8

The arguments may be modified or added to; ARGC may be altered. As each
input file ends, awk treats the next non-null element of ARGV (up to the
current value of ARGC-1) as the name of the next input file.

There is one exception to the rule that an argument is a file name: if it is
of the form

var=value

then the variable var is set to the value value as if by assignment. Such an
argument is not treated as a file name. If value is a string, no quotes are
needed.

4-48 PROGRAMMER’S GUIDE

Using awk with Other Commands and
the Shell

awk gains its greatest power when it is used in conjunction with other
programs. Here we describe some of the ways in which awk programs
cooperate with other commands.

The system Function

The built-in function system(command-line) executes the command
command-line, which may well be a string computed by, for example, the
built-in function sprintf. The value returned by system is the return status of
the command executed.

For example, the program
$1 == "ginclude" { gsub(/[<>"]/, "", $2); system("cat " $2) }

calls the command cat to print the file named in the second field of every
input record whose first field is #include, after stripping any <, > or " that
might be present.

Cooperation with the Shell

In all the examples thus far, the awk program was in a file and fetched
from there using the -f flag, or it appeared on the command line enclosed in
single quotes, as in

awk '{ print $1 }" ...

Since awk uses many of the same characters as the shell does, such as $ and
", surrounding the awk program with single quotes ensures that the shell will
pass the entire program unchanged to the awk interpreter.

Now, consider writing a command addr that will search a file addresslist
for name, address and telephone information. Suppose that addresslist con-
tains names and addresses in which a typical entry is a multi-line record such
as

awk 4-49

Using awk with Other Commands and the Shell

G. R. Emlin

600 Mountain Avenue
Murray Hill, NJ 07974
201-555-1234

Records are separated by a single blank line.
We want to search the address list by issuing commands like
addr Emlin
That is easily done by a program of the form

awk '

BEGIN {RS=""}
/Emlin/

' addresslist

The problem is how to get a different search pattern into the program each
time it is run.

There are several ways to do this. One way is to create a file called addr
that contains

awk '

BEGIN {RS =""}
/'$1'/

' addresslist

The quotes are critical here: the awk program is only one argument, even
though there are two sets of quotes, because quotes do not nest. The $1is
outside the quotes, visible to the shell, which therefore replaces it by the pat-
tern Emlin when the command addr Emlin is invoked. On a UNIX system,
addr can be made executable by changing its mode with the following com-
mand: chmod +x addr.

A second way to implement addr relies on the fact that the shell substi-
tutes for $ parameters within double quotes:
awk "
BEGIN { RS = \"\" }
/$1/
" addresslist

Here we must protect the quotes defining RS with backslashes, so that the
shell passes them on to awk, uninterpreted by the shell. $1 is recognized as

4-50 PROGRAMMER’S GUIDE

Using awk with Other Commands and the Shell

a parameter, however, so the shell replaces it by the pattern when the com-
mand addr pattern is invoked.

A third way to implement addr is to use ARGV to pass the regular
expression to an awk program that explicitly reads through the address list
with getline:

awk '
BEGIN {RS =""
while (getline < "addresslist")
if ($0 ~ ARGV[1])
print $0
}oros

All processing is done in the BEGIN action.

Notice that any regular expression can be passed to addr; in particular, it
is possible to retrieve by parts of an address or telephone number as well as
by name.

awk 4-51

Example Applications

awk has been used in surprising ways. We have seen awk programs that
implement database systems and a variety of compilers and assemblers, in
addition to the more traditional tasks of information retrieval, data manipula-
tion, and report generation. Invariably, the awk programs are significantly
shorter than equivalent programs written in more conventional programming
languages such as Pascal or C. In this section, we will present a few more
examples to illustrate some additional awk programs.

Generating Reports

awk is especially useful for producing reports that summarize and format
information. Suppose we wish to produce a report from the file countries in
which we list the continents alphabetically, and after each continent its coun-
tries in decreasing order of population:

/

Africa:
Sudan 19
Algeria 18
Asia:
China 866
India 637
USSR 262
Australia:
Australia 14
North America:
USA 219
Canada 24
South America:
Brazil 116
Argentina 26

4-52 PROGRAMMER’S GUIDE

\
\
\

Example Applicatﬁons

As with many data processing tasks, it is much easier to produce this
report in several stages. First, we create a list of continent-country-population
triples, in which each field is separated by a colon. This can be done with the
following program triples, which uses an array pop indexed by subscripts of
the form ‘continent:country’ to store the population of a given country. The
print statement in the END section of the program creates the list of continent-
country-population triples that are piped to the sort routine.

BEGIN { FS = "\t" }
{ pop[$4 ":" $1] += $3 }
END { for (cc in pop)
print cc ":" pop[cc] | "sort -t: +0 -1 +2nr" }

The arguments for sort deserve special mention. The —t: argument tells
sort to use : as its field separator. The +0 —1 arguments make the first field
the primary sort key. In general, +i —j makes fields i+1, i+2, ...,] the sort
key. If —j is omitted, the fields from i+1 to the end of the record are used.
The +2nr argument makes the third field, numerically decreasing, the secon-
dary sort key (n is for numeric, r for reverse order). Invoked on the file coun-
tries, this program produces as output

Africa:Sudan: 19
Africa:Algeria: 18
Asia:China:866
Asia:India:637
Asia:USSR:262
Australia:Australia: 14
North America:USA:219
North America:Canada:24
South America:Brazil:116
South America:Argentina:26

This output is in the right order but the wrong format. To transform the
output into the desired form we run it through a second awk program format:

awk 4-53

Example Applications

Cm {(Fs ="y

{ if ($1 != prev) {

print "“n" $1 v
}K

prev = $1
This is a control-break program that prints only the first occurrence of a con-
tinent name and formats the country-population lines associated with that
continent in the desired manner. The command line

}
printf "\t%-10s %6d\n", $2, $3

awk -f triples countries | awk -f format

gives us our desired report. As this example suggests, complex data transfor-
mation and formatting tasks can often be reduced to a few simple awks and
sorts.

As an exercise, add to the population report subtotals for each continent
and a grand total.

Additional Examples

Word Frequencies

Our first example illustrates associative arrays for counting. Suppose we
want to count the number of times each word appears in the input, where a
word is any contiguous sequence of non-blank, non-tab characters. The fol-
lowing program prints the word frequencies, sorted in decreasing order.

{ for (w = 1; w <= NF; w++) count[$w]++ }
END { for (w in count) print count[w], w | "sort -nr" }
The first statement uses the array count to accumulate the number of times

each word is used. Once the input has been read, the second for loop pipes
the final count along with each word into the sort command.

4-54 PROGRAMMER’S GUIDE

Example Applications

Accumulation

Suppose we have two files, deposits and withdrawals, of records con-
taining a name field and an amount field. For each name we want to print
the net balance determined by subtracting the total withdrawals from the total
deposits for each name. The net balance can be computed by the following
program:

awk '

FILENAME == "deposits" { balance[$1] += $2 }
FILENAME == "withdrawals" { balance[$1] —= $2 }
END { for (name in balance)

print name, balance[name]
} ' deposits withdrawals

The first statement uses the array balance to accumulate the total amount for
each name in the file deposits. The second statement subtracts associated
withdrawals from each total. If there are only withdrawals associated with a
name, an entry for that name will be created by the second statement. The
END action prints each name with its net balance.

Random Choice

The following function prints (in order) k random elements from the first
n elements of the array A. In the program, k is the number of entries that
still need to be printed, and n is the number of elements yet to be examined.
The decision of whether to print the ith element is determined by the test
rand() < k/n.

awk 4-55

Example Applications

gtion choose(A, k, n) {

for (i = 1; n > 0; it++)
if (rand() < k/n—-) {
print A[i]
k—_

N

Shell Facility

The following awk program simulates (crudely) the history facility of the
UNIX system shell. A line containing only = re-executes the last command
executed. A line beginning with = cmd re-executes the last command whose
invocation included the string cmd. Otherwise, the current line is executed.

C"ﬂ { if (NF == 1)

system(x[NR] = x[NR-1])
else
for (i = NR-1; i > 0; i--)
if (x[i] ~ $2) {
system(x[NR] = x[1])
break

next }

/7 { system(x[NR] = $0) }

4-56 PROGRAMMER’S GUIDE

Example Applications

Form-letter Generation

The following program generates form letters, using a template stored in a
file called form.letter:

This is a form letter.
The first field is $1, the second $2, the third $3.
The third is $3, second is $2, and first is $1.

and replacement text of this form:
field 1|field 2|field 3
one | two | three
alb|c
The BBEGIN action stores the template in the array template; the remaining

action cycles through the input data, using gsub to replace template fields of
the form $n with the corresponding data fields.

g{ FS = "|"

while (getline <"form.letter")
line[++n] = $0

{ for (i = 1; 1 <= n; i++) {
s = line[i]
for (j = 15 J <= NF; j++)
gsub("\\$"j, $j, s)
print s

In all such examples, a prudent strategy is to start with a small version
and expand it, trying out each aspect before moving on to the next.

awk 4-57

awk Summary

Command Line

awk program filenames
awk -f program-file filenames
awk -Fs sets field separator to string s; -Ft sets separator to tab

Patterns

BEGIN

END

/regular expression/
relational expression
pattern && pattern
pattern || pattern
(pattern)

Ipattern

pattern, pattern

Control Flow Statements

if (expr) statement [else statement]
if (subscript in array) statement [else statement]
while (expr) statement

for (expr; expr; expr) statement

for (var in array) statement

do statement while (expr)

break

continue

next

exit [expr]

return [expr]

4-58 PROGRAMMER’S GUIDE

awk Summary

Input-output

close(filename)
getline

getline <file
getline var
getline var <file
print

print expr-list
print expr-list >file
printf fmt, expr-list
printf fmt, expr-list >file
system(cmd-line)

close file

set $0 from next input record; set NF, NR, FNR
set $0 from next record of file; set NF

set var from next input record; set NR, FNR
set var from next record of file

print current record

print expressions

print expressions on file

format and print

format and print on file

execute command cmd-line, return status

In print and printf above, >>file appends to the file, and | command
writes on a pipe. Similarly, command | getline pipes into getline. getline
returns 0 on end of file, and -1 on error.

