
[j]]
DIGITAL

RFSEARCHTM

c
Language.

Programming Guide
for CP/M-68KTM

---------~-----(-"---------------

(Foreword

The C language under CP/M-68KTII is easy to read, easy to maintain, and highly
portable. CP/M-68K can run most applications written in C for the UNIX~ operating
system, except programs that use the UNIX fork/exec multitasking. primitives or that
read UNIX file structures.

The C Language Programming Guide for CPIM-68K is not a tutorial. This manual
describes how to program in C under the CP/M-68K operating system, and is best used
by programmers familiar with the C language as described in The C Programming
Language (Kernighan ~nd Ritchie, 1978).

The commonly accepted standard for C language programming is the Portable C
Compiler (PCC), written by Stephen C. Johnson. Many versions of the UNIX operating
system use PCC, including the Zilog~, ONYX'"', Xenix~, Berkeley UNIX, and UNIQTM
systems.

The CP/M-68K C compiler differs from PCC on the following points:

• The CP/M-68K C int (default) data type is 16 bits long. Pointers are 32 bits long.
All function definitions and function calls that use long (32-bit ints) and pointer
parameters must use the proper declarations.

• long, int, and char register variables are assigned to 0 registers. Five such registers
are available in each procedure.

• Any register variable used as a pointer is assigned to an A register. There are
three such registers available in each procedure.

• All local declarations in a function body must precede the first executable
statement of the function.

• The CP/M-68K C compiler handles structure initialization as if the structure
were an array of short integers, as in UNIX version 6.

• The first eight characters of variable and function names must be unique. The
first seven characters of external names must be unique.

• The CPIM-68K C compiler does not support floating point.

• The CPIM-68K C compiler does not support structure assignment, structure
arguments, and· structures returned from procedures.

• The CPIM-68K C compiler does not support initialization of automatic variables.

. • The CPIM-68K C compiler does not support enumeration types.

iii

Section 1 of this manual describes the conventions of using C language under
CP/M-68K. Section 2 discusses C language compatibility with UNIX version 7 and
provides a dictionary of C library routines for CP/M-68K. Section 3 presents a style
guide for coding C language programs.

Appendix A is a table of CP/M-68K error codes. Appendix B discusses compiler
components, tells you how to operate the compiler, and suggests ways to conserve the
disk space used for compiling .. Appendix C presents sample C modules that are written
and documented according to the style conventions outlined in Section 3.

iv

Table of Contents

1 Using C Language UDder CP/M-68K

1.1 Compiling a CP/M-6SK C Program.

1.2 Memory Layout

1.3 Calling Conventions

1.4 Stack Frame

1.5 Command Line Interface

1.6 I/O Conventions ..
1.7 Standard Files

1.S I/O Redirection

2 C Language Library Routines

2.1

2.2

Compatibility with UNIX V7

Library Routines under CP/M-6SK

abort
abs
access
atoi, atof, ato1
brk, sbrk
calloc, malloc, realloc, free
ceil
chmod, chown
close
cos, sin
creat, creata, creatb
ctype
end, etext, edata Locations
etoa, ftoa
exit, exit
exp
fabs
fclose, fflush
feof, ferror, clearerr, fileno
floor
fmod
fopen, freopen, fdopen
fread, fwrite
fseek, ftell, rewind
getc, getchar, fgetc, getw, getl
getpass •

v

1-1

1-2

1-2

1-4

1-4

1-5

1-6

1-7

2-1

2-2

2-3
2-4
2-5
2-6
2-7
2-S
2-9

2-10
2-11
2-12
2-13
2-14
2-1~
2-17
2-18
2-19

• 2-20
2-21
2-22
2-23
2-24

• 2-25
2-27
2-28
2-29

• 2-31

Table of Contents
(continued)

getpid
gets, fgets
index, rindex
isatty
log
lseek, tell
m1ctemp
open, opena, openb
perror •
pow
printf, fpri~tf, sprintf
pute, put char , fpute, putw,
puts, fputs
qsort
rand, srand
read
seanf, fseanf, sseanf
setjmp, longjmp
signal
sinh, tanh
sqrt
streat,
stremp,
strepy.
strlen
swab

strneat
strnemp
strnepy

tan, atan
ttyname
ungete
unlink
write

•

putl

3 C Style Guide

3.1

3.2

Modularity

3.1.1
3.1.2
3.1.3

Module Size
Intermodule Communication
Header Files '.

Mandatory Coding Conventions

3.2~1
3.2.2
3.2.3

Variable and Constant Names
Variable Typing
Expressions and Constanta

vi

•

•

• •

•
•

2-32
2-33
2-34
2-35
2-36
2-37
2-38
2-39
2-40
2-41
2-42
2-44
2-46
2-47
2-48
2-49
2-50
2-52
2-53
2-55
2-56
2-57
2-58
2-59
2-60
2-61
2-62
2-63
2-64
2-65
2-66

3-1

3-1
3-1
3-2

3-2

3-3
3-3
3-4

/
.. . ',

(

c

3~2.4
3.2.5
3.2.6
3.2.7

Table of Contents
(continued)

Pointer Arithmetic • • •
String Constants • • • • • • • • •
Data and BSS Sections • • • • •
Module Layout • • •• • • • •

3.3 Suggested Coding Conventions.

Appendixes

A Error Codes

B eustoaizing the C CClllpiler · · · · . .
B.l Compiler Operation . · ,
B.2 Supplied SUBMIT Files · · · ·
B.3 Saving Disle Space

B.4 Gaining Speed

C Saaple C Module · · · · ·
D Error Messages

0.1 C068 Error Messages

0.1.1 Diagnostic Error Messages.
0.1.2 Internal Logic Errors ••••••

0.2 C168 Error Messages ·
0.2.1 Fatal Diagnostic Errors •
0.2.2 Internal Logic Errors • • ••••

0.3 CP68 Error Messages · . . .

·

· ·

· ·

· ·

· ·

· ·

·

·

·

3-5
3-6
3-6
3-7

3-8

A-I

B-1

B-1

B-3

B-3

B-4

C-l

0-1

0-1

0-1
• 0-12

• 0-13

• 0-13
• •• 0-14

· . • 0-15

0.3.1 Diagnostic Error Messages •••••••••• 0-15
0.3.2 Internal Logic Errors • • • • • ••••• 0-20

0.4 C-Run-time Library Error Messages · . . . • 0-20

vii

Tables

1-1.

2-1-
2-2.
2-3.
2-4.

Tables and Figures

Standard File Definitions •

ctype Functions • • • • •
Conversion Operators
Valid Conversion Characters •
68000 Exception Conditions

3-1. Type Definitions ••••
3-2. Storage Class Definitions •

A-l. CP/M-68K Error Codes

D-1-
D-2.
0-3.

Pigures

..
C068 Diagnostic Error Messages
C168 Fatal Diagnostic Errors
CP68 Diagnostic Error Messages

1-1. Memory Layout.
1-2. C Stack Frame •

viii

. . . . 1-6

• 2-14
2-43

• 2-51
• 2-53

3-4
3-4

A-1

D-2
• • D-13
• • D-15

1-2
1-4

(Section 1
Using C Language Under CP/M-68K

1.1 Coapi1in9 a CP/K-68~ C Prograa

To create an executable C program under CP/M-68K, use the C.SUB
and CLINK. SUB command files. The C.SUB file invokes the C compiler
and the CLINK.SUB file invokes the linker. Use the following
command li ne format to invoke the C compi ler • Note tha t the command
keyword SUBMIT is optional and that the source file must have a C
filetype. You must not specify the C filetype in the compiler
command line.

A>[~T] C fileaaae

The compiler produces an object file with a 0 filetype. The
linker uses the object file to create the executable program. Use
the following command line format to invoke the linker. Again, the
command keyword SUBMIT is optional. You must not specify the 0
filetype in the linker command line for the object file.

A>[SO~T] C~ filenaae

You can specify multiple object files for linking into an
executable program. For example. the first three command lines
below compile source files named ONE.C, TWO.C, and THREE.C. The
last command line links the three object files that the compiler
creates into an executable program named ONE.68K

A>subait cone
A>s~t c two
A>sUbait c three
A>aubait clink one two three

To link C programs that use floating point math. substitute the
CLINKF file for CLINK in the preceding example. CLINKF uses the
Motorola FFP floating point format which is considered the fastest.
To compile and link programs that use IEEE floating point format.
substitute the CE f1le for C and the CLINKE f11e for CLINK in the
preceding examples.

. 1-1

1.2 .. .r:-o -..... ,,, ,. ~ ... -.~ ... C Language Programming Guide

1.2 Me.ory Layout

The memory allocation of C programs running under CP/M-68K is
similar to that of UNIX C programs. A program consists of three
segments: the text segment or program instruction area, the data
segment for initialized data, and the ass or blo~k storage segment
for uninitialized data. The.re are two dynamic memory areas: the
stack and the heap. Procedure calls and automatic var iables use the
stack. Data structures such as symbol tables use the heap. The
brk, sbrk, malloc, and free C functions manage the heap. Figure 1-1
shows how each of, the areaS are arranged in memory.

TPAHIGH

STACK (GROWS TO LOWER ADDRESSES)

BREAK
HEAP (GROWS TO HIGHER ADDRESSES)

END
BLOCK STORAGE SEGMENT

EDATA
DATA SEGMENT

ETEXT
TEXT SEGMENT

TPALOW

Pigure 1-1. MallOry Layout

The linker determines the locations etext, edata, and end. These
locations are the ending addresses of the text, data, and ass
segments. The break location is the first unused address following
the heap.

1.3 calling Conventions

The JSR instruction (jump to subroutine) calls a C language
procedure. Register A6 acts as the frame pointer to reference local
storage. Arguments are pushed onto the A7 stack in reverse order.
WOrd and character arguments occupy 16 bits. Long~ floating point,
and pointer arguments occupy 32 bi ts. All function values return in
register 00. Functions that specify no return value actually return
an ~ndefined value.

1-2

C Language Programming Guide

For example, the following sequence

xyx() (
long a:
int b;
char x;
register y;

b - blivot(x,a):
1

generates the following codes:

li nlc a6, '-8
movem.l d6-d7,-(27)

move. 1 -4(a6),(a7)
move. b -8(a6),dO
ext.w dO
move.w dO,-(a7)
jsr blivot
add.l 12,a7

(- move.w dO,6(a6)
tst.l (a7)+
movem.l (a7)+,d7
unllc a6
rts

1.3 Calling Conventions

* Space for a,b,x
*d7 used for y
*d6 reserves space

* Load parameter a
* Load parameter x
* Extend to word si%e
* Push it
* Call subroutine
* Pop argument list
* Store return parameter
* Purge longword
* Unsave registers
* Restore frame pointer
* Return to caller

1-3

1.3 Calling Conventions C Language Programming Guide

C code, in which all arguments are the same length, might not
work without modification because of the varying length of arguments
on the stack.

The compiler adds an underline character, , to the beginning of
each external variable or function name •. -ThiS means that all
external names in C must be unique in seven characters.

The compiler-generated code maintains a long word at the top of
the stack for use in subroutine calls. This shortens the stack
popping code required on return from a procedure call. The movem.l
instruction, which saves the registers, contains an extra register
to allocate this space.

The compiler uses registers 03 through 07, and A3 through AS, for
register variables. A procedure called from a C program must save
and restore these registers, if they are used. The compiler
generated code saves ... only those registers used. Registers DO
through 02, and AO through A2, are scratch registers and can be
modified by the called procedure.

1.4 S tack PrAlle

Figure 1-2 illustrates the standard C stack frame.

A7 _____

LONGWORD FOR PROCEDURE CALLS

SAVED REGISTERS

LOCAL VARIABLE AREA

A6--+- PREVIOUS VALUE OF A6

RETURN ADDRESS

ARGUMENT 1

ARGUMENT 2

Pigure 1-2. C Stack Prame

1-4

(
C Language Programming Guide 1.4 Stack Frame

Arguments are either two or four bytes depending on the argument
type. The compiler generated code uses register A6 to reference all
variables on the stack.

1.5 Co..aDd Line Interface

The standard C argc/argv interface for arguments typed on the
command line also works under CP/M-68K. For example, the command

eommand argl arg2 arg3 ••• argn

produces the following interface setup:

argc
arg(O)
argCl)
arg(2]

argv(n)

.. n+1
"c Runtime"

, "argl"
"arg2"

argn

You cannot obtain the command name under CP/M-68K. Therefore, the
argv(O] argument always contains the string "c Runtime" •

. Strings that eontain the eharaeters * or ? are interpreted as
wildearded filenames. The C runtime start-up routine scans the
direetory and expands each wildearded filename into a list of
filenames that match the specification. To pass a string that
contains * or ? characters to a C program, enclose the string in
single or double quotation marks. Similarly, enelose argument
strings tha t eonta in embedded blanks in quota tion marks to pass them
to a C program as a single element of argv(].

1.6 I/O CODventions

UNIX C programs use two types of file and device I/O: regular
and stream files. A unique number ealled the file descriptor
identifies regular files. In CP/M-68K, file numbers range from 0 to
15. The address of a user eontrol block in the run-time system
identifies stream files. Unlike regular files, stream files use a
form of intermediate buffering that makes single-byte I/O more
effieient.

Under UNIX, you can referenee peripheral devices, sueh as
terminals and printers, as files using the speeial names /dev/tty
for terminal and /dev/lp for printer. Under CP/M-68K, CON: is for
the eonsole device and LST: is for the listing device.

1-5

1.6 :/0 Conventions C Language Programming Guide

CP/M-68K stores ASCII files with a carriage return line feed
after each line. A CTRL-Z (Oxla) character indicates end-of-file.
C programs usually end lines with only a line feed. This means that
in C for CP/M-68K, read and write operations to ASCII files must
insert and delete carriage-return characters. The CTRL-Z must be
deleted on read and inserted on close for such files. These
operations are not desirable for binary files. CP/M-68K C includes
an extra entry point to all file open and creat calls to distinguish
between ASCII and binary files.

1.7 Standard Files

C programs begin execution with three files already open: the
standard input, standard output, and standard error files. You can
access these files as either stream or regular files in a C program.
The usual C library routines close and reopen the standard files.
The following definittons are in the <stdio.h> file.

Table 1-1. Standard File Definitions

File I File Descriptor I Stream Name

standard input STDIN stdin
standard output STDOUT stdout
standard error STDERR stderr

1-6

C Language Programming Guide 1.8 I/O Redirection

(~. 1.8 I/O Redirection

c:

You can redirect C program standard I/O using the < and >
characters. For example, the following command executes the file
TEST.68K. The standard input comes from file DAT and the standard
output goes to the listing device. The argument list is C, D, E,
and F.

A>TEST <DAT >LST: C D E F

You cannot place spaces between the < or > characters and the
filename that the character refers to. Note that you· cannot
redirect the standard error file.

You can append information to an existing file using the
following specification:

»filename '

The standard output from the program specified by the filename
appears after the original contents of the file.

End of Section 1

.1.-7

(

c

Section 2
C Language Library Routines

The CP/M-68K C library is a collection of routines for I/O,
dynamic memory allocation, system traps, and data conversion.

2.1 Coapatibi1ity with UNIX V7

The C library is compatible with UNIX version 7, allowing
programs to move easily from UNIX to CP/M-68K. CP/M-68K C simulates
many UNIX operating system calls and features. However, CP/M-68K
does not support the following C functions that UNIX implements:

..
• the fork/exec, kill, lock, nice, pause, ptrace, sync, and wait

primitives

• the acct system call

• the alarm function, or the stime, time, ftime, and times system
calls

• the dup and dup2 duplicate file descriptor functions

• the getuid, getgid, geteuid, getegid, setuid, and setgid
functions /

• the indir indirect system call

• the ioctl, stty, and gtty system calls

• the link system call

• the chdir, chroot, mknod, mount, umount, mpx, pipe, pkon,
pkoff, profil. sync, stat, fstat. umask. and utime system calls

• the phys system call

2-1

7~'Y

2.1 Compatibility with UNIX V7 C Language Programming Guide

The following UNIX library functions are not available under CP/M-
68K=

• Assert
• Crypt
.DBM
• Getenv
• Getgrent, getlogin, getpw, and getpwent functions
• l3tol, ltol3
• monitor
• itom, madd, msub, mUlt, mdiv, min, mout, pow, gcd, and rpow
• nlist
• p~open, p~close, p~read, p~write, and p~fail
• plot
• popen, pclose
• sleep
• system
• ttyslot

The CP/M-68K C language library does not contain the floating
point routines available under UNIX.

