Documents for
UNIX

VOLUME 2

T. A. Dolotta
S. B. Olsson
A. G. Petruccelli

Editors
January 1981

Not for use or disclosure outside the
Bell System except under written agreement

Laboratory 4517
Bell Telephone Laboratories, Incorporated
Murray Hill, NJ 07974

Copyright © 1981 Bell Telephone Laboratories, Inc.

UNIX is a trademark of Bell Telephone Laboratories, Inc.

These documents were set on an AUTOLOGIC,
Inc. APS-5 phototypesetter driven by the TROFF
JSormatter operating under the UNIX system.

Daocuments for UNLX 1

ANNOTATED
TABLE OF CONTENTS

NOTES: All the documents included here are supplements to the UNIX User's Manual (see G.1
below); the reader’s attention is also drawn to documents G.2, G.3, and G 4.

Each document listed in Sections A through F below applies to UNIX Release 4.0, unless
otherwise indicated after its title.

The number of pages in each document is given after the name(s) of its author(s).

VOLUME 1
A. OVERVIEWS

1. Overview and Synopsis
1. UNIX— Overview and Synopsis of Facilities
T. A. Dolotta, R. C. Haight, and A. G. Petruccelli (p. 17)
A concise outline of the features and facilities of UNIX.

2. The UNIX Time-Sharing System
1. The UNIx Time-Sharing System:
D. M. Ritchie and K. Thompson (p. 16)
The original, prize-winning UNIX paper, reprinted from G.5 below.

B. GETTING STARTED

1. Road Map
1. UNIX Documentation Road Map
G. A. Snyder and J. R. Mashey (p. 8)
A structured list of UNIX documents and information sources.
w# A local section should be added to this document at each installation.

2. Editors
1. A Tutorial Introduction to the UNIx Text Editor
B. W. Kernighan (p. 11)
An easy way to get started with the text editor.
2. Advanced Editing on UNIX
B. W. Kernighan (p. 16)
A guide to the more advanced features of the text editor.
3. SED—A Non-Interactive Text Editor
L. E. McMahon (p. 10)
A variant of the text editor for stream editing.

3. UNIX for Beginners
1. UNIX for Beginners (Second Edition)
B. W. Kernighan (p. 13)
An introduction to some of the basic uses of UNIX.

4. Shell
1. UNIXx Shell Tutorial
G. A. Snyder and J. R. Mashey (p. 36+ii)
An introduction to the various uses and facilities of the UNIX com-
mand language interpreter, with many examples.
2. An Introduction to the UNIX Shell
S. R. Bourne (p. 24)
Description of the UNIX command language interpreter.

January 1981

2 Documents for UNIX

C. DOCUMENT PREPARATION

1. NROFF/TROFF
1. A TROFF Tutorial
B. W. Kernighan (p. 14)
A beginner’s guide to phototypesetting with TROFF
2. NROFF/TROFF User’s Manual
J. F. Ossanna (p. 37)
Reference manual for the UNIX text formatters.

2. Macros for NROFF/TROFF
1. MM— Memorandum Macros
D. W. Smith and J. R. Mashey (p. 69+iv)
Reference manual for MM, the standard BTL text-formatting macros.
2. Typing Documents with MM
D. W. Smith and E. M. Piskorik (p. 16)
. A fold-out card that summarizes the MM macros; furnished separately.
3. A Macro Package for View Graphs and Slides
T. A. Dolotta and D. W. Smith (p. 23)
A guide to making visual aids with TROFF.

3. TBL and EQN
1. TBL— A Program to Format Tables
M. E. Lesk (p. 18)
An NROFF/TROFF preprocessor that permits easy formatting of tabular
matter,
2. Typesetting Mathematics— User’s Guide (Second Edition)
B. W. Kernighan and L. L. Cherry (p. 11)
Manual for the EQN and NEQN preprocessors for TROFF and NROFF,
respectively; these preprocessors allow one to specify, in an easy-to-
learn language, how to typeset complex mathematical expressions.
3. A System for Typesetting Mathematics
B. W. Kernighan and L. L. Cherry (p. 8)
A revision of the original EQN paper (C4CM 18, March 1975), describ-
ing the principles behind the design of its input language and internal
structure.

D. PROGRAMMING

1. C and LINT
1. The C Programming Language— Reference Manual
D. M. Ritchie (p. 31)
Official statement of the syntax and semantics of C; supplemented by
G.9 below.
2. A Guide to the C Library for UNIX Users
C. D. Perez (p. 20)
An explanation of how to use the C library.
3. LINT, a C Program Checker
S. C. Johnson (p. 11)
A program that checks C code for syntax errors, type violations, porta-
bility problems, and a variety of potential errors.

January 1981

Documents for UNIX 3

2. FORTRAN, RATFOR, and EFL
1. A Portable FORTRAN 77 Compiler
S. I. Feldman and P. J. Weinberger (p. 19)
The FORTRAN 77 language and its interfaces with the operating sys-
tem.
2. RATFOR—A Preprocessor for a Rational FORTRAN
B. W. Kernighan (p. 12)
A preprocessor that endows FORTRAN with C-like control structures
and input format.
3. The Programming Language EFL
S. I. Feldman (p. 36)
A general-purpose computer language intended to encourage portable
programming, while making use of the good features and facilities of
FORTRAN.

3. UNIX Programming
1. UNIx Programming (Second Edition)
B. W. Kernighan and D. M. Ritchie (p. 22)
A guide to writing programs that interface to the UNIX operating sys-
tem, either directly or through the Standard 1/0 Library.

4. MAKE
1. MAKE—A Program for Maintaining Computer Programs
S. 1. Feldman (p. 9)
A tool for automating the recompilation of large programs.
2. An Augmented Version of MAKE
E. G. Bradford (p. 16)
A discussion of how to use MAKE to its fullest advantage.

5. Debuggers
1. SDB— A Symbolic Debugger
H. P. Katseff (p. 9)
A debugger that allows one to examine the ‘‘core image’’ of an aborted
program.
2. A Tutorial Introduction to ADB
J. F. Maranzano and S. R. Bourne (p. 27)
A guide to debugging crashed systems and programs; ADB is used
mostly by system programmers.

January 1981

4 Documents for UNIX

VOLUME 2

E. SUPPORTING TOOLS AND LANGUAGES

1. LEX and YACC
1. LEx—A Lexical Analyzer Generator
M. E. Lesk and E. Schmidt (p. 19)

A program that generates recognizers of sets of regular expressions;
each regular expression can be followed by arbitrary C code that is exe-
cuted when the regular expression is found.

2. YAcc—Yet Another Compiler-Compiler

| S. C. Johnson (p. 33)

A converter from a BNF specification of a language and semantic
actions written in C into a compiler for that language.

2. M4 Macro Processor
1. The M4 Macro Processor
B. W. Kernighan and D. M. Ritchie (p. 6)
A macro processor, also useful as a front end for languages such as C
and RATFOR.

3. AWK
1. AWK—A Pattern Scanning and Processing Language (Second Edition)
A. V. Aho, B. W. Kernighan, and P. J. Weinberger (p. 8)
A language that makes it easy to specify many data selection and
transformation operations.

4. Sccs
1. Source Code Control System User’s Guide
L. E. Bonanni and C. A. Salemi (p. 27)
A package for controlling access and changes to (possibly multiple ver-
sions of) source programs and text files.
2. Function and Use of an SCCS Interface Program
L. E. Bonanni and A. Guyton (p. 3)
A discussion of how to control concurrent updates to SCCS files.

5. Calculators
1. BC—An Arbitrary Precision Desk-Calculator Language
L. L. Cherry and R. Morris (p. 14)
A front end for DC (see below) that provides infix notation, flow con-
trol, and built-in functions.
2. DC—An Interactive Desk Calculator
R. Morris and L. L. Cherry (p. 8)
An interactive desk calculator program that implements arbitrary-
precision integer arithmetic.

6. Graphics
1. UNIX Graphics Overview
A.R. Feuer (p. 7)
An introduction to the UNIX graphics facility.
2. A Tutorial Introduction to the Graphics Editor
A. R. Feuer (p. 17)
A guide to making graphs, drawings, and pictures on Tektronix series
4010 terminals. .

January 1981

Documents for UNIX 5

3. STAT—A Tool for Analyzing Data
A. R. Feuer and A. Guyton (p. 20)
A collection of programs that can be interconnected via the shell to
analyze statistical data and display the results in graphical form.
4. Administrative Information for the UNIX Graphics Package
R. L. Chen, D. E. Pinkston, and A. Guyton (p. 6)
A reference guide for administrators of UNIX graphics facilities.

7. RJE and Networking
1. UNIx Remote Job Entry User’s Guide
A. L. Sabsevitz and K. A. Kelleman (p. 7)
A guide to submitting jobs to an IBM system via the UNIX Remote Job
Entry (RJE) facility.
2. UNIX Remote Job Entry Administrator’s Guide
M. 1. Fitton (p. 20)
A guide to setting up RJE on both UNIX and IBM systems, and to
trouble-shooting when things go wrong.
3. Release 1.0 of the UNIx Virtual Protocol Machine (UNIX 3.0)
P. F. Long and C. Mee, III (p. 7)
A description of the first version of VPM; good background reading.
4. Release 2.0 of the UNIX Virtual Protocol Machine (UNIX 3.0)
P. F. Long and C. Mee, IIT (p. 20)
A newer release of VPM; supports bit-oriented, full-duplex protocols.

8. uUuce
1. A Dial-up Network of UNIX Systems
D. A. Nowitz and M. E. Lesk (p. 10)
Description of the design of a dial-up UNIX network called UUCP and
used for transmission and distribution of programs and text files.
2. UucP Implementation Description
D. A. Nowitz (p. 15)
A detailed description of UUCP for use by administrators of UNIX
systems.

9. Printer Spooler
1. The Implementation of the LP Spooling System
J. R. Kliegman (p. 13)
Explanation of how the LP spooler works and how it can be used as a
general-purpose spooler, as well as a line-printer spooler.
2. LP Administrator’s Guide
J. R. Kliegman (p. 12)
A guide for those who oversee the operation of LP spoolers.

F. ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION

1. Operations and FSCK
1. UNIx Operations Manual
A. G. Petruccelli (p. 24+ii)
Duties of a UNIX operator.
2. FSCK—The UNIx File System Check Program
T. J. Kowalski (p. 20)
A guide to checking and fixing UNIX file systems.

January 1981

6 Documents for UNIX

2. Accounting and System Activity
1. The UNIx Accounting System
H. S. McCreary and A. G. Petruccelli (p. 19)
A guide to the use and management of the UNIX accounting system.
2. The UNIx System Activity Package
T. W. Pao (p. 8)
A package that reports on processor utilization, terminal activity, disk
and tape I/O, swapping, system calls, etc.

3. Stand-Alone I/O
1. A Stand-Alone Input/Output Library
S. R. Eisen (p. 11)
A guide to the stand-alone library and the stand-alone shell (SASH).

4. ETP
1. The UNix Equipment Test Package: Operational Procedures (UNIX 3.0)
A. L. Chellis and T. J. Kowalski (p. 24)
The Equipment Test Package, a collection of UNIX hardware exercisers.

5. UNIX Internals
1. UNix Implementation
K. Thompson (p. 10)
An explanation of how UNIX works; reprinted from G.5 below.
2. The UNix I/O System
D. M. Ritchie (p. 7)
Guide for writers of UNIX device drivers.
3. UNix on the Pppr-11/23 and 11/34 Computers (UNIX 3.0)
T. J. Kowalski (p. 7)
Description of what had to be done to UNIX to make it run on the
PDP-11/23 and the PDP-11/34.
4. UNIXx Assembler Reference Manual
D. M. Ritchie (p. 12)
Describes the UNIX PDP-11 assembler; a tool of last resort.

6. C Internals
1. A Tour Through the Portable C Compiler
S. C. Johnson (p. 25)
A description of how the portable C compiler works.
2. A Tour Through the UNIx C Compiler
D. M. Ritchie (p. 15)
A description of how the PDP-11 C compiler works.

7. Security
1. On the Security of UNIX
D. M. Ritchie (p. 3)
Hints on how to break UNIX and how to prevent it.
2. Password Security— A Case History
R. Morris and K. Thompson (p. 6)
The story of how the bad guys used to be able to break the password
algorithm and why they can’t now, at least not so easily.

January 1981

Documents for UNIX 7

G. RECOMMENDED READING (not included)

1.

10.

UNIx User’s Manual—Release 3.0
T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.)
Bell Laboratories (June 1980).
The basic document for every UNIX user.
UNIX Reference Guide
J. C. White (compiler) and P. V. Guidi (ed.)
Bell Laboratories (April 1981).
A pocket-size summary of UNIX commands, macro packages, etc.
Setting up UNIX
R. C. Haight, M. J. Petrella, and L. A. Wehr
Bell Laboratories.
Procedures for installing UNIX; must reading for anyone who wants to
configure and/or generate a UNIX system. (Because this document changes
with each release of UNIX, it is not included here; it is distributed with each
copy of the UNIX system itself.)
Administrative Advice for UNIX
R. C. Haight
Bell Laboratories. .
Hints for getting UNIX up, getting it going, and keeping it going, plus some
information about hardware; must reading for UNIX system administrators.
(This document is distributed just like G.3 above.)
The Bell System Technical Journal
Vol. 57, No. 6, Part 2 (July-August 1978).
Special issue devoted to UNIX.
Using a Command Language as the Primary Programming Tool
T. A. Dolotta and J. R. Mashey
In: Beech, D. (ed.), Command Language Directions (Proc. Second IFIP Working
Conf. on Command Languages). Amsterdam: North Holland (1980), pp. 35-55.
A discussion of how to get the most out of the UNIX shell.
The UNIx Programming Environment
B. W. Kernighan and J. R. Mashey
COMPUTER, Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this
paper was published in Software— Practice & Experience, Vol. 9, No. 1, pp. 1-15
(Jan. 1979).
A discussion of what’s good about UNIX.
Software Tools
B. W. Kernighan and P. 1. Plauger
Reading, MA: Addison-Wesley (1976).
A textbook for building good software tools similar to those available in
UNIX.
The C Programming Language
B. W. Kernighan and D. M. Ritchie
Englewood Cliffs, NJ: Prentice-Hall (1978).
The basic book for every C programmer; contains a tutorial and many
examples.
Experiences with the UNIx Time-sharing System
J. Lions
Software— Practice & Experience, Vol. 9, No. 9, pp. 701-709 (September 1979).
An enjoyable article that tells why they like UNIX in New South Wales.

January 1981

8 Documents for UNIX

11. The Evolution of the UNIX Time-sharing System
D. M. Ritchie '
Proc. Symposium on Language Design and Programming Methodology, Sydney, Aus-
tralia (September 1979).
Ten years later, one of the creators of UNIX looks back.
12. The Source Code Control System
M. J. Rochkind
IEEE Trans. Sofiware Eng., Vol. SE-1, No. 4, pp. 364-370 (December 1975).
The motivation for, and the underlying design of, SCCS.

January 1981

UNIX
E.1.1

LEX—A Lexical Analyzer Generator

M. E. Lesk
E. Schmidt

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type transforma-
tions and for segmenting input in preparation for a parsing routine. :

Lex source is a table of regular expressions and corresponding program fragments.
The table is translated to a program which reads an input stream, copying it to an
output stream and partitioning the input into strings which match the given
expressions. As each such string is recognized the corresponding program frag-
ment is executed. The recognition of the expressions is performed by a deter-
ministic finite automaton generated by Lex. The program fragments written by
the user are executed in the order in which the corresponding regular expressions
occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and
choose the longest match possible at each input point. If necessary, substantial
look-ahead is performed on the input, but the input stream will be backed up to
the end of the current partition, so that the user has general freedom to manipu-
late it.

Lex can generate analyzers in either C or Ratfor, a language that can be translated
automatically to portable Fortran. It is available on the UNIXY Time-Sharing Sys-
tem, Honeywell GCOS, and IBM OS systems. This manual, however, will only dis-
cuss generating analyzers in C on the UNIX system, which is the only supported
form of Lex under UNIX Version 7. Lex is designed to simplify interfacing with
Yacc, for those with access to this compiler-compiler system.

1. INTRODUCTION

Lex is a program generator designed for lexical processing of character input streams. It accepts
a high-level, problem oriented specification for character string matching, and produces a pro-
gram in a general purpose language which recognizes regular expressions. The regular expres-
sions are specified by the user in the source specifications given to Lex. The Lex written code
recognizes these expressions in an input strcam and partitions the input stream into strings
matching the expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the program frag-
ments. As each expression appears in the input to the program written by Lex, the correspond-
ing fragment is executed.

The user supplies the additional code beyond expression matching needed to complete his
tasks, possibly including code written by other generators. The program that recognizes the
expressions is generated in the general purpose programming language employed for the user’s
program fragments. Thus, a high level expression language is provided to write the string
expressions to be matched while the user’s freedom to write actions is unimpaired. This avoids

t UNIX is a trademark of Bell Laboratories.

