
Documents for
UNIX

VOLUME 2

T. A. Dolotta
S. B. Olsson

A. G. Petruccelli

Editors

January 1981

Not for use or disclosure outside the
Bell System except under wrinen agreement

Laboratory 4517
Bell Telephone Laboratories, Incorporated

Murray Hill, NJ 07974

Copyright © 198 I Bell Telephone Laboratories, Inc.

UNIX is a trademark of Bell Telephone Laboratories, Inc.

These documents were set on an AUTOLOGIC,
Inc. APS-5 phototypesetter driven by the TROFF
formatter operating under the UNIX system.

DocumenlS for UNIX

ANNOTATED

TABLE OF CONTENTS

NOTES: All the documents included here are supplements to the UNIX User's Manual (see G.l
below); the reader's attention is also drawn to documents G.2, G.3, and G.4.

Each document listed in Sections A through F below applies to UNIX Release 4.0, unless
otherwise indicated after its title.

The number of pages in each document is given after the name(s) of its author(s).

VOLUME I
A. OVERVIEWS

1. Overview and Synopsis
1. UNIX-Overview and Synopsis of Facilities

T. A. Dolotta, R. C. Haight, and A.G. Petruccelli (p. 17)
A concise outline of the features and facilities of UNIX.

l. The UNIX Time-Sharing System
1. The UNIX Time-Sharing System·

D. M. Ritchie and K. Thompson (p. 16)
The original, prize-winning UNIX paper, reprinted from G.5 below.

B. GETTING STARTED

1. Road Map
1. UNIX Documentation Road Map

G. A. Snyder and J. R. Mashey (p. 8)
A structured list of UNIX documents and information sources.

w A local section should be added to this document at each installation.

l. Editors
1. A Tutorial Introduction to the UNIX Text Editor

B. W. Kernighan (p. 11)
An easy way to get started with the text editor.

2. Advanced Editing on UNIX
B. W. Kernighan (p. 16)

A guide to the more advanced features of the text editor.
3. SED-A Non-Interactive Text Editor

L. E. McMahon (p. 10)
A variant of the text editor for stream editing.

3. UNIX for Beginners
1. UNIX for Beginners (Second Edition)

B. W. Kernighan (p. 13)
An introduction to some of the basic uses of UNIX.

4. Shell
l. UNIX Shell Tutorial

G. A. Snyder and J. R. Mashey (p. 36+ii)
An introduction to the various uses and facilities of the UNIX com­
mand language interpreter, with many examples.

l. An Introduction to the UNIX Shell
S. R. Bourne (p. 24)

Description of the UNIX command language interpreter.

January J 98 J

2 Documents for UNIX

C. DOCUMENT PREPARATION

1. NROFF/TROFF
1. A TROFF Tutorial

B. W. Kernighan (p. 14)
A beginner's guide to phototypesetting with TROFF.

2. NROFF/TROFF User's Manual
J. F. Ossanna (p. 37)

Reference manual for the UNIX text formatters.

2. Macros for NROFF /TROFF
1. MM-Memorandum Macros

D. W. Smith and J. R. Mashey (p. 69+iv)
Reference manual for MM, the standard BTL text-formatting macros.

2. Typing Documents with MM
D. W. Smith and E. M. Piskorik (p. 16)

A fold-out card that summarizes the MM macros; furnished separately.
3. A Macro Package for View Graphs and Slides

T. A. Dolotta and D. W. Smith (p. 23)
A guide to making visual aids with TROFF.

3. T~L and EQN
1. TBL - A Program to Format Tables

M. E. Lesk (p. 18)
An NROFF /TROFF preprocessor that permits easy formatting of tabular
matter.

2. Typesetting Mathematics-User's Guide (Second Edition)
B. W. Kernighan and L. L. Cherry (p. 11)

Manual for the EQN and NEQN preprocessors for TROFF and NROFF,
respectively; these preprocessors allow one to specify, in an easy-to­
learn language, how to typeset complex mathematical expressions.

3. A System for Typesetting Mathematics
B. W. Kernighan and L. L. Cherry (p. 8)

A revision of the original EQN paper (CACM 18, March 1975), describ­
ing the principles behind the design of its input language and internal
structure.

D. PROGRAMMING

l. c and LINT

January 1981

1. The C Programming Language-Reference Manual
D. M. Ritchie (p. 31)

Official statement of the syntax and semantics of C; supplemented by
G.9 below.

2. A Guide to the C Library for UNIX Users
C. D. Perez (p. 20)

An explanation of how to use the C library.
3. LINT, a C Program Checker

S. C. Johnson (p. 11) . .
A program that checks C code for syntax errors, type violations, porta­
bility problems, and a variety of potential errors.

Documents /or UNIX 3

2. FORTRAN, RATFOR, and EFL
1. A Portable FORTRAN 77 Compiler

S. I. Feldman and P. J. Weinberger (p. 19)
The FORTRAN 77 language and its interfaces with the operating sys­
tem.

2. RATFOR-A Preprocessor for a Rational FORTRAN
8. W. Kernighan (p. 12)

A preprocessor that endows FORTRAN with C-like control structures
and input format.

3. The Programming Language EFL
S. I. Feldman (p. 36)

A general-purpose computer language intended to encourage portable
programming, while making use of the good features and facilities of
FORTRAN.

3. UNIX Programming
1. UNIX Programming (Second Edition)

8. W. Kernighan and D. M. Ritchie (p. 22)
A guide to writing programs that interface to the UNIX operating sys­
tem, either directly or through the Standard 1/0 Library.

4. MAKE
1. MAKE-A Program for Maintaining Computer Programs

S. I. Feldman (p. 9)
A tool for automating the recompilation of large programs.

2. An Augmented Version of MAKE
E. G. Bradford (p. 16)

A discussion of how to use MAKE to its fullest advantage.

5. Debuggers
1. SDB- A Symbolic Debugger

H. P. Katseff (p. 9)
A debugger that allows one to examine the "core image" of an aborted
program.

2. A Tutorial Introduction to ADB
J. F. Maranzano and S. R. Bourne (p. 27)

A guide to debugging crashed systems and programs; ADD is used
mostly by system programmers.

January 1981

4 Documents for UNIX

VOLUME 2

E. SUPPORTING TOOLS AND LANGUAGES

1. LEX and y ACC
1. LEX-A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt (p. 19)
A program that generates recognizers of sets of regular expressions;
each regular expression can be followed by arbitrary C code that is exe­
cuted when the regular expression is found.

2. YACC- Yet Another Compiler-Compiler
S. C. Johnson (p. 33)

A converter from a BNF specification of a language and semantic
actions written in C into a compiler for that language.

2. ~4 ~aero Processor
l. The M4 Macro Processor

B. W. Kernighan and D. M. Ritchie (p. 6)
A macro processor, also useful as a front end for languages such as C
and RATFOR.

3. AWK
J. Awx-A Pattern Scanning and Processing Language (Second Edition)

A. V. Aho, B. W. Kernighan, and P. J. Weinberger (p. 8)
A language that makes it easy to specify many data selection and
transformation operations.

4. Secs
1. Source Code Control System User's Guide

L. E. Bonanni and C. A. Salemi (p. 27)
A package for controlling access and changes to (possibly multiple ver­
sions of) source programs and text files.

2. Function and Use of an Secs Interface Program
L. E. Bonanni and A. Guyton (p. 3)

A discussion of how to control concurrent updates to SCCS files.

s. Calculators
J. BC-An .Arbitrary Precision Desk-Calculator Language

L. L. Cherry and R. Morris (p. 14)
A front end for DC (see below) that provides infix notation, flow con­
trol, and built-in functions.

2. DC-An Interactive Desk Calculator
R. Morris and L. L. Cherry (p. 8)

An interactive desk calculator program that implements arbitrary­
precision integer arithmetic.

6. Graphics

January 1981

1. UNIX Graphics Overview
A. R. Feuer (p. 7)

An introduction to the UNIX graphics facility.
2. A Tutorial Introduction to the Graphics Editor

A. R. Feuer (p. 17)
A guide to making graphs, drawings, and pictures on Tektronix series
4010 terminals.

Documents for UNIX

3. STAT-A ,Tool for Analyzing Data
A. R. Feuer and A. Guyton (p. 20)

5

A collection of programs that can be interconnected via the shell to
analyze statistical data and display the results in graphical form.

4. Administrative Information for the UNIX Graphics Package
R. L. Chen, D. E. Pinkston, and A. Guyton (p. 6)

A reference guide for administrators of UNIX graphics facilities.

7. RJE and Networking
1. UNIX Remote Job Entry User's Guide

A. L. Sabsevitz and K. A. Kelleman (p. 7)
A guide to submitting jobs to an IBM system via the UNIX Remote Job
Entry (RJE) facility.

2. UNIX Remote Job Entry Administrator's Guide
M. J. Fitton (p. 20)

A guide to setting up RJE on both UNIX and IBM systems, and to
trouble-shooting when things go wrong.

3. Release 1.0 of the UNIX Virtual Protocol Machine (UNIX 3.0)
P. F. Long and C. Mee, III (p. 7)

A description of the first version of VPM; good background reading.
4. Release 2.0 of the UNIX Virtual Protocol Machine (UNIX 3.0)

P. F. Long and C. Mee, III (p. 20)
A newer release of VPM; supports bit-oriented, full-duplex protocols.

8. UUCP
1. A Dial-up Network of UNIX Systems

D. A. Nowitz and M. E. Lesk (p. 10)
Description of the design of a dial-up UNIX network called UUCP and
used for transmission and distribution of programs and text files.

2. UUCP Implementation Description
D. A. Nowitz (p. 15)

A detailed description of UUCP for use by administrators of UNIX
systems.

9. Printer Spooler
1. The Implementation of the LP Spooling System

J. R. Kliegman (p. 13)
Explanation of how the LP spooler works and how it can be used as a
general-purpose spooler, as well as a line-printer spooler.

2. LP Administrator's Guide
J. R. Kliegman (p. 12)

A guide for those who oversee the operation of LP spoolers.

F. ADMINISTRATION, MAINTENANCE, AND IMPLEMENTATION

1. Operations and FSCK
1. UNIX Operations Manual

A. G. Petruccelli (p. 24+ii)
Duties of a UNIX operator.

2. FSCK-The UNIX File System Check Program
T. J. Kowalski (p. 20)

A guide to checking and fixing UNIX file systems.

January 1981

6 Documents for UNIX

2. Accounting and System Activity
1. The UNIX Accounting' System

H. S. McCreary and A.G. Petruccelli (p. 19)
A guide to the use and management of the UNIX accounting system.

2. The UNIX System Activity Package
T. W. Pao {p. 8)

A package that reports on processor utilization, terminal activity, disk
and tape 1/0, swapping, system calls, etc.

3. Stand-Alone 1/0
1. A Stand-Alone Input/Output Library

S. R. Eisen (p. 11)
A guide to the stand-alone library and the stand-alone shell {SASH).

4. ETP
1. The UNIX Equipment Test Package: Operational Procedures (UNIX 3.0)

A. L. Chellis and T. J. Kowalski (p. 24)
The Equipment Test Package, a collection of UNIX hardware exercisers.

5. UNIX Internals
1. UNIX Implementation

K. Thompson (p. 10)
An explanation of how UNIX works; reprinted from G.5 below.

2. The UNIX 1/0 System
D. M. Ritchie (p. 7)

Guide for writers of UNIX device drivers.
3. UNIX on the PDP-11/23 and 11/34 Computers (UNIX 3.0)

T. J. Kowalski (p. 7)
Description of what had to be done to UNIX to make it run on the
PDP-11/23 and the PDP-11/34.

4. UNIX Assembler Reference Manual
D. M. Ritchie (p. 12)

Describes the UNIX PDP- l l ass em bier; a tool of last resort.

6. C Internals
1. A Tour Through the Portable C Compiler

S. C. Johnson (p. 25)
A description of how the portable C compiler works.

2. A Tour Through the UNIX C Compiler
D. M. Ritchie (p. 15)

A description of how the PDP- I I C compiler works.

7. Security
1. On the Security of UNIX

D. M. Ritchie (p. 3)
Hints on how to break UNIX and how to prevent it.

2. Password Security-A Case History
R. Morris and K. Thompson (p. 6)

The story of how the bad guys used to be able to break the password
algorithm and why they can't now, 1at least not so easily.

January 1981

Documents for UNIX

G. RECOMMENDED READING (not included)

1. UNIX User's Manual-Release 3.0
T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.)

Bell Laboratories (June 1980).
The basic document for every UNIX user.

2. UNIX Reference Guide
J.C. White (compiler) and P. V. Guidi (ed.)

Bell Laboratories (April 1981).
A pocket-size summary of UNIX commands, macro packages, etc.

3. Setting up UNIX
R. C. Haight, M. J. Petrella, and L. A. Wehr

Bell Laboratories.

7

Procedures for installing UNIX; must reading for anyone who wants to
configure and/or generate a UNIX system. (Because this document changes
with each release of UNIX, it is not included here; it is distributed with each
copy of the UNIX system itself.)

4. Administrative Advice for UNIX
R. C. Haight

Bell Laboratories. .
Hints for getting UNIX up, getting it going, and keeping it going, plus some
information about hardware; must reading for UNIX system administrators.
{This document is distributed just like G.3 above.)

5. The Bell System Technical Journal
Vol. 57, No. 6, Part 2 (July-August 1978).

Special issue devoted to UNIX.
6. Using a Command Language as the Primary Programming Tool

T. A. Dolotta and J. R. Mashey
In: Beech, D. (ed.), Command Language Directions (Proc. Second IFIP Working
Conf. on Command Languages). Amsterdam: North Holland (1980), pp. 35-55.

A discussion of how to get the most out of the UNIX shell.
7. The UNIX Programming Environment

B. W. Kernighan and J. R. Mashey
COMPUTER, Vol. 14, No. 4, pp. 12-24 (April 1981); an earlier version of this
paper was published in Software-Practice & Experience, Vol. 9, No. l, pp. 1-15
(Jan. 1979).

A discussion of what's good about UNIX.
8. Software Tools

B. W. Kernighan and P. J. Plauger
Reading, MA: Addison-Wesley (1976).

A textbook for building good software tools similar to those available in
UNIX.

9. The C Programming Language
B. W. Kernighan and D. M. Ritchie

Englewood Cliffs, NJ: Prentice-Hall (1978).
The basic book for every C programmer; contains a tutorial and many
examples.

10. Experiences with the UNIX Time-sharing System
J. Lions

Software-Practice & Experience, Vol. 9, No. 9, pp. 701-709 (September 1979).
An enjoyable article that tells why they like UNIX in New South Wales.

January 1981

8

11. The Evolution of the UNIX Time-sharing System
D. M. Ritchie

Documents for UNIX

Proc. Symposium on Language Design and Programming Methodology, Sydney, Aus­
tralia (September 1979).

Ten years later, one of the creators of UNIX looks back.
12. The Source Code Control System

M. J. Rochkind
IEEE Trans. Software Eng .. Vol. SE-1, No. 4, pp. 364-370 (December 1975).

The motivation for, and the underlying design of, SCCS.

January 1981

LEX- A Lexical Analyzer Generator

M. E. Lesk
E. Schmidt

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX

E.1.1

Lex helps write programs whose control flow is directed by instances of regular
expressions in the input stream. It is well suited for editor-script type transforma­
tions and for segmenting input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments.
The table is translated to a program which reads an input stream, copying it to an
output stream and partitioning the input into strings which match the given
expressions. As each such string is recognized the corresponding program frag­
ment is executed. The recognition of the. expressions is performed by a deter­
ministic finite automaton generated by Lex. The program fragments written by
the user are executed in the order in which the corresponding regular expressions
occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and
choose the longest match possible at each input point. If necessary, substantial
look-ahead is performed on the input, but the input stream will be backed up to
the end of the current partition, so that the user has general freedom to manipu­
late it.

Lex can generate analyzers in either C or Ratfor, a language that can be translated
automatically to portable Fortran. It is available on the UNIXt Time-Sharing Sys­
tem, Honeywell GCOS, and IBM OS systems. This manual, however, will only dis­
cuss generating analyzers in C on the UNIX system, which is the only supported
form of Lex under UNIX Version 7. Lex is designed to simplify interfacing with
Yacc, for those with access to this compiler-compiler system.

1. INTRODUCTION

Lex is a program generator designed for lexical processing of character input streams. It accepts
a high-level, problem oriented specification for character string matching, and produces a pro­
gram in a general purpose language which recognizes regular expressions. The regular expres­
sions are specified by the user in the source specifications given to Lex. The Lex written code
recognizes these expressions in an input stream and partitions the input stream into strings
matching the expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the program frag­
ments. As each expression appears in the input to the program written by Lex, the correspond­
ing fragment is executed.

The user supplies the additional code beyond expression matching needed to complete his
tasks, possibly including code written by other generators. The program that recognizes the
expressions is generated in the general purpose programming language employed for the user's
program fragments. Thus, a high level expression language is provided to write the string
expressions to be matched while the user's freedom to write actions is unimpaired. This avoids

t UNIX is a trademark of Bell Laboratories.

2 LEX

forcing the user who wishes to use a string manipulation language for input analysis to write
processing programs in the same and often 'inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature
which can be added to different programming languages, called "host languages." Just as gen­
eral purpose languages can produce code to run on different computer hardware, Lex can write
code in different host languages. The host language is used for the output code generated by
Lex and also for the program fragments added by the user. Compatible run-time libraries for
the different host languages are also provided. This makes Lex adaptable to different environ­
ments and different users. Each application may be directed to the combination of hardware
and host language appropriate to the task, the user's background, and the properties of local
implementations. At present, the only supported host language is C, although Fortran (in the
form of Ratfor [2] has been available in the past. Lex itself exists on the UNIX Time-Sharing
System, GCOS, and OS/370; but the code generated by Lex may be taken anywhere the
appropriate compilers exist.

Lex turns the user's expressions and actions (called source in this memo) into the host
general-purpose language; the generated program is named yylex. The yylex program will
recognize expressions in a stream (called input in this memo) and perform the specified actions
for each expression as it is detected. See Figure 1.

Source - ~ - yylex

Input - I yylex I - Output

Figure 1. An Overview of Lex

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends
of lines.

%%
[\t] +$

is all that is required. The program contains a %% delimiter to mark the beginning of the rules,
and one rtlle. This rule contains a regular expression which matches one or more instances of
the characters blank or tab (written \t for visibility, in accordance with the C language conven­
tion) just prior to the end of a line. The brackets indicate the character class made of blank and
tab; the + indicates "one or more ... "; and the $ indicates "end of line," as in QED. No
action is specified, so the program generated by Lex (yylex) will ignore these characters.
Everything else will be copied. To change any remaining string of blanks or tabs to a single
blank, add another rule:

%%
[\t] +$
[\t] + printf(" ");

The finite automaton generated for this source will scan for both rules at once, observing at the
termination of the string of blanks or tabs whether or not there is a new-line character, and
executing the desired rule action. The first rule matches all strings of blanks or tabs at the end
of lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a
lexical level. Lex can also be used with a parser generator to perform the lexical analysis phase;

LEX 3

it is particularly easy to interface Lex and Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class of context free grammars, but require a
lower level analyzer to recognize input tokens. Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a later parser generator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow of
control in such a case (which might be the first half of a compiler, for example) is shown in
Figure 2. Additional programs, written by other generators or by hand, can be added easily to
programs written by Lex. Yacc users will realize that the name yylex is what Yacc expects its
lexical analyzer to be named, so that the use of this name by Lex simplifies interfacing.

lexical grammar
rules rules

l l

B Yacc

! l

Input - ~ - yyparse - Parsed input

Figure 2. Lex with Yacc

Lex generates a deterministic finite automaton from the regular expressions in the source [4].
The automaton is interpreted, rather than compiled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input. The number of Lex rules or the com­
plexity of the rules is not important in determining speed, unless rules which include forward
context require a significant amount of rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and therefore the size of the program
generated by Lex.

In the program written by Lex, the user's fragments (representing the actions to be performed
as each regular expression is found) are gathered as cases of a switch. The automaton inter­
preter directs the control flow. Opportunity is provided for the user to insert either declarations
or additional statements in the routine containing the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be interpreted on the basis of one character look-ahead.
For example, if there are two rules, one looking for ab and another for abcde/g, and the input
stream is abcdefh, Lex will recognize ab and leave the input pointer just before cd... Such
backup is more costly than the processing of simpler languages.

2. LEX SOURCE

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is optional,
but the first is required to mark the beginning of the rules. The absolute minimum Lex pro·
gram is thus

4 LEX

%%

(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of Lex programs shown above, the rules represent the user's control decisions;
they are a table, in which the left column contains regular expressions (see section 3) and the
right column contains actions, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message "found keyword INT"
whenever it appears. In this example the host procedural language is C and the C library func­
tion print/ is used to print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a line, it should be enclosed in braces.
As a slightly more useful example, suppose it is desired to change a number of words from
British to American spelling. Lex rules such as:

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

would be a start. These rules are not quite enough, since the word petroleum would become
gaseum; a way of dealing with this will be described later.

3. LEX REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those in QED [5]. A regular expres­
sion specifies a set of strings to be matched. It contains text characters (which match the
corresponding characters in the strings being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57 D.

3.1 Operators

The operator characters are

"\[]"-?.*+!()$/{}%<>

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"++"
- '

~atches the string xyz+ + when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyi++"

is the same as the one above. Thus by quoting every non-alphanumeric character being used as
a text character, the user can avoid remembering the list above of current operator characters,
and is safe should further extensions to Lex lengthen the list.

LEX 5

An operator character may also be turned into a text character by preceding it with \as in

xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use of the quot­
ing mechanism is to get a blank into an expression; normally, as explained above, blanks or
tabs end a rule. Any blank character not contained within [] (see below) must be quoted.
Several normal C escapes with \ are recognized: \n is new-line, \t is tab, and \b is backspace.
To enter \ itself, use \\. Since new-line is illegal in an expression, \n must be used; it is not
required to escape tab and backspace. Every character but blank, tab, new-line and the list
above is always a text character.

3.2 Character classes

Classes of characters can be specified using the operator pair []. The construction label
matches a single character, which may be a, b, or c. Within square brackets, most operator
meanings are ignored. Only three characters are special: these are \ - and -. The - character
indicates ranges. For example,

[a-z0-9<> _]

indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using - between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation
dependent and will get a warning message (e.g., [O- z] in ASCII is many more characters than
it is in EBCDIC). If it is desired to include the character - in a character class, it should be
first or last; thus

[-+0-9]

matches all the digits and the two signs.

In character classes, the " operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character
set. Thus

[" abc]

matches all characters except a, b, or c, including all special or control characters; or

["a-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes within charac­
ter class brackets.

3.3 Arbitrary character

To match almost any character, the operator character

is the class of all characters except new-line. Escaping into octal is possible although non­
portable:

[\40-\176]

matches all printable ASCII characters, from octal 40 (blank) to octal 176 (tilde).

3.4 Optional expressions

The operator ? indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

6

3.5 Repeated expressions

Repetitions of classes are indicated by the operators • and + .

is any number of consecutive a characters, including zero; while

a+

is one or more instances of a. For example,

[a-z]+

is all strings of lower case letters. And

[A-Za-z] [A-Za-z0-9]•

LEX

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expres­
sion for recognizing identifiers in computer languages.

3.6 Alternation and Grouping

The operator I indicates alternation:

(ablcd)

matches either ab or ed. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

ablcd

would have sufficed. Parentheses can be used for more complex expressions:

(ablcd+)?(ef)•

matches such strings as abefef, efefef, cdef, or eddd ; but not abe. abed, or abcdef.

3. 7 Context Sensithity

Lex will recognize a small amount of surrounding context. The two simplest operators for this
are • and $. If the first character of an expression is - , the expression will only be matched at
the beginning of a line (after a new-line character, or at the beginning of the input stream).
This can never conflict with the other meaning of ·, complementation of character classes,
since that only applies within the [] operators. If the very last character is $, the expression
will only be matched at the end of a line (when immediately followed by new-line). The latter
operator is a special case of the / operator character, which indicates trailing context. The
expression

ab/cd

matches the string ab, but only if followed by ed. Thus

ab$

is the same as

abj\n

Left context is handled in Lex by start conditions as explained in section 10. If a rule is only
to be executed when the Lex automaton interpreter is in start condition x, the rule should be
prefix~d by

<x>

using the angle bracket operator characters. If we considered "being at the beginning of a line"
to be start condition ONE, then the " operator would be equivalent to

LEX

<ONE>

Start conditions are explained more fully later.

3.8 Repetitions and Definitions

7

The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if
they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expression. The
definitions are given in the first part of the Lex input, before the rules. In contrast,

a{l,5}

looks for 1 to 5 occurrences of a.

Finally, initial 9fi is special, being the separator for Lex source segments.

4. LEX ACTIONS

When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without produc­
ing any output, must provide rules to match everything. When Lex is being used with Yacc,
this is the normal situation. One may consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a
character combination which is omitted from the rules and which appears as input is likely to be
printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null state­
ment, ; as an action causes this result. A frequent rule is

[\t\n] ;

which causes the three spacing characters {blank, tab, and new-line) to be ignored.

Another easy way to avoid writing actions is the action character I. which indicates that the
action for this rule is the action for the next rule. The previous example could also have been
written

••
"\t"
"\n"

with the same result, although in different style. The quotes around \n and \t are not required.

Jn more complex actions, the user will often want to know the actual text that matched some
expression like /a-z]+. Lex leaves this text in an external character array named yytext.
Thus, to print the name found, a rule like

[a-z]+ printf("%s", yytext);

will print the string in yytext. The C function print/ accepts a format argument and data to be
printed; in this case, the format is .. print string" (% indicating data conversion, and s indicat­
ing string type), and the data are the characters in yytext. So this just places the matched string
on the output. This action is so common that it may be written as ECHO:

[a -z] + ECHO;

is the same as the above. Since the default action .is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default acti1;m? Such rules

8 LEX

are often required to avoid matching some other rule which is not desired. For example, if
there is a rule which matches 'ead it will· normally match the instances of 'ead contained in
bread or readjust; to avoid this, a rule of the form f a-z/ + is needed. This is explained
further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also pro­
vides a count yy/eng of the number of characters matched. To count both the number of
words and the number of characters in words in the input, the user might write

[a-zA-Z]+ {words++; chars+= yyleng;}

which accumulates in chars the number of characters in the words recognized. The last charac­
ter in the string matched can be accessed by

yytext[yyleng-1]

Occasionally, a Lex action may decide that a rule has not recognized the correct span of charac­
ters. Two routines are provided to aid with this situation. First, yymore() can be called to
indicate that the next input expression recognized is to be tacked on to the end of this input.
Normally, the next input string would overwrite the current entry in yytext. Second, yyless (n)
may be called to indicate that not all the characters matched by the currently successful expres­
sion are wanted right now. The argument n indicates the number of characters in yytext to be
retained. Further characters previously matched are returned to the input. This provides the
same sort of look-ahead offered by the / operator, but in a different form.

Example: Consider a language which defines a string as a set of characters between quotation
(") marks, and provides that to include a " in a string it must be preceded by a \. The regular
expression which matches that is somewhat confusing, so that it might be preferable to write

\"["")• {
if (yytext[yyleng-1] = = '\\')

yymore();
else

... normal user processing

which will, when faced with a string such as •abc\•dej first match the five characters •abc\;
then the call to yymo,e() will cause the next part of the string, •def, to be tacked on the end.
Note that the final quote terminating the string should be picked up in the code labeled "nor­
mal processing".

The function yyless() might be used to reprocess text in various circumstances. Consider the
C problem of distinguishing the ambiguity of "=-a". Suppose it is desired to treat this as
"=-a" but print a message. A rule might be

=-[a-zA-Z]
printf("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =- ...
}

which prints a message, returns the letter after th~ operator to the input stream, and treats the
operator as"=-:-"· Alternatively it might be desired to treat this as"= -a". To do this, just
return the minus sign as well as the letter to the input:

LEX 9

=-[a-zA-Z] {
printf("Operator (=-) am biguous\n ");
yyless(yyleng-2);
... action for = ...
}

will perform the other interpretation. Note that the expressions for the two cases might more
easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of "=-3", however, makes

=-/[" \t\n]

a still better rule.

In addition to these routines, Lex also permits access to the 1/0 routines it uses. They are:

I. input() which returns the next input character;

2. output(c) which writes the character c on the output; and

3. unput(c) pushes the character c back onto the input stream to be read later by input().

By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and inter­
nal characters, and must all be retained or modified consistently. They may be redefined, to
cause input or output to be transmitted to or from strange places, including other programs or
internal memory; but the character set used must be consistent in all routines; a value of zero
returned by input must mean end of file; and the relationship between unput and input must be
retained or the Lex look-ahead will not work. Lex does not look ahead at all if it does not have
to, but every rule ending in + • ? or $ or containing/ implies look-ahead. Look-ahead is also
necessary to match an expression that is a prefix of another expression. See below for a discus­
sion of the character set used by Lex. The standard Lex library imposes a 100 character limit
on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is
called whenever Lex reaches an end-of-file. If yywrap returns a 1, Lex continues with the nor­
mal wrapup on end of input. Sometimes, however, it is convenient to arrange for more input
to arrive from a new source. In this case, the user should provide a yywrap which arranges for
new input and returns 0. This instructs Lex to continue processing. The default yywrap always
returns l.

This routine is also a convenient place to print tables, summaries, etc., at the end of a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access
to this condition is through yywrap. In fact, unless a private version of input() is supplied a
file containing nulls cannot be handled, since a value of 0 returned by input is taken to be end­
of-file.

5. AMBIGUOUS SOURCE RULES

Lex can handle ambiguous specifications. When more than one expression can match the
current input, Lex chooses as follows:

I. The longest match is pref erred.

10 LEX

2. Among rules which matched the sa~e number of characters, the rule given first is pre­
ferred.

Thus, suppose the rules

integer keyword action ... ;
[a-z] + identifier action ... ;

to be given in that order. If the input is integers, it is taken as an identifier, because {a-z/+
matches 8 characters while integer matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (e.g.,
int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like • •
dangerous. For example

I•* I

might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

'[ft '\n]• I

which, on the above input, will stop after 'first'. The consequences of errors like this are miti­
gated by the fact that the • operator will not match new-line. Thus expressions like • • stop on
the current line. Don't try to defeat this with expressions like {.\n}+ or equivalents; the Lex
generated program will try to read the entire input file, causing internal buff er overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches
of each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both she and he in an input text. Some
Lex rules to do this might be

she s++;
he h++;
\n I

where the last two rules ignore everything besides he and she. Remember that . does not
include new-line. Since she includes he, Lex will normally not recognize the instances of he
included in she, since once it has passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means "go do the
next alternative." It causes whatever rule was second choice after the current rule to be exe­
cuted. The position of the input pointer is adjusted accordingly. Suppose the user really wants
to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n . I

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other ·expression will then be counted. In
this example, of course, the user could note that she includes he but not vice versa, and omit

LEX 11

the REJECT action on he; in other cases, however, it would not be possible a priori to tell which
input characters were in both classes.

Consider the two rules

a[bc)+
a[cd] +

{ ... ; REJECT;}
{ ... ; REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches. The input
string accb matches the first rule for four characters and then the second rule for three charac­
ters. In contrast, the input aced agrees with the second rule for four characters and then the
first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream
but to detect all examples of some items in the input, and the instances of these items may
overlap or include each other. Suppose a digram table of the input is desired; normally the
digrams overlap, that is the word the is considered to contain both th and he. Assuming a
two-dimensional array named digram to be incremented, the appropriate source is

%%
[a -z][a -z] {digram[yytext[O]][yytext[I]] + +; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than
at every other character.

6. LEX SOURCE DEFINITIONS

Remember the format of the Lex source:

{definitions}
%%
{rules}
%%
{user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions sec­
tion or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is
copied into the generated program. There are three classes of such things.

1. Any line which is not part of a Lex rule or action which begins with a blank or tab is
copied into the Lex generated program. Such source input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the first %% , it
appears in an appropriate place for declarations in the function written by Lex which con­
tains the actions. This material must look like program fragments, and should precede
the first Lex rule.

As a side effect of the above, lines that begin with a blank or tab and that contain a com­
ment are passed through to the generated program. This can be used to include com­
ments in either the Lex source or the generated code; the comments should follow the
host language convention.

2. Anything included between lines containing only %{ and %} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

12 LEX

3. Anything after the third 9696 delimiter, regardless of formats, etc., is copied out after the
Lex output.

Definitions intended for Lex are given before the first 9696 delimiter. Any line in this sec­
tion not contained between 96{ and 96}, and beginning in column I is assumed to define
Lex substitution strings. The format of such lines is:

name translation

and it causes the string given as a translation to be associated with the name. The name
and translation must be separated by at least one blank or tab, and the name must begin
with a letter. The translation can then be called out by the {name} syntax in a rule.
Using {D} for the digits and {E} for an exponent field, for example, might abbreviate
rules to recognize numbers:

D
E
%%
{D}+
{D} + ". "{D }•({E})?
{D}•". "{D}+({E})?
{D}+{E}

[0-9]
[DEde][-+]?{D}+

frintf("integer");

I
printf("real");

Note the first two rules for real numbers; both require a decimal point and contain an
optional exponent field, but the first requires at least one digit before the decimal point
and the second requires at least one digit after the decimal point. To correctly handle the
problem posed by a Fortran expression such as 35.EQ.I, which does not contain a real
number, a context-sensitive rule such as:

[0-9] + /". "EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection of a
host language, a character set table, a list of start conditions, or adjustments to the default
size of arrays within Lex itself for larger source programs. These possibilities are dis­
cussed below under "Summary of Source Format," section 12.

7. USAGE

There are two steps in compiling a Lex source program. First, the Lex source must be turned
into a generated program in the host general purpose language. Then this program must be
compiled and loaded, usually with a library of Lex subroutines. The generated program is on a
file named lex.yy.c. The 1/0 library is defined in terms of the C standard library [6].

C programs generated by Lex on GCOS and UNIX are the same, while those on OS/370 are
slightly different because the OS compiler is less powerful than the UNIX or GCOS compilers
and does less at compile time.

On UNIX, the library is accessed by the loader flag -//. So an appropriate set of commands is

lex source
cc lex.yy.c -II

The resulting program is placed on the usual file a.out for later execution. To use Lex with
Yacc s~e below. Although the default Lex 1/0 routines use the C standard library, the Lex
automata themselves do not do so; if private versions of input, output and unput are given, the
library can be avoided.

LEX 13

8. LEX AND YACC

If you want to use Lex with Yacc, note that what Lex writes is a program named yylex(), the
name required by Yacc for its analyzer. Normally, the default main program on the Lex library
calls this routine, but if Yacc is loaded, and its main program is used, Yacc will call yylex(). In
this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get access to Yacc's names for
tokens is to compile the Lex output file as part of the Yacc output file by placing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to be named "good" and the lexical
rules to be named "better" the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -II

The Yacc library (-ly) should be loaded before the Lex library, to obtain a main program
which invokes the Yacc parser. The generations, of Lex and Yacc programs can be done in
either order.

9. EXAMPLES

As a trivial problem, consider copying an input file while adding 3 to every positive number
divisible by 7. Here is a suitable Lex source program

%%
int k;

[0-9]+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
else

printf("%d" ,k);

to do just that. The rule [0-9] + recognizes strings of digits; atoi converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether k is divisible
by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add a few more rules after the active one,
as here:

%%

-?[Q-9]+

-?[0-9.]+
[A - la - z] [A - Za - zO - 9] +

int k;
{
k. = atoi(yytext);
printf("%d", k%7 = = 0? k+ 3: k);
}
ECHO;
ECHO;

Numerical strings containing a ". '·' or preceded by a letter will be picked up by one of the last
two rules, and not changed. The if-else has been replaced by a C conditional expression to
save space; the form a?b:c means "if a then b else c".

14 LEX

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of lette.rs.

%%
[a-z]+

\n
%%
yywrap()
{
int i;

int lengs[lOO];

Jengs[yyleng] + +;
I

printf("Length No. words\n");
for(i=O; i<IOO; i++)

if (lengs[i] > 0)
printf("%5d% I Od\n" ,i,lengs[i]);

return(l);
}

This program accumulates the histogram, while producing no output. At the end of the input it
prints the table. The final statement return(1); indicates that Le~ is to perform wrapup. If
yywrap returns zero (false) it implies that further input is available and the program is to con­
tinue reading and processing. To provide a yywrap that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert dou­
ble precision Fortran to single precision Fortran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by defining a set of classes including both cases of
each letter:

a [aA]
b [bB)
c [cC]

z [zZ)

An additional class recognizes white space:

w [\tl•
The first rule changes "double precision" to "real", or "DOUBLE PRECISION" to "REAL".

{d}{ o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o }{n} {
printf(yytext[O]= ='d'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of the original pro­
gram. The conditional operator is used to select the proper form of the keyword. The next
rule copies continuation card indications to avoid confusing them with constants:

-. "[" O] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as "beginning of
line, then five blanks, then anything but blank or zero." Note the two different meanings of - .
There follow some rules to change double precision constants to ordinary floating constants.

LEX 15

[0-9]+{W}{d}{W}[+-]?{W}[0-9]+ I
[0-9)+{W}". "{W}{d}{WH +-)?{W}[0-9)+ I
". "{W}[0-9] + {W}{d}{W}[+ -] ?{W}[0-9] + {
/* convert constants •/
for(p=yytext; *P ! = O; p+ +)
{
if (•p = = 'd' I *P = = 'D')
*P= + 'e'- 'd';
ECHO;
}
}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d
or D. The program than adds 'e'-'d', which converts it to the next letter of the alphabet. The
modified constant, now single-precision, is written out again. There follow a series of names
which must be respelled to remove their initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{t}
{d}{a}{t}{a}{n}

{d}{f}{l}{o}{a}{t} printf("%s" ,yytext + 1);

Another list of names must have initial d changed to initial a:

{d}{l}{o}{g}
{d}{I}{o}{g} IO
{d}{m}{i}{n}l
{d}{m}{a}{x} 1

I
I
I
{
yytext[O] = + 'a' - 'd';
ECHO;
}

And one routine must have initial d changed to initial r:

{d}l {m}{a}{c}{h} {yytext[O) = + 'r' - 'd';
ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, some final rules pick up
longer words as identifiers and copy some surviving characters:

[A-Za-z][A-Za-z0-9]•
[0-9]+
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran or
with the use of keywords as identifiers.

10. LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor statements and
analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The • operator, for example, is a prior
context operator, recognizing immediately preceding left context just as $ recognizes

16 LEX

immediately following right context. Adjacent left context could be extended, to produce a
facility similar to that for adjacent right context, but it is unlikely to be as useful, since often
the relevant left context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of
flags, when only a few rules change from one environment to another, the use of start condi­
tions on rules, and the possibility of making multiple lexical analyzers all run together. In each
case, there are rules that recognize the need to change the environment in which the following
input text is analyzed and that set a parameter to reflect the change. This may be a flag expli­
citly tested by the user's action code; this is the simplest way of dealing with the problem, since
Lex is not involved at all. It may be more convenient, however, to have Lex remember the
flags as initial conditions on the rules. Any rule may be associated with a start condition. It
will only be recognized when Lex is in that start condition. The current start condition may be
changed at any time. Finally, if the sets of rules for the different environments are very dis­
similar, clarity may be best achieved by writing several distinct lexical analyzers, and switching
from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic to first
on every line which began with the letter a. changing magic to second on every line which
began with the letter b, and changing magic to third on every line which began with the letter
c. All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
%%
"a{ftag = 'a'; ECHO;}
"b{flag = 'b'; ECHO;}
"c{ftag = 'c'; ECHO;}
\n{flag = 0 ; ECHO;}
magic{
switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
Lex in the definitions section with a line reading

%Start name I name2 ...

where the conditions may be named in any order. The word Start may be abbreviated to s or
S. The conditions may be referenced at the head of a rule with the <> brackets:

<name I >expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start
condition, execute the action statement

BEGIN name I;

which changes the start condition to namel. To resume the normal state,

LEX 17

BEGIN 0;

resets the initial condition of the Lex automaton interpreter. A rule may be active in several
start conditions:

<name! ,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
a

"b
c

\n
<AA> magic
<BB> magic
<CC> magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}
printf("first");
printf("second");
printf("third");

where the logic is exactly the same as in the previous method of handling the problem, but Lex
does the work rather than the user's code.

11. CHARACTER SET

The programs generated by Lex handle character 1/0 only through the routines input, output
and unput. Thus the character representation provided in these routines is accepted by Lex and
used to return values in yytext. For internal use a character is represented as a small integer
which, if the standard library is used, has a value equal to the integer value of the bit pattern
representing the character on the host computer. Normally, the letter a is represented in the
same form as the character constant 'a'. If this interpretation is changed by providing 1/0 rou­
tines that translate the characters, Lex must be told about it by being given a translation table,
which must be in the definitions section and must be bracketed by lines containing only %T; it
contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus Figure 3 maps the lower and
upper case letters together into the integers I through 26, new-line into 27, + and - into 28
and 29, and the digits into 30 through 39. Note the escape for new-line. If a table is supplied,
every character that is to appear either in the rules or in any valid input must be included in the
table. No character may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

12. SUMMARY OF SOURCE FORMAT

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

I. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

18 LEX

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Figure 3. Sample Character Table

3. Included code, in the form

%{
code
%}

4. Start conditions, given in the form

%S name 1 name2 ...

5. Character set tables, in the form

%T
number space character-string

%T

6. Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects the parameter as
follows:

Letter
p
n
e
a
k
0

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lines in the rules section have the form "expression action" where the action may be contin­
ued on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

LEX

x
"x"
\x
[xy]
[x-z]
[" x]

x
<y>x
x$
x?
x•
x+
x]y
(x)
x/y
{xx}

x{m,n}

the character ,"x"
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but new-line.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0, 1,2, ... instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from

the definitions section.
m through n occurrences of x

13. CA VEA TS AND BUGS

19

There are pathological expressions that produce exponential growth of the tables when con­
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input stream. This is the only
restriction on the user's ability to manipulate the not-yet-processed input.

14. ACKNOWLEDGEMENTS

As should be obvious from the above, the outside of Lex is patterned on Yacc and the inside
on Abo's string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really
originators of much of Lex, as well as debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed, written, and debugged by Eric Schmidt.

15. REFERENCES

[l] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, NJ
(1978).

[2] B. W. Kernighan. Ratfor: A Preprocessor for a Rational Fortran, Software- Practice &
Experience 5:395-496 (1975).

[3] S. C. Johnson. Yacc: Yet Another Compiler Compiler, Bell Laboratories (1975).
[4] A. V. Aho and M. J. Corasick. Efficient String Matching: An Aid to Bibliographic

Search, CACM 18:333-40 (1975).
[5] B. W. Kernighan, D. M. Ritchie, and K. Thompson; QED Text Editor, Bell Laboratories

(1972). .
[6] D. M. Ritchie. Private communication. See also M. E. Lesk, The Portable C Library,

Bell Laboratories (1975).

January 1981

YACC-Yet Another Compiler-Compiler

Stephen C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Computer program input generally has some structure; in fact, every com­
puter program that does input can be thought of as defining an "input
language" which it accepts. An input language may be as complex as a pro­
gramming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about check­
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer pro­
gram. The Yacc user specifies the structures of his input, together with code to
be invoked as each such structure is recognized. Yacc turns such a specification
into a subroutine that handles the input process; frequently, it is co.nvenient
and appropriate to have most of the flow of control in the user's application
handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to
return the next basic input item. Thus, the user can specify his input in terms
of individual input characters, or in terms of higher-level constructs such as
names and numbers. The user-supplied routine may also handle idiomatic
features such as comment and continuation conventions, which typically defy
easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a
very general one: LALR(l) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also
been used for less conventional languages, including a phototypesetter
language, several desk calculator languages, a document retrieval system, and a
Fortran debugging system.

INTRODUCTION

UNIX

E.1.2

Yacc provides a general tool for imposing structure on the input to a computer program.
The Yacc user prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine to
do the basic input. Yacc then generates a function to control the input process. This function,
called a parser, calls the user-supplied low-level input routine (the lexical analyzer) to pick up
the basic items (called tokens) from the input stream. These tokens are organized according to
the input structure rules, called grammar rules; when one of these rules has been recognized,
then user code supplied for this rule, an action, is invoked; actions have the ability to return
values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C
as well. Moreover, many of the syntactic conventions of Yacc follow C.

...

2 YACC

The heart of the input specification is a collection of grammar rules. Each rule describes
an allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ',' year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma"," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user
routine reads the input stream, recognizing the lower-level structures, and communicates these
tokens to the parser. For historical reasons, a structure recognized by the lexical analyzer is
called a terminal symbol, while the structure recognized by the parser is called a nonterminal sym­
bol. To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name
month_name

month_name

'J' 'a' 'n' ,
: 'F' 'e' 'b' ;

: 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi­
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
month_name was seen: in this case, month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are
also considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the
rule

date : month'/' day'/' year

allowing

1 J 4 I 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort,
and little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are
detected as early as is theoretically possible with a left-to-right scan; thus, not only is the
chance of reading and computing with bad input data substantially reduced, but the bad data

·can usually be quickly found. Error handling, provided as part of the input specifications, per­
mits the reentry of bad data, or the continuation of the input process after skipping over the
bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For
example, the specifications may be self contradictory, or they may require a more powerful

YACC 3

recogmtJon mechanism than that available to Yacc. The former cases represent design errors;
the latter cases can often' be corrected by making the lexical analyzer more powerful, or by
rewriting some of the grammar rules. While Yacc cannot handle all possible specifications, its
power compares favorably with similar systems; moreover, the constructions which are difficult
for Yacc to handle are also frequently difficult for human beings to handle. Some users have
reported that the discipline of formulating valid Yacc specifications for their input revealed
errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.2, 3, 4 Yacc has been extensively
used in numerous practical applications, including Lint, 5 the Portable C Compiler, 6 and a sys­
tem for typesetting mathematics.7

The next several sections describe the basic process of preparing a Yacc specification; Sec­
tion I describes the preparation of grammar rules, Section 2 the preparation of the user sup­
plied actions associated with these rules, and Section 3 the preparation of lexical analyzers. Sec­
tion 4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may
be unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe­
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section IO discusses some advanced
topics, and Section 11 gives acknowledgements. Appendix A has a brief example, and Appen­
dix B gives a summary of the Yacc input syntax. Appendix C gives an example using some of
the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax
no longer actively supported, but provided for historical continuity with older versions of Yacc.

1. BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be
declared as such. In addition, for reasons discussed in Section 3, it is often desirable to include
the lexical analyzer as part of the specification file; it may be useful to include other programs
as well. Thus, every specification file consists of three sections: the declarations, (grammar)
rules, and programs. The sections are separated by double percent "%%" marks. (The percent
"%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and new-lines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are
enclosed in/* ... */,as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the
form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

I
~

4 YACC

Names may be of arbitrary length,. and may be made up of letters, dot ".", underscore
"_", and non-initial digits. Upper- and lower-case letters are distinct. The names used in the
body of a grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes'"". As in C, the backslash "\"
is an escape character within literals, and all the C escapes are recognized. Thus

'\n' new-line
'\r' return
'\" single quote "'"
'\ \' backslash "\"
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' "xxx" in octal

For a number of technical reasons, the NUL character ('\0' or O) should never be used in gram­
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can
be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule
can be dropped before a vertical bar. Thus the grammar rules

A
A
A

BCD
E F
G

can be given to Yacc as

A BCD
E F
G

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious
way:

empty:

Names representing tokens must be declared; this is most simply done by writing

%token name I name2 ...

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol, has particular importance.
The parser is designed to recognize the start symbol; thus, this symbol represents the largest,
most general structure described by the grammar rules. By default, the start symbol is taken to
be the left hand side of the first grammar rule in the rules section. It is possible, and in fact
desirable, to declare the start symbol explicitly in the declarations section using the %start key­
word:

%start symbol

The end of the input to the parser is signaled by a special token, called the end-marker. If
the tokens up to, but not including, the end-marker form a structure which matches the start
symbol, the parser function returns to its caller after the end-marker is seen; it accepts the
input. If the end-marker is seen in any other context, it is an error.

YACC 5

It is the job of the user-supplied lexical analyzer to return the end-marker when appropri­
ate; see section 3, below.' Usually the end-marker represents some reasonably obvious 1/0
status, such as "end-of-file" or "end-of-record".

2. ACTIONS

With each grammar rule, the user may associate actions to be performed each time the
rule is recognized in the input process. These actions may return values, and may obtain the
values returned by previous actions. Moreover, the lexical analyzer can return values for
tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subpro­
grams, and alter external vectors and variables.· An action is specified by one or more state­
ments, enclosed in curly braces "{" and "}". For example,

A '(' B ')'
{ hello(1, "abc") ; }

and

xxx yyy zzz
{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action state­
ments are altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this
context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For
example, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may
use the pseudo-variables $1, $2, ... , which refer to the values returned by the components of
the right side of a rule, reading from left to right. Thus, if the rule is

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

ex pr '(' expr ')' ;

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

ex pr '(' expr ')' { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar
rules of the form

A B .•

'
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in the
middle of a rule as well as at the end. This rule is assumed to return a value, accessible
through the usual mechanism by the actions to the right of it. In turn, it may access the values
returned by the symbols to its left. Thus, in the rule

...

.
j'

6 YACC

A B
$$ = l;

c
x = $2; y = $3;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The inte­
rior action is the action triggered off by recognizing this added rule. Yacc actually treats the
above example as if it had been written:

$ACT /*empty*/
{ $$ = 1;

A B $ACT C
{ x = $2; y = $3; }

In many applications, output is not done directly by the actions; rather, a data structure,
such as a parse tree, is constructed in memory, and transformations are applied to it before out­
put is generated. Parse trees are particularly easy to construct, given routines to build and
maintain the tree structure desired. For example, suppose there is a C function node. written
so that the call

node(L, nl, n2)

creates a node with label L, and descendants n 1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

ex pr expr '+' expr
{ $$ = node('+', $1, $3); }

in the specification .

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks "%{" and "%}".
These declarations and definitions have global scope, so they are known to the action state­
ments and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy"; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be
found in Section 10.

3. LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input stream and communicate tokens
(with values, if desired) to the parser. The lexical analyzer is an integer-valued function called
yylex. The function returns an integer, the token number, representing the kind of token read.
If there is a value associated with that token, it should be assigned to the external variable yy/­
val.

The parser and the lexical analyzer must agree on these token numbers in order for com­
munication between them to take place. The numbers may be chosen by Yacc, or chosen by
the user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer
to return these numbers symbolically. For example, suppose that the token name DIGIT has

YACC 7

been defined in the declar<;ttions section of the Yacc specification file. The relevant portion of
the lexical analyzer might look like:

yylex(){
extern int yylval;
int c;

c = getchar();

switch(c) {

case 'O':
case 'l ':

case '9':
yylval = c-'0';
return(DIGIT);

The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs section of
the specification file, the identifier DIGIT will be defined as the token number associated with
the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the
need to avoid using any token names in the grammar that are reserved or significant in C or the
parser; for example, the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled. The token name error is reserved for error
handling, and should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the
default situation, the numbers are chosen by Yacc. The default token number for a literal char­
acter is the numerical value of the character in the local character set. Other names are
assigned token numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token
name or literal in the declarations section can be immediately followed by a nonnegative integer.
This integer is taken to be the token number of the name or literal. Names and literals not
defined by this mechanism retain their default definition. It is important that all token numbers
be distinct.

For historical reasons, the end-marker must have token number 0 or negative. This
token number cannot be redefined by the user; thus, all lexical analyzers should be prepared to
return O or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lex program developed by
Mike Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers.
The specifications for these lexical analyzers use regular expressions instead of grammar rules.
Lex can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4. HOW THE PARSER WORKS

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,

8 YACC

however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recov'ery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is
also capable of reading and remembering the next input token (called the look-ahead token).
The current state is always the one on the top of the stack. The states of the finite state
machine are given small integer labels; initially, the machine is in state 0, the stack contains
only state 0, and no look-ahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error.
A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a look-ahead token to
decide what action should be done; if it needs one, and does not have one, it calls yylex
to obtain the next token.

2. Using the current state, and the look-ahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or
popped off of the stack, and in the look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a look-ahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The look-ahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the look-ahead token to decide whether to reduce, but
usually it is not; in fact, the default action (represented by a ". ") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also
given small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case) and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from
the stack. (In general, the number of states popped equals the number of symbols on the right
side of the rule). In effect, these states were the ones put on the stack while recognizing x, y,
and z, and no longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using this
uncovered state, and the symbol on the left side of the rule, perform what is in effect a shift of
A. A new state is obtained, pushed onto the stack, and parsing continues. There are significant
differences between the processing of the left hand symbol and an ordinary shift of a token,
however, so this action is called a goto action. In particular, the look-ahead token is cleared by
a shift, but is not affected by a goto. In any case, the uncovered state contains an entry such
as:

YACC 9

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the
stack to go back to the state where the right hand side of the rule was first seen. The parser
then behaves as if it had seen the left side at that time. If the right hand side of the rule is
empty, no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is adjusted.
In addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter­
nal variable yylva/ is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied
onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates
that the entire input has been seen and that it matches the specification. This action appears
only when the look-ahead token is the end-marker, and indicates that the parser has success­
fully done its job. The error action, on the other hand, represents a place where the parser can
no longer continue parsing according to the specification. The input tokens it has seen,
together with the look-ahead token, cannot be followed by anything that would result in a legal
input. The parser reports an error, and attempts to recover the situation and resume parsing:
the error recovery (as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When Yacc is invoked with the -y option, a file called y.output is produced, with a
human-readable description of the parser. The y.output file corresponding to the above gram­
mar (with some statistics stripped off the end) is:

..

I

10 YACC

state 0
$accept : _rhyme $end

DING shift 3
• error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
• error

state 2
rhyme sound_place

DELL shift 5
. error

place goto 4

state 3
sound DING_DONG

DONG shift 6
. error

state 4
rhyme : sound place_ (I)

. reduce

state 5
place : DELL_ (3)

. reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and
what is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to
decide between the actions available in state 0, so the first token, DING, is read, becoming the
look-ahead token. The action in state 0 on DING is is "shift 3", so state 3 is pushed onto the
stack, and the look-ahead token is cleared. State 3 becomes the current state. The next token,

YACC 11

DONG. is read, becoming the look-ahead token. The action in state 3 on the token DONG is
"shift 6", so state 6 is pushed onto the stack, and the look-ahead is cleared. The stack now
contains 0, 3, and 6. In state 6, without even consulting the look-ahead, the parser reduces by
rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is "shift 5". so state 5 is
pushed onto the stack, which now has 0, 2, and 5 on it, and the look-ahead token is cleared. In
state 5, the only action is to reduce by rule 3. This has one symbol on the right hand side, so
one state, 5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side
of rule 3, is state 4. Now, the stack contains 0, 2, and 4. Jn state 4, the only action is to
reduce by rule I. There are two symbols on the right, so the top two states are popped off,
uncovering state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state
l. In state 1, the input is read; the end-marker is obtained, indicated by "Send" in they.output
file. The action in state 1 when the end-marker is seen is to accept, successfully ending the
parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as DING DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes
spend with this and other simple examples will probably be repaid when problems arise in more
complicated contexts.

5. AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string that can be structured in
two or more different ways. For example, the grammar rule

ex pr expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram­
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

....

,.
i

12 YACC

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the·input is reduced to expr(the left side of the rule). The
parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpreta­
tion. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is ca.lied a shift/reduce conflict. It may also happen that the parser has a choice of
two legal reductions; this is called a reduce/reduce conflict. Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It
does this by selecting one of the valid steps wherever it has a choice. A rule describing which
choice to make in a given situation is called a disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule l implies that reductions are deferred whenever there is a choice, in favor of shifts.
Rule 2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules,
while consistent, require a more complex parser than Yacc can construct. The use of actions
within rules can also cause conflicts, if the action must be done before the parser can be sure
which rule is being recognized. In these cases, the application of disambiguating rules is inap­
propriate, and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

Jn general, whenever it is possible to apply disambiguating rules to produce a correct
parser, it is also possible to rewrite the grammar rules so that the same inputs are read but
there are no conflicts. For this reason, most previous parser generators have considered
conflicts to be fatal errors. Our experience has suggested that this rewriting is somewhat unna­
tural, and produces slower parsers; thus, Yacc will produce parsers even in the presence of
conflicts .

. As an example of the power of disambiguating rules, consider a fragment from a program­
ming language involving an "if-then-else" construction:

YACC 13

stat IF '(' cond ')' stat
IF '(' cond ')' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule
will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) SI El.SE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) SI
}

ELSE S2

IF (Cl) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this con­
struct. Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example,
consider the situation where the parser has seen

IF (Cl) IF (C2) SI

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (Cl) IF (C2) SI El.SE S2

can be reduced by the if-else rule to get

IF (Cl) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which leads to the
desired grouping. ·

This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

, ..
' -

14 YACC

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state of
the parser.

The conflict messages of Yacc are best understood by examining the verbose (-v) option
output file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat El.SE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by ".'', is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF '(' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while
the numbers following "reduce" commands refer to grammar rule numbers. In they.output
file, the rule numbers are printed after those rules which can be reduced. In most one states,
there will be at most reduce action possible in the state, and this will be the default command.
The user who encounters unexpected shift/reduce conflicts will probably want to look at the
verbose output to decide whether the default actions are appropriate. In really tough cases, the
user might need to know more about the behavior and construction of the parser than can be
covered here. In this case, one of the theoretical references2, 3• 4 might be consulted; the ser­
vices of a local guru might also be appropriate.

6. PRECEDENCE

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used con·
structions for arithmetic expressions can be naturally described by the notion of precedence lev­
els for operators, together with information about left or right associativity. It turns out that
ambiguous grammars with appropriate disambiguating rules can be used to create parsers that
are faster and easier to write than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the form

expr : expr OP expr

YACC 15

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con­
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section.
This is done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc,
followed by a list of tokens. All of the tokens on the same line are assumed to have the same
precedence level and associativity; the lines are listed in order of increasing precedence or bind­
ing strength. Thus,

%left '+' ,_,
%left 1*1 I/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '='
%left '+' '-'
%left '•' '/'

%%

ex pr ex pr '==' ex pr
ex pr '+' ex pr
ex pr ' I ex pr
ex pr '•' ex pr
expr '/' ex pr
NAME

might be used to structure the input

a = b = c•d - e - f•g

as follows:

a = (b = (((c•d)-e) - (f•g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary '-'; unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than
multiplication. The keyword, %prec, changes the precedence level associated with a particular
grammar rule. %prec appears immediately after the body of the grammar rule, before the
action or closing semicolon, and is followed by a token name or literal. It causes the pre­
cedence of the grammar rule to become that of the following token name or literal. For exam­
ple, to make unary minus have the same precedence as multiplication the rules might resemble:

16 YACC

%left '+' '-'
%left 111<1 I/'

%%

ex pr expr '+' expr
expr '-' expr
expr '•' expr
ex pr / /' ex pr
'-' expr %prec '•'
NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give
rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with pre­
cedences, and use them in an essentially "cookbook" fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what
was intended.

7. ERROR HANDLING

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete
or alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to
continue scanning the input to find further syntax errors. This leads to the problem of getting
the parser "restarted" after an error. A general class of algorithms to do this involves discard­
ing a· number of tokens from the input string, and attempting to adjust the parser so that input
can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably
general, feature. The token name "error" is reserved for error handling. This name can be
used in grammar rules; in effect, it suggests places where errors are expected, and recovery
might take place. The parser pops its stack until it enters a state where the token "error" is

YACC 17

legal. It then behaves as if the token "error" were the current look-ahead token, and performs
the action encountered. The look-ahead token is then reset to the token that caused the error.
If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error,
remains in error state until three tokens have been successfully read and shifted. If an error is
detected when the parser is already in error state, no message is given, and the input token is
quietly deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reini­
tialize tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier
are rules such as

stat error ';'

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ';'. All tokens after the error and before the next ';'cannot be shifted, and
are discarded. When the 1

;
1 is seen, this rule will be reduced, and any "cleanup" action associ­

ated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to
permit a line to be reentered after an error. A possible error rule might be

input error '\n' { printf("Reenter last line: "); } input
{ $$ = $4; }

There is one potential difficulty with this approach: the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens and gives no
message; this is clearly unacceptable. For this reason, there is a mechanism that can force the
parser to believe that an error has been fully recovered from. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printf("Reenter last line: ") ;
input

$$ = $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input
token at which the error was discovered. Sometimes, this is inappropriate; for example, an
error recovery action might take upon itself the job of finding the correct place to resume input.
In this case, the previous look-ahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the

I
!

18 YACC

input to the beginning of the next valid. statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old. ille­
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
resynch();
yyerrok ;
yyclearin ;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective
recovery of the parser from many errors; moreover, the user can get control to deal with the
error actions required by other portions of the program.

8. THE YACC ENVIRONMENT

When the user inputs a specification to Yacc, the output is a file of C programs, called
y.tab.c on most systems (due to local file system conventions, the names may differ from
installation to installation). The function produced by Yacc is called yyparse; it is an integer
valued function. When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied
by the user (see Section 3) to obtain input tokens. Eventually. either an error is detected, in
which case (if no error recovery is possible) yyparse returns the value l, or the lexical analyzer
returns the end-marker token and the parser accepts. In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain
a working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yye"or prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the ini­
tial effort of using Yacc, a library has been provided with default versions of main and yyerror.
The name of this library is system dependent; on many systems the library is accessed by a - Iy
argument to the loader. To show the triviality of these default programs, the source is given
below:

and

main(){
return(yyparse());
}

include <stdio.h>

yyerror(s) char •s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the look-ahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value,
the parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ­
ment, it may be possible to set this variable by using a debugging system.

YACC 19

9. HINTS FOR PREPA,RING SPECIFICATIONS

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification
file. The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower-case letters for nonterminal names. This
rule comes under the heading of .. knowing who to blame when things go wrong."

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text
of this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called "left recursive" grammar
rules: rules of the form

name name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list ',' item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so,
consider writing the sequence specification with an empty rule:

,,
I

20

seq /*empty•/
seq item

YACC

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want
to delete blanks normally, but not within quoted strings. Or names might be entered into a
symbol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of 0 or more declara­
tions, followed by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations ...

%%

prog decls stats

decls /*empty•/
{ dflag = 1;

decls declaration

stats /*empty•/
{ dftag = O;

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and I when reading declarations, except for the
first token in the first statement. This token must be seen by the parser before it can tell that the
declaration section has ended and the statements have begun. In many cases, this single token
exception does not affect the lexical scan.

This kind of "back-door" approach can be elaborated to a noxious degree. Nevertheless,
it represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like "if', which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework
of Yacc; it is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is
a keyword, and that instance is a variable". The user can make a stab at it, using the mechan­
ism described in the last subsection, but it is difficult.

YACC 21

A number of ways of making this easier are under advisement. Until then, it is better
that the keywords be reserved; that is, be forbidden for use as variable names. There are
powerful stylistic reasons for preferring this, anyway.

10. ADV AN CED TOPICS

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros
YY ACCEPT and YYERROR. YY ACCEPT causes yyparse to return the value O; YYERROR
causes the parser to behave as if the current input symbol had been a syntax error; yyerror is
called, and error recovery takes place. These mechanisms can be used to simulate parsers with
multiple end-markers or context-sensitive syntax checking.

Accessing Values in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule. The
mechanism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in
this case the digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence ...

THE
YOUNG

DOG
{

CRONE
{

$$=THE; }
$$=YOUNG;

$$=DOG; }

if($0 = = YOUNG){
printf("what?\n");
}

$$=CRONE;
l

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can
also support values of other types, including structures. In addition, Yacc keeps track of the
types, and inserts appropriate union member names so that the resulting parser will be strictly
type checked. The Yacc value stack (see Section 4) is declared to be a union of the various
types of values desired. The user declares the union, and associates union member names to
each token and nonterminal symbol having a value. When the value is referenced through a $$
or $n construction, Yacc will automatically insert the appropriate union name, so that no
unwanted conversions will take place. In addition, type checking commands such as Lint 5 will
be far more silent.

22 YACC

There are three mechanisms used to provide for this typing. First, there is a way of
defining the union; this must be done by the user since other programs, notably the lexical
analyzer, must know about the union member names. Second, there is a way of associating a
union member name with tokens and nonterminals. Finally, there is a mechanism for describ­
ing the type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of%{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an
action within a rule, the value returned by this action has no a priori type. Similarly, reference
to left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between <and>, immediately after the first$. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun(S<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not
triggered until they are used: in particular, the use of %type will turn on these mechanisms.
When they are used, there is a fairly strict level of checking. For example, use of Sn or $$ to
refer. to something with no defined type is diagnosed. If these facilities are not triggered, the
Yacc value stack is used to hold int' s, as was true historically.

YACC 23

11. ACKNOWLEDGEMENTS

Yacc owes much to a most stimulating collection of users who have goaded me beyond
my inclination, and frequently beyond my ability, in their endless search for "one more
feature." Their irritating unwillingness to learn how to do things my way has usually led to my
doing things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger,
S. I. Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. 0. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed and for other favors.

REFERENCES

[1] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice-Hall, Engle­
wood Cliffs, NJ (1978).

[2] A. V. Aho and S. C. Johnson. "LR Parsing," Comp. Surveys 6(2), pp. 99-124 (June
1974).

[3] A. V. Aho, S. C. Johnson, and J. D. Ullman. "Deterministic Parsing of Ambiguous
Grammers," CACM 18(8), pp. 441-52 (August 1975).

[4] A. V. Aho and J. D. Ullman. Principles of Compiler Design, Addison-Wesley, Reading,
MA (1977).

[5] S. C. Johnson. "Lint, a C Program Checker," Bell Laboratories (December 1977).

[6] S. C. Johnson. "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, pp. 97-104 (January 1978).

[7] B. W. Kernighan and L. L. Cherry. "A System for Typesetting Mathematics," Bell
Laboratories (March 1975).

[8] M. E. Lesk. "LEX-A Lexical Analyzer Generator," Bell Laboratories (October 1975).

I

24 YACC

Appendix A: A SIMPLE EXAMPLE .

This example gives the complete Yacc specification for a small desk calculator; the desk
calculator has 26 registers, labeled "a" through .. z", and accepts arithmetic expressions made
up of the operators +, - , *• /, % (mod operator), & (bitwise and), I (bitwise or), and assign­
ment. If an expression at the top level is an assignment, the value is not printed; otherwise it
is. As in C, an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is
assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of show­
ing how precedences and ambiguities are used, and demonstrating simple error recovery. The
major oversimplifications are that the lexical analysis phase is much simpler than for most appli­
cations, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
II include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left 'I'
%left '&'
%left '+' '-'
%left 1*1 I/' '%'
%left UMINUS /* supplies precedence for unary minus */

%%

list

stat

/• beginning of rules section */

/* empty */
list stat '\n'
list error '\n'

{ yyerrok;

ex pr
{ printf("%d\n", $1); }

LETTER '=' ex pr
{ regs[$ I] == $3; }

YACC

expr : '(' expr ')'
{ $$ - $2; }

expr '+' expr
{ $$ = $1 + $3;

expr '-' expr
{ $$ $1 - $3;

expr '•' expr
{ $$ $1 .. $3; }

ex pr '/' ex pr
{ $$ s1 I S3; l

expr '%' expr
{ $$ = $1 % $3; }

expr '&' expr
{ $$ $1 & $3; }

expr 'I' expr
{ $$ $1 I $3; }

1-' ex pr %prec UMINUS
{ $$ = - $2; }

LETTER
{ $$ = regs [$1]; }

number

number DIGIT
{ $$ $1; base = ($1==0) '! 8 : 10; }

number DIGIT
{ $$ = base • $1 + $2; }

%% /* start of programs */

yylex() { /* lexical analysis routine •/
/* returns LETTER for a lower-case letter, yylval = 0 through 25 */
/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;

while((c=getchar()) = = / ') {

/* c is now nonblank •/

if(islower(c)) {
yylval = c - 'a';
return(LETTER);
}

if(isdigit(c)) {
yylval = c - 'O';
return(DIGIT);
}

return(c);
}

/• skip blanks •/ }

25

26 YACC

Appendix B: YACC INPUT SYNTAX

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Con­
text dependencies, etc., are not considered. Ironically, the Yacc input specification language is
most naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen
in a rule, immediately following an action. If this identifier is followed by a colon, it is the start
of the next rule; otherwise it is a continuation of the current rule, which just happens to have
an action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, new-lines, comments, etc.) is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities •/
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal) followed by colon •/
%token NUMBER /* [0-9] + */

/* reserved words: %type => TYPE, %left => LEFT, etc. •/

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /* the %% mark •/
%token LCURL /* the %{ mark •/
%token RCURL /* the %} mark */

/* ASCII character literals stand for themselves •/

%start spec

%%

spec

tail

defs

def

def s MARK rules tail

MARK { In this action, eat up the rest of the file }
/• empty: the second MARK is optional •/

/• empty •/
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndef s rword tag nlist

YACC

rword

tag

nlist

nm no

rules

rule

rbody

act

prec

TOKEN
LEFT.
RIGHT
NON ASSOC
TYPE

/* empty: union tag is optional •/
'<' IDENTIFIER '>'

nm no
nlist nmno
nlist ',' nmno

IDENTIFIER
IDENTIFIER NUMBER

/* rules section •/

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
'I' rbody prec

/• empty •/
rbody IDENTIFIER
rbody act

/* NOTE: literal illegal with %type */
/• NOTE: illegal with %type •/

'{' { Copy action, translate $$, etc. } '}'

/• empty •/
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

27

28 YACC

Appendix C: AN ADVANCED EXAMPLE

This Appendix gives an example of a grammar using some of the advanced features dis­
cussed in Section IO. The desk calculator example in Appendix A is modified to provide a desk
calculator that does floating point interval arithmetic. The calculator understands floating point
constants, the arithmetic operations +, - , •, /, unary - , and = (assignment), and has 26
floating point variables, "a" through "z". Moreover, it also understands intervals, written

(x ' y)

where x is less than or equal toy. There are 26 interval valued variables "A" through "Z"
that may also be used. The usage is similar to that in Appendix A; assignments return no
value, and print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double 's.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari­
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an
interval containing 0, and an interval presented in the wrong order. In effect, the error
recovery mechanism of Yacc is used to throw away the rest of the off ending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there
were many kinds of expression types, instead of just two, the number of rules needed would
increase dramatically, and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming language environment to keep
the type information as part of the value, and not as part of the grammar.

F~nally, a word about the lexical analysis. The only unusual feature is the treatment of
floating point constants. The C library routine atof is used to do the actual conversion from a
character string to a double precision value. If the lexical analyzer detects an error, it responds
by returning a token that is illegal in the grammar, provoking a syntax error in the parser, and
thence error recovery.

YACC

%{

include <stdio.h>
include <ctype.h>

typedef struct interval
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[26];
INTERVAL vreg[26];

%}

%start lines

%union {
int ival;
double dval;
INTERVAL vval;
}

%token <ival> DREG VREG /* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /• interval expression */

/• precedence information about the operators */

%left'+' '-'
%left 1*1 I/'
%left UMINUS /* precedence for unary minus */

%%

lines :
I

/• empty •/
lines line

29

30

line dexp '\n'
{ printf("%15.8t\n", $1); }

vexp '\n'
{ printf("(%15.8f , %15.8f)\n", $1.lo, $1.hi);

DREG '=' dexp '\n'
{ dreg[Sl] = $3; }

VREG '=' vexp '\n'
{ vreg[$ l] = $3;

error '\n'
{ yyerrok; }

dexp: CONST
I DREG

vexp:

{ $$ = dreg[$1]; }
dexp '+' dexp

{ $$ = $1 + $3; }
dexp '-' dexp

{ $$ = $1 $3; }
dexp '*' dexp

{ $$ = $1 * $3; }
dexp '/' dexp

! ss = s 1 I $3; }
'-' dexp %prec UMINUS

{ $$ - $2; }
'(' dexp ')'

{ $$ $2; }

dexp
{ $$.hi = $$.lo

'(' dexp ',' dexp ')'
{
$$.lo = $2;
$$.hi = $4;
if($$.lo > $$.hi){

$1; }

printf("interval out of order\n") ;
YYERROR;

}
VREG

}

{ $$ = vreg[$ l]; }
vexp '+' vexp

{ $$.hi = $1.hi + $3.hi;
$$.lo = $1.lo + $3.lo; }

dexp '+' vexp
{ $$.hi

$$.lo
vexp '-' vexp

$1 + $3.hi;
$1 + $3.lo; }

{ $$.hi $1.hi - $3.lo;
$$.lo = $1.lo - $3.hi; }

dexp '-' vexp
{ $$.hi = $1 $3.lo;

$$.lo = $1 - $3.hi; }

YACC

YACC

%%

vexp '*' vexp .
{ $$ = vmul($1.lo, $I.hi, $3) ; }

dexp '•' vexp
{ $$ = vmul($1, $1, $3); .}

vexp '/' vexp
{ if(dcheck($3)) YYERROR;

$$ = vdiv($I.lo, $1.hi, $3) ; }
dexp '/' vexp

{ if(dcheck($3)) YYERROR;
$$ = vdiv($1, $1, $3); }

'-' vexp %prec UMINUS
{ $$.hi = -$2.lo; $$.lo = -$2.hi;

'(' vexp ')'
{ $$ = $2; }

define BSZ 50 /* buffer size for floating point numbers •/

/* lexical analysis */

yylex{){
register c;

while((c=getchar()) = = ' '){ /* skip over blanks */

if(is upper(c)) {
yylval.ival = c 'A';
return(VREG);
}

if(islower(c)){
yylval.ival = c 'a';
return(DREG);
}

if(isdigit(c) II c= ='.'){
/* gobble up digits, points, exponents •/

char buf[BSZ + 1], *Cp = buf;
int dot = 0, exp = O;

for(; (cp-buf)<BSZ ; + +cp,c=getchar()){

*Cp = c;
if(isdigit(c)) continue;
if(c = = '.'){

if(dot++ II exp) return('.'); /* will cause syntax error •/
continue;
}

31

32

if(c = = 'e'){
if(exp++) return('e'); /* will cause syntax error •/
continue;
l

/* end of number */
break;
}

*CP = '\0';
if((cp-buf) > = BSZ) printf("constant too long: truncated\n");
else ungetc(c, stdin) ; /* push back last char read */
yylval.dval = atof(buf);
return(CONST);
l

return(c);
l

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval containing a, b, c, and d •/
/• used by •, / routines */
INTERVAL v;

if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if(c>d) {
if(c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v;
return(hilo(a*v.hi, a*v.lo, ~v.hi, h*v.lo));

l

dcheck(v) INTERVAL v; {
if(v.hi >= 0. && v.lo <= O.){

printf("divisor interval contains O.\n");
return(I);
}

return(0);
}

INTEl~.V AL vdiv(a, b, v) double a, b; INTERVAL v;
return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo));
}

YACC

YACC 33

Appendix D: OLD FEATURES SUPPORTED BUT NOT ENCOURAGED

This Appendix mentions synonyms and features which are supported for historical con·
tinuity, but, for various reasons, are not encouraged.

1. Literals may also be delimited by dou hie quotes """.

2. Literals may be more than one character long. If all the characters are alphabetic,
numeric, or _, the type number of the literal is defined, just as if the literal did not have
the quotes around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \\is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

January 1981

UNIX

E.2.1

The M4 Macro Processor

Brian W. Kernighan

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

M4 is a macro processor available on UNIXt and GCOS. Its primary use
has been as a front end for Ratfor for those cases where parameterless macros
are not adequately powerful. It has also been used for languages as disparate as
C and Cobol. M4 is particularly suited for functional languages like Fortran,
PL/I and C since macros are specified in a functional notation.

M4 provides features seldom. found even in much larger macro proces-
sors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user's manual for M4.

INTRODUCTION

A macro processor is a useful way to
enhance a programming language, to make
it more palatable or more readable, or to
tailor it to a particular application. The
#define statement in C and the analogous
define in Ratfor are examples of the basic
facility provided by any macro processor -
replacement of text by other text.

The M4 macro processor is an exten­
sion of a macro processor called M3 which
was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a
macro processor implemented for [1].
Readers unfamiliar with the basic ideas of
macro processing may wish to read some of
the discussion there.

t UNIX is a trademark of Bell Laboratories.

M4 is a suitable front end for Ratfor
and C, and has also been used successfully
with Cobol. Besides the straightforward
replacement of one string of text by
another, it provides macros with arguments,
conditional macro expansion, arithmetic, file
manipulation, and some specialized string
processing functions.

The basic operation of M4 is to copy
its input to its output. As the input is read,
however, each alphanumeric "token" (that
is, string of letters and digits) is checked. If
it is the name of a macro, then the name of
the macro is replaced by its defining text,
and the resulting string is pushed back onto
the input to be rescanned. Macros may be
called with arguments, in which case the
arguments are collected and substituted into
the right places in the defining text before it

...
p .

2

is rescanned.

M4 provides a collection of about
twenty built-in macros which perform vari­
ous useful operations; in addition, the user
can define new macros. Built-ins and user­
defined macros work exactly the same way,
except that some of the built-in macros have
side effects on the state of the process.

USAGE

On UNIX, use

m4 [files]

Each argument file is processed in order; if
there are no arguments, or if an argument is
' - ', the standard input is read at that point.
The processed text is written on the stan­
dard output, which may be captured for sub­
sequent processing with

m4 [files) >outputfile

On GCOS, usage is identical, but the pro­
gram is called ./m4.

DEFINING MACROS

The primary built-in function of M4 is
define, which is used to define new macros.
The input

define(name, stuff)

causes the string name to be defined as
stuff. All subsequent occurrences of name
will be replaced by stuff. name must be
alphanumeric and must begin with a letter
{the underscore _counts as a letter). stuff
is any text that contains balanced
parentheses; it may stretch over multiple
lines.

Thus, as a typical example,

define(N, 100)

if (i > N)

defines N to be 100, and uses this "sym­
bolic constant" in a later if statement.

The left parenthesis must immediately
follow the word define, to signal that define
has· arguments. If a macro or built-in name
is not followed immediately by '{', it is
assumed to have no arguments. This is the
situation for N above; it is actually a macro
with no arguments, and thus when it is used
there need be no(...) following it.

M4

You should also notice that a macro
name is only recognized as such if it appears
surrounded by non-alphanumerics. For
example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to
the defined macro N, even though it con­
tains a lot of N's.

Things may be defined in terms of
other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be I 00.

What happens if N is redefined? Or,
to say it another way, is M defined as N or
as 100? In M4, the latter is true - M is
100, so even if N subsequently changes, M
does not.

This behavior arises because M4
expands macro names into their defining
text as soon as it possibly can. Here, that
means that when the string N is seen as the
arguments of define are being collected, it is
immediately replaced by JOO; it's just as if
you had said

define(M, 100)

in the first place.

If this isn't what you really want, there
are two ways out of it. The first, which is
specific to this situation, is to interchange
the order of the definitions:

define(M, N)
define{N, 100)

Now M is defined to be the string N, so
when you ask for M later, you'll always get
the value of N at that time {because the M
will be replaced by N which will be replaced
by 100).

QUOTING

The more general solution is to delay
the expansion of the arguments of define by
quoting them. Any text surrounded by the
single quotes • and • is not expanded
immediately, but has the quotes stripped off.
If you say

M4

define(N, 100)
define(M, 'N-)

the quotes around the N are stripped off as
the argument is being collected, but they
have served their purpose, and M is defined
as the string N, not JOO. The general rule is
that M4 always strips off one level of single
quotes whenever it evaluates something.
This is true even outside of macros. If you
want the word define to appear in the out­
put, you have to quote it in the input, as in

~define· = I;

As another instance of the same thing,
which is a bit more surprising, consider
redefining N:

define(N, IOO)

define(N, 200)

Perhaps regrettably, the N in the second
definition is evaluated as soon as it's seen;
that is, it is replaced by 100, so it's as if you
had written

define(IOO, 200)

This statement is ignored by M4, since you
can only define things that look like names,
but it obviously doesn't have the effect you
wanted. To really redefine N, you must
delay the evaluation by quoting:

define(N, 100)

define('N., 200)

In M4, it is often wise to quote the first
argument of a macro.

If · and - are not convenient for some
reason, the quote characters can be changed
with the built-in cbangequote:

cbangequote([,))

makes the new quote characters the left and
right brackets. You can restore the original
characters with just

cbangequote

There are two additional built-ins
related to define. undefine removes the
definition of some macro or built-in:

undefine(• N-)

removes the definition of N. (Why are the

3

quotes absolutely necessary?) Built-ins can
be removed with undefine, as in

undefine("define·)

but once you remove one, you can never
get it back.

The built-in ifdef provides a way to
determine if a macro is currently defined.
In particular, M4 has pre-defined the names
unix and gcos on the corresponding sys­
tems, so you can tell which one you're
using:

ifdef('unix·, 'define(wordsize,16()
ifdef('gcos·, "define(wordsize,36()

makes a definition appropriate for the partic­
ular machine. Don't forget the quotes!

ifdef actually permits three arguments;
if the name is undefined, the value of ifdef
is then the third argument, as in

ifdef(unix-, on UNIX, not on UNIX)

ARGUMENTS

So far we have discussed the simplest
form of macro processing - replacing one
string by another (fixed) string. User­
defined macros may also have arguments, so
different invocations can have different
results. Within the replacement text for a
macro (the second argument of its define)
any occurrence of Sn will be replaced by the
nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, SI = SI + I)

generates code to increment its argument by
1:

bump(x)

is

x=x+I

A macro can have as many arguments
as you want, but only the first nine are
accessible, through SI to S9. (The macro
name itself is SO, although that is less com­
monly used.) Arguments that are not sup­
plied are replaced by null strings, so we can
define a macro cat which simply concaten­
ates its arguments, like this:

define(cat, SIS2S3$4S5S6S7$8S9)

•

l

4

Thus

cat(x, y, z)

is equivalent to

xyz

$4 through $9 are null, since no correspond­
ing arguments were provided.

Leading unquoted blanks, tabs, or
new-lines that occur during argument collec­
tion are discarded. All other white space is
retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas,
but parentheses are counted properly, so a
comma "protected" by parentheses does not
terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is
literally (b,c). And of course a bare comma
or parenthesis can be inserted by quoting it.

ARITHMETIC BUILT-INS

M4 provides two built-in functions for
doing arithmetic on integers (only). The
simplest is incr, which increments its
numeric argument by I. Thus to handle the
common programming situation where you
want a variable to be defined as "one more
than N", write

define(N, 100)
defl.ne(Nl, ·incr(N()

Then N 1 is defined as one more than the
current value of N.

The more general mechanism for
arithmetic is a built-in called eval, which is
capable of arbitrary arithmetic on integers.
It provides the operators (in decreasing
order of precedence)

unary+ and -
** or • (exponentiation)
* / % (modulus)
+ -
== != < <= > >=

(not)
& or && (logical and)
I or II (logical or)

Parentheses may be used to group

M4

operations where needed. All the operands
of an expression given to eul must ulti­
mately be numeric. The numeric value of a
true relation (like 1 >0) is 1, and false is 0.
The precision in eval is 32 bits on UNIX and
36 bits on GCOS.

As a simple example, suppose we want
M to be 2 .. N+l. Then

defl.ne(N, 3)
define(M, ·eval(2••N+l()

As a matter of principle, it is advisable to
quote the defining text for a macro unless it
is very simple indeed (say just a number); it
usually gives the result you want, and is a
good habit to get into.

FILE MANIPULATION

You can include a new file in the input
at any time by the built-in function include:

include(filename)

inserts the contents of filename in place of
the include command. The contents of the
file is often a set of definitions. The value
of include (that is, its replacement text) is
the contents of the file; this can be captured
in definitions, etc.

It is a fatal error if the file named in
include cannot be accessed. To get some
control over this situation, the alternate
form slnclude can be used; sinclude
("silent include") says nothing and contin­
ues if it can't access the file.

It is also possible to divert the output
of M4 to temporary files during processing,
and output the collected material upon com­
mand. M4 maintains nine of these diver­
sions, numbered I through 9. If you say

divert(n)

all subsequent output is put onto the end of
a temporary file referred to as n. Diverting
to this file is stopped by another divert com­
mand; in particular, divert or divert(O)
resumes the normal output process.

Diverted text is normally output all at
once at the end of processing, with the
diversions output in numeric order. It is
possible, however, to bring back diversions
at any time, that is, to append them to the
current diversion.

..

M4

undivert

brings back all diversions in numeric order,
and undhert with arguments brings back
the selected diversions in the order given.
The act of undiverting discards the diverted
stuff, as does diverting into a diversion
whose number is not between 0 and 9
inclusive.

The value of undivert is not the
diverted stuff. Furthermore, the diverted
material is not rescanned for macros.

The built-in dirnum returns the
number of the currently active diversion.
This is zero during normal processing.

SYSTEM COMMAND

You can run any program in the local
operating system with the syscmd built-in.
For example,

syscmd(date)

on UNIX runs the date command. Normally
syscmd would be used to create a file for a
subsequent include.

To facilitate making unique file names,
the built-in maketemp is provided, with
specifications identical to the system func­
tion mktemp: a string of XXXXX in the
argument is replaced by the process id of the
current process.

CONDITIONALS

There is a built-in called ifelse which
enables you to perform arbitrary conditional
testing. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If these
are identical, ifelse returns the string c; oth­
erwise it returns d. Thus we might define a
macro called compare which compares two
strings and returns "yes" or "no" if they
are the same or different.

define(compare, ~ifelse(Sl, $2, yes, no()

Note the quotes, which prevent too-early
evaluation of ifelse.

If the fourth argument is missing, it is
treated as empty.

ifelse can actually have any number of
arguments, and thus provides a limited form

5

of multi-way decision capability. In the
input

if else(a, b, c, d, e, f, g)

if the string a matches the string b, the
result is c. Otherwise, if d is the same as e,
the result is f. Otherwise the result is g. If
the final argument is omitted, the result is
null, so

if else(a, b, c)

is c if a matches b, and null otherwise.

STRING MANIPULATION

The built-in len returns the length of
the string that makes up its argument. Thus

len (abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to pro­
duce substrings of strings. substr(s, i, n)
returns the substring of s that starts at the
ith position (origin zero), and is n charac­
ters long. If n is omitted, the rest of the
string is returned, so

substr(now is the time·, 1)

is

ow is the time

If i or n are out of range, various sensible
things happen.

index(sl, sl) returns the index (posi·
tion) in st where the string sl occurs, or
-1 if it doesn't occur. As with substr, the
origin for strings is 0.

The built-in translit performs charac­
ter transliteration.

translit(s, r, t)

modifies s by replacing any character found
in f by the corresponding character of t.
That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding
digits. If t is shorter than f, characters
which don't have an entry in t are deleted;
as a limiting case, if t is not present at all,
characters from fare deleted from s. So

translit(s, aeiou)

deletes vowels from s.

6

There is also a built-in called dnl
which deletes all characters that follow it up
to and including the next new-line; it is use-·
ful mainly for throwing away empty lines
that otherwise tend to clutter up M4 output.
For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the new-line at the end of each line is not
part of the definition, so it is copied into the
output, where it may not be wanted. If you
add dnl to each of these lines, the new-lines
will disappear.

Another way to achieve this, due to J.
E. Weythman, is

divert(-1)
define(..•)

divert

PRINTING

The built-in errprint writes its argu­
ments out on the standard error file. Thus
you can say

errprint(·ratal error·)

dumpdef is a debugging aid which
dumps the current definitions of defined
terms. If there are no arguments, you get
everything; otherwise you get the ones you
name as arguments. Don't forget to quote
the names!

SUMMARY OF BUILT-INS

Each entry is preceded by the page
number where it is described.

M4

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 dumpdef("name·, 'name·, ...)
5 errprint(s, s, ...)
4 eval(numeric expression)
3 ifdefC name·, this if true, this if false)
5 ifelse(a, b, c, d)
4 include(file)
3 incr(number)
5 index(sl, s2)
5 len(string)
4 maketemp(... XXXXX ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefineCname·)
4 undivert(number,number, ...)

ACKNOWLEDGEMENTS

We are indebted to Rick Becker, John
Chambers, Doug Mcilroy, and especially
Jim Weythman, whose pioneering use of
M4 has led to several valuable improve­
ments. We are also deeply grateful to
Weythman for several substantial contribu­
tions to the code.

REFERENCE

[I] B. W. Kernighan and P. J. Plauger.
Software Tools, Addison-Wesley, 1976.

January 1981

•

AWK- A Pattern Scanning and Processing Language
(Second Edition)

Alfred V. Aho

Brian W. Kernighan

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Awk is a programming language whose basic operation is to search a set of files
for patterns, and to perform specified actions upon lines or fields of lines which contain
instances of those patterns. Awk makes certain data selection and transformation
operations easy to express; for example, the awk program

length> 72

prints all input lines whose length exceeds 72 characters; the program

NF%2 == 0

prints all lines with an even number of fields; and the program

{ $1 = log($1); print}

replaces the first field of each line by its logarithm.

Awk patterns may include arbitrary boolean combinations of regular expressions
and of relational operators on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns, as well as
arithmetic and string expressions and assignments, if-else, while, for statements, and
multiple output streams.

This report contains a user's guide, a discussion of the design and implementation
of awk, and some timing statistics.

1. INTRODUCTION

UNIX

E.3.1

Awk is a programming language designed
to make many common information retrieval and
text manipulation tasks easy to state and to per­
form.

The basic operation of awk is to scan a set
of input lines in order, searching for lines which
match any of a set of patterns which the user has
specified. For each pattern, an action can be
specified; this action will be performed on each
line that matches the pattern.

grep l will recognize the approach, although in
awk the patterns may be more general than in
grep, and the actions allowed are more involved
than merely printing the matching line. For
example, the awk program

Readers familiar with the UNIXt program

t UNIX is a trademark of Bell l.Jlboratories.

{print $3, $2}

prints the third and second columns of a table in
that order. The program

$2 - IAIBIC/

prints all input lines with an A, 8, or C in the
second field. The program

2

$1 I== prev { print; prev - $1 }

prints all Jines in which the first field is different
from the previous first field.

1.1. Usage

The command

awk program [files]

executes the awk commands in the string pro­
gram on the set of named files, or on the stan­
dard input if there are no files. The statements
can also be placed in a file pfile, and executed by
the command

awk - f pfile [tiles]

1.2. Program Structure

An awk program is a sequence of state­
ments of the form:

pattern
pattern

{ action
{ action

Each line of input is matched against each of the
patterns in turn. For each pattern that matches,
the associated action is executed. When all the
patterns have been tested, the next line is
fetched and the matching starts over.

Either the pattern or the action may be left
out, but not both. If there is no action for a pat­
tern, the matching line is simply copied to the
output. (Thus a line which matches several pat·
terns can be printed several times.) If there is no
pattern for an action, then the action is per­
formed for every input line. A line which
matches no pattern is ignored.

Since patterns and actions are both
optional, actions must be enclosed in braces to
distinguish them from patterns.

1.3. Records and Fields

Awk input is divided into "records" ter­
minated by a record separator. The default
record separator is a new-line, so by default awk
processes its input a line at a time. The number
of the current record is available in a variable
named NA.

Each input record is considered to be
divided into "fields." Fields are normally
separated by white space-blanks or tabs-but
the i'nput field separator may be changed (see
below). Fields are referred to as $1, $2, and so
forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned
to. The number of fields in the current record is
available in the variable NF.

AWK

The variables FS and RS refer to the input
field and record separators: they may be changed
at any time to any single character. The optional
command-line argument -Fe may also be used
to set FS to the character c.

If the record separator is empty, an empty
input line is taken as the record separator, and
blanks, tabs and new-lines are treated as field
separators.

The variable FILENAME contains the
name of the current input file.

1.4. Printing

An action may have no pattern, in which
case the action is executed for all lines. The
simplest action is to print some or all of a record;
this is accomplished by the awk command print.
The awk program

{ print }

prints each record, thus copying the input to the
output intact. More useful is to print a field or
fields from each record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will
be separated by the current output field separator
when output. Items not separated by commas
will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can
be used: for example

{ print NR, NF, $0 }

prints each record preceded by the record
number and the number of fields.

Output may be diverted to multiple files;
the program

(print $1 >*foo1*; print $2 >"foo2• J
writes the first field, $1, on the file foo 1, and
the second field on file foo2. The > > notation
can also be used:

print $1 > > "foo•

appends the output to the file foo. (In each
case, the output files are created if necessary.)
The file name can be a variable or a field as well
as a constant; for example,

print $1 >$2

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of
output files; currently it is I 0.

AWK

Similarly, output can be piped into another
process (on UNIX only); for instance,

print I •mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used
to change the current output field separator and
output record separator. The output record
separator is appended to the output of the print
statement.

Awk also provides the printf statement for
output formatting:

printf format expr, expr, ...

formats. the expressions in the list according to
the specification in format and prints them. For
example,

printf "%8.2f %10ld\n", $1, $2

prints $1 as a floating point number 8 digits
wide, with two after the decimal point, and $2 as
a JO-digit long decimal number, followed by a
new-line. No output separators are produced
automatically; you must add them yourself, as in
this example. The version of printf is identical
to that used with C.2

2. PATTERNS

A pattern in front of an action acts as a
selector that determines whether the action is to
be executed. A variety of expressions may be
used as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions,
and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the
beginning of the input, before the first record is
read. The pattern END matches the end of the
input, after the last record has been processed.
BEGIN and END thus provide a way to gain con­
trol before and after processing, for initialization
and wrapup.

As an example, the field separator can be
set to a colon by

BEGIN { FS - 1 : 1 }

... rest of program ...

Or the input lines may be counted by

END { print NR }

If BEGIN is present, it must be the first pattern;
END must be the last if used.

3

2.2. Regular Expressions

The simplest regular expression is a literal
string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which
will print all lines which contain any occurrence
of the name "smith". If a line contains "smith"
as part of a larger word, it will also be printed, as
in

blacksmithing

Awk regular expressions include the regu­
lar expression forms found in the UNIX text edi­
tor edl and grep (without back-referencing). In
addition, awk allows parentheses for grouping, I
for alternatives, + for "one or more", and ? for
"zero or one", all as in lex. Character classes
may be abbreviated: (a-zA-Z0-9) is the set
of all letters and digits. As an example, the awk
program

/[Aalho l[Ww]einberger l[Kk]ernlghan/

will print all lines which contain any of the
names "Aho," "Weinberger" or "Kernighan,"
whether capitalized or not.

Regular expressions (with the extensions
listed above) must be enclosed in slashes, just as
in ed and sed. Within a regular expression,
blanks and the regular expression metacharacters
are significant. To turn of the magic meaning of
one of the regular expression characters, precede
it with a backslash. An example is the pattern

I\/ .•\I I

which matches any string of characters enclosed
in slashes.

One can also specify that any field or vari­
able matches a regular expression (or does not
match it) with the operators - and !-. The
program

$1 - /[jJ]ohn/

prints all lines where the first field matches
"john" or "John." Notice that this will also
match "Johnson", "St. Johnsbury", and so on.
To restrict it to exactly [jJ]ohn, use

$1 - njJ)ohn$/

The caret - refers to the beginning of a line or
field: the dollar sign $ refers to the end.

2.3. Relational Expressions

An awk pattern can be: a relational expres­
sion involving the usual relational operators <,
<=, --. l==, >=,and>. An example is

4

$2 > $1 + 100

which selects lines where the second field is at
least 100 greater than the first field. Similarly,

NF O/o 2 = = 0

prints lines with an even number of fields.

In relational tests, if neither operand is
numeric, a string comparison is made; otherwise
it is numeric. Thus,

$1 >= •s•

selects lines that begin with an s, t, u, etc. In
the absence of any other information, fields are
treated as strings, so the program

$1 > $2

will perform a string comparison.

2-4. Combinations of Patterns

A pattern can be any boolean combination
of patterns, using the operators 11 (or), &&
(and), and I (not). For example,

$1 >= •s• && $1 < •t• && $1 I- •smith"

selects lines where the first field begins with "s",
but is not "smith". && and 11 guarantee that
their operands will be evaluated from left to
right; evaluation stops as soon as the truth or
falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may
also consist of two patterns separated by a
comma, as in

pat1, pat2 { ... }

In this case, the action is performed for each line
between an occurrence of pat 1 and the next
occurrence of pat2 (inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR = = 100, NR - - 200 { ... }

does the action for lines 100 through 200 of the
input.

3. ACTIONS

An awk action is a sequence of action
statements terminated by new-lines or semi­
colons. These action statements can be used to
do a variety of bookkeeping and string manipu­
lating tasks.

AWK

3. 1. Built-in Functions

Awk provides a "length" function to com­
pute the length of a string of characters. This
program prints each record, preceded by its
length:

{print length, $0}

length by itself is a "pseudo-variable" which
yields the length of the current record;
length(argument) is a function which yields the
length of its argument, as in the equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions
sqrt, log, exp, and int, for square root, base e
logarithm, exponential, and integer part of their
respective arguments.

The name of one of these built-in func­
tions, without argument or parentheses, stands
for the value of the function on the whole
record. The program

length < 1 O II length > 20

prints lines whose length is less than 10 or
greater than 20.

The function substr(s, m, n) produces the
substring of s that begins at position m (origin
l) and is at most n characters long. If n is omit­
ted, the substring goes to the end of s. The
function index(s 1, s2) returns the position
where the string s2 occurs in s 1, or zero if it
does not.

The function sprintf(f, e 1, e2, ...) pro­
duces the value of the expressions e 1, e2, etc.,
in the printf format specified by f. Thus, for
example,

x == spri ntf("O/o8.2f O/o 1 Old", $ 1, $2)

sets x to the string produced by formatting the
values of $1 and $2.

3.2. Variables, Expressions, and Assign­
ments

Awk variables take on numeric (floating
point) or string values according to context. For
example, in

x = 1

x is clearly a number, while in

x = •smith"

it is clearly a string. Strings are converted to
numbers and vice versa whenever context
demands it. For instance,

x "" •3• + •4•

AWK

assigns 7 to x. Strings which cannot be inter­
preted as numbers in a nu'merical context will
generally have numeric value zero, but it is
unwise to count on this behavior.

By default, variables (other than built-ins)
are initialized to the null string, which has
numerical value zero; this eliminates the need
for most BEGIN sections. For example. the
sums of the first two fields can be computed by

{ s 1 + - $1 ; s2 + = $2 }
END { print s1, s2 }

Arithmetic is done internally in floating
point. The arithmetic operators are +, - , •, I,
and% (mod). The C increment + + and decre­
ment - - operators are also available, and so
are the assignment operators +=, -=, •==,
I=, and %=. These operators may all be used
in expressions.

3.3. Field Variables

Fields in awk share essentially all of the
properties of variables - they may be used in
arithmetic or string operations. and may be
assigned to. Thus one can replace the first field
with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3 > 1000)
$3 = •too big"

print

which replaces the third field by "too big" when
it is, and in any case prints the record.

Field references may be numerical expres­
sions, as in

{ print $i, $(i + 1), $Ci+ n) }

Whether a field is deemed numeric or string
depends on context; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.

Each input line is split into fields automati­
cally as necessary. It is also possible to split any
variable or string into fields:

n ... split(s, array, sep)

splits the the string s into array[1], ...•
array[n]. The number of elements found is
returned. If the sep argument is provided, it is
used as the field separator; otherwise FS is used
as the separator.

5

3.4. String Concatenation

Strings may be concatenated. For example

length($1 $2 $3)

returns the length of the first three fields. Or in
a print statement,

print $1 • is • $2

prints the two fields separated by " is " Vari­
ables and numeric expressions may also appear
in concatenations.

3.5. Arrays

Array elements are not declared; they
spring into existence by being mentioned. Sub­
scripts may have any non-null value, including
non-numeric strings. As an example of a con­
ventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th ele­
ment of the array x. In fact, it is possible in
principle (though perhaps slow) to process the
entire input in a random order with the awk pro­
gram

{ x[NRl - $0 }
END { ... program ...

The first action merely records each input line in
the array x.

Array elements may be named by non­
numeric values, which gives awk a capability
rather like the associative memory of Snobol
tables. Suppose the input contains fields with
values like apple, orange, etc. Then the pro­
gram

/apple/ { x["apple"]+ + }
/orange/ { x["orange•J+ + }
END { print x[•apple"], x[•orange•J

increments counts for the named array elements,
and prints them at the end of the input.

Any expression can be used as a subscript
in an array reference. Thus

x[$1] = $2

uses the first field of a record (as a string) to
index the array x.

Suppose each line of input contains two
fields, a name and a non-zero value. Names
may be repeated; the task is to print a list of
each unique name followed by the sum of all the
values for that name. This can be done with the
program

i

6

{ amount[$1] += $2 }
END { for (name in amount)

print name, amount[name]

To sort the output, replace the last line by

print name, amount[name) I "sort•

3.6. Flow-of-Control Statements

Awk provides the basic flow-of-control
statements if-else, while, for, and statement
grouping with braces, as in C. We showed the if
statement in section 3.3 without describing it.
The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The
else part is optional.

The while statement is exactly like that of
C. For example, to print all input fields one per
line,

i = 1
while Ci < = NF) {

print $i
++i

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

There is an alternate form of the for state­
ment which is suited for accessing the elements
of an associative array:

for (i in array)
statement

does statement with i set in turn to each element
of array_ The elements are accessed in an
apparently random order. Chaos will ensue if i is
altered, or if any new elements are accessed dur­
ing the loop.

The expression in the condition part of an
if, while or for can include relational operators
like<,<==,>.>=,-= ("is equal to"), and
I= ("not equal to"); regular expression matches
with the match operators - and I-; the logical
operators 11, &&, and I; and of course
parentheses for grouping.

The break statement causes an immediate
exit from an enclosing while or for; the con­
tinu.e statement causes the next iteration to
begin.

The statement next causes awk to skip
immediately to the next record and begin scan­
ning the patterns from the top. The statement
exit causes the program to behave as if the end
of the input had occurred.

AWK

Comments may be placed in awk pro­
grams: they begin with the character #.and end
with the end of the line, as in

print x, y # this is a comment

4. DESIGN

The UNIX system already provides several
programs that operate by passing input through a
selection mechanism. Grep, the first and sim­
plest, merely prints all lines which match a single
specified pattern. Egrep provides more general
patterns, i.e., regular expressions in full general­
ity; fgrep searches for a set of keywords with a
particularly fast algorithm. Sed 1 provides most
of the editing facilities of the editor ed, applied
to a stream of input. None of these programs
provides numeric capabilities, logical relations, or
variables.

Lex 3 provides general regular expression
recognition capabilities, and, by serving as a C
program generator, is essentially open-ended in
its capabilities. The use of lex, however,
requires a knowledge of C programming, and a
lex program must be compiled and loaded before
use, which discourages its use for one-shot appli­
cations.

Awk is an attempt to fill in another part of
the matrix of possibilities. It provides general
regular expression capabilities and an implicit
input/output loop. But it also provides con­
venient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It
does not require compilation or a knowledge of
C. Finally, awk provides a convenient way to
access fields within lines; it is unique in this
respect.

Awk also tries to integrate strings and
numbers completely, by treating all quantities as
both string and numeric, deciding which
representation is appropriate as late as possible.
In most cases the user can simply ignore the
differences.

Most of the effort in developing awk went
into deciding what awk should or should not do
(for instance, it doesn't do string substitution)
and what the syntax should be (no explicit
operator for concatenation) rather than on writ­
ing or debugging the code. We have tried to
make the syntax powerful but easy to use and
well adapted to scanning files. For example, the
absence of declarations and implicit initializa­
tions, while probably a bad idea for a general­
purpose programming language, is desirable in a
language that is meant to be used for tiny pro­
grams that may even be composed on the com­
mand line.

AWK

In practice, awk usage seems to fall into
two broad categories. On'e is what might be
called "report generation" -processing an input
to extract counts, sums, sub-totals, etc. This
also includes the writing of trivial data validation
programs, such as verifying that a field contains
only numeric information or that certain delim­
iters are properly balanced. The combination of
textual and numeric processing is invaluable
here.

A second area of use is as a data
transformer, converting data from the form pro­
duced by one program into that expected by
another. The simplest examples merely select
fields, perhaps with rearrangements.

5. IMPLEMENTATION

The actual implementation of awk uses the
language development tools available on the
UNIX operating system. The grammar is
specified with yacc ;4 the lexical analysis is done
by lex; the regular expression recognizers are
deterministic finite automata constructed directly
from the expressions. An awk program is
translated into a parse tree which is then directly
executed by a simple interpreter.

Awk was designed for ease of use rather
than processing speed; the delayed evaluation of
variable types and the necessity to break input
into fields makes high speed difficult to achieve
in any case. Nonetheless, the program has not
proven to be unworkably slow.

Table I below shows the execution (user
+ system) time on a PDP-11/70 of the UNIX
programs wc, grep, egrep, fgrep, sed, lex, and
awk on the following simple tasks:

I. count the number of lines.

2. print all lines containing "doug".

3. print all lines containing "doug", "ken"
or "dmr".

4. print the third field of each line.

5. print the third and second fields of each
line, in that order.

6. append all lines containing "doug",
"ken", and "dmr" to files "jdoug",
"jken", and "jdmr", respectively.

7. print each line prefixed by "line­
number: ".

8. sum the fourth column of a table.

The program wc merely counts words, lines and
characters in its input; we have already men­
tioned the others. In all cases the input was a
file containing I0,000 lines as created by the
command Is -I; each line has the form:

-rw-rw-rw- 1 ava 123 Oct 15 17:05 xxx

7

The total length of this input is 452,960 charac­
ters. Times for lex do not include compile or
load.

As might be expected, awk is not as fast
as the specialized tools we, sed, or the programs
in the grep family, but is faster than the more
general tool lex. In all cases, the tasks were
about as easy to express as awk programs as pro­
grams in these other languages; tasks involving
fields were considerably easier to express as awk
programs. Some of the test programs are shown
in awk, sed and Jex.

REFERENCES

[I] T. A. Dolotta, S. B. Olsson, and A. G.
Petruccelli (eds). UNIX User's
Manual-Release 3.0, Bell Laboratories
(June 1980).

(2) B. W. Kernighan and D. M. Ritchie. The
C Programming language, Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.

[3] M. E. Lesk. LEX-A lexical Analyzer Gen­
erator, Bell Laboratories, 1975.

[4] S. C. Johnson. YACC- Yet Another
Compiler-Compiler. Bell Laboratories, 1975.

I
'•

8

Program 2

WC 8.6
grep I 1.7 13.1
egrep 6.2 11.5
fgrep 7.7 13.8

sed 10.2 l 1.6
lex 65.1 150.l
awk 15.0 25.6

11.6
16.1
15.8

144.2
29.9

Task
4

29.0
67.7
33.3

5

30.5
70.3
38.9

6 7 8

16.1
104.0 81.7 92.8
46.4 71.4 31.1

Table I. Execution Times of Programs (in Seconds).

The programs for some of these jobs are
shown below. The lex programs are generally
too long to show.

AWK:

1. END {print NA}

2. /doug/

3. /kenldougldmr/

4. {print $3}

LEX:

1. %{
int I;
%}
CAAb
\n i++;

~

yywrap() {
printf("%d\n", I);

AWK

5. {print $3, $2} printf("O/os\n", yytext);

6. /ken/
/doug/
/dmr/

{print > "iken"}
{print >"jdoug"}
{print >"jdmr"}

7. {print NR ": • $0}

8.

SED:

{sum = sum + $4}
END {print sum}

1. $=

2. /doug/p

3. /doug/p
/doug/d
/ken/p
/ken/d
/dmr/p
/dmr/d

4. /[" l• [].(")• [)•\([" l•\) .•/s/ I\ 1 /p

5.· /[")• [)•\(["]•\) [)•\((")•\) .•IS/ /\2 \ 1 /p

6. /ken/w jken
/doug/w jdoug
/dmr/w jdmr

\n

January 1981

-Ii

Source Code Control System User's Guide

L. E. Bonanni
C. A. Salemi

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

UNIX

E.4.1

The Source Code Control System (SCCS) is a system for controlling changes to
files of text (typically, the source code and documentation of software systems).
It provides facilities for storing, updating, and retrieving any version of a file of
text, for controlling updating privileges to that file, for identifying the version of a
retrieved file, and for recording who made each change, when and where it was
made, and why. SCCS is a collection of programs that run under the UNIXt
Time-Sharing System.

This document, together with relevant portions of the UNIX User's Manual, is a
complete user's guide to SCCS, and supersedes all previous versions. The follow­
ing topics are covered:

• How to get started with SCCS.
• The scheme used to identify versions of text kept in an SCCS file.
• Basic information needed for day-to-day use of SCCS commands, including a

discussion of the more useful arguments.
• Protection and auditing of SCCS files, including the differences between the use

of SCCS by individual users on one hand, and groups of users on the other.

Neither the implementation of SCCS nor the installation procedure for SCCS are
described here.

1. INTRODUCTION

The Source Code Control System (SCCS) is a collection of UNIX commands that help individu­
als or projects control and account for changes to files of text (typically, the source code and
documentation of software systems). It is convenient to conceive of SCCS as a custodian of
files; it allows retrieval of particular versions of the files, administers changes to them, controls
updating privileges to them, and records who made each change, when and where it was made,
and why. This is important when programs and documentation undergo frequent changes
(because of maintenance and/or enhancement work), inasmuch as it is sometimes desirable to
regenerate the version of a program or document as it was before changes were applied to it.
Obviously, this could be done by keeping copies (on paper or other media), but this quickly
becomes unmanageable and wasteful as the number of programs and documents increases.
secs provides an attractive solution because it stores on disk the original file and, whenever
changes are made to it, stores only the changes; each set of changes is called a "delta."