Entry points have been added to file open and creat calls to
distinguish between ASCII and binary files. Byte level end-of-file
i8 unavailable for binary files. ASCII files, however, are
compatible with UNIX, and with the c:P/M-68K text editors and
utilities that use ASCII files.

The C Programming Gui~e for CP/M-68K does not separate the UNIX
system calls and library functions; all calls are library functions
under CP/M-68K.

2.2 Library PuDctiona UDder CP/M-68K

The remainder of this section alphabetically lists library
routines that C supports under CP!M-68K. The C compiler accepts
entry in upper- and lower-case; however, type all library routines
in lower-case, as shown in the calling sequences.

2-2

C Language Programming Guide abort Function

abort Function

----------------- -----:---- --- ---------------------
The abort function termina tes the curren t: program with an error.

The er ror is sys tem dependent. The <000 use s an illegal
instruction trap. This invokes OOT-68KN, if he debugger is loaded
with ~he object program.

Callinq Sequence:

WORD code:

abor t (code) :

Ar qumen ta :

code loads into register 00 before abort

Returns:

The abort function never returns.

2-3

abs Function C Language Programming Guide

aba PUDction

--~

The abs function taKes the absolute value of a single argument.
This function is implemented as a macro in <stdio.h>: arguments with
side effects do not worK as you expect. For example, the call

a .. abs(*x++):

increments x twice.

Calling Sequence~

WORD val:
WORD ret:

ret .. abs(val):

Ar9ume~

val the input value

!!..~~

ret the absolute value of val

2-4

(~•

C Language Programming Guide access function

access Function

--
The access function checks whether the calling program can access

a specified file. Under CP/M-68K, the file is accessible if it
exists.

Calling Sequence:

BYTE
NORD
NORD

*name;
mode;
ret;

ret - access(name,mode);

Arguments:

mode

points to the null-terminated filename

can
4
2
1
o

be one of four values:
checks read access
checks write access
checks execute access
checks directory path access
CP/M-68K ignores the 0 argument

Returns:

ret 0 if file access is allowed or -1 if not allowed

Note:

CP/M-68K only checks to see if the specified file exists.

~-5

I

I

atoi, _ ;;n::tions C Language Programming Guide

atoi, atof, atol FUDctions

The atoi, atof, and atol fu.nctions convert an ASCII digit string
to an integer, float, or long binary number, respectively. The a tOl
and atol functions convert digit strings of the form (-](+]dddddd ...
The atof function converts digit strings of the form [
][+]ddddd.ddd(e(-]dd]. Each lid" is a decimal digit. The compiler
ignores all leading spaces, but permits a leading sign. Conversion
proceeds until the number of digits in the string is exhausted.
Each function returns a 0 when there are no more digits to convert.

~~ns Sequence:

BYTE
WORD
LONG
FLOAT

ival
Ival
fval

"string:
ival,atoi t);
Ival,atol():
fval,atof ():

== atoi(string):
== atol(string>:

== atof(string);

Ar gum!.!!.!!.:..

string a pointer to a null-terminated string that contains
the number to convert

Returns:

Note:

2-6

ival

lval

fval

atoi returns the converted string as an integer

atol returns the converted string as a long binary
number

atof returns the converted string as a single
precis ion floating-point number

The atoi, atol, and atof functions do not detect or report
overflow. Therefore, you cannot specify a limit to the number
of contiguous digits processed or determine the number of
digits a function processes.

(
C Language Programming Guide brk, sbrk Functions

brk, abrk Functions

The brk and sbrk functions extend the heap portion of the user

program. The brk function sets the upper bound of the program,
called the break in UNIX terminology, to an absolute address. The
sbrk function extends the program by an incremental amount.

Calling Sequence:

WORD brk();
BYTE *addr,*sbrk():
WORD ret:
BYTE *start:

ret· brk(~ddr);
start • sbrk(incr);

Arguments:

addr
incr

Returns:

o
-1

start
o

the desired new break address
the incremental number of bytes desired

success (brk)
failure (brk)

begins the allocated area (sbrk)
failure (sbrk)

2-7

callce, malIce, realloc, free C Lan9uage Pro9rammin9 Guide

calloc. IlAlloc. realloc. free Functions

The callce, malloc, realloc, and free functions manage the

dynamic area between the re9ion and the stack.

The malIce function allocates an area of .contiguous bytes ali9ned
on a word boundary and returns the address of this area. Malloc
uses the sbrk function to allocate additional heap space, if
necessary.

The callce function allocates space for an array of elements,
whose size is 9iven in bytes.

The realloc function changes the size of a block. The address of
the block returns.

The free function releases a block previously allocated by
malloc.

Calling Sequence:

WORD size, number:
BYTE *addr,*malloc(),*calloc(),*realloc():

addr = malloc(size):
addr = calloc(number,size);
addr = realloc(addr,size);
free(addr):

Arguments:

size
number
addr

the number of bytes desired
the number of elements desired
pOints to the allocated re9ion

Returns:

Note:

Address of the allocated re9ion if successful, 0 if
unsuccessful.

Freein9 a bogus address can be disastrous.

/

(~

C Language Programming Guide ceil Function

ceil FUDction

----_._---
The ceil function returns the smallest integer that is greater

than the argument you specify. For example, ceil(l.5) returns 2.0.
The return value is a floating-point number.

Calling Sequence:

FLOAT ceil();
FLOAT arg:
FLOAT ret;

ret - ceil(arg);

Arguments:

arg a floating-point number

Returns:

ret a floating-point number

2-9

_ -...;.,~, -.. _
~,lv .. '" Functions

chaod, Chown FUDctions

C Language Programming Guide

Under UNIX, the chmod and chown system calls allow you to change

the protection and owner 10 of an existing file. CP/M-68K treats
these calls as NO-OPS if the file exists.

~ng Sequence~

B¥TE *namer
WORD mode,owner,group,retr

ret - Chmod(name,mode):
ret - chown(name, owner, group);

Arguments:

name
mode
owner
group

Returns:

the affected filename (null-terminated)
the new mode for the file
the new owner of the file
the new group number

ret 0 if the file exists
-1 if the file does not exist

2-10

c:

C Language Programming Guide close Function

close Function

The close function terminates access to a file or device. This
routine acts on files opened with the open or creat functions.
Specify a file descriptor, not a stream, for the operation. The
fclose function closes stream files.

Calling Seguence:

WORD fd,ret:

ret - close(fd)i

Arguments:

fd the file descriptor to be closed

Returns:

o successful close
-1 unknown file descriptor

2-11.

cos, sin Functions C Language Programming Guide

cos, sin Functions

The cos function returns the trigonometric cosine of a floating
point number. The sin function returns the trigonometric sine of a
floating-point number. You must express all arguments in radians.

Calling Seguence:

FLOAT cos () , sinO;
FLOAT val,ret;

ret .. cos(val);
ret .. sin(val);

Arguments:

val a floating-point number that expresses an angle in
radians

Returns:

Note:

2-12

ret the cosine or sine of the argument value expressed in
radians

The best results occur with arguments that are less than 2 pi.
You can pass numbers declared as either float or double to cos
and sin.

~~-~--- .~------~~-~----~---------~ ---

(._./
C Language Programming Guide creat, creata, creatb Functions

creat, creata, creatb PuDCtions

--------------------------------------.-----------

The creat function adds a new file to a disk directory. The file
can then be referenced by the file descriptor, but not as a stream
file. The creat and creata functions create an ASCII file. The
creatb function creates a binary file.

Calling Sequence:

BYTE *name:
WORD mode,fd:

fd - creat(name,mode):
fd = crea~(name,mode):
fd = creatb(name,mode);

Arguments:

name
mode

the filename string, null-terminated
the UNIX file mode, ignored by CP/M-68K

Returns:

Note:

fd The file descriptor for the opened file. A file
descriptor is an int quantity that denotes an open
file in a read, write, or lseek call.

-1 Returned if there are any errors.

UNIX programs that use binary files compile successfully, but
execute improperly.

2-13

ctype Functions C Language Programming Guide

ctype Puactions

---.---.---------------------------------------.---
The file <ctype.h> defines a number of functions that classify

ASCII characters. These functions indicate whether a character
belongs to a certa in character class, re turning nonzero for true and
zero for false. The following table defines ctype functions.

Function

isalpha(c)
isupper(c)
islower(c)
isdigit(c)
isalnum(c)
isspace(c)
ispunct(c)
isprint(c)
iscntrl(c)
isascii (c)

Table 2-1. ctype FUDctions

I Meaning

c is a letter.
c is upper-case.
c is lower-case.
c is a digit.
c is alphanumeric.
c is a white space character.
c is a punctuation character.
c is a printable character.
c is a control character.
c is an ASCII character « Oxeo).

The white space characters are the space (Ox20), tab (Ox09),
carriage return (OxOd), line-feed (OxOa), and form-feed (OxOc)
characters. Punctuation characters are not control or alphanumeric
characters. The printin9 characters are the space (Ox20) through
the tilde (Ox7e). A control character is less than a space (Ox20).

2-14

c

C Language Programming Guide

Callin~ Seguence:

'include <ctype.h>

WORD ret;
BYTE c; /* or WORD c; */

ret = isalpha(c) ;
ret :0 ieupper(c) ;
ret :0 islower(c) ;
ret :0 isdigit(c) ;
ret :0 isalnum(c) ;
ret = isspace(c) ;
ret :0 ispunct(c) ;
ret :0 isprint(c) ;
ret = iscntrl(c) ;
ret = isasc.ii (c):

Arguments:

c the character to be classified

Returns:

Note:

ret
ret

= 0 for false
<>0 for true

ctype Functions

These functions are implemented as macros: arguments with side
effects, such as *p++, work incorrectly in some cases. Bogus
values return if arguments are not ASCII characters. For
example, >Ox7f.

2-15

end. etext. edata Locations C Language Programming Guide

end, etezt, edata Locations

The linkage editor defines the labels end. etext, and edata as

the first location past the ass, text, a.nd data regions,
respectively. The program-break location. which is the last used
location, is initia.lly set to end. However. many library functions
alter this location. sbrk(O) can retrieve the break.

·2-16

(",

et~a, ftoa Functions

etoa. ftoa Functions

The etoa and ftoa functions convert a floating-point number to an
ASCII string. Both functions return the address of the converted
string buffer. The string returned in the buffer takes the form
[-]d.ddddde[-]dd. Each "d" is a decimal digit.

Calling Sequence:

FLOAT
BYTE
WORD

fval:
*ftoa(),*etoa(),*buf,*ret:
prec:

ret = etoa(fval,buf,prec):
ret = ftoa('fval,buf,prec):

Arguments:

fval the floating point number to be converted

buf the address of the buffer for the digit string

prec the number of digits to appear to the right of the
decimal point in the converted string

Returns:

ret the address of the buffer for the converted, null
terminated string

2-17

exit, ~ .. ; .. '!"' •• _-". :-.:':5 C Language Programming G'.l.:...:le

exit, exit FUDctions

The exit function passes control to CP/M-68K. An optional

completion code, which CP/M-68K ignores, might return. exit
deallocates all memory and closes any open files. exit also flushes
the buffet" for stream output files.

The exit function immediately returns control to CP/M-68K,
without flushing or closing open files.

Calling Sequence:

WORD code:

exit(code):
_exit(code) :

Arguments:

code optional return code

Returns:

no returns

2-18

C Language Programming Guide exp Function

ezp Punction

The exp function returns the constant e raised to a specified

exponent. The constant e is the base of natural logarithims equal
to 2.71828182845905.

£!lling Sequenc~

FLOAT
FLOAT

exp () ;
fval, ret:

ret = exp(fval) :

~ments:

fval the exponent expressed as a floating-point number

Returns:

ret the value of e raised to the specified exponent

Note:

You can pass numbers declared as either float or double to expo

2-19

I

fabs Function C Lar.guage Programming Guide

fabs FUDction

---------------------- --
The fabs function returns the absolute value of a floating-point

number.

Calling Sequence:

FLOAT
FLOAT
FLOAT

fabs () :
fval;
retval;

retval = fabs(fval);

Arguments:

fval

Returns:

retval

2-20

a floating point number

the absolute value of the floating-point number

(j

C Language Programming Guide fclose, fflush Functions

felos., fflush FUDctions

--------- - -------------------------_._-------
The felose and fflush f·unctions close and flush stream files.

The stream address identifies the stream to be closed.

Calling Sequence:

WORD ret;
FILE *stream;

ret - fclose(stream);
ret- fflush(stream);

Arguments:

stream the stream address

Returns:

o successful
-1 bad stream address or write failure

2-21

C Lar.guage PrograCl..lt.ir.g Gu :::e

feof, ferror, clearerr, fileno FUDctions

-- ---------------------
These functions manipulate file streams in a system-independent

IDanner.

The feof function returns nonzero if a specified stream is at
end-of-file, and zero if it is not.

The ferror function returns nonzero when an error has occurred on
a specified stream. The clearerr function clears this error. This
is useful for functions such as putw, where no error indication
returns for output failures.

The fileno function returns the file descriptor associated with
an· open stream.

Calling Sequen~~

WORD ret;
FILE *stream:
WORD fd:

ret - feof(stream):
ret - ferror(stream):
elearerr(stream);
fd • fileno(stream):

Arguments:

stream the strea~ address

Returns:

2-22

ret
fd

a zero or nonzero indicator
the returned file descriptor

C Language Programming Guide floor Function

floor PUDctioD

--
The floor function returns the largest integer that is less than

the argument you specify. The returned value is a floating-point
number. For example, floor(1.5) returns 1.0.

Calling Seguence:

FLOAT
FLOAT
FLOAT

floor ():
fval;
retval;

retval = floor(fval);

Arguments:

fval a floating-point number

Returns:

retval a floating-point integer value

2-23

imod function ... Language ProgrammIng GUIde

f_ad PUDction

The fmod function returns the floating-point modulus (remainder)
from a division of two arguments. fmod divides the first argument
~y the second and returns the remainder.

Calling Se9uence:

FLOAT fmod () :
FLOAT x.y:
FLOAT ret:

ret - fmod(x,y):

Arguments:

x a floating-point dividend

y a floating-point divisor

Returns:

ret the modulus as a floating-point num~er

(
"-, /'

(

C Language Programming Guide fopen, freopen, fdopen Functions

fopeD, freopea, fdopea FUDctions

----------.--
The fopen, freopen, and fdopen functions associate an I/O stream

with a file or device.

The fopen and fopena functions open an existing ASCII file for
I/O as a stream. The fopenb function opens an existing binary 'file
for I/O as a stream.

The freopen and freopa functions substitute a new ASCII file for
an open stream. The freopb function substitutes a new binary file
for an open stream.

The fdopen function associates a file that file descriptor
opened, using open or creat, with a stream.

Calling Sequence:

FILE *fopen(),fopena(),fopenb();
FILE *freopen(), freopa (), freopb();
FILE *fdopen();
FILE *stream;
BYTE *name,*access:
WORD fd;

stream = fopen(name,access);
stream '"" fopena(name,access);
stream '"" fopenb(name,access);
stream -freopen(name,access,stream);
stream '"" freopa(name,access,stream);
stream '"" freopb(name,access,stream);
stream '"" fdopen(fd,access);

2-25

fopen, freopen, ~tdcpen Functions ;: ~nguage Programming GUide

Arguments:

name the null-terminated filename string
stream the stream address
access the access string:

r read the file
w write the file
a append to a file

Returns:

Note:

2-26

stream
o

successful if stream address open
unsuccessful

UNIX programs that use fopen on binary files compile and link
correctly, but execute improperly.

77.3

C Language Programming Guide fread, fwrite Functions

fread, fwrite FUDctions

------------------------------------- -----------------------
The fread and fwrite functions transfer a stream of bytes between

a stream file and primary memory.

Calling Sequen~~

WORD n items:
BYTE *buff;
WORD size:
FILE *strealll:

nitellls ..
nitems

fread(buff,size,nitems,stream):
.. fwrite(buff,size,nitems,stream);

Arguments:

buff
size
nitems
stream

R~turns:

nitems
o

the primary lIlemory buffer address
the number of bytes in each item
the number of items to transfer
an open stream file

the number of items read or written
error, including EOF

2-27
??S/

fseek, ftell, rewind Functions C Language Programming Gu~de

fseek, ftell, rewind PUDctions -_ ... _---- -------------- -------------------~--

The fseek, ftell, and rewind functions position a stream file.

The fseek function sets the read or write pointer to an arbitrary
offset in the stream. The rewind function sets the read or write
pointer to the beginning of the stream. These calls have no effect
on the console device or the listing device.