2 LEX

forcing the user who wishes to use a string manipulation language for input analysis to write
processing programs in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature
which can be added to different programming languages, called ““host languages.’” Just as gen-
eral purpose languages can produce code to run on different computer hardware, Lex can write
code in different host languages. The host language is used for the output code generated by
Lex and also for the program fragments added by the user. Compatible run-time libraries for
the different host languages are also provided. This makes Lex adaptable to different environ-
ments and different users. Each application may be directed to the combination of hardware
and host language appropriate to the task, the user’s background, and the properties of local
implementations. At present, the only supported host language is C, although Fortran (in the
form of Ratfor [2] has been available in the past. Lex itself exists on the UNIX Time-Sharing
System, GCOS, and OS/370; but the code generated by Lex may be taken anywhere the
appropriate compilers exist.

Lex turns the user’s expressions and actions (called source in this memo) into the host
general-purpose language; the generated program is named yylex. The yylex program will
recognize expressions in a stream (called input in this memo) and perform the specified actions
for each expression as it is detected. See Figure 1.

Source — | Lex | — yylex

Input — | yylex | — Output

Figure 1. An Overview of Lex

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends
of lines.

%%
(\t]+§ ;

is all that is required. The program contains a %% delimiter to mark the beginning of the rules,
and one rule. This rule contains a regular expression which matches one or more instances of
the characters blank or tab (written \t for visibility, in accordance with the C language conven-
tion) just prior to the end of a line. The brackets indicate the character class made of blank and
tab; the + indicates ‘“‘one or more ...””; and the $ indicates ‘‘end of line,”” as in QED. No
action is specified, so the program generated by Lex (yylex) will ignore these characters.
Everything else will be copied. To change any remaining string of blanks or tabs to a single
blank, add another rule:

%%
[\t]+$
[\t]l+ printf(" ");

The finite automaton generated for this source will scan for both rules at once, observing at the
termination of the string of blanks or tabs whether or not there is a new-line character, and
executing the desired rule action. The first rule matches all strings of blanks or tabs at the end
of lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a
lexical level. Lex can also be used with a parser generator to perform the lexical analysis phase;

LEX 3

it is particularly easy to interface Lex and Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class of context free grammars, but require a
lower level analyzer to recognize input tokens. Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a later parser generator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow of
control in such a case (which might be the first half of a compiler, for example) is shown in
Figure 2. Additional programs, written by other generators or by hand, can be added easily to
programs written by Lex. Yacc users will realize that the name yylex is what Yacc expects its
lexical analyzer to be named, so that the use of this name by Lex simplifies interfacing.

lexical grammar
rules rules
| 1
Lex Yacc
l |

Input — | yylex | — | yyparse | — Parsed input

Figure 2. Lex with Yacc

Lex generates a deterministic finite automaton from the regular expressions in the source [4].
The automaton is interpreted, rather than compiled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input. The number of Lex rules or the com-
plexity of the rules is not important in determining speed, unless rules which include forward
context require a significant amount of rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and therefore the size of the program
generated by Lex.

In the program written by Lex, the user’s fragments (representing the actions to be performed
as each regular expression is found) are gathered as cases of a switch. The automaton inter-
preter directs the control flow. Opportunity is provided for the user to insert either declarations
or additional statements in the routine containing the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be interpreted on the basis of one character look-ahead.
For example, if there are two rules, one looking for ab and another for abedefg, and the input
stream is abedefh, Lex will recognize ab and leave the input pointer just before e¢d... Such
backup is more costly than the processing of simpler languages.

2. LEX SOURCE
The general format of Lex source is:

{definitions}

%%

{rules}

%%

{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is optional,
but the first is required to mark the beginning of the rules. The absolute minimum Lex pro-
gram is thus

%%

(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of Lex programs shown above, the rules represent the user’s control decisions;
they are a table, in which the left column contains regular expressions (see section 3) and the
right column contains actions, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message ‘“‘found keyword INT”
whenever it appears. In this example the host procedural language is C and the C library func-
tion printf is used to print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a line, it should be enclosed in braces.
As a slightly more useful example, suppose it is desired to change a number of words from
British to American spelling. Lex rules such as:

colour printf("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enough, since the word petroleum would become
gaseum; a way of dealing with this will be described later.
3. LEX REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those in QED [5]. A regular expres-
sion specifies a set of strings to be matched. It contains text characters (which match the
corresponding characters in the strings being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer

matches thie string integer wherever it appears and the expression
a57D

looks for the string a57D.

3.1 Operators

The operator characters are
NI =2.++1O)8/{}% <>

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"++" ' _
matches the string xyz++ when it appears. Note that a part of a sti'ing may be quotéd. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyz++"
is the same as the one above. Thus by quoting every non-alphanumeric character being used as

a text character, the user can avoid remembering the list above of current operator characters,
and is safe should further extensions to Lex lengthen the list.

LEX 5

An operator character may also be turned into a text character by preceding it with \ as in
xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use of the quot-
ing mechanism is to get a blank into an expression; normally, as explained above, blanks or
tabs end a rule. Any blank character not contained within [] (see below) must be quoted.
Several normal C escapes with \ are recognized: \n is new-line, \t is tab, and \b is backspace.
To enter \ itself, use \\. Since new-line is illegal in an expression, \n must be used; it is not
required to escape tab and backspace. Every character but blank, tab, new-line and the list
above is always a text character.

3.2 Character classes

Classes of characters can be specified using the operator pair []. The construction [abc/
matches a single character, which may be a, b, or ¢. Within square brackets, most operator
meanings are ignored. Only three characters are special: these are \ — and . The — character
indicates ranges. For example,

[a—z0—9<>_]

indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using — between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation
dependent and will get a warning message (e.g., [0—z] in ASCII is many more characters than
it is in EBCDIC). If it is desired to include the character — in a character class, it should be
first or last; thus

[—+0-9]
matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character
set. Thus

[“abc]
matches all characters except a, b, or ¢, including all special or control characters; or
[fa—zA—Z]

is any character which is not a letter. The \ character provides the usual escapes within charac-
ter class brackets.

3.3 Arbitrary character

To match almost any character, the operator character

is the class of all characters except new-line. Escaping into octal is possible although non-
portable:

[\40—\176]
matches all printable ASCII characters, from octal 40 (blank) to octal 176 (tilde).
3.4 Optional expressions
The operator ? indicates an optional element of an expression. Thus

ab?%

matches either ac or abc.

3.5 Repeated expressions

Repetitions of classes are indicated by theyopcrators + and +.
ax

is any number of consecutive a characters, including zero; while
a+t+

is one or more instances of a. For example,
[a—z]+

is all strings of lower case letters. And
(A-Za—z][A—Za—20—9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expres-
sion for recognizing identifiers in computer languages.

3.6 Alternation and Grouping
The operator | indicates alternation:
(ablcd)

matches either ab or ed. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

ablcd
would have sufficed. Parentheses can be used for more complex expressions:
(abled+)?(ef)*
matches such strings as abefef, efefef, cdef, or cddd ; but not abc, abed, or abcdef.
3.7 Context Sensitivity

Lex will recognize a small amount of surrounding context. The two simplest operators for this
are ~ and §. If the first character of an expression is ~, the expression will only be matched at
the beginning of a line (after a new-line character, or at the beginning of the input stream).
This can never conflict with the other meaning of ~, complementation of character classes,
since that only applies within the [] operators. If the very last character is §, the expression
will only be matched at the end of a line (when immediately followed by new-line). The latter
operator is a special case of the / operator character, which indicates trailing context. The
expression

ab/cd
matches the string ab, but only if followed by ed. Thus
ab$
is the same as
ab/\n
Left context is handled in Lex by start conditions as explained in section 10. If a rule is only

to be executed when the Lex automaton interpreter is in start condition x, the rule should be
prefixed by

<x>>

using the angle bracket operator characters. If we considered ‘‘being at the beginning of a line®’

to be start condition ONE, then the ~ operator would be equivalent to

LEX 7

<ONE>
Start conditions are explained more fully later.
3.8 Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if
they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expression. The
definitions are given in the first part of the Lex input, before the rules. In contrast,

a{l,5}
looks for 1 to 5 occurrences of a.

Finally, initial % is special, being the separator for Lex source segments.

4. LEX ACTIONS

When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without produc-
ing any output, must provide rules to match everything. When Lex is being used with Yacc,
this is the normal situation. One may consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a
character combination which is omitted from the rules and which appears as input is likely to be
printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null state-
ment, ; as an action causes this result. A frequent rule is

[\t\n] ;
which causes the three spacing characters (blank, tab, and new-line) to be ignored.

Another easy way to avoid writing actions is the action character |, which indicates that the
action for this rule is the action for the next rule. The previous example could also have been
written

n\tn |

H\n" ;
with the same result, although in different style. The quotes around \n and \t are not required.

In more complex actions, the user will often want to know the actual text that matched some
expression like [a—z/+. Lex leaves this text in an external character array named yytext.
Thus, to print the name found, a rule like

[a—z]+ printf("%s", yytext);

will print the string in yytext. The C function printf accepts a format argument and data to be
printed; in this case, the format is *‘print string’’ (% indicating data conversion, and s indicat-
ing string type), and the data are the characters in yytext. So this just places the matched string
on the output. This action is so common that it may be written as ECHO:

[a—z}+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default action? Such rules

8 LEX

are often required to avoid matching some other rule which is not desired. For example, if
there is a rule which matches read it will normally match the instances of read contained in
bread or readjust; to avoid this, a rule of the form [a—z/+ is needed. This is explained
further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also pro-
vides a count yyleng of the number of characters matched. To count both the number of
words and the number of characters in words in the input, the user might write

[a—zA—Z]4+ {words++; chars + = yyleng;}

which accumulates in chars the number of characters in the words recognized. The last charac-
ter in the string matched can be accessed by

yytext[yyleng—1]

Occasionally, a Lex action may decide that a rule has not recognized the correct span of charac-
ters. Two routines are provided to aid with this situation. First, yymore() can be called to
indicate that the next input expression recognized is to be tacked on to the end of this input.
Normally, the next input string would overwrite the current entry in yytext. Second, yyless (n)
may be called to indicate that not all the characters matched by the currently successful expres-
sion are wanted right now. The argument n indicates the number of characters in yytext to be
retained. Further characters previously matched are returned to the input. This provides the
same sort of look-ahead offered by the / operator, but in a different form.

Example: Consider a language which defines a string as a set of characters between quotation
(") marks, and provides that to include a " in a string it must be preceded by a \. The regular
expression which matches that is somewhat confusing, so that it might be preferable to write
[l |
if (yytextlyyleng—1] =="\\)
yymore();
else
... normal user processing

}

which will, when faced with a string such as "abc\"def" first match the five characters "abe\;
then the call to yymore() will cause the next part of the string, "def, to be tacked on the end.
Note that the final quote terminating the string should be picked up in the code labeled *‘nor-
mal processing’’.

The function yyless() might be used to reprocess text in various circumstances. Consider the
C problem of distinguishing the ambiguity of ‘““=-—a’’. Suppose it is desired to treat this as
*“=—a"" but print a message. A rule might be

=—[a—zA—Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng—1);
... action for =— __.

}

which prints a message, returns the letter after the operator to the input stream, and treats the
operator as **=—"", Alternatively it might be desired to treat this as ““= —a’’. To do this, just
return the minus sign as well as the letter to the input:

LEX 9

=—[a—zA—-2Z] { \
printf("Operator (=—) ambiguous\n");
yyless(yyleng—2);
... action for = ...

}

will perform the other interpretation. Note that the expressions for the two cases might more
easily be written

=—/[A—Za——z]
in the first case and
=/—[A-—Za—z]

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of *“=-—3"", however, makes

=—/[" \t\n]
a still better rule.
In addition to these routines, Lex also permits access to the I/O routines it uses. They are:
1. input() which returns the next input character;
2. output(c) which writes the character ¢ on the output; and
3. unput(c) pushes the character ¢ back onto the input stream to be read later by imput().

By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and inter-
nal characters, and must all be retained or modified consistently. They may be redefined, to
cause input or output to be transmitted to or from strange places, including other programs or
internal memory; but the character set used must be consistent in all routines; a value of zero
returned by input must mean end of file; and the relationship between unput and input must be
retained or the Lex look-ahead will not work. Lex does not look ahead at all if it does not have
to, but every rule ending in + * ? or § or containing / implies look-ahead. Look-ahead is also
necessary to match an expression that is a prefix of another expression. See below for a discus-
sion of the character set used by Lex. The standard Lex library imposes a 100 character limit
on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is
called whenever Lex reaches an end-of-file. If yywrap returns a 1, Lex continues with the nor-
mal wrapup on end of input. Sometimes, however, it is convenient to arrange for more input
to arrive from a new source. In this case, the user should provide a yywrap which arranges for
new input and returns 0. This instructs Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables, summaries, etc., at the end of a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access
to this condition is through yywrap. In fact, unless a private version of imput() is supplied a
file containing nulls cannot be handled, since a value of 0 returned by imput is taken to be end-
of-file.

5. AMBIGUOUS SOURCE RULES

Lex can handle ambiguous specifications. When more than one expression can match the
current input, Lex chooses as follows:

1. The longest match is preferred.

10 LEX

2. Among rules which matched the same number of characters, the rule given first is pre-
ferred.

Thus, suppose the rules

integer keyword action .. ;
[a—z]+ identifier action .. .;

to be given in that order. If the input is integers, it is taken as an identifier, because [a—z/+
matches 8 characters while infeger matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (e.g.,
int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like .=
dangerous. For example

7
.

’
*

might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

‘first’ quoted string here, ‘second’ here

the above expression will match
“first’ quoted string here, ‘second’

which is probably not what was wanted. A better rule is of the form
[""\n]s’

which, on the above input, will stop after ‘first’. The consequences of errors like this are miti-
gated by the fact that the . operator will not match new-line. Thus expressions like .» stop on
the current line. Don’t try to defeat this with expressions like /\n/+ or equivalents; the Lex
generated program will try to read the entire input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches
of each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both she and he in an input text. Some
Lex rules to do this might be

she s++;
he h++;
\n |

where the last two rules ignore everything besides he and she. Remember that . does not

include new-line. Since she includes he, Lex will normally not recognize the instances of he
included in she, since once it has passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means ‘‘go do the
next alternative.” It causes whatever rule was second choice after the current rule to be exe-
cuted. The position of the input pointer is adjusted accordingly. Suppose the user really wants
to count the included instances of he:

she f{s+-+; REJECT;}
he {h+ +; REJECT;}
\n . | '
these rules are one way of changing the previous example to do just that. After counting each

expression, it is rejected; whenever appropriate, the other expression will then be counted. In
this example, of course, the user could note that she includes he but not vice versa, and omit

LEX 11

the REJECT action on he; in other cases, however, it would not be possible a priori to tell which
input characters were in both classes.

Consider the two rules

a[bel+ {...; REJECT;}
aledl+ {...; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches. The input
string accb matches the first rule for four characters and then the second rule for three charac-
ters. In contrast, the input accd agrees with the second rule for four characters and then the
first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream
but to detect all examples of some items in the input, and the instances of these items may
overlap or include each other. Suppose a digram table of the input is desired; normally the
digrams overlap, that is the word the is considered to contain both th and he. Assuming a
two-dimensional array named digram to be incremented, the appropriate source is

%%

[a—z][a—z] {digram[yytext[0]][yytext[1]]+ +; REJECT;}
\n ;

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than
at every other character.

6. LEX SOURCE DEFINITIONS
Remember the format of the Lex source:

{definitions}
%%

{rules}

%%

{user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions sec-
tion or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is
copied into the generated program. There are three classes of such things.

1. Any line which is not part of a Lex rule or action which begins with a blank or tab is
copied into the Lex generated program. Such source input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the first %%, it
appears in an appropriate place for declarations in the function written by Lex which con-
tains the actions. This material must look like program fragments, and should precede
the first Lex rule. '

As a side effect of the above, lines that begin with a blank or tab and that contain a com-
ment are passed through to the generated program. This can be used to include com-
ments in either the Lex source or the generated code; the comments should follow the
host language convention. « ‘

2. Anything included between lines containing only %{ and %} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

12 LEX

3. Anything after the third %% delimiter, regardless of formats, etc., is copied out after the
Lex output. '

Definitions intended for Lex are given before the first %% delimiter. Any line in this sec-
tion not contained between %{ and %}, and beginning in column 1 is assumed to define
Lex substitution strings. The format of such lines is:

name translation

and it causes the string given as a translation to be associated with the name. The name
and translation must be separated by at least one blank or tab, and the name must begin
with a letter. The translation can then be called out by the {name} syntax in a rule.
Using {D} for the digits and {E} for an exponent field, for example, might abbreviate
rules to recognize numbers:

D [0—9]

E [DEde][—+]7{D}+
%%

{D}+ rintf("integer");
{D}+"."{D}({E})? ‘P
{D}"."{D}+({ED? |

{D}+{E} printf("real");

Note the first two rules for real numbers; both require a decimal point and contain an
optional exponent field, but the first requires at least one digit before the decimal point
and the second requires at least one digit after the decimal point. To correctly handle the
problem posed by a Fortran expression such as 35.EQ.I, which does not contain a real
number, a context-sensitive rule such as:

[0—9]+/"."EQ printf("integer");
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection of a
host language, a character sct table, a list of start conditions, or adjustments to the default
size of arrays within Lex itself for larger source programs. These possibilities are dis-
cussed below under ““Summary of Source Format,” section 12.