Functions

func name(parameter list) { statement }
function name(parameter list) { statement }

function-name(expr, expr, .

)

awk 4-59

awk Summary

String Functions

gsub(r, s, t)

index(s, t)

length(s)
match(s, r)

split(s, a,r)

sprintf(fmt, expr-list)
sub(r, s, t)

substr(s, i, n)

substitute string s for each substring matching
regular expression r in string ¢, return number
of substitutions; if ¢ omitted, use $0

return index of string ¢ in string s, or 0 if not
present

return length of string s

return position in s where regular expression r
occurs, or 0 if r is not present

split string s into array a4 on regular expression
7, return number of fields; if omitted, FS is
used in its place

print expr-list according to fmt, return resulting
string

like gsub except only the first matching sub-
string is replaced

return n-char substring of s starting at i; if n
omitted, use rest of s

Arithmetic Functions

atan2(y,x) arctangent of y /x in radians

cos(expr) cosine (angle in radians)
exp(expr) exponential

int(expr) truncate to integer

log(expr) natural logarithm

rand() random number between 0 and 1
sin(expr) sine (angle in radians)

sqrt(expr) square root

srand(expr) new seed for random number generator;
use time of day if no expr

4-60 PROGRAMMER’S GUIDE

Operators (Increasing Precedence)

= += -= ¥= /= %= A= assignment

?: conditional expression

| logical OR

8& logical AND

T regular expression match, negated match
< <=>>= |= == relationals

blank string concatenation

+ — add, subtract

* /% multiply, divide, mod

+— unary plus, unary minus, logical negation
A exponentiation (** is a synonym)

++ - increment, decrement (prefix and postfix)
$ field

awk Summary

Regular Expressions (Increasing Precedence)

c

\¢

A

$
[abe...]
[rabc...]
rl|r2
rir2

r+

(r

matches non-metacharacter ¢
matches literal character ¢

matches any character but newline
matches beginning of line or string
matches end of line or string
character class matches any of abc...
negated class matches any but abc... and newline
matches either 1 or r2
concatenation: matches r1, then r2
matches one or more r’s

matches zero or more 's

matches zero or one r’s

grouping: matches r

4-61

awk Summary

Built-in Variables

ARGC number of command-line arguments
ARGV array of command-line arguments (0..ARGC-1)
FILENAME name of current input file

FNR input record number in current file

FS input field separator (default blank)

NF number of fields in current input record
NR input record number since beginning
OFMT output format for numbers (default %. 6g)
OFS output field separator (default blank)
ORS output record separator (default newline)
RS input record separator (default newline)

RSTART index of first character matched by match(); 0 if no match
RLENGTH length of string matched by match(); -1 if no match
SUBSEP separates multiple subscripts in array elements; default "\034"

Limits
Any particular implementation of awk enforces some limits. Here are typ-
ical values:

100 fields

2500 characters per input record

2500 characters per output record

1024 characters per individual field

1024 characters per printf string

400 characters maximum quoted string

400 characters in character class

15 open files

1 pipe

numbers are limited to what can be represented on the local
machine, e.g., 1e-38..1e+38

4-62 PROGRAMMER’S GUIDE

awk Summary

Initialization, Comparison, and Type Coercion

Each variable and field can potentially be a string or a number or both at
any time. When a variable is set by the assignment

var = expr

its type is set to that of the expression. (Assignment includes +=, -=, etc.)
An arithmetic expression is of type number, a concatenation is of type string,
and so on. If the assignment is a simple copy, as in

vl = v2
then the type of v1 becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to string if necessary, and the
comparison is made on strings. The type of any expression can be coerced to
numeric by subterfuges such as

expr + 0
and to string by
expr ""
(that is, concatenation with a null string).

Uninitialized variables have the numeric value 0 and the string value " ".
Accordingly, if x is uninitialized,

if (x) ..

is false, and

if (Ix) ...
if (x==0) ...
if (x == ") ...

are all true. But the following is false:

if (x == "0") ...

awk 4-63

awk Summary

The type of a field is determined by context when possible; for example,
$1++
clearly implies that $1 is to be numeric, and
$1 = $1 ", $2
implies that $1 and $2 are both to be strings. Coercion is done as needed.
In contexts where types cannot be reliably determined, for example,
if ($1 == $2) ...

the type of each field is determined on input. All fields are strings; in addi-
tion, each field that contains only a number is also considered numeric.

Fields that are explicitly null have the string value " " ; they are not
numeric. Non-existent fields (i.e., fields past NF) are treated this way, too.

As it is for fields, so it is for array elements created by split().

Mentioning a variable in an expression causes it to exist, with the value
" " as described above. Thus, if arr[i] does not currently exist,

if (arr[i] == "") ...

causes it to exist with the value " " so the if is satisfied. The special construc-
tion

if (i in arr) ...

determines if arr[i] exists without the side effect of creating it if it does not.

4-64 PROGRAMMER’S GUIDE

lex

An Overview of lex Programming 5-1
Writing lex Programs 5-3
The Fundamentals of lex Rules 5-3
m Specifications 5-3
m Actions 5-6
Advanced lex Usage 5-7
m Some Special Features 5-8
m Definitions 5-12
m Subroutines 5-13
Using lex with yacc 5-15
Running lex under the UNIX
System 5-18

lex i

An Overview of lex Programming

The software tool lex lets you solve a wide class of problems drawn from
text processing, code enciphering, compiler writing, and other areas. In text
processing, you may check the spelling of words for errors; in code encipher-
ing, you may translate certain patterns of characters into others; and in com-
piler writing, you may determine what the tokens (smallest meaningful
sequences of characters) are in the program to be compiled. The problem
common to all of these tasks is recognizing different strings of characters that
satisfy certain characteristics. In the compiler writing case, creating the ability
to solve the problem requires implementing the compiler’s lexical analyzer;
hence the name lex.

It is not essential to use lex to handle problems of this kind. You could
write programs in a standard language like C to handle them, too. In fact,
what lex does is produce such C programs. (lex is therefore called a program
generator.) What lex offers you, once you acquire a facility with it, is typically
a faster, easier way to create programs that perform these tasks. Its weakness
is that it often produces C programs that are longer than necessary for the
task at hand and that execute more slowly than they otherwise might. In
many applications this is a minor consideration, and the advantages of using
lex considerably outweigh it.

To understand what lex does, see the diagram in Figure 5-1. We begin
with the lex source (often called the lex specification) that you, the program-
mer, write to solve the problem at hand. This lex source consists of a list of
rules specifying sequences of characters (expressions) to be searched for in an
input text, and the actions to take when an expression is found. The source is
read by the lex program generator. The output of the program generator is a
C program that, in turn, must be compiled by a host language C compiler to
generate the executable object program that does the lexical analysis. Note
that this procedure is not typically automatic—user intervention is required.
Finally, the lexical analyzer program produced by this process takes as input
any source file and produces the desired output, such as altered text or a list
of tokens.

lex 5-1

An Overview of lex Programming

lex can also be used to collect statistical data on features of the input, such
as character count, word length, number of occurrences of a word, and so
forth. In later sections of this chapter, we will see

B how to write lex source to do some of these tasks
B how to translate lex source
B how to compile, link, and execute the lexical analyzer in C

B how to run the lexical analyzer program

We will then be on our way to appreciating the power that lex provides.

lex lex

Source

lex

Figure 5-1: Creation and Use of a Lexical Analyzer with lex

Analyzer
in C

C

Compiler

Input
Text

lex
t Analyzer

B

Program

Output:
Tokens,
Text, etc.

5-2 PROGRAMMER’S GUIDE

Writing lex Programs

A lex specification consists of at most three sections: definitions, rules,
and user subroutines. The rules section is mandatory. Sections for definitions
and user subroutines are optional, but if present, must appear in the indicated
order.

The Fundamentals of lex Rules

The mandatory rules section opens with the delimiter %%. If a subrou-
tines section follows, another %% delimiter ends the rules section. If there is
no second delimiter, the rules section is presumed to continue to the end of
the program.

Each rule consists of a specification of the pattern sought and the action(s)
to take on finding it. (Note the dual meaning of the term specification—it
may mean either the entire lex source itself or, within it, a representation of a
particular pattern to be recognized.) Whenever the input consists of patterns
not sought, lex writes out the input exactly as it finds it. So, the simplest lex
program is just the beginning rules delimiter, %%. It writes out the entire
input to the output with no changes at all. Typically, the rules are more ela-
borate than that.

