
**

** ** **

** **
**

**
**

ATARI CORP
1196 Borregas Avenue
Sunnyvale, CA 94086

GEM DOS PROGRAMMERS GUIDE

Copyright 1986 by Atari Corp.
All Rights Reserved

Table of contents:

Assembler Operation.

GEM DOS

Archive

Linkers •.
LINK68.
L068 ••.
RELMOD.

Utility ••

. ,.

More programming utilities.

SID68

DUMP ••••••••••••••••••••
SIZE68
SENDC68 ••••.••••••••
XREF •••••

Debugger •••

Error Messages •.•

Motorola S-Record Format ••••

.1

••••• 2
. 2-1

· .2-5
. 2-8

· .3

· .4
• •• 4-1

· .4-3
• •• 4-5
• •• 4-6
• •• 5

• .A

• .B

Index ••.••.•••..•...••.......•••.••••....•• INDEX

GEM DOS PROGRAMMERS GUIDE

1 ASSEMBLER OPERATION

The GEM DOS Assembler, AS68, assembles an assembly
language source program for execution on the 68000
microprocessor. It produces a relocatable object file and,
optionally, a listing. You can find a summary of the AS68
instruction set at the end of this section. Exceptions and
additions to the standard Motorola instruction set appear in
sections 1.6 and 1.7.

1.2 INITIALIZING AS68

If the
create this
to assemble
command, the
below.

file AS68SYM.DAT is not on your disk, you must
file to initialize AS68 before you can use AS68
files. To initialize AS68, specify the AS68
-I option, and the filename AS68INIT as shown

{a}AS68 -I AS68INIT

AS68 creates the output file AS68SYMB.DAT, which AS68
requires when it assembles programs. After you create this
file, you need not specify this command line again unless you
reconfigure your system to have different TPA boundaries.

1.3 INVOKING THE ASSEMBLER (AS68)

Invoke AS68 by entering a command with the following
form:

[-I]
AS68 [-F pathname] [-P] [-S pathname] [-U] [-L] [-N]

[-0 object filename] source pathname [>listing
pathname]

1-1

GEM DOS PROGRAMMERS GUIDE

Table 1-1 lists and describes the AS68 command line
options.

Option

-F pathname

Table 1-1. Assembler Options

Meaning

Specifies the directory in which the temporary files are
created. If this option is not specified, AS68 creates the
temporary files in the current default directory.

-I

Initializes
details.

-P

the assembler. See Section 1.2 for

If specificed, AS68 produces and prints a listing on the
standard output device, which, by default, is the console.
Redirect the listing, including error messages, to a file
with the >listing filename parameter. Note that error
messages are produced whether or not the -P option is
specified. No listing is produced, however, unless you
specify the -P option.

-S pathname

Indicates the directory that contains the assembler
initialization file, AS68SYMB.DAT. This file is created when
you initialize AS68. AS68 reads the file AS68SYMB.DAT before
it assembles a source file. If you do not specify this
option, AS68 assumes the initialization file is located in
the current default directory.

-U

Causes all undefined symbols in the assembly to be
tr~ated as global references.

-L

Ensures all address constants are generated as
longwords. Use the -L option for programs that require more
than 64K for" execution or if the TPA is not contained in the
first 64K bytes of memory. If -L is not specified, the
program is assembled to run in the first 64K bytes of memory.
If an address in the assembly does not fit within one word,
an error occurs.

-N

1-2

{""
.'.~ ,
\' ,

""-_/

GEM DOS PROGRAMMERS GUIDE

Disables optimization of branches on forward references.
Normally, AS68 uses the 2-byte form of the conditional branch
and the 4-byte BSR instruction wherever possible (instead of
the 6-byte JSR instruction) to speed program execution and
reduce instruction size.

-T

Enables
opcodes.

AS68 to accept the 68010 microprocessor

source filename

Specifies the file to assemble; you must supply this
parameter.

>listing filename

Use
disk
Note
only

1.4

Sends a program listing to the standard output device.
the greater-than symbol, >, to direct the listing to a
file. The listing includes assembler error messages.
that if you do not specify -P with a listing filename,

the error messages are redirected to the listing file.

ASSEMBLY LANGUAGE DIRECTIVES

Table 1-2 lists the AS68 directives.

Table 1-2. AS68 Directives

Directive Meaning

.comm label, expression

The comm (common) directive specifies a label and the
size of a common area that programs assembled separately can
share. The L068 linker links all areas with the same label
to the same address. The largest common area of a group with
the same label determines the final size of the program
common area •

• data

The data directive instructs AS68 to change the
assembler base segment to the data segment •

• bss

The bss (block storage segment) directive instructs AS68
to change the assembler base segment to the block storage
segment. You cannot assemble instructions and data in the
bss. However, you can define symbols and reserve storage in

1-3

GEM DOS PROGRAMMERS GUIDE

the bss with the ds directive •

. dc operand[,operand, •••]

The dc (define constant) directive defines one or more
constants in memory. The operands can be symbols or
expressions assigned numeric values by AS68, or explicit
numeric constants in decimal or hexadecimal, or strings of
ASCII characters. You must separate operands with commas.
You must enclose string constants in single quotation marks.
Each ASCII character is assigned a full byte of memory. The
eighth bit is always O.

You can specify the length of each constant with a
single letter parameter (byte = b, word = w, longword = 1).
You must separate the letter from the dc with a period as
shown in the following explanations •

• dc.b

The constants are byte constants. If you specify an odd
number of bytes, AS68fill·s the odd byte on the right with
zeros unless the next statement is another dc.b directive.
When the next statement is a dc.b directive, the dc.b uses
the odd byte. Byte constants are not relocatable .

• dc.w

The constants are word constants. If you specify an odd
number of bytes, AS68 fills the last word on the right with
zeros to force an even byte count. The only way to specify
an odd number of bytes is with an ASCII constant. Word
constants can be relocated •

• dc.l

The constants are longword constants. If less than a
multiple of four bytes is entered, AS68 fills the last
longword on the right with zeros to force a multiple of four
bytes. Longword constants can be relocated •

• ds operand

The define storage directive (ds) reserves memory
lJ0ations. The contents of the memory that it reserves is
not initialized. The operand specifies the number of bytes,
words, or longwords that this directive reserves. The
notation for these size specifications is shown below .