This document, together with relevant portions of the UNIX User's Manual, is a complete user's
guide to SCCS. This manual contains the following sections:

• SCCS for Beginners: How to make an SCCS file, how to update it, and how to retrieve a ver­
sion thereof.

• How Deltas Are Numbered: How versions of SCCS files are numbered and named.

t UNIX is a trademark of Bell Laboratories.

2 SCCS User's Guide

• SCCS Command Conventions: Conventions and rules generally applicable to all SCCS com-
mands. ·

• Secs Commands: Explanation of all SCCS commands, with discussions of the more useful
arguments.

e Secs Files: Protection, format, and auditing of SCCS files, including a discussion of the
differences between using SCCS as an individual and using it as a member of a group or pro­
ject. The role of a "project SCCS administrator" is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a UNIX system, create files, and use the
text editor. A number of terminal-session fragments are presented below. All of them should
be tried: the best way to learn SCCS is to use it.

To supplement the material in this manual, the detailed SCCS command descriptions (appearing
in the UNIX User's Manual) should be consulted. Section 5 below contains a list of all the
SCCS commands. For the time being, however, only basic concepts will be discussed.

2.1 Terminology

Each SCCS file is composed of one or more sets of changes applied to the null (empty) version
of the file, with each set of changes usually depending on all previo11s sets. Each set of changes
is called a "delta" and is assigned a name, called the SCCS /Dentification string (SID), com­
posed of at most four components, only the first two of which will concern us for now; these
are the "release" and "level" numbers, separated by a period. Hence, the first delta is called
"I.I", the second "I.2", the third "1.3", etc. The release number can also be changed allow­
ing, for example, deltas "2.1 ", "3. I 9'', etc. The change in the release number usually indi­
cates a major change to the file.

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines
version 1.5 of the SCCS file, obtained by applying to the null (empty) version of the file the
changes that constitute deltas I. l, 1.2, etc., up to and including delta 1.5 itself, in that order.

2.2 Creating an SCCS File: the "admin" Command

Consider, for example, a file called "lang" that contains a list of programming languages:

c
pl/i
fortran
cobol
algol

We wish to give custody of this file to SCCS. The following admin command (which is used to
administer SCCS files) creates an SCCS file and initializes delta 1.1 from the file "lang":

admin -ilang s.lang

All SCCS files must have names that begin with "s.'', hence, "s.lang". The -i keyletter,
together with its value "lang", indicates that admin is to create a new SCCS file and initialize it
with the contents of the file "Jang". This initial version is a set of changes applied to the null
SCCS file; it is delta l. I.

The admin command replies:

No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS commands) that is to be
ignored for the purposes of this section. Its significance is described in Section 5.1 below. In
the following examples, this warning message is not shown, although it may actually be issued
by the various command.

SCCS User's Guide 3

The file "lang" should, be removed (because it can be easily reconstructed by using the get
command, below):

rm lang

2.3 Retrieving a File: the "get" Command

The command:

get s.lang

causes the creation (retrieval) of the latest version of file "s.lang", and prints the following
messages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of 5 lines of text. The
retrieved text is placed in a file whose name is formed by deleting the "s." prefix from the
name of the SCCS file; hence, the file "lang" is created.

The above get command simply creates the file "lang" read-only, and keeps no information
whatsoever regarding its creation. On the other hand, in order to be able to subsequently apply
changes to an SCCS file with the delta command (see below), the get command must be
informed of your intention to do so. This is done as follows:

get - e s.lang

The -e keyletter causes get to create a file "tang" for both reading and writing (so that it may
be edited) and places certain information about the SCCS file in another new file, called the p­
file, that will be read by the delta command. The get command prints the same messages as
before, except that the SID of the version to be created through the use of delta is also issued.
For example:

get - e s.lang
1.1
new delta 1.2
5 lines

The file "Jang" may now be changed, for example, by:

ed lang
27
$a
snobol
rat for

w
41
q

2.4 Recording Changes: the "delta" Command

In order to record within the SCCS file the changes that have been applied to "lang", execute:

delta s.Iang

Delta prompts with:

comments?

the response to which should be a description of why the changes were made; for example:

4 SCCS User's Guide

comments? added more languages

Delta then reads the p-file, and determines what changes were made to the file "lang". It does
this by doing its own get to retrieve the original version, and by applying di.ff (I) 1 to the original
version and the edited version.

When this process is complete, at which point the changes to "lang" have been stored in
"s.lang", delta outputs:

J.2
2 inserted
0 deleted
5 unchanged

The number "1.2" is the name of the delta just created, and the next three lines of output
refer to the number of lines in the file "s.lang".

2.5 More about the "get" Command

As we have seen:

get s.lang

retrieves the latest version (now 1.2) of the file "s.lang". This is done by starting with the ori­
ginal version of the file and successively applying deltas (the changes) in order, until all have
been applied.

For our example, the following commands are all equivalent:

get s.lang

get -rl s.lang

get -rl.2 s.lang

The numbers following the -r keyletter are SJDs (see Section 2.1 above). Note that omitting
the level number of the SID (as in the second example above) is equivalent to specifying the
highest level number that exists within the specified release. Thus, the second command
requests the retrieval of the latest version in release 1, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indi­
cated by changing the release number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the SID), we must indicate to SCCS that we wish to change the release
number. This is done with the get command:

get - e - r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2; it also inter­
prets this as a request to change the release number of the delta we wish to create to 2, thereby
causing it to be named 2.1, rather than 1.3. This information is conveyed to delta via the p-file.
Get then outputs: .

I. All references of the form name (N) refer to item name in Section N of UNIX User's Manual.

SCCS User's Guide

1.2
new delta 2. l
7 lines

5

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create.
If the file is now edited, for example, by:

ed lang
41
/coboljd
w
35
q

and delta executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delta's output, that version 2.1 is indeed created:

2.1
0 inserted
l deleted
6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner. This process may be continued as desired.

2.6 The "help" Command

If the command:

get abc

is executed, the following message will be output:

ERROR [abc]: not an SCCS file (col)

The string "col" is a code for the diagnostic message, and may be used to obtain a fuller
explanation of that message by use of the help command:

help col

This produces the following output:

col:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters "s. ".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an
SCCS message. Fuller explanations of almost all SCCS messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

It is convenient to conceive of the deltas applied to an SCCS file as the nodes of a tree, in which
the root is the initial version of the file. The root delta (node) is normally named "l. l" and
successor deltas (nodes) are named "I.2", "l.3", etc. The components of the names of the
deltas are called the "release" and the "level" numbers, respectively. Thus, normal naming of
successor deltas proceeds by incrementing the level number, which is performed automatically
by SCCS whenever a delta is made. In addition, the user may wish to change th~ release
number when making a delta, to indicate that a major change is being made. When this is

6 SCCS User's Guide

done, the release number also applies to all successor deltas, unless specifically changed again.
Thus, the evolution of a particular file may be represented as in Figure l.

1.1 1.2 1.3 1.4 2.1 2.2
Release 1 Release 2

Figure l. Evolution of an SCCS File

Such a structure may be termed the "trunk" of the SCCS tree. It represents the normal sequen­
tial development of an SCCS file, in which changes that are part of any given delta are depen­
dent upon all the preceding deltas.

However, there are situations in which it is necessary to cause a branching in the tree, in that
changes applied as part of a given delta are not dependent upon all previous deltas. As an
example, consider a program which is in production use at version 1.3, and for which develop­
ment work on release 2 is already in progress. Thus, release 2 may already have some deltas,
precisely as shown in Figure I. Assume that a production user reports a problem in version
1.3, and that the nature of the problem is such that it cannot wait to be repaired in release 2.
The changes necessary to repair the trouble will be applied as a delta to version 1.3 (the version
in production use). This creates a new version that will then be released to the user, but will
not affect the changes being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a "branch" of the tree, and its name consists of four components,
namely, the release and level numbers, as with trunk deltas, plus the "branch" and
"sequence" numbers, as follows:

release.level. branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta,
with the first such branch being 1, the next one 2, and so on. The sequence number is
assigned, in order, to each delta on a particular branch. Thus, I .3.1.2 identifies the second delta
of the first branch that derives from delta 1.3. This is shown in Figure 2.

Branch 1

1.1 1.2 1.3 1.4 2.1 2.2

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk
deltas contain exactly two componen~s. and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those
of the ancestral trunk delta, and the branch component is assigned in the order of creation of
the branch, independently of its location relative to the trunk delta. ·Thus, a branch delta may

SCCS User's Guide 7

always be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta's name, it is not possible to determine the entire path leading
from the trunk delta to the branch delta. For example, if delta 1.3 has one branch emanating
from it, all deltas on that branch will be named 1.3. l .n. If a delta on this branch then has
another branch emanating from it, all deltas on the new branch will be named 1.3.2.n (see Fig­
ure 3). The only information that may be derived from the name of delta l.3.2.2 is that it is
the chronologically second delta on the chronologically second branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all of the
deltas between it and its trunk ancestor (1.3).

Branch 1

1.1 1.2 1.3 . 1.4 2.1 2.2

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCS tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to SCCS commands. These rules
and conventions are generally applicable to all SCCS commands, except as indicated below.
secs commands accept two types of arguments: keyletter arguments and file arguments.

Keyletter arguments (hereafter called simply "keyletters") begin with a minus sign (-), fol­
lowed by a lower-case alphabetic character, and, in some cases, followed by a value. These
keyletters control the execution of the command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the
given SCCS command is to process; naming a directory is equivalent to naming all the SCCS
files within the directory. Non-SCCS files and unreadable2 files in the named directories are
silently ignored.

Jn general, file arguments may not begin with a minus sign. However, if the name " - " (a
lone minus sign) is specified as an argument to a command, the command reads the standard
input for lines and takes each line as the name of an SCCS file to be processed. The standard
input is read until end-of-file. This feature is often used in pipelines with, for example, the
find (1) or Is (1) commands. Again, names of non-SCCS files and of unreadable files are silently
ignored. -

2. Because of permission modes (see chmod(l)).

8 SCCS User's Guide

All keyletters specified for a given command apply to all file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placement of
keyletters is arbitrary (i.e., keyletters may be interspersed with file arguments). File arguments,
however, are processed left to right.

Somewhat different argument conventions apply to the help, what, sccsdiff, and val commands
(see Sections 5.5, 5.8, 5.9, and 5.11).

Certain actions of various SCCS commands are controlled by flags appearing in SCCS files.
Some of these flags are discussed below. For a complete description of all such flags, see
admin (1).

The distinction between the real user (see passwd (I)) and the effective user of a UNIX system is
of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same (i.e., the user who is logged into
a UNIX system); this subject is further discussed in Section 6.1.

All SCCS commands that modify an SCCS file do so by writing a temporary copy, called the x­
file, which ensures that the SCCS file will not be damaged should processing terminate abnor­
mally. The name of the x-file is formed by replacing the "s." of the SCCS file name with "x,".
When processing is complete, the old SCCS file is removed and the x-file is renamed to be the
SCCS file. The x-file is created in the directory containing the S~CS file, is given the same
mode (see chmod (1)) as the SCCS file, and is owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that modify SCCS files create a
lock-file, called the z-fi/e, whose name is formed by replacing the "s." of the SCCS file name
with "z.". The z-file contains the process number of the command that creates it, and its
existence is an indication to other commands that that SCCS file is being updated. Thus, other
commands that modify SCCS files will not process an SCCS file if the corresponding z-.fi/e exists.
The z-file is created with mode 444 (read-only) in the directory containing the SCCS file, and is
owned by the effective user. This file exists only for the duration of the execution of the com­
mand that creates it. In general, users can ignore x-files and z-.files; they may be useful in the
event of system crashes or similar situations.

secs commands produce diagnostics (on the diagnostic output) of the form:

ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the help command (see Section 5.5) to
obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the SCCS command to terminate
processing of that file and to proceed with the next file, in order, if more than one file has been
named.

5. secs COMMANDS

This section describes the major features of all the SCCS commands. Detailed descriptions of
the commands and of all their arguments are given in the UNIX User's Manual, and. should be
consulted for further information. The discussion below covers only the more common argu­
ments of the various SCCS commands.

Because the commands get and delta are the most frequently used, they are presented first. The
other commands follow in approximate order of importance.

The following is a summary of all the SCCS commands and of their major functions:

get Retrieves versions of SCCS files.

delta Applies changes (deltas) to the text of SCCS files, i.e .. creates new versions.

SCCS User's Guide 9

admin Creates SCCS files and applies changes to parameters of SCCS files.

prs Prints portions of an SCCS file in user specified format.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an SCCS file; allows the removal of deltas that were
created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any UNIX file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the get
command.

sccsdiff Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into ·a single delta;
often reduces the size of the SCCS file.

val Validates an SCCS file.

5.1 get

The get command creates a text file that contains a particular version of an SCCS file. The par­
ticular version is retrieved by beginning with the initial version, and then applying deltas, in
order, until the desired version is obtained. The created file is called the g-file; its name is
formed by removing the "s." from the SCCS file name. The g-file is created in the current
directory and is owned by the real user. The mode assigned to the g-ji/e depends on how the
get command is invoked, as discussed below.

The most common invocation of get is:

get s.abc

which normally retrieves the latest version on the trunk of the SCCS file tree, and produces (for
example) on the standard output:

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file "s.abc" was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.
3. No ID keywords were substituted in the file (see Section 5.1. l for a discussion of ID key-

words).

The generated g-ji/e (file "abc") is given mode 444 (read-only), since this particular way of
invoking get is intended to produce g-files only for inspection, compilation, etc., and not for
editing (i.e., not for making deltas).

In the case of several file arguments (or directory-name arguments), similar information is
given for each file processed, but the SCCS file name precedes it. For example:

get s.abc s.def

produces:

10

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm 7)

5.1.1 JD Keywords

SCCS User's Guide

In generating a g-file to be used for compilation, it is useful and informative to record the date
and time of creation, the version retrieved, the module's name, etc., within the g-file, so as to
have this information appear in a load module when one is eventually created. secs provides a
convenient mechanism for doing this automatically. Identification (ID) keywords appearing any­
where in the generated file are replaced by appropriate values according to the definitions of
these ID keywords. The format of an ID keyword is an upper-case letter enclosed by percent
signs(%). For example:

%I%

is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. Simi­
larly, %H% is defined as the ID keyword for the current date (in the form "mm/dd/yy"), and
%M% is defined as the name of the g-file. Thus, executing get on an SCCS file that contains the
PL/I declaration:

DCL ID CHAR(IOO) VAR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(IOO) VAR TNIT('MODNAME 2.3 07 /07 /77');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, although the presence of the i flag in the
SCCS file causes it to be treated as an error (see Section 5.2 for further information).

For a complete list of the approximately twenty ID keywords provided, see get (l).

5.1.2 Retrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an
SCCS file. Normally, the default version is the most recent delta of the highest-numbered
release on the trunk of the SCCS file tree. However, if the SCCS file being processed has a d
(default SID) flag, the SID specified as the value of this flag is used as a default. The default
SID is interpreted in exactly the same way as the value supplied with the -r keyletter of get.

The -r keyletter is used to specify an SID to be retrieved, in which case the d (default SID)
flag (if any) is ignored. For example:

get -rl.3 s.abc

retrieves version 1.3 of file "s.abc", and produces (for example) on the standard output:

1.3
64 lines

A branch delta may be retrieved similarly:

get -rl.5.2.3 s.abc

SCCS User's Guide

which produces (for exa~ple) on the standard output:

1.5.2.3
234 lines

I I

When a two- or four-component SID is specified as a value for the -r keyletter (as above) and
the particular version does not exist in the SCCS file, an error message results. Omission of the
level number, as in:

get -r3 s.abc

causes retrieval of the trunk delta with the highest level number within the given release, if the
given release exists. Thus, the above command might output:

3.7
213 lines

~f the given release does not exist, get retrieves the trunk delta with the highest level number
within the highest-numbered existing release that is lower than the given release. For example,
assuming release 9 does not exist in file "s.abc", and that release 7 is actually the highest­
numbered release below 9, execution of:

get -r9 s.abc

might produce:

7.6
420 lines

which indicates that trunk delta 7 .6 is the latest version of file "s.abc" below release 9. Simi­
larly, omission of the sequence number, as in:

get - r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given
branch, if it exists. (If the given branch does not exist, an error message results.) This might
result in the following output:

4.3.2.8
89 lines

The -t keyletter is used to retrieve the latest ("top") version in a particular release (i.e., when
no -r keyletter is supplied, or when its value is simply a release number). The latest version
is defined as that delta which was produced most recently, independent of its location on the
SCCS file tree. Thus, if the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce:

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same com-
mand might produce: · · · ·

3.2.1.5
46 lines

5.1.3 Retrieval with Intent to Make a Delta

Specification of the -e keyletter to the get command is an indication of the intent to make a
delta, and, as such, its use is restricted. The presence of this keyletter causes get to check:

12 SCCS User's Guide

l. The user list (which is the list of login names and/or group IDs of users allowed to make
deltas (see Section 6.2)) to determine if the login name or group ID of the user executing
get is on that list. Note that a null (empty) user list behaves as if it contained all possible
login names.

2. That the release (R) of the version being retrieved satisfies the relation:

floor < R < ceiling

to determine if the release being accessed is a protected release. The floor and ceiling are
specified as flags in the SCCS file.

3. That the release (R) is not locked against editing. The lock is specified as a flag in the
SCCS file.

4. Whether or not multiple concurrent edits are allowed for the SCCS file as specified by the j
flag in the SCCS file (multiple concurrent edits are described in Section 5.1.5).

A failure of any of the first three conditions causes the processing of the corresponding SCCS
file to terminate.

If the above checks succeed, the -e keyletter causes the creation of a g-file in the current
directory with mode 644 (readable by everyone, writable only by the owner) owned by the real
user. If a writable g-file already exists, get terminates with an error. This is to prevent inadver­
tent destruction of a g-file that already exists and is being edited for the purpose of making a
delta.

Any ID keywords appearing in the g-file are not substituted by get when the -e keyletter is
specified, because the generated g-fi/e is to be subsequently used to create another delta, and
replacement of ID keywords would cause them to be permanently changed within the SCCS file.
In view of this, get does not need to check for the presence of ID keywords within the g-file, so
that the message:

No id keywords (cm7)

is never output when get is invoked with the -e keyletter.

In addition, the -e keyletter causes the creation (or updating) of a p-jile, which is used to pass
information to the delta command (see Section 5.1.4).

The following is an example of the use of the -e keyletter:

get -e s.abc

which produces (for example) on the standard output:

1.3
new delta 1.4
67 lines

If the -r and/or -t keyletters are used together with the -e keyletter, the version retrieved
for editing is as specified by the -rand/or -t keyletters.

The keyletters - i and -x may be used to specify a list (see get (I) for the syntax of such a
list) of deltas to be included and excluded, respectively, by get. Including a delta means forcing
the changes that constitute the particular delta to be included in the retrieved version. This is
useful if one wants to apply the same changes to more than one version of the SCCS file.
Excluding a delta means forcing it to be not applied. This may be used to undo, in the version
of the SCCS file to be created, the etf ects of a previous delta. Whenever deltas are included or
excluded, get checks for possible interference between such deltas and those deltas that are nor­
mally used in retrieving the particular version of the SCCS file. (Two deltas can interfere, for
example, when each one changes the same line of the retrieved g-file.) Any interference is
indicated by a warning that shows the range of lines within the retrieved g-file in which the
problem may exist. The user is expected to examine the g-file to determine whether a problem

SCCS User's Guide 13

actually exists, and to take whatever corrective measures (if any) are deemed necessary (e.g.,
edit the file). ·

r;r The -i and -x keyletters should be used with extreme care.

The - k keyletter is provided to facilitate regeneration of a g-file that may have been acciden­
tally removed or ruined subsequent to the execution of get with the -e keyletter, or to simply
generate a g-file in which the replacement of ID keywords has been suppressed. Thus, a g-file
generated by the - k keyletter is identical to one produced by get executed with the -e
keyletter. However, no processing related to the p-file takes place.

5.1.4 Concurrent Edits of Different S/Ds

The ability to retrieve different versions of an SCCS file allows a number of deltas to be "in
progress" at any given time. This means that a number of get commands with the -e keyletter
may be executed on the same file, provided that no two executions retrieve the same version.
(unless multiple concurrent edits are allowed, see Section 5.1.5).

The p-fi/e (which is created by the get command invoked with the -e keyletter) is named by
replacing the "s." in the SCCS file name with "p.". It is created in the directory containing the
SCCS file, is given mode 644 (readable by everyone, writable only by the owner), and is owned
by the effective user. The p-fi/e contains the following information for each delta that is still
"in progress": 3 ·

• The SID of the retrieved version.
• The SID that will be given to the new delta when it is created.
• The login name of the real user executing get.

The first execution of "get -e" causes the creation of the p-file for the corresponding SCCS file.
Subsequent executions only update the p-fi/e with a line containing the above information.
Before updating, however, get checks that no entry already in the p-file specifies as already
retrieved the SID of the version to be retrieved, unless multiple concurrent edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress, and processing
continues. If either check fails, an error message results. It is important to note that the vari­
ous executions of get should be carried out from different directories. Otherwise, only the first
execution will succeed, since subsequent executions would attempt to over-write a writable g­
file, which is an SCCS error condition. In practice, such multiple executions are performed by
different users, 4 so that this problem does not arise, since each user normally has a different
working directory.

Table I shows, for the most useful cases, what version of an SCCS file is retrieved by get, as
well as the SID of the version to be eventually created by delta, as a function of the SID
specified to get.

5.1.5 Concurrent Edits of the Same SID

Under normal conditions, gets for editing (-e keyletter is specified) based on the same SID are
not permitted to occur concurrently. That is, delta must be executed before a subsequent get
for editing is .executed at the same SID as the previous get. However, multiple concurrent edits
(defined to be two or more successive executions of get for editing based on the same retrieved
SID) are allowed if the j flag is set in the SCCS file. Thus:

3. Other information may be present, but is not of concern here. See get (I) for further discussion.

4. See Section 6.1 for a discussion of how different users are permitted to use SCCS commands on the same files,

14 SCCS User's Guide

TABLE 1. Determination of New SID

Case
SID - b K eyletter

Specified* Used!
Other SID SID of Delta

Conditions Retrieved to be Created
1. none+ no R defaults to mR mR.mL mR.(mL +1)
2. no net yes R defaults to mR mR.mL mR.mL.(mB +I).1
3. R no R>mR mR.mL R.1§
4. R no R= mR mR.mL mR.(mL+l)
5. R yes R> mR mR.mL mR.mL.(mB +I). I
6. R yes R= mR mR.mL mR.mL.(mB + 1).1

7. R
R < mRand

hR.mL** hR.mL.(mB +I).I
R does not exist
Trunk successor

8. R in release > R R.mL R.mL.(mB + 1).1
and R exists

9. R.L no No trunk successor R.L R.(L +1)
IO. R.L yes No trunk successor R.L R.L.(mB+l).1

Trunk successor R.L R.L.(mB + l).I in release > R 11. R.L

12. R.L.B no No branch successor R.L.B.mS R.L.B.(mS +I)
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB + 1).1
14. R.L.B.S no No branch successor R.L.B.S R.L.B.(S + 1)
15. R.L.B.S yes No branch successor R.L.B.S R.L.(mB + I).I
16. R.L.B.S Branch successor R.L.B.S R.L.(mB + 1).1

• "R", "L'', "B", and "S" are the "release", "level", "branch", and "sequence" components of the SID,
respectively; "m" means ''maximum". Thus, for example, "R.mL" means "the maximum level number within
release R"; "R.L.(mB +I).I" means "the first sequence number on the new branch (i.e., maximum branch
number plus I) of level L within release R". Note that if the SID specified is of the form "R.L", "R.L.B", or
"R.L.B.S", each of the specified components must exist.

t The -b keyletter is effective only if the b ftag (see admin(I)) is present in the file. In this table, an entry of
" - " means "irrelevant".

* This case applies if the d (default SID) flag is nDI present in the file. If the d flag is present in the file, then the
SID obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the
other cases in this table applies.

§ This case is used to force the creation of the first delta in a new release.

•• "hR" is the highest existing release that is lower than the specified, noriexistent, release R.

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by:

get" -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta command corresponding to the
first get produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta
command corresponding to the second get produces delta l. l.1.1.

SCCS User's Guide 15

5.1.6 Keyletters that Ajfe~t Output

Specification of the -p keyletter causes get to write the retrieved text to the standard output,
rather than to a g-ftle. In addition, all output normally directed to the standard output (such as
the SID of the version retrieved and the number of lines retrieved) is directed instead to the
diagnostic output. This may be used, for example, to create g-fi/es with arbitrary names:

get -p s.abc > arbitrary-file-name

The -p keyletter is particularly useful when used with the "!" or "$" arguments of the UNIX
send (IC) command. For example:

send MOD=s.abc REL=3 compile

given that file "compile" contains:

//plicomp job job-card-information
//step! exec plickc
//pli.sysin dd *
-s

-!get -p -rREL MOD

/*
II

will send the highest level of release 3 of file "s.abc". Note that the line "--s", which causes
sena (1 C) to make ID keyword substitutions before detecting and interpreting control lines, is
necessary if sena(lC) is to substitute "s.abc" for MOD and "3" for REL in the line "-!get
-p -rREL MOD".

The -s keyletter suppresses all output that is normally directed to the standard output. Thus,
the SID of the retrieved version, the number of lines retrieved, etc., are not output. This does
not, however, affect messages to the diagnostic output. This keyletter is used to prevent non­
diagnostic messages from appearing on the user's terminal, and is often used in conjunction
with the -p keyletter to "pipe" the output of get, as in:

get - p - s s.abc I nroff

The -g keyletter is supplied to suppress the actual retrieval of the text of a version of the SCCS
file. This may be useful in a number of ways. For example, to verify the existenc.e of a partic­
ular SID in an SCCS file, one may execute:

get -g -r4.3 s.abc

This outputs the given SID if it exists in the SCCS file, or it generates an error message, if it
does not. Another use of the -g keyletter is in regenerating a p-fi/e that may have been
accidentally destroyed:

get -e -g s.abc

The - I keyletter causes the creation of an I-file, which is named by replacing the "s." of the
SCCS file name with "l.". This file is created in the current directory, with mode 444 (read­
only), and is owned by the real user. It contains a table (whose format is described in get (I))
showing which deltas were used in constructing a particular version of the SCCS file. For exam­
ple:

get -r2.3 -I s.abc

generates an I-file showing which deltas were applied to retrieve version 2.3 of the SCCS file.
Specifying a value of "p" with the -I keyletter, as in:

get -Ip -r2.3 s.abc

16 SCCS User's Guide

causes the generated output to be written to the standard output rather than to the /-file. The
-g keyletter may be used with the -I key!Ctter to suppress t.he actual retrieval of the text.

The - m keyletter is of use in identifying, line by line, the changes applied to an SCCS file.
Specification of this keyletter causes each line of the generated g-fi/e to be preceded by the SID
of the delta that caused that line to be inserted. The SID is separated from the text of the line
by a tab character.

The - n keyletter causes each line of the generated g-fi/e to be preceded by the value of the
%M% ID keyword (see Section 5.1.1) and a tab character. The -n keyletter is most often used
in a pipeline with grep(l). For example, to find all lines that match a given pattern in the latest
version of each SCCS file in a directory, the following may be executed:

get -p -n -s directory I grep pattern

If both the - m and - n keyletters are specified, each line of the generated g-fi/e is preceded by
the value of the %M% ID keyword and a tab (this is the effect of the -n keyletter), followed
by the line in the format produced by the - m keyletter. Because use of the - m keyletter
and/or the -n keyletter causes the contents of the g-file to be modified, such a g-file must not
be used for creating a delta. Therefore, neither the - m keyletter nor the - n keyletter may be
specified together with the -e keyletter.

See get (I) for a full description of additional get keyletters.

5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding
SCCS file, i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file (see Sections 5.1.3 and
5.1.4). Delta examines the p-file to verify the presence of an entry containing the user's login
name. If none is found, an error message results. Delta also performs the same permission
checks that get performs when invoked with the -e keyletter. If all checks are successful, delta
determines what has been changed in the g-file, by comparing it (via di.ff (l)) with its own, tem­
porary copy of the g-file as it was before editing. This temporary copy of the g-fi/e is called the
d-fi/e (its name is formed by replacing the "s." of the SCCS file name with "d.") and is
obtained by performing an internal get at the SID specified in the p-file entry.

The required p-jile entry is the one containing the login name of the user executing delta,
because the user who retrieved the g-file must be the one who will create the delta. However,
if the login name of the user appears in more than one entry (i.e., the same user executed get
with the -e keyletter more than once on the same SCCS file), the -r keyletter must be used
with delta to specify an SID that uniquely identifies the p-fi/e entry5• This entry is the one used
to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is:

delta s.abc

which prompts on the standard output (but only if it is a terminal):

comments?

to which the user replies with a description of why the delta is being made, terminating the
reply with a new-line character. The user's response may be up to 512 characters long, with
new-lines not intended to terminate the response escaped by "\".

5. The SID specified may be either the SID retrieved by get, or the SID deha is to create.

SCCS User's Guide 17

If the SCCS file has a v flag, delta first prompts with:

MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a termi­
nal.) The standard input is then read for MR6 numbers, separated by blanks and/or tabs, ter­
minated in the same manner as the response to the prompt "comments?".

The -y and/or - m keyletters may be used to supply the commentary (comments and MR
numbers, respectively) on the command line, rather than through the standard input:

delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc

In this case, the corresponding prompts are not printed, and the standard input is not read.
The - m keyletter is allowed only if the SCCS file has a v flag. These keyletters are useful
when delta is executed from within a shell procedure (see sh (1)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
keyletters, is recorded as part of the entry for the delta being created, and applies to all SCCS
files processed by the same invocation of delta. This implies that if delta is invoked with more
than one file argument, and the first file named has a v flag, all files named must have this flag.
Similarly, if the first file named does not have this flag, then none of the files named may have
it. Any file that does not conform to these rules is'not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created
delta (obtained from the p-jile entry) and the counts of lines inserted, deleted, and left
unchanged by the delta. Thus, a typical output might be:

1.4
14 inserted
7 deleted
345 unchanged

It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not
agree with the user's perception of the changes applied to the g-jile. The reason for this is that
there usually are a number of ways to describe a set of such changes, especially if lines are
moved around in the g-file, and delta is likely to find a description that differs from the user's
perception. However, the total number of lines of the new delta (the number inserted plus the
number left unchanged) should agree with the number of lines in the edited g-file.

If, in the process of making a delta, delta finds no ID keywords in the edited g-file, the message:

No id keywords (cm7)

is issued after the prompts for commentary, but before any other output. This indicates that
any ID keywords that may have existed in the SCCS file have been replaced by their values, or
deleted during the editing process. This could be caused by creating a delta from a g-file that
was created by a get without the -e keyletter (recall that ID keywords are replaced by get in
that case), or by accidentally deleting or changing the ID keywords during the editing of the g­
file. Another possibility is that the file may never have had any ID keywords. In any case, it is
left up to the user to determine what remedial action.)s necessary, but the delta is made, unless
there is an i flag in the SCCS file, indicating that this should be treated as a fatal error. In this
last case, the delta is not created.

6. In a tightly controlled environment, it is expected that deltas are created only as a result of some trouble report,
change request, trouble ticket, etc. (collectively called here Modification Requests, or MRs) and that it is desirable
or necessary to record such MR number(s) within each delta.

18 SCCS User's Guide

After processing of an SCCS file is complett'., the corresponding ~file entry is removed from the
p-file. 7 If there is only one entry in the ~file, then the ~file itself is removed.

In addition, delta removes the edited g-fi/e, unless the - n keyletter is specified. Thus:

delta - n s.abc

will keep the g-file upon completion of processing.

The -s ("silent") keyletter suppresses all output that is normally directed to the standard out­
put, other than the prompts "comments?" and "MRs?". Thus, use of the -s keyletter
together with the -y keyletter (and possibly, the - m keyletter) causes delta neither to read the
standard input nor to write the standard output.

The differences between the g-file and the d-file (see above), which constitute the delta, may be
printed on the standard output by using the -p keyletter. The format of this output is similar
to that produced by di.ff (I) .

5.3 admin

The admin command is used to administer SCCS files, that is, to create new SCCS files and to
change parameters of existing ones. When an SCCS file is created, its parameters are initialized
by use of keyletters or are assigned default values if no keyletters are supplied. The same
keyletters are used to change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting "corrupted"
SCCS files, and are discussed in Section 6.3 below.

Newly-created SCCS files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the SCCS file may use the admin
command upon that file.

5.3.I Creation of SCCS Files

An SCCS file may be created by executing the command:

admin -ifirst s.abc

in which the value ("first") of the -i keyletter specifies the name of a file from which the text
of the initial delta of the SCCS file "s.abc" is to be taken. Omission of the value of the -i
keyletter indicates that admin is to read the standard input for the text of the initial delta.
Thus, the command:

admin -i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain ID key·
words, the message:

No id keywords (cm7)

is issued by admin as a warning. However, if the same invocation of the command also sets the
i ftag (not to be confused with the -i keyletter), the message is treated as an error and the
SCCS file is not created. Only one SCCS file may be created at a time using the; -i keyletter.

' '

7. All updates to the p-file are made to a temporary copy, the q-jile, whose use is similar to the use of the x·file. which
is described in Section 4 above.

SCCS User's Guide 19

When an SCCS file is created, the release number assigned to its first delta is normally "I", and
its level number is alway's "l". Thus, the first delta of an SCCS file is normally "1.1". The
- r keyletter is used to specify the release number to be assigned to the first delta. Thus:

admin -ifirst -r3 s.abc

indicates that the first delta should be named "3.1" rather than "1.1 ". Because this keyletter
is only meaningful in creating the first delta, its use is only permitted with the - i keyletter.

5.3.2 Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may choose to supply commentary stating the reason for
creation of the file. This is done by supplying comments (-y keyletter) and/or MR numbers8

(- m keyletter) in exactly the same manner as for delta. If comments (-y keyletter) are omit­
ted, a comment line of the form:

date and time created YY /MM/DD HH:MM:SS by logname

is automatically generated.

If it is desired to supply MR numbers (-m keyletter}, the v flag must also be set (using the
-f keyletter described below). The v flag simply determines whether or not MR numbers
must be supplied when using any SCCS command that modifies a delta commentary (see
sccsjile(S)) in the SCCS file. Thus: '

admin -ifirst -mmrnuml -fv s.abc

Note that the -y and - m keyletters are only effective if a new SCCS file is being created.

5.3.3 Initialization and Modification of SCCS File Parameters

The portion of the SCCS file reserved for descriptive text (see Section 6.2) may be initialized or
changed through the use of the -t keyletter. The descriptive text is intended as a summary of
the contents and purpose of the SCCS file, although its contents may be arbitrary, and it may be
arbitrarily long.

When an SCCS file is being created and the -t keyletter is supplied, it must be followed by the
name of a file from which the descriptive text is to be taken. For example, the command:

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file "desc".

When processing an existing SCCS file, the -t keyletter specifies that the descriptive text (if
any) currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the SCCS file is to be replaced by the contents of "desc";
omission of the file name after the -t keyletter as in:

admin -t s.abc

causes the removal of the descriptive text from the SCCS file.

The flags '(see Section 6.2) of an SCCS file may be initialized and changed, or deleted through
the use of the -f and -d keyletters, respectively. The flags of an SCCS file are used to direct
certain actions of the various commands. See admin (1) for a description of all the flags. For
example, the i flag specifies that the warning message stating there are no ID keywords

8. The creation of an SCCS file may sometimes be the direct result of an MR.

20 SCCS User's G1J.ide

contained in the SCCS file should be treated as an error, and the d (default SID) flag specifies
the default version of the SCCS file to be retrieved by the get command. The -f keyletter is
used to set a flag and, possibly, to set its value. For example:

admin -ifirst -fi -fmmodname s.abc

sets the i flag and the m (module name) flag. The value "modname" specified for the m flag
is the value that the get command will use to replace the %M% ID keyword. (In the absence of
the m flag, the name of the g-file is used as the replacement for the %M% ID keyword.) Note
that several -f keyletters may be supplied on a single invocation of admin, and that -f
keyletters may be supplied whether the command is creating a new SCCS file or processing an
existing one.

The -d keyletter is used to delete a flag from an SCCS file, and may only be specified when
processing an existing file. As an example, the command:

admin -dm s.abc

removes the m flag from the secs file. Several -d keyletters may be supplied on a single
invocation of admin. and may be intermixed with -f keyletters.

SCCS files contain a list (user list) of login names and/or group IDs of users who are allowed to
create deltas (see Sections 5.1.3 and 6.2). This list is empty by default, which implies that any­
one may create deltas. To add login names and/or group IDs to the list, the -a keyletter is
used. For example:

admin -axyz -awql -al234 s.abc

adds the login names "xyz" and "wql" and the group ID "1234" to the list. The -a keyletter
may be used whether admin is creating a new SCCS file or processing an existing one, and may
appear several times. The -e keyletter is used in an analogous manner if one wishes to
remove ("erase") login names or group IDs from the list.

5.4 prs

Prs is used to print on the standard output all or parts of an SCCS file (see Section 6.2) in a for­
mat, called the output data specification. supplied by the user via the -d keyletter. The data
specification is a string consisting of SCCS file data keywords9 interspersed with optional user
text.

Data keywords are replaced by appropriate values according to their definitions. For example:

:I:

is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is
defined as the data keyword for the SCCS file name currently being processed, and :C: is
defined as the comment line associated with a specified delta. All parts of an SCCS file have an
associated data keyword. For a complete list of the data keywords, see prs (I).

There is no limit to the number of times a data keyword may appear in a data specification.
Thus, for example:

prs -d":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output:

9. Not to be confused with get ID keywords.

SCCS User's Guide 21

2. l this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the
- r keyletter. For example:

prs -d":F:: :I: comment line is: :C:" -rl.4 s.abc

may produce the following output:

s.abc: 1.4 comment line is: THIS IS A COMMENT

If the -r keyletter is not specified, the value of the SID defaults to the most recently created
delta.

Jn addition, information from a range of deltas may be obtained by specifying the -I or -e
keyletters. The -e keyletter substitutes data keywords for the SID designated via the -r
keyletter and all deltas created earlier. The -I keyletter substitutes data keywords for the SID.
designated via the -r keyletter and all deltas created later. Thus, the command:

prs -d:I: -rl .4 -e s.abc

may output:

1.4
1.3
1.2.1.1
1.2
I. I

and the command:

prs -d:I: -rl.4 -I s.abc

may produce:

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the SCCS file may be obtained by specifying both
the -e and - I keyletters.

5.5 help

The help command prints explanations of SCCS commands and of messages that these com­
mands may print. Arguments to help, zero or more of which may be supplied, are simply the
names of SCCS commands or the code numbers that appear in parentheses after SCCS messages.
If no argument is given, help prompts for one. Help has no concept of k.eyletter arguments or
file arguments. Explanatory information related to an argument, if it exists, is printed on the
standard output. If no information is found, an error message is printed. Note that each argu­
ment is processed independently, and an error resulting from one argument will not terminate
the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:

help ge5 rmdel

produces:

22

ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ...

5.6 rmdel

SCCS User's Guide

The mule/ command is provided to allow removal of a delta from an SCCS file. though its use
should be reserved for those cases in which incorrect, global changes were made a part of the
delta to be removed.

The delta to be removed must be a "lear· delta. That is, it must be the latest (most recently
created) delta on its branch or on the trunk of the SCCS file tree. In Figure 3, only deltas
1.3.l.2, 1.3.2.2, and 2.2 can be removed; once they are removed. then deltas 1.3.2.l and 2.1
can be removed, and so on.

To be allowed to remove a delta, the effective user must have write permission in the directory
containing the secs file. In addition, the real user must either be the 'one who created the
delta being removed, or be the owner of the SCCS file and its directory.

The -r keyletter, which is mandatory, is used to specify the complete SID of the delta to be
removed (i.e., it must have two components for a trunk delta, and four components for a
branch delta). Thus:

rmdel -r2.3 s.abc

specifies the removal of (trunk) delta .. 2.3" of the SCCS file. Before removal of the delta,
rmde/ checks that the release number (R) of the given SID satisfies the relation:

floor :5 R < ceiling

Rmdel also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name
or group ID of the user must appear in the file's user list, or the user list must be empty. Also,
the release specified can not be locked against editing (i.e., if the I flag is set (see admin (l)),
the release specified must not be contained in the list). If these conditions are not satisfied,
processing is terminated, and the delta is not removed. After the specified delta has been
removed, its type indicator in the delta table of the SCCS file (see Section 6.2) is changed from
"D" (for "delta") to "R" (for "removed").

5.7 cdc

The cdc command is used to change a delta's commentary that was supplied when that delta was
created. Its invocation is analogous to that of the rmdel command, except that the delta to be
processed is not required to be a leaf delta. For example:

cdc -r3.4 s.abc

specifies that the commentary of delta "3.4" of the secs file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old commen­
tary associated with the specified delta is kept, but it is preceded by a comment line indicating
that it)tas been changed (i.e., superseded), and the new commentary is entered ahead of this
comment line. The "inserted" comment line records the login name of the user executing cdc
and the tinie of its execution.

Cdc also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character "!". Thus:

SCCS User's Guide 23

cdc -rl .4 s.abc
MRs? mrnum3 !mrnuml
comments? deleted wrong MR number and inserted correct MR number

inserts "mrnum3" and deletes "mrnuml" for delta 1.4.

5.8 what

The what command is used to find identifying information within any UNIX file whose name is
given as an argument to what. Directory names and a name of " - " (a lone minus sign) are
not treated specially, as they are by other SCCS commands, and no keyletters are accepted by the
command.

What searches the given file(s) for all occurrences of the string"@(#)", which is the replace­
ment for the %Z% ID keyword (see get(l)), and prints (on the standard output) what follows
that string until the first double quote ("),greater than (>), backslash (\), new-line, or (non­
printing) NUL character. Thus, for example, if the SCCS file "s.prog.c" (which is a C pro­
gram), contains the following line (the %M% and %1% ID keywords were defined in Section
5.1.1):

char id[] "%Z%%M%:%1%";

and then the command:

get -r3.4 s.prog.c

is executed, and finally the resulting g-file is compiled to produce "prog.o" and "a.out", then
the command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of get; it may be
inserted in any convenient manner.

5.9 sccsdiff

The sccsdiff command determines (and prints on the standard output) the differences between
two specified versions of one or more SCCS files. The versions to be compared are specified by
using the -r keyletter, whose format is the same as for the get command. The two versions
must be specified as the first two arguments to this command in the order in which they were
created, i.e., the older version is specified first. Any following keyletters are interpreted as
arguments to the pr(l) command (which actually prints the differences) and must appear
before any file names. SCCS files to be processed are named last. Directory names and a name
of•• - " (a lone minus sign) are not acceptable to sccsdiff ·

The differences are printed in the form generated by diff(l). The following is an example of
the invocation of sccsdijf:

sccsdiff -r3.4 -rS.6 s.abc

24 SCCS User's Guide

5.10 comb

Comb generates a shell procedure (see sh (I)) which attempts to reconstruct the named SCCS
files so that the reconstructed files are smaller than the originals. The generated shell pro­
cedure is written on the standard output.

Named SCCS files are reconstructed by discarding unwanted deltas and combining specified
other deltas. The intended use is for those SCCS files that contain deltas that are so old that
they are no longer useful. It is not recommended that comb be used as a matter of routine; its
use should be restricted to a very small number of times in the life of an SCCS file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of
ancestor deltas necessary to preserve the "shape" of the secs file tree. The effect of this is to
eliminate "middle" deltas on the trunk and on all branches of the tree. Thus, in Figure 3, del­
tas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated. Some of the keyletters are summarized as
follows:

The -p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All
older deltas are discarded.

The -c keyletter specifies a list (see get (1) for the syntax of such a list) of deltas to be
preserved. All other deltas are discarded.

The -s keyletter causes the generation of a shell procedure, which, when run, produces only a
report summarizing the percentage space (if any) to be saved by reconstructing each named
SCCS file. It is recommended that comb be run with this keyletter (in addition to any others
desired) before any actual reconstructions.

It should be noted that the shell procedure generated by comb is not guaranteed to save any
space. In fact, it is possible for the reconstructed file to be larger than the original. Note, too,
that the shape of the SCCS file tree may be altered by the reconstruction process.

5.11 val

Val is used to determine if a file is an SCCS file meeting the characteristics specified by an
optional list of keyletter arguments. Any characteristics not met are considered errors.

Val checks for the existence of a particular delta when the SID for that delta is explicitly specified
via the -r keyletter. The string following the -y or - m keyletter is used to check the value
set by the t or m flag respectively (see admin (I) for a description of the flags).

Val treats the. special argument ''-" differently from other SCCS commands (see Section 4).
This argument allows val to read the argument list from the standard input as opposed to
obtaining it from the command line. The standard input is read until end-of-file. This capabil­
ity allows for one invocation of val with different values for the keyletter and file arguments.
For example:

val -
-ye -mabc s.abc
-mxyz -ypll s.xyz

first checks if file "s.abc" has a value "c" for its type flag and value "abc" for the module name
flag. Once processing of the first file is completed, val then processes the remaining files, in
this case "s.xyz", to determine if they meet the characteristics specified by the keyletter argu­
ments associated with them.

Val returns an 8-bit code; each bit set indicates the occurrence of a specific error (see val (I) for
a description of the possible errors and their codes).. In addition, an appropriate diagnostic is
printed unless suppressed by the -s keyletter. A return code of "O" indicates· all named files
met the characteristics specified.

SCCS User's Guide 25

6. SCCS FILES

This section discusses several topics that must be considered before extensive use is made of
SCCS. These topics deal with the protection mechanisms relied upon by SCCS, the format of
SCCS files, and the recommended procedures for auditing SCCS files.

6.1 Protection

SCCS relies on the capabilities of the UNIX operating system for most of the protection
mechanisms required to prevent unauthorized changes to SCCS files (i.e., changes made by
non-SCCS commands). The only protection features provided directly by SCCS are the release
lock flag, the release floor and ceiling flags, and the user list (see Section 5.1.3).

New SCCS files created by the admin command are given mode 444 (read only). It is recom­
mended that this mode not be changed, as it prevents any direct modification of the files by
non-SCCS commands. It is further recommended that the directories containing SCCS files be
given mode 755, which allows only the owner of the directory to modify its contents.

SCCS files should be kept in directories that contain only SCCS files and any temporary files
created by SCCS commands. This simplifies protection and auditing of SCCS files (see Section
6.3). The contents of directories should correspond to convenient logical groupings, e.g., sub­
systems of a large project.

SCCS files must have only one link (name), because the commands that modify SCCS files do so
by creating a copy of the file (the x-file, see Section 4) and, upon completion of processing,
remove the old file and rename the x-.file. If the old file has more than one link, this would
break such additional links. Rather than process such files, SCCS commands produce an error
message. All SCCS files must have names that begin with "s.".

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing SCCS files 10• Therefore, SCCS may be used directly without any
preliminary preparation.

However, in those situations in which several users with unique user IDs are assigned responsi­
bility for one SCCS file (for example, in large software development projects), one user
(equivalently, one user ID) must be chosen as the "owner" of the SCCS files and be the one
who will "administer" them (e.g., by using the admin command). This user is termed the
SCCS administrator for that project. Because other users of SCCS do not have the same
privileges and permissions as the SCCS administrator, they are not able to execute directly those
commands that require write permission in the directory containing the SCCS files. Therefore, a
project-dependent program is required to provide an interface to the get, delta, and, if desired,
rmdel and cdc commands.

The interface program must be owned by the SCCS administrator, and must have the
set user ID on execution bit on (see chmod(l)), so that the effective user ID is the user ID of the
administrator. This program invokes the desired SCCS command and causes it to inherit the
privileges of the interface program for the duration of that command's execution. Thus, the
owner of an SCCS file can modify it at will. Other users whose login names or group IDs are in
the user list for that file (but who are not its owner) are given the necessary permissions only
for the duration of the execution of the interface program, and are thus able to modify the
SCCS files only through the use of delta and, possibly, rmdel and cdc. The project-dependent
interface program, as its name implies, must be custom-built for each project.

10. Previously, the UNIX system allowed only 256 unique user IDs. Thus, several users often had to share user IDs
and, therefore, file permissions. The current UNIX system allows 65,536 unique user IDs; it is recommended that
each user have a unique user ID.

26 SCCS User's Guide

6.2 Format

SCCS files are composed of lines of ASCII te~t 11 arranged in six parts, as follows:

Checksum A line containing the "logical" sum of all the characters of the file (not
including this checksum itself).

Delta Table

User Names

Flags

Information about each delta, such as its type, its SID, date and time of
creation, and commentary.

List of login names and/or group IDs of users who are allowed to modify
the file by adding or removing deltas.

Indicators that control certain actions of various SCCS commands.

Descriptive Text Arbitrary text provided by the user; usually a summary of the contents
and purpose of the file.

Body Actual text that is being administered by secs, intermixed with internal
SCCS control lines.

Detailed information about the contents of the various sections of the file may be found in
secs.file (5); the checksum is the only portion of the file which is of interest below.

It is important to note that because SCCS files are ASCII files, they may be processed by various
UNIX commands, such as ed(l), grep(l), and cat(l). This is very convenient in those
instances in which an SCCS file must be modified manually (e.g., when the time and date of a
delta was recorded incorrectly because the system clock was set incorrectly), or when it is
desired to simply "look" at the file.

~ Extreme care should be exercised when modifying SCCS files with non-SCCS commands.

6.3 Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an SCCS file,
or portions of it (i.e., one or more "blocks") can be destroyed. Secs commands (like most
UNIX commands) issue an error message when a file does not exist. In addition, SCCS com­
mands use the checksum stored in the SCCS file to determine whether a file has been corrupted
since it was last accessed (possibly by having lost one or more blocks, or by having been
modified with, for example, ed(l)). No SCCS command will process a corrupted SCCS file
except the admin command with the - h or -z keyletters, as described below.

It is recommended that SCCS files be audited (checked) for possible corruptions on a regular
basis. The simplest and fastest way to perform an audit is to execute the admin command with
the - h keyletter on all secs files:

admin - h s.file 1 s.file2 ...
or

admin -h directoryl directory2

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message:

· .. corrupted fi1e (co6)

is pr~duced for that file.' This process continues ~ntil all the· files have been examined. When
examining directories (as in the second example above), the process just described will not

11. Previous versions of SCCS up to and including Version 3 used non-ASCII files. Therefore, files created by earlier
versions of SCCS are incompatible with the current version of SCCS.

SCCS User's Guide 27

detect missing files. A simple way to detect whether any files are missing from a directory is to
periodically execute the /s(l) command on that directory, and compare the outputs of the most
current and the previous executions. Any file whose name appears in the previous output but
not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner in which the file is restored depends upon the
extent of the corruption. If damage is extensive, the best solution is to contact the local UNIX
operations group and request that the file be restored from a backup copy. In the case of minor
damage, repair through use of the editor ed (1) may be possible. In the latter case, after such
repair, the following command must be executed:

admin -z s.file

The purpose of this is to recompute the checksum to bring it into agreement with the actual
contents of the file. After this command is executed on a file, any corruption which may have
existed in that file will no longer be detectable.

January 1981

Function and Use of an Secs Interface Program

L. E. Bonanni
A. Guyton (4/1/80 revision)

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

UNIX

E.4.2

This memorandum discusses the use of a Source Code Control System Interface
Program to allow more than one user to use SCCS commands upon the same set
of files.

1. INTRODUCTION

In order to permit UNIXt users with different user identification numbers (user IDs) to use
SCCS commands upon the same files, an SCCS interface program is provided to temporarily
grant the necessary file access permissions to these users. This memorandum discusses the
creation and use of such an interface program. This memorandum replaces an earlier version
dated March I, 1978.

2. FUNCTION

When only one user uses SCCS, the real and effective user IDs are the same, and that user JD
owns the directories containing SCCS files. However, there are situations (for example, in large
software development projects) in which it is practical to allow more than one user to make
changes to the same set of SCCS files. In these cases, one user must be chosen as the owner of
the SCCS files and be the one who will administer them (e.g., by using the admin command).
This user is termed the SCCS administrator for that project. Since other users of SCCS do not
have the same privileges and permissions as the SCCS administrator, they are not able to exe­
cute directly those commands that require write permission in the directory containing the SCCS
files. Therefore, a project-dependent program is required to provide an interface to the get,
delta, and, if desired, mule/, cdc, and unget commands. 1

The interface program must be owned by the SCCS administrator, must be executable by non­
owners, and must have the set user ID on execution bit on (see chmod(l) 2), so that, when exe­
cuted, the effective user ID is the user JD of the administrator. This program's function is to
invoke the desired SCCS command and to cause it to inherit the privileges of the SCCS adminis­
trator for the duration of that command's execution. In this manner, the owner of an SCCS file
(the administrator) can modify it at will. Other users whose login names are in the user list 3 for
that file (but who are not its owners) are given the necessary permissions only for the duration
of the execution of the interface program, and are thus able to modify the SCCS files only
through the use of delta and, possibly, mule/ and cdc.

t UNIX is a trademark of Bell Laboratories.

I. Other SCCS commands either do not require write permission in the directory containing SCCS files or are
(generally) reserved for use only by the administrator.

2. All references of the f!)rm name(N) refer to item name in section N of the UNIX User's Manual.

3. This is the list of login names of users who are allowed to modify an SCCS file by adding or removing deltas. The
login names are specified using the ad.min(!) command.

2 SCCS Interface Program

3. A BASIC PROGRAM

When a UNIX program is executed it is. passed (as argument 0) the name by which it is
invoked, followed by any additional user-supplied arguments. Thus, if a program is given a
number of links (names), it may alter its processing depending upon which link is used to
invoke it. This mechanism is used by an SCCS interface program to determine which SCCS
command it should subsequently invoke (see exec(2)).

A generic interface program (inter.c, written in C) is shown in Attachment I. Note the refer­
ence to the (unsupplied) function ftlearg. This is intended to demonstrate that the interface
program may also be used as a pre-processor to SCCS commands. For example, function filearg
could be used to modify file arguments to be passed to the SCCS command by supplying the/u//
path name of a file, thus avoiding extraneous typing by the user. Also, the program could sup­
ply any additional (default) keyletter arguments desired.

4. LINKING AND USE

In general, the following demonstrates the steps to be performed by the SCCS administrator to
create the secs interface program. It is assumed, for the purposes of the discussion, that the
interface program inter.c resides in di.rectory /xt/xyz/sccs. Thus, the command sequence:

cd /x I /xyz/sccs
cc • • • inter .c - o inter •••

compiles inter.c to produce the executable module inter (••• represents arguments that may
also be required). The proper mode and the set user ID on execution bit are set by executing:

chmod 4755 inter

Finally, new)inks are created, by (for example):4

In inter get
In inter delta
In inter rmdel

Subsequently, any user whose shell parameter PATH (see sh(l)) specifics that directory
/xl/xyz/sccs is to be searched first for executable commands, may execute, for example:

get -e /xl/xyz/sccs/s.abc

from any directory to invoke the interface program (via its link get). The interface program
then executes /usr/bin/get (the actual SCCS get command) upon the named file. As previously
mentioned, the interface program could be used to supply the pathname /xl/xyz/sccs, so that
the user would only have to specify:

get -e s.abc

to achieve the same results.

5. CONCLUSION

An secs interface program is used to permit users having different user IDs to use secs com­
mands upon the same files. Although this is its primary purpose, such a program may also be
used as a pre-processor to SCCS commands since it can perform operations upon its arguments.

4. The names of the links may be arbitrary, provided the interface program is able to determine from them the names
of SCCS commands to be invoked.

SCCS Interface Program

Attachment I

Secs Interface Program inter.c

main(argc, argv)
int argc;
char *argv [] ;
{

register int i;
char cmdstr[LENGTH]

/*
Process file arguments (those that don't begin with "- ").
*/
for (i = 1; i < argc; i + +)

if (argv[i][O] != '-')
argv[i] = filearg(argv[i]);

/*
Get "simple name" of name used to invoke this program
(i.e., strip off directory-name prefix, if any).
*/
argv[O] = sname(argv[O]);

/*
Invoke actual SCCS command, passing arguments.

•I
sprintf(cmdstr, "/usr/bin/%s", argv[O]);
execv(cmdstr, argv);

January 1981

3

BC-An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Mo"is

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic on
the PDP-11 under the UNIXt time-sharing system. The output of the compiler
is interpreted and executed by a collection of routines which can input, output,
and do arithmetic on indefinitely large integers and on scaled fixed-point
numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit
result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Introduction

Some of the uses of this compiler are

to do computation with large integers,

to do computation accurate to many decimal places,

conversion of numbers from one base to another base.

UNIX

E.5.1

BC is a language and a compiler for doing arbitrary prec1s10n arithmetic on the UNIX
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [5)) which are capable of doing arithmetic on integers.of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from
decimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language
[2]. Those who are familiar with C will find few surprises in this language.

t UNIX is a trademark of Bell Laboratories.

2 BC

Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators - , *• /, %, and " can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the 'unary' minus sign). The expression

7+-3

is interpreted to mean that - 3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just
as in Fortran, with • having the greatest binding power, then *and % and /, and finally + and
- . Contents of parentheses are evaluated before material outside. the parentheses. Exponen­
tiations are performed from right to left and the other operators from left to right. The two
expressions

a·b·c and a"(b"c)

are equivalent, as are the two expressions

a•~c and (a•b)•c

BC shares with Fortran and C the undesirable convention that

a/~c is equivalent to (a/b)•c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

x=x+3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x == sqrt(191)
x

produce the printed result

13

Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase',
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line

BC 3

9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10-15, respectively. The state­
ment

ibase =A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for.
the input of arbitrary numbers in bases less than l and greater than 16.

The content of 'abase', initially 10, is used as the base for output numbers. The lines

abase = 16
1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting 'obase' to 100000. Strange (i.e. 1, 0, or negative) output bases are han­
dled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are con­
tinued end with \. Decimal output conversion is practically instantaneous, but output of very
large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'abase' have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the scale
of the result is the larger of the scales of the two operands. In this case, there is never any
truncation of the result. For multiplications, the scale of the result is never less than the max­
imum of the two scales of the operands, never more than the sum of the scales of the operands
and, subject to those two restrictions, the scale of the result is set equal to the contents of the
internal quantity 'scale'. The scale of a quotient is the contents of the internal quantity 'scale'.
The scale of a remainder is the sum of the scales of the quotient and the divisor. The result of
an exponentiation is scaled as if the implied multiplications were performed. An exponent
must be an integer. The scale of a square root is set to the maximum of the scale of the argu­
ment and the contents of 'scale'.

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. Jn every case where digits are discarded, truncation and not
rounding is performed.

4 BC

The contents of 'scale' must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase ', and 'obase' can be used in expressions just like
other variables. The line

scale = scale + I

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.

The value of 'scale' retains its meaning as a number of decimal digits to be retained in
internal computation even when 'ibase' or 'obase' are not equal to IO. The internal comp~ta­
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to col­
lide with simple variable names. Twenty-six different defined functions are permitted in addi-
tion to the twenty-six variable names. The line ·

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they are
given a value on entry to the function. An example of a function definition is

define a(x,y){
auto z
z = X*Y
return(z)

The value of this function, when called, will be the product of its two arguments.

PL function is called by the appearance of its name followed by a string of arguments
enclosed in parentheses and separated by commas .. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b().

BC

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 60.

Subscripted Variables

5

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as
automatic in a function definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[1

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

Control Statements

The 'if', the 'while', and the 'for' statements may be used to alter the flow within pro­
grams or to cause iteration. The range of each of them is a statement or a compound statement
consisting of a collection of statements enclosed in braces. They are written in the following
way

or

if(relation) statement
while(relation) statement
for(expression!; relation; expression2) statement

if(relation) {statements}
while(relation) {statements}
for(expressionl; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form

x>y

'where two expressions are related by one of the six relational operators <, >, <-, >-,
==,or!=. The relation ==- stands for 'equal to' and!= stands for 'not equal to'. The
meaning of the remaining relational operators is clear. · ··

BEWARE of using = instead of -= = in a relational. Unfortunately, both of them are
legal, so you will not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

6 BC

The 'while' statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con­
trol passes to the next statement beyond the range of the while.

The 'for' statement begins by executing 'expression!'. Then the relation is tested and, if
true, the statements in the range of the 'for' are executed. Then 'expression2' is executed.
The relation is tested, and so on. The typical use of the 'for' statement is for a controlled itera­
tion, as in the statement

for(i= I; i<= 10; i=i+ 1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){
auto i, x
x=l
for(i=l; i<=n; i=i+I) x=x•i
return(x)
}

The line

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=l
forU= I; j<=m; j=j+ 1) x=x•(n-j+ l)/j
return(x)
}

The following function computes values of the exponential function by summing the appropri­
ate series without regard for possible truncation errors:

scale = 20
define e(x){

. }

auto a, b, c, d, n
a = 1
b=l
c = 1
d=O
n=l
while(!== 1){

a = a•x
b = h-n
c = c + a/b
n=n+l
if(c= =d) return(c)
d=c

BC 7

Some Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state­
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any­
where that an expression can. For example, the line

(x=y+I7)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = a[i=i+ I]

causes a value to be assigned to x and alSo increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consult the appendix or the C manuals [2] for their exact workings.

x=y=z is the same as
x=+y
x=-y
x =• y
x =/ y
x =%y
x = y
x++
x--
++x
--x

x=(y=z)
x = x+y
x = x-y
x = x•y
x = x/y
x = x?ty
x = x y
(x=x+l)-1
(x=x-I)+I
x = x+l
x = x-1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=-y and x= -y. The first replaces x by x-y and the second by -y.

Three Important Things

1. To exit a BC program, type 'quit'.

2. There is a comment convention identical to that of C and of PL/I. Comments begin
with '/•'and end with '•/'.

3. There is a library of math functions which may be obtained by typing at command level

be -I

This command will load a set of library functions which, at the time of writing, consists of sine
(named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('l'), exponential ('e') and Bessel
functions of integer order ('j(n,x)'). Doubtless more functions will be added in time. The
library sets the scale to 20. You can reset it to something else if you like. , The design of these
mathematical library routines is discussed elsewhere [3].

If you type

be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

8 BC

Acknowledgement

The compiler is written in YACC [4];'its original version was written by S. C. Johnson.

References

[1] UNIX Programmer's Manual, Bell Laboratories.

[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories,
1975.

[4] S. C. Johnson, YACC-Yet Another Compiler-Compiler, Bell Laboratories.

[5] R. Morris and L. L. Cherry, DC-An Interactive Desk Calculator, Bell Laboratories.

BC 9

APPENDIX

1. NOTATION

In the following pages syntactic categories are in italics; literals are in bold; material in
brackets [] is optional.

2. TOKENS

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. New-line characters or semicolons separate state­
ments.

2.1. Comments

Comments are introduced by the characters /*and terminated by•/.

2.2. Identifiers

There are three kinds of identifiers ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated' to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct.

2.3. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexade­
cimal digits A-Fare also recognized as digits with values 10-15, respectivety.

3. EXPRESSIONS

The value of an expression is printed unless the main operator is an assignment. Pre­
cedence is the same as the order of presentation here, with highest appearing first. Left or right
associativity, where applicable, is discussed with each operator.

10 BC

3.1. Primithe expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value stored
in the place named.

3.1.1.1. identifiers

Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-name [expression]

Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name ([expression[, expression . ..]])

A function call consists of a function name followed by parentheses containing a comma­
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt (expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length (expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale (expression)

The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants

Constants are primitive expressions.

3.1.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are
used to alter the normal precedence.

BC 11

3.2. Unary operators

The unary operators bind right to left.

3.2.1. - expression

The result is the negative of the expression.

3.2.2. + + named-expression

The named expression is incremented by one. The result is the value of the named
expression after incrementing.

3.2.3. - - named-expression

The named expression is decremented by one. The result is the value of the named
expression after decrementing.

3.2.4. named-expression + +
The named expression is incremented by one. The result is the value of the named

expression before incrementing.

3.2.5. named-expression - -

The named expression is decremented by one. The result is the value of the named
expression before decrementing.

3.3. Exponentiation operator

The exponentiation operator binds right to left.

3.3.1. expression expression

The result is the first expression raised to the power of the second expression. The
second expression must be an integer. If a is the scale of the left expression and b is the abso­
lute value of the right expression, then the scale of the result is:

min (aXb, max (scale, a))

3.4. Multiplicative operators

The operators *• /, % bind left to right.

3.4.1. expression • expression

The result is the product of the two expressions. If a and b are the scales of the two
expressions, then the scale of the result is:

min (a+b, max (scale, a, b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre­
cisely, a%b is a-a/h*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

12 BC

3.5. Additive operators

The additive operators bind left to right.

3.5.1. expression + expression

The result is the sum of the two expressions. The scale of the result is the maximum of
the scales of the expressions.

3.5.2. expression - expression

The result is the difference of the two expressions. The scale of the result is the max­
imum of the scales of the expressions.

3.6. assignment operators

The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression =+ expression

3.6.3. named-expression expression

3.6.4. named-expression ==• expression

3.6.5. named-expression =/ expression

3.6.6. named-expression =% expression

3.6. 7. -named-expression expression

The result of the above expressions is equivalent to "named expression = named expres·
sion OP expression'', where OP is the operator after the = sign.

4. RELATIONS

Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

4.1. expression < expression

4.2. expression > expression

4.3. expression <= expression

4.4. expression >= expression

4.5. expression expression

4.6. expression ! == expression

BC 13

5. STORAGE CLASSES

There are only two· storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to a
function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the
array name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I.
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. ST A TEMENTS

Statements must be separated by semicolon or new-line. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a new-line character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur­
rounding them with { }.

6.3. Quoted string statements

"any string"

This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement

The substatement is executed if the relation is true.

6.5. While statements

while (relation) statement

The statement is executed while the relation is true. The test occurs before each execu­
tion of the statement.

6.6. For statements

for (expression; relation; expression) statement

The for statement is the same as
first-expression
while (relation) {

statement
last-expression

All three expressions must be present.

14

6.7. Break statements

break

break causes termination of a for or while statement.

6.8. Auto statements

auto identifier [,identifier 1

BC

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol­
lowing the array name by empty square brackets. The auto statement must be the first state­
ment in a function definition.

6.9. Define statements

define([parameter[,parameter ...]]) {
statements}

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements

return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it
is first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

January 1981

DC-An Interactive Desk Calculator

Robert Morris

Lorinda Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

DC is an interactive desk calculator program implemented on the UNIXt
time-sharing system to do arbitrary-precision integer arithmetic. It has provi­
sion for manipulating scaled fixed-point numbers and for input and output in
bases other than decimal.

The size of numbers that can be manipulated is limited only by available
core storage. On typical implementations of UNIX, the size of numbers that
can be handled varies from several hundred digits on the smallest systems to
several thousand on the largest.

UNIX

E.5.2

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing
system in the form of an interactive desk calculator. It works like a stacking calculator using
reverse Polish notation. Ordinarily DC operates on decimal integers, but one may specify an
input base, output base, and a number of fractional digits to be maintained.

A language called BC [l] has been developed which accepts programs written in the fami­
liar style of higher-level programming languages and compiles output which is interpreted by
DC. Some of the commands described below were designed for the compiler interface and are
not easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by
taking the top number or two off the stack, performing the desired operation, and pushing the
result on the stack. If an argument is given, input is taken from that file until its end, then
from the standard input.

SYNOPTIC DESCRIPTION

Here we describe the DC commands that are intended for use by people. The additional
commands that are intended to be invoked by compiled output are described in the detailed
description.

Any number of commands are permitted on a line. Blanks and new-line characters are
ignored except within numbers and in places where a register name is expected.

The following constructions are recognized:

t UNIX is a trademark of Bell Laboratories.

2 DC

number

The value of the number is pushed onto the main stack. A number is an unbroken string
of the digits 0-9 and the capital letters A- F which are treated as digits with values 10-15
respectively. The number may be preceded by an underscore to input a negative
number. Numbers may contain decimal points.

+ - * %

SX

lx

The top two values on the stack are added (+), subtracted (-), multiplied (*), divided
(/), remaindered (%), or exponentiated (). The two entries are popped off the stack; the
result is pushed on the stack in their place. The result of a division is an integer trun­
cated toward zero. See the detailed description below for the treatment of numbers with
decimal points. An exponent must not have any digits after the decimal point.

The top of the main stack is popped and stored into a register named x, where x may be
any character. If the s is capitalized, x is treated as a stack and the value is pushed onto
it. Any character, even blank or new-line, is a valid register name.

The value in register x is pushed onto the stack. The register x is not altered. If the I is
capitalized, register x is treated as a stack and its top value is popped onto the main stack.

All registers start with empty value which is treated as a zero by the command I and is treated
as an error by the command L.

d

p

f

x

I ... 1

q

The top value on the stack is duplicated.

The top value on the stack is printed. The top value remains unchanged.

All values on the stack and in registers are printed.

treats the top element of the stack as a character string, removes it from the stack, and
executes it as a string of DC commands.

puts the bracketed character string onto the top of the stack.

exits the program. If executing a string, the recursion level is popped by two. If q is capi­
talized, the top value on the stack is popped and the string execution level is popped by
that value.

<x >'x =x !<x !>x !=x
The top two elements of the stack are popped and compared. Register x is executed if
they obey the stated relation. Exclamation point is negation.

DC

v

c

0

k

z

?

3

replaces the top element on the stack by its square root. The square root of an integer is
truncated to an integer. For the treatment of numbers with decimal points, see the
detailed description below.

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX
command terminates.

All values on the stack are popped; the stack becomes empty.

The top value on the stack is popped and used as the number radix for further input. If i
is capitalized, the value of the input base is pushed onto the stack. No mechanism has
been provided for the input of arbitrary numbers in bases less than I or greater than 16.

The top value on the stack is popped and used as the number radix for further output. If
o is capitalized, the value of the output base is pushed onto the stack.

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and
exponentiation. The scale factor must be greater than or equal to zero and less than 100.
If k is capitalized, the value of the scale factor is pushed onto the stack.

The value of the stack level is pushed onto the stack.

A line of input is taken from the input source (usually the console) and executed.

DETAILED DESCRIPTION

Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the
form of a string of digits to the base JOO stored one digit per byte (centennial digits). The
string is stored with the low-order digit at the beginning of the string. For example, the
representation of 157 is 57, l. After any arithmetic operation on a number, care is taken that all
digits are in the range 0-99 and that the number has no leading zeros. The number zero is
represented by the empty string.

Negative numbers are represented in the lOO's complement notation, which is analogous
to two's complement notation for binary numbers. The high order digit of a negative number
is always -1 and all other digits are in the range 0-99. The digit preceding the high order -1
digit is never a 99. The representation of -157 is 43,98, -1. We shall call this the canonical
form of a number. The advantage of this kind of representation of negative numbers is ease of
addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addi­
tion can be carried out and the handling of carries done later when that is convenient, as it

4 DC

sometimes is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,3
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and
writing of numbers internally is done through the allocator. Associated with each string in the
allocator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca­
tor and DC is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the
one pointing to this string are on a list of free headers. Requests for strings are made by size.
The size of the string actually supplied is the next higher power of 2. When a request for a
string is made, the allocator first checks the free list to see if there is a string of the desired
size. If none is found, the allocator finds the next larger free string and splits it repeatedly until
it has a string of the right size. Left-over strings are put on the free list. If there are no larger
strings, the allocator tries to coalesce smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if
free, can be combined with it to make a string twice as long. This is an implementation of the
'buddy system' of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system
for more space. The amount of space on the system is the only limitation on the size and
number of strings in DC. If at any time in the process of trying to allocate a string, the alloca­
tor runs out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward­
spacing, and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the
characters of a string are read or written in succession by a series of read or write calls. The
write pointer is interpreted as the end of the information-containing portion of a string and a
call to read beyond that point returns an end-of-string indication. An attempt to write beyond
the end of a string causes the allocator to allocate a larger space and then copy the old string
into the larger block.

Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the
operation are popped from the main stack and their scale factors stripped off. Zeros are added
or digits removed as necessary to get a properly scaled result from the internal arithmetic rou­
tine. For example, if the scale of the operands is different and decimal alignment is required,
as it is for addition, zeros are appended to the operand with the smaller scale. After performing
the required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. scale is
the bound on the number of decimal places retained in arithmetic computations. scale may be
set to the number on the top of the stack truncated to an integer with the k command. K may
be used to push the value of scale on the stack. scale must be greater than or equal to 0 and
less than 100. The descriptions of the individual arithmetic operations will include the exact
effect of scale on the computations.

DC 5

Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number
with the lower scale to give both numbers the same scale. The number with the smaller scale is
multiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in
addition.

Finally, the addition is performed digit by digit from the low order end of the number.
The carries are propagated in the usual way. The resulting number is brought into canonical
form, which may require stripping of leading zeros, or for negative numbers replacing the
high-order configuration 99, -1 by the digit -1. In any case, digits which are not in the range
0-99 must be brought into that range, propagating any carries or borrows that result.

Multiplication

The scales are removed from the two operands and saved. The operands are both made
positive. Then multiplication is performed in a digit by digit manner that exactly mimics the
hand method of multiplying. The first number is multiplied by each digit of the second
number, beginning with its low order digit. The intermediate products are accumulated into a
partial sum which becomes the final product. The product is put into the canonical form and its
sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that
scale is larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

Division

The scales are removed from the two operands. Zeros are appended or digits removed
from the dividend to make the scale of the result of the integer division equal to the internal
quantity scale. The signs are removed and saved.

Division is performed much as it would ~ done by hand. The difference of the lengths
of the two numbers is computed. If the divisor is longer than the dividend, zero is returned.
Otherwise the top digit of the divisor is divided into the top two digits of the dividend. The
result is used as the first (high-order) digit of the quotient. It may turn out be one unit too
low, but if it is, the next trial quotient will be larger than 99 and this will be adjusted at the end
of the process. The trial digit is multiplied by the divisor and the result subtracted from the
dividend and the process is repeated to get additional quotient digits until the remaining divi­
dend is smaller than the divisor. At the end, the digits of the quotient are put into the canoni­
cal form, with propagation of carry as needed. The sign is set from the sign of the operands.

Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder
is set to the maximum of the scale of the dividend and the scale of the quotient plus the scale
of the divisor.

Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer
result have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations
by the rule

6 DC

The initial guess is found by taking the integer square root of the top two digits.

Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the
result is 1. If the exponent is negative, then it is made positive and the base is divided into
one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and
the result is obtained as a product of those powers of the base that correspond to the positions
of the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indi~ted multiplication had been
performed.

Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale
stored with a number is simply the number of fractional digits input. Negative numbers are
indicated by preceding the number with a _. The hexadecimal digits A- F correspond to the
numbers I 0-15 regardless of input base. The i command can be used to change the base of
the input numbers. This command pops the stack, truncates the resulting number to an
integer, and uses it as the input base for all further input. The input base is initialized to 10
but may, for example be changed to 8 or 16 to do octal or hexadecimal to decimal conversions.
The command I will push the value of the input base on the stack.

Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of
the stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command 0 pushes the value of the output base on the
stack.

Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output;
they have no effect on arithmetic computations. Large numbers are output with 70 characters
per line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal­
hexadecimal conversions.

Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from regis­
ters with the commands s and I. The command sx pops the top of the stack and stores the
result in register x. x can be any character. Ix puts the contents of register x on the top of the
stack. The I command has no effect on the contents of register x. The s command, however,
is destructive.

Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on
the top· of the stack on the stack. The command z pushes the stack size on the stack. The
command X replaces the number on the top of the stack with its scale factor. The command Z
replaces the top of the stack with its length.

DC 7

Subroutine Definitions and Calls

Enclosing a string in [] pushes the ascii string on the stack. The q command quits or in
executing a string, pops the recursion levels by two.

Internal Registers - Programming DC

The load and store commands together with [] to store strings, x to execute and the test­
ing commands •<', •>•, '=', '!<'. '!>', ·!='can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

[lipl + si lilO>a]sa
Osi lax

Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve
push-down registers and arrays. In addition to the stack that commands work on, DC can be
thought of as having individual stacks for each register. These registers are operated on by the
commands S and L. Sx pushes the top value of the main stack onto the stack for the register
x. Lx pops the stack for register x and puts the result on the main stack. The commands s and
I also work on registers but not as push-down stacks. I doesn't effect the top of ihe register
stack, and s destroys what was there before.

The commands to work on arrays are : and ;. :x pops the stack and uses this value as an
index into the army x. The next element on the stack is stored at this index in x. An index
must be greater than or equal to 0 and less than 2048. ;x is the command to load the main
stack from the array x. The value on the top of the stack is the index into the array x of the
value to be loaded.

Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX command and passes it to UNIX
to execute. One other compiler command is Q. This command uses the top of the stack as the
number of levels of recursion to skip.

DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose pro­
gram could be (and in fact has been) used for a variety of other tasks. The allocator has some
value for input and for compiling (i.e. the bracket [. . .] commands) where it cannot be known
in advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advan­
tage. Yet the base cannot exceed 127 because of hardware limitations and at the cost of 5% in
space, debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addi­
tion to subroutine execution to be implemented in essentially the same way. The result was a
considerable degree of logical separation of the final program into modules with very little com­
munication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,

8 DC

then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in
no case should any significant digits be thrown away if, on appearances, the user actually
wanted them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable
to give him the result 5.017 without requiring him to unnecessarily specify his rather obvious
requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more
digits than their operands and it seemed reasonable to give as a minimum the number of
decimal places in the operands but not to give more than that number of digits unless the user
asked for them by specifying a value for scale. Square root can be handled in just the same
way as multiplication. The operation of division gives arbitrarily many decimal places and there
is simply no way to guess how many places the user wants. In this case only, the user must
specify a scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recr~te the dividend from the
quotient and remainder. This is easy to implement; no digits are thrown away.

REFERENCES

[1] L. L. Cherry and R. Morris. BC-An Arbitrary Precision Desk-Calculator Language, Bell
Laboratories.

[2] K. C. Knowlton. A Fast Storage Allocator, CACM 8(10):623-25 (Oct. 1965).

January 1981

1. INTRODUCTION

UNIX Graphics O•eniew

A. R. Feuer

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

E.6.1

UNIXt Graphics, or just graphics, is the name given to a growing collection of numerical and
graphical commands available as part of UNIX [l]. In its initial release, graphics includes com­
mands to construct and edit numerical data plots and hierarchy charts. This memorandum will
help you get started using graphics and show you where to find more information. The exam­
ples below assume that you are familiar with the UNIX shell [1].

2. BASIC CONCEPTS

The basic approach taken in graphics is to generate a drawing by describing it rather than by
drafting it. Any drawing is seen as having two fundamental attributes: its underlying logic and
its visual layout. The layout encompasses one representation cf the logic. For example, con­
sider the attributes of a drawing that consists of a plot of the function y=x 2 for x between 0
and 10. The logic of the plot is the description as just given, viz. y-x 2,0sx:::=l0. The layout
consists of an x-y grid, axes labeled perhaps 0 to 10 and 0 to 100, and lines drawn connecting
the x-y pairs 0,0 to I, I to 2,4 and so on.

The way to generate a picture in graphics is

gather data I transform the data I generate a layout I display the layout.

To generate the specific plot of y=x2,0:::=x :::= 10 and display it on a Tektronix display terminal
would be

gas -sO,tlO I af •x" 2• I plot I td

where

gas generates sequences of numbers, in this case starting at 0 and terminating at
10.

af performs general arithmetic transformations.

plot builds x-y plots.

td displays drawings on Tektronix terminals.

The resulting drawing is shown in Figure 1.

The layout generated by a graphics program may not always be precisely what is wanted. There
are two ways to influence the layout. Each drawing program accepts options to direct certain
layout features. For instance, in the previous example we may have wanted the x-axis labels to
indicate each of the numbers plotted and we might not have wanted any y-axis labels at all. To
achieve this the plot command would be changed to:

plot -xil,ya

producing the drawing of Figure 2.

t UNIX is a trademark of Bell Laboratories.

--

t20~~--~~--~~-r-~~""T""~~"'!'9"~---, . .
: : i I

• I I I

1001·-· ______ ; ••..••... ·•-··-··· ·--i-·-···-· ··t' -·--·· •••
' ' I : : I
o ' I . ' . .
t t I I

801·--·----·i-------- .f ---~--------1---
i : : !

i ___ ,.. ______ _
• :

t : • •
I 1 I I

I

! . . '

6 01---··-·. -~------···. i ·-----·-i---·-·
' t I ' ' . '

. .
' i

·-- ----~---·· ----
: • ! . . .

401-··- ----i---·-----~---- ----· I

. .. -----;----·--·1-- -------
' ' . : :
' . I .

201-- - -- . - . I---·---- ! .

. . .
· -----r-------f---. -----~ -. _ -··--. . '

o1 ..--r . : ! i :
0

t t I I • I I
c '

, I

2 4 6 8 10 t2

Figure 1. gas -sot t10 I af "x"2 .. I plot I td

.
:

: : : : : • I ; •
t , ' t 1 I I t t
t I f I I I I 1 •

---·~·-··· J & •: ·-1· -... ~ ---:. ·---+---...:..-
: : i : 1 I : : I

I s : : : : : f :
! : • I I : : • :
: i : I I ~ i t 1 -----r ---- .. ,.. .. -·--:-· ···+ · ···· t·· ~--- -f---
• I • t I I I I I t t I I I I I I I

t : ~ ' I : I • I
t I I • I I I 1 I

t : i I : I : :
··--+----~---·•···---+---·----+---· -t·-· 1----i-··-

: t : : I i : I I

! i ! : : = • : !
I t • ' I • I I I

; ! t c • : • : :
----. ·t --·. -1·-·-··t •••. -+-···-I· .. -- ···i·--·· +---· t··--

• I " I I I I I

: : : ! i i I !
: : I : : I :
I I I I I I I -:.-----~-----+J. --:-----+-- -4- --i-----~----1 t t I I I t I
t I ' I I I I I
t I • I I I I I
t I I I I I
t 1 I I t
I I I I I
t I I I I

0 2 3 4 5 6 7 8 9 10

Figure 2. gas -so, t10 I af 11 x "2 11 I plot -xlt,ya I td

N

~
~
<;')

a
'g.
~·

~
~-

UNIX Graphics Overview 3

The output from any drawing command can also be affected by editing it directly at a display
terminal using the graphieal editor, ged. To edit a drawing really means to edit the computer
representation of the drawing. In the case of graphics the representation is called a graphical
primitive string, or GPS. All of the drawing commands (e.g., plot) write GPS and all of the dev­
ice filters (e.g., td) read GPS. Ged allows you to manipulate GPS at a display terminal by
interacting with the drawing the GPS describes.

GPS describes graphical objects drawn within a Cartesian plane 65,534 units on each axis. The
plane, known as the universe, is partitioned into 25 equal sized square regions. Multi-drawing
displays can be produced by placing drawings into adjacent regions and then displaying each
region.

3. GETTING STARTED

To access the graphics commands when logged in on a UNIX system type graphics. Your shell
variable PATH will be altered to include the graphics commands and the shell primary prompt
will be changed to A. Any command accessible before typing graphics will still be accessible;
graphics only adds commands, it doesn't take any away. Once in graphics, you can find out
about any of the graphics commands using whatis. Typing wbatis by itself on a command line
will generate a list of all the commands in graphics along with instructions on how to find out
more about any of them.

All of the graphics commands accept the same command line format:

A command is: a command-name followed by argument(s).

A command-name is: the name of any of the graphics commands.

An argument is: a file-name or an option-string.

A file-name is: any file name not beginning with
the standard input.

An option-string is: a - followed by option(s).

or a - by itself to reference

An option is: letter{s) followed by an optional value. Options may be separated
by commas.

You will get the best results with graphics commands if you use a display terminal. Tplot (1 G)
filters can be used in conjunction with glop (see gutil(l G)) to get somewhat degraded drawings
on Versatec printers and Dasi-type terminals. And since GPS can be stored in a file, it can be
created from any terminal for later displaying on a graphical device.

To remove the graphics commands from your PATH shell variable type EOT (control-don most
terminals). To log off UNIX from graphics type quit.

4. EXAMPLES OF WHAT YOU CAN DO

4.1 Numerical Manipulation and Plotting

Stat (I G) describes a collection of numerical commands. All of these commands operate on
vectors. A vector is a text file that contains numbers separated by delimiters, where a delimiter
is anything that is not a number. For example:

1 2 3 4 5, and
arf tty47 Mar S 09:52

are both vectors. (The"latter being the vector: 47 5 9 52.)

Here is an easy way. to generate a Celsius-Fahrenheit conversion table using gas to generate the
vector of Celsius values:

4 UNIX Graphics Overview

gas -sO,tlOO,iJO I af "C,9/S.C+32"

The output is:

0.0
10
20
30
40
50
60
70
80
90
100

32
50
68
86
104
122
140
158
176
194
212

This is what is going on:

gas -sO,tlOO,ilO

af "C,9/5*C+32*

We have seen gas in an earlier example. In this case the
sequence starts at 0, terminates at 100, and the increment
between successive elements is 10.

We have also seen af Arguments to af are expressions.
Operands in an expression are either constants or file names. If a
file name is given that does not exist in the current directory it is
taken as the name for the standard input. In this example C
references the standard input. The output is a vector with odd
elements coming from the standard input and even elements being
a function of the preceding odd element.

Here is an example that illustrates the use of vector titles and multiline plots:

gas I title - v*flrst ten integers" > N
root N >RN
root -r3 N >R3N
root -rl.S N >Rt.SN
plot -FN,g N Rl.5N RN R3N I td

The resulting plot is shown in Figure 3.

title -v"name"

root -rn

plot -FX,g Y(s)

Title associates a name with a vector. In this case, first ten
integers is associated with the vector output by gas. The vector
is stored in file N.

Root outputs the nth root of each element on the input. If -rn
is not given then the square root is output. Also, if the input is
a titled vector the title will be transformed to reflect the root
function.

This command generates a multiline plot with Y(s) plotted versus
X. The g option causes tick marks to appear instead of grid lines.

The next example generates a histogram of random numbers:

rand -nlOO I title -v"lOO random numbers" I qsort I bucket I hist I td

The output is shown in Figure 4.

"O 11
~Q)~

-0..c~ 10 Q) VI
.co- .

Cl) - ~ o"0°-o 9
-o - "t:I . -
o~-

~-ocng 8 <n-a:_
a:: (I) w
~o::fil~ 7
w l&J I- l&J
I- (!) z (!)

zW-w 6
-1- I-

ZZz z-w-
W 2 1- 5
I- LL.I I- ;::;
1-l-<nl- 4
(I) I-~ I-
~en LL. <n
IL.~IO~ 3
fCl LL,...: LL

-No 2 o_o Oo.._
... 0

11 ...

________ --····--····
__ ---

_ ... --· -------­---- -- _... ---- --- -:11r------------------,.. .. -:-- -- ..
2 3 4 5 6 7 a 9 10

FIRST TEN INTEGERS

11

Figure 3. Some roots of the first ten integers

24,------------------------------------.

221- ----- ----- ---- ----- -. -- -- ---- ---- - - -. - -- ··---- ------------·- -..-
2Q1- ··-- - ---- -- - -.......... - - - -~ - ---- -- -- -- -- -·-·· --- -...• ----- - --

18•··-• ----------·-··· ... ---- - ····-··· --------···-· -·. ------

161------ - -· -------1··-----+---------------- --------

141------------~

121---: I
..., ____ .. ______

~
10·----- --- - -·-- ---

6• .. -- --· ... --- .. •-- --- ... ----- ---- -·-- - .. _ .. _
---- --~ ---- ~------t--

2·-·-· .. -· -- --
o._..._ __ _._ __ _._ __ __,...._ __ .__ __ __ _._ ____ _.

0.0281 0.165 0.301 0.438 0.574 0.71 0.8470.983
100 RANDOM NUMBERS

Figure 4. Histogram of 100 random numbers

~
~
<:".>
ii::
"g.
~·

~
~·
~

.....

6

rand -nlOO

qsort

bucket

hist

UNIX Graphics Overview

Rand outputs, random numbers using rand(3C). In this case 100
numbers are output in the range 0 to 1.

Qsort sorts the clements of a vector in ascending order.

Bucket breaks the range of a vector into intervals and counts how
many clements from the vector fall into each interval. The out­
put is a vector with odd elements being the interval boundaries
and even elements being the counts.

Hist builds a histogram based on interval boundaries and counts.

4.:2 Drawings Built from Boxes

There is a large class of drawings composed from boxes and text. Examples are structure
charts, configuration drawings, and ftow diagrams. In graphics the general procedure to con­
struct such box drawings is the same as that for numerical plotting. Namely gather and
transform the data, build and display the layout.

As an example, consider hierarchy charts. The command line:

dtoc I vtoc I td

outputs the drawing shown in Figure 5.

Dtoc outputs a table of contents that describes a directory structure (Figure Sa). The fields
from left to right are level number, directory name, and the number of ordinary readable files
contaii'led in the directory. Vtoc reads a (textual) table of contents and outputs a visual table of
contents, or hierarchy chart. Input to vtoc consists of a sequence of entries, each describing a
box to be drawn. An entry consists of a level number, an optional style field, a text string to
be placed in the box, and a mark field to appear above the top right hand corner of the box.

5. WHERE TO GO FROM HERE

The best way to learn about graphics is to log onto a UNIX system and use it. Tutorials exist
for stat(lG) (3) and ged(lG) [4]; [2] contains administrative information for graphics. Refer­
ence information can be found in the UNIX User's Manual in the following manual entries:

gdev(IG), a collection of commands to manipulate Tektronix 4000 series terminals; and
ged(1 G), the graphical editor;
graphics(1 G), the entry point for graphics;
gutil(I G), a collection of utility commands;
stat(lG), numerical manipulation and plotting commands;
toc(l G), routines to build tables of contents;
gps(S), a description of a graphical primitive string.

6. REFERENCES

[1] T. A. Dolotta, S. B. Olsson, and A.G. Petruccelli (eds.). UNIX User's Manual-Release
3.0, Bell Laboratories (June 1980).

[2] R. L. Chen, D. E. Pinkston, and ·A. Guyton. Administrative Information for the UNIX
Graphics Package, Bell Laboratories.

[3] A: R. Feuer and A. Guyton. STAT-A Toolf0r AnalyZing Data, Deli Laboratories.

[4] , A. R. Feuer. A Tutorial Introduction to the Graphics Editor, Bell Laboratories.

UNIX Graphics Overview 7

Figure 5. Directory structure for Graphics

1.

GLlll.D

·1.1. 12 1.;.:.. 2_"'"'14 2,_.1 __ . -----
GPL..D GSL..D CVftTOPT.D

January 1981

0.
1.
1. 1.
1.2.
2.
2.1.
2.2.
2.3.
3.
4.
4.1
4.4.
!5.
!5.1.
!5.2.
6.

II II

source
"glib.d"
llgpl.d"
II sl.d"
119 t'I d" gu I .
"cvrtoP.t.d"
"gtop.d"
"ptOQ.d II
;:stat.d 11

11

tek4000.d
"ged.d"
11 td.d II
"toe.d"
11 tt d"
II oc. d" vtoc.
11whatis.d ·•

2
1
12
14
6
7
8
5
!54
!5
37
8
3
3
22
108

Figure 5a. Otoe output

STAT.D TEK4000.D

!5r-. _...__.,3 s,... __.__.1..,oe

TOC.D WHATIS.D

2.3 5 4.,.. 1__....,! 1 4,_.4_ . ..___a 5,_.1___3 5. 2. 22

PTOG.D GED.D TD.D TTOC.0 VTOC.D

Figure 5b. Vtoc output

A Tutorial Introduction to the Graphics Editor

A. R. Feuer

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

UNIX

E.6.2

Ged is an interactive graphical editor used to display, edit, and construct drawings on Tektronix
4010 series display terminals. The drawings are represented as a sequence of objects in a token
language known as GPS (for graphical primitive string). GPS is produced by the drawing com­
mands in UNIXt Graphics [1] such as vtoc and plot, as well as by ged itself.

The examples in this tutorial illustrate how to construct and edit simple drawings. Try them to
become familiar with how the editor works, but keep in mind that ged is intended primarily to
edit the output of other programs rather than to construct drawings from scratch. A summary
of editor commands and options is given in Section 3.

As for notation, literal keystrokes are printed in boldface. Meta-characters are also in boldface
and are surrounded by angled brackets. For example, <er> means return and <sp> means
space. In the examples, output from the terminal is printed in roman (normal) type. In-line
comments are in roman and are surrounded by parentheses.

2. COMMANDS

To start we will assume that you have successfully entered the graphics environment (as
described in graphics(I G) of [2]) while Jogged in at a display terminal. To enter ged type:

ged <er>

After a moment the screen should be clear save for the ged prompt, •. in the upper left corner.
The •tells you that ged is ready to accept a command.

Each command passes through a sequence of stages during which you describe what the com­
mand is to do. All commands pass through a subset of these stages:

1. command line
2. text
3. points
4. pivot
5. destination

As a rule, each stage is terminated by typing <er>. The <er> for the last stage of a com­
mand triggers execution.

2.1 The Command Line

The simplest commands consist only of a command line. The command line is modeled after a
conventional command line -in the shell. That is: ,

command-name [-option(s)J [Ii/enamel <er>

? is an example of a simple command. It lists the commands and options understood by ged.
To generate the list, type:

•?<er> (you type a question mark followed by a return)

t UNIX is a trademark of Bell Laboratories.

2 Graphics Editor Tutorial

A command is executed by typing the first character of its name. Ged will echo the full name
and wait for the rest of the command line. For example, e references the erase command. As
erase consists only of stage I; typing <er> causes the erase action to occur. Typing
<rubout> after a command name and before the final <er> for the command aborts the
command. Thus while

•erase <er>

erases the display screen,

•erase <rubout>

brings the editor back to •.

Following the command-name, options may be entered. Options control such things as the
width and style of lines to be drawn or the size and orientation of text. Most options have a
default value that applies if a value for the option is not specified on the command line. The
set command allows you to examine and modify the default values. Type:

•set <er>

to see the current default values.

The value of an option is either of type integer, character, or Boolean. Boolean values arc
represented by + for true and - for false. A default value is modified by providing it as an
option to the set command. For example, to change the default text height to 300 units type:

•set - h300 <er>

Arguments on the command line, but not the command-name, may be edited using the erase
and kill characters from the shell. (Actually, this applies whenever text is being entered.)

2.2 Constructing Graphical Objects

Drawings are stored as OPS in a display buffer internal to the editor. Typically, a drawing in ged
is composed of instances of three graphical primitives: arc, lines, and text.

2.2.l Generating Text. To put a line of text on the display screen use the Text command. First
enter the command line (stage 1):

•Text <er>

Next enter the text (stage 2):

a line of text <er>

And then enter the starting point for the text (stage 3):

<position cursor> <er>

Positioning of the graphic cursor is done either with the thumbwheel knobs on the terminal
keyboard or with an auxiliary joystick. The <er> establishes the location of the cursor to be
the starting point for the text string. The Text command ends at stage 3, so this <er> initiates
the drawing of the text string.

Text accepts options to vary the angle, height, and line width of the characters, and to either
center or right justify the text object. The text string may span more than one line by escaping
the <er> (i.e., \<er>) to indicate continuation. To illustrate some of these capabilities, try
the following:

Graphics Editor Tutorial

*Text -r <er>
top\<cr>
right <er>
<position cursor> <er>
*Text - a90 <er>
lower\<cr>
left <er>
<position cursor> <er>

'­
Q)

~= 0 Q) --

(right justify text)

(rotate text 90 degrees)

(pick a point below and left of the previous point)

top
right

Figure I. Generating text objects

3

2.2.2 Drawing Lines. The Lines command is used to construct objects built from a sequence of
straight lines. It consists of stages 1 and 3. Stage 1 is straightforward:

•Lines possible options <er>

Lines accepts options to specify line style and line width.

Stage 3, the entering of points, is more interesting. Points are referenced either with the graphic
cursor or by name. We have already entered a point with the cursor for the TeXl command.
For Lines it is more of the same. As an example, let us build a triangle:

•Lines <er>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
<er>

(locate the first point)
(the second point)
(the third point)
(back to the first point)
(terminate points, draw triangle)

Typing <sp> enters the location of the crosshairs as a point. Ged identifies the point with an
integer and adds the location to the current point set. The last point entered can be erased by
typing I . The current point set can be cleared by typing @ . On receiving the final <er> the
points are connected in numerical order.

The points in the current point set may be referenced by name using the $ operator. Sn refer­
ences the point numbered n. Using$ we can redraw the triangle above by entering:

•Lines <er>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>
SO <er>
<er>

(reference point 0)

4 Graphics Editor Tutorial

first point entered ... ~~~~~~~~~~~ ~
fourth point third point

Figure 2. Building a triangle

At the start of each command that includes stage 3, points, the current point set is empty. The
point set from the previous command is saved and is accessible using the . operator; • swaps
the points in the previous point set with those in the current set. The -= operator can be used
to identify the current points. To illustrate, let us use the triangle just entered as the basis for
drawing a quadrilateral:

•Lines <er>

<position cursor> <sp>
SO <er>
<er>

(access the previous point set)
(identify the current points)
(erase the last point)
(add a new point)
(close the figure)

Figure 3. Accessing the previous point set

Individual points from the previous point set can be referenced by using the • operator with $.
We will build a triangle that shares an edge with the quadrilateral:

Graphics Editor Tutorial

•Lines <er>
S.l <er>
$.2 <er>
<sp>
SO <er>
<er>

point 1 from

(reference point 1 from the previous point set)
(reference point 2)
(enter a new point)
(or $.1, to close the figure)

5

point 2 from previous point set

Figure 4. Referencing points from the previous point set

A point can also be given a name. The > operator allows you to associate an upper case letter
with a point just entered. A simple example is:

•Lines <er>
<position cursor> <sp>
>A
<position cursor> <sp>
<er>

(enter a point)
(name the point A)

In commands that follow you can now reference point A using the$ operator, as in:

•Lines <er>
SA
<position cursor> <sp>
<er>

2.2.3 Drawing Curves. Curves are interpolated from a sequence of three or more points. The
Arc command generates a circular arc given three. points on a circle. The arc is drawn starting
at the first point, through the second point, and ending at the third point. A circle is an arc
with the first and third points coincident. One way to draw a circle is thus:

•Arc <er>
<position cursor> <sp>
<position cursor> <sp>
$0 <er>
<er>

2.3 Editio& Objects

2.3.l Addressing Objects. An object is addressed by pointing to one of its handles. All objects
have an object-handle. Usually the object-handle is the first point entered when the object was
created. The objects command marks the location of each object-handle with an O. Type:

6 Graphics Editor Tutorial

*Objects - ' <er>

to see the handles of all the objects on the screen.

Some objects, Lines for example, also have point-handles. Typically each of the points entered
when an object is constructed becomes a point-handle. (Yes, an object-handle is also a point­
handle.) The points command marks each of the point-handles.

A handle is pointed to by including it within a defined-area. A defined-area is generated either
with a command line option or interactively using the graphic cursor. As an example, try delet­
ing one of the objects you have created on the screen.

•Delete <er>
<position cursor> <sp>
<position cursor> <sp>
<er>
<er>

(above and to the left of some object-handle)
(below and to the right of the object-handle)
(the defined-area should include the object-handle)
(if all is well, delete the object)

The defined-area is outlined with dotted lines. The reason for the seemingly extra <er> at the
end of the Delete command is to give you an opportunity to stop the command (using
<rubout>) if the defined-area is not quite right. Every command that accepts a defined-area
will wait for a confirming <er> . Use the new command to get a fresh copy of the remaining
objects.

Notice that defined-areas are entered as points in the same way that objects are created. Actu­
ally, a defined-area may be generated by giving anywhere from zero to 30 points. Inputting
zero points is particularly useful to point to a single handle. It creates a small defined-area
about the location of the terminating <er> . Using a zero point defined-area, the Delete com­
mand would be:

•Delete <er>
<position cursor>
<er>
<er>

(center the crosshairs on the object-handle)
(terminate the defined-area)
(delete the object)

A defined-area can also be given as a command line option. For example, to delete everything
in the display buffer give the universe option to the Delete command. Note the difference
between the commands Delete - u and erase.

2.3.2 Changing the Location of an Object. Objects are moved using the Move command.
Create a circle using Arc, then move it as follows:

•Move <er>
<position cursor> <er>
<er>
<position cursor> <er>

(centered on the object-handle)
(this establishes a pivot, marked with an asterisk)
(this establishes a destination)

The basic move operation relocates every point in each object addressed by the distance from
the pivot to the destination. In this case we chose the pivot to be the object-handle, so
effectively we moved the object-handle to the destination point.

2.3.3 Changing the Shape of an Object. The Box command is a special case of generating
lines. Given two points it creates a rectangle such that the two points are at opposite corners.
The sides of the rectangle lie parallel to the edges of the screen. Draw a box:

Graphics Editor Tutorial

•Box <er>
<position cursor> <sp>
<position cursor> <er>

7

Box generates point-handles at each vertex of the rectangle. Use the points command to mark
the point-handles. The shape of an object can be altered by moving point-handles. The next
example illustrates one way to double the height of a box.

•Move -p+ <er>
<position cursor> <sp>
<position cursor> <er>
<position cursor> <er>
<position cursor> <er>

two points for Box

(left of the box, between the top and bottom edges)
(right of the box, below the bottom edge)
(on the top edge)
(directly below on the bottom edge)

pivot
···----··-- ------······ ····-········ ······-- -------..... .,

l destination
: . .
i .
I . .
!
t ..•........

two points for defined -area

Figure S. Growing a box

Because the points flag is true, the operation is applied to each point-handle addressed. In this
case each point-handle within the defined-area is moved the distance from the pivot to the des­
tination. If p were false only the object-handle would have been addressed.

2.3.4 Changing the Size of an Object. The size of an object can be changed using the Scale
command. Scale scales objects by changing the distance from each handle of the object to a
pivot by a factor. Put a line of text on the screen and try the following Scale commands:

•Scale -f200 <er>
<position cursor> <er>
<position cursor> <er>
<er>

•Scale -f50 <er>
. <er>
<position cursor> <er>
<er>

(factor is in percent)
(point to object-handle)
(set pivot to rightmost character)

(reference the previous defined-area)
(set pivot above a character near the middle)

8 Graphics Editor Tutorial

* ____ __ pivot for Scale -f50

A LINE OF TEXT

~ LINE ~pivot for scale -f200

original line
of text

Figure 6. Scaling text

A useful insight into the behavior of scaling is to note that the position of the pivot does not
change. Also observe that the defined-area is scaled to preserve its relationship to the graphical
objects.

The size of objects can also be changed by moving point-handles. Generate a circle, this time
using the Circle command:

•Circle <er>
<position cursor> <sp> (specify the center)
<position cursor> <er> (specify a point on the circle)

Circle generates an arc with the first and third point at the point specified on the circle. The
second point of the arc is located 180" around the circle. One way to change the size of the cir­
cle is to move one of the point-handles (using Move -p).

The size of text characters can be changed via a third mechanism. Character height is a pro­
perty of a line of text. The Edit command allows you to change character height as follows:

•Edit - hheight <er>
<position cursor> <er>
<er>

(height is in universe units, see Section 2.4)
(point to the object-handle)

2.3.5 Changing the Orientation of an Object. The orientation of an object can be altered using
Rotate. Rotate rotates each point of an object about a pivot by an angle. Try the following
rotations on a line of text:

•Rotate -a90 <er>
<position cursor> <er>
<position cursor> <er>
<er>

•Rotate -a-90 <er>
• <er>
<position cursor> <er>
<er>

(angle is in degrees)
(point to object-handle)
(set pivot to rightmost character)

(reference previous defined-area)
(set pivot to a character near the middle)

Graphics Editor Tutorial 9

ivot for Rotate -a9o

....
~

ANOTHER ~~E OF TEXT

15 pivot for Rotate - a-so

~
ICE

Figure 7. Rotating text

2.3.6 Changing the Style or Width of Lines. In the current editor objects can be drawn from
lines in any of five styles (solid, dashed, dot-dashed, dotted, long-dashed) and three widths
(narrow, medium, bold). Style is controlled by the s option, width by w:

•Lines -wn,sdo <er>
<position cursor> <sp>
<position cursor> <sp>
<er>

creates a narrow width dotted line.

•Edit - wb,sdd <er>
<position cursor> <er>
<er>

changes the line to bold dot-dashed.

2.4 View Commands

(point to object-handle of the line)

All of the objects we have drawn lie within a Cartesian plane, 65,534 units on each axis,
known as the universe. Thus far we have displayed only a small portion of the universe on the
display screen. The command:

•Yiew - u <er>

displays the entire universe.

A mapping of a portion of the universe onto the display screen is called a window. The extent
or magnification of a window is altered using the zoom command. To build a window that
includes all of the objects you have drawn, type:

•zoom <er>
<position cursor> <sp>
<position cursor> <er>
<er> ,,

.
(above and to the left of any object)
(below and to the right, also end points)
(verify)

Zooming can be either in or out. Zooming in, as with a camera lens, increases the magnification
of the window. The area outlined by points is expanded to fill the screen. Zooming out
decreases magnification. The current window is shrunk so that it fits within the defined-area.
The direction of the zoom is controlled by the sense of the out flag; o true means zoom out.

10 Graphics EdittN TUlorial

The location of a window is altered using view. View moves the window so that a given point in
the universe lies at a given location on the screen.

••iew <er>
<position cursor> <er>
<position cursor> <er>

(locate a point in the universe)
(locate a point on the screen)

View also provides access to several predefined windows. We have already seen Yiew -u. Yiew
- b displays the home-window . The home-window is the window that circumscribes all of the
objects in the universe. The result is similar to that of the example using zoom given earlier.

Lastly, using view you may select to window on a particular region. The universe is partitioned
into 25 equal sized regions. Regions are numbered from I to 25 beginning at the lower left and
proceeding toward the upper right. Region 13, the center of the universe, is used as the default
region by drawing commands such as plot and vtoc (see [l]).

1.5 Other Commands

2.5.1 Interacting with Flies. To save the contents of the display buffer copy it to a file using the
write command:

•write filename <er>

The contents of .filename will be a GPS, thus it can be displayed using any of the device filters
(e.g., td [I]) or read back into ged.

A OPS is read into the editor using the read command:

•read filename <er>

The GPS from filename is appended to the display buff er and then displayed. Because read does
not change the current window, only some (or none) of the objects read may be visible. A
useful command sequence to view everything read is:

•read -e- filename <er>
•Yiew - b <er>

The display function of read is inhibited by setting the echo ftag to false; Yiew - b windows on
and displays the full display buff er.

The read command may also be used to input text files. The form is:

read [-option(s)] filename <er>

followed by a single point to locate the first line of text. A text object is created for each line
of text from filename. Options to read are the same as those for the Text command.

2.5.2 Leaving the Editor. Use the quit command to terminate an editing session. As with the
text editor ed, quit responds with ? if the internal buff er has been modified since the last write.
A second quit forces exit.

2.6 Other Useful Thln11 to Know·

2.6.1 One-Line UNIX Escape. As in ed, ! provides a temporary escape to the shell.

2.6.2 Typing Ahead. Most programs under UNIX allow you to type input before the program is
ready to receive it. In general, this is not the case with ged; characters typed before the
appropriate prompt are lost.

2.6.3 Speeding up Things. Displaying the contents of the display buffer can be time consum­
ing, particularly if much text is involved. The wise use of two flags to control what gets
displayed can make life more pleasant: the echo ftag controls echoing of new additions to the
display buff er; the text flag controls whether text will be outlined or drawn.

Graphics Editor Tutorial 11

3. COMMAND SUMMARY

In the summary, characters actually typed are printed in boldface. Command stages are printed
in italics. Arguments surrounded by brackets are optional. Parentheses surrounding arguments
separated by "or" means that exactly one of the arguments must be given. For example, the
Delete command (Section 3.2) accepts the arguments - universe, - view, and points.

3.1 Construct commands:

Arc [-echo.style, width] points

Box [-echo.style, width] points

Circle [-echo.style, width] points

Hardware [-echo] text points

Lines [-echo,style, width] points

Text [-angle,echo,beight, midpoint,rightpoint,text, width] text points

3.2 Edit commands:

Delete

Edit

Kopy

Move

Rotate

Scale

(- (universe or view) or points)

[-angle,echo,beight,style,width] (- (universe or view) or points)

[-echo,points,x] points pivot destination

[-echo,points,x] points pivot destination

[-angle,echo,kopy ,x] points pivot destination

[-echo,factor,kopy,x] points pivot destination

3.3 View commands:

coordinates points

erase

new

objects

points

view

x

zoom

(- (universe or view) or points)

(- (labelled-points or universe or view) or points)

(- (home or universe or region) or [-x] pivot destination)

[- view] points

[-out] points

3.4 Other commands:

quit

read [-angle,echo,height,midpoint,rightpoint,text, width] filename [destination]

set [-angle,echo,factor, bei~ht, kopy, midpoint,points,rightpoint,style,text, width,x]

write filename

!command

?

12 Graphics Editor Tutorial

3.5 Options:

Options specify parameters used to construct, edit, and view graphical 'Objects. If a parameter
used by a command is not specified as an option, the default value for the parameter will be
used. The format of command options is:

-option [,option]

where option is key/etter[va/ue]. Flags take on the values of true or false indicated by + and -
respectively. If no value is given with a flag, true is assumed.

Object Options:

anglen

echo

factorn

heightn

kopy

midpoint

out

points

rightpoint

styletype

text

widthtype

x

Area Options:

borne

regionn

universe

view

Specify an angle of n degrees.