Specifications

You specify the patterns you are interested in with a notation called regu-
lar expressions. A regular expression is formed by stringing together charac-
ters with or without operators. The simplest regular expressions are strings of
text characters with no operators at all. For example,

apple
orange
pluto

These three regular expressions match any occurrences of those character
strings in an input text. If you want to have your lexical analyzer, a.out,
remove every occurrence of orange from the input text, you could specify the
rule

orange;

lex 5-3

Writing lex Programs

Because you did not specify an action on the right (before the semicolon),
lex does nothing but print out the original input text with every occurrence of
this regular expression removed, that is, without any occurrence of the string
orange at all.

Unlike orange above, most of the expressions that we want to search for
cannot be specified so easily. The expression itself might simply be too long.
More commonly, the class of desired expressions is too large; it may, in fact,
be infinite. Thanks to the use of operators, we can form regular expressions
signifying any expression of a certain class. The + operator, for instance,
means one or more occurrences of the preceding expression, the ? means 0 or
1 occurrence of the preceding expression (this is equivalent, of course, to say-
ing that the preceding expression is optional), and * means 0 or more
occurrences of the preceding expression. (It may at first seem odd to speak of
0 occurrences of an expression and to need an operator to capture the idea,
but it is often quite helpful. We will see an example in a moment.) So m+ is
a regular expression matching any string of ms such as each of the following:

mmm
m
Tonmm
mm

and 7* is a regular expression matching any string of zero or more 7s:

77
77777

777

The string of blanks on the third line matches simply because it has no 7s in it
at all.

Brackets, [], indicate any one character from the string of characters speci-
fied between the brackets. Thus, [dgka] matches a single d, g, k, or a. Note
that commas are not included within the brackets. Any comma here would be
taken as a character to be recognized in the input text. Ranges within a stan-
dard alphabetic or numeric order are indicated with a hyphen, -. The
sequence [a-z], for instance, indicates any lowercase letter. Somewhat more
interestingly,

[A-Za-z0-9%8#]

5-4 PROGRAMMER’S GUIDE

Writing lex Programs

is a regular expression that matches any letter (whether uppercase or lower-
case), any digit, an asterisk, an ampersand, or a sharp character. Given the
input text

$$$$7?7 277211 1%$$ EPPE+====r""# ((

the lexical analyzer with the previous specification in one of its rules will
recognize the #, &, r, and #, perform on each recognition whatever action the
rule specifies (we have not indicated an action here), and print out the rest of
the text as it stands.

The operators become especially powerful in combination. For example,
the regular expression to recognize an identifier in many programming
languages is

[a-zA-Z][0-9a-zA-Z]*

An identifier in these languages is defined to be a letter followed by zero
or more letters or digits. That is just what the regular expression says. The
first pair of brackets matches any letter. The second pair, if it were not fol-
lowed by a *, would match any digit or letter. The two pairs of brackets with
their enclosed characters would then match any letter followed by a digit or a
letter. But with the asterisk, *, the example matches any letter followed by
any number of letters or digits. In particular, it would recognize the following
as identifiers:

e
pay
distance
pH
EngineNo99
R2D2

Note that it would not recognize the following as identifiers:

not_idenTIFER
Stimes
$hello

because not_idenTIFER has an embedded underscore; 5times starts with a
digit, not a letter; and $hello starts with a special character. Of course, you
may want to write the specifications for these three examples as an exercise.

lex 5-5

Writing lex Programs

A potential problem with operator characters is how we can refer to them
as characters to look for in our search pattern. The last example, for instance,
will not recognize text with an * in it. lex solves the problem in one of two
ways: a character enclosed in quotation marks or a character preceded by a \
is taken literally, that is, as part of the text to be searched for. To use the
backslash method to recognize, say, an * followed by any number of digits,
we can use the pattern

[1-9]

To recognize a \ itself, we need two backslashes: \\.

Actions

Once lex recognizes a string matching the regular expression at the start
of a rule, it looks to the right of the rule for the action to be performed. Kinds
of actions include recording the token type found and its value, if any; replac-
ing one token with another; and counting the number of instances of a token
or token type. What you want to do is write these actions as program frag-
ments in the host language C. An action may consist of as many statements
as are needed for the job at hand. You may want to print out a message not-
ing that the text has been found or a message transforming the text in some
way. Thus, to recognize the expression Amelia Earhart and to note such
recognition, the rule

"Amelia Earhart" printf("found Amelia");

would do. And to replace in a text lengthy medical terms with their
equivalent acronyms, a rule such as

Electroencephalogram printf ("EEG");

would be called for. To count the lines in a text, we need to recognize end-
of-lines and increment a linecounter. lex uses the standard escape sequences
from C like \n for end-of-line. To count lines we might have

\n lineno++;
where lineno, like other C variables, is declared in the definitions section that

we discuss later.

lex stores every character string that it recognizes in a character array
called yytext[]. You can print or manipulate the contents of this array as you
want. Sometimes your action may consist of two or more C statements and
you must (or for style and clarity, you choose to) write it on several lines. To
inform lex that the action is for one rule only, simply enclose the C code in

5-6 PROGRAMMER’S GUIDE

Writing lex Programs

braces. For example, to count the total number of all digit strings in an input
text, print the running total of the number of digit strings (not their sum) and
print out each one as soon as it is found, your lex code might be

+?[1-9]+ { digstrngcount++;
printf ("%d" ,digstrngcount) ;
printf("%s", yytext); }

This specification matches digit strings whether they are preceded by a plus
sign or not, because the ? indicates that the preceding plus sign is optional. In
addition, it will catch negative digit strings because that portion following the
minus sign, -, will match the specification. The next section explains how to
distinguish negative from positive integers.

Advanced lex Usage

The lex command provides a suite of features that lets you process input
text riddled with quite complicated patterns. These include rules that decide
what specification is relevant, when more than one seems so at first; functions
that transform one matching pattern into another; and the use of definitions
and subroutines. Before considering these features, you may want to affirm
your understanding thus far by examining an example drawing together
several of the points already covered.

%%

—[0-9]1+ printf("negative integer");

+?[0-9]+ printf ("positive integer");

—0.[0-9]+ printf("negative fraction, no whole number part");
rail[]+road printf("railroad is one word");

crook printf("Here's a crook");

function subprogcount++;

G[a—zA-Z]* { printf("may have a G word here: ", yytext);

Gstringcount++; }

The first three rules recognize negative integers, positive integers, and
negative fractions between 0 and —1. Use of the terminating + in each specifi-
cation ensures that one or more digits compose the number in question. Each
of the next three rules recognizes a specific pattern. The specification for rail-
road matches cases where one or more blanks intervene between the two syll-
ables of the word. In the cases of railroad and crook, you may have simply
printed a synonym rather than the messages stated. The rule recognizing a
function increments a counter. The last rule illustrates several points:

lex 5-7

Writing lex Programs

B The braces specify an action sequence extending over several lines.

B Its action uses the lex array yytext[], which stores the recognized char-
acter string.

B Its specification uses the * to indicate that zero or more letters may fol-
low the G.

Some Special Features

Besides storing the recognized character string in yytext[], lex automati-
cally counts the number of characters in a match and stores it in the variable
yyleng. You may use this variable to refer to any specific character just
placed in the array yytext[]. Remember that C numbers locations in an array
starting with 0, so to print out the third digit (if there is one) in a just recog-
nized integer, you might write

[1-91+ {if (yyleng > 2)
printf ("%c", yytext[2]); }

lex follows a number of high-level rules to resolve ambiguities that may
arise from the set of rules that you write. Prima facie, any reserved word, for
instance, could match two rules. In the lexical analyzer example developed
later in the section on lex and yacc, the reserved word end could match the
second rule as well as the seventh, the one for identifiers.

lex follows the rule that where there is a match with two or more rules in a
NOTE| specification, the first rule is the one whose action will be executed.

By placing the rule for end and the other reserved words before the rule for
identifiers, we ensure that our reserved words will be duly recognized.

Another potential problem arises from cases where one pattern you are
searching for is the prefix of another. For instance, the last two rules in the
lexical analyzer example above are designed to recognize > and >=. If the
text has the string >= at one point, you might worry that the lexical analyzer
would stop as soon as it recognized the > character to execute the rule for >
rather than read the next character and execute the rule for >=.

5-8 PROGRAMMER’S GUIDE

Writing lex Programs

lex follows the rule that it matches the longest character string possible
NOTE| and executes the rule for that.

Here it would recognize the >= and act accordingly. As a further example,
the rule would enable you to distinguish + from ++ in a program in C.