The ftell function r,turns the present value of the read or write
pointer in the stream. This call returns a meaningless value for
nonfile devices.

Calling Sequence:

WORD ret:
FILE *streami
LONG offset,ftell();
WORD ptrname i

ret = fseek(stream,offset,ptrname);
ret = rewind(stream)i
offset = ftell(stream)i

Arguments:

stream the stream address
offset a signed offset measured in bytes
ptrname the interpretation of offset:

o => from beginning of file
1 => from current position
2 => from end of file

Returns:

Note:

2.-28

ret
offset

o for success, -1 for failure
present offset in stream

ASCII file seek and tell opera tions do not account for carriage
returns that are eventually deleted. CTRL-Z charac~ers ·at the
end of. the file are correctly handled.

C Language Programming Guide getc, getchar, fgetc, getw, getl

gete, getCbar, fgete, getw, getl FUDctions

------------------------------ -------------------------------
The getc, getchar, fgetc, getw, and getl functions perform input

from a stream.

The getc function reads a single character from an input stream.
This function is implemented as a macro in <stdio.h>, and arguments
should not have side effects.

The getchar function reads a single character from the standard
input. It is identical to getc(stdin) in all respects.

The fgetc function is a function implementation of getc, used to
reduce object code size.

The getw function reads a 16-bit. word from the stream, high byte
first. This is compatible with the read function call. No special
alignment is required.

The getl function reads a 32-bit long from the stream, in 68000
byte order. No special alignment is required.

Calling Sequence:

WORD ichar:
FILE *stream:
WORD iword:
LONG ilong,getl():

ichar -getc (stream):
ichar -getchar ():
ichar - fgetc (stream) :
iword -getw(stream) :
ilong -getl(stream) :

2-29

getc. ;: .:;:,.-::..::, getw, geel .: l...anguage Progralllllling Guide

Ar 9UJ11 en ts :

stream the stream address

Returns:

Note:

ichar
iword
ilong
-1

character read from stream
word read from stream
longword read from stream
on read failures

Error return from getchar is incompatible with UNIX prior to
version 7. Error return from getl or getw is a valid value
that might occur'in the file normally. Use feof or ferror to
detect end-of-file or read errors.

(

C Language Programming Guide getpass Function

getpass FUDction

--
The getpass function reads a password from the console device. A

prompt is output, and the input read without echoing to the console.
A pointer returns to a 0- to a-character null-terminated string.

Calling Sequence:

BYTE *prompt:
BYTE *getpass:
BYTE ·pass:

pass • getpass(prompt):

Arguments:

prompt a null-terminated prompt string

Returns:

pass points to the password read

Note:

The return value points to sta tic data whose content is
overwritten by each call.

2-31

getpid Function C Language Programming Guide

getpid Function

-- ----------------------
The getpid function is

process 10. This routine is
no purpose under CP/M-68K.
some implementations.

Calling Sequen~

WORD pid:

pid == getpid():

Arguments:

no arguments.

Returns:

a bogus routine that returns a false
strictly for UNIX compatibility: serves

The return value is unpredictable in

pid false process 10

2-32

(

(.

(~\

C Language Programming Guide gets, fgets Functions

gets. fgets PUDctions

The gets and fgets functions read strings from stream files.

fgets reads a string including a newline (line-feed) character.
gets deletes the newline, and reads only from the standard input.
Both functions terminate the .string~ with a null character.

You must specify a maximum count wi~h fgets, but not with gets.
This count includes the terminating null character.

Calling Sequence:

BYTE *addr:
BYTE *s:
BYTE *gets(},*fgets():
WORD n:
FILE *stream:

addr - gets(s);
addr - fgets(s,n,stream):

Arguments:

s the string buffer area address
n the maximum character count
stream the input stream

Returns:

addr the string buffer address

2-33

ind~A, rindex Functions C Language Programming Guide

iodex, riDdex PUDctions

The index and rindex functions loca te a given character in a

string. index returns a pointer to the first occurrence of the
character. rindex returns a pointer to the last occurrence.

Calling Sequence:

BYTE c;
BYTE *s;
BYTE *ptr;
BYTE *index(),*rindex();

ptr - index(s,c):
ptr = rindex(s,cJ:

Arguments:

s a null-terminated string pointer
c the character for which to look

Returns:

. 2-34

ptr
o

the desired character address
character not in the string

(~

C Language Prog~amming Guide isatty Function

isatty Function

-.---
A CP/M-68K program can use the isatty function to determine

whether a file descriptor is attached to the CP/M-68K console device
(CON:).

Calling Sequence:

WORD fd:
WORD ret;

ret = isatty(fd);

Ar9ume~

fd an open file descriptor

Returns:

1
o

fd attached to CON:
fd not attached to CON:

2-35

log Function C Language Programming GI.nde

log FUDction

--
The log function returns the natural logarithm (log base e) of a

floating-point number.

Calling Sequence:

FLOAT
FLOAT

log ():
fval, ret:·

ret - log(fval):

Arguments:

fval a floating-point number

Returns:

ret the natural logarithim of the floating-point number

Note:

You can pass numbers declared as either float or double to log.

·2-36

(~ ..

(

(~:

C Language Programming Guide lseek, tell Functions

~seek, te~~ PUDCtiona

--- ,-------------
The lseek function positions a file referenced by the fiie

descriptor to an arbitrary offset. Do not use this function with
stream files, because the data in the stream buffer might be
invalid. Use the fseek function instead.

The tell function determines the file offset of an open file
descriptor.

Calling Sequence:

WORD fd;
WORD ptrname:
LONG offse~ lseek() , tell () , ret;

ret - lseek(fd,offset,ptrname);
ret = tell (fd);

Arguments:

fd
offset
ptrname

the open file descriptor
a signed byte offset in the file
the interpretation of offset:

o -> from the beginning of the file
1 -> from the current file position
2 => from the end of the file

Returns:

ret resulting absolute file offset
-1 error

Note:

Incompatible with versions 1 through 6 of UNIX.

~-37

mktemp Function C Language Programming ~uide

aktellP Function

--------------------,-------------------,---------------------------
The mktemp function creates a temporary filename. The calling

argument is a character string ending in 6 X characters. The
temporary filename overwrites these characters.

Calling Sequence:

ESYTE *string:
BYTE *mktemp();

str ing - mk temp (str in9) ~

Arguments:

string the address of the template string

Returns:

string the original address argument

2-38

(
C Language Programming Guide open, opena, openb Functions

open, opena, openb PUDctions

------------.---------------------------------
The open and opena functions open an existing ASCII file by file

descriptor. The openb function opens an existing binary file. The
file can be opened for reading, writing, or updating_

Calling Sequence:

BYTE ·name;
WORD mode;
WORD fd:

fd = open(name,mode);
fd - opena(name,mode);
£d - openb(~ame,mode);

Arguments:

name
mode

the null-terminated filename string
the access desired:

o => Read-Only
1 => Write-Only
2 -> Read-Write (update)

Returns:

fd the file descriptor for accessing the file
-1 open failure

Note:

UN4X programs that use binary files compile correctly, but
execute improperly.

2-39

perror Function C Language Programming Guide

~rror FUDction

---------------------------------------.-----
The perror function wri tes a ahort message on the standard error

file that describes the last system error encountered. First an
argument string prints, . then a colon, then the message.

CP/M-68K C simulates the UNIX notion of an external variable,
errno, that contains the last error returned from the operating
system. Appendix A contains a list of the possible values of errno
and of the messages that perror prints.

Calling Sequence~

BYTE *8:
WORD err;
err. perror(s):

Arguments:

s the prefix string to be printed

Returns:

err value of "ERRNO" before call

Note:

Many messages are undefined on CP/M-68K.

2-40

(

c

C Language Programming Guide pow Function

pow FunctiOD

The pow function returns the value of a number rai sed to a
specified power; pow uses two floating-point arguments. The first
argument is the mantissa and the second argument is the exponent.

Calling Sequence:

FLOAT pow():
FLOAT x,y;
FLOAT ret:

ret = pow (x, y) ;

Arguments:

x a floating-point mantissa

y a floating-point exponent

Returns:

ret the value of the mantissa raised to the exponent

2-41

7'1'.

print:.. =~rintf Functions C Language Programming Guide

printf, fprintf. sprintf FUDctions

The printf functions format da ta for output. The printf function

outputs to the standard output stream. The fprintf function outputs
to an arbitrary stream file. The sprintf function outputs to a
string (memory).

Calling Sequence:

WORD ret:
BYTE *fmt:
FILE *stream:
BYTE *string:
BYTE *sprintf(),rs:
/* Args can be a~ type */

ret = printf (fmt,argl,arg2 •••):
ret = fprintf(stream,fmt,argl,arg2 •••):
rs = sprintf(string,fmt,argl,arg2 •••):

Arguments:

fmt
argn
stream
string

Returns:

format string with conversion specifiers
data arguments to be converted
output stream file
buffer address

ret number of characters output
-1 if error

rs buffer string address
null if error

Conversion Operators

A percent sign, " in the format string indicates the start of a
conversion operator. Values to be converted come in order from the
argument.list. Table 2-2 defines the valid conversion operators.

C Language Programming Guide printf, fprintf, sprintf FUnctions

(Table 2-2. CODversion Operators

Operator I Meaning

d

o

x

c

s

u

Converts a binary number to decimal ASCII
and inserts in output stream.

Converts a binary number to octal ASClt and
inserts in output stream.

Converts a binary number to hexadecimal
ASCII and inserts in output stream.

Uses the argument as a single ASCII
character.

Uses the argument as a pointer to a null
terminated ASCII string, and inserts the
string into the output stream.

Converts an unsigned binary number to
decimal ASCII and inserts in output stream.

Prints a , character.

You can insert the following optional directions between the ,
character and the conversion operator:

• A minus sign justifies the converted output to the left,
instead of the default right justification.

• A digit string specifies a field width. This value gives the
minimum width of the field. If the digit string begins with a
o character, zero padding results instead of blank padding. An
asterisk takes the value of the width field as the next
argument in the argument list.

• A period separates the field width from the precision string.

• A digit string specifies the precision for floating-point
conversion, which is the number of digits following the decimal
point. An asterisk takes the value of the precision field from
the next argument in the argument list.

• The character 1 or L specifies that a 32-bit long value be
converted. A capitalized conversion code does the same thing.

2-43

putc, putchar, fputc, putw, putl = Language Programming Guide

putc, putclulr, fputc, putw, putl PUDctions

---------------------------------- ---------
The putc, putchar, fputc, putw, and putl functions output

characters and words to stream files.

The putc function outputs a single 8-bit character to a stream
file. This function is implemented as a macro in <stdio.h>, so do
not use arguments with side effects. The fputc function provides
the equivalent function as a real function.

The putchar function outputs a character to the standard output
stream file. This function is also implemented as a macro in
<stdio.h>. Avoid using side effects with putchar.

The putw function outputs a 16-bit word to the specified stream
file. The word is output high byte first, compatible with the write
function call.

The putl function outputs a 32-bit longword to the stream file.
The bytes are output in 68000 order, as with the write function
call.

Calling Sequence:

2-44

BYTE c;
FILE *strea.m;
WORD w, ret;
LONG lret,putl(),l;

ret -putc(c,stream);
ret -fputc(c,stream);
ret = putchar (c) ;
ret -putw(w, stream);
lret = putl (1, stream) ;

C Language Programming Guide putc, putchar, fputc, putw, putl

Argume~

c the character to be output
stream the output stream address
w the word to be output
1 the long to be output

Returns:

Note;

ret
lret
-1

the word or character output
the long output with put1
an output error

A -1 return from putw or putl is a valid integer or long value.
Use ferror to detect write errors.

2-45

puts, fputs Functions

The puts and fputs functions output a null-terminated string to

an output stream.

The puts function outputs the string to the standard output, and
appends a newline character.

The fputs function outputs the string to a named output stream.
The fputs function does not append a newline character.

Neither routine copies the trailing null to the output stream.

Calling Sequence:

WORD ret;
BYTE *s;
FILE *stream;

ret = puts(s);
ret = fputs(s,stream);

Arguments:

s the string to be output
stream the output stream

Returns:

Note:

2-46

ret the last character output
-1 error

The newline incompatibility is required for compatibility with
UNIX.

(
C Language Programming Guide qsort Function

qsort FUDctioD

---_._-----
The qsort function is a quick sort routine. You supply a vector

of elements and a function to compare two elements, and the vector
returns sorted.

Calling Sequence:

WORD ret:
BYTE *base;
WORD number:
WORD size:
WORD compare ():

..
ret - qsort(base,number,size,compare);

Arguments:

base
number
size
compare

the base address of the element vector
the number of elements to sort
size of each element in bytes
the address of the comparison function

This function is called by the following:

ret = compare(a,b);

The return is:

Returnb:

< 0 if a < b
- 0 if a = b
) 0 if a) b

o always

2-47

rand, srand Funct~cns ': :.anguage Programming Guide

raad, sraod FUDctions

---_.-----------------
The rand and srand functions constitute the C language random

number generator. Call srand with the seed to initialize the
genera tor. Call rand to retrieve random numbers. The random
numbers are C int quantities.

Calling Sequence:

WORD seed:
WORD rnum:

rnum - srand(seed):
rnum - rand ():

Argument~

seed an int random number seed

Returns:

rnum desired random number

2-48

C Language Programming Guide read Function

read FUDctioD

The read function reads data from a file opened by the file

"descriptor using open or create You can read any number of bytes,
starting at the current file pointer.

Under CP/M-68R, the most efficient reads begin and end on 128-
byte boundaries.

Calling Sequence:

WORD ret:
WORD fd:
BYTE *buffer:
nORD byte s: ..

ret = read(fd,buffer,bytes);

Arguments:

fd
buffer
bytes

Returns:

a file descriptor open for read
the buffer address
the number of bytes to be read

ret number of bytes actually read
-1 error

2-49

scanf, fscant. sscanf Functlvns C Language Programming Guide

seant. fseanf. sscanf FUDctions

--------,--
The scanf functions convert input format. The scanf function

reads from the standard input, fscanf reads from an open stream
file, and sscanf reads from a null-terminated string.

£!lling Sequence:

BYTE *format,*string:
WORDnitems;
FILE *stream:
1* Args can be any type *1

nitems ~ scanf(format,argl,arg2 •••):
nitems - fscanfrstream,format,argl,arg2 •••):
nitems ~ sscanf(string,format,argl,arg2 •••):

Ar9U;ments:

format
argn
stream
string

Returns:

nitems
-1

the control string
pointers to converted data locations
an open input stream file
null-terminated input string

the number of items converted
1/0 error

Control Strin~~~

The control string consists of the following items:

• Blanks, tabs, or newlines (line feeds) that match optional
white space in the input.

• An ASCII character (not ') that matches the next character of
the input stream.

• Conversion specifications, consisting of a leading " an
optional * (which suppresses assignment), and a conversion
character. The next input field is converted and assigned to
the next argument, up to the next inappropriate character in
the input or until the field width is exhausted.

2-50

797

(
C Language Programming Guide scanf, fscanf, sscanf Functions

Conversion characters indica te the interpretation of the next input
field. The following table defines valid conversion characters.

Note:

Table 2-3. Valid Conversion Characters

Character I Meaning

,
d

o

x

s

c

(

A single , matches in the input at this
point: no conversion is performed.

Converts a decimal ASCII integer and stores
it where the next argument points.

Converts an octal ASCII integer.

Converts a hexadecimal ASCII integer.

A character string, ending with a space, is
input. The argument pOinter is assumed to
pOint to a character array big enough to
contain the string and a trailing null
character, which are added.

Stores a single ASCII character, including
spaces. To find the next nonblank
character, use \ls.

Stores a string that does not end with
spaces. The character string is enclosed in
brackets. If the first character after the
left bracket is not A, the input is read
until the scan comes to the first character
not within the brackets. If the first
character after the left bracket is A, the
input is read until the first character
within the brackets.

You cannot determine the success of literal matches and
suppressed assignments.

2-51

79'

setjmp, longjmp Functions C Language Programming Guide

aetj_p., longjap FUDctions

------------------------------ -----------
The setjmp and longjmp functions execute a nonlocal GOTO. The

setjmp function initially specifies a return location. You can then
call longjmp from the procedure that invoked setjmp. or any
subsequent procedure. longjmp simulates a return from setjmp in the
procedure that originally invoked setjmp. A setjmp return value
passes from the longjmp call. The procedure invoking setjmp must
not return before longjmp is called.