• ds.b
.ds.w
.ds.l

. end

reserves memory locations in bytes
reserves memory locations in words
reserves memory locations in longwords

1-4

GEM DOS PROGRAMMERS GUIDE

The end directive informs AS68 that no more source code
follows this directive. Code, comments, or multiple carriage
returns cannot follow this directive •

• endc

The endc directive denotes the end of the code that is
conditionally assembled. It is used with other directives
that conditionally assemble code •

• equ (or =) expression

The equate directive (equ or =) assigns the value of the
expression in the operand field to the symbol in the label
field that precedes the directive. The syntax for the equate
directive are:

label .equ expression
label = expression

The label and operand fields are required. The label
must be unique; it cannot be defined anywhere else in
the program. The expression cannot include an undefined
symbol or one that is defined following the expression.
Forward references to symbols are not allowed for this
directive •

• even

The even directive increments the location counter to
force an even boundary. For example, if specified when the
location counter is odd, the location counter is incremented
by one so that the next instruction or data field begins on
an even boundary in memory .• globl label[,label •••] .xdef
label[,label •••] .xref label[,label •••]

These directives make the label(s) external. If the
labels are defined in the current assembly, this statement
makes them available to other routines during a load by L068.
If the labels are not defined in the current assembly, they
become undefined external references, which L068 links to
external values with the same label in other routines. If
you specify the -U option, the assembler makes all undefined
labels external. .ifeq expression .ifne expression .ifle
expression .iflt expression .ifge expression .ifgt
expression

These directives test an expression against zero for a
specified condition. If the expression is true, the code
following is assembled; if false, the code is ignored until
an end conditional directive (endc) is found. The directives
and the conditions they test are:

.ifeq

.ifne
equal to zero
~ot equal to zero

1-5

.ifle

.iflt

.ifge

.ifgt

.ifc 'string1',

GEM DOS PROGRAMMERS GUIDE

less than or equal to zero
less than zero
greater or equal to zero
greater than zero

'string2' .ifnc 'string1', 'string2'

The conditional string directive compares two strings.
The 'c' condition is true if the strings are exactly the
same. The 'nc' condition is true if they do not match •

• offset expression

The offset directive creates a dummy storage section by
defining a table of offsets with the define storage
directive (ds). The storage definitions are not passed to
the linker. The offset table begins at the address specified
in the expression. Symbols defined in the offset table are
internally maintained. No instructions or code-generating
directives, except the equate (equ) and register mask (reg)
directives, can be used in the table. The offset directive
is terminated by one of the following directives:

bss
data
end
section
text

.org expression

The absolute origin directive (org) sets the location
counter to the value of the expression. Subsequent
statements are assigned absolute memory locations with the
new value of the location counter. The expression cannot
contain any forward, undefined, or external references •

• page

The page directive causes a page break which forces text
to print on the top of the next page. It does not require an
operand or a label and it does not generate machine code.

The page directive allows you to set the page length for
a ~isting of code. If you use this directive and print the
source code by specifying the -P option in the AS68 command
line, pages break at predefined rather than random places.
The page directive does not appear on the printed program
listing •

• reg reglist

The register mask directive builds a register mask that
can be used by a movem instruction. (See Table 1-1.) One or
more registers can be listed in ascending order in the

1-6

(-

GEM DOS PROGRAMMERS GUIDE

format:

R?[-R[/R?[-R? ••] •••]]

Replace the R in the above format with a register
reference. Any of the following mnemonics are valid:

AO-A7
DO-D7
RO-R15

The following example illustrates a sample register
list.

A2-A4/A7/Dl/D3-D5

You can also use commas to separate registers as
follows:

Al,A2,D5,D7

.section #

The section directive defines a base segment. The
sections can be numbered from 0 to 15 inclusive. Section 14
always maps to data. Section 15 is bss. All other section
numbers denote text sections.

(.. • text

The text directive instructs AS68 to change the
assembler base segment to the text segment. Each assembly of
a program begins with the first word in the text segment.

1.5 SAMPLE COMMANDS INVOKING AS68

{a}as68 -u -1 test.s

This command assembles the source file TEST.S and
produces the object file TEST.O. Error messages appear on
the screen. Any undefined symbols are treated as global.

{a}as68 -p smpl.s > smpl.l

This command assembles the source file SMPL.S and
produces the object file SMPL.O. The program must run in the
first 64K of memory; that is, no address can be larger than
16 bits. Error messages and the listing are directed to the
file SMPL.L.

1.6 ASSEMBLY LANGUAGE DIFFERENCES

The syntax differences between the AS68 assembly
language and Motorola's assembly language are described in
the following list.

1-7

GEM DOS PROGRAMMERS GUIDE

* In AS68, all
preceded by a period

.equ or equ

.ds or ds

assembler directives are optionally
(.). For example,

* AS68 does not support, but accepts and ignores the
following Motorola directives:

comline
mask2
idnt
opt

* The Motorola .set directive is implemented as the equate
directive (equ).

* AS68 accepts upper- and lowercase characters. You can
specify instructions and directives in either case. However,
labels and variables are case-sensitive. For example, the
label START and Start are not equivalent.

* For AS68, all labels must terminate with a colon (:).
For example,

A: FOO:

However, if a label begins in column 1, it need not
terminate with a colon.

* For AS68, ASCII string
either single or double quotes.

'ABCO' "ac14"

constants can be enclosed in
For example,

* For AS68, registers can be referenced with the following
mnemonics:

rO-r15
RO-R15
dO-d7
00-07
aO-a7
AO-A7

Upper- and lowercase references are equivalent.
Registers RO-R7 are the same as 00-07 and R8-R15 are the same
as AO-A7.

* Use caution when manipulating the location counter
forward in AS68. An expression can move the counter forward
only. The unused space is filled with zeros in the text or
data segments.

1-8

(...•.

c:

GEM DOS PROGRAMMERS GUIDE

* For AS68, comment lines can
followed by an equals sign (* =),
spaces exist between the asterisk
follows:

begin with an asterisk
but only if one or more

and the equals sign as

* = This command loads Rl with zeros.
* = Branch to subroutine XYZ.

Be sure to
location counter
form:

include a space after the asterisk, as the
is manipulated with a statement of the

*=expr

* For AS68, the syntax for short form branches is bxx.b
rather than bxx.s

* The Motorola assembler supports a programming model in
which a program consists of a maximum of 16 separately
relocatable sections and an optional absolute section. The
AS68 distributed with GEMDOS does not support this model.
Instead, AS68 supports a model in which a program contains
three segments, text, data, and bss as described in Section
3, "Command File Format."