7. USAGE

There are two steps in compiling a Lex source program. First, the Lex source must be turned
into a generated program in the host general purpose language. Then this program must be
compiled and loaded, usually with a library of Lex subroutines. The generated program is on a
file named lex.yy.c. The 1/O library is defined in terms of the C standard library [6].

C programs generated by Lex on GCOS and UNIX are the same, while those on OS/370 are
slightly different because the OS compiler is less powerful than the UNIX or GCOS compilers
and does less at compile time.

On UNIX, the library is accessed by the loader flag —IlI. So an appropriate set of commands is

lex source
cc lex.yy.c =l

The resulting program is placed on the usual file a.out for later execution. To use Lex with
Yacc see below. Although the default Lex I/O routines use the C standard library, the Lex
automata themselves do not do so; if private versions of input, output and unput are given, the
library can be avoided.

LEX 13

8. LEX AND YACC

If you want to use Lex with Yacc, note that what Lex writes is a program named yylex(), the
name required by Yacc for its analyzer. Normally, the default main program on the Lex library
calls this routine, but if Yacc is loaded, and its main program is used, Yacc will call yylex(). In
this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get access to Yacc’s names for
tokens is to compile the Lex output file as part of the Yacc output file by placing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to be named *‘good’’ and the lexical
rules to be named ‘‘better”” the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c —ly —Il

The Yacc library (—ly) should be loaded before the Lex library, to obtain a main program
which invokes the Yacc parser. The generations of Lex and Yacc programs can be done in
either order.

9. EXAMPLES

As a trivial problem, consider copying an input file while adding 3 to every positive number
divisible by 7. Here is a suitable Lex source program

%%
int k;
[0—-91+ {
k = atoi(yytext);
if (k%7 == 0)
printf("%d", k+3);
else

printf("%d",k);

to do just that. The rule [0—9]+ recognizes strings of digits; atoi converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether k is divisible
by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add a few more rules after the active one,
as here:

%%
int k;
—M0-9]+ {
‘ . .k = atoi(yytext); - :
printf("%d", k%7 == 0? k+3:k);
}
—2M0—9.1+ ECHO;

[A—Za—z][A—Za—20—9]+ ECHO;

Numerical strings containing a ““.™ or preceded by a letter will be picked up by one of the last
two rules, and not changed. The if—else has been replaced by a C conditional expression to
save space; the form a?b:c means *‘if @ then b else ¢”’.

14 LEX

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of letters.

int lengs[100];
%%
[a—z]+ 'lengs[yyleng]++;

\n :
%%
{ywrap()

int i;
printf("Length No. words\n");
for(i=0; i<100; i+ +)
if (lengs[i] > 0)
printf("%5d%10d\n",i,lengslil);
return(l);

}

This program accumulates the histogram, while producing no output. At the end of the input it
prints the table. The final statement return(l); indicates that Lex is to perform wrapup. If
yywrap returns zero (false) it implies that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert dou-
ble precision Fortran to single precision Fortran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB]
¢ [eC]
z [27]
An additional class recognizes white space:
W [\tl=

The first rule changes ‘“double precision’’ to “*real’’, or ‘**‘DOUBLE PRECISION"’ to ““REAL”’.

{d}Ho}{ul{bHIHe HWi{pHrHeHcHiHsHiHo}{n} {
printf(yytext[0] = =d"? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of the original pro-
gram. The conditional operator is used to select the proper form of the keyword. The next
rule copies continuation card indications to avoid confusing them with constants:

" "[C0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as ‘‘beginning of
line, then five blanks, then anything but blank or zero.”” Note the two different meanings of ~.
There follow some rules to change double precision constants to ordinary floating constants.

LEX 15

[0—9]+{WHdH Wi+ —]?{W}0—9]+ |
[0—9]+{W}."{WHdH{W}+ —12{W}lo—9]l+ |
" {WHO—S] +H{WHdH W+ —17{w}lo—9]+ {
/% convert constants */

for(p=yytext; #p '= 0; p++)

{

if (sp == "d’|*p == D)
*p=+ e'— d,

ECHO;

}

}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d
or D. The program than adds ‘e’—‘d’, which converts it to the next letter of the alphabet. The
modified constant, now single-precision, is written out again. There follow a series of names
which must be respelled to remove their initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long list is given here).

{d}{s}i}{n} |
{d}{c}Ho}s} |
{dHsHq}Hri{t} |
{d}{a}{t}a}{n} |

{AHMHIHoHalt} printf("%s",yytext+1);

Another list of names must have initial d changed to initial a:

{dHlHoHg!} |

{d}{l}{o}{g}10 |

{d{mHil{nh l

{d}{m}{a}{x}1 {
yytext[0] =+ 2’ — “d’;
ECHO;
}

And one routine must have initial d changed to initial r:

{d}1{mHal}{c}{n} {yytext[0] =+ v — ‘d’;
ECHO;

}

To avoid such names as dsinx being detected as instances of dsin, some final rules pick up
longer words as identifiers and copy some surviving characters:

[A—Za—2][A—Za—70—9]% |

[0—9]+ I

\n N
ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.

10. LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor statements and
analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The ~ operator, for example, is a prior
context operator, recognizing immediately preceding left context just as § recognizes

16 LEX

immediately following right context. Adjacent left context could be extended, to produce a
facility similar to that for adjacent right context, but it is unlikely to be as useful, since often
the relevant left context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of
flags, when only a few rules change from one environment to another, the use of start condi-
tions on rules, and the possibility of making multiple lexical analyzers all run together. In each
case, there are rules that recognize the need to change the environment in which the following
input text is analyzed and that set a parameter to reflect the change. This may be a flag expli-
citly tested by the user’s action code; this is the simplest way of dealing with the problem, since
Lex is not involved at all. It may be more convenient, however, to have Lex remember the
flags as initial conditions on the rules. Any rule may be associated with a start condition. It
will only be recognized when Lex is in that start condition. The current start condition may be
changed at any time. Finally, if the sets of rules for the different environments are very dis-
similar, clarity may be best achieved by writing several distinct lexical analyzers, and switching
from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic to first
on every line which began with the letter a, changing magic to second on every line which
began with the letter &, and changing magic to third on every line which began with the letter
¢. All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

int flag;

%%

"a{flag = ‘a’; ECHO;}
"biflag = ‘b’; ECHO;}
“c{flag = ‘c’; ECHO;}
\n{flag = 0 ; ECHO;}
magic{

switch (flag)

case ‘a’; printf("first"); break;
case ‘b": printf("second"); break;
case ‘c”: printf("third"); break;
default: ECHQ; break;

}

}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
Lex in the definitions section with a line reading

%Start namel name2 ...

where the conditions may> be named in any order. The word Start may be abbreviated to s or
S. The conditions may be referenced at the head of a rule with the <> brackets:

< namel >expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start
condition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To resume the normal state,

LEX 17

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule may be active in several
start conditions:

<namel,name2,name3>
is a legal prefix. Any rule not beginning with the <> prefix operator is always active.
The same example as before can be written:

%START AA BB CC

%%

"a {ECHO; BEGIN AA;}
d {ECHO; BEGIN BB;}
¢ {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 0;}
< AA>>magic printf("first");

< BB>magic printf("second");

< CC>magic printf("third");

where the logic is exactly the same as in the previous method of handling the problem, but Lex
does the work rather than the user’s code.

11. CHARACTER SET

The programs generated by Lex handle character I/O only through the routines input, output
and unput. Thus the character representation provided in these routines is accepted by Lex and
used to return values in yytext. For internal use a character is represented as a small integer
which, if the standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is represented in the
same form as the character constant ‘a’. If this interpretation is changed by providing 1/0 rou-
tines that translate the characters, Lex must be told about it by being given a translation table,
which must be in the definitions section and must be bracketed by lines containing only %T; it
contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus Figure 3 maps the lower and
upper case letters together into the integers 1 through 26, new-line into 27, + and — into 28
and 29, and the digits into 30 through 39. Note the escape for new-line. If a table is supplied,
every character that is to appear either in the rules or in any valid input must be included in the
table. No character may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

12. SUMMARY OF SOURCE FORMAT
The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}
The definitions section contains a combination of

1. Definitions, in the form ‘“name space translation™.

2. Included code, in the form ‘‘space code’.

18 LEX

%T
1 Aa
2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1
39 9
%T

Figure 3. Sample Character Table

3. Included code, in the form

%t
code
%}

4. Start conditions, given in the form
%S namel name?2 ...
5. Character set tables, in the form
%T
number space character-string
%T
6. Changes to internal array sizes, in the form
%x nnn

where ann is a decimal integer representing an array size and x selects the parameter as
follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

o xR o ow

Lines in the rules section have the form ‘‘expression action” where the action may be contin-
ued on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

LEX 19

X the character "x"

"x" an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.

[x—z] the characters x, y or z.

["x] any character but x.

. any character but new-line.

X an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.

x? an optional x.

X#* 0,1,2, ... instances of x.

x+ 1,2,3, ... instances of x.

xly anxoray.

(x) an x.

x/y an x but only if followed by y.
{xx} the translation of xx from

the definitions section.
x{m,n} m through n occurrences of x

13. CAVEATS AND BUGS

There are pathological expressions that produce exponential growth of the tables when con-
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input stream. This is the only
restriction on the user’s ability to manipulate the not-yet-processed input.

14. ACKNOWLEDGEMENTS

As should be obvious from the above, the outside of Lex is patterned on Yacc and the inside
on Aho’s string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really
originators of much of Lex, as well as debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed, written, and debugged by Eric Schmidt.

15. REFERENCES

{11 B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, NJ
(1978).

[2] B. W. Kernighan. Ratfor: A Preprocessor for a Rational Fortran, Sofiware— Practice &
Experience 5:395-496 (1975).

[3] S.C.Johnson. Yacc: Yet Another Compiler Compiler, Bell Laboratories (1975).

[4] A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic

- Search, CACM 18:333-40 (1975).

[5] 'B. W. Kernighan, D. M. Ritchie, and K. Thompson: QED Text Editor, Bell Laboratories
(1972). | '

[6] D. M. Ritchie. Private communication. See also M. E. Lesk, The Portable C Library,
Bell Laboratories (1975).

January 1981

UNIX
E.1.2

YACC—Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com-
puter program that does input can be thought of as defining an “‘input
language’ which it accepts. An input language may be as complex as a pro-
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check-
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro-
gram. The Yacc user specifies the structures of his input, together with code to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is convenient
and appropriate to have most of the flow of control in the user’s application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher-level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portzble C. The class of specifications accepted is a
very general one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

INTRODUCTION

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C! and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

2 YACC

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it.a name. For example, one grammar rule might be

7

date : month_name day ‘) year ;

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name , day, and year are defined elsewhere. The comma ““,” is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the

input. Thus, with proper definitions, the input
July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower-level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym-
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

[

month_name : Ja’'n’ ;
month_name : ‘F e’ 'b" ;

month_name : ‘D'’e’ ¢’ ;

might be used in the above example. The lexical analyzer would only need to recognize indivi-
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc’s ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

IYSR 3]

Literal characters such as *‘,”” must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the

rule

date : month /' day ’/' year ;
allowing

7/4/1776
as a synonym for

July 4, 1776
In most cases, this new rule could be *‘slipped in’’ to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data
- can usually be quickly found. Error handling, provided as part of the input specifications, per-
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful

YACC 3

recognition mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.23:4 Yacc has been extensively
used in numerous practical applications, including Lint % the Portable C Compiler,5 and a sys-
tem for typesetting mathematics.’

The next several sections describe the basic process of preparing a Yacc specification; Sec-
tion | describes the preparation of grammar rules, Section 2 the preparation of the user sup-
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec-
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe-
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen-
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1. BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
rules , and programs. The sections are separated by double percent %%’ marks. (The percent
“%”’ is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like
declarations
%%
rules

%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and new-lines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in /* ... #/, as in C and PL/L

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

4 YACC

Names may be of arbitrary length, and may be made up of letters, dot “*.”’, underscore
*_", and non-initial digits. Upper- and lower-case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes “*”*’. As in C, the backslash ‘‘\"
is an escape character within literals, and all the C escapes are recognized. Thus

An’ new-line

\r’ return

N\ single quote **"”’
A\ backslash *\”
A\t tab

\b’ backspace
Af’ form feed
Axxx’ ““xxx”’ in octal

For a number of technical reasons, the NUL character (\0’ or 0) should never be used in gram-
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar “‘I”” can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A : BCD ;
A : EF ;
A : G ;
can be given to Yacc as
A . BCD
[E F
[G

It is not necessary that all grammar rules with the same left side appear together in the gram-
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty :

Names representing tokens must be declared; this is most simply done by writing
%token namel name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key-
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the end-marker. 1If
the tokens up to, but not including, the end-marker form a structure which matches the start
symbol, the parser function returns to its caller after the end-marker is seen; it accepts the
input. If the end-marker is seen in any other context, it is an error.

YACC S

It is the job of the user-supplied lexical analyzer to return the end-marker when appropri-
ate; see section 3, below. Usually the end-marker represents some reasonably obvious I/O
status, such as ‘‘end-of-file’’ or “‘end-of-record”’.

2. ACTIONS

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro-
grams, and alter external vectors and variables. An action is specified by one or more state-
ments, enclosed in curly braces **{’’ and *‘}’". For example,

A : /(/ B /)I
{ hello(1, "abe"); }
and
XXX YYY Z77
{ printf("a message\n");

flag = 25; 1}
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state-
ments are altered slightly. The symbol ‘‘dollar sign’™ “‘$’’ is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable **$$’’ to some value. For
example, an action that does nothing but return the value 1 is

{ $3 =1, }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ..., which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A : BCD ;
for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule
expr ‘(" expr)
The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by
expr “(“ expr ’) { 88 =82; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A : B
frequently need not have an explicit action.
In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible

through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

6 YACC

{$$=i;}

{ x=282; y=283; }
the effect is to set x to 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte-

rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

SACT : /* empty */
{88=1;}
A : B $ACT C

{ x=382; y=183}

.
*

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out-
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node, written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr expr '+’ expr
{ $% = node('+, $1, $3); }

in the specification.
The user may define other variables to be used by the actions. Declarations and

definitions can appear in the declarations section, enclosed in the marks “%{" and “%}".
These declarations and definitions have global scope, so they are known to the action state-

ments and the lexical analyzer. For example,
%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in “‘yy”’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3. LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
wlex. The function returns an integer, the token number , representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yyi-
val.

The parser and the lexical analyzer must agree on these token numbers in order for com-
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the *“# define’” mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has

YACC 7

been defined in the declarations section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylex(){
extern int yylval;
int ¢;

¢ = getchar();
switch(¢) {

case ‘0"
case ‘1"

case 9"
yylval = ¢—"0";
return(DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char-
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the end-marker must have token number 0 or negative. This
token number cannot be redefined by the user; thus, all lexical analyzers should be prepared to
return O or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.® These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4. HOW THE PARSER WORKS

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,

8 YACC

however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the look-ahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0. the stack contains
only state 0, and no look-ahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error.
A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a look-ahead token to
decide what action should be done; if it needs one, and does not have one, it calls yylex
to obtain the next token.