When true, changes to the display buff er wilt be echoed on the screen.

Specify a scale factor of n percent.

Specify height of text to be n universe-units (0:::::; n < 1280).

The commands Scale and Rotate can be used to either create new objects or
to alter old ones. When the kopy flag is true, new objects are created.

When true, use the midpoint of a text string to locate the string.

When true, reduce magnification during zoom.

When true, operate on points otherwise operate on objects.

When true, use the rightmost point of a text string to locate the string.

Specify line style to be one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

Most text is drawn as a sequence of lines. This can sometimes be painfully
slow. When the text flag is false, text strings are outlined rather than drawn.

Specify line width to be one of following types:
n narrow
m medium
b bold

One way to find the center of a rectangular area is to draw the diagonals of
the rectangle. When the x ftag is true, defined-areas arc drawn with their
diagonals.

Reference the home-window.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

4. ACKNOWLEDGEMENTS

Ged borrows freely from the ideas and code of the gex program by D. J. Jackowski. The first
version of ged was written by D. E. Pinkston.

Graphics Editor Tutorial 13

5. REFERENCES

[I] Feuer, A. R. UNIX Graphics Overview, Bell Laboratories (1979).

[2] Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's
Manual- Release 3.0, Bell Laboratories (June 1980) .

.. -..- .
..... la r- ' :

14 Graphics Editor Tutorial

APPENDIX: Some Examples of What Can be Done

1. Text Centered Within a Circle

•Circle <er>
<position cursor> <sp>
<position cursor> <er>
•Text - m <er>
some text <er>
$.0 <er>
<er>

(establish center)
(establish radius)
(text is to be centered)

(first point from previous set, i.e., circle center)

some text

Graphics Editor Tutorial

2. Making Notes on a Plot

•!gas I plot -g >A <er>

•read -e- A <er>
•view - h <er>
•Lines -sdo <er>
<position cursor> <sp>
<position cursor> <sp>
<position cursor> <sp>

(generate a plot, put it in file A)

(input the plot, but do not display it)
(window on the plot)
(draw dotted lines)

<er> (end of Lines)
•set -h150,wn <er> (set text height to 150, line width to narrow)
•Text -r <er> (right justify text)
threshold beyond which nothing matters <er>
<position cursor> <er> (set right point of text)
•Text -a-90 <er> (rotate text negative 90 degrees)
threshold beyond which nothing matters <er>
<position cursor> <er> (set top end of text)
•x <er> (find center of plot)
<position cursor> <sp> (top left of plot)
<position cursor> <er> (bottom right)
•Text - h300,wm,m <er> (build title: height 300, weight medium, centered)
SOME KIND OF PLOT <er>
<position cursor> <er> (set title centered above plot)

10

9

8

7

6

5

4

3

2

SOME KIND OF PLOT

threshold beyond which no1hing matters -------- -- ·---------........ ___ -......... _ _ --------· ...
·~ :;
I Cit

16
i a:
: "" : ct
''<

~
IE
~ c;·
~

2.
:T .:;·

I.a

!3
lg ,_ ·-:ct : ;; .

1~~~"-~--'~~.......1~~.....1.~~-L~ _._~~-'-~~_._~~_._~__,

15

0 1 2 3 4 5 6 7 8 9 10

16 Graphics Editor Tutorial

3. A Page Layout with Drawings and Text

•!rand -s1,n100 I title -v•seed t• I qs~rt I bucket I hist -r12 >A <er>
(put a histogram, region 12, of 100 random numbers into file A)

•l rand -sl,ntoo I title -v"seed r I qsort I bucket I hist -rt3 >B <er>
(put another histogram, region 13, into file B)

•! ed <er> (create a file of text using the text editor)
a <er>
On this page are two histograms <er>
from a series of 40 <er>
designed to illustrate the weakness <er>
of multiplicathe congruential random number generators. <er>
.pl \n(nlu <er> (mark end of page)
• <er>
w C <er>
156
q <er>
•! nroff CI yoo C <er>

•view - u <er>
•read A <er>
•read B <er>
•read -h300,wn,m C <er>
<position cursor> <er>
•view - h <er>

(put the text into file C)

(format C, leave the output in C)

(window on the universe)

(text height 300, line weight narrow, text centered)
(center text over two plots)
(window on the resultant drawing)

~
;::i

~
~

On
to

this page are two histograms from a series of 40 designed
illustrate the weakness of multiplicative congruential random

number generators.

24--~~~~~~~~~~~~~~~~--

2 2 ·------·--------- ·----·····. ·-- -·-·. ·-·-----·--··· .. ·····-··· -·

2 0 t ·-·--···--·---··--1· --------···--·--------·----------···-
18 • -------·-·-. ·-
16 .. _________ -------

~:[==r:=
101-··

e
6

4

--... --... ---- .. -------

------·- ____ _. _____ _ ---

2·--- .. ·----·-- - --- -----
0' I I I I I I I 1 1

0.0281 0.165 0.301 0.438 0.574 0.71 0.847 0.983

SEED t

22...-~~~~~~~~~~~~~~~~--

20 .. ·-- .•.. --- -·· -·. ··--------- ---------··-····----- -· ·-. --···

1e1-- ---•.•••.•.••• ----·--·-·-····---···---··· __ _

16·-·- -14

12·-- ·I I ·-----·--------

101---f-- -·-+-----.. ·----· -- -..... ---·------·· -----·--
Bl---•------•------··---"'··•· ·----·-----·--
61---f --- ---1-·····-I--··--· ••.. ---·- ----

4~---1--- -- - ---4------1--. ---1-- ----·--··· -1---· -i·. -

2•·-i- --- ·---1----------·-· -----·------·-~

O' I I I I I I I I I

0.00787 0.149 0.289 0.43 0.571 0.711 0.852 0.993

SEED 2

~
~ :r
5·
~
~
~
t

-.....

..

STAT-A Tool for Analyzing Data

A. R. Feuer
A. Guyton

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX
E.6.3

Stat is a collection of numerical programs under the UNIXt operating system that
can be interconnected using the shell [l] to form processing networks. Included
within stat are programs to generate simple statistics and pictorial output.

This paper introduces stat concepts and commands through a collection of exam­
ples. A complete definition of each command is given.

1. INTRODUCTION

Much of the power for manipulating text under UNIX comes from the numerous well defined
text processing programs that can be readily interfaced to one another. The general interface is
an unformatted text string and the interconnection mechanism is usually the shell [I]. Because
the programs are independent from one another, new functions can easily be added and old
ones changed. And because the text editor also operates on unformatted text, arbitrary text
manipulation can always be performed even when the more specialized routines are insufficient.

Stat uses the same mechanisms to bring a similar power to the manipulation of numbers. It
consists of a collection of numerical processing routines that read and write unformatted text
strings. It includes programs to build graphical files that can be manipulated using a graphical
editor. And since stat programs process unformatted text, they can readily be connected with
other UNIX command-level (i.e., callable from shell) routines.

It is useful to think of the shell as a tool for constructing processing networks in the sense of
data flow programming. Command-level routines are the nodes of the network and pipes and
tees are the links. Data flows from node to node in the network via links.

Section 2 of this paper is a introduction to the concepts of stat. Sectipn 3 contains a description
of each of the nodes. A few examples of stat usage are given in an appendix.

2. BASIC CONCEPTS

All numerical data in stat is of type vector. A vector is a sequence of numbers separated by del­
imiters. Vectors are processed by command-level routines called nodes.

2.1 Transformers

A transformer is a node that reads an input element, operates upon it, and outputs the resulting
value. For example, suppose file A contains the vector

I 2 3 4 5

then the command

root A (typed input 1s bold)

produces

t UNIX is a trademark of Bell Laboratories.

2

1.41421 1. 73205 2 2.23607

the square root of each input element. Analogously,

log A

produces

0 0.693147 1.09861 1.38629 1.60944

the natural logarithm of each element of vector A.

STAT-A Too/for Analyzing Data

Af, for arithmetic function, is a particularly versatile transformer. Its argument is an expression
that is evaluated once for each complete set of input values. A simple example is

af "2•A '"'2"

which produces

2 8 18 32 50

twice the square of each element from A. Expression arguments to af are usually surrounded
by quotes since some of the operator symbols have special meaning to the shell.

2.2 Summarizers

A summarizer is a node that calculates a statistic for a vector. Typically, summarizers read in all
of the input values, then calculate and output the statistic. For example, using the vector A
from above,

mean A

produces

3

and

total A

produces

15

2.3 Parameters

Most nodes accept parameters to direct their operation. Parameters are specified as command­
line options. Root, for example, is more general than just square root, any root may be
specified using the r option. Thus

root -r3 A

produces

1.25992 1.44225 1.5874

the cube root of each element from A.

2.4 Building Networks

I. 70998

Nodes are interconnected using standard shell concepts and syntax. Pipes are the linear con­
nector attaching the output of one node to the input of another. As an example, to find the
mean "of the cube roots of vector A is simply

root -r3 A I mean
1.39991

STAT-A Too/for Analyzing Data 3

Often the required network is not so simple. Tees and sequence can be used to build nonlinear
networks. To find the mean and median of the transformed vector A is

root -r3 A I tee B I mean; point B
1.399
1.442

Beware of the distinction between the sequence operator, ";", and the linear connector, the
pipe. Because processes in a pipeline run concurrently, each file name in the pipeline must be
unique. Sequence implies run to completion (so long as " & " isn't used) hence names may be
duplicated, and often are.

There is a special case of nonlinear networks where the result of one node is used as
command-line input for another. Command substitution makes this easy. For example, to
generate residuals from the mean of A is simply

af •A - 'mean A' •
-2 -1 0 2

2.5 Vectors, a Closer Look

Thus far we have used vectors, but not created them. One way to create a vector is by using a
generator. A generator is a node that accepts no input and outputs a vector based upon
definable parameters. Gas is a: generator that produces additive sequences. One of the parame­
ters to gas is the number of elements in the generated vector. As an example, to create the
vector A that we have been using is

gas -n5
1 2 3 4 5

Vectors are, however, merely text files. Hence we could use the text editor to create and
modify the same vector.

A useful property of vectors is that they consist of a sequence of numbers surrounded by del­
imiters, where a delimiter is anything that is not a number. (Numbers are constructed in the
usual way: [sign] (digits)(.digits) [e[sign]digits], where fields are surrounded by brackets and
parentheses. All fields are optional, but at least one of the fields surrounded by parentheses
must be present.) Thus vector A could also be created by building the file B in the text editor
as

lpartridge,2tdoves,3frhens,4cbirds,5gldnrings,

which when read yields

list B
1 2 3 4 5

A note should be made as to the size of a vector: vectors are as long as they are. That is, a
vector is a stream containing numbers terminated by an EOF (EQT from the keyboard). A
good illustration of this is to use the __ keyboard as the source of the input vector, as in

4

cusum -cl
2 <return>
2
16.3 <return>
18.3
25.4 <return>
43.7
14 <return>
57.7
<cntrl d>

STAT-A Too/for Analyzing Data

which implements a running accumulator. Since no vector was given to cusum, the input is
taken from the standard input until an EOT.

2.6 A Simple Example: Interacting with a Data Base

When used in conjunction with UNIX tools for manipulating text stat provides an effective
means for exploring a numerical data base. Suppose, for example, we have a subdirectory
called data containing data files that include the lines:

path length = nn
node count = nn

(nn is any number)

Then we can access the value for node count from each file, sort the values into ascending
order, store the resulting vector in file A, and get a copy on the terminal by typing

grep •node count• data/• I qsort I tee A
17 19 22 32 39
50 68 78 125 139

Note that if some of the data files have numbers in their name, we must protect against those
numbers from being considered data. Using cat this is easy:

cat data/• I grep •node count• I qsort I tee A

To get a feel for the distribution of node counts shell iteration can be used to advantage.

for i in .25 .S .75
do point - p$i A
done
24.5
44.5
75.5

generates the lower hinge, the median, and the upper hinge of the sorted vector A.

2. 7 Translators

Translators are used to view data pictorially. A translator is a node that produce a stream of a
different structure from that which it consumes. Graphical translators consume vectors and
produce pictures in a language called GPS, for graphical primitive string. (Among the programs
that understand GPS is ged, the graphical editor [2], which means that the graphical output of
any translator can be directly edited at a display terminal.) Hist is an example of a translator; it
produces a GPS that describes a histogram from input consisting of interval limits and counts.
The summarizer bucket produces limits and counts, thus

bucket A I hist I td

generates a histogram of the data of vector A and displays it on a display terminal (Fig. 1). Td
translates the GPS into machine code for Tektronix 4010 series display terminals.

STAT-A Too/for Analyzing Data 5

Figure 1. bucket ·A I hist I td

1~--~

6 I-·· ••••••••••••• ··- -------- -··· ··-·· •••••••• ··-·· -- --- -----··········-··- -- .•••••••••••• ··--·----

5 --·· -······ -·-·-.. ···-···-·· •..... ····-·--------···· .. ·······------

4 ---·· .. . ···········-···-- ---······ ··················-···-·····························

3 ········· ········-· _.....,. ________ ··········----................. ·····-·

2 I-··----- ··············---· ···········---···-- ············------------

1 .. ······· ··-··············· ············-····· ••••••.••••.••.•••• ······-············ ···----

o.._ _ _.. __ ~~ ~~------~------~------~___,
17 47.5 78 109 139

A wide range of X-Y plots can be constructed using the translator plot. For example, to build a
scatter plot of path length with node count (Fig. 2) is

grep "path length• data/• I title -v•path length" >A ,
grep "node count" data/• I title -v"node count" I plot - FA,dg I td

A vector may be given a title using title. When a titled vector is plotted the appropriate axis is
labeled with the vector title. When a titled vector is passed through a transformer the title is
altered to reflect the transformation. Thus in a graph of log node count versus the cube root of
path length, i.e.,

grep "node count• I title -v•node count" I log > B
root -r3 A I plot -F-,dg B I td

the axis.labels automatiqi.llyagree with the vectors plotted (Fig. 3).

3. NODE DESCRIPTIONS

The stat nodes are divided into four classes: transformers, summarizers, translators, and genera­
tors. In this section a description ~f each node is given. The descriptions are organized by
node class.

6 ST AT- A Tool for Analyzing Data

Figure 2. Scatter plot

140

120
0

100

..... z 80 ::> 0
8
w 0
0 60 0 z

0

40 0
0

20 0

0
0 50 100 150 200 250 300

PATH LENGTH

Figure 3. Transformed scatter plot

0

4.8 0

4.6

4.4 0
I-

0 z 4.2
::>
0 u 4
~ 0 8 3.8 z

°' 0
2 3.6

0
3.4

3.2
0

3
0

2.8
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

root3 PATH LENGTH

ST AT-A Tool for Analyzing Data 7

All of the nodes accept the same command-line format:

A command is

A command-name is

An argument is

An option-string is

An option is

A file-name is

a command-name followed by zero or more arguments.

the name of any stat node.

a file-name or an option-string.

a - followed by one or more options.

one or more letters followed by an optional value. Options may be
separated by commas.

any name not beginning with - , or a - by itself (to reference the
standard input).

Each file argument to a node is taken as input to one occurrence of the node. That is, the node
is executed from its initial state once per file. If no files are given, the standard input is used.
All nodes, except generators, accept files as input, hence it is not made explicit in the synopses
that follow.

Most nodes accept command-line options to direct the execution of the node. Some options take
values. In the following synopses, to indicate the type of value associated with an option, the
option key-letter is followed by:

i to indicate integer,

I
string

to indicate floating point or integer,
to indicate a character string, or

file to indicate a file-name

Thus the option ci, implies c expects an integer value (c : = integer).

3.1 Transformers

Transformers have the form

Vin trans/ orm V0 ui

where, by convention, Vin is a vector Y, with elements y 1 through Yk (y I:k) and V0 ui is a vector
Z, Zt:m. All transformers have a ci option, where c specifies the number of columns per line in
the output. By default, c : = 5.

abs - absolute value

Z/ := jy,I

af [-t "] - arithmetic function

The command-line format of af is an extension of the command-line description given
above, with expression replacingfile-name; an expression consists of operands and operators.

An operand is either a vector, function, constant, or expression:

A vector is

A function is

A constant is

a file name with the restriction that file names begin with a
letter, and are composed only of letters, digits, ".", and"_".
The first unknown file name (one not in the current directory)
references the standard input.

the name of a command followed by its arguments in
parentheses. Arguments are written in command-line format.

an integer or floating point (but not "E" notation) number.

8 STAT-A Too/for Analyzing Data

The operators are listed below in order of decreasing precedence. Parentheses may be used
to alter precedence. X; {y;) represents the start element from X (Y) for the expression.

'Y reference Y;+i· Yi+I is consumed; the next value from Y is Yi+l·
Y is a vector.

X • Y -Y X; raised to the Y; power, negation of y;. Association is right to
left. X and Y are expressions.

X•Y X/Y X%Y x1 multiplied by, divided by, modulo Y;· Association is left to
right. X and Y are expressions.

X + Y X-Y X; plus, minus y1• Association is left to right. X and Y are
expressions.

X,Y

Options:

yields x1 , y1 • Association is left to right. X and Y are expres­
sions.

t causes the output to be titled from the vector on the standard input.
' causes function expansions to be echoed.

ceil - ceiling

z1 : = smallest integer greater than y1

cusum - cumulative sum
i

z, := ~ Y1
j=I

exp - exponential function

floor - floor

z1 : = largest integer less than Y;

gamma - gamma function

Z; := r{y;)

list [-dstring] - list vector elements

Z; := Y;

If d is not specified, then any character that is not part of a number is a delimiter. If d is
specified, then the white space characters (space, tab, and new-line) plus the character(s) of
string are delimiters. Only numbers surrounded by delimiters are listed.

log [-bf] - logarithmic function

z1 := logb Y1

By default, b . - e (e ~ 2.71828 ...)

STAT-A Too/for Analyzing Data

mod [- mf] - modulus

z; : = Y; modulo m

By default, m : = 2

pair [- Ffile xi] - pair elements

F is a vector X, x 1,j, and x is the number of elements per group from X.
Let % denote modulo and / denote integer division, then

l YU/(x+I)) z, :=
ifi%(x+l) = 0

X(i-i/(x+I)) if i%(x+I) * 0
rank (Z) = (x +l)minimum (k ,j/x)

If F is not specified, then X comes from the standard input.
If both X and Y come from the standard input, X precedes Y.

By default, x : = I

power [- pf] - raise to a power

By default, p : = 2

root [-rj] - extract a root

Z; := r-vY:
By default, r : = 2

round [- pi si] - round off val ucs

if s is specified, then

Z; := Y; rounded up to s significant digits,

else if p is specified, then

z1 y1 rounded up to p digits beyond the decimal point.

By default, p : = 0

siline [-ij ni sf] - generate a line, given a slope and intercept

Z; = Sy; + i
if n is specified, then

Y "" 0, l, 2, 3, , n.

By default, i := 0, s :=

sin - sine function

z1 : = sin(y;)

spline [-options] - interpolate smooth curve

Y and Z are sequences of X, Y coordinates (like that produced by pair).

For more information about spline, see spline(l) in the UNIX User's Manual [4].

9

10 STAT-A Too/for Analyzing Data

subset [-afbfFji/e ii lfnl np pfsi ti] - ~enerate a subset

Z consists of elements selected from Y. Selection occurs as follows:

Let C(w) be true if

(w>a orw<b orw=p)andw-::f:.I

is true. If neither a, b, nor p are specified, C(w) is true if w :;. I is true.

CASE 1 - nl or np not specified.

If F is specified, then
else

key; - X;

key;= Y;·

For r = s, s +i. s +2i, · · · with r < t.
Yr becomes an element of Z if C(key,) is true.

By default, i :=I, s := I, t := 32767.

CASE 2 - np is specified.

Fis a vector X, x l;j·

For r =xi. x 2, · • ·, x1,

Yr becomes an element of Z if C(y,) is true.

CASE 3 - nl is specified.

F is a vector X, x l;J.

For r *- x., X2, • • • , xi,
Yr becomes an element of Zif C(yr) is true.

For cases 2 and 3, if F is not specified then the standard input is used for X. Either X
or Y may come from the standard input, but not both.

3.2 Summarizers

Summarizers have the form

V;,, summarize V0 ..,

where, again, Vin is a vector Y, y u, and V a11t is a vector Z, z l;m. For many summarizers,
rank(Z) = 1.

bucket [- ai ci Ffile hf ii lf ni 1 - break into buckets

Y must be a sorted vector.
Z consists of odd elements (parenthesized) which are bucket limits and even elements
which are bucket counts.

The count is the number of elements from Y greater than the lower limit (greater than or
equal to for the lowest limit), and less than or equal to the higher limit. If specified, the
limit values are taken from F. Otherwise the limits are evenly spaced between I and b with
a total of n buckets. If n is not specified, the number of buckets is determined as follows:

h if i is specified

n := k ifa is specified
a + 1
I + log2k if neither a nor i are specified.

c specifies the number of columns in the output.

By default:

ST AT- A Tool for Analyzing Data

c := 5
b : = largest element of Y
I : = smallest element of Y

cor [- Ffile] - correlation coefficient
k k
~X; ~YI

If F . X l - t=l d - ;-i h
1s a vector , Xt:b etx =-k-an y =-k-, ten

k
~(x1 -x)(y1 -ji")
i=I

I I

X and Y must have the same rank. If F is not specified, the standard input is used for X. If
both X and Y come from the standard input, X precedes Y.

bilo [- b I o ox oy] ...:... high and low values

z 1 :=lowest value across all input vectors

z2 := highest value across 'all input vectors

Options to control output:

b Only output high value.
I Only output low value.
o Output high, low values in option form (suitable for plot).
ox Output high, low values with "x" prefixed.
oy Output high, low values with .. y" prefixed.

lreg [- Ffile i o s] - linear regression
k k

~x, ~Yi
If F is a vector X, x l:k, let x = ;-~ and y = ;-~ , then

and
k

~X;Y1
;-1

k
-xf'

Z2 := --k----
~x;2
/=l -2 ---x

k

X and Y must have the sam:e rank.
If F is not specified, then

x ... 0, 1, 2, ... , k

Options to control output:

(intercept)

(slope)

Only output the intercept.
o Output the slope and intercept in option form (suitable for siline).
s Only output the slope.

12 ST AT-A Tool for Analyzing Data

mean [-fj ni pf] - (trimmed) mean.

k

}; Y;
;-1

Z1 :=
k

Y may be trimmed by

(l/f) k elements from each end,
pk elements from each end, or
n elements from each end.

By default, n := 0

point [-fj ni pf s] empirical cumulative density function point

z 1 linearly interpolated Y value corresponding to the

100 (l/f)
lOOp
nth

percent point, the
percent point, or the
element.

Negative option values are taken from the high end of Y. Option s implies Y is sorted.

By default, p := .5 (median)

prod - product
k

z, :=fl Y;
i-1

qsort [-ci] - quicksort

z; : = ith smallest element of Y.

By default, c := 5

rank - rank

z 1 := number of elements in Y.

total - sum
k

Z1 := ~ Y;
l=l

var - variance
k

};(y; - f)2
l=l

k-1

3.3 Translators

Translators have the form

F;" translate Fout

where F;" may be a vector or a GPS depending upon the translator. F0ui is a GPS. A GPS
(Graphical Primitive String) is a format for storing a picture. A picture is defined in a Carte­
sian plane of 64K points on each axis. The plane, or universe, is divided into 25 square regions

ST AT-A Tool for Analyzing Data 13

numbered 1 to 25 from the lower left to the upper right. Various commands exist that can
display and edit a GPS. For more information, see graphics(!) in the UNIX User's Manual [4]
and UNIX Graphics Overview (3).

bar [-a bf g ri wi x/ xa yf ya yif yb/] - build a bar chart

F;n is a vector, each element of which defines the height of a bar. By default, the x-axis
will be labeled with positive integers beginning at 1; for other labels, see label.

Options:

a Suppress axes.
b Plot bar chart with bold weight lines, otherwise use medium.
f Do not build a frame around plot area.
g Suppress background grid.
ri Put the bar chart in GPS region i, where i is between I and 25 inclusive.

The default is 13.
wi i is the ratio or the bar width to center-to-center spacing expressed as a

percentage. Default is 50, giving equal bar width and bar space.
x/ (yf) Position the bar chart in the GPS universe with x-origin (y-origin) at/
xa (ya) Do not label x-axis (y-axis).
ylf f is the y-axis low tick value.
yb/ f is the y-axis high tick value.

hist [-ab f g ri x/ xa y/ya ylf yh/] - build a histogram

F;,. is a vector (or the type produced by bucket) of odd rank, with odd elements being lim­
its and even elements being bucket counts.

Options:

a Suppress axes.
b Plot histogram with bold weight lines, otherwise use medium.
f Do not build a frame around plot area.
g Suppress background grid.
ri Put the histogram in GPS region i, where i is between 1 and 25 inclusive.

The default is 13.
x/ (yf) Position the histogram in the GPS universe with x-origin (y-origin) at/
xa (ya) Do not label x-axis (y-axis).
yl/ f is the y-axis low tick value.
yb/ f is the y-axis high tick value.

label [-b c Ffile b p ri x xu y yr] - label the axis of a GPS file

F;n is a GPS of a data plot (like that produced by hist, bar, and plot). Each line of the
label file is taken as one label. Blank lines yield null labels. Either the GPS or the label file,
but not both, may come from the standard input.

Options:

b Assume the input is a bar chart.
c Retain lower case letters in labels, otherwise all letters are upper case.
Ffile file is the label file.
b Assume the input is a histogram.
p Assume the input is an x-y plot. This is the default.
ri Labels are rotated i degrees. The pivot point is the first character.
x Label the x-axis. This is the default.
xu Label the upper x-axis, i.e., the top of the plot.
y Label the y-axis.
yr Label the right y-axis, i.e., the right side of the plot.

14 STAT-A Too/for Analyzing Data

pie [- b o p poi ppi ri v xi yi] - build a pi.e chart

Fin is a vector with a restricted format. Each input line represents a slice of pie and is of
the form:

[< i e f ccolor >] value [label]

with brackets indicating optional fields. The control field options have the following effect:

e
f
ecol or

The slice will not be drawn, though a space will be left for it.
The slice is "exploded," or moved away from the pie.
The slice is filled. The angle of fill lines depends on the color of the slice.
The slice is drawn in color rather than the default black. Legal values for
color are b for black, r for red, g for green, and u for blue.

The pie is drawn with the value of each slice printed inside and the label printed outside.

Options:

b Draw pie chart in bold weight lines, otherwise use medium.
o Output values around the outside of the pie.
p Output value as a percentage of the total pie.
poi Output value as a percentage, but total of percentages equals i rather than

100. pn 100 is equivalent to p.
ppi Only draw i percent of a pie.
ri Put the pie chart in region i, where i is between 1 and 25 inclusive. The

default is 13.
v Do not output values.
xi (yi) Position the pie chart in the GPS universe with x-origin (y-origin) at i.

plot [-a b cstring d f Ffile g m ri x/xa xb/ xif xlf xni xt y/ ya yb/yifylfynf yt] - plot a graph

F;n is a vector(s) which contains the y values of an x-y graph. Values for the x-axis come
from F. Axis scales are determined from the first vector plotted.

Options:

a
b
cstring

d
f
Fjile

g
m
ri

Suppress axes.
Plot graph with bold weight lines, otherwise use medium.
The character(s) of string are used to mark points. Characters from string
are used, in order, for each separately plotted graph included in the plot.
If the number of characters in string is less than the number of plots, the
last character will be used for all remaining plots. The m option is implied.
Do not connect plotted points, implies option m.
Do not build a frame around plot area.
Use file for x-values, otherwise the positive integers are used. This option
may be used more than once, causing a different set of x-values to be
paired with each input vector. If there are more input vectors than sets of
x-values, the last set applies to the remaining vectors.
Suppress the background grid.
Mark the plotted points.
Put the graph in GPS region i, where i is between 1 and 25 inclusive. The
default is 13.

x/ (yf) Position the graph in the GPS universe with x-origin (y-origin) atf
xa (ya) Omit x-axis (y-axis) labels.
xb/ (yb/) f is the x-axis (y-axis) high tick value.
xif (yif) f is the x-axis (y-axis) tick increment.
xlf (ylf) f is the x-axis (y-axis) low tick value.
xni (yoi) i is the approximate number of ticks on the x-axis ·(y-axis).

ST AT-A Tool for Analyzing Data 15

xt (yt) Omit x-axis (y-axis) title.

title [-b c lstring vstring ustring] - title a vector or GPS

F;n can be either a GPS or a vector with F""' being of the same type as F;n. Title prefixes
a title to a vector or appends a title to a GPS.

Options apply as indicated:

b
c
lstring
ustring
vstring

·3_4 Generators

Make the GPS title bold.
Retain lower case letters in title, otherwise all letters are upper case.
For a GPS, generate a lower title : .. string.
For a GPS, generate an upper title : = string.
For a vector, title:= string.

Generators have the form

generate V0"'

where V0 "' is a vector Z, zu. All generators have a cl option where c specifies the number of
columns per line in the output. By default, c : = 5.

gas [-if ni sf tf] - generate additive sequence

Z is constructed as follows:

rank(Z) n.

if lz, I <t

otherwise

By default, i := l, n := 10, s := 1, t := oo

prime [- hi Ii ni] - generate prime numbers

The elements of Z are consecutive prime numbers with

I :::s Z; :::s h

rank(Z) < n.

By default, n := 10, I := 2, h :- oo

rand [- hf V mf ni si] - generate random sequence

The elements of Z are random numbers generated by a multiplicative
congruential generator with s acting as a seed, such that

I ::s; z1 ::s; h

If m is specified, then

h = m +I

rank(Z) = n.

By default, h :- l, I :- 0, n :- 10, s :=

16 STAT-A Too/for Analyzing Data

REFERENCES

[1] S. R. Bourne. An Introduction to the UNIX Shell, Bell Laboratories.

[2] A. R. Feuer. A Tutorial Introduction to the Graphical Editor, Bell Laboratories.

[3] A. R. Feuer. UNIX Graphics Overview, Bell Laboratories.

[4] T. A. Dolotta, S. B. Olsson, and A.G. Petruccelli (eds.). UNIX User's Manual-Release
3.0, Bell Laboratories (June 1980).

APPENDIX

• Example l:

PROBLEM

Calculate the total value of an investment held for a number of years at an interest
rate compounded annually.

SOLUTION

Principal= 1000
echo Total return on $Principal units compounded annually
echo "rates:\t\t\c"; gas -s.05,t.IS,i.03 I tee rate
for Years in 1 3 S 8
do

echo "$Years year(s):\t\c"; af "$Principal•(l+rate)"'$Years"
done

Total return
rates:
I year(s):
3 year(s):
5 year(s):
8 year(s):

NOTES

units compounded annually on 1000
0.05
1050
1157.62
1276.28
1477.46

0.08 0.11
1080 1110
1259.71 1367.63
1469.33 1685.06
1850.93 2304.54

0.14
1140
1481.54
1925.41
2852.59

Notice the distinction between vectors and constants as operands in the expression
to af. The shell variables $Principal and $Years are constants to af, while the file
rate is a vector. Af executes the expression once per element in rate.

STAT-A Too/for Analyzing Data 17

• Example 2:

PROBLEM

Given are three ordered veCtors (A, B, and C) of scores from a number of tests.
Each vector is from one test-taker, each clement in a vector is the score on one test.
There are missing scores in each vector indicated by the value -1. Generate three
new vectors containing scores only for those tests where no data is missing.

SOLUTION

echo Before:
gas -n~rank A~ I tee N I af "label,A,B,C"

for i in N B C A
do subset -FA,1-1 Si >sSi; done
for i in N A C B
do subset -FsB,1-1 sSi I yoo sSi; done
for i in N A B C
do subset -FsC,1-1 sSi I yoo sSi; done

echo "\nAfter:"
af "sN,sA,sB,sC"

Before:
1 5 6 -1
2 7 10 10
3 -1 10 9
4 JO -] 8
5 6 5 -1
6 5 7 5
7 -] 7 8
8 -1 -1 8
9 3 -1 8
10 6 10 10
11 7 5 7

After:
2 7 10 IO
6 5 7 5
JO 6 IO 10
11 7 5 7

NOTES

The approach is to eliminate those elements in all vectors that correspond to -1 in
the base vector. Each of the three vectors takes turn at being the base. It is impor­
tant that the base be subsetted last. The command yoo (see gutil(l) [4]) takes the
output of a pipeline and copies it into one of the files used in the pipeline. This
cannot be done by redirecting the output of the pipeline as this would cause a con­
current read and write on the same file.

The printing of the "Before" matrix illustrates a useful property of af. The first
name in an expression that does not match any name in the present working direc­
tory is a reference to the standard input. In this example, label references the input
coming through the pipe.

18 STAT-A Too/for Analyzing Data

• Example 3:

PROBLEM

Generate a bar chart of the percent of execution time consumed by each routine in
a program.

SOLUTION

prof I cut -cl -ts I sed -e td -e "/ O.O/d" -e •sr *Jr >P
echo These are the execution percenta~es; cat P
title P -v"execution time in percent" I bar -xa -ylO,yblOO I

label -br-45,FP I td

These are the execution percentages
_fork 32.9
_creat 14.3
_sbrk 14.3
_read 14.3
_open 14.3
_prime 9.9

NOTES

Prof is a UNIX command that generates a listing of execution times. Cut and sed
are used to eliminate extraneous text from the output of prof. (It is because verbi­
age can get in the way that stat nodes say very little.) Notice that P is a vector to
title while it is a text file to cat and label.

Figure a1

98 -------······ .. -............... .

9 t

84 ... _

.... 77 ·--·------------------------------------·------···--------------------· z
w u 70
a:
~ 63 -

!; 56 ___________ --------------------·--··-- ----·-··----·---··----

49

28 i. L -

21 ... -

14 -----

7 ----- ------ ----- -----

0.__~ ~.-..~---~--....... .__--~--~--~-------_.~...-.~~-

STAT-A Tool/or Analyzing Data 19

• Example 4:

PROBLEM.

Plot the relationship between the execution time of a program and the number of
processes in the process table.

SOLUTION

The first program generates the performance data

for i in 'gas -n12'
do

done

ps -ae I we -I >>Procs&
time prime -nlOOO >/dev/null 2>>Times
sleep 300

The second program analyzes and plots the data

for i in real user sys
do

done

grep Si Times I sed •s/Si//" I
awk - F: "{ if(NF= =2) print \$1*60+\$2; else print }" I

title -v"Si time in seconds" >Si
siline - ·1reg -o,FProcs Si. Procs >Si.fit

title -v"number of processes" Procs I yoo Procs

plot -dg,FProcs real -rll >R12
plot -ag,FProcs real.fit -r12 >>R12
plot -dg,FProcs sys -r13 > R13
plot -ag,FProcs sys.fit -r13 >>R13
plot - dg,FProcs user - r8 >RS
plot -ag,FProcs user.fit -r8 >>R8
ged R12 R13 RS

NOTES

The performance data is the execution time, as reported by the UNIX time com­
mand, to generate the first 1000 prime numbers. Time outputs three times for each
run: the time in system routines, the time in user routines, and the total real time.
Each of these types of time is treated separately by the analysis program.

The short awk program converts "minutes:seconds" format to "seconds." Lreg
does a linear regression of the time vectors on the size of the process table. Siline
generates a line based on the parameters from the regression. One plot is generated
for each type of time. Each plot is put into a different region so that they can be
displayed and manipulated simultaneously in the graphical editor.

Ill
a
z
0
u
ti
z ..
Ill
:II
~
Ill
a::

20 STAT-A Tool/or Analyzing Data

Figure a2

• 0 z
0
u

t.I ..,
Ill

z
H

Ill
:II t.2
Ill ,.. ..

0.1 0 0

1010._ ___ 4~5-----2~0-----.~5-----50.._ ___ 5~5------'40 0.4 ---------------------------" 10 '5 50 40 55 20

NUMBER 0, ,ROCEllEI NUMBER 0, ,ROCEllEI

8.4

8.2

• 0 z
8
Ill • 7.8
z,
a
IC
Ill • :::I

NUMBER OF ,ROCEllEI

January 1981

Administrative Information for the UNIX Graphics Package

R. L. Chen

l. INTRODUCTION

D. E. Pinkston
A. Guyton (4/1/80 revision)

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

E.6.4

This document is a reference guide for system administrators who are using or establishing a
Graphics facility [1] on a UNIXt system. It contains information about directory structure,
installation, makefiles, hardware requirements, and miscellaneous facilities of the Graphics
Package.

2. GRAPHICS STRUCTURE

Figure I contains a graphical representation of the directory structure of Graphics. In this
paper, the shell variable SRC will represent the parent node for Graphics source and is usually
set /usr/src/cmd.

The graphics command (see graphics(lG)) resides in /usr/bin. All other Graphics executables
are located in /usr/bin/graf; the /usr/lib/graf directory contains text for whatis documentation
(see gutil(IG)) and editor scripts for ttoc (see toc(lG)).

Graphics source resides below the directory SSRC/graf; SSRC/graf is broken into the following
subdirectories:

• include - contains the following header files: debug.b, errpr.b, gsl.b, gpl.b, setopt.h,
and util.h.

• src - contains source code partitioned into subdirectories by subsystem. Each subdirec­
tory contains its own Makefile (or Install file for whatis.d).

• glib.d - contains source used to build the graphical subroutine library,
SSRC/graf/lib/glib.a.

• stat.d - contains source for numerical manipulation and plotting routines.
• dev.d - contains source code for device filters partitioned ipto subdirectories.

• lolib and uplib - contain source used to create device independent libraries.
• hp7220.d - contains source for hpd (a Hewlett-Packard Plotter display func­

tion).
• tek4000.d - contains source for ged (the graphical editor), td (a Tektronix

display function), and other Tektronix dependent routines.

• gutil.d - contains source for utility programs.
• toc.d - contains source for table of contents drawing routines.
• whatis.d - contains nroff files and the installation routine for on-line documenta­

tion.

• lib - contains glib.a which contains commonly used graphical subroutines.

UNIX User's Manual entries for Graphics consist of the following: gdev(lG), ged(lG),
graphics(IG), gutil(lG), stat(lG), toc(lG), and gps(S).

t UNIX is a trademark of Bell Laboratories.

2 Ad>ninistrative Information for Graphics

Figure 1. Graphics Directory structure

USR

l
l

BIN LIB SRC MAN

CMD
·-----,
I GRAF :
L ___ ...J

r----,
I GRAF :
L ___ ...J

GRAF

r-l--,
INCLUDE SRC I LIB I

I I L ___ ..J

l I I I I l
GLIB.D STAT.D DEV.D TOC.D GUTIL.D WHATIS.D

l

HP7220.D irEK4000.~

Administrative lnf onnation for Graphics

3. INST ALLING GRAPHICS

Procedures for installing Graphics:

- To build the entire Graphics package, execute (as super-user):

/usr/src/:mkcmd graf

- To build a particular graphics subsystem use the shell variable ARGS:

ARGS=subsystem /usr/src/:mkcmd graf

3

A subsystem is either glib, stat, dev, toe, gutil, or wbatis. Glib must exist before other subsys­
tems can be built. Write permission in /usr/bin and /usr/lib is needed, and the following
libraries are assumed to exist:

/lib/Ii be.a
/lib/libm.a
/usr/lib/macros/mm[nt]

Standard C library, used by all subsystems.
Math library, used by all subsystems.
Memorandum macros for [nr]roff, used by
tern.

the whatis subsys-

The complete build process takes approximately two hours of system time. If the build must be
stopped, it is a good idea to restart from the beginning. Upon completion, the following things
will be created and owned by bin:

/usr/lib/graf
/usr/bin/graf
/usr /bin/ graphics

A directory for data and editor scripts.
A directory for executables.
Command entry point for Graphics.

Makefiles use executable shell procedures cco and cca. Ceo is used to compile C source and
install load modules in /usr/bin/graf. The cca command compiles C programs and loads object
code into archive files.

Whatis.d contains source files for whatis and the executable command Install.

Install command-name

calls nroff to produce whatis documentatlon for command-name in /usr/lib/graf. To install the
entire whatis subsystem, use :mkcmd as described above.

3.1 Makefile Parameters

Makefiles use various macro parameters, some of which can be specified on the command line
to redirect outputs or inputs. Parameters specified in higher level Makefiles are passed to lower
levels. Below is a list of specifiable parameters for Makefiles followed by their default values in
parentheses and an explanation of their usage:

- SSRC/graf/graf.mk:

BIN (/usr/bin)
BIN (/usr/bin/graf)
SRC (/usr/src/cmd)

- SSRC/graf /src/Makefile

BINI (/usr/bin)
BIN2 (/usr/bin/graf)
LIB (/usr/lib/graf)

installation directory for the graphics command.
installation directory for other graphic commands.
parent directory for source code.

installation directory for the graphics command.
installation directory for other graphic commands.
installation directory for whatis documentation.

- $SRC/graf/src/stat.d/Makefile:

BIN (•• / •• /bin) installation directory for executable commands.

4 Administrative lnf Ol'mation for Graphics

- SSRC/graf/src/toc.d/Makefile:

BIN (.. / •• /bin) installation directory for executable commands.

- SSRC/graf/src/dev.d/Makefile:

BIN (•. / .. /bin) installation directory for executable commands.

- SSRC/graf/src/dev.d/hp7220.d/Makefile:

BIN (.. / .. / .. /bin) installation directory for executable commands.

- SSRC/ graf /src/ dev .d/tek4000.d/Makefile:

BIN(.. / .• / •• /bin) installation directory for executable commands.

- SSRC/graf/src/gutil.d/Makefile:

BIN (.. / .. /bin) installation directory for executable commands.

The following example will make a new version of the graphical editor, ged, installing it in
/al/pmt/dp/bin:

cd SSRC/graf /src/dev .d/tek4000.d
make BIN=/al/pmt/dp/bin ged

(This assumes, of course, that necessary libraries were previously built.)

4. HEWLETT-PACKARD PLOTTER

The Graphics display function hpd uses the Hewlett-Packard 7221A Graphics Plotter. The HP
plotter can be connected to the computer in series with a terminal via a dedicated or dial-up
line. This arrangement allows the plotter to intercept plotting instructions while passing other
data to the terminal unaltered and thus providing for normal terminal operation. Plotter switch
settings should match those of the terminal. See the plotter operating manual for a more com­
plete discussion [3].

5. TEKTRONIX TERMINAL

The Graphics display function td and the graphical editor ged both use Tektronix Series 4010
storage tubes. Below is a list of device considerations necessary for Graphics operation.

5.1 Ioittab Entry

When a Tektronix 4010 series terminal is connected to UNIX via a dedicated 4800 or 9600 baud
line, /etc/inittab should reference speed table entry 6 (may vary locally) of getty. Speed table
entry 6 is designed specifically for the Tektronix 4014 and, among other things, sets a form­
f eed delay so that the screen may be cleared without losing information and clears the screen
before prompting for a login. See stty(I), inittab(5) and getty(8) for more information.

5.2 Strap Options

The standard strap options as listed below should be used (see the Reference Manual for the
Tektronix 4014 [2]):

- LF effect - LF causes line-feed only.
- CR effect - CR causes carriage return only.
- DEL implies loy - DEL key is interpreted as low-order y value.
- Graphics Input terminators - None.

Administrative Information for Graphics 5

5.3 Enhanced Graphics Module

The Enhanced Graphics Module (EGM) for Tektronix terminals is required for Graphics. The
EGM provides different line styles (solid, dotted, dot-dashed, dashed, and long-dashed), right
and left margin cursor location, and 12-bit cursor addressing (4096 by 4096 screen points).

6. MISCELLANEOUS INFORMATION

6.l Announcements

The graphics command provides a means of printing out announcements to users. To set up an
announcement facility, create a readable text file containing the announcements named
announce. Also in /usr/bin/graphics redefine the shell variable GRAF to be the directory path
name of the file announce.

6.2 Uselog

The graphics command also provides a means of monitoring its use by listing users in a file. To
set up a usage logging facility, create a writable file named .uselog (in the same directory as
announce if announcements are being used) and redefine the shell variable GRAF within
/usr/bin/grapbics to specify the directory location. Each time a user executes graphics, an
entry of the login name, terminal number, and system date are recorded in .uselog.

6.3 Restricted Environments

Restricted environments can be used to limit access to the system (see sh{l)). A restricted
environment for Graphics can be set up by creating the directories /rbin and /usr/rbin and
populating them with restricted versions of regular UNIX commands, so that the environment
cannot be compromised. In particular, ed(l), mv(I), rm(l), and sh(l) require restricted inter­
face programs that do not allow users to move or remove files whose names begin with"." [4].

To create a restricted environment for Graphics:

- Create a restricted ged command in /usr/rbin as follows:

exec /usr/bin/graf/ged -R

- Create restricted logins for users or create a community login with a working directory
(reached through .profile) set up for each user. A restricted login specifies /bin/rsh as the
terminal interface program and is created by adding /bin/rsb to the end of the /etc/passwd
file entry for that login.

- Call graphics -r from .profile.

The execution of graphics -r changes $PATH to look for commands in /rbin and /usr/rbin
before /bin and /usr /bin and executes a restricted shell. The - Roptionisappended to the ged
command so that the escape from ged to UNIX (!command) will also use a restricted shell.

ACKNOWLEDGEMENTS

We wish to thank A. R. Feuer for his valuable contributions, suggestions, and careful reading
of this document. We also thank M. J. Petrella for his help in supplying information concern­
ing the UNIX environment.

6 Administrative Information for Graphics

REFERENCES

[I] A. R. Feuer. UNIX Graphics Overview, Bell Laboratories (1979).
(2) User's Manual for 4014 and 4014-1 Display Terminal, Tektronix (July 1974).
[3] 722/A Graphics Plotter Operating and Programming Manual, Hewlett-Packard (Nov. 1977).
(4) T. A. Dolotta, S. B. Olsson, and A.G. Petruccelli (eds.). UNIX User's Manual-Release

3.0, Bell Laboratories (June 1980).

January 1981

1. PREFACE

UNIX Remote Job Entry User's Guide

A. L. Sabsevitz
K. A. Kelleman

Bell Laboratories
Piscataway, New Jersey 08854

UNIX

E.7.1

A set of background processes running under UNIXt support remote job entry to IBM Sys­
tem/360 and /370 host computers. RJE is the communal name for this subsystem. 1 UNIX
communicates with IBM's Job Entry Subsystem by mimicking an IBM 360 remote multileaving
work station. The UNIX User's Manual entry rje(8) summarizes its design and operation. The
manual also contains a description of the send(l C) command, which is the user's primary
method of submitting jobs to RJE, and rjestat(l C), which allows the user to monitor the status
of RJE and to send operator commands to the host system. This guide is a tutorial overview of
RJE and is addressed to the user who needs to know how to use the system, but does not need
to know details of its implementation. the two following sections constitute an introduction to
RJE.

2. PRELIMINARIES

To become a UNIX user, you must receive a login name that identifies you to the UNIX system.
You should also get a copy of the UNIX User's Manual; it contains a fairly complete description
of the system and includes the section How to Get Started, which introduces you to UNIX; you
should read that section before proceeding with this guide.

In order to begin using RJE, you need only become familiar with a subset of basic commands.
You must understand the directory structure of the file system, and you should know some­
thing about the attributes of files: see cd(l), chmod(l), chown(I), cp(l), /n(l), /s(l), mkdir(l),
mv(I), rm(l). You must know how to enter, edit, and examine text files: see cat(l), ed(l),
pr(l). You should know how to communicate with other users and with the system: see
mail(I}, mesg(l), who(l), write(l). And, finally, you might have to know how to describe
your terminal to the system: see asdi(5), stty(l), tabs(I).

3. BASIC RJE

Let's suppose that you have used the editor, ed(I), to create the file, jobfile, that contains your
job control statements (JCL) and input data. This file should look exactly like a card deck,
except that for convenience alphabetic characters may be in either upper or lower case. Here is
an example:

t UNIX is a trademark of Bell Laboratories.

I. In this paper, RJE refers to the facilities provided by UNIX, and not to the Remote Job Entry feature of IBM's
HASP and rns subsystems.

2 UNIX RJE User's Guide

$ cat jobfile
//gener job (9999,r740),pgmrname,class=x usr=(mylogin,myplace)
//step exec pgm =iebgener
//sysprint dd sysout=a
//sysin dd dummy
//sysut2 dd sysout=a
//sysut 1 dd *

first card of data

last card of data

I•
To submit this job for execution, you must invoke the send(l C) command:

$ send jobfile

The system will reply:

10 cards
Queued as /usr /rje/rd3125

Note that send tells you the number of cards it submitted and reports the file name that con­
tains your job in the queue of all jobs waiting to be transmitted to the host system. Until the
transmission of the job actually begins, you can prevent the job from being transmitted by
doing a chmod 0 on the queued file to make it unreadable. For our example, you could say:

chmod 0 /usr/rje/rd3125

When your job is accepted by the host system, a job number will be assigned to it, and an ack­
nowledgement message will be generated. This indicates that your job has been scheduled on
the host system. Later, after the job has executed, its output will be returned to the UNIX sys­
tem. You will be notified automatically of both of these events: if you are logged in when RJE
detects these events, and if you are permitting messages to be sent to your terminal (see
mesg(l)). The following two messages will be sent to you (still using the example above) when
the job is scheduled and when the output is returned, respectively:

·Two bells
12: 18:42 gener job 384 rd3 l 25 acknowledged

Two bells
12:21:54 gener job 384 -- /al/user/rje/prntO ready

Two bells, with an interval of one second between them, precede each message. They should
be interpreted as a warning to stop typing on your terminal, so that the imminent message is
not interspersed with your typing.

If you are not logged in when one of these events occurs, or if you do not allow messages to be
sent to your terminal, then the notification will be posted to you via the mai/(1) command.
You can prevent messages directly by executing the mesg(l) command, or indirectly by execut­
ing another command, such as pr(I), which prohibits messages for as long as it is active. You
may inspect (by invoking the mail command) your mail file (/usr/maiI/logname) at any time for
messages that have been diverted. Setting your MAIL variable to the name of your mail file
will cause the s.hell to notify you when mail arrives. For this example, the mail might look as
follows:

UNIX RJE User's Guide 3

$mail
From rje Mon Aug · I 12:20:36 1977
12: 18:42 gener job 384 - - rd3 I 25 acknowledged

? d
From rje Mon Aug I 12:21:55 1977
12:21:54 gener job 384 - - /al/user/rje/prntO ready

? d

The job acknowledgement message performs two functions. First, it confirms the fact that your
job has been scheduled for eventual execution. Second, it assigns a number to the job in such
a way that the number and the name together will uniquely identify the job for some period of
time.

The output ready message provides the name of a UNIX file into which output has been written
and identifies the job to which the output belongs (see ls(1)):

$ Is -I prntO
-r- -r-xr- - I rje 1184 Aug I 12:21 prntO

Note that rje retains ownership of the output and allows you only read access to it. It is
intended that you will inspect the file, perhaps extract some information from it, and then
promptly delete it (see rm(I)):

$ rm -f prntO

The retention of machine-generated files, such as RJE output, is discouraged. It is your respon­
sibility to remove files from your RJE directory. RJE output files may be truncated if the output
exceeds a set limit. This limit is tunable by the system administrator. Output beyond the
current limit will be discarded, with no provision for retrieval. If the output were truncated in
the previous example, the second notification message would have been:

Two bells
12:21:54 gener job 384 -- /al/user/rje/prntO ready (truncated)

The user should also be aware that RJE attempts to keep a set number of blocks free on any file
system it uses. This number is also tunable by the system administrator. Warning messages or
suspension of certain functions will occur as this limit is approached.

The most elementary way to examine your output is to cat it to your terminal. The Appendix
of this document shows the result of listing the output of our sample job in this way. Because
UNIX has no high volume printing capability, you should route to 'the host's printer any large
listings of which you desire a hard copy.

The structure of an output listing will generally conform to the following sequence:

HASP log
jcl information
data sets
HASP end

Normally burst pages will not be present. Single, double, and triple spacing is reflected in the
output file, but other forms controls, such as the skip to the top of a new page, are suppressed.
Page boundaries are indicated by the presence of a blank {space character) at the end of the last
line of each page.

The big file scanner bfs(I) or the context editor ed(1) provide a more flexible method than
cat(I) for examining printed output; bfs can handle files of any size and is more efficient than
ed for scanning files.

4 UNIX RJE User's Guide

RJE is also capable of receiving punched output as formatted files (see pnch(S)); this format
allows an exact representation of an arbittary card deck to be stored on the UNIX machine.
However, there are few commands that can be used to manipulate these files. You will prob­
ably want to route your punched output to one of the host's output devices.

4. SEND COMMAND

The send(IC) command is capable of more general processing than has been indicated in the
previous section. In the first place, it will concatenate a sequence of files to create a single job
stream. This allows files of JCL and files of data to be maintained separately on the UNIX
machine. In addition, it recognizes any line of an input file that begins with the character "' as
being a control line that can call for the inclusion, inside the current file, of some other file.
This allows you to send a top level skeleton that "pulls" in subordinate files as needed. Some
of these may be "virtual" files that actually consist of the output of UNIX commands or Shell
procedures. Furthermore, the send command is able to collect input directly from a terminal,
and can be instructed to prompt for required information.-

Each source of input can contain a format specification that determines such things as how to
expand tabs and how long can an input line be. The manual entry for fspec(5) explains how to
define such formats. When properly instructed, send will also replace arbitrarily defined key­
words by other text strings or by EBCDIC character codes. (These two substitution facilities are
useful in other applications besides RJE; for that reason, send may be invoked under the name
gath to produce standard output without submitting an RJE job.)

Two options of send that everyone should be acquainted with are: the ability to specify to which
host computer the job is to be submitted, and a ftag that guarantees that a job will be transmit­
ted to the host computer in order of submission (relative to other jobs submitted with the same
flag). To run our sample job on a host machine known to RJE as A, we would issue the com­
mand:

$ send A jobfile

When no host is explicitly cited, send makes a reasonable choice.

To insure that a job will be transmitted in order of submission, set the -x flag:

$ send - x jobfile

This ftag should be used sparingly. The complete list of arguments and Hags that control the
execution of send can be found in send(IC).

5. JOB STREAM

It is assumed that the job stream submitted as the result of a single execution of send consists
of a single job, i.e., the file that is queued for transmission should contain one JOB card near
the beginning and no others. A priority control card may legitimately precede the JOB card.
The JOB card must conform to the local installation's standard. At BISP, it has the following
structure:

//name job (acct[90 ••]),pginrname[,keywds= ?] [usr= •••]

6. USER SPECIFICATION

A ··usr" specification is required on print or punch output that is to be delivered to a UNIX
user.

usr= (login,place, [level])

where login is the UNIX login name of the user, level is the desired level of notification (see end
of this section for an explanation), and place is as follows: ·

UNIX RJE User's Guide 5

A. If place is the name of a directory (writable by others), then the output file is placed there
as a unique prnt or 'pnch file. The mode of the file will be 454.

B. If place is the name of an existing, writable (by others), non-executable (by others) file,
then the output file replaces it. The mode of the file will be 454.

C. If place is the name of a non-existent file in a writable (by others) directory, then the out­
put file is placed there. The mode of the file will be 454.

D. If place is the name of an executable (by others) file, then the RJE output is set up as
standard input to place, and place is executed. Five string arguments are passed to place.
For example, if place is a shell procedure, the following arguments are passed as $1 •••
$5:

1. Flag indicating whether file space is scarce in the file system where place resides. A
0 indicates that space is not scarce, while 1 indicates that it is.

2. Job name.
3. Programmer's name.
4. Job number.
5. Login name from the "usr= ••• " specification.

A ":" is passed if a value is not present. The current directory for the execution of place
will be set to the directory containing place. The environment (see environ(7)) will con­
tain values for LOGNAME and HOME based on the login name from the "usr= ... "
specification, and a value for TZ. Since the login name supplied on the "usr= •• ,"
specification cannot be believed for security purposes, the UID will be set to a reserved
value.

E. In all other cases, the output will be thrown away.

The place value must not be a full path name, unless it refers to an executable file (see D
above). For cases A, B, and C above (and case D, if a full path name is not supplied), the
name of the user's login directory will be used to form a full path name.

The "usr= ... " field may occur anywhere within the first 100 card images sent and within the
first 200 output images received by the UNIX system. The only restriction is that it be con­
tained completely on a single line or card image. Therefore, the "usr= •.. " field may be
placed on a JOB card or comment card. It may also be passed as data.

For redirection of output by the host, a "usr= ... " card, if not already present, must be sup­
plied by the user. This can be done by placing a job step that creatc;s this card before your out­
put steps.

Messages generated by RJE or passed on from the host are assigned a level of importance rang­
ing from 1 to 9. The levels currently in use are:

3 transmittal assurance
5 job acknowledgement
6 output ready message

The optional level field of the "usr= ••• " specification must be a one or two-digit code of the
form mw. A message from the host with importance x (where x comes from the above list) is
compared with each of the two decimal digits in level. If x>w and if the user is logged in and
is accepting messages, the message will be written to his or her terminal. Otherwise, if x>m,
the message will be mailed to the user. In all other cases, the message will be discarded. The
default level is 54. You should specify level 1 if you want to receive complete notification, and
level 59 to divert the last three messages in the above list to your mailbox.

6 UNIX RJE User's Guide

7. MONITORING RJE

RJE is designed to be an autonomous facility that does not require manual supervision. RJE is
initiated automatically by the UNIX reboot procedures and continues in execution until the sys­
tem is shut down. Experience has shown RJE to be reasonably robust, although it is vulnerable
to system crashes and reconfigurations.

Users have a right to assume that when the UNIX system is up for production use, RJE will also
be up. This implies more than an ability to execute the send(I C) command, which should be
available at all times; it means that queued jobs should be submitted to the host for execution
and their output returned to the UNIX system. If a user cannot obtain any throughput from
RJE, he or she should so advise the UNIX operators.

The rjestat(l C) command, invoked with no arguments will report the status of all RJE links for
which a given UNIX system is configured. It may sometimes also print a message of the day
from RJE.

$· rjestat
RJE to B operating normally.
RJE to A down, reason: IBM not responding.

A host machine may be reported to be not responding to RJE because it is down, or because of
its operator's failure to initialize the associated line, or because of a communications hardware
failure.

Rjestat also has the ability to send operator commands to the host machine and retrieve the
responses generated by the commands. Refer to the rjestat(lC) manual entry for a complete
description of this command.

UNIX RJE User's Guide

APPENDIX

Sample JES2 Output Listing

$ cat rje/prntO
14.40.31 JOB 384 SHASP373 GENER STARTED - !NIT 26 - CLASS X - SYS RRMA
14.40.32 JOB 384 SHASP395 GENER ENDED

- - - - - - JES2 JOB ST A TISTICS - - - - - -

AUG 77 JOB EXECUTION DATE

54 CARDS READ

76 SYSOUT PRINT RECORDS

0 SYSOUT PUNCH RECORDS

0.01 MINUTES EXECUTION TIME
I //GENER JOB (9999,R740),PGMRNAME,CLASS=X JOB 384

*** USR=(MYLOGIN,MYPLACE)
2 //IEBGENER EXEC PGM=IEBGENER
3 //SYSPRINT DD DUMMY
4 //SYSJN DD DUMMY
S //SYSUT2 DD SYSOUT-A
6 //SYSUTI DD•

II
IEF2361 ALLOC. FOR GENER IEBGENER
IEF2371 DMY ALLOCATED TO SYSPRINT
IEF2371 DMY ALLOCATED TO SYSIN
IEF2371 JES ALLOCATED TO SYSUT2
IEF2371 JES ALLOCATED TO SYSUTl
IEF1421 GENER IEBGENER - STEP WAS EXECUTED - COND CODE 0000
IEF2851 JES2.JOB0384.S00102 SYSOUT
IEF2851 JES2.JOB0384.SIOIOI SYSIN
IEF3731 STEP /IEBGENER/ START 77242.1440

7

IEF3741 STEP /IEBGENER/ STOP 77242.1440 CPU OMIN 00.13SEC SRB OMIN 00.0JSEC VIRT 36K SYS !88K

- SERVICE UNITS=0000174 SERVICE RATE=0000268 SERVICE UNITS/SECOND
-• PERFORMANCE GROUP=005
- EXCP COUNT BY UNIT ADDRESS
IEF375I JOB /GENER / START 77242.1440
IEF3761 JOB /GENER / STOP 77242.1440 CPU OMIN OO.I3SEC SRB OMIN 00.0ISEC

- SERVICE UNITS=OOOOl74 SERVICE RATE=0000268 SERVICE UNITS/SECOND
- APPROXIMATE PROCESSING TIME= .OJ MINUTES
- EXCPS=OOOOOOOOO
- PROJECTED CHARGES= .01

first line of data

last line of data

•OS/VS2 REL 3.7 JES2• END JOBNAME=GENER
•OS/VS2 REL 3.7 JES2• END JOBNAME=GENER
•OS/VS2 REL 3.7 JES2• END JOBNAME=GENER

$ rm - f rje/prntO

January 1981

BIN=R740
BIN=R740
BIN=R740

JOB H =384 PGMRNAME
JOB H-384 PGMRNAME
JOB H =384 PGMRNAME

UNIX Remote Job Entry Administrator's Guide

M. J. Fitton

Bell Laboratories

1. INTRODUCTION

1.1 Purpose

UNIX

E.7.2

This document is intended to augment the existing body of documentation on the design and
operation of UNIXt IBM RJE1• The reader should be familiar with rje(8), and the UNIX Remote
Job Entry User's Guide, April 1, 1980. There will be assumptions made concerning allocation of
responsibilities between UNIX and IBM operations, hardware configuration, etc. Although these
assumptions may not fully apply to your location, they should not interfere with the intent of
this document.

The major topics discussed in this paper are as follows:

• SETTING UP - hardware requirements and RJE generation on the IBM and UNIX systems.

• DIRECTORY STRUCTURES - the controlling RJE directory structure and a typical RJE sub-
system directory structure.

• RJE PROGRAMS - programs that make up an RJE subsystem.

• UTILITY PROGRAMS - utility programs that are available for debugging or tracing.

• RJE ACCOUNTING - the accounting of jobs done by RJE, and some methods for using this
accounting data.

• TROUBLE SHOOTING - error recovery and procedures for identifying and fixing RJE prob­
lems.

1.2 Facilities

Discussions will focus on a hypothetical RJE connection between a UNIX system, pwba, and an
IBM 370/168, referred to as B. We also assume that pwba is connected to an IBM 370/158,
referred to as C. The UNIX machine emulates an IBM System/360 remote multi-leaving work
station. For more information on the multi-leaving protocol, see Appendix B of OS/VS MVS
JES2 Logic (SY24-6000-1).

2. SETTING UP

2.1 Hardware

To use RJE on a UNIX system the following hardware is needed (one per remote line):

• KMCl 1-B Microprocessor - used to drive the RJE line

• DMCl 1-DA or DMCll-FA line unit - the DMCll-DA interfaces with Bell 208 and 209 syn­
chronous modems or equivalent. Speeds of up to 19,200 bits per second can be used. The
DMCI I-FA interfaces with Bell 500 A LI/5 synchronous modems or equivalent. Speeds of
up to 250,000 bits per second can be used.

t UNIX is a trademark of Bell Laboratories.

I. In this paper, RJE refers to the facilities provided by UNIX and not to the Remote Job Entry feature of IBM's
HASP and JES2 subsystems.

2 UNIX RJE Administrator's Guide

On the DMCI 1 line unit, the Cyclic Redundancy Check (CRC) switch should be set to inhibit
automatic transmission of CRC bytes. The line unit should hold the line at logical zero when
inactive. For a more detailed description of the above hardware, see Terminals and Communica­
tions Handbook, Digital Equipment Corporation, 1979.

2.2 IBM Generation

The following applies to the host IBM system. The remote line to the UNIX machine should be
described as a System/360 remote work station. The following parameters must be initialized
and must agree with their counterparts on the UNIX machine:

• Number of printers (NUMPR) - the number of logical printers (up to 7)

• Number of punches {NUMPU) - the number of logical punches (up to 7)

• Number of readers {NUMRD) - the number of logical readers (up to 7)

The JES2 parameters for our hypothetical connection to IBM system B are as follows:

RMTS S/360,LINE=5,CONSOLE,MULTI,TRANSP,NUMPR-=5,
NUMPU = l ,NUMRD = 5,ROUTECDE= 5

RS.PR! PRWIDTH= 132
R5.PR2 PRWIDTH= 132
R5.PR3 PR WIDTH= 132
RS.PR4 PRWIDTH=I32
R5.PRS PRWIDTH-= 132
RS.PU l NOSUSPND
RS.RD! PRIOINC=O,PRIOLIM== 14
R5.RD2PRIOINC=O,PRIOLIM=14
RS.RD3PRIOINC=O,PRIOLIM=14
R5.RD4PRIOINC==O,PRIOLIM=14
RS.RDS PRIOINC=O,PRIOLIM= 14

System pwba is referenced by line 5 (LINE=S), remote 5 (RMT5). It is defined as having a
console, for the rjestat(l C) command, five printers, one punch, and five readers. Although you
may have up to seven printers or punches, the total number of printers and punches may not
exceed eight. The line is described as a transparent (TRANSP), multi-leaving (MULTI) line.
The remaining information describes attributes of the printers, punches, and readers.

Normally, separator pages are transmitted with IBM print files. UNIX RJE does not remove
separator pages. To prevent transmission of separator pages on printer 1 of the previous exam-
ple, its attributes would be: ·

RS.PR l PR WIDTH= 132,NOSEP

NOSEP should be included for all printers when separator pages are not desired. Most IBM sys­
tems can also be told via a console command to cancel transmission of separator pages on
printers. This can be done from the IBM system console, or from the remote UNIX machine
via rjestat. For example, the following JES2 command would cancel separator page transmission
on printer 1:

STR5.PRI,S=N

2.3 UNIX Generation

If the RJE remote dialing facility is to be used, the administrator must make sure that the
definition for RJECU in the file /usr/include/rje.h is the device to be used for remote dialing.
RJECU is defined to be /dev /dn2 when distributed. To compile and install RJE, the normal
make(I) procedures are used (see Setting up UNIX). Once an RJE subsystem has been installed,
the remote line must be described in the configuration file /usr/rje/lines. This file as it exists
on our hypothetical system pwba is as follows:

UNIX RJE Administrator's Guide

B pwba /usr/rjel rjel vpmO 5:5:1 1200:512:y
C pwba /usr/rje2 rje.2 vpml 1:1:1 1200:512

3

/usr/rje/lines is accessed by all components of RJE. Each line of the table (maximum of 8)
defines an RJE connection. Its seven columns may be labeled host, system, directory, prefix,
device, peripherals, and parameters. These columns are described as follows:

• host - The IBM System name, e.g., A, B, C. This string can be up to 5 characters long.

• system - The UNIX System name (see uname(l)).

• directory - the directory name of the servicing RJE subsystem (e.g., /usr/rjel).

• prefix - the string prepended to most files and programs in the directory (i.e., rjel).

• device - the name of the controlling Virtual Protocol Machine {VPM) device, with /dev /
excised. In order to specify a VPM device, all VPM software must be installed, and the
proper special files must be made (see vpm (4) and mknod(IM)).

• peripherals - information on the logical devices (readers, printers, punches) used by RJE.
There are three subfields. Each subfield is separated by":" and is described as follows:

I. Number of logical readers.
2. Number of logical printers.
3. Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem must agree with the number
of peripherals that have been described on the remote machine for that line.

• parameters - this field contains information on the type of connection to make. Each
subfield is separated by ":". Any or all fields may be omitted; however, the fields are posi­
tional. All but trailing delimiters must be present. For example, in:

1200:512:::9-555-1212

subfields 3 and 4 are missing. Each subfield is defined as follows:

I. space - this subfield specifies the amount of space (S) in blocks that RJE tries to
maintain on file systems it touches. The default is 0 blocks. Send(IC) will not submit
jobs and rjeinit issues a warning when less than l.5S blocks arc available; rjerecv stops
accepting output from the host when the capacity falls to S blocks; RJE becomes dor­
mant, until conditions improve. If the space on the file system specified by the user
on the "usr-" card would be depleted to a pqint below S,, the file will be put in the
job subdirectory of the connection's home directory rather than in the place that the
user requested.

2. size - this subfield specifies the size in blocks of the largest file that can be accepted
from the host without truncation taking place. The default is no truncation. Note that
UNIX has a default one Mega-byte file size limit.

3. badjobs - this subfield specifies what to do with undeliverable returning jobs. If an
output file is undeliverable for any reason other than file system space limitations
(e.g., missing or invalid "usr-=" card) and this subfield contains the letter y, the out­
put will be retained in the job subdirectory of the home directory, and login rje is
notified via mail(1). If this subfield has any other value, undeliverable output will be
discarded. The default is n.

4. console - this subfield specifies the status of the interactive status terminal for this
line. If the subfield contains an i, the status console facilities of rjestat will be inhi­
bited. In all cases, the normal non-interactive uses of rjestat will continue to function.
The default is y.

4 UNIX RJE AdministratOl''s Guide

5. dial-up - this subfield contains a telephone number to be used to call a host machine.
The telephone number may contain the digits 0 through 9, and the character " - ",
which denotes a pause. If the telephone number is not present, no dialing is
attempted, and a leased line is assumed.

When multiple readers have been specified, jobs that are submitted for transmission to IBM are
assigned to the reader with the fewest cards on it. Each reader gets an equal amount of service.
This prevents smaller jobs from having to wait for a previously submitted large job to be
transmitted. When multiple printers or punches have been specified, returning jobs get
assigned to free printers (or punches) allowing smaller output files to bypass large output files.

Deciding how many peripherals to specify depends on the use of that RJE subsystem. If an RJE
subsystem is heavily used for off-line printing (i.e., output does not return to the UNIX
machine), the administrator would want to specify multiple readers, but would not have a need
for multiple printers or punches.

3. DIRECTORY STRUCTURES

3.1 Controlling Directory

The controlling directory used by RJE is /usr/rje. This directory contains RJE programs for use
by separate RJE subsystems (e.g., rje1, rjel, rje3), and the shell queuer's directory. Most RJE
programs existing here have been compiled such that each RJE subsystem shares the text of
these programs. A snapshot of this directory on our hypothetical machine is as follows:

-rwxr-xr-x 2 rje r j e 4068 Mar 4 10:42 cvt
-rw-r--r-- l r j e rje 42 Apr 10 09:52 lines
-rwxr-xr-x 2 rje rje 15096 Apr IO 13:01 rjedisp
-rwxr-xr-x 2 rje r j e 2328 Mar 4 10:21 rjehalt
-rwxr-xr-x 2 rje r j e 10396 Apr l 5 10:07 rjeinit
-r-x------ 2 rje r J e 785 Apr 8 09:00 rjeload
-rwsr-xr-x 2 r j e r j e 5040 Mar 27 09:28 rjeqer
-rwxr-xr-x 2 rje r j e 4072 Apr 1 15:40 rjerecv
-rwxr-xr-x 2 r j e rje 3888 Mar 27 09:35 r j exmi t
-rwsr-xr-x 1 root rje 2696 Mar 27 14:42 shqer
-rwxr-xr-x 2 r j e r J e 5920 Apr 2 15:47 snoop
drwxr-xr-x 2 rje r j e 80 Mar 25 13:26 sque

RJE subsystems are generated in their own directory by linking the program names in this direc-
tory to the appropriate names in the subsystem directory. The programs are described in .Sec-
tion 4. The file lines is the configuration file used by all RJE subsystems. The directory sque is
used by the Shell queuer (shqer). This directory contains:

-rw-r--r-- 1 r j e r j e 0 Feb 14 14:04 errors
-rw-r--r-- 1 r j e r j e 0 Feb 14 14:04 log

When shqer has work to do, the files log and errors will be of non-zero length, and temporary
files (tmp•) will also appear here. For a complete description of shqer and these files, see Sec­
tion 4.8.

3.2 Subsystem Directory

The RJE subsystem described in this section maintains the connection between pwba and IBM
B, and will be referred to as rjel. The first line of /usr/rje/lines (see Section 2.3) describes
rjel. A.s noted in this file, rjel runs in the directory /usr/rjet. A snapshot of this directory is
as follows:

UNIX RJE Administrator's Guide 5

-rw-r- -r- - 1 rje rje 4990 Apr 15 08:30 acct log
-rwxr-xr-x 2 rje rje 4068 Mar 4 10:42 cvt
-rw-r- -r- - l rje r j e 0 Apr 15 04:02 err log
drwxrwxrwx 2 rje rje 192 Apr IO 09:51 job
-rw-r--r-- 1 rje rje 194 Apr 1 5 0 8: I 1 job log
- rw- r - - r - - 1 r j e rJe 0 Apr 15 0 8: 11 resp
-rwxr-xr-x 2 rje rje 15096 Apr I 0 13:01 rjeldisp
-rwxr-xr-x 2 r J e r j e 2328 Mar 4 10:21 rjelhalt
-rwxr-xr-x 2 rje rje 10396 Apr 15 10:07 rjelinit
-r-x------ 2 rje r j e 785 Apr 8 09:00 rjelload
-rwsr-xr-x 2 rje rJe 5040 Mar 27 09:28 rjelqer
-rwxr-xr-x 2 rje r j e 4072 Apr 1 15:40 rjelrecv
-rwxr-xr-x 2 r j e rje 3888 Mar 27 09:35 r j e 1 xmi t
drwxr-xr-x 2 rje r j e 144 Apr 1 5 08:30 rpool
-rwxr-xr-x 2 rje rje 5920 Apr 2 15:47 snoopO
drwxrwxrwx 2 rJe r j e 176 Apr 10 13:03 spool
drwxr-xr-x 2 rje r j e 224 Apr 10 13:56 squeue
- rw- r - - r - - 1 rje r j e 0 Apr 1 5 10:30 stop
-rw-r- -r- - rje rje 274 Mar 7 20:25 testjob

The programs rjel•, cvt, and snoop() are linked to the corresponding programs in /usr/rje, and
are described in detail in Section 4. The remaining files and their uses are as follows:

• acctlog - accounting data is stored in this file, if it exists. This file is the responsibility of
the RJE administrator. For a discussion of its uses, see Section 5.

• errlog - used by rje 1 to log errors. It can be useful for debugging rjel problems.

• joblog - used by rje 1 qer and rjestat to notify rje I x:mit that a job (or console request) has
been submitted. It also contains the process-group number of the rjel processes. The pro-
gram cvt can be used to convert this file to a readable form.

• resp - contains console messages received from IBM B. These messages can be responses
for rjestat, or IBM responses to submitted jobs (i.e., on reader messages). This file is trun­
cated if it grows to a size greater than 70,000 bytes.

• stop - indicates that rjel halt has been executed. The existence of this file indicates to rjes­
tat that rjel has been halted by the operator.

• testjob - a sample job that can be submitted to test the rjel sub.system. Originally, the job
control statements may have to be changed to suit your IBM syste"m.

When rjel terminates abnormally, the file dead should appear in this directory. This file con­
tains a short message indicating why rjel is not operating, and is used by rjestat to report the
problem. The remaining directories and their uses are as follows:

• job - used to save undeliverable jobs, if the proper parameter has been specified in
/usr/rje/lines. The sample job described above is also delivered to this directory. This
directory should be mode 777.

• rpool - contains temporary files used to gather output from the remote machine. These
files are named pl'* (for print output files), and pu• (for punch output files). Once a com­
plete file has been received, the file is dispatched in the proper way by rjeldisp.

• spool - used by send to store temporary files to be submitted to the remote machine. This
directory must be mode 777.

• squeue - used by rjel to store submitted files until they are transmitted. The program
rjelqer is used by send to move the temporary files in the spool directory to this directory.

6 UNIX RJE Administrator's Guide

4. RJE PROGRAMS

All programs described below, with the exception of rjestat, exist in /usr/rje. These programs
are "shared text" and are linked (except shqer) to the proper names in each subsystem direc­
tory. The names described below are generic; the programs in the rje2 directory would be
rje2qer, rje2init, etc.

Each available RJE subsystem occupies three process slots. The slots are used for rje?xmu, the
transmitter; rje?recv, the receiver; and rje?disp. the dispatcher. One additional process slot is
used for shqer, regardless of how many subsystems are available.

Each RJE subsystem tries to be self-sustaining, and logs any errors encountered during normal
operation in its errlog file.

4.1 Rjeqer

This program is used by send to queue files for transmission. When invoked, it performs the
following steps:

1. Moves the temporary pnch(S) format file in the spool directory to the squeue directory.

2. Writes an entry at the end of the file joblog containing:

• the name of the file to be transmitted

• the submitter's user ID

• the number of card images in the file

• the message level for this job

The file joblog is used to notify rjexmit of work to be done.

3. Notifies user that file has been queued.

Send determines which host system is desired, and invokes the proper rje?qer by getting the
prefix from the lines file (e.g., if sending to IBM C from our machine, rje2qer would be
invoked).

4.2 Rjeload

This program is used to start an RJE subsystem. Its prefix determines which subsystem to start
(e.g., rje2/oad starts rje2). To start the RJE subsystems on our machine, the following com­
mands are executed in /etc/re when changing to init state 2 (multi-user):

rm -f /usr/rje/sque/log
su rje -c "/usr/rjel/rjelload vpbO kmcO"
su rje -c "/usr/rje2/rje2load vpbl kmcl"

The file /usr/rje/sque/log is removed to ensure the correct operation of shqer. When invoked,
rje/oad performs the following steps:

1. Uses the VPM device from /usr/rje/lines to link the proper devices (see vpmset(l C)).

2. Uses kasb(l) to perform the following:

• reset the KMC

• load the VPM script (/etc/rjeproto)

•. start the KMC running

3. Executes rje?init to start the rje? processes (e.g., rje2/oad executes rje2init).

UNIX RJE Administrator's Guide 7

4.3 Rjehalt

This program is used to halt an RJE subsystem. To halt rje2 on our machine,
/usr/rje2/rje2halt is executed. This should be done in the shutdown procedure for your
machine to ensure graceful termination of RJE. Rjeha/t will allow only those users with permis­
sion to halt an RJE subsystem. Rjeha/t uses the header on the file joblog to get the process­
group of the RJE subsystem processes. This group is signaled to terminate. When all processes
have terminated, rjehalt sends a .. signoff" record to the host machine. This signoff record is
taken from the file signoff (ASCII text), if it exists, otherwise a "/•signoff" record is sent. On
completion, rjehalt creates the file stop in the subsystem directory, that causes rjestat to report
that RJE to the corresponding host has been stopped by the operator.

4.4 Rjeiait

This program initializes an RJE subsystem. It is used by rjeload, and can be used to restart a
subsystem if the VPM script has previously been started. Rjeinit should only be executed by
user rje. Rjeinit fails if there are less than I 00 blocks or I 0 in odes free in the file system. It
issues a warning if there are less than 1.SX blocks, (where X is the first field in the parameters
for that line), or I 00 in odes free in the file system. If rjeinit fails, the reason for the failure is
reported, and the file dead is created containing "Init failed". This will be reported by rjestat
until a subsequent rjeinit succeeds. Rjeinit performs the following functions:

1. Dials a remote host if specified (see Section 2.3).

2. Truncates the console response file resp.

3. Sends a signon record to the host. The signon record is taken from the file signon (ASCII
text), if it exists, otherwise rjeinit sends a blank record as a signon.

4. Sets up pipes for process communication.

5. Resets process-group for RJE subsystem and restarts error logging.

6. Rebuilds the joblog file from jobs queued for transmission.

7. Notifies rjedisp (via a pipe) of any returned files still remaining in the rpool directory.

8. Starts the appropriate background processes (rje?xmit, rje?recv, and rje?disp).

9. Reports started or not started.

If failure occurs in a background process, it is reported by that process (error logging). The
failing process will normally attempt to reboot the subsystem by exe~uting rje?init with a + as
its argument (see Section 7). When rjeinit is executed with + as its argument, this indicates an
attempted reboot, and rjeinit will behave differently (no re-dialing is done to remote hosts,
errors are logged rather than printed, etc.).

4.5 Rjexmit

This program writes data to the VPM device. Rjexmit is started by rjeinit and runs in the back­
ground. When running, rjexmit performs the following processing:

1. Checks the joblog file for files to be transmitted. This is done every 5 seconds when not
transmitting data. When transmitting data, the joblog is checked after transmitting 1
block from each active reader2, and the console3•

2. Reader refers to the logical readers used by RJE.
3. Console refers to the RJE logical console, which is separate from the logical readers.

8 UNIX RJE Administrator's Guide

2. Queues files from the joblog according to the first two characters of the file name:

• rd• - these files are queued on the reader with the fewest cards. Normal use of the
send command creates these files.

• sq• - these files are queued on the last available reader to assure sequential transmis­
sion. Using the -x option to the send command creates these files.

• coe - these files are queued on the console. The rjestat command creates these files.

All files described above contain EBCDIC data.

3. Sends information to rjedisp (via a pipe) for use in user notification of job status (see Sec­
tion 4.7).

4. Builds blocks for transmission from active readers and the console. These blocks are built
according to the multi-leaving protocol.

5. Performs the following peripheral control:

• Sends requests to open readers when jobs have been assigned to them. These readers
arc not active until a grant is received from rjerecv (via a pipe).

• Halts or activates readers when waits or starts, respectively, arc received from rjerecv.

• Sends printer or punch grants when an open request is received from rjerecv.

6. Notifies rjedisp that a file has been transmitted, and unlinks the file.

If rjexmit encounters fatal errors, it creates the dead file with an appropriate message, and sig­
nals the other background processes to exit. If possible, rjexmit will attempt to reboot the RJE
subsystem by executing rjeinit.

4.6 Rjerec•

This program reads data from the VPM device. Rjerecv is started by rjeinit and runs in the back­
ground. When running, rjerecv performs the following processing:

I. Reads blocks of data received from the host system.

2. Handles data received according to its type. The two types of data are:

• Control information - rjerecv performs the following peripheral device control:

a. Notifies rjexmit of grants to its requests to open readers.

b. Passes wait and start reader information to rjexmit.

c. Passes open requests (for printers and punches) from the host to rjexmit.

• User Information - the three major types of user information received are:

a. Console responses and job status messages. This data. is appended to the resp file
for use by rjestat and rjedisp.

b. The printer output from user jobs. This data is collected in temporary files (p ...)
in the rpool directory. When a complete print job has been received, rjerecv
notifies rjedisp (via a pipe) that the file is to be dispatched.

c. The punch output from user jobs. This data is handled the same as printer out­
put except that the rpool files are named pu•.

3. . If the console response file resp exceeds 70,000 characters, rjerecv truncates the file.

4. Rjerecv stops accepting output from the remote machine if the number of free blocks in
the file system falls below space blocks (space is described in Section 2.3).

UNIX RJE Administrator's Guide 9

5. Rjerecv truncates received files to size blocks (size is described in Section 2.3).

If rjerecv encounters fatal errors, it creates the dead file with an appropriate error message, sig~
nals the other background processes to exit, and reboots the RJE subsystem.

4.7 Rjedisp

This program dispatches user information. Rjedisp is started by rjeinit and runs in the back­
ground. When running, rjedisp performs the following processing:

1. Dispatches output; the two types of output are printer and punch output. After receiving
notification of output ready from rjerecv, rjedisp searches for a "usr=" line in the
received file. The format of a "usr=" line is as follows:

usr= (user,place,level)

Rjedisp dispatches the output according to the place field. See UNIX Remote Job Entry
User's Guide for a detailed description of the user specification.

2. Dispatches messages. The three types of messages are as follows:

• Job transmitted - this message is sent to the submitting user when rjedisp reads this
event notice from the rjexmit pipe.

• Job acknowledgement - rjedisp dispatches IBM acknowledgement messages to submit­
ting users. If a job is not acknowledged properly or within a reasonable amount of
time, a "Job not acknowledged" message is dispatched.

• Output processing - rjedisp dispatches job output messages according to the options
specified on the "usr=" card. A normal output message indicates the returned file
name is ready.

Messages can be masked by using the level on the "usr=" card.

3. Whenever output is to be handled by shqer, rjedisp checks that shqer is running. This is
done by looking for the shqer log file. If this file does not exist, rjedisp starts shqer.

4.8 Sbqer

This program executes user programs when they appear in the place field of the "usr=" line in
a returned output file (print or punch). Shqer is started by rjedisp when the first output file
using this feature is returned. Subsequent files using this feature are logged for execution by
rjedisp. When started, shqer performs the following processing:

I. Builds the log file from file names in the /usr/rje/sque directory. Each log entry is the
name of a file (tmp?) that contains the following information:

• the name of the file to be executed

• the name of the input file (file returned from IBM)

• the name of the IBM job

• the programmer name

. • the IBM job number
'
• the user's name from the "usr==" line

• the user's login directory

• the minimum file system space

2. Shqer uses two parameters. The first is the delay time between log file reads. The second
is a nice(2) factor which is applied to any programs spawned by shqer. These values are
defined in /usr/include/rje.b (QDELA Y and QNICE).

10 UNIX RJE Administrator's Guide

3. When each log entry is read, the appropriate program is spawned with the following
characteristics:

• The returned RJE file is the standard input to the program.

• The standard and diagnostic outputs are /dev /null.

• The LOGNAME, HOME, and TZ variables are set to the appropriate values.

• The arguments to the spawned program, in order, are:

a. a numerical value indicating that the file system free space is equal or above (0)
or below (1) space blocks (see Section 2.3).

b. the IBM job name.

c. the programmer name.

d. the IBM job number.

e. the user's login name.

4. After executing each program, the tmp? file and the returned RJE file are removed.

5. UTILITY PROGRAMS

5.1 Snoop

Snoop is the generic name of a program that can be used to trace the state of a VPM device and
its associated communications line. Snoop depends on the trace(4) driver for its information.
It reads trace entries from /de" /trace and converts them into a readable form that is printed on
the standard output.

The usable name of snoop for a particular RJE subsystem is snoopN, where N is the low order
three bits from the VPM minor device number. If VPM device names adhere to the vpmO.
vpmt. • • • 'lpmn naming convention, each snoop name corresponds to its VPM device. In our
hypothetical system, vpmO is used by the rjel subsystem, and vpml is used by the rjel subsys­
tem (see Section 2.3). Therefore, /usr/rjel/snoopO and /usr/rjel/snoopl are linked to
/usr/rje/snoop.

Each snoop prints trace entries for its associated VPM device. Trace entries are printed in the
following form:

sequence

where:

type information

• sequence specifies the order of trace occurrences .. It is a value between 0 and 99.

• type specifies the action being traced (e.g., transfers, driver activity).

• information describes data being transferred and driver activity.

The following table explains the meaning of trace types and their associated information.

type information meaning

CL Closed The VPM device has been closed.

CL Clean The VPM driver is cleaning up for this device.

OP Opened The VPM has been successfully opened.

OP Failed(open) The open failed because the device was already open.

UNIX RJE Administrator's Guide

OP Failed(dev)

OP Failed(set)

RR Buf

RX Buf

RD num bytes

SC Exit(num)

ST Startup

ST Stopped

TR Started

TR R-ACK

TR S-ACK

TR R-NAK

TR S-NAK

TR R-ENQ

TR S-ENQ

TR R-WAIT

TR R-OKBLK

TR R-ERRBLK

TR R-SEQERR

TR R-JUNK

TR TIMEOUT

TR S-BLK

WR num bytes

The open failed because the device number was out of
range.

The open failed because the KMC could not be reset.

The VPM script has returned a receive buffer to the
VPM driver.

The VPM script has returned a transmit buffer to the
VPM driver.

Num bytes were read from the VPM device by rjerecv.

The VPM script has terminated. The VPM exit code is
num. Exit codes are defined in vpm(4).

The KMC has been started.

The VPM script has been stopped.

The script has started tracing.

A two byte acknowledgement (ACK) string has been
received from the remote system. This indicates that
the previous transmission was properly received.

A two byte acknowledgement (ACK) string has been
transmitted to the remote system.

A "not-acknowledged" (NAK) character has been
received from the remote system. This indicates that
the previous transmission was not properly received.

A "not-acknowledged" (NAK) character has been
transmitted to the remote system.

A enquiry (ENQ) character has been received from the
remote system.

A enquiry (ENQ) character has been transmitted to the
remote system.

The remote machine has requested that no data be
transmitted to it.

A valid data block was received from the remote
machine.

An invalid Cyclic Redundancy Check (CRC) was
received with a data block.

The block sequence count on a received data block was
invalid.

An invalid data block was received from the remote
system.

The remote machine did not respond within 3 seconds.

A data block has been transmitted to the remote sys­
tem.

Num bytes were written to the VPM device by rjexmi.t.

11

12 UNIX RJE Administrator's Guide

Trace entries of type TR are traces from the VPM script. Section 7.5 describes required
responses to events and shows examples of typical snoop output.

5.2 Rjestat

This program is supplied as a user command. The program's two functions are to describe the
status of the RJE subsystems and to provide a remote IBM status console. The remainder of
this section describes these two functions.

5.2.l RJE Status

When invoked, rjestat reports the status of the RJE subsystems. If remote system (host) names
are specified, only those statuses are reported. Rjestat uses the following rules to report the
status of a subsystem:

• Rjestat prints the contents of the file status if it exists in the subsystem directory. This file
can contain any message the administrator wishes to have printed when users use rjestat.

• If the file dead exists in the subsystem's directory, the subsystem is not operating and the
reason is contained in the file. Rjestat reports that RJE to host is down and prints the con­
tents of the dead file as the reason.

• If the file stop exists in the subsystems directory, the rjehalt program has been used to inhi­
bit that RJE subsystem. Rjestat reports that RJE to host has been stopped by the operator.

• If neither the dead nor the stop file exists, rjestat reports that RJE to host is operating nor-
mally.

Rjestat is supplied as the user's vehicle for checking the status of RJE. It is not meant to be an
administrative tool; however, the reason for failure can be used to track the problem.

5.2.2 Status Console

To use rjestat as a status console, the -shost argument is used. Rjestat prints the status of the
subsystem, then prompts with host: if the subsystem is up. Each console request is submitted
to the RJE processes for transmission, and output is handled as specified. Rjestat checks the
status prior to submitting each request, and will tell the user to try later if the subsystem goes
down. Rjestat allows the rje or super-user logins to submit other than display requests. For a
complete description of how to use the status console features, see rjestat (IC).

5.3 Cvt

This program converts any subsystem's joblog file to readable form. The first line prin~ed is the
process group number of the subsystem processes. The remaining output consists of entries in
the following form:

file records level

Where file is the name of the submitted file, user-id is the submitters user number, records is
the number of "card" images, and level is the message level. The records and level fields are
not used if the file name is CO* (console request submitted by rjestat).

6. RJE ACCOUNTING

Each RJE subsystem will store accounting information in the acctlog file, if it exists. It is the
responsibility of the RJE administrator to create and maintain this file in the subsystem's direc­
tory. Entries in this file describe RJE line use and are of the following form:

day time file user records

UNIX RJE Administrator's Guide 13

Each field is delimited by a tab character. The meanings of each field is as follows:

1. day - The day of occurrence in the form mmjdd.

2. time - The time of occurrence in the form hh:mm:ss.

3. file - The name of the UNIX file. The first two characters identify its type as follows:

• rd/sq - the file was transmitted to the remote system

• pr - the print output file was received from the remote system

• pu - the punch output file was received from the remote system

4. user - The user ID of the user responsible for the transfer.

5. records - The number of records (card images) transferred for this file.

Because acctlog data is not used by RJE, it should not be allowed to grow too large. This can
be accomplished by moving or processing the file during a system reboot (i.e., in /etc/re before
the RJE subsystems are started).

The following list describes some of the reports that could be generated from the acctlog data.
Implementation of a program to produce accounting reports is the responsibility of the adminis­
trator.

• Periodic Reports - by using the day and time fields in the data, periodic usage reports can
be produced.

• By User Reports - by using the user field in the data, usage-by-user reports can be pro­
duced.

• By Subsystem Reports - by using the /usr/rje/lines file information and each acctlog file,
a usage-by-subsystem (or remote system) report can be produced.

Other reports can be produced using the type of file, size of jobs, etc.

7. TROUBLE SHOOTING

This section deals with RJE problems, and some methods for resolving them. The topics dis­
cussed in this section are as follows:

• Automatic Error Recovery

• Manual Error Recovery

• RJE Problems

• KMC/VPM Problems

• Trace Interpretation

7.1 Automatic Error Recovery

RJE attempts to be self-sustaining with respect to its availability. In general, if problems occur
on the communications line or the remote machine (e.g., a crash) RJE will continually try to
restart itself (this action will be referred to as a .. reboot"). For example, if an RJE subsystem
is started using rje/oad, but the IBM system is not available, a fatal error will occur. The pro­
cess that detects this error (usually rjexmit or rjerecv) will reboot the subsystem by executing
rjeinit with a + as its argument. When rjeinit detects a + argument, it waits one minute before
attempting to bring up the subsystem.

The rjeha/t program can be used to prevent an RJE subsystem from rebooting itself when the
remote system is not available for a known period of time. When the remote system is made
available, the subsystem may be started in the normal way.

14 UNIX RJE Administrator's Guide

7.2 Manual Error Recovery

In order to manually recover from errors', one must know how to start and stop an RJE subsys­
tem. There are two ways to start an RJE subsystem:

• rje?load - this program loads and starts the VPM script, and executes rje?init.

• rje?init - this program starts the rje? subsystem. In order to use this program, the VPM
script must be loaded and started.

To stop the rje? subsystem, the rje?ha/t program should be executed. This stops the subsystem
gracefully and will prevent a reboot.

The rje/oad program must be used to start RJE for the first time (after a UNIX system reboot).
Subsequently, as long as the script is running, execution sequences of rjehalt and rjeinit will stop
and start RJE.

Manually starting and stopping RJE can be useful in tracking down problems. For example, if
user jobs are not being submitted to the host machine, the following sequence can ease
identification of the problem:

I. Halt the ailing subsystem.

2. Start a snoop process in the background with its output redirected to a file.

3. Restart the subsystem.

4. Scan the snoop output to determine where the problem is.

The snoop program is the most useful software tool for identifying RJE problems. Its uses are
described in Section 7 .5.

7.3 RJE Problems

This section describes problems that can occur in an RJE subsystem. These problems generaUy
occur when the subsystem has not been set up properly. The following is a list of things to
check to ensure that an RJE subsystem has been set up properly:

I. IBM description - the description of the remote UNIX machine must be consistent with
the description in Section 2.2.

2. UNIX description - the file /usr/rje/lines must be set up properly (see Section 2.).

3. KMC/VPM setup - the VPM software must be installed and the proper VPM and KMC
devices made. Each VPM device must correspond to the proper KMC device; see vpm(4).

4. Free space - as a general rule, all file systems must have a reasonable amount of free
space. Fite systems containing RJE subsystems must have sufficient free space as
described in Section 2.3 to ensure proper RJE operation.

5. Directories - each subsystem's directory and the controlling directory should be checked
for the following:

• AU needed files exist.

• The proper prefix is on each applicable RJE program.

• The link count is correct for files that are linked.

• All file and directory modes are correct.

A sample subsystem directory and the controlling directory are shown in Section 3.

6. Initialization - peripherals information must be consistent on both systems (see Section
2.3). The tine must be started on the IBM system, proper hardware connections made,
etc.

UNIX RJE Administrator's Guide 15

Problems with a subsystem are indicated by error messages. Rjeinit checks for obstacles in
bringing up RJE. If an ob'stacle is found, an error message indicating the obstacle is printed on
the error output. If a problem is encountered during normal operation, the message is logged
in the errlog file. This file, error messages, the output from snoop, and the checklist above
should be used to determine and fix any subsystem problems. Generally, if a subsystem is set
up properly but will not operate, the problem is the way the VPM or KMC has been set up, the
remote system, or the hardware.

7.4 KMC/VPM Problems

This section describes the KMC and VPM uses, and problems that can occur. After installing
KMC hardware and making KMC devices, all VPM software and devices must be made (see
vpm(4)). The program rjeload links the devices to be used by the corresponding RJE subsys­
tem.

The following is a list of items to check when problems occur:

I. Proper hardware - the line unit must be compatible with the modem and have the proper
settings (see Section 2.1). Be sure that the KMC address and interrupt vector are correct.

2. Proper Devices - the major and minor device numbers for the KMC and VPM devices
must be correct. It should also be verified that the rje/oad program is called with the
correct KMC and VPM device names.

3. Script runs - verify that the VPM script is able to run. This is done by tracing the proper
YPM with the proper snoop program. Snoop will print "started" entries for both the KMC
and VPM script (see Section 5.1). If no output appears from snoop when rjeload is exe­
cuted, either the KMC is not working properly, or the KMC or VPM has not been set up
properly (see items I and 2). Output of any other type from snoop should indicate where
the problem is occurring.

7 .5 Trace Interpretation

This section describes how to interpret trace output from the snoop program, and gives several
examples. Section 5.1 describes the format and meaning of trace output lines, and should be
read before this section.

Lines with type TR are traces from the VPM script. All others are driver traces and indicate the
following:

• CL - activity occurring when the device has been closed.

• OP - activity occurring when the device has been opened.

• RD - read from device occurred.

• WR - write to device occurred.

• RR - a receive buffer has been returned.

• RX - a transmit buffer has been returned.

• ST - start or stop activity.

• SC - script exit type, exit value is given.

Section 5.1 enumerates all possible trace lines for each type, and describes the event. The
remainder of this section consists of example trace output and its interpretation. Comments
describing events will appear after the ''•" in trace output. If more than one YPM were run­
ning, sequence numbers might not appear in order. For clarity, example sequences will be in
order.

16 UNIX RJE Administrator's Guide

7.5.1 Normal RJE startup

The following is an example of trace output when RJE has been started up. In this case the
remote machine responds to the enquiry byte (ENQ). The RJE subsystem signs on to the
machine, then follows the handshaking protocol (exchanging ACKs).

Tracing vpmO
0 ST Startup * KMC started
I TR Started • Script started
2 TR S-ENQ • Enquiry byte sent
3 ST Start • VPM Driver start
4 OP Opened • VPM Device open
5 TR R-ACK • Received acknowledgement
6 TR S-ACK • Handshaking
7 WR 84 bytes • Signon record written
8 TR R-ACK • Handshaking
9 TR S-BLK * Sent signon block
10 TR R-ACK • Block acknowledged
11 RX Buf • Transmit buffer returned
12 TR S-ACK • Handshaking
13 TR R-ACK •
14 TR S-ACK •
15 TR R-ACK •
16 TR S-ACK •
17 TR R-ACK •
18 TR S-ACK •
19 TR R-ACK •
20 TR S-ACK • Handshaking

If any jobs had been submitted via the send command, or jobs were waiting to be returned, the
traces would reflect the transfers rather than handshaking (see Section 7.5.3).

7.5.2 ,8.JE startup- IBM not responding

This example shows trace output when RJE has been started, but does not receive a response
from the remote machine. In general, the RJE script will timeout if a response is not received
from the remote machine within 3 seconds of the last transmission. When a timeout is
detected while starting up, the enquiry byte (ENQ) is retransmitted. This is repeated 6 times
before the script gives up. Other timeout responses will be discussed later.

Tracing vpmO
86 ST Startup * KMC started
87 TR Started • Script started
88 TR S-ENQ • Enquiry byte sent
89 ST Start • VPM Driver start
90 OP Opened • VPM device open
91 WR 84 bytes • Signon record written:
92 TR TIMEOUT • No response to enquiry
93 TR S-ENQ Enquiry byte sent
94 TR TIMEOUT • No response
95 '(R S-ENQ • Enquiry byte sent
96 TR TIMEOUT • No response
97 TR S-ENQ • Enquiry byte sent
98 TR TIMEOUT • No response
99 TR S-ENQ • Enquiry byte sent

UNIX RJE Administrator's Guide

0
I
2
3
4
5
6
7
8

TR
TR
TR
RR
RD
SC
CL
ST
CL

TIMEOUT
S-ENQ
TIMEOUT
Buf
I bytes
Exit(O)
Clean
Stopped
Closed

17

• No response
• Enquiry byte sent
• No response
• Receive buff er returned
• I byte read (error)
• Script exits normally
• Cleanup done
• KMC stopped
• VPM device closed

The above sequence will be repeated approximately every minute until a positive response is
received from the host. During that minute the RJE subsystem is dormant, and the rjestat com­
mand will report that IBM is not responding. When this occurs, either the IBM machine is not
available, down, line not started, etc., or there is a communications problem somewhere from
where the KMC transmits data to where it receives data. The RJE administrator should first
verify that the IBM machine is up, and the communications !inc has been started. If so, a
hardware trace of the communications line should be done to aid in detecting the problem.

7.5.3 Transmitting and Receiving

This example shows trace output from the start of job transmission through its return. For
simplicity, only one job is being transmitted and returned.

Tracing vpmO
94 TR R-ACK • Handshaking
95 TR S-ACK •
96 TR R-ACK •
97 TR S-ACK • Handshaking
98 WR 4 bytes • Open reader request written
99 TR R-ACK * Handshaking
0 TR S-BLK • Sent open request block
l TR R-OKBLK • Received block (grant)
2 RX Buf • Transmit buffer returned
3 RR Buf • Receive buff er returned
4 TR S-ACK • Block acknowledged
5 RD 7 bytes • Read 7 bytes (grant)
6 TR R-ACK • Handshaking
7 TR S-ACK • Handshaking
8 WR 481 bytes • First block written
9 WR 470 bytes * Second block written
10 TR R-ACK • Handshaking
11 TR S-BLK • First block sent
12 TR R-ACK • Block acknowledged
13 RX Buf • Transmit buff er returned
14 WR 470 bytes • Third block written
15 TR S-BLK • Second block sent
16 TR R-OKBLK •Received block (on reader msg)
17 RX Buf · • Transmit buff er returned
18 RR Buf • Receive buffer returned
19 WR 470 bytes • Fourth block written
20 RD 66 bytes •Read 66 bytes (on reader msg)
21 TR S-BLK • Third block sent
22 TR R-ACK • Block acknowledged
23 RX Buf •Transmit buffer returned
24 WR 147 bytes * Fifth block written

18 UNIX RJE Administrator's Guide

25 TR S-BLK • Fourth block sent
26 TR R-ACK • Block acknowledged
27 RX Buf • Transmit buffer returned

93 TR R-ACK • Handshaking
94 TR S-ACK • Handshaking
95 TR R-OKBLK • Received block (request)
96 RR Buf • Receive buffer returned
97 TR S-ACK • Block acknowledged
98 RD 7 bytes • Read open printer request
99 TR R-ACK • Handshaking
0 TR S-ACK •
I TR R-ACK •
2 TR S-ACK •
3 TR R-ACK •
4 TR S-ACK • Handshaking
5 WR 4 bytes • Printer grant written
6 TR R-ACK • Handshaking
7 TR S-BLK • Block sent (grant)
8 TR R-OKBLK • First block received
9 RX Buf • Transmit buff er returned
10 RR Buf • Receive buffer returned
11 TR S-ACK • Block acknowledged
12 RD 64 bytes • Read first block
13 TR R-OKBLK • Second block received
14 RR Buf • Receive buffer returned
15 TR S-ACK • Block acknowledged
16 RD 505 bytes • Read second block
17 TR R-OKBLK • Third block received
18 RR Buf • Receive buffer returned
19 TR S-ACK • Block acknowledged
20 TR R-OKBLK • Fourth block received
21 RR Buf • Receive buffer returned
22 TR S-ACK * Block acknowledged
23 TR R-ACK • Handshaking
24 TR S-ACK •
25 TR R-ACK •
26 TR S-ACK • Handshaking
27 RD 470 bytes • Read third block
28 RD 494 bytes • Read fourth block
29 TR R-ACK • Handshaking
30 TR S-ACK • Handshaking

Requests and grants are part of the multi-leaving protocol. Appendix B of OSfVS MVS JFS2
Logic (SY24-6000- l) describes this protocol in detail. When jobs are being transmitted and
received simultaneously, as in a busier RJE subsystem, much less handshaking is involved.
Rather than acknowledging blocks with ACKs, the protocol allows a block to be returned (this
implies ~cknowledgement of the received block). The following example shows trace output at
a busy time:

UNIX RJE Administrator's Guide 19

Tracing vpmO
41 TR R-OKBLK • Received block
42 RX Buf •
43 RR Buf •
44 TR S-BLK •Sent block
45 WR 493 bytes •
46 RD 496 bytes •
47 TR R-OKBLK • Received block
48 RX Buf •
49 RR Buf •
50 RD 65 bytes •
51 WR 4 bytes •
52 TR S-BLK •Sent block
53 TR R-OKBLK • Received block
54 RX Buf •
55 RR Buf *
56 TR S-BLK •Sent block
57 WR 493 bytes *
58 RD 7 bytes *
59 TR R-OKBLK • Received block
60 RX Buf *
61 RR Buf •
62 WR 493 bytes •
63 RD 496 bytes •
64 TR S-BLK •Sent block
65 TR R-OKBLK • Received block

Notice that because there is work to be done on both sides, acknowledgements are implied.

7.5.4 Timeout Error Recovery

This example shows activity resulting from timeouts occurring during normal operation. These
timeouts were caused because the remote JES3 system has performance problems, and occasion-
ally does not respond in the required three seconds.

Tracing vpm I
27 TR S-ACK • Handshaking
28 TR R-ACK •
29 TR S-ACK •
30 TR TIMEOUT •No response
31 TR S-NAK • Not acknowledged
32 TR TIMEOUT • No response
33 TR S-NAK • Not acknowledged
34 TR R-ACK •Response
35 TR S-ACK • Handshaking
36 TR R-ACK •

54 TR R-ACK •
55 TR S-ACK • Handshaking
56 TR TIMEOUT •No response
57 TR S-NAK • Not acknowledged
58 TR R-ACK •Response
59 TR S-ACK • Handshaking

20 UNIX RJE Administrator's Guide

The response to these timeouts are NAKs (not acknowledged). RJE will respond this way up to
six times before giving up and attempting a reboot. At this time rjestat would report that there
are "Line Errors." NAK is a request to retransmit the previous response.

7.5.5 Communication Line E"ors

This example shows trace output from an RJE subsystem that uses a dial-up connection. The
phone line is noisy and is prone to dropping.

Tracing vpm 1
63 TR S-ACK * Handshaking
64 TR R-ACK *
65 TR S-ACK *
66 TR R-JUNK • Noise on the line
67 TR S-NAK * Not acknowledged
68 TR R-ACK •Recovery
69 TR S-ACK *
70 TR R-ACK *
71 TR S-ACK *
72 TR TIMEOUT * Line has dropped
73 TR S-NAK • Attempting to recover
74 TR TIMEOUT *
75 TR S-NAK *

80 TR TIMEOUT *
81 TR S-NAK *
82 TR TIMEOUT *
83 TR S-NAK *
84 RR Buf • Receive buff er returned
85 RD 1 bytes • 1 byte read (error)
86 SC Exit(O) * Script exits
87 CL Clean •Cleanup
88 ST Stopped * KMC Stopped
89 CL Closed * VPM device closed

The error read in the above sequence causes RJE to reboot and rjestat to report line errors. If
this were to occur frequently, a different method of communication should be used.

7.5.6 Error Responses

As seen in the sections above, the response to most errors is to send a NAK. The only excep­
tion is when starting up (see Section 7.5.2). Whenever a NAK is received on either side, it
indicates that the previous transmission was not properly received. This should be followed by
retransmission of the previous data. Generally, NAKs should not occur frequently, and should
be followed by recovery. If errors occur frequently or NAKs do not cause recovery, the line
should be checked for problems.

On some IBM systems, (e.g., JFS2), an 1/0 error is printed at the system console whenever a
NAK is received. These 1/0 errors can also be helpful in detecting the problem; however, they
will not be discussed here as they vary with the system. It is assumed that someone in IBM
support can assist if needed.

January 1981

Release 1.0 of the UNIX Virtual Protocol Machine

P. F. Long
C. Mee, III

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX

E.7.3

This memorandum describes the initial release of the Virtual Protocol Machine
(VPM), a new UNIXt synchronous communication subsystem. The VPM is built
around the KMCI I, a small, high-speed microcomputer that connects to the
UNIBUS of a PDP-11 or VAX-11/780. The VPM is a software construct for imple­
menting link protocols on the KMCI I in a high-level language.

A compiler, vpmc, is provided to translate a high-level description of a protocol
(protocol script) into the instruction set of the virtual machine. Vpmc supports
C-like control-flow constructs, a modest subset of C-like statements and expres­
sions, and a set of communication primitives that permit implementation of byte­
oriented protocols such as BISYNC. (Primitives that support bit-oriented protocols
such as HDLC have been defined and will be available in a later release of VPM.)
An interpreter is provided that runs in the KMCl I and interprets the virtual
machine instruction set. A UNIX driver, vpm.c, provides the interface between
the user process's open, close, read, and write calls and the protocol script being
executed by the interpreter. Besides providing the benefits of a high-level
language implementation of protocols, the VPM approach permits portable proto­
col implementations.

The VPM software consists of five components:

1. vpmc: a UNIX compiler for the protocol description language.
2. VPM interpreter: the KMCl 1 program that controls the overall operation of

the KMCl I and interprets the protocol script.
3. vpm.c: the UNIX driver that provides the interface to the VPM.
4. vpmstan: a UNIX command that copies a load module into the KMCl 1 and

starts it. .
5. vpmtrace: a UNIX command that prints an event trace for debugging while

the protocol is running.

The procedures for installation and use of the VPM commands and the VPM driver
are described; the pertinent manual entries are attached.