Still another potential problem exists when the analyzer must read charac-
ters beyond the string you are seeking because you cannot be sure you have
in fact found it until you have read the additional characters. These cases
reveal the importance of trailing context. The classic example here is the DO
statement in FORTRAN. In the statement

DO 50k =1, 20, 1

we cannot be sure that the first 1 is the initial value of the index k until we
read the first comma. Until then, we might have the assignment statement

DO50k = 1

(Remember that FORTRAN ignores all blanks.) The way to handle this is to
use the forward-looking slash, / (not the backslash, \), which signifies that
what follows is trailing context, something not to be stored in yytext[],
because it is not part of the token itself. So the rule to recognize the FOR-
TRAN DO statement could be

30/[1*[0-91[1*[a-z A-Z0-9]+=[a-z A-Z0-9]+, printf("found DO");

Different versions of FORTRAN have limits on the size of identifiers, here the
index name. To simplify the example, the rule accepts an index name of any
length.

lex uses the $ as an operator to mark a special trailing context—the end of
line. (It is therefore equivalent to \n.) An example would be a rule to ignore
all blanks and tabs at the end of a line:

[\t]+$;

On the other hand, if you want to match a pattern only when it starts a line,
lex offers you the circumflex, ~, as the operator. The formatter nroff, for
example, demands that you never start a line with a blank, so you might want
to check input to nroff with some such rule as:

lex 5-9

Writing lex Programs

AT printf("error: remove leading blank");

Finally, some of your action statements themselves may require your read-
ing another character, putting one back to be read again a moment later, or
writing a character on an output device. lex supplies three functions to han-
dle these tasks—input(), unput(c), and output(c), respectively. One way to
ignore all characters between two special characters, say between a pair of
double quotation marks, would be to use input(), thus:

\" while (imput() != '"');

Upon finding the first double quotation mark, the generated a.out will simply
continue reading all subsequent characters so long as none is a quotation
mark, and not again look for a match until it finds a second double quotation
mark.

To handle special I/O needs, such as writing to several files, you may use
standard 1/0 routines in C to rewrite the functions input(), unput(c), and out-
put. These and other programmer-defined functions should be placed in your
subroutine section. Your new routines will then replace the standard ones.
The standard input(), in fact, is equivalent to getchar(), and the standard
output(c) is equivalent to putchar(c).

There are a number of lex routines that let you handle sequences of char-
acters to be processed in more than one way. These include yymore(),
yyless(n), and REJECT. Recall that the text matching a given specification is
stored in the array yytext[]. In general, once the action is performed for the
specification, the characters in yytext[] are overwritten with succeeding char-
acters in the input stream to form the next match. The function yymore(), by
contrast, ensures that the succeeding characters recognized are appended to
those already in yytext[]. This lets you do one thing and then another, when
one string of characters is significant and a longer one including the first is
significant as well. Consider a character string bound by Bs and interspersed
with one at an arbitrary location.

B...B...B
In a simple code-deciphering situation, you may want to count the
number of characters between the first and second B’s and add it to the

number of characters between the second and third B. (Only the last B is not
to be counted.) The code to do this is

5-10 PROGRAMMER’S GUIDE

Writing lex Programs

B["B]* { if (flag = 0)
save = yyleng;
flag = 1;
yymore();
else {
importantno = save + yyleng;
flag = 0; }
}

where flag, save, and importantno are declared (and at least flag initialized
to 0) in the definitions section. The flag distinguishes the character sequence
terminating just before the second B from that terminating just before the
third.

The function yyless(n) lets you reset the end point of the string to be con-
sidered to the nth character in the original yytext[]. Suppose you are again in
the code-deciphering business and the gimmick here is to work with only half
the characters in a sequence ending with a certain one, say upper- or lower-
case Z. The code you want might be

[a-yA-Y]+[Zz] { yyless(yyleng/2);
... process first half of string... }

Finally, the function REJECT lets you more easily process strings of char-
acters even when they overlap or contain one another as parts. REJECT does
this by immediately jumping to the next rule and its specification without
changing the contents of yytext[]. If you want to count the number of
occurrences both of the regular expression snapdragon and of its subexpres-
sion dragon in an input text, the following will do:

snapdragon {countflowers++; REJECT;}
dragon countmonsters++;

As an example of one pattern overlapping another, the following counts
the number of occurrences of the expressions comedian and diana, even
where the input text has sequences such as comediana..:

comedian {comiccount++; REJECT;}
diana princesscount++;

lex 5-11

Writing lex Programs

Note that the actions here may be considerably more complicated than
simply incrementing a counter. In all cases, the counters and other necessary
variables are declared in the definitions section commencing the lex specifica-
tion.

Definitions

The lex definitions section may contain any of several classes of items.
The most critical are external definitions, #include statements, and abbrevia-
tions. Recall that for legal lex source this section is optional, but in most cases
some of these items are necessary. External definitions have the form and
function that they do in C. They declare that variables globally defined else-
where (perhaps in another source file) will be accessed in your lex-generated
a.out. Consider a declaration from an example to be developed later.

extern int tokval;

When you store an integer value in a variable declared in this way, it will
be accessible in the routine, say a parser, that calls it. If, on the other hand,
you want to define a local variable for use within the action sequence of one
rule (as you might for the index variable for a loop), you can declare the vari-
able at the start of the action itself right after the left brace, { .

The purpose of the #include statement is the same as in C: to include
files of importance for your program. Some variable declarations and lex
definitions might be needed in more than one lex source file. It is then
advantageous to place them all in one file to be included in every file that
needs them. One example occurs in using lex with yacc, which generates
parsers that call a lexical analyzer. In this context, you should include the file
y.tab.h, which may contain #defines for token names. Like the declarations,
#include statements should come between %{ and } %, thus:

%{
#include "y.tab.h"
extern int tokval;
int lineno;

%}

In the definitions section, after the %} that ends your #include’s and
declarations, place your abbreviations for regular expressions to be used in the
rules section. The abbreviation appears on the left of the line and, separated
by one or more spaces, its definition or translation appears on the right.
When you use abbreviations in your rules, enclose them within braces.

5-12 PROGRAMMER’S GUIDE

Writing lex Programs

The purpose of abbreviations is to avoid needless repetition in writing
NOTE| your specifications and to provide clarity in reading them.

As an example, reconsider the lex source reviewed at the beginning of this
section on advanced lex usage. The use of definitions simplifies our later
reference to digits, letters, and blanks. This is especially true if the specifica-
tions appear several times:

D [0-9]

L [a-zA-Z]

B []

%%

—{D}+ printf("negative integer");
+?{D}+ printf("positive integer");
—0.{D}+ printf ("negative fraction");
G{L}* printf("may have a G word here");
rail{B}+road printf("railroad is one word");
crook printf("criminal");

\"\./{B}+ printf(".\"");

The last rule, newly added to the example and somewhat more complex
than the others, is used in the WRITER'S WORKBENCH Software, an AT&T
software product for promoting good writing. (See the UNIX System
WRITER’S WORKBENCH Software Release 3.0 User’s Guide for information on
this product.) The rule ensures that a period always precedes a quotation
mark at the end of a sentence. It would change example". to example.”

Subroutines

You may want to use subroutines in lex for much the same reason that
you do so in other programming languages. Action code that is to be used for
several rules can be written once and called when needed. As with defini-
tions, this can simplify the writing and reading of programs. The function
put_in__tabl(), to be discussed in the next section on lex and yacc, is a good
candidate for a subroutine.

lex 5-13

Writing lex Programs

Another reason to place a routine in this section is to highlight some code
of interest or to simplify the rules section, even if the code is to be used for
one rule only. As an example, consider the following routine to ignore com-
ments in a language like C where comments occur between /* and */ :

W skipcmts() ;

. /* rest of rules */
%%

skipcmts()
{
for(;;)
{
while (input() != '*');
if (input() != '/") {
unput (yytext[yyleng—11);
else return;
}.
}

There are three points of interest in this example. First, the unput(c) func-
tion (putting back the last character read) is necessary to avoid missing the
final / if the comment ends unusually with a #*/ . In this case, eventually
having read an #, the analyzer finds that the next character is not the terminal
/ and must read some more. Second, the expression yytext[yyleng-1] picks
out that last character read. Third, this routine assumes that the comments
are not nested. (This is indeed the case with the C language.) If, unlike C,
they are nested in the source text, after input()ing the first */ ending the inner
group of comments, the a.out will read the rest of the comments as if they
were part of the input to be searched for patterns.

Other examples of subroutines would be programmer-defined versions of
the I1/O routines input(), unput(c), and output(), discussed above. Subrou-
tines such as these that may be exploited by many different programs would
probably do best to be stored in their own individual file or library to be
called as needed. The appropriate #include statements would then be neces-
sary in the definitions section.

5-14 PROGRAMMER’S GUIDE

Writing lex Programs

Using lex with yacc

If you work on a compiler project or develop a program to check the vali-
dity of an input language, you may want to use the UNIX system program
tool yacc. yacc generates parsers, programs that analyze input to ensure that
it is syntactically correct. (yacc is discussed in detail in Chapter 6 of this
guide.) lex often forms a fruitful union with yacc in the compiler develop-
ment context. Whether or not you plan to use lex with yacc, be sure to read
this section because it covers information of interest to all lex programmers.

The lexical analyzer that lex generates (not the file that stores it) takes the
name yylex(). This name is convenient because yacc calls its lexical analyzer
by this very name. To use lex to create the lexical analyzer for the parser of a
compiler, you want to end each lex action with the statement return token,
where token is a defined term whose value is an integer. The integer value of
the token returned indicates to the parser what the lexical analyzer has found.
The parser, whose file is called y.tab.c by yacc, then resumes control and
makes another call to the lexical analyzer when it needs another token.