2. Using the current state, and the look-ahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a look-ahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The look-ahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the look-ahead token to decide whether to reduce, but

[YIR R}

usually it is not; in fact, the default action (represented by a **.”") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

. reduce 18
refers to grammar rule 18, while the action
IF shift 34

refers to state 34.
Suppose the rule being reduced is

A : Xyz ;

The reduce action depends on the left hand symbol (A in this case) and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from
the stack. (In general, the number of states popped equals the number of symbols on the right
side of the rule). In effect, these states were the ones put on the stack while recognizing x, y,
and z, and no longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using this
uncovered state, and the symbol on the left side of the rule, perform what is in effect a shift of
A. A new state is obtained, pushed onto the stack, and parsing continues. There are significant
differences between the processing of the left hand symbol and an ordinary shift of a token,
however, so this action is called a goto action. In particular, the look-ahead token is cleared by
a shift, but is not affected by a goto. In any case, the uncovered state contains an entry such
as:

YACC 9

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action *‘turns back the clock’ in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter-
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accepr action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the look-ahead token is the end-marker, and indicates that the parser has success-
fully done its job. The error action, on the other hand, represents a place where the parser can
no longer continue parsing according to the specification. The input tokens it has seen,
together with the look-ahead token, cannot be followed by anything that would result in a legal
input. The parser reports an error, and attempts to recover the situation and resume parsing:
the error recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL

%%

rhyme : sound place
sound : DING DONG
place DELL

3

When Yacc is invoked with the —v option, a file called y.owtput is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram-
mar (with some statistics stripped off the end) is:

10 Ydcc

state 0 ,
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1 ‘
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (1

. reduce 1

state 5
place : DELL_ (3)

reduce 3

state 6
sound : DING DONG_ (2)

reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and
what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING , is read, becoming the
look-ahead token. The action in state 0 on DING is is “‘shift 3", so state 3 is pushed onto the
stack, and the look-ahead token is cleared. State 3 becomes the current state. The next token,

YACC 11

DONG , is read, becoming the look-ahead token. The action in state 3 on the token DONG is
“shift 6°°, so state 6 is pushed onto the stack, and the look-ahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the look-ahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound ,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is “‘shift 5°°, so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
1. In state 1, the input is read; the end-marker is obtained, indicated by *‘$end’” in the y.output
file. The action in state 1 when the end-marker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG , DING DONG , DING DONG DELL DELL , etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5. AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

/

expr expr '—’ expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram-
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

exXpr — expr — expr
the rule allows this input to be structured as either

(expr — expr) — expr
or as

expr — (expr — expr)
(The first is called left association , the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

exXpr — expr — expr
When the parser has read the second expr, the input that it has seen:

expr — expr

v
F
'
{

12 YACC

matches the right side of the grammar rule above. The parser could reduce the input by apply-
ing this rule; after applying the rule; the input is reduced to expr (the left side of the rule). The
parser would then read the final part of the input:

— expr
and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr — expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

exXpr — expr — expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving
expr — expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta-
tion. Thus, having read

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a shift/reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce/reduce conflict. Note that there are never any
“‘Shift/shift”” conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule

Yacc invokes two disambiguating rules by default:
In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).
Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap-
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Qur experience has suggested that this rewriting is somewhat unna-
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider a fragment from a program-
ming language involving an ‘‘if-then-else’’ construction:

YACC 13

stat : IF ‘(" cond ’)’ stat
I IF ‘(" cond ‘)’ stat ELSE stat
In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional

(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule
will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form
IF (C1) IF (C2) S1 ELSE 82

can be structured according to these rules in two ways:

IF (C1) {
IF (C2) SI
}

ELSE 82

or

IF (C1) {
IF (C2) 81
ELSE S2

}

The second interpretation is the one given in most programming languages having this con-
struct. Each ELSE is associated with the last preceding ‘“‘un-ELSE'd” IF. In this example,
consider the situation where the parser has seen

IF (C1) IF (C2) SI
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get
IF (C1) stat
and then read the remaining input,
ELSE 82
and reduce
IF (C1) stat ELSE 82

by the if-else rule. This leads to the first of the above groupings of the input.
On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (C1) IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get

IF (C1) stat
which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things — there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping. '

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE , and particular inputs already seen, such as

IF (C1) IF (C2) S1

f

14 YACC

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (—v) option
output file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ““.”’, is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF ‘(" cond ") stat

Once again, notice that the numbers following ‘‘shift’’ commands refer to other states, while
the numbers following “‘reduce’” commands refer to grammar rule numbers. In the y.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2-3.4 might be consulted; the ser-
vices of a local guru might also be appropriate.

6. PRECEDENCE

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con-
structions for arithmetic expressions can be naturally described by the notion of precedence lev-
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

YACC 15

and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con-
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind-
ing strength. Thus,

Bleft “+’ '
Fleft '+ '/’

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right ‘=’

Fleft '+ '~
Fleft = 7}’

%%

expr expr ‘=’ expr
expr '+’ expr
expr ‘=’ expr

|
|
| expr *" expr
I expr ‘/’ expr
I NAME
might be used to structure the input
a =b = cxd — e — fug
as follows:
a= (b= (((cxd)—e) — (feg)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary ‘—’; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre-
cedence of the grammar rule to become that of the following token name or literal. For exam-
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

16 YACC

Fleft "+’ '~
Fleft ' '/

%%

expr expr '+’ expr
I expr '—' expr
| expr ®’ expr
| expr ‘[’ expr
I z 4

|

-’ expr Yoprec
NAME

)

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc-
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4, If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by prccedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre-
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre-
cedences, and use them in an essentially ‘“‘cookbook’ fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what
was intended.

7. ERROR HANDLING

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser ‘‘restarted’’ after an error. A general class of algorithms to do this involves discard-
ing a number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
gencral, feature. The token name “‘error’’ is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token ‘‘error’ is

YACC 17

legal. It then behaves as if the token ‘“‘error” were the current look-ahead token, and performs
the action encountered. The look-ahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state-
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini-
tialize tables, reclaim symbol table space, etc. :

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

.7

stat : error

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ’;. All tokens after the error and before the next ’;’ cannot be shifted, and
are discarded. When the ;" is seen, this rule will be reduced, and any ‘“‘cleanup™ action associ-
ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error \n’ { printf("Reenter last line: "); } input
{ $8 = $4; }

There is one potential difficulty with this approach: the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens and gives no
message; this is clearly unacceptable. For this reason, there is a mechanism that can force the
parser to believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input error \n’
{ yyerrok;
printf("Reenter last line: "); }
input
{ $$ = $4; }

As mentioned above, the token seen immediately after the ‘“‘error’ symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous look-ahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the

18 YACC

input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille-
gal token must be discarded, and the error state reset. This could be done by a rule like

stat : error
{ resynch();
yyerrok ;
yyclearin ; }

1)

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8. THE YACC ENVIRONMENT

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from
installation to installation). The function produced by Yacc is called yyparse; it is an integer
valued function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied
by the user (see Section 3) to obtain input tokens. Eventually, either an error is detected, in
which case (if no error recovery is possible) yyparse returns the value 1, or the lexical analyzer
returns the end-marker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini-
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a —ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main{){
return(yyparse());
}

and

include <stdio.h>

yyerror(s) char =s; {
fprintf(stderr, "%s\n", 5);
}

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax
error’”’. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the look-ahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system.

YACC 19

9. HINTS FOR PREPARING SPECIFICATIONS

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower-case letters for nonterminal names. This
rule comes under the heading of ‘*knowing who to blame when things go wrong.”

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion
The algorithm used by the Yacc parser encourages so called “‘left recursive’’ grammar
rules: rules of the form
name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list : item
I list /)" item

and
seq : item
I seq item
In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.
With right recursive rules, such as
seq : item
I item seq
the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

20 YACC

seq : /* empty */
! scq item
Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical

analyzer, and set by actions. For example, suppose a program consists of 0 or more declara-
tions, followed by 0 or more statements. Consider:

%
int dflag;
%}
.. other declarations ...
%%
prog decls stats
decls : /* empty */
{ dflag = 1; }
] decls declaration
stats ¢ /* empty =/

{ dfiag = 0; }
| stats statement

5
.. other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the
Jirst token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of “*back-door’” approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise,

Reserved Words

Some programming languages permit the user to use words like ““if*’, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it “‘this instance of ‘if” is
a keyword, and that instance is a variable’’, The user can make a stab at it, using the mechan-
ism described in the last subsection, but it is difficult.

YACC 21

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are
powerful stylistic reasons for preferring this, anyway.

10. ADVANCED TOPICS
This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YYACCEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple end-markers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent adj noun verb adj noun
{ look at the sentence ... }
adj : THE { $$ = THE; }
| YOUNG { $$ = YOUNG; }
noun DOG
{ $$ = DOG; |}
| CRONE
{ if($0 == YOUNG){
printf("what”\n");
}
$$ = CRONE,;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Limt5 will
be far more silent.

22 YACC

There are three mechanisms used to provide for this typing. First. there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ-
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section;

%union {
body of union ...

}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the —d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+ '~/

will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type < nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 — see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<<other>0); }
This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of $n or $$ to
refer to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int's, as was true historically.

YACC 23

11. ACKNOWLEDGEMENTS

Yacc owes much to a most stimulating collection of users who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for ‘‘one more
feature.’’ Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M,
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed and for other favors.

REFERENCES

(1] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, Engle-
wood Cliffs, NJ (1978).

[21 A. V. Aho and S. C. Johnson. *“LR Parsing,”” Comp. Surveys 6(2), pp. 99-124 (June
1974).

(3] A. V. Aho, S. C. Johnson, and J. D. Ullman. ‘‘Deterministic Parsing of Ambiguous
Grammers,”” CACM 18(8), pp. 441-52 (August 1975).

{4] A. V. Aho and J. D. Ullman. Principles of Compiler Design, Addison-Wesley, Reading,
MA (1977).

[5] S.C.Johnson. ‘“‘Lint, a C Program Checker,’’ Bell Laboratories (December 1977).

[6] S. C. Johnson. ‘“‘A Portable Compiler: Theory and Practice,”” Proc. 5Sth ACM Symp. on
Principles of Programming Languages, pp. 97-104 (January 1978).

[71 B. W. Kernighan and L. L. Cherry. ‘A System for Typesetting Mathematics,”” Bell
Laboratories (March 1975).

[8] M. E. Lesk. ““LEX—A Lexical Analyzer Generator,”’ Bell Laboratories (October 1975).

24 YACC

Appendix A: A SIMPLE EXAMPLE

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled ‘‘a’” through *‘z’’, and accepts arithmetic expressions made
up of the operators +, —, *, /, % (mod operator), & (bitwise and), | (bitwise or), and assign-
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show-
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli-
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%f
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

Postart list

%token DIGIT LETTER

%left I’

Fleft ‘&’

%left '+ '—'

%left I*I I/I I%I

%left UMINUS /+ supplies precedence for unary minus #/

%% /* beginning of rules section */

list /* empty */
I list stat \n’
| list error A\n’
{ yyerrok; }
stat expr

{ printf("%d\n", $1); }
I LETTER ‘=’ expr
{ regs[$1] = §3; }

YACC

expr : ‘(" expr ‘)’
{ 88 =182;}
[expr '+’ expr
{ $$ = $1 + 83; }

I expr '—’ expr

{ 3% =131 — 83}
I expr * expr

{ $% = $1 % 83;}
| expr '/’ expr

{ 85 = 81/83;}
I expr ‘%’ expr

{ $% = $1 % $3; }
I expr ‘& expr
{ $8 = $1 & $3; }
I expr
{ 88 = 81183}
I ‘—' expr %prec UMINUS

| expr

{ $$ = — $2;}
| LETTER
{ $$ = regs[$1]; }
| number
number DIGIT

{ 88 = $1; base = ($1==0) ? 8 : 10; }
} number DIGIT
{ $8 = base * §1 + $2; }

%% [+ start of programs /

yylex() { /* lexical analysis routine =/
/* returns LETTER for a lower-case letter, yylval = 0 through 25 »/
/* return DIGIT for a digit, yylval = O through 9 #/
/* all other characters are returned immediately */

int c;
while((c=getchar()) == " ") { /* skip blanks */ }
/* ¢ is now nonblank =/

if(islower(¢)) {
yylval = ¢ — 2’;
return(LETTER);
}

if(isdigit(¢)) {
yylval = ¢ — 0
return(DIGIT);
}

return(¢);

}

26 YACC

Appendix B: YACC INPUT SYNTAX

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con-
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, new-lines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

/+* grammar for the input to Yacc */
/* basic entities /
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal) followed by colon #/
%token NUMBER [+ [0-9]+ %/
/* reserved words: %type => TYPE, %left => LEFT, etc. */
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /+ the %% mark */
%token LCURL /# the %{ mark #*/
%token RCURL /x the %} mark */

/* ASCII character literals stand for themselves */

%start spec

%%

spec : defs MARK rules tail

tail : MARK { In this action, eat up the rest of the file }
I /* empty: the second MARK is optional =/

defs : /* empty */
I defs def

def : START IDENTIFIER

I UNION { Copy union definition to owtput }
I LCURL { Copy C code to output file } RCURL
I ndefs rword tag nlist

YACC

rword

tag

nlist

nmno

rules

rule

rbody

act

prec

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

: /* empty: union tag is optional */
! ‘<’ IDENTIFIER ">’

: nmno
| nlist nmno

1/

| nlist ‘, nmno

: IDENTIFIER /* NOTE: literal illegal with %type =/
| IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section #*/

: C_IDENTIFIER rbody prec
| rules rule

: C_IDENTIFIER rbody prec
I 1" rbody prec

: /* empty */
I rbody IDENTIFIER
| rbody act

Y { Copy action, translate 33, etc. } 'Y

: /* empty */

I PREC IDENTIFIER

I PREC IDENTIFIER act
| prec *;’

27

28 Y4ACC

Appendix C: AN ADVANCED EXAMPLE

This Appendix gives an example of a grammar using some of the advanced features dis-
cussed in Section 10. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, —, #, /, unary —, and = (assignment), and has 26
floating point variables, ‘‘a’’ through ““z’’. Moreover, it also understands intervals , written

(x,y)

where x is less than or equal to y. There are 26 interval valued variables ‘“A’’ through “Z”’
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double’s.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari-
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

25+ (35 —4.)

and

25+ (3.5,4.)
Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the **,"" is read; by this time, 2.5 is finished, and the parser cannot

go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.

YACC

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof();

double dregl 26 1;
INTERVAL vregl 26];

%}
%start lines
%union {
int ival;
double dval;
INTERVAL vval;
}
%token <ival> DREG VREG /+ indices into dreg, vreg arrays /
%token <dval> CONST /* floating point constant #/
%type <dval> dexp /* expression */
Jotype <<vval> vexp /* interval expression */

/* precedence information about the operators */

Dleft '+’ '—*
Fleft ' /'
%left UMINUS /* precedence for unary minus %/

%%
lines : /* empty */

| lines line

v

29

v

30 YACC

line : dexp A\n’
§ printf("%15.8f\n", $1); }
I vexp \n’
{ printf("(%15.8f , %15.8f)\n", $1.lo, $1.hi); }
I DREG ‘=’ dexp \n’
{ dreg[$1] = $3; }
I VREG "=’ vexp \n’
{ vreg[$1] = $3; }
| error \n’
{ yyerrok; }

dexp : CONST

I DREG

{ 8§ = dregl$1]; }
I dexp '+’ dexp

{ 55 = $1 + 83;}
I dexp ‘—’ dexp

{ $3 =81 — $3;}
| dexp ‘¥ dexp

{ 8% = $1 * $3; }
| dexp ‘/’ dexp

{ 8% =81/83}
I '—’ dexp %prec UMINUS

{ 88 = —92}
I ‘(" dexp ‘)’

$8 = $2; }

Vexp : dexp
{ $$.hi = 88.lo = $1; }
! ‘(" dexp ‘) dexp)’
{

$$.1o = §2;

$%.hi = $4;

if($8.1o > $%.hi){
printf("interval out of order\n");
YYERROR;
}

}
| VREG

{ $$ = vreg[$1]; }
| vexp '+’ vexp

{ $$.hi = $1.hi + $3.hi;
$$.do = $l.lo + 8$3.lo; }
I dexp '+’ vexp
{ $$.hi = $1 + 3$3.hi;
$$.lo = §1 + $3lo; }
I vexp ‘—’ vexp
{ $5.hi = $1.hi — $3.lo;
$$.lo = $1.lo — $3.hi; }
I dexp '—’ vexp
{ $%hi = $1 — $3.lo;
$$.lo = $1 — $3.hi; }

YACC
I vexp ¥ vexp .
{ $$ = vmul($llo, $1.hi, $3); }
I dexp » vexp
{ $$ = vmul($1, $1, $3); .}
I vexp /' vexp
if(dcheck($3)) YYERROR;
$$ = vdiv(Sl.lo, $1.hi, $3); }
dexp ’/’ vexp
{ if(dcheck($3)) YYERROR;
$5 = vdiv($1, $1, $3); }
l ‘—’ vexp %prec UMINUS
{ $$.hi = —$2.lo; $8.1o = —$2.hi; }
| ‘(" vexp Y
$$ = $2; }
%%

define BSZ 50 /# buffer size for floating point numbers »/
/* lexical analysis */

yylex()
register c;

while((c=getchar()) == ’ "’){ /* skip over blanks */ }

if(isupper(¢)){
yy1val.iva] = ¢c - /A,;
return(VREG);

}

if(islower(¢)){
yylvalival = ¢ — ‘2’
return(DREG);
}

if (isdigit(¢) Il c==""){
/* gobble up digits, points, exponents /

char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

for(; (cp—buf)<BSZ ; ++cp,c=getchar()){

*p = C;
if(isdigit(¢)) continue;
if(¢ == ")
if(dot++ Il exp) return("); /* will cause syntax error */
continue;

}

31

32

if(c == ‘e)i ‘
if(exp++) return(‘e’); /= will cause syntax error »/
continue;

J

/* end of number */
break;
}
wcp = \0;
if((cp—buf) >= BSZ) printf("constant too long: truncated\n");
else ungetc(¢, stdin); /+ push back last char read %/
yylval.dval = atof(buf);
return(CONST);
}

return(¢);

INTERVAL hilo(a, b, ¢, d) double a, b, ¢, d; {
/* returns the smallest interval containing a, b, ¢, and d #/
/* used by %, / routines */
INTERVAL v;

if(a>b) { v.hi = a; vlo = b; }
else { v.hi = b; vilo = a; }

if(e>d) {
if(¢>v.hi) v.hi = ¢
if(d<v.lo) vilo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<vlo) vilo = ¢

}

return(v);

}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, bv.hi, bev.lo));

J

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= 0.){
printf("divisor interval contains 0.\n");
return(1);
}

return(0);

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

YACC

YACC 33

Appendix D: OLD FEATURES SUPPORTED BUT NOT ENCOURAGED

This Appendix mentions synonyms and features which are supported for historical con-

tinuity, but, for various reasons, are not encouraged.