1.7 ASSEMBLY LANGUAGE EXTENSIONS

The following enhancements have been added to AS68 to
make the assembly language more efficient:

* When the instructions add, sub, and cmp are used with an
address register in the source or destination, they generate
adda, suba, and cmpa. When the clr instruction is used with
an address register (Ax),it generates sub Ax, Ax.

* add, and, cmp, eor, or, sub are allowed with immediate
first operands and generate addi, andi, cmpi, eori, ori, and
subi instructions if the second operand is not
register-direct.

* All branch instructions generate short relative branches
where possible, including forward references.

* Any shift instruction with
assumes a shift count of one.
equivalent to asl #l,rl.

no shift count specified
For example, asl rl is

* A jsr instruction is changed to a bsr instruction if the
resulting bsr instruction is shorter than the jsr
instruction.

* The .text directive causes the assembler
assembling instructions in the text segment.
directive causes the assembler to begin
initialized data in the data segment.

1-9

to begin
The • data
assembling

GEM DOS PROGRAMMERS GUIDE

* The .bss directive instructs the assembler to begin
defining storage in the bss. No instructions or constants
can be placed in the bss because the bss is for
uninitialized data only. However, the .ds directives can be
used to define storage locations, and the location counter
(*) can be incremented.

* The .globl directive in the form:

.globl label[,label] •..

makes the labels external. If they are otherwise
defined (by assignment or appearance as a label), they act
within the assembly exactly as if the .globl directive were
not given. However, when linking this program with other
programs, these symbols are available to other programs.
Conversely, if the given symbols are not defined within the
current assembly, the linker can combine the output of this
assembly with that of others which define the symbols.

* The common directive (comm) defines a common region,
which can be accessed by programs that are assembled
separately. The syntax for the common directive is:

.comm label, expression

The expression specifies the number of bytes allocated in
the common region. If several programs specify the same
label for a common region, the size of the region is
determined by the value of the largest expression.

The common directive assumes the label is an undefined
external symbol in the current assembly. However, the
linker, L068, is special-cased, so all external symbols,
which are not otherwise defined, and which have a
non-zero value, are defined to be in the bss, and enough
space is left after the symbol to hold expression bytes. All
symbolS which become defined in this way are located
before all the explicitly defined bss locations.

* The .even directive causes the location counter (*), if
positioned at an odd address, to be advanced by one byte so
the next statement is assembled at an even address.

* The instructions move, add, and sub, specified with an
immediate first operand and a data (D) register as the
destination, generate Quick instructions, where possible.

1.8 ERROR MESSAGES

Appendix D lists the error messages generated by AS68.

1-10

'~,,/'

GEM DOS PROGRAMMERS GUIDE

1.9 INSTRUCTION SET SUMMARY

This section contains two tables that describe the
assembler instruction set distributed with GEMDOS. Table 1-3
summarizes the assembler (AS68) instruction set. Table 1-4
lists variations on the instruction set listed in Table
1-3. For details on specific instructions, refer to
Motorola's 16-Bit Microprocessor User's Manual, third
edition, MC68000UM(AD3).

Instruction

abcd
add
and
asl
asr

bcc
bchg
bclr
bra
bset
bsr
btst

chk
clr
cmp

dbcc
divs
divu

ear
exg
ext
illegal

jmp
jsr
lea
link
lsl
lsr

move
movem
movep
muls
mulu

nbcd

Table 1-3. Instruction Set Summary

Description

Add Decimal with Extend
Add
Logical AND
Arithmetic Shift Left
Arithmetic Shift Right

Branch Conditionally
Bit Test and Change
Bit Test and Clear
Branch Always
Branch Test and Set
Branch to Subroutine
Bit Test

Check Register Against Bounds
Clear Operand
Compare

Test Condition, Decrement, and Branch
Signed Divide
Unsigned Divide

Exclusive OR
Exchange Registers
Sign Extend
Illegal Instruction

Jump
Jump to Subroutine
Load Effective Address
Link Stack
Logical Shift Left
Logical Shift Right

Move
Move Multiple Registers
Move Peripheral Data
Signed Multiply
Unsigned Multiply

Negate Decimal with Extend

1-11

neg
nop
no

or

pea

reset
rol
ror
roxl
roxr
rte
rtr
rts

sbcd
scc
stop
sub
swap

tas
trap
trapv
tst

unlk

GEM DOS PROGRAMMERS GUIDE

Negate
No Operation
One's Complement

Logical OR

Push Effective Address

Reset External Devices
Rotate Left without Extend
Rotate Right with9ut Extend
Rotate Left with Extend
Rotate Right with Extend
Return From Exception
Return and Restore
Return from Subroutine

Subtract Decimal with Extend
Set Conditional
stop
Subtract
Swap Data Register Halves

Test and Set Operand
Trap
Trap on Overflow
Test

Unlink

1-12

/ \

GEM DOS PROGRAMMERS GUIDE

(
Table 1-4. Variations of Instruction Types

Instruction Variation

add add Add
adda Add Address
addq Add Quick
addi Add Immediate
addx Add with Extend

and and Logical AND
andi AND Immediate
andi to ccr
andi to sr

cmp cmp Compare
cmpa Compare Address
cmpm Compare Memory
cmpi Compare Immediate

eor eor Exclusive OR
eori Exclusive OR Immediate
eori to ccr
eori to sr

move move Move
move a Move Address

(--
moveq Move Quick
move to ccr
move to sr
move from sr
move to usp

neg neg Negate
negx Negate with Extend

or or Logical OR
ori OR Immediate
ori to ccr
ori to sr OR Immediate to Status Register

sub sub Subtract
suba Subtract Address
subi Subtract Immediate
subq Subtract Quick
subx Subtract with Extend

('
1-13

(
GEM DOS PROGRAMMERS GUIDE

2.0 GEM DOS LINKERS

Two linkers are provided with GEM DOS: LINK68 and
L068. Both create relocatable command files in the format
required by the operating system.

Note that both LINK68 and L068 produce files in
CP/M-68K relocatable format. Use the RELMOD format
conversion utility to translate linker output files
from CP/M-68K format to the GEM DOS relocatable format.
RELMOD is described in Section 2.3.

2.1 LINK68

LINK68 is a linkage editor that combines object files
into a command file. LINK68 accepts object files produced
by other language processors, such as AS68 or the C compiler.
LINK68 produces an executable file in either contiguous
or noncontiguous command file format. Noncontiguous
command files are not supported by GEM DOS. See Section 3
for a description of the contiguous file format.

LINK68 resolves all references to external symbols
and concatenates the object files in the order specified.
The entry point of the resulting command file is the
first instruction in the first object file.

Note: You must use
command file even when a
unresolved references.