In a compiler, the different values of the token indicate what, if any,
reserved word of the language has been found or whether an identifier, con-
stant, arithmetic operand, or relational operator has been found. In the latter
cases, the analyzer must also specify the exact value of the token: what the
identifier is, whether the constant, say, is 9 or 888, whether the operand is +
or * (multiply), and whether the relational operator is = or >. Consider the
following portion of lex source for a lexical analyzer for some programming
language perhaps slightly reminiscent of Ada:

lex 5-15

Writing lex Programs

begin return(BEGIN) ;

end return(END) ;

while return(WHILE) ;

if return(IF);

package return(PACKAGE) ;

reverse return(REVERSE) ;

loop return(LOOP) ;

[a-zA-Z][a-2zA-Z0-91* { tokval = put _in tabl();
return(IDENTIFIER); }

[0-9]1+ { tokval = put in tabl();

' return(INTEGER); }

\+ { tokval = PLUS;
return(ARITHOP); }

\— { tokval = MINUS;
return(ARITHOP); }

> { tokval = GREATER;
return(RELOP); }

>= { tokval = GREATEREQL;

return(RELOP); }

Despite appearances, the tokens returned and the values assigned to
tokval, are indeed integers. Good programming style dictates that we use
informative terms such as BEGIN, END, WHILE, and so forth to signify the
integers the parser understands, rather than use the integers themselves. You
establish the association by using #define statements in your parser calling
routine in C. For example,

#define BEGIN 1
#define END 2

#define PLUS 7

If the need arises to change the integer for some token type, you then
change the #define statement in the parser rather than hunt through the
entire program, changing every occurrence of the particular integer. In using
yacc to generate your parser, it is helpful to insert the statement

#include y.tab.h

5-16 PROGRAMMER’S GUIDE

Writing lex Programs

into the definitions section of your lex source. The file y.tab.h provides
#define statements that associate token names such as BEGIN, END, and so
on with the integers of significance to the generated parser.

To indicate the reserved words in the example, the returned integer values
suffice. For the other token types, the integer value of the token type is stored
in the programmer-defined variable tokval. This variable, whose definition
was an example in the definitions section, is globally defined so that the
parser as well as the lexical analyzer can access it. yacc provides the variable
yylval for the same purpose.

Note that the example shows two ways to assign a value to tokval. First,
a function put_in_tabl() places the name and type of the identifier or con-
stant in a symbol table so that the compiler can refer to it in this or a later
stage of the compilation process. More to the present point, put_in_tabl()
assigns a type value to tokval so that the parser can use the information
immediately to determine the syntactic correctness of the input text. The
function put_in_tabl() would be a routine that the compiler writer might
place in the subroutines section discussed later. Second, in the last few
actions of the example, tokval is assigned a specific integer indicating which
operand or relational operator the analyzer recognized. If the variable PLUS,
for instance, is associated with the integer 7 by means of the #define state-
ment above, then when a + sign is recognized, the action assigns to tokval
the value 7, which indicates the +. The analyzer indicates the general class of
operator by the value it returns to the parser (in the example, the integer sig-
nified by ARITHOP or RELOP).

lex 5-17

Running lex under the UNIX System

As you review the following few steps, you might recall Figure 5-1 at the
start of the chapter. To produce the lexical analyzer in C, run

lex lex.1

where lex.l is the file containing your lex specification. The name lex.] is
conventionally the favorite, but you may use whatever name you want. The
output file that lex produces is automatically called lex.yy.c; this is the lexical
analyzer program that you created with lex. You then compile and link this
as you would any C program, making sure that you invoke the lex library
with the -1l option:

cc lex.yy.c -11

The lex library provides a default main() program that calls the lexical
analyzer under the name yylex(), so you need not supply your own mainy().

If you have the lex specification spread across several files, you can run
lex with each of them individually, but be sure to rename or move each
lex.yy.c file (with mv) before you run lex on the next one. Otherwise, each
will overwrite the previous one. Once you have all the generated .c files, you
can compile all of them, of course, in one command line.

With the executable a.out produced, you are ready to analyze any desired
input text. Suppose that the text is stored under the file name textin (this
name is arbitrary). The lexical analyzer a.out by default takes input from your
terminal. To have it take the file textin as input, use redirection, thus:

a.out < textin
By default, output will appear on your terminal. You can redirect this as well:

a.out < textin > textout

In running lex with yacc, either may be run first.

yacc -d grammar.y
lex lex.]

spawns a parser in the file y.tab.c. (The -d option creates the file y.tab.h,
which contains the #define statements that associate the yacc-assigned
integer token values with the user-defined token names.) To compile and link
the output files produced, run

5-18 PROGRAMMER’S GUIDE

Running lex under the UNIX System

cc lex.yy.c y.tab.c -1y -1l

Note that the yacc library is loaded (with the -ly option) before the lex library
(with the -1l option) to ensure that the main() program supplied will call the
yacc parser.

There are several options available with the lex command. If you use one
or more of them, place them between the command name lex and the file
name argument. If you care to see the C program, lex.yy.c, that lex generates
on your terminal (the default output device), use the -t option.

lex -t lex.1

The -v option prints out for you a small set of statistics describing the so-
called finite automata that lex produces with the C program lex.yy.c. (For a
detailed account of finite automata and their importance for lex, see the Aho,
Sethi, and Ullman text, Compilers: Principles, Technigues, and Tools, Addison-
Wesley, 1986.)

lex uses a table (a two-dimensional array in C) to represent its finite auto-
maton. The maximum number of states that the finite automaton requires is
set by default to 500. If your lex source has a large number of rules or the
rules are very complex, this default value may be too small. You can enlarge
the value by placing another entry in the definitions section of your lex
source, as follows:

%n 700

This entry tells lex to make the table large enough to handle as many as
700 states. (The -v option will indicate how large a number you should
choose.) If you have need to increase the maximum number of state transi-
tions beyond 2000, the designated parameter is a, thus:

%a 2800

Finally, check the Programmer’s Reference Manual page on lex for a list of
all the options available with the lex command. In addition, review the paper
by Lesk (the originator of lex) and Schmidt, "Lex—A Lexical Analyzer Gen-
erator," in volume 5 of the UNIX Programmer’s Manual, Holt, Rinehart, and
Winston, 1986. It is somewhat dated, but offers several interesting examples.

lex 5-19

Running lex under the UNIX System

This tutorial has introduced you to lex programming. As with any pro-
gramming language, the way to master it is to write programs and then write
some more.

5-20 PROGRAMMER’S GUIDE

yacc

Iintroduction 6-1
Basic Specifications 6-4
Actions 6-6
Lexical Analysis 6-10
Parser Operation 6-13
Ambiguity and Conflicts 6-18
Precedence 6-24
Error Handling 6-28
The yacc Environment 6-32

Hints for Preparing Specifications 6-34

Input Style 6-34
Left Recursion 6-34
Lexical Tie-Ins 6-36

yacc i

yacc

Reserved Words 6-37
Advanced Topics 6-38
Simulating error and accept in Actions 6-38
Accessing Values in Enclosing Rules 6-38
Support for Arbitrary Value Types 6-40
yacc Input Syntax 6-42
Examples 6-45
1. A Simple Example 6-45
2. An Advanced Example 6-48

PROGRAMMER'’S GUIDE

Introduction

The yacc program provides a general tool for imposing structure on the
input to a computer program. The yacc user prepares a specification that
includes:

B a set of rules to describe the elements of the input
M code to be invoked when a rule is recognized

M cither a definition or declaration of a low-level routine to examine the
input

yacc then turns the specification into a C language function that examines
the input stream. This function, called a parser, works by calling the low-
level input scanner. The low-level input scanner, called a lexical analyzer,
picks up items from the input stream. The selected items are known as
tokens. Tokens are compared to the input construct rules, called grammar
rules. When one of the rules is recognized, the user code supplied for this
rule, (an action) is invoked. Actions are fragments of C language code. They
can return values and make use of values returned by other actions.

The heart of the yacc specification is the collection of grammar rules.
Each rule describes a construct and gives it a name. For example, one gram-
mar rule might be

’

date : month name day ',’ year 5

where date, month_name, day, and year represent constructs of interest;
presumably, month_name, day, and year are defined in greater detail else-
where. In the example, the comma is enclosed in single quotes. This means
that the comma is to appear literally in the input. The colon and semicolon
merely serve as punctuation in the rule and have no significance in evaluating
the input. With proper definitions, the input

July 4, 1776
might be matched by the rule.

The lexical analyzer is an important part of the parsing function. This
user-supplied routine reads the input stream, recognizes the lower-level con-
structs, and communicates these as tokens to the parser. The lexical analyzer
recognizes constructs of the input stream as terminal symbols; the parser
recognizes constructs as nonterminal symbols. To avoid confusion, we will
refer to terminal symbols as tokens.

yacc 6-1

Introduction

There is considerable leeway in deciding whether to recognize constructs
using the lexical analyzer or grammar rules. For example, the rules

month name : ‘J’ ‘a’ ‘n’
month name : ‘F’ ‘e’ ‘b’

month name : ‘D’ ‘e’ ‘¢’

might be used in the above example. While the lexical analyzer only needs to
recognize individual letters, such low-level rules tend to waste time and space,
and may complicate the specification beyond the ability of yacc to deal with
it. Usually, the lexical analyzer recognizes the month names and returns an
indication that a month_name is seen. In this case, month_name is a token
and the detailed rules are not needed.

Literal characters such as a comma must also be passed through the lexical
analyzer and are also considered tokens.