INTRODUCTION

The Virtual Protocol Machine {VPM) is a new UNIX synchronous communications subsystem
built around the KMCI 1 microcomputer. The KMCl 1 is a small, high-speed, 8-bit microcom­
puter manufactured by DEC. It connects to the UNIBUS of a PDP-II or VAX-11/780 and can
become UNIBUS master, thus giving it direct memory-access capability (DMA), as well as the
ability to control other UNIBUS devices. While other DEC communications devices provide
direct-memory access, the KMCl I is the only one that is also fully programmable. Thus the
KM Cl I can provide most of the CPU power and some of the address space required to do data
communications, thereby relieving the main CPU of these burdens. All is not roses, however:

t UNIX is a trademark of Bell Laboratories.

2 VPM Release 1.0

the KMCl 1 must be programmed in an unfamiliar and somewhat awkward assembly language.
This, together with a requirement to provide several varieties of the BISYNC protocol and with
a need to support, in the future, other link protocols such as HDLC, was the motivation for the
development of the VPM.

The VPM is a software construct for implementing link protocols on the KMCl 1 using a high­
level language. A compiler, vpmc, is provided to translate a high-level description of a protocol
(protocol script) into the instruction set of the virtual machine. Vpmc uses a variant of Ratfor
[l] as a front end to provide control-flow constructs such as if-else, for, while, switch, and
repeat-until, as well as other benefits. Vpmc supports a modest subset of C-like statements and
expressions, plus a set of communications primitives that permit succinct and easily-understood
implementations of byte-oriented protocols such as BISYNC. These primitives allow the proto­
col scripts to reflect the essential structure of the protocol, while hiding details that arise from a
particular hardware-software environment. (Primitives that support bit-oriented protocols such
as HDLC have been defined and will be available in a later release of VPM.) An interpreter is
provided that runs in the KMCl 1 and interprets the virtual machine instruction set. This pro­
gram also controls the communications line and provides the interface to the UNIX host
machine. The compiled protocol script is loaded with the interpreter into the KMCl 1. A UNIX
driver, vpm.c, provides the interface between the user process's open, dose, read, and write calls
and the protocol script executed by the interpreter in the KMCl l. (The UNIX kmc driver is
used to implement this interface.) For a pictorial overview of VPM, see Figures 1 and 2.

Besides providing the benefits of a high-level language implementation of protocols, such as
ease of programming and maintainability, the VPM approach permits portable protocol imple­
mentations. Portability can be achieved in several ways. First, because the interpreter and the
compiled protocol script execute in the KMCI I, they are the same regardless of the software
running in the main CPU or, for that matter, regardless of the CPU itself. For example, the
same interpreter and compiled protocol script can be used for UNIX/RT on a PDP-11 or for
UNIX on a V AX-11. More general forms of portability are also possible. The instruction set of
the virtual machine can be translated into almost any assembly language using one of the UNIX
macro processors, such as m4 [2]. This does not require that the assembler for the target
machine have a macro expansion capability. (We may use this approach in the future to
translate protocol scripts into KMCl l assembly language, thus gaining speed over the present
virtual machine interpreter.) Another possibility for portability arises because Ratfor is used as
a front-end; by limiting a protocol script to a statement and expression syntax acceptable to a
Fortran compiler, the protocol is portable to machines that support Fortran in a suitable real­
time environment. Finally, minor changes to a protocol script will yield a C implementation of
the protocol. With any of these methods, the functions provided by the primitives (including
the interfacing with communication devices and the execution environment) must be supplied
by suitable library routines or system calls.

RELEASE LO

Release 1.0 of VPM is restricted to byte-oriented, half-duplex protocols such as BISYNC. A
separate KMCl 1-B is required for each communications link. Each KMCl 1 running VPM must
be equipped with a suitable DMCl l line unit. A DMCl 1-DA line unit is required for operation
at speeds up to 19.2K bits/sec; a DMCll-FA or DMCll-MD is required for operation at speeds
of 56K bits/sec. The modem control available on the DMCI I-DA line unit permits both inward
and outward dial-up communication.

[I) B. W. Kernighan, RATFOR-A Preprocessor for a Rational Fortran, Bell Laboratories.

12) B. W. Kernighan, The M4 Macro Processor, Bell ~boratories.

VPM Release 1.0 3

This release of the VPM software is intended for use with UNIX Edition 1.1 or later. Operation
with other versions of UNIX has not been tested. The VPM software consists of five com­
ponents:

I. vpmc: UNIX compiler for the protocol description language.
2. VPM interpreter: the KMCl 1 program that controls the overall operation of the KM Cl 1

and interprets the protocol script.
3. vpm.c: the UNIX driver that provides the interface to the VPM.
4. vpmstart: a UNIX command that copies a load module into the KMCl 1 and starts it.
5. vpmtrace: a UNIX command to print a debugging event trace.

Manual entries for vpmc(1C), vpmstart(lC), vpmtrace(lC), and vpm(4) are attached to this
memorandum. A release tape containing the VPM software and manual entries is available
from the authors. Installation procedures are described in the appendix to this memorandum.

Acknowledgements

The idea of using the KMCl I to interpret a protocol description was suggested by L. A. Wehr.
He also offered useful suggestions and criticisms as the project implementation progressed.

4 VPM Release 1.0

APPENDIX

Hardware Installation and Switch Settings

The KMCI I microprocessor and DMCI I line unit must be installed in adjacent slots of a PDP-11
or V AX-11 /780 backplane. The microprocessor and line unit are interconnected by a one-foot
mylar cable. The line unit is connected to a suitable modem by a 25-foot modem cable. The
device address and interrupt vector address switches on the KMCI I should be set for the
selected addresses. All switches and jumpers on the DMCl 1 line unit should be in the normal
configuration prescribed by the relevant DEC maintenance manual with one exception: the NO
CRC switch (switch S2 in switch pack number 1) should be in the ON position. The purpose of
this switch setting is to inhibit hardware CRC generation. Hardware CRC generation is not used
with this release of the VPM software.

Installing the VPM Software on a UNIX System

In order to read the release tape, change to the directory into which the vpm software is to be
read (say, vpmdir), then execute:

cpio -iBdv </dev/rmtO

The executable programs, shell procedures, manual entries, and examples of protocol scripts
will be read into the current directory and the following six subdirectories will be created and
loaded: util, plsrc, ratsrc, bisyncb. drvsrc, and demo. Util will contain some processors that may
be needed: awk, cpp, kas, kasb, kunb, kun, and m4. (These processors are provided in case
the versions on your system are not compatible with the release tape.) Plsrc will contain the
source required to make pl, the main pass of vpmc. Ratsrc will contain the source required to
make vratfor, a modified version of Ratfor used as a preprocessor for pl. Bisyncb will contain
the VPM interpreter source for the the KMCI 1-B. Drvsrc will contain the source required to
make the UNIX driver, vpm.c, and the command vpmtrace. Demo will contain demonstration
programs and programs for checking the operations of the KMCl I and the VPM software.

Installation of the VPM Driver and Commands

To add the VPM driver to a UNIX Edition I. I system, do the following:

I. Add the following line to the file /etc/master:

vpm 0 36 6 vpm 0 0 15 5

2. Add the following two lines to the file /usr/src/uts/cflcfigpa (or its equivalent) for each VPM
line to be added:

vpm 0 0 0
kmcl I vector address priority

If the KMCI ls that are to be used have already been configured, the lines immediately
above relating to KM Cl ls should not be added. See con.fig(l M), master(S), and Setting up
UNIX for more information.

3. To make a UNIX system that includes the VPM driver, copy vpmmkdrv, found in vpmdir,
to /usr/src/ut.~/cp or its equivalent. Check the defines at the beginning of vpmmkdrv to verify
that the directories used are appropriate for your system. Then execute:

vpmmkdrv sysname dfile

whc:;re sysname is the name to be given to the system and dfile is the file modified in step
2 above. Dji/e must be a simple file name (not a full path name).

VPM Release 1.0 5

4. To install the VPM commands, check the defines at the beginning of the shell procedure
vpmmkcmds to verify that the directories used are appropriate for your system. Then exe­
cute:

vpmmkcmds

5. Use mknod(I M) to create a node for each VPM line and each KMCl 1:

/etc/mknod /dev/vpm? c major minor

where major and minor are both octal; major is determined by vpm's position in the cdevsw
table and minor defines the KMCI I and VPM as follows: the two most significant bits
denote the KMCI I number (0-3) and the three least significant bits denote the VPM
number. For example, if KMCI ls 2 and 3 are to be used for VPM, then the minor device
numbers should be 0200 and 0301, respectively.

Compiling Protocol Scripts

The manual entry for vpmc(IC) describes the protocol description language. See also the
examples of protocol scripts included on the release tape: demo.r, demo.c, hasp.r, and mod40.r.

When checking a protocol script for syntax errors, the -c option may be used.

Syntax errors detected by ratfor are noted as follows:

*****F ratfor:syntax error, line n, file fi/en

The line number n is in file filen.

Syntax errors detected by pl are noted as follows:

***** pl: syntax error, input line n.

To examine this line, a temporary file must be created as follows:

vpmc - m - r filen >temp

The temporary file can then be inspected using ed. The line number n refers to this file.

When all syntax errors have been eliminated, a KMCI I load module can be created by omitting
the -c or -r options on the vpmc command.

Testing Protocols

When a load module suitable for testing has been made using vpmc, vpmstart may be used to
load the file into the KMCl 1 and to start the interpreter. To view and record the trace records
simultaneously execute:

vpmtrace I tee eventfile

A high-speed CRT terminal is best if you wish to get an impression of what is happening in real
time. When a user program opens the VPM device, interpretation of the protocol script begins.
Script interpretation ends if the VPM device is closed. Various error conditions can also ter·
minate the script; they are described in vpm(4).

January 1981

c-like Protocol
De script ion

source

VPM Library:

Interpreter source

vpmc

Compiler

" Figure I
Protocol com pi lat ion Process

Translated Protocol
Description

and
Interpreter

Executable KMC 1 t
Program

°'

~
~
~
~
I:>
~ -c

PDP\1*** KMC 11

user VPM KMC Data space
process Driver Driver

Translated Protocol
Description

open commands"" Protocol Primitives T I UNIBUS ~---1 }----~ close reports --I I >. L
read rev bufds*
~
I I • Interpreter write xmt bufds --

Instr. Space

•Receive and transmit buffer descriptors. • •
••Executable KMC1t program produced by vpmc a downloaded by vpmstort.

•••Release 2 will also run on the VAX.

Figure 2
VPM components and Interfaces

DMCt 1
LINE
UNIT

L
I
N
E

I
N
T
E
R
F
A
c
E

i----z_ "Z ,

~
:s.::
:::i:i
~

~ ;;: -c

-.l

Release 2.0 of the UNIX Virtual Protocol Machine

P. F. Long
C. Mee, III

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX

E.7.4

This memorandum describes the second release of the UNIXt Virtual Protocol
Machine (VPM). VPM is a general-purpose synchronous UNIX communications
interface that allows link-level protocols such as BISYNC and HDLC to be imple­
mented on the KMCl 1-B (a DEC microcomputer) in a high-level language. The
VPM software consists of a protocol compiler, a UNIX driver, an interpreter that
executes in the KMC, and several utility programs.

The first release of VPM supports a class of byte-oriented half-duplex protocols
collectively known as BISYNC. The present release adds support for bit-oriented,
full-duplex protocols such as the international standard High-Level Data Link
Control {HDLC). Other features of Release 2.0 include:

1. An increase in the number of buffers that the interpreter can accept at one
time.

2. Additional debugging facilities.
3. Provisions for interprocess communication between the protocol script and a

UNIX driver or a user process.
4. A cleaner separation of functions in the UNIX driver to facilitate tailoring of

VPM to particular applications.

The procedures for adding VPM Release 2.0 to a UNIX 3.0 system and testing it to
ensure proper operation are given.

Introduction

This memorandum describes the second release of the UNIX Virtual Protocol Machine (VPM).
The first release was described in a previous memorandum [l], which should be read as back­
ground for this memorandum. See also the UNIX User's Manual [4] ~ntry for vpm(4).

VPM is a general-purpose UNIX interface for synchronous communications lines. VPM allows
link-level protocols such as BISYNC and HDLC to be implemented on the DEC KMCI 1-B micro­
computer in a high-level language. The hardware required to support VPM is a PDP-11/70, /45,
or /34, or a VAX-11/780 host computer, a KMCII-B microcomputer, and a DMCll-DA, -FA,
or -FD synchronous communications interface. All of the above items are manufactured by
DEC. The use of the KMC microcomputer allows the VPM to perform direct-memory-access
(DMA) transfers to and from main memory. The link-level communications protocol is exe­
cuted by the VPM interpreter running in the KMC microcomputer. This implementation tech­
nique leads to a portable protocol representation and efficient protocol execution.

The VPM software consists of a protocol compiler, a UNIX driver, an interpreter that executes
in the KMC, and several utility programs. The compiler, which executes in the host computer,
translates a protocol described in a high-level language into a load module for the KMC. The
load module contains the VPM interpreter and a compiled representation of the protocol. The

t UNIX is a trademark of Bell Laboratories.

2 VPM Release 2.0

interpreter executes the protocol, comm~nicates with the UNIX driver in the host computer,
and controls the communications line interface.

The first release of VPM supported a large class of protocols collectively known as BISYNC.
These protocols are distinguished by the use of control characters to provide framing and tran­
sparency. At the frame level, these protocols operate in a half-duplex manner, although they
sometimes use full-duplex communications facilities to reduce the time required to reverse the
direction of transmission.

Release 2.0 of VPM adds support for bit-oriented, full-duplex protocols. This class of protocols
includes IBM's Synchronous Data Link Control (SDLC) and the international standard High­
Level Data Link Control (HDLC). LAPB, a subset of HDLC which is the link-level protocol
specified in the BX.25 Bell System Standard, has been implemented using VPM and is available
with this release [2,3]. The interpreter used for bit-oriented protocols is different from that
used for character-oriented (BISYNC) protocols. The appropriate interpreter is selected by
means of a compiler option.

Other features of Release 2.0 include:

I. An increase in the number of transmit and receive buffers that the interpreter can accept
at one time.

2. Additional debugging facilities.
3. provisions for interprocess communication between the protocol script and a UNIX driver

or a user process.
4. A cleaner separation of functions in the UNIX driver to facilitate tailoring of VPM to par-

ticular applications.

Support for Bit-Oriented Protocols

The capability to use bit-oriented protocols such as HDLC is provided by a new set of communi­
cations primitives. These primitives are frame-oriented and non-blocking, whereas the BISYNC
primitives are character-oriented and blocking. The new primitives are fully described in the
manual entry for vpmc(l C). An overview of these primitives follows.

The VPM interpreter maintains a set of queues for transmit buffers and another set of queues
for receive buffers. When a transmit buffer is passed to the KMC by the UNIX driver, the
buffer is appended to the unopened-transmit-buffer queue. The protocol script in the KMC
obtains a transmit buff er from the unopened-transmit-buffer queue by means of the getxfrm
primitive; the buffer is then said to be open. In order to get (open) a transmit buffer, the script
must provide a transmit-sequence number. This sequence number must be in the, range 0-7
and must be distinct from the sequence number currently assigned to every other currently­
open transmit buffer. This sequence number is used to identify the buff er for subsequent calls
to the xmtfrm and rtnxfrm primitives. The xmtfrm primitive initiates transmission of the
specified buffer, using the control information specified by a previous setctl primitive.
Transmission proceeds asynchronously. The script can test for completion of an output transfer
by means of the xmtbusy primitive. Open transmit buffers can be transmitted any number of
times. When the script decides that a buff er has successfully been received at the destination,
it notifies the interpreter by means of the rtnxfnn primitive. This causes the buff er to be placed
on the transmit-buff er-return queue; the buffer is then no longer considered to be open and the
sequence number can be reused. The driver is notified as soon as possible that the buffer has
been closed. The buff er is then removed from the transmit-buff er-return queue.

Whe11 a receive buffer is passed to the KMC by the driver, the buffer is placed on the empty­
receive-buffer queue. When the first byte of a new frame arrives, an empty receive buffer is
obtained from the empty-receive-buffer queue and the incoming characters are placed into the
buffer as they arrive. An incoming frame will be discarded if the frame is too short (less than
four bytes including CRC), if the frame is too long to fit in the receive buffer, or if the CRC is
incorrect. If a frame is received successfully, the buffer is placed on the completed-receive-

VPM Release 2.0 3

frame queue, otherwise the buffer is returned to the empty-receive-buffer queue. When the
script executes a rev/rm primitive, the buffer at the head of the completed-receive-frame queue
is removed from that queue and becomes the current receive buffer. If the script subsequently
executes a rtnrfrm primitive before executing another rev/rm primitive, the current receive
buffer is placed on the receive-buffer-return queue. If the script executes a rev/rm primitive
before executing a rtnrfrm primitive, the current receive buffer, if any, is returned to the
empty-receive-frame queue. Buffers on the receive-buffer-return queue are returned to the
driver at the first opportunity.

If the empty-receive-buffer queue is empty when the first byte of a new frame is received, the
first five bytes of the frame are retained in a staging area and the remainder of the frame is dis­
carded. This allows a protocol script to receive a control frame (up to seven bytes including
CRC) when no data buffer is available. When the next rev/rm primitive is executed, the script
will receive the information in the staging area along with an indication that the remainder of
the frame has been discarded. If another frame arrives while the staging area is thus occupied,
the new frame is discarded entirely.

A count is kept of the number of frames discarded for each reason. These counters may be
read and reset from the host computer.

The VPM Split Driver

Because the VPM interpreter and a protocol script generally use most of the memory of the
KMC, any higher levels of protocol that are required must be executed by the host CPU. The
purpose of the VPM split driver is to provide a framework in which higher-level protocols can
be implemented conveniently using low-level routines in the VPM driver to communicate with
the interpreter in the KMC.

A set of functions has been written that provides a general-purpose interface to the link-level
protocol being executed by the interpreter in the KMC. Their capabilities include a means to
queue transmit and empty receive buffers for use by the protocol script in the KMC, to start and
stop the script, and to send commands to and receive reports from the script. A means of get­
ting a copy of and resetting the VPM interpreter's error counters is also provided. These func­
tions will be referred to as interface functions or collectively as the interface module. Appen­
dix 1 contains a description of each of these routines.

To implement higher levels of a protocol as a UNIX device driver, a set of routines must be
written to implement the standard UNIX system calls: open, close, read, write, and ioctl as well as
the required protocol. These routines will be referred to as protocol functions or collectively as
a protocol module. The standard VPM driver does not implement a. higher-level protocol but
instead provides a transparent user interface that can be used by applications that supply their
own higher levels of protocol. This driver can be used as an example for those interested in
writing a different protocol module. Appendix 2 contains a description of these routines.

At least two other protocol modules have been written thus far. They are the Synchronous
Terminal Interface (see st(4)) and the BANCS THP Interface.

Release 2.0 of VPM allows up to four different VPM protocol modules to be executing simul­
taneously. pne KMC and one ipterface-mqdule mi}Jor device 1 are required for each protocol
being executed. Any number ofprotoeol modules may be implemented, but no lnore than four
can be in use at any one time because no more than four KMCs are supported. Jn general, each

I. Strictly speaking, the interface module is not a driver and therefore does not have minor devices; however, the
minor device number in this case selects an element of the data-structure array associated with the interface module
in the same way that the minor device number associated with a driver selects an element of a data-structure array.

4 VPM Release 2.0

protocol module can have up to 256 minor devices. The VPM Release 2.0 protocol module,
however, can have at most 16 minor devices; this restriction is due to the fact that the minor
device number of the VPM protocol module is used not only to specify the VPM minor device
but also to specify the interface-module minor device and the KMC minor device. The low­
order four bits of the protocol-module minor device number determine the protocol-module
minor device; the next two bits determine the interface-module minor device; the next two bits
determine the KMC minor device.

Transmit buffers and receive buffers are passed between the VPM interpreter, the interface
module, and the protocol module by means of pointers to data structures known as buffer
descriptors. The buffer-descriptor structure is defined as follows:

struct vpmbd
short c_ct; /• Buffer size •/
short d_adres; /• Low-order 16 bits of buffer address •/
char d_hbits; /• High-order 2 bits _of buffer address •/
char d_type; /• Protocol-dependent •/
char d_sta; /• Protocol-dependent •/
char d_dev; /• Protocol-dependent •/
struct buf •d_buf; /• Pointer to system buffer descriptor •/
int d_bos; /• Index of next byte in buffer •/
int d_vpmtdev; /* Minor device number •/

For empty receive buffers, c_ct must be equal to the buff er size in bytes; for transmit buffers,
c_ct must be equal to the number of bytes to be transmitted. When a receive buffer is returned
to the protocol module, c_ct is equal to the number of data bytes in the buffer. D_adres and
d_hbits must contain an 18-bit UNIBUS-mapped buffer address; the low-order 16 bits must be in
d_adres and the high-order two bits must be in the low-order two bits of d_hbits. D_type, d_sta,
and d_dev are protocol-dependent; when using the BISYNC interpreter these three bytes may be
read and modified by the protocol script. See the discussion of getxbuf. getrbuf. rtnxbuf. and
rtnrbufin the manual entry for vpmc(IC). D_buf contains a pointer to a system buffer descrip­
tor; this is used to return the buffer to the system buffer pool. D_bos is the index of the first
byte in the buffer not yet returned to the user. D_vpmdev is the minor device number of the
protocol-module minor device to which the buffer is allocated.

The Trace Driver

The trace driver provides a means by which a user program can receive trace informii.tion gen­
erated by the VPM driver and the protocol script to aid in debugging new protocol modules and
protocol scripts. It may also be used to debug other drivers or system code not related to the
VPM driver. This driver can be configured to have a number of minor devices. Each minor
device provides a means by which a user program can read data generated by functions within
the operating system. This data is recorded by calls to trsave as described in Appendix 3. Each
call to trsave generates a unit of data known as an event record which consists of a channel
number (one byte), a count (one byte) and count bytes of data. The channel number can be
used to multiplex up to 16 data streams on each minor device.

Associated with each minor device of the trace driver is a dist queue which is used to save
event records provided a user program has that minor device open and has enabled the channel
to which the event records were written. Channels may be enabled in any combination, using
the ioctl command VPMTRCO. See the manual entry for trace(4). While a minor device read
queue 'is full, event records for that minor device are discarded. Appendix 3 contains a descrip­
tion of each trace-driver routine.

Minor device 0 of the trace driver is used by the VPM driver to record a variety of debugging
information generated within the VPM driver and also to record the data generated by the trace

VPM Release 2.0 5

primitive in a protocol script. Minor device I of the trace driver is used to record the informa­
tion generated by the snap primitive in a protocol script. The vpmtrace !ind vpmsnap commands
are available for reading and formatting the data passed via these two minor devices. These
two commands arc described in the manual entry for vpmstart(IC). Appendix 4 contains a
description of the VPM driver event trace.

Miscellaneous lmpro•ements

Two new primitives have been added to the protocol language to allow communication between
the link-level protocol script in the KMC and a higher-level protocol implemented in a user pro­
gram or a VPM protocol module. The getcmd primitive allows the script to receive a four-byte
command from a user program or a protocol module. The standard VPM protocol module
allows a user program to pass a command to the script via an ioctl system call. Other VPM pro­
tocol modules can pass a command to the script by calling the vpmcmd routine in the VPM
interface module. The rtnrpt primitive allows the script in the KMC to send a four-byte report
to a protocol module or to a user program. The standard VPM protocol module allows a user
program to receive a script report by means of an ioctl system call. A protocol module can
receive reports from the interface module by calling the vpmrpt routine of the VPM interface
module.

The trace primitive of the protocol language has been augmented to allow two arguments. The
form with one argument is still supported; if only one argument is given, the second argument
is assumed to be zero. A snap primitive has been added. This primitive causes four bytes of
data from the script followed by a four-byte time stamp to be placed on the read queue for trace
driver minor device 1.

The timeout primitive provided in Release 1.0 has been supplemented by a new timer primitive
that allows a script to initialize a timer or test its current value. If the argument to timer is
non-zero, the timer is initialized with the value of the argument. The timer is decremented ten
times a second until the timer reaches zero. If the timer primitive is called with an argument of
zero, it returns the current value of the timer. This value is zero if the timer has expired, oth­
erwise non-zero.

In release 1.0 of VPM, the interpreter would accept at most one transmit buff er and one receive
buffer at any given time. In Release 2.0 the interpreter will accept up to four transmit buffers
and four receive buffers at a time. This applies to both the character-oriented (BISYNC) inter­
preter and the bit-oriented {HDLC) interpreter.

For applications with requirements for monitoring the integrity of the computer hardware and
software, a form of cross-checking between the UNIX driver and the KMC has been imple­
mented. Every three seconds the VPM interpreter in the KMC sends an "I'm-OK" report to the
host; the host responds by sending an .. I'm-OK" command to the KMC. If either the host or
the KMC does not receive the "I'm-OK" signal within a reasonable time period, an error termi­
nation occurs.

Appendix S contains detailed instructions for adding VPM Release 2.0 to a UNIX 3.0 system.
Appendix 6 describes a number of test programs and procedures that may be used to check the
VPM hardware and software and to gain familiarity with the system.

Acknowledgements

We would like to thank our supervision, especially R. C. Haight and G. W. R. Luderer, for
their support of the Virtual Protocol Machine. L. A. Wehr provided the initial idea of inter­
preting protocol descriptions with the KMC and helped us with debugging and useful advice
from time to time. R. V. Baron of Department 9362 suggested a number of new features that
became part of this release. R. M. Ermann of Department 5251 wrote the protocol script for
the LAPB protocol and suggested severalimprovements in the HDLC primitives.

6 VPM Release 1.0

References

[I] Long, P. F. and Mee, C., Ill. Release 1 .0 of the UNIX Virtual Protocol Machine, Bell
Laboratories.

[2] Ermann, R. M. Fonnal Specification of X.25 Compatible Link Protocol, Bell Laboratories.

[3] Ermann, R. M. Portable Implementation of BX.25 Level 2, Bell Laboratories.

(4) Dolotta, T. A., Olsson, S. B., and Petruccelli, A. G. (eds.). UNIX User's
Manual- Release 3.0, Bell Laboratories.

VPM Release 2.0 7

Appendix I: The VPM Interface Module

The VPM interface functions provide a general-purpose interface between a higher-level proto­
col implemented in a VPM protocol module and the link-level protocol script executed by the
VPM interpreter in the KMC. The KMC driver is used by the interface functions to pass com­
mands to, and receive reports from the VPM interpreter. When reports are received by the
interface module that must be passed on to the protocol module, the protocol module's
receive-interrupt routine (vpmtrint in the case of the standard VPM protocol module) is called.

This appendix describes each interface function. Dev is an argument to many of the interface
functions and has the same meaning for all but two of them: the low-order four bits of the dev
argument are not used by the interface functions; the next two bits determine the interface
module minor device number; the next two bits determine the KMC minor device. Although
dev is declared as an int, only the low-order eight bits are meaningful at this time. In calls to
the vpmtrace and vpmsnap routines, dev need not be a minor device number because it is just
saved as part of the event record. The definition of dev will not be repeated for each function.

vpmcmd (dev, cmd)
int dev;
char •cmd;

This function passes a command to the script. Cmd is the address of a four-byte array. The
four bytes are passed to the VPM interpreter, which saves them until the protocol script exe­
cutes a getcmd primitive. Only the most recent four bytes passed by a vpmcmd call are saved by
the VPM interpreter.

struct vpmbd •vpmdeq (clp)
struct clist •clp;

This function removes the buffer-descriptor pointer at the head of the queue pointed to by clp
and returns it to the caller. If the queue is empty, a null pointer is returned.

vpmemptq (dev, bdp)
int dev;
struct vpmbd •hdp;

This function is used to pass an empty receive buffer for use by the interpreter in the KMC.
Bdp is a pointer to a buffer descriptor or null. If bdp is not a null pointer, the buffer descriptor
is appended to the empty-receive-buffer queue for the interface module specified by dev. If the
VPM interpreter currently has room for another empty receive buffer, the buffer at the head of
the queue is removed and passed to the KMC. The sum of the' number of buffers on the
empty-receive-buff er queue and the number of receive buffers the VPM interpreter has in its
queues is returned to the caller. If bdp is a null pointer, the above sum is returned and nothing
else is done.

vpmxmtq (dev, bdp)
int dev;
struct vpmbd •bdp;

This function is used to pass a transmit buffer to the interpreter in the KMC. Bdp is a pointer
to a buffer descriptor or null. If bdp is not a null pointer, the buff er descriptor is appended to
the transmit-buffer queue for the interface module specified by dev. If the VPM interpreter
currently has room for another transmit buff er, the buffer at the head of the queue is removed
and passed to the KMC. The sum of the number of buffers on the transmit-buffer queue and
the number of transmit buffers the VPM interpreter has in its queues is returned to the caller.
If bdp is a null pointer, the above sum is returned and nothing else is done.

8

vpmenq (bdp, clp)
struct vpmbd •bdp;
struct clist •clp;

VPM Release 2.0

If bdp is a null pointer, the number of buffer-descriptor pointers on the clist queue pointed to by
clp is returned. If bdp is not a null pointer, the buffer descriptor pointed to by bdp is appended
to the clist queue pointed to by clp and the number of pointers currently on that queue is passed
as the return value.

char •vpmerrs (dev, n)
int dev, n;

This function is used to read and reset the error counters in the VPM interpreter. The function
passes a GETECMD command to the VPM interpreter and blocks until the interpreter responds;
this command causes the interpreter to copy its error counters to an array in the interface
module and send a completion report to the driver. After the copy operation is completed, a
pointer to the error-count array is passed to the caller as the return value. The second argu­
ment is not currently used.

char •vpmrpt (dev)
int dev;

This function is used to receive a script report from the KMC. When the protocol script exe­
cutes a rtnrpt primitive, four bytes of data are passed to the interface module. If a rtnrpt has
been executed by the protocol script since the last call to vpmrpt, a pointer to the four bytes
passed by the most recent rtnrpt primitive is returned; otherwise zero is returned.

vpmsave (type, dev, wordl, wordl)
char type, dev;
short wordl, word2;

This function creates an event record with the following structure:

struct
short
char
char
short
short

c_seqn;
c_type;
c_dev;
c_wordl;
c_word2;

/* Sequence number •/
/* Argument type •/
/• Argument dev •/
/* Argument wordl •/
/* Argument word2 •/

This event record is passed to the trace driver using trsave.

vpmsnap (type, dev, wordl, wordl)
char type, dev;
short wordl, word2;

This function is similar to vpmsave. The only difference is that a time stamp (long s_lbolt) is
added to the event record after word2. A protocol script may generate a time-stamped event
record by executing the snap primitive.

VPM Release 2.0

vpmstart (dev, type, rint)
int dev, type;
int (•rint)();

9

This function must be called on the first open of the protocol-module minor device associated
with the interface-module minor device and KMC identified by dev. Type is a number that
identifies the program running in the KMC and must agree with the value specified when the
KMC load module was loaded into the KMC. For VPM interpreters, type is conventionally 6.
Rint is the name of a protocol-module routine to be called by the interface module when it
needs to return a transmit buffer, a receive buffer, a script report, or an error-termination code.
See the description of vpmtrint in Appendix 2 for an example of such a routine. Vpmstan sends
a RUN command to the VPM interpreter which causes it to begin execution of the protocol
script. If the interface module identified by dev is not configured, ENXIO is returned. If the
module is already running, i.e., vpmstart has been called and vpm.rtop has not been called, or if
the KMC is not running or was loaded using a different magic number, EACCES is returned. A
return value of zero indicates a normal completion.

vpmstop (dev)
int dev;

This routine is called to halt the execution of the protocol script by the interpreter. The routine
waits until the last transmit buffer has been returned by the protocol script, or until five seconds
have elapsed, and then sends a HALT command to the VPM interpreter which causes the inter­
preter to stop executing the protocol script. When the interpreter acknowledges the HALT
command, or after five seconds, any transmit or receive buffers still enqueued on the interface
module's transmit- and empty-buffer queues are returned to the protocol module. This does
not include buffers contained in the interpreter's queues. Generally, when the protocol script is
halted normally, the interpreter will have one or more empty receive buffers. If the interpreter
or protocol script terminates in error, some transmit buffers may also remain unaccounted for.
The upshot of this is that a protocol module must keep a record of all buffers in use for each
particular minor device, so that these buffers can be returned to the pool of available buffers
when that minor device is closed.

IO VPM Release 2.0

Appendix 2: The VPM Protocol Module

This appendix gives a detailed description of the functions that make up the standard VPM pro­
tocol module. The description may be useful as a guide in writing other VPM protocol
modules. The dev argument to the following routines is declared as an inl; however, only the
low-order eight bits are meaningful at this time. The low-order four bits are used to determine
the minor device of the protocol module; the next two bits determine the minor device of the
interface module; the next two bits determine the KMC minor device.

vpmopen (dev, fiag)
int dev' nag;

This function opens the protocol-module minor device specified by the low-order four bits of
dev. Flag contains the option bits specified on the open system call. Exclusive or non-exclusive
opens are permitted. If the driver is opened for both reading-and-writing, the open is exclusive,
i.e., no further opens are permitted. If the device is opened for reading only or for writing only,
the open is non-exclusive and subsequent opens for reading only or writing only are permitted.
If this device is not open when this function is called, it obtains a number of non-addressable
system buffers to be used as receive buffers and passes them to the VPM interpreter using the
interface routine vpmemptq. Vpmopen also calls the interface routine vpmstart if the minor dev­
ice was not already open.

vpmclose (dev)
int dev;

This function closes the minor device specified by the low-order four bits of dev. It calls the
interface routine vpmstop, Hushes the receive queue for the specified minor device, releases its
buffers, and reinitializes its data structure.

vpmwrlte (dev)
int dev;

This function implements the write system call. If the transmit queue is not full, the function
obtains a non-addressable system buffer, copies up to 512 bytes of the user's write data into it,
and enqueues the buffer on the level 2 transmit queue using the interface function vpmxmtq.
These steps are repeated until all of the user's write data has been copied. If the transmit queue
is full when this function is called or if it becomes full while the function is executing, the cal­
ling process is blocked until there is room in the queue for more transmit buffers.

vpmread (dev)
int dev;

This function implements the read system call. When it is called, the calling process is blocked
until the receive queue is non-empty. As data is received by the VPM interpreter, it is placed
into an empty receive buffer. When the protocol script decides that the data contained in a par­
ticular buffer is valid, it executes a rtnrbuf (BISYNC) or rtnrfrm (HDLC) primitive which causes
the buffer descriptor pointer to be passed to the interface modules interrupt routine. The inter­
face module then passes the buff er descriptor pointer to the protocol module by calling the pro­
tocol module's interrupt routine. The protocol module enqueues the buffer descriptor pointer
on the receive queue and wakes up (unblocks) the reader(s). The number of bytes requested,
or the data in one buffer, whichever is less, is copied to the user process; the number of bytes
copied is passed as the return value. Any bytes remaining in a buffer are used to satisfy subse­
quent read requests.

VPM Release 2.0

Ypmioctl (de., cmd, arg, mode)
int de., cmd, mode;
char •arg;

11

This function implements the ioctl system call. Cmd determines the function to be performed
as follows:

VPMCMD - Pass a command to the protocol script. The first four bytes of the array
pointed to by arg are passed to the VPM interpreter which saves them and passes them to
the protocol script the next time it executes a getcmd primitive.

VPMERRS - Get and reset the VPM interpreter's error counters. The eight-byte array con­
taining the VPM interpreter's error counters is copied to the user array pointed to by arg.
The interpreter's copy of the error counters is then set to zero.

VPMRPT - Get a report from the protocol script. If the protocol script has executed.a
rtnrpt primitive since the last time this ioctl command was issued, the script report (four
bytes) is copied to the user array pointed to by arg and one is passed as the return value;
otherwise, zero is passed as the returned value.

The mode argument is not used. The values for VPMCMD, VPMERRS, and VPMRPT are
defined in file /usrfinclude/sysjvpm.h.

Ypmtrint (de,, code, bdp)
int dev, code;
struct Ypmbd •bdp;

The address of this function is passed to the protocol module using the vpmstarl function
described in Appendix 1. This routine is called from the interface module to return transmit
buffers, receive buffers, script reports, or error termination codes. It is usually called at inter­
rupt priority and therefore must not sleep or do unnecessary work. Code identifies the purpose
of the call and determines the meaning of bdp as follows:

RRTNXBUF - Bdp is a pointer to the buffer descriptor for a transmit buffer. This call is
made when the protocol script executes a rtn.xbuf (BISYNC) or a rtn.xfrm (HDLC).

RRTNRBUF - Bdp is a pointer to the buffer descriptor for a receive buffer. This call is
made when the protocol script executes a rtnrbuf (BISYNC) or a rtnrfrm (HDLC).

RRTNEBUF - Bdp is a pointer to the buffer descriptor for an empty receive buffer. This
call is used to return empty receive buffers when the interface module is stopped by calling
vpmstop.

ERRTERM - Bdp is the error-termination code passed to the interface module by the VPM
interpreter when it halts the protocol script because of an error condition. The meaning of
these error codes is given in the manual entry for vpm (4).

The values for RRTNXBUF, RRTNRBUF, RRTNEBUF, and ERRTERM are defined in file
jusrjindude/sysjvpm.h.

12 VPM Release 2.0

Appendix 3: The Trace Drher

The trace driver provides a means by which a user program can receive trace information gen­
erated by the YPM driver, a protocol script, or some other driver. See the manual entry for
trace(4).

A description of each routine of the trace driver follows.

tropen (dev)
int dev;

This function opens the minor device specified by dev exclusively.

trclose (dev)
int dn;

This function closes the minor device specified by dev. It discards any data on the read queue
and initializes the data structure associated with the minor device.

trread (dev)
int dn;

This function implements the read system call; it sleeps until at least one event record is avail­
able on the read queue associated with dev. It then copies records to the user until the user's
read count is less than the number of bytes in the next event record or until the read queue is
empty. The number of bytes copied is passed as the return value.

trioctl (dev, c md, arg, mode)
int dev, cmd, arg, mode;

This function implements the ioctl system call. Cmd indicates the operation to be performed.
The driver has one command:

YPMTRCO - Enable a trace channel. In order for data to be saved on the read queue for
minor device dev, the device must be open and the channel to which it is written must be
enabled. This command enables channel arg, which must be in the range 0 to 15. Any
combination of channels may be enabled by repeatedly calling this function with different
values of arg. All channels are disabled when the min6r device is closed.

trsue (dev, chno, buf, ct)
char dev, cbno, •buf, ct;

If minor device dev of the trace driver is open and channel chno of that minor <ievice is
currently enabled then chno and ct, followed by ct bytes starting at address buf, are copied onto
the read queue associated with dev, provided the read queue for that device has room for the
complete event record. If there is not room for the complete event record, the record is dis­
carded.

VPM Release 2.0 13

Appendix 4: The VPM Event Trace

Calls to the interface routine vpmsave have been placed strategically throughout the standard
VPM protocol module (vpmt.c) and the VPM interface module (vpmb.c) to provide an event
trace for debugging new protocol modules and/or protocol scripts. A protocol script may gen­
erate an event record by executing a trace primitive. All such event records are discarded
unless some user program has opened minor device 0 of the trace driver and enabled channel 0
of that minor device. The command vpmtrace(l C) opens this device and enables channel 0,
then reads event records and prints them on the standard output as they are .received. Each
kind of event record that is generated by the VPM driver will be described by giving the
vpmsave function call as it appears in vpmt.c or vpmb.c, followed by an example of the line
printed by vpmtrace as a result of this call. Following this, the context of the vpmsave call and
the definition of the parameters passed will be given. The definition of a parameter that
appears in more than one call will not be repeated. The first five calls to vpmsave occur in the
source file vpmt.c; the remaining calls occur in vpmb.c.

vpmsave ('p', dev, ec, 0)

243 p 100 15 0

Called if vpmstart returns an error code. The first field of the printed record contain a sequence
number assigned by vpmsave. The remaining four fields contain the four remaining arguments
to vpmsave in the same order as they appear in the call to vpmsave. The first argument to
vpmsave, in this case a 'p', identifies the record type. Dev is the minor device number as
defined earlier; ec is the value returned by vpmstart.

vpmsave ('o', dev, vp->vt_state, 0)

244 o 100 I 0

CaJled just before the normal return point of vpmopen. The variable, vp->vt_state, contains
the state bits for the protocol module. Refer to the source file, vpmt.c, for the definitions of
the state bits.

vpmsave ('c', dev, vp->vt_state, 0)

245 c 100 13 0

Called from vpmclose just before the state bits are initialized.

vpmsave ('w', dev, ct, dp)

246 w 100 1000

Called just before putting a buffer-descriptor pointer on the transmit queue in vpmwrite. Ct is
the number of bytes in the buff er. When executing on a PDPl l, dp is the pointer to the buffer
descriptor; dp is not meaningful when executing on a VAX because pointers are four bytes on a
v AX and the argument corresponding to dp is declared as a short.

vpmsave ('r', dev, cot, dp->d_bos)

247 r 100 500 500

Called from vpmread just after cnt bytes have been moved to the user's read buff er. The
parameter dp->d_bos is the number of bytes remaining in the current receive buffer.

vpmsave ('s', dev, vp->vb_state, 0)

248 s 100 401 0

Called just before the normal return from vpmstart. The parameter vp- >vb_state contains the
state bits for the interface module. For the definitions of the state bits, refer to the source file
vpmb.c.

14

Ypmsave ('t', deY, Yp->Yb_state, •p->Yb_xbkmc)

249 t 100 0 0

VPM Release 2.0

Called just before the normal return from vpmstop. The parameter vp->vb_xbkmc is the
number of transmit buffers currently held by the VPM interpreter. It can be non-zero if the
protocol script or interpreter terminates in error.

Ypmsave ('X', deY, Yp->Yb_xbkmc, 0)

250 x 100 1 0

Called from vpmbrin1, the interface module's receive-interrupt routine, each time the VPM
interpreter returns a transmit buffer.

Ypmsave ('R', deY, yp->vb_vrkmc, 0)

251 R JOO 1 0

Called from vpmbrint each time the VPM interpreter returns a receive buffer. The parameter
vp->vbJhkmc contains the number of receive buffers currently held by the interpreter.

vpmsave ('T', dev, sel4, sel6)

252 T 100 370 21 34

Called from vpmbrin1 when a trace report is received from the interpreter. This occurs when the
protocol script executes a trace primitive. Se/4 contains the value of the script location counter
(plus two) at the time the trace primitive was executed. By referring to the assembly-language
listing of the protocol script generated by the -I option of vpmc, the point in the protocol script
at which the trace was executed can be determined. The value of the location counter is two
greater than the location of the trace instruction as shown in the assembly-language listing. Se/6
contains the byte or bytes passed by the trace primitive. Vpmtrace prints these two bytes in
separate fields.

Ypmsave ('E', dev, sel4, sel6)

253 E 244 21

Called from vpmbrinJ when an error-termination report is received from the interpreter. Se/4
contains the script location counter at the time execution of the script was terminated. Se/6
contains the termination code. For an explanation of these codes see the manual entry for
vpm(4).

•pmsave ('P', dn, sel4, sel6)

254 p 100 2105 1055

Called from vpmhrint when a script report is received from the interpreter. This occurs when
the protocol script executes a rtnrpt primitive. Se/4 and se/6 contain the four bytes transferred
by this primitive.

•pmsave ('F', dev, sel4, sel6)

255 F 100 3 0

Called froin vpmbrim when an error-count report is received from the interpreter. Se/4 and se/6
do not contain any meaningful data for this event type.

VPM Release 2.0 15

vpmsave ('S', dev, sel4, sel6)

256 s 100 401 0

Called from vpmbrin:t when a start-up report is received from the interpreter. The low-order
eight bits of se/4 contain a parameter defining the maximum number of transmit buffers the
interpreter can accept; the high-order eight bits contain a parameter defining the maximum
number of receive buffers. Se/6 contains the options supported by the interpreter.

vpmsave ('C', dev, vp->vb_state, bp->vb_xbkmc)

257 C 100 I 0

Called from vpmclean just before the data structure associated with dev is initialized.

vpmsue ('0', dev, vp->vb_state, 0)

258 0 100 1 0

Called from vpmok if the interpreter should fail to indicate its sanity by issuing an "I'm-OK"
report within the prescribed time limit.

16 VPM Release 2.0

Appendix 5: Adding VPM to a UNIX Release 3.0 System

The UNIX Release 3.0 distribution tapes contain VPM Release 2.0. This includes the compiler,
drivers, interpreters, utility commands, protocol scripts, and test programs.

The makefile vpm.mk found in /usr/src/cmdjvpm may be used to make and install all VPM com­
mands.

To add the VPM and trace drivers to a UNIX 3.0 system, do the following:

l. Make sure that the following two lines appear in the file /etc/master:

vpm
trace

0 37
0 35

206 vpm 0 0
206 tr 0 0

15
16

16
4

5
1

2. Add the following line to the file /usr/src/utsf*/cflcfigpa (or its equivalent):

vpm 0 0 0 n

where n is the number of minor devices required. The• represents either pdpll or vax.

3. To the same file add the following line for each trace minor device:

trace 0 0 0 n

where n is the number of minor devices required. Minor device 0 is used by the vpmtrace
command and minor device I is used by vpmsnap.

4. If KMCs are being added to the system, add the following line to the same file for each
KMC:

kmcl I vector address priority

where vector is the interrupt vector location (octal), address is the device address (octal),
and priority is the bus request level (normally 5).

A special file must be created in /dev for each KMC, VPM, and trace device. To make these
special files, use mknod(IM) as follows:

For KMCs:

/etc/mknod /dev /kmc? c X ?

where Xis the major device number of the KMC driver as printed by config -t (see the manual
entry for con.fig(! M)/ 4/) and ? is the minor device num her that must be in the range 0 to 3.

For VPMs:

/etc/mknod /dev/vpm c Y Z

where vpm is a unique device name; Y is the major device number of the VPM driver; and Z is
a decimal or octal number whose binary representation is defined as follows: the low-order four
bits specify one of up to 16 minor devices of the standard VPM protocol module; the next two
bits specify one of up to four VPM interface-module minor devices; the next two bits specify
the minor device number of the KMC to be used for this special file.

For trace devices:

/etc/mknod /dev/trace c Y 0
/etc/mknod /dev /snap c Y I

where Y is the major device number of the trace driver.

VPM Release 2.0 17

Hardware Installation and Switch Settings

The KMCll-B microprocessor and DMCll-DA, -FA, or -MD line unit must be installed in adja­
cent slots of a PDP-11 or VAX- I I /780 backplane. Care should be taken not to exceed the DC
power capacity of the cabinet in which the items are installed. The microprocessor and line unit
are interconnected by a one-foot ribbon cable. The DMCll-DA or -FA line unit is connected to
a suitable synchronous modem by a DEC-supplied modem cable. If the HDLC interpreter is
used, the modem must be optioned for full-duplex (four-wire) operation; at speeds above 1200
bits per second this will normally require a private line. The DMCl 1-DA has an RS-232 inter­
face that is suitable for connection to data sets such as the 208 and 209. The DMCll-FA has a
CCITI V35 interface. The DMCI I-MD has an integral 56 KB modem; this unit must be con­
nected by a pair of coaxial cables to another DMCl 1-MD. The device address and interrupt
vector address switches on the K.MC should be set for the selected addresses. The KMC should
also be wired for the selected bus priority (normally 5). All switches and jumpers on the DMC
line unit should be in the normal configuration prescribed by the relevant DEC maintenance
manual, but with one exception: the NO CRC switch (switch S2 in switch pack number I)
should be in the ON position. The purpose of this switch setting is to inhibit hardware CRC
generation. Hardware CRC generation is not used with the VPM software for this device.

If the KMC is a Revision E, a DEC field change (ECO number NU007) is required before it can
be used with the VPM or DZ/KMC software. If the change has already been installed, the capa­
citor that controls the KMC internal clock (capacitor C40, located four IC's over from the right
edge of the KMC hex board-component side facing you, fingers down) will have a value of
4700 pF.

18 VPM Release 2.0

Appendix 6: Testing VPM

During the course of developing and testing VPM, a number of programs and test procedures
have evolved which may prove useful to those adding VPM to a system or using VPM for the
first time. These programs and procedures will help to check the correct installation and opera­
tion of the hardware and software as well as help a new user of VPM to gain familiarity with the
package. These programs may be found in /usr/src/cmdjvpmfdemo and /usr/src/cmd/vpm/scripts.

Deeb in

Decbin is a simple KMC program that exercises enough of the KMC memory and instruction set
so that a correct result provides reasonable assurance that the KMC is functioning properly. It
does not exercise the interface between the KMC and the DMCI I line unit.

To run this test, you must compile file decbin.k in directory /usr/src/cmdjvpm/demo. This can be
done as follows:

/Iib/cpp /usr/src/cmd/vpm/demo/decbin.k I kasb

You must then load and run the resulting a.out and then dump the KMC and its registers. The
following sequence of commands will accomplish this:

kasb -d /dev/kmc?
.reset
.load
.run
.reset
.dump
.regs

The .regs command to kasb will produce a register dump similar to the following:

csr: 377 0 0 0 0 0 0 20
lur: 0 20 0 IOI 0 377 377 53
reg: 0 326 42 64 0 276 0 46
reg: I42 73 321 71 156 61 1I6 356
io: 377 377 377 377 377 371 377 377

npr: 0 20 0 brg: 356 0 mem: 61

If the value of r5 (the sixth number in line three of the register dump) is not 276, something is
wrong with the KMC hardware or the software used to load and execute programs in i~.

Tset

Tset is a C program that opens a particular vpm device (jdevjvpmO) and writes a string of charac­
ters to it. It then reads the same device and compares the string of characters received to the
string sent. If the two strings match, the program prints the string followed by the message .. It
worked!!!!!." This program will work only when a loop-back script such as loop.r has been
loaded into the KMC. To run this test:

1. Compile tset.c:

cc - o ts et tset.c

2. Compile loop.r:

vpmc - o loop.o loop.r

3. Load /oop.o into the KMC:

/etc/vpmstart /dev /kmc? 6 loop.o

VPM Release 2.0

4. If testing the VPM event-tracing capability, execute vpmtrace:

/etc/vpmtrace > t&

5. Execute tset:

ts et

6. Print t:

cat t

Sr

19

Sr opens /devjvpmO and forks to create a send process and a receive process. The send process
reads up to 512 bytes at a time from its standard input and writes them to /devfvpmO. The
receive process reads /devjvpmO and writes the received data to its standard output. This pro­
gram may be used with the protocol script /oop.r. The procedure for running sr is similar to
that used with tset. Steps 2, 3, and 4 need not be repeated if the interpreter and vpmtrace are
still running.

To execute sr:

sr < infile > outfile

The send process exits after it has read and transmitted the last data block of the file. The
receive process goes into a loop that sets an alarm and reads /devjvpmO. If the alarm goes off
before the read completes, the process exits.

Tcmd

Tcmd.c when used with the protocol script tcmd.r tests several new features of Release 2.0 of
VPM: communications between a user program or a protocol module and the protocol script,
reading and resetting the interpreter's error counters, and the time-stamped tracing capability.
To execute tcmd, follow the procedures given for the first test using tcmd.c and tcmd.r in place
of tset.c and loop.r. Execute vpmsnap instead of or in addition to vpmtrace.

Lapb.r

Lapb.r is the protocol script for BX.25 Level 2. To install this script m a particular KMC,
proceed as follows:

cp /usr/src/cmd/vpm/scripts/lapb.r •
cp /usr/src/cmd/vpm/scripts/const •
cp /usr/src/cmd/vpm/scripts/tconst •
vpmc -mi hdlc -o lapb.o lapb.r
/etc/vpmstart /dev /kmc? 6 lapb.o

Testing this script requires two KMCs, which may be on different host computers. The KMCs
must be connected by a pair of full-duplex synchronous modems or by a full-duplex synchro­
nous null modem. 2 Sr should be executed simultaneously on both machines to read and write
the VPM device associated with each KMC. If both KMCs are on the same host machine, it will
be necessary to edit and compile a copy of sr.c so that it opens /devjvpml instead of /devjvpmO.
The original and modified versions of sr can· then be executed simultaneously to exercise the
two KMCs.

2. A suitable null modem is the Avanti 300, which is manufactured by Avanti Communications Corporation,
Newport, RI.

20 VPM Release 2.0

To obtain maximum efficiency from this script, it may be necessary to modify the values of
some of the parameters in the const file. · The appropriate values for these parameters depend
on the link speed and maximum frame size. Guidelines for adjusting these parameters are
given in [3].

Lapbt.r

This script is identical to lapb.r except for some additional trace statements. It may be tested in
the same manner as /apb.r. Vpmtrace may be used to display the trace information.

Itr.r

Itr.r is a simplified version of lapb.r. Unlike /apb.r and lapbt.r, this script can be exercised in a
loop-back mode. To run a loop-back test, attach a DEC H-325 test connector to the end of the
modem cable for the DMCl 1-DA line unit that is connected to the KMCl 1-B to be used for the
test. Then compile itr.r and load the resulting a.out into the KMC using the procedure
described above for lapb.r, substituting itr for lapb. A loop-back test can then be run using tset
or sr.

January 1981

A Dial-up Network of UNIX Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over one hundred UNIXt computer systems has been esta­
blished using the telephone system as its primary communication medium. The
network was designed to meet the growing demands for software distribution
and exchange. There are several features that helped make it a successful sys­
tem:

Introduction

The start-up cost is low. A system needs only a dial-up port, but systems
with automatic calling units have much more flexibility.

No operating system changes are required to install or use the system.

The communication is basically over dial-up lines, but hard-wired com­
munication lines can be used to increase speed.

The command for sending/receiving files is simple to use.

A general remote execution facility is part of the system; remote mail is
one use of this feature.

Adequate security facilities are available, so the site administrators feel
comfortable about being on the network.

UNIX

E.8.1

The UNIX operating systemlll is a time-sharing system that rl!ns on small to large mini­
computers. A typical user gets access to the system through the telephone network. Since each
computer is connected to the telephone network, they are potentially connected together; all
that is needed to connect the machines is an automatic dialer and a program that can emulate a
terminal (see Figure 1).

Many UNIX systems are used within the Bell System. Although there are some
differences between them, a large set of common software modules exist: compilers, text edi­
tors, assemblers, linking loaders, debuggers, phototypesetting programs, and so on. An infor­
mal network emerged out of the need to exchange, deliver and maintain software. The tele­
phone network provides the transmission path and the computer programs described in this
paper implement the necessary protocols.

Over the past year, the network has grown to over one hundred machines throughout the
country. There are several major uses of the network:

t UNIX is a trademark of Bell Laboratories.

2

Design

distribution of software

distribution of documentation

personal communication (mail)

data transfer between closely sited machines

transmission of debugging dumps and data exposing bugs

production of hard-copy output on remote printers.

UUCP Network

In keeping with the style of UNIX commands, the user interface is quite simple. To copy
a file from the local system to a remote system, the user would execute the command:

uucp filel sysx!file2

where file/ and file2 are file names, and sysx is the remote system name. All details of the
connection (e.g., device(s) used for the connection, phon.e number, times the remote system is
available, its login sequence and password, retries for unavailable device or busy phone) are
hidden from the user. The file transfer takes place when the connection is made.

We had to adapt to a community of systems that are independently operated and resistant
to suggestions that they should all buy particular hardware or install particular operating system
modifications. Therefore, we make minimal demands on the local sites in the network. Our
implementation requires no operating system changes; in fact, the transfer programs look like
any other user entering the system through the normal dial-up login ports, obeying all local pro­
tection rules.

We distinguish between "active" and "passive" systems on the network. Active systems
have an automatic calling unit or a hard-wired line to another system: they can initiate a con­
nection. Passive systems do not have the hardware to initiate a connection. However, an
active system can be assigned the job of calling passive systems and executing work found
there: this makes a passive system the functional equivalent of an active system except for an
additional delay while it waits to be polled.

Several groups, both inside and outside Bell Laboratories, have constructed networks
using hard-wired connections exclusively. [2). [3] Our network, however, uses both dial-up and
hard-wired connections so that service can be provided to as many sites as possible and so the
slower dial-up paths can be automatically used if a hard-wired link is out of service. Dial-up
connections are made at either 300 or 1200 baud; hard-wired connections are asynchronous up
to 9600 baud and might run even faster on special-purpose communications hardware. [4).[5]

Thus, systems typically join our network first as passive systems. When they find the service
important, acquire automatic calling units and become active systems; eventually, they may
install high-speed links to particular machines with which they handle a great deal of traffic. At
no time, however, must users change their programs or procedures.

The basic operation of the network is simple. Each participating system has a spool direc­
tory in which work (files to be moved or commands to be executed remotely) is placed. The
UUCICO program performs all transfers. This program is started periodically to perform the file
transfers; it selects devices, establishes the connection to the remote machine, performs the
required login sequence, performs file security checks, transfers data files, logs results, and
notifies specified users of transfer completions.

After the calling program completes all the work for the called system, the called machine
sends any files that have been queued for the calling system. In this way, all services are avail­
able from all sites; passive sites, however, must wait until called. A variety of line protocols
may be used; this gives users some flexibility and provides a mechanism for distributing other
protocols in the future.• As long as the caller and called programs have a protocol in common,

• There is only one known system that has implemented an additional protocol. The protocol is used for
high-speed transfers using a shared disk.

UUCP Network 3

they can communicate. Furthermore, each caller knows the hours when each destination sys­
tem should be called. If ·a destination is unavailable, the data intended for it remains in the
spool directory until the destination machine can be reached.

In addition to the UUCP command, the user has the UUX command which allows execu­
tion of programs that require resources of remote machines. A common use of this facility is
to format a printout on the local machine and send the result to a remote machine which has a
hard copy output device. Remote mail is implemented using the UUX command but its execu­
tion is embedded in the standard mail command.

Processing

The user has two commands that set up communications, UUCP to set up file copying,
and UUX to set up command execution where some of the required resources (system and/or
files) are not on the local machine. Each of these commands will put work and data files into
the spool directory for execution by the UUCICO program. Figure 2 shows the major blocks of
the file transfer process.

The file names in the spool directory are constructed to allow the UUCICO program to
identify the work and data files, the remote machines that should be called. and the order that
the files for a particular system should be processed.

The call is made using information from several files. A single conversation between a
pair of systems is ensured by the use of a lock file. A ••systems" file contains information for
making a connection to a remote machine:

[I] system name,

[2] system access time (days-of-week and times-of-day),

[3] device or device type to be used for the call,

[4] line speed,

[5] phone number,

[6] login information (multiple fields).

The phone number may contain abbreviations (e.g. "nyc", "boston") that get translated
into dial sequences using a "dial-codes" file. This permits the same phone number to be stored
at every site, despite local variations in telephone services and dialing conventions.

A "devices" file is scanned using fields [3] and [4] from the "systems" file to find an
available device for the connection. If the connection fails after two attempts, an alternate path
can be tried. (The presence of more than one entry for a system i~ the "systems" file indi­
cates alternate paths.) If the connection is complete, the login information is used to log into the
remote system. The conversation between the two UUCICO programs begins with a handshake
started by the called (or SLAVE) system. The SLAVE sends a message to let the MASTER
know that it is ready to receive the system identification and conversation sequence number.
The response from the MASTER is verified by the SLAVE and if acceptable, protocol selection
begins.

The remote system sends a message:

Pproto-list

where proto-list is a string of characters, each representing a line protocol. The calling program
checks the proto-/ist for a letter corresponding to an available line protocol and returns a use­
protocol message. The use-protocol message is:

Ucode

where code is either a one character protocol letter or N, which means no common protocol.

During the processing, one program is the MASTER and the other is the SLAVE. Initially,
the calling program is the MASTER. These roles may switch one or more times during the
conversation.

4 UUCP Network

There are five messages used during the work processing, each specified by the first char­
acter of the message. They are:

S send a file,
R receive a file,
X get files whose names are determined on the remote system,
C copy complete,
H hangup.

The MASTER uses the first three to request file transfers. The SLAVE responds to each with a
yes or no.

The send, receive and execute replies are based on permission to access the requested
file/directory. After each file is copied to the receiving system, a copy-complete message is sent
by the receiver of the file. The requests and results are logged on both systems, and, if
requested, mail is sent to the user reporting completion. A failure message is sent by mail to
the requester.

The MASTER executes all the work for the remote, followed by an H message. The
SLAVE checks its spool directory for work. If work for the remote system exists, an HN mes­
sage is sent and the programs switch roles; otherwise, an HY is sent. When the MASTER
receives an HY message, it echoes it back to the SLAVE and the protocols are turned off. Each
program sends a final 00 (close) message to the other. Figure 3 shows a sample conversation.

Security

The implementation of this network between independent sites, many of which store
proprietary programs and data, illustrates the pervasive need for security and administrative
controls over file access. A number of security features evolved during the development of the
system:

file directory access restrictions,

file monitoring,

call back,

call sequence checking,

limited commands for the UUCP logins,

restricted commands available to the UUX command,

limited access to remote login information.

Each site, when configuring its programs and system files, limits and monitors transmis­
sions. The administrator can give some remote systems limited file access while others have
the same access privileges as the local users. Each system establishes a public directory for the
UUCP program. A degree of file security can be achieved if the administrator allows the
remote UUCP programs to access only this public directory. This requires a local user for
remote sites to get or send files. Records are kept identifying all files that are moved into and
out of the local system, and also of how the requester of such accesses identified themselves.

A site can arrange to permit users to call up and request that work be done; the calling
users are then called back before the work is actually performed. This makes it possible to ver­
ify that the requester is legitimate. Masquerading is difficult even if the necessary password is
known.

Eac;h machine can optionally maintain a sequence count for conversations with other
machines and require a verification of the count at the start of each conversation. A would-be
impersonator must steal not only the correct phone number, us.:r name, and password, but also
the sequence count, and must call in promptly before the next legitimate request from either
side. Even a successful masquerade will be detected on the next correct conversation.

UUCP Network 5

The "systems" file, which is described in the Processing Section, contains information to
allow the UUCICO program to login to the remote machines. This information would usually
permit almost complete access to the system. The normal file system protections are used to
restrict access of the "systems" file to the UUCP programs and the administrator. This gives
some security, but it depends on the remote system administrator. To minimize this problem,
we set up the system so that the only program that can be executed with the UUCP login is the
UUCICO program. The system administrator can use the directory access restrictions to protect
the local system without depending on a remote system to protect the login information.

The UUX command allows users to execute commands on remote systems. To protect a
system, the administrator has to specify a list of commands that the UUCP system can execute.
All commands received are checked against the list.

Present Uses

One application of this software is remote mail. Normally, a UNIX system user writes
"mail dan" to send mail to user "dan". By writing "mail pwba!dan" the mail is sent to user
"dan" on system "pwba".

The primary uses of our network to date have been in software maintenance. New pro­
grams (or new program versions) are sent to users, and potential bugs are returned to authors.
A "stockroom" has been established at two sites. This allows remote users to call in and
request software without bothering the author. A "stock list" of available programs, new bug
fixes, and utilities is updated regularly.

Test cases arc retrieved from other systems to determine whether errors on remote sys­
tems are caused by local misconfigurations or old versions of software, or whether they are
bugs that must be fixed at the home site. This helps identify errors rapidly.*

The UUX command has been useful for providing remote output. There are some
machines that do not have hard-copy devices, but that are connected over 9600 baud communi­
cation lines to machines with printers. The UUX command allows the formatting of a printout
on a local machine and printing on a remote machine using standard UNIX commands.

Performance

Throughput, of course, is primarily dependent on transmission speed. The table below
shows the real throughput of characters on communication links of different speeds. These
numbers represent actual data transferred; they do not include bytes used by the line protocol
for data validation such as checksums and messages. At the higher speeds, contention for the
processors on both ends prevents the network from driving the line ~t full speed. The range of
speeds represents the difference between light and heavy loads on the two systems. If desired,
operating system modifications can be installed that permit full use of fast links.

Nominal speed Characters/sec.
300 baud 27

1200 baud 100-110
9600 baud 200-850

In addition to the transfer time, there is some overhead for making the connection and logging
in, ranging from a few seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte
source program can be transferred in four minutes instead of the 2 days that might be required
to mail a tape.

Traffic between systems is variable. During a typical week for a group a three co-located
systems, 30 users made about 300 requests resulting in the transfer of about 3 million bytes.
(These transfers took place over 9600 baud hard-wired lines.) On a system that distributes and

* For one set of test programs maintained by us, over 70% of the bugs reported from remote sites were due
to old software and were fixed merely by distributing the current version.

6 UUCP Network

maintains standard system software, a typical week consists of transferring about 1500 files (I 0
million bytes): this includes the dial-up network at 300 or 1200 baud and hard-wired local lines.

Presently, the total number of sites in the network is about 120. This includes most of
the Bell Laboratories full-size machines that run the UNIX operating system, many operating
telephone companies, some Western Electric sites, and several universities. Geographically. the
machines range from Andover, Massachusetts to Berkeley, California.

Further Goals

Eventually, we would like to develop a full system of remote software maintenance. Con­
ventional maintenance (a support group that mails tapes) has many well-known disadvan­
tages.161 There are distribution errors and delays, resulting in old software running at remote
sites and old bugs continually reappearing. These difficulties are aggravated when there are 100
different small systems, instead of a few large ones.

The availability of file transfer on a network of compatible operating systems makes it
possible to send programs directly to the end user who wants them. This avoids the bottleneck
of negotiation and packaging in the central support group. The "stockroom" provides this
function for new utilities and fixes to old utilities. However, it is still likely that distributions
will not be sent and installed as often as needed. Users are justifiably suspicious of the "latest
version" that has just arrived; all too often it features the "latest bug." What is needed is to
address both problems simultaneously:

1. send distributions whenever programs change.

2. have sufficient quality control so that users will install them.

To do this, we recommend systematic regression testing both on the distributing and receiving
systems. Acceptance testing on the receiving systems can be automated permitting the local
system to ensure that its essential work can continue despite the constant installation of changes
sent from elsewhere. The work of writing the test sequences should be recovered by lower
counseling and distribution costs.

Some slow-speed network services have been implemented. We now have inter-system
mail plus the many implied commands represented by UUX. However, we still need inter­
system write (real-time inter-user communication) and who (list of people logged in on
different systems). A slow-speed network of this sort may be very useful for speeding up coun­
seling and education, even if not fast enough for the distributed data base applications that
attract many users to networks. Effective use of remote execution over slow-speed lines, how­
ever, must await the general installation of multiplexed channels so that long file transfers do
not lock out short inquiries.

Lessons

What follows is a summary of the lessons we learned in building this system.

I. By starting the network in a way that requires no hardware or operating system changes,
one can get going quickly.

2. Support will follow use. Since the network existed and was being used, system main­
tainers were easily persuaded to help keep it operating, including purchasing additional
hardware to speed traffic.

3. Make the network commands look like local commands. Our users have a resistance to
learning anything new; all the inter-system commands look similar to standard UNIX sys­
tem commands so that little training cost is involved.

4. Iri the first version, we made the mistake of using dial-up communications exclusively.
The second implementation of the system permits the use of different connecting fabric,
such as hard-wired, asynchronous lines: this adds flexibility to the network.

UUCP Network 7

5. Security presented a bigger problem than we anticipated. We had to give the administra­
tors features that ehabled them to protect their systems. These features, however, made
it difficult to do useful work. The creation of a public directory on each system alleviated
some of the problem, but the casual users of UUCP are often unpleasantly surprised when
their requests are rejected by remote systems.

Acknowledgements

We thank G. L. Chesson for his design and implementation of the packet driver line pro­
tocol, and A. S. Cohen, A. G. Fraser, J. Lions, and P. F. Long for their suggestions and assis­
tance.

References

[1] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Bell Sys. Tech. J.
57(6), pp. 1905-1929 (1978).

[2] T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," Bell Sys. Tech. J. 57(6), pp. 2177-2200 (1978).

[3] G. L. Chesson, "The Network UNIX System," Operating Systems Review 9(5), pp. 60-66
(1975). Also in Proc. 5th Symp. on Operating Systems Principles, 1975.

[4] A. G. Fraser, "Spider-An Experimental Data Communications System," Proc. IEEE
Conj. on Communications, p. 21F (June 1974). IEEE Cat. No. 74CH0859-9-CSCB.

[5] A.G. Fraser, "A Virtual Channel Network," Datamation, pp. 51-56 (February 1975).

[6] F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, MA (1975).

8

USER

USER

I
I

I

I
I

TELEPHONE
NETWORK

UNIX
SYSTEM

7
I

I

USER

UNIX
SYSTEM

FIGURE 1

UUCP NETWORK • ACCESS TO
REMOTE UNIX SYSTEM THROUGH

DIALUP TELEPHONE NETWORK

UUCP Network

UNIX
SYSTEM

UUCICO UUCICO ~

,--·-----1 ,-------1 ~
q

I I l I ~ I SCAN I SCAN
I FOR I FOR I ~

I I I I ~
I WORK I I WORK

USER I I ESTABLISH I
I I COMMUNICATION I I

CONNECT I CHANNEL I r-----1
TO REMOTE I I I

I I
MACHINE I I I

UUCP ~ /i L------J
I

I
I I I SPOOL I

START

I
I I START I

PROTOCOL I I PROTOCOL
I
I
I

FILE I DATA TRANSFER I FILE
TRANSFER I

TRANSFER
USER

USER~ L ________ _j I
L--------J

FILES

FILES

J
FIGURE 2

FILE TRANSFER PROCESS

'°

JO

I CALLING I
SVSTEM

MESSAGES
& DATA I CALLED I

. SYSTEM_

555-6789 ----"""> [Dial up]

< login:

user-id, password -7 [Identification]

< S [Handshake and

S 36 myname ~ sequence check]

< Pa, b, c [Offer protocols]

<

<
<==

<
<

<'==
<

<

January 198 J

U b [Choose protocol]

S /abc/def/ghi ~ [Send file]

SY

DATA

R /abc/def /jkl

RY

DATA

H --------""'

HN

S /abc/mno/prs

SY --------.:~

DATA

H

HY----...._;:;..

(00)

(00)

Hangup

[OK to send]

[Get file l
[OK to receive]

[Off er to stop]

[Refused]

[Called system sends]

[OK to send]

[Off er to stop]

[Accepted]

[Close]

FIGURE 3

SAMPLE CONVERSATION

UUCP Network

UUCP Implementation Description

D. A. Nowitz

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Uucp is a series of programs designed to permit communication between
UNIXt systems using either dial-up or hard-wired communication lines. This
document gives a detailed implementation description of the current implemen­
tation of uucp. Is is designed for use by an administrator /installer of the sys­
tem. It is not meant as a user's guide.

Introduction

UNIX

E.8.2

Uucp is a series of programs designed to permit communication between UNIX systems using
either dial-up or hard-wired communication lines. It can be used for file transfers and remote
command execution. The first version of the system was designed and implemented by M. E.
Lesk. 1 This paper describes the current (second) implementation of the system.

Uucp is a batch operation. Files are created in a spool directory for processing by the uucp
demons. There are three types of files used for the execution of work. Data files contain data
for transfer to remote systems. Work files contain directions for file transfers between systems.
Execute files are scripts for UNTX commands that involve the resources of one or more systems.

There are four primary programs:

uucp builds work files and gathers data files in the spool directory for data transmis­
sion.

uux

uucico

uuxqt

creates work files, execute files, and gathers data files for the remote execution
of UNIX commands.

executes the work files for data transmission.

executes the scripts for UNIX command execution.

There are a couple of administrative programs:

uulog gathers temporary log files that may occur due to lockout of the uucp log file
and reports some information such as copy requests and completion status.

uuclean removes old files from the spool directory.

The remainder of this paper will describe the operation of each program, the installation of the
system, the security aspects of the system, the files required for execution, and the administra­
tion of the system.

t UNIX is a trademark of Bell Laboratories.
I. M. E. Lesk and A. S. Cohen, UNIX Software Distribution by Communication Link. private communication.

2 UUCP Implementation

1. Uucp-UNIX to UNIX File Copy

The uucp command is the user's primary interface with the system. The command is designed
to look like cp to the user. The syntax is

uucp [option] . . . source . . . destination

where the source and destination may contain the prefix system-name! , which indicates the sys­
tem where the file or files reside or where they will be copied.

Uucp has several options:

-d Make directories when necessary for copying the file.

-c Don't copy source files to the spool directory, but use the specified source
when the actual transfer takes place.

-esys Send this job to system sys to execute. (Note that this will only work when
the system sys allows uuxqt to execute a uucp command. See the "Uuxqt"
and "Security" sections.)

-g/etter Put letter in as the grade in the name of the work file. {This can be used to
change the order of work for a particular machine.)

- m Send mail to the requester on completion of the work.

- nuser Notify user on the remote machine that a file has been sent.

There are several options available for debugging:

-r Queue the job but do not start uucico program.

-xnum Num is a level number between I and 9; higher numbers give more debugging
output.

The destination may be a directory name, in which case the file name is taken from the last part
of the source's name. If the directory exists, it must be writable by everybody. (Note that if
the destination is a directory name and the "-d" option is specified to create the directory, the
directory name must be followed by "/".) The source name may contain special shell charac­
ters such as "?* [] ". These will be expanded on the appropriate system.

The command

uucp *.c usg!/usr/dan

will set up the transfer of all files whose names end with ".c" to the "/usr/dan" directory on
the"usg" machine.

The source and/or destination names may also contain a ~user prefix. This translates to the
login directory of user on the specified system. File names beginning with "~/" translate into
the public directory {usually /usr/spool/uucppublic) on the remote system. For names with
partial path-names, the current directory is prepended to the file name. File names with .• /are
not permitted for security reasons.

The command

uucp usg!-danj*.h ~dan

will set up the transfer of files whose names end with ". h" in dan 's login directory on system
"usg" to dan's local login directory.

For each source file, the program will check the source and destination file-nam'es, the system­
part of each argument, and the options to classify the work into several types:

[1] Copy source to destination on local system.

[2] Receive files from other systems.

[3] Send files to a remote system.

UUCP Implementation 3

[4) Send files from remote systems to another remote system.

[5] Receive files from remote systems when. the source contains special shell characters
as mentioned above.

[6] Request that the uucp command be executed by a remote system.

After the work has been set up in the spool directory, the uucico program is started to try to
contact the other machine and execute the work (unless the -r option was specified).

Type 1 - local copy

The copy is done locally. The -m and -n options are not honored in this case.

Type 2 - receive files

A work file is created or appended with a one line entry for each request. The upper limit to
the number of files per work file is set in uucp.h. (The default setting is 20.) After the limit has
been reached, a new work file is created. (All work files and execute files use a blank as the
field separator.) The fields for these entries are given below.

[l] R

[2] The full path-name of the source or a ~something/path-name. The -something part
will be expanded on the remote system.

[3] The full path-name of the destination file. If the -something notation is used, it will
be immediately expanded.

[4] The user's login name.

[5] A "-" followed by an option list. The options -m and -d may appear.

Type 3 - send files

Each source file is copied into a data file in the spool directory. (A "-c" option on the uucp
command will prevent the data file from being made. In this case, the file will be transmitted
from the indicated source.) The fields for these entries are given below.

[I] S

[2] The full-path name of the source file.

[3] The full-path name of the destination or -something/file-name.

[4] The user's login name.

[5] A " - " followed by an option list. The options -d, - m, and - n may appear.

[6] The name of the data file in the spool directory. A dummy name, "D.O" is used
when the -c option is specified.

[7] The file mode bits of the source file in octal print format (e.g., 0666).

[8] The user on the remote system to be notified upon completion of the file copy when
the " - n" option is specified.

Type 4 and Type 5 - remote uucp required

Uucp generates a uucp command and sends it to the remote machine; the remote uucico exe-
cutes the uucp command. ,,

Type 6 - remote execution

This occurs when the "-e" option is used. In this case, the uux facility is used to create and
send the request. This requires th~.t the remote uuxqt program allows the uucp command.

4 UUCP Implementation

2. Uux-UNIX To UNIX Execution

The uux command is used to set up the execution of a UNIX command where the execution
machine and/or some of the files are remote. The syntax of the uux command is

uux [-] [option] . . . command-string

where the command-string is made up of one or more arguments. All special shell characters
such as "<>I"" must be quoted either by quoting the entire command-string or quoting the
character as a separate argument. Within the command-string, the command and file names
may contain a system-name! prefix. All arguments that do not contain a "!" will not be treated
as files. (They will not be copied to the execution machine.) An argument that contains a "!"
but is not to be treated as a file at the present time, can be escaped by using "()" around the
argument. (Note that the "()" symbols must usually be escaped with a "\" symbol.) The
" - " is used to indicate that the standard input for command-string should be inherited from
the standard input of the uux command. The following options are available for debugging:

-r Don't start uucico or uuxqt after queuing the job.

-xnum Num is a level number between I and 9; higher numbers give more debugging
output.

The command

pr abc I uux - usg!lpr

will set up the output of "pr abc" as standard input to an lpr command to be executed on sys­
tem "usg".

Uux generates an execute file that contains the names of the files required for execution
(including standard input), the user's login name, the destination of the standard output, and
the command to be executed. This file is either put in the spool directory for local execution or
sent to the remote system using a send command (type 3 above).

For required files that are not on the execution machine, uux will generate receive command
files (type 2 above). These command-files will be put on the execution machine for execution
by the uucico program.

The execute file contains a script that will be processed by the uuxqt program. It is made up of
several lines, each of which contains an identification character and one or more arguments.
The lines are described below.

User Line

U user system

where the user and system are the requester's login name and system.

Required File Line

F file-name real-name

where the file-name is a unique name used for file transmission and real-name is the last
part of the actual file name (contains no path information). Zero or more of these lines
may be present. The uuxqt program will check for the existence of all these files before
the command is executed.

Standard Input Line

I file-name

Th.e standard input is either specified by a "<" in the command-string or inherited from
the standard input of the uux command if the " - " option is used. If a standard input is
not specified, "/dev/null" is used. (Note that if there is a standard input specified, it will
also appear in an "F" line.)

UUCP Implementation 5

Standard Output Line

0 file-name system-name

The standard output is specified by a ">" within the command-string. If a standard out­
put is not specified, "/dev/null" is used. (Note that the use of">>" is not imple­
mented.)

Command Line

C command [arguments] ...

The arguments are those specified in the command-string. The standard input and stan­
dard output will not appear on this line. All required files will be moved to the execution
directory (usually /usr/lib/uucp/.XQTDIR) and the UNIX command is executed using the
shell specified in the uucp. h header file. In addition, a shell "PATH" statement is
prepended to the command line as specified in the uuxqt program. (Note that a check is
made to see that the command is allowed as specified in the uuxqt program.) After execu­
tion, the standard output is copied or sent to the proper place.

3. Uucico-Copy In, Copy Out

The uucico program will perform several major functions:

Scan the spool directo·ry for work.

Place a call to a remote system.

Negotiate a line protocol to be used.

Execute all requests from both systems.

Log work requests and work completions.

Uucico may be started in several ways:

a) by a system demon specified in a crontab entry,

b) by one of the uucp, uux, uuxqt or uucico programs,

c) directly by the user (this is usually for testing),

d) by a remote system. (The uucico program should be specified as the "shell" field in
the "/etc/passwd" file for the logins used by remote systems to access uucp.)

When started by method a, b or c, the program is considered to be in MASTER mode. Jn this
mode, a connection will be made to a remote system. If started by a remote system (method
d), the program is considered to be in SLAVE mode.

The MASTER mode will operate in one of two ways. If no system name is specified (- s
option not specified) the program will scan the spool directory for systems to call. If a system
name is specified, that system will be called, and work will only be done for that system.

Uucico is generally started by another program. There are several options used for execution:

-rl Start the program in MASTER mode. This is used when uucico is started by a
program or "cron" shell.

-ssys Do work only for system sys. If -s is specified, a call to the specified system
will be made even if there is no work for system sys in the spool directory.
This is useful for polling systems that do not have the hardware to initiate a
connection.

The following options are used primarily for debugging:

-ddir Use directory dir for the spool directory.

-xnum Num is a level number between I and 9; higher numbers give more debugging
output.

6 UUCP Implementation

The next part of this section will describe the major steps within the uucico program.

Scan For Work

The names of the work related files in the spool directory have format

type • system-name grade number

where

type is an upper case letter (C - copy command file, D - data file, X - execute file),

system-name is the remote system,

grade is a character,

number is a four digit, zero padded sequence number.

The file

C. res45 n003 l

would be a work file for a file transfer between the local machine and the "res45" machine.

The scan for work is done by looking through the spool directory for work files (files with prefix
"C. "). A list is made of all systems to be called. Uucico will then call each system and pro­
cess all work files.

Call Remote System

The call is made using information from several files that reside in the uucp program directory
(usually /usr/lib/uucp). At the start of the call process, a lock is set to forbid multiple conver­
sations between the same two systems.

The L. sys file contains information required to make the remote connection:

[1]

[2]

system name,

times to call the system (days-of-week and times-of-day)
delay before retry,

[3] device or device type to be used for call,

[4] line class (this is the line speed on almost all systems),

[5] phone number if field [3] is ACU or the device if not ACU,

[6] login information (zero or more fields),

and the minimum time

The time field is checked against the present time to see if the call should be made. The phone
number may contain abbreviations (e.g., mh, py, boston) that get translated into dial sequences
using the L-dialcodes file.

The L-devices file is scanned using fields [3] and (4) from the L. sys file to find an available
device for the call. The program will try each devices that satisfy [3] and [4] until a call is
made, or no more devices can be tried. If a device is successfully opened, a Jock file is created.
If the call is completed, the login information (field [6] of L. sys) is used to login.

The conversation between the two uucico programs begins with a handshake started by the
called, SLAVE, system. The SLAVE sends a message to Jet the MASTER know it is ready to
receive the system identification and conversation sequence number. The response from the
MASTER is verified by the SLAVE and if acceptable, protocol selection begins. The SLAVE
can also reply with a "call-back required" message in which case, the current conversation is
terminated.

Line Protocol Selection

The remote system sends a message

UUCP Implementation 7

Pproto-list

where proto-list is a string· of characters, each representing a line protocol.

The calling program checks proto-list for a letter corresponding to an available line protocol and
returns a use-protocol message. The use-protocol message is

Ucode

where code is either a one character protocol letter or "N", which means there is no common
protocol.

Work Processing

The MASTER program does a work search similar to the one used in the "Scan For Work"
section. (The MASTER has been specified by the "-rl" uucico option.) Each message used
during the work processing is specified by the first character of the message:

S send a file,

R receive a file,

C copy complete,

X execute a uucp command,

H hangup.

The MASTER will send R, S or X messages until all work for the remote system is complete,
at which point an H message will be sent. The SLAVE will reply with SY, SN, RY, RN, HY,
HN, XY, or XN, corresponding to yes or no for each request.

The send and receive replies are based on permission to access the requested file/directory
using the USERFILE and read/write permissions of the file/directory. After each file is copied
into the spool directory of the receiving system, a copy-complete message is sent by the
receiver of the file. The message CY will be sent if the file has successfully been moved from
the spool directory to the destination. Otherwise, a CN message is sent. (In this case, the file
is put in the public directory, usually /usr/spool/uucppublic, and the requester is notified by
mail.) The requests and results are logged on both systems.

The hangup response is determined by a work scan of the SLAVE's spool directory. If work
for the remote system exists an HN message is sent and the programs switch roles. If no work
exists, an HY response is sent.

Conversation Termination

When a HY message is received by the MASTER it is echoed back ~o the SLAVE and the pro­
tocols are turned off. Each program sends a final "00" message to the other. The original
SLAVE program will clean up and terminate. The MASTER will proceed to call other systems
unless a "-s" option was specified.

4. Uuxqt-Uucp Command Execution

The uuxqt program is used to execute scripts generated by uux. The uuxqt program may be
started by either the uucico or uux programs or a demon specified by a crontab entry. The pro­
gram scans the spool directory for execute files (prefix "X. "). Each one is checked to see if all
the required files are available and if so, the command line is verified and executed.

The execute file is described in the "Uux" section above.

The execution is accomplished by executing a "sh -c" of the command line after appropriate
standard input and standard output have been opened. If a standard output is specified, the
program will create a send command or copy the output file as appropriate.

8 UUCP Implementation

5. Uulog- Uucp Log Inquiry

When a uucp program can not make a log entry directly into the LOGFILE an individual log
file is created: a file with prefix LOG. This will sometimes occur when more than one uucp
process is running. Periodically, uulog may be executed to append these files to the LOG FILE.

The uulog program may also be used to request the output of LOGFILE entries. The request is
specified by the use of the options:

-s.sys Print entries where .sys is the remote system name,

- uuser Print entries for user user.

The intersection of lines satisfying the two options is output. A null .sys or user means all sys­
tem names or users respectively.

6. Uuclean- Uucp Spool Directory Cleanup

This program is typically started by the uucp daily demon. Its function is to remove files from
the spool directory that are more than 3 days old. These are usually files for work that can not
be completed. The requester of this work is notified that the files have been deleted.

There are several options:

-ddir The directory to be scanned is dir.

- m Send mail to the owner of each file being removed. (Note that most files put
into the spool directory will be owned by the owner of the uucp programs since
the setuid bit will be set on these programs. This mail is sometimes useful for
administration.)

- nhours Change the aging time from 72 hours to hours hours.

-ppre Examine files with prefix pre for deletion. (Up to 10 of these options may be
specified.)

- xnum This is the level of debugging output desired.

7. Security

w- The uucp .system, left unrestricted, will let any outside user execute any commands and copy
out/in any file that is readable/writable by a uucp login user. It is up to the individual sites to be
aware of this and apply the protections that they feel are necessary.

There are several security features available aside from the normal file mode protections.
These must be set up by t~e administrator of the uucp system.

The login for uucp does not get a standard shell. Instead, the uucico program is 'Started so
that all work is done through uucico.

The owner of the uucp programs should be an administrative login. It should not be one of
the logins used for remote system access to uucp.

A path check is done on file names that are to be sent or received. The USERFILE supplies
the information for these checks. The USERFILE can also be set up to require call-back for
certain login-ids. (See the "Files Required For Execution" section for the file description.)

A conversation sequence count can be set up so that the called system can be more
confident of the caller's identity.

The uuxqt program comes with a list of commands that it will execute. A "PA TH" shell
statement is prepended to the command line as specified in the uuxqt program. The
ins~aller may modify the list or remove the restrictions as desired.

The L..sys file should be owned by the uucp administrative login and have mode 0400 to
protect the phone numbers and login information for remote sites.

UUCP Implementation 9

The programs uucp, uucico, uux, uuxqt, uulog, and uuclean should be owned by the uucp
administrative login, have the setuid bit set, and have only execute permissions.

8. Uucp Installation

It is assumed that the login name used by a remote computer to call into a local computer is not
the same as the login name of a normal user or the uucp administrative login. However,
several remote computers may use the same login name.

Each computer should be given a unique system name that is transmitted at the start of each
call. This name identifies the calling machine to the called machine. The login/system names
are used for security as described later in the USERFILE section.

There are several source modifications that may be required before the system programs are
compiled. These relate to the directories, local system name, and attributes of the local
environment.

There are several directories used by the uucp system:

lib (/usr/src/cmd/uucp) - This directory contains the uucp system source files.

program (/usr/lib/uucp) - This is the directory used for some of the executable sys­
tem programs and the system files. Some of the programs reside in
"/usr/bin".

spool

xqtdir

(/usr/spool/uucp) - This is the uucp system spool directory.

(/usr/lib/uucp/.XQTDIR) - This directory is used during execution of the
uux scripts.

The names in parentheses above are the default values for the directories. The italicized names
lib, program, xqtdir, and spool will be used in the following text to represent the appropriate
directory names.

There are two files that may require modification, the makefile file and the uucp. h file. (On
some systems, the makefile is named uucp.mk .) In addition, the "uuxqt.c" program may be
modified as indicated in the "Security" section above. The following paragraphs describe the
modifications.

uucp. b modification

Several manifests in "uucp.h" may need modification for the local system environment:

UNAME should be defined if the "uname" function is available.

MYNAME should be modified to the name of the local system if UNAME is
not defined.

ACULAST is the character required by the ACU as the last character. For most sys­
tems, it is a"-".

DAT AKIT should be defined if the system is on a datakit network.

DIALOUT should be defined if the "C" library routine "dialout" is available.

makefile modification

There are several make variable definitions that may need modification:

INSDIR is the program directory (e.g., INSDIR=/usr/lib/uucp). This parameter is
used if "make cp" or "make install" is used.

IOCTL is required to be set if the "ioctl" routine is not available in the standard "C"
library; the statement "IOCTL=ioctl.o" is required in this case.

PUBDIR is a public directory for remote access. This is also the login directory for
remote uucp users. It should be the same as that defined in "uucp.h".

10 UUCP Implementation

SPOOL is the uucp spool directory. This should be the same as that defined in
"uucp.h".

XQTDIR is the directory for uuxqt to use for command execution. It is also defined in
"uucp.h".

OWNER is the administrative login for uucp.

Compile the system

The command

make install

will make the required directories, compile all programs, set the proper file modes, and copy
the programs to the proper directories. This command should be run as root. The command

make

will compile the entire system.

The programs uucp, uux, and uulog should be put in "/usr /bin". The programs uuxqt, uucico,
and uuclean should be put in the program directory.

Files Required For Execution

There are four files that are required for execution. They should reside in the program direc­
tory. The field separator for all files is a space. ·

L-devices

This file contains call-unit device and hard-wired connection information. The special device
files are assumed to be in the /dev directory. The format for each entry is

where

type

type line call-unit speed

is a device type such as ACU or DIR. The field can also be used to specify
particular ACUs for some calls by using a suffix on the ACU field, e.g.,
ACU3. This names should be used in L. sys.

line

call-unit

is the device for the line (e.g., culO).

is the automatic call unit associated with line (e.g., cuaO). Hard-wired lines
have a number "O" in this field.

speed

The line

is the line speed.

ACU culO cuaO 300

would be set up for a system that has device "/dev/culO" wired to a call-unit "/dev/cuaO" for
use at 300 baud.

L-dialcodes

This file contains the dial-code abbreviations used in the L. sys file (e.g., py. mh, boston). The
entry format is

where

abb

dial-seq

The line

abb dial-seq

is the abbreviation,

is the dial sequence to call that location.

UUCP Implementation

PY 165-

would be set up so that entry py7777 would send 165- 7777 to the dial-unit.

USER FILE

This file contains user accessibility information. It specifies four types of constraint:

[I] which files can be accessed by a normal user of the local machine,

[2]

(3)

which files can be accessed from a remote computer,

which login name is used by a particular remote computer,

[4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the format

login.sys [c] path-name [path-name] ...

where

login is the login name for. a user or the remote computer,

sys is the system name for a remote computer,

c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for sys.

The constraints are implemented as follows.

11

[I] When the program is obeying a command stored on the local machine, MASTER
mode, the path-names allowed are those given on the first line in the USERFILE
that has the login name of the user who entered the command. If no such line is
found, the first line with a null login name is used.

[2] When the program is responding to a command from a remote machine, SLAVE
mode, the path-names allowed are those given on the first line in the file that has
the system name that matches the remote machine. If no such line is found, the
first one with a null system name is used.

[3] When a remote computer logs in, the login name that it uses must appear in the
USERFILE. There may be several lines with the same login name but one of them
must either have the name of the remote system or must contain a null system
name.

[4] If the line matched in ([3]) contains a "c", the remote machine is called back
before any transactions take place.

The line

u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
"/usr/xyz".

The line

dan, /usr/dan

allows the ordinary user dan to issue commands for files whose name starts with "/usr/dan".
(Note that this type restriction is seldom used.)

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u. If its system name is not m, it can only ask
to transfer files whose names start with "/usr/spool". If it is system m, it can send files from
paths "/usr/xyz" as weJI as "/usr/spool".

12 UUCP Implementation

The lines

root, /
, /usr

allow any user to transfer files beginning with "/usr" but the user with login root can transfer
any file. (Note that any file that is to be transferred must be readable by anybody.)

L.sys

Each entry in this file represents one system that can be called by the local uucp programs.
More than one line may be present for a particular system. In this case, the additional lines
represent alternative communication paths that will be tried in sequential order. The fields are
described below.

system name

The name of the remote system.

time

This is a string that indicates the days-of-week and times-of-day when the system should
be called (e.g., MoTuTh0800- l 730).

The day portion may be a list containing some of

Su Mo Tu We Th Fr Sa

or it may be Wk for any week-day or Any for any day.

The time should be a range of times (e.g., 0800-1230). If no time portion is specified,
any time of day is assumed to be allowed for the call. Note that a time range that spans
0000 is permitted, for example, 0800-0600 means all times are allowed other than times
between 6 and 8 am.

An optional subfield is available to indicate the minimum time (minutes) before a retry
following a failed attempt. The subfield separator is a ",". (e.g., Any,9 means call any
time but wait at least 9 minutes after a failure has occurred.)

device

This is either ACU or the hard-wired device to be used for the call. For the hard-wired
case, the last part of the special file name is used (e.g., ttyO).

class

This is usually the line speed for the call (e.g., 300). The exception is when the "C"
library routine "dialout" is available in which case this is the dialout class.

phone

The phone number is made up of an optional alphabetic abbreviation and a numeric part.
The abbreviation should be one that appears in the L-dialcodes file (e.g., mh5900, bos­
ton995-9980). For the hard-wired devices, this field contains the same string as used for
the device field.

login

The login information is given as a series of fields and subfields in the format

[expect send) ...

where expect is the string expected to be read and send is the string to be sent when the
expect string is received.

UUCP Implementation 13

The expect field may, be made up of subfields of the form

expect[-send-expect] ...

where the send is sent if the prior expect is not successfully read and the expect following
the send is the next expected string. (e.g., login--login will expect login; if it gets it, the
program will go on to the next field; if it does not get login, it will send null followed by a
new line, then expect login again.)

There are two special names available to be sent during the login sequence. The string
EOT will send an EOT character and the string BREAK will try to send a BREAK charac­
ter. (The BREAK character is simulated using line speed changes and null characters and
may not work on all devices and/or systems.) A number from I to 9 may follow the
BREAK for example, BREAK I will send l null character instead of the default of 3.
Note that BREAK! usually works best for 300/1200 baud lines.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm match all or part of the input string as illustrated in the password field
above.

9. Administration

This section indicates some events and files that must be administered for the uucp system.
Some administration can be accomplished by shell files initiated by crontab entries. Others will
require manual intervention. Some sample shell files are given toward the end of this section.

SQFILE - sequence check file

This file is set up in the program directory and contains an entry for each remote system with
which you agree to perform conversation sequence checks. The initial entry is just the system
name of the remote system. The first conversation will add the conversation count and the
date/time of the most resent conversation. These items will be updated with each conversa­
tion. If a sequence check fails, the entry will have to be adjusted manually.

TM - temporary data files

These files are created in the spool directory while a file is being copied from a remote machine.
Their names have the form

TM.pid.ddd

where pid is a process-id and ddd is a sequential three digit number.starting at zero. After the
entire file is received, the TM file is moved/copied to the requested destination. If processing
is abnormally terminated the file will remain in the spool directory. The leftover files should be
periodically removed; the uuclean program is useful in this regard. The command

program ju uclean - pTM

will remove all TM files older than three days.

LOG -:- log entry files

During execution, log information is appended to the LOGFILE. If this file is locked by
another process, the log information is placed in individual log files which will have prefix
LOG. These files should be combined into the LOGFILE by using the uulog program. This
program will append the LOGFJLE with the individual log files. The command

uulog

will accomplish the merge. Options are available to print some or all the log entries after the
files arc merged. The LOGFILE should be removed periodically.

14 UUCP Implementation

The LOG. files are created initially with mode 0222. If the program that creates the file ter­
minates normally, it changes the mode to 0666. Aborted runs may .leave the files with mode
0222 and the uulog program will not read or remove them. To remove them, either use rm,
uuclean, or change the mode to 0666 and let uulog merge them into the LOGFILE.

STST - system status files

These files are created in the spool directory by the uucico program. They contain information
such as login, dial-up or sequence check failures or will contain a TALKING status when two
machines are conversing. The form of the file name is

STST.sys

where sys is the remote system name.

For ordinary failures, such as dial-up or login, the file will prevent repeated tries for about 55
minutes. This is the default time; it can be changed on an individual system basis by a subfield
of the time field in the L. sys file. For sequence check failures, the file must be removed
before any future attempts to converse with that remote system.

LCK - lock files

Lock files are created for each device in use (e.g., automatic calling unit) and each system
conversing. This prevents duplicate conversations and multiple attempts to use the same dev­
ice. The form of the lock file name is

LCK .. str

where str is either a device or system name. The files may be left in the spool directory if runs
abort (usually only on system crashes). They will be ignored (re-used) after 1.5 hours. When
runs abort and calls are desired before the time limit, the lock files should be removed.

ERRLOG - uucp system error file

This file is created in the spool directory to record uucp system errors. Entries in this file
should be rare. The messages come from the ASSERT statements in the various programs.
Wrong modes on files or directories, missing files, and read/write system call failures on the
transmission channel may cause entries in the ERRLOG file.

Shell Files

The uucp program will spool work and attempt to start the uucico program, but uucico will not
always be able to execute the request immediately. Therefore, the uucico program ~hould be
periodically started. The command to start uucico can be put in a "shell" file with a command
to merge LOG. files and started by a crontab entry on an hourly basis. The file could contain
the commands

/usr/bin/uulog
program/uucico -rl -sinter
program /uucico -rl

The "-rl" option is required to start the uudco program in MASTER mode. The "-s"
option can be used for polling as illustrated in the second line where machine inter is being
polled. The third line will process all other spooled work.

Another shell file may be set up on a daily basis to remove TM, ST and LCK files and C. or
D. files for work that can not be accomplished for reasons like bad phone number, login
changes etc. A shell file containing commands like

program/uuclean -pTM -pC. -pD.
program/uuclean -pST -pLCK -nl2

can be used. Note that the "-nl2" option causes the ST and LCK files older than 12 hours
to be deleted. The absence of the " - n" option will use a three day time limit.

UUCP Implementation 15

A daily or weekly shell sho.uld also be created to remove or save old LOG FILE s. A shell like

cp spoo//LOGFILE spoo//o.LOGFILE
rm spool /LOG FILE

can be used.

Login Entry

Two or more logins should be set up for uucp. One should be an administrative login: the
owner of all the uucp programs, directories and files. All others are used by remote systems to
access the uucp system. Each of the "/etc/passwd" entries for the access logins should have
"program/uucico" as the shell to be executed. The login directory should be the public direc­
tory (usually /usr/spool/uucppublic). The various access login names are used in the USER­
Fl LE to restrict file access.

File Modes

The programs uucp, uux, uucico, uulog, uuclean and uuxqt should be owned by the uucp
administrative login with the "setuid" bit set and only execute permissions (e.g., mode 04111).
The L. sys, SQFILE and the USERFILE, which are put in the program directory should be
owned by the uucp administrative login and set with mode 0400. The mode of spool should be
"0755". The mode of xqtdir should be "0777". The L-dia/codes and the L-devices files should
have mode 0444.

January 1981

The Implementation of the LP Spooling System

J. R. Kliegman

Bell Laboratories
Piscataway, New Jersey 08854

l. INTRODUCTION

UNIX

E.9.1

LP is a system of commands that performs diverse spooling functions under the UNIXt operat­
ing system. Because its primary application is off-line printing, this paper focuses mainly on
spooling to line printers. LP allows administrators to customize the system to spool to a collec­
tion of line printers of any type and to group printers into logi<'al classes in order to maximize
the throughput of the devices. Users are provided the capabilities of queuing and canceling
print requests, preventing and allowing queuing to and printing on devices, starting and stop­
ping LP from processing requests, changing the configuration of printers and finding the status
of the LP system. This memo describes the implementation of LP and suggests how it can be
used as a general purpose spooler.

The remainder of this paper . is organized as follows: Section 2 presents an overview of the
features of LP and defines terms that will be used throughout the memo. See [l] for a detailed
description of the role of an LP Administrator. Section 3 tells how to build an LP system. Sec­
tion 4 describes the LP directory structure and file formats. The internals of the LP scheduler
are outlined in Section 5. Section 6 addresses the issue of using LP for general purpose spool­
ing, Section 7 discusses possible extensions to LP and the last section summarizes the features
that separate LP from other spooling systems.

2. OVERVIEW OF LP FEATURES

2.1 Definitions

We will define several terms before presenting a brief summary of LP commands. LP was
designed with the flexibility to meet the needs of users on different UNIX systems. Changes to
LP's configuration (see below) are performed by the lpadmin(JM) command. (A parenthesized
number immediately following a command name refers to that section of the UNIX User's
Manual.)

LP makes a distinction between printers and printing devices. A del'ice is a physical peripheral
device or a file and is represented by a full UNIX path name. A printer is a logical name that
represents a device. At different points in time, a printer may be associated with different dev­
ices. A class is a name given to an ordered list of printers. Every class must contain at least
one printer. Each printer may be a member of zero or more classes. A destination is a printer
or a class. One destination may be designated as the system default destination. The Ip(I) com­
mand will direct all output to this destination unless the user specifies otherwise. Output that is
routed to a printer will be printed only by that printer, whereas output directed to a class will be
printed by the first available class member. ·

Each invocation of Ip creates an output request that consists of the files to be printed and
options from the Ip command line. An interface program which formats requests must be sup­
plied for each printer. The LP scheduler, Jpsched(IM), services requests for all destinations by
routing requests to interface programs to do the printing on devices. An LP configuration for a
system consists of devices, destinations and interface programs.

t UNIX is a trademark of Bell Laboratories.

2 LP Implementation

2.2 Commands

2.2.1 Commands for General Use

Lp(I) is used to request the printing of files. It creates an output request and returns a
request id of the form:

dest-seqno

to the user, where seqno is a unique sequence number across the entire LP system and dest is
the destination where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as returned by Ip or
printer names, in which case the currently printing requests on those printers are canceled.

Disable prevents fpsched from routing output requests to printers.

Enable (I) allows fpsched to route output requests to printers.

2.2.2 Commands for LP Administrators

Each LP system must designate a person or persons as LP Administrator to perform the res­
tricted functions listed below. Either the super-user or any user who is logged into UNIX as
"Ip" qualifies as an LP Administrator. All LP files and commands are owned by Ip, except for
lpadmin and fpsched, which are owned by root. ·

lpadmin(IM) modifies the LP configuration. Many features of this command cannot be used
when fpsched is running.

Lpsched(IM) routes output requests to interface programs which do the printing on devices.

Lpshut stops fpsched from running. All printing activity is halted, but the other LP commands
may still be used.

Accept(IM) allows Ip to accept output requests for destinations.

Reject prevents Ip from accepting requests for destinations.

Lpmove moves output requests from one destination to another. Whole destinations may be
moved at once. This command cannot be used when fpsched is running.

3. BUILDING LP

All LP commands are built from source code that resides in the /usr/src/cmd/lp directory
including the make file, lp.mk. All structures and constants that are mentioned below are
defined in the header files lp.b and lpsched.h in the same directory. Unless some of the
definitions in lp.mk are changed, LP may be installed only by the super-user. Before installing
a new LP system, make sure there is a login called Ip on your system and that the spool direc­
tory, /usr/spool/lp, does not exist. Lp's login directory may be /usr/spool/lp for convenience.
To install LP, perform the following:

cd /usr/src/cmd/lp
make -f lp.mk install

This builds all LP commands and creates the directory structure which is described in the next
section. The initial LP configuration produced by the preceding commands consists of no
printers, classes or default destination. LP must be configured by an LP Administrator using
the lpadmin command in order to create a useful spooler.

In addition, add the following code to /etc/re:

LP Implementation

rm -f /usr/spool/lp/SCHEDLOCK
/usr/Iib/lpsched ·
echo .. LP scheduler started"

This starts the LP scheduler each time that UNIX is restarted.

Several variables in lp.mk may be changed before installing LP to customize the system:

Variable

SPOOL
AD MIN
GROUP
ADMDIR
USRDIR

Defauh Value

/usr/spool/lp
Ip
bin
/usr/lib
/usr/bin

Meaning

spool directory
logname of LP Administrator
group that owns LP commands and data
administrator commands reside here
user commands reside here

3

If an existing LP spool directory is corrupted (but not the LP programs) or if"it needs to be
rebuilt from scratch, make sure that lpsched is not running and perform the following as super­
user:

1. Make copies of any interface programs that are not standard LP software. DO NOT make
these copies underneath the spool directory. The path name for printer p is
/usr/spool/lp/interface/p. ·

2. rm -fr /usr/spool/lp

3. make -f lp.mk new
This recreates the bare LP configuration described above.

WARNINGS:

I. Some LP commands invoke other LP commands. Moving them after they are built will
cause some commands to fail.

2. The files under the SPOOL directory should be modified only by LP commands.

3. All LP commands require set-user-id permission. If this is removed, the commands will
fail.

4. DIRECTORY STRUCTURE AND FILE FORMATS

The LP directory structure, as depicted in Figure 1, shows all directories and files that are under
the spool directory, /usr/spool/lp. Section numbers in Figure 1 refer to the section numbers
in this memo in which the appropriate file is described. The notation <x> means .. zero or
more files of type x".

4.1 FIFO

FIFO is a fifo (named pipe) special file where all commands send messages to lpsched. Any of
the LP commands may write to FIFO, but only fpsched may read it. A subroutine named
enqueue sends a message and its arguments to lpsched on FIFO. The usage of enqueue is:

enqueue(msg, arglist)
char msg;
char •arglist;

All messages are defined mnemonically in the LP header file, lp.b. Arglist is a (possibly null)
blank-separated list of arguments associated with the message msg. Enqueue returns non-zero
if fpsched is running and zero if not. Table 1 lists the legal messages to lpsched.

4

4.2 Default

File Name

spool directory
<lock files>
<log files>
FIFO
class

<class files>
default
interface

<interface programs>
member

<member files>
model

<model programs>
outputq
pstatus
qstatus
request

<request directories>
<request files>
<data files>

seq file

Section

4.
4.8
4.3
4.1
4.9

4.2
4.10

4.11

4.12

4.4
4.5
4.6
4.13

4.7

Figure 1. LP Directory Structure

LP Implementation

The default file contains the name of the system default destination terminated with a new-line.
If this file is absent or empty, the system has no default destination.

4.3 Log Files

The log file is a record of fpsched errors and printing activity since the time when fpsched was
last invoked. Oldlog contains the same information from the previous invocation of fpsched.

The first (last) line of the log indicates the time that fpsched was started (stopped). Error mes­
sages have the form:

lpsched: error-message

For each output request that has printed (or is currently printing) there is a line with the fol­
lowing tab-separated fields: request id, logname of requester, printer which serviced the request
and the date and time when printing began. There is more than one entry in the log for
requests that were restarted after they were partially printed.

4.4 Outputq

The binary file outputq is a queue of output request entries that are made by the Ip command
and have the form shown in Figure 2. There is one entry for each pending or partially printed
request in addition to the "deleted" entries for output requests that have been serviced since
lpsched was last invoked. The requests for each printer are serviced strictly on a first in first out
basis. Outputq entries are marked "deleted" by the cancel, disable and lpsched commands and
may be· modified by the lpmove, disable and fpsched commands.

LP Implementation

MESSAGE

TABLE 1. Messages Recognized by lpsched on FIFO

MEANING TO LPSCHED

F_ENABLE pr

F_NOOP

F _DEV pr path

F_5TATUS

F _DISABLE pr

F _CANCEL dest seq no

F_NEWLOG

F _REQUEST dest seqno user

F_QUIT

F_MORE pr

F_ZAP pr

struct outq {

} ;

char o_dest[D ESTMAX + l];
char o_logname [LOG MAX+ 1];
int o_seqno;
long o_size;
char o_dev[DESTMAX+l];

time_t o_date;
short o_ftags;

/• Value interpretation for o_ftags: •/

#define O_DEL
#define O_PRINT

1
2

Printer pr has been enabled. Pending requests (if
any) will be printed on pr.

No-op to check if lpsched is running.

New device for printer pr is path.

This causes fpsched to dump internal status to the
log file (see Log Files).

Printer pr has been disabled. If it is busy, print­
ing on pr will stop. If another printer can service
the aborted request, then it will start printing it in
its entirety.

Request id dest-seqno has been canceled. If it
is currently printing, then printing will stop.

This causes fpsched to create a new log file (see
Log Files). The old log file is renamed oldlog.

Output request id dest-seqno has been made by
user. If there is a printer than can service it, it
will be printed immediately.

This causes lpsched to stop running. All printing
is terminated.

Printer pr is ready to print more requests.

Busy printer pr has been disabled and its request
has been canceled.

/* output queue entry •/
/* output destination (class or member) •/
/• logname of requester•/
/* sequence # of request •/
/• size of request - - # pf bytes of data */
/* if printing, the name of the printer.

Otherwise,"-". •/
/• date of entry into output queue */
/*See below for flag values•/

/* Request deleted*/
/* Request now printing •/

Figure l. Outputq Entry

4.5 Pstatus

5

The binary file pstatus contains one entry of status information for each printer. Printer status
entries are detailed in Figure 3. Entries are added and removed by the lpadmin command and
are modified by the cancel, enable, disable and lpsched command~.