1.
2.

“aney

Literals may also be delimited by double quotes .

Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash **\" may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.

There are a number of other synonyms:
%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc

%0 and %term are the same as %token
%= is the same as %prec

Actions may also have the form
={...}

and the curly braces can be dropped if the action is a single C statement.

C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

January 1981

UNIX
E.2.1

The M4 Macro Processor

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXT and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro proces-

sors, including
® arguments
condition testing
arithmetic capabilities
string and substring functions

file manipulation

This paper is a user’s manual for M4.

INTRODUCTION

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor —
replacement of text by other text.

The M4 macro processor is an exten-
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

t UNIX is a trademark of Bell Laboratories.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric ‘‘token’ (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it

i1s rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari-
ous useful operations; in addition, the user
can define new macros. Built-ins and user-
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

USAGE
On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
‘=", the standard input is read at that point.
The processed text is written on the stan-
dard output, which may be captured for sub-
sequent processing with

m4 [files] > outputfile

On GCOS, usage is identical, but the pro-
gram is called ./m4.

DEFINING MACROS

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stufl. name must be
alphanumeric and must begin with a letter
(the underscore _ counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)
if i > N)

defines N to be 100, and uses this “‘sym-
bolic constant’ in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has arguments. If a macro or built-in name
is not followed immediately by °‘(’, it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
therc need be no (...) following it.

M4

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con-
tains a lot of N’s.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true — M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by 100; it's just as if
you had said

define(M, 100)

in the first place.

If this isn’t what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so
when you ask for M later, you’ll always get
the value of N at that time (because the M
will be replaced by N which will be replaced
by 100).

QUOTING

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes ~ and is not expanded
immediately, but has the quotes stripped off.
If you say

M4

define(N, 100)
define(M, "N7)

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not 100. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out-
put, you have to quote it in the input, as in

“define” = 1;

As another instance of the same thing,
which is a bit more surpnising, consider
redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it’s seen;
that is, it is replaced by 100, so it’s as if you
had written

define(100, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn’t have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define("N”, 200)
In M4, it is often wise to quote the first
argument of a macro.

If © and ~ are not convenient for some
reason, the quote characters can be changed
with the built-in changequote:

changequote([,])

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

changequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine("N7)
removes the definition of N. (Why are the

quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine(define”)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys-
tems, so you can tell which one you're
using:

ifdef(“unix”, “define(wordsize,16)")
ifdef("gcos”, “define(wordsize,36)”)

makes a definition appropriate for the partic-
ular machine. Don’t forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef("unix”, on UNIX, not on UNIX)

ARGUMENTS

So far we have discussed the simplest
form of macro processing — replacing one
string by another (fixed) string. User-
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of $n will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, $1 = §1 + 1)

generates code to increment its argument by
1:

bump(x)
is
x=x+1

A macro can have as many arguments
as you want, but only the first nine are
accessible, through $1 to $9. (The macro
name itself is $0, although that is less com-
monly used.) Arguments that are not sup-
plied are replaced by null strings, so we can
define a macro cat which simply concaten-
ates its arguments, like this:

define(cat, $15253$455%657$8%9)

Thus
cat(x, y, z)
is equivalent to
Xyz

$4 through $9 are null, since no correspond-
ing arguments were provided.

Leading unquoted blanks, tabs, or
new-lines that occur during argument collec-
tion are discarded. All other white space is
retained. Thus

define(a, b ¢)

definesatobeb ec.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma ‘‘protected’’ by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

ARITHMETIC BUILT-INS

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is imcr, which increments its
numeric argument by 1. Thus to handle the
common programming situation where you
want a variable to be defined as ‘‘one more
than N”°, write

define(N, 100)
define(N1, “incr(N)")

Then N1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary + and —
** Or (exponentiation)
* / % (modulus)

+
=== < <= > >=
! (not)
& or && (logical and)
jorll (logical or)
Parentheses may be wused to group

M4

operations where needed. All the operands
of an expression given to eval must ulti-
mately be numeric. The numeric value of a
true relation (like 1>>0) is 1, and false is 0.
The precision in eval is 32 bits on UNIX and
36 bits on GCOS.

As a simple example, suppose we want
M to be 2#«N+1. Then

define(N, 3)
define(M, “eval(2esN+1)")

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

FILE MANIPULATION

You can include a new file in the input
at any time by the built-in function include:

include(filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form sinclude can be used; sinclude
(“*silent include’’) says nothing and contin-
ues if it can’t access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com-
mand. M4 maintains nine of these diver-
sions, numbered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com-
mand; in particular, divert or divert(0)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

M4

undivert

brings back all diversions in numeric order,
and undivert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in divaum returns the
number of the currently active diversion.
This is zero during normal processing.

SYSTEM COMMAND

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd(date)

on UNIX runs the date command. Normally
sysecmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func-
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

CONDITIONALS

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, ¢, d)

compares the two strings a and b. If these
are identical, ifelse returns the string ¢; oth-
erwise it rcturns d. Thus we might define a
macro called compare which compares two
strings and returns ‘“‘yes’’ or ‘““no” if they
are the same or different.

define(compare, “ifelse($1, $2, yes, no)”)
Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form

of multi-way decision capability. In the
input

ifelse(a, b, c, d, e, f, g)
if the string a matches the string b, the
result is ¢. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

ifelse(a, b, ¢)

is ¢ if a matches b, and null otherwise.

STRING MANIPULATION

The built-in len returns the length of
the string that makes up its argument. Thus

len (abedef)
is 6, and len((a,b)) is 5.

The built-in substr can be used to pro-
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac-
ters long. If n is omitted, the rest of the
string is returned, so

substr(“now is the time™, 1)
is

ow is the time
If i or n are out of range, various sensible
things happen.

index(sl1, s2) returns the index (posi-
tion) in sl where the string s2 occurs, or
—1 if it doesn’t occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac-
ter transliteration.
translit(s, f, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don’t have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl
which deletes all characters that follow it up

to and including the next new-line; it is use--

ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the new-line at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the new-lines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(—1)
define(...)

divert

PRINTING

The built-in errprint writes its argu-
ments out on the standard error file. Thus
you can say

errprint(~fatal error”)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don’t forget to quote
the names!

SUMMARY OF BUILT-INS

Each entry is preceded by the page
number where it is described.

M4

changequote(L, R)
define(name, replacement)
divert(number)

divnum

dnl

dumpdef(“name”, “name’, ...)
errprint(s, s, ...)

eval(numeric expression)

ifelse(a, b, c, d)

include(file)

incr(number)

index(sl1, s2)

len(string)
maketemp(..XXXXX...)
sinclude(file)

substr(string, position, number)
syscmd(s)

translit(str, from, to)
undefine(name”)
undivert(number,number,...)

F SR VARV T A T N NV LV RS S R PO NV RV T T - S)

ACKNOWLEDGEMENTS

We are indebted to Rick Becker, John
Chambers, Doug Mcllroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve-
ments. We are also deeply grateful to
Weythman for several substantial contribu-
tions to the code.

REFERENCE

[1] B. W. Kernighan and P. J. Plauger.
Software Tools, Addison-Wesley, 1976.

January 1981

ifdef("name”, this if true, this if false)

UNIX
E.3.1

AWK —A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files
for patterns, and to perform specified actions upon lines or fields of lines which contain
instances of those patterns. 4wk makes certain data selection and transformation
operations easy to express; for example, the awk program

Iéngth >72
prints all input lines whose length exceeds 72 characters; the program
NF%2 ==
prints all lines with an even number of fields; and the program
{$1 = log($1); print }

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expressions
and of relational operators on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns, as well as
arithmetic and string expressions and assignments, if-else, while, for statements, and
multiple output streams.

This report contains a user’s guide, a discussion of the design and implementation

of awk , and some timing statistics.

1. INTRODUCTION

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per-
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

Readers familiar with the UNIXt program

t UNIX is a trademark of Bell Laboratories.

grep! will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line, For
cxample, the awk program

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 ~ /AIBIC/

prints all input lines with an A, B, or C in the
second field. The program

$1 1= prev { print; prev = 81 }

prints all lines in which the first field is different
from the previous first field.

1.1. Usage
The command

awk program [files]

executes the awk commands in the string pro-
gram on the set of named files, or on the stan-
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

awk —f pfile [files]

1.2. Program Structure

An awk program is a sequence of state-
ments of the form:

pattern { action }
pattern { action }

Each line of input is matched against ecach of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat-
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat-
terns can be printed several times.) If there is no
pattern for an action, then the action is per-
formed for every input line. A linc which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into ‘‘records” ter-
minated by a record separator. The default
record separator is a new-line, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NR.

Each input record is considered to be
divided into ‘‘fields.”” Fields are normally
separated by white space—blanks or tabs—but
the input field separator may be changed (see
below). Fields are referred to as $1, $2, and so
forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned
to. The number of fields in the current record is
available in the variable NF.

AWK

The variables FS and RS refer to the input
field and record separators; they may be changed
at any time to any single character. The optional
command-line argument —Fc may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and new-lines are trcated as ficld
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines, The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two ficlds in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.
The predefined variables NF and NR can
be used; for example
{ print NR, NF, $0 }
prints each record preceded by the record
number and the number of fields.
Output may be diverted to multiple files;
the program
{ print $1 >"foo1"; print $2 >"foo2" }

writes the first field, $1, on the file foo1, and
the second ficld on file fo02. The >>> notation
can also be used:

print $1 >>"foo"

appends the output to the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >8$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is 10.

AWK

Similarly, output can be piped into another
process (on UNIX only); for instance,

print | "mail bwk*

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats the expressions in the list according to
the specification in format and prints them. For
example,

printf *%8.2f %10ld\n"®, $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2 as
a 10-digit long decimal number, followed by a
new-line. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2, PATTERNS

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con-
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN {FS = ""}
. rest of program ...
Or the input lines may be counted by
END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name “smith’. If a line contains “*smith”’
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu-
lar expression forms found in the UNIX text edi-
tor ed! and grep (without back-referencing). In
addition, awk allows parentheses for grouping, |
for alternatives, + for ‘‘one or more’’, and ? for
““zero or one’’, all as in lex. Character classes
may be abbreviated: [a—zA—2Z0—9] is the set
of all letters and digits. As an example, the awk
program

/[Aalho IlWw]einberger I[Kk]lernighan/

will print all lines which contain any of the
names ‘‘Aho,” ‘“Wecinberger’’ or “‘Kernighan,”
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant, To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

/\/.8\//

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari-
able matches a regular expression (or does not
match it) with the operators ~ and !~. The
program

$1 ~ /ljJlohn/
prints all lines where the first field matches
‘john’’ or “John."” Notice that this will also

match *‘Johnson’’, “‘St. Johnsbury’’, and so on.
To restrict it to exactly [jJJohn, use

$1 ~ /°[jJlohn$/

The caret ~ refers to the beginning of a line or
field; the dollar sign $ refers to the end.

2.3. Reclational Expressions

An awk pattern can be a relational expres-
sion involving the usual relational operators <,
<=, == _|= >= and >. An example is

LR

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF % 2 ==

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 >="g"

selects lines that begin with an 8, t, u, etc. In
the absence of any other information, ficlds are
treated as strings, so the program

$1 > $2

will perform a string comparison,

2.4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators 11 (or), &&
(and), and | (not). For example,

$1 >= "s" && $1 < "t* && $1 = "smith"

selects lines where the first field begins with “‘s™,
but is not “smith”. && and || guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The ‘‘pattern” that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 ...}

In this case, the action is performed for each line
between an occurrence of pat! and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/
prints all lines between start and stop, while
NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the
input.

3. ACTIONS

An awk action is a sequence of action
statements terminated by new-lines or semi-
colons. These action statements can be used to
do a variety of bookkeeping and string manipu-
lating tasks.

AWK

3.1. Built-in Functions

Awk provides a *‘length’’ function to com-
pute the length of a string of characters. This
program prints e¢ach record, preceded by its
length:

{print langth, $0}

length by itself is a “‘pseudo-variable’’ which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base ¢
logarithm, exponential, and integer part of their
respective arguments,

The name of one of these built-in func-
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 10 il length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
1) and is at most n characters long. If n is omit-
ted, the substring goes to the end of 8. The
function index(s1, 82) returns the position
where the string 82 occurs in 81, or zero if it
does not.

The function sprintf(f, e1, e2,...) pro-
duces the value of the expressions e1, e2, etc.,
in the printf format specified by f. Thus, for
example,

x = sprintf("%8.2f %10Id", $1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2, Variables, Expressions, and Assign-
ments

Awk variables take on numeric (floating
point) or string values according to context, For
example, in

x =1
X is clearly a number, while in
x = "smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

X = "3" 4+ "4

AWK

assigns 7 to X. Strings which cannot be inter-
preted as numbers in a numerical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For e¢xample, the
sums of the first two fields can be computed by

{s1 += 8$1; 82 += $2}
END { print s1, s2 }

Arithmetic is done internally in foating
point. The arithmetic operators are +, —, =, /,
and % (mod). The C increment ++ and decre-
ment — — operators are also available, and so
are the assignment operators +=, —=, »=,
/=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables — they may be used in
arithmetic or string opcrations, and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:
{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = *too big"
print
}

which replaces the third field by “*too big’” when
it is, and in any case prints the record.

Field references may be numerical expres-
sions, as in

{ print $i, $G+1), $Gi+n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if (1 == 8$2) ...
fields are treated as strings.

Each input line is split into fields automati-
cally as necessary. It is also possible to split any
variable or string into fields:

n = gplit(s, array, sep)

splits the the string s into arrayl1], ...,
arrayln). The number of elements found is
returned. If the sep argument is provided, it is
uscd as the field separator; otherwise FS is used
as the separator.

3.4, String Concatenation
Strings may be concatenated. For example
length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,
print $1 " is * $2

prints the two fields separated by *“ is . Varn-
ables and numeric cxpressions may also appear
in concatenations.

i1}

3.5. Arrays

Array elements arc not declared; they
spring into existence by being mentioned. Sub-
scripts may have any non-null value, including
non-numeric strings. As an example of a con-
ventional numeric subscript, the statement

xINR] = $0

assigns the current input record to the NR-th ele-
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro-
gram

{ xINR] = $0 }
END{ ... program ... }

The first action merely records each input line in
the array x.

Array elements may be named by non-
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro-
gram

/apple/ { x["apple’]++ }
/orange/ { x[*orange"]l++ }
END { print x[*apple”], x[*orange"] }

increments counts for the named array elements,
and prints them at the end of the input.

Any expression can be used as a subscript
in an array reference. Thus

x[$1] = $2

uses the first ficld of a record (as a string) to
index the array X.

Suppose each line of input contains two
fields, a name and a non-zero value. Names
may be repeated; the task is to print a list of
each unique name followed by the sum of all the
values for that name. This can be done with the
program

{ amount[$1] += §2 }
END { for (name in amount)
print name, amountlname] }

To sort the output, replace the last line by
print name, amountlname] | *sort"

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i=1

while (i <<= NF) {
print $i
++i

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state-
ment which is suited for accessing the elements
of an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array. The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new clements are accessed dur-
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like <, <=, >, 6 >=, == ("'is equal t0""), and
I= (*‘not cqual to’"); regular expression matches
with the match operators ~ and I~ the logical
operators 11, &&, and I; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con-
tinue statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan-
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

AWK

Comments may be placed in awk pro-
grams: they begin with the character #.and end
with the end of the line, as in

print x, vy # this is a comment

4. DESIGN

The UNIX system alrcady provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim-
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular cxpressions in full general-
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed! provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex3? provides gencral regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a2 knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli-
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilitics and an implicit
input/output loop. But it also provides con-
venient numeric processing, variables, more gen-
eral sclection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn’t do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ-
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa-
tions, while probably a bad idea for a general-
purpose programming language, is desirable in a
language that is meant to be uscd for tiny pro-
grams that may even be composed on the com-
mand line.

AWK

In practice, awk usage seems to fall into
two broad catepories. One is what might be
called ‘‘report generation’ —processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim-
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro-
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. IMPLEMENTATION

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc;4 the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was dcesigned for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow,

Table I below shows the execution (user
+ system) time on a PDP-11/70 of the UNIX
programs wc, grep, egrep, fgrep, sed, lex, and
awk on the following simple tasks:
1. count the number of lines.
2. print all lines containing *‘doug’’.

3. print all lines containing ‘‘doug’, “‘ken”
or “dmr’’.

4. print the third field of each line,

5. print the third and second fields of each
line, in that order.

6. append all lines containing ‘‘doug’,
“ken”, and *dmr” to files ‘‘jdoug”,
*‘jken”’, and “‘jdmr’’, respectively.

7. print each line prefixed by ‘line-
number : .

8. sum the fourth column of a table.