Specification files are very flexible. It is relatively easy to add to the
above example the rule

date : month '/' day '/' year
allowing

7/4/1776
as a synonym for

July 4, 1776

on input. In most cases, this new rule could be slipped into a working system
with minimal effort and little danger of disrupting existing input.

6-2 PROGRAMMER’S GUIDE

Introduction

The input being read may not conform to the specifications. With a left-
to-right scan input errors are detected as early as is theoretically possible.
Thus, not only is the chance of reading and computing with bad input data
substantially reduced, but the bad data usually can be found quickly. Error
handling, provided as part of the input specifications, permits the reentry of
bad data or the continuation of the input process after skipping over the bad
data.

In some cases, yacc fails to produce a parser when given a set of specifica-
tions. For example, the specifications may be self-contradictory, or they may
require a more powerful recognition mechanism than that available to yacc.
The former cases represent design errors; the latter cases often can be
corrected by making the lexical analyzer more powerful or by rewriting some
of the grammar rules. While yacc cannot handle all possible specifications, its
power compares favorably with similar systems. Moreover, the constructs that
are difficult for yacc to handle are also frequently difficult for human beings to
handle. Some users have reported that the discipline of formulating valid
yacc specifications for their input revealed errors of conception or design early
in the program development.

The remainder of this chapter describes the following subjects:
basic process of preparing a yacc specification

parser operation

handling ambiguities

handling operator precedences in arithmetic expressions

error detection and recovery

the operating environment and special features of the parsers yacc pro-
duces

B suggestions to improve the style and efficiency of the specifications

M advanced topics

In addition, there are two examples and a summary of the yacc input syn-
tax.

/ yacc 6-3

Basic Specifications

Names refer to either tokens or nonterminal symbols. yacc requires token
names to be declared as such. While the lexical analyzer may be included as
part of the specification file, it is perhaps more in keeping with modular
design to keep it as a separate file. Like the lexical analyzer, other subroutines
may be included as well. Thus, every specification file theoretically consists of
three sections: the declarations, (grammar) rules, and subroutines. Sections
are separated by double percent signs, % % (the percent sign is generally used
in yacc specifications as an escape character).

A full specification file looks like:

declarations
%%

rules

%%

subroutines
when all sections are used. The declarations and subroutines sections are
optional. The smallest legal yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored, but they may not appear in names
or multicharacter reserved symbols. Comments may appear wherever a name
is legal. They are enclosed in /*... *#/, as in the C language.

The rules section is made up of one or more grammar rules. A grammar
rule has the form

A : BODY ;

where A represents a nonterminal symbol, and BODY represents a sequence
of zero or more names and literals. The colon and the semicolon are yacc
punctuation.

Names may be of any length and may be made up of letters, dots, under-
scores, and digits although a digit may not be the first character of a name.
Uppercase and lowercase letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

6-4 PROGRAMMER’S GUIDE

Basic Specifications

A literal consists of a character enclosed in single quotes, ’. As in the C
language, the backslash, \, is an escape character within literals, and all the C
language escapes are recognized. Thus:

\n’ newline

\r’ return

"\ single quote ()
"\ backslash (\)
"\t tab

"\b’ backspace
\f form feed
\xxx! xxx in octal notation

are understood by yacc. For a number of technical reasons, the NULL charac-
ter (\0 or 0) should never be used in grammar rules.

If there are several grammar rules with the same left-hand side, the verti-
cal bar, |, can be used to avoid rewriting the left-hand side. In addition, the
semicolon at the end of a rule is dropped before a vertical bar. Thus the
grammar rules

A B CD ;
A : E F
A G 3

can be given to yacc as

A : BCD
| E F
I G
>
by using the vertical bar. It is not necessary that all grammar rules with the
same left side appear together in the grammar rules section although it makes
the input more readable and easier to change.
If a nonterminal symbol matches the empty string, this can be indicated
by
epsilon : H
The blank space following the colon is understood by yacc to be a nontermi-
nal symbol named epsilon.

yacc 6-5

Basic Specifications

Names representing tokens must be declared. This is most simply done
by writing

%token namel1 name2 ...

in the declarations section. Every name not defined in the declarations section
is assumed to represent a nonterminal symbol. Every nonterminal symbol
must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbol has particular impor-
tance. By default, the start symbol is taken to be the left-hand side of the first
grammar rule in the rules section. It is possible and desirable to declare the
start symbol explicitly in the declarations section using the %start keyword.

%start symbol

The end of the input to the parser is signaled by a special token, called
the end-marker. The end-marker is represented by either a zero or a negative
number. If the tokens up to but not including the end-marker form a con-
struct that matches the start symbol, the parser function returns to its caller
after the end-marker is seen and accepts the input. If the end-marker is seen
in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end-marker
when appropriate. Usually the end-marker represents some reasonably obvi-
ous 1/0 status, such as end of file or end of record.

Actions

With each grammar rule, the user may associate actions to be performed
when the rule is recognized. Actions may return values and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return
values for tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subroutines, and alter arrays and variables. An action is
specified by one or more statements enclosed in curly braces, {, and }. For
example:

A H l(l B l)l

{
hello(1, "abc");

6-6 PROGRAMMER’S GUIDE

Basic Specifications

and
XXX : YYY 2ZZZ
(void) printf("a message\n");

flag = 25;
}

are grammar rules with actions.

The dollar sign symbol, $, is used to facilitate communication between the
actions and the parser. The pseudo-variable $$ represents the value returned
by the complete action. For example, the action

{ $$ =1, }
returns the value of one; in fact, that is all it does.

To obtain the values returned by previous actions and the lexical analyzer,
the action may use the pseudo-variables $1, $2, ... $n. These refer to the
values returned by components 1 through n of the right side of a rule, with
the components being numbered from left to right. If the rule is

A : B C D ;

then $2 has the value returned by C, and $3 the value returned by D. The
rule

expr : (' expr ')'
provides a common example. One would expect the value returned by this
rule to be the value of the expr within the parentheses. Since the first com-

ponent of the action is the literal left parenthesis, the desired logical result can
be indicated by

expr : (' expr ')’

$¢ = $2

yacc 6-7

Basic Specifications

By default, the value of a rule is the value of the first element in it ($1).

Thus, grammar rules of the form

A : B

frequently need not have an explicit action. In previous examples, all the
actions came at the end of rules. Sometimes, it is desirable to get control
before a rule is fully parsed. yacc permits an action to be written in the mid-
dle of a rule as well as at the end. This action is assumed to return a value
accessible through the usual $ mechanism by the actions to the right of it. In
turn, it may access the values returned by the symbols to its left. Thus, in the

rule below the effect is to set x to 1 and y to the value returned by C.

$$ = 1;
}
(o]
{
x = $2;
y = $3;

/

Actions that do not terminate a rule are handled by yacc by manufactur-
ing a new nonterminal symbol name and a new rule matching this name to
the empty string. The interior action is the action triggered by recognizing
this added rule. yacc treats the above example as if it had been written as fol-

lows (where $ACT is an empty action).

6-8 PROGRAMMER’S GUIDE

Basic Specifications

6 : /* empty */

{
$$ = 1;
}
A : B $ACT C
{
x = $2;
y = $3;
}

In many applications, output is not done directly by the actions. A data
structure, such as a parse tree, is constructed in memory and transformations
are applied to it before output is generated. Parse trees are particularly easy
to construct given routines to build and maintain the tree structure desired.
For example, suppose there is a C function node written so that the call

node(L, n1, n2)

creates a node with label L and descendants n1 and n2 and returns the index
of the newly created node. Then a parse tree can be built by supplying
actions such as

expr : expr '+' expr
$$ = node('+', $1, $3);
}
in the specification.

The user may define other variables to be used by the actions. Declara-
tions and definitions can appear in the declarations section enclosed in the
marks %{ and %}. These declarations and definitions have global scope, so
they are known to the action statements and can be made known to the lexi-
cal analyzer. For example:

%{ int variable = 0; %}

yacc 6-9

Basic Specifications

could be placed in the declarations section making variable accessible to all of
the actions. Users should avoid names beginning with yy because the yacc
parser uses only such names. In the examples shown thus far all the values
are integers. A discussion of values of other types is found in the section

" Advanced Topics."

Lexical Analysis

The user must supply a lexical analyzer to read the input stream and com-
municate tokens (with values, if desired) to the parser. The lexical analyzer is
an integer-valued function called yylex. The function returns an integer, the
token number, representing the kind of token read. If there is a value associ-
ated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in
order for communication between them to take place. The numbers may be
chosen by yacc or the user. In either case, the #define mechanism of C
language is used to allow the lexical analyzer to return these numbers symbol-
ically. For example, suppose that the token name DIGIT has been defined in
the declarations section of the yacc specification file. The relevant portion of
the lexical analyzer might look like

6-10 PROGRAMMER’S GUIDE

Basic Specifications

int yylex()

{
extern int yylval;
int c;

c = getchar();

switch (c)
{

case ‘0’:
case '1’:

case '9':
yylval = ¢ — ‘0’
return (DIGIT);

.

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to the
numerical value of the digit. Provided that the lexical analyzer code is placed
in the subroutines section of the specification file, the identifier DIGIT is
defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The only
pitfall to avoid is using any token names in the grammar that are reserved or
significant in C language or the parser. For example, the use of token names
if or while will almost certainly cause severe difficulties when the lexical
analyzer is compiled. The token name error is reserved for error handling
and should not be used naively.