Calling Sequence:

'include <setjmp.h)
WORD xret,ret;
jmp_buf env;

.
xret = setjmp(env);

longjmp(env,ret);

Argumen~

env
ret

Returns:

xret

Note:

awkward

2-52

contains the saved environment
the desired return value from setjmp

o when setjmp invoked initially
copied from ret when longjmp called

C Language Programming Guide signal Function

signal Function

. The signal function connects a C function with a 68000 exception
condition. Each possible exception condition is indicated by a
Dumber. The following table defines exception conditions.

Table 2-4. 68000 Exception Conditions

Number I Condition

" Illegal instruction trap. Includes illegal
instructions, privilege violation, and line A
and line F traps.

5 Trace trap.

6 Trap instruction other than 2 or 3: used by
BDOS and BIOS.

8 Arithmetic traps: zero divide, CHK
instruction, and TRAPV instruction.

10 BUSERR (nonexistent memory) or addressing
(boundary) error trap.

~l other values are ignored for compatibility with UNIX.

Returning from the procedure activated by the signal resumes
noraal processing. The library routines preserve registers and
condition codes.

i-53

C Language Programming Guide

Calling Sequence:

WORD ret.sig:
WORD func () :

ret = signa1(sig,func):

Argllments:

sig
func

the signal number given above
the address of a C function

Returns:

ret 0 if no error, -1 if sig out of range

2-54

(
C Language Programming Guide sinh, tanh FUnctions

sinh, tanh Function

The sinh function returns the trigonometric hyperbolic sine of a
. floating-point number. The tanh function returns the trigonometric
hyperbolic tangent of a floating-point number. You must express all
arguments in radians.

calling Sequence:

FLOAT
FLOAT

sinh(), tanh();
fval,ret;

ret - sinh(fval):
ret = tanh(fval):

Arguments:

fval a floating-point number that expresses an angle in
radians

Returns:

Note:

ret the hyperbolic sine or hyperbolic tangent of the
argument value expressed in radians

You can pass numbers declared as either float or double to sinh
and tanh.

2-55

sqrt Function C Language Programming Guide

sqrt PUDction

The sqrt function returns the square root of a floating-point

number.

Calling Sequence:

FLOAT
FLOAT

sqrt();
fval,ret;

ret = sqrt(fval);

Arcauments:

fval a floating-point number

Returns:

Note:

. 2-56

ret the square root of the specified argument

You can pass numbers declared as either float or double to
sqrt •

C Language Programming Guide strcat, strncat Functions

atrcat, atrucat FUDctions

--------.------------------------- ----------------------

The strcat and strncat functions concatenate strings. The strcat
function concatenates two null-terminated strings. The strncat
function copies a specified number of characters.

Calling Sequence:

BYTE *sl,*s2,*ret;
BYTE *strcat{),*strncat();
WORD n;

ret = strcat(sl,s2);
ret = strncat(sl,s2,n);

Arguments:

sl the first string
s2 the second string, appended to sl
n the maximum number of characters in sl

Returns:

Note:

ret a pointer to sl

The strcat (sl,sl) function never terminates and usually
destroys the operating system because the end-of-string marker
is lost, so strcat continues until it runs out of memory,
including the memory occupied by the operating system.

2-57

strcmp. stTn~m~ Functions C Language Programming Guide

atrcap, atrncap Functions

--.-..,.--------------------- ---------.---------------
The strcmp and strncmp functions compare strings. The strcmp

function uses null termination, and strncmp limits the comparison to
a specified number of characters.

Calling Sequence:

BYTE *s1,*s2;
WORD val,n:

&trcmp(sl,s2); val ..
val .. strncmp(sl,s2,n)i

Arguments:

&1 a null-terminated string address
&2 a null-terminated string address
n the maximum number of characters to compare

Returns:

Note:

2-58

val the comparison result:

< 0 ==> &1 < s2
== 0 => sl == s2
> 0 => sl > s2

Different machines and compilers interpret the characters as
signed or unsigned.

(•...

C Language Programming Guide strcpy, strncpy Functions

strcpy, str~ FUDctions

----------------------.---------------------------
The strcpy and strncpy functions copy one null-terminated string

to another. The strcpy function uses null-termination, while
strncpy imposes a maximum count on the copied string.

Calling Sequence:

BYTE ·sl,·s2 , ·ret:
BYTE ·strcpy(),·strncpy();
WORD n:

ret - strcpy(sl,s2):
ret = strncpy(s1,s2,n);

Arguments:

s1 the destination string
s2 the source string
n the maximum character count

Returns:

ret the address of s1

Note:

If the count is exceeded in strncpy, the destination string is
not null-terminated.

2-59

strlen Function C Language Programming Guide

.trIen PUDction

-----------------------------------.---------------------------------
The strlen function returns the length of a null-termina ted

string.

Calling Sequence:

BYTE *s:
WORD len:

len == strlen(s):

A~guments:

s the string address

Returns:

len the string length

(-

C Lanquaqe Proqramminq Guide swab Function

swab Function

The swab function copies one area of memory to another. The hiqh
and low bytes in the destination copy are reversed. You can use
this function to copy binary data from a PDP-lr or VAX'" to the
68000. Th. number of bytes to swap must be even.

Calling Sequence:

WORD ret:
BYTE *from,*to:
WORD nbytes:

ret = swab(from,to,nbytes):

Arguments:

from
to
nbytes

Returns:

ret

the address of the source buffer
the address of the destination
the number of bytes to copy

always 0

2-61

tan, atan Functions C Language Programming Guide

tan, atan PUDctions

-------,-----------~----------------------- ------------------
The tan function returns the trigonometric tangent of a floating

point number. The atan funct ion returns the trigonometric
arctangent of a floating-point number. You must express arguments
to tan in radians.

Calling Sequ~

'LOAT
FLOAT

tan (), a tan () ;
val', rval, ret;

ret = tan(rval);
ret = atan(val);

Ar9ume~

rval a floating-point number that expresses an angle in radian!

val a floating-point number

Returns:

Note:

2-62

ret the tangent or arctangent of the argument value
expressed in radians

The best precision results with arguments that are less than
two pi. You can pass numbers declared as either float or
double to tan and atan.

<-

c:

C Language Programming Guide ttyname Function

ttynaae FuactioD

-------------------_._------_._._- ---------------------------
The ttyname function returns a pointer to the null-terminated

filename of the terminal device associated with an open file
descriptor.

Calling Sequence:

BYTE *name,*ttyname():
WORD fd:

name - ttyname(fd):

Arguments:

fd an open file descriptor

Returns:

A pointer to the null-terminated string CON: if the file
descriptor is open and attached to the CP/M-68K console device.
Otherwise, zero (NULL) returns.

2-63

a/()

ungetc Function C Language Programming Guide

ungetc PUDction

------------~---------------------------------

The ungetc function pushes a character back to an input stream.
The next gete, getw, or getchar operation incorporates the
character. One character of buffering is guaranteed if something
has been read from the stream. The fseek function erases any
pushed-back characters. You cannot ungetc EOF (-1).

'Calling Sequenc:!!.

BYTE c:
FILE *stream:

,WORD ret:

ret = ungetc(c,8tream)i

Arguments:

c the'character to push back
stream the stream address

Returns:

ret. c if the character is successfully pushed back
-1 error

2-64

C Language Programming Guide unlink Function

(un~ink Function

--- ------.-----
The unlink function deletes a named file from the file system.

The removal operation fails if the file is open or nonexistent.

Calling Sequence:

WORD ret:
BYTE *name:

ret - unlink(name):

ArgU1llents:

name the null-terminated filename

Returns:

o success
-1 failure

.2-65

writ~ C Language Programming Guide

write FUDction

--
The write function transfers data to a file opened by file

descriptor. Transfer begins at the present file pointer, as set by
previous transfers or by the lseek function. You can write any
arbitrary number of bytes to the file. The number of bytes actually
written returns. If the number of bytes written does not match the
number requested, an error occurred.

Under CP/M-68K, ~he most efficient writes begin and end on 128-
byte boundaries.

Calling Sequ~

WORD fd:
BYTE *buffer;
WORD bytes;
WORD ret;

ret - write(fd,buffer,bytes);

Arguments:

fd
buffer
bytes

the open file descriptor
the starting buffer address
the number of bytes to· write

Returns:

Note:

2-66

ret the number of bytes actual~y written
-1 errors

Due to the buffering scheme used, all data is not written to
the file until the file is closed.

End of Section 2

Section 3
C Style Guide

To make your C language programs ponable, readable, and easy to maintain, follow
the stylistic rules presented in this section. However, no rule can predict every situation;
use your own judgment in applying these principles to unique cases.

3.1 Modularity

Modular programs' reduce porting and maintenance costs. Modularize your pro
grams, so that all routines that perform a specified function are grouped in a single
module. This practice has two benefits: first, the maintenance programmer can treat
most modules as black boxes for modification purposes; and second, the nature of data
structures is hidden from the rest of the program. In a modular program, you can change
any major data structure by changing only one module.

(- -. 3.1.1 Module Size

A good maximum size for modules is 500 lines. Do not make modules bigger than
the size required for a given function.

3.1.2 Intermodule Communication

Whenever possible, modules should communicate through procedure calls. Avoid
global data areas. Where one or more compilations require the same data structure, use
a header file.

o DIGrrAL RESE.A.R.CH'" -------------------------
3-1

3.1 Modularity C Language Programming Guide

3.1.3 Header Files

In separately combined files, use header files to define types, symbolic constants, and
data structures the same way for all modules. The following list gives rules for using
header files.

• Use the '#include "file.h'tt format for header files that are project-specific. Use
'#include <file.h>' for system-wide files. Never use device or directory names
in an include statement ..

• Do not nest include files.

• Do not define variables other than global data references in a header file. Never
initialize a global variable in a header file.

• When writing macro definitions, put parentheses around each use of the parame
ters to avoid precedence mix-ups.

3.2 Mandatory Coding Conventions

To make your programs portable, you must adhere strictly to the conventions
presented in this section. Otherwise, the following problems can occur:

• The length of a C int variable varies from machine to machine. This can cause
problems with representation and with binary 110 that involves int quantities.

• The byte order of multibyte binary variables differs from machine to machine.
This can cause problems if a piece of code views a binary variable as a byte stream.

• Naming conventions and the maximum length of identifiers differ from machine
to machine. Some compilers do not distinguish between upper- and lower-case
characters.

• Some compilers sign-extend character and short variables to int during arithmetic
operations; some compilers do not.

• Some compilers view a hex or octal constant as an unsigned int; some do not.
For example, the following sequence does not always work as expected:

LONG dat.a;

•
•
•

printf("lld\n",(data & Oxffff»;

-------------------------IiIDIGrrAL RESEARCH'"
3-2

C Language Programming Guide 3.2 Mandatory Coding Conventions

The printf statement prints the lower 16 bits of the long data item data. However,
some compilers sign-extend the hex constant Oxffff.

• You must be careful of evaluation-order dependencies, particularly in compound
BOOLEAN conditions. Failure to parenthesize correctly can lead to incorrect
operation.

3.2.1 Variable and Constant Names

Local variable names should be unique to eight characters. Global variable names
and procedure names should be unique to six characters. All variable and procedure
names should be completely lower-case.

Usually, names defined with a #define statement should be entirely upper-case. The
only exceptions are functions defined as macros, such as getc and isascii. These names
should also be unique to eight characters.

You should not redefine global names as local variables within a procedure.

3.2.2 Variable Typing

Using standard types is unsafe in programs designed to be portable due to the
differences in C compiler standard type definitions. Instead, use a set of types and storage
classes defined with typedef or #define. The following tables define C language types
and storage classes.

"DIGITAL RESEARCH'" -------------------------
3-3

C Language Programming Guide

Table 3-1. Type Definitions

Type I CBaseType

LONG signed long (32 bits)
WORD signedshon (16 bits)
UWORD unsigned shon (16 bits)
BOOLEAN shon (16 bits)
BYTE signed char (8 bits)
UBYrE unsigned char (8 bits)
VOID void (function return)
DEFAULT int (16132 bits)

..
Table 3-2. Storage Class Definitions

Class I CBaseClass

REG register variable
LOCAL auto variable
MLOCAL module static variable
GLOBAL global variable definition
EXTERN global variable reference

Additionally, you must declare global variables at the beginning of the module. Define
local variables at the beginning of the function in which they are used. You must always
specify the storage class and type, even though the C language does not require this.

3.2.3 Expressions and Constants

Write all expressions and constants to be implementation-independent. Always use
parentheses to avoid ambiguities. For example, the construct

if(c = getcharO = = '\n')

does not assign the value returned by getchar to c. Instead, the value returned by getchar
is compared to '\n', and c receives the value 0 or 1 (the true/false output of the
comparison). The value that getchar returns is lost. Putting parentheses around the
assignment solves the problem:

if{ (c = get~har()) = = '\ n ')

------------------------0 DIGrrAL RESEARCH'"
3-4

Ir-~~~

C Language Programming Guide 3.1 Mandatort Coding Conventions

Write constants for masking, so that the underlying int size is irrelevant. In the
following example,

LONG data;

•
•
•

printf("lid/n" d data & OxffffL);

the long masking constant solves the previous problem for all compilers. Specifying
the one's complement often yields the desired effect, for example, -Oxff instead
of OxffOO.

For portability, character constants must consist of a single character. Place multi
character constants in string variables.

Commas that separate arguments in functions are not operators. Evaluation order is
not guaranteed. For example, the following function call

printf("ld ld\n" ,i++,i++);

can perform differently on different machines.

3.2.4 Pointer Arithmetic

Do not manipulate pointers as ints or other arithmetic variables. C allows the addition
or subtraction of an integer to or from a pointer variable. Do not attempt logical
operations, such as AND or OR, on pointers. A pointer to one type of object can convert
to a pointer to a smaller data type with complete generality. Converting a pointer to a
larger data type can yield alignment problems.

You can test pointers for equality with other pointer variables and constants, notably
NULL. Arithmetic comparisons, such as > =, do not work on all compilers and can
generate machine-dependent code.

When you evaluate the size of a data structure, remember that the compiler might
leave holes in a data structure to allow for alignment. Always use the sizeof operator.

DDIGrrAL RESEAR.CH"" --------------------------

3.2 Mandatory Coding Conventions C Language Programming Guide

3.2.5 String Constants

Allocate strings so that you can easily convert programs to foreign languages. The
preferred method is to use an array of pointers to constant strings, which is initialized
in a separate file. This way, each string reference\ then references the proper element of
the pointer array.

Never modify a specific location in a constant string, as in the following example:

5YTE 5trin.[] ="500S Error On x:";
•

•
5trin.[14] = 'A'; "

Foreign-language equivalents are not likely to be the same length as the English version
of a message.

Never use the high-order bit of an ASCII string for bit flags. Extended character sets
make extensive use of the characters above Ox7F.

3.2.6 Data and BSS Sections

Usually, C programs have three sections: text (program instructions), data (initialized
data), and BSS (uninitialized data). Avoid modifying initialized data if at all possible.
Programs that do not modify ·the data segment can aid the swapping performance and
disk utilization of a· multiuser system.

Also, if a program does not modify the data segment, you can place the program in
ROM with no conversion. This means that the program does not modify initialized static
variables. This restriction does not apply to the modification of initialized automatic
variables.

-------------------------- 0 DIGITAl:. RESEARCH""
3-6

C Language Programming Guide 3.2 Mandatory Coding Conventions

3.2.7 Module Layout

The following list tells you what to include in a module.

• At the beginning of the file, place a comment describing the following items:

-" the. purpose of the module
- the major outside entry points to the module
- any global data areas that the module requires
- any machine or compiler dependencies

• Include file statements.

• Module-specific #define statements.

• Global variable references and definitions. Every variable should include a
comment describing its purpose.

• Procedure definitions. Each procedure definition should contain the following
items:

- A comment paragraph, describing the procedure's function, input parameters,
and return parameters. Describe any unusual coding techniques here.

- The procedure header. The procedure return type must be explicitly specified.
Use VOID when a function returns no value.

- Argument definitions. You must explicitly declare storage class and variable type.

- Local variable definitions. Define all local variables before any executable
code. You must explicitly declare storage class and variable type.

- Procedure code. "

Refer to Appendix C for a sample program.

BDIGrrALRESEAReJiW -------------------------
3-7

(.. /

(\ I'

Appendix A
Summary of BIOS Functions

Table A·I lists the BIOS functions supported by CPfM-68K. For more details on these
functions, refer to the CPIM·68K Operating S),stem System Guide.