The program we merely counts words, lines and
characters in its input; we have already men-
tioned the others. In all cases the input was a
file containing 10,000 lines as created by the
command Is —/; each line has the form:

—rw—rw—rw— 1 ava 123 Oct 15 17:05 xxx

The total length of this input is 452,960 charac-
ters. Times for /lex do not include compile or
load.

As might bc expected, awk is not as fast
as the specialized tools wc, sed, or the programs
in the grep family, but is faster than the more
general tool Jex. In all cases, the tasks were
about as easy to express as awk programs as pro-
grams in these other languages; tasks involving
fields were considerably casier to express as awk
programs. Some of the test programs are shown
in awk , sed and lex.

REFERENCES
[1] T. A. Dolotta, S. B. Olsson, and A. G.
Petruccelli (eds). UNIX User's

Manual—Release 3.0, Bell Laboratories
(June 1980).

[2] B. W. Kernighan and D. M. Ritchic. The
C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

[31 M. E. Lesk. LEX—A Lexical Analyzer Gen-
erator, Bell Laboratories, 1975.

[41 S. C. Johnson. YACC—Yet Another
Compiler-Compiler, Bell Laboratories, 1975,

Task
Program 1 2 3 4 5 6 7 8
wc 8.6
grep 11.7 13.1
egrep 6.2 11.5 11.6
ferep 7.7 13.8 16.1
sed 10.2 11.6 158 | 29.0 | 305 16.1
lex 65.1 | 150.1 | 144.2 | 67.7 | 70.3 | 104.0 | 81.7 | 92.8
awk 15.0 25.6 299 | 33.3 | 389 464 | 71.4 | 31.1

The programs for some of these jobs are
shown below. The Jlex programs are gencrally

too long to show.

AWK:

1.

END {print NR}
/doug/
/kenidougldmr/
{print $3}

{print §3, $2}

Table I. Execution Times of Programs (in Seconds).

/ken/ {print >‘jken"}
/doug/ {print >"jdoug"}
/dmr/ {print >"idmr"}

{print NR ": " $0}

fsum = sum + $4}

END {print sum}

$=
/doug/p

/doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

T D17 1o [1oN([T Is\) o/8/\1/p

LEX:

%of
int i;
%}
%o

\n i++;

%o

yywrap() {

printf("od\n®, i);

}

%o

" sdoug.a$

o

January 1981

/7 T [1N 1) [I\ 1e\) #/s//\2 \1/p

/ken/w jken
/doug/w jdoug
/dmr/w jdmr

AWK

printf(*%s\n*, yytext);

UNIX
E4.1

Source Code Control System User’s Guide

L. E. Bonanni
C. A. Salemi

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

The Source Code Control System (SCCS) is a system for controlling changes to
files of text (typically, the source code and documentation of software systems).
It provides facilities for storing, updating, and retrieving any version of a file of
text, for controlling updating privileges to that file, for identifying the version of a
retrieved file, and for recording who made each change, when and where it was
made, and why. SCCS is a collection of programs that run under the UNIX?
Time-Sharing System.

This document, together with relevant portions of the UNIX User's Manual, is a
complete user’s guide to SCCS, and supersedes all previous versions. The follow-
ing topics are covered:

e How to get started with SCCS.

e The scheme used to identify versions of text kept in an SCCS file.

o Basic information needed for day-to-day use of SCCS commands, including a
discussion of the more useful arguments.

e Protection and auditing of SCCS files, including the differences between the use
of SCCS by individual users on one hand, and groups of users on the other.

Neither the implementation of SCCS nor the installation procedure for SCCS are
described here.

1. INTRODUCTION

The Source Code Control System (SCCS) is a collection of UNIX commands that help individu-
als or projects control and account for changes to files of text (typically, the source code and
documentation of software systems). It is convenient to conceive of SCCS as a custodian of
files; it allows retrieval of particular versions of the files, administers changes to them, controls
updating privileges to them, and records who made each change, when and where it was made,
and why. This is important when programs and documentation undergo frequent changes
(because of maintenance and/or enhancement work), inasmuch as it is sometimes desirable to
regenerate the version of a program or document as it was before changes were applied to it.
Obviously, this could be done by keeping copies (on paper or other media), but this quickly
becomes unmanageable and wasteful as the number of programs and documents increases.
SCCS provides an attractive solution because it stores on disk the original file and, whenever
changes are made to it, stores only the changes; each set of changes is called a ‘‘delta.”

This document, together with relevant portions of the UNIX User's Manual, is a complete user’s

" guide to SCCS. This manual contains the following sections:

e SCCS for Beginners: How to make an SCCS file, how to update it, and how to retrieve a ver-
sion thereof. .
o How Deltas Are Numbered: How versions of SCCS files are numbered and named.

t UNIX is a trademark of Bell Laboratories.

2 SCCS User’s Guide

e SCCS Command Conventions: Conventions and rules generally applicable to all SCCS com-
mands. ‘

e SCCS Commands: Explanation of all SCCS commands, with discussions of the more useful
arguments.

e SCCS Files: Protection, format, and auditing of SCCS files, including a discussion of the
differences between using SCCS as an individual and using it as a member of a group or pro-
ject. The role of a ““project SCCS administrator” is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a UNIX system, create files, and use the
text editor. A number of terminal-session fragments are presented below. All of them should
be tried: the best way to learn SCCS is to use it.

To supplement the material in this manual, the detailed SCCS command descriptions (appearing
in the UNIX User's Manual) should be consulted. Section 5 below contains a list of all the
SCCS commands. For the time being, however, only basic concepts will be discussed.

2.1 Terminology

Each SCCS file is composed of one or more sets of changes applied to the null (empty) version
of the file, with each set of changes usually depending on all previous sets. Each set of changes
is called a ‘“delta® and is assigned a name, called the SCCS IDentification string (SID), com-
posed of at most four components, only the first two of which will concern us for now; these
are the ‘‘release’” and “‘level’’ numbers, separated by a period. Hence, the first delta is called
*“1.1”, the second ““1.2", the third *“1.3"”’, etc. The release number can also be changed allow-
ing, for example, deltas “*2.1"", **3.19, etc. The change in the release number usually indi-
cates a major change to the file.

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines
version 1.5 of the SCCS file, obtained by applying to the null (empty) version of the file the
changes that constitute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

2.2 Creating an SCCS File: the ‘‘admin’” Command
Consider, for example, a file called *‘lang’” that contains a list of programming languages:

c
pl/i
fortran
cobol
algol

We wish to give custody of this file to SCCS. The following admin command (which is used to
administer SCCS files) creates an SCCS file and initializes delta 1.1 from the file “‘lang’”:

admin —ilang s.lang

All SCCS files must have names that begin with ‘‘s.”’, hence, ‘‘s.Jang”. The —i keyletter,
together with its value ‘“*lang’’, indicates that admin is to create a new SCCS file and initialize it
with the contents of the file “‘lang’’. This initial version is a set of changes applied to the null
SCCS file; it is delta 1.1.

The admin command replies:
No id keywords (¢m7)

This is a warning message (which may also be issued by other SCCS commands) that is to be
ignored for the purposes of this section. Its significance is described in Section 5.1 below. In
the following examples, this warning message is not shown, although it may actually be issued
by the various command. '

SCCS User’s Guide 3

The file “‘lang™ should be removed (because it can be easily reconstructed by using the get
command, below):

rm lang
2.3 Retrieving a File: the *‘get”” Command
The command:

get s.lang

causes the creation (retrieval) of the latest version of file “*s.ang”, and prints the following
messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of 5 lines of text. The
retrieved text is placed in a file whose name is formed by deleting the *‘s.”” prefix from the
name of the SCCS file; hence, the file “‘lang”’ is created.

The above ger command simply creates the file “‘lang’ read-only, and keeps no information
whatsoever regarding its creation. On the other hand, in order to be able to subsequently apply
changes to an SCCS file with the dglta command (see below), the ger command must be
informed of your intention to do so. This is done as follows:

get —c¢ s.dang

The —e keyletter causes get to create a file ““lang” for both reading and writing (so that it may
be edited) and places certain information about the SCCS file in another new file, called the p-
file, that will be read by the delfa command. The get command prints the same messages as
before, except that the SID of the version to be created through the use of delta is also issued.
For example:

get —e s.lang
1.1

new delta 1.2
5 lines

The file *““lang’ may now be changed, for example, by:

ed lang
27

$a
snobol
ratfor

w
41

q
2.4 Recording Changes: the ‘“delta” Command

In order to record within the SCCS file the changes that have been applied to *‘lang”, execute:
delta s.lang

Delta prompts with:
comments?

the response to which should be a description of why the changes were made; for example:

4 SCCS User's Guide

comments? added more languages

Delta then reads the p-file, and determines what changes were made to the file ““lang’. It does
this by doing its own ger to retrieve the original version, and by applying diff (1)! to the original
version and the edited version.

When this process is complete, at which point the changes to ‘“‘lang” have been stored in
“s.lang”, delta outputs:

1.2

2 inserted

0 deleted

5 unchanged

The number ““1.2"" is the name of the delta just created, and the next three lines of output
refer to the number of lines in the file *‘s.]lang™.

2.5 More about the ‘“‘get’’ Command
As we have seen:
get s.ang

retrieves the latest version (now 1.2) of the file “‘s.lang”. This is done by starting with the ori-
ginal version of the file and successively applying deltas (the changes) in order, until all have
been applied.

For our example, the following commands are all equivalent:
get s.ang
get —rl s.dang
get —rl.2 s.lang

The numbers following the —r keyletter are SIDs (see Section 2.1 above). Note that omitting
the level number of the SID (as in the second example above) is equivalent to specifying the
highest level number that exists within the specified release. Thus, the second command
requests the retrieval of the latest version in release 1, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indi-
cated by changing the release number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the SID), we must indicate to SCCS that we wish to change the release
number. This is done with the ger command:

get —e —r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2; it also inter-
prets this as a request to change the release number of the delta we wish to create to 2, thereby
causing it to be named 2.1, rather than 1.3. This information is conveyed to delta via the p-file.
Get then outputs: .

1. All references of the form name (N) refer to item name in Section N of UNIX User’s Manual.

SCCS User’s Guide 5

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create.
If the file is now edited, for example, by:

ed lang
41
/cobol/d

w
35

q

and delta executed:

delta s.ang
comments? deleted cobol from list of languages

we will see, by delta’s output, that version 2.1 is indeed created:

2.1

0 inserted

1 deleted

6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner. This process may be continued as desired.

2.6 The ‘““help’” Command

If the command:
get abc

is executed, the following message will be output:
ERROR [abc]: not an SCCS file (col)

The string ‘*col” is a code for the diagnostic message, and may be used to obtain a fuller
explanation of that message by use of the help command:

help col
This produces the following output:

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
SCCS message. Fuller explanations of almost all SCCS messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an SCCS file as the nodes of a tree, in which
the root is the initial version of the file. The root delta (node) is normally named *“1.1°* and
successor deltas (nodes) are named ““1.2”°, *‘1.3”’, etc. The components of the names of the
deltas are called the “‘release’” and the “‘level’” numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically
by SCCS whenever a delta is made. In addition, the user may wish to change the release
number when making a delta, to indicate that a major change is being made. When this is

6 SCCS User's Guide

done, the release number also applies to all successor deltas, unless specifically changed again.
Thus, the evolution of a particular file may be represented as in Figure 1.

O))
N/ A\
1.1 1.2 1.3 1.4

%

21 2.2

Release 1 Release 2

Figure 1. Evolution of an SCCS File

Such a structure may be termed the ““trunk’’ of the SCCS tree. It represents the normal sequen-
tial development of an SCCS file, in which changes that are part of any given delta are depen-
dent upon all the preceding deltas.

However, there are situations in which it is necessary to cause a branching in the tree, in that
changes applied as part of a given delta are nor dependent upon all previous deltas. As an
example, consider a program which is in production use at version 1.3, and for which develop-
ment work on release 2 is already in progress. Thus, release 2 may already have some deltas,
precisely as shown in Figure 1. Assume that a production user reports a problem in version
1.3, and that the nature of the problem is such that it cannot wait to be repaired in release 2.
The changes necessary to repair the trouble will be applied as a delta to version 1.3 (the version
in production use). This creates a new version that will then be released to the user, but will
not affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a ‘‘branch’’ of the tree, and its name consists of four components,
namely, the release and level numbers, as with trunk deltas, plus the “‘branch” and
““sequence’’ numbers, as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta,
with the first such branch being 1, the next one 2, and so on. The sequence number is
assigned, in order, to each delta on a particular branch. Thus, 1.3.1.2 identifies the second delta
of the first branch that derives from delta 1.3. This is shown in Figure 2.

1.3.1.2
Branch 1

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk
deltas contain exactly two components, and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those
of the ancestral trunk delta, and the branch component is assigned in the order of creation of
the branch, independently of its location relative to the trunk delta. ‘Thus, a branch delta may

SCCS User's Guide 7

always be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta’s name, it is not possible to determine the entire path leading
from the trunk delta to the branch delta. For example, if delta 1.3 has one branch emanating
from it, all deltas on that branch will be named 1.3.1.n. If a delta on this branch then has
another branch emanating from i, all deltas on the new branch will be named 1.3.2.n (see Fig-
ure 3). The only information that may be derived from the name of delta 1.3.2.2 is that it is
the chronologically second delta on the chronologically second branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all of the
deltas between it and its trunk ancestor (1.3).

1.31.2
Branch 1

O—O—CGF——0O—0—>0

1.1 1.2 1.3 . 1.4 21 2.2

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCS tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to SCCS commands. These rules
and conventions are generally applicable to all SCCS commands, except as indicated below.
SCCS commands accept two types of arguments: keyletter arguments and file arguments.

Keyletter arguments (hereafter called simply “‘keyletters’”) begin with a minus sign (—), fol-
lowed by a lower-case alphabetic character, and, in some cases, followed by a value. These
keyletters control the execution of the command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the
given SCCS command is to process; naming a directory is equivalent to naming all the SCCS
files within the directory. Non-SCCS files and unreadable? files in the named directories are
silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name “—" (a
lone minus sign) is specified as an argument to a command, the command reads the standard
input for lines and takes each line as the name of an SCCS file to be processed. The standard
input is read until end-of-file. This feature is often used in pipclines with, for example, the
find (1) or Is(1) commands. Again, names of non-SCCS files and of unreadable files are silently
ignored.

2. Because of permission modes (see chmod(1)).

8 SCCS User's Guide

All keyletters specified for a given command apply to all file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File arguments,
however, are processed left to right.

Somewhat different argument conventions apply to the help, what, scesdiff, and val commands
(see Sections 5.5, 5.8, 5.9, and 5.11).

Certain actions of various SCCS commands are controlled by flags appearing in SCCS files.
Some of these flags are discussed below. For a complete description of all such flags, see
admin(1).

The distinction between the real user (see passwd (1)) and the effective user of a UNIX system is
of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same (i.e., the user who is logged into
a UNIX system); this subject is further discussed in Section 6.1.

All SCCS commands that modify an SCCS file do so by writing a temporary copy, called the x-
file, which ensures that the SCCS file will not be damaged should processing terminate abnor-
mally. The name of the x-file is formed by replacing the ‘‘s.”” of the SCCS file name with “‘x.”".
When processing is complete, the old SCCS file is removed and the x-file is renamed to be the
SCCS file. The x-file is created in the directory containing the SCCS file, is given the same
mode (see chmod (1)) as the SCCS file, and is owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that modify SCCS files create a
lock-file, called the z-file, whose name is formed by replacing the “‘s.”” of the SCCS file name
with ““z.”’. The z-file contains the process number of the command that creates it, and its
existence is an indication to other commands that that SCCS file is being updated. Thus, other
commands that modify SCCS files will not process an SCCS file if the corresponding z-file exists.
The z-file is created with mode 444 (read-only) in the directory containing the SCCS file, and is
owned by the effective user. This file exists only for the duration of the execution of the com-
mand that creates it. In general, users can ignore x-files and z-files; they may be useful in the
event of system crashes or similar situations.

SCCS commands produce diagnostics (on the diagnostic output) of the form:
ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command (see Section 5.5) to
obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the SCCS command to terminate
processing of that file and to proceed with the next file, in order, if more than one file has been
named.

5. SCCS COMMANDS

This section describes the major features of all the SCCS commands. Detailed descriptions of
the commands and of all their arguments are given in the UNIX User's Manual, and should be
consulted for further information. The discussion below covers only the more common argu-
ments of the various SCCS commands.

Because the commands get and delta are the most frequently used, they are presented first. The
other commands follow in approximate order of importance.

The following is a summary of all the SCCS commands and of their major functions:
get Retrieves versions of SCCS files.

delta Applies changes (deltas) to the text of SCCS files, i.e., creates new versions.

SCCS User's Guide 9

admin Creates SCCS files and applies changes to parameters of SCCS files.

prs Prints portions of an SCCS file in user specified format.
help Gives explanations of diagnostic messages.
rmdel Removes a delta from an SCCS file; allows the removal of deltas that were

created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any UNIX file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the ger
command.

sccsdiff Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into ‘a single delta;
often reduces the size of the SCCS file.
val Validates an SCCS file.
5.1 get

The get command creates a text file that contains a particular version of an SCCS file. The par-
ticular version is retrieved by beginning with the initial version, and then applying deltas, in
order, until the desired version is obtained. The created file is called the g-file; its name is
formed by removing the “‘s.”” from the SCCS file name. The g-file is created in the current
directory and is owned by the real user. The mode assigned to the g-file depends on how the
get command is invoked, as discussed below.