In the default situation, token numbers are chosen by yacc. The default
token number for a literal character is the numerical value of the character in
the local character set. Other names are assigned token numbers starting at
257. If the yacc command is invoked with the -d option, a file called y.tab.h
is generated. y.tab.h contains #define statements for the tokens.

yacc 6-11

Basic Specifications

If the user prefers to assign the token numbers, the first appearance of the
token name or literal in the declarations section must be followed immediately
by a nonnegative integer. This integer is taken to be the token number of the
name or literal. Names and literals not defined this way are assigned default
definitions by yacc. The potential for duplication exists here. Care must be
taken to make sure that all token numbers are distinct.

For historical reasons, the end-marker must have token number 0 or nega-
tive. This token number cannot be redefined by the user. Thus, all lexical
analyzers should be prepared to return 0 or a negative number as a token
upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex utility. Lexi-
cal analyzers produced by lex are designed to work in close harmony with
yacc parsers. The specifications for these lexical analyzers use regular expres-
sions instead of grammar rules. lex can be easily used to produce quite com-
plicated lexical analyzers, but there remain some languages (such as FOR-
TRAN), which do not fit any theoretical framework and whose lexical
analyzers must be crafted by hand.

6-12 PROGRAMMER’S GUIDE

Parser Operation

The yacc comand turns the specification file into a C language procedure,
which parses the input according to the specification given. The algorithm
used to go from the specification to the parser is complex and will not be dis-
cussed here. The parser itself, though, is relatively simple and understanding
its usage will make treatment of error recovery and ambiguities easier.

The parser produced by yacc consists of a finite state machine with a
stack. The parser is also capable of reading and remembering the next input
token (called the look-ahead token). The current state is always the one on
the top of the stack. The states of the finite state machine are given small
integer labels. Initially, the machine is in state 0 (the stack contains only state
0) and no look-ahead token has been read.

The machine has only four actions available—shift, reduce, accept, and
error. A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look-ahead
token to choose the action to be taken. If it needs one and does not
have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser
decides on its next action and carries it out. This may result in states
being pushed onto the stack or popped off of the stack and in the
look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a
shift action is taken, there is always a look-ahead token. For example, in
state 56 there may be an action

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is
pushed down on the stack, and state 34 becomes the current state (on the top
of the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. The
reduce actions are appropriate when the parser has seen the right-hand side
of a grammar rule and is prepared to announce that it has seen an instance of
the rule replacing the right side by the left side. It may be necessary to con-
sult the look-ahead token to decide whether or not to reduce (usually it is not
necessary). In fact, the default action (represented by a dot) is often a reduce
action.

yacc 6-13

Parser Operation

The reduce actions are associated with individual grammar rules. Gram-
mar rules are also given small integer numbers, and this leads to some confu-
sion. The action

reduce 18
refers to grammar rule 18, while the action
IF shift 34
refers to state 34.
Suppose the rule
A : x Yy z 5

is being reduced. The reduce action depends on the left-hand symbol (A in
this case) and the number of symbols on the right-hand side (three in this
case). To reduce, first pop off the top three states from the stack. (In general,
the number of states popped equals the number of symbols on the right side
of the rule.) In effect, these states were the ones put on the stack while recog-
nizing X, y, and z and no longer serve any useful purpose. After popping
these states, a state is uncovered, which was the state the parser was in before
beginning to process the rule. Using this uncovered state and the symbol on
the left side of the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues.” There are significant
differences between the processing of the left-hand symbol and an ordinary
shift of a token, however, so this action is called a goto action. In particular,
the look-ahead token is cleared by a shift but is not affected by a goto. In any
case, the uncovered state contains an entry such as

A goto 20
causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action turns back the clock in the parse popping the
states off the stack to go back to the state where the right side of the rule was
first seen. The/é;narser then behaves as if it had seen the left side at that time.
If the right-hand side of the rule is empty, no states are popped off of the
stacks. The uncovered state is in fact the current state.

The redufe action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the rule is
executed before the stack is adjusted.. In addition to the stack holding the
states, another stack running in parallel with it holds the values returned from
the lexical analyzer and the actions. When a shift takes place, the external
variable yylval is copied onto the value stack. After the return from the user

6-14 PROGRAMMER’S GUIDE

Parser Operation

code, the reduction is carried out. When the goto action is done, the external
variable yyval is copied onto the value stack. The pseudo-variables $1, $2,
etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept
action indicates that the entire input has been seen and that it matches the
specification. This action appears only when the look-ahead token is the
end-marker and indicates that the parser has successfully done its job. The
error action, on the other hand, represents a place where the parser can no
longer continue parsing according to the specification. The input tokens it has
seen (together with the look-ahead token) cannot be followed by anything
that would result in a legal input. The parser reports an error and attempts to
recover the situation and resume parsing. The error recovery (as opposed to
the detection of error) will be discussed later.

Consider the following as a yacc specification:

%/td:mDD\GM\GDEIL

%%

rhyme : sound place
5

sound H DING DONG
5

place ¢ DELL

When yacc is invoked with the -v option, a file called y.output is pro-
duced with a human-readable description of the parser. The y.output file
corresponding to the above grammar (with some statistics stripped off the
end) follows.

yacc 6-15

Parser Operation

state 0

state 1

state 2

state 3

state 4

state 5

state 6

$accept : _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

$accept : rhyme $end

$end accept
error
rhyme : sound_place

DELL shift 5

error
place goto 4
sound : DING_DONG
DONG shift 6
error
rhyme : sound place_
reduce 1

place : DELL_ (3)

. reduce 3

sound : DING DONG_

reduce 2

(M

(2)

6-16 PROGRAMMER’S GUIDE

Parser Operation

The actions for each state are specified, and there is a description of the pars-
ing rules being processed in each state. The _ character is used to indicate
what has been seen and what is yet to come in each rule. The following
input

DING DONG DELL

can be used to track the operations of the parser. Initially, the current state is
state 0. The parser needs to refer to the input in order to decide between the
actions available in state 0, so the first token, DING, is read and becomes the
look-ahead token. The action in state 0 on DING is shift 3, state 3 is pushed
onto the stack, and the look-ahead token is cleared. State 3 becomes the
current state. The next token, DONG, is read and becomes the look-ahead
token. The action in state 3 on the token DONG is shift 6, state 6 is pushed
onto the stack, and the look-ahead is cleared. The stack now contains 0, 3,
and 6. In state 6, without even consulting the look-ahead, the parser reduces
by

sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering
state 0. Consulting the description of state 0 (looking for a goto on sound),

sound goto 2
is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and the
look-ahead token is cleared. In state 5, the only action is to reduce by rule 3.
This has one symbol on the right-hand side, so one state, 5, is popped off,
and state 2 is uncovered. The goto in state 2 on place (the left side of rule 3)
is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states
are popped off, uncovering state 0 again. In state 0, there is a goto on rhyme
causing the parser to enter state 1. In state 1, the input is read and the end-
marker is obtained indicated by $end in the y.output file. The action in
state 1 (when the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG, DING
DONG DELL DELL, etc. A few minutes spent with this and other simple
examples is repaid when problems arise in more complicated contexts.

yacc 6-17

Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can
be structured in two or more different ways. For example, the grammar rule

expr : expr '—' expr
is a natural way of expressing the fact that one way of forming an arithmetic
expression is to put two other expressions together with a minus sign between

them. Unfortunately, this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input is

€Xpr — eXpr — expr
the rule allows this input to be structured as either
(expr — expr) — expr
or as
expr — (expr — expr)
(The first is called left association, the second right association.)

yacc detects such ambiguities when it is attempting to build the parser.
Given the input

eXpr — exXpr — expr
consider the problem that confronts the parser. When the parser has read the
second expr, the input seen

expr — expr
matches the right side of the grammar rule above. The parser could reduce
the input by applying this rule. After applying the rule, the input is reduced

to expr (the left side of the rule). The parser would then read the final part of
the input

— expr
and again reduce. The effect of this is to take the left associative interpreta-
tion.

Alternatively, if the parser sees
expr — expr
it could defer the immediate application of the rule and continue reading the
input until

6-18 PROGRAMMER’S GUIDE

Ambiguity and Conflicts

expr — expr — expr
is seen. It could then apply the rule to the rightmost three symbols reducing
them to expr, which results in

expr — expr
being left. Now the rule can be reduced once more. The effect is to take the
right associative interpretation. Thus, having read

expr — expr
the parser can do one of two legal things, a shift or a reduction. It has no
way of deciding between them. This is called a shift-reduce conflict. It may
also happen that the parser has a choice of two legal reductions. This is

called a reduce-reduce conflict. Note that there are never any shift-shift con-
flicts.

When there are shift-reduce or reduce-reduce conflicts, yacc still pro-
duces a parser. It does this by selecting one of the valid steps wherever it has
a choice. A rule describing the choice to make in a given situation is called a
disambiguating rule.

yacc invokes two default disambiguating rules:
1. In a shift-reduce conflict, the default is to do the shift.