6

struct pstat {
char p_dest[DESTMAX+I];
int p_pid;
char p_rdest[DESTMAX +I];

int p_seqno;
time_t p_date;
char p_reason [P _RSIZE);

short p_flags;
};

#define P _ENAB
#define P_AUTO
#define P _BUSY

4.6 Qstatus

1
2
4

/* printer status entry */
/* name of printer */

LP Implementation

/* if busy. process id that is printing, otherwise 0 •/
/* if busy, the destination designated

by the user to Ip, otherwise " - " •/
/* if busy, seq # of printing request •/
/* date last enabled or disabled •/
/* if enabled, then "enabled", otherwise

the reason the printer has been disabled. •/
/• See below for flag values •/

/• printer enabled •/
/* disable printer automatically•/
/* printer now printing a request */

Figure 3. Pstatus Entry

The binary file qstatus contains one entry per destination which tells if the Ip command is
accepting requests. Qstatus entries have the form shown in Figure 4 and are added and
removed by the /padmin command and modified by the accept, reject and lpmove commands.

struct qstat {

};

char q_dest[DESTMAX + 1];
short q_accept;

time_t q_date;
char q_reason[Q_RSIZE];

4.7 Seqfile

/* queue status entry •/
/* destination */
/*TRUE iff Ip accepting requests for dest,

otherwise FALSE.•/
/* date status last modified •/
/• if accepting then "accepting",

otherwise the reason requests for dest are
being rejected by Ip •/

Figure 4. Qstatus Entry

The file seqfile contains the sequence number (terminated by a new-line) of the last request id
that was assigned by the Ip command. This number is incremented by Ip for each request.
When it reaches a maximum (defined in lp.h) it is reset to I. If this file is missing then Ip will
create a new file containing the number I.

4.8 Lock Files

Several lock files are maintained in order to guarantee LP commands exclusive access to data
files. They are binary files which contain the process id of the locking process. A list of lock
files and their associated data files follows:

Lock File

OUTQLOCK
PSTATLOCK
QSTATLOCK
SEQI:.OCK

Data File

outputq
pstatus
qstatus
seq file

LP Implementation 7

Lock files "expire" after i.i. given time interval and may be unlinked by any LP process. Thus,
commands that lock a data file for longer than this interval must update the modification time
on the lock file. The creation, updating and unlinking of lock files is handled automatically by
the LP low level file access routines.

Another lock file, SCHEDLOCK, is present while fpsched is running to ensure that only one
invocation of fpsched is active. Unlike other lock files, SCHEDLOCK has no expiration time.

Caution: any processes that need to concurrently lock more than one lock file should lock them
in the following order to avoid deadlock:

OUTQLOCK, PSTATLOCK, QSTATLOCK, SEQLOCK

Failure to release a lock file may also cause deadlock.

4.9 Class

The class directory contains one file per LP class which lists the members of the class, one per
line. The name of the file is the same as the class name. Each class member is an LP printer
and may not be an LP class. Every class must always have at least one member. Class files are
created, modified and deleted by the /padmin command.

4.10 Interface

The interface directory contains one executable program per printer with the same name as the
printer. When fpsched chooses an output request, dest-seqno, that was requested by user log­
name, to be printed on printer pr, it invokes interface program pr in the following way:

pr dest-seqno logname title copies options file •••

where
copies is the number of copies requested
title is the optional title supplied to Ip or null
options is a blank-separated string of options requested by the user to Ip or null
file is the full path name of a file to be printed

The interface program is invoked with its standard output and standard error output directed to
the printer's device. If file access modes permit, the device is opened for reading and writing.
The interface's standard input is taken from /dev /null. Interface programs may be shell pro­
cedures or compiled C programs. They may be supplied by an LP Administrator or selected
from a set of model interface programs (see Model below). Interface programs are supplied by
LP Administrators via the /padmin command. '

4.11 Member

The member directory contains one file per LP printer with the same name as the printer. The
first line of the file is the full path name of the device associated with the printer. Following
lines (if any) are the names of classes to which the printer belongs. A printer need not belong
to any classes and may belong to more than one. Member files arc created, modified and
removed by the lpadmin command.

4.12 ·Model

The model directory contains several printer interface programs that are distributed with the LP
system. The names of these files bear no relationship to LP printers and class names. Copies
of these programs may be customized by an LP Administrator to be used as printer interface
programs. No new model interfaces can be added to the system.

8 LP Implementation

4.13 Request

The request directory contains one directory for each LP destination with the same name as the
destination. Each destination's request subdirectory holds information pertaining to pending
requests for that destination.

Each request subdirectory contains request files and data files. These files are created by the Ip
command to pass information to lpsched and are deleted by the cancel, disable and lpsched com­
mands, and may be moved by the lpmove command.

The name of the request file for output request dest-seqno is r-seqno. It has entries of the
form:

flag value

where flag is a single character in column l, column 2 is blank and an optional value starts in
column 3. Legal flags, as defined mnemonically in lp.b, are summarized in Table 2. The order
of entries in a request file is the same order that they are listed in Table 2. The R_TITLE,
R_COPIF.S, R_OPTIONS and one or more R_FILE entries are mandatory.

TABLE 2. Request File Entries

FLAG VALUE

R_TITLE Optional title supplied to Ip or null

R_COPIF.S Number of copies requested

R_OPTIONS Printer- and Class-dependent options separated by
white space

R_FILE Name of data file to be printed; any file name not
beginning with "/" is assumed to be in the
request subdirectory along with the request file

R_MAIL Logname of person to send mail to after request
has been printed

R_WRITE Logname of person to write to after request has
been printed

A request file is associated with zero or more data files. Data files for request dest-seqno have
the name dn-seqno, where n is a non-negative integer. These tiles contain data to be printed.

Examples:

1. $ pr file I Ip
request id is x- 50 (standard input)

The directory request/x will contain the request file r-50 and the data file dO-SO which
is a copy of the standard input to Ip. File r-SO:

R_TlTLE
R_COPIES I
R_OPTIONS
R_FILE dO- 50

LP Implementation 9

2. $ Ip -c filel file2
request id is x - 51 (2 files)

The -c option causes Ip to copy files before returning to the user. The directory
request/x will contain the request file r-51 and the data files d0-51 (a copy of filel) and
dl-51 (a copy of file2). File r-51:

R_TITLE
R_COPIES 1
R_OPTIONS
R_FILE dO - 51
R_FILE dl-51

3. $ Ip file
request id is x-52 (I file)

The directory request/x will contain the request file r-52. If file can be linked to this
directory it will be named dO- 52. In this case, file r-52 contains:

R_TITLE
R_COPIES l
R_OPTIONS
R_FILE dO- 52

On the other hand, if file can't be linked, no data file is created and file r-52 contains:

R_TITLE
R_COPIES I
R_OPTIONS
R_FILE fullfile

Fulljile is the full path name of file.

5. LP SCHEDULER INTERNALS

5.1 Overview

The LP scheduler, lpsched, services requests in the output queue, outputq, first come first
served, invoking the appropriate interface program to print each request. It is the only demon
in the LP system and runs continuously unless it is stopped by the lpshut command or the com­
puter system is stopped. It is present even when there are no pending output requests, in
which case it sleeps awaiting a message on FIFO.

5.2 Interaction With Other LP Commands

Because it would be inefficient for lpsched to perform file 1/0 each time it needed to know the
relationships between printers, classes, requests and devices, fpsched maintains its own struc­
tures which provide this information more easily. This burdens LP commands by requiring
them to inform fpsched (on FIFO) of changes to LP data in addition to updating the data files.
The former step is required in order to keep the file structure consistent with lpsched's in­
memory data. It is this duplication of information that allows LP commands to be used even if
lpsched is not running.

As an example, let us consider how the Ip command works. When a request is made to Ip it
builds the request and data files, locks OUTQLOCK, adds the new request entry to outputq,
writes an F _REQUFST message to lpsched on FIFO which describes the new request and then
unlocks OUTQLOCK. The time during which OUTQLOCK is locked is a non-interruptible criti­
cal section, so signals are ignored. Most LP commands follow this pattern of:

IO LP Implementation

1. lock one or more lock files

2. modify one or more data files

3. send a message to lpsched on FIFO

4. unlock the lock files

5.3 Data Structures

When lpsched is started it internalizes the information in the LP data files in an in-memory net­
work of circular double-linked lists. Subsequent messages read from FIFO cause this network
to be updated so that the lists are kept consistent with the files. The main component of
lpsched's lists is the dest node shown in Figure 5. There is one of these structures for each des­
tination giving its name and type (class or printer). Nodes that are printers also indicate status
(busy or idle, enabled or disabled) as well as information concerning the currently printing
request.

struct dest {

} ;

char *d_dname;
int d_status;
char *d_device;
int d_pid;
struct outlist *d_print;
struct dest •d_dnext;
struct dest *d_dprev;
struct dest *d_tnext;
struct dest •d_tprev;
struct destlist *d_class;
struct outlist •d_output;

/* destination node •/
/* name of destination */
/* status of destination - - see below*/
/* full path name of device for printer*/
/* process id of busy printer •/
/• output request currently printing*/
/* next destination •/
/* previous destination */
/• next destination of same type */
/* previous destination of same type •/
/* class list for printers, member list for classes•/
/* list of output requests for dest */

/* The following flags are used to interpret dest.d_status •/

#define D_PRINTER 1
#define D_CLASS 2
#define D_ENABLED 8
fi define D _BUSY 16

/* destination is a printer •/
/* destination is a class •/
/• printer is active */
/* printer is busy •/

Figure 5. Destination Node

Three global dest nodes serve as list heads to ease the traversal of the network:

de st
printer
class

links all destinations in the d_dnext and d_dprev fields
links all printers in the d_tnext and d_tprev fields
links all classes in the d_tnext and d_tprev fields

Each printer node contains a linked list of destinations indicating which classes it belongs to.
Class nodes have lists of the same format showing which printers are members. Destination
lists, as shown in Figure 6, point to dest nodes.

LP Implementation

struct destlist {

} ;

struct dest *dl_dest;
struct destlist •dl_next;
struct destlist *dLprev;

/* destination list node */
/* pointer to destination •/
/• pointer to next destination •/
/* pointer to previous destination in list */

Fi1ure 6. Destination List Node

I I

Because output may be directed to classes or printers, every destination has an associated out­
put request list. Each list is ordered according to the time the F _REQUEST messages were
received by lpsched from Ip. The format of output request lists is shown in Figure 7.

struct outlist {

} ;

int ol_seqno;
char *Ol_name;
int ol_time;
struct dest *Ol_dest;
struct dest *Ol_print;
struct outlist •ol_next;
struct outlist *Ol_prev;

/* output request list node •/
/* sequence number assigned by Ip*/
/* logname of requester•/
/• time request was received by lpsched */
/* pointer to request destination •/
/* if printing, a pointer to the printer •/
/* next output request in list •/
/* previous output request in list•/

Fi1ure 7. Output Request List Node

5.4 Printing a Request

Lpsched is ready to print a request when one of the following messages is received and when
one of that message's associated conditions is met:

Message

F _REQUEST de st seq no user

F_MORE pr

F_ENABLE pr

F _DISABLE pr

Conditions

1. dest is an enabled, idle printer
2. dest is a clas5 which contains an enabled,
idle printer

l. there is a pending request queued for pr
2. there is a pending request queued for a
class which pr belongs to

1. there is a pending ,request queued for pr
2. there is a pending request queued for a
class which pr belongs to

pr is busy and the request it is currently print­
ing is queued for a class which contains pr and
a member of that class is enabled and idle

When a request is ready to be printed, lpsched forks so that its child may do the printing and
the parent can continue scheduling other requests. It is the child that executes the interface
program and waits for its completion. A non-zero exit status indicates that the interface
encountered errors while printing ·the request. If errors occurred or if the user requested
notification of the completion of the printing~ mail is s.ent or a message is written to the
requester's terminal. The outputq entry is deleted and the request and data files are removed.
The parent is informed that the printer is ready to print another request via an F _MORE mes­
sage on FIFO and the child exits.

Several processes are concurrently active during the printing of a request. Because UNIX sys­
tems are typically configured to impose limits on the number of concurrently active ·processes

12 LP Implementation

per user id (except for root) and because .most LP programs must be owned by user Ip and
because they require set-user-id permission, the number of printers that LP can support is
affected. Unless the LP system is owned by root (this is not encouraged) there is a limit on the
number of LP printers that may be printing simultaneously. The number of active processes
per print request includes the child of the scheduler and the interface program and any of its
children. Model interface programs, for example, are shell procedures that usually have the
form:

commands
(

commands
) I filter
exit

Each request that is printed by a model interface creates two invocations of the shell, an invo­
cation of a device filter and a process to execute a command within the parentheses in addition
to a child of the scheduler. With a limit of 25 active processes per user, for example, an LP
system with an LP administrator other than root would be able to support up to four line
printers using typical model interface programs.

5.5 Cancellation of Requests that are Partially Printed

When a partially printed request is canceled via the cancel or disable command, the process id
found in the pstatus entry is signaled with SIGTERM. This is the process id of the interface
program itself, not the immediate child of the scheduler. It is up to the interface to clean up
and then exit. The child of the scheduler waits for the death of the interface and exits. The
scheduler then waits for the death of its child.

When /psched is stopped by the lpshut command or when it is signaled with SIGTERM, it broad­
casts this signal to all of its children, which, in turn, terminate the execution of the interface
programs. Lpsched then removes SCHEDLOCK and exits. When printing is terminated this
way or by disabling a busy printer (without canceling the request), the requests that were
aborted will be reprinted in their entirety.

6. USING LP AS A GENERAL PURPOSE SPOOLER

Although the documentation and commands refer to LP as a line printer spooling system, it
was designed with general purpose spooling in mind. Several features allow LP to be custom­
ized for a variety of spooling applications. The Ip command never makes any assumptions
about the kind of files it is supplied. No pagination is added and no checks are made' for non­
ascii input. Thus, Ip can pass command files, nroff/troff input files, binary data files, executable
files, ascii text files, etc. to arbitrary interface programs. Lp also allows users to pass options
from the Ip command line to interface programs using the -o key letter. It is up to the LP
Administrator to supply interface programs to perform the desired functions on input files. The
devices associated with printers need not be line printers. They must be writable by LP and
may be any type of file (even /dev/null). By designing interface programs and by placing new
interpretations on destinations and devices LP can perform many diverse functions.

Example: , I.,,

'
Many installations use special purpose software to batch nroff requests so that they can limit the
number of concurrently executing nroff commands. LP can be used for batch processing of this
and other commands that place a heavy load on the system. Each "printer" can he thought of
as a command processor. Input files (built by a front·end interface to Ip) are shell procedures
which contain nroff command tines and environment information. The role of the interface
program is to execute the nroff command in the user's environment as of the time Ip was
invoked. The output may be directed to a file or a printer designated by the user. The devices
associated with the processors could be log files or tine printers. By grouping n of these

LP Implementation 13

processors in a class, users are limited to n concurrent executions of frequently used, heavy
load commands. Furthermore, queuing to these destinations and the running of the command
processors are under the control of the accept, reject, enable and disable commands.

7. EXTENSIONS

It is hoped that any future enhancements to LP will not take away from its generality. It would
have been easy, for instance, to add dozens of printer-specific options to the Ip command. This
was not done because LP makes it easy for LP Administrators to add these options in printer
interface programs and for users to take advantage of them by sliding them past Ip. On the
other hand, there are enhancements that could make LP even more useful while retaining its
generality.

Lpsched services requests on a first come first served basis. This may be undesirable when
there are a limited number of printers and it is desirable to schedule small print jobs ahead of
larger ones. Care must be taken to avoid penalizing the larger requests too severely. Lpsched
could be enhanced to enforce such a scheduling discipline. User-assigned priorities could be
added to the Ip command in order to affect /psched's scheduling algorithm. Another useful
feature is to allow users to inhibit requests from printing while leaving them queued. Subse­
quently, the held requests could be released or canceled. Another enhancement to LP would
allow different queues to build for the same destination in order to implement the idea of
"peak period" or "overnight" queues.

The lpadmin command requires that lpsched must not be running before it is going to attempt to
alter the LP configuration. This restriction was imposed to simplify the initial version of
lpsched. In cases where a configuration is frequently undergoing changes it is a nuisance to
have to shut the scheduler before using lpadmin. Shutting the scheduler, of course, means that
all printing stops.

The above features were not considered absolutely essential and would have greatly increased
the complexity of the initial version of the package. The author believes that it would not
require a major effort to add these new capabilities to LP. The design would not need to be
radically changed to introduce these enhancements.

8. SUMMARY

To the best of the author's knowledge, LP is the only centrally supported spooler under UNIX
which offers all of the following features in a single package:

• Printers may be grouped into classes.

• Each printer may belong to several or no classes.

• The spooler may be reconfigured to meet the needs of specific users.

• The spooling function is separated from the printing function. Any device or writable file
may be spooled to by a user-supplied interface program.

• LP can be used for off-line printing as well as for other spooling functions.

REFERENCE

[I] Kliegman, J. R. LP Administrator's Guide, Bell Laboratories.

January 1981

1. INTRODUCTION

LP Administrator's Guide

J. R. Kliegman

Bell Laboratories
Piscataway, New Jersey 08854

UNIX

E.9.2

LP is a system of commands that performs diverse spooling functions under the UNIXt operat­
ing system. Because its primary application is off-line printing, this paper focuses mainly on
spooling to line printers. LP allows administrators to customize the system to spool to a collec­
tion of line printers of any type and to group printers into logical classes in order to maximize
the throughput of the devices. Users are provided the capabilities of queuing and canceling
print requests, preventing and allowing queuing to and printing on devices, starting and stop­
ping LP from processing requests, changing their configuration of printers and finding the status
of the LP system. This memo describes the role of an LP Administrator {LPA) in performing
restricted functions and overseeing the smooth operation of LP.

The remainder of this paper is organized as follows: Section 2 presents an overview of the
features of LP and defines terms that will be used throughout the memo. See [I] for a detailed
description of the implementation of LP. Section 3 tells how to build an LP system. Sections
4-11 describe how to perform administrative functions using LP commands. Section 12 covers
how to write printer interface programs, Section 13 indicates how to set up hardwired printers
and login terminals to be used with LP and the final section summarizes the role of the LPA.

2. OVERVIEW OF LP FEATURES

2.1 Definitions

We will define several terms before presenting a brief summary of LP commands. LP was
designed with the flexibility to meet the needs of users on different UNIX systems. Changes to
LP's configuration (see below) are performed by the lpadmin(lM) command. (A parenthesized
number immediately following a command name refers to that section of the UNIX User's
Manual.)

LP makes a distinction between printers and printing devices. A device is a physical peripheral
device or a file and is represented by a full UNIX path name. A printer is a logical name that
represents a device. At different points in time, a printer may be associated with different dev­
ices. A class is a name given to an ordered list of printers. Every class must contain at least
one printer. Each printer may be a member of zero or more classes. A destination is a printer
or a class. One destination may be designated as the system default destination. The lp(l) com­
mand will direct all output to this destination unless the user specifies otherwise. Output that is
routed to a printer will be printed only by that printer, whereas output directed to a class will be
printed by the first available class member.

Each invocation of Ip creates an output request that consists of the files to be printed and
options from the Ip command line. An interface program which formats requests must be sup­
plied for each printer. The LP scheduler, lpsched(lM), services requests for all destinations by

·routing requests to interface programs t.o do the printing on devices. An LP conjigu.ration for a
system consists of devices, destinations and interface programs.

t UNIX is a trademark of BeU Laboratories.

2 LP AdministratOl''s Guide

2.2 Commands

2.2.l Commands for General Use

Lp(1) is used to request the printing of files. It creates an output request and returns a request
id of the form:

dest-seqno

to the user, where seqno is a unique sequence number across the entire LP system and dest is
the destination where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as returned by Ip or
printer names, in which case the currently printing requests on those printers are canceled.

Disable prevents fpsched from routing output requests to printers.

Enable (I) allows fpsched to route output requests to printers.

2.2.2 Commands for LP Administrators

Each LP system must designate a person or persons as LP Administrator to perform the res­
tricted functions listed below. Either the super-user or any user who is logged into UNIX as Ip
qualifies as an LP Administrator. All LP files and commands are owned by Ip, except for /pad­
min and fpsched, which are owned by root. The following commands will be described in more
detail later in this memo.

Lpadmin(lM) modifies the LP configuration. Many features of this command cannot be used
when fpsched is running.

Lpsched(IM) routes output requests to interface programs which do the printing on devices.

Lpshut stops fpsched from running. All printing activity is halted, but the other LP commands
may still be used.

Accept(lM) allows Ip to accept output requests for destinations.

Reject prevents Ip from accepting requests for destinations.

Lpmove moves output requests from one destination to another. Whole destinations may be
moved at once. This command cannot be used when fpsched is running.

3. BUILDING LP

All LP commands are built from source code that resides in the /usr/src/cmd/lp directory
including the make file, lp.mk. Unless some of .the definitions in lp.mk are changed, LP may
be installed only by the super-user. Before installing a new LP system, make sure there is a
login called Ip on your system and that the spool directory, /usr/spool/lp, does not exist. To
install LP, perform the following:

cd /usr/src/cmd/lp
make -f lp.mk install

This builds all LP commands and creates an initial LP configuration consisting of no printers,
classes or default destination. LP must be configured by an LPA using the lpadmin command in
order to create a useful spooler.

In addition, add the following code to /etc/re:

rm. -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo "LP scheduler started"

This starts the LP scheduler each time that UNIX is restarted.

LP Administrator's Guide 3

Several variables in lp.mk.may be changed before installing LP to customize the system:

Variable Default Value Meaning

SPOOL /usr/spool/lp spool directory
ADMIN Ip logname of LP Administrator
GROUP bin group that owns LP commands and data
ADMDIR /usr/lib administrator commands reside here
USRDIR /usr/bin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be
rebuilt from scratch, make sure that lpsched is not running and perform the following as super­
user:

I. Make copies of any interface programs that are not standard LP software. DO NOT make
these copies underneath the spool directory. The path name for printer p is
/usr/spool/lp/interface/p.

2. rm -fr /usr/spooljlp

3. make -f lp.mk new

WARNINGS:

(this recreates the bare LP configuration described above).

I. Some LP commands invoke other LP commands. Moving them after they are built will
cause some commands to fail.

2. The files under the SPOOL directory should be modified only by LP commands.

3. All LP commands require set-user-id permission. If this is removed, the commands will
fail.

4. CONFIGURING LP - THE LPADMIN COMMAND

Changes to the LP configuration should be made by using the /padmin command and not by
hand. Lpadmin will not attempt to alter the LP configuration when lpsched is running, except
where explicitly noted below.

4.1 Introducing New Destinations

The following information must be supplied to /padmin when introducing a new printer:

1. The printer name (-pprinter) is an arbitrary name which must conform to the following
rules:

• It must be no -longer than fourteen characters.

• It must consist solely of alphanumeric characters and underscores.

• It must not be the name of an existing LP destination (printer or class).

2. The device associated with the printer (-vdevice). This is the path name of a hardwired
printer, a login terminal, or other file that is writable by lp.

3. The printer interface program. This may be specified in one of three ways:

• It may be selected from a list _of model interfaces supplied with LP (- mmodel).

• It may be the same interface that an existing printer uses (-eprinter).

• It may be a program supplied by the LPA (-iinterface).

4 LP Administrator's Guide

Information that need not always be supplied when creating a new printer includes:

1. The user may specify - b to indicate that the device for the printer is hardwired or the
device is the name of a file (this is assumed by default). If, on the other hand, the device
is the path name of a login terminal, then - I must be included on the command line.
This indicates to lpsched that it must automatically disable this printer each time lpsched
starts running. This fact is reported by lpstat when it indicates printer status:

$ lpstat -pa
printer a (login terminal) disabled since Oct 31 11:15 -

disabled by scheduler: login terminal

This is done because device names for login terminals can be (and usually are) associated
with different physical devices from day to day. If the scheduler did not take this action,
somebody might log in and be surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new class (-cclass).
New class names must conform to the same rules for new printer names.

Examples:

The following examples will be referenced by further examples in later sections:

I. Create a printer called prl whose device is /dev /printer and whose interface program is
the model hp interface:

$ /usr/lib/lpadmin -pprl -v/dev/printer -mhp

2. Add a printer called pr2 whose device is /dev /tty22 and whose interface is a variation of
the model prx interface. It is also a login terminal:

$ cp /usr/spool/lp/model/prx xxx
< edit xxx here >

$ /usr/lib/lpadmin -ppr2 -v/dev/tty22 -ixxx -1

3. Create a printer called pr3 whose device is /dev /tty23. pr3 will be added to a new class
called cl I and will use the same interface as printer pr2:

$ /usr/lib/lpadmin -ppr3 -v/dev/tty23 -epr2 -cell

4.2 Modifying Existing Destinations

Modifications to existing destinations must always be made with respect to a printer name
(- pprinter). The modifications may be one or more of the following:

1. The device for the printer may be changed (-vdevice). If this is the only modification,
than this may be done even while lpsched is running. This facilitates changing devices for
login terminals.

2. The printer interface program may be changed (-mmodel, -eprinter, -iinterface).

3. The printer may be specified as hardwired (- b) or as a login terminal (-1).

4. The printer may be added to a new or existing class (-cclass).

5. The printer may be removed from an existing class (-rclass). Removing the last remain­
ing member of a class causes the class to be deleted. No destination may be removed if it
has pending requests. In that case, lpmove or cancel should be used to move or delete the
pending requests.

LP Administrator's Guide 5

Examples:

These examples are based on the LP configuration created by those in the previous section.

I. Add printer pr2 to class cl 1:

$ /usr/lib/lpadmin -ppr2 -cell

2. Change pr2's interface program to the model prx interface, change its device to
/dev /tty24, and add it to a new class called cl2:

$ /usr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -ccl2

Note that printers pr2 and pr3 now use different interface programs even though pr3 was
originally created with the same interface as pr2. Printer pr2 is now a member of two
classes.

3. Specify printer pr2 as a hardwired printer:

$ /usr/lib/lpadmin -ppr2 -h

4. Add printer prl to class cl2:

$ /usr/lib/lpadmin -pprl -ccl2

The members of class cl2 are now pr2 and prl, in that order. Requests routed to class cl2
will be serviced by pr2 if both pr2 and prl are ready to print, otherwise thP.y will be
printed by the one which is next ready to print.

5. Remove printers pr2 and pr3 from class ell:

$ /usr/lib/lpadmin -ppr2 -rcll
$ /usr/Iib/lpadmin -ppr3 -rcll

Because pr3 was the last remaining member of class cl 1, the class is removed.

6. Add pr3 to a new class called cl3:

$ /usr/lib/lpadmin -ppr3 -ccl3

4.3 Specifying the System Default Destination

The system default destination may be changed even when fpsched is running.

Examples:

I. Establish class cl 1 as the system default destination:

$ /usr/lib/lpadmin -dell

2. Establish no default destination:

$ /usr/lib/lpadmin -d

4.4 Removing Destinations

Classes and printers may be removed only if there are no pending requests that were routed to
them. Pending requests must either be canceled using cancel or moved to other destinations
using /pmove before destinations :may be retnoved. If the removed destination is the system

. default destination, then the system will have no default destination until it respecified. When
the last remaining member of a class is removed, then the. class is also removed. The removal
of a class never implies the removal of printers.

6

Examples:

I. Make printer prl the system default destination:

$ /usr/lib/lpadmin -dprl

Remove printer prl:

$ /usr/lib/lpadmin -xprl

Now there is no system default destination.

2. Remove printer pr2:

$ /usr/lib/lpadmin -xpr2

Class cl2 is also removed, because pr2 was its only member.

3. Remove class cl3:

$ /usr/lib/lpadmin -xcl3

Class cl3 is removed, but printer pr3 remains.

S. MAKING AN OUTPUT REQUEST - THE LP COMMAND

LP Administrator's Guide

Once LP destinations have been created, users may request output by using the Ip command.
The request id that is returned may be used to see if the request has been printed or to cancel
the request.

Lp determines the destination of a request by checking the following list in order:

• If the user specifies -ddest on the command line, then the request is routed to dest.

• If the environment variable LPDEST is set, the request is routed to the value of LPDEST.

• If there is a system default destination, then the request is routed there.

• Otherwise, the request is rejected.

Examples:

I. There are at least four ways to print the password file on the system default destination:

Ip /etc/passwd
Ip < /etc/passwd
cat /etc/passwd I Ip
lp -c /etc/passwd

The last three ways cause copies of the file to be printed, whereas the first way prints the
file directly. Thus, if the file is modified between the time the request is made and the
time it is actually printed, then the changes will be reftected in the output.

2. Print two copies of file abc on printer xyz and title the output "my file":

pr abc I Ip -dxyz -n2 -t"my file"

3. Print file xxx on a Diablo 1640 printer called zoo in 12-pitch and write to the user's termi­
nal when printing has completed:

Ip -dzoo -012 -w xxx

In 'this example, 12 is an option that is meaningful to the model Diablo 1640 interface
program that prints output in 12-pitch mode (see lpadmin(lM)).

LP Administrator's Guide 7

6. FINDING LP STATUS.- LPSTAT

The lpstat command is used to find status informatfon about LP requests, destinations and the
scheduler.

Examples:

1. List the status of all pending output requests made by this user:

lpstat

The status information for a request includes the request id, the logname of the user, the
total number of characters to be printed and the date and time the request was made.

2. List the status of printers pl and p2:

lpstat -ppl,p2

7. CANCELING REQUESTS - CANCEL

LP requests may be canceled using the cancel command. Two kinds of arguments may be given
to the command - request ids and printer names. The requests named by the request ids are
canceled and requests that are currently printing on the named printers are canceled. Both
types of arguments may be intermixed.

Example:

Cancel the request that is now printing on printer xyz:

cancel xyz

If the user that is canceling a request is not the same one that made the request, then mail is
sent to the owner of the request. LP allows any user to cancel requests in order to eliminate the
need to find LP Administrators when unwanted output is be purged.

8. ALLOWING AND REFUSING REQUESTS - ACCEPT AND REJECT

When a new destination is created, Ip will reject requests that are routed to it. When the LP
Administrator is sure that it is set up correctly he or she should allow Ip to accept requests for
that destination. The accept command performs this function.

Sometimes it is necessary to prevent Ip from routing requests to destinations. If printers have
been removed or are waiting to be repaired or if too many requests are building for printers
then it may be desirable to cause Ip to reject requests for those destinations. The reject com­
mand performs this function. After the condition that led to the rejection of requests has been
remedied, the accept command should be used to allow requests to be taken again.

The acceptance status of destinations is reported by the -a option of lpstat.

Examples:

I. Cause Ip to reject requests for destination xyz:

/usr/lib/reject -r"printer xyz in need of repair" xyz

Any users that try to route requests to xyz will encounter the following:

$ Ip -dxyz tile
lp: can't accept requests for destination "xyz" -

printer xyz in need of repair

2. Allow Ip to accept requests routed to destination xyz:

/usr/lib/accept xyz

8 LP Administrator's Guide

9. ALLOWING AND INHIBITING PRINTING - ENABLE AND DISABLE

The enable command allows the LP scheduler to print requests on printers. That is, the
scheduler routes requests only to the interface programs of enabled printers. Note that it is
possible to enable a printer but to prevent further requests from being routed to it.

The disable command undoes the effects of the enable command. It prevents the scheduler
from routing requests to printers, independently of whether or not Ip is allowing them to accept
requests. Printers may be disabled for several reasons including malfunctioning hardware,
paper jams and end of day shutdowns. If a printer is busy at the time it is disabled, then the
request that it was printing will be reprinted in its entirety either on another printer (if the
request was originally routed to a class of printers) or on the same one when the printer is re­
enabled. The -c option causes the currently printing requests on busy printers to be canceled
in addition to disabling the printers. This is useful if strange output is causing a printer to
behave abnormally.

Example:

Disable printer xyz because of a paper jam:

$ disable -r"paper jam" xyz
printer "xyz" now disabled

Find the status of printer xyz:

$ lpstat - pxyz
printer "xyz" disabled since Jan 5 10:15 -

paper jam

Now, re-enable xyz:

$ enable xyz
printer "xyz" now enabled

10. MOVING REQUESTS BETWEEN DESTINATIONS - LPMOVE

Occasionally, it is useful for LP Administrators to move output requests between destinations.
For instance, when a printer is down for repairs it may be desirable to move all of its pending
requests to a working printer. This is one way to use the lpmove command. The other use of
this command is to move specific requests to a different destination. Lpmove will refuse to
move requests while the LP scheduler is running.

Examples:

1. Move all requests for printer abc to printer xyz:

$ /usr/lib/lpmove abc xyz

All of the moved requests are renamed from abc-nnn to xyz-nnn. As a side effect,
destination abc is no longer accepting further requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

$ /usr/lib/lpmove zoo- 543 abc-1200 xyz

The two requests are now renamed xyz-543 and xyz-1200.

II. STOPPING AND STARTING THE SCHEDULER - LPSHUT AND LPSCHED

Lpsched is the program that routes the output requests that were made with Ip through the
appropriate printer interface programs to be printed on line printers. Each time the scheduler
routes a request to an interface program, it records an entry in the log file, /usr/spool/lp/log.
This entry contains the logname of the user who made the request, the request id, the name of

LP Administrator's Guide 9

the printer that the reque~t is being printed on and the date and time that printing first started.
In the case that a request has been restarted, more than one entry in the log file may refer to
the request. The scheduler also records error messages in the log file. When lpsched is started,
it renames /usr/spool/lp/log to /usr/spool/lp/oldlog and starts a new log file.

No printing will be performed by the 'LP system unless lpsched is running. Use the command:

lpstat -r

to find the status of the LP scheduler.

Lpsched is normally started by the /etc/re program as described above and continues to run
until UNIX is shut down. The scheduler operates in the /usr/spool/lp directory. When it starts
running, it will exit immediately if a file called SCHEDLOCK exists. Otherwise, it creates this
file in order to prevent more than one scheduler from running at the same time.

Occasionally, it is necessary to shut the scheduler in order to reconfigure LP or to rebuild the
LP software. The command

/usr/lib/lpshut

causes /psched to stop running and terminates all printing activity. All requests that were in the
middle of printing will be reprinted in their entirety when the scheduler is restarted.

To restart the LP scheduler, use the command

/usr/lib/lpsched

Shortly after this command is entered, lpstat should report that the scheduler is running. If not,
it is possible that a previous invocation of fpsched exited without removing SCHEDLOCK, so try
the following:

rm -f /usr/spoolflp/SCHEDLOCK
/usr /lib/lpsched

The scheduler should be running now.

12. PRINTER INTERFACE PROGRAMS

Every LP printer must have an interface program which docs the actual printing on the device
that is currently associated with the printer. Interface programs may be shell procedures, C
programs, or any other executable programs. LP's model interfaces are all written as shell pro­
cedures and can be found in the /usr/spool/lp/model directory. At the time lpsched routes an
output request to a printer P, the interface program for P is invoked in the directory
/usr/spool/lp as follows:

where

interface/P id user title copies options file •••

id is the request id returned by Ip
user is the logname of the user who made the request
title is the optional title specified by the user
copies is the number of copies requested by the user
options is a blank-separated list of class- or printer-dependent options specified

by the user
file is the full path name of a file to be printed

10 LP Administrator's Guide

Examples:

The following examples are requests made by user "smith" with a system default destination of
printer "xyz". Each example lists an Ip command line, followed by the corresponding com­
mand line generated for printer xyz's interface program:

1. Ip /etc/passwd /etc/group
interface/xyz xyz- 52 smith •• 1 "" /etc/passwd /etc/group

2. pr /etc/passwd I Ip -t"users" -n5
interface/xyz xyz-53 smith users 5 "" /usr/spooljlp/rcqucst/xyz/d0-53

3. lp /etc/passwd -oa -ob
interface/xyz xyz-54 smith "" 1 "a b" /etc/passwd

When the interface program is invoked, its standard input comes from /dcv /null and both the
standard output and standard error output arc directed to the printer's device. Devices are
opened for reading as well as writing when file modes permit. In the case where a device is a
regular file, all output is appended to the end of the file.

Given the command line arguments and the output directed to a device, interface programs
may format their output in any way they choose. Interface programs must ensure that the
proper stty modes (terminal characteristics such as baud rate, output options, etc.) are in effect
on the output device. This may be done as follows in a shell interface only if the device is
opened for reading:

stty mode ..• <&l

That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface program to exit with a
code indicative of the success of the print job. Exit codes are interpreted by /psched as follows:

CODE MEANING TO LPSCHED

zero The print job has completed successfully.

1 to 127 A problem was encountered in printing this particular request
(e.g., too many non-printable characters).
This problem won't affect future print jobs.
Lpsched
notifies users by mail that there was an error in printing the request.

greater than 127 These codes are reserved for internal use by
lpsched.
Interface programs must not exit with codes in this range.

'

When problems that are likely to affect future print jobs occur (e.g., a device filter program is
missing), the interface programs would be wise to disable printers so that print requests are not
lost. When a busy printer is disabled, the interface program will be terminated with signal 15.

13. SETTING UP HARDWIRED DEVICES AND LOGIN TERMINALS AS LP PRINTERS

13.1 Hardwired Devices

As an example of how to set up a hardwired device for use as an LP printer, let us consider
using tty line 15 as printer xyz. As super-user, perform the following:

LP Administrator's Guide 11

1. A void unwanted output from non-LP processes and ensure that LP can write to the dev­
ice:

$ ch own lp /dev /ttyl 5
$ chmod 600 /dev/tty15

2. Change /etc/inittab so that ttyl5 is not a login terminal. In other words, ensure that
/etc/getty is not trying to log users in at this terminal. Change the entries for line 15 to:

1:15:0:
2:15:0:

Enter the command:

$ init 2

If there is currently an invocation of /etc/getty running on ttyl5, then kill it. Now, and
when UNIX is rebooted, tty I 5 will be initialized with default stty modes. Thus, it is up to
LP interface programs to establish the proper baud rate and other stty modes for correct
printing to occur.

3. As explained above in Section 4.1, introduce printer xyz to LP using the model Printronix
interface program:

$ /usr/lib/lpadmin ...:..pxyz -v/dev/ttyl5 -mprx

4. When xyz is created, it will initially be disabled and Ip will be rejecting requests routed to
it. If it is desired, allow Ip to accept requests for xyz:

/usr/lib/accept xyz

This will allow requests to build up for xyz and they will be printed when it is enabled at a
later time.

5. When it is desired for printing to occur, be sure that the printer is ready to receive output.
For several printers, this means that the top of form has been adjusted and that the
printer is on-line. As explained above in Section 9, enable printing to occur on xyz:

enable xyz

When requests have been routed to xyz, they will begin printing.

13.2 Login Terminals

Login terminals may also be used as LP printers. To do this for a Diablo 1640 terminal called
abc, perform the following:

1. As explained above in Section 4.1, introduce printer abc to LP using the model 1640 inter­
face program:

S /usr/lib/lpadmin -pabc -v/dev/null -ml640 -1

Note that /dev /null is used as abc's device because we will specify the actual device each
time that abc is enabled. This device may be different from day to day. When abc is
created, it will initially be disabled and Ip will be rejecting requests routed to it. If it is
desired, allow Ip to accept requests for abc:

/usr/lib/accept abc

This will allow requests to build up for abc and they will be printed when it is enabled at a
later time. It is not advisable to enable abc for printing, however, until the following
steps have been taken.

2. Log the terminal in if this has not already been done.

12 LP Administrator's Guide

3. Assuming the tty(l) command reports that this terminal is /dev /tty02, associate this dev­
ice with printer abc:

$ /usr/lib/lpadmin -pabc -v/dev/tty02

Note that lpadmin may be used only by an LPA. If it is desired for other users to rou­
tinely perform this step, then an LPA may establish a program owned by Ip or by root
with set-user-id permission that performs this function.

4. When it is desired for printing to occur, be sure that the printer is ready to receive output.
For several printers, this means that the top of form has been adjusted. As explained
above in Section 9, enable printing to occur on abc:

enable abc

When requests have been routed to abc, they will begin printing.

5. When all printing has stopped on abc or when you want it back as a regular login termi­
nal, you may prevent it from printing more output:

$ disable abc
printer "abc" now disabled

If abc is enabled when UNIX is rebooted or when fpsched is restarted, it will be disabled
automatically.

14. SUMMARY

The administrative functions of the LP Administrator have been described in detail. They
include configuring and re-configuring LP, maintaining printer interface programs, accepting,
rejecting and moving print requests, stopping and starting the LP scheduler and enabling and
disabling printers. LP offers administrators the following advantages over other centrally sup­
ported printer packages:

• Printers may be grouped into classes.

• LP may be configured to meet the needs of each site.

• Administrators may supply interface programs to format output in any way desirable.

• LP functions are performed by simple commands and not by hand.

REFERENCE

[l] Kliegman, J. R. The Implementation of the LP Spooling System, Bell Laboratories.

January 1981

UNIX Operations Manual

A. G. Petruccelli

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

This manual contains a complete description of PDP-11/45 and-11/70 console
operations, step-by-step instructions for normal operator functions, as well as
descriptions of the UNIXt system console error messages. Console operating
instructions for the VAX 11/780 can be found in vaxops(8) in the UNIX User's
Manual.

The information in this manual was gathered from personal experience, the UNIX
User's Manual, Digital Equipment Corporation (DEC) hardware manuals, and
papers in Documents for UNIX.

Because this manual is intended to be as general as possible, it is suggested that
each location add specific information about:

• Hardware configuration.
• Telephone line configuration.
• Specific logging and record-keeping practices.
• Contacts for hardware and software problems.
• Site-dependent diagnostic procedures.

t UNIX is a trademark of Bell Laboratories.

UNIX

F.1.1

2 UNIX Operations Manual

HARDWARE OPERATIONS-PDP-11/45, 11/70

Qus'" 1 Osu,E~ 1 Ou••H 1 O••o~ •••

Q USER D Q SU,ER 0 Q llOOEl D 0 COOS ••Y

Q DATA PATHS

Q IUS REGISTER

Figure 1. PDP-l l/45 CONSOLE

l",t,R ADP15 MASTE~ ~t:RNEl ADOAESS1NG

~ 000000000060
0 I I I I I I ADDRESS)

BololololololololololololoblolololololqlQI
(I I I I I I I I DATA)

PARITY
HIGH LO'ft

blolololololololololoblololold

Figure 2. PDP-11/70 CONSOLE

Q)' ADRS FPPICPU ~
Q DISPlAY REGISTER 'i/;,I

QusER D QusER [

QsuPER D QsuPER l

OKERNEL D OKERNEL l

QcoNS 1'14v OPRDG PHY

O DATA O"'ADRS
PATHS FFPICPU

0 ODISPLAV
IUS REG REGISTER

UNIX Operations Manual 3

INTRODUCTION

The following documentation is primarily intended to describe the PDP-11)70 console and its
operation. Differences for the PDP-I 1/45 appear within brackets"[]". Cases that are applica­
ble to only one of the two systems are clearly labeled as such.

CONSOLE DESCRIPTION

The console is composed of the following:

1. Power Key Switch (OFF /POWER/LOCK).

2. ADDRESS Register - 22-bit [18-bit] Display.

3. DATA Register - 16-bit Display.

4. PARITY bit HIGH byte & LOW byte Indicator Lights (11/70 only).

5. Switch Register - 22 [18) switches.

6. Error Lights.

ADRS ERR (Address Error)
PAR ERR (Parity Error, 11/70 only)

7. Processor State Lights (7 indicators).

RUN
PAUSE
MASTER
USER
SUPER
KERNEL
DATA

8. Mapping Lights (I 1/70 only).

16 BIT
18 BIT
22 BIT

9. A DD RESS Display Select Switch (8 positions).

USER I (Virtual)
USER D (Virtual)
SUPER I (Virtual)
SUPER D (Virtual)
KERNEL I (Virtual)
KERNEL D (Virtual)
PROG PHY (Program Physical)
CONS PHY (Console Physical)

IO. DATA Display Select Switch (4 positions)

DATA PATHS
BUS REGISTER
µ ADRS FPP/CPU (Micro-program Addresses)
DISPLAY REGISTER

11. Lamp Test Switch.

4

12. Control Switches.

LOAD ADRS (Load Address)
EXAM (examine)
DEP (deposit)
CONT (continue)
HALT/ENABLE [ENABL]
S INST /S BUS CYCLE (single instruction/single bus cycle)
START
REG EXAM (Register Examine, l I/45 only)
REG DEP (Register Deposit, 11/45 only)

CONSOLE OPERATION-LAMP TEST SWITCH

UNIX Operations Manual

The Lamp Test Switch is an unlabeled, white switch located between the Switch Register and
the LOAD ADRS Switch. When the Lamp Test Switch is raised, all console indicator lights
should go on. An indicator which does not light is defective and should be replaced.

CONSOLE OPERATION- POWER KEY

The Power Key controls power to the CPU 1 and has three positions:

OFF Power to the processor is OFF.

POWER Power to the processor is ON, and all console switches function normally.
This is the normal position while UNIX is running.

LOCK Power to the processor is ON, but the 7 control switches LOAD ADRS
through ST ART are disabled. All other switches are functional.

CONSOLE OPERATION-SWITCH REGISTER

The Switch Register consists of 22 [18] switches labeled 0 through 21 [17] from right to left
(numbers correspond to bit positions). They are used to manually enter both addresses and
data into the processor. To enter an address such as 1650008, the switches must be divided into
groups of three, starting from the right. Bits 0-2 in the first group, bits 3-5 in the second, 6-8
in the third, 9-11 in the fourth, 12-14 in the fifth, etc. Each group of 3 switches is used to
indicate an octal digit; thus, a number can be represented on the switches as follows:

zero All three switches down.

one Right switch up.

1. Central Processing Unit.

UNIX Operations Manual 5

two }~!~ . Middle swikb up.

three Middle and right switches up.

four Left switch up.

five Left and right switches up.

six Left and middle switches up.

seven All three switches up.

6 UNIX Operations Manual

The arrows in Figures 3 and 4 depict which switches should be up to enter the address 1650008

on the 11/70 and address 1730208 on the 11/45 respectively.

one six I five I zero I zero I zero

Figure 3. Address 1650008 on the PDP-11 /70.

I three zero

Figure 4. Address 1730208 on the PDP-11/45.

CONSOLE OPERATION-CONTROL SWITCH FUNCTIONS

LOAD ADRS (Load Address)

165000

When the LOAD ADRS Switch is depressed, the contents of the Switch Register are loaded into
the Address Display. The address displayed in the Address Display Lights depends on_ the posi-
tion of the Address Select Switch. ·

EXAM (Examine)
Depressing the EXAM Switch causes the contents of the current location, specified in the
Address Display, to be displayed in the DATA Display Register when the Data Select Switch is
in the DAT A PATHS position. 2

DEP (Deposit)
Raising the DEP Switch causes the current contents of the Switch Register to be deposited into
the address specified by the current contents of the Address Display.

2. The- address in the Address Display will be mapped or unmapped depending on the position of the Address Select
Switch. The location shown in the Address Display Lights is also a function of that switch. See Section 11.4 of [I)
for more information.

UNIX Operations Manual 7

CONT (Continue)
Depressing the CONT Switch causes the CPU to resume execution. The CONT Switch has no
effect when the CPU is in RUN state.

HALT/ENABLE [ENABL)
The HALT /ENABLE [ENA BL] Switch is a two position switch used to stop machine execution
or to enable the system to run.

S INST /S BUS CYCLE (Single Instruction/Single Bus Cycle)
This switch affects only the operation of the CONT Switch. It controls whether the machine
stops after instructions or bus cycles. 3 The position of this switch has no effect unless the
HALT/ENABLE [ENABL] Switch is in the HALT position. It is used chiefly for debugging. See
Section 11.7 of [1] for more information.

START
The functions of the START Switch depend upon the setting of the HALT/ENABLE [ENABL]
Switch. If the CPU is in the HALT position, the processor is reset. If in the ENABLE [ENABL]
position, execution is started unless it is already in the RUN state.

REG EXAM (Register Examine, 11/45 only)
Depressing the REG EXAM Switch causes the contents of the General Purpose Register
specified by the low order five bits of the Bus Address Register to be displayed in the Data
Display Register. See Section 9.6.8 of [2] for interpretation of these contents.

REG DEP (Register Deposit, 11/4S only)
Raising the REG DEP Switch causes the contents of the Switch Register to be deposited into the
General Purpose Register specified by the current contents of the CPU Bus Address Register.
The CPU Bus Address Register should have been previously loaded by a LOAD ADRS operation
according to the Switch Register settings described in REG EXAM above.

CONSOLE OPERATION-ADDRESS SELECT KNOB

The Address Select Knob has 8 positions for observing the address of data being examined or
deposited. These positions reference virtual or physical memory as described below:

VIRTUAL

PROG PHY

CONS PHY

The six positions: USER I, USER D, SUPER I, SUPER D, KERNEL I,
and KERNEL D indicate the current address as a 16-bit Virtual address
when the Memory Management Unit is turned on (i.e. UNIX is run­
ning), otherwise it indicates the true 16-bit Physical Address. 4 These
positions are generally used for debugging.

This position displays the 22-bit [18-bit] Physical Address of the current
bus cycle that was generated by the Memory Management Unit. This
address is generally used for debugging.

This position displays a 22-bit [16-bit] Physical Address to be used for
console operations such as LOAD ADRS, EXAM, and DEP. This is the
normal position while UNIX is running.

3. The bus (or UNIBUS) is the primary control and communications path connecting most of the PDP-11 system's
components and peripherals.

4. These positions make it convenient to examine and change programs which arc subject to relocation, without
requiring any knowledge of where they have actually been relocated in physical memory. See Section 9.6.8, page
9-21 of [2] for more details. See Section 6.4 of [I] or Chapter 10 of [2] for more information on the Memory
Management Unit.

8 UNIX Operations Manual

CONSOLE OPERATION-DATA SELECT KNOB

The contents of the 16-bit Data Display Register are controlled by the following positions of the
Data Select knob:

DATA PATHS The normal display mode. This position enables examined or
deposited data to be shown in the Data Display.

BUS REG The internal CPU register used for bus cycles.

µADRS FPP/CPU The ROM 5 address, FPP6 control micro-program (bits 15 to 8)
and the CPU control micro-program (bits 7 to 0).

DISPLAY REGISTER The contents of the Display Register. This has an address of 17
777 5708.

CONSOLE OPERATION-STATUS INDICATOR LIGHTS

Error Indicators

PAR ERR

ADRS ERR

Processor State

Mode

RUN

PAUSE

MASTER

USER

SUPER

KERNEL

DATA

5. Read Only Memory.

6. Floating Point Processor.

(11 /70 only) Lights to indicate a parity error during a reference to
memory.

Lights to indicate any of the following addressing errors:

• Reference to non-existent memory.
• Access control violation.
• Reference of unassigned memory pages.

The CPU is executing program instructions. If the instruction being
executed is a wait instruction. the RUN light will be on.

The CPU is inactive because the current instruction execution has been
completed as far as possible without more data from the UNIBUS or
memory or the CPU is waiting to regain control of the UNIBUS
(UNIBUS mastership).

The CPU is in control of the UNIBUS (UNIBUS Master only when it
needs the UNIBUS).

The CPU is executing program instructions in USER mode.

The CPU is executing program instructions in Supervisor mode.

The CPU is executing program instructions in KERNEL mode.

If on, the last memory reference was to D (data) address space in the
current CPU mode. If off, the last reference was to I (instruction)
address space.

UNIX Operations Manual

Address (11/70 only)

16-bit

18-bit

Lights wheJl the CPU is using 16-bit mapping.

Lights when the CPU is using 18-bit mapping.

9

22-bit Lights when the CPU is using 22-bit mapping. This should be lit when
running UNIX.

CONSOLE OPERATION-STARTING AND STOPPING

Starting
While the HALT/ENABLE [ENABL] Switch is in the HALT pos1t1on (down), depress the
START Switch to reset the processor. At this time, an address can be entered on the Switch
Register as described above. After the correct switches have been lifted (check the ADDRESS
Register Display Lights), depress the LOAD ADRS Switch to load that address as the starting
point of execution, lift the HALT/ENABLE [ENABL) Switch to the ENABLE [ENABL] position,
then depress the START Switch to commence execution. Once execution has begun, depress­
ing the START Switch again has no effect.

Stopping
To halt execution of the processor, depress the HALT /ENABLE [ENABL] Switch to the HALT
position. Processing will cease, but the contents of all memory locations will be retained. The
switch can then be lifted to the ENABLE [ENABL] position with no effect on the system.

Continuing
After the computer has been stopped, execution can be resumed from the point at which it was
halted by using the CONT Switch. The function of the CONT Switch depends on the position
of the HALT/ENABLE (ENABL) Switch:

MODE POSITION USAGE

ENABLE [ENABL] Up CPU resumes normal execution.

HALT Down This mode is used for debugging pur­
poses and forces execution of only a
single instruction or a single bus
cycle. See Section 11. 7 of [l] for
more details.

JO UNIX Operations Manual

BOOT PROCEDURES

INTRODUCTION

The object of the boot procedure is to load a copy of the UNIX operating system, from tape or
disk, into memory and execute it. This procedure can be easily facilitated via an optionally sup­
plied Digital Equipment Corporation (DEC) hardware bootstrap loader. Depending upon which
bootstrap loader is on your system, if any, the address of a dedicated routine can be loaded via
the Switch Register and execution started. If your configuration does not include this device,
the boot procedure must be manually entered via the Switch Register. See romboot(8) of (3)
for program listings.

Throughout the remainder of this section, the symbol <er> is used to denote a carriage return
key at the terminal and the symbol CSW represents the Console Switches.

BOOTING FROM A ROM

The following procedure is used when booting from a ROM:

I. The Power Key Switch should be in the POWER position.

2. The Address Select Knob should be in the CONS PHY position.

3. The Data Select Knob should be in the DATA PATHS position.

4. Ensure the HALT/ENABLE [ENABL) Switch is in the HALT (down) position.

5. Depress the ST ART Switch to reset the processor.

6. Set the CSW to the address of your ROM bootstrap loader procedure (i.e., 1650008,

1730208, etc.). If you don't know which address, ask your Customer Engineer (CE).

7. Depress the LOAD ADRS Switch to deposit this address into the Switch Register. Ensure
the address was loaded correctly by checking the contents of the Address Display Register.

8. Depending upon the ROM, you may have to set the CSW to another address specifying
from which device you wish to boot (i.e., 0000708, 0000608). Do NOT depress the LOAD
ADRS Switch again, the bootstrap procedure will read this address.

9. Lift the HALT Switch to the ENABLE [ENABL] position.

I 0. Depress the ST ART Switch to commence execution.

11. A "fl." will be printed at the console terminal. You type a 0, UNIX reponds with an =,
and you type unix followed by a carriage return.

0 = unix <er>

If UNIX was booted properly, four lines of information about the running system will be
printed:

• The current operating system.
• The available user memory.
• The system's name.
• The ~nvironnient mode (single-user).

MANUAL BOOT PROCEDURE

If your configuration does not include a hardware bootstrap loader, you will have to toggle the
boot program into the processor via the CSW. The romboot (8) manual page in (3) contains
program listings for booting off of a variety of devices. The procedure below for manually
booting off of an RP04 disk drive will illustrate how to enter one of these programs:

UNIX Operations Manual 11

1. Ensure the Power Ke.y is in the POWER position.

2. The Address Select Knob must be in the CONS PHY position.

3. The Data Select Knob must be in the DATA PATHS position.

4. Ensure the HALT/ENABLE (ENABL] Switch is in the HALT (down) position.

5. Depress the ST ART Switch to reset the processor.

6. Choose an arbitrary starting address to begin loading the program. This address must not
be too low because the program's execution will overwrite it, and it cannot be too high
because the processor will not be able to access it (in the memory management area of
memory). The address 0040008 (only switch 11 up) works well.

7. Set the CSW to this starting address and depress the LOAD ADRS Switch. You can now
begin entering the program.

Set CSW to 012700, lift DEP Switch.
Set CSW to 176700, lift DEP Switch.
Set CSW to 012720, lift DEP Switch.
Set CSW to 000021, lift DEP Switch.
Set CSW to 012760, lift DEP Switch.
Set CSW to 010000, lift DEP Switch.
Set CSW to 000030, lift DEP Switch.
Set CSW to 010010, lift DEP Switch.
Set CSW to 012740, lift DEP Switch.
Set CSW to 000071, lift DEP Switch.
Set CSW to 105710, lift DEP Switch.
Set CSW to 002376, lift DEP Switch.
Set CSW to 005007, lift DEP Switch.

NOTE: The above octal digits represent the program for booting off of an RP04 disk drive
only. For any other device, you must use the appropriate program listed in romboot (8) in
[3].

8. You can check to be sure the pro'gram was entered correctly by setting the CSW to your
starting address (e.g., 0040008), depressing the LOAD ADRS Switch, and depressing the
EXAM Switch. The first octal digit you entered (012700) should appear in the Data
Display Register. By subsequent use of the EXAM Switch, the entire program can be
listed for inspection.

9. After you are sure the program was entered correctly, reload the starting address (e.g.,
0040008) by setting the CSW and depressing the LOAD ADRS Switch.

10. Lift the HALT Switch to the ENABLE [ENABL] position.

11. Depress the START Switch.

I 2. A "I" will be printed at the console terminal. You type a 0, UNIX reponds with an =,
and you type unix followed by a carriage return.

#O=unix<cr>

If UNIX was booted properly, four lines of information about the running system will be
printed:

• The current operating system.
• The available user memory.
• The system's name.
• The environment mode (single-user).

12 UNIX Operations Manual

OPERATOR INSTRUCTIONS

INTRODUCTION

There are two main modes of operation of a UNIX system: Single-User and Multi-User.

When in Single-User mode, all dial-up ports and hard-wired terminals are disabled and only the
console terminal may interact with the processor. This mode of operation enables any changes
necessary to be made to the system without any other processing taking place.

Multi-User is the mode in which UNIX is normally run.

SINGLE USER ENVIRONMENT

After successfully booting the UNIX Operating System, as described in BOOT PROCEDURES
within this document, a "I" will be typed as a prompt to indicate that the system is ready to
receive commands. You may then type any of the commands available followed by a <er>.
When the system has completed execution of the command, it will prompt with the "I" again
on the next line. The Single User environment is used primarily to do any system mainte­
nance, modification, or repair operations to prepare the system for multi-user mode. The typi­
cal sequence of commands to bring the system up into multi-user mode are:

• fsck -t /tmp/junk
• date MMddhhmmyy
• init 2

Fsck
This program will interactively repair any damaged file systems that result from a crash of the
operating system. It is also useful to ensure that the file systems have no damage before going
into multi-user mode or taking file saves. Usually, you will want to respond "yes" to all the
prompts; however, in the event of a system crash, the damage may be extensive enough to
warrant recovery from a backup pack. The procedure for this is discussed in FILE SAVES in
this document. The -t option is used to eliminate a prompt for the name of a scratch file if
the file system is large. See fsck (1 M) of [3] for details on the various options available and [4]
for a description of all the different errors that can occur.

An example of a check of a consistent file system is illustrated below:

fsck /dev /rrp61

/dev/rrp61
File System: usr Volume: p0603

** Phase I - Check Blocks and Sizes
** Phase 2 - Check Pathnames
**Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
2441 files 16547 blocks 31889 free

A file system that has experienced some damage can be repaired interactively as shown below.
The y is the operator response.

UNIX Operations Manual

fsck /dev/rrp60

/dev/rrp60
File System: fsl Volume: p0603

** Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR I= 2500

** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
UNREF FILE 1=2500 OWNER=255MODE=100755
SIZE=O MTIME=Dec 31 19:00 1969
CLEAR? y

** Phase 5 - Check Free List
2441 files 16547 blocks 889 free

***** FILE SYSTEM WAS MODIFIED *****

13

All mountable file systems should be listed in the file /etc/checklist which fsck uses, and these
file systems checked each time the system is rebooted.

WARNING: Never execute fsck on an already mounted file system; it will have a bad effect
since you are repairing only the physical disk. The only exception to this is the root file system
which is always mounted.

An example of repairing the root file system follows:

fsck /dev /rpO

/dev/rpO
File System: root Volume: pOOOl

** Phase 1 - Check Blocks and Sizes
POSSIBLE FILE SIZE ERROR 1=416

POSSIBLE FILE SIZE ERROR I= 610

POSSIBLE FILE SIZE ERROR I= 614

POSSIBLE FILE SIZE ERROR 1=618

POSSIBLE FILE SIZE ERROR I= 625

** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Ref ere nee Counts
UNREF FILE 1=416 OWNER=uucp MODE=100400
SIZE=O MTIME=Nov 20 16:23 1979
CLEAR? y

UNREF FILE 1=610 OWNER=csw MODE= 100400
SIZE=O MTIME=Nov 20 16:26 1979
CLEAR? y

14

UNREF FILE 1=625 OWNER=cath MODE= 100400
SIZE=O MTIME=Nov 20 16:26 1979 ,
CLEAR? y

FREE INODE COUNT WRONG IN SUPERBLK
FIX? y

** Phase 5 - Check Free List
1 DUP BLKS IN FREE LIST
BAD FREE LIST
SALVAGE? y

**Phase 6 - Salvage Free List

585 files 5463 blocks 4223 free

*****BOOT UNIX {NO SYNC!)*****

At this time the processor should be halted and the system rebooted.

Date

UNIX Operations Manual

Each time the system is rebooted, the software clock must be reset to the correct time of day.
The date should only be set once and only in single-user mode. This will prevent confusion
when the accounting routines run. The format for setting the date is:

date MMddhhmmyy

where:

MM are the two digits of the month;
dd are the two digits of the day;
hh are the two digits of the hour on a 24-hour clock;
mm are the two digits of the minute;
yy are the (optional) last two digits of the year;

An example of how to set the date is:

date 0601073079

which would set the date for:

Fri Jun 1 07:30:00 EDT I 979

More information concerning the date command can be found on date (1) in [3].

lnlt 2
After you have performed the above consistency checks on the file systems and set the date,
the mode of the operating system can be changed to multi-user. This is accomplished by exe­
cuting the command: /etc/init 2. This command activates processes that: allow users to log on
to the system, turn on the accounting and error logging, mount any indicated file systems, and
start the cron and any indicated daemons. The operator may have to manually flip the toggles
or pop the buttons on the data sets, depending on what type of data set your site has, to allow
users to log in. You can now type a Ctr/ /d character to log off the console terminal and log
back in as a normal user.

UNIX Operations Manual 15

MULTI-USER ENVIRON~ENT

This mode results from the execution of the command: /etc/init 2. A user is permitted to
access all mounted file systems and execute all available commands. In this mode, an operator
can perform file restore procedures and take periodic status checks of the system. Some of
these periodic status checks can include:

• A check of free blocks (df) remaining on all mounted file systems to ensure a file sys-
tem does not run out of space.

• A check on rje (rjestat).
• A check on mail to root or whatever login receives requests for file restores.
• A check on the number of users on the system (who).
• A check of all running processes (ps -eaf or whodo) to determine if there is some

process using an abnormally large amount of CPU time.

16 UNIX Operations Manual

OPERA.TOR DUTIES

INTRODUCTION

This section is meant to serve as a guide to duties normally performed by computer operators.
These duties do not represent what an operator's job duties are; they merely outline the general
procedures necessary to ensure that users on the system remain contented.

FILE SAVES

Unless timely copies of the file systems are saved, a major system crash could devastate the
system's user community.

Almost nothing is worse than working on a project and, just as you are about completed, having
the system crash from a lightning storm somewhere; losing the file and all the work you've
completed. What is worse is when you request a file restore and find out that the last file save
was a week ago and that you have nothing to show for a solid week's work.

The easiest way to prevent this problem is to take daily file saves. Then, at most, only a day's
work will be lost.

There are two main ways to perform file saves: by disk and by tape. Most sites utilize volcopy
to perform these file save functions. See volcopy (lM) of (3) for more information on the
options available and the use of this command. These procedures should normally be per­
formed while in single-user mode, with the file system unmounted, to preclude any file system
activity and subsequent damage on the saved copy.

Disk Save Procedures
Normally this is an automated procedure and is included as part of the site's local operating
instructions. You must have at least two (2) disk drives, one of them a spare. The file system
to be copied should be unmounted, except for the root file system, and an fsck executed to
ensure consistency. For ease of mapping, file systems are normally saved in the same sections
on the backup pack as they exist on the working pack. This is imperative if you are going to
boot from the backup version. It is required that the root file system reside on section O of the
pack. The file save procedure is illustrated below. For this example a save of the root file sys­
tem will be made on the spare drive 3. Operator response is indicated in bold type.

ti volcopy root /dev /rrpO pOOOI /dev /rrp30 pOI 05
arg.(p0105) doesn't agree with to vol.()
Type 'y' to override: y
warning! from fs(root) differs from to fs()
Type 'y' to override: y
From: /dev /rrpO, to: /dev /rrp30? (DEL if wrong)
END: 6000 blocks.
ti

You should conclude this procedure by executing fsck on the saved copy, just to be sure.
Again, a backup of a file system that is corrupted is almost as bad as no save at all.

Tape Save Procedures
Tape saves are necessary for long term storage or for regular saves if you do not have a spare
disk drive. Tapes must be labeled before a file save with volcopy can be accomplished. If the
save will require. two or more tapes, both tapes must be labeled before the volcopy is started. To
determine the number of tapes the file save will require, try:

ti volcopy - bpi 1600 - feet2400 file sys / dev /rrp?? volume / dev /rmtl tOOO I
You will need 1 reels.
From: /dev /rrp??, to: /dev /rmtl? (DEL if wrong) Hit DEL
ti

UNIX Operations Manual 17

The above procedure assumes you are using 2400 feet reels, and /del' /rmtl indicates 1600
bytes-per-inch density. To accomplish the labeling, follow the example below for /usr. It is
assumed that t0001 is the tape volume label. Ir' two or more tapes are required, they should be
labeled consecutively both externally and internally. The external label should indicate which
sequence number the tape is of the set for the file system. Note the use of the -n option.
Unless you use this option on an unlabeled tape, the program will scan the entire reel looking
for a label to change before it rewinds and labels the beginning. This can be very time consum­
ing on 2400 feet reels.

labelit /dev/rmtl usr tOOOl -n
Skipping label check!
NEW fsname = usr, NEW volume = tOOOl - - DEL if wrong!!

After the tapes are labeled, you should then check the disk file system for errors with fsck.
The actual copy is accomplished much the same as from disk to disk. The only difference is
you may have to respond to more questions if the options of -bpi and -feet are not included
on the command line of rnlcopy.

volcopy usr /dev/rrpl pOOOl /dev/rmtl tOOOl
Enter size of reel in feet for <tOOOI >: 2400
Tape density? (i.e., 800 I 1600 I 6250)? 1600
You will need 1 reels.
From: /dev /rrp I, to: /dev /rmtl? (DEL if wrong)
END: 35000 blocks.

FILE RESTORES

If your installation includes daily file saves as a normal routine, these backup versions of the
file systems can provide a user good insurance against the loss of a lot of previous work due to
a system crash and subsequent file system damage.

Restoring from Disk
When a request is made to restore a file from a backup pack, the operator should locate that
pack and determine on which section the requested file system resides. Place that pack on a
spare drive and power on the drive. You may choose to mount the file system write protected
by specifying the - r option of mount. At the console terminal the operator should log onto
the system as root. The following example shows the procedure for restoring the file
/usr/adm/acct/sum/tacct from a previous backup pack. For this example, drive 4 is a spare
drive and /usr is on section 1 of the backup pack.

mount /dev/rp41 /bck -r
WARNING!! - mounting: <usr> as </bck>
ls -1 /bck/adm/acct/sum/tacct (To verify file existence and identify owner.)
-rw-rw-r- - 1 adm 3216 Oct 3 03:29 /usr/adm/acct/sum/tacct
cp /bck/adm/acct/sum/tacct /usr/adm/acct/sum/tacct
chown adm /usr/adm/acct/sum/tacct
umount /dev /rp41

It is usually a good practice for the operator performing the file restore to mail a message to the
requester upon its completion. The procedure for this is:

18

mail user
I have restored the file /usr/adm/acct/sum/tacct
from Friday's backup.
operator's initials

Restoring from Tape

UNIX Operations Manual

If the file does not exist on any of the backup packs or if your installation does not perform
disk file saves, then you will have to recover the file from a tape save. It is assumed that tape
saves have been performed in the same manner as disk saves, i.e., with volcopy. The subject
of file saves is discussed in the section FILE SAVES within this document. In order to restore a
file from tape, the whole file system must first be placed back on a spare section of the disk.
The backup version can then be accessed in the same way as described in Restoring from Disk
within this document. For this example, it is assumed that the usr file system is the second file
on the tape and that section 5 of disk drive 0 is a spare section on that disk. It is also assumed
that the tape drive has 1600bpi capability; if not, a similar procedure can be followed for 800bpi
recorded tapes.

(mount tape on tape drive 0)
I echo < /dev /mt4 (space past first file on tape. no rewind)
volcopy usr /dev/rmtl tOOOl /dev/rrp5 pOOOI
Enter size of reel in feet for <tOOOI >: 2400
Tape density? (i.e., 800 I 1600 I 6250)? 1600
You will need I reels.
From: /dev/rmtl, to: /dev/rrp5? (DEL if wrong)
END: 35000 blocks.
I mount /dev /rp5 /bck
WARNING!! - mounting: <usr> as </bck>
cp /bck/adm/acct/sum/tacct /usr/adm/acct/sum/tacct
ti umount /dev/rp5

MESSAGE OF THE DAY

When a user logs into the system, part of the login procedure prints out a message of the day.
This message can contain several lines of useful information to the user concerning scheduled
down-time for hardware preventive maintenance (PM), clean up messages for space-low file
systems, or any other useful warnings to which users may need to be alerted. Th~ trick to
maintaining this file is to keep it short and to the point. A user does not want to wait ten
minutes while eloquent and wordy dialogue is spewed from the terminal before he or she can
begin working.

The contents of this message is stored in the file /etc/motd. You may change the contents of
this file by using the UNIX text editor (see ed (1) in [3]). A sample of adding and deleting a
line from this file is shown below.

UNIX Operations Manual

ed /etc/motd
26
p
9/23: Reboot at 5pm today.
d
a
9/24: Down for PM 1700-2100 on 9/30.

w
37
q

You can also remove the contents of the entire file by:

cp /dev/null /etc/motd

SYSTEM SHUTDOWN

19

Whenever the system must be shutdown, such as for file saves or a reboot, the program
/etc/shutdown should be used. This program is the graceful way to bring the system into
single-user mode. You can specify the amount of grace period between sending a warning mes­
sage out and actually shutting down. This grace period is the number of seconds of delay. You
may, optionally, send your own message. A default message is sent to all logged in users if you
don't type your own. The following shows an example of shutting the system down:

/etc/shutdown 300 (5 minute grace period)
shutdown: you must be in the root directory (/) to use shutdown
cd /
/etc/shutdown 300

SHUTDOWN PROGRAM

Thu Sep 1 18:51:58 PST 1979

Do you want to send your own message? (y or n): y
Type your message followed by ctr! d
System coming down for filesaves!
Please log off.
(Cntl /d)

System coming down for filesaves!
Please log off.
(waits for 5 minutes)
SYSTEM BEING BROUGHT DOWN NOW ! ! !

Busy out (push down) the appropriate
phone lines for this system.

Do you want to continue? (y or n): y
Error logging stopped
Hasp stopped
Process accounting stopped.

All currently running processes will now be killed.

20

Changing init states, continue (y or n): y
pwba
single-user

PID TTY TIME CMD
0 ? 187:48 swapper
1 ? 0:03 INIT 1

11061 co 0:04 -sh
25023 co 0:03 /etc/shutdown 300
25052 co 0:23 ps -eaf

Will a file save be done at this time?
Type either (y or n) : y
Want to run fsck at this time?
Type either (y or n) : y
fsck will now be executed on files in checklist

Halt the system when ready.

UNIX Operations Manual

At the completion of this program you can either halt the system, start the file save routine,
reboot the system, or bring it back to multi-user mode.

SYSTEM CRASH RECOVERY

An operating system is considered to have "crashed" when it halts itself without being asked
to. The reason for the halt is often unknown and can be hardware failure or software related.
It is important, for obvious reasons, to determine the nature of the crash so that it will not hap­
pen again. One way to do this is to take a dump of memory on tape so that debugging pro­
grams can later decipher what processing was going on at the time the crash occurred. The
method for this is:

1. Mount a tape on drive 0 with a write ring in.

2. Set CS'W to the address 0000448 (switches 5 and 2 up).

3. Lift the HALT Switch to the ENABLE [ENABL] position.

4. Depress the ST ART Switch.

When the tape has rewound, unmount it and affix a label with the date and time of _the crash
written on it. You should now attempt to reboot UNIX as described in BOOT PROCEDURES in
this document. If the system fails to reboot, the operating system was probably damaged in the
crash. Now is the time to pull that vital backup version of the root file system off the shelf and
use it for the reboot.

When you have finally rebooted the system, it is likely to have a lot of file system damage. If
this damage is extensive, you may have to restore the entire file system. An example is:

(mount the backup pack on a spare drive)
volcopy fsl /dev/rrp43 p0625 /dev/rrp3 p0601
From: /dev/rrp43, to: /dev/rrp3? (DEL if wrong)
END: 65000 blocks.

Be sure· to run fsck on all the mountable file systems before setting the date and going to
multi-user mode.

UNIX Operations Manual 21

SYSTEM ERROR MESSAGES

INTRODUCTION

Sometimes before UNIX crashes, it has time to print some error messages and warnings. You
may notice if you are logged in as a normal user, that the system will stop everything for a
period of time while it is printing messages to the console terminal (remember to leave at least
one console switch up!). There are a wide variety of messages that can occur but there are only
two distinct types:

Fatal - System failure is imminent, and
Warning - Something is happening that may lead to a system failure.

SYSTEM ERROR MESSAGES-FATAL

panic: no clock
Neither the KWI 1-L nor the KWl 1-P was found at their standard UNIBUS
addresses.

panic: buffers
Insufficient memory space was found when the system was attempting to allo­
cate the non-addressable buff er pool.

panic: iinit
An error occurred while the system was reading in the superblock of the root
file system.

< loop at User location 6 >
The initialization and line monitor program, /etc/init, cannot be executed.

panic: IO err in swap
An unrecoverable error has occurred during a system swap operation.

panic: Out of swap
Insufficient space was found on the system swap device when attempting to
allocate buffering for the arguments to a process overlay.

panic: out of swap space
Insufficient space was found on the swap device when attempting to swap out a
process or a copy of a pure text image.

panic: trap

death

An unexpected system fault has occurred. This message is preceded by the
type of trap and the location of the currently running process.

A system stack overflow has occurred, typically caused by repetitive interrupt­
ing of a faulty 1/0 device.

panic: parity
A memory system error has occurred in the realm of the operating system
address space. When this occurs in a User process, that process is terminated
without a panic.

Timeout table overflow
The system timeout table-used to implement software interrupts- has
overflowed while attempting to add another entry.

22 UNIX Operations Manual

panic: devtab
The list header for the chain of buffers attached to a block type device cannot
be found.

panic: blkdev
The major device number of a block type device exceeds the number of such
devices in the system. This error should have been detected earlier.

panic: no fs
The superblock of a mounted file system cannot be found.

panic: no imt
A mount point was not found in the system mount table when traversing a file
system boundary.

panic: no procs
A process table entry cannot be found during a process fork when it is known
that an entry is available.

SYSTEM ERROR MESSAGES-WARNINGS

no space on dev major/minor
The corresponding file system has run out of available free blocks.

Out of in odes on dev major /minor
The corresponding file system contains no more free file control blocks.

bad block on dev major/minor
A block number not in the valid range of available free blocks on a file system
has been detected.

Bad free count on dev major/minor
A corrupted free-list block has been detected while attempting to allocate a new
block for a file.

bad count on dev major/minor
The super block parameters for free blocks and inodes have become corrupted
for this file system.

Inode table overflow

No file

The system file control bloek table has overflowed. An access to a currently
unused file has failed.

The system file access control table has overflowed. A new reference to a file
has failed.

Out of text
The system shared text program control table has overflowed. An attempt to
execute a currently unused shared text program has failed.

Power fail #

Stopped

A power fail condition has been detected. If power fail recovery has been
specified in the system configuration, the initialization process will be informed.

Printed after a power fail condition if recovery has not been specified. The sys­
tem is halted.

UNIX Operations Manual 23

iaddress > 2 ~ 24
When updating the file control block for a file, a block number in the inode was
found to be greater than that permissible.

proc on q

parity

When making a process runnable, after the occurrence of a wakeup event, it
was found that the process was already on the system run queue.

A system memory error has occurred. This message is followed by the con­
tents of the low error address register, the high error address register, the
memory system error register and the memory control register.

Stray interrupt at vector
A device has interrupted through a vector not specified in the configuration
description.

RP04/5/6 drive # not available
The designated drive is no longer available for 1/0 operations due to an error
condition.

hard err on RP04/5/6 rpds rperl rper2 rper3
After a certain number of unsuccessful retry attempts, a hard error still exists
on a drive access. The register contents are those of the drive status register
and the 3 drive error registers.

DMC# Jost block
The buffer header for a dmc transfer operation claimed tci be completed cannot
be found.

RS03/4 not available
An RS03 or RS04 drive is no longer accessible.

dzk: xint
In a system with DZl 1 multiplexors with KMCl l assist, a transmitter interrupt
has occurred.

Hardware Error.
When a hardware error occurs on a block type device, certain device dependent
registers are displayed. The message is of the form:

err on dev major/minor
followed by:

bn = # er= fl, fl
This is the block number in error, followed by an error register and a control
register whose contents can be interpreted in [5] under the appropriate device
as shown below:

DEVICE ERROR REGISTER CONTROL REGISTER

RP06 RPERl RPCS2
,, RS04 RSCS2 0

TE16 MTER MTCS2
RP03 RPCS RPDS
RK05 RKER RKDS
RFl 1 RFCS Rf DAE

24 UNIX Operations Manual

REFERENCES

[I] PDP-11/70 Processor Handbook, Digital Equipment Corporation, 1977-78.

[2] PDP-11 04/34/45/55 Processor Handbook, Digital Equipment Corporation, 1976-77.

[3] T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli (eds.). UNIX User's Manual- Release
3.0, Bell Laboratories (June 1980).

[4] T. J. Kowalski. FSCK-The UNIX File System Check Program, Bell Laboratories (1979).

[5] PDP-I I Peripherals Handbook, Digital Equipment Corporation, 1978-79.

January 1981

CONTENTS

HARDWARE OPERATIONS-PDP-11/45, 11/70 •
INTRODUCTION • • • • •
CONSOLE DESCRIPTION
CONSOLE OPERATION - LAMP TEST SWITCH
CONSOLE OPERATION- POWER KEY • • • •
CONSOLE OPERATION-SWITCH REGISTER .
CONSOLE OPERATION-CONTROL SWITCH FUNCTIONS
CONSOLE OPERATION-ADDRESS SELECT KNOB •.•
CONSOLE OPERATION-DATA SELECT KNOB ...
CONSOLE OPERATION-STATUS INDICATOR LIGHTS • • • .
CONSOLE OPERATION-STARTING AND STOPPING

BOOT PROCEDURES • • • •
INTRODUCTION . . . • .
BOOTING FROM A ROM
MANUAL BOOT PROCEDURE

OPERA TOR INSTRUCTIONS
INTRODUCTION . • . • • •
SINGLE USER ENVIRONMENT
MULTI-USER ENVIRONMENT

OPERATOR DUTIES •••••••••••
INTRODUCTION
FILE SAVES •.
FILE RESTORES •
MESSAGE OF THE DAY
SYSTEM SHUTDOWN • •
SYSTEM CRASH RECOVERY

SYSTEM ERROR MESSAGES . . .
INTRODUCTION • • • • • • • • .
SYSTEM ERROR MESSAGES-FATAL
SYSTEM ERROR MESSAGES-WARNINGS •
REFERENCES

- i -

2
3
3
4
4
4
6
7
8
8
9

10
10
10
JO

12
12
12
15

16
16
16
17
18
19
20

21
21
21
22
24

LIST OF FIGURES

Figure 1. PDP-11/45 CONSOLE • • • • • • •

Figure 2. PDP-11 /70 CONSOLE

Figure 3. Address 1650008 on the PDP-11/70.

Figure 4. Address 1730208 on the PDP-11/45.

- ii -

2

2

6

6

FSCK -The UNIX File System Check Program

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX

F.1.2

The UNIXt File System Check Program (fsck) is an interactive file system check
and repair program. Fsck uses the redundant structural information in the UNIX
file system to perform several consistency checks. If an inconsistency is detected,
it is reported to the operator, who may elect to fix or ignore each inconsistency.
These inconsistencies result from the permanent interruption of the file system
updates, which are performed every time a file is modified. Fsck is frequently
able to repair corrupted file systems using procedures based upon the order in
which UNIX honors these file system update requests.

The purpose of this document is to describe the normal updating of the file sys­
tem, to discuss the possible causes of file system corruption, and to present the
corrective actions implemented by fsck. Both the program and the interaction
between the program and the operator are described.

l. INTRODUCTION

When a UNIX operating system is brought up, a consistency check of the file systems should
always be performed. This precautionary measure helps to insure a reliable environment for
file storage on disk. If an inconsistency is discovered, corrective action must be taken. No
changes are made to any file system by fsck without prior operator approval.

The purpose of this memo is to dispel the mystique surrounding file system inconsistencies. It
first describes the updating of the file system (the calm before the storm) and then describes
file system corruption (the storm). Finally, the set of heuristically sound corrective actions
used by fsck (the Coast Guard to the rescue) is presented.

2. UPDATE OF THE FILE SYSTEM

Every working day hundreds of files are created, modified, and removed. Every time a file is
modified, the UNIX operating system performs a series of file system updates. These updates,
when written on disk, yield a consistent file system. To understand what happens in the event
of a permanent interruption in this sequence, it is important to understand the order in which
the update requests were probably being honore~. Knowing which pieces of information were
probably written to the file system first, heuristic procedures can be developed to repair a cor­
rupted file system.

There are five types of file system updates. These involve the super-block, inodes, indirect
blocks, data blocks (directories and files), and free-list blocks.

2.1 Super-Block

The super-block contains information about the size of the file system, the size of the inode
list, part of the free-block list, the count of free blocks, the count of free inodes, and part of
the free-inode list. ·

t UNIX is a trademark of Bell Laboratories.

2 FSCK

The super-block of a mounted file system (the root file system is always mounted) is written to
the file system whenever the file system is unmounted or a sync command is issued.

2.2 lnodes

An inode contains information about the type of inode (directory, data, or special), the number
of directory entries linked to the inode, the list of blocks claimed by the inode, and the size of
the inode.

An inode is written to the file system upon closure1 of the file associated with the inode.

2.3 Indirect Blocks

There are three types of indirect blocks: single-indirect, double-indirect and triple-indirect. A
single-indirect block contains a list of some of the block numbers claimed by an inode. Each
one of the 128 entries in an indirect block is a data-block number. A double-indirect block
contains a list of single-indirect block numbers. A triple-indirect block contains a list of
double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been modified and released2

by the operating system.

2.4 Data Blocks

A data block may contain file information or directory entries. Each directory entry consists of
a file name and an inode number.

Data blocks are written to the file system whenever they have been modified and released by
the operating system.

2.S First Free-List Block

The super-block contains the first free-list block. The free-list blocks arc a list of all blocks that
are not allocated to the super-block, inodes, indirect blocks, or data blocks. Each free-list block
contains a count of the number of entries in this free-list block, a pointer to the next free-list
block, and a partial list of free blocks in the file system.

Free-list blocks are written to the file system whenever they have been modified and released
by the operating system.

3. CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. The most common of thescr ways are
improper shutdown procedures and hardware failures.

3.1 Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are not observed, e.g.,
forgetting to sync the system prior to halting the CPU, physically write-protecting a mounted
file system, or taking a mounted file system off-line.

File systems may become further corrupted if proper startup procedures are not observed, e.g.,
not checking a file system for inconsistencies, and not repairing inconsistencies. Allowing a
corrupted file system to be used (and, thus, to be modified further) can be disastrous.

I. All in core blocks are also written to the file system upon issue of a sync system call.
2: More precisely, they are queued for eventual writing. Physical 1/0 is deferred until the buffer is needed by UNIX or

a sync command is issued.

FSCK 3

3.2 Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk
pack, or as blatant as a non-functional disk-controller.

4. DETECTION AND CORRECTION OF CORRUPTION

A quiescent3 file system may be checked for structural integrity by performing consistency
checks on the redundant data intrinsic to a file system. The redundant data is either read from
the file system or computed from other known values. A quiescent state is important during
the checking of a file system because of the multi-pass nature of the fsck program.

When an inconsistency is discovered fsck reports the inconsistency for the operator to chose a
corrective action.

Discussed in this section are how to discover inconsistencies and possible corrective actions for
the super-block, the inodes, the indirect blocks, the data blocks containing directory entries,
and the free-list blocks. These corrective actions can be performed interactively by the fsck
command under control of the operator. ·

4.1 Super-Block.

One of the most common corrupted items is the super-block. The super-block is prone to corr­
uption because every change io the file system's blocks or inodes modifies the super-block.

The super-block and its associated parts are most often corrupted when the computer is halted
and the last command involving output to the file system was not a sync command.

The super-block can be checked for inconsistencies involving file-system size, inode-list size,
free-block list, free-block count, and the free-inode count.

4.1.l File-System Size and /node-List Size. The file-system size must be larger than the number
of blocks used by the super-block and the number of blocks used by the list of inodes. The
number of inodes must be less than 65,535. The file-system size and inode-list size are critical
pieces of information to the fsck program. While there is no way to actually check these sizes,
fsck can check for them being within reasonable bounds. All other checks of the file system
depend on the correctness of these sizes.

4.1.2 Free-Block List. The free-block list starts in the super-block and continues through the
free-list blocks of the file system. Each free-list block can be checked for a list count out of
range, for block numbers out of range, and for blocks already allocated within the file system.
A check is made to see that all the blocks in the file system were found.

The first free-block list is in the super-block. Fsck checks the list count for a value of less than
zero or greater than fifty. It also checks each block number for a value of less than the first
data block in the file system or greater than the last block in the file system. Then it compares
each block number to a list of already allocated blocks. If the free-list block pointer is non­
zero, the next free-list block is read in and the process is repeated.

When all the blocks have been accounted for, a check is made to see if the number of blocks
used by the free-block list plus the number of blocks claimed by the inodes equals the total
number of blocks in the file system.

If anything is wrong with the free-block list, thenfack may rebuild it, excluding all blocks in the
list of allocated blocks.

3. That is, unmounted and not being written on.

4 FSCK

4.1.3 Free-Block Count. The super-block.contains a count of the total number of free blocks
within the file system. Fsck compares this count to the number of blocks it found free within
the file system. If they don't agree, then fsck may replace the count in the super-block by the
actual free-block count.

4.1.4 Free-Inode Count. The super-block contains a count of the total number of free inodcs
within the file system. Fsck compares this count to the number of inodcs it found free within
the file system. If they don't agree, then/sck may replace the count in the super-block by the
actual free-inode count.

4.:Z lnodes

An individual inodc is not as likely to be corrupted as the super-block. However, because of
the great number of active inodes, there is almost as likely a chance for corruption in the inode
list as in the super-block.

The list of inodes is checked sequentially starting with inode 1 (there is no inode 0) and going
to the last inode in the file system. Each inodc can be checked for inconsistencies involving
format and type, link count, duplicate blocks, bad blocks, and inode size.

4.2.I Format and Type. Each inode contains a mode word. This mode word describes the type
and state of the inod~. Inodcs may be one of four types: regular inode, directory inode, special
block inode, and special character inodc. If an inode is not one of these types, then the inodc
has an illegal type. Inodes may be found in one of three states: unallocated, allocated, and nei­
ther unallocated nor allocated. This last state indicates an incorrectly formatted in ode. An
inode can get in this state if bad data is written into the inode list through, for example, a
hardware failure. The only possible corrective action is for fsck is to clear the inodc.

4.2.2 Link Count. Contained in each inode is a count of the total number of directory entries
linked to the inode.

Fsck verifies the link count of each inodc by traversing down the total directory structure, start­
ing from the root directory, calculating an actual link count for each inode.

If the stored link count is non-zero and the actual link count is zero, it means that no directory
entry appears for the inode. If the stored and actual link counts arc non-zero and unequal, a
directory entry may have been added or removed without the inode being updated.

If the stored link count is non-zero and the actual link count is zero, fsck may link the discon­
nected file to the lost+found directory. If the stored and actual link counts are non-zero and
unequal, fsck may replace the stored link count by the actual link count. ,

4.2.3 Duplicate Blocks. Contained in each inode is a list or pointers to lists (indirect blocks) of
all the blocks claimed by the inode.

Fsck compares each block number claimed by an inode to a list of already allocated blocks. If a
block number is already claimed by another inode, the block number is added to a list of dupli­
cate blocks. Otherwise, the list of allocated blocks is updated to include the block number. If
there are any duplicate blocks, fsck will make a partial second pass of the inode list to find the
inode of the duplicated block, because without examining the files associated with these inodes
for correct content, there is not enough information available to decide which inode is cor­
rupted and should be cleared. Most times, the in<;>de with the earliest modify time is incorrect,
and should be cleared.

This condition can occur by using a file system with blocks claimed by both the free-block list
and by other parts of the file system.

If there is a large number of duplicate bfocks in an inode, this may be due to an indirect block
not being written to the file system.

FSCK 5

Fsck will prompt the operator to clear both inodes.

4.2.4 Bad Blocks. Contained in each inode is a list- of pointer to lists of all the blocks claimed
by the inode.

Fsck checks each block number claimed by an inode for a value lower than that of the first data
block, or greater than the last block in the file system. If the block number is outside this
range, the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to an indirect block not
being written to the file system.

Fsck will prompt the operator to clear both inodes.

4.2.5 Size Checks. Each inode contains a thirty-two bit (four-byte) size field. This size indi­
cates the number of characters in the file associated with the inode. This size can be checked
for inconsistencies, e.g., directory sizes that are not a multiple of sixteen characters, or the
number of blocks actually used not matching that indicated by the inode size.

A directory inode within the UNIX file system has the directory bit on in the inode mode word.
The directory size must be a multiple of sixteen because a directory entry contains sixteen bytes
(two bytes for the inode number and fourteen bytes for the file or directory name).

Fsck will warn of such directory misalignment. This is only a warning because not enough
information can be gathered to correct the misalignment.

A rough check of the consistency of the size field of an inode can be performed by computing
from the size field the number of blocks that should be associated with the inode and compar­
ing it to the actual number of blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode by dividing the number
of characters in a inode by the number of characters per block (512) and rounding up. Fsck
adds one block for each indirect block associated with the inode. If the actual number of blocks
does not match the computed number of blocks, fsck will warn of a possible file-size error.
This is only a warning because UNIX does not fill in blocks in files created in random order.

4.3 Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in indirect blocks directly
affect the inode that owns it.

Inconsistencies that can be checked are blocks already claimed by another inode and block
numbers outside the range of the file system. '

For a discussion of detection and correction of the inconsistencies associated with indirect
blocks, apply iteratively Sections 4.2.3 and 4.2.4 to each level of indirect blocks.

4.4 Data Blocks

The two types of data blocks are plain data blockS and directory data blocks. Plain data blocks
contain the information stored in a file. Directory data blocks contain directory entries. Fsck
does not attempt to check the validity of the contents of a plain data block.

~ch di~ectory data block;~n·b~·check~d fo~ in~~~sistenci~s i~~olvi~g di.rect~ry inode nu~~~~
pointing to unallocated inodes, directory inode numbers greater than the number of inodes in
the file system·; incorrect directory inode numbers for "." and ", and directories which are
disconnected from the file system. In addition, the validity of the contents of a directory's data
block is checked.·

If a directory entry inode number points to an unallocated inode, then fsck may remove that
directory entry. This condition probably occurred because the data blocks containing the direc-
tory entries were modified and written out, while the inode was not yet written out. ·

6 FSCK

If a directory entry inode number is pointing beyond the end of the inode list, fsck may remove
that directory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for "." should be the first entry in the directory data block.
Its value should be equal to the inode number for the directory data block.

The directory inode number entry for " •• " should be the second entry in the directory data
block. Its value should be equal to the inode number for the parent of the directory entry (or
the inode number of the directory data block if the directory is the root directory).

If the directory in ode numbers are incorrect, fsck may replace them by the correct values.·

Fsck checks the general connectivity of the file system. If directories are found not to be linked
into the file system, fsck will link the directory back into the file system in the lost+ found direc­
tory. This condition can be caused by inodes being written to the file system with the
corresponding directory data blocks not being written to the file system.

4.5 Free-List Blocks

Free-list blocks are owned by the super-block. Therefore, inconsistencies in free-list blocks
directly affect the super-block.

Inconsistencies that can be checked are a list count outside of range, block numbers outside of
range, and blocks already associated with the file system.

For a discussion of detection and correction of the inconsistencies associated with free-list
blocks see Section 4.1.2.

ACKNOWLEDGEMENT

I would like to thank Larry A. Wehr for advice that lead to the first version of fsck and Rick B.
Brandt for adapting/sck to UNIX.

REFERENCES

(1) Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. The Bell System
Technical Journal 57, 6 (July-August 1978, Part 2)°, pp. 1905-29.

[2] Dolotta, T. A., Olsson, S. B., and Petruccelli, A.G., eds. UNIX User's Manual-Release
3.0 (June 1980).

[3] Thompson, K. UNIX Implementation, The Bell System Technical Jolll'nal 57, 6 (July­
August 1978, Part 2), pp. 1931-46 .

. ·

.... -.

FSCK 7

APPENDIX: FSCK ERROR CONDITIONS

I. CONVENTIONS

Fsck is a multi-pass file system check program. F.ach file system pass invokes a different Phase
of the fsck program. After the initial setup, feck performs successive Phases over each file sys­
tem, checking blocks and sizes, path-names, connectivity, reference counts. and the free-block
list {possibly rebuilding it), and performs some cleanup.

When an inconsistency is detected, feck reports the error condition to the operator. If a
response is required, fsck prints a prompt message and waits for a response. This appendix
explains the meaning of each error condition, the possible responses, and the related error con­
ditions.

The error conditions are organized by the Phase of the fsck program in which they can occur.
The error conditions that may occur in more than one Phase will be discussed under initializa­
tion.

2. INITIALIZATION

Before a file system check can be performed, certain tables have to be set up and certain files
opened. This section concerns itself with the opening of files and the initialization of tables.
This section lists error conditions resulting from command line options, memory requests,
opening of files, status of files, file system size checks, and creation of the scratch file.

C option?

C is not a legal option to fsck; legal options are -y, -n, -s, -S, -t, -r, -q, and -D.
Fsck terminates on this error condition. See the/sck(IM) manual entry for further details.

Bad - t option

The -t option is not followed by a file name. Fsck terminates on this error condition. See the
fsck(l M) manual entry for further details.

Invalid -s argument, defaults assumed

The -s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck assumes a
default value of 400 blocks-per-cylinder and 9 blocks-to-skip. See the feck(1 M) manual entry
for more details.

Incompatible options: -n and -s

It is not possible to salvage the free-block list without modifying the file system. Fsck ter­
minates on this error condition. See the fsck(1 M) manual entry for further details.

Can't fstat standard input

Fsck's attempt to /stat standard input failed. This should never happen. Fsck terminates on
this error condition. See a guru.

Can't get memory

Fsck's request for memory for its virtual memory tables failed. This should never happen.
Fsck terminates on this error condition. See a guru.

8 FSCK

Can't open checklist Ille: F

The default file system checklist file F (usually /etc/checklist) can not be opened for reading.
Fsck terminates on this error condition. Check access modes of F.

Can't stat root

Fsck's request for statistics about the root directory .. /" failed. This should never happen.
Fsck terminates on this error condition. See a guru.

Can't stat F

Fsck's request for statistics about the file system F failed. It ignores this file system and contin­
ues checking the next file system given. Check access modes of F.

F is not a block or character de.lee

You have given fsck a regular file name by mistake. It ignores this file system and continues
checking the next file system given. Check file type of F.

Can't open F

The file system F can not be opened for reading. It ignores this file system and continues
checking the next file system given. Check access modes of F.

Size check: fsize X isize Y

More blocks are used for the inode list Y than there are blocks in the file system X, or there
are more than 65,535 inodes in the file system. It ignores this file system and continues check­
ing the next file system given. See Section 4.1.1.

Can't create F

Fsck's request to create a scratch file F failed. It ignores this file system and continues checking
the next file system given. Check access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)

Fsck's request for moving to a specified block number B in the file system failed.
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

This should

YES attempt to continue to run the file system check. Often, however the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, fsck will terminate with the message "Fatal 1/0
error".

NO terminate the program.
!.. ' ' • ~ ! T • : , . , ;- : .-..

FSCK 9

CAN NOT READ: BLK B ·(CONTINUE)

Fsck's request for reading a specified block number B in the file system failed. This should
never happen. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buffer cache, ftck will terminate with the message "Fatal 1/0
error".

NO terminate the program.

CAN NOT WRITE: BLK B (CONTINUE)

Fsck's request for writing a specified block number B in the file system failed. The disk is
write-protected. See a guru.

Possible responses to the CONTINUE prompt are:

YES attempt to continue to run the file system check. Often, however, the problem will
persist. This error condition will not allow a complete check of the file system. A
second run of fsck should be made to re-check this file system. If the block was part
of the virtual memory buff er cache, fsck will terminate with the.- message "Fatal 1/0
error".

NO terminate the program.

3. PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This section lists error conditions resulting from
checking inode types, setting up the zero-link-count table, examining inode block numbers for
bad or duplicate blocks, checking inode size, and checking inode format.

UNKNOWN FILE TYPE 1-1 (CLEAR)

The mode word of the inode I indicates that the inode is not a special character inode, special
character inode, regular inode, or directory inode. See Section 4.2.1.

Possible responses to the CLEAR prompt are:
' YES de-allocate inode I by zeroing its contents. This will always invoke the UNALLO-

CATED error condition in Phase 2 for each directory entry pointing to this inode.
NO ignore this error condition.

LINK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count of zero has no more
room. Recompile fsck with a larger value of MAXLNCNT.

Possible responses to the CONTINUE prompt are:

YES continue with the program. This error condition will not allow a complete check of
the file system. A second run of ftck should be made to re-check this file system.
If another allocated inode with a zero link count is found, this error condition is
repeated.

NO terminate the program.

10 FSCK

B BAD 1-1

Inode I contains block number B with a number lower than the number of the first data block
in the file system or greater than the number of the last block in the file system. This error
condition may invoke the EXCESSIVE BAD BLKS error condition in Phase 1 if inode I has
too many block numbers outside the file system range. This error condition will always invoke
the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.4.

EXCESSIVE BAD BLKS l=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the
number of the first data block in the file system or greater than the number of last block in the
file system associated with inode I. See Section 4.2.4.

Possible responses to the CONTINUE prompt are:

YF.S ignore the rest of the blocks in this inode and continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

B DUP l==I

Inode I contains block number B which is already claimed by another inode. This error condi­
tion may invoke the EXCFSSIVE DUP BLKS error condition in Phase 1 if inode I has too
many block numbers claimed by other inodes. This error condition will always invoke Phase 1 b
and the BAD/DUP error condition in Phase 2 and Phase 4. See Section 4.2.3.

EXCESSIVE DUP BLKS I=I (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See
Section 4.2.3.

Possible responses to the CONTINUE prompt are:

YFS ignore the rest of the blocks in this inode and' continue checking with the next inode
in the file system. This error condition will not allow a complete check of the file
system. A second run of fsck should be made to re-check this file system.

NO terminate the program.

·' DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more room. Recompile
fsck with a larger value of DUPTBl.SIZE.

Possible responses to the CONTINUE prompt are:
' YF.S continue with the program. This error condition will not allow a complete check of

the file system. A second run of fsck should be made to re-check this file system.
If another duplicate block is found, this error condition will repeat.

NO terminate the program.

POSSIBLE FILE SIZE ERROR I-I

The inode I size does not match the actual number of blocks used by the inode. This is only a
warning. See Section 4.2.5. If the -q option is used, this message is not printed.

FSCK 11

DIRECTORY MISALIGNED 1-1

The size of a directory inode is not a multiple of the· size of a directory entry (usually 16). This
is only a warning. See Section 4.2.5. If the -q option is used, this message is not printed.

PARTIALLY ALLOCATED INODE 1-1 (CLEAR)

Inode I is neither allocated nor unallocated. See Section 4.2.1.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

4. PHASE 18: RESCAN FOR MORE DUPS

When a duplicate block is found in the file system, the file system is rescanned to find the
inode which previously claimed that block. This section lists the error condition when the
duplicate block is found.

B DUP I=I

Inode I contains block number B which is already claimed by another inode. This error condi­
tion will always invoke the BAD/DUP error condition in Phase 2. You can determine which
inodes have overlapping blocks by examining this error condition and the DUP error condition
in Phase l. See Section 4.2.3.

5. PHASE 2: CHECK PATH-NAMES

This phase concerns itself with removing directory entries pointing to error conditioned inodes
from Phase 1 and Phase 1 b. This section lists error conditions resulting from root inode mode
and status, directory inode pointers in range, and directory entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode bits. This should never happen.
The program will terminate. See Section 4.2.1.

ROOT INODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type~ See Section 4.2.1.

Possible responses to the FIX prompt are:

YES replace the root inode's type to be a directory. If the root inode's data blocks are
not directory blocks, a VERY large number of error conditions will be produced.

NO terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1 or Phase lb have found duplicate blocks or bad blocks in the root inode (usually inode
number 2) for the file system. See Sections 4.2.3 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the DUPS/BAD error condition in the root inode and attempt to continue to
run the file system check. If the root inode is not correct, then this may result in a
large number of other error conditions.

NO terminate the program.

12 FSCK

I OUT OF RANGE 1-1 NAME-=F (REMOVE)

A directory entry F has an inode number I which is greater than the end of the inode list. See
Section 4.4.

Possible responses to the REMOVE prompt are:

YFS the directory entry F is removed.
NO ignore this error condition.

UNALLOCATED I=I OWNER-0 MODE-M SIZE-S MTIME==T NAME=F (REMOVE)

A directory entry F has an inode I without allocate mode bits. The owner 0, mode M, size S,
modify time T, and file name Fare printed. See Section 4.4. If the directory entry is a non­
empty directory, the REMOVE prompt will not appear, becausefsck does not permit the remo­
val of non-empty directories. The prompt will appear if the entry is not a directory and is non­
empty. If the file system is not mounted and the -n option was not specified, the entry will be
removed automatically if it is empty, regardless of whether or not it is a directory.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD 1-1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE)

Phase I or Phase I b have found duplicate blocks or bad blocks associated with directory entry
F, directory inode I. The owner 0, mode M, size S, modify time T, and directory name Fare
printed. See Sections 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YES the directory entry F is removed.
NO ignore this error condition.

DUP/BAD l=I OWNER=O MODE-M SIZE-S MTIME-T FILE=F (REMOVE)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with directory entry
F, inode I. The owner 0, mode M, size S, modify time T, and file name Fare printed. See
Sections 4.2.3 and 4.2.4.

Possible responses to the REMOVE prompt are:

YFS the directory entry F is removed.
NO ignore this error condition.

BAD BLK B IN DIR I-I OWNER-0 MODE=M SIZE-=S MTIME-T

A bad block was found in DIR inode I. This error message indicat'es that the user should, at a
later time, either remove the directory inode if the entire block looks bad, or change (or
remove) those directory entries that look bad. The block is checked to see whether it is a DUP
block; if it is, fsck will print "IT'S A DUP BLOCK -- CLEAR MANUALLY".

FSCK 13

6. PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase 2. This section lists
error conditions resulting from unreferenced directories, and missing or full lost+ found direc­
tories.

UNREF DIR l=I OWNER-0 MODE-=M SIZE-S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of directory inode I are printed.
See Sections 4.4 and 4.2.2. Fsck will force the reconnection of a non-empty directory unless a
bad block was found on that directory in Phase 2.

Possible responses to the RECONNECT prompt are:

YES reconnect directory inode I to the file system in the directory for lost files (usually
lost+ found). This may invoke the lost+ found error condition in Phase 3 if there are
problems connecting directory inode I to lost+found. This may also invoke the
CONNECTED error condition in Phase 3 if the link was successful.

NO ignore this error condition. This will always invoke the UNREF error condition in
Phase 4.

SORRY. NO lost+found DIRECTORY

There is no /ost+found directory in the root directory of the file system; fsck ignores the
request to link a directory in lost+found. This will always invoke the UNREF error condition
in Phase 4. Check access modes of lost+found. Seefsck(IM) manual entry for further details.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+ found directory in the root directory of the
file system; fsck ignores the request to link a directory in lost+ found. This will always invoke
the UNREF error condition in Phase 4. Clean out unnecessary entries in lost+found or make
lost+found larger. See/sck(lM) manual entry for further details.

DIR 1-ll CONNECTED. PARENT WAS 1=12

This is an advisory message indicating a directory inode 11 was successfully connected to the
lost+ found directory. The parent inode 12 of the directory inode 11 is replaced by the inode
number of the lost+ found directory. See Sections 4.4 and 4.2.2;

14 FSCK

7. PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This
section lists error conditions resulting from unreferenced files, missing or full lost+ found direc­
tory, incorrect link counts for files, directories, or special files, unreferenced files and direc­
tories, bad and duplicate blocks in files and directories, and incorrect total free-inode counts.

UNREF FILE I=I OWNER-0 MODE-M SIZE-=S MTIME=T (RECONNECT)

lnode I was not connected to a directory entry when the file system was traversed. The owner
0, mode M, size S, and modify time T of inode I are printed. See Section 4.2.2. If the - n
option is not set and the file system is not mounted, empty files will not be reconnected and
will be cleared automatically.

Possible responses to the RECONNECT prompt are:

YF.S reconnect inode I to the file system in the directory for lost files (usually
lost+ found). This may invoke the lost+fountf error condition in Phase 4 if there are
problems connecting inode I to lost+found.

NO ignore this error condition. This will always invoke the CLEAR error condition in
Phase 4.

SORRY. NO lost+fouod DIRECTORY

There is no lost+ found directory in the root directory of the file system; fsck ignores the
request to link a file in lost+found. This will always invoke the CLEAR error condition in
Phase 4. Check access modes of lost+found.

SORRY. NO SPACE IN lost+found DIRECTORY

Thert is no space to add another entry to the lost+ found directory in the root directory of the
file system; fsck ignores the request to link a file in lost+ found. This will always invoke the
CLEAR error condition in Phase 4. Check size and contents of lost+ found.

(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. See
Section 4.2.2.

Possible responses to the CLEAR prompt are:

YES de-allocate the inode mentioned in the immediately previous error con'dition by
zeroing its contents.

NO ignore this error condition.

LINK COUNT FILE I=I OWNER-0 MODE-M SIZE=S MTIME=T COUNT-X SHOULD
BE Y (ADJUST)

The link count for inode I which is a file, is X but should be Y. The owner 0, mode M, size
S, and modify time T are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YF.S replace the link count of file in ode I with Y.
NO ignore this error condition.

FSCK 15

LINK COUNT DIR I=I OWNER=O MODE=M SIZE-S MTIME-T COUNT=X SHOULD
BE Y (ADJUST)

The link count for inode I which is a directory, is X but should be Y. The owner 0, mode M,
size S, and modify time T of directory inode I are printed. See Section 4.2.2.

Possible responses to the ADJUST prompt are:

YES replace the link count of directory inode I with Y.
NO ignore this error condition.

LINK COUNT F I=I OWNER=O MODE=M SIZE-S MTIME-T COUNT-=X SHOULD BE
Y (ADJUST)

The link count for F inode I is X but should be Y. The name F, owner 0, mode M, size S,
and modify time T are printed. Sec Section 4.2.2.

Possible .responses to the ADJUST prompt arc:

YES replace the link count of inodc I with Y.
NO ignore this error condition.

UNREF FILE I=I OWNER-0 MODE=-M SIZE=S MTIME=T (CLEAR)

lnode I which is a file, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inodc I are printed. See Sec­
tions 4.2.2 and 4.4. If the - o option is not set and the file system is not mounted, empty files
will be cleared automatically.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

UNREF DIR 1=1 OWNER-0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I which is a directory, was not connected to a directory entry when the file system was
traversed. The owner 0, mode M, size S, and modify time T of inode I are printed. Sec Sec­
tions 4.2.2 and 4.4. If the - n option is not set and the file system is not mounted, empty
directories will be cleared automatically. Non-empty directories will not be cleared.

Possible responses to the CLEAR prompt arc:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

BAD/DUP FILE I=I OWNER=O MODE=M SIZE-S MTIME-T (CLEAR)

Phase 1 or Phase 1 b have found duplicate blocks or bad blocks associated with file inode I. The
owner 0, mode M, size S, and modify time T of inode I are printed. See Sections 4.2.3 and
4.2.4.
·'. .. , '! ·~ : .. -~ ... ' .. ' ··.~. · .

Possible responses to the CLEAR prompt arc:' ' · -, cl

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

i;:.

16 FSCK

BAD/DUP DIR I-I OWNER=O MODE==M SIZE-S MTIME=T (CLEAR)

Phase 1 or Phase lb have found duplicate blocks or bad blocks associated with directory inode
I. The owner 0, mode M, size S, and modify time T of inode I are printed. See Sections
4.2.3 and 4.2.4.

Possible responses to the CLEAR prompt are:

YES de-allocate inode I by zeroing its contents.
NO ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the super-block of the file sys­
tem. See Section 4.1.4. If the -q option is specified, the count will be fixed automatically in
the super-block.

Possible responses to the FIX prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

8. PHASE 5: CHECK FREE LIST

This phase concerns itself with the free-block list. This section lists error conditions resulting
from bad blocks in the free-block list, bad free-blocks count, duplicate blocks in the free-block
list, unused blocks from the file system not in the free-block list, and the total free-block count
incorrect.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks with a value
less than the first data block in the file system or greater than the last block in the file system.
See Sections 4.1.2 and 4.2.4.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of ftck. This error
condition will always invoke the BAD BLKS IN FREE LIST error condition in Phase
5.

NO terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks claimed by
inodes or earlier parts of the free-block list. Sec Sections 4.1.2 and 4.2.3.