LINK68
single

to create an executable
object file contains no

If you
common area
all common

use the AS68 common directive to specify a
shared by separate modules, LINK68 resolves

areas with the same name to the same address in

2-1

GEM DOS PROGRAMMERS GUIDE

the bss segment. If more than one file
static storage with the same name, LINK68
largest size for allocation.

2.1.1 Invoking LINK68

specifies
uses the

To invoke LINK68, enter a command of the following form:

LINK68 [file
[,object-file-2, ••• object-file-n]

If
linker
system.

you invoke LINK68 without
lists the options, and

=] object-file-l

any command tail, the
returns to the operating

The first file specification is the name of the command
file you want to create, and object-file-l through
object-file-n are the object files to link. For example, the
following command creates the output file MATH:

{a}link68 math = sin, cos, tan

If you omit the filename to the left of the equal sign,
LINK68 creates the output file using the first filename in
the command line, and assigns the default filetype 68K. For
example, the following command creates SIN.68K:

{a}link68 sin, cos, tan

2.1.2 LINK68 Command-Line Options

When you invoke LINK68, you can specify command-line
options that control the link operation. There are two kinds
of options: global and local. Global options apply to the
entire link operation. Local options apply only to the
individual files being linked. You enclose global options in
square brackets immediately preceding the output filename (if
specified) in the command line. You enclose local options in
square brackets immediately following the filename to which
they apply.

You can use spaces between filenames to improve
readability in the command line, and you can put more than
one option in square brackets by separating them with
commas. LINK68 also allows you to abbreviate an option name
to its shortest unambiguous form. Table 2-1 lists the
LINK68 options and explains their use. Abbreviated forms
are in parentheses.

Note: GEM DOS requires that the linked file have the
magic number 601AH. LINK68 produces the output file with this
magic number only when you request a relocatable file
with contiguous text, data, and bss segments. Consequently,
to create a command file to run under GEM DOS, do not select
the ABSO~UTE, DATABASE[n], BSSBASE[n], or TEXTBASE[n]

2-2

GEM DOS PROGRAMMERS GUIDE

options when you invoke LINK68.

Table 2-1. LINK68 Command-line Options

Option

ABSOLUTE (AB)

Function

Tells
relocation
Note that
GEM DOS.

LINK68 to generate an absolute file with no
bits. The default is a relocatable program.

command files must be relocatable to run under

ALLMODS (AL)

Tells LINK68 to load all modules from a library, even if
they are not referenced. The default is to include only
those modules that are actually referenced.

BSSBASE[n] (B[n])

Sets the base address for the uninitialized data segment
(bss) in discontiguous programs. The n is a hexadecimal
value. The default value is the f;rst even word after the
data segment.

COMMAND (C)

Tells LINK68 that the following named file contains the
rest of the command line. LINK68 ignores the rest of the
main command line. Nested command files are not allowed.

The format of this option is:

COMMAND [filename]

where filename is the file containing the rest of
the command line.

DATABASE[n] (D[n])

Specifies the base address of the data segment
in discontiguous programs. The n is a hexadecimal value.
The default is the first even word after the text segment.

IGNORE (IG)

Tells LINK68 to ignore l6-bit address overflow.

INCLUDE (IN)

Tells LINK68 to load an unreferenced module from a
library. The format for this option is the following,
where module-name is the module you want to load:

2-3

GEM DOS PROGRAMMERS GUIDE

filename [INCLUDE [module-name]]

LOCALS (L)

Tells LINK68 to put local symbols in the symbol table.
The default is no local symbols. LOCALS only applies from
the point in the command line that it appears.

The NOLOCALS option turns this option off. Use LOCALS
and NOLOCALS in combination to put local symbols from
specific files in the symbol table. LINK68 always ignores
local symbols starting with L.

NOLOCALS (NO)

See LOCALS.

SYMBOLS (S)

Tells LINK68 to put the symbol table in the output
file. The default is no symbol table in the output file.

TEMPFILES[d:] (TEM[d:])

Tells LINK68 to use drive d for temporary files.
The default is the currently logged-in drive. If you
use TEMPFILES, it must precede any input files on the
command line.

TEXTBASE[n] (TEX[n])

Specifies the base address for the text segment. The n
is a hexadecimal value. The default is OH.

UNDEFINED (U)

Tells LINK68 to ignore the presence of undefined symbols
in the input files. LINK68 lists the undefined symbols,
then continues processing. The default action is to list
any undefined symbols, then stop processing.

The following are examples of LINK68 command
lines. Addresses are in hexadecimal. The first command line
example links the files FOOMAIN and FOOLIB into a
command file named FOOBAZ. It also tells LINK68 to include
the symbol table in FOOBAZ, and place the temporary files on
drive B.

{a}link68 [sym, tem[b:]] foobaz = foomain, foolib

The next
line from the
are not needed.

example tells LINK68 to read the command
file LINKIT.INP. Note that closing brackets

{a}link68 [com[linkit.inp

2-4

GEM DOS PROGRAMMERS GUIDE

The file
commands:

LINKIT.INP might contain the following

{a}link68 [ab, tex[500], d[2aOO], b[3000]]
screen = scrnsl [1], iolib[al]

This command creates the file SCREEN from the files
SCRNSI and IOLIB. The command tells LINK68 to create SCREEN
as an absolute file with the text segment starting at
500H, the data segment starting at 2AOOH, and the
initialized data segment starting at 3000H. It also
tells LINK68 to include local symbols from SCRNSI and all
the modules in IOLIB.

2.1.3 REDIRECTING DIAGNOSTIC OUTPUT

Normally, LINK68 sends all diagnostic output to the
console. However, you can redirect this output by using the
> character in the command line. For example, the following
command creates MYFILE.68K on drive A, using drive B for the
temporary files, and sends the diagnostics output to the
file LNKMSGS.TXT on drive 0:

{a}link68 [tem[b:] myfile.68k = moda, modb
>d:lnkmsgs.txt

2.2 L068

The L068 linker combines AS68 assembled (object)
programs to produce a relocatable command file. All
external references are reSOlved. The linker must be
used to create executable programs, even when a single
object program contains no unresolved references. The
argument routines are concatenated in the order specified.
The entry point of the output is the first instruction of the
first routine.

Note: GEM DOS requires that the linked file have the
magic number 601AH. L068 produces the output file with
this magic number only when you request a relocatable file
with contiguous text, data, and bss segments.
Consequently, to create a command file to run under GEM DOS,
do not select the -T, -Z, -0, -B, and -S options and select
the -R option when you invoke L068.