2. In a reduce-reduce conflict, the default is to reduce by the earlier
grammar rule (in the yacc specification).

Rule 1 implies that reductions are deferred in favor of shifts when there is
a choice. Rule 2 gives the user rather crude control over the behavior of the
parser in this situation, but reduce-reduce conflicts should be avoided when
possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than yacc can
construct. The use of actions within rules can also cause conflicts if the action
must be done before the parser can be sure which rule is being recognized. In
these cases, the application of disambiguating rules is inappropriate and leads
to an incorrect parser. For this reason, yacc always reports the number of
shift-reduce and reduce-reduce conflicts resolved by Rule 1 and Rule 2.

yacc 6-19

Ambiguity and Conflicts

In general, whenever it is possible to apply disambiguating rules to pro-
duce a correct parser, it is also possible to rewrite the grammar rules so that
the same inputs are read but there are no conflicts. For this reason, most pre-
vious parser generators have considered conflicts to be fatal errors. Our
experience has suggested that this rewriting is somewhat unnatural and pro-
duces slower parsers. Thus, yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider
stat : IF '(' cond ')' stat
| IF '(' cond ')' stat ELSE stat
5
which is a fragment from a programming language involving an if-then-else
statement. In these rules, IF and ELSE are tokens, cond is a nonterminal sym-
bol describing conditional (logical) expressions, and stat is a nonterminal sym-

bol describing statements. The first rule will be called the simple if rule and
the second, the if-else rule.

These two rules form an ambiguous construction because input of the
form

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways

IF (C1)
{
IF (C2)
s1
}
ELSE
s2
or
IF (C1)
{
IF (C2)
s1
ELSE
s2
}

6-20 PROGRAMMER’S GUIDE

Ambiguity and Conflicts

where the second interpretation is the one given in most programming
languages having this construct; each ELSE is associated with the last preced-
ing un-ELSE’d IF. In this example, consider the situation where the parser
has seen

IF (C1) IF (C2) s1

and is looking at the ELSE. It can immediately reduce by the simple if rule to
get

IF (C1) stat
and then read the remaining input
ELSE S2
and reduce
IF (C1) stat ELSE S2
by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, 52 read, and then the right-
hand portion of

IF (C1) IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get
IF (C1) stat

which can be reduced by the simple if rule. This leads to the second of the
above groupings of the input which is usually desired.

Once again, the parser can do two valid things—there is a shift-reduce
conflict. The application of disambiguating rule 1 tells the parser to shift in
this case, which leads to the desired grouping.

This shift-reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as

IF (C1) IF (€2) ¢1

have already been seen. In general, there may be many conflicts, and each
one will be associated with an input symbol and a set of previously read
inputs. The previously read inputs are characterized by the state of the
parser.

yacc 6-21

Ambiguity and Conflicts
The conflict. messages of yacc are best understood by examining the ver-

bose (-v) option output file. For example, the output corresponding to the
above conflict state might be

éhift—redlme conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF (cond) stat (18)
stat : IF (cond) stat EISE stat

ELSE shift 45

\. reduce 18

where the first line describes the conflict—giving the state and the input sym-
bol. The ordinary state description gives the grammar rules active in the state
and the parser actions. Recall that the underline marks the portion of the
grammar rules, which has been seen. Thus in the example, in state 23 the
parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do
two possible things. If the input symbol is ELSE, it is possible to shift into
state 45. State 45 will have, as part of its description, the line

stat : IF (cond) stat ELSE stat

because the ELSE will have been shifted in this state. In state 23, the alterna-
tive action (describing a dot, .) is to be done if the input symbol is not men-
tioned explicitly in the actions. In this case, if the input symbol is not ELSE,
the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

6-22 PROGRAMMER’S GUIDE

Ambiguity and Conflicts

Once again, notice that the numbers following shift commands refer to
other states, while the numbers following reduce commands refer to grammar
rule numbers. In the y.output file, the rule numbers are printed in
parentheses after those rules, which can be reduced. In most states, there is a
reduce action possible in the state and this is the default command. The user
who encounters unexpected shift-reduce conflicts will probably want to look
at the verbose output to decide whether the default actions are appropriate.

yacc 6-23

Precedence

There is one common situation where the rules given above for resolving
conflicts are not sufficient. This is in the parsing of arithmetic expressions.
Most of the commonly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for operators, together
with information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers
that are faster and easier to write than parsers constructed from unambiguous
grammars. The basic notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar with many parsing conflicts. As disambiguating rules, the user
specifies the precedence or binding strength of all the operators and the asso-
ciativity of the binary operators. This information is sufficient to allow yacc to
resolve the parsing conflicts in accordance with these rules and construct a
parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declara-
tions section. This is done by a series of lines beginning with a yacc keyword:
%left, %right, or %nonassoc, followed by a list of tokens. All of the tokens
on the same line are assumed to have the same precedence level and associa-
tivity; the lines are listed in order of increasing precedence or binding
strength. Thus:

%left ‘'+' '
%left 'x' '/

describes the precedence and associativity of the four arithmetic operators.
Plus and minus are left associative and have lower precedence than star and
slash, which are also left associative. The keyword %right is used to describe
right associative operators, and the keyword %nonassoc is used to describe
operators, like the operator .LT. in FORTRAN, that may not associate with
themselves. Thus:

A .LT. B .LT. C

6-24 PROGRAMMER’S GUIDE

Precedence

is illegal in FORTRAN and such an operator would be described with the key-
word %nonassoc in yacc. As an example of the behavior of these declara-
tions, the description

i =
%left '+’ '~
%left ‘x' '/

%%

expr : expr ‘=’ expr
expr '+’ expr
expr '—' expr

expr ‘%' expr
expr '/’ expr

might be used to structure the input

a = b = cxd — e — fxg
as follows

a=(b=(((cxd)e) — (f*xg)))

in order to perform the correct precedence of operators. When this mechan-
ism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary
minus, -

Unary minus may be given the same strength as multiplication, or even
higher, while binary minus has a lower strength than multiplication. The key-
word, %prec, changes the precedence level associated with a particular gram-
mar rule. The keyword %prec appears immediately after the body of the
grammar rule, before the action or closing semicolon, and is followed by a
token name or literal. It causes the precedence of the grammar rule to become
that of the following token name or literal. For example, the rules

yacc 6-25

Precedence

%left ‘'x' '/’

%%
expr @ expr '+’ expr

| expr ‘—' expr

| expr ‘%' expr

| expr /' expr

| '~ expr Y%prec *’

| NAME

’

might be used to give unary minus the same precedence as multiplication.

A token declared by %left, %right, and %nonassoc need not be, but may
be, declared by %token as well.

Precedences and associativities are used by yacc to tesolve parsing con-
flicts. They give rise to the following disambiguating rules:

1.

Precedences and associativities are recorded for those tokens and
literals that have them.

A precedence and associativity is associated with each grammar rule.
It is the precedence and associativity of the last token or literal in the
body of the rule. If the %prec construction is used, it overrides this
default. Some grammar rules may have no precedence and associa-
tivity associated with them.

When there is a reduce-reduce conflict or there is a shift-reduce con-
flict and either the input symbol or the grammar rule has no pre-
cedence and associativity, then the two default disambiguating rules
given at the beginning of the section are used, and the conflicts are
reported.

PROGRAMMER’S GUIDE

Precedence

4. If there is a shift-reduce conflict and both the grammar rule and the
input character have precedence and associativity associated with
them, then the conflict is resolved in favor of the action—shift or
reduce—associated with the higher precedence. If precedences are
equal, then associativity is used. Left associative implies reduce; right
associative implies shift; nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift-
reduce and reduce-reduce conflicts reported by yacc. This means that mis-
takes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in a
cookbook fashion until some experience has been gained. The y.output file is
very useful in deciding whether the parser is actually doing what was
intended.

yacc 6-27

Error Handling

Error handling is an extremely difficult area, and many of the problems
are semantic ones. When an error is found, for example, it may be necessary
to reclaim parse tree storage, delete or alter symbol table entries, and/or, typi-
cally, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found. It is
more useful to continue scanning the input to find further syntax errors. This
leads to the problem of getting the parser restarted after an error. A general
class of algorithms to do this involves discarding a number of tokens from the
input string and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides the token
name error. This name can be used in grammar rules. In effect, it suggests
places where errors are expected and recovery might take place. The parser
pops its stack until it enters a state where the token error is legal. It then
behaves as if the token error were the current look-ahead token and performs
the action encountered. The look-ahead token is then reset to the token that
caused the error. If no special error rules have been specified, the processing
halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting
an error, remains in error state until three tokens have been successfully read
and shifted. If an error is detected when the parser is already in error state,
no message is given, and the input token is quietly deleted.

As an example, a rule of the form
stat : error

means that on a syntax error the parser attempts to skip over the statement in
which the error is seen. More precisely, the parser scans ahead, looking for
three tokens that might legally follow a statement and start processing at the
first of these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up reporting a
second error where there is in fact no error.

Actions may be used with these special error rules. These actions might
attempt to reinitialize tables, reclaim symbol table space, etc.

6-28 PROGRAMMER’S GUIDE

Error Handling

Error rules such as these mentioned are very general but difficult to con-
trol. Rules such as

stat : error ';'

are somewhat easier. Here, when there is an error, the parser attempts to skip
over the statement but does so by skipping to the next semicolon. All tokens
after the error and before the next semicolon cannot be shifted and are dis-
carded. When the semicolon is seen, this rule will be reduced and any
cleanup action associated with it performed.

Another form of error rule arises in interactiv<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>