The most common invocation of get is:
get s.abc

which normally retrieves the latest version on the trunk of the SCCS file tree, and produces (for
example) on the standard output:

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file “‘s.abc’’ was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.

3. No ID keywords were substituted in the file (see Section 5.1.1 for a discussion of ID key-
words).

The generated g-file (file *‘abc™) is given mode 444 (read-only), since this particular way of
invoking get is intended to produce g-files only for inspection, compilation, etc., and nor for
editing (i.e., not for making deltas).

In the case of several file arguments (or directory-name arguments), similar information is
given for each file processed, but the SCCS file name precedes it. For example:

get s.abc s.def

produces:

10 SCCS User's Guide

s.abc:

1.3

67 lines

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (¢cm7)

5.1.1 ID Keywords

In generating a g-file to be used for compilation, it is useful and informative to record the date
and time of creation, the version retrieved, the module’s name, etc., within the g-file, so as to
have this information appear in a load module when one is eventually created. SCCS provides a
convenient mechanism for doing this automatically. Identification (ID) keywords appearing any-
where in the generated file are replaced by appropriate values according to the definitions of
these ID keywords. The format of an ID keyword is an upper-case letter enclosed by percent
signs (%). For example:

Tl %

is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. Simi-
larly, %H% is defined as the ID keyword for the current date (in the form ““mm/dd/yy”’), and
%M% is defined as the name of the g-file. Thus, executing get on an SCCS file that contains the
PL/I declaration:

DCL ID CHAR(100) VAR INIT('%M% %1% %H%');
gives (for example) the following:
DCL ID CHAR(100) VAR INIT(‘'MODNAME 2.3 07/07/77°);
When no ID keywords are substituted by get, the following message is issued:
No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the
SCCS file causes it to be treated as an error (see Section 5.2 for further information).

For a complete list of the approximately twenty ID keywords provided, see get (1).
5.1.2 Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an
SCCS file. Normally, the default version is the most recent delta of the highest-numbered
release on the trunk of the SCCS file tree. However, if the SCCS file being processed has a d
(default SID) flag, the SID specified as the value of this flag is used as a default. The default
SID is interpreted in exactly the same way as the value supplied with the —r keyletter of get.

The —r keyletter is used to specify an SID to be retrieved, in which case the d (default SID)
flag (if any) is ignored. For example:

get —rl.3 s.abc
retrieves version 1.3 of file *‘s.abc”’, and produces (for example) on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:
get —rl.5.2.3 s.abc

SCCS User's Guide 11

which produces (for example) on the standard output:

1.5.2.3
234 lines

When a two- or four-component SID is specified as a value for the —r keyletter (as above) and
the particular version does not exist in the SCCS file, an error message results. Omission of the
level number, as in:

get —r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release, if the
given release exists. Thus, the above command might output:

3.7
213 lines

If the given release does not exist, get retrieves the trunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. For example,
assuming release 9 does not exist in file ‘‘s.abc’, and that release 7 is actually the highest-
numbered release below 9, execution of;

get —r9 s.abc
might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file ‘‘s.abc’’ below release 9. Simi-
larly, omission of the sequence number, as in:

get —rd4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch, if it exists. (If the given branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

The —t keyletter is used to retrieve the latest (‘‘top’’) version in a particular release (i.e., when
no —r keyletter is supplied, or when its value is simply a release number). The latest version
is defined as that delta which was produced most recently, independent of its location on the
SCCS file tree. Thus, if the most recent delta in release 3 is 3.5,

get —r3 —t s.abc
might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same com-
mand might produce: R ‘ oo

3.2.1.5
46 lines

5.1.3 Retrieval with Intent to Make a Delta

Specification of the —e keyletter to the ger command is an indication of the intent to make a
delta, and, as such, its use is restricted. The presence of this keyletter causes gef to check:

12 SCCS User's Guide

1. The wuser list (which is the list of /ogin names and/or group IDs of users allowed to make
deltas (see Section 6.2)) to determine if the login name or group ID of the user executing
get is on that list. Note that a null (empty) user list behaves as if it contained all possible
login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor < R =< ceiling

to determine if the release being accessed is a protected release. The floor and ceiling are
specified as flags in the SCCS file.

3. That the release (R) is not locked against editing. The lock is specified as a flag in the
SCCS file.

4. Whether or not multiple concurrent edits are allowed for the SCCS file as specified by the j
flag in the SCCS file (multiple concurrent edits are described in Section 5.1.5).

A failure of any of the first three conditions causes the processing of the corresponding SCCS
file to terminate.

If the above checks succeed, the —e keyletter causes the creation of a g-file in the current
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real
user. If a writable g-file already exists, gef terminates with an error. This is to prevent inadver-
tent destruction of a g-file that already exists and is being edited for the purpose of making a
delta.

Any ID keywords appearing in the g-file are not substituted by getr when the —e keyletter is
specified, because the generated g-file is to be subsequently used to create another delta, and
replacement of ID keywords would cause them to be permanently changed within the SCCS file.
In view of this, get does not need to check for the presence of 1D keywords within the g-file, so
that the message:

No id keywords (¢cm7)
is never output when get is invoked with the —e keyletter.

In addition, the —e keyletter causes the creation (or updating) of a p-file, which is used to pass
information to the delta command (see Section 5.1.4).

The following is an example of the use of the —e keyletter:
get —e s.abc
which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

If the —r and/or —t keyletters are used together with the —e keyletter, the version retrieved
for editing is as specified by the —r and/or —t keyletters.

The keyletters —i and —x may be used to specify a list (see ger (1) for the syntax of such a
list) of deltas to be included and excluded, respectively, by get. Including a delta means forcing
the changes that constitute the particular delta to be included in the retrieved version. This is
useful if one wants to apply the same changes to more than one version of the SCCS file.
Excluding a delta means forcing it to be nor applied. This may be used to undo, in the version
of the SCCS file to be created, the effects of a previous delta. Whenever deltas are included or
excluded, ger checks for possible interference between such deltas and those deltas that are nor-
mally used in retrieving the particular version of the SCCS file. (Two deltas can interfere, for
example, when each one changes the same line of the retrieved g-file.) Any interference is
indicated by a warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine whether a problem

SCCS User's Guide 13

actually exists, and to take whatever corrective measures (if any) are deemed necessary (e.g.,
edit the file). ‘

tw# The —i and —x keyletters should be used with extreme care.

The —k keyletter is provided to facilitate regeneration of a g-file that may have been acciden-
tally removed or ruined subsequent to the execution of get with the —e keyletter, or to simply
generate a g-file in which the replacement of ID keywords has been suppressed. Thus, a g-file
generated by the —k keyletter is identical to one produced by ger executed with the —e
keyletter. However, no processing related to the p-file takes place.

5.1.4 Concurrent Edits of Different SIDs

The ability to retrieve different versions of an SCCS file allows a number of deltas to be *“‘in
progress’” at any given time. This means that a number of ger commands with the —e keyletter
may be executed on the same file, provided that no two executions retrieve the same version
(unless multiple concurrent edits are allowed, see Section 5.1.5).

The p-file (which is created by the get command invoked with the —e keyletter) is named by
replacing the *‘s.” in the SCCS file name with ““p.””. Tt is created in the directory containing the
SCCS file, is given mode 644 (readable by everyone, writable only by the owner), and is owned
by the effective user. The p-file contains the following information for each delta that is still
““in progress’’:® '

e The SID of the retrieved version.
e The SID that will be given to the new delta when it is created.
e The login name of the real user executing get.

The first execution of ‘‘get —e’” causes the creation of the p-file for the corresponding SCCS file.
Subsequent executions only update the p-file with a line containing the above information.
Beforc updating, however, get checks that no entry already in the p-file specifies as already
retrieved the SID of the version to be retrieved, unless multiple concurrent edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress, and processing
continues. If either check fails, an error message results. It is important to note that the vari-
ous executions of ger should be carried out from different directories. Otherwise, only the first
execution will succeed, since subsequent executions would attempt to over-write a writable g-
file, which is an SCCS error condition. In practice, such multiple executions are performed by
different users,* so that this problem does not arise, since each user normally has a different
working directory.

Table 1 shows, for the most useful cases, what version of an SCCS file is retrieved by get, as
well as the SID of the version to be eventually created by delta, as a function of the SID
specified to get.

5.1.5 Concurrent Edits of the Same SID

Under normal conditions, gers for editing (—e keyletter is specified) based on the same SID are
not permitted to occur concurrently. That is, delta must be executed before a subsequent get
for editing is executed at the same SID as the previous get. However, multiple concurrent edits
(defined to be two or more successive executions of get for editing based on the same retrieved
SID) are allowed if the j flag is set in the SCCS file. Thus:

3. Other information may be present, but is not of concern here. See get (1) for further discussion.
4. See Section 6.1 for a discussion of how different users are permitted to use SCCS commands on the same files.

14 SCCS User’s Guide
TABLE 1. Determination of New SID
Case SID —b Keyletter Otlfe.r SID SID of Delta
Specified* Used t Conditions Retrieved to be Created
1. nonef no R defaults to mR mR.mL mR.(mL +1)
2. none} yes R defaults to mR mR.mL mR.mL.(mB +1).1
3. R no R > mR mR.mL R.1§
4, R no R = mR mR.mL mR.(mL +1)
S. R _yes R > mR mR.mL mR.mL.(mB +1).1
6. R yes R = mR mR.mL mR.mL.(mB +1).1
7. R - R emRand BR.mL** hR.mL.(mB+1).1
Trunk successor
8. R - in release > R R.mL R.mL.(mB +1).1
and R exists
9. R.L no No trunk successor R.L R.(L+1)
10. R.L yes No trunk successor R.L R.L.(mB +1).1
r
1. RL - Jrunk sucsesso RL R.L.(mB+1).1
12. R.L.B no No branch successor R.L.B.mS R.L.B.(mS+1)
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1
14. R.L.B.S no No branch successor R.L.B.S R.L.B.(S+1)
15, R.L.B.S yes No branch successor R.L.B.S R.L.(mB +1).1
16. R.L.B.S - Branch successor R.L.B.S R.L.(mB +1).1
* “R", “L”, “B”, and “‘S" are the ‘'release’’, “‘level", *‘branch”, and ‘‘sequence’’ components of the SID,
respectively; “‘m’’ means “maximum’’. Thus, for example, “‘R.mL"" means *‘the maximum level number within
release R''; “R.L.(mB +1).1”" means “‘the first sequence number on the new branch (i.e., maximum branch
number plus 1) of level L within release R'". Note that if the SID specified is of the form *‘R.L"", “‘R.L.B”", or
*‘R.L.B.S”’, each of the specified components must cxist.
t The —b keyletter is effective only if the b flag (see admin (1)) is present in the file. In this table, an entry of
“—"" means “irrelevant’.
1 This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the file, then the

§ This case is used to force the creation of the first delta in a new release.

SID obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the
other cases in this table applies.

** “hR’’ is the highest existing release that is lower than the specified, nonexistent, release R.

get

—e s.abc
1.1

new delta 1.2
5 lines

may be immediately followed by:

get —e s.abc

1.1
new delta 1.1.1.1
S lines

without an intervening execution of delta. In this case, a delta command corresponding to the
first get produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta
command corresponding to the second ger produces delta 1.1.1.1.

SCCS User’s Guide 15

5.1.6 Keyletters that Affect Output

Specification of the —p keyletter causes ger to write the retrieved text to the standard output,
rather than to a g-file. In addition, all output normally directed to the standard output (such as
the SID of the version retrieved and the number of lines retrieved) is directed instead to the
diagnostic output. This may be used, for example, to create g-files with arbitrary names:

get —p s.abc > arbitrary-file-name

The —p keyletter is particularly useful when used with the **!"” or *‘$’’ arguments of the UNIX
send (1C) command. For example:

send MOD=s.abc REL=3 compile
given that file “‘compile” contains:

//plicomp job job-card-information

//stepl exec plicke

//pli.sysin dd #

T—s3

“lget —p —rREL MOD

/*

/]
will send the highest level of release 3 of file “*s.abc’. Note that the line **™—s’’, which causes
send” (1C) to make ID keyword substitutions before detecting and interpreting control lines, is
necessary if send” (1C) is to substitute ““s.abc’’ for MOD and **3”" for REL in the line **"!get
-p —rREL MOD™.

The —s keyletter suppresses all output that is normally directed to the standard output. Thus,
the SID of the retrieved version, the number of lines retrieved, etc., are not output. This does
not, however, affect messages to the diagnostic output. This keyletter is used to prevent non-
diagnostic messages from appearing on the user’s terminal, and is often used in conjunction
with the —p keyletter to **pipe’’ the output of get, as in:

get —p —s s.abc | nroff

The —g keyletter is supplied to suppress the actual retrieval of the text of a version of the SCCS
file. This may be useful in a number of ways. For example, to verify the existence of a partic-
ular SID in an SCCS file, one may execute:

get —g —r4.3 s.abc

This outputs the given SID if it exists in the SCCS file, or it generates an error message, if it
does not. Another use of the —g keyletter is in regenerating a p-file that may have been
accidentally destroyed:

get —e —g s.abc

The —1 keyletter causes the creation of an /-file, which is named by replacing the *'s.”” of the
SCCS file name with ““1.”’. This file is created in the current directory, with mode 444 (read-
only), and is owned by the real user. It contains a table (whose format is described in ger (1))
showing which deltas were used in constructing a particular version of the SCCS file. For exam-
ple: ‘

get —r2.3 —1 s.abc

generates an I-file showing which deltas were applied to retrieve version 2.3 of the SCCS file.
Specifying a value of **p’” with the —I keyletter, as in:

E

“get —Ip —r2.3 s.abc

16 SCCS User’s Guide

causes the generated output to be written to the standard output rather than to the /-file. The
—g keyletter may be used with the —1 keyletter to suppress the actual retrieval of the text.

The —m keyletter is of use in identifying, line by line, the changes applied to an SCCS file.
Specification of this keyletter causes each line of the generated g-file to be preceded by the SID
of the delta that caused that line to be inserted. The SID is separated from the text of the line
by a tab character.

The —n keyletter causes each line of the generated g-file to be preceded by the value of the
%M% ID keyword (see Section 5.1.1) and a tab character. The —n keyletter is most often used
in a pipeline with grep(1). For example, to find all lines that match a given pattern in the latest
version of each SCCS file in a directory, the following may be executed:

get —p —n —s directory | grep pattern

If both the —m and —n keyletters are specified, each line of the generated g-file is preceded by
the value of the %M% ID keyword and a tab (this is the effect of the —n keyletter), followed
by the line in the format produced by the —m keyletter. Because use of the —m keyletter
and/or the —n keyletter causes the contents of the g-file to be modified, such a g-file must not
be used for creating a delta. Therefore, neither the —m keyletter nor the —n keyletter may be
specified together with the —e keyletter.

See get (1) for a full description of additional get keyletters.
5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding
SCCS file, i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the defta command requires the existence of a p-file (see Sections 5.1.3 and
5.1.4). Delta examines the p-file to verify the presence of an entry containing the user’s login
name. If none is found, an error message results. Delta also performs the same permission
checks that ger performs when invoked with the —e keyletter. If all checks are successful, delta
determines what has been changed in the g-file, by comparing it (via diff (1)) with its own, tem-
porary copy of the g-file as it was before editing. This temporary copy of the g-file is called the
d-file (its name is formed by replacing the ‘“‘s.”” of the SCCS file name with ‘*d.”’) and is
obtained by performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user executing delra,
because the user who retrieved the g-file must be the one who will create the delta. However,
if the login name of the user appears in more than one entry (i.e., the same user executed get
with the —e keyletter more than once on the same SCCS file), the —r keyletter must be used
with delta to specify an SID that uniquely identifies the p-file entry>. This entry is the one used
to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is:
delta s.abe

which prompts on the standard output (but only if it is a terminal):
comments?

to which the user replies with a description of why the delta is being made, terminating the
reply with a new-line character. The user's response may be up to 512 characters long, with
new-lines nor intended to terminate the response escaped by “\”.

5. The SID specified may be either the SID retrieved by get, or the SID delta is to create.

SCCS User's Guide 17

If the SCCS file has a v flag, delta first prompts with:
MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a termi-
nal.) The standard input is then read for MR® numbers, separated by blanks and/or tabs, ter-
minated in the same manner as the response to the prompt ‘‘comments?”’.