Appendix 0 lists the error messages that L068 displays.

2.2.1 Invoking L068

Invoke L068 by entering a command
following form. Table 2-2 describes the options.

L068 [-F pathname] [-R] [-S] [-I] [-Uname]
[-0 filename] [-X] [-Zaddress]

2-5

of the

GEM DOS PROGRAMMERS GUIDE

[-Daddress] [-Baddress]
object filename [object filename]
[>message filename]

Table 2-2. L068 Options

Option Meaning

-F pathname

Specifies the path name to the directory in which
temporary files are created.

-R

Preserves the relocation bits so the resulting
executable program is relocatable.

-S

Strips output (if specified); the output is stripped of
the symbol table and relocation bits.

-I

Does not generate 16-bit address overflow messages.
When you assemble a program without the AS68 -L option,
the linker might generate address overflow messages if
the program contains addresses longer than 16 bits.

-Uname

name
other
only
other
from
calls

Forces linking of a library module that resolves the
parameter, even if the name is not referred to by any

module being linked. Normally, library modules are
linked when they are needed to resolve references in
modules. You can use this option to create a program

a library if the module resolving the name parameter
other modules in the library.

-0 filename

Gives the object file produced by L068 the filename
that you specify following the -0 option. The -0 option
and filename are separated by one or more spaces. If you
do not specify a filename, the object file has the name
C.OUT.

-x
Includes all local symbols in the symbol table except

those that begin with the letter L. If not specified, L068
puts only global symbols in the symbol table. This
option allows you to discard compiler internally generated
labels that begin with the letter L while retaining symbols

2-6

/' \

(GEM DOS PROGRAMMERS GUIDE

local to routines.

-Taddress*
-Zaddress*

The -T and -Z options are equivalent. The
hexadecimal address given is defined by L068 as the
beginning address for the text segment. This address
defaults to zero, or it can be specified as any even
hexadecimal number between 0 and FFFFFFFF. This option is
useful for putting programs in ROM. Hexadecimal
characters can be in uppercase or lowercase.

-Daddress*

The hexadecimal address given is defined by L068 as the
beginning address for the data segment. This address
defaults to the next byte after the end of the text
segment, or it can be specified as any even hexadecimal
number between 0 and FFFFFFFF. This option is especially
useful for for putting programs in ROM. Hexadecimal
address characters can be in uppercase or lowercase.

-Baddress*

The hexadecimal address given is defined by L068 as
the beginning address for the bss. This address defaults
to the next byte after the end of the data segment, or it
can be specified as any even hexadecimal number between 0
and FFFFFFFF.

object filename [object filename]

The name of one or more
the assembler AS68. These are
L068 links.

>message filename

object files produced by
the object files that

If specified, error messages produced by L068 are
redirected to the file that you specify immediately after
the greater-than sign (». If you do not specify a
filename, error messages are written to the standard
default output device, which typically is your console
terminal.

2.2.2 Sample Commands Invoking L068

{a}1068 -s -0 test.68k test.o

This
TEST.68K
bits.

command links
and strips out

assembled file TEST.O into file
the symbol table and relocation

{a}1068 -t4000 -d8000 -bcOOO a.o b.o c.o

2-7

GEM DOS PROGRAMMERS GUIDE

This command links assembled files A.O, B.O, and c.o to
the default output file C.OUT. The text segment starts
at location 4000H; the data segment starts at location 8000H;
and the bss starts at location COOOH.

{a}1068 -i -0 test.68k test.o testl.o > error

This command links assembled files TEST.O and TEST1.O
to file TEST. 68K. -Any 16-bit address overflow errors are
ignored; error messages are directed to the file ERROR.

2.3 RELMOD FORMAT CONVERSION UTILITY

LINK68 and L068 produce files in CP/M-68K relocatable
format. Use the RELMOD command to translate linker
output file from CP/M-68K format to GEM DOS relocatable
format.

The RELMOD command line is in the following form:

RELMOD inputfile outputfile

where inputfile is the CP/M-68K format file produced
by the linker and output file is the name of the file
translated to GEM DOS format.

RELMOD can also
files back to CP/M-68K.
GEM DOS file as the
the output file.

be used to translate GEM DOS format
This is done by simply specifying the
input file and the CP/M-68K file as

2-8

(--~

c:

GEM DOS PROGRAMMERS GUIDE

3. ARCHIVE UTILITY

3.1 INTRODUCTION

The Archive utility, AR68, creates a library or
replaces, adds, deletes, lists, or extracts object modules in
an existing library. AR68 can be used on the C Run-time
Library distributed with GEM DOS and documented in the GEM
DOS Supplement to the C Language Programmer's Guide for
CP/M-68K.

3.2 AR68 SYNTAX

To invoke AR68, specify the components of the
following command line. Optional components are enclosed in
square brackets ([]).

AR68 DRTWX[AV][F pathname] [OPMOD] ARCHIVE
OBMOD1[OBMOD2 •.•][>filespec]

You can specify multiple object modules in a command
line provided the command line does not exceed 127 bytes.
The delimiter character between components consists of one or
more spaces.

Table 7-1 lists and describes the components of the AR68
command line.

Table 7-1. AR68 Command Line Components

Component Meaning

AR68

Invokes the Archive utility. However, if you specify

3-1

GEM DOS PROGRAMMERS GUIDE

only the AR68 command, AR68 returns the following command
line syntax and system prompt.

{a}ar68

usage: AR68 DRTWX[AV][F pathname] [OPMOD] ARCHIVE
OBMODl [OBMOD2 •••][>filespec]

{a}

DRTWX

Indicates you must specify one of these letters as an
AR68 command. Each of these one-letter commands
and its options are described in Section 3.4.

AV

Indicates you can specify one or both of these
one-letter options. These options are described with the
commands in Section 3.4.

F pathname

Specifies the path to the directory in which the
temporary file created by AR68 resides. If no path name
is specified, the current default directory is used. AR68
creates a temporary file called AR68.TMP that AR68 uses as a
scratch pad area.

OPMOD

Indicates an object module within the library that
you specify. The OPMOD parameter indicates the position
in which additional object modules reside when you
incorporate modules in the library and specify the A option.

ARCHIVE File specification of the library.

OBMODl [OBMOD2 •••]

Indicates one or more object modules in a library that
AR68 deletes, adds, replaces, or extracts.

>filespec

Redirects the output to
specify, rather than sending
output device, which is usually
You can redirect the output
described in Section 3.4.