Table A-l. Summary of BIOS Functions

Fun.::tlon I F# J Description

I lnit .. 0 Called for Cold Boot
I WclrmBooi. 1 Called for Warm Stan

Const 2 Check for Console Character Ready
Conin 3 Read Console Character In
Conout 4 Write Console Character Out
List 5 Write Listing Character Out
Auxiliary Output 6 Write Character to Auxiliary Output Device
Auxiliary Input 7 Read from Auxiliary Input Device
Home 8 Move to Track 00
Seldsk 9 Select Disk Drive
Settr~ 10 Set Track Number
Setsec 11 Set Sector Number
Setdma 12 Set DMA Offset Address
Read 13 Read Selected Sector
Write 14 Write Selected Sector
Listst 15 Return List Status
Sectran 16 Sector Translate
Get Memory Region

Table Address 18 Address of Memory Region Table
Get 110 Byte 19 Get 110 Mapping Byte
Set 110 Byte 20 Set 110 Mapping Byte
Flush Buffers 21 Writes Modified Buffers
Set Exceprion Vector 22 Sets Exception Vector

End of Appendix A

COJGrrAL~EARCH--
A-I

A CP/M-68K Error Codes

Number I
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

C Language Programming Guide

Table A-t. (continued)

Name

EINVAL
ENFILE
EMFILE
ENOTTY

EFBIG
ENOS PC

I;,ROFS

ENOOSPC

I Error Message

Error Undefined on CP/M-68K
Invalid arlfument
File table overflow
Too many open files
Not a typewriter
Error Undefined on CP/M-68K
File too bilf
No space left on device
Error Undefined on CP/M-68K
Read-Only file sYstem
Error Undefined on CP/M-68K
Error Undefined on CP/M-68K
Error Undefined on CP/M-68K
Error Undefined on CP/M-68K
No directory space

The file <errno.h> also includes the names for all errors defined with UNIX V7.
Therefore, programs that reference these definitions need not be changed.

End of Appendix A

----.----------------------Ii DJGITALRESEARCH'"
A-2

(

c\

Appendix B
Customizing the C Compiler

Compiling a C program requires three compiler passes. The output of the compiler
is assembly language, which must be assembled and linked to produce a program that
runs. The compiler, assembler, linker load modules, C library, and the system include
files need a substantial amount of disk storage space, minimizing storage space. This
appendix discusses compiler operation and suggests ways to minimize the disk storage
requirements for compiling.

B.l Compiler Operation

The C compiler has three components: the preprocessor (CP68), the parser (C068),
and the code generator (C168). The assembler (AS68) and the linker (L068) also help
generate an executable program. The following list tells you how these components
operate.

1. The preprocessor, CP68, takes the original source file and produces a file with
all #define and #include statements resolved. The preprocessor command line
takes the form:

CP68 [-I d:] file.C file.I

The -I flag indicates that the next argument is a CP/M-68K drive specification.
This drive is used for all library include statements of the form #include <file>.
Drive specifications can also appear in the filename portion of an #include
statement, but this procedure is not recommended. File.C is the source file, and
file.I is the output file.

2. The parser, C068, takes the file produced by the preprocessor and creates an
intermediate code file. The command line takes the form:

C068 file.l file.lC file.ST

File.I is the output from the preprocessor. File.IC is the intermediate code file
that C168 uses. File.ST is a temporary file that collects constant data for
inclusion at the end of the intermediate code file.

o DIGITAL RESEARCH'"' --"""-----------------------
8-1

C Language Programming Guide

3. The code generator, C168, takes the intermediate code file from C068 and
produces an assembly-language source file. The command line takes the form:

C168 file.IC file.S [-LD]

File.IC is the intermediate code output from C068. File.S is the assembly
language output file. The -L flag indicates that the compilation assumes all
address variables are 32 bits. The default is 16-bit addresses. The -0 flag causes
the compiler to include the line numbers from the source file (file. C) as com
ments in the generated assembly language. This is useful for debugging.

4. The assembler, AS68, translates the compiler output to a form that the linkage
editor can use. The command line takes the form:

AS68 -L -U [-F d:] [-S d:] file.S

The -L option indicates to the linkage editor that addresses are considered 32-bit
quantities. The -U option means that undefined symbols are considered external
references. The -F option specifies a drive that the assembler uses for temporary
files. The -S option specifies a drive that the assembler uses for the initialization
file (AS68SYMB.OAT). File.S is the output of C168, and file.O is produced by
the assembler.

5. The linker, L068, produces an executable file from the output of one or more
assembler runs. You must also include a start-up file and the C library when
linking C programs. The linker command line takes the form:

L068 -R [-F d:] -0 file.68K S.O file.O clib

The -R option specifies that the file be relocatable. Relocatable files run on any
CP/M-68K system. The -F option allows you to place linker temporary files on
a disk drive other than the default. The -0 file.68K construct makes the linker
place the executable output in file.68K. S.O is the run-time start-up routine.
You must include this file as the first file in every C program link. File.O is the
output of the assembler. Specify multiple files between S.O and clib if you want
separate compilation. clib is the C library file.

------------------------I1IDIGrrAL RESEAJlCH'"
B-2

(/

C Language Programming Guide 8.2 Supplied submit Files

B.2 Supplied submit Files

CP/M-68K includes two submit files, c.sub and clink.sub, that compile and link C
programs (see Section 1.1). Usually, these files are located on the default drive. However,
you can edit these files to specify different disk drives for any of the following drives:

• The disk drive on which the compiler passes, assembler, and linker reside.

• The disk drive that the #include<file> statements in the C preprocessor
reference.

• The disk drive with the assembler initialization file.

• The disk drive on which the assembler and linker create temporary files.

• The disk drive c;ontaining the C library file.

B.3 Saving Disk Space

You can do the following things to conserve disk space:

• Use the reloc utility on all the load modules, the compiler, assembler, linker, and
editor. This significantly reduces file size and load time.

• Place all the load modules on one disk and use another disk for sources and
temporary files. This requires two drives.

• On single-density disk systems, you must place the C library file and linker on
a separate disk and swap disks before linking.

II DIGITAL RESEARCH"" -------------------------
o "t u-..:

B.4 Gaining Speed C Language Programming Guide

B.4 Gaining Speed

Along with the items in Section B.3, you can speed compilation by implementing the
foHowing:

• Put the assembler temp files on a different drive from the source and object files.

• Put the linker temp files on a different drive from the object input, C library, and
load module output. .

• Use the linker -S (suppress symbol table) and -T (absolute load module) switches
in place of the -R flag. If you do this, the resulting program cannot run on an
arbitrary CP/M-68K system .

..
End of Appendix B

-..;...------------------------ OJ DIGrrAL RESEARCH'"
B-4

Appendix C
Sample C Module

The modules in this appendix are written and documented in C code tha t follows the
style conventions discussed in Section 3.

'* ,.
'* ,* ,*
'* ,* ,* ,* ,* ,* ,* ,*
'* '* '* '* '* '* '* ,* ,*
'* '* '* '* '* ,* ,.
1ft
1ft ,.
1ft ,. ,.
1ft ,.

_ P r i n \ f "0 d u I e

This Module is called \hrOufh ~he sinile en\ry point "_printf" to
perforM the co~versions and output for \he library functions:

printf - Formatted print to standard outpu\
fprintf - Formatted print to streaM file
sprin\f - Formatted print to s\rinf

The callinf rou\ines are IOfically a par\ of this module, but are
cOMPiled separa~ely \0 save space in the user's prOf tam when onlY
one of the library rou\ines is used.

The followins routines are present:

_prinU
_prntS
_prntx
__ conv
_pu\str
_prnt!

Internal printf conversion' outpu\
Octal conversion routine
Hex conversion routine
Decimal ASCII to binary routine
Output character to strinf routine
DeciMal conversion routine

The followins rou\ines are called:

nrhn
putc
ftoa

COMPute lenfth of a strins
StreaM output routine
Floa\ins point outpu\ conversion routine

This rou\ine depends on the fact \hat \he arfUM.nt list is always
cOMPosed of LONG data iteMs.

Confifured for Whit,sMith's C on VAX. ·putc· arfUM.nts are
reu'rsed froM UNIX.

*/ 'I,
*/
*/
*/ 'I,
'I, .,
'I,
'I,
*,
*/ 'I,
'I' 'I,
'I,

*' */
*/

*' .,
'II

*' *' .,
*1

*' *' *' */

*' *' ., ., .,
*' ., , ..•................•...•.........••. ,

,.
• Includ. files: .,

einclud. <stdio.h> ,. just th. standard stuff .,

_DIGITAL RESEARCH'" --------------------------
e-l

,.
* Local DEFINEs
*1

-define HIBIT 31

,..
* *'

Local static data:

.. LOCAL BYTE

.. LOCAL 8YTE

.. LOCAL 8YTE

*_,.trbf
*_,.t rst
* __ hlt

= 0;
= 0;
= 0;

C Language Programming Guide

1* Hi.h bit nUMber of LONG *1

1****************************1 '* 8ufftr .Pointer *1
1* -) Filt/strin. (if any) *1
1* ForMat Pointer *1
1****************************1

-------------------------D DIGrI'AL RESEARCH'"
C-2

C Language Programming Guide C Sample C ~1oduIc

,*******.** •••
•
*
* •

P R I N T F I N T ERN A L R 0 UTI N E

• Routin. "_prin\f" is us.d to handle all "printf" functions, includint
• "sprintf", and "fprintf".
•
• Callint Sequenc.:
•
• _printf(fd,fune,fmt,artl);
•
• Wh.n:
• • • • •
* •

fd
func
ht
arfl

Is the fill or strinf point.r.
Is the function to handle output.
Is the addr.ss of the forMat strinf.
Is the addr.ss of the first art.

• R.turns:
•
• NUMb.r of charaet.rs output
• * Buts:
•
• It is assuMed that arts art contifuous startinf at Hartl", and that
• ill are the sam. size (LONG), exe.pt for floUin! point.
• • ••••••••••••••••••••••••••••• * •••••••••••••••••••••••• * •••••••••••••••••••••• ,
_printf(fd,f,f.t,al) , •••••••••••••••••••••••••••••••• ,

LONG fd; ,. Not r.ally, but ••• .,
LONG (.f)(); ,. Function point.r .,
8YTE .f.t; ,. -> Format strin! .,
LONG .aU /'I -> Au list .,

{ , ••••••••••••••••• * ••••••••••••• *,
LOCAL 8YTE c; ,. ForMat characttr t'MP .,
LOCAL 8YTE .s; ,. Output strinf pointtr .,
LOCAL 8YTE adJ; ,. Rifht'left adJust flat .,
LOCAL 8YTE but [30]; ,. T •• porary buffer .,

, •••••••••••••••••••••••• ** •• * •• *,
LOCAL LONG .adx; ,. Ar. Addr.ss t.MPorary .,
LOCAL LONG lC ; ,. Ar. Value teMPOrary .,
LOCAL LONG n; ,. Strin. Len.th TtMP .,
LOCAL LONG .; ,. Fitld Ltn.th TeMPorary ./
LOCAL LONG width; '* Fitld width ./
LOCAL LONG prec; ,. Pr.cision tor ·IXoyf· .,
LOCAL LONG Pldehar' /. '0' or " (Plddin!) ./
LOCAL DOU8LE zz; /. Floatin. t'MPOrarY .,
LOCAL DOUBLE .dblpu; /. Floatin. teMP. addr,ss .,
LOCAL LONG ccount; ,. Characttr count .,
EXTERN _putsUO; /. Rtfertnc. function ./ , ,

DDIGrrALRESEAIlCH'" --------------------------
C-3

C Sample C Module C Language Programming Guide

/ /
ccount : 0; /. Initially no characters ./ /
_~trbf : bu1; /* S.t buffer ~oint'r ./
Idx : 11; /* COpy addr.ss variable ./
_~trst : fd; /. COpy fil, d,scri~tor ./
__ 1.t : flllt; /. CO~y for.at address .,

/ /
it(. __ h,t :: 'L' :: • __ flllt ,.., '1') /. Ski .. Ion. out .. ut. .,

__ fmt++; /. conversions ./
/. ./ /.. ./

/. This is the lIIain forlllat conversion 100 .. , Load a character frolll the ./
/. for.at strin., 11 t.he charact.er is '1', ~erfor. t.he a ro~riat.e ./
,. conversion, Ot.herwise, just. out.~ut. t.h. charact..r, ./ ,.. ./ ,. .,

whil,C c : • __ flllt++ /. Pick u .. neMt for.at char./
(/../

ifCc !: 'I') ..
(

)

<

C+fHfd,c)l
ccount.++;

,1 Sf

x : .adM++;

ifC • __ flllt. :: '.'
(

adj: '1';
__ 1111t.++;

) .ls.
adj : ' r' ;

width: __ conv();

i1(• __ flllt. :: ',')
(

++ __ ht;
.. u C : __ con v () ;

}

.1 Sf
~uc : 0;

S : 0;
switch (c : • __ flllt++)
(

case '0':
case 'd':
_~rt.1CM)j

b ruk ;

'0' I ';

/ /
/. .,
/. If not '1', just. out.~ut. ./
/. Bu.p charact.r count. .,
/ ,
/. It. is a '1', ./
/. convert../
/. x : address of next art ./
/ /
,. Check for left adjust ./
/ /
,. Is left, set. fla. ./
,. Bu.p forlllat. point..r •
/. ./
/. Rifht adjust. ./
/ /
/. ./
/. Select Pad character ./
/ /
/. Conuert. width (if any) ./
/ /
/. '.' .eans precision s~ec./
/. ./
/. Bu.p P.st. ',' ./
/. Conuert .. r,cision spec ./
/. ./
/. None specifi,d ./ , /
/. *' /. ASSUMe no output strin •• ,
/. Next char is conuersion ./ ,. ./
/. Decilllal ./ ,. ./
/. Call deciMal ~rint rtn ./
/. Co do output ./ , ,

--------------------------111 DIGITAL RESEARCH'"
C-4

(/

C Language Programming Guide

}

if
(

}

cal. '0':
call '0':

_ .. rnt.S(x);
bruk;

CIII 'x':
CIS. 'x':

_ .. rnt.x(x);
b ruk;

cas. '5':
cal. 'I':

s=x;
b rllk ;

cas. 'C':
cas. 'c':

._ .. t.rbf++ = x&0377;
b rukl

cas. 'E':
cas. '.':
cas. 'F':
cas. 'f':

dbl .. u = adx-II
zz = .dbl .. t.r;
adx =+ 1;
ft.oa (zz, buf, .. rec, c);
.. rec = 0;
5 = but;
break;

d.fault :
Ct-f)(fd,c);

ccount.++;
adx--;

(5 -- 0)

._Itt.rbf = '0 / ;
S = but;

n = sUlen (5);
n - (.. r.c(n && .. rec ,= 0) ? Itr.c :
II = widt.lI-n;

it 'adJ == ' r ')
wllilt '11-- > 0)
<

}

'.f)'fd, .. adcllar);
ccount.++;

C Sample C Module

,. Ocul ,. ,. ,.
Print.

Call oct.at .. rint..r
Co .do out. .. ut.

., ., ., ., , ,
,. H.x .,
,. Print. .,
,. Call conversion rout.in •• ,
,. Go do out.put. ., , ,
,. St.rin. .,
,. Out.ltut.? .,
,. Y.s, I.asy) .,
,. Go finisll u.. ., , ,
,. Cllaract..r .,
,. Out. .. ut.? .,
,. Just. load buff.r .,
,. Go out. .. ut. .,
, ••••••••••••••••••• * ••••••• ,
,. Float.in ... oint.? ., ,. *' ,. *'
'* *' ,. AssulI.s 64 bit. float.! .,
,. Load ualu. .,
,. 8u ... · Itast. s.cond word .,
,. Call float.in. conuersion.'
,. Fak. out. .. addin. rout.in •• '
,. JUIt. like st.rin ... rint. .,
,. Go Out.put. ., , ••••••••••••••••••••••••• *.,
,. Non. of t.1I. abou.? .,
,. Just. Out.ltut. .,
,. Count. it.. .,
,. Fix art addr.ss .,
,. End swit.cll ., , ,
,. If S = 0, st.rin. is in .,
,. -but-, .,
,. Insur. t..r.inat.ion .,
,. Load addresl ., , , ,. .,
,. Co ... ut.. conv.rt..d 1.n.t.II.'

nl'. Tak •• in(.. r.c,n) .,
, •• is • of Itad cllaract..rs.' , ,
,. For rilllt. adJust., .,
,. Pad in front. ., ,. .,
,. Thull, ., '* Count. it. ., '* ., , ,

II DIGrTALRESEAllCH'" --------------------------
C-s

C Sample C Module

}

}

ccount++;
}

whilt 'M--) 0)
{

ccount++;

if ••• f) :: _putstr)
(*f)(fd,'O')i

rtturn(ccount) ;
..