The —y and/or —m keyletters may be used to supply the commentary (comments and MR
numbers, respectively) on the command line, rather than through the standard input:

delta —y"descriptive comment” —m"mrnuml mrnum2" s.abe

In this case, the corresponding prompts are not printed, and the standard input is not read.
The —m keyletter is allowed only if the SCCS file has a v flag. These keyletters are useful
when delta is executed from within a shell procedure (see sh(1)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
keyletters, is recorded as part of the entry for the delta being created, and applies to all SCCS
files processed by the same invocation of delta. This implies that if delta is invoked with more
than one file argument, and the first file named has a v flag, all files named must have this flag.
Similarly, if the first file named does not have this flag, then none of the files named may have
it. Any file that does not conform to these rules is'not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created
delta (obtained from the p-file entry) and the counts of lines inserted, deleted, and left
unchanged by the delta. Thus, a typical output might be:

1.4

14 inserted

7 deleted

345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not
agree with the user’s perception of the changes applied to the g-file. The reason for this is that
there usually are a number of ways to describe a set of such changes, especially if lines are
moved around in the g-file, and delta is likely to find a description that differs from the user’s
perception. However, the fotal number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file.

If, in the process of making a delta, delta finds no ID keywords in the edited g-file, the message:
No id keywords (cm7)

is issued after the prompts for commentary, but before any other output. This indicates that
any ID keywords that may have existed in the SCCS file have been replaced by their values, or
deleted during the editing process. This could be caused by creating a delta from a g-file that
was created by a ger without the —e keyletter (recall that ID keywords are replaced by ger in
that case), or by accidentally deleting or changing the 1D keywords during the editing of the g-
file. Another possibility is that the file may never have had any ID keywords. In any case, it is
left up to the user to determine what remedial action is necessary, but the delta is made, unless
there is an i flag in the SCCS file, indicating that this should be treated as a fatal error. In this
last case, the delta is not created.

6. In a tightly controlled environment, it is expected that deltas are created only as a result of some trouble report,
change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and that it is desirable
or necessary to record such MR number(s) within each delta.

18 SCCS User's Guide

After processing of an SCCS file is complete, the corresponding p-file entry is removed from the
p-file.” 1f there is only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file, unless the —n keyletter is specified. Thus:
delta —n s.abe
will keep the g-file upon completion of processing.

The —s (‘‘silent’’) keyletter suppresses all output that is normally directed to the standard out-
put, other than the prompts ‘“‘comments?’” and **MRs?”’. Thus, use of the —s keyletter
together with the —y keyletter (and possibly, the —m keyletter) causes delra neither to read the
standard input nor to write the standard output.

The differences between the g-file and the d-file (seé above), which constitute the delta, may be
printed on the standard output by using the —p keyletter. The format of this output is similar
to that produced by diff (1).

5.3 admin

The admin command is used to administer SCCS files, that is, to create new SCCS files and to
change parameters of existing ones. When an SCCS file is created, its parameters are initialized
by use of keyletters or are assigned default values if no keyletters are supplied. The same
keyletters are used to change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting ‘‘corrupted”
SCCS files, and are discussed in Section 6.3 below.

Newly-created SCCS files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the SCCS file may use the admin
command upon that file.

5.3.1 Creation of SCCS Files
An SCCS file may be created by executing the command:
admin —ifirst s.abc

in which the value (“‘first”’) of the —i keyletter specifies the name of a file from which the text
of the initial delta of the SCCS file “‘s.abc’ is to be taken. Omission of the value of the —i
keyletter indicates that admin is to read the standard input for the text of the initial delta.
Thus, the command:

admin —1 s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain ID key-
words, the message:

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the command also sets the
i flag (not to be confused with the —i keyletter), the message is treated as an error and the
SCCS file is not created. Only one SCCS file may be created at a time using the —1i keyletter.

7. All updates to the p-file are made to a temporary copy, the g-file, whose use is similar to the use of the x-file, which
is described in Section 4 above.

SCCS User’s Guide 19

When an SCCS file is created, the release number assigned to its first delta is normally **1’*, and
its level number is always *‘1”°. Thus, the first delta of an SCCS file is normally *“1.1”", The
—r keyletter is used to specify the release number to be assigned to the first delta. Thus:

admin —ifirst —r3 s.abc

indicates that the first delta should be named *‘3.1"" rather than ‘*1.1"". Because this keyletter
is only meaningful in creating the first delta, its use is only permitted with the —i keyletter.

5.3.2 Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may choose to supply commentary stating the reason for
creation of the file. This is done by supplying comments (—y keyletter) and/or MR numbers®
(—m keyletter) in exactly the same manner as for delta. If comments (—y keyletter) are omit-
ted, a comment line of the form:

date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

If it is desired to supply MR numbers (—m keyletter), the v flag must also be set (using the
—f keyletter described below). The v flag simply determines whether or not MR numbers
must be supplied when using any SCCS command that modifies a delta commentary (see
scesfile (5)) in the SCCS file. Thus: '

admin —ifirst —mmrnum]l —fv s.abc
Note that the —y and —m keyletters are only effective if a new SCCS file is being created.
5.3.3 Initialization and Modification of SCCS File Parameters

The portion of the SCCS file reserved for descriptive text (see Section 6.2) may be initialized or
changed through the use of the —t keyletter. The descriptive text is intended as a summary of
the contents and purpose of the SCCS file, although its contents may be arbitrary, and it may be
arbitrarily long.

When an SCCS file is being created and the —t keyletter is supplied, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the command:

admin —ifirst —tdesc s.abc
specifies that the descriptive text is to be taken from file ‘‘desc’’.

When processing an existing SCCS file, the —t keyletter specifies that the descriptive text (if
any) currently in the file is to be replaced with the text in the named file. Thus:

admin —tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents of “‘desc’’;
omission of the file name after the —t keyletter as in:

admin —t s.abc
causes the removal of the descriptive text from the SCCS file.

The flags (seée Section 6.2) of an SCCS file may be initialized and changed, or deleted through
the use of the —f and —d keyletters, respectively. The flags of an SCCS file are used to direct
certain actions of the various commands. See admin(1) for a description of all the flags. For
example, the i flag specifies that the warning message stating there are no ID keywords

8. The creation of an SCCS file may sometimes be the direct result of an MR.

20 SCCS User's Guide

contained in the SCCS file should be treated as an error, and the d (default SID) flag specifies
the default version of the SCCS file to be retrieved by the ger command. The —f keyletter is
used to set a flag and, possibly, to set its value. For example:

admin —ifirst —fi —fmmodname s.abc

sets the i flag and the m (module name) flag. The value ““modname’’ specified for the m flag
is the value that the get command will use to replace the %M% ID keyword. (In the absence of
the m flag, the name of the g-file is used as the replacement for the %M% ID keyword.) Note
that several —f keyletters may be supplied on a single invocation of admin, and that —f
keyletters may be supplied whether the command is creating a new SCCS file or processing an
existing one.

The —d keyletter is used to delete a flag from an SCCS file, and may only be specified when
processing an existing file. As an example, the command:

admin —dm s.abc

removes the m flag from the SCCS file. Several —d keyletters may be supplied on a single
invocation of admin, and may be intermixed with —f keyletters.

SCCS files contain a list (user list) of login names and/or group IDs of users who are allowed to
create deltas (see Sections 5.1.3 and 6.2). This list is empty by default, which implies that any-
one may create deltas. To add login names and/or group IDs to the list, the —a keyletter is
used. For example:

admin —axyz —awql —al234 s.abc

adds the login names ‘‘xyz’’ and ‘‘wql’’ and the group ID **1234"" to the list. The —a keyletter
may be used whether admin is creating a new SCCS file or processing an existing one, and may
appear several times. The —e keyletter is used in an analogous manner if one wishes to
remove (“‘erase’’) login names or group IDs from the list.

54 prs

Prs is used to print on the standard output all or parts of an SCCS file (see Section 6.2) in a for-
mat, called the output data specification, supplied by the user via the —d keyletter. The data
specification is a string consisting of SCCS file data keywords® interspersed with optional user
text.

Data keywords are replaced by appropriate values according to their definitions. For example:
::

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is
defined as the data keyword for the SCCS file name currently being processed, and :C: is
defined as the comment line associated with a specified delta. All parts of an SCCS file have an
associated data keyword. For a complete list of the data keywords, see prs(1).

There is no limit to the number of times a data keyword may appear in a data specification.
Thus, for example:

prs —d":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output:

9. Not to be confused with get ID keywords.

SCCS User's Guide 21

2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the
—r keyletter. For example:

prs —d":F:: :I: comment line is: :C:" —rl.4 s.abc
may produce the following output:
s.abc: 1.4 comment line is: THIS IS A COMMENT

If the —r keyletter is nor specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained by specifying the —1 or —e
keyletters. The —e keyletter substitutes data keywords for the SID designated via the —r
keyletter and all deltas created earlier. The —1 keyletter substitutes data keywords for the SID.
designated via the —r keyletter and all deltas created later. Thus, the command:

prs —d:I: —rl.4 —e s.abc

may output:

and the command:
prs —d:I: —r1.4 —I s.abc
may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be obtained by specifying both
the —e and —1 keyletters.

5.5 help

The help command prints explanations of SCCS commands and of messages that these com-
mands may print. Arguments to help, zero or more of which may be supplied, are simply the
names of SCCS commands or the code numbers that appear in parentheses after SCCS messages.
If no argument is given, help prompts for one. Help has no concept of keyletter arguments or
file arguments. Explanatory information related to an argument, if it exists, is printed on the
standard output. If no information is found, an error message is printed. Note that each argu-
ment is processed independently, and an error resulting from one argument will not terminate
the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:
help ge5 rmdel

produces:

22 SCCS User's Guide

ges:

"nonexistent sid"

The specified sid does not exist in the
given file.

Check for typos.

rmdel:
rmdel —1SID name ...

5.6 rmdel

The rmdel command is provided to allow removal of a delta from an SCCS file, though its use
should be reserved for those cases in which incorrect, global changes were made a part of the
delta to be removed.

The delta to be removed must be a “‘leaf’’ delta. That is, it must be the latest (most recently
created) delta on its branch or on the trunk of the SCCS file tree. In Figure 3, only deltas
1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are removed, then deltas 1.3.2.1 and 2.1
can be removed, and so on.

To be allowed to remove a delta, the effective user must have write permission in the directory
containing the SCCS file. In addition, the real user must either be the one who created the
delta being removed, or be the owner of the SCCS file and its directory.

The —r keyletter, which is mandatory, is used to specify the complete SID of the delta to be
removed (i.e., it must have two components for a trunk delta, and four components for a
branch delta). Thus:

rmdel —r2.3 s.abc

specifies the removal of (trunk) delta *“2,3" of the SCCS file. Before removal of the delta,
rmdel checks that the release number (R) of the given SID satisfies the relation:

floor = R =< ceiling

Rmdel also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name
or group ID of the user must appear in the file’s user list, or the user list must be empty. Also,
the release specified can not be locked against editing (i.e., if the 1 flag is set (see admin (1)),
the release specified must not be contained in the list). If these conditions are not satisfied,
processing is terminated, and the delta is not removed. After the specified delta has been
removed, its type indicator in the delta table of the SCCS file (see Section 6.2) is changed from
“D” (for *‘delta”) to “‘R*’ (for *‘removed”’).

5.7 cdc

The cdc command is used to change a delta’s commentary that was supplied when that delta was
created. Its invocation is analogous to that of the rmdel command, except that the delta to be
processed is not required to be a leaf delta. For example:

cdc —r3.4 s.abc
specifies that the commentary of delta ““3.4”" of the SCCS file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old commen-
tary associated with the specified delta is kept, but it is preceded by a comment line indicating
that it has been changed (i.e., superseded), and the new commentary is entered ahead of this
comment line. The “inserted’’ comment line records the login name of the user executing cdc
and the time of its execution.

Cdc also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character *“!”’. Thus:

SCCS User's Guide 23

cde —rl.4 s.abe)
MRs? mrnum3 !mrnuml
comments? deleted wrong MR number and inserted correct MR number

inserts “‘mrnum3’’ and deletes **‘mrnuml’’ for delta 1.4.

5.8 what
The what command is used to find identifying information within any UNIX file whose name is
given as an argument to what. Directory names and a name of *“—"" (a lone minus sign) are

not treated specially, as they are by other SCCS commands, and no keyletters are accepted by the
command.

What searches the given file(s) for all occurrences of the string ““@(#)"’°, which is the replace-
ment for the %Z% ID keyword (see get (1)), and prints (on the standard output) what follows
that string until the first double quote ("), greater than (>), backslash (\), new-line, or (non-
printing) NUL character. Thus, for example, if the SCCS file “‘s.prog.c’ (which is a C pro-
gram), contains the following line (the %M% and %1% ID keywords were defined in Section
5.1.1):

char id[] "%Z%%M%:%1%";
and then the command:
get —r3.4 s.prog.c

is executed, and finally the resulting g-file is compiled to produce “‘prog.o’’ and ‘“‘a.out’’, then
the command:

what prog.c prog.o a.out
produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of get; it may be
inserted in any convenient manner.

5.9 scesdiff

The scesdiff command determines (and prints on the standard output) the differences between
two specified versions of one or more SCCS files. The versions to be compared are specified by
using the —r keyletter, whose format is the same as for the ger command. The two versions
must be specified as the first two arguments to this command in the order in which they were
created, i.e., the older version is specified first. Any following keyletters are interpreted as
arguments to the pr(l) command (which actually prints the differences) and must appear
before any file names. SCCS files to be processed are named last. Directory names and a name
of ““—"" (a lone minus sign) are nor acceptable to scesdiff. " ‘

The differences are printed in the form generated by diff (1). The following is an example of
the invocation of scesdiff:

scesdif —r3.4 —r5.6 s.abc

24 SCCS User’s Guide

5.10 comb

Comb generates a shell procedure (see sh (\1)) which attempts to reconstruct the named SCCS
files so that the reconstructed files are smaller than the originals. The generated shell pro-
cedure is written on the standard output.

Named SCCS files are reconstructed by discarding unwanted deltas and combining specified
other deltas. The intended use is for those SCCS files that contain deltas that are so old that
they are no longer useful. It is not recommended that comb be used as a matter of routine; its
use should be restricted to a very small number of times in the life of an SCCS file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of
ancestor deltas necessary to preserve the “‘shape’” of the SCCS file tree. The effect of this is to
eliminate ““middle’ deltas on the trunk and on all branches of the tree. Thus, in Figure 3, del-
tas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are summarized as
follows:

The —p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All
older deltas are discarded.

The —c keyletter specifies a list (see get(1) for the syntax of such a list) of deltas to be
preserved. All other deltas are discarded.

The —s keyletter causes the generation of a shell procedure, which, when run, produces only a
report summarizing the percentage space (if any) to be saved by reconstructing each named
SCCS file. It is recommended that comb be run with this keyletter (in addition to any others
desired) before any actual reconstructions.

It should be noted that the shell procedure generated by comb is not guaranteed to save any
space. In fact, it is possible for the reconstructed file to be larger than the original. Note, too,
that the shape of the SCCS file tree may be altered by the reconstruction process.

5.11 val

Val is used to determine if a file is an SCCS file meeting the characteristics specified by an
optional list of keyletter arguments. Any characteristics not met are considered errors.

Val checks for the existence of a particular delta when the SID for that delta is explicitly specified
via the —r keyletter. The string following the —y or —m keyletter is used to check the value
set by the t or m flag respectively (see admin (1) for a description of the flags).

Val treats the special argument **—’’ differently from other SCCS commands (see Section 4).
This argument allows val to read the argument list from the standard input as opposed to
obtaining it from the command line. The standard input is read until end-of-file. This capabil-
ity allows for one invocation of val with different values for the keyletter and file arguments.
For example:

val —
—yc —mabc s.abc
—mxyz —ypll s.xyz

first checks if file ‘*s.abc’’ has a value *‘c” for its type flag and value ‘‘abc’ for the module name
flag. Once processing of the first file is completed, val then processes the remaining files, in
this case *‘s.xyz’’, to determine if they meet the characteristics specified by the keyletter argu-
ments associated with them.

Val returns an 8-bit code; each bit set indicates the occurrence of a specific error (see val(1) for
a description of the possible errors and their codes). In addition, an appropriate diagnostic is
printed unless suppressed by the —s keyletter. A return code of *‘0’’ indicates all named files
met the characteristics specified.

SCCS User's Guide 25

6. SCCS FILES

This section discusses several topics that must be considered before extensive use is made of
SCCS. These topics deal with the protection mechanisms relied upon by SCCS, the format of
SCCS files, and the recommended procedures for auditing SCCS files.

6.1 Protection

SCCS relies on the capabilities of the UNIX operating system for most of the protection
mechanisms required to prevent unauthorized changes to SCCS files (i.e., changes made by
non-SCCS commands). The only protection features provided directly by SCCS are the release
lock flag, the release floor and ceiling flags, and the user list (see Section 5.1.3).

New SCCS files created by the admin command are given mode 444 (read only). It is recom-
mended that this mode not be changed, as it prevents any direct modification of the files by
non-SCCS commands. It is further recommended that the directories containing SCCS files be
given mode 755, which allows only the owner of the directory to modify its contents.

SCCS files should be kept in directories that contain only SCCS files and any temporary files
created by SCCS commands. This simplifies protection and auditing of SCCS files (see Section
6.3). The contents of directories should correspond to convenient logical groupings, e.g., sub-
systems of a large project.

SCCS files must have only one link (name), because the commands that mod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>