3.3 AR68 OPERATION

the file specification you
the output to the standard

the console device (CONSOLE).
for any of the AR68 commands

AR68 sequentially parses the command line once. AR68

3-2

GEM DOS PROGRAMMERS GUIDE

searches for, inserts, replaces, or deletes object modules in
the library in the sequence in which you specify them in the
command line. Section 3.4 describes each of the commands
AR68 supports.

When AR68 processes a command, it creates a temporary
file called AR68.TMP, which it uses as a scratch pad.
After the operation is complete AR68 erases AR68.TMP.
However, AR68.TMP is not always erased if an error
occurs. If this occurs, erase AR68.TMP with the ERA
command and refer to Appendix D for error messages output by
AR68.

3.4 AR68 COMMANDS AND OPTIONS

This section describes AR68 commands and their
options. Examples illustrate the effect and interaction
between each command and the options it supports.

3.4.1 The D Command

The D command deletes from the library one or more
object modules specified in the command. The ~command
supports the following option:

v
Lists the modules in the library and indicates

which modules are retained and deleted by the D command.
The V option precedes modules retained in the library
with the lowercase letter c and modules deleted from the
library with the lowercase letter d as follOWS:

{a}ar68 dv myrah.arc orc.o

c red.o
c blue.o
d orc.o
c white.o

{a}

The
library
in the
retained

D command
MYRAH. ARC. In
library, the

and deleted.

3.4.2 The R Command

deletes the module ORC.O from the
addition to listing the modules
V option indicates which modules are

The R command creates a library when the one specified
in the cO~l~nd line does not exist, or replaces or adds
object modules to an existing library. You must specify one
or more object modules.

You
library

can replace more than one object module in the
by specifying the module names in the command

3-3

GEM DOS PROGRAMMERS GUIDE

line. However, when the library contains two or more modules
with the same name, AR68 replaces only the first module it
finds that matches the one specified in the command line.
AR68 replaces modules already in the library only if you
specify their names prior to the names of new modules to
be added to the library. For example, if you specify the
name of a module you want replaced after the name of a
module you are adding to the library, AR68 adds both
modules to the end of the library.

By default, the R command adds new modules to the end of
the library. The R command adds an object module to a
library if:

*
*

The object module does not already exist in the library.

You specify the A option in the command line.

* The name of the module follows the name of a module
that does not already exist in the library.

The A option indicates where AR68 adds modules to the
library. You specify the relative position by including the
OPMOD parameter with the A option.

The R command also supports the V option, which lists
the modules in the library and indicates the result of the
operation performed on the library. Both the A and V options
are described below.

A

The A option adds one or more object modules following
the module specified in the command line:

{a}ar68 rav sdav.o myrah.arc work.o mail.o
c much.o
c sdav.o
a work.o
a mail.o
c less.o

The RAV
MAIL.O after
The V option,
the library.
letter a and
letter c.

V

command adds the object modules WORK.O and
the module SDAV.O in the library MYRAH.ARC.

described below, lists all the modules in
New modules are preceded by the lowercase

existing modules are preceded by the lowercase

The V option lists the object modules that the R
command replaces or adds.

{a}ar68 rv jnnk.man nail.o wrench.o

3-4

/

/'

~89

(-'
c saw.o
c ham.o
r nail.o
c screw.o
a wrench.o

{a}

GEM DOS PROGRAMMERS GUIDE

The R command replaces the object module NAIL.O and
adds the module WRENCH.O to the library JNNK.MAN. The V
option lists object modules in the library and indicates
which modules are replaced or added. Each object module
that is replaced is preceded with the lowercase letter rand
each one that is added is preceded with the lowercase letter
a.

3.4.3 The T Command

The T command requests that AR68 print a table of
contents or a list of specified modules in the library. The
T command prints a table of contents of all modules in the
library only when you do not specify names of object modules
in the command line. It supports the following option.

v
The V option displays the size of each file in the table

of contents as shown in the following example.

{a}ar68 tv wine. bad
rw-rw-rw- % 6818 rose.o
rw-rw-rw- % 2348 white.o
rw-rw-rw- % 396 red.o

{a}

The T command prints a table of contents in the
library WINE.BAD. In addition to listing the modules in
the library, the V option requests the size of each
module. The character string rw-rw-rw- % that precedes the
module size is meaningless for GEM DOS. However, if the
file is transferred to a UNIX ••• system, the character
string denotes the file protection and file owner. The
size specified by the decimal number that precedes the
object module name indicates the number of bytes in the
module.

3.4.4 The W Command

The W command writes a copy of an object module in
the library to the >filespec parameter specified in the
command line. This command allows you to extract a copy of
a module from a library and rename the copy when you write it
to another disk, as shown below. For this command, the
>filespec parameter is required.

3-5

GEM DOS PROGRAMMERS GUIDE

{a}ar68 w go. arc now.o > b:\root\newd\file.o

The W command writes a copy of the object module
NOW.O from the library GO.ARC to the file FILE.O in the NEWD
subdirectory on drive B.

3.4.5 The X Command

The X command extracts a copy of one or more object
modules from a library and writes them to the default disk.
If no object modules are specified in the command line, the X
command extracts a copy of each module in the library.
The X command supports the following option.

v

The V option lists only those modules the X
command extracts from the library. It precedes each
extracted module with the lowercase letter x as follows:

{a}ar68 xv jnnk.man saw.o ham.o screw.o
x saw.o
x ham.o
x screw.o

3.5 AR68 ERRORS

When AR68 incurs an error during an operation,
the operation is not completed. The original library is not
modified if the operation would have modified the
library. Thus, no modules in the library are deleted,
replaced, added, or extracted. Refer to Appendix D for
error messages output by AR68.

When you specify the >filespec parameter in the
command line to redirect the output and one or more errors
occur, the error messages are sent to the output file.
Thus, you cannot detect the errors without displaying or
printing the file to which the output was sent. If the
contents of the output file is an object file (see the W
command), you must use the DUMP utility described in Section
8 to read any error messages.

3-6

(

c

GEM DOS PROGRAMMERS GUIDE

4. MORE PROGRAMMING UTILITIES

4.1 INTRODUCTION

This section describes the DUMP, SIZE68, SENDC68, and
XREF programming utilities. DUMP displays the contents of
files in hexadecimal and ASCII notation. SIZE68 displays the
total size of a memory image command file and the size of
each of its program segments. XREF produces a cross
reference symbol table for GEM DOS object files. SENDC68
creates a file of Motorola S-records from a command file.
(Refer to Appendix B for a detailed description of the
S-record format.)