Possible responses to the CONTINUE prompt are:

YES ignore the rest of the free-block list and continue the execution of ftck. This error
condition will always invoke the DUP BLKS IN FREE LIST error condition in Phase
5.

NO terminate the program.

BAD F"-EEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less than zero. This error con­
dition will always invoke the BAD FREE LIST condition in Phase 5. See Section 4.1.2.

FSCK 17

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower than the first data block in the file
system or greater than the last block in the file system. This error condition will always invoke
the BAD FREE LIST condition in Phase 5. See Sections 4.1.2 and 4.2.4.

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list block were found in the free-block
list. This error condition will always invoke the BAD FREE LIST condition in Phase 5. See
Sections 4.1.2 and 4.2.3.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block list. This error condition
will always invoke the BAD FREE LIST condition in Phase 5. See Section 4. l.2.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the super-block of the file system.
See Section 4.1.3.

Possible responses to the F1X prompt are:

YES replace the count in the super-block by the actual count.
NO ignore this error condition.

BAD FREE LIST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the free-block list, or
blocks missing from the file system. See Sections 4.1.2, 4.2.3, and 4.2.4. If the -q option is
specified, the free-block list will be salvaged automatically.

Possible responses to the SALVAGE prompt are:

YES replace the actual free-block list with a new free-block list. The new free-block list
will be ordered to reduce time spent by the disk waiting for the disk to rotate into
position.

NO ignore this error condition.

18 FSCK

9. PHASE 6: SALVAGE FREE LIST

This phase concerns itself with the free-block list reconstruction. This section lists error condi­
tions resulting from the blocks-to-skip and blocks-per-cylinder values.

Default free-block list spacing aH11med

This is an advisory message indicating the blocks-to-skip is greater than the blocks-per-cylinder,
the blocks-to-skip is less than one, the blocks-per-cylinder is less than one, or the blocks-per­
cylinder is greater than 500. The default values of 9 blocks-to-skip and 400 blocks-per-cylinder
are used. See the/sck(lM) manual entry for further details.

10. CLEANUP

Once a file system has been checked, a few cleanup functions are performed. This section lists
advisory messages about the file system and modify statu~ of the file system.

X Bies Y IJlocks Z free

This is an advisory message indicating that the file system checked contained X files using Y
blocks leaving Z blocks free in the file system.

***** BOOT UNIX (NO SYNC!) •••••

This is an advisory message indicating that a mounted file system or the root file system has
been modified by fsck. If UNIX is not rebooted immediately, the work done by fsck may be
undone by the in-core copies of tables UNIX keeps.

••••• FILE SYSTEM WAS MODIFIED *****
This is an advisory message indicating that the current file system was modified by fsck. If this
file system is mounted or is the current root file system, fsck should be halted and UNIX
rebooted. If UNIX is not rebooted immediately, the work done by fsck may be undone by the
in-core copies of tables UNIX keeps.

..

FSCK

INITIALIZATION

INDEX OF MESSAGES
(Alphabetically within each section)

Bad -t option
C option?
CAN NOT READ: BLK B (CONTINUE)
CAN NOT SEEK: BLK B (CONTINUE) .
CAN NOT WRITE: BLK B (CONTINUE)
Can't create F
Can't fstat standard input .
Can't get memory
Can't open check.list file: F
Can't open F
Can't stat F
Can't stat root
F is not a block. or character device
Incompatible options: -n and -s .
Invalid -s argument, defaults assumed
Size check: fsize X isize Y

PHASE 1: CHECK BLOCKS A ND SIZES

B BAD I=I
B DUP I=l
DIRECTORY MISALIGNED I-I
DUP TABLE OVERFLOW (CONTINUE) .
EXCESSIVE BAD BLKS I-I (CONTINUE)
EXCESSIVE DUP BLKS l=I (CONTINUE)
LINK COUNT TABLE OVERFLOW (CONTINUE)
PARTIALLY ALLOCATED INODE I-I (CLEAR)
POSSIBLE FILE SIZE ERROR I- I
UNKNOWN FILE TYPE 1-1 (CLEAR)

PHASE 18: RESCAN FOR MORE DUPS

19

7
7
9
8
9
8
7
7
8
8
8
8
8
7
7
8

10
10
ll
10
10
10
9

11
10
9

B DUP I-I ll

PHASE 2: CHECK PATH-NAMES

BAD BLK BIN DIR I=I OWNER=O MODE-M SIZE=S MTIME=T
DUP/BAD I-I OWNER=O MODE=M SIZE=S MTIME=T DIR=F (REMOVE)
DUP/BAD l=I OWNER=O MODE=M SIZE=S MTIME=T FILE-F (REMOVE)
DUPS/BAD IN ROOT INODE (CONTINUE)
I OUT OF RANGE I-I NAME-F (REMOVE)
ROOT INODE NOT DIRECTORY (FIX)
ROOT INODE UNALLOCATED. TERMINATING.
UNALLOCATED l=I OWNER=O MODE=M SIZE=S MTIME=T NAME=F (REMOVE)

PHASE 3: CHECK CONNECTIVITY

DIR 1=11 CONNECTED. PARENT WAS I=l2
SORRY. NO SPACE IN lost +found DIRECTORY·
SORRY. NO lost+found DIRECTORY , . '. .• •;
UNREF DIR I=I OWNER=O MODE.,;M s1iE.::s MTIME=T (RECONNECT)

12
12
12
11
12
ll
ll
12 .

13
13
13
13

20 FSCK

PHASE 4: CHECK REFERENCE COUNTS

BAD/DUP DIR l=I OWNER-0 MODE=M SIZE-S MTIME-T (CLEAR) 16
BAD/DUP FILE l=I OWNER=O MODE-M SIZE-S MTIME=T (CLEAR) 15
(CLEAR) _ - - _ _ _ . . . 14
FREE INODE COUNT WRONG IN SUPERBLK (FIX) . _ . _ 16
LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE-S MTIME=T COUNT=X SHOULD BEY (ADJUST) 15
LINK COUNT FILE l=I OWNER=O MODE=M SIZE-S MTIME=T COUNT-X SHOULD BEY (ADJUST) 14
LINK COUNT F l=I OWNER~O MODE=M SIZE-S MTIME=T COUNT-X SHOULD BEY (ADJUST) 15
SORRY. NO SPACE IN lost+found DIRECTORY 14
SORRY. NO lost+found DIRECTORY - - 14
UNREF DIR 1-1 OWNER=O MODE-M SIZE=S MTIME-T (CLEAR) 15
UNREF FILE 1-1 OWNER=O MODE-M SIZE=S MTIME-T (CLEAR) 15
UNREF FILE 1-1 OWNER=O MODE-M SIZE=S MTIME-T (RECONNECT) 14

PHASE 5: CHECK FREE LIST

BAD FREE LIST (SALVAGE) -
BAD FREEBLK COUNT - - - . .
EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE)
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)
FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)
X BAD BLKS IN FREE LIST
X BLK(S) MISSING . . _ _ _
X DUP BLKS IN FREE LIST

PHASE 6: SALVAGE FREE LIST

17
16
16
16
17
17
17
17

Dc:faull free-block list spacing assumed . _ _ _ _ _ _ . . _ _ _ _ . . 18

CLEANUP

••••• BOOT UNIX (NO SYNC!) -•
••••• FILE SYSTEM WAS MODIFIED -
X files Y blocks Z free _ _ _ _ . .

January 1981

18
18
18

..

The UNIX Accounting System

H. S. McCreary
A. G. Petruccelli

Bell Laboratories
Piscataway, New Jersey 08854

ABSTRACT

UNIX

F.2.1

The UNIXt Accounting System provides methods to collect per-process resource
utilization data, to record connect sessions, to monitor disk utilization, and to
charge fees to specific logins. A set of C programs and shell procedures is pro­
vided to reduce this accounting data into summary files and reports. This
memorandum describes the structure, implementation, and management of this
accounting system, as well as a discussion of the reports generated and the mean­
ing of the columnar data.

l. INTRODUCTION

The UNIX Accounting System was originally designed by John Mashey. Several modifications
and additions have been made to make the system easier to manage and to make it less suscep­
tible to corrupted data or system errors. The following list is a synopsis of the actions of the
accounting system:

• At process termination the UNIX Kernel writes one record per process in /usr/adm/pacct in
the form of acct.h. 1

• The login and init programs record connect sessions by writing records into /usr/adm/wtmp.
Date changes, reboots, and shutdowns are also recorded in this file.

• The disk utilization program acctdusg, breaks down disk usage by login.

• Fees for file restores, etc, can be charged to specific logins with the chargefee shell pro­
cedure.

• Each day the runacct shell procedure is executed via cron to reduce accounting data, produce
summary files and reports. 2

• The monacct procedure can be executed on a monthly or fiscal period basis. It saves and
restarts summary files, generates a report, and cleans up the sum directory. These saved
summary files could be used to charge users for UNIX usage.

2. FILES AND DIRECTORIES

The /usr/lib/acct directory contains .all of the C programs and shell procedures necessary to
run the accounting system. The adm login (currently user ID of 4) is used by the accounting
system and has the following directory structure:

t UNIX is a trademark of Bell Laboratories.

I. See Attachment 2 for a desCTiption of data files.

2. Sec Attachment 3 for a sample report.

2

/usr/adm
I

acct
I

r--------i·-------i

nite sum fiscal

UNIX Accounting System

The /usr /adm directory contains the active data collection files. 3 The nite directory contains
files that are re-used daily by the runacct procedure. The sum directory contains the cumulative
summary files updated by runacct. The fiscal directory contains periodic summary files created
by monacct.

3. DAILY OPERATION

When UNIX is switched into multi-user mode, /usr/lib/acct/startup is executed which does
the following:

1. The acctwtmp program adds a "boot" record to /usr/adm/wtmp. This record is signified
by using the system name as the login name in the wtmp record.

2. Process accounting is started via turnacct. Turnacct on executes the accton program with
the argument /usr/adm/pacct.

3. The remove shell procedure is executed to clean up the saved pacct and wtmp files left in
the sum directory by runacct.

The ckpacct procedure is run via cron every hour of the day to check the size of
/usr/adm/pacct. If the file grows past 1000 blocks (default), turnacct switch is executed. While
ckpacct is not absolutely necessary, the advantage of having several smaller pacct files becomes
apparent when trying to restart runacct after a failure processing these records.

The chargefee program can be used to bill users for file restores, etc. It adds records to
/usr/adm/fee which are picked up and processed by the next execution of runacct and merged
into the total accounting records.

Runacct is executed via cron each night. It processes the active accounting files,
/usr/adm/pacct?, /usr/adm/wtmp, /usr/adm/acct/nite/disktacct, and /usr/adm/fee. It pro­
duces command summaries and usage summaries by login.

When the system is shut down using shutdown, the shut acct shell procedure is executed. It
writes a shutdown reason record into /usr/adm/wtmp and turns process accounting off.

After the first re-boot each morning, the computer operator should execute
/usr/lib/acct/prdaily to print the previous day's accounting report.

4. SETTING UP THE ACCOUNTING SYSTEM

In order to automate the operation of this accounting system, several things need to be done:

I. If not already present, add this line to the /etc/re file in the state 2 section:

/bin/su - adm -c /usr/lib/acct/startup

2. If not already present, add this line to /etc/shutdown to turn off the accounting before the
system is brought down:

3. For a complete explanation of the files used by the accounting system, see Attachment I.

UNIX Accounting System 3

/usr/lib/acct/shutacct

3. For most installations, the following three entries should be made in /usr/lib/crontab so
that cron will automatically run the daily accounting: ·

0 4 • • 1-6 /bin/su - adm -c "/usr/lib/acct/runacct 2> /usr/adm/acct/nite/fd2log"
0 2 • • 4 /usr/lib/acct/dodisk
5 • • • • /bin/su - adm -c • /usr/lib/acct/ckpacct"

Note that dodisk is invoked with super-user privileges of root so that directory searching is
not road blocked.

To facilitate monthly merging of accounting data, the following entry in crontab will allow
monacct to clean up all daily reports and daily total accounting files and deposit one
monthly total report and one monthly total accounting file in the fiscal directory:

15 5 1 • • /bin/su - adm -c /usr/lib/acct/monacct

The above entry takes advantage of the default action of monacct that uses the current
month's date as the suffix for the file names. Notice that the entry is executed at such a
time as to allow runacct sufficient time to complete. This will, on the first day of each
month, create monthly accounting files with the entire month's data.

4. The PATH shell variable should be set in /usr/adm/.profile to:

PATH= /usr /lib/acct:/bin:/usr/bin

5. RUNACCT

Runacct is the main daily accounting shell procedure. It is normally initiated via cron during
non-prime time hours. Runacct processes connect, fee, disk, and process accounting files. It
also prepares daily and cumulative summary files for use by prdai/y or for billing purposes. The
following files produced by runacct are of particular interest:

nite/lineuse

nite/daytacct

sum/tacct

sum/daycms

sum/ems

sum/loginlog

Produced by acctconl, which reads the wtmp file, and produces usage statis­
tics for each terminal line on the system. This report is especially useful
for detecting bad lines. If the ratio between the number of logoffs to logins
exceeds about 3/1, there is a good possibility that the line is failing.

This file is the total accounting file for the previous day in tacct.h format.

This file is the accumulation of each day's nite/daytacct, which can be used
for billing purposes. It is restarted each month or fiscal by the monacct pro­
cedure.

Produced by the acctcms program, it contains the daily command summary.
The ASCII version of this file is nite/daycms.

The accumulation of each day's command summaries. It is restarted by.the
execution of monacct. The ASCII version is nite/cms.

Produced by the lastlogin shell procedure, it maintains a record of the last
time each login was used.

sum/rprt.MMDD Each execution of runacct saves a copy of the output of prdaily.

Runacct takes care not to damage files in the event of errors. A series of protection mechan­
isms are used that attempt to recognize an error, provide intelligent diagnostics, and terminate
processing in such a way that runacct can be restarted with minimal intervention. It records its

4 UNIX Accounting System

progress by writing descriptive messages into the file active. 4 All diagnostic output during the
execution of runacct is written into fdlloi. To prevent multiple invocations, in the event of
two crons or other problems, runacct will complain if the files lock and lockl exist when
invoked. The lastdate file contains the month and day runacct was last invoked, and is used to
prevent more than one execution per day. If runacct detects an error, a message is written to
/dev /console, mail is sent to root and adm, the locks are removed, diagnostic files are saved.
and execution is terminated.

In order to allow runacct to be restartable, processing is broken down into separate reentrant
states. This is accomplished by using a case statement inside an endless while loop. F.ach state
is one case of the case statement. A file is used to remember the last state completed. When
each state completes, statefile is updated to reflect the next state. In the next loop through the
while, statefile is read and the case falls through to the next state. When runacct reaches the
CLEANUP state, it removes the locks and terminates. States are executed as follows:

SETUP

WfMPFIX

The command turnacct switch is executed. The process accounting files,
/usr/adm/pacct?, are moved to /usr/adm/Spacct?.MMDD. The
/usr/adm/wtmp file is moved to /usr/adm/acct/nite/wtmp.MMDD with
the current time added on the end.

The wtmp file in the nite directory is checked for correctness by the
wtmpfix program. Some da~e changes will cause acctconl to fail, so wtmpfix
attempts to adjust the time stamps in the wtmp file if a date change record
appears.

CONNECTI Connect session records are written to ctmp in the form of ctmp.h. The
lineuse file is created, and the reboots file is created showing all of the boot
records found in the wtmp file.

CONNECT2 Ctmp is converted to ctacct.MMDD, the connect accounting records. 5

PROCESS The acctprcl and acctprc2 programs are used to convert the process account­
ing files, /usr/adm/Spacct?.MMDD, into total accounting records in
ptacct?.MMDD. The Spacct and ptacct files are correlated by number so
that if runacct fails, the unnecessary reprocessing of Spacct files will not
occur. One precaution should be noted; when restarting runacct in this
state, remove the last ptacct file because it will not be complete.

MERGE Merge the process accounting records with the connect accounting records
to form daytacct.

FEF.S Merge in any ASCII tacct records from the file fee into daytacct.

DISK On the day after the sdisk procedure runs, merge disktacct with daytacct.

MERGETACCT Merge daytacct with sum/tacct, the cumulative total accounting file. F.ach
day, daytacct is saved in sum/tacctMMDD, so that sum/tacct can be
recreated in the event it becomes corrupted or lost.

CMS Merge in today's command summary with the cumulative command sum­
mary file sum/ems. Produce ASCII and internal format command summary
files.

4 .. Files 1JSed by runacct are assumed to be in the nite directory unless otherwise noted.

5. Accounting records are in 1aca.h format.

UNIX Accounting System 5

USEREXIT Any installation dependent (local) accounting programs can be included
here. ·

CLEANUP Clean up temporary files, run prdaily and save its output in
sum/rprtMMDD, remove the locks, then exit.

6. RECOVERING FROM FAILURE

The runacct procedure can fail for a variety of reasons; usually due to a system crash, /usr run­
ning out of space, or a corrupted wtmp file. If the activeMMDD file exists, check it first for
error messages. If the active file and lock files exist, check fdllog for any mysterious messages.
The following are error messages produced by runacct, and the recommended recovery actions:

ERROR: locks found, run aborted
The files lock and lockl were found. These files must be removed before runacct can res­
tart.

ERROR: acctg already run for date : check /usr/adm/acct/nite/lastdate
The date in lastdate and today's date are the same. Remove lastdate.

ERROR: turnacct switch returned re=?
Check the integrity of turnacct and accton. The accton program must be owned by root,
and have the setuid bit set.

ERROR: Spacct? .MMDD already exists
file setups probably already run

Check status of files, then run setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists, run setup manually
Self-explanatory.

ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror
Wtmpjix detected a corrupted wtmp file. Use fwtmp to correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm/acct/nite/log
The acctconl program encountered a bad wtmp file. Use fwtmp to correct the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active
The file, statefile, is probably corrupted. Check statefile and read active before restart­
ing.

7. RESTARTING RUNACCT

Runacct called without arguments assumes that this is the first invocation of the day. The argu­
ment MMDD is necessary if runacct is being restarted, and specifies the month and day for
which runacct will rerun the accounting. The entry point for processing is based on the con­
tents of statefile. To override statefile, include the desired state on the command line. For
example:

To start runacct:
nohup runacct 2> /usr/adm/acct/nite/fd21og&

To restart runacct:
nohup runacct 0601 2> /usr/adm/acct/nite/fd2log&

To restart runacct at a specific state:
nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd21og&

6 UNIX Accounting System

8. FIXING CORRUPTED FILES

Unfortunately, this accounting system is not entirely fool proof. Occasionally a file will become
corrupted, or lost. Some of the files can simply be ignored or restored from the file-save
backup, but others must be fixed to maintain the integrity of the accounting system.

8.1 Fixing WTMP Errors

The wtmp files seem to cause the most problems in the day to day operation of the accounting
system. When the date is changed when UNIX is in multi-user mode, a set of date change
records is written into /usr/adm/wtmp. The wtmpfix program is designed to adjust the time
stamps in the wtmp records when a date change is encountered. Some combinations of date
changes and reboots, however, will slip through wtmpfix and cause acctconl to fail. The follow­
ing steps show how to patch up a wtmp file.

cd /usr/adm/acct/nite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp

delete corrupted records or
delete all records from the beginning up to the date change

fwtmp -ic < xwtmp > wtmp.MMDD

If the wtmp file is beyond repair, create a null wtmp file. This will prevent any charging of
connect time. Acctprcl won't be able to determine which login owned a particular process, but
it will be charged to the login that is first in the password file for that userid.

8.2 Fixing TACCT Errors

If the installation is using the accounting system to charge users for system resources, the
integrity of sum/tacct is quite important. Occasionally, mysterious tacct records will appear
with negative numbers, duplicate user IDs, or a user ID of 65535. First check sum/tacctprev
with pnacct. If it looks all right, the latest sum/tacct.MMDD should be patched up, then
sum/tacct recreated. A simple patchup procedure would be:

cd /usr/adm/acct/sum
acctrnerg - v < tacct.MMDD > xtacct
ed xtacct

remove the bad records
write duplicate uid records to another file

acctmerg -i < xtacct > tacct.MMDD
acctmerg tacctprev < tacct.MMDD > tacct

Remember that the monacct procedure removes all the tacct.MMDD files; therefore, sum/tacct
can be recreated by merging these files together.

9. UPDATING PNPSPLIT

The pnpsplit subroutine is used by acdconl and acctprcl to determine the difference between
prime and non-prime time. Prime time is defaulted from 9 a.m. to 5 p.m. Monday through
Friday. Non-prime time is considered to be all other hours and the entire day for those days
listed in the holidays structure in pnpsplit.c. The holidays listed are accurate for Bell Labora­
tories, New Jersey locations for the year the operating system was released. Every year on the
day after Chris~mas (the last holiday of the calendar year), the following message will be
printed on the system console terminal and appear in log:

*** RECOMPILE pnpsplit WITH NEW HOLIDAYS ***
This message will continue to be sent each time the accounting is run until pnpsplit, acctconl,
and acctprcl are recompiled. The following steps should be taken to successfully recompile
these programs:

UNIX Accounting System 1

1. Edit pnpsplit.c to change the thisyear variable to the new year. Update the holidays
structure to reflect the new holidays. The numeric entry in the structure is the day of the
year, less one. For example, New Year's Day (January 1) is entered as 0. Pnpsplit.c is
in /usr/src/cmd/acct/lib.

2. Update the accounting library a.a and recompile acctprcl, and acctconl by:

super-user to root
ARGS="acctconl acctprcl" /usr/src/:mkcmd acct

10. DAILY REPORTS

Runacct generates 5 basic reports upon each Invocation. A sample of these reports are shown
in Attachment 3. They cover the areas of connect accounting, usage by person on a daily basis,
command usage reported by daily and monthly totals, and a report of the last time users were
logged in.

The following paragraphs describe the reports and the meanings of their tabulated data.

10.l Daily Report

In the first part of the report, the from/to banner should alert you to the period reported on.
The times are the time the last accounting report was generated until the time the current
accounting report was generated. It is followed by a log of system reboots, shutdowns, power
fail recoveries, and any other record dumped into /usr/adm/wtmp by the acctwtmp program
(see acct(lM)).

The second part of the report is a breakdown of line utilization. The TOTAL DURATION tells
how long the system was in multi-user state (able to be accessed through the terminal lines).
The columns are:

LINE The terminal line or access port.

MINUTES The total number of minutes that line was in use during the accounting period.

PERCENT The total number of MINUTES the line was in use divided into the TOTAL DURA-

SESS

#ON

#OFF

TION.

The number of times this port was accessed for a /ogin(l) session.

This column does not have much meaning anymore. It used to give the number of
times that the port was used to log a user on, but because login (1) can no longer be
executed explicitly to log a new user in, this column shouJd be identical with SESS.

This column reflects not just the number of times a user logged off, but also any
interrupts that occur on that line. Generally, interrupts occur on a port when the
getty(8) is first invoked when the system is brought to multi-user state. These inter­
rupts occur at a rate of about two per event; therefore it is not uncommon to see in
excess of twice the amount of OFF than in ON or SESS. Where this column does
come into play is when the # OFF exceeds the # ON by a large factor. This usually
indicates that the multiplexor, modem or cable is going bad, or there is a bad con­
nection somewhere. The most common cause of this is an unconnected cable dan­
gling fro~ the multiplexor.

During real time, /usr/adm/wtmp should be monitored as this is the file that the
connect accounting is geared off of. If it grows rapidly, execute acdconl to see
which tty line is the most noisy. If the interrupting is occurring at a furious rate,
you 'ti be able to feel the effect on general system performance.

8 UNIX Accounting System

10.2 Daily Usaae Report

This report gives a by-user breakdown of system resource utilization. - Its data consists of:

UID The user ID.

LOGIN NAME The login name of the user; there can be more than one login name for a
single user ID, this identifies which one.

CPU (MINS) This represents the amount of time the user's process used the central pro­
cessing unit. This category is broken down into PRIME and NPRIME (non­
prime) utilization. The accounting system's idea of this breakdown is
located in the accounting library function pnpsplil where the holidays array,
which also determines non-prime time, is also defined. As delivered, prime
time is defined to be 0900-1700 hours. The holidays array is correct for
New Jersey locations of Bell Laboratories for the year of the release.

KCORE-MINS This represents a cummulative measure of the amount of memory a process
uses while running. The amount shown reflects kilo-byte segments of
memory used per minute. This measurement is also broken down into
PRIME and NPRIME amounts.

CONNECT (MINS) This identifies "Real Time" used. What this column really identifies, is the
amount of time that a user was logged into the system. If this time is
rather high and the later column called # OF PROCS is low, this user is
what is called a "line hog." That is, this person logs in first thing in the
morning and doesn't hardly touch the terminal the rest of the day. Watch
out for this kind of critter. This column is also subdivided into PRIME and
NPRIME utilization.

DISK BLOCKS

OFPROCS

OFSESS

When the disk accounting programs have been run, their output is merged
into the total accounting record (tacct.h) and shows up in this column.
This disk accounting is accomplished by the program acctdusg.

This column reflects the number of processes that was invoked by the user.
This is a good column to watch for la,rge numbers indicating that a user may
have a shell procedure that runs amuck. The most common example of
this is for a crontab entry to try to execute a user's .profile via su- that
unfortunately prompts for a terminal type and sits in an endless loop trying
to read from the terminal (there isn't one when cron is executing a pro­
cess). Preventive coding is encouraged in the .profile.

This is how many times the user logged onto the system.

DISK SAMPLES This indicates how many times the disk accounting was run to obtain the
average number of DISK BLOCKS listed earlier.

FEE A much often unused field in the total accounting record, the FEE
represents the total accumulation of widgets charged against the user by the
chargefee shell procedure (see acash(lM)). The chargefee procedure is
used to levy charges against a user for special services performed such as
file restores, tape manipulation by operators, etc.

10.3 Daily Command and Monthly Total Command Summaries

These two reports are virtualty the same except that the Daily Command Summary only reports
on the current accounting period, while the Monthly Total Command Summary telts the story
for the start of the fiscal period to the current date. In other words, the monthly report reflects
the data accumulated since the last invocation of monacct:

UNIX Accounting System 9

The data included in these reports give an administrator an idea as to the heaviest used com­
mands, and based on thos·e commands' characteristics of system resource utilization, a hint as
to what to weigh more heavily when system tuning.

These reports are sorted by TOTAL KCOREMIN which is an arbitrary yardstick, but often a good
one for calculating "drain" caused on a system.

COMMAND NAME This is the name of the command. Unfortunately, all shell procedures
are lumped together under the name sh because only object modules are
reported by the process accounting system. The administrator should
monitor the frequency of programs called a.out or core or any other name
that doesn't seem quite right. Often people like to work on their favorite
version of backgammon only they don't want everyone to know about it.
Acctcom is also a good tool to use for determining who executed a suspi­
ciously named command and also if super-user privileges were used.

NUMBER CMOS This is the total number of invocations of this particular command.

TOTAL KCOREMIN The total cummulative measurement of the amount of kilo-byte seg­
ments of memory used by a process per minute of run time.

TOTAL CPU-MIN The total processing time this program has accumulated.

TOT AL REAL-MIN The total real time (wall-clock) minutes this program has accumulated.
This total is the actual "waited for" time as opposed to kicking off a pro­
cess in the background.

MEAN SIZE-K This is the mean of the TOTAL KCOREMIN over the number of invoca­
tions reflected by NUMBER CMOS.

MEAN CPU-MIN This is the mean derived between the NUMBER CMDS and TOTAL CPU­
MIN.

HOG FACTOR This is a relative measurement of the ratio of system availability to sys­
tem utilization. It is computed by the formula

(total CPU time) / (elapsed time)
This gives a relative measure of the total available CPU time consumed
by the process during its execution.

CHARS TRNSFO This column, which may go negative, is a total count of the number of
characters pushed around by the read(2) and write(2) system calls.

BLOCKS READ A total count of the physical block reads and· writes that a process per­
formed.

10.4 Last Login

This report simply gives the date when a particular login was last used. This could be a good
source for finding likely candidates for the tape archives or getting rid of unused logins and
login directories.

11. SUMMARY

The UNIX Accounting System was designed from a UNIX system administrator's point of view.
Every possible precaution has been taken to ensure that the system will run smoothly and
without error. It is important to become familiar with the C programs and shell procedures.
The manual entries should be studied, and it is advisable to keep a printed copy of the shell
procedures handy. This accounting system should be easy to maintain, provide valuable infor­
mation for the administrator, and provide accurate breakdowns of the usage of system resources
for charging purposes.

JO UNIX Accounting System

Attachment I

Files In the /usr/adm directory:

diskdiag

dtmp

fee

pacct

pacct?

Spacct?.MMDD

wtmp

diagnostic output during the execution of disk accounting programs

output from the acctdusg program

output from the chargefee program. ASCII tacct records

active process accounting file

process accounting files switched via turnacct

process accounting files for MMDD during execution of runacct

active wtmp file for recording connect sessions

Files In the /usr/adm/acct/nite directory:

active

ems

ctacct.MMDD

ctmp

daycms

daytacct

disktacct

fd2log

lastdate

lock lockl

lineuse

log

logMMDD

reboots

statefile

tmpwtmp

wtmperror

wtmperrorMMDD

wtmp.MMDD

used by runacct to record progress and print warning and error mes·
sages; actheMMDD same as active after runacct detects an error

ASCll total command summary used by prdaily

connect accounting records in tacct.h format

output of acctconl program, connect session records in ctmp.h format

ASCII daily command summary used by prdaily

total accounting records for one day in tacct.h format

disk accounting records in tacct.h format, created by dodisk procedure

diagnostic output during execution of runacct
(see cron entry)

last day runacct executed in date +%m%d format

used to control serial use of runacct

tty line usage report used by prdaily

diagnostic output from acctconl

same as log after runacct detects an error

contains beginning and ending dates from wtmp. and a' listing of
reboots

used to record current state during execution of runacct

wtmp file corrected by Wimp.fix

place for wtmpfix error messages

same as wtmperror after runacct detects an error

previous day's wtmp file

UN IX Accounting System 11

Files in the /usr/adm/acct/sum directory:

ems

cmsprev

daycms

loginlog

pacct.MMDD

rprt.MMDD

tacct

tacctprev

tacct.MMDD

wtmp.MMDD

total command summary· file for current fiscal in internal summary
format

command summary file without latest update

command summary file for yesterday in internal summary format

created by lastlogin

concatenated version of all pacct files for MMDD, removed after
reboot by remove procedure

saved output of prdaily program

cumulative total accounting file for current fiscal

same as tacct without latest update

total accounting file for MMDD

saved copy of wtmp file for MMDD, removed after reboot by remove
procedure

Files in the /usr/adm/acct/ftscal directory:

ems?

fiscrpt?

tacct?

total command summary file for fiscal ? in internal summary format

report similar to prdaily for fiscal ?

total accounting file for fiscal ?

12

Attachment 2

Format of wtmp files (utmp.h):

I•
* Format of /etc/utmp and /usr/adm/wtmp
•/

struct utmp {
char
char
long

ut_line[8];
ut_name[8];

/* tty name •/
/•user id•/
/•time on•/ ut_time;

};

Definitions (acctdef.h):

/•
• defines, typedefs, etc. used by acct programs

*
• acct only typedefs

*/
typedef unsigned short uid_t;

#define LSZ 8
#define NSZ 8
#define P 0
#define NP l

/*

/* sizeof line name •/
/• sizeof login name•/
/• prime time •/
/* nonprime time •/

• limits which may have to be increased if systems get larger
•/
#define SSIZE 1000 /• max number of sessions in 1 acct run •/

/• max number of line names in I acct run •/

UNIX Accounting System

#define TSIZE 100
#define USIZE 500 /• max number of distinct login names in 1 acct run •/

#define EQN(sl, s2)
#define CPYN(sl, s2)

#define SECS(tics)
#define MINS(secs)
#define MINT(tics)
#ifdef pdpl I
#define KCORE(clicks)
#endif
#ifdef vax
#define KCORE(clicks)
#endif
#define SECSINDAY

(strncmp(sl, s2, sizeof(sl)) ==-= 0)
strncpy(sl, s2, sizeof(sl))

((double) tics)/60.
((double) secs)/60.
((double) tics)/3600.

((double) clicks/16)

((double) clicks/2)

86400L

UNIX Accounting System

Format of pacct files (acct.~):

/•
* Accounting structures

•/
typedef ushort comp_t; /* "floating point" •/

/* 13-bit fraction, 3-bit exponent •/

struct acct
{

} ;

char ac_ftag;
char ac_stat;
ushort ac_uid;
ushort ac_gid;
dev _t ac_tty;
time_t ac_btime;
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t ac_io;
comp_t ac_rw;
char ac_comm[8];

/• Accounting flag •/
/* Exit status •/
/• Accounting user ID •/
/* Accounting group ID •/
/*control typewriter•/
/• Beginning time •/
/* acctng user time in clock ticks •/
/* acctng system time in clock ticks •/
/• acctng elapsed time in clock ticks •/
/* memory usage •/
/* chars transferred •/
/• blocks read or written •/
/* command name •/

extern struct acct acctbuf;
extern struct inode •acctp; /* inode of accounting file•/

#defineAFORK
#defineASU
defineACCTF

01
02
0300

/• has executed fork, but no exec •/
/• used super-user privileges •/
/* record type: 00 = acct •/

Format of tacct files (tacct.b):

I•
* total accounting (for acct period), also for day

•/
struct tacct

};

uid_t
char
float
float
float
float
long
unsigned short
unsigned short
unsigned short

ta_uid;
ta_name[8];
ta_cpu[2];
ta_kcore[2];
ta_con[2];
ta_ du;
ta_pc;
ta_sc;
ta_dc;
ta_fee;

/• userid •/
/* login name •/
/• cum. cpu time, p/np (mins) •/
/• cum kcore-minutes, p/np •/
/* cum. connect time, p/np, mins •/
/• cum. disk usage •/
/* count of processes •/
/* count of login sessions •/
/• count of disk samples •/
/* fee for special services •/

13

14

Format of ctmp ftle (ctmp.b):

/•
* connect time record (various intermediate files)
•/

struct ctmp {

} ;

dev_t
uid_t
char
long

ct_tty;
ct_uid;
ct_name[8];
ct_con[2];

time_t ct_start;

/* major minor •/
/• userid */
/* login name •/
/* connect time (p/np) secs */
/• session start time •/

UNIX Accounting System

UNIX Accounting System 15

Attachment 3

Jun 8 04;14 1979 DAILY REPORT FOR pwb& Page I

from Thu Jun 1 06;00;48 1979
to Fri Jun 8 04;00;28 I 979
2 shutdown
2 pwb&

TOTAL DURATION IS 1320 MINUTES
LINE MINUTES PERCENT I SRi>.'!i I ON I OFF
tty04 479 36 9 9 30
tty47 341 26 4 4 33
tty44 298 23 3 3 29
tty46 336 25 9 9 33
console 1100 83 14 14 21
ttyOS 448 34 3 3 22
tty06 439 33 9 9 31
tty07 421 32 6 6 24
tty42 S3 4 s s 20
tty09 38S 29 11 11 33
tty JO 336 25 10 10 31
tty08 464 35 2 2 19
tty26 544 41 6 6 24
ttyl2 252 19 5 5 25
ttyl3 258 20 3 3 21
ttyl4 1S6 12 6 6 26
ttyl7 145 II I I 16
tty18 39 3 s 5 24
tty IS 228 17 s s 2S
lly25 704 53 6 6 25
tty21 0 0 0 0 16
ttyl9 10 1 I I 17
tty20 25 2 2 2 18
tty22 0 0 0 0 IS
tty23 0 0 0 0 IS
tty24 0 0 0 0 16
tty27 481 36 3 3 20
tty28 426 32 s s 24
tty29 302 23 6 6 25
tty30 251 20 II 11 28
tty40 380 29 5 5 21
tty41 343 26 3 3 21
tty4S 0 0 0 0 15
tty II 365 28 7 7 2S
tty43 3 0 I I 17
tty16 213 16 3 3 20
tty31 250 19 4 4 18
tty02 62 s I I 3
lOTAIB 10544 174 174 846

16 UNIX Accounting System

Jun 8 04:14 1979 DAILY USAGE REPORT FOR pwba Page I

LOGIN CPU (MINS) KCORE-MINS CONNECT (MINS) DISK I OF I OF I DISK FEE
UID NAME PRIME NPRIME PRIME NPRIME PRIME NPRIME BLOCKS PROCS SES'> SAMPLES
0 TOTAL 388 103 12414 2934 9251 1056 0 16164 174 0 0
0 root 47 41 1003 924 67 30 0 2360 8 0 0
4 adm 7 19 48 652 0 0 0 842 0 0 0
19 games 0 0 4 0 0 0 0 28 0 0 0
22 mhb 0 0 I I I I 0 14 2 0 0
37 abs 0 0 4 0 0 0 0 3 0 0 0
37 absjrk 14 0 284 0 423 0 0 1588 4 0 0
68 rjc 3 3 24 21 0 0 0 179 0 0 0
71 ? 0 0 0 0 0 0 0 12 0 0 0
150 jac 7 0 156 5 281 2 0 510 13 0 0
173 ? 0 0 0 0 0 0 0 16 0 0 0
180 ? 0 0 0 0 0 0 0 4 0 0 0
185 ? 0 0 0 0 0 0 0 2 0 0 0
217 denise 0 0 2 0 31 0 0 32 3 0 0
217 kof 0 0 2 0 I 0 0 7 I 0 0
219 ? 0 0 0 0 0 0 0 12 0 0 0
1001 hsm 5 0 189 0 179 0 0 92 2 0 0
2001 systst 0 I 5 28 476 64 0 99 5 0 0
2002 mfp I 0 7 5 270 62 0 93 3 0 0
2003 als I 0 23 0 100 0 0 99 3 0 0
2005 cric 0 0 3 0 13 0 0 21 I 0 0
2006 hoot 0 0 2 0 16 0 0 8 I 0 0
2009 agp 47 0 2040 0 444 0 0 492 2 0 0
2009 fsrepl 2 0 60 0 36 0 0 95 I 0 0
2011 pdw 0 0 I 0 4 0 0 II I 0 0
2012 pwbst 0 0 I 0 28 0 0 9 I 0 0
2014 ca th 0 0 I 0 I 0 0 7 I 0 0
2022 rem 32 I 1227 91 516 4 0 226 3 0 0
2025 lid 55 23 2176 862 336 98 0 1SO 7 0 0
2027 krb 14 2 365 51 547 24 0 372 8 0 0
2028 text 0 0 I 0 3 0 0 13 I 0 0
2030 arf 8 0 288 0 317 0 0 315 3 0 0
2031 dp 12 0 480 3 459 6 0 220 6 0 0
2032 graf 2 0 49 0 23 0 0 118 I 0 0
2033 ecp 3 0 74 0 355 0 0 115 4 0 0
2040 leap 15 0 308 0 513 I 0 505 2 0 0
2041 dan 3 0 93 3 149 2 0 117 8 0 0
2051 ds52 2 2 19 40 375 601 0 611 8 0 0
2055 nuucp 0 0 15 9 17 I 0 10 3 0 0
2057 cch I 0 28 0 63 0 0 68 2 0 0
2061 jcw 4 3 99 70 37 34 0 869 4 0 0
2064 mjr 18 0 443 0 176 0 0 2065 3 0 0
2065 rrr 0 0 6 0 7 0 0 23 I 0 0
2068 tic 0 0 7 0 10 0 0 29 I 0 0
2075 herb 29 0 1178 I 384 2 0 249 5 0 0
2086 paul I 0 14 0 152 0 0 28 I 0 0
2087 pris 0 0 0 10 0 2 0 13 I 0 0
2111 pwbc:s 2 3 60 85 64 86 0 185 4 0 0
2116 rbj I 0 16 0 408 0 0 222 I 0 0
2121 teach 0 0 3 0 53 0 0 50 2 0 0
2123 msb 0 0 3 0 5 0 0 24 I 0 0
2124 rnt 2 0 42 0 66 0 0 260 3 0 0
2126 dal 0 0 5 0 121 0 0 17 I 0 0
2127 m2 15 0 495 II 390 2 0 602 IO 0 0

Jun 8 04:14 1979 DAILY USAGE REPORT FOR pwba Page 2

2128 jel 14 0 492 9 422 14 0 523 8 0 0
2130 sl 0 0 5 I 16 0 0 42 2 0 0
2130 s3 0 0 0 0 0 2 0 9 I 0 0
2135 jfn 0 I 0 12 0 II 0 33 2 0 0
2136 m2c:lan 0 0 5 0 2 0 0 18 I 0 0
2140 star 4 0 213 12 90 3 0 170 7 0 0
2141 reg 5 0 245 25 470 4 0 181 I 0 0
2199 lie 0 0 I 0 10 0 0 7 I 0 0
2999 stoek 0 0 I 0 I 0 0 17 1 0 0
3001 whm s 0 93 0 253 0 0 414 3 0 0
3332 vjf· 0 0 4 0 8 0 0 39 I 0 0

UNIX Accounting System 17

Jun 8 04:07 1979 DAILY COMMAND SUMMARY Page I

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS
NAME CMOS KCOREMIN CPU· MIN REAL· MIN SIZE·K CPU-MIN FACTOR TRNSFD READ

TOTAIS 16164 15332.89 490.72 37463.98 31.25 0.03 0.01 322183844 1097670

nroff 119 3958.68 93.21 569.83 42.47 0.78 0.16 67070052 130284
troff 26 2483.38 51.63 342.70 48.10 1.99 0.15 37869304 48989
xnroff 20 732.03 16.74 111.05 43.73 0.84 O.IS 13885248 226S9
a.out 31 623.53 10.52 142.77 59.26 0.34 O.o? 382435 2758
egrep 185 574.83 13.96 34.53 41.18 0.08 0.40 170625 8249
m21ind 232 555.79 9.93 155.11 55.96 0.04 0.06 6155937 30994
cl 150 519.04 13.57 48.89 38.25 0.09 0.28 4285724 16032
cO 165 413.10 9.19 35.16 44.93 0.06 0.26 3827309 12170
m2edit 33 340.92 4.63 148.27 73.62 0.14 0.03 1074914 14492
Id 87 317.38 7.94 38.48 39.97 0.09 0.21 17640896 45797
aectcms 17 294.75 6.49 14.15 45.41 0.38 0.46 2525427 5515
c2 112 289.69 9.13 34.61 31.72 0.08 0.26 3667050 9681
sh 1834 276.98 26.77 20444.24 I0.3S 0.01 0.00 3496613 71979
eel 524 253.13 14.46 2029.89 17.50 0.03 0.01 18058108 56039
acctprcl 3 231.28 6.67 19.45 34.67 2.22 0.34 2577344 2926
du 145 219.35 19.91 39.08 11.02 0.14 0.51 716389 23695
di ff 49 175.53 6.04 25.78 29.05 0.12 0.23 3740887 11351
get 151 152.96 4.28 25.23 35.74 0.03 0.17 3634042 24917
adb 22 148.10 4.07 202.35 36.37 0.19 0.02 2313718 9813
tbl 24 143.43 2.44 210.65 58.71 0.10 0.01 1536210 3433
dd 9 139.24 JO.IS SI.OS 13.72 1.13 0.20 26006848 294
as2 155 129.33 9.82 42.2S 13.17 0.06 0.23 10500835 30165
sed 597 llS.46 4.19 36.23 27.57 0.01 0.12 783825 24497
ps SI 109.69 5.92 41.55 18.S4 0.12 0.14 2278056 8310
make 89 102.94 2.87 203.32 35.81 0.03 0.01 1018461 8664
delta 25 90.23 2.27 17.80 39.70 0.09 0.13 2909269 9321
cpp 172 89.37 2.69 11.32 33.19 0.02 0.24 3519054 12155
fsck 16 86.94 1.30 10.57 66.85 0.08 0.12 27671849 2927
find 52 86.64 5.05 63.87 17.15 0.10 0.08 565125 11161
ls 706 82.47 5.78 62.85 14.26 0.01 0.09 1811882 29659
xck 2 79.44 10.49 47.89 7.57 5.25 0.22 198016 21995
awk 22 78.83 1.37 5.24 57.72 0.06 0.26 355466 3769
uucico 60 75.55 1.42 632.50 53.27 0.02 0.00 398693 6377
acctcom 9 75.21 2.81 11.49 26.75 0.31 0.24 1283776 3771
echo 2814 66.10 7.08 91.80 9.33 0.00 0.08 168651 24253
ged 3 57.27 0.82 7.51 70.16 0.17 0.11 51832 426
de 284 56.92 2.42 9.43 23.48 0.01 0.26 15283 20329
450 7 48.03 6.80 84.45 7.06 0.97 0.08 279451 1700
cat 749 45.49 5.69 478.54 8.00 0.01 0.01 8959500 27903
ntd 6 41.52 I.SS 7.SS 26.87 0.26 0.20 59888 478
mail 202 39.95 2.0S 532.98 19.53 0.01 0.00 427217 14377
acctprc2 3 38.95 1.43 19.45 27.24 0.48 0.07 587336 87
sort 94 38.72 1.09 9.73 35.41 0.01 0.11 375876 4433
pr 104 34.89 2.47 214.50 14.10 0.02 0.01 1060989 6572
baspmain 7 33.20 5.28 1244.54 6.29 0.75 0.00 63064 36635
ex 17 31.69 0.62 41.04 50.91 0.04 0.02 514624 3593
grcp 213 28.73 2.98 21.01 9.64 0.01 0.14 2100229 14297

18 UNIX Accounting System

Jun 8 04:07 1979 MONTIILY TOTAL COMMAND SUMMARY Page I

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOO CHARS BLOCKS
NAME CMOS KCOREMIN CPU·MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

10TAl.S SS3286 297698.78 10916.09 742924.94 27.27 0.02 0.01 820472S46 262S3312

nroff 1687 44681.55 995.92 5737.25 44.86 0.59 0.17 613403153 1089180
troff 1351 25692.15 583.69 4356.05 44.02 0.43 0.13 413163589 646243
spcllpro 6466 17298.41 294.16 1893.79 58.81 o.os 0.16 334572640 853901
m2cdit 654 13526.69 164.62 4238.S8 82.17 O.lS 0.04 54940426 427924
llnroff 397 10408.44 203.72 1496.32 SJ.09 0.51 0.14 215221419 301967
sort 7983 9292.34 226.01 2298.05 41.11 0.03 0.10 80108304 355963
cl 6139 8949.86 236.45 861.09 37.85 0.04 0.27 79897995 489661
Id 3244 8852.96 223.19 1128.09 39.67 0.07 0.20 493701995 1278119
acd 53134 8126.71 313.85 2241.78 25.89 0.01 0.14 23035033 1692990
m2fiad 2982 7984.45 140.18 1698.25 56.96 0.05 0.08 111330040 449604
cO 6S86 7866.42 185.16 725.47 42.49 0.03 0.26 72595655 389426
eel 20083 7822.78 425.90 41898.18 18.37 0.02 0.01 483425634 1541326
tbl 660 7766.69 113.95 2458.55 68.16 0.17 0.05 50760094 83887
sh 40476 7499.67 63S.OO 383786.53 11.81 0.02 0.00 70525236 1421194
du 1941 6730.54 SSJ.04 1128.44 12.17 0.28 0.49 20848359 628324
a.out 1483 5658.46 126.87 1868.87 44.60 0.09 0.o7 16158675 80260
egrep 4801 5573.51 139.86 460.25 39.85 0.03 0.30 6823696 237298
!inti 793 5325.66 71.23 425.67 74.76 0.09 0.17 9599001 131592
eat 21170 4657.53 236.59 4354.24 19.69 0.01 0.05 239180412 1023965
acctprc;l 42 3837.84 110.88 291.34 34.61 2.64 0.38 43954136 61123
c:2 4067 3807.25 144.86 477.28 26.28 0.04 0.30 57519376 213521
grcp 21212 3204.86 300.44 2727.87 10.67 0.01 0.11 139340583 899415
c:pp 7469 3060.72 94.12 647.79 32.52 0.01 0.15 91471956 459882
gctty 35556 2948.71 853.53 101107.45 3.45 0.02 0.01 34704751 263866
m2cditD 83 2707.27 28.79 361.84 94.02 0.15 0.08 2852202 33949
u2 6454 2698.74 218.96 910.59 12.33 0.03 0.24 213336016 705690
make 1858 2449.10 64.69 4388.86 37.8.6 0.03 0.01 24116259 17SS44
ps 1034 2384.14 128.29 1207.87 18.58 0.12 0.11 54873792 204172
acetcms 294 2288.36 51.99 116.06 44.01 0.18 0.45 36124940 10523
uucico BIS 2226.75 40.42 11729.01 SS.08 0.05 0.00 11086105 162558
Is 18876 2170.01 152.76 1538.09 14.20 0.01 0.10 32418106 691028
find 1705 2114.18 114.35 920.75 18.49 0.07 0.12 94631199 338600
gcd 72 2026.43 28.54 317.21 71.01 0.40 0.09 1648636 10374
e<:bo 84710 2018.23 190.14 1138.49 10.61 0.00 0.17 2926992 649200
c:pio 127 1956.60 77.03 391.45 25.40 0.61 0.20 190822346 296302
maze 8 1620.42 44.80 128.25 36.17 5.60 0.35 120399 212
mail 4735 1474.38 76.92 14262.62 19.17 O.Q2 0.01 25719618 463748
get 1085 1358.03 37.59 234.97 36.13 0-03 0.16 31540008 178623
acctcom 165 1253.99 47.06 339.34 26.64 0.29 0.14 57405662 68949
yacc 58 1187.17 15.36 36.90 77.31 0.26 0.42 4096070 12093
col 638 1064.40 49.01 2199.00 21.72 0.08 0.02 2383S39S 16903
line 27184 1036.03 93.14 1941.33 11.12 0.00 0.05 925447 296142
nroffl.2 29 909.83 17.71 56.97 51.38 0.61 0.31 11459920 18802
delta 264 904.54 23.07 254.06 39.21 0.09 0.09 24219141 87164
td 175 886.19 25.74 IS9.73 34.43 0.15 0.16 1990177 15792
ar 1434 872.65 61.87 309.07 14.11 0.04 0.20 189858731 428871
m2findD 144 864.29 12.54 344.13 68.94 0.09 0.04 1184947 28S76
rm IS319 857.97 8S.6S 754.20 10.02 0.01 0.11 453479 433903
acctdusg I 819.77 39.30 170.10 20.86 39.JO 0.23 1812480: 39744
n1pu11 !SS 779.13 7.97 29.09 97.70 0.05 0.27 990027 34702
di ff 786 767.31 32.77 260.27 23.41 0.04 0.13 22940094 97214

UNIX Accounting System

Jun 8 04:07 1979 LAST LOGIN Page I

00-00-00 dii
00-00-00 absadm
00-00-00 absafr
00-00-00 abscas
00-00-00 abs jcw
00-00-00 abspvg
00-00-00 abstbm
00-00-00 adm94
00-00-00 apb
00-00-00 an:bive
00-00-00 asc
00-00-00 badt
00-00-00 btb
00-00-00 bvl
00-00-00 bwk
00-00-00 chicken
00-00-00 class
00-00-00 cleary
00-00-00 cs
00-00-00 dbs
00-00-00 deby
00-00-00 dee
00-00-00 demo
00-00-00 dlt
00-00-00 dmr
00-00-00 docs
00-00-00 dug
00-00-00 cllic
00-00-00 fsrcp2
00-00-00 ps
00-00-00 graphics
00-00-00 hjg
00-00-00 bib
<J0.00-00 inst
00-00-00 jfm
00-00-00 jrh
00-00-00 ken
00-00-00 lco
00-00-00 learn
00-00-00 lppdw
00-00-00 lrbb
00-00-00 maj
00-00-00 mar
00-00-00 mash
00-00-00 mcq
00-00-00 mili
00-00-00 mlc
00-00-00 mmr
00-00-00 mpf
00-00-00 plan
()().()().00 plum
00-00-00 pvg
00-00-00 rakesh
00-00-00 rfa
00-00-00 rlc
00-00-00 rrc

January 1981

00-00-00 rudd
00-00-00 s 10
00-00-00 s2
00-00-00 14
00-00-00 sS
00-00-00 s6
00-00-00 s8
00-00-00 19
00-00-00 1cbsa
00-00-00 1jm
00-00-00 1rb
00-00-00 1y1
00-00-00 tgp
00-00-00 tld
00-00-00 ussc
00-00-00 uuc:pa
00-00-00 uvac
00-00-00 vav
00-00-00 wdr
00-00-00 willa
00-00-00 zooma ·
79-06-04 dws
79-06-04 cwb
79-06-04 kas
79-06-04 aatz
79-06-04 uucp
79-06-05 bcm
79-06-05 lprem
79-06-05 17
79-06-05 llQC:5

79-06-06 CODV

79-06-06 dc:k
79-06-06 dmt
79--06-06 cmp
79-06-06 pah
79-06-06 sync
79-06-06 tad
79-06-07 ams
79-06-07 bin
79-06-07 dgd
79-06-07 haight
79-06-07 basp
79·06-07 jp
79·06-07 leb
79-06-07 ljk
79-06-07 mcp
79·06-07 nq
79-06-07 nws
79-06-07 qtroll'
79-06-07 tbm
79-06-07 uain
79-06-07 whr
79-06-07 wwc
79-06-08 ?
79·06·08 abs
79·06·08 absjrk

79-06-08 adm
79·06·08 agp
79·06-08 als
79-06-08 arf
79-06-08 c:ath
79-06-08 dal
79-06-08 dan
79-06-08 dcnisc
79-06-08 dp
79--06-08 ds52
79--06-08 cc:h
79-06-08 cc:p
79--06-08 cric
79--06-08 ftd
79-06-08 farepl
79-06-08 pmes
79--06-08 graf
79-06-08 herb
79-06-08 hoot
79-06-08 hsm
79-06-08 jac
79-06-08 jcw
79-06-08 jct
79-06-08 jfn
79-06-08 kof
79-06-08 krb
79-06-08 leap
79-06-08 lie
79--06-08 m2
79-06-08 m2da11
79-06-08 mfp
79·06·08 mhb
79-06-08 mjr
79-06-08 msb
79-06-08 nuucp
79-06-08 paul
79-06-08 pdw
79-06-08 pris
79-06-08 pwbc:s
79-06-08 pwbst
79-06-08 rbj
79-06-08 reg
79-06-08 rem
79-06-08 rje
79-06-08 .mt
79-06-08 root
79-06-08 m
79-06-08 sl
79-06-08 sl
79-06-08 star
79-06-08 stock
79--06-08 systst
79--06-08 teach
79-06-08 text
79-06-08 ltc
79-06-08 vjf
79-06-08 whm

19

The UNIX System Activity Package

Tsyh-Wen Pao

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX

F.2.2

This memo describes the design and implementation of the UNIXt System
Activity Package. This package reports UNIX system-wide statistics including
CPU utilization, disk and tape 1/0 activities, terminal device activity, buffer usage,
system calls, process switching and swapping, file-access activity, queue activity,
and message and semaphore activities.

It provides four commands to generate various types of reports: sar, sag, sadp and
limex commands. Procedures for automatically generating daily reports are also
included.

1. INTRODUCTION

The System Activity Package reports UNIX system-wide measurements including CPU utiliza­
tion, terminal device activity, disk and tape 1/0 activities, buffer usage, system calls, system
switching and swapping, file-access activity, queue activity, and message and semaphore activi­
ties. There are five functions:

- sar command: allows a user to generate system activity reports in real time and to save sys­
tem activities in a file for later usage.

- sag command: displays system activity in a graphical form.

- sadp command: samples disk activity once every second during a specified time interval and
reports disk usage and seek distance in either tabular or histogram form.

- timex command: a modified time(I) command, which times a command and also reports
concurrent system activity.

- system activity daily reports: procedures are provided for sampling and saving system activi-
ties in a data file periodically and for generating the daily report from the data file.

The system activity information reported by this package is derived from a set of system
counters located in the operation system kernel. These system counters are described in Sec­
tion 2. Section 3 describes the commands provided by this package. Section 4 gives the pro­
cedure for generating daily reports. A description for each of the files used by the system
activity package can be found in Attachment 1.

2. SYSTEM ACTIVITY COUNTERS

The UNIX operating system manages a number of counters that record various activities and
provide the basis for the system activity reporting system. The data structure for most of these

·counters is defined in the sysinfo structure (see Attachment 2) in /usr/include/sys/sysinfo.h.
The system table overflow counters are kept in the _syserr structure. The device activity
counters are extracted from the device status tables. Jn this version, the 1/0 activity of the fol­
lowing devices is recorded: RP06, RM05, RS04, RFll, RK05, RP03, RL02, TM03 and TMI I.

t UNIX is a trademark of Bell Laboratories.

2 UNIX System Activity Package

In the following paragraphs, the system activity counters that are sampled by the system activity
package are described.

- cpu time counters: There are four time counters that may be incremented at each clock
interrupt 60 times per second. Exactly one of the cpu[] counters is incremented on each
interrupt, according to the mode the CPU is in at the interrupt; idle, user, kernal, and wait
for 1/0 completion.

- Lread and lwrite count logical reads and logical writes, that is, read and write requests
issued by the system to block devices.

- Bread and bwrite count blocks transferred between the system buffers and the block dev­
ices. These actual I/Os are triggered by logical I/Os that cannot be satisfied by the current
contents of the buffers. The ratio of block 1/0 to logical 1/0 is a common measure of the
effectiveness of the system buffering.

- Pbread and pbwrite count read and write requests issued by the system to raw devices.

- The swapin and swapout counters are incremented for each system request initiating a
transfer from or to the swap device .. More than one request is usually involved in bringing a
process into memory, or out, because text and data are handled separately. Commonly used
programs are kept on the swap device and are swapped in rather than loaded from the file
system. The swapin counter reflects these initial loading operations as well as resumptions
of activity, while the swapout counter reveals the level of actual "swapping." The amount
of data transferred between the swap device and memory are measured in blocks and
counted by bswapin and bswapout.

- Counters syscall and pswitcb are related to the management of multiprogramming. Syscall
is incremented every time a system call is invoked. The numbers of invocations of system
calls: read, write,fork and exec, are kept in counters sysread, syswrite, sysfork and sysexec.

Pswitch counts the times the switcher was invoked, which occurs when:

a. a system call resulted in a road block,
b. an interrupt occurred resulting in awakening a higher priority process, or
c. 1 second clock interrupt.

- Counters iget, namei, and dirblk apply to file-access operations. lget and namei, in particu­
lar, are the names of UNIX operating system routines; the counters record the number of
times that the respective routines are called. Namei is the routine that performs file system
path searches. It searches the various directory files to get the associated i-numbe~ of a file
corresponding to a special path. lget is a routine called to locate the inode entry of a file (i­
number). It first searches the in-core inode table. If the inode entry is not in the table,
routine iget will get the inode from the file system where the file resides and make an entry
in the in-core inode table for the file. (get returns a pointer to this entry. Namei calls iget,
but other file access routines also call lget. Therefore, counter iget is always greater than
counter namei.

Counter dirblk records the number of directory block reads issued by the system. It is
noted that the directory blocks read divided by the number of namei calls estintates the
average path length of files.

- Runque, runocc, swpque and swpocc record queue activities. They are implemented in the
clock.c routine. At every one second interval, the clock routine examines the process table
to see whether any processes are in core and in ready state. If so, the counter runocc is
incremented and the number of such processes are added to counter runque. While exa­
mining the process table, the clock routine also checks whether any processes in the swap
device are in ready state. The counter swpocc is incremented if the swap queue is occupied
and the number of processes in swap queue is added to counter swpque.

UNIX System Activity Package 3

- Readch and writecb re.cord the total number of bytes (characters) transferred by the read
and write system calls respectively.

- There are six counters monitoring terminal device activities. Rcvint, xmtint and mdmint
are counters measuring hardware interrupt occurrences for receiver, transmitter and modem
individually. Rawch, canch and outch count number of characters in the raw queue, canon­
ical queue and output queue. Characters generated by devices operating in the cooked
mode, such as terminals, are counted in both rawch and (as edited) in canch, but characters
from raw devices, such as communication processors, are counted only in rawcb.

- Counters msg and sema record message sending and receiving activities and semaphore
operations, respectively (refer to manual entries msg(2) and sema (2)).

- As to the 1/0 activity for a disk or tape device, four counters are kept for each disk or tape
drive in the device status table. Counter io_ops is incremented when an 1/0 operation has
occurred on the device. It includes block 1/0, swap 1/0 and physical 1/0. lo_bcnt counts
the amount of data transferred between the device and memory in blocks. Io_act and
io_resp measure the active time and response time of a device in time ticks. The device
active time includes the device seeking, rotating and data transferring times, while the
response time of an 1/0 operation is from the time the 1/0 request is queued to the device,
to the time when the 1/0 completes.

- Counters inodeovf, fileovf, textovf and procovf are extracted from _syserr structure. When
an overflow occurs in any of the inode, file, text and process tables, the corresponding
overflow counter is incremented.

3. SYSTEM ACTIVITY COMMANDS

The System Activity Package provides three commands for generating various system activity
reports and one command for profiling disk activities. These tools facilitate observation of sys­
tem activity:

- during a controlled stand alone test of a large system,

- during an uncontrolled run of a prog~am to observe the operating environment, and

- during normal production operation.

Commands sar and sag permit the user to specify a sampling interval and number of intervals
for examining system activity, and then to display the observed level of activity in tabular or
graphical form. The timex command reports the amount of system activity that occurred during
the precise period of execution of a timed command. The sadp command allows the user to
establish a sampling period during which access location and seek distance on specified disks are
recorded and later displayed as a tabular summary or as a histogram.

- Sar command:
It can be used in two ways:

• When the frequency arguments t and n are specified, it invokes the data collection pro­
gram sadc to sample the system activity counters in the operating system every t seconds
for n intervals and generates system activity reports in real time. Generally it is desirable
to include the option to save the sampled data in a file for later examination.

The format of the data file is shown in sar(8). In addition to the system counters, a
time stamp is also included. It gives the time at which the sample was taken.

• If no frequency arguments are supplied, it generates system activity reports for a
specified time interval from an existing data file that was created by sar at an earlier time.

A convenient usage is to run sar as a background process, saving its samples in a temporary
file, but sending its standard output to /dev /null. Then an experiment is conducted, after

4 UNIX System Activity Package

which the system activity is extracted from the temporary file. The sar(l) manual entry
describes the usage and lists various types of reports. Attachment 3 gives formulae for
deriving each reported item.

- Sag command:
Sag displays system activity data graphically. It relies on the data file produced by a prior
run of sar, after which any column of data, or the combination of columns of data of the sar
report can be plotted. A fairly simple but powerful command syntax allows the specification
of cross plots or time plots. Data items are selected using the sar column header names.
The sag(I G) manual entry describes its options and usage.

The system activity graphical program invokes graph and tplot commands to have the graphi­
cal output displayed on any of the terminal types supported by tplot.

- Timex command:
The timex command is an extension of the time(I) command. In addition to giving the time
information, it also prints a system activity report derived from the system counters.

The manual entry timex(l) explains its usage. It should be emphasized that the user and
sys times reported in the second and third lines are for the measured process itself including
all its children, while the remaining data (including the cpu user % and cpu sys %) are for
the entire system.

While the normal use of timex will probably be to measure a single commar..d, multiple com­
mands can also be timed: either by combining them in an executable file and timing it, or
more concisely, by typing:

timex sh -c "cmdl; cmd2; ••• ;"

This establishes the necessary parent-child relationships to correctly extract the user and sys­
tem times consumed by cnull, cmd2, ..• (and the shell).

- Sadp command:
Sadp is a user level program that can be invoked independently by any user. It requires no
storage or extra code in the operating system and allows the user to specify which disks are
to be monitored. The program is reawakened every second, reads system tables from
/dev /kmem, and extracts the required information. Because of the one second sampling,
only a small fraction of disk requests are observed, however, comparative studies have
shown that the statistical determination of disk locality is adequate when sufficient samples
are collected.

In the operating system, there is an iobuf for each disk drive. It contains two pointers which
are head and tail of the 1/0 active queue for the device. The actual requests in the queue
may be found in three buff er header pools: system buff er headers for block 1/0 reguests,
physical buffer headers for physical 1/0 reguests and swap buffer headers for swap I/O.
Each buffer header has a forward pointer which points to the next request in the 1/0 active
queue and a backward pointer which points to the previous request.

Sadp snapshots the iobuf of the monitored device and the three buffer header pools once
every second during the monitoring period. It then traces the requests in the 1/0 queue and
records the disk access location and seek distance in buckets of 8 cylinder increments. At
the end of monitoring period, it prints out the sampled data. The output of sadp can be
used to balance load among disk drives and to rearrange the layout of a particular disk pack.
The usage of this command is described in manual entry sadp(l).

4. DAILY REPORT GENERATION

The previous section described the commands available to users to initiate activity observations.
It is probably desirable for each installation to routinely monitor and record system activity in a

UNIX System Activity Package 5

standard way for historical analysis. This section describes the steps that a system administrator
may follow to automatically produce a standard daily_ report of system activity.

- Facilities:

• sadc - the executable module of sadc.c (see Attachment 1) which reads system
counters from /dev /k mem and records them to a file. In addition to the file argument,
two frequency arguments are usually specified to indicate the sampling interval and
number of samples to be taken. In case no frequency arguments are given, it writes a
dummy record in the file to indicate a system restart.

• sal - the shell procedure that invokes sadc to write system counters in the daily data
file /usr/adm/sadd where dd represents the day of the month. It may be invoked with
sampling interval and iterations as arguments.

• sa2 - the shell procedure that invokes the sar command to generate daily report
/usr/adm/sa/sardd from the daily data file /usr/adm/sa/sadd. It also removes daily
data files and report files when they are over 7 days old. The starting and ending times
and all report options of sar are applicable to sa2.

- Suggested operational setup:
It is suggested that the cron(lM) control the normal data collection and report generation
operations. For example, the sample entries in /usr/lib/crontab:

0 * * * 0,6 su sys -c "/usr/lib/sa/sal"
0 18-7 * • 1-5 su sys -c "/usr/lib/sa/sal"
0 8-17 * * 1-5 su sys -c "/usr/lib/sa/sal 1200 3"

would cause the data collection program sadc to be invoked every hour on the hour. More­
over, depending on the arguments presented, it writes data to the data file once or 3 times
at every 20 minutes. Therefore, under the control of cron(lM), the data file is written
every 20 minutes between 8:00 and 18:00 on weekdays and hourly at other times.

Note that data samples are taken more frequently during prime time on weekdays to make
them available for a finer and more detailed graphical display. It is suggested that sal be
invoked hourly rather than invoking it once every day, this ensures that no matter when the
system crashes, the data will be collected within an hour after the system is restarted.

Because system activity counters restart from zero when the system is restarted, a special
record is written on the data file to reflect this situation. This process is accomplished by
invoking within /etc/re when going to multi-user state:

su adm -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'"

Cron(lM) also controls the invocation of sar to generate the daily report via shell procedure
sa2. One may choose the time period at which the daily report is to cover and which groups
of system activity are to be reported. For instance, if:

0 20 • • 1-5 su sys -c "/usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd"

is an entry in /usr/lib/crontab, cron will execute the sar command to generate daily reports
from the daily data file at 20:00 on weekdays. The daily report reports the CPU utilization,
terminal device activity, buffer usage and device activity every hour from 8:00 to 18:00.

In case of a shortage of the disk space or for any other reason, these data files and report
files can be removed by the super-user. The manual entry sar(8) describes the daily report
generation procedure.

6 UNIX System Activity Package

5. ACKNOWLEDGEMENTS

L. A. Wehr is responsible for the set of system activity counters incorporated in the UNIX
Time-Sharing System. The author wishes to acknowledge his discussions and help in providing
a test environment during the development of the sar command. The output format of the
sadp command is adopted from iostat of CB/UNIX. Thanks are due to T. Cook and D. DeJager
for their cooperation in making the verification of the result generated by sadp possible.
Finally, the author gratefully acknowledges D. A. DeGraafs contribution to this package and
appreciates A. Petruccelli's efforts in making this memo in its printable format.

ATTACHMENT I

The source files and shell programs of the system activity package are in directory
/usr/src/cmd/sa.

sa.h the system activity header file which defines the structure of data file and
device information for measured devices. It is included in sadc.c, sar.c and
timex.c.

sadc.c the data collection program that accesses /de" /kmem to read the system
activity counters and writes data either on standard output or on a binary
data file. It is invoked by the sar command generating a real time report. It
is also invoked indirectly by entries in /usr/lib/crontab to collect system
activity data.

sar.c the report generation program that invokes sadc to examine system activity
data and generate reports in real time, and save the data to a file for later
usage. It may also generate system activity reports from an existing data file.
It is invoked indirectly by cron to generate daily reports.

saghdr.h the header file for saga.c and sagb.c. It contains data structures and vari­
ables used by saga.c and sagb.c.

saga.c & sagb.c the graph generation program that first invokes sar to format the data of a
data file in a tabular form, and then displays the sar data in graphical form.

sa I .sh the shell procedure that invokes sadc to write data file records. It is activated
by entries in /usr/lib/crontab.

sa2.sh the shell procedure that invokes sar to generate the report. It als9 removes
the daily data files and daily report files when they are a week old. It is
activated by an entry in /usr/lib/crontab on weekdays.

timex.c the program that times a command and generates a system activity report.

sadp.c the program that samples and reports disk activities.

UNIX System Activity Package 7

ATIACHMENT 2

struct sysinfo {
time_t cpu[4];

#define CPU_IDLE 0
#define CPU_USER 1
#define CPU_KERNAL 2
I define CPU_ WAIT 3

time_t wait[3];
#define WJO 0
fl.define W~WAP 1
#define w_p10 2

long bread;
long bwrite;
long lread;
long lwrite;
long phread;
long phwrite;
long swapin;
long swapout;
long bswapin;
long bswapout;
long pswitch;
long syscall;
long sys read;
long sys write;
long sysfork;
long sysexec;
long runque;
long runocc;
long swpque;
long swpocc;
long iget;
long namei;
long dirblk;
long readch;
long writech;
long rcvint;
long xmtint;
long mdmint;
Jong rawch;
long canch;
long outch;
long msg;
long sema;

};

8 UNIX System Activity Package

ATTACHMENT 3

The derivation of the reported items of a report is given in this attachment. Each item dis­
cussed below is the data difference sampled at two distinct times t2 and ti.

- CPU utilization:

%-of-cpu-x = cpu-x / (cpu-idle + cpu-user + cpu-kernel + cpu-wait) * 100

where cpu-x is cpu-idle, cpu-user, cpu-kernel (cpu-sys) or cpu-wait.

- Cached hit ratio:

%-of-cached-1/0 = (logical-1/0 - block-1/0) / logical-1/0 * 100

where cached 1/0 is cached read or cached write.

- disk or tape 1/0 activity:

%-of-busy = 1/0-active / (t2 - tl) * 100;
avg-queue-length = 1/0-resp / 1/0-active;
avg-wait = (1/0-resp - 1/0-active) / 1/0-ops;
avg-service-time = 1/0-active / 1/0-ops.

- queue activity:

avg-x-queue-length = x-queue / x-queue-occupied-time;
%-of-x-queue-occupied-time = x-queue-occupied-time / (t2 - ti);

where x-queue is run queue or swap queue.

- The rest of system activity:

avg-rate-of-x = x / (t2 - tl)

where x is swap in/out, blks swapped in/out, terminal device activities, read/write charac­
ters, block read/write, logical read/write, process switch, system calls, read/write, fork/exec,
iget, namei, directory blocks read, disk/tape 1/0 activities, message or semaphore activities.

January 1981

'

1. INTRODUCTION

1.1 Motivation

A Stand-:-Alone Input/Output Library

S. R. Eisen

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.3.1

Most stand-alone programs that are supported under UNIXt conform to no input-output stan­
dard. They implement their own I/0 routines and their own nomenclature for accessing data
stored on I/O devices. This library was written with the objective of creating a set of functions
that would be used to simulate standard C library functions [I] for a program that is loaded
stand-alone into a Digital Equipment Corporation 11-family computer.

1.2 Environment

1.2.1 Compilation and Execution. Normally, a stand-alone program is written in C, using stan­
dard library functions found in Sections 2 and 3 of [l]. The program is compiled and the object
file is link-edited with the stand-alone library instead of the standard UNIX C library. The
resulting single object file is loaded by using either the command interpreter that is described in
Section 6.2.1 (denoted below by {6.2.l}), or any other standard UNIX bootstrap program.

1 .2.2 System Functions. All required services that are usually performed by the operating sys­
tem, such as input/output, are taken care of by the functions loaded from the stand-alone
library. Thus 1/0 drivers are included in stand-alone executables without any additional work
on the part of the user.

Functions such as fork, pipe, and exec, that would simulate system calls that make no
sense outside of an operating system environment are excluded from the stand-alone library,
even to the extent of signifying an error condition. The complete list of excluded functions
may be found in {4.3 }. Of the routines that were substituted for UNIX system calls, all take the
same arguments and return the same values as their UNIX counterparts, except as noted in
{4.1-4.2}. These functions set the external variable errno when an error occurs, so that the C
library routine perror may be used by stand-alone programs.

The user may call any global functions in the library, including those that would normally be
found in an operating system proper, but would not be available to the user in an operating sys­
tem environment. All such routines, however, have been "disguised" by prefacing their
names with the underscore character.

1 .2.3 User Interface. UNIX-like file names need not be used, although their use is encouraged.
All user functions that require file names, such as MKNOD {2.l.2}, mount {2.1.3}, and open
{2. l.4} first pass their file-name arguments through a filter that converts them to a standard
form: each element of the path name is separated by a single slash, with a leading slash used
only if the file name is non-null.

From the point of view of the user-level program, the environment that is created by the
stand-alone library is close enough to a UNIX environment that a large class of UNIX programs
may be compiled for stand-alone execution with little or no revision. Another class of programs that
includes boot programs and other programs that need to be relocated can also be written using
the stand-alone I/O library. Specific instructions for compiling and executing programs using
the library may be found in {6}.

t UNIX is a trademark of Bell Laboratories.

2 Stand-A/one 1/0 Library

2. 1/0 PHILOSOPHY

The stand-alone I/O library was designed to provide an environment that is as close to UNIX as
possible, while maintaining the generality necessary for the composition of bootstrap programs,
disk formatters, and the like. Disk I/O drivers have the capability of handling UNIX file sys­
tems, but retain the generality necessary to manipulate disks with other data on them. Because
UNIX accesses 1/0 devices through the file system, and there is no guarantee that a file system
{UNIX or otherwise) exists, access to I/O devices must be handled in a special way.

2.1 Block 1/0 Data Structures

2.1.1 The Configuration Table. All 1/0 routines operate without interrupt processing; also, the
stand-alone implementation of file descriptors differs from the UNIX implementation. The
open, close, and strategy (read and write) routines for devices therefore do not strictly resemble
the corresponding UNIX routines. The method used to access these routines, however, is very
similar; it employs a configuration table that has the form:

struct devsw {
int (•dv strategy) ();
int (•dv=open} (};
int (•dv_close) ();

} ;

The position of ·a certain device within the devsw table is the device number for that type of
device. The notion of a device number is analogous to the notion of a major number for a
UNIX device.

2.1.2 The Device Table. Each family of devices is associated with UNIX-type names by use of a
second structure:

struct dtab {

} . •

char
struct devsw
int
daddr t

•dt_name;
•dt_devp;
dt_unit;
dt_boff;

The dtab structure associates a device name with a pointer to the devsw structure for that
type of device, the unit number of the physical device, and the block offset within the unit at
which the logical device should start. The name, in fact, can be any string; by convention,
however, a UNIX-type file name, such as /dev/rkl or /dev/mt4, is used.

Entries in this table are created by using the MKNOD function. Note that although the function
of the MKNOD routine is similar to the that of the UNIX mknod routine, the arguments passed
to each routine are not at all alike. MKNOD is called using the following synopsis:

MKNOD (name, devno, unit, boff l
char •name;
int devno, unit;
daddr_t boff;

MKNOD associates name with the logical device beginning boff blocks into the given unit of
the device whose device number is devno. The value -1 is returned if an illegal argument is
passed, the dtab table is full, or the given name already exists in the table.

2.1.3 The Mount Table. For mounted file systems, there is yet another structure:

struct mtab {
char
struct dtab

} ;

•mt_name;
•mt_dp;

Stand-A/one 1/0 Library 3

The mtab structure associates a name with a pointer to the dtab structure for a device on
which a UNIX file system resides. References to the name will refer to the root file on that
device. Entries in this table are created by using the mount function. The following synopsis
applies:

mount (devname, mntname)
char •devname, •mntname;

Mount announces that a file system has _been mounted on devname, and that its mounted
name will henceforth be mn tname. Devname must be a valid entry in the d tab table, and
mn tname must not exist in the mtab table. If either of these conditions is not met, or if
there are no more empty slots in the table, mount returns the value - 1.

A mount table entry may be deleted by the umount function, whose synopsis is the same as
the corresponding UNIX routine.

2.1.4 The 1/0 Block. Each open file is associated with a numerical file descriptor. At the start
of program execution, the file descriptors numbered 0, 1 and 2 are each open for reading and
writing to the system console, and all other file descriptors are closed (not assigned). File
descriptors greater than 2 are available to be assigned to either block devices or UNIX files that
reside on mounted file systems by using the open function described below.

Each block file descriptor is associated with a structure of the following form:

struct iob {

char i_flgs;
struct in ode i ino; -time t i atime; -
time t i_mtime; -time t i ctime;

-
struct dtab •i_dp;
off t i offset;

- -
daddr t i_bn; -char •i ma;

-
int i_cc;
char i buf[512l; -} . •

The I/O block contains a data buffer and a block number counter for the device whose d tab
structure is pointed to by the .I/O block. For open UNIX files, the offset within the file and a
copy of the inode are included in the I/O block. For open block devices, the inode structure is
only partially filled in.

A file descriptor is allocated and an entry is created in the I/O block by the open function.
The synopsis of the stand-alone open function is identical with that of its UNIX counterpart.

Open searches the dtab table for the given string, and if it is not found, the mtab table is
searched for the longest path name starting at the beginning of the given string. For example,
if open is passed the argument /ab/ cd/ e f / gh, it will first look for the argument itself in
both the dtab and mt ab tables, then search for I ab/ cd/ ef in the mt ab table, then
I ab/ cd, and so on.

If the string is found in the dtab table, then the named device will be opened for the
appropriate operation. If the string or one of its substrings is found in the mtab table, the dev­
ice pointed to by the mtab table entry is searched for the remainder of the path name. If
found, the file is opened.

At present, files on mounted file systems may only be opened for reading. The reason for this
has to do with memory size requirements for a writing capability, the amount of time it would
take to implement this capability, and the danger of corrupting file systems unnecessarily. It is
likely that the capability of writing files will be included at some time in the future.

4 Stand-Alone 1/0 Library

The ere at (name, mode) function is identical to open (name, 1) . The mode argument
is ignored.

The close function deallocates the 1/0 block associated with the named file descriptor.

2.1.5 Summary. The following list contains the definitions of all of the data structures dis·
cussed in this section, as they appear in the stand-alone library source code:

struct devsw
struct dta.b
struct mtab
struct iob

devsw[];
dta.b[NDEV];

-mta.b[NMOUNT];
-iobuf(NFILES];

These structures and the corresponding table sizes are all defined in the file
/usr/include/stand.h

2.2 Reading and Writing

The read and write functions are the most primitive 1/0 routines normally available to the
user. The file descriptor argument may ref er to either the system console or a block device.

3. 1/0 DEVICES AND DRIVERS

As was mentioned earlier, file descriptors 0, I, and 2 all refer to the system console device.
The console is the only character device supported. A spectrum of block devices may be
defined in the device table by the MKNOD function.

3.1 The System Console Driver

The driver for the console terminal is a modified, scaled-down version of the UNIX tty driver.
Input lines may be up to 255 characters long and there is no read-ahead (i.e., input will not be
accepted until the program calls for it). The driver supports programmable options and erase
and kill characters. End of file may be generated in "cooked" mode by typing CTRL-D.

The st ty and gt ty functions are implemented and refer to a structure identical with that
which is used by UNIX. The only options that have any effect are RAW, CRMOD, XTABS,
ECHO, and LCASE. Initially, the erase and kill characters are the standard UNIX # and @,

respectively, and the options set are CRMOD, XTABS, and ECHO.

The is atty function returns true if the file descriptor argument is in the range 0 to 2.

If, while output is being printed on the console, the ASCII DEL character is typed, a subroutine
call to the exit function is immediately effected.

The actual input and output are performed by the functions in the following table:

System Console Driver Routines

Synopsis Descr~ion

ttrea.d (buf, n) Reads n characters from the console into the -
char *buf; area pointed to by buf.
int n;

ttwrite (buf, n) Prints n characters on the 1 console from the -
char *buf; area pointed to by.buf.
int n;

The external buffer ttstat contains the current copy of the structure referred to by stty
and gtty. Its synopsis is:

. .
include <stand.h>
struct sqttyb _ttstat;

Stand-Alone 1/0 Library 5

3.2 Block Device Drivers

Block input and output are performed in the stand-alone library in the same manner as physical
1/0 is handled under UNIX; that is, only raw devices are supported.

A particular 1/0 driver routine is looked up in the devsw table and called by one of the follow­
ing:

devopen (io)
struct iob •io;

devclose (io)
struct iob •io;

devread (io)
struct iob •io;

devwrite (iol
struct iob •io;

The external integer variable _ devcnt contains the number of devices in the devsw table.

3.2.l Disk Drivers. The stand-alone library supports the following disk devices and their
equivalents:

RP04/05/06 and RM05(gd) RPI l/RP03(rp) RKl l/RKOS(rk)

Disk device drivers can support file systems that do not start at the beginning of the physical
unit. Such file systems are defined by using the MKNOD function {2.1.2}.

The physical 1/0 operation for disks causes reads and writes to always be started at the begin­
ning of the physical block in which the offset designated in the 1/0 block {2.l.4} falls. Also, 1/0
operations that reference a disk address outside of the bounds of either a logical or physical disk
will not cause an error to occur.

The synopsis of each of the disk driver functions has the form:

_devstrategy (io, func)
struct iob •io;
int func;

where dev may be gd, rp, or rk.

3.2.2 Tape Drivers. The stand-alone library supports the following magnetic tape devices and
their equivalents:

TMl l/TUlO(tm) TU16(ht)

For both the tm and ht drivers, logical units 0 through 7 refer to four 800 bpi magnetic tape
transports. For the ht driver only, logical units 8 through 15 refer to the corresponding 1600
bpi magnetic tape transports. In each block of eight logical units, the first four units are desig­
nated normal-rewind on close, and the other four are no-rewind on close.

Lseek is ineffective for tapes. Each read or write function call reads or writes the next
record on the tape. The d t _ bof f entry in the device table is ignored for magnetic tape dev­
ices.

The synopses of the tape driver functions have the following forms:

_devopen (io)
struct iob •io;

devclose C io l
struct iob •io;

where dev may be either ht or tm.

4. NON-1/0 ROUTINES

4.1 Revisions

_•vstrategy (io, func)
struct iob •io;
int func;

Several of the system calls that are not required for 1/0, but would, however, be useful in a
stand-alone environment are included in the library. The operation of some of these functions
may differ slightly from the UNIX implementations. These functions, together with the 1/0
functions described a'bove, form a firm enough basis that the remainder of the C library may be
used without modification.

6 Stand-Alone 1/0 Library

4.1.l Stat and Fstat. The stat and fstat functions require the use of an 1/0 block. In
order to execute either one of these functions, the file on which it is operating must be open
because the information needed is copied out of the I/0 block. For f stat, the file is already
open, but when the stat function is used, first the file is opened, fstat is called, and then
the file is closed again before returning. Thus, if all I/0 blocks are occupied (the maximum
number of files are open), stat will return an error.

If the argument to stat or f stat refers to a file that resides on a mounted file system, then
the inode is copied verbatim and the routines are completely compatible with the UNIX ver­
sions. If the argument refers to a device, the buffer is filled with a reasonable approximation of
what may be expected.

4.1.2 Access. The access function also requires an open file. If the open succeeds, and
either the file is a device or the mode of the file matches the specified mode argument, the
value 0 is returned; otherwise, the value -1 is returned. In any case, the 1/0 block is freed by
closing the file before returning.

4.1.3 Time. Because the real-time clock is not supported, the best that can be done is for the
time function to return the value that was set by the last call of the stime function. If
s time has not been called, time returns the value 0.

4.1.4 Break. The brk and sbrk functions may be used as they are in UNIX. Because
memory management is not used, there is no way of detecting if the upward-expanding allo­
cated memory has collided with the downward-expanding stack. The return is therefore always
successful, even if the memory allocation request was too large.

4.1.5 Ustat. The ustat function takes as its first argument the offset of the device within the
dtab table. This value is returned by stat and fstat, when given a device argument, in
the st dev and st rdev buffer entries {4.1.l}. The stand-alone ustat returns the same
information as the UNIX version.

4.1.6 Chdir. The global character pointer _ cdir is set to the given string, which is prefixed to
all file names not beginning with a slash. The string need not be a valid directory name, so
chdir always returns successfully.

4.1.7 Lseek and Tell. There are no differences between the execution of these stand-alone
functions and the operation of the corresponding UNIX routines.

4.1.8 Exit. The functions exit and exit have the same meanings as they do in UNIX.
The exit function will attempt to return to the bootstrap program directly, and the exit
function will call the cleanup function first. The user may define his own cleanup
function or use the standard cleanup that would be loaded from the library.

4.2 Null Functions

Several functions are included in the stand-alone library that only return zero or error values.
These functions were included in the library to resolve external references in some C library
functions. The functions that return a value of 0 are:

getgid getegid getuid geteuid nice umask

The chmod function returns an error.

4.3 Deletions

The following is a complete list of those C library modules that have not been included in the
stand-alone library:

Stand-Alone 1/0 Library 7

acct.o execvp.o maus.o sema.o sync.o
alarm.o fcntl.o mktemp.o set9id.o syscall.o
cerror.o fork.o msg.o setpgrp.o system.o
chown.o fp.o oldmsg.o setuid.o tempfile.o
chroot.o getpass.o pause.o signal.o times.o
dup.o getpid.o pipe.o sleep.o ulimit.o
execl.o 9etppid.o plock.o smclose.o uname.o
execle.o ioctl.o popen.o smfree.o unlink.o
execv.o kill. 0 profil.o smget.o utime.o
execve.o link.o ptraee.o smopen.o wait.o

Several of these functions may, indeed, be faked rather than excluded; it is likely that the size
of this list will be decreased in the future.

5. UTILITY FUNCTIONS

The functions described in this section do not have equivalent functions implemented in the C
library.

S. l User Functions

The following routines are included in the stand-alone library for the convenience of the user.

5.1 .1 Getargv. The user has the option of having his stand-alone program invoked by a com­
mand interpreter program {6.2.l}, or by another standard UNIX bootstrap program. When a
stand-alone program is not invoked by the command interpreter program, there can be no argu­
ments specified on a command line and, consequently, no argc, argv, or environment are
available to be passed to the program. In this case, the start-up code loads a value of 1 into
argc, a null string into argv [0], and a pointer to a null environment list into envp.

The getargv functions allows the program to pick up arguments after execution of the main
routine has begun. The synopsis is:

9etar9v (emd, argvp, ff)
char *Cmd, *(*argvp[]);
int ff;

A prompt and the cmd argument are printed on the console and one line is read from the con­
sole. The space and tab characters are considered to be delimiters, and the single quote and
double quote characters are properly understood. The arguments are stored in argv-format,
with cmd as argv [0 l, and the value of argv itself is stored into the address pointed to by
argvp. The value of argc is returned.

Note that the area of memory used for the argv list is allocated by calling the malloc library
function. A non-zero value for ff causes getargv to call the free function for argvp
before calling malloc. The value of the ff argument would normally be zero on the first and
only the first call.

If a typing error is made as the command is being entered, and the kill character is typed with
the intention of retyping the line, there is a certain temptation to retype not only the argu­
ments, but the command, too. Caveat.

5.1.2 /nit. Before the main routine is called by the start-up code, the init function is
called. Normally, this function does some standard MKNODs and mounts: but the user can
define his own ini t, .if he does not want the standard one to be loaded. The synopsis is:

init ()

8 Stand-Alone 1/0 Library

S.2 System Functions

The following external functions form that part of the kernel of the stand-alone "system" that
were globally defined for the purpose of communication within the modules of the system.
Several may be useful to the user, but most will not be, and are included here for the sake of
completeness:

System Utility Functions

Syn~sis Descri_e_tion
_ cond (istr, ostr) Converts is tr into the form described in
char•istr, •ostr; {1.2}, prepends the string given to chdir, if

any, and places the result in the buffer pointed
to~ ostr.

inc t Returns the inode number of the proper path

-find (path, io} name pointed to by pa th on the file system
char •path; described in io, and fills the appropriate parts
struct iob *iO; of the io structure.

-openi (n, iol Fills the inode structure in io with a copy of
ino_tn; the disk inode whose number is n on the file
struct iob *io; ~stem described in io.
_prs (str) Prints the simple character string str on the
char •str; console immediate!!:
daddr t Returns the number of the physical block

- sbmap (io, bn) corresponding to the logical block bn of the file
struct iob *io; on the device described in io.
daddr t bn;

_trap (ps} Prints the type of trap that has occurred, based
int ps; on the _E_assed value of _p_s.

6. COMPILING AND EXECUTING STAND-ALONE PROGRAMS

6.1 Compilation

Programs are normally prepared for stand-alone execution by the UNIX sec command. The
syntax of this command is a superset of the standard cc command:

s cc C + [lib 1 1 [option 1 • • • C file 1 • • •

The option and file arguments may be anything that can legally be used with the cc command;
it should be noted, though, that the -p (profiling) option, as well as any object module that
contains system calls, will cause the executable not to run.

Sec defines the compiler constant, STANDALONE, so that sections of C programs may be
compiled conditionally for when the executable will be run stand-alone.

The first argument to sec specifies an auxiliary library that defines the device configuration of
the computer for which the stand-alone executable is being prepared. On the PDP-11, lib may
be either one of the following; on the V AX-11 /780, lib may only be A:

A RP04/05/06 disk (also, RM05 disk on the VAX) and TUI6 magnetic tape, or equivalent

B RKI l/RK05 disk, RPI l/RP03 disk, and TM11/TU16 magnetic tape, or equivalent

If no +lib argument is specified, +A is assumed. If the + argument is specified alone, no
configuration library is loaded unless the user supplies his own. A manual entry for the sec
command may be found in [1].

Stand-Alone 1/0 Library 9

The user may define his own configuration library by loading an object module that defines
devsw to be an array 'of devsw structures {2.1.l}, devcnt to be the number of structures

in the array {3.2}. and ini t to be a function that -is to be called before the ma in routine
{5.1.2}. If the user only-wishes to define his own ini t and not devsw a.nd devcnt, or
vice versa, he may do so, but the configuration library must also be loaded in order to resolve
the other external reference(s).

6.2 Execution

6.2.l Sash. Stand-alone programs are normally loaded using a command interpreter which
passes the arguments that it reads after its prompt into the loaded program's argv list. This
command interpreter is called sash (for stand-alone shell). Its implementation is described
here, and its use is described more completely in the Appendix.

Sash relocates itself up 64K words on a PDP-I I, and 320K words on a VAX-I I/780. This
enables a stand-alone user program to use all of memory below it.

Normally, only programs with execution modes 407 and 410 may be executed (see a.out(5) in
[l]). On the PDP-11, sash turns on memory management in order to relocate itself, and then
executes the high-memory copy of itself in user mode. It loads the user's program into low
memory, copies the argument list to the upper limit of addressability for a non-separate
instruction/data space program, sets up a small program beneath the argument list that inter­
faces from the user's program (which runs in kernel mode) to sash and sets the kernel stack
pointer to its initial value, which is just underneath the small interface program; sash then
manages to begin execution of the user's program in kernel mode at physical location 0. The
interface program enables the user's program to return (exit) back to sash by a simple rts
instruction. The use of memory management normally allows the user's program about 55.6K
words for text, data, and bss segments. If the user wishes to set up his own bss segment, then
only text and data are limited to 55.6K words. It should be noted, however, that because
memory management is enabled at the outset, the user's program must turn memory manage­
ment off before changing any memory management-related registers.

To load mode 411 (separate instruction and data space) files, sash loads the data and bss seg­
ments at physical address 0 (set to be kernel data), and the text segment is loaded at the next
64-byte boundary (set to be kernel text). Sash then turns off memory management, and
assumes that the program will restructure itself. It cannot be run without restructuring because
the program break can only expand onto the text segment, and the stack pointer may contain an
address that is in the middle of the text segment.

The address space of the VAX- I I /780 is sufficiently large that memory management need not
be used, and the user's program may be started by a simple subroutine call, and exited by a
return from that call.

6.2.2 Other Bootstrap Programs. Alternatively, a stand-alone program may be loaded into
memory by some other UNIX bootstrap program. If this is done, the start-up code senses that
an argument list is not available, so argc will be set to I. and argv [0] will be set to a null
string before execution begins, and may be reassigned by getargv.

6.3 Relocatable Programs

The stand-alone 1/0 library may be used with programs than need to relocate themselves at
some point during execution. Although this is never a simple task, it is quite a bit easier to do
so on the VAX-11/780 than the PDP-11, and somewhat easier on the PDP-11 if memory
management need not be used. The user who is considering writing a relocatable program is
referred to the source code of the machine-dependent (assembler language) part of the sash
program {Appendix} for hints.

On the VAX- I I /780, the -T option may be given to the 1 d program to do the relocation. On
the PDP-11, no special processing by ld is necessary;

10 Stand-Alone 1/0 Library

7. OVERHEAD AND PERFORMANCE

On both the PDP- I I and V AX-11 /780, a null program will compile to produce an executable
object module that has a text segment that is slightly larger than 6K bytes, and data and bss seg­
ments that add up to about 8K bytes. This is a good rule-of-thumb calculation for the
minimum size of a program that is compiled with the stand-alone library.

Because stand-alone programs run (by definition) without competing against other processes for
CPU time, and are never swapped out of memory, a stand-alone program's execution is faster
than that of the same program running under UNIX. However, if that program does some 1/0
operations, it will not benefit from some of the short-cut operations that are implemented in
UNIX, such as disk read-ahead, and will therefore actually run more slowly stand-alone than
under UNIX.

Acknowledgements

The stand-alone I/O library was originally based on a library written by Charles Haley whom I
would like to thank for his comments and suggestions during the course of my work. I would
also like to thank Larry Wehr for his explanations of the workings of the UNIX system and dev­
ice drivers, as well as Ted Kowalski for his help in debugging several stand-alone programs and
his suggestions of practical extensions to that which already existed.

References

[1] Dolotta, T. A., Olsson, S. B., and Petruccelli, A.G., eds. UNIX User's Manual-Release
3.0. Bell Laboratories, June 1980.

[2] UNIX Time-Sharing System: UNIX Programmer's Manual-Seventh Edition. Bell Labora­
tories, January, I 979.

[3] UNIX/32V Time-Sharing System: UNIX Programmer's Manual-Version 1.0. Bell Labora-
tories, February, 1979.

[4] Peripherals Handbook. Digital Equipment Corporation, 1978.

[5] PDP 11(10 Processor Handbook. Digital Equipment Corporation, 1976.

[6] VAX 11(180 Architecture Handbook. Digital Equipment Corporation, 1977.

[7] VAX 11(180 Hardware Handbook. Digital Equipment Corporation, 1978.

Stand-Alone 1/0 Library 11

Appendix: The Stand-Alone Command Interpreter

The stand-alone command interpreter is called sash (for stand-alone shell). It is a glorified
UNIX boot program. Sash is begun running through whatever means available. It relocates
itself up to high memory and executes there. When it is running, it prompts with $ $.

Sash accepts three types of commands. The most common type is the program execution com­
mand. Here the user types the name of the stand-alone program to be executed, followed by
arguments to be passed to the program. The program name and arguments are separated by
spaces or tabs, and the single-quote and double-quote characters are properly understood (for
arguments containing special characters within them). For example, if Is tand/ 1 s is a
stand-alone program that does the same as the UNIX ls program, then in order to get a long
listing of the contents of the directory /tmp, the user would type:

SS /stand/ls -1 /tmp

UNIX itself may be booted by using this method:

$$ /unix

The second type of command is the cd command. sash has a notion of its cu"ent directory.
All programs that are called with names that do not begin with a slash (/) arc searched for rela­
tive to the current directory. When sash is begun executing, the current directory is the root
directory (/). Thus, in the previous paragraph, UNIX could have been booted by typing:

SS unix

If the cd command is invoked with an argument, then the argument becomes the current
directory. The following sequence is equivalent to the ls command discussed above:

$$ cd /stand
ss ls -1 /tmp

The current directory is local to the sash program. It is remembered from one sash com­
mand to the next. It is not, however, passed on to the invoked program. Arguments that are
passed to programs ml.1st therefore be relative to the root directory.

If cd is invoked with no arguments, the value of the current directory is printed.

Sash has a default notion of the disk type and unit number for the root file system, as well as
for a /usr file system. These arc generally slices 0 and I, respectively, of unit 0 of the
RP04/05/06 disk. (The defaults may be easily changed by recompiling the sash source.) To
change sash's ideas of disk type and unit number, the set command may be used. There are
two basic forms of the set command: set unit and set disk. Their synopses are:

set unit {/l/usr} {0111 ... 17}
set disk {/:/usr} {rk05lrp03lrp04}

where { ... I ••• } indicates a mandatory choice. On the VAX-11/780, the rkO 5 and rpO 3
choices do not exist. For example, in order to execute a stand-alone program in
/usr/steve/saprog where /usr is the file system on slice I of RP03 unit 2, the user may
type:

SS set disk /usr rp03
SS set unit /usr 2
$$ /usr/steve/sapro9

The notions of disk type and unit number are, like current directory, local to sash, and are
not passed to the invoked program, which has its own idea of where /usr (if any) and the
root file system are located.

January 1981

1. INTRODUCTION

The UNIX Equipment Test Package:
Operational Procedures

A. L. Chellis
T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.4.1

The Equipment Test Package (ETP) is a collection of hardware exercisers that run on the
UNIXt operating system. The hardware is exercised by using shell scripts and the operating sys­
tem itself to generate a large number of reads and writes to all devices. The reads and writes
test all combinations of 1/0 and devices under heavy load conditions.

The purpose of this document is to explain the procedures for running the ETP. It first
presents a list of materials needed to use the ETP. The user is then shown how to place the
ETP on disk and in memory. Finally, the procedures to run and reconfigure the ETP are
explained.

2. CHECKLIST

In preparation for running the ETP, the user should have the following:

• A copy of the ETP tape marked "PDP- I I" or "VAX" (as appropriate) and this document.

• A formatted, flag-free disk.

• Knowledge of the bootstrap loader program for disk drive and tape drive (the appendices to
this document contain information on commonly used loaders).

• Knowledge of the hardware configuration for each machine:

- type of processor;
- K words of memory;
- existence of floating-point hardware;
- names, addresses, and vectors of all devices.

3. BOOT PROCEDURES

Booting the ETP consists of two distinct steps: initial load to disk and loading into memory. To
prepare to run the ETP, you must produce a "bootable" ETP disk pack from the distribution
tape. Then you must bring the ETP into memory by booting the ETP disk pack. Additionally, a
special test is provided for PDP- I I /70's to exercise their memory management registers.

3.1 Initial Load to Disk

The ETP is normally distributed on a single, multi-file magnetic tape, recorded in 9-track format
at 800 bpi. The tape is marked either "PDP-I I" or "VAX"; be sure you have the correct tape
for your machine. The ETP is a disk-based system exerciser. Therefore, the ETP must be
placed on disk before it can used. To place the ETP on disk:

t UNIX is a trademark of Bell Laboratories.

2 ETP Operational Procedures

1. Mount the ETP distribution tape (wi(hout a write ring) at load point.

2. Boot the ETP tape:

PDP-11 This tape boots in the same manner a DEC diagnostic tape. If you do not
have a hardware bootstrap for the tape drive, see Appendix 2.

VAX The floppy delivered with the VAX does not have tape-boot capability; see
Appendix 3.

3. Follow the directions printed on the console. Samples of PDP-11 and VAX console dialo­
gue can be found in Appendix 6.

4. When the tape rewinds, HALT the CPU.

3.1./ Initial test of PDP-11/70 CPU memory management regi.sters. The file /stand/mmtest is a
stand-alone diagnostic program for the PDP- I I /70's memory management registers. It should
be booted and run (20 minutes) if you are not absolutely sure that DEC FCO (field change
order) M8140-R002 has been applied to your PDP-11/70. To place the diagnostic in memory,
use the hardware bootstrap loader to boot the disk you have just created. The disk boots just
like a DEC diagnostic. If you do not have a hardware bootstrap, see Appendix 2.

To start the memory management test, proceed as follows (note that "<NO CR>" means "do
not hit carriage return"):

[sys] # <NO CR>

[you] 0 <NO CR>

[sys] = <NO CR>

[you] /stand/mmtest

The memory management test will begin to run; when it is complete, it will print "DONE" on
the console terminal.

If any errors occur during this test, the ETP will not run until your hardware maintenance con­
tractor applies FCO M8140-R002 to your PDP-11/70 CPU.

3.2 Booting ETP from the Disk

To place ETP in memory, boot the disk you have created using the procedures for the PDP-11
or VAX, as appropriate.

3.2.J Boot procedures for PDP-II. Place the ETP in memory by booting the disk you, have just
created. The disk boots just like a DEC diagnostic. If you do not have a hardware bootstrap for
the disk drive, see Appendix 2. Proceed as follows:

[sys] # <NOCR>

[you] 0 <NOCR>

[sys] = <NOCR>

[you] name

where name is the name printed out by the initial load-to-disk program.

3.2.2 Boot procedures for VAX. The floppy disk delivered with the VAX does not have UNIX
disk-boot capability; see Appendix 3. Proceed as follows:

[sys] $$<NO CR>

[you] name

where name is the name printed out by the initial load-to-disk program.

ETP Operational Procedures

3.3 Common boot procedures for PDP-II and VAX

Once the ETP is placed into memory, the running of the ETP is the same for PDP-11 and VAX:

[sys] UNIX/etpl.3: name
real mem = MMMM bytes
avail mem = NNNN bytes
enter date in the following format: MMddhhmmyy <NO CR>

[you] MMddhhmmyy

3

where MM is the month (01-12), dd is the day of the month (01-31), hh is the hour of the
day (00-23), mm are the minutes past the hour (00-59), and yy are the la"t two digits of the
year (70-??).

The current date will be echoed and the ETP will check the disk pack just generated and then .
initialize itself; this process takes about five minutes. See Appendix 6 for the console dialogue.

After the startup is complete, you should login as follows:

[sys] login: <NO CR>

[you] etp

The ETP will identify itself and print out its version number, e.g.:

Equipment Test Package Version 1.3

4. RUNNING THE ETP

The ETP is run in two parts: a general-purpose configuration and a specific configuration for
your system. This is done to allow you the flexibility to reconfigure the ETP as your system's
configuration changes. You may save your specific configuration once you've booted a
configuration with a tape device.

4.1 Initial Test of Root Device.

Before generating specific configurations, the root device, memory, and CPU speed on which
those configurations will reside must be tested. If any of these devices malfunction, it is use­
less to proceed further. To begin the tests, enter the command:

etpall [loop_count]

Where loop_count indicates how many times you wish to loop through the entire test. The
default loop_count is I. When all the tests have been completed and no errors have been
detected, you are ready to generate other configurations. To begin the generation, enter the
command:

etpgen

This interactive program will prompt for all the information it needs to generate an ETP for up
to 4 configurations. It is limited to 4 because of disk-space limitations. The names used to
describe a configuration are listed in Appendix 5 in the "Device" column. A sample run is
shown in Appendix 6.

When the generation is complete, you must shut down the system. To shut down the system,
enter the command:

shutdown

4.2 Tests for Specific Configurations

Repeat all of the steps shown in Section 3.2 above, but instead of typing the name used in the ini­
tial boot, type the project name of the configuration you wish to test. The "project name" (entered

4 ETP Operational Procedures

as the first line of a configuration during g~neration) identifies a specific configuration. It must
be only one word of no more than 14 characters.

If a tape device has been configured into the new system, you may save all generated
configurations on tape. To save the configurations on tape, enter the command:

etptape

A bootable ETP tape will be created on drive 0 of the tape device configured into the system.
This tape can be booted by the same procedures used for the original ETP distribution tape.

The ETP can be run in either interactive or non-interactive mode. Interactive mode is used to
test character devices that require operator intervention. The default mode of operation is
non-interactive.

To change or inquire about the mode of operation of the ETP, enter the command:

etpchmod [-i] [- n]

With no options, etpchmod prints the current status. The -; and -n options change the mode
of testing to interactive and non-interactive, respectively.

S. TESTS

The ETP provides a number of individual tests. For ease of use, it also provides a test that per­
forms all the individual tests. This section briefly describes this all-encompassing test and each
individual test.

5.1 Test of All Devices

The all-encompassing test includes tests of all block and character devices, memory, CPU speed,
and a load bus routine. To begin the test, enter the command:

etpall [loop_count] [test ...]

If individual tests are specified on the command line, only those tests will be performed. The
test names are block, char, mem, time, and load. The length of time needed for this test is
dependent upon the number of devices on the system and the size of memory.

5.2 Test of Block De.ices

To test individual block devices, enter the command:

etpblock [loop_count] [device ...]

If individual devices are specified on the command line, only those devices will be tested. If no
devices are specified, all of the block devices configured into the system at ETP generation time
will be tested. The list of possible devices is given in Appendix 5 in the "Generic" column.

5.3 Test of Character DeTices

To test individual character devices, enter the command

etpchar [loop_count] [device ...]

If individual devices are specified on the command line, only those devices will be tested. If no
devices are specified, all of the character devices configured into the system at ETP generation
time will be tested. The list of possible devices is given in Appendix 5. User interaction is
require~ for testing the dh, dz, and dn lines.

ETP Operational Procedures 5

5.4 Test of Memory and Swap Device

To test all of memory, floating-point hardware, and the swap device, enter the command:

etpmem [loop_count]

Memory and the swap device are filled with programs that store and retrieve test patterns of
characters, integers, and double floating-point quantities.

5.5 Test of CPU Tbrou2bput

To test the throughput of a CPU, enter the command:

etpti me [loop_count]

Throughput of a CPU may vary from machine to machine, because of variation in memory
speeds, CPU speeds, and cache speeds. The numbers in Appendix 7 are rough guides as to
what you should expect for your configuration.

5.6 Test of Bus Loadint

To start simultaneous I/0 on all devices, enter the command:

etpload [/oop_count]

This test starts simultaneous 1/0 activity on all tape and disk devices, thereby loading the
UNIBUS.

6. ERROR REPORT

The ETP logs all of the errors it detects in an error log file. This file is not removed when the
system is shut down or booted up. In effect, new errors are logged at the end of the log file if
this file already exists.

This error log can be printed out in a terse format. To print out all the errors logged to date,
enter the command:

errpt -a

The resulting error report can be easily interpreted by your hardware maintenance contractor.
For further information on the errpt command, see Appendix 4.

To save the current error log (which is file /usr/adm/errfile) in /usr/adm/oerrfile, enter the
command:

etperrmv

This command will temporarily stop error logging, move the current error log file, and restart
error logging.

7. ACKNOWLEDGEMENTS

We gratefully acknowledge the work of the originators of the Equipment Test Package, Rick
Brandt and Cathy Perez. Special thanks are due to the hundreds of users who provided exten­
sive feedback, helping us to make the package more effective and easier to use.

6 ETP Operational Procedures

Appendix .1: PDP-11/70 Boot

The PDP-11/70 has a dedicated hardware bootstrap loader called the M9301-YC. This allows it
to bootstrap programs from a wide range of storage media.

The M9301-YC attempts to boot from the device and drive number specified in the console
switches. Console switches 7-3 select the device, while console switches 2-0 select the drive
number. The table below below describes the devices selected for each switch setting.

To start operation of the bootstrap loader:

1. Halt the CPU by depressing the HALT switch.

2. Set the Address Display select switch to CONS PHY.

3. Set the Console Switch Register to 165 000 (octal).

4. Depress the LOAD ADRS switch.

5. Reset the console switches to 0.

6. Set switches 7-0 for the desired device.

7. Put the HALT switch in the ENABL position.

8. Depress the START switch.

The selected device will be booted. This takes approximately three seconds.

Any error during the boot will cause the CPU to halt. A list of possible halt addresses and their
meanings is given in the DEC PDP-11 /70 Processor Handbook in the chapter on Console Opera­
tion.

Console Switches (7-3)
00
01
02
03
04
05
06
07
10
11

12-37

Device
illegal
TMl l/TUlO
TCl l/TU56
RKI I/RK05
RPI 1/RP03
reserved
RH70/TU16
RH70/RP04
RH70/RS04
RXl 1/RXOl
illegal

Name

Magnetic tape
DECtape
Disk pack
Disk pack

Magnetic tape
Disk pack
Fixed-head disk
Diskette

ETP Operational Procedures 7

Appendix 2: PDP-11 ROM Boot

Standard DEC ROM bootstrap loaders may not correctly execute UNIX initial load programs.
Therefore, special bootstrap loaders were designed that may be manually toggled into memory.

Each special bootstrap loader is position-independent, that is, it may be placed anywhere in
memory. Normally, it is placed in high memory to avoid being overwritten. Each special
bootstrap loader reads one block from drive 0 into memory starting at address 0 and then jumps
to address 0. To minimize the size of the special bootstrap loaders, they each assume that a
hardware INIT was generated prior to execution. In each case, each special bootstrap loader will
read in at least 256 words, which is the maximum size of the UNIX initial load.

On disk devices, block 0 is read. On tape devices, one block starting at the current position of
the tape is read, so that, the tape should normally be positioned at the load point prior to boot­
ing.

Below, we give the the octal listing of five such special bootstrap loaders, together with the
corresponding assembly language instructions.

TU 10 - Magnetic Tape:
012700 mov $mtcma,r0
172526
010040 mov rO,-(rO) /use magnetic tape addr for byte count
012740 mov $60003. - (rO) /read, 800 bpi, 9 track
060003
105710 1: tstb (rO) /wait for ready
002376 bge lb
005007 cir pc /transfer to zero

TU 16 - Magnetic Tape:
012700 mov Smtwc,rO
172442
012760 mov $1300,30(r0) /set 800 bpi, PDP format
001300
000030
010010 mov rO,(rO) /use magnetic tape addr for word count
012740 mov $71,-(rO) /read
000071
105710 1: tstb (rO) /wait for ready
002376 bge lb
005007 cir pc /transfer to zero

RK05 - Disk Pack:
012700 mov Srkda,rO
177412
005040 cir -(rO)
010040 mov rO,-(rO) /use RK05 addr for word count
012740 mov $5,-(rO) /read
000005
105710 1: tstb (rO) /wait for ready
002376 bge lb
005007 cir pc /transfer to zero

8 ETP Operational Procedures

RP03 - Disk Pack:
012700 mov $rprnr,r0
176726
005040 cir -(rO)
005040 cir -(rO)
005040 cir -(rO)
010040 mov rO,-(rO) /use RP03 addr for word count
012740 mov $5,-(rO) /read
000005
105710 I: tstb (rO) /wait for ready
002376 bge lb
005007 cir pc /transfer to zero

RP04 - Disk Pack:
012700 mov $rpcsl,r0
176700
012720 mov $21,(rO)+ /read-in preset
000021
012760 mov $10000,30(r0) /set to 16-bits/word
010000
000030
010010 mov rO,(rO) /use RP04 addr for word count
012740 mov $71,-(rO) /read
000071
105710 1: tstb (rO) /wait for ready
002376 bge lb
005007 cir pc /transfer to zero

ETP Operational Procedures 9

Appendix 3: VAX-11/780 Boots

I. TAPE BOOT

The floppy disk delivered with the VAX does not have UNIX tape-boot capability. The user
must type in the following program to read the first record on tape drive 0 (type a carriage
return at the end of each input line):

>>>H
>>>U
>>>I

INIT SEQ DONE

>>> D 20000 20008FDO
>>> D+ 00502001
>>> D+ 3204A001
>>> D+ C003C08F
>>> D + AOD40424
>>> D+ 8FDOOC
>>> D + COSOOOOO
>>> D + 8F320800
>>> D+ IOAOFEOO
>>> D+ C007DO
>>> D+ C039D004
>>>D+ 400
>>>S 20000 (Starts tape load)

HALT INST EXECUTED
HALTED AT 0002002F

>>>S 0 (Execute boot program loaded from tape)

From this point on, the loader initiates a question-and-answer sequence to control the
remainder of the load process.

10 ETP Operational Procedures

2. DISK BOOT

The floppy disk delivered with the VAX does not have UNIX disk-boot capability. The user
must type in the following program to read the first block on disk drive 0 {type carriage return
at the end of each line):

>>>H
>>>LINK

<<<H
<<<U
<<<I
<<< D 20000 00009FDE
<<< D+ 00512001
<<< D+ D004Al01
<<< D+ 0400CI 13
<<< D + 10008F32
<<< D+ D40424Cl
<<< D+ 8FDOOCA1
<<< D + 80000000
<<< D + 320800Cl
<<< D+ AlFEOOSF
<<< D+ 28C1D410
<<< D+ 14Cl 0404
<<< D+ C139D004
<<<D+ 400
<<<S 20000
<<<S 2
<<< Control-C
>>>

(Save the following sequence on the floppy)
{the prompt should change to .. <<<")

(Boot program for MBA 0, drive 0)

{Exit LINK load)

You are now ready to boot UNIX. Each time it is necessary to boot (or reboot) UNIX, one sim­
ply follows the sequence:

>>>P

SS unix<cr>

(This executes the commands saved in the floppy link file;
the console should echo each command in the file.)

(Load and execute /unix)

ETP Operational Procedures 11

Appendix 4: Error Report

The following command may be used print out various aspects of the error log file:

errpt [-a] [-dev ...] [-int] [-mem] [-sdate] [-edate] [-pn] [-f] [file ...]

E"pt processes data collected by the error logging mechanism (errdemon(l M) entry in the UNIX
User's Manual) and generates a report of that data. The default report is a summary of all
errors posted in the named files. Options apply to all files and are described below. If no files
are specified, errpt attempts to use /usr/adm/errfile as file.

A summary report indicates the options that may limit its completeness, gives the times of the
earliest and latest errors encountered, and gives the total number of errors of one or more
types. Each device summary contains the total number of unrecovered errors, recovered
errors, errors unable to be logged, 1/0 operations on the device, and miscellaneous activities
that occurred on the device. The number of times that errpt has difficulty reading input data is
included as read errors.

A detailed report contains, in addition to specific error information, all instances of the error
logging process being started and stopped and any time changes (via date(l)) and configuration
changes (for UNIX/RT only) that took place during the interval being processed. A summary
of each error type included in the report is appended to a detailed report.

A report may be limited to certain records in the following ways:

-sdate Ignore all records posted earlier than date, where date has the form
MMddbbmmyy, as for the date(l) command.

-edate Ignore all records posted later than date.

-a Produce a detailed report that includes all error types.

-dev Limit a detailed report to dev, a block device identifier. Errpl is familiar with the
common form of identifiers. Currently, the block devices for which errors are
logged are RP03, RP04, RP05, RP06, RS03, RS04, TUlO, TU16, RK05, RFll,
RLOI.

-int Include in a detailed report errors of the stray-interrupt type.

- mem Include in a detailed report errors of the memory-parity type.

- pn Limit the size of a detailed report to n pages.

-f In a detailed report, limit the reporting of block device errors to unrecovered
errors.

12 ETP Operational Procedures

Appendix 5: Generic Names for Peripheral Devices

Processors

The Equipment Test Package is currently available for the following processors:

PDP-11/70, 11/45, 11/34
VAX 11/780

Devices

There are testing procedures defined for the following devices. The Device names are used
when entering a configuration during generation. The Generic names are used when running
the tests.

Device Name Generic Name
db I I db

dml 1 dm
dnl 1 dn
dzII dz

dzkmc dzk
kmcll kmc

lpl 1 Ip
rfl 1 rf
rk05 rk

rlOl, rll l rl
rp03, rpl I rp

rp04, rp05, rp06 hp
rs04, rs03 hs

tu IO, tmI I tm
tu45, tu77, tul6, te16 ht

vp vp

There are no testing procedures defined for the following devices, but they may be entered into
a configuration so that they may be accessed by the user.

Device Name
dal 1 b

dll l, la36, kl I I
dmcl 1

dqsl I b, dqsl Ia
drl le
dul I

Generic Name
da
kl
dmc
dqs
cat
du

ETP Operational Procedures

Appendix 6: Sample Run

Boot Procedures for the PDP-11*

UNIX tape boot loader

Equipment Test Package Version 1.3

Initial Load: Tape-to-Disk

The disk drive type which will be used for the Root file system
and the tape drive type which will be used for the Initial Load Tape
must be specified below.

Answer the questions with a 'y' or 'n' followed by
a carriage return or line-feed.
There is no type-ahead - - - wait for each question to complete.
The character '@' will kill the entire line
and the character '#' will erase the last character typed.
To restart the program during the question phase,
type the DEL character.

PDP-11/70?: y

RP03 at address 176710?: n
RP04/5/6 at address 176700?: y
Drive number (0-7)?: 0
Disk drive 0 selected

Mount formatted pack on drive 0
Ready?: y

TUlO/TMl l at address 172520?: n
TU 1 6 at address 1 72440?: y
Drive number (0-7)?: 0
Tape drive 0 selected

The tape on drive 0 will be read from the current position
at 800bpi, 5120 characters (10 blocks) per record
and written onto the pack on drive 0 starting at block 0.

Ready?: y

Size of file system to be copied is 4000 blocks.
The pack will be labeled etpl.3;
disk boot block for your disk drive type will be installed now.

The file system copy is now completed.

To boot the basic ETP for your disk
as indicated above, mount this pack on drive 0
and read in the boot block (block 0) using
whatever means you have available. See Appendix 1 in
Equipment Test Package: Operational Procedures.

Then boot the program hp.
Normally: #O=hp

• User's responses arc shown in bold.

13

14

ETP will come up and ask you for the date and ask you
to login. Please see Equipment Test Package: Operational
Procedures for further details.

Good Luck!

The tape will now be rewound.

ETP Operational Procedures

ETP Operational Procedures

Boot Procedures for the VAX-11/780

UNIX tape boot loader

Equipment Test Package Version 1.3

Initial Load: Tape-to-Disk

The disk drive type which will be used for the Root file system
and the tape drive type which will be used for the Initial Load Tape
must be specified below.

Answer the questions with a 'y' or 'n' followed by
a carriage return or line-feed.
There is no type-ahead - - - wait for each question to complete.
The character '@' will kill the entire line
and the character '#' will erase the last character typed.
To restart the program during the question phase,
type the DEL character.

VAX-11/780?: y

RP06 at NEXUS 8?: y
Drive number (0-7) ?: 0
Disk drive 0 selected

Mount formatted pack on drive 0
Ready?: y

TEI6 at NEXUS 9?: y
Drive number (0-7)?: 0
Tape drive 0 selected

The tape on drive 0 will be read from the current position
at 800bpi, 5120 characters (lO blocks) per record
and written onto the pack on drive 0 starting at block 0.

Ready?: y
Size of file system to be copied is 6000 blocks.
The pack will be labeled etpl.3;
disk boot block for your disk drive type will be installed now.

The file system copy is now completed.

To boot the basic ETP for your disk
as indicated above, mount this pack on drive 0
and read in the boot block (block 0) using
whatever means you have available. See Appendix 3 in
Equipment Test Package: Operational Procedures. ·

Then boot the program hp.
Normally: $$ hp

ETP will come up and ask you for the date and ask you
to login. Please see Equipment Test Package: Operational
Procedures for further details.

Good Luck!

The tape will now be rewound.

15

16 ETP O~rationa/ Procedures

Common Boot Procedures for the PDP-11 and VAX-11/780

UNIX/etpl .3: hp
real mem = 1048576
avail mem = 921088
enter date in the following format: MMddhhmmyy 0107113880
Mon Jan 7 11 :38:53 EST 1980

*** Equipment Test Package Start for Project: hp ***
Check Root Filesystem

/dev/hpO
File System: master Volume: etpl.3

** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
303 files 3151 blocks 2660 free

ETP Start Complete

login: etp
Equipment Test Package System - Version l.3

Initial Test of Root Device

etpall

*** Equipment Test Package ***
*** Equipment Test Package Pass Number: I Jan 07 11:39

*** Block Device Tests ***
*** Block Test Pass Number: I Jan 07 11 :39

Testing null with hpOa Jan 07 11 :39

Copy 2000 records of size 512 bytes from hpOa to null
2000+0 records in
2000+0 records out
Copy 1000 records of size 1024 bytes from rhpOa to null
1000+0 records in
1000+0 records out
Copy 100 records of size 10240 bytes from rhpOa to null
100+0 records in
100+0 records out
Copy 50 records of size 20480 bytes from rhpOa to null
50+0 records in
so+o records out

Testing hpOa with hpOa Jan 07 11 :40

Making filesystem on hpOa
507 blocks
Checking filesystem on hpOa

ETP Operational Procedures

Copy 2000 records of size 512 bytes from hpOa to hpOa
2000 + 0 records in
2000+0 records out
Copy l 000 records of size l 024 bytes from rhpOa to rhpOa
1000+0 records in
1000+0 records out
Copy I 00 records of size I 0240 bytes from rhpOa to rhpOa
100 + 0 records in
100+0 records out
Copy 50 records of size 20480 bytes from rhpOa to rhpOa
50+0 records in
50+0 records out

Testing hpOb with hpOa Jan 07 11 :43

Block Device Tests Complete

CPU Timing Test

*** CPU Timing Test Pass Number: 1 Jan 07 11:55

CPU time: 14.2

Compare the CPU time with those in Appendix 7

CPU Timing Test Complete

*** Character Device Tests ***

** Non-interactive Mode ••

*** Character Test Pass Number: l

Character Device Tests Complete

Jan 07 11:55

••• 1/0 Bus Load Test ***

*** 1/0 Bus Load Pass Number: I Jan 07 11 :55

1/0 Bus Load Test Complete

*** Memory and Swap Device Test ***

•••Memory and Swap Test Pass Number: 1 Jan 07 12:02

Memory and Swap Test Complete

Summary Error Report

Error Types: All
Limitations:

Summary Error Report

Prepared on Jan 7 12:06

Date of Earliest Entry: Mon Jan 7 11:38:55 1980
Date of Latest Entry: Mon Jan 7 I I :40:02 I 980

Total Stray Interrupts - 0
Total Memory Parity Errors - 0

ETP Complete

Page l

17

18

Generation For Specific Configurations

etpgen
Equipment Test Package (ETP) Generation

Please enter system configuration.
You will be in the editor.
To begin, you must enter:

a
When finished, you must enter:

w
q

Do you want to see format rules? (y or n) y

FORMAT:

* project name
* K -words of core
•type of processor (vax)
* floating point or not (fpp, nfpp)
device (tab) vector (tab) address (tab) number-of-devices

NOTE: l. The project name must be only one word of no more
than 14 characters.

2. The device names should be selected from the DEVICE

ETP Operational Procedures

column in Appendix 5 of the "Operational Procedures" manual.
3. If the number of devices is omitted, a maximum number will be

assumed, so be careful when entering numbers.
4. List each db, dm, dz, and dn as separate entries, and

leave the number-of-devices column blank, unless there are
less than:

16 lines/device on each: dh, dm
8 lines/device on each: dz
4 Jines/device on each: dn

Proceed to enter system configuration:

a
• vaxe
• 512
• vax
• fpp
rp06 0 0 2
tel6 0 0 l
doll 310 775200
dzll 320 760100
dzll 550 760120
kmcll 300 760070

w
q

ETP Operational Procedures

Any more projects to be on the same disk/tape? (y or n) n
Building Rest of Configuration File for: vaxe
Taking Care of Necessary Devices for: vaxe
Making Operating System for: vaxe

ETP Generation Complete

shutdown

SHUTDOWN PROGRAM

Mon Jan 7 13:56:02 EST 1980

NOTE:
If this command has not completed in l 0 minutes, do the following:
I) Hit the DEL key
2) Execute the following commands:

killall
sync
init 1
fsck

3) Halt the system

All currently running processes will now be terminated

PID TfY TIME COMMAND
0 ? 3:54 swapper
I ? 0:00 init

45 co 0:01 sh
323 co 0:00 ps
291 co 0:01 sh

HALT the system

19

20

$$ vaxe

UNIX/etpl.3: vaxe
real mem = 1048576
avail mem = 916992

Tests for Specific Configurations

enter date in the following format: MMddhhmmyy 0107140280
Mon Jan 7 14:02:00 EST 1980

ETP Operational Procedures

*** Equipment Test Package Start for Project: vaxe ***

Check Root Filesystem

/dev/hpO
File System: master Volume: etpl.3

** Phase l - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
**Phase 5 - Check Free List
303 files 3151 blocks 2660 free

ETP Start Complete

login: etp
Equipment Test Package System - Version l.3

etpcbmod
Non-interactive
etpcb mod - i

etpcbar dn dz[0-7) kmc

*** Character Device Tests ***

** Interactive Mode **

*** Character Test Pass Number: I Jan 07 14:05

ON TEST

Please enter the phone # of a telephone in this room: 1234
When that phone rings,
pick up the receiver to establish communication and then replace it.
That number will be dialed as many times as there are dn lines to be tested.

Testing DN Line: dnO
Testing DN Line: dnl
Testing DN Line: dn2
Testing ON Line: dn3

KMC TEST

Testing kmcO: kmcO okay

ETP Operational Procedures

MULTIPLEXER TEST

Ready to test multiplexer lines at 300 baud
To do so:

a) log onto a terminal by dialing the phone number associated
with each line

b) log in as 'tty'
c) You will automatically be logged off when the line has been tested

When finished testing lines, hit 'carriage return'.
Lines Tested: (in order of testing)

dzO
dzl
dz2
dz3
dz4
dz5
dz6
dz7

Character Device Tests Complete
ti

21

22 ETP Operational Procedures

Appendix 7: CPU Timings

Cache
PDP PDP PDP PDP

11 0 II '45 II 34 11 23

on 16.6 22.8 33.9 N/A*
off 51.8 40. l 57.7 59.9

• Not available.

ETP Operational Procedures 23

Appendix 8: Error Conditions

This Appendix contains a list all of the error messages produced by the set of programs that
make up the ETP. Each error message has an error code, which may be used to refer to this
Appendix:. Below each error message, a possible cause and a related action are described. This
Appendix is to be used only as a guide to probable causes and probable solutions. If any error
persists, first make sure that the directions in this document were followed precisely. Other
errors messages that may appear on the ETP printout are caused by the operating system itself,
and usually merit some attention (see Appendix 4).

errOOl: usage: etpstart project

cause: A project name is missing as the first argument to the start-up procedure that is exe­
cuted automatically upon bringing up the operating system. This error shows up
when the file system has been corrupted.

action: Reboot the ETP using a new disk.

err002: unknown project: project

cause: A corrupted file system may have caused either the /project or the
/usr/lib/etp/configs/project directory to be destroyed.

action: Regenerate the ETP configuration for that project.

err003: missing directory

cause: A file system directory that is required for execution of either the start-up or the
project generation procedure is missing. This error may be caused by a corrupted
file system.

action: Regenerate the ETP configuration for that project.

err004: no test devices for project

cause: None of the devices entered into the configuration for project at generation time are
supported by the ETP.

action: Check the ETP configuration for project and regenerate the ETP configuration for that
project.

err005: root unknown

cause: A corrupted file system may have caused the file /usr/lib/etp/configs/running/root
to be destroyed or not created properly.

action: Regenerate the ETP configuration for that project.

err006: premature termination

cause: The currently running test procedure has been prematurely terminated because the
user hit either the DEL key or the BREAK key.

action: A summary error report will be printed automatically. If you wish to stop it, hit the
DEL key again.

err007: etpstart did not run correctly

cause: The start-up procedure, which is executed automatically upon bringing up the
operating system, did not run properly.

action: Reboot the ETP.

24 ETP Operational Procedures

err008: not configured for device: device

cause: The device argument typed in on the command line was not configured into the sys­
tem during the generation of ETP for this project.

action: Make sure the generic name was used on the command line and check the
configuration to make sure that the device was configured into the system for this
project.

err009: no test for dnice: device

cause: The device specified is not supported by the ETP.
action: The device will available for use, but it will not be tested by the ETP.

err010: conf file is missing

cause: Error in the generation procedure.
action: Reissue the etpgen command.

errOl 1: illegal root device: device

cause: The ETP will not fit on device, which is the .largest capacity disk entered into the
configuration.

action: ETP needs at least one disk with at least 4000 blocks for PDP-11 systems and 6000
blocks for VAX systems. If the system configuration for the project does not include
such a disk, the ETP cannot run on that system.

err012: no disk devices in system configuration

cause: No supported disk devices were entered into the configuration for the project.
action: The ETP requires at least one supported disk in a system.

err013: invalid processor type: processor

cause: The processor used in the configuration for the project is not supported by ETP.
action: Make sure that the processor type was entered correctly.

err014: $proj must be exported to this shell

cause: Parameters are not being placed in the environment correctly.
action: Reboot the ETP.

err015: ETP Generation Failed

cause: The configuration entered for the project is bad.
action: Check the configuration for the project to make sure that it was entered correctly

and regenerate the ETP configuration for that project.

err016: there is no etptest test available

cause: The test specified on the command line does not exist.
action: Refer to the body of this document for usage and available tests.

January 1981

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXt kernel. This discussion is broken into three parts. The first
part describes how the UNIX system views processes, users, and programs. The
second part describes the 1/0 system. The last part describes the UNIX file sys­
tem.

l. INTRODUCTION

UNIX

F.5.1

The UNIX kernel consists of about 10,000 lines of C code and about 1.000 lines of assem­
bly code. The assembly code can be further broken down into 200 lines included for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not possible in C.

This code represents 5 to I 0 percent of what has been lumped into the broad expression
"the UNIX operating system." The kernel is the only UNIX code that cannot be substituted by
a user to his own liking. For this reason, the kernel should make as few real decisions as possi­
ble. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. Jt is a soap-box platform on "the way things should be done." Even so, if "the
way" is too radical, no one will follow it. Every important decision was weighed carefully.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their complexity can be localized.

2. PROCESS CONTROL
In the UNIX system, a user executes programs in an environment called a user process.

When a system function is required, the user process calls the system as a subroutine. At some
point in this call, there is a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously). For protection, each
system process has its own stack.

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no functional benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore, if
two processes are executing simultaneously from the same copy of a read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

t UNIX is a trademark of Bell Laboratories.

2 UNIX Implementation

execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes loaded.

All current read-only text segments in the system are maintained from the text table. A
text table entry holds the location of the text segment on secondary memory. If the segment is
loaded, that table also holds the primary memory location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a text table entry is allocated and the segment is loaded onto secondary
memory. If a second process executes a text segment that is already allocated, the entry refer­
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As
far as possible, the system does not use the user's data segment to hold system data. In partic­
ular, there are no I/O buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory faults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initialized
to zero.

Also associated and swapped with a process is a small fixed-size system data segment.
This segment contains all the data about the process that the system needs only when the pro­
cess is active. Examples of the kind of data contained in the system data segment are: saved
central processor registers, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process. The system data segment is not addressable from
the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the system when the process is not active. Examples are the process's name, the
location of the other segments, and scheduling information. The process table entry is allo­
cated when the process is created, and freed when the process terminates. This process entry is
always directly addressable by the kernel.

Figure 1 shows the relationships between the various process control data. In a sense, the
process table is the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

PROCESS
TABLE
ENTRY

PROCESS TABLE TEXT TABLE

TEXT
TABLE
ENTRY

Fig. 1 - Process Control Data Structure

RESIDENT

UNIX Implementation 3

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost.
Doing an exec does not change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec.

If a program, say the first pass of a compiler, wishes to overlay itself with another pro­
gram, say the second pass, then it simply execs the second program. This is analogous to a
"goto." If a program wishes to regain control after execing a second program, it should fork a
child process, have the child exec the second program, and have the parent wait for the child.
This is analogous to a "call." Breaking up the call into a binding followed by a transfer is simi­
lar to the subroutine linkage in SL-5. 1

2.2. Swapping

The major data associated with a process (the user data segment, the system data seg­
ment, and the text segment) are swapped to and from secondary memory, as needed. The user
data segment and the system data segment are kept in contiguous primary memory to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri­
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size.

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for a process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. It
selects a process to swap out, writes it to secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes that are loaded is to be swapped
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk
I/0) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resources.

4 UNIX Implementation

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processes wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a pro­
cess terminates, it signals the event represented by its parent's process table entry. Signaling an
event on which no process is waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from Dijkstra's
P and V synchronization operations, 2 in that no memory is associated with events. Thus there
need be no allocation of events prior to their use. Events exist simply by being used.

On the negative side, because there is no memory associated with events, no notion of
.. how much" can be signaled via the event mechanism. For example, processes that want
memory might wait on an event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. (In reality, the swapping process is the only pro­
cess that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an event that has already hap­
pened (and may never happen again). This race condition happens because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the event in question is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations. 3

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of
the processes has called event-wait. The remaining process is the one currently executing.
When it calls event-wait, a process whose event has been signaled is selected and that process
returns from its call to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority.
The priority of a system process is assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the difference in system process priorities has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of compute time to real time consumed by
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because interactive processes are characterized by low ratios of compute to
real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user processes will be scheduled
round-robin with a 1-second quantum. A high-priority process waking up will preempt a run­
ning, low-priority process. The scheduling algorithm has a very desirable negative feedback
character. If a process uses its high priority to hog the computer, its priority will drop. At the
same time, if a low-priority process is ignored for a long time, its priority will rise.

3. 1./0 SYSTEM

The 1/0 system is broken into two completely separate systems: the block 1/0 system and
the character 1/0 system. In retrospect, the names should have been "structured 1/0" and
"unstructured 1/0," respectively; while the term "block 1/0" has some meaning, "character

UNIX Implementation 5

1/0" is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and a class
(block or character). For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that attributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important. Early versions of the system had a
much less formal connection with the drivers, so that it was extremely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system's parts list.

3.1. Block 1/0 system

The model block 1/0 device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device.

The block 1/0 devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a device name and a
device address. This buffer pool constitutes a data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found. the data are made
available to the requester without any physical 1/0. If the block is not in the cache, the least
recently used block in the cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the data are made available. Write requests are handled in an analo­
gous manner. The correct buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as "dirty." The physical 1/0 is then deferred until the buffer is
renamed.

The benefits in reduction of physical 1/0 of this scheme are substantial, especially consid­
ering the file system implementation. There are, however, some drawbacks. The asynchronous
nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to 1/0 error handling in the UNIX system is partly due to the
asynchronous nature of the block 1/0 system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but
physically incomplete, 1/0 in the buffers. There is a system primitive to flush all outstanding
1/0 activity from the buffers. Periodic use of this primitive helps, but does not solve, the prob­
lem. Finally, the associativity in the buffers can alter the physical 1/0 sequence from that of
the logical 1/0 sequence. This means that there are times when data structures on disk are
inconsistent, even though the software is careful to perform 1/0 in the correct order. On non­
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob­
lem with magnetic tapes is "cured" by allowing only one outstanding write request per drive.

3.2. Character 1/0 system

The character 1/0 system consists of all devices that do not fall into the block 1/0 model.
This includes the "classical" character devices such as communications lines, paper tape, and
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, 80-byte physical records on tape and track-at-a-time disk copies. In short,
the character 1/0 interface means "everything other than block." 1/0 requests from the user
are sent to the device driver essentially unaltered. The implementation of these requests is, of
course, up to the device d_river. There are guidelines and conventions to help the implementa­
tion of certain types of device drivers.

6 UNIX Implementation

3.2.J. Disk drhers

Disk drivers are implemented with a· queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block 1/0 interface is implemented by passing such records with requests to fill and empty sys­
tem buffers. The character 1/0 interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this 1/0 transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device, and a swap device. The only
really disk-specific code in normal disk drivers is the pre-sort of transactions to minimize
latency for a particular device, and the actual issuing of the 1/0 request.

3.2.2. Character lists

Real character-oriented devices may be implemented using the common code to handle
character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. It is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue returns
the corresponding space to the pool.

A typical character-output device (paper tape punch, for example) is implemented by
passing characters from the user onto a character queue until some maximum number of char­
acters is on the queue. The 1/0 is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware completion interrupts. Each time there is a com­
pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count falls through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char­
acters going to the output of a terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the output stream as ASCII
characters and to perform some translations, e.g., escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain control characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta­
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code
catching this signal then copies a line from the raw queue to a canonical queue performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as charac­
ter 1/0 drivers. An example is a driver that reads and writes unmapped primary memory as an
1/0 device. Some devices are too fast to be treated a character at time, but do not fit the disk
1/0 mold. Examples are fast communicat.ions lines and fast line printers. These devices either
have their own buffers or "borrow" block 1/0 buffers for a while and then give them back.

UNIX Implementation 7

4. THE FILE SYSTEM

In the UNIX system; a file is a (one-dimensional) array of bytes. No other structure of
files is implied by the system. Files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further d~s­
cussion of the external view of files and directories, see Ref. 4.

The UNIX file system is a disk data structure accessed completely through the block 1/0
system. As stated before, the canonical view of a "disk" is a randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address O) is unused by the file system. It is left aside for booting procedures. The
second block (address I) contains the so-called "super-block." This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each file definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk blocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one 1/0 operation,
the system obtai,ns 50 free blocks and a pointer where to find more. The disk allocation algo­
rithms are very straightforward. Since all allocation is in fixed-size blocks and there is strict
accounting of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose to occasionally com­
pact disk space to reduce latency.

An i-node contains 13 disk addresses. The first 10 of these addresses point directly at the
first 10 blocks of a file. If a file is larger than JO blocks (5,120 bytes), then the eleventh
address points at a block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a "triple indirect" address. The algorithm ends here with the maximum file size of
l ,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-
byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz .. 2). The file system structure allows an arbitrary, directed graph of direc­
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys­
tems used such a structure. Administration of such a structure became so chaotic that later sys­
tems were restricted to a directory tree. Even now, with regular files linked multiply into arbi­
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to
the tree structure.

The file system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical 1/0 without
adding much execution. The space overhead properties of this scheme are quite good. For
example, on one particular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead (i-node, indirect blocks, and last block breakage) is about l 1.5M bytes.
The directory structure to support these files has about l ,500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys­
tems have this much overhead in padded trailing blanks alone.

8 UNIX Implementation

4.1. File system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and reads
the i-node into primary memory. As in the buffer cache, the table entry is considered to be the
current version of the i-node. Modifications to the i-node are made to the table entry. When
the last access to the i-node goes away, the table entry is copied back to the secondary store i­
list and the table entry is freed.

All 1/0 operations on files are carried out with the aid of the corresponding i-node table
entry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References to the file system are
made in terms of path names of the directory tree. Converting a path name into an i-node
table entry is also straightforward. Starting at some known i-node (the root or the current
directory of some process), the next component of the path name is searched by reading the
directory. This gives an i-number and an implied device (that of the directory). Thus the next
i-node. table entry can be accessed. If that was the last component of the path name, then this
i-node is the result. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated.

The user process accesses the file system with certain primitives. The most common of
these are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2.

OPEN FILE
TABLE

PER-USER OPEN
FILE TABLE

ACTIVE I-NODE
TABLE

~FILE MAPPING
ALGORITHMS

Fig. 2- File System Data Structure

SWAPPED
PER/USER

RESIDENT
PER/SYSTEM

SECONDARY
STORAGE
PER/
FILE SYSTEM

In the system data segment associated with a user, there is room for some (usually
between I 0 and 50) open files. This open file table consists of pointers that can be used to
access corresponding i-node table entries. Associated with each of these open files is a current
1/0 pointer. This is a byte off set of the next read/write operation on the file. The system
treats each read/write request as random with an implied seek to the 1/0 pointer. The user
usually thinks of the file as sequential with the 1/0 pointer automatically counting the number
of bytes that have been read/written from the file. The user may, of course, perform random
I/O by setting the 1/0 pointer before reads/writes.

UNIX Implementation 9

With file sharing, it is necessary to allow related processes to share a common 1/0 pointer
and yet have separate I/0 pointers for independent processes that access the same file. With
these two conditions, the 1/0 pointer cannot re,side in the i-node table nor can it reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the 1/0 pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open file table entry. A pointer to the file table entry is placed in the system data seg­
ment for the process. create first creates a new i-node entry, writes the i-number into a direc­
tory, ~nd then builds the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the 1/0 pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point­
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i­
node has no directories pointing to it, then the file is removed and the i-node is freed. This
delayed removal of files prevents problems arising from removing active files. A file may be
removed while still open. The resulting unnamed file vanishes when the file is closed. This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are also
checks and synchroniration to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer.

4.2. Mounted file systems

The file system of a UNIX system starts with some designated block device formatted as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it.

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary to allow
easy unmounting of a device.

4.3. Other system functions

There are some other things that the system does for the user-a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter-process
communication.

The UNIX kernel is an 1/0 multiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For example, the UNIX kernel does not support file
access methods, file disposition, file formats, file maximum size, spooling, command language,
logical records, physical records, assignment of logical file names, logical file names, more than
one character set, an operator's console, an operator, log-in, or Jog-out. Many of these things
are symptoms rather than features. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the command language. 5 Each user may

10 UNIX Implementation

have his own command language. Maintenance of such code is as easy as maintaining user
code. The idea of implementing "system" code with general user primitives comes directly
from MULTICS.6

S. REFERENCES

[I] R. E. Griswold and D. R. Hanson. An Overview of SL5, SIG PLAN Notices 12(4):40-50
(April 1977).

[2] E. W. Dijkstra. Cooperating Sequential Processes, in Programming Languages, F. Genuys,
ed., pp. 43-112, Academic Press (1968).

[3] J. A. Hawley and W. B. Meyer. MUNIX, A Multiprocessing Version of UNIX, M.S. Thesis,
Naval Postgraduate School, Monterey, CA (1975).

[4] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing System, Bell Sys. Tech. J.
7(6):1905-29 (July-August 1978, Part 2).

(5] S. R. Bourne. UNIX Time-Sharing System: The UNJxShell, Bell Sys. Tech. J. 7(6):1971-90
(July-August 1978, Part 2).

[6] E. I. Organick. The MULTICS System, M.l.T. Press, Cambridge, MA (1972).

January 1981

.•

The UNIX 1/0 System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.5.2

This paper gives an overview of the workings of the UNIXt 1/0 system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file sys­
tem as discussed in the paper The UNIX Time-Sharing System. A more detailed discussion

· appears in UNIX Implementation; the current document restates parts of that one, but is still
more detailed. It is most useful in conjunction with a copy of the system code, since it is basi­
cally an exegesis of that code.

Dev ice Classes

There arc two classes of device: block and character. The block interface is suitable for
devices like disks, tapes, and DECtape which work, or can work, with addressable 512-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block can be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many rou­
tines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by a major and a minor device number. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher 8 bits; macros major and minor are available to access
these numbers. The major device number selects which driver will deal with the device; the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to a given con­
troller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overlap.

Overview of 1/0

The purpose of the open and creat system calls is to set up entries in three separate sys­
tem tables. The first of these is the u_ofile table, which is stored in the system's per-process
data area u. This table is indexed by the file descriptor returned by the open or creat, and is
accessed during a read, write, or other operation on the open file. An entry contains only a
pointer to the corresponding entry of the file table, which is a per-system data base. There is
one entry in the file table for each instance of open or creat. This table is per-system because
the same instance of an open file must be shared among the several processes which can result

t UNIX is a trademark of Bell Laboratories.

2 The UNIX 1/0 System

from forks after the file is opened. A file table entry contains flags which indicate whether the
file was open for reading or writing or is a: pipe, and a count which is used to decide when all
processes using the entry have terminated or closed the ale (so the entry can be abandoned).
There is also a 32-bit file off set which is used to indicate where in the file the next read or write
will take place. Finally, there is a pointer to the entry for the file in the inode table, which con­
tains a copy of the file's i-node.

Certain open files can be designated "multiplexed" files, and several other flags apply to
such channels. Jn such a case, instead of an off set, there is a pointer to an associated multiplex
channel table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creat; if the
same file is opened several times, it will have several entries in this table. However, there is at
most one entry in the inode table for a given file. Also, a file may enter the inode table not
only because it is open, but also because· it is the current directory of some process or because
it is a special file containing a currently-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed times are not stored, and the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to full long quantities.

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, etc.). However, the close routine is called only when
the last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is
not feasible for a device to maintain, or depend on, a count of its users, although it is quite
possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

When a read or write takes place, the user's arguments and the file table entry are used to
set up the variables u.u_base, u.u_count, and u.u_offset which respectively contain the (user)
address of the I/O target area, the byte-count for the transfer, and the current location in the
file. If the file referred to is a character-type special file, the appropriate read or write routine is
called; it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physical block number; a block-type special file
need not be mapped. This mapping is performed by the bmap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw table specifies the interface routines present for character devices. Each dev­
ice provides five routines: open, close, read, write, and special-function (to implement the ioctl
system call). Any of these may be missing. If a call on the routine should be ignored, (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as nu/ldev:
if it should be considered an error, (e.g. write on read-only devices) nodev is ·used. For termi­
nals, the cdevsw structure also contains a pointer to the tty structure associated with the termi­
nal.

The open routine is called each time the file is opened with the full device number as
argument. . The second argument is a flag which is non-zero only if the device is to be written
upon.

The close routine is called only when the file is closed for the last time, that is when the
very last process in which the file is open closes it. This means it is not possible for the driver

The UNIX 1/0 System 3

to maintain its own count of its users. The first argument is the device number; the second is a
flag which is non-zero if the file was open for writing in the process which performs the final
close.

When write is called, it is supplied the device as argument. The per-user variable
u.u_count has been set to the number of characters indicated by the user; for character devices,
this number may be 0 initially. u.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the Hag u.u_segflg is supplied
that indicates, if on, that u.u_base refers to the system address space instead of the user's.

The write routine should copy up to u.u_count characters from the user's buffer to the
device, decrementing u.u_count for each character passed. For most drivers, which work one
character at a time, the routine cpass() is used to pick up characters from the user's buffer.
Successive calls on it return the characters to be written until u.u_count goes to 0 or an error
occurs, when it returns -1. Cpass takes care of interrogating u.u_segflg and updating
u.u_count.

Write routines which want to transfer a probably large number of characters into an inter­
nal buff er may also use the routine iomove{buffer, offset, count, flag) which is faster when many
characters must be moved. Iomove transfers up to count characters into the buffer starting
offset bytes from the start of the buffer; flag should be B_WRITE (which is 0) in the write
case. Caution: the caller is responsible for making sure the count is not too large and is non­
zero. As an efficiency note, iomove is much slower if any of buffer+offset, count or u.u_base is
odd.

The device's read routine is called under conditions similar to write, except that u.u_count
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is available;
it takes care of housekeeping like cpass and returns -1 as the last character specified by
u.u_count is returned to the user; before that time, 0 is returned. Iomove is also usable as with
write; the flag should be B_READ but the same cautions apply.

The "special-functions" routine is invoked by the stty and gtty system calls as follows:
(*p) (dev, v) where p is a pointer to the device's routine, dev is the device number, and v is a
vector. In the gtty case, the device is supposed to place up to 3 words of status information
into the vector; this will be returned to the caller. In the stty case, v is O; the device should
take up to 3 words of control information from the array u.u_arg[0 ... 2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is turned into a C-compatible call on the device's interrupt routine. The interrupt­
catching mechanism makes the low-order four bits of the "new PS" word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with multiple similar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buff er characters in the internal interface
between their "top half' (read/write) and "bottom half" (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
getc and putc. A queue header has the structure

struct {
int
char
char

} queue;

c_cc;
*C_cf;
•c_cl;

/* character count •/
/• first character •/
/* last character*/

A character is placed on the end of a queue by putc(c, &queue) where c is the character and
queue is the queue header. The routine returns -l if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by getc(&queue) which returns
either the (non-negative) character or -l if the queue is empty.

4 The UNIX 1/0 System

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are onty some 600 character slots available. Thus device
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of
characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The
call sleep(event, priority) causes the process to wait (allowing other processes to run) until the
event occurs; at that time, the process is marked ready-to-run and the call will return when
there is no process with higher priority.

The call wakeup(event) indicates that the event has happened, that is, causes processes
sleeping on the event to be awakened. The event is an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened;
they should check that the conditions which caused them to sleep no longer hold.

Priorities can range from 0 to 127; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event which might never occur. On the other hand, calls
to sleep with larger priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to call sleep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sleep.
Likewise, none of the variables in the user area "u." should be touched, let alone changed, by
an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible
to supply a wakeup, (for example, a device going on-line, which does not generally cause an
interrupt), the call sleep(&lbolt, priority) may be given. Lbolt is an external cell whose address
is awakened once every 4 seconds by the clock interrupt routine.

The routines sp/4(), sp/5(), sp/6(), sp/7() are available to set the processor priority level
as indicated to avoid inconvenient interrupts from the device.

If a device needs to know about real-time intervals, then timeout(fune, arg, interval) will
be useful. This routine arranges that after interval sixtieths of a second, the June will be called
with arg as argument, in the style (*June)(arg). Timeouts are used, for example, to provide
real-time delays after function characters like new-line and tab in typewriter output, and to ter­
minate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified June is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-Del'ice Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that access the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequently. The main data base for this
mechanism is the table of buffers buf Each buffer header contains a pair of pointers (bJorw.
b_baek) which maintain a doubly-linked list of the buffers associated with a particular block
device, and a pair of pointers (avJorw, av_back) which generally maintain a doubly-linked list
of blocks which are "free," that is, eligible to be reallocated for another transaction. Buffers
that have 1/0 in progress or are busy for other purposes do not appear in this list. The buffer

The UNIX 1/0 System 5

header also contains the device and block number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the
number of words to be transferred to or from the buffer; there is also an error byte and a resi­
dual word count used to communicate information from an 1/0 routine to its caller. Finally,
there is a flag word with bits indicating the status of the buffer. These flags will be discussed
below.

Seven routines constitute the most important part of the interface with the rest of the sys­
tem. Given a device and block number, both bread and getblk return a pointer to a buffer
header for the block; the difference is that bread is guaranteed to return a buffer actually con­
taining the current data for the block, while getblk returns a buffer which contains the data in
the block only if it is already in core (whether it is or not is indicated by the B_DONE bit; see
below). In either case the buffer, and the corresponding device block, is made "busy," so that
other processes referring to it are obliged to wait until it becomes free. Getblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not use­
ful; still, no other process can be allowed to refer to the block until the new data is placed into
it. .

The breada routine is used to implement read-ahead. it is logically similar to bread, but
takes as an additional argument the number of a block (on the same device) to be read asyn­
chronously after the specifically requested block is available.

Given a pointer to a buffer, the brelse routine makes the buff er again available to other
processes. It is called, for example, after data has been extracted following a bread. There are
three subtly-different write routines, all of which take a buffer pointer as argument, and all of
which logically release the buffer for use by others and place it on the free list. Bwrite puts the
buff er on the appropriate device queue, waits for the write to be done, and sets the user's error
flag if required. Bawrite places the buffer on the device's queue, but does not wait for comple­
tion, so that errors cannot be reflected directly to the user. Bdwrite does not start any 1/0
operation at all, but merely marks the buffer so that if it happens to be grabbed from the free
list to contain data from some other block, the data in it will first be written out.

Bwrite is used when one wants to be sure that 1/0 takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrite is useful
when more overlap is desired (because no wait is required for 1/0 to finish) but when it is rea­
sonably certain that the write is really required. Bdwrite is used when there is doubt that the
write is needed at the moment. For example, bdwrite is called when the last byte of a write sys­
tem call falls short of the end of a block, on the assumption that another write will be given
soon which will re-use the same block. On the other hand, as the end of a block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block
exclusively to the use of the caller, and make others wait, while one of bre/se, bwrite, bawrite, or
bdwrite must eventually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buff er. Since they provide one important channel for information between the drivers and the
block I/O system, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below)
to indicate a read operation. The symbol B_WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience to callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally as the result of an error.
It is also used as part of the return argument of getblk to indicate if 1 that the
returned buffer actually contains the data in the requested block.

6 The UNIX 1/0 System

B_ERROR This bit may be set to 1 when B_DONE is set to indicate that an I/O or other error
occurred. If it is set the b_error byte of the buffer header may contain an error code
if it is non-zero. If b_error is 0 the nature of the error is not specified. Actually no
driver at present sets b_error; the latter is provided for a future improvement
whereby a more detailed error-reporting scheme may be implemented.

B_BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
someone's exclusive use. The buffer still remains attached to the list of blocks asso­
ciated with its device, however. When getblk (or bread, which calls it) searches the
buff er list for a given device and finds the requested block with this bit on, it sleeps
until the bit clears.

B_PHYS This bit is set for raw 1/0 transactions that need to allocate the Unibus map on an
11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the iodone rou­
tine knows to deallocate the map.

B_ W ANTEDThis flag is used in conjunction with the B_BUSY bit. Before sleeping as
described just above, getblk sets this flag. Conversely, when the block is freed and
the busy bit goes down (in brelse) a wakeup is given for the block header whenever
B_W ANTED is on. This stratagem avoids the overhead of having to call wakeup
every time a buffer is freed on the chance that someone might want it.

B_AGE This bit may be set on buffers just before releasing them; if it is on, the buffer is
placed at the head of the free list, rather than at the tail. It is a performance heuris­
tic used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been finished, usually at interrupt time. The
difference between bwrite and bawrite is that the former starts 1/0, waits until it is
done, and frees the buffer. The latter merely sets this bit and starts 1/0. The bit
indicates that relse should be called for the buffer on completion.

B_DELWRIThis bit is set by bdwrite before releasing the buffer. When getb/k, while searching
for a free block, discovers the bit is 1 in a buffer it would otherwise grab, it causes
the block to be written out before re-using it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final close of the device. Instead of separate read
and write routines, each block device driver has a Strategy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the block number, a (negative) word count, and the major and minor device
number. The role of the strategy routine is to carry out the operation as requested by the
information in the buffer header. When the transaction is complete the B_DONE (and possibly
the B_ERROR) bits should be set. Then if the B_ASYNC bit is set, brelse should be called;
otherwise, wakeup. In cases where the device is capable, under error-free operation, of transfer­
ring fewer words than requested, the device's word-count register should be placed in the resi­
dual count slot of the buffer header; otherwise, the residual count should be set to 0. This par­
ticular mechanism is really for the benefit of the magtape driver; when reading this device
records shorter than requested are quite normal, and the user should be told the actual length
of the record.

Although the most usual argument to the strategy routines is a genuine buff er header
allocated as discussed above, all that is actually required is that the argument be a pointer to a
place containing the appropriate information. For example the swap routine, which manages
movement of core images to and from the swapping device, uses the strategy routine for this

The UNIX 1/0 System 7

device. Care has to be taken that no extraneous bits get turned on in the flag word.

The device's table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (bJorw,
b_back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer-chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum to indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to the strategy routines are never on the list of free buffers, the pointers in the
buffer which maintain the free list (avJorw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers. iodone(bp)
arranges that the buffer to which bp points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latter
case the B_ERROR bit has presumably been set.)

The routine geterror(bp) can be used to examine the error bit in a buffer header and
arrange that any error indication found therein is reflected to the user. It may be called only in
the non-interrupt part of a driver when 1/0 has completed (B_DONE has been set).

Raw Block-Device 1/0
A scheme has been set up whereby block device drivers may provide the ability to

transfer information directly between the user's core image and the device without the use of
buffers and in blocks as large as the caller requests. The method involves setting up a
character-type special file corresponding to the raw device and providing read and write routines
which set up what is usually a private, non-shared buffer header with the appropriate informa­
tion and call the device's strategy routine. If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

A great deal of work has to be done to generate the "appropriate information" to put in
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio{strat, bp, dev, rw) whose arguments
are the name of the strategy routine strat, the buff er pointer bp, the device number dev, and a
read-write flag rw whose value is either B_READ or B_WRITE. Physio makes sure that the
user's base address and count are even (because most devices work in words) and that the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.

January 1981

-.

UNIX on the PDP-11/23 and 11/34 Computers

T. J. Kowalski

Bell Laboratories
Murray Hill, New Jersey 07974

I. INTRODUCTION

UNIX

F.5.3

During the past few years, the use of mini/micro computers in networks and small laboratory
systems has steadily increased. Currently, the UNIXt operating system, used throughout the
Bell System, is running primarily on DEC PDP-1 I /70s. With the advent of inexpensive comput­
ers similar in architecture to the PDP-I I/70, in particular the PDP-11/23 microcomputer and the
PDP-11/34 minicomputer, it became important that UNIX be available for these systems. The
author set out, in June of 1978, to move UNIX from the PDP-I I/70 to the PDP-11/34. The
first version of UNIX on a PDP- I I /34 with RLOl disk drives ran in July of l 97S.

This paper describes architectural differences between the PDP-11 /70 and the PDP- I I /34
hardware, 1 their interaction with the UNIX operating system, and the changes the author imple­
mented in that system to make it run on the PDP-11/34, along with some considerations for the
future.

2. ARCHITECTURAL DIFFERENCES THAT AFFECT UNIX

There are many architectural differences between the PDP-11 /70 and the PDP- I I /34. For our
purposes, it is important to understand only the differences that affect UNIX. The memory­
management (MM) system, the availability of an instruction-backup register, the availability of
additional register sets, the program-interrupt request register, and the set-priority-level instruc­
tion are all differences that affect the implementation of UNIX.

2.1 Memory Management

The PDP-11 family of computers is based upon a sixteen-bit virtual-address architecture. This
architecture is implemented using pairs of MM registers. Each pair is composed of a MM­
address register (containing the base physical address for mapping) and a MM-page-descriptor
register (containing the length in bytes to be mapped and the direction of page expansion).
The virtual address is mapped into a physical address by choosing a MM-address register and
adding its contents times 0100 (octal) to the thirteen low-order bits of the virtual address.
Thus, a pair of MM registers can map SK bytes of virtual memory into SK bytes of physical
memory. The MM-address register is chosen by considering the current CPU mode (kernel,
user, or supervisor), the type of memory reference (instruction space or data space), and the
three high-order bits of the virtual address.

The PDP-l l/70 has three CPU modes: kernel mode (K-mode), user mode (U-mode), and super­
visor mode (S-mode). Each of these modes allows two types of reference: instruction space and
data space. 2 Each type of reference has eight pairs of MM registers. Thus, the PDP- I I /70 has
sixteen pairs each of K-mode, U-mode, and S-mode MM registers. These 4S pairs of MM regis­
ters enable the PDP-11 /70 to access 3S4K bytes of physical memory.

The PDP-11/34, on the other hand, has only two CPU modes: K-mode and U-mode. Each of
these modes allows only one type of reference (instruction space), which has eight pairs of MM
registers. Thus, the PDP- I I /34 has eight pairs each of K-mode and U-mode MM registers.

t UNIX is a trademark of Bell Laboratories.

I. Unless explicitly stated otherwise, all references to the PDP-11/34 can be also applied to the PDP·l 1/23.

2. Instruction space is used for all instruction fetches, index words, absolute addresses, and immediate operands.
Data space is used for all other references.

2 UNIX on the PDP-11/34

These 16 pairs of MM registers enable the _PDP- I I /34 to access I 28K bytes of physical memory.

The absence of the data-space reference type on the PDP-11/34 requires all references to be
mapped through the instruction space. This reduces the total amount of virtual memory per
CPU mode from I 28K bytes on the PDP-11/70 to 64K bytes on the PDP-11/34. This is by far
the most serious restriction in moving the operating system and user programs from the PDP-
1 I /70 to the PDP- I I /34.

In many instances, the operating system moves data from the user to itself and vice versa.
This requires the operating system to access physical memory not currently mapped by its K­
mode MM registers. To accomplish this, the UNIX operating system must temporarily use MM
registers belonging to another CPU mode. In the PDP-I I/70, the S-mode is not used by UNIX.
Therefore, the PDP-11/70 operating system uses its S-mode MM registers for this temporary
addressability. Because the PDP- I I /34 lacks a S-mode, the PDP- I I /34 operating system must
use its U-mode MM registers. This difference requires additional U-mode MM register saving
and restoring in the PDP- I I /34. This is a disadvantage both in CPU time and in the kernel
space taken up by the code that saves these registers.

2.2 Instruction Backup

Temporary variables in a user program are stored in a last-in first-out data structure, which is
called a stack. A user program in UNIX is run with an initial stack size of 768 bytes, which is
expandable in 768 byte increments. The operating system will attempt to increase the stack size
when it receives a MM trap from U-mode. After increasing the stack size, the program counter
must be backed up and the instruction that caused the MM trap restarted. Unfortunately, some
of the addressing modes of the PDP- I I have side effects that affect the general-purpose regis­
ters. These addressing modes are auto-increment/decrement of the general-purpose registers,
and explicit references through the program counter. Thus, to restart an instruction, these side
effects must be undone. On the PDP- I I /70, there is a MM register, MMR I, that records any
side effects on the general-purpose registers during execution of instructions. This register is
used to reset the registers prior to restarting the instruction. The lack of this register for the
PDP-I I/34 forces a simulation of the source and destination addressing modes of the instruc­
tion that caused the MM trap. The lack of this register is very expensive in terms of kernel
space taken up by the code that does this simulation.

2.3 Additional Set of General-Purpose Registers

The PDP- I I /70 has a set of six additional general-purpose registers. Several critical UNIX rou­
tines run with interrupts disabled and utilize this set of registers. Because the PDP-I 1/34 lacks
this set of registers, the PDP-11/34 UNIX must also use its registers for this purpose. This
requires additional register saving and restoring, requiring more code in the kernel and more
CPU time.

2.4 Program-Interrupt-Request Register

The PDP-11/70 has a program-interrupt-request register. This register is used to detect when
the CPU is running at a priority level lower than or equal to a predefined priority level.

The UNIX operating system's algorithm for power-fail recovery depends on reaching a quiescent
state3 before processing the power-fail I/O recovery algorithm. This is accomplished by setting
the program-interrupt-request register to interrupt when the CPU reaches priority level I. The
lack of this register in the PDP-11/34 forces its simulation when UNIX returns from interrupts.
Because the UNIX operating system processes a great deal of interrupts, even a small amount of

3. Meaning that all interrupt processing started before the power-fail trap '.'IUSt be completed.

UNIX on the PDP-11/34

additional CPU time per interrupt is very costly.

2.S Set-Priority-Level Instruction

3

Each time the UNIX operating system enters and exits critical pieces of kernel code, the CPU
priority level is changed. The PDP-1 I /70 operating system uses the set-priority-level instruction
(SPL). The Jack of this instruction causes the PDP-11/34 to use a combination of bit-set and
bit-clear instructions upon the processor status word (PSW). Because the UNIX operating sys­
tem changes CPU priority levels a great deal, even a small amount of additional time per prior­
ity level change is also very costly.

3. IMPLEMENTATION OF PDP-11/34 UNIX

Moving UNIX from the PDP- I I /70 to the PDP-11 /34 required the author to write the machine­
language assist functions for the PDP-11/34; these functions are written in the assembly
language of the target computer to perform the following tasks:

• fault handling;
• memory management;
• speed-critical I/0 and arithmetic operations;
• stack frame manipulation;
• hardware priority setting;
• register save and restore;
• machine-interrupt call to C procedure;

The PDP-11 /34 machine-language assist functions are written with the same calling conventions
as the PDP-11 /70 machine-language assist functions and return the same values. This allows
the same UNIX C language functions to be used on the PDP-11 /70 and the PDP-11 /34. In writ­
ing the PDP-11/34 machine-language assist functions, the author chose to partition the func­
tions into separate files, as opposed to keeping the traditional mch. s file. This organization
simplifies the management of the source code.

The module partitions and the algorithms used to handle the architectural differences described
in Section 2 above are discussed in this section.

3.1 Module Names

The modules are subdivided by function. All defines are in mch. h, all the storage declarations
are in end.s. The modules are listed below alphabetically, with a brief description of their func­
tion:

backup.s

bufio.s
dist. s
copy.s

csubr.s
cswitch.s

end.s
fpp.s
math.s
mch.h
misc.s
power.s

attempt to back up an instruction that was only partially executed due to a MM
trap from U-mode.
read and write of byte, integers, and longs in physical memory.
put and get functions for the cblock structure.
read and write large blocks of memory from virtual addresses to physical
addresses, copy 64 bytes, clear 64 bytes, read and write from K-mode virtual
addresses to U-mode virtual addresses.
save and restore registers that maintain the C stack frame.
save and restore the user's registers and switch the operating system's idea of
who is the currentl.y-running user.
storage declarations.
save and restore the double-floating-point registers and status word.
long division, long remainder, minimum, and maximum functions.
header file containing constants and definitions.
process accounting and set~CPU-priority level.
save the state of the machine on a loss-of-power interrupt and restore the state
of the machine on a resumption-of-power interrupt.

4 UNIX on the PDP-11/34

initialize MM registers, clear storage, and call main. start.s
trap.s
userio.s

all the fault handlers and the machine interrupt call to C procedure.
read and write words and bytes in user's virtual addresses.

3.2 General Algorithms

The detailed description of the algorithms used to provide the functions necessary for the
machine-language assist functions is divided into four categories. The algorithms manipulate
the MM system, simulate the MMR I register, simulate the program-interrupt-request register,
and simulate the set-priority-level instruction.

3.2.J Memory Management. In many instances, the operating system needs to access physical
memory not currently mapped by the K-mode MM registers. The algorithm used to read and
write physical memory utilizes the U-mode MM registers and the "move from/to previous
instruction space" (MFPI/MTPI) instruction. To free the U-mode MM registers the old values
must be saved on the kernel stack along with the current PSW; then the previous CPU mode
(indicated by the PSW) must be set to U-mode. The Jong physical address is loaded into a pair
of general-purpose registers and shifted ten bits to the left. The sixteen high-order bits of the
result are the base physical address in core clicks4 for the virtual address. The base address is
loaded into a U-mode MM-address register and a 0774065 (octal) is loaded into the correspond­
ing MM-page-descriptor register. The sixteen high-order bits are cleared with the exception of
bits 9-7, which indicate which U-mode MM register pair is used. The general-purpose registers
are shifted six bits to the left. The sixteen high-order bits of the result are the virtual address
for U-mode reads or writes. This virtual address is used with the MFPI/MTPI instructions, with
a special case if the zero bit is set: this indicates a byte address not on a word boundary. Unfor­
tunately, the MFPI/MTPI instructions only transfer from/to word boundaries. To MFPI this first
byte, the function MFPls a word from the virtual address whose bit zero is cleared, then returns
the high-order byte of the word fetched. To MTPI this first byte, the function MFPis a word
from the virtual address whose bit zero is cleared, then places the first byte in the high-order
byte of the word fetched, finally it MTPis the word back to the same virtual address. When all
transfers are completed, the old values of the memory management registers are restored, and
then the old value of the PSW is restored.

3.2.2 /nstrudion Backup. In order to increase a user's stack space, the UNIX operating system
must be able to restart a user's instruction. To restart an instruction, all addressing-mode side
effects on general-purpose registers must be undone. The addressing modes that have such
side effects are auto-increment/decrement and explicit references through the program counter.
The algorithm used to correct the general-purpose registers starts by fetching the instruction to
be restarted and deciding upon the number and type of its addressing modes. The number and
type of addressing modes are calculated by decoding bits 15-12 for all instructions, bits 11-9 for
instructions with bits 15-12 equal to 0000, 1000, or 1111 (binary), and bits 8-6 for instructions
with bits 15-9 equal to 1111000 (binary). The possible side effects on the general-purpose
registers are calculated for each addressing mode, assuming a MM trap did not occur. A MM
trap will cause instructions to be partially executed, which means that not all the side effects
necessarily occur. Thus, it must be determined which addressing mode caused the MM trap in
order to determine which side effects must be undone. If the instruction has one addressing
mode affecting a general-purpose register, then that is the addressing mode that caused the
fault. The general-purpose register is corrected and the routine exits. If the instruction has two
addressing modes affecting general-purpose registers, the source and the destination addressing
must be checked to determine which one caused the fault. If the source addressing mode

4. A core click is defined as 64 bytes of memory.

5. Thereby allowing the reading and writing of SK bytes.

UNIX on the PDP-11/34 5

caused the fault, only tQe source general-purpose register is corrected. If the destination
addressing mode caused the fault, both general-purpose registers are corrected. This algorithm
is not capable of correcting the general-purpose registers for instructions using the same
general-purpose register for both source and destination addressing modes with side effects.
Fortunately, the C compiler does not generate instructions using this combination of addressing
modes.

3.2.3 Program-Interrupt-Request Register. The UNIX operating system requires the ability to
detect when the CPU is running at a priority level equal to or lower than a level determined by
the program-interrupt-request (PIR) register. To exactly simulate this register, the CPU priority
should be examined before each change in priority level. This is expensive in terms of CPU
time and, fortunately, unnecessary for UNIX; it is sufficient to check the priority level before
each return from an interrupt. Just before the return-from-interrupt instruction is executed,
the simulated PIR register is examined. If it is zero, the normal return from an interrupt
sequence is followed. Otherwise, a register is counted down from 7, as the high-order byte of
the simulated PIR register is shifted left. When a one is shifted out of the high-order byte of
the PIR, the count-down register contains the priority level that should be used to compare
against. The register is shifted left, moved to the low-order byte of the PIR, shifted another 4
bits left, and or'ed to the low-order byte of the PIR. The setting up of this byte is necessary to
correctly sim~late the PIR register of the PDP-11/70. The register now contains the desired
priority level. Bits 7-5 of this register are compared to bits 7-5 of the PSW that was saved on
the kernel stack when the interrupt occurred. If the saved PSW is greater then the desired
priority level, the normal return from an interrupt sequence is followed. Otherwise, the con­
tents of the program-interrupt-request vector (locations 0242 and 0240 octal) are pushed on the
kernel stack and a return-from-interrupt instruction is executed to simulate the the PIR inter­
rupt.

3.2.4 Set-Priority-Leve/ Instrudion. The UNIX operating system must be able to change CPU
priority levels upon entering and exiting critical sections of code. To change priority levels, the
PDP- I I /34 must use a combination of bit-set and bit-clear instructions on the PSW. To change
priority levels, the PSW must be brought to the high-priority level by bit-setting the PSW with a
0340 (octal) and then dropped down to the desired priority level by bit-clearing the unwanted
priority bits. Changing to a high-priority level ensures that interrupts of a lower-priority level
are not granted until the proper time. The only two exceptions are changing to priority-level 7,
which is done by bit-setting the PSW with a 0340 (octal), and changing to priority-level 0, which
is done by bit-clearing the PSW with a 0340 (octal).

4. INCREASING EFFECTIVE KERNEL SPACE

After the machine-language assist functions were written, the UNIX operating system ran on
the PDP-11/34. It had enough room for an RLOl disk driver, a DZll terminal multiplexer, 30
processes, 9 system buffers, and 70 inodes. That PDP-11 /34 UNIX operating system utilized
less than 64K bytes of memory. However, this did not leave room for more device drivers,
other desired kernel functions, or growth of system tables. Because the virtual-address space is
limited by the PDP-11/34's MM hardware, only the effective-address space of the kernel may be
increased. This section discusses the possible algorithms to increase the effective-address space
and their interaction with the UNIX operating system.

4.1 Buffers

The single largest resource within the UNIX operating system is dedicated to the I/O buffer
pool. Each entry consists of a buffer header of 26 bytes and an actual buff er of 512 bytes.
Because the UNIX operating system does not always require direct addressability of its system
buffers, the buffers may be moved out of kernel-address space. There are two possible algo­
rithms for moving the buffers out of kernel-address space.

6 UNIX on the PDP-11/34

The first algorithm changes a K-mode MM register whenever addressability of a given buff er is
required. This algorithm is fast. However, ef(ective use of space requires the operating system
to have 16 buffers, which fully utilized the address space of a MM register. When using IO to
15 buffers, the amount of CPU time spent in searching the buffer pool is equal to the CPU time
spent in re-doing the 1/0. Therefore, this algorithm is not well suited for the small number of
buffers usually found in the PDP-11/34 operating system. The author chose not to implement
this algorithm, but to implement the following algorithm.

The second algorithm does not require a .kernel MM register. It copies the contents of the
buffers outside the kernel-address space to the kernel, using the machine-language assist func­
tions. This algorithm is slower, but better suited to the number of buffers in the PDP- I I /34.
The impact of this algorithm on the PDP-I I /34 operating system required the author to change
buffer content references to function calls that copy bytes, integers, longs, and arbitrary
numbers of bytes between physical addresses and virtual addresses, and place a copy of the
current inode in the user block. For the sake of efficiency, a small number of kernel­
addressable buffers is also maintained. These buffers are used as in-core copies of super-blocks
and by some 1/0 devices.

4.2 User Block

The UNIX operating system controls the execution of a user process by keeping information
about the state of the process in a structure called a user block. The PDP- 11 /70 operating sys­
tem uses a windowing algorithm to address the user block. The windowing algorithm requires
changing a kernel MM register to map a user block into its address space. Thus, the user block
(which resides in memory locations preceding the corresponding process) is addressed as part of
the operating system. The user block occupies I K bytes of the SK bytes available for mapping
by a MM register. This windowing algorithm allows the operating system to quickly exchange
user blocks by modifying a MM register. In expanding the effective-address space for the PDP-
11 /34 operating system, the author chose to use a slower algorithm that exchanges user blocks
by copying them between kernel-address space and the locations preceding the user process.
The advantage of this approach is that the MM register used by the PDP-11/70 version to
address the 1 K byte user block is now used to map SK bytes of kernel-address space. This
results in a gain of 7K bytes of kernel-address space. This algorithm required changes to the
routines that exchange user blocks. These routines involve saving the current state of a process
and resuming the previous state. When a user process is saved, the kernel-addressable user
block is saved in the memory locations preceding the process. When a user process is resumed,
the kernel-addressable user block is restored from the memory locations preceding the process.
For the sake of efficiency setjmp and longjmp routines have replaced save and resume routines
where only non-local gotos were required.

4.3 Other Possibilities

The author investigated many other possibilities to increase the effective-address space of the
PDP- 1 l /34 UNIX operating system. Following is a list of ideas that were considered, with the
reasons for their rejection:

1. Temporary removal of inactive inodes from kernel-address space. This would be a saving
of 76 bytes per removed inode. The amount of code to implement this idea had a br.eak­
even point.of about 15 inodes. In the PDP-11/34 system, there are rarely 15 inactive allo­
cated inodes.

2. Export of read-only super-blocks. The amount of code to implement the moving of the
read-only super-blocks out of kernel-address space outweighs the advantage of their remo­
val due to the small number of read-only file systems.

3. Pruning of the operating system. Space can be recovered by removing infrequently used
operating system functions. The error logger, ptrace, and profiling routines could be
removed. The author feels this form of space saving should only be used as a last resort,

UNIX on the PDP-11/34

because the resulting system is no longer a true UNIX system.

4.4 Under Consideration

7

The author is currently investigating other possibilities to increase the effective-address space' of
the PDP- I I /34 UNIX operating system. Following is a list of ideas that are being considered:

l. Implementing device drivers as user programs. Infrequently used device drivers may be
written as user programs. This, coupled with a system call that gives the user addressabil­
ity of the I/O page, could be an effective saver of space for such device drivers as mag­
netic tape and line printers.

2. Using segmentation overlay within the operating system. Infrequently used functions
within the operating system could be placed outside of kernel-address space. When these
functions are needed, the contents of the MM registers would be modified to place these
segments in kernel-address space. This would be done (invisibly to both the operating
system and to user programs) by modifying the loader and adding machine-language assist
functions. The modifications would insert, at subroutine calls, code for invoking
machine-language assist functions that would, in turn, modify appropriately the contents
of the MM registers.

ACKNOWLEDGEMENT

I would like to thank Larry A. Wehr for advice that lead to the first version of UNIX for the
PDP-11/34. I would like to especially thank Sharon Murrel and James Goodnow, II for being
patient users of my many experimental operating systems.

REFERENCES

[I] Ritchie, D. M., and Thompson, K., The UNIX Time-Sharing System, The Bell System
Technica/Journal 57, 6 (July-August 1978, Part 2), pp. 1905-29.

[2] Thompson, K., UNIX Time-Sharing System: UNIX Implementation, The Bell System
Technical Journal 57, 6 (July-August 1978, Part 2), pp. 1931-46.

January 1981

INTRODUCTION

UNIX Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.5.4

This document describes the usage and input syntax of the UNTXt PDP-11 assembler as.
The details of the PDP-11 are not described.

The input syntax of the UNIX assembler is generally similar to that of the DEC assemblei:
PAL-llR, although its internal workings and output format are unrelated. It may be useful to
read the publication DEC-11-ASDB-D, which describes PAL-11 R, although naturally one must
use care in assuming that its rules apply to as.

As is a rather ordinary assembler without macro capabilities. It produces an output file
that contains relocation information and a complete symbol table; thus the output is acceptable
to the UNIX link-editor Id, which may be used to combine the outputs of several assembler
runs and to obtain object programs from libraries. The output format has been designed so that
if a program contains no unresolved references to external symbols, it is executable without
further processing.

I. USAGE

as is used as follows:

as [-u] [-o output] file, ...

If the optional "-u" argument is given, all undefined symbols in the current assembly will be
made undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs
may be written in several pieces and assembled together.

The output of the assembler is by default placed on the file a.out in the current directory;
the "-o" flag causes the output to be placed on the named file. If there were no unresolved
external references, and no errors detected, the output file is marked executable; otherwise, if
it is produced at all, it is made non-executable.

2. LEXICAL CONVENTIONS

Assembler tokens indude identifiers (alternatively, "symbols" or "names"), temporary
symbols, constants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (including period ". ",
underscore "-", and tilde .. -,, as alphanumeric) of which the first may not be numeric. Only
the first eight characters are significant When a name begins with a tilde, the tilde is discarded
and that occurrence of the identifier generates a unique entry in the symbol table which can
match no other occurrence of the identifier. This feature is used by the C compiler to place

t UNIX is a trademark of Bell Laboratories.

2 UNIX Assembler

names of local variables in the output symbol table without having to worry about making them
unique.

2.2 Temporary Symbols

A temporary symbol consists of a digit followed by "f" or "b". Temporary sym bots are
discussed fully in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; "8" and "9" are taken to have octal
value 10 and 11. The constant is truncated to 16 bits and interpreted in two's complement
notation.

A decimal constant consists of a sequence of digits terminated by a decimal point ".".
The magnitude of the constant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote "'" followed by an ASCII character
not a new-line. Certain dual-character escape sequences are acceptable in place of the ASCII
character to represent new-line and other non-graphics (see String statements, §5.5). The
constant's value has the code for the given character in the least significant byte of the word
and is null-padded on the left.

A double-character constant consists of a double quote """ followed by a pair of ASCII
characters not including new-line. Certain dual-character escape sequences are acceptable in
place of either of the ASCII characters to represent new-line and other non-graphics (see String
statements, §5.5). The constant's value has the code for the first given character in the least
significant byte and that for the second character in the most significant byte.

2.4 Operators

There are several single- and double-character operators; see §6.

2.5 Blanks

Blank and tab characters may be interspersed freely between tokens, but may not be used
within tokens (except character constants). A blank or tab is required to separate adjacent
identifiers or constants not otherwise separated.

2.6 Comments

The character "/" introduces a comment, which extends through the end of the line on
which it appears. Comments are ignored by the assembler.

3. SEGMENTS

Assembled code and data fall into three segments: the text segment, the data segment,
and the bss segment. The text segment is the one in which the assembler begins, and it is the
one into which instructions are typically placed. The UNIX system will, if desired, enforce the
purity of the text segment of programs by trapping write operations into it. Object programs
produced by the assembler must be processed by the link-editor Id (using its "-n" flag) if the
text segment is to be write-protected. A single copy of the text segment is shared among all
processes executing such a program.

The data segment is available for placing data or instructions which will be modified dur­
ing execution. Anything which may go in the text segment may be put into the data segment.
In pr.ograms with write-protected, sharable text segments, data segment contains the initialized
but variable parts of a program. If the text segment is not pure, the data segment begins
immediately after the text segment; if the text segment is pure, the data segment begins at the
lowest SK byte boundary after the text segment.

UNIX Assembler 3

The bss segment may not contain any explicitly initialized code or data. The length of the
bss segment (like that of text or data) is determined by the high-water mark of the location
counter within it. The bss segment is actually an extension of the data segment and begins
immediately after it. At the start of execution of a program, the bss segment is set to 0. Typi-
cally the bss segment is set up by statements exemplified by: ·

lab: • = .+IO

The advantage in using the bss segment for storage that starts off empty is that the initialization
information need not be stored in the output file. See also Location counter and Assignment
statements below.

4. THE LOCATION COUNTER

One special symbol, ". ", is the location counter. Its value at any time is the offset
within the appropriate segment of the start of the statement in which it appears. The location
counter may be assigned to, with the restriction that the current segment may not change; ·
furthermore, the value of "." may not decrease. If the effect of the assignment is to increase
the value of".", the required number of null bytes are generated (but see Segments above).

5. ST A TEMENTS

A source program is composed of a sequence of statements. Statements are separated
either by new-lines or by semicolons. There are five kinds of statements: null statements,
expression statements, assignment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a
name followed by a colon (:). The effect of a name label is to assign the current value and
type of the location counter "." to the name. An error is indicated in pass 1 if the name is
already defined; an error is indicated in pass 2 if the " . " value assigned changes the definition
of the label.

A numeric label consists of a digit 0 to 9 followed by a colon (:). Such a label serves to
define temporary symbols of the form "n b" and "n f ", where n is the digit of the label. As in
the case of name labels, a numeric label assigns the current value and type of "." to the tem­
porary symbol. However, several numeric labels with the same digit may be used within the
same assembly. References of the form "nf" refer to the first numeric label "n:" forward
from the reference; "nb" symbols refer to the first "n :" label backward from the reference.
This sort of temporary label was introduced by Knuth [The Art of Computer Programming, Vol. I:
Fundamental Algorithms]. Such labels tend to conserve both the symbol table space of the
assembler and the inventive powers of the programmer.

5.2 Null Statements

A null statement is an empty statement (which may, however, have labels). A null state­
ment is ignored by the assembler. Common examples of null statements are empty lines or
lines containing only a label.

5.3 Expression Statements

An expression statement consists of an arithmetic expression not beginning with a key­
word. The assembler computes its (16-bit) value and places it in the output stream, together
with the appropriate relocation bits.

4 UNIX Assembler

5.4 Assignment Statements

An assignment statement consists of an identifier, an equals sign (=). and an expression.
The value and type of the expression are assigned to the identifier. It is not required that the
type or value be the same in pass 2 as in pass l, nor is it an error to redefine any symbol by
assignment.

Any external attribute of the expression is lost across an assignment. This means that it
is not possible to declare a global symbol by assigning to it, and that it is impossible to define a
symbol to be offset from a non-locally defined global symbol.

As mentioned, it is permissible to assign to the location counter ". ". It is required, how­
ever, that the type of the expression assigned be of the same type as ... ", and it is forbidden
to decrease the value of ". ". In practice, the most common assignment to "." has the form
". - . + n" for some number n; this has the effect of generating n null bytes.

5.5 String Statements

A string statement generates a sequence of bytes containing ASCII characters. A string
statement consists of a left string quote "<" followed by a sequence of ASCII characters not
including new-line, followed by a right string quote "> ". Any of the ASCU characters may be
replaced by a two-character escape sequence to represent certain non-graphic characters, as fol­
lows:

\n NL (012)
\s SP (040)
\t HT (011)
\e EOT (004)
\0 NUL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
\\ \
\> >

The last two are included so that the escape character and the right string quote may be
represented. The same escape sequences may also be used within single- and double-character
constants (see §2.3 above).

5.6 Keyword Statements

Keyword statements are numerically the most common type, since most machine instruc­
tions are of this sort. A keyword statement begins with one of the many predefined keywords
of the assembler; the syntax of the remainder depends on the keyword. All the keywords are
listed below with the syntax they require.

6. EXPRESSIONS

An expression is a sequence of symbols representing a value. Its constituents are
identifiers, constants, temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing
on the left, a 0 of absolute type is assumed. Arithmetic is two's complement and has 16 bits of
precision. All operators have equal precedence, and expressions arc evaluated strictly left to
right i=xcept for the effect of brackets.

UNIX Assembler

6.1 Expression Operators

The operators are:

5

(blank) when there is no operator between operands, the effect is exactly the same as if a
"+" had appeared.

+ addition

subtraction

* multiplication

\/ division (note that plain "/" starts a comment)

& bitwise and

I bitwise or

\> logical right shift

\< logical left shift

% modulo

a! b is a or (not b); i.e., the or of the first operand and the one's complement of the
second; most common use is as a unary.

result has the value of first operand and the type of the second; most often used to
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets " [] ". (Round parentheses are
reserved for address modes.)

6.l Types

The assembler deals with a number of types of expressions. Most types are attached to
keywords and used to select the routine which treats that keyword. The types likely to be met
explicitly are:

undefined
Upon first encounter, each symbol is undefined. It may become undefined if it is
assigned an undefined expression. It is an error to attempt to assemble an undefined
expression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external
A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor Id must be used to
load the assembler's output with another routine that defines the undefined reference.

absolute An absolute symbol is defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

text The value of a text symbol is measured with respect to the beginning of the text seg·
ment of the program. If the assembler output is link-edited, its text symbols may
change in value since the program need not be the first in the link editor's output.
Most text symbols are defined by appearing as labels. At the start of an assembly, the
value of ••." is text 0.

data The value of a data symbol is measured with respect to the origin of the data segment
of a program. Like text symbols, the value of a data symbol may change during a sub­
sequent link-editor run since previously loaded programs may have data segments.
After the first .data statement, the value of " • " is data 0.

bss The value of a bss symbol is measured from the beginning of the bss segment of a
program. Like text and data symbols, the value of a bss symbol may change during a
subsequent link-editor run, since previously loaded programs may have bss segments.
After the first .bss statement, the value of "." is bss 0.

6 UNIX Assembler

external absolute, text, data, or bss
Symbols declared .globl but defined within an assembly as absolute, text, data, or bss
symbols may be used exactly as if they were not declared .globl; however, their value
and type are available to the link editor so that the program may be loaded with others
that reference these symbols.

register The symbols

rO ... r5 frO ... frS sp pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the 6 general-purpose, 6 floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of
the corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyword known to the assembler has a type which is used to select the routine
which processes the associated keyword statement. The behavior of such symbols
when not used as keywords is the same as if they were absolute.

6.3 Type Propagation in Expressions

When operands are combined by expression operators, the result has a type which
depends on the types of the operands and on the operator. The rules involved are complex to
state but were intended to be sensible and predictable. For purposes of expression evaluation
the important types are:

undefined
absolute
text
data
bss
undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If
both operands are absolute, the result is absolute. If an absolute is combined with one of the
"other types" mentioned above, or with a register expression, the result has the register or
other type. As a consequence, one can refer to r3 as "r0+3". If two operands of "other
type" are combined, the result has the numerically larger type An "other type" combined with
an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text·, data-, or bss-segment relocatable, or is an undefined external,
the result has the postulated type and the other operand must be absolute.

If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand);
or the second operand may have the same type as the first (in which case the result is
absolute). If the first operand is external undefined, the second must be absolute. All
other combinations are illegal.

This operator follows no other rule than that the result has the value of the first
operand and the type of the second. · ..

others It is illegal to apply these operators to any but absolute symbols.

UNIX Assembler 7

7. PSEUDO-OPERATIONS

The keywords listed below introduce statements that generate data in unusual forms or
influence the later operations of the assembler. The metanotation

[stuff] ...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are
literals, italic words are substitutable.

7.1 .byte expression [, expression]

The expressions in the comma-separated list are truncated to 8 bits and assembled in suc­
cessive bytes. The expressions must be absolute. This statement and the string statement
above are the only ones that assemble data one byte at at time.

7.2 .eten

If the location counter ". " is odd, it is advanced by one so the next statement will be
assembled at a word boundary.

7.3 .if expression

The expression must be absolute and defined in pass I. If its value is nonzero, the .if is
ignored; if zero, the statements between the .if and the matching .endif (below) are ignored .
• if may be nested. The effect of .if cannot extend beyond the end of the input file in which it
appears. (The statements are not totally ignored, in the following sense: .ifs and .endifs are
scanned for, and moreover all names are entered in the symbol table. Thus names occurring
only inside an .if will show up as undefined if the symbol table is listed.)

7.4 .endif

This statement marks the end of a conditionally-assembled section of code. See .if above.

7 .S .globl name [, name] ...

This statement makes the names external. If they are otherwise defined (by assignment or
appearance as a label) they act within the assembly exactly as if the .globl statement were not
given; however, the link editor Id may be used to combine this routine with other routines that
ref er these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link
editor can combine the output of this assembly with that of others which define the symbols.
As discussed in §1, it is possible to force the assembler to make all otherwise undefined sym­
bols external.

7.6 .text
7. 7 .data
7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text,
data, or bss segment respectively. Assembly starts in the text segment. It is forbidden to
assemble any code or data into the bss segment, but symbols may be defined and "." moved
about by assignment.

7.9 .comm name , expression

Provided the name is not defined elsewhere, this statement is equivalent to

.globl name
name = expression name

8 UNIX Assembler

That is, the type of name is "undefined external'', and its value is expression. In fact the name
behaves in the current assembly just like· an undefined external. However, the link-editor Id
has been special-cased so that all external symbols which are not otherwise defined, and which
have a non-zero value, are defined to lie in the bss segment, and enough space is left after the
symbol to hold expression bytes. All symbols which become defined in this way are located
before all the explicitly defined bss-segment locations.

8. MACHINE INSTRUCTIONS

Because of the rather complicated instruction and addressing structure of the PDP-11, the
syntax of machine instruction statements is varied. Although the following sections give the
syntax in detail, the machine handbooks should be consulted on the semantics.

8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one
of the following forms, where reg is a register symbol, and expr is any sort of expression:

syntax

reg
(reg)+
- (reg)
expr(reg)
(reg)
•reg
• (reg)+
• - (reg)
• (reg)
•expr(reg)
ex pr
$expr
•expr
•Sexpr

words mode

0 OO+reg
0 20+reg
0 40+reg
I 60+reg
0 lO+reg
0 lO+reg
0 30+reg
0 50+reg

10+reg
10+reg
67

I 27
1 77

37

The words column gives the number of address words generated; the mode column gives the
octal address-mode number. The syntax of the address forms is identical to that in DEC assem­
blers, except that "•" has been substituted for "@" and "$" for "# "; the UNIX typing con­
ventions make "@" and "#" rather inconvenient.

Notice that mode "•reg" is identical to "(reg)"; that "•(reg)" generates an index word
(namely, 0); and that addresses consisting of an unadorned expression are assembled as pc­
relative references independent of the type of the expression. To force a non-relative refer­
ence, the form "•$expr" can be used, but notice that further indirection is impossible.

UNIX Assembler

8.3 Simple Machine Instructions

The following instructions are defined as absolute symbols:

clc
ch
clz
cln

sec
sev
sez
sen

9

They therefore require no special syntax. The PDP- I I hardware allows more than one of the
"clear" class, or alternatively more than one of the "set" class to be or-ed together; this may
be expressed as follows:

clc I ch

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the
same segment as the reference, cannot be undefined-external, and its value cannot differ from
the current location of " • " by more than 254 bytes:

hr blos
bne bvc
beq bvs
bge bhis
bit bee (= bee)
hgt bee
hie blo
bpi bes
bmi bes (=bes)
bhi

bes ("branch on error set") and bee ("branch on error clear") are intended to test the error bit
returned by system calls (which is the c-bit).

8.5 Extended Branch Instructions

The following symbols are followed by an expression representing an address in the same
segment as ". "; if the target address is close enough, a branch-type instruction is generated; if
the address is too far away, a jmp will be used:

jbr jlos
jne jvc
jeq jvs
jge jhis
jlt jec
jgt jcc
jle jlo
jpl jcs
jmi jes
jhi

jbr turns into a plain jmp if its target is too remote; the others (whose names are constructed
by replacing the "b" in the branch instruction's name by "j") turn into the converse branch
over a jmp to the target address.

IO UNIX Assembler

8.6 Single Operand Instructions

The following symbols are names of single-operand machine instructions. The form of
address expected is discussed in §8. l above:

cir sbcb
clrb ror
com rorb
comb rol
inc rolb
inch asr
dee asrb
decb asl
neg aslb
negb jmp
adc swab
a deb tst
she tstb

8.7 Double Operand Instructions

The following instructions take a general source and destination (§8.1), separated by a
comma, as operands:

mov hie
movb bicb
cmp bis
cmpb bisb
bit add
bitb sub

8.8 Miscellaneous Instructions

The following instructions have a more specialized syntax. Here reg is a register name, src
and dst a general source or destination (§8.1), and expr is an expression:

jsr reg,dst
rts reg
sys expr
ash src, reg (orals)
ashc src,reg (or alsc)
mul src, reg (or mpy)
div src, reg (or dvd)
xor reg, dst
sxt dst
mark expr
sob reg, expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is
required to be expressible in 6 bits. The expression in mark must be expressible in 6 bits, and
the expression in sob must be in the same segment as ". ", must not be external-undefined,
must be less than".", and must be within 510 bytes of".".

UNIX Assembler 11

8.9 Floating-Point Unit Instructions

The following floating-point operations are defined, with syntax as indicated:

cf cc
setf
setd
seti
set I
clrf fdst
negf fdst
absf fdst
tstf fsrc
movf fsrc.freg {= ldf)
movf freg.fdst (= stf)
movif src,freg (= ldcif)
movfi freg,dst (= stcfi)
movof fsrc,freg { = ldcdf)
movfo freg.fdst (= stcfd)
movie src.freg (= ldexp)
movei freg,dst (= stexp)
addf fsrc.freg
subf fsrc,freg
mulf fsrc.freg
divf fsrc,freg
cm pf fsrc.freg
modf fsrc.freg
Id fps src
stfps dst
stst dst

fsrc, fdst, and freg mean floating-point source, destination, and register respectively. Their syn­
tax is identical to that for their non-floating counterparts, but note that only floating registers
0-3 can be afreg.

The names of several of the operations have been changed to bring out an analogy with
certain fixed-point instructions. The only strange case is movf, which turns into either stf or
ldf depending respectively on whether its first operand is or is not a register. Warning: ldf sets
the floating condition codes, stf does not.

9. OTHER SYMBOLS

9.1 ••

The symbol " .• " is the relocation counter. Just before each assembled word is placed in
the output stream, the current value of this symbol is added to the word if the word refers to a
text, data or bss segment location. If the output word is a pc-relative address word that refers
to an absolute location, the value of " •• " is subtracted. Thus. the value of " •• " can be taken
to mean the starting memory location of the program. The initial value of •• •• " is 0.

The value of " •• " may be changed by assignment. Such a course of action is sometimes
necessary, but the consequences should be carefully thought out. It is particularly ticklish to
change " •• " midway in an assembly or to do so in a program which will be treated by the
loader, which has its own notions of" •• ".

12 UNIX Assembler

9.2 System Calls
System call names are not predefined: They may be found in the file /usr/include/sys.s.

10. DIAGNOSTICS

When an input file cannot be read, its name followed by a question mark is typed and
assembly ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed
out together with the line number and the file name in which it occurred. Errors in pass l
cause cancellation of pass 2. The possible errors are:

) parentheses error
] parentheses error
> string not terminated properly
• indirection (•) used illegally

illegal assignment to " • "
A error in address
B branch address is odd or too remote
E error in expression
F error in local ("f" or "b") type symbol
G garbage (unknown) character
I end of file inside an .if
M multiply defined symbol as label
o word quantity assembled at odd address
P phase error- "." different in pass I and 2
R relocation error
u undefined symbol
x syntax error

January 1981

Introduction

A Tour Through the Portable C Compiler

S. C. Johnson

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.6.1

A C compiler has been implemented that has proved to be quite portable, serving as the
basis for C compilers on roughly a dozen machines, including the Honeywell 6000, IBM 370,
and Interdata 8/32. The compiler is highly compatible with the C language standard. 1

Among the goals of this compiler are portability, high reliability, and the use of state-of­
the-art techniques and tools wherever practical. Although the efficiency of the compiling pro­
cess is not a primary goal, the compiler is efficient enough, and produces good enough code, to
serve as a production compiler.

The language implemented is highly compatible with the current PDP-11 version of C.
Moreover, roughly 75% of the compiler, including nearly all the syntactic and semantic rou­
tines, is machine independent. The compiler also serves as the major portion of the program
lint, described elsewhere.2

A number of earlier attempts to make portable compilers are worth noting. While on
CO-OP assignment to Bell Labs in 1973, Alan Snyder wrote a portable C compiler which was
the basis of his Master's Thesis at M.l.T.3 This compiler was very slow and complicated, and
contained a number of rather serious implementation difficulties; nevertheless, a number of
Snyder's ideas appear in this work.

Most earlier portable compilers, including Snyder's, have proceeded by defining an inter­
mediate language, perhaps based on three-address code or code for a stack machine, and writing
a machine independent program to translate from the source code to this intermediate code.
The intermediate code is then read by a second pass, and interpreted or compiled. This
approach is elegant, and has a number of advantages, especially if the target machine is far
removed from the host. It suffers from some disadvantages as well. Some constructions, like
initialization and subroutine prologs, are difficult or expensive to express in a machine indepen­
dent way that still allows them to be easily adapted to the target assemblers. Most of these
approaches require a symbol table to be constructed in the second (machine dependent) pass,
and/or require powerful target assemblers. Also, many conversion operators may be generated
that have no effect on a given machine, but may be needed on others (for example, pointer to
pointer conversions usually do nothing in C, but must be generated because there are some
machines where they are significant).

For these reasons, the first pass of the portable compiler is not entirely machine indepen­
dent. It contains some machine dependent features, such as initialization, subroutine prolog
and epilog, certain storage allocation functions, code for the switch statement, and code to
throw out unneeded conversion operators.

As a crude measure of the degree of portability actually achieved, the Interdata 8/32 C
compiler has roughly 600 machine dependent lines of source out of 4600 in Pass 1, and 1000
out of 3400 in Pass 2. In total, 1600 out of 8000, or 20%, of the total source is machine depen­
dent (12% in Pass 1,. 30% in Pass 2). These percentages can be expected to rise slightly as the
compiler is tuned. The percentage of machine-dependent code for the IBM is 22%, for the

2 A Tour Through the Ponable C Compiler

Honeywell 25%. If the assembler format and structure were the same for all these machines,
perhaps another 5-10% of the code would become machine independent.

These figures are sufficiently misleading as to be almost meaningless. A large fraction of
the machine dependent code can be converted in a straightforward, almost mechanical way. On
the other hand, a certain amount of the code requires hard intellectual effort to convert, since
the algorithms embodied in this part of the code are typically complicated and machine depen­
dent.

To summarize, however, if you need a C compiler written for a machine with a reason­
able architecture, the compiler is already three quarters finished!

Overview

This paper discusses the structure and organization of the portable compiler. The intent is
to give the big picture, rather than discussing the details of a particular machine implementa­
tion. After a brief overview and a discussion of the source file structure, the paper describes
the major data structures, and then delves more closely into the two passes. Some of the
theoretical work on which the compiler is based, and its application to the compiler, is discussed
elsewhere.4 One of the major design issues in any C compiler, the design of the calling
sequence and stack frame, is the subject of a separate memorandum.s

The compiler consists of two passes, pass/ and pass2, that together turn C source code
into assembler code for the target machine. The two passes are preceded by a preprocessor,
that handles the I define and f include statements, and related features (e.g., f if def, etc.). It
is a nearly machine independent program, and will not be further discussed here.

The output of the preprocessor is a text file that is read as the standard input of the first
pass. This produces as standard output another text file that becomes the standard input of the
second pass. The second pass produces, as standard output, the desired assembler language
source code. The preprocessor and the two passes all write error messages on the standard
error file. Thus the compiler itself makes few demands on the 1/0 library support, aiding in the
bootstrapping process.

Although the compiler is divided into two passes, this represents historical accident more
than deep necessity. In fact, the compiler can optionally be loaded so that both passes operate
in the same program. This "one pass" operation eliminates the overhead of reading and writ­
ing the intermediate file, so the compiler operates about 30% faster in this mode. It also occu­
pies about 30% more space than the larger of the two component passes.

Because the compiler is fundamentally structured as two passes, even when loaded as one,
this document primarily describes the two pass version.

The first pass does the lexical analysis, parsing, and symbol table maintenance. It also
constructs parse trees for expressions, and keeps track of the types of the nodes in these trees.
Additional code is devoted to initialization. Machine dependent portions of the first pass serve
to generate subroutine prologs and epilogs, code for switches, and code for branches, label
definitions, alignment operations, changes of location counter, etc.

The intermediate file is a text file organized into lines. Lines beginning with a right
parenthesis are copied by the second pass directly to its output file, with the parenthesis
stripped off. Thus, when the first pass produces assembly code, such as subroutine prologs,
etc., each line is prefaced with a right parenthesis; the second pass passes these lines to through
to the assembler. ·

The major job done by the second pass is generation of code for expressions. The expres­
sion parse trees produced in the first pass are written onto the intermediate file in Polish Prefix
form: first, there is a line beginning with .a period, followed by the source file line number and
name on which the expression appeared (for debugging purposes). The successive lines
represent the nodes of the parse tree, one node per line. Each line contains the node number,
type, and any values (e.g., values of constants) that may appear in the node. Lines represent­
ing nodes with descendants are immediately followed by the left subtree of descendants, then

A Tour Through the Portable C Compiler 3

the right. Since the number of descendants of any node is completely determined by the node
number, there is no need to mark the end of the tree.

There are only two other line types in the intermediate file. Lines beginning with a left
square bracket (4[') represent the beginning of blocks (delimited by { ... } in the C source);
lines beginning with right square brackets (']') represent the end of blocks. The remainder of
these lines tell how much stack space, and how many register variables, are currently in use.

Thus, the second pass reads the intermediate files, copies the ')' lines, makes note of the
information in the'[' and']' lines, and devotes most of its effort to the'.' lines and their asso­
ciated expression trees, turning them turns into assembly code to evaluate the expressions.

In the one pass version of the compiler, the expression trees that are built by the first pass
have been declared to have room for the second pass information as well. Instead of writing
the trees onto an intermediate file, each tree is transformed in place into an acceptable form for
the code generator. The code generator then writes the result of compiling this tree onto the
standard output. Instead of'[' and ']' lines in the intermediate file, the informatitin is passed
directly to the second pass routines. Assembly code produced by the first pass is simply written
out, without the need for ')' at the head of each line.

The Source Files

The compiler source consists of 22 source files. Two files, manifest and macdeft, are
header files included with all other files. Manifest has declarations for the node numbers,
types, storage classes, and other global data definitions. Macdefs has machine-dependent
definitions, such as the size and alignment of the various data representations. Two machine
independent header files, mfilel and mfile2, contain the data structure and manifest definitions
for the first and second passes, respectively. In the second pass, a machine dependent header
file, mac2defs, contains declarations of register names, etc.

There is a file, common, containing (machine independent) routines used in both passes.
These include routines for allocating and freeing trees, walking over trees, printing debugging
information. and printing error messages. There are two dummy files, comm] .c and comm2.c,
that simply include common within the scope of the appropriate passl or pass2 header files.
When the compiler is loaded as a single pass, common only needs to be included once: comm2.c
is not needed.

Entire sections of this document are devoted to the detailed structure of the passes. For
the moment, we just give a brief description of the files. The first pass is obtained by compiling
and loading scan.c, cgram.c, xdefs.c, pftn.c, trees.c, optim.c, local.c, code.c, and comm/ .c.
Scan.c is the lexical analyzer, which is used by cgram.c, the result of applying Yacc6 to the
input grammar cgram.y. Xdefs.c is a short file of external definitions. Pftn.c maintains the
symbol table, and does initialization. Trees.c builds the expression trees, and computes the
node types. Optim.c does some machine independent optimizations on the expression trees.
Comml .c includes common, that contains service routines common to the two passes of the
compiler. All the above files are machine independent. The files local.c and code.c contain
machine dependent code for generating subroutine prologs, switch code, and the like.

The second pass is produced by compiling and loading reader.c, a//o.c, match.c, comm] .c,
order.c, local.c, and tab/e.c. Reader.c reads the intermediate file, and controls the major logic
of the code generation. Allo.c keeps track of busy and free registers. Match.c controls the
matching of code templates to subtrees of the expression tree to be compiled. Comm2.c

·includes the file common, as in the first pass. The above files are machine independent.
Order.c controls the machine dependent details of the code generation strategy. Loca/2.c has
many small machine dependent routines, and tables of opcodes, register types, etc. Table.c has
the code template tables, which are also clearly machine dependent.

4 A Tour Through the Portable C Compiler

Data Structure Considerations

This section discusses the node numbers, type words, and expression trees, used
throughout both passes of the compiler.

The file manifest defines those symbols used throughout both passes. The intent is to use
the same symbol name (e.g., MINUS) for the given operator throughout the lexical analysis,
parsing, tree building, and code generation phases; this requires some synchronization with the
Yacc input file, cgram.y, as well.

A token like MINUS may be seen in the lexical analyzer before it is known whether it is a
unary or binary operator; clearly, it is necessary to know this by the time the parse tree is con­
structed. Thus, an operator (really a macro) called UNARY is provided, so that MINUS and
UNARY MINUS are both distinct node numbers. Similarly, many binary operators exist in an
assignment form (for example, - =), and the operator ASG may be applied to such node
names to generate new ones, e.g. ASG MINUS.

It is frequently desirable to know if a node represents a leaf (no descendants), a unary
operator (one descendant) or a binary operator (two descendants). The macro optype(o)
returns one of the manifest constants LTYPE, UTYPE, or BITYPE, respectively, depending on
the node number o. Similarly, asgop(o) returns true if o is an assignment operator number
(=, + =, etc.), and logop(o) returns true if o is a relational or logical (&&, II, or !) operator.

C has a rich typing structure, with a potentially infinite number of types. To begin with,
there are the basic types: CHAR, SHORT, INT, LONG, the unsigned versions known as
UCHAR, USHORT, UNSIGNED, ULONG, and FLOAT, DOUBLE, and finally STRTY (a
structure), UNIONTY, and ENUMTY. Then, there are three operators that can be applied to
types to make others: if t is a type, we may potentially have types pointer tot, function returning
t, and array of t's generated from t. Thus, an arbitrary type in C consists of a basic type, and
zero or more of these operators.

In the compiler, a type is represented by an unsigned integer; the rightmost four bits hold
the basic type, and the remaining bits are divided into two-bit fields, containing O (no opera­
tor), or one of the three operators described above. The modifiers are read right to left in the
word, starting with the two-bit field adjacent to the basic type, until a field with 0 in it is
reached. The macros PTR, FIN, and ARY represent the pointer to, function returning, and
array of operators. The macro values are shifted so that they align with the first two-bit field;
thus PTR +INT represents the type for an integer pointer, and

ARY + (PTR<<2) + (fTN<<4) + DOUBLE

represents the type of an array of pointers to functions returning doubles.

The type words are ordinarily manipulated by macros. If t is a type word, BTYPE(t) gives
the basic type. ISPTR(t), ISARY(t), and ISFTN(t) ask if an object of this type is a pointer,
array, or a function, respectively. MODTYPE(t,b) sets the basic type oft to b. DECREF(t)
gives the type resulting from removing the first operator from t. Thus, if t is a pointer to t'. a
function returning t', or an array oft', then DECREF(t) would equal t'. INCREF(t) gives the
type representing a pointer to t. Finally, there are operators for dealing with the unsigned
types. JSUNSIGNED(t) returns true if t is one Of the four basic unsigned types; in this case,
DEUNSIGN(t) gives the associated 'signed' type. Similarly, UNSIGNABLE(t) .returns true if t
is one of the four basic types that could become unsigned, and ENUNSIGN(t) returns ~he
unsigned analogue oft in this case.· ·

The other important global data structure is that of expression trees. The actual shapes of
the nodes are given in mfilel and mfile2. They are not the same in the two passes; the first
pass nodes contain dimension and size information, while the second pass nodes contain regis­
ter allocation information. Nevertheless, all nodes contain fields called op, containing the node
number, and type, containing the type word. A function called talloc() returns a pointer to a
new tree node. To free a node, its op field need merely be set to FREE. The other fields in
the node will remain intact at least until the next allocation.

A Tour Through the Portable C Compiler 5

Nodes representing binary operators contain fields, left and right, that contain pointers to
the left and right descendants. Unary operator nodes have the left field, and a value field called
rval. Leaf nodes, with no descendants, have two value fields: /val and rva/.

At appropriate times, the function tcheck() can be called, to check that there are no busy
nodes remaining. This is used as a compiler consistency check. The function tcopy(p) takes a
pointer p that points to an expression tree, and returns a pointer to a disjoint copy of the tree.
The function walkf(pj) performs a postorder walk of the tree pointed to by p, and applies the
function f to each node. The function fwalk(pj,d) does a preorder walk of the tree pointed to
by p. At each node, it calls a function f, passing to it the node pointer, a value passed down
from its ancestor, and two pointers to values to be passed down to the left and right descen­
dants (if any). The valued is the value passed down to the root. Fwalk is used for a number
of tree labeling and debugging activities.

The other major data structure, the symbol table, exists only in pass one, and will be dis­
cussed later.

Pass One

The first pass does lexical analysis, parsing, symbol table maintenance, tree building,
optimization, and a number of machine dependent things. This pass is largely machine
independent, and the machine independent sections can be pretty successfully ignored. Thus,
they will be only sketched here.

Lexical Analysis

The lexical analyzer is a conceptually simple routine that reads the input and returns the
tokens of the C language as it encounters them: names, constants, operators, and keywords.
The conceptual simplicity of this job is confounded a bit by several other simple jobs that
unfortunately must go on simultaneously. These include

• Keeping track of the current filename and line number, and occasionally setting this infor­
mation as the result of preprocessor control lines.

• Skipping comments.

• Properly dealing with octal, decimal, hex, floating point, and character constants, as well
as character strings.

To achieve speed, the program maintains several tables that are indexed into by character
value, to tell the lexical analyzer what to do next. To achieve portability, these tables must be
initialized each time the compiler is run, in order that the table entries reflect the local charac­
ter set values.

Parsing

As mentioned above, the parser is generated by Yacc from the grammar on file cgram.y.
The grammar is relatively readable, but contains some unusual features that are worth com­
ment.

Perhaps the strangest feature of the grammar is the treatment of declarations. The prob­
lem is to keep track of the basic type and the storage class while interpreting the various stars,
brackets, and parentheses that may surround a given name. The entire declaration mechanism
must be recursive, since declarations may appear within declarations of structures and unions,
or even within a sizeof construction inside a dimension in another declaration!

There are some difficulties in using a bottom-up parser, such as produced by Yacc, to han­
dle constructions where a lot of left context information must be kept around. The problem is
that the original PDP-11 compiler is top-down in implementation, and some of the semantics of
C reflect this. In a top-down parser, the input rules are restricted somewhat, but one can natur­
ally associate temporary storage with a rule at a very early stage in the recognition of that rule.
In a bottom-up parser, there is more freedom in the specification of rules, but it is more

6 A Tour Through the Portable C Campi.fer

difficult to know what rule is being matched until the entire rule is seen. The parser described
by cgram.c makes effective use of the bottom-up parsing mechanism in some places (notably
the treatment of expressions), but struggles against the restrictions in others. The usual result
is that it is necessary to run a stack of values "on the side", independent of the Yacc value
stack, in order to be able to store and access information deep within inner constructions,
where the relationship of the rules being recognized to the total picture is not yet clear.

In toe case of declarations, the attribute information (type, etc.) for a declaration is care­
fully kept immediately to the left of the declarator (that part of the declaration involving the
name). In this way, when it is time to declare the name, the name and the type information
can be quickly brought together. The "$0" mechanism of Yacc is used to accomplish this.
The result is not pretty, but it works. The storage class information changes more slowly, so it
is kept in an external variable, and stacked if necessary. Some of the grammar could be consid­
erably cleaned up by using some more recent features of Yacc, notably actions within rules and
the ability to return multiple values for actions.

A stack is also used to keep track of the current location to be branched to when a break
or continue statement is processed.

This use of external stacks dates from the time when Yacc did not permit values to be
structures. Some, or most, of this use of external stacks could be eliminated by redoing the
grammar to use the mechanisms now provided. There are some areas, however, particularly
the processing of structure, union, and enum declarations, function prologs, and switch state­
ment processing, when having all the affected data together in an array speeds later processing;
in this case, use of external storage seems essential.

The cgram.y file also contains some small functions used as utility functions in the parser.
These include routines for saving case values and labels in processing switches, and stacking
and popping values on the external stack described above.

Storage Classes

C has a finite, but fairly extensive, number of storage classes available. One of the com­
piler design decisions was to process the storage class information totally in the first pass; by the
second pass, this information must have been totally dealt with. This means that all of the
storage allocation must take place in the first pass, so that references to automatics and parame­
ters can be turned into references to cells lying a certain number of bytes offset from certain
machine registers. Much of this transformation is machine dependent, and strongly depends on
the storage class.

The classes include EXTERN (for externally declared, but not defined variables),
EXTDEF (for external definitions), and similar distinctions for USTATIC and STATIC,
UFORTRAN and FORTRAN (for fortran functions) and ULABEL and LABEL. The storage
classes REGISTER and AUTO are obvious, as are STNAME, UNAME, and ENAME (for
structure, union, and enumeration tags), and the associated MOS, MOU, and MOE (for the
members). TYPEDEF is treated as a storage class as well. There are two special storage
classes: PARAM and SNULL. SNULL is used to distinguish the case where no explicit storage
class has been given; before an entry is made in the symbol table the true storage class is
discovered. Similarly, PARAM is used for the temporary entry in the symbol table made
before the declaration of function parameters is completed.

The most complexity in the storage class process comes from bit fields. A separate
storage class is kept for each width bit field; a k bit bit field has storage class k plus FIELD.
This enables the size to be quickly recovered from the storage class.

A Tour Through the Portable C Compiler 7

Symbol Table Maintenance

The symbol table routines do far more than simply enter names into the symbol table;
considerable semantic processing and checking is done as well. For example, if a new decl~ra­
tion comes in, it must be checked to see if there is a previous declaration of the same symbol.
If there is, there are many cases. The declarations may agree and be compatible (for example,
an extern declaration can appear twice) in which case the new declaration is ignored. The new
declaration may add information (such as an explicit array dimension) to an already present
declaration. The new declaration may be different, but still correct (for example, an extern
declaration of something may be entered, and then later the definition may be seen). The new
declaration may be incompatible, but appear in an inner block; in this case, the old declaration
is carefully hidden away, and the new one comes into force until the block is left. Finally, the
declarations may be incompatible, and an error message must be produced.

A number of other factors make for additional complexity. The type declared by the user
is not always the type entered into the symbol table (for example, if an formal parameter to a
function is declared to be an array, C requires that this be changed into a pointer before entry
in the symbol table). Moreover, there are various kinds of illegal types that may be declared
which are difficult to check for syntactically (for example, a function returning an array).
Finally, there is a strange feature in C that requires structure tag names and member names for
structures and unions to be taken from a different logical symbol table than ordinary identifiers.
Keeping track of which kind of name is involved is a bit of struggle (consider typedef names
used within structure declarations, for example).

The symbol table handling routines have been rewritten a number of times to extend
features, improve performance, and fix bugs. They address the above problems with reasonable
effectiveness but a singular lack of grace.

When a name is read in the input, it is hashed, and the routine lookup is called, together
with a flag which tells which symbol table should be searched (actually, both symbol tables are
stored in one, and a flag is used to distinguish individual entries). If the name is found, lookup
returns the index to the entry found; otherwise, it makes a new entry, marks it UNDEF
(undefined), and returns the index of the new entry. This index is stored in the rval field of a
NAME node.

When a declaration is being parsed, this NAME node is made part of a tree with UNARY
MUL nodes for each *, LB nodes for each array descriptor (the right descendant has the dimen­
sion), and UNARY CALL nodes for each function descriptor. This tree is passed to the rou­
tine tymerge, along with the attribute type of the whole declaration; this routine collapses the
tree to a single node, by calling tyreduce, and then modifies the type to reflect the overall type
of the declaration.

Dimension and size information is stored in a table called dim.tab. To properly describe a
type in C, one needs not just the type information but also size information (for structures and
enums) and dimension information (for arrays). Sizes and offsets are dealt with in the com­
piler by giving the associated indices into dim.tab. Tymerge and tyreduce call dstash to put the
discovered dimensions away into the dim.tab array. Tymerge returns a pointer to a single node
that contains the symbol table index in its rval field, and the size and dimension indices in
fields csiz and cdim, respectively. This information is properly considered part of the type in
the first pass, and is carried around at all times.

To enter an element into the symbol table, the routine defid is called; it is handed a
· storage class, and a pointer to the node produced by tymerge. Defid calls fixtype, which adjusts

and checks the given type depending on the storage class, and converts null types appropriately.
It then calls fixclass, which does a similar job for the storage class; it is here, for example, that
register declarations are either allowed or changed to auto.

The new declaration is now compared against an older one, if present, and several pages
of validity checks performed. If the definitions are compatible, with possibly some added infor­
mation, the processing is straightforward. If the definitions differ, the block levels of the

8 A Tour Through the Portable C Compiler

current and the old declaration are compared. The current block level is kept in blevel, an
external variable; the old declaration levC'I is kept in the symbol table. Block level 0 is for
external declarations, 1 is for arguments to functions, and 2 and above are blocks within a func­
tion. If the current block level is the same as the old declaration, an error results. If the
current block level is higher, the new declaration overrides the old. This is done by marking
the old symbol table entry "hidden", and making a new entry, marked "hiding". Lookup will
skip over hidden entries. When a block is left, the symbol table is searched, and any entries
defined in that block are destroyed; if they hid other entries, the old entries are "unhidden".

This nice block structure is warped a bit because labels do not follow the block structure
rules (one can do a goto into a block, for example); default definitions of functions in inner
blocks also persist clear out to the outermost scope. This implies that cleaning up the symbol
table after block exit is more subtle than it might first seem.

For successful new definitions, dejid also initializes a "general purpose" field, offset, in
the symbol table. It contains the stack offset for automatics and parameters, the register
number for register variables, the bit offset into the structure for structure members, and the
internal label number for static variables and labels. The offset field is set by falloc for bit
fields, and dc/struct for structures and unions.

The symbol table entry itself thus contains the name, type word, size and dimension
offsets, offset value, and declaration block level. It also has a field of flags, describing what
symbol table the name is in, and whether the entry is hidden, or hides another. Finally, a field
gives the line number of the last use, or of the definition, of the name. This is used mainly for
diagnostics, but is useful to lint as well.