C Language Programming Guide

/. Out~u' Conv,rt,d
/.
,. Data
H Count it. ,.
/ /
/. If l'ft adJust, ./
/. ./
/. Pad.,
/. Count ~add,d c~aracters ., , ,
/. R,s.' buff.r ~oint.r .,
,. Eftd .1s. .,
,. End while .,
,. If strin. output, .,
,. Drop in t.rMinator char ., , ,
,. R.turn appropriate value.'
,. End _printf ., , ,

-------------------------IIlDIGlTAL RESEARCH""
C-6

C Language Programming Guide C Sample C Module

, ••• *********************.***.** ••••••• * •••••••••••••• *** •••••• * •••••••• ,

_ P R N T S PRO C E D U R E

Routine -_prntS- converts a binary LONG value to octal
The area at -_ptrbf- is us.d.

Callin. S.~u.nc.:

_prntS(n) ;

Returns:

(non,)

ascii.

*' *' *' *1

*' *' *' *' *' */

*' *' *' *' *' *' *' 1 •••••• * •• * •• * ••••• *.* ••••• *** ••• * ••••• ••••••••••••••• •••••••••••• * •••• *,
VOID _prntS (n) ,. .,

(

)

LONG n; ,. NUMber to convert *'

REG WORD
REG WORD
REG WORD

if (n::O)
(

)

*_ptrbf++ :
rtt.urn;

sw : 0;

'0' ;

for (p:HHIIT; p >: 0; p :- 3)

if «k : (n»p)&07) II sw)
(

if (p-:HII5IT)
k _ k & 02;

*_ptrbf++ : '0' + k;
sw : 1;

)

'* *' ,. Counts bits .,
,. TeMPOrary 3-bit value .,
,. Switch 1 :> output .,
/.* ••• * ••••• * ••• * •••• **.*.**/
/* Handl. 0 as special case.' '* ., '* Put in on. z.ro .,
/* And ~uit .,
/* .,
/* •• * •• ***.*** •• * •••• **.***.,
/* Indicat. no output yet *'
'* ./ ,. Us. 3 bits at a tim. */

'* *' /. N •• d to outPut yet? ./

'* *' /* 1st difit has only 2 bits.'
/* Mask appropriately *'
'* ASCIIfy difit */
1* S.t output fla. *'
'* End if *'
'* End _prntS *'
,********.******************,

IIOIGrrALRESEAIlor"--------------------------
C-7

J'33

C Sample C Module C Language Programming Guide

/•... , ,. ., '* _ P r n 1. II Fun c 1. ion .,
/. ----------------------------- ., '* ./ '* Th. N_,rntIl N function conv.rts a binary LONG ~uantity 1.0 h,. ASCII *'
/* and stor,s th, r.sult in "*_,trbf". L.adin. z.ros art su"r.ss.d. */
/* ./
/* Callin. s.~u'nc.: */

'* ./ '* _,rn1.ll(n); .,

'* ./ /* wh.r. Un" is th. ~alu. to b. convert.d. ./
/. ./
/* R.turns: ./ ,. ./
,. (non.) ./ ,. ./
/ , ... /
VO I 0 _ p r n t II (n) /. ./

LONG n; /. 32 bits ./
{ , /

REG LONG d; /. A di.it ./
REG LONG a; /. T.MPorary value ./ / •••••••••• * ••••••••••••••••••• /
if (a : n»4) ,. P.el off low 4 bits ./

.P rn t II (a & Ollfffffffl; ,. 11 <> 0, print first ./
d : n&017, ,. Take low four bits ./

'0' + di'. ASCllfy into buffer ./ •. Ptrbf++ : d > 9 '? 'A'+d-10 . .
) /•................. /

------------------------:--- 0 DIGITAL RESEARCH'"
C-8

(-
C Language Programming Guide C Sample C Module

1 ••••••••••• ••• ••• •••• ••••••••••••••••••• • ••• ******** •••• *.*.******.*.*.** •• *1
1*
1*

'* 1*

'* I.
1*

'* '* I.
1*
1*
I.

'* I.

'*

_ _ Can v Fun c t ian

Function " __ conv" is used to convert a deciMal ASCII strinf in
the forMat to binarY,

Callinf Se~u.nce:

val : __ conv() i

Retu rns:

·val" is the convert.d value
Zero is returned if no value

1**.*** •• *******.* •• *.*****.****.**.*.****************.********.********** ••• 1
LONG __ conv(), I. *1
{ 1*****.*.****.****.***.******/

}

REG 8YTE ci 1* Character teMPOrarY 'II
REG LONG n; 1* ACCUMulator *1

n : 0;
whil.«(c: * __ 'Mt++) >:

Ira. (c <: ' 9 '))
n - n*10+c-'0';

__ hlt--i

return(n) ;

'0')

1*****************.**********1
1* Z.ro found so far *1
1* While c is a difit */
1* *1
I. Ad~ c to aCCUMulator *1
1* 8ack UP forMat painter to*l
I. character skipp,d abov' .1
I. S", wasn't that siMPI,? */
/ •• *.** •• *.****.****.**** •••• 1

101 DIGITAL RESEARCH'" -----------------------------
C-9

C Language Programming Guide

/•....•.. /
/.

'* '* /.
/.

'* '* '* '* /.
/.
/.
/.' ,. ,.
/.

'* /.
/.

Fun c t ion

Func\ion ·_~u\s\r· is used by ·s~rintf· as \h. OU\Put function
arfUM.n\ \0 "_,rin\f". A sinfl. chafacttr is co~itd \0 th. buffer
a\ "_p\rst",

Callinf Se~uence:

_pu\S1.r(S\r,chr) ;

where ·s\r· is a dUMMY affuMen\ neClssary because \he o\her output
functions haue two arfuments.

Returns:

(none)

., ., ., .,
*' ., ., .,
./
./
./
./
./
./
./
./

*' ./ .,
1 •• • ••• •••••••• •••••••• • ••••••••• •••••• •• *···········* .. * .. * 1
VOID _putstr(str.chr) ,. .1

REG eYTE chr; /. The output character .1
eYTE .str; ,. DUMMY arfUMlnt .1 (/ •................. * ... *.* ... 1
._,trst++ = chr; ,. Output the charact.r .1
returnIO); /. Co back *'

) , •........ ** .••....... *•. 1

-------------------------- o DIGITAL RESEARCH'"
CtO

/'

(~

C Language Programming Guide C Sample C Module

, ••• ** ••••••••••• , ,
H ,,,,,-
" H

'* ,.
I.

'* I.
I.
I.

'*

_ P r t. 1 Fun c t. ian

Funct.ion -_prt.l- convert.s a LONC binary ~uant.it.y t.o deciMal ASCII
at. t.he buffer point.ed t.o by -_pt.rbf-,

Callin. Se~uence:

where -n- is t.he value t.o be convert.ed,

Ret.urns:

(none)

.1

*' ., ., ., .,
*' *1 .,
.1 ., .,
*1
*1

*' *' *' 1 ••••••••••••••••••••••• * •••••• * ••••••• * •••• * •••• *.* ••••••••••• * ••••••••••••• ,
VOID _pulln)" ,. *'
<

)

REG LONG n; I. Conversion input. .,

REG LONG
REG LONG

if (n >: 0)
n : -n;

else
._pt.rbf++ :

di's[1SH
.dpt.;

, ,.
- t

far (i n!: 0; n: n'10)
.dpt.++ : n%10;

if (dpt. :: diu)
.dpt.++ : 0;

while (dpt. !: diU)
<

--dpt.i

, •••••••••••••••••••••••••••• 1 '* st.ore di.it.s here .,
,. Point.s t.o last. di.it. .1
, •••••••••••••••••••••••••••• 1
I. Init.ialize di.it. point.er .1
,.* ••• * •••••• * ••••••••••••••• 1
I. Fix .1
I. UP .1 '* sifn .,
I. st.uff .1
, ••• * •••••••••••••••••••••••• 1
,. Divide by 10 t.ill zero .1
I. St.ore di.it. (reuerse ard).1
, •••••••• * •• * ••••• * •••••••••• 1
I. Zero value? .1
I. Yes, st.are 1 zero di.it. .1
, •••••••••••••••••••••••••••• 1
I. Now convert. t.o ASCII.'
I. .1
I. DecreMent. point.er .1

._pt.rbf++: '0' - .dpt.i I. Not.e difit.s are ne.at.ive!.1
I. .1
1 •••••••• • ••••••••••••• •••• •• 1

)

End of Appendix C

DDIGrrAL WEARor'" --------------------------
C-ll

337

(

c

c'

Appendix D
Error Messages

This appendix lists the error messages returned by the components of the CP/M-68K
C compiler, the C Parser, C06.8, the C Co-generator, C168, the C Preprocessor, CP68,
and by the CP/M-68K C Run-time Library. The sections are arranged alphabetically.
Error messages are listed within each section in alphabetical order with explanations
and suggested user responses.

0.1 C068 Error Messages

The CP/M-68K C Parser, C068, returns two types of error messages: diagnostic error
messages and messages indicating errors in the internal logic of C068. Both types of
error messages take the general form:

·line no. error message text

The asterisk (.) indicates that the error message comes from C068. The "error message
text" describes the error. You must correct any errors you receive from C068 before
invoking C168. Uncorrected errors from C068 cause erroneous error messages to occur
when you run C168 .

.
D.l.1 Diagnostic Error Messages

These error messages occur mostly in response to syntax errors in the source code.
Refer to your C language manual for a complete discussion of the C language syntax.

The error messages are listed in Table 0-1 in alphabetical order with short explana- .
tions and suggested user responses.

IDI DIGITAL RESEAROI'" --------------------------
0-1

D.l C068 Error Messages C Language Programming Guide

Table 0-1. C068 Diagnostic Error Messages

Message Meaning

*line no. add ress of register

You have attempted to take the address of a register. Correct the
source code before you recompile it.

*line no. assignable operand feCluired

On the line indicated, the operand to the left of the equals sign in the
assignment statement is not a· valid operand. Supply a valid operand.
This error might occur because the operand is a constant instead of a
variable.

* 1 i ne no. bad character constant

A character constant on the line indicated is invalid. The character
constant must be a single character between quotes. A control charac-
ter, more than one character, or a symbol that is not a character will
cause this error to occur.

*line no. bad indi rection

You attempted to reference by address instead of by· value, but the
expression you used is not an address. Supply a value or a valid address
before you recompile the source code.

*line no. can't open filenaMe

Either the filename or the drive code is incorrect. Specify the correct
drive code and filename before you recompile the source code.

*line no. case not inside a switch black

The case on the line indicated is not inside a switch block. Correct the
source code before you recompile it.

*line no. character constant tao Ian.

The character constant on the line indicated is too long. A character
constant must be a single character between quotes. Correct the source
code before you recompile it.

*line no. constant feClui red .
The operation on the line indicated requires a constant. Correct the
error before you recompile the source code.

1'-'"
------------------------- DDICrrAL RESEARCH'" '~j
D-2

C Language Programming Guide D.l C068 Error Messages

Table 0-1. (continued)

Message Meaning

*line no. declaration SyntaM

The syntax of the declaration on the line indicated is incorrect. Refer
to your C language manual. Correct the syntax before you recompile
the source code.

*line no. default not inside a switch block

The default on the line indicated is not inside a switch block. Correct
the source code before you recompile it.

*line no. diMension table overflow

There are too many dimensions, at or prior to the line indicated, for
the dimension table. The dimension table does not have space for more
than 8 or 9 dimensions. Structures count as dimensions. Rewrite the
source code to use fewer dimensions and structures before you recom-
pile it.

*line no. duplicate case value

Two cases for the same switch are identical. Eliminate one of the cases
before you recompile the source code.

*line no. eMPected label

A go to statement on the line indicated does not have a label. Supply
the missing label before you recompile the source code.

*line no. eMPression too cOMPleM

Due to internal limitations in C068, the expression on the line indi-
cated is too complex to be evaluated. Simplify the expression before
recompiling the source code.

*line no. eMternal de1inition SyntaM
-

The syntax of the external definition on the line indicated is incorrect.
Correct the syntax before you recompile the source code. Refer to
your C language manual for the correct syntax.

*line no. 1 i e 1 d au e r 110 w s by t e

The bit field asks for more bits than fit in an 8-bit byte. Reduce the
number of bits in the bit field before you recompile the source code.

II DIGITAL RESEARCH'"' -----------------------....---
D-3

D.l C068 Error Messages C Language Programming Guide

Table D-1. (continued) '\

Message Meaning

*line no. field overflows word

The word field asks for more bytes than fit in a word.· Reduce the
number of bytes in the byte field before you recompile the source code.

*line no. f 10 at i n f poi n t not sUP P 0 r ted

CP/M·68K does not suppon floating point. Rewrite the source code
before you recompile it.

*line no. function bodY syntax

There is no" bracket at the beginning of the function on the line
indicated. Supply the missing bracket before you recompile the source
code.

*line no. illefal call

You attempted to call something that is not a function. Correct the
.. source code before you recompile it .

*line no. illefal function declaration

The storage class of the function declared in the line indicated is illegal.
The only two storage classes allowed for functions are static and
external. Correct the declaration before you recompile the source
code.

*line no. illefal refister specification

The register specification in the line indicated is illegal. Structures and
. arrays cannot be put into a register. Correct the source code before

you recompile it.

*line no. illefal type conversion

You made an incompatible assignment. This error commonly occurs
when attempting to conven a pointer, 32 bits, to an int, 16 bits.
Correct the source code before you recompile it.

*line no. indirection on function invalid
-

You attempted to use the indirection operator (.) on a function.
Correct the source code before you recompile it.

-------------------------- OJ DIGITAL RESEARCH'"
D-4

C Language Programming Guide 0.1 C068 Error Messages

Table D-1. (continued)

Message Meaning

*line no • initializeralifnMent

. This message usually indicates a missing initializer value, or values
out of order. Check the initializer list and correct it before you
recompile the source code.

*line no. initializer list too lonf

The initializer list is too long for C068. Shorten the list before you
recompile the source code.

*line no. invalid break st.ateMent

The break statement on the line indicated is not inside a loop or a
switch. Correct the source code before you recompile it.

*line no. invalid charact.er

There is an invalid character in the collating sequence in the line
indicated. Control characters or members of the extended character
set are not valid characters. Correct the source code before you
recompile it.

*line no. invalid continue stateMent

The continue statement on the line indicated is not inside a loop. This
error might occur when you have used a continue statement in a
switch. A continue statement is only valid in a loop. Correct the source
code before reinvoking C068.

*line no. invalid conversion

You attempted an incompatible assignment, for example, a pointer,
32 bits, and an int, 16 bits. Correct the source code before you
recompile it.

*line no. invalid data type

'The line indicated contains an expression that attempts to equate two
incompatible quantities, for example, an int, 16 bits, and a pointer,
32 bits. Correct the source code before you recompile it.

IJl DIGITAL RESEARCH'" ----------------~-----------
0-5

0.1 C068 Error Messages C Language Programming Guide

Table D-1. (continued) (~-\

Message Meaning

*line no. invalid declarat.or

The declarator in the line indicated is not a recognizable language
element. Supply a valid declarator before you recompile the source
code.

*line no. invalid expression

The expression in the line indicated contains a syntax error. Correct
the syntax of the expression before you recompile the source code.

*line no. invalid field size ..
The field in the line indicated is less than or equal to zero. Correct the
field size before you recompile the source code.

*line no. invalid field type descript.ion

You attempted to put a pointer or a long into a bit field. Correct the
source code before you recompile it.

*line no. invalid for stat.eMent.

The for statement in the line indicated contains a syntax error. Refer
to your C language manual for the correct syntax of a for statement.
Correct the statement before you recompile the source code.

*line no. invalid initiali%er

The initializer you specified in the line indicated is not a constant. You
can only initialize to a constant. Correct the source code before you
recompile it.

*line no. invalid label

You used a variable name as a label in the line indicated. Correct the
source code before you recompile it.

*line no. invalid lonf declarat.ion

You attempted to declare something long that cannot be long, for
example, a character. Correct the source code before you recompile it .