4.2 DUMP UTILITY

The DUMP utility (DUMP) displays the contents of a GEM
DOS file in both hexadecimal and ASCII notation. You
can use DUMP to display any GEM DOS file regardless of the
format of its contents (binary data, ASCII text, an
executable file).

4.2.1 Invoking DUMP

Invoke DUMP by entering a command with the following
input components in the following format:

DUMP [-sxxxx] filenamel [>filename2]

Table 4-1 lists the DUMP command line components and
their meanings.

4-1

GEM DOS PROGRAMMERS GUIDE

Table 4-1. DUMP Command Line Components

Component Meaning

-sxxxx

xxxx is an optional offset (in hexadecimal) into the
file. If specified, DUMP starts dumping the contents of the
file from the byte-offset xxxx and continues until it
displays the contents of the entire file. By default, DUMP
starts dumping the contents of the file from the beginning of
the file until it dumps the contents of the entire file.

filenamel

Name of the file you want to dump.

>filename2

The greater than sign (» followed by a filename or
logical redirects the output of DUMP. You can specify any
valid GEM DOS specification, or one of the logical device
names, CON: (console) or LST: (list device). If you do not
specify this optional parameter, DUMP sends its output to
the console.

4.2.2 DUMP Output

DUMP sends its output to the console (or to a file or
device, if specified), 8 words per line, in the following
format:

rrrr 00 (ffffff): hhhh hhhh hhhh *aaaaaaaaaaaaaaaa*

The components of a DUMP command line are as follows:

Component Meaning

rrrr

Record number (GEM DOS records are 128 bytes) of
the current line of the display.

00

Offset
DOS record.

ffffff

(in hex bytes) from the beginning of the GEM

Offset (in hex bytes) from the beginning of the file.

hhhh

Contents of the file displayed in hexadecimal.

4-2

GEM DOS PROGRAMMERS GUIDE

aaaaaaaa

Contents of the file displayed as ASCII characters. If
any character is not representable in ASCII, it is displayed
as a period (.).

4.2.3 DUMP Examples

In the following example, DUMP is invoked to display
the contents of a command file that contains data in both
binary and ASCII form.

{a}dump dump.68k

00 (000000): 60la 0000
10 (000010): 0000 0000
20 (000020): 5275 6e74
30 (000030): 7420 3139
40 (000040): 6c20 5265
50 (000050): 3320 206f

•••• (and so on) •

4.3 SIZE68 UTILITY

0000 *· .••• 4 ••••••. - •• *
4320 * •.•••••.•••• ·4C *
6768 *RuntimeCopyright*
7461 *t 1982 by Digita*
2c30 *1 Research V01.0*
OOlc *3 o .• "h .• &ISh •. *

The SIZE68 utility (SIZE68) indicates if the program
segments within one or more command files are contiguous or
non-contiguous, displays the size of each program segment
and the symbol table, and reports if the command files are
relocatable or non-relocatable. SIZE68 displays both
decimal and hexadecimal values for the sizes of the
program segments and the symbol table. GEM DOS command files
usually have a filetype of .PRG or .REL. The total size of
a command file's segments returned by SIZE68 and the size of
a command file returned by the DIR command are not equal.
The file size returned by SIZE68 includes the size of
the text, data, and bss program segments and the size of the
symbol table but does not include the size of the header
and and relocation bits. For more details on the DIR
command, refer to the GEM DOS User's Guide.

4.3.1 Invoking SIZE68

Invoke SIZE68 by entering a command line with the
following format:

SIZE68 filename [filename2 filename3, •••] [>outfile
]

The SIZE68 command line components have the following
meaning:

Component Meaning

4-3

GEM DOS PROGRAMMERS GUIDE

filename

File specification of a file whose size you want
to determine.

filename2 filename3 .•••

One or more additional file specifications of files
whose sizes you want to determine. SIZE68 can process
multiple files, provided the command line does not exceed 128
bytes. Note that SIZE68 also accepts wildcard file
specifications.

>outfile

Specifies the file specification to which SIZE68 sends
its output. If you do not specify an output file
specification, SIZE68 sends the output to the console. For
the output file specification, you can specify a valid GEM
DOS filename, or one of the logical device names,
CON:(console) or LST: (list device).

4.3.2 SIZE68 Examples and Output

This section contains two
SIZE68 command lines and output.

examples that show

1. The following SIZE68
information about the
file.

command
program

line example returns
segments in one command

{a}SIZE68 SIZE68.PRG
SIZE68.PRG:

Contiguous
.text length
.data length
.bss length
Symbol table length
Start of .text
File is relocatable.

=
=
=
=
=

9312
1178
9140

o
o

2460
49A

23B4
o
o

SIZE68.PRG contains a 9312-byte (decimal) text segment,
a 1179-byte (decimal) data segment, and a 9140-byte
(decimal) bss; the segments are contiguous and SIZE68
is relocatable. Hexadecimal notations for the decimal
values are displayed in the last column of SIZE68 output.

2. The following SIZE68 command line uses a wildcard file
specfication to return information on an object file, a
command file, and a text file.

{a}SIZE68 FI*.*
FIND.O:

Contiguous
.text length

4-4

= 1072 430

FIND.PRG:

FILE.MSG:

GEM DOS PROGRAMMERS GUIDE

.data length

.bss length
Symbol table length
Start of .text
File is relocatable.

Contiguous
.text length
.data length
.bss length
Symbol table length
Start of .text
File is relocatable.

Not a program file.

=
=
=
=

=
=
=
=
=

188
o

1708
o

9888
1060
9396

0
0

BC
o

6AC
o

26AO
424

24B4
o
o

Notice that when you specify a file that is not
a command file (FILE.MSG, an ASCII file, for example), SIZE68
displays:

Not a program file.

When you specify an absolute program file whose segments
are non-contiguous in a SIZE68 command line, SIZE68
includes the following messages in its output:

Non-contiguous

No relocation information in file.

4.4 SENDC68 UTILITY

SENDC68 creates a file with Motorola S-record format
from an absolute command file. S-records are a way to
represent an absolute program in ASCII character form. For a
detailed description of the S-record format, refer to
Appendix E.

4.4.1 Invoking SENDC68

Invoke SENDC68 by entering a command line in the
following format:

SENDC68 [-] inputfi1e [outputfile]

The
below.

Component

SENDC68 command line components are described

Meaning

A hyphen is optional. If you specify a hyphen,
SENDC68 does not create any S-records for the bss segment.