In some special cases, there is more than the above amount of information kept for the
use of the compiler. This is especially true with structures; for use in initialization, structure
declarations must have access to a list of the members of the structure. This list is also kept in
dimtab. Because a structure can be mentioned long before the members are known, it is neces­
sary to have another level of indirection in the table. The two words following the csiz entry in
dimtab are used to hold the alignment of the structure, and the index in dimtab of the list of
members. This list contains the symbol table indices for the structure members, terminated by
a -1.

Tree Building

The portable compiler transforms expressions into expression trees. As the parser recog­
nizes each rule making up an expression, it calls buildtree which is given an operator number,
and pointers to the left and right descendants. Buildtree first examines the left and right des­
cendants, and, if they are both constants, and the operator is appropriate, simply does the con­
stant computation at compile time, and returns the result as a constant. Otherwise, buildtree
allocates a node for the head of the tree, attaches the descendants to it, and ensures that
conversion operators are generated if needed, and that the type of the new node is consistent
with the types of the operands. There is also a considerable amount of semantic complexity
here; many combinations of types are illegal, and the portable compiler makes a strong effort to
check the legality of expression types completely. This is done both for lint purposes, and to
prevent such semantic errors from being passed through to the code generator.

The heart of buildtree is a large table, accessed by the routine opact. This routine maps
the types of the left and right operands into a rather smaller set of descriptors, and then
accesses a table (actually encoded in a switch statement) which for each operator and pair of
types causes an action to be returned. The actions are logical or's of a number of separate
actions, which may be carried out by bui/dtree. These component actions may include checking
the left side to ensure that it is an)value (can be stored into), applying a type conversion to the
left or right operand, setting the type of the new node to the type of the left or right operand,
calling various routines to balance the types of the left and right operands, and suppressing the
ordinary conversion of arrays and function operands to pointers. An important operation is
OTHER, which causes some special code to be invoked in buildtree, to handle issues which are

A Tour Through the Ponable C Compiler 9

unique to a particular operator. Examples of this are structure and union reference (actually
handled by the routine Sire/), the building of NAME, ICON, STRING and FCON (floating
point constant) nodes, unary • and &, structure assignment, and calls. Jn the case of unary •
and&, buildtree will cancel a• applied to a tree, the top node of which is &, and conversely ..

Another special operation is PUN; this causes the compiler to check for type mismatches,
such as intermixing pointers and integers.

The treatment of conversion operators is still a rather strange area of the compiler (and of
C!). The recent introduction of type casts has only confounded this situation. Most of the
conversion operators are generated by calls to tymatch and ptmatch, both of which are given a
tree, and asked to make the operands agree in type. Ptmatch treats the case where one of the
operands is a pointer; tymatch treats all other cases. Where these routines have decided on the
proper type for an operand, they call makety, which is handed a tree, and a type word, dimen­
sion offset, and size offset. If necessary, it inserts a conversion operation to make the types
correct. Conversion operations are never inserted on the left side of assignment operators,
however. There are two conversion operators used; PCONV, if the conversion is to a non-basic
type (usually a pointer), and SCONV, if the conversion is to a basic type (scalar).

To allow for maximum flexibility, every node produced by buildtree is given to a machine
dependent routine, clocal, immediately after it is produced. This is to allow more or less
immediate rewriting of those nodes which must be adapted for the local machine. The conver­
sion operations are given to cloca/ as well; on most machines, many of these conversions do
nothing, and should be thrown away (being careful to retain the type). If this operation is done
too early, however, later calls to buildtree may get confused about correct type of the subtrees;
thus c/ocal is given the conversion ops only after the entire tree is built. This topic will be
dealt with in more detail later.

Initialization

Initialization is one of the messier areas in the portable compiler. The only consolation is
that most of the mess takes place in the machine independent part, where it is may be safely
ignored by the implementor of the compiler for a particular machine.

The basic problem is that the semantics of initialization really calls for a co-routine struc­
ture; one collection of programs reading constants from the input stream, while another,
independent set of programs places these constants into the appropriate spots in memory. The
dramatic differences in the local assemblers also come to the fore here. The parsing problems
are dealt with by keeping a rather extensive stack containing the current state of the initializa­
tion; the assembler problems are dealt with by having a fair number of machine dependent rou­
tines.

The stack contains the symbol table number, type, dimension index, and size index for
the current identifier being initialized. Another entry has the off set, in bits, of the beginning of
the current identifier. Another entry keeps track of how many elements have been seen, if the
current identifier is an array. Still another entry keeps track of the current member of a struc­
ture being initialized. Finally, there is an entry containing flags which keep track of the current
state of the initialization process (e.g., tell if a } has been seen for the current identifier.)

When an initialization begins, the routine beginit is called; it handles the alignment res­
trictions, if any, and calls instk to create the stack entry. This is done by first making an entry
on the top of the stack for the item being initialized. If the top entry is an !lrray, another entry
is made on the stack for the first element. If the top entry is a structure, another entry is made
on the stack for the first member of the structure. This continues until the top element of the
stack is a scalar. Instk then returns, and the parser begins collecting initializers.

When a constant is obtained, the routine doinit is called; it examines the stack, and docs
whatever is necessary to assign the current constant to the scalar on the top of the stack. gots­
cal is then called, which rearranges the stack so that the next scalar to be initialized gets placed
on top of the stack. This process continues until the end of the initializers; endinit cleans up.

10 A Tour Through the Portable C Compiler

If a { or } is encountered in the string of initializers, it is handled by calling i/brace or irbrace,
respectively.

A central issue is the treatment of the "holes" that arise as a result of alignment restric­
tions or explicit requests for holes in bit fields. There is a global variable, inoff, which contains
the current offset in the initialization (all offsets in the first pass of the compiler are in bits).
Doinit figures out from the top entry on the stack the expected bit off set of the next identifier;
it calls the machine dependent routine inforce which, in a machine dependent way, forces the
assembler to set aside space .if need be so that the next scalar seen will go into the appropriate
bit off set position. The scalar itself is passed to one of the machine dependent routines jincode
(for floating point initialization), incode (for fields, and other initializations less than an int in
size), and cinit (for all other initializations). The size is passed to all these routines, and it is
up to the machine dependent routines to ensure that the initializer occupies exactly the right
size.

Character strings represent a bit of an exception. If a character string is seen as the ini­
tializer for a pointer, the characters making up the string must be put out under a different
location counter. When the lexical analyzer sees the quote at the head of a character string, it
returns the token STRING, but does not do anything with the contents. The parser calls getstr,
which sets up the appropriate location counters and flags, and calls lxstr to read and process the
contents of the string.

If the string is being used to initialize a character array, lxstr calls putbyte, which in effect
simulates doinit for each character read. If the string is used to initialize a character pointer,
lxstr calls a machine dependent routine, bycode, which stashes away each character. The
pointer to this string is then returned, and processed normally by doinit .

The null at the end of the string is treated as if it were read explicitly by lxstr.

Statements

The first pass addresses four main areas; declarations, expressions, initialization, and
statements. The statement processing is relatively simple; most of it is carried out in the parser
directly. Most of the logic is concerned with allocating label numbers, defining the labels, and
branching appropriately. An external symbol, reached, is I if a statement can be reached, 0
otherwise; this is used to do a bit of simple ftow analysis as the program is being parsed, and
also to avoid generating the subroutine return sequence if the subroutine cannot "fall through"
the last statement.

Conditional branches are handled by generating an expression node, CBRANCH, whose
left descendant is the conditional expression and the right descendant is an ICON node contain­
ing the internal label number to be branched to. For efficiency, the semantics are that the label
is gone to if the condition is false.

The switch statement is compiled by collecting the case entries, and an indication as to
whether there is a default case; an internal label number is generated for each of these, and
remembered in a big array. The expression comprising the value to be switched on is compiled
when the switch keyword is encountered, but the expression tree is headed by a special node,
FORCE, which tells the code generator to put the expression value into a special distinguished
register {this same mechanism is used for processing the return statement). When the end of
the switch block is reached, the array containing the case values is sorted, and checked for
duplicate entries {an error); if all is correct, the machine dependent routine genswitch is called,
with this array of labels and values in increasing order. Genswitch can assume that the value to
be tested is already in the register which is the usual integer return value register.

A Tour Through the Portable C Compiler 11

Optimization

There is a machine independent file, optim.c, which contains a relatively short optimiza­
tion routine, optim. Actually the word optimization is something of a misnomer; the results ~re
not optimum, only improved, and the routine is in fact not optional; it must be called for
proper operation of the compiler.

Optim is called after an expression tree is built, but before the code generator is called.
- The essential part of its job is to call clocal on the conversion operators. On most machines,

the treatment of & is also essential: by this time in the processing, the only node which is a
legal descendant of & is NAME. (Possible descendants of* have been eliminated by buildtree.)
The address of a static name is, almost by definition, a constant, and can be represented by an
ICON node on most machines (provided that the loader has enough power). Unfortunately,
this is not universally true; on some machine, such as the IBM 370, the issue of addressability
rears its ugly head; thus, before turning a NAME node into an ICON node, the machine depen­
dent function antlable is called.

The optimization attempts of optim arc currently quite limited. It is primarily concerned
with improving the behavior of the compiler with operations one of whose arguments is a con­
stant. In the simplest case, the constant is placed on the right if the operation is commutative.
The compiler also makes a limited search for expressions such as

(x+a)+b

where a and b are constants, and attempts to combine a and b at compile time. A number of
special cases are also examined; additions of 0 and multiplications by 1 are removed, although
the correct processing of these cases to get the type of the resulting tree correct is decidedly
nontrivial. In some cases, the addition or multiplication must be replaced by a conversion op to
keep the types from becoming fouled up. Finally, in cases where a relational operation is being
done, and one operand is a constant, the operands are permuted, and the operator altered, if
necessary, to put the constant on the right. Finally, multiplications by a power of 2 are changed
to shifts.

There are dozens of similar optimizations that can be, and should be, done. It seems
likely that this routine will be expanded in the relatively near future.

Machine Dependent Stuff

A number of the first pass machine dependent routines have been discussed above. In
general, the routines are short, and easy to adapt from machine to machine. The two excep­
tions to this general rule are clocal and the function prolog and epilog generation routines,
bf code and efcode.

Clocal has the job of rewriting, if appropriate and desirable, the nodes constructed by
buildtree. There are two major areas where this is important; NAME nodes and conversion
operations. In the case of NAME nodes, clocal must rewrite the NAME node to reflect the
actual physical location of the name in the machine. In effect, the NAME node must be exam­
ined, the symbol table entry found (through the rval field of the node), and, based on the
storage class of the node, the tree must be rewritten. Automatic variables and parameters arc
typically rewritten by treating the reference to the variable as a structure reference, off the
register which holds the stack or argument pointer; the stref routine is set up to be called in this
way, and to build the appropriate ·tree. In the most general case, the tree consists of a unary *

. node, whose descendant is a + node, with the stack or argument register as left operand, and a
constant offset as right operand. In the case of LABEL and internal static nodes, the rva/ field
is rewritten to be the negative of the internal label number; a negative rval field is taken to be
an internal label number. Finally, a name of class REG~TER must be converted into a REG
node, and the rva/ field replaced by the register number. In fact, this part of the clocal routine
is nearly machine independent; only for machines with addressability problems (IBM 370
again!) does it have to be noticeably different.

12 A Tour Through the Portable C Compiler

The conversion operator treatment .is rather tricky. It is necessary to handle the applica­
tion of conversion operators to constants in clocal, in order that all constant expressions can
have their values known at compile time. In extreme cases, this may mean that some simula­
tion of the arithmetic of the target machine might have to be done in a cross-compiler. In the
most common case, conversions from pointer to pointer do nothing. For some machines, how­
ever, conversion from byte pointer to short or long pointer might require a shift or rotate
operation, which would have to be generated here.

The extension of the portable compiler to machines where the size of a pointer depends
on its type would be straightforward, but has not yet been done.

The other major machine dependent issue involves the subroutine prolog and epilog gen­
eration. The hard part here is the design of the stack frame and calling sequence; this design
issue is discussed elsewhere.s The routine bfcode is called with the number of arguments the
function is defined with, and an array containing the symbol table indices of the declared
parameters. Bfcode must generate the code to establish the new stack frame, save the return
address and previous stack pointer value on the stack, and save whatever registers are to be
used for register variables. The stack size and the number of register variables is not known
when bfcode is called, so these numbers must be referred to by assembler constants, which are
defined when they are known (usually in the second pass, after all register variables, automat­
ics, and temporaries have been seen). The final job is to find those parameters which may have
been declared register, and generate the code to initialize the register with the value passed on
the stack. Once again, for most machines, the general logic of bfcode remains the. same, but
the contents of the print/ calls in it will change from machine to machine. ef code is rather
simpler, having just to generate the default return at the end of a function. This may be non­
trivial in the case of a function returning a structure or union, however.

There seems to be no really good place to discuss structures and unions, but this is as
good a place as any. The C language now supports structure assignment, and the passing of
structures as arguments to functions, and the receiving of structures back from functions. This
was added rather late to C, and thus to the portable compiler. Consequently, it fits in less well
than the older features. Moreover, most of the burden of making these features work is placed
on the machine dependent code.

There are both conceptual and practical problems. Conceptually, the compiler is struc­
tured around the idea that to compute something, you put it into a register and work on it.
This notion causes a bit of trouble on some machines (e.g., machines with 3-address opcodes),
but matches many machines quite well. Unfortunately, this notion breaks down with struc­
tures. The closest that one can come is to keep the addresses of the structures in registers.
The actual code sequences used to move structures vary from the trivial (a multiple byte move)
to the horrible (a function call), and are very machine dependent.

The practical problem is more painful. When a function returning a structure is called,
this function has to have some place to put the structure value. If it places it on the stack, it
has difficulty popping its stack frame. If it places the value in a static temporary, the routine
fails to be reentrant. The most logically consistent way of implementing this is for the caller to
pass in a pointer to a spot where the called function should put the value before returning.
This is relatively straightforward, although a bit tedious, to implement, but means that the
caller must have properly declared the function type, even if the value is never used. On some
machines, such as the Interdata 8/32, the return value simply overlays the argument region
(which on the 8/32 is part of the caller's stack frame). The caller takes care of leaving enough
room if the returned value is larger than the arguments. This also assumes that the caller know
and declares the function properly.

· The PDP-I I and the VAX have stack hardware which is used in function calls and
returns; this makes it very inconvenient to use either of the above mechanisms. In these
machines, a static area within the called functions allocated, and the function return value is
copied into it on return; the function returns the address of that region. This is simple to
implement, but is non-reentrant. However, the function can now be called as a subroutine

A Tour Through the Portable C Compiler 13

without being properly declared, without the disaster which would otherwise ensue. No matter
what choice is taken, the .convention is that the function actually returns the address of the
return structure value.

In building expression trees, the portable compiler takes a bit for granted about structures.
It assumes that functions returning structures actually return a pointer to the structure, and it
assumes that a reference to a structure is actually a reference to its address. The structure
assignment operator is rebuilt so that the left operand is the structure being assigned to, but the

·right operand is the address of the structure being assigned; this makes it easier to deal with

a=b=c

and similar constructions.

There arc four special tree nodes associated with these operations: STASG (structure
assignment), STARG (structure argument to a function call), and STCALL and UNARY
STCALL (calls of a function with nonzero and zero arguments, respectively). These four
nodes are unique in that the size and alignment information, which can be determined by the
type for all other objects in C, must be known to carry out these operations; special fields are
set aside in these nodes to contain this information, and special intermediate code is used to
transmit this information.

First Pass Summary

There are may other issues which have been ignored here, partly to justify the title
••tour", and partially because they have seemed to cause little trouble. There are some debug­
ging flags which may be turned on, by giving the compiler's first pass the argument

-X[ftags]

Some of the more interesting flags are - Xd for the defining and freeing of symbols, - Xi for
initialization comments, and - Xb for various comments about the building of trees. In many
cases, repeating the flag more than once gives more information; thus, - Xddd gives more
information than -Xd. In the two pass version of the compiler, the flags should not be set
when the output is sent to the second pass, since the debugging output and the intermediate
code both go onto the standard output.

We turn now to consideration of the second pass.

Pass Two

Code generation is far less well understood than parsing or lexical analysis, and for this
reason the second pass is far harder to discuss in a file by file manner. A great deal of the
difficulty is in understanding the issues and the strategies employed to meet them. Any particu­
lar function is likely to be reasonably straightforward.

Thus, this part of the paper will concentrate a good deal on the broader aspects of strategy
in the code generator, and will not get too intimate with the details.

Oveniew

It is difficult to organize a code generator to be flexible enough to generate code for a
large number of machines, and still be efficient for any one of them. Flexibility is also impor­
tant when it comes time to tune the code generator to improve the output code quality. On the
other hand, too much flexibility can lead to semantically incorrect code, and potentially a com­
binatorial explosion in the nu'mber of cases to be considered in the compiler.

One goal of the code generator is to have. a high degree of correctness. It is very desirable
to have the compiler detect its own inability to generate correct code, rather than to produce
incorrect code. This goal is achieved by having a simple model of the job to be done (e.g., an
expression tree) and a simple model of the machine state (e.g., which registers are free). The
act of generating an instruction performs a transformation on the tree and the machine state;

14 A Tour Through the Portable C Compiler

hopefully, the tree eventually gets reduced to a single node. If each of these
instruction/transformation pairs is correct, and if the machine state model really represents the
actual machine, and if the transformations reduce the input tree to the desired single node,
then the output code will be correct.

For most real machines, there is no definitive theory of code generation that encompasses
all the C operators. Thus the selection of which instruction/transformations to generate, and in
what order, wi~l have a heuristic flavor. If, for some expression tree, no transformation applies,
or, more seriously, if the heuristics select a sequence of instruction/transformations that do not
in fact reduce the tree, the compiler will report its inability to generate code, and abort.

A major part of the code generator is concerned with the model and the transformations,
- most of this is machine independent, or depends only on simple tables. The flexibility
comes from the heuristics that guide the transformations of the trees, the selection of subgoals,
and the ordering of the computation.

The Machine Model

The machine is assumed to have a number of registers, of at most two different types: A
and B. Within each register class, there may be scratch (temporary) registers and dedicated
registers (e.g., register variables, the stack pointer, etc.). Requests to allocate and free registers
involve only the temporary registers.

Each of the registers in the machine is given a name and a number in the mac2defs file;
the numbers are used as indices into various tables that describe the registers, so they should
be kept small. One such table is the rstatus table on file loca/2.c. This table is indexed by
register number, and contains expressions made up from manifest constants describing the
register types: SAREG for dedicated AREG's, SAREGISTAREG for scratch AREGS's, and
SBREG and SBREGISTBREG similarly for BREG's. There are macros that access this informa­
tion: ishreg(r) returns true if register number r is a BREG, and istreg(r) returns true if register
number r is a temporary AREG or BREG. Another table, rnames, contains the register names;
this is used when putting out assembler code and diagnostics.

The usage of registers is kept track of by an array called busy. Busy[r} is the number of
uses of register r in the current tree being processed. The allocation and freeing of registers
will be discussed later as part of the code generation algorithm.

General Organization

As mentioned above, the second pass reads lines from the intermediate file, copying
through to the output unchanged any lines that begin with a ') ', and making note of the infor­
mation about stack usage and register allocation contained on lines beginning with ']' and '['.
The expression trees, whose beginning is indicated by a line beginning with '.', are read and
rebuilt into trees. If the compiler is loaded as one pass, the expression trees are immediately
available to the code generator.

The actual code generation is done by a hierarchy of routines. The routine delay is first
given the tree; it attempts to delay some postfix + + and - - computations that might reason­
ably be done after the smoke clears. It also attempts to handle comma (,) operators by com­
puting the left side expression first, and then rewriting the tree to eliminate the operator.
Delay calls codgen to control the actual code generation process. Codgen takes as arguments a
pointer to the expression tree, and a second argument that, for socio-historical reasons, is called
a cookie. The cookie describes a set of goals that would be acceptable for the code generation:
these are assigned to individual bits, so they may be logically or'ed together to form a large
number of possible goals. Among the possible goals are FOREFF (compute for side effects
only; don't worry about the value), INTEMP (compute and store value into a temporary loca­
tion in memory), INAREG (compute into an A register), INTAREG (compute into a scratch
A register}, INBREG and INTBREG similarly, FORCC (compute for condition codes), and
FORARG (compute it as a function argument; e.g., stack it if appropriate).

A Tour Through the Portable C Compiler 15

Codgen first canonicalizes the tree by calling canon. This routine looks for certain
transformations that might now be applicable to the tree. One, which is very common and very
powerful, is to fold together an indirection operator (UNARY MUL) and a register (REG); in
most machines, this combination is addressable directly, and so is similar to a NAME i~ its
behavior. The UNARY MUL and REG are folded together to make another node type called
OREG. In fact, in many machines it is possible to directly address not just the cell pointed to
by a register, but also cells differing by a constant offset from the cell pointed to by the register.
Canon also looks for such cases, calling the machine dependent routine notoff to decide if the
offset is acceptable (for example, in the IBM 370 the offset must be between O and 4095 bytes).
Another optimization is to replace bit field operations by shifts and masks if the operation
involves extracting the field. Finally, a machine dependent routine, sucomp, is called that com­
putes the Sethi-Ullman numbers for the tree (see below).

After the tree is canonicalized, codgen calls the routine store whose job is to select a sub­
tree of the tree to be computed and (usually) stored before beginning the computation of the
full tree. Store must return a tree that can be computed without need for any temporary
storage locations. In effect, the only store operations generated while processing the subtree
must be as a response to explicit assignment operators in the tree. This division of the job
marks one of the more significant, and successful, departures from most other compilers. It
means that the code generator can operate under the assumption that there are enough registers
to do its job, without worrying about temporary storage. If a store into a temporary appears in
the output, it is always as a direct result of logic in the store routine; this makes debugging
easier.

One consequence of this organization is that code is not generated by a treewalk. There
are theoretical results that support this decision. 7 It may be desirable to compute several sub­
trees and store them before tackling the whole tree; if a subtree is to be stored, this is known
before the code generation for the subtree is begun, and the subtree is computed when all
scratch registers are available.

The store routine decides what subtrees, if any, should be stored by making use of
numbers, called Sethi-Ullman numbers, that give, for each subtree of an expression tree, the
minimum number of scratch registers required to compile the subtree, without any stores into
temporaries.s These numbers are computed by the machine-dependent routine sucomp, called
by canon. The basic notion is that, knowing the Sethi-Ullman numbers for the descendants of
a node, and knowing the operator of the node and some information about the machine, the
Sethi-Ullman number of the node itself can be computed. If the Sethi-Ullman number for a
tree exceeds the number of scratch registers available, some subtree must be stored. Unfor­
tunately, the theory behind the Sethi-Ullman numbers applies only to uselessly simple
machines and operators. For the rich set of C operators, and for machines with asymmetric
registers, register pairs, different kinds of registers, and exceptional forms of addressing, the
theory cannot be applied directly. The basic idea of estimation is a good one, however, and
well worth applying; the application, especially when the compiler comes to be tuned for high
code quality, goes beyond the park of theory into the swamp of heuristics. This topic will be
taken up again later, when more of the compiler structure has been described.

After examining the Sethi-Ullman numbers, store selects a subtree, if any, to be stored,
and returns the subtree and the associated cookie in the external variables stotree and stocook.

·If a subtree has been selected, or if the whole tree is ready to be processed, the routine -order is
called, with a tree and cookie .. Order generates code for trees that do not require temporary
locations. Order may make recursive calls on itself, and, in some cases, on codgen; for exam­
ple, when processing the operators &&, II, and comma (' ,'), that have a left to right evaluation,
it is incorrect for store examine the right operand for subtrees to be stored. In these cases,
order will call codgen recursively when it is permissible to. work on the right operand. A similar
issue arises with the ? : operator.

The order routine works by matching the current tree with a set of code templates. If a
template is discovered that will match the current tree and cookie, the associated assembly

16 A Tour Through the POl'tab/e C Compiler

language statement or statements are generated. The tree is then rewritten, as specified by the
template, to represent the effect of the output instruction(s). If no template match is found,
first an attempt is made to find a match with a different cookie; for example, in order to com­
pute an expression with cookie INTEMP (store into a temporary storage location), it is usually
necessary to compute the expression into a scratch register first. If all attempts to match the
tree fail, the heuristic part of the algorithm becomes dominant. Control is typically given to
one of a number of machine-dependent routines that may in turn recursively call order to
achieve a subgoal of the computation (for example, one of the arguments may be computed
into a temporary register). After this subgoal has been achieved, the process begins again with
the modified tree. If the machine-dependent heuristics are unable to reduce the tree further, a
number of default rewriting rules may be considered appropriate. For example, if the left
operand of a + is a scratch register, the + can be replaced by a +- operator; the tree may
then match a template.

To close this introduction, we will discuss the steps in compiling code for the expression

a+=b

where a and b are static variables.

To begin with, the whole expression tree is examined with cookie FOREFF, and no match
is found. Search with other cookies is equally fruitless, so an attempt at rewriting is made.
Suppose we are dealing with the Interdata 8/32 for the moment. It is recognized that the left
hand and right hand sides of the + = operator are addressable, and in particular the left hand
side has no side effects, so it is permissible to rewrite this as

a=a+b

and this is done. No match is found on this tree either, so a machine dependent rewrite is
done; it is recognized that the left hand side of the assignment is addressable, but the right
hand side is not in a register, so order is called recursively, being asked to put the right hand
side of the_ assignment into a register. This invocation of order searches the tree for a match,
and fails. The machine dependent rule for + notices that the right hand operand is address­
able; it decides to put the left operand into a scratch register. Another recursive call to order is
made, with the tree consisting solely of the leaf a , and the cookie asking that the value be
placed into a scratch register. This now matches a template, and a load instruction is emitted.
The node consisting of a is rewritten in place to represent the register into which a is loaded,
and this third call to order returns. The second call to order now finds that it has the tree

reg+ b

to consider. Once again, there is no match, but the default rewriting rule rewrites the + as a
+ = operator, since the left operand is a scratch register, resulting in a match: in fact,

reg+= b

simply describes the effect of the add instruction on a typical machine. After the add is emit­
ted, the tree is rewritten to consist merely of the register node, since the result of the add is
now in the register. This agrees with the cookie passed to the second invocation of order, so
this invocation terminates, returning to the first level. The original tree has now become

a= reg

which matches a template for the store instruction. The store is output, and the tree rewritten
to become just a single register node. At this point, since the top level call to order was
interested only in side effects, the call to order returns, and the code generation is completed;
we have generated a load, add, and store, as might have been expected.

The effect of machine architecture on this is considerable. For example, on the
Honeywell 6000, the machine dependent heuristics recognize that there is an "add to storage"
instruction, so the strategy is quite different; b is loaded in to a register, and then an add to
storage instruction generated to add this register in to a. The transformations, involving as

A Tour Through the Portable C Compiler 17

they do the semantics of C, are largely machine independent. The decisions as to when to use
them, however, are almost totally machine dependent.

Having given a broad outline of the code generation process, we shall neu consider the
heart of it: the templates. This leads naturally into discussions of template matching and regis­
ter allocation, and finally a discussion of the machine dependent interfaces and strategies.

The Templates

The templates describe the effect of the target machine instructions on the model of com­
putation around which the compiler is organized. In effect, each template has five logical sec­
tions, and represents an assertion of the form:

If' we have a subtree of a given shape (I), and we have a goal (cookie) or goals to achieve
(2), and we have sufficient free resources (3), then we may emit an instruction or
instructions (4), and rewrite the subtree in a particular manner (5), and the rewritten tree
will achieve the desired goals.

These five sections will be discussed in more detail later. First, we give an example of a
template:

ASG PLUS, INAREG,
SAREG,
SN AME,

TINT,
TINT,
0, RLEfT,

add AL,AR\n",

The top line specifies the operator (+ =) and the cookie (compute the value of the subtree into
an AREG). The second and third lines specify the left and right descendants, respectively, of
the + = operator. The left descendant must be a REG node, representing an A register, and
have integer type, while the right side must be a NAME node, and also have integer type. The
fourth line contains the resource requirements (no scratch registers or temporaries needed),
and the rewriting rule (replace the subtree by the left descendant). Finally, the quoted string
on the last line represents the output to the assembler: lower case letters, tabs, spaces, etc. are
copied verbatim. to the output; upper case letters trigger various macro-like expansions. Thus,
AL would expand into the Address form of the Left operand - presumably the register
number. Similarly, AR would expand into the name of the right operand. The add instruction
of the last section might well be emitted by this template.

In principle, it would be possible to make separate templates for all legal combinations of
operators, cookies, types, and shapes. In practice, the number of combinations is very large.
Thus, a considerable amount of mechanism is present to permit a large number of subtrees to
be matched by a single template. Most of the shape and type specifiers are individual bits, and
can be logically or'ed together. There are a number of special descriptors for matching classes
of operators. The cookies can also be combined. As an example of the kind of template that
really arises in practice, the actual template for the Interdata 8/32 that subsumes the above
example is:

ASG OPSIMP, INAREGIFORCC,
SAREG, TINTITUNSIGNEDITPOINT,

. SAREGjSNAMEISOREGISCON, TINTITUNSIGNEDJTPOINT,
0, RLEfTIRESCC,

01 AL,AR\n\

Here, OPSIMP represents the operators +, - , I, &, and ". The 01 macro in the output string
expands into the appropriate Integer Opcode for the operator. The left and right sides can be
integers, unsigned, or pointer types. The right side can be, in addition to a name, a register, a
memory location whose address is given by a register and displacement (OREG), or a constant.
Finally, these instructions set the condition codes, and so can be used in condition contexts: the
cookie and rewriting rules reflect this.

18 A Tour Through the Portable C Compiler

The Template Matching Algorithm

The heart of the second pass is the template matching algorithm, in the routine match .
Match is called with a tree and a cookie; it attempts to match the given tree against some tem­
plate that will transform it according to one of the goals given in the cookie. If a match is suc­
cessful, the transformation is applied; expand is called to generate the assembly code, and then
reclaim rewrites the tree, and reclaims the resources, such as registers, that might have become
free as a result of the generated code.

This part of the compiler is among the most time critical. There is a spectrum of imple­
mentation techniques available for doing this matching. The most naive algorithm simply looks
at the templates one by one. This can be considerably improved upon by restricting the search
for an acceptable template. It would be possible to do better than this if the templates were
given to a separate program that ate them and generated a template matching subroutine. This
would make maintenance of the compiler much more complicated, however, so this has not
been done.

The matching algorithm is actually carried out by restricting the range in the table that
must be searched for each opcode. This introduces a number of complications, however, and
needs a bit of sympathetic help by the person constructing the compiler in order to obtain best
results. The exact tuning of this algorithm continues; it is best to consult the code and com­
ments in match for the latest version.

In order to match a template to a tree, it is necessary to match not only the cookie and
the op of the root, but also the types and shapes of the left and right descendants (if any) of
the tree. A convention is established here that is carried out throughout the second pass of the
compiler. If a node represents a unary operator, the single descendant is always the "left" des­
cendant. If a node represents a unary operator or a leaf node (no descendants) the "right"
descendant is taken by convention to be the node itself. This enables templates to easily match
leaves and conversion operators, for example, without any additional mechanism in the match­
ing program.

The type matching is straightforward; it is possible to specify any combination of basic
types, general pointers, and pointers to one or more of the basic types. The shape matching is
somewhat more complicated, but still pretty simple. Templates have a collection of possible
operand shapes on which the opcode might match. In the simplest case, an add operation
might be able to add to either a register variable or a scratch register, and might be able (with
appropriate help from the assembler) to add an integer constant (ICON), a static memory cell
(NAME), or a stack location (OREG).

It is usually attractive to specify a number of such shapes, and distinguish between them
when the assembler output is produced. It is possible to describe the union of many elemen­
tary shapes such as ICON, NAME, OREG, AREG or BREG (both scratch and register forms),
etc. To handle at least the simple forms of indirection, one can also match some more compli­
cated forms of trees; ST ARNM and STARREG can match more complicated trees headed by
an indirection operator, and SFLD can match certain trees headed by a FLD operator: these
patterns call machine dependent routines that match the patterns of interest on a given
machine. The shape SWADD may be used to recognize NAME or OREG nodes that lie on
word boundaries: this may be of some importance on word-addressed machines. Finally,
there are some special shapes: these may not be used in conjunction with the other shapes, but
may be defined and extended in machine dependent ways. The special shapes SZERO, SONE,
and SMONE are predefined and match constants 0, 1, and -1, respectively; others are easy to
add and match by using the machine dependent routine spedal.

When a template has been found that matches the root of the tree, the cookie, and the
shapes and types of the descendants, there is still one bar to a total match: the template may
call for some resources (for example, a scratch register). The routine a/lo is called, and it
attempts to allocate the resources. If it cannot, the match fails; no resources are allocated. If
successful, the allocated resources are given numbers 1, 2, etc. for later reference when the

A Tour Through the Portable C Compiler 19

assembly code is generated. The routines expand and reclaim are then called. The match rou­
tine then returns a special value, MOONE. If no match was found, the value MNOPE is
returned; this is a signal to the caller to try more cookie values, or attempt a rewriting rule.
Match is also used to select rewriting rules, although the way of doing this is pretty straightfor­
ward. A special cookie, FORREW, is used to ask match to search for a rewriting rule. The
rewriting rules are keyed to various opcodes; most are carried out in order. Since the question
of when to rewrite is one of the key issues in code generation, it will be taken up again later.

Register Anocation

The register allocation routines, and the allocation strategy, play a central role in the
correctness of the code generation algorithm. If there are bugs in the Sethi-Ullman computa­
tion that cause the number of needed registers to be underestimated, the compiler may run out
of scratch registers; it is essential that the allocator keep track of those registers that are free
and busy, in order to detect such conditions.

Allocation of registers takes place as the result of a template match; the routine a/lo is
called with a word describing the number of A registers, B registers, and temporary locations
needed. The allocation of temporary locations on the stack is relatively straightforward, and
will not be further covered; the bookkeeping is a bit tricky, but conceptually trivial, and
requests for temporary space on the stack will never fail.

Register allocation is less straightforward. The two major complications are pairing and
sharing. In many machines, some operations (such as multiplication and division), and/or
some types (such as longs or double precision) require even/odd pairs of registers. Operations
of the first type are exceptionally difficult to deal with in the compiler; in fact, their theoretical
properties are rather bad as well.9 The second issue is dealt with rather more successfully; a
machine dependent function called szty(t) is called that returns I or 2, depending on the
number of A registers required to hold an object of type t. If szty returns 2, an even/odd pair
of A registers is allocated for each request.

The other issue, sharing, is more subtle, but important for good code quality. When
registers are allocated, it is possible to reuse registers that hold address information, and use
them to contain the values computed or accessed. For example, on the IBM 360, if register 2
has a pointer to an integer in it, we may load the integer into register 2 itself by saying:

L 2,0(2)

If register 2 had a byte pointer, however, the sequence for loading a character involves clearing
the target register first, and then inserting the desired character:

SR
IC

3,3
3,0(2)

In the first case, if register 3 were used as the target, it would lead to a larger number of regis­
ters used for the expression than were required; the compiler would generate inefficient code.
On the other hand, if register 2 were used as the target in the second case, the code would sim­
ply be wrong. In the first case, register 2 can be shared while in the second, it cannot.

In the specification of the register needs in the templates, it is possible to indicate whether
required scratch registers may be shared with possible registers on the left or the right of the
input tree. In order that a register, be shared, it must be scratch, and it must be used only
once, on the appropriate side of the tree being compiled.

The a/lo routine thus has a bit more to do than meets the eye; it calls freereg to obtain a
free register for each A and B register request. Freereg makes multiple calls on the routine
usable to decide if a given register can be used to satisfy a given need. Usable calls shareit if
the register is busy, but might be shared. Finally, shareit calls ushare to decide if the desired
register is actually in the appropriate subtree, and can be shared.

20 A Tour Through the Ponable C Compiler

Just to add additional complexity, on some machines (such as the IBM 370) it is possible
to have "double indexing" forms of addressing; these are represented by OREGS's with the
base and index registers encoded into the register field. While the register allocation and deal­
location per se is not made more difficult by this phenomenon, the code itself is somewhat
more complex.

Having allocated the registers and expanded the assembly language, it is time to reclaim
the resources; the routine reclaim does this. Many operations produce more than one result.
For example, many arithmetic operations may produce a value in a register, and also set the
condition codes. Assignment operations may leave results both in a register and in memory.
Reclaim is passed three parameters; the tree and cookie that were matched, and the rewriting
field of the template. The rewriting field allows the specification of possible results; the tree is
rewritten to reflect the results of the operation. If the tree was computed for side effects only
(FOREFF), the tree is freed, and all resources in it reclaimed. If the tree was computed for
condition codes, the resources are also freed, and the tree replaced by a special node type,
FORCC. Otherwise, the value may be found in the left argument of the root, the right argu­
ment of the root, or one of the temporary resources allocated. In these cases, first the
resources of the tree, and the newly allocated resources, are freed; then the resources needed
by the result are made busy again. The final result must always match the shape of the input
cookie; otherwise, the compiler error "cannot reclaim" is generated. There are some machine
dependent ways of preferring results in registers or memory when there are multiple results
matching multiple goals in the cookie.

The Machine Dependent Interface

The files order.c: Joca/2.c, and tab/e.c, as well as the header file mac2defs, represent the
machine dependent portion of the second pass. The machine dependent portion can be roughly
divided into two: the easy portion and the hard portion. The easy portion tells the compiler the
names of the registers, and arranges that the compiler generate the proper assembler formats,
opcode names, location counters, etc. The hard portion involves the Sethi-Ullman computa­
tion, the rewriting rules, and, to some extent, the templates. It is hard because there are no
real algorithms that apply; most of this portion is based on heuristics. This section discusses
the easy portion; the next several sections will discuss the hard portion.

If the compiler is adapted from a compiler for a machine of similar architecture, the easy
part is indeed easy. In mac2defs, the register numbers are defined, as well as various parame­
ters for the stack frame, and various macros that describe the machine architecture. If double
indexing is to be permitted, for example, the symbol R2REGS is defined. Also, a number of
macros that are involved in function call processing, especially for unusual function call
mechanisms, are defined here.

In Joca/2.c, a large number of simple functions are defined. These do things such as write
out opcodes, register names, and address forms for the assembler. Part of the function call
code is defined here; that is nontrivial to design, but typically rather straightforward to imple­
ment. Among the easy routines in order.c are routines for generating a created label, defining a
label, and generating the arguments of a function call.

These routines tend to have a local effect, and depend on a fairly straightforward way on
the target assembler and the design decisions already made about the compiler. Thus they will
not be further treated here.

The Rewriting Rules

When a tree fails to match any template, it becomes a candidate for rewriting. Before the
tree is rewritten, the machine dependent routine ne::acook is called with the tree and the cookie;
it suggests another cookie that might be a better candidate for the matching of the tree. If all
else fails, the templates are searched with the cookie FORREW, to look for a rewriting rule.
The rewriting rules are of two kinds; for most of the common operators, there are ,,;hinc
dependent rewriting rules that may be applied; these are handled by machine dependent

A Tour Through the Portable C Compiler 21

functions that are called and given the tree to be computed. These routines may recursively
call order or codgen to eause certain subgoals to be achieved; if they actually call for some
alteration of the tree, they return I, and the code generation algorithm recanonicalizes and tries
again. If these routines choose not to deal with the tree, the default rewriting rules are applied.

The assignment ops, when rewritten, call the routine setasg. This is assumed to rewrite
the tree at least to the point where there are no side effects in the left hand side. If there is
still no template match, a default rewriting is done that causes an expression such as

a+=b

to be rewritten as

a=a+b

This is a useful default for certain mixtures of strange types (for example, when a is a bit field
and b an character) that otherwise might need separate table entries.

Simple assignment, structure assignment, and all forms of calls are handled completely by
the machine dependent routines. For historical reasons, the routines generating the calls return
1 on failure, 0 on success, unlike the other routines.

The machine dependent routine setbin handles binary operators; it too must do most of
the job. In particular, when it returns 0, it must do so with the left hand side in a temporary
register. The default rewriting rule in this case is to convert the binary operator into the associ­
ated assignment operator; since the left hand side is assumed to be a temporary register, this
preserves the semantics and often allows a considerable saving in the template table.

The increment and decrement operators may be dealt with with the machine dependent
routine setincr. If this routine chooses not to deal with the tree, the rewriting rule replaces

x++

by

((x + = I) - I)

which preserves the semantics. Once again, this is not too attractive for the most common
cases, but can generate close to optimal code when the type of x is unusual.

Finally, the indirection (UNARY MUL) operator is also handled in a special way. The
machine dependent routine offstar is extremely important for the efficient generation of code.
Offstar is called with a tree that is the direct descendant of a UNARY MUL node; its job is to
transform this tree so that the combination of UNARY MUL with the transformed tree
becomes addressable. On most machines, offstar can simply compute the tree into an A or B
register, depending on the architecture, and then canon will make the resulting tree into an
OREG. On many machines, offstar can profitably choose to do less work than computing its
entire argument into a register. For example, if the target machine supports OREGS with a
constant offset from a register, and ojfstar is called with a tree of the form

expr +con.rt

where const is a constant, then ojfstar need only compute expr into the appropriate form of
register. On machines that support double indexing, ojfstar may have even more choice as to
how to proceed. The proper tuning of off star, which is not typically too difficult, should be one
of the first tries at optimization attempted by the compiler writer.

The Sethi-Ullman Computation

The heart of the heuristics is the computation of the Sethi-Ullman numbers. This compu­
tation is closely linked with the rewriting rules and the templates. As mentioned before, the
Sethi-Ullman numbers are expected to estimate the number of scratch registers needed to com­
pute the subtrees without using any stores. However, the original theory does not apply to real
machines. For one thing, the theory assumes that all registers are interchangeable. Real

22 A Tour Through the Portable C Compiler

machines have general purpose, floating point, and index registers, register pairs, etc. The
theory also does not account for side effects; this rules out various forms of pathology that arise
from assignment and assignment ops. Condition codes are also undreamed of. Finally, the
influence of types, conversions, and the various addressability restrictions and extensions of
real machines are also ignored.

Nevertheless, for a "useless" theory, the basic insight of Sethi and Ullman is amazingly
useful in a real compiler. The notion that one should attempt to estimate the resource needs of
trees before starting the code generation provides a natural means of splitting the code genera­
tion problem, and provides a bit of redundancy and self checking in the compiler. Moreover, if
writing the Sethi-Ullman routines is hard, describing, writing, and debugging the alternative
(routines that attempt to free up registers by stores into temporaries "on the fly") is even
worse. Nevertheless, it should be clearly understood that these routines exist in a realm where
there is no "right" way to write them; it is an art, the realm of heuristics, and, consequently, a
major source of bugs in the compiler. Often, the early, crude versions of these routines give
little trouble; only after the compiler is actually working and the code quality is being improved
do serious problem have to be faced. Having a simple, regular machine architecture is worth
quite a lot at this time.

The major problems arise from asymmetries in the registers: register pairs, having
different kinds of registers, and the related problem of needing more than one register (fre­
quently a pair) to store certain data types (such as longs or doubles). There appears to be no
general way of treating this problem; solutions have to be fudged for each machine where the
problem arises. On the Honeywell 66, for example, there are only two general purpose regis­
ters, so a need for a pair is the same as the need for two registers. On the IBM 370, the regis­
ter pair (0, 1) is used to do multiplications and divisions; registers 0 and 1 are not generally con­
sidered part of the scratch registers, and so do not require allocation explicitly. On the Inter­
data 8/32, after much consideration, the decision was made not to try to deal with the register
pair issue; operations such as multiplication and division that required pairs were simply
assumed to take all of the scratch registers. Several weeks of effort had failed to produce an
algorithm that seemed to have much chance of running successfully without inordinate debug­
ging effort. The difficulty of this issue should not be minimized; it represents one of the main
intellectual efforts in porting the compiler. Nevertheless, this problem has been fudged with a
degree of success on nearly a dozen machines, so the compiler writer should not abandon hope.

The Sethi-Ullman computations interact with the rest of the compiler in a number of
rather subtle ways. As already discussed, the store routine uses the Sethi-Ullman numbers to
decide which subtrees are too difficult to compute in registers, and must be stored. There are
also subtle interactions between the rewriting routines and the Sethi-Ullman numbers. Suppose
we have a tree such as

A-B

where A and B are expressions; suppose further that B takes two registers, and A one. It is
possible to compute the full expression in two registers by first computing B, and then, using
the scratch register used by B, but not containing the answer, compute A. The subtraction can
then be done, computing the expression. (Note that this assumes a number of things, not the
least of which are register-to-register subtraction operators and symmetric registers.) If the
machine dependent routine setbin, however, is not prepared to recognize this case and compute
the more difficult side of the expression first, the Sethi-Ullman number must be set to three.
Thus, the Sethi-Ullman number for a tree should represent the code that the machine depen­
dent routines are actually willing to generate.

The interaction can go the other way. If we take an expression such as

*(p+i)

where p is a pointer and i an integer, this can probably be done in one register on most
machines. Thus, its Sethi-Ullman number would probably be set to one. If double indexing is

A Tour Through the Portable C Compiler 23

possible in the machine, a possible way of computing the expression is to load both p and i into
registers, and then use double indexing. This would use two scratch registers; in such a case, it
is possible that the scratch registers might be unobtainable, or might make some other part of
the computation run out of registers. The usual solution is to cause offstar to ignore opportuni­
ties for double indexing that would tie up more scratch registers than the Sethi-Ullman number
had reserved.

In summary, the Sethi-Ullman computation represents much of the craftsmanship and
artistry in any application of the portable compiler. It is also a frequent source of bugs. Algo­
rithms are available that will produce nearly optimal code for specialized machines, but unfor­
tunately most existing machines are far removed from these ideals. The best way of proceeding
in practice is to start with a compiler for a similar machine to the target, and proceed very care­
fully.

Register Allocation

After the Sethi-Ullman numbers are computed, order calls a routine, ra/lo, that does
register allocation, if appropriate. This routine does relatively little, in general; this is especially
true if the target machine is fairly regular. There are a few cases where it is assumed that the
result of a computation takes place in a particular register; switch and function return are the
two major places. The expression tree has a field, rail, that may be filled with a register
number; this is taken to be a preferred register, and the first temporary register allocated by a
template match will be this preferred one, if it is free. If not, no particular action is taken; this
is just a heuristic. If no register preference is present, the field contains NOPREF. In some
cases, the result must be placed in a given register, no matter what. The register number is
placed in rail, and the mask MUSTDO is logically or'ed in with it. In this case, if the subtree is
requested in a register, and comes back in a register other than the demanded one, it is moved
by calling the routine rmove. If the target register for this move is busy, it is a compiler error.

Note that this mechanism is the only one that will ever cause a register-to-register move
between scratch registers (unless such a move is buried in the depths of some template). This
simplifies debugging. In some cases, there is a rather strange interaction between the register
allocation and the Sethi-Ullman number; if there is an operator or situation requiring a particu­
lar register, the allocator and the Sethi-Ullman computation must conspire to ensure that the
target register is not being used by some intermediate result of some far-removed computation.
This is most easily done by making the special operation take alt of the free registers, prevent­
ing any other partially-computed results from cluttering up the works.

Compiler Bugs

The portable compiler has an excellent record of generating correct code. The require­
ment for reasonable cooperation between the register allocation, Sethi-Ullman computation,
rewriting rules, and templates builds quite a bit of redundancy into the compiling process. The
effect of this is that, in a surprisingly short time, the compiler will start generating correct code
for those programs that it can compile. The hard part of the job then becomes finding and
eliminating those situations where the compiler refuses to compile a program because it knows
it cannot do it right. For example, a template may simply be missing; this may either give a
compiler error of the form "no match for op ... " , or cause the compiler to go into an infinite
loop applying various rewriting rules. The compiler has a variable, nrecur, that is set to 0 at the
beginning of an expressions, and incremented at key spots in the compilation process; if this
parameter gets too large, the compiler decides that it is in a loop, and aborts. Loops are also
characteristic of botches in the machine-dependent rewriting rules. Bad Sethi-Ullman c.omputa­
tions usually cause the scratch registers to run out; this often means that the Sethi-Ullman
number was underestimated, so store did not store something it should have; alternatively, it
can mean that the rewriting rules were not smart enough to find the sequence that sucomp
assumed would be used.

24 A Tour Through the Portable C Compiler

The best approach when a compiler error is detected involves several stages. First, try to
get a small example program that steps on. the bug. Second, turn on various debugging flags in
the code generator, and follow the tree through the process of being matched and rewritten.
Some flags of interest are -e, which prints the expression tree, -r, which gives information
about the allocation of registers, -a, which gives information about the performance of rallo,
and -o, which gives information about the behavior of order. This technique should allow
most bugs to be found relatively quickly.

Unfortunately, finding the bug is usually not enough; it must also be fixed! The difficulty
arises because a fix to the particular bug of interest tends to break other code that already
works. Regression tests, tests that compare the performance of a new compiler against the per­
formance of an older one, are very valuable in preventing major catastrophes.

Summary and Conclusion

The portable compiler has been a useful tool for providing C capability on a large number
of diverse machines, and for testing a number of theoretical constructs in a practical setting. It
has many blemishes, both in style and functionality. It has been applied to many more
machines than first anticipated, of a much wider range than originally dreamed of. Its use has
also spread much faster than expected, leaving parts of the compiler still somewhat raw in
shape.

On the theoretical side, there is some hope that the skeleton of the sucomp routine could
be generated for many machines directly from the templates; this would give a considerable
boost to the portability and correctness of the compiler, but might affect tunability and code
quality. There is also room for more optimization, both within optim and in the form of a port~
able "peephole" optimizer.

On the practical, development side, the compiler could probably be sped up and made
smaller without doing too much violence to its basic structure. Parts of the compiler deserve to
be rewritten; the initialization code, register allocation, and parser are prime candidates. It
might be that doing some or all of the parsing with a recursive descent parser might save
enough space and time to be worthwhile; it would certainly ease the problem of moving the
compiler to an environment where Yacc is not already present.

Finally, I would like to thank the many people who have sympathetically, and even
enthusiastically, helped me grapple with what has been a frustrating program to write, test, and
install. D. M. Ritchie and E. N. Pinson provided needed early encouragement and philosophi­
cal guidance; M. E. Lesk, R. Muha, T. G. Peterson, G. Riddle, L. Rosier, R. W. Mitze, B. R.
Rowland, S. I. Feldman, and T. B. London have all contributed ideas, gripes, and all, at one
time or another, climbed "into the pits" with me to help debug. Without their help this effort
would have not been possible; with it, it was often kind of fun.

A Tour Through the Portable C Compiler 25

References

[l] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Prentice-Hall, Engle­
wood Cliffs, New Jersey (1978).

[2] S. C. Johnson. LINT, a C Program Checker, Bell Laboratories (1978).

[3) A. Snyder. A Portable Compiler for the Language C, Master's Thesis, M.l.T., Cambridge,
MA (1974).

[4] S. C. Johnson. "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, pp. 97-104 (Jan. 1978).

[5) M. E. Lesk, S. C. Johnson, and D. M. Ritchie. The C Language Calling Sequence, Bell
Laboratories (1977).

[6] S. C. Johnson. YACC-Yet Another Compiler-Compiler, Bell Laboratories (July 1975).

[7] A. V. Aho and S. C. Johnson. "Optimal Code Generation for Expression Trees," J.
Assoc. Comp. Mach. 23(3):488-501 (1975). Also in Proc. ACM Symp. on Theory of Com­
puting, pp. 207-217 (I 975).

[8] R. Sethi and J. D. Ullman. "The Generation of Optimal Code for Arithmetic Expres­
sions," J. Assoc. Comp. Mach. 17(4):715-728 (Oct. 1970). Reprinted in Compiler Tech­
niques, ed. B. W. Pollack, pp. 229-247, Auerbach, Princeton, New Jersey (1972).

[9] A. V. Aho, S. C. Johnson, and J. D. Ullman. "Code Generation for Machines with Mul­
tiregister Operations," Proc. 4th ACM Symp. on Principles of Programming Languages,
pp. 21-28 (Jan. 1977).

January 1981

A Tour Through the UNIX C Compiler

The Intermediate Language

D. M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.6.2

Communication between the two phases of the UNIXt C compiler proper is carried out by
means of a pair of intermediate files. These files are treated as having identical structure,
although the second file contains only the code generated for strings. It is convenient to write
strings out separately to reduce the need for multiple location counters in a later assembly
phase.

The intermediate language is not machine-independent; its structure in a number of ways
reflects the fact that C was originally a one-pass compiler chopped in two to reduce the max­
imum memory requirement. In fact, only the latest version of the compiler has a complete
intermediate language at all. Until recently, the first phase of the compiler generated assembly
code for those constructions it could deal with, and passed expression parse trees, in absolute
binary form, to the second phase for code generation. Now, at least, all inter-phase informa­
tion is passed in a describable form, and there are no absolute pointers involved, so the cou­
pling between the phases is not so strong.

The areas in which the machine (and system) dependencies are most noticeable are

I. Storage allocation for automatic variables and arguments has already been performed, and
nodes for such variables ref er to them by offset from a display pointer. Type conversion
(for example, from integer to pointer) has already occurred using the assumption of byte
addressing and 2-byte words.

2. Data representations suitable to the PDP-11 are assumed; in particular, floating point con­
stants are passed as four words in the machine representation.

As it happens, each intermediate file is represented as a sequence of binary numbers
without any explicit demarcations. It consists of a sequence of conceptual lines, each headed by
an operator, and possibly containing various operands. The operators are small numbers; to
assist in recognizing failure in synchronization, the high-order byte of each operator word is
always the octal number 376. Operands are either I 6-bit binary numbers or strings of charac­
ters representing names. Each name is terminated by a null character. There is no alignment
requirement for numerical operands and so there is no padding after a name string.

The binary representation was chosen to avoid the necessity of converting to and from
character form and to minimize the size of the files. It would be very easy to make each
operator-operand 'line' in the file be a genuine, printable line, with the numbers in octal or
decimal; this in fact was the representation originally used.

The operators fall naturally into two classes: those which represent part of an expression,
and all others. Expressions are transmitted in a reverse-Polish notation; as they are being read,
a tree is built which is isomorphic to the tree constructed in the first phase. Expressions are
passed as a whole, with no non-expression operators intervening. The reader maintains a stack;
each leaf of the expression tree (name, constant) is pushed on the stack; each unary operator

t UNIX is a trademark of Bell Laboratories.

2 A Tour Through the UNIX C Compiler

replaces the top of the stack by a node whose operand is the old top-of-stack; each binary
operator replaces the top pair on the stack with a single entry. When the expression is com­
plete there is exactly one item on the stack. Following each expression is a special operator
which passes the unique previous expression to the 'optimizer' described below and then to the
code generator.

Here is the list of operators not themselves part of expressions.

EOF
marks the end of an input file.

BDATA flag data ...

specifies a sequence of bytes to be assembled as static data. It is followed by pairs of
words; the first member of the pair is non-zero to indicate that the data continue; a zero
flag is not followed by data and terminates the operator. The data bytes occupy the low­
order part of a word.

WDA TA flag data ...

specifies a sequence of words to be assembled as static data; it is identical to the BDATA
operator except that entire words, not just bytes, are passed.

PROG
means that subsequent information is to be compiled as program text.

DATA

means that subsequent information is to be compiled as static data.

BSS
means that subsequent information is to be compiled as uninitialized static data.

SYMDEF name

means that the symbol name is an external name defined in the current program. It is
produced for each external data or function definition.

CSPA CE name size
indicates that the name refers to a data area whose size is the specified number of bytes.
It is produced for external data definitions without explicit initialization.

SSPACE size

indicates that size bytes should be set aside for data storage. It is used to pad out short
initializations of external data and to reserve space for static (internal) data. It will be
preceded by an appropriate label.

EVEN
is product:d. after each extern~l data definition .whose size is not an integral number of
words. It is not produced after strings except when they initialize a character array.

NLABEL name

is produced just before a BDATA or WDATA i~itializing external data, and serves as a
label for the data.

A Tour Through the UNIX C Compiler 3

RLABEL name

is produced just before each function definition, and labels its entry point.

SNAME name number

is produced at the start of each function for each static variable or label declared therein.
Subsequent uses of the variable will be in terms of the given number. The code genera­
tor uses this only to produce a debugging symbol table.

ANAME name number

Likewise, each automatic variable's name and stack offset is specified by this operator.
Arguments count as automatics.

RNAME name number

Each register variable is similarly named, with its register number.

SAVE number

produces a register-save sequence at the start of each function, just after its label (RLA­
BEL).

SETR EG number

is used to indicate the number of registers used for register variables. It actually gives the
register number of the lowest free register; it is redundant because the RNAME operators
could be counted instead.

PRO FIL

is produced before the save sequence for functions when the profile option is turned on.
It produces code to count the number of times the function is called.

SWIT def/ab line label value ...

is produced for switches. When control flows into it, the value being switched on is in the
register forced by RFORCE (below). The switch statement occurred on the indicated line
of the source, and the label number of the default location is def/ab. Then the operator is
followed by a sequence of label-number and value pairs; the list is terminated by a 0 label.

LABEL number

generates an internal label. It is referred to elsewhere using the given number.

BRA NCH number

indicates an unconditional transfer to the internal label number given.

RETRN

produces the return sequence for a function. It occurs only once, at the end of each func­
tion.

EXPR line

causes the expression just preceding to be compiled. The argument is the line number in
the source where the expression occurred.

4 A Tour Through the UNIX C Compiler

NAME class type name

NAME class type number

indicates a name occurring in an expression. The first form is used when the name is
external; the second when the name is automatic, static, or a register. Then the number
indicates the stack offset, the label number, or the register number as appropriate. Class
and type encoding is described elsewhere.

CON type value

transmits an integer constant. This and the next two operators occur as part of expres­
sions.

FCON type 4-word-value

transmits a floating constant as four words in PDP-11 notation.

SFCON type value

transmits a floating-point constant whose value is correctly represented by its high-order
word in PDP-11 notation.

NULL
indicates a null argument list of a function call in an expression; call is a binary operator
whose second operand is the argument list.

CBRANCH label cond

produces a conditional branch. It is an expression operator, and will be followed by an
EXPR. The branch to the label number takes place if the expression's truth value is the
same as that of con.d. That is, if con.d= I and the expression evaluates to true, the branch
is taken.

binary1perator type

There are binary operators corresponding to each such source-language operator; the type
of the result of each is passed as well. Some perhaps-unexpected ones are: COMMA,
which is a right-associative operator designed to simplify right-to-left evaluation of func­
tion arguments; prefix and postfix + + and - - , whose second operand is the increment
amount, as a CON; QUFST and COLON, to express the conditional expression as
•a'?(b:c)'; and a sequence of special operators for expressing relations between pointers, in
case pointer comparison is different from integer comparison (e.g. unsigned).

unary1perator type

There are also numerous unary operators. These include ITOF, FTOI, FTOL, LTOF,
ITOL, LTOI which convert among floating, long, and integer; JUMP which branches
indirectly through a label expression; INIT, which compiles the value of a constant
expression used as an initializer; RFORCE, which is used before a return sequence or a
switch to place a value in an agreed-upon register.

Expression Optimization

Each expression tree, as it is read in, is subjected to a fairly comprehensive analysis. This
is performed by the optim routine and a number of subroutines; the major things done are:

A Tour Through the UNIX C Compiler s

I. Modifications and simplifications of the tree so its value may be computed more efficiently
and conveniently by the code generator.

2. Marking each interior node with an estimate of the number of registers required to evalu­
ate it. This register count is needed to guide the code generation algorithm.

One thing that is definitely not done is discovery or exploitation of common subexpres­
sions, nor is this done anywhere in the compiler.

The basic organization is simple: a depth-first scan of the tree. Optim does nothing for
leaf nodes {except for automatics; see below), and calls unoptim to handle unary operators. For
binary operators, it calls itself to process the operands, then treats each operator separately.
One important case is commutative and associative operators, which are handled by acommute.

Here is a brief catalog of the transformations carried out by by optim itself. It is not
intended to be complete. Some of the transformations are machine-dependent, although they
may well be useful on machines other than the PDP- I I.

I. As indicated in the discussion of. unoptim below, the optimizer can create a node type
corresponding to the location addressed by a register plus a constant off set. Since this is
precisely the implementation of automatic variables and arguments, where the register is
fixed by convention, such variables are changed to the new form to ease later processing.

2. Associative and commutative operators are processed by the special routine acommute.

3. After processing by acommute, the bitwise & operator is turned into a new andn operator;
'a & b' becomes 'a andn ·b'. This is done because the PDP-11 provides no and operator,
but only andn. A similar transformation takes place for'=&'.

4. Relationals are turned around so the more complicated expression is on the left. (So that
'2 > f(x)' becomes 'f(x) < 2'). This improves code generation since the algorithm
prefers to have the right operand require fewer registers than the left.

5. An expression minus a constant is turned into the expression plus the negative constant,
and the acommute routine is called to take advantage of the properties of addition.

6. Operators with constant operands are evaluated.

7. Right shifts (unless by 1) are turned into left shifts with a negated right operand, since
the PDP-I I lacks a general right-shift operator.

8. A number of special cases are simplified, such as division or multiplication by I, and
shifts by 0.

The unoptim routine performs the same sort of processing for unary operators.

1. '*&x' and '&*x' are simplified to 'x'.

2. If r is a register and c is a constant or the address of a static or external variable, the
expressions '*(r+c)' and '*r' are turned into a special kind of name node which expresses
the name itself and the offset. This simplifies subsequent processing because such con­
structions can appear as the the address of a PDP-11 instruction.

3. When the unary '&' operator is applied to a name node of the special kind just discussed,
it is reworked to make the addition explicit again; this is done because the PDP- I I has no
'load address' instruction.

4. Constructions like '*r+ +' and '*- -r' where r is a register are discovered and marked as
being implementable using the PDP-11 auto-increment and -decrement modes.

5. If '!' is applied to a relational, the '!' is discarded and the sense of the relational is
reversed.

6. Special cases involving reflexive use of negation and complementation are discovered.

7. Operations applying to constants are evaluated.

6 A Tour Through the UNIX C Compiler

The acommute routine, called for associative and commutative operators, discovers clus­
ters of the same operator at the top levels of the current tree, and arranges them in a list: for
'a+((b+c)+(d+f))' the list would be'a,b,c,d,e,f'. After each subtree is optimized, the list is
sorted in decreasing difficulty of computation; as mentioned above, the code generation algo­
rithm works best when left operands are the difficult ones. The 'degree of difficulty' computed
is actually finer than the mere number of registers required; a constant is considered simpler
than the address of a static or external, which is simpler than reference to a variable. This
makes it easy to fold all the constants together, and also to merge together the sum of a con­
stant and the address of a static or external (since in such nodes there is space for an 'offset'
value). There are also special cases, like multiplication by 1 and addition of 0.

A special routine is invoked to handle sums of products. Distrib is based on the fact that it is
better to compute 'cl*c2*x + cl*y' as 'cl*(c2*x + y)' and makes the divisibility tests required
to assure the correctness of the transformation. This transformation is rarely possible with code
directly written by the user, but it invariably occurs as a result of the implementation of multi­
dimensional arrays.

Finally, acommute reconstructs a tree from the list of expressions which result.

Code Generation

The grand plan for code-generation is independent of any particular machine; it depends
largely on a set of tables. But· this fact does not necessarily make it very easy to modify the
compiler to produce code for other machines, both because there is a good deal of machine­
dependent structure in the tables, and because in any event such tables are non-trivial to
prepare.

The arguments to the basic code generation routine rcexpr are a pointer to a tree
representing an expression, the name of a code-generation table, and the number of a register
in which the value of the expression should be placed. Rcexpr returns the number of the regis­
ter in which the value actually ended up; its caller may need to produce a mov instruction if the
value really needs to be in the given register. There are four code generation tables.

Regtab is the basic one, which actually does the job described above: namely, compile
code which places the value represented by the expression tree in a register.

Cctab is used when the value of the expression is not actually needed, but instead the
value of the condition codes resulting from evaluation of the expression. This table is used, for
example, to evaluate the expression after if. It is clearly silly to calculate the value (0 or I) of
the expression 'a==b' in the context 'if {a==b) ... '

The sptab table is used when the value of an expression is to be pushed on the stack, for
example when it is an actual argument. For example in the function call 'f(a)' it is a bad idea
to load a into a register which is then pushed on the stack, when there is a single instruction
which does the job.

The efftab table is used when an expression is to be evaluated for its side effects, not its
value. This occurs mostly for expressions which are statements, which have no value. Thus
the code for the statement 'a = b' need produce only the appropriate mov instruction, and need
not leave the value of bin a register, while in the expression 'a + (b = c)' the value of 'b -
c' will appear in a register.

All of the tables besides regtab are rather small, and handle only a relatively few special
cases. If one of these subsidiary tables does not contain an entry applicable to the given expres­
sion tree, rcexpr uses regtab to put the value of the expression into a register and then fixes
things up; nothing need be done when the table was efftab, but a tst instruction is produced
when the table called for was cctab, and a mov instruction, pushing the register on the stack,
when the table was sptab.

A Tour Through the UNIX C Compiler 7

The rcexpr routine itself picks off some special cases, then calls cexpr to do the real work.
Cexpr tries to find an entry applicable to the given tree in the given table, and returns - I if no
such entry is found, letting rcexpr try again with a different table. A successful match yields a
string containing both literal characters which are written out and pseudo-operations, or macros,
which are expanded. Before studying the contents of these strings we will consider how table
entries are matched against trees.

Recall that most non-leaf nodes in an expression tree contain the name of the operator,
the type of the value represented, and pointers to the subtrees (operands). They also contain
an estimate of the number of registers required to evaluate the expression, placed there by the
expression-optimizer routines. The register counts are used to guide the code generation pro­
cess, which is based on the Sethi-Ullman algorithm.

The main code generation tables consist of entries each containing an operator number
and a pointer to a subtable for the corresponding operator. A subtable consists of a sequence of
entries, each with a key describing certain properties of the operands of the operator involved;
associated with the key is a code string. Once the subtable corresponding to the operator is
found, the subtable is searched linearly until a key is found such that the properties demanded
by the key are compatible with the operands of the tree node. A successful match returns the
code string; an unsuccessful search, either for the operator in the main table or a compatible
key in the subtable, returns a failure indication.

The tables are all contained in a file which must be processed to obtain an assembly
language program. Thus they are written in a special-purpose language. To provided
definiteness to the following discussion, here is an example of a subtable entry.

%n,aw
F
add A2,R

The '%' indicates the key; the information following (up to a blank line) specifies the code
string. Very briefly, this entry is in the subtable for '+' of regtab; the key specifies that the left
operand is any integer, character, or pointer expression, and the right operand is any word
quantity which is directly addressable (e.g. a variable or constant). The code string calls for the
generation of the code to compile the left (first) operand into the current register ('F') and
then to produce an 'add' instruction which adds the second operand (' A2'), to the register
('R'). All of the notation will be explained below.

Only three features of the operands are used in deciding whether a match has occurred:

I. Is the type of the operand compatible with that demanded?

2. Is the 'degree of difficulty' (in a sense described below) compatible?

3. The table may demand that the operand have a '*' (indirection operator) as its highest
operator.

As suggested above, the key for a subtable entry is indicated by a '%,' and a comma­
separated pair of specifications for the operands. (The second specification is ignored for unary
operators). A specification indicates a type requirement by including one of the following
letters. If no type letter is present, any integer, character, or pointer operand will satisfy the
requirement (not float, double, or long).

b A byte (character) operand i_s required .

. w A word (integer or pointer) operand is required.

f A float or double operand is required.

d A double operand is required.

A long (32-bit integer) operand is required.

8 A Tour Through the UNIX C Compiler

Before discussing the 'degree of difficulty' specification, the algorithm has to be explained
more completely. Rcexpr (and cexpr) are called with a register number in which to place their
result. Registers 0, I, ... are used during evaluation of expressions; the maximum register
which can be used in this way depends on the number of register variables, but in any event
only registers 0 through 4 are available since rS is used as a stack frame header and r6 (sp) and
r7 (pc) have special hardware properties. The code generation routines assume that when
called with register n as argument, they may use n+ l, ... {up to the first register variable) as
temporaries. Consider the expression 'X + Y', where both X and Y are expressions. As a first
approximation, there are three ways of compiling code to put this expression in register n.

I. If Y is an addressable cell, (recursively) put X into register n and add Y to it.

2. If Y is an expression that can be calculated in k registers, where k smaller than the
number of registers available, compile X into register n, Y into register n+ 1. and add
register n+ 1 to n.

3. Otherwise, compile Y into register n, save the result in a temporary (actually, on the
stack) compile X into register n, then add in the temporary.

The distinction between cases 2 and 3 therefore depends on whether the right operand can
be compiled in fewer than k registers, where k is the number of free registers left after registers
0 through n are taken: 0 through n-1 are presumed to contain already computed temporary
results; n will, in case 2, contain the value of the left operand)Vhile the right is being evaluated.

These considerations should make clear the specification codes for the degree of difficulty,
bearing in mind that a number of special cases are also present:

z is satisfied when the operand is zero, so that special code can be produced for expressions
like 'x = O'.

is satisfied when the operand is the constant 1, to optimize cases like left and right shift
by 1, which can be done efficiently on the PDP- I I.

c is satisfied when the operand is a positive (16-bit) constant; this takes care of some special
cases in long arithmetic.

a is satisfied when the operand is addressable; this occurs not only for variables and con­
stants, but also for some more complicated constructions, such as indirection through a
simple variable, '*p+ +' where p is a register variable (because of the PDP-11 's auto­
increment address mode), and '*(p+c)' where p is a register and c is a constant. Pre­
cisely, the requirement is that the operand refers to a cell whose address can be written as
a source or destination of a PDP-11 instruction.

e is satisfied by an operand whose value can be generated in a register using no more than k
registers, where k is the number of registers left (not counting the current register). The
'e' stands for 'easy.'

n is satisfied by any operand. The 'n' stands for 'anything.'

These degrees of difficulty are considered to lie in a linear ordering and any operand
which satisfies an earlier-mentioned requirement will satisfy a later one. Since the subtables are
searched linearly, if a 'l' specification is included, almost certainly a 'z' must be written first to
prevent expressions containing the constant 0 to be compiled as if the 0 were l.

Finally, a key specification may contain a ••• which requires the operand to have an
indirection as its leading operator. Examples below should clarify the utility of this
specification.

Now let us consider the contents of the code string associated with each subtable entry.
Converttionally, lower-case letters in this string represent literal information which is copied
directly to the output. Upper-case letters generally introduce specific macro-operations, some
of which may be followed by modifying information. The code strings in the tables are written
with tabs and new-lines used freely to suggest instructions which will be generated; the table­
compiling program compresses tabs (using the 0200 bit of the next character) and throws away

A Tour Through the UNIX C Compiler 9

some of the new-lines. For example the macro 'F' is ordinarily written on a line by itself; but
since its expansion will e~d with a new-line, the new-line after 'F' itself is dispensable. This is
all to reduce the size of the stored tables.

The first set of macro-operations is concerned with compiling subtrees. Recall that this is
done by the cexpr routine. In the following discussion the 'current register' is generally the
argument register to cexpr; that is, the place where the result is desired. The 'next register' is
numbered one higher than the current register. (This explanation isn't fully true because of
complications, described below, involving operations which require even-odd register pairs.)

F causes a recursive call to the rcexpr routine to compile code which places the value of the
first (left) operand of the operator in the current register.

Fl generates code which places the value of the first operand in the next register. It is
incorrectly used if there might be no next register; that is, if the degree of difficulty of the
first operand is not 'easy;' if not, another register might not be available.

FS generates code which pushes the value of the first operand on the stack, by calling rcexpr
specifying sptab as the table.

Analogously,

S, Sl, SS compile the second (right) operand into the current register, the next register, or
onto the stack.

To deal with registers, there are

R which expands into the name of the current register.

RI which expands into the name of the next register.

R + which expands into the the name of the current register plus 1. It was suggested above
that this is the same as the next register, except for complications; here is one of them.
Long integer variables have 32 bits and require 2 registers; in such cases the next register
is the current register plus 2. The code would like to talk about both halves of the long
quantity, so R refers to the register with the high-order part and R + to the low-order
part.

R - This is another complication, involving division and mod. These operations involve a pair
of registers of which the odd-numbered contains the left operand. Cexpr arranges that the
current register is odd; the R - notation allows the code to ref er to the next lower, even­
num bered register.

To refer to addressable quantities, there are the notations:

Al causes generation of the address specified by the first operand. For this to be legal, the
operand must be addressable; its key must contain an 'a' or a more restrictive
specification.

A2 correspondingly generates the address of the second operand providing it has one.

We now have enough mechanism to show a complete, if suboptimal, table for the +
operator on word or byte operands.

10 A Tour Through the UNIX C Compiler

%n,z
F

%n,l
F
inc R

%n,aw
F
add A2,R

%n,e
F
SI
add Rl,R

%n,n
SS
F
add (sp)+,R

The first two sequences handle some special cases. Actually it turns out that handling a right
operand of 0 is unnecessary since the expression-optimizer throws out adds of 0. Adding I by
using the 'increment' instruction is done next, and then the case where the right operand is
addressable. It must be a word quantity, since the PDP-I I lacks an 'add byte' instruction.
Finally the cases where the right operand either can, or cannot, be done in the available regis­
ters are treated.

The next macro-instructions are conveniently introduced by noticing that the above table
is suitable for subtraction as well as addition, since no use is made of the commutativity of
addition. All that is needed is substitution of 'sub' for 'add' and 'dee' for 'inc.' Considerable
saving of space is achieved by factoring out several similar operations.

I is replaced by a string from another table indexed by the operator in the node being
expanded. This secondary table actually contains two strings per operator.

I' is replaced by the second string in the side table entry for the current operator.

Thus, given that the entries for'+' and'-' in the side table (which is called instab) are
'add' and 'inc,' 'sub' and 'dee' respectively, the middle of of the above addition table can be
written

%n,l
F
I' R

%n,aw
F
I A2,R

and it will be suitable for subtraction, and several other operators, as well.

Next, there is the question of character and floating-point operations.

BI generates the letter 'b' if the first operand is a character, 'f' if it is float or double, and
nothing otherwise. It is used in a context like 'movBI' which generates a 'mov', 'movb',
or 'movf' instruction according to the type of the operand.

A Tour Through the UNIX C Compiler

B2 is just like Bl but applies to the second operand.

BE generates 'b' if either operand is a character and null otherwise.

BF generates 'f' if the type of the operator node itself is float or double, otherwise null.

For example, there is an entry in effiab for the '=' operator

%a,aw
%ab.a

IBE A2,Al

11

Note first that two key specifications can be applied to the same code string. Next, observe that
when a word is assigned to a byte or to a word, or a word is assigned to a byte, a single instruc­
tion, a mov or movb as appropriate, does the job. However, when a byte is assigned to a word,
it must pass through a register to implement the sign-extension rules:

%a,n
s
IBI R,Al

Next, there is the question of handling indirection properly. Consider the expression 'X
+ *Y', where X and Y are expressions, Assuming that Y is more complicated than just a vari­
able, but on the other hand qualifies as 'easy' in the context, the expression would be compiled
by placing the value of X in a register, that of *Y in the next register, and adding the registers.
It is easy to see that a better job can be done by compiling X, then Y (into the next register),
and producing the instruction symbolized by 'add (RI),R'. This scheme avoids generating the
instruction 'mov (Rl),Rl' required actually to place the value of *Y in a register. A related
situation occurs with the expression 'X + *(p+6)', which exemplifies a construction frequent
in structure and array references. The addition table shown above would produce

[put X in register R]
mov p,Rl
add $6,Rl
mov (Rl),Rl
add Rl,R

when the best code is

[put X in R]
mov p,Rl
add 6(Rl),R

As we said above, a key specification for a code table entry may require an operand to have an
indirection as its highest operator. To make use of the requirement, the following macros are
provided.

F* the first operand must have the form •x. If in particular it has the form *(Y + c), for
some constant c, then code is produced which places the Yalue of Y in the current regis­
ter. Otherwise, code is produced which loads X into the current register.

Fl* resembles F* except that the next register is loaded.

S* resembles F* except that the second operand is loaded.

SI* resembles S* except that the next register is loaded.

FS* The first operand must have the form '*X'. Push the value of X on the stack.

SS* resembles FS* except that it applies to the second operand.

To capture the constant that may have been skipped over in the above macros, there are:

12 A Tour Through the UNIX C Compiler

111 The first operand must have the form *X; if in particular it has the form *(Y + c) for ca
constant, then the constant is written out, otherwise a null string.

2 is the same as # 1 except that the second operand is used.

Now we can improve the addition table above. Just before the '%n,e' entry, put

%n,ew*
F
SI*
add #2(Rl),R

and just before the '%n,n' put

%n,nw•
ss•
F
add *(sp)+,R

When using the stacking macros there is no place to use the constant as an index word, so that
particular special case doesn't occur.

The constant mentioned above can actually be more general than a number. Any quantity
acceptable to the assembler as an expression will do, in particular the address of a static cell,
perhaps with a numeric offset. If x is an external character array, the expression 'x[i + 5) = O'
will generate the code

mov i,rO
clrb x + 5(r0)

via the table entry (in the'=' part of e.ffeab)

%e*,z
F
I'Bl # 1 (R)

Some machine operations place restrictions on the registers used. The divide instruction, used
to implement the divide and mod operations, requires the dividend to be placed in the odd
member of an even-odd pair; other peculiarities of multiplication make it simplest to put the
multiplicand in an odd-numbered register. There is no theory which optimally accounts for this
kind of requirement. Cexpr handles it by checking for a multiply, divide, or mod operation; in
these cases, its argument register number is incremented by one or two so that it is odd, and if
the operation was divide or mod, so that it is a member of a free even-odd pair. The routine
which determines the number of registers required estimates, conservatively, that at least two
registers are required for a multiplication and three for the other peculiar operators. After the
expression is compiled, the register where the result actually ended up is returned. (Divide and
mod are actually the same operation except for the location of the result).

These operations are the ones which cause results to end up in unexpected places, and
this possibility adds a further level of complexity. The simplest way of handling the problem is
always to move the result to the place where the caller expected it, but this will produce
unnecessary register moves in many simple cases; 'a = b*c' would generate

mov b,rl
mul c,rl
mov rl,rO
rpov rO,a

The next thought is used the passed-back information as to where the result landed to change
the notion of the current register. While compiling the • =' operation above, which comes
from a table entry like:

A Tour Through the UNIX C Compiler 13

%a,e
s
mov R,Al

it is sufficient to redefine the meaning of 'R' after processing the 'S' which does the multiply.
This technique is in fact used; the tables are written in such a way that correct code is pro·
duced. The trouble is that the technique cannot be used in general, because it invalidates the
count of the number of registers required for an expression. Consider just 'a*b + X' where X
is some expression. The algorithm assumes that the value of a*b, once computed, requires just
one register. If there are three registers available, and X requires two registers to compute,
then this expression will match a key specifying '%n,e'. If a*b is computed and left in register
I, then there are, contrary to expectations, no longer two registers available to compute X, but
only one, and bad code will be produced. To guard against this possibility, cexpr checks the
result returned by recursive calls which implement F, S and their relatives. If the result is not
in the expected register, then the number of registers required by the other operand is checked;
if it can be done using those registers which remain even after making unavailable the
unexpectedly-occupied register, then the notions of the 'next register' and possibly the 'current
register' are redefined. Otherwise a register-copy instruction is produced. A register-copy is
also always produced when the current operator is one of those which have odd-even require·
men ts.

Finally, there are a few loose-end macro operations and facts about the tables. The opera-
tors:

V is used for long operations. It is written with an address like a machine instruction; it
expands into 'adc' (add carry) if the operation is an additive operator, 'she' (subtract
carry) if the operation is a subtractive operator, and disappears, along with the rest of the
line, otherwise. Its purpose is to allow common treatment of logical operations, which
have no carries, and additive and subtractive operations, which generate carries.

T generates a 'tst' instruction if the first operand of the tree does not set the condition codes
correctly. It is used with divide and mod operations, which require a sign-extended 32-bit
operand. The code table for the operations contains an 'sxt' (sign-extend) instruction to
generate the high-order part of the dividend.

H is analogous to the 'F' and 'S' macros, except that it calls for the generation of code for
the current tree (not one of its operands) using regtab. It is used in cctab for all the
operators which, when executed normally, set the condition codes properly according to
the result. It prevents a 'tst' instruction from being generated for constructions like 'if
(a+ b) ... ' since after calculation of the value of 'a+ b' a conditional branch can be written
immediately.

All of the discussion above is in terms of operators with operands. Leaves of the expres·
sion tree (variables and constants), however, are peculiar in that they have no operands. In
order to regularize the matching process, cexpr examines its operand to determine if it is a leaf;
if so, it creates a special 'load' operator whose operand is the leaf, and substitutes it for the
argument tree; this allows the table entry for the created operator to use the 'Al' notation to
load the leaf into a register.

Purely to save space in the tables, pieces of subtables can be labeled and referred to later.
It turns out, for example, that rather large portions of the the ejftab table for the '=' and ' - +'
operators are identical. Thus '==' has an entry

%[move3:]
%a,aw
%ab,a

IBE A2,AI

while part of the '== +' table is:

14 A Tour Through the UNIX C Compiler

%aw,aw
% [move3]

Labels are written as '%[... :]', before the key specifications; references are written with '% [
...]' after the key. Peculiarities in the implementation make it necessary that labels appear
before references to them.

The example illustrates the utility of allowing separate keys to point to the same code
string. The assignment code works properly if either the right operand is a word, or the left
operand is a byte; but since there is no 'add byte' instruction the addition code has to be res­
tricted to word operands.

Delaying and reordering

Intertwined with the code generation routines are two other, interrelated processes. The
first, implemented by a routine called delay, is based on the observation that naive code genera­
tion for the expression 'a = b+ +' would produce

mov b,rO
inc b
mov rO,a

The point is that the table for postfix + + has to preserve the value of b before incrementing
it; the general way to do this is to·preserve its value in a register. A cleverer scheme would
generate

mov b,a
inc b

Delay is called for each expression input to rcexpr, and it searches for postfix + + and - -
operators. If one is found applied to a variable, the tree is patched to bypass the operator and
compiled as it stands; then the increment or decrement itself is done. The effect is as if 'a ...
b; b+ +' had been written. In this example, of course, the user himself could have done the
same job, but more complicated examples are easily constructed, for example 'switch (x + +) '.
An essential restriction is that the condition codes not be required. It would be incorrect to
compile 'if (a++) ... ' as

tst a
inc a
beq

because the 'inc' destroys the required setting of the condition codes.

Reordering is a similar optimization. Many cases that it detects are useful mainly with
register variables. If r is a register variable, the expression 'r = x +y' is best compiled as

mov x,r
add y,r

but the codes tables would produce

mov x,rO
add y,rO
mov rO,r

which is in fact preferred if r is not a register. (If r is not a register, the two sequences are the
same size, but the second is slightly faster.) The scheme is to compile the expression as if it
had been written 'r - x; r = + y'. The reorder routine is called with a pointer to each tree that
rcexpr is about to compile; if it has the right characteristics, the 'r = x' tree is constructed and
passed recursively to rcexpr; then the original tree is modified to read 'r -= + y' and the calling
instance of rcexpr compiles that instead. Of course the whole business is itself recursive so that
more extended forms of the same phenomenon are handled, like 'r = x + y I z'.

A Tour Through the UNIX C Compiler 15

Care docs have to be taken to avoid 'optimizing' an expression like 'r = x + r' into 'r =
x; r = + r'. It is required that the right operand of the expression on the right of the '=' be a
', distinct from the register variable.

The second case that reorder handles is expressions of the form 'r = X' used as a subex-
pression. Again, the code out of the tables for 'x = r = y' would be

mov y,rO
mov rO,r
mov rO,x

whereas if r were a register it would be better to produce

mov y,r
mov r,x

When reorder discovers that a register variable is being assigned to in a subexpression, it calls·
rcexpr recursively to compile the subexpression, then fiddles the tree passed to it so that the
register variable itself appears as the operand instead of the whole subexpression. Here care
has to be taken to avoid an infinite regress, with rcexpr and reorder calling each other forever to
handle assignments to registers.

A third set Qf cases treated by reorder comes up when any name, not necessarily a regis­
ter, occurs as a left operand of an assignment operator other than • =' or as an operand of
prefix '+ +' or '- - '. Unless condition-code tests are involved, when a subexpression like '(a
= + b)' is seen, the assignment is performed and the argument tree modified so that a is its
operand; effectively •x + (y = + z)' is compiled as 'y = + z; x + y'. Similarly, prefix incre­
ment and decrement are pulled out and performed first, then the remainder of the expression.

Throughout code generation, the expression optimizer is called whenever delay or reorder
change the expression tree. This allows some special cases to be found that otherwise would
not be seen.

January 1981

On the Security of UNIX

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

UNIX

F.7.1

Recently there has been much interest in the security aspects of operating systems and
software. At issue is the ability to prevent undesired disclosure of information, destruction of
information, and harm to the functioning of the system. This paper discusses the degree of
security which can be provided under the UNIXt system and offers a number of hints on how
to improve security.

The first fact to face is that UNIX was not developed with security, in any realistic sense,
in mind; this fact alone guarantees a vast number of holes. (Actually the same statement can
be made with respect to most systems.) The area of security in which UNIX is theoretically
weakest is in protecting against crashing or at least crippling the operation of the system. The
problem here is not mainly in uncritical acceptance of bad parameters to system calls - there
may be bugs in this area, but none are known - but rather in lack of checks for excessive con­
sumption of resources. Most notably, there is no limit on the amount of disk storage used,
either in total space allocated or in the number of files or directories. Here is a particularly
ghastly shell sequence guaranteed to stop the system:

while: ; do
mkdir x
cd x

done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk
blocks will be consumed, thus preventing anyone from writing files on the device.

In this version of the system, users are prevented from creating more than a set number
of processes simultaneously, so unless users are in collusion it is unlikely that any one can stop
the system altogether. However, creation of 20 or so CPU or disk-bound jobs leaves few
resources available for others. Also, if many large jobs are run simultaneously, swap space may
run out, causing a panic.

It should be evident that excessive consumption of disk space, files, swap space, and
processes can easily occur accidentally in malfunctioning programs as well as at command level.
In fact UNIX is essentially defenseless against this kind of abuse, nor is there any easy fix. The
best that can be said is that it is generally fairly easy to detect what has happened when disaster
strikes, to identify the user responsible, and take appropriate action. In practice, we have found
that difficulties in this area are rather rare, but we have not been faced with malicious users,
and enjoy a fairly generous supply of resources which have served to cushion us against
accidental overconsumption.

The picture is considerably brighter in the area of protection of information from unau­
thorized perusal and destruction. Here the degree of security seems (almost) adequate theoret­
ically, and the problems lie more in the necessity for care in the actual use of the system.

Each UNIX file has associated with it eleven bits of protection information together with a
user identification number and a user-group identification number (UID and GID). Nine of

t UNIX is a trademark of Bell Laboratories.

2 On the Security of UNIX

the protection bits are used to specify independently permission to read, to write, and to exe­
cute the file to the user himself, to members of the user's group, and to all other users. Each
process generated by or for a user has associated with it an effective UID and a real UID, and
an effective and real GID. When an attempt is made to access the file for reading, writing, or
execution, the user process's effective UID is compared against the file's UID; if a match is
obtained, access is granted provided the read, write, or execute bit respectively for the user
himself is present. If the UID for the file and for the process fail to match, but the GJD's do
match, the group bits are used; if the GID's do not match, the bits for other users are tested.
The last two bits of each file's protection information, called the set-UID and set-GID bits, are
used only when the file is executed as a program. If, in this case, the set-UID bit is on for the
file, the effective UID for the process is changed to the UID associated with the file; the change
persists until the process terminates or until the UID changed again by another execution of a
set-UID file. Similarly the effective group ID of a process is changed to the GID associated
with a file when that file is executed and has the set-GID bit set. The real UID and GID of a
process do not change when any file is executed, but only as the result of a privileged system
call.

The basic notion of the set-UID and set-GID bits is that one may write a program which
is executable by others and which maintains files accessible to others only by that program.
The classical example is the game-playing program which maintains records of the scores of its
players. The program itself has to read and write the score file, but no one but the game's
sponsor can be allowed unrestricted access to the file lest they manipulate the game to their
own advantage. The solution is to turn on the set-UID bit of the game program. When, and
only when, it is invoked by players of the game, it may update the score file but ordinary pro­
grams executed by others cannot access the score.

There are a number of special cases involved in determining access permissions. Since
executing a directory as a program is a meaningless operation, the execute-permission bit, for
directories, is taken instead to mean permission to search the directory for a given file during
the scanning of a path name; thus if a directory has execute permission but no read permission
for a given user, he may access files with known names in the directory, but may not read (list)
the entire contents of the directory. Write permission on a directory is interpreted to mean that
the user may create and delete files in that directory; it is impossible for any user to write
directly into any directory.

Another, and from the point of view of security, much more serious special case is that
there is a "super user" who is able to read any file and write any non-directory. The super­
user is also able to change the protection mode and the owner UID and GID of any file and to
invoke privileged system calls. It must be recognized that the mere notion of a super-user is a
theoretical, and usually practical, blemish on any protection scheme.

The first necessity for a secure system is of course arranging that all files and directories
have the proper protection modes. Traditionally, UNIX software has been exceedingly permis­
sive in this regard; essentially all commands create files readable and writable by everyone. In
the current version, this policy may be easily adjusted to suit the needs of the installation or the
individual user. Associated with each process and its descendants is a mask, which is in effect
and-ed with the mode of every file and directory created by that process. In this way, users
can arrange that, by default, all their files are no more accessible than they wish. The standard
mask, set by login, allows all permissions to the user himself and to his group, but disallows
writing by others.

To maintain both data privacy and data integrity, it is necessary, and largely sufficient, to
make one's files inaccessible to others. The lack of sufficiency could follow from the existence
of set-UID programs created by the user and the possibility of total breach of system security in
one of the ways discussed below (or one of the ways not discussed below). For greater protec­
tion, an encryption scheme is available. Since the editor is able to create encrypted documents,
and the crypt command can be used to pipe such documents into the other text-processing pro­
grams, the length of time during which cleartext versions need be available is strictly limited.

On the Security of UNIX 3

The encryption scheme used is not one of the strongest known, but it is judged adequate, in
the sense that cryptanalysis is likely to require considerably more etf ort than more direct
methods of reading the encrypted files. For example, a user who stores data that he regards as
truly secret should be aware that he is implicitly trusting the system administrator not to install
a version of the crypt command that stores every typed password in a file.

Needless to say, the system administrators must be at least as careful as their most
demanding user to place the correct protection mode on the files under their control. In partic­
ular, it is necessary that special files be protected from writing, and probably reading, by ordi­
nary users when they store sensitive files belonging to other users. It is easy to write programs
that examine and change files by accessing the device on which the files live.

On the issue of password security, UNIX is probably better than most systems. Passwords
are stored in an encrypted form which, in the absence of serious attention from specialists in
the field, appears reasonably secure, provided its limitations are understood. In the current ver­
sion, it is based on a slightly defective version of the Federal DES; it is purposely defective so
that easily-available hardware is useless for attempts at exhaustive key-search. Since both the
encryption algorithm and the encrypted passwords are available, exhaustive enumeration of
potential passwords is still feasible up to a point. We have observed that users choose pass­
words that are easy to guess: they are short, or from a limited alphabet, or in a dictionary.
Passwords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there also exist feasible non-cryptanalytic ways of finding out passwords. For
example: write a program which types out "login:" on the typewriter and copies whatever is
typed to a file of your own. Then invoke the command and go away until the victim arrives.

The set-UID (set-GID) notion must be used carefully if any security is to be maintained.
The first thing to keep in mind is that a writable set-UID file can have another program copied
onto it. For example, if the super-user (su) command is writable, anyone can copy the shell
onto it and get a password-free version of su. A more subtle problem can come from set-UID
programs which are not sufficiently careful of what is fed into them. To take an obsolete exam­
ple, the previous version of the mail command was set-UID and owned by the super-user.
This version sent mail to the recipient's own directory. The notion was that one should be able
to send mail to anyone even if they want to protect their directories from writing. The trouble
was that mail was rather dumb: anyone could mail someone else's private file to himself. Much
more serious is the following scenario: make a file with a line like one in the password file
which allows one to Jog in as the super-user. Then make a link named ".mail" to the password
file in some writable directory on the same device as the password file (say /tmp). Finally mail
the bogus login line to /tmp/.mail; You can then login as the super-user, clean up the incrim­
inating evidence, and have your will.

The fact that users can mount their own disks and tapes as file systems can be another
way of gaining super-user status. Once a disk pack is mounted, the system believes what is on
it. Thus one can take a blank disk pack, put on it anything desired, and mount it. There are
obvious and unfortunate consequences. For example: a mounted disk with garbage on it will
crash the system; one of the files on the mounted disk can easily be a password-free version of
su; other files can be unprotected entries for special files. The only easy fix for this problem is
to forbid the use of mount to unprivileged users. A partial solution, not so restrictive, would
be to have the mount command examine the special file for bad data, set-UID programs owned
by others, and accessible special files, and balk at unprivileged invokers.

January 1981

Password Security-A Case History

Robert Mo"is

Ken Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes the history of the design of the password security
scheme on a remotely accessed time-sharing system. The present design was
the result of countering observed attempts to penetrate the system. The result
is a compromise between extreme security and ease of use.

INTRODUCTION

UNIX

F.7.2

Password security on the UNIXt time-sharing system [I) is provided by a collection of
programs whose elaborate and strange design is the outgrowth of many years of experience with
earlier versions. To help develop a secure system, we have had a continuing competition to
devise new ways to attack the security of the system (the bad guy) and, at the same time, to
devise new techniques to resist the new attacks (the good guy). This competition has been in
the same vein as the competition of long standing between manufacturers of armor plate and
those of armor-piercing shells. For this reason, the description that follows will trace the his­
tory of the password system rather than simply presenting the program in its current state. In
this way, the reasons for the design will be made clearer, as the design cannot be understood
without also understanding the potential attacks.

An underlying goal has been to provide password security at minimal inconvenience to
the users of the system. For example, those who want to run a completely open system
without passwords, or to have passwords only at the option of the individual users, are able to
do so, while those who require all of their users to have passwords gain a high degree of secu­
rity against penetration of the system by unauthorized users.

The password system must be able not only to prevent any access to the system by unau­
thorized users (i.e. prevent them from logging in at all), but it must also prevent users who are
already logged in from doing things that they are not authorized to do. The so called "super­
user" password, for example, is especially critical because the super-user has all sorts of per·
missions and has essentially unlimited access to all system resources.

Password security is of course only one component of overall system security, but it is an
essential component. Experience has shown that attempts to penetrate remote-access systems
have been astonishingly sophisticated.

Remote-access systems are peculiarly vulnerable to penetration by outsiders as there are
threats at the remote terminal, along the communications link, as well as at the computer itself.
Although the security of a password encryption algorithm is an interesting intellectual and
mathematical problem, it is only one tiny facet of a very large problem. In practice, physical
security of the computer, communications security of the communications link, and physical
control of the computer itself loom as far more important issues. Perhaps most important of all

t UNIX is a trademark of Bell Laboratories.

I

2 Password Security

is control over the actions of ex-employees, since they are not under any direct control and
they may have intimate knowledge about the system, its resources, and methods of access.
Good system security involves realistic evaluation of the risks not only of deliberate attacks but
also of casual unauthorized access and accidental disclosure.

PROLOGUE
The UNIX system was first implemented with a password file that contained the actual

passwords of all the users, and for that reason the password file had to be heavily protected
against being either read or written. Although historically, this had been the technique used for
remote-access systems, it was completely unsatisfactory for several reasons.

The technique is excessively vulnerable to lapses in security. Temporary Joss of protec­
tion can occur when the password file is being edited or otherwise modified. There is no way to
prevent the making of copies by privileged users. Experience with several earlier remote-access
systems showed that such lapses occur with frightening frequency. Perhaps the most memor­
able such occasion occurred in the early 60's when a system administrator on the CTSS system
at MIT was editing the password file and another system administrator was editing the daily
message that is printed on everyone's terminal on login. Due to a software design error, the
temporary editor files of the two users were interchanged and thus, for a time, the password file
was printed on every terminal when it was logged in.

Once such a lapse in security has been discovered, everyone's password must be changed,
usually simultaneously, at a considerable administrative cost. This is not a great matter, but far
more serious is the high probability of such lapses going unnoticed by the system administra­
tors.

Security against unauthorized disclosure of the passwords was, in the last analysis, impos­
sible with this system because, for example, if the contents of the file system are put on to
magnetic tape for backup, as they must be, then anyone who has physical access to the tape can
read anything on it with no restriction.

Many programs must get information of various kinds about the users of the system, and
these programs in general should have no special permission to read the password file. The
information which should have been in the password file actually was distributed (or replicated)
into a number of files, all of which had to be updated whenever a user was added to or dropped
from the system.

THE FIRST SCHEME

The obvious solution is to arrange that the passwords not appear in the system at all, and
it is not difficult to decide that this can be done by encrypting each user's password, putting
only the encrypted form in the password file, and throwing away his original password (the one
that he typed in). When the user later tries to Jog in to the system, the password that he types
is encrypted and compared with the encrypted version in the password file. If the two match,
his login attempt is accepted. Such a scheme was first described in [3, p.9lff.]. It also seemed
advisable to devise a system in which neither the password file nor the password program itself
needed to be protected against being read by anyone.

All that was needed to implement these ideas was to find a means of encryption that was
very difficult to invert, even when the encryption program is available. Most of the standard
encryption methods used (in the past) for encryption of messages are rather easy to invert. A
convenient and rather good encryption program happened to exist on the system at the time; it
simulated the M-209 cipher machine [4] used by the U.S. Army during World War II. It
turned out that the M-209 program was usable, but with a given key, the ciphers produced by
this program are trivial to invert. It is a much more difficult matter to find out the key given
the cleartext input and the enciphered output of the program. Therefore, the password was
used not as the text to be encrypted but as the key, and a constant was encrypted using this
key. The encrypted result was entered into the password file.

Password Security 3

ATTACKS ON THE FIRST APPROACH

Suppose that the bad guy has available the text of the password encryption program and
the complete password file. Suppose also that he has substantial computing capacity at his
disposal.

One obvious approach to penetrating the password mechanism is to attempt to find a gen­
eral method of inverting the encryption algorithm. Very possibly this can be done, but few suc­
cessful results have come to light, despite substantial efforts extending over a period of more
than five years. The results have not proved to be very useful in penetrating systems.

Another approach to penetration is simply to keep trying potential passwords until one
succeeds; this is a general cryptanalytic approach called key search. Human beings being what
they are, there is a strong tendency for people to choose relatively short and simple passwords
that they can remember. Given free choice, most people will choose their passwords from a
restricted character set (e.g. all lower-case letters), and will often choose words or names. This
human habit makes the key search job a great deal easier.

The critical factor involved in key search is the amount of time needed to encrypt a
potential password and to check the result against an entry in the password file. The running
time to encrypt one trial password and check the result turned out to be approximately l.25
milliseconds on a PDP-11/70 when the encryption algorithm was recoded for maximum speed.
It is takes essentially no more time to test the encrypted trial password against all the passwords
in an entire password file, or for that matter, against any collection of encrypted passwords,
perhaps collected from many installations.

If we want to check all passwords of length n that consist entirely of lower-case letters, the
num her of such passwords is 26n. If we suppose that the password consists of printable charac­
ters only, then the number of possible passwords is somewhat less than 95 11 • (The standard
system "character erase" and "line kill" characters are, for example, not prime candidates.)
We can immediately estimate the running time of a program that will test every password of a
given length with all of its characters chosen from some set of characters. The following table
gives estimates of the running time required on a PDP-11/70 to test all possible character
strings of length n chosen from various sets of characters: namely, all lower-case letters, all
lower-case letters plus digits, all alphanumeric characters, all 95 printable ASCII characters, and
finally all 128 ASCII characters.

26 lower-case 36 lower-case letters 62 alphanumeric 95 printable all 128 ASCII
n letters and digits characters characters characters

l 30 msec. 40 msec. 80 msec. 120 msec. 160 msec.
2 800 msec. 2 sec. 5 sec. 11 sec. 20 sec.
3 22 sec. 58 sec. 5 min. 17 min. 43 min.
4 10 min. 35 min. 5 hrs. 28 hrs. 93 hrs.
5 4 hrs. 21 hrs. 318 hrs.
6 107 hrs.

One has to conclude that it is no great matter for someone with access to a PDP-11 to test all
lower-case alphabetic strings up to length five and, given access to the machine for, say, several
weekends, to test all such strings up to six characters in length. By using such a program
against a collection of actual encrypted passwords, a substantial fraction of all the passwords will
be found.

Another profitable approach for the bad guy is to use the word list from a dictionary or to
use a list of names. For example, a large commercial dictionary contains typically about
250,000 words; these words can be checked in about five minutes. Again, a noticeable fraction
of any collection of passwords will be found. Improvements and extensions will be (and have
been) found by a determined bad guy. Some .. good" things to try are:

4 Password Security

The dictionary with the words spelled. backwards.

A list of first names (best obtained from some mailing list). Last names, street names,
and city names also work well.

The above with initial upper-case letters.

All valid license plate numbers in your state. (This takes about five hours in New Jer­
sey.)

Room numbers, social security numbers, telephone numbers, and the like.

The authors have conducted experiments to try to determine typical users' habits in the
choice of passwords when no constraint is put on their choice. The results were disappointing,
except to the bad guy. In a collection of 3,289 passwords gathered from many users over a
long period of time;

15 were a single ASCII character;

72 were strings of two ASCII characters;

464 were strings of three ASCII characters;

477 were string of four alphamerics;

706 were five letters, all upper-case or all lower-case;

605 were six letters, all lower-case.

An additional 492 passwords appeared in various available dictionaries, name lists, and the like.
A total of 2,831, or 86% of this sample of passwords fell into one of these classes.

There was, of course, considerable overlap between the dictionary results and the charac­
ter string searches. The dictionary search alone, which required only five minutes to run, pro­
duced about one third of the passwords.

Users could be urged (or forced) to use either longer passwords or passwords chosen from
a larger character set, or the system could itself choose passwords for the users.

AN ANECDOTE

An entertaining and instructive example is the attempt made at one installation to force
users to use less predictable passwords. The users did not choose their own passwords; the sys­
tem supplied them. The supplied passwords were eight characters long and were taken from
the character set consisting of lower-case letters and digits. They were generated by a pseudo­
random number generator with only 21s starting values. The time required to search (again on
a PDP-11/70) through all character strings of length 8 from a 36-character alphabet is 112
years.

Unfortunately, only 215 of them need be looked at, because that is the number of possible
outputs of the random number generator. The bad guy did, in fact, generate and test each of
these strings and found every one of the system-generated passwords using a total of only about
one minute of machine time.

IMPROVEMENTS TO THE FIRST APPROACH

I. Slower Encryption

Obviously, the first algorithm used was far too fast. The announcement of the DES
encryption algorithm (2) ·by the National Bureau of Standards was timely and fortunate. The
DES is, by design, hard to invert, but equally valuable is the fact that it is extremely slow when
implemented in software. The DES was implemented and used in the following way: The first
eight characters of the user's password are used as a key for the DES; then the algorithm is
used to encrypt a constant. Although this constant is zero at the moment, it is easily accessible
and can be made installation-dependent. Then the DES algorithm is iterated 25 times and the
resulting 64 bits are repacked to become a string of 11 printable characters.

Password Security 5

2. Less Predictable Passwords

The password entry program was modified so as to urge the user to use more obscure
passwords. If the user enters an alphabetic password (all upper-case or all lower-case) shorter
than six characters, or a password from a larger character set shorter than five characters, then
the program asks him to enter a longer password. This further reduces the efficacy of key
search.

These improvements make it exceedingly difficult to find any individual password. The
user is warned of the risks and if he cooperates, he is very safe indeed. On the other hand, he
is not prevented from using his spouse's name if he wants to.

3. Salted Passwords

The key search technique is still likely to turn up a few passwords when it is used on a
large collection of passwords, and it seemed wise to make this task as difficult as possible. To
this end, when a password is first entered, the password program obtains a 12-bit random
number (by reading the real-time clock) and appends this to the password typed in by the user.
The concatenated string is encrypted and both the 12-bit random quantity (called the sah) and
the 64-bit result of the encryption are entered into the password file.

When the user later logs in to the system, the 12-bit quantity is extracted from the pass·
word file and appended to the typed password. The encrypted result is required, as before, to
be the same as the remaining 64 bits in the password file. This modification does not increase
the task of finding any individual password, starting from scratch, but now the work of testing a
given character string against a large collection of encrypted passwords has been multiplied by
4096 (2 12). The reason for this is that there are 4096 encrypted versions of each password and
one of them has been picked more or less at random by the system.

With this modification, it is likely that the bad guy can spend days of computer time try­
ing to find a password on a system with hundreds of passwords, and find none at all. More
important is the fact that it becomes impractical to prepare an encrypted dictionary in advance.
Such an encrypted dictionary could be used to crack new passwords in milliseconds when they
appear.

There is a (not inadvertent) side effect of this modification. It becomes nearly impossible
to find out whether a person with passwords on two or more systems has used the same pass­
word on all of them, unless you already know that.

4. The Threat of the DES Chip

Chips to perform the DFS encryption are already commercially available and they are very
fast. The use of such a chip speeds up the process of password hunting by three orders of mag­
nitude. To avert this possibility, one of the internal tables of the DFS algorithm (in particular,
the so-called E-table) is changed in a way that depends on the 12-bit random number. The E­
table is inseparably wired into the DFS chip, so that the commercial chip cannot be used.
Obviously, the bad guy could have his own chip designed and built, but the cost would be
unthinkable.

5. A Subtle Point

To login successfully on the UNIX system, it is necessary after dialing in to type a valid
user name, and then the correct password for that user name. It is poor design to write the
login command in such a way that it tells an interloper when he has typed in a invalid user
name. The response to an invalid name should be identical to that for a valid name.

When the slow encryption algorithm was first implemented, the encryption was done only
if the user name was valid, because otherwise there was no encrypted password to compare with
the supplied password. The result was that the response was delayed by about one-half second
if the name was valid, but was immediate if invalid. The bad guy could find out whether a par­
ticular user name was valid. The routine was modified to do the encryption in either case.

6 Password Security

CONCLUSIONS

On the issue of password security, UNIX is probably better than most systems. The use of
encrypted passwords appears reasonably secure in the absence of serious attention of experts in
the field.

It is also worth some effort to conceal even the encrypted passwords. Some UNIX systems
have instituted what is called an "external security code" that must be typed when dialing into
the system, but before logging in. If this code is changed periodically, then someone with an
old password will likely be prevented from using it.

Whenever any security procedure is instituted that attempts to deny access to unauthor­
ized persons, it is wise to keep a record of both successful and unsuccessful attempts to get at
the secured resource. Just as an out-of-hours visitor to a computer center normally must not
only identify himself, but a record is usually also kept of his entry. Just so, it is a wise precau­
tion to make and keep a record of all attempts to log into a remote-access time-sharing system,
and certainly all unsuccessful attempts.

Bad guys fall on a spectrum whose one end is someone with ordinary access to a system
and whose goal is to find out a particular password (usually that of the super-user) and, at the
other end, someone who wishes to collect as much password information as possible from as
many systems as possible. Most of the work reported here serves to frustrate the latter type;
our experience indicates that the former type of bad guy never was very successful.

We recognize that a time-sharing system must operate in a hostile environment. We did
not attempt to hide the security aspects of the operating system, thereby playing the customary
make-believe game in which weaknesses of the system are not discussed no matter how
apparent. Rather we advertised the password algorithm and invited attack in the belief that this
approach would minimize future trouble. The approach has been successful.

REFERENCES

[1] Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. CACM 17(7):365-75
(July 1975).

[2] Proposed Federal Information Processing Data Encryption Standard, Federal Register,
40FR12134 (March 17, 1975).

(3] Wilkes, M. V. Time-Sharing Computer Systems. American Elsevier, New York (1968).

[4] U. S. Patent Number 2,089,603.

January 1981

	Annotated_Table_of_Contents
	E.1.1_Lex
	E.1.2_Yacc
	E.2.1_M4
	E.3.1_Awk
	E.4.1_SCCS_Users_Guide
	E.4.2_SCCS_Interface_Program
	E.5.1_Bc
	E.5.2_Dc
	E.6.1_UNIX_Graphics_Overview
	E.6.2_Graphics_Editor_Tutorial
	E.6.3_Stat_A_Tool_for_Analyzing_Data
	E.6.4_Administrative_Information_for_Graphics
	E.7.1_UNIX_RJE_Users_Guide
	E.7.2_UNIX_RJE_Administrators_Guide
	E.7.3_VPM_Release_1.0
	E.7.4_VPM_Release_2.0
	E.8.1_UUCP_Network
	E.8.2_UUCP_Implementation
	E.9.1_LP_Implementation
	E.9.2_LP_Administrators_Guide
	F.1.1_UNIX_Operations_Manual
	F.1.2_Fsck
	F.2.1_UNIX_Accounting_System
	F.2.2_UNIX_System_Activity_Package
	F.3.1_Stand_Alone_IO_Library
	F.4.1_ETP_Operational_Procedures
	F.5.1_UNIX_Implementation
	F.5.2_The_UNIX_IO_System
	F.5.3_UNIX_on_the_PDP11-34
	F.5.4_UNIX_Assembler
	F.6.1_A_Tour_Through_the_Portable_C_Compiler
	F.6.2_A_Tour_Through_the_UNIX_C_Compiler
	F.7.1_On_the_Security_of_UNIX
	F.7.2_Password_Security