....... ------------------------0 DIGrrAL RESEARCH'" 0-6

C Language Programming Guide 0.1 C068 Error Messages

(Table D-1. (continued)

Message Meaning

*line no. invalid operand type

The expression in the line indicated contains an invalid operand.
Correct the source code before you recompile it.

-line no. invalid re!1ister specification

You attempted to put something larger than allowed into a register,
for example, a structure or a function. Correct the source code before
you recompile it.

*line no. invalid short declaration ..
You attempted to declare something short that cannot be short.
Correct the source code before you recompile it.

*line no. inval id sto ra!1e class

You specified an invalid storage class in a declaration. Refer to your
C language manual for the allowed storage classes. Correct the source

(
~'

"

, /

code before you recompile it.

*line no. invalid structure declaration: naMe

The size of the structure indicated by the variable n aM e has a size
less than or equal to zero. Correct the source code before you recom-
pile it.

*line no. invalid st.ructure MeMber naMe

The structure reference in the line indicated is not a member of any
structure. Correct the source code before you recompile it.

*line no. invalid structure prototype: naMe

In the line indicated you reference a structure name that is not a
prototype. Correct the source code before you recompile it.

*line no. invalid t.ype declaration
- The type declared in the line indicated is invalid. Refer to your C

language manual for a discussion of valid types. Correct the source
code before you recompile it.

c\
o DIGrrAL RESEARCH'" ---------------------------

D.l C068 Error Messages C Language Programming Guide

Table 0-1. (continued)

Message Meaning

*line no. invalid typedef stateMent

The line indicated contains a statement with more than one typedef
keyword. Only one typedef is allowed per statement. Correct the
source code before you recompile it.

*line no. invalid u"nsifned declaration

The quantity you declared unsigned in the line indicated might not be
unsigned. Only an int can be" unsigned. Correct the declaration before
you recompile the source code .

*line no.
..

invalid?: operator synta)(

This message indicates an error in the use of the ?: conditional operator
in the line indicated. Refer to your C language manual for the correct
syntax. Correct the source code before you recompile it.

*line no. label redeclaration: label

You used the same label for two separate items. Correct the source
code before you recompile it.

*line no. Missinf colon

You left out a colon. Supply a colon in the correct location before you
. recompile the source code.

*line no. Missinf { in initialization

You neglected to put in the left curly brace in the initialization of an
array or structure. Supply the missing brace before you recompile the
source code.

*line no. Missinf}

You left the right curly brace out of the initialization of an array or
structure. Supply the missing brace before you recompile the source
code.

*line no. Missinf while

The do statement at the line indicated is missing a while at the end.
Supply the missing while before you recompile the source code.

-------------------------111 DIGrrAL RESEARCH'"
D-8

C Language Programming Guide D.l C068 Error Messages

Table 0-1. (continued)

Message Meaning

*line no. Missin~ seMicolon

A semicolon is missing from the line indicated. Supply the missing
semicolon before you recompile the source code.

*line no. no st ructure naMe

You referred to a structure in the line indicated without giving the
structure name. Correct the source code before you recompile it.

*line no. no *1 befo re EOF

The lctst comment in the source code is missing its final delimiter.
Supply the missing delimiter before you recompile the source code.

*line no. not a st.ruct.ure: naMe

The structure referenced in the line indicated is not a structure. Correct
the source code before you recompile it.

*line no. not in paraMet.er list.: x

In the line indicated, you declared the something indicated by the
variable x to be an argument to a function, but x is not in the function
parameter list. Correct the source code before you recompile it.

* lin e no. parenthesized expression syntax

The line indicated contains a syntax error in the parenthesized expres-
sion. Correct the source code before you recompile it.

*line no. redeclarat.ion: SYMbol
.

A symbol has been declared twice. Remove one of the declarations
before recompiling the source code.

*line no. strin_ cannot cross line

The character string at the line indicated continues beyond one line.
The closing quote to a character string must be on the same line as
the opening quote, unless you use a backslash (\) at the end of the
first line to indicate that the line continues. Correct the source code
before you recompile it.

B DIGrrAL RESEARCH- ---------------------------
D-9

D.l C06E 1.:' ____ 1 L C :':mguage Programming G1.11d~

Table D-1. (continued)

A1essage Meaning

*line no. strin~ too lon~

The string atthe line indicated is longer than 255 characters. A string
cannot be longer than 255 characters on a single line. Break the string
and use a continuation, indicated by a backslash (\) at the end of th~
line to be continued.

*line no. structure declaration sYn~a)(

The syntax of the structure declaration on the line indicated is incor
rect. Correct the syntax before reinvoking C068.

*line no. structure operation not Yet iMPleMented

On the line indicated, you assigned a structure to another structure.
Assigning a structure to another structure is not yet supported by the
CP/M-68K C compiler. Correct the source code before reinvoking
C068.

*line no. structure table overflow

There are too many structures in your program for the structure /
tables. Eliminate some structures before reinvoking the C compiler.

/----------------------------------:"'-_/
*line no. SYMbol table overflow

Your program uses too many symbols for the space available on the
symbol table. Eliminate some symbols before reinvoking the C
compiler.

*line no. teMP creation error

The drive code or filename of the temporary file referenced in the line
indicated is incorrect. Specify the correct drive code and filename
before you recompile the source code.

*line no. too Many cases in switch

The switch at the line indicated has too many cases. Eliminate some
cases before you recompile the source code.

/~-~-'-"\

-------------------------- DI DIGITAL R.ESE.AR~-j
D-10

C Language Programming Guide 0.1 C068 Error Messages

(Table D-1. (continued)

Message Meaning

*line no. tao Many initializers

The initializer list in the line indicated contains mor~ initializers than
there are members of the array being initialized. Correct the list before
you recompile the source code.

*line no. tao Many paraMS

The function declaration at the line indicated contains too many
parameters. Rewrite the source code before you recompile the source
code.

*line no. undefined label: label

The label indicated by the variable lab e 1 has not been defined.
Correct the source code before you recompile it.

*line no. undefined SYMbol: SYMbol

The symbol indicated by the variable S Y Mba 1 is undefined. Correct
the source code before you recompile it.

*line no. uneKPected EOF

This error usually occurs when there is no right curly brace (}) after
a function, or when there are mismatched comment delimiters. Locate
and correct the error before you recompile the source code.

*line no. usafe: c068 source aSM str

The syntax of the C compiler command line is incorrect. The correct
syntax is given in the error message. Reenter the command line using
a valid syntax.

*line no. { not Matched by }

A left curly brace ({) is not matched by a right curly brace. This error
frequendy occurs in an initialization sequence. Supply the missing
brace before you recompile the source code.

B DIGlTAL RESEARCH'" --------------------------
D-l1

0.1 C068 Error Messages C Language Programming Guide

Table 0-1. (continued)

Message Meaning

*line no. ="char" assuMed

You have user a = + type operation with an invalid character. When
an invalid character occurs after the = sign, C068 puts in = = instead
of = . Correct the source code before you recompile the source code.

*line no. 8& operand illesal

You attempted to take the address of something that is not a variable,
for example, a register. Correct the source code and recompile it.

0.1.2 Internal Logic Errors

These messages indicate fatal errors in the internal logic of C068:

*line no. can't COpy filenaMe
*line no. invalid keyword
*line no. too Many chars pushed back
*line no. too Many tokens pushed back

Contact the place you purchased your system for assistance. Provide the following
information:

• Indicate the version of the operating system you are using.

• Describe your system's hardware configuration.

• Provide sufficient information to reproduce the error. Indicate which program
was running at the time the error occurred. If possible, also provide a disk with
a copy of the program.

__________________________ G DIGrrAL RESEARCH'" ~J

0-12

C Language Programming Guide 0.2 C168 Error Messages

(D.2 C168 Error Messages

(. \

./

The CP/M-68K C Co-generator, C168, returns two types of fatal error messages:
diagnostic error messages and messages indicating errors in the internal logic of C168.
Both types of error messages take the general form:

• -line no. error message text

The asterisks (••) indicate that the error message comes from C168. The error message
text describes the error. If you run C168 before correcting any errors you received from
C068, you receive erroneous errors from C168.

0.2.1 Fatal Diagnostic Errors ...

The C168 fatal, diagnostic error messages are listed in Table D-2 in alphabetical
order, with explanations and suggested user responses.

Table 0-2. C168 Fatal Diagnostic Errors

Message Meaning

**line no. can 't c rea t e f i 1 en am e

Either the drive code or the filename for the file indicated by the
variable f i 1 en am e is incorrect. Ensure that you are requesting the
correct drive code and filename before you recompile the sourc,: code.

**line no. can't open filename

Either the drive code or the filename for the file indicated by the
variable f i 1 en ame is incorrect. Ensure that you are requesting the
correct drive code and filename before you recompile the source code:

**line no. divide by zero

You attempted to divide by zero in the line indicated. Correct the
source code before you recompile it.

**line no. expression too complex

An expression on the line indicated is too complex,for C168. Simplify
the expression before you recompile the source code.

DD~rrAL~EARCH---__________________________ __
D-13

-- -~~-- ... -u.. t....l vt; .triO; ;vle~~dges C Language Programming Guide

Table 0-2. (continued)

Message Meaning

**line no. Modulus byzero

The second operand of the percent operator in the line indicated is
zero. Correct the source code before you recompile it.

**line no. structure operation not iMPleMented

The operation you attempted with a structure in the line indicated is
illegal. Correct the source code before you recompile it.

**_line no. usalfe: c1S8 icode aSM [-OLMecJ

The comm~nd line syntax is incorrect. The correct command line
syntax is given in the error message. Correct the syntax before you
reenter the command line.

0.2.2 Internal Logic Errors

The following messages indicate fatal errors in the internal logic of C168:

**line no. cdsize: invalid type
**line no. code sKeleton error: op
**line no. hard lonlf to relfister
**line no. interMediate code error
**line no. invalid initialization
**line no. invalid operator op
**line no. invalid relfister expression
**line no. invalid storalfe class sc
**line no. no code table for op
**line no. sKelMatch type: stype

1£ you receive one of these messages, contact the place where you purchased your system
for assistance. Provide the following information:

• Indicate the version of the operating system you are using.

• Describe your system's hardware configuration.

• Provide sufficient information to reproduce the error. Indicate which program
was running ~t the time the error occurred. If possible, also provide a disk with
a copy of the program.

-------------------------11 DIGITAL RESEARCH""
D-14

C Language Programming Guide 0.3 CP68 Error Messages

(-~ D.3 CP68 Error Messages

c

The CP/M-68K C Preprocessor, CP68, returns two types of fatal error messages:
diagnostic error messages and messages indicating errors in the internal logic of CP68.
Both types of error messages take the general form:

line no. error message text

The pound sign (#) indicates that the error message comes from CP68. The "error
message text" describes the error.

0.3.1 Diagnostic Error Messages

A fatal diagnostic error message prevents CP68 from processing your file. The CP68
diagnostic error messages are listed in Table 0-3 with explanations and suggested user
responses.

Table 0-3. CP68 Diagnostic Error Messages

Message Meaning

#line no. arfUMent buffer overflow

An argument list in the line indicated contains too many characters
for the space allocated to the argument buffer. Reduce the number of
characters in the argument list before rerunning CP68.

#Ii ne no. bad arfUMent: arf

In the line indicated, the argument represented by the variable a r f
contains an invalid character. Replace or eliminate the invalid charac-
ter before rerunning CP68.

DDIGrrAL RESEAIlCH'" -------------------------
D-15

0.3 CP68 Error Messages C Language Programming Guide

Table 0-3. (continued)

Message Meaning

-line no. bad character octal no.

The line indicated contains an illegal character. The ASCII code of the
invalid character is represented by the variable 0 c tal no. Examine
the line indicated to locate the error. Replace the character before-
rerunning C~68.

-line no. bad define naMe: naMe

The name indicated by the variable n aM e contains one or more
invalid characters. Examine the name to locate the error. Replace the
invalid ch~racters before rerunning CP68.

-line no. bad include file

The syntax of the - inc 1 u de statement is incorrect. The - inc 1 u d e
statement must follow one of the following two formats:

#include <filename>
#include "filename"

Rewrite the statement before rerunning CP68.

-line no. bad include file naMe

In the line indicated, the filename in the - inc 1 u d e statement con-
tains either an invalid character or more than 8 characters, the
maximum allowed. Supply a valid filename before rerunning CP68.

-line no. can't. open fnaMe

The # inc 1 u de statement in the line indicated contains an invalid
or nonexistent filename. Check the filename before rerunning CP68.

-line no. can't open infile

CP68 cannot open the input file indicated by the variable i n f i 1 e.
Either the drive code or the filename is incorrect. Check the drive code
and the filename before rerunning CP68.

-line nOt. can't. open out.file

CP68 cannot open the output file indicated by the variable 0 u t f i 1 e •
Either the drive code is incorrect, or the disk to which CP68 is writing
is full. Check the drive code. If it is correct, the file is full. Erase
unnecessary files, if any, or insen a new disk before rerunning CP68.

-------------------------o DIGITAL RESEARCH"
0-16

C Language Programming Guide 0.3 CP68 Error Messages

(/
Table 0-3. (continued)

..

Message Meaning

-line no. condition stack overflow

The source code contains too many nested #if's for the space allocated
to the condition stack. The stack overflowed before the line indicated.
Rewrite the source code before rerunning CP68.

-line no. define recursion

A name or variable on the line indicated has been defined in terms of
itself. Redefine the name before rerunning CP68.

-line no. d e f ~n eta b lea v e r flo w

The source code contains one or a combination of the following: too
many names, too many long names, too many expressions, or too
many large expressions. The space allocated to the define table was
filled before the line indicated. Simplify and rewrite the source code
before rerunning CP68.

-line no. expression operator stack overflow

An expression in the line indicated contains too many operations for
the space allocated to the expression operator stack. Eliminate or
consolidate some operations before rerunning CP68.

-line no. expression stack overflow

An expression in the line indicated contains too many terms for the
space allocated to the expression stack. Eliminate or consolidate some
terms before rerunning CP68.

-line no. expressian syntax

The syntax of an expression in the line indicated is incorrect. Examine
the line to locate the error. Correct the syntax before rerunning CP68.

-line nat includes nested taa deeply

The - inc 1 u d e statement in the line indicated contains more than
7 nested include files, the maximum allowed. Rewrite the source code
so that no one - inc 1 u d e statement contains more than 7 nested
include files.

IJDIGITAL RESEARCH'" --------------------------
0-17

0.3 CP68 Error Messages C Language Programming Guide

Table D-3. (continued)

Message Meaning 1\,,-.·)

aline no. inval id aelse

A a e 1 s e statement occurs in the source code without a preceding
a i f statement. Supply the missing a i f statement or eliminate the
a e I s e statement before rerunning CP68.

aline no. inval id aendif

A a end i f statement occurs in the source code without a preceding
a i f statement. Supply the missing a i f statement or eliminate the
a end i f statement before rerunning CP68 .

..
aline no. invalid preprocessor cOMMand

The command in the line indicated is either not valid for CP68 or is
incorrectly formatted. Correct the command before rerunning CP68.

aline no. line overflow

The line indicated contains more than 255 characters, the maximum
allowed. Reduce the line to no more than 255 characters before
rerunning CP68. 1/'·'

aline no. Macro arfUMent too lonf "....~ .. _/
,

An argument name in the line indicated contains more than 8 charac-
ters, the maximum allowed. Use no more than 8 characters for the
argument name, and rerun CP68.

aline no. no *1 befo re EOF

A comment in the source code is missing the dosing • I. Supply the
missing ·1 before rerunning CP68.

aline no. strin. cannot cross line·

A string in the line indicated is missing a dosing quotation mark.
Supply the missing quotation mark before rerunning CP68.

aline strinf too lonf
.

no.

The line indicated contains a string greater than 255 characters, the
maximum allowed. Shonen the string to no more than 255 characters
before rerunning CP68.

------------------------- 0 DIGITAL RESE.Allc:JiN
0-18

C Language Programming Guide D.3 CP68 Error Messages

(.. Table 0-3. (continued)

Message Meaning

aline no. SYMbol t.able overflow

The source code uses too many symbols for the space allocated to the
symbol table. The symbol table was filled prior to the line indicated . .
Eliminate some symbols before rerunning CP68.

aline no. t.oo Many arfUMent.s

- One of the names in the line indicated contains more than 9 arguments,
the maximum allowed. Reduce the number of arguments to no more
than 9 per name before rerunning CP68.

aline no. unexpect.ed EOF

This message indicates an incomplete program. Examine the source
code to locate the error. Correct before rerunning CP68.

aline no. unMat.ched condit.ional

A a i f statement occurs in the source code without a matching
a end i f statement. Supply the missing a end i f statement before
rerunning CP68.

aline no. usafe: c6s [-i x:J input.file out.put.file

This message indicates incorrect syntax in the command line. The
correct syntax is given. Correct the command line before rerunning
CP68. Refer to your C manual for an explanation of the command
line syntax.