4-5

GEM DOS PROGRAMMERS GUIDE

The result is a smaller S-record file. If you do not specify
a hyphen, SENDC68 fills the bss segment with zeros.

inputfile

File that SENDC68 converts to the S-record format.
The command file must be an absolute file in the
format produced by LINK68, L068, or RELOC.

outputfile

File that SENDC68 sends the new S-record file to. If
you do not specify an output file, SENDC68 sends the
S-records to the console screen.

4.4.2 SENDC68 Example

The following command line example illustrates how to
convert an absolute command file into a file in the
Motorola S-record format. In this example, SENDC68 creates
an S-record file named PROG.SR from an absolute command
file named PROG.68K.

{a}>sendc68 - prog.68k prog.sr

Note that the hyphen directs SENDC68 not to create
S-records for the bss segment.

4.5 XREF UTILITY

The XREF utility generates a cross-reference table of
symbols for GEM DOS object files. XREF output lists the
symbols, the object file in which they are defined, and the
object files in which they are accessed. XREF
provides a separate listing for undefined symbols and the
object files that call them. XREF accepts wildcards in the
object file specifications.

4.5.1 Invoking XREF

To use XREF, enter a command of the following format:

XREF objectfilel [objectfile2 ••. objectfilelast]

Where "objectfilel" is the name of the object file for
whose symbols you want a cross-referenced table.
Multiple object file names may be specified.

4.5.2 XREF Examples

This section contains two example XREF command lines and
shows the format of XREF output.

1. The fOllowing XREF command generates a
cross-referenced table of symbols for the file

4-6

GEM DOS PROGRAMMERS GUIDE

GSXVAR.O.

{a}XREF GSXVAR.O

Block Data:
Symbol

cur ms s
disab en
draw fla

Defined In. Accessed In

GSXVAR
GSXVAR
GSXVAR

GSXVAR
GSXVAR

MONOBJ
MONOBJ

MONOUT
MONOUT

Undefined External References:
Symbol Defined In Accessed In

ABLINE ******** MONOUT CHUP

2. The example XREF command shown below uses a wildcard file
specification to generate a cross-referenced table of
symbols for each object file in the current directory.

{a}XREF *.0

Functions:
Symbol

arb cor
arrow

_Calc_pt

Defined In Accessed In

MONOBJ
MONOUT
MONOUT

MONOUT

4-7

(

GEM DOS PROGRAMMERS GUIDE

5. SID68 DEBUGGER

SID68 allows you to test and debug programs
interactively in the GEM DOS environment. The
presentation of information in this section assumes you are
familiar with the MC68000 microprocessor, the assembler
(AS68), and the GEM DOS operating system.

(_ 5.1 INVOKING SID68

Invoke SID68 by entering one of the following commands:

SID
SID filename

The first command loads and executes SID68. After
it is loaded, SID68 displays its sign-on message and the
hyphen (-) prompt character to show it is ready to accept
commands.

The second command invokes SID68 and loads the file
specified by filename. If the filetype is not specified, it
defaults to the 68K filetype. The second form of the
command is equivalent to the following sequence in which the
first command is issued and then, at the SID68 prompt, the E
command is issued to load a file for execution under SID68:

{a}SID

SID68 Copyright 1982, Digital Research

-Efilename

5.1.1 SID68 Command Conventions

5-1

GEM DOS PROGRAMMERS GUIDE

When SID68 is ready to accept a command, it prompts you
with a hyphen (-). In response, you can type a command line
or a Ctrl-C (~C) to end the debugging session. A
command line can have as many as 64 characters, and must be
termina,ted wi th a Return. When entering the command, use
standard GEM DOS line-editing functions to correct typing
errors. SID68 does not process the command line until you
enter a Return.

Table 9-1 summarizes SID68 commands. They are defined
individually later in this section.

Table 9-1. SID68 Command Summary

Command Action

D Display memory in hexadecimal and ASCII
E Load program for execution.
F Fill memory block with a constant.
G Begin execution with optional breakpoints.
H Use hexadecimal arithmetic.
I Set up file control block and command tail.
L List memory using MC68000 mnemonics.
M Move memory block.
P Set and remove permanent breakpOints.
R Read disk file into memory.
S Set memory to new values.
T Trace program execution.
U Untrace program monitoring.
V Show memory layout of disk file read.
W Write contents of memory block to disk.
X Examine and modify CPU state.

The command character can be followed by one or more
arguments, which can be hexadecimal values, filenames, or
other information, depending on the command. Some
commands can operate on byte, word, or longword data. The
letters W for word or L for longword must be appended to
the command character for commands that operate on
multiple data lengths. Arguments are separated from each
other by commas or spaces.

See Section 5.2 for more details on each command.

5.1.2 Address Specifications

Most SID68 commands require one or more addresses
as operands. All addresses are entered as hexadecimal
numbers of up· to eight hexadecimal digits (32 bits).

5.1.3 Symbol References

SID68 allows
addresses. You
other disassembled

you to reference symbols in place of
can display the symbols, along with the
instructions in your executable file·, by

5-2

(

GEM DOS PROGRAMMERS GUIDE

using the L command described in
entering a command that specifies
symbOl name with a period as follows:

command. symbol

Section 5.2.7. When
a symbol, precede the

For example, to direct the GO command to execute from
the current Program Counter (PC) to the symbol QUIT in the
object file, enter:

g, • quit

The C compiler puts an underscore () at the beginning
of external symbols. For example, to specify the GO command
with a breakpoint at the C function BLIVOT, enter:

g, ._blivot

5.1.4 Stopping SID68

stop SID68 by typing a ·C in response to the hyphen
prompt. This returns control to the CCP.

5.1.5 SID68 Operation with Interrupts

SID68 operates with interrupts enabled or disabled,
and preserves the interrupt state of the program being
executed under SID68. When SID68 has control of the CPU,
either when it is initially invoked or when it regains
control from the program being tested, the condition of the
interrupt mask is the same as it was when SID68 was invoked,
except for a few critical regions where interrupts are
disabled. While the program being tested has control of the
CPU, the user's CPU state, which can be displayed with the X
command, determines the state of the interrupt mask.

Note that SID68
Instruction exceptions.
test should not use these.

5.2 SID68 COMMANDS

uses the Trace and Illegal
Therefore, programs debugged under

This section defines SID68 commands and their arguments.
SID68 commands allow you to control program execution and
display and modify system memory and the CPU state.

5.2.1 The D (Display) Command

The D command displays the contents of memory as 8-bit,
16-bit, or 32-bit hexadecimal values and in ASCII. The
forms are

D Ds