IIDJGJTALRESEAllCH'" ---------------------------
D-19

D.3 CP68 Error Messages C Language Programming Guide

0.3.2 Internal Logic Errors

CP68 returns only one message indicating an error in the internal logic of CP68:

-line no. t.oo Many charact.ers pushed bacK

If you receive this message, contact the place where you purchased your system for
assistance. Provide the following information:

• Indicate the version of the operating system you are using .

• Describe your system's hardware configuration.

.• Provide sufficient information to reproduce the error. Indicate which program
was running at the time the error occurred. If possible, also provide a disk with
a copy of the program.

D.4 C-Run-time Library Error Messages

The C-Run-time Library returns only one fatal error message, stack overflow. The
stack overflow message means the program you are trying to include in the C-Run-time
Library is too big. Reduce the size of the program.

End of Appendix D

-------------------------II! DIGrrAL RESEARCH'"
D-20

Index

[, 2-51
.. , 2-51
,. 2-43, 2-51
*,·2-43. 2-51
-, 2-43

A.68K, 1-1
abort function, 2-3
abs function, 2-4
absolute load module, B-4
access function, 2-5
addition, 3-5
address variables: B-2
addressing error trap, 2-53
alignment, 2-29
AND, 3-5
alphanumeric characters, 2-29
argc/argv interface, 1-5
argument,

absolute value of, 2-4
pointer, 2-51
same length, 1-4
with side effects, 2-4, 2-15,

2-29, 5-35
arithmetic comparison, 3-5
arithmetic trap, 2-53
AS68, B-1, B-2
ASCII character, 2-43, 2-50
ASCII files, 2-25

in CP/M-68K, 1-6
ASCII string,

converting to integer or
binary, 2-6

null-terminated, 2-43
assembler,

initialization file, B-3
temp files, B-3

assembly-language source file,
B-2

atan function 2-62
atof function, 2-6
atoi function, 2-6
atol function, 2-6
automatic variables, 1-1

B

binary and ASCII files,
distinguishing, 1-6

binary,
files, 1-6, 2-25
I/O, 3-2

binary numbers, converting to
decimal ASCII, 2-43

bit flags., 3-6
black boxes, 3-1
blank padding, 2-43, 2-50
block size, changing, 2-8
blocks, releasing, 2-8
bogus address, freeing, 2-8
Boolean condition, 3-3
boundaries, 128-byte,

2-49, 2-66
brackets, 2-51, 3-8
break location, 2-16
brk function, 1-2, 2-7
BSS, 1-1, 2-16, 3-8
buffer flushing, 2-18
BUSERR, 2-53
BYTE, 3-4
byte order; 2-29, 2-44
byte stream, transferring, 2-27

C

c character, 2-51
C Co-generator, D-l
C language,

functions implemented in, 2-2
portability, 3-1
program memory layout, 1-1
program compiling, 1-1

c operator, 2-43, 2-51
C Parser, D-l
C Preprocessor, D-1
c.sub, 1-1, B-3
C168, B-1, D-1
calling conventions, 1-2
calloc function, 2-8
carriage return, 2-14
carriage return line-feed, 1-6
ceil function, 2-9
character, 8-bit, 2-44
character class, 2-14
character string, 2-51

Ind.,,-l

characters, locating in
strings, 2-34

CHK instruction, 2-53
chmod function, 2-10
chown function, 2-10
clearerr function, 2-22
clib, B-2
clink. sub, 1-1, B-3
close function, 2-11
closing streamfiles, 2-21
C06S, B-1, 0-1
coding conventions,

mandatory, 3-2
suggested, 3-S

code generator, B-1, B-2
command line interface, 1-5
commas, 3-5
comments in a module, ~-7
comparing two elements, 2-47
compilation, speeding, B-4
compiler, B-1, B-2, B-3, B-4
compiler-generated code, 1-5
compiling a C program, 1-1
completion code, 2-1S
compound statement, 3-8
CON:, 1-5, 2-35, 2-63
concatenating strings, 2-57
console device, 2-28, 2-35
contiguous digits, 2-6
control characters, 2-14
control string format, 2-50
controlling statement, 3-8
conversion character, 2-50
conversion code, capitalized,

2-43
conversion operators, 2-42

optional instructions in,
2-43

conversion specifications, 2-50
copying strings, 2-59
COS function. 2-12
CP68, B-1
CP/M-68K C compiler, 0-1
CP/M-68K C Run-time Library,

0-1
creat function, 2-11, 2-13
creata function, 2-13
creatb function, 2-13
CTRL-Z, 1-6
ctype function. 2-14
<ctype.h> file. 2-14

Index-2

o

-0 flag, B-2
d character, 2-51
d operator, 2-43
data,

conversion, 2-2
region, 2-16
structures, 3-1

00T-68K, 2-3
decimal ASCII, 2-43

integer conversion, 2-51
DEFAULT, 3-4
default drive, B-3
fdefine statement, 3-3, B-1

module-specific, 3-7
deleting a file, 2-65
destination string, 2-59
/dev/lp, 1-5
/dev/tty, 1-5
device access. terminating,

2-11
device I/O, 1-5
digit string, 2-43
diSK space, conserving,

B-1, B-3
diSKS, swapping, B-3
do, 3-S
documenting code, 3-8
drive changing, B-3
dynamic memory allocation, 2-1
dynamic memory areas,

B

heap, 1-2
stacK, 1-2

E2BIG, A-l
EACCES, A-1
EBADF, A-l
edata location, 1-2, 2-16
editor, B-3
EFB1G, A-2
EINVAL, A-2
E10, A-l
else, 3-8
end, 1-2
end location, 2-16
end-of-file, 2-22

errors, 2-30
ENFILE, A-2
ENOOSPC, A-2
ENOENT, A-l
ENOMEN, A-l
ENOS PC , A-2

ENOTTY, .A-2
entry points, 2-2
EaOFS,A-2
errno ext;:ernal variable,

2-40, A-l
<errno.h>include file, ~-l
error,

in specified stream, 2-.22
syete.m ... dependent, 2-3

error file, 2-40
error messages, numbers,

2-40, A-l
error return, from getchar,

2-29
etext location, 1-2, 2-16
etoa function, 2-17
exception condition, 68000,

2-53 '
executable file, B-2
exit function, 2-18
exit function, 2-18

exp function, 2-19
extended character sets, 3-6
EXTERN, 3-4
external,

p

names, 1-4
reference, B-2
variable, 2-40

-F option, B-2
fabs function, 2-20
fcetc function, 2-29
fclose function, 2-21
fdopen function, 2-25
feof function, 2-22
ferror function, 2-22, 2-36
fflush function, 2-21
fgetc func~ion, 2-29
fgets function, 2-33
field width, 2-43
file access,

terminating, 2-11
legal, 2-5

file data, reading, 2-49
file descriptor, 2-63
file I/O, 1-5
file pointer, 2-49
file size, reducing, B-3
file statements, 3-7
file streams, manipulating.

2-22
file.O, B-2
file.C, B-1

file.I, B-1
file.IC, B-1
file.S, B-2
file.ST, B-1
fi lename, tempor.ary, 2-38
fileno function, 2-22
files, changing protection and

ID, 2-10
flqating-point,

conversion, 2-43
routines, 2-2

flushing stream files, 2-21
floor function, 2-23
fmod function, 2-24
fopen function, 2-25
fopena function, 2-25
fopenb function, 2-25
for, 3-8
form feed, 2-14
formatting data, 2-42
fprintf function, 2-42
fputc function , 2-44
fputs function, 2-46
frame pointer, 1-2
fread function, 2-27
f~ee function, 1-2, 2-8
freopa function, 2-25
freopb function, 2-25
freopen function, 2-25
fscanf function, 2-50
fseek function , 2-28, 2-64
ftell function, 22-28
ftoa function, 2-17
fwrite functions, 2-27

G

getc function, 2-29, 2-64
getchar function, 2-29
getl function, 2-29
getpass function, 2-31
getpid function, 2-32
gets function, 2-33
getw function, 2-29
GLOBAL, 3-4
global data areas, 3-1
global variable, 3-3

B

header file, 3-2
heap management, 1-2
heap space, "allocating, 2-8
heap extending, 2-7
hex constant, 3-2

Index-3

hexadecimal ASCII, 2-43
integer conversion, 2-51

high bytes, reversing with low
bytes, 2-61

I

-I flag, B-1
'include, B-1
'include "file.h", 3-2
I/O,

redirection, 1-7
stream, 2-25
device, 1-5
file, 1-5
single-byte, 1-5

if·, 3-8
illegal instruction tiap, 2-53
include files, nesting, 3-2
indention technique, 3-8
index function, 2-34
initialization file, B-2
initialized data, 1-1, 3-6
input, 1-6

format, 2-50
stream, 2-64

instruction trap, 2-3
int,

random number seed, 2-48
variable length, 3-2

intermediate code file, B-1
intermodule communication,

using procedure calls, 3-1
isalnum(c), 2-14
isalpha(c), 2-14
i sasci i(c), 2-14
isatty function, 2-35
iscntrl(c), 2-14
isdigit(c), 2-14
islower(c), 2-14
isprint(c), 2-14
ispunct(c), 2-14
isspace(c), 2-14
isupper(c), 2-14

J

JSR instruction, 1-2

L

L character, 2-43
-L flag, B-2
-L option, B-2

Index-4

language library, compatibility
with UNIX V7, 2-1

leading aign, 2-6
leading spaces, 2-6
line A trap, 2-53.
line F trap, 2-53
line-feed, 1-6, 2-14, 2-50
linkage editor, 1-2, B-2
linker, B-1, B-2, B-3, B-4
linker, invoking. 1-1
listing device, 2-28
literal matches, 2-51
L068, B-1, B-2
load modules, B-3
load time, reducing, B-3
LOCAL, 3-4, 3-7
local variable names, 3-3
log function, 2-36
logical, 3-5
LONG, 3-4
long, 32-bit, 2-29, 2-43
long masking constant, 3-5
longjmp fu.nction, 2-52
low bytes, reversing with high

bytes, 2-61
lower-case, 2-2, 3-2, 3-3
Iseek function, 2-37
LST:, 1-5

M

macro, 2-4, 2-15, 2-29, 2-44
macro definitions, 3-2
maintenance costs, 3-1
maintenance documentation, 3-8
malloc function, 1-2, 2-8
mandatory coding conventions,

3-2
margin, 3-8
masking, 3-5
memory allocation, 2-15
memory layouts of C programs,

1-1
minus sign, 2-43
mktemp function, 2-38
MLOCAL, 3-4
modular programs, 3-1
module,

layout, 3-7
size, 3-1

module-specific 'define
statements, 3-7

movem.l instruction, 1-4
multibyte binary variables, 3-2
multicharacter constants, 3-5

..
nesting level, 3-8
newline, 2-50

character, 2-33, 2-46
incompatibility, 2-46

NO-OPS, 2-10
nonlocal goto, 2-52
null statement, 3-8
null-terminated string,

o

~-43, 2-46
concatenating, 2-57

o character, 2-51
o operator, 2-~3
-0 file.68K, B-2
object code, reducing size,

2-29
octal,

ASCII, 2-43, 2-51
constant, 3-2

open function, 2-11, 2-39,
2-25, 2-49

open stream, 2-22, 2-50
opena function, 2-39
openb function, 2-39
opening files, 2-39
operations, 3-5
OR, 3-5
output, 1-6

file, B-1
left-adj~sted, 2-43
right-adjusted, 2-43

overflow, detection and
reporting, 2-6

P

padding, blank or zero, 2-43
parentheses, 3-2, 3-4
parser, B-1
password, 2-31
PDP-l1, 2-61
percent sign, t, 2-42
peripheral devices, 1-5
perror function, 2-40, A-l
pointer arithmetic, 3-5
portability, 3-1 to, 3-7

. pow function, ·2-.41
precision field, 2-43
precision string, 2-43
preprocessor, B-1
primary memory, 2-27

printf function, 2-42, 3-2, 3-5
printing characters, 2-14
privilege violation, 2-53
procedure definitions, 3-7
procedure header, 3-7
process ID, false, 2-32
punctuation characters, 2-14
pushed-back characters, 2-64
putc function, 2-44
putchar function, 2-44
putl function, 2-44
puts function, 2-46
putw function, 2-44

Q

qsort function, 2-47
quick sort routi-ne, 2-47

R

-R option, B-2
rand function, 2-48
random number generator, 2-48
random numbers, retrieving,

2-48
read errors, 2-30
read function, 2-49, 2-29
read pointer, 2-28
readability, improving, 3-8
realloc function, 2-8
references, global, 3-7
REG, 3-4
registers, scratch, 1-4
regular files, 1-6
re10c utility, B-3
relocatable files, B-2
rewind function, 2-28
rindex function, 2-34
ROM, 3-6
run-time start-up routine, B-2

s

s character, 2-51
s operator, 2-43
-S option, B-2
-5 switch, B-4
sample C module, C-l
sbrk function, 1~2, 2-7, 2-16
scanf function, 2-50
screen editing, 3-8
seed, 2-48
setjap . func·tion, 2-52
sign-extending characters, 3-2

Index-S

signal function, 2-53
signed characters, 2-58
sin function# 2-12
single-byte 1/0,1-5
single-density disk system, B-3
sinh function, 2-55
source file, B-1
space, .2-14

allocation for array, 2-8
sprintf function, 2-42
sqrt function, 2-56
srand function, 2-48 .
sscant function, 2-50
stack frame, 1-4
stack use, 1-2
stack-popping code, 1-4
standard error fiJ.e, ~-6
standard type definitions, 3-3
start-up file, B-2
static data, 2-31
static variables, 3-6
stderr, 1-6
stdin, 1-6
<stdio.h> file, 1-6, 2-4,

2-29, 2-44
stdout, 1-6
storage class, 3-7

definitions, 3-3
strcat function, 2-57
strcmp function, 2-58
strcpy function, 2-59
stream,

address, 2-21
buffer, 2-37
file, 2-28, 2-33
output file, 2-18

string,
comparison, 2-58
length, 2-58
null-terminated, 2-31
variables, 3-5

strlen function, 2-60
strncat function, 2-57
strncpy function, 2-59
strncmp function, 2-58
stylistic rules in C

programs, 3-1
submit files, B-3
subroutine calls, 1-4
subtraction,· 3-5
suppressed assignments, 2-41
swab function, 2-61 .
swapping binary data, 2-61
symbolic constants, 3-2
symbolic names, A-l

Index-6

system,
calls, 2-1
error, 2-40
include files, B-1
traps. 2-1

system~wide file, 3-2

T

-T switch, B-4
tab, 2-14, 2-50, 3-8
tan function, 2-6l
tanh function, 2-55
tell function, 2-37
temporary file, B-1
terminal device, 2-63
terminating current program,

2-3
text, 3-6
tilde, 2-14
trace trap, 2-51
trailing null, 2-46, 2-51
transferring data, 2-66
TRAPV instruction, 2-51
ttyname function, 2-63
type, 3-2
type definitions, 3-3
typedef 3-3

o

u operator, 2-43
-U option, B-2
UBYTE, 3-4
underline character, 1-4
ungetc function, 2-64
uninitialized data, 1-1, 3-6
UNIX,

compatibility, 2-9, 2-40,
2-46, 2-53

versions 1 through 6, 2-37
version 7, A-2
with fopen, 2-26
with getpid, 2-32
with getchar, 2-30

UNIX programs, with binary
files, 2-39

unlink function, 2-65
unsigned characters, 2-58
unsigned int, 3-2
upper bound of program,

setting, 2-7
upper-case, 2-2, 3-2, 3-3
user control block, 1-5
UWORO, 3-4

v

variable. 3-7
variable names.

global. 3-3
local, 3-3
lower-case. 3-3

variable type. 3-7
VAX. 2-61
vectors, sorting, 2-47
VOID, 3-4

w

while, 3-8
white space characters, 2-14
WORD, 3-4
word.

..
16-bit, 2-44
32-bit word. 2-3

word boundary, 2-8
write function, 2-44,
write pointer, 2-28

x

2-66

X characters, 2-38, 2-44, 2-51
X operator. 2-43

z

zero divide. 2-53
zero padding. 2-43

Index-7

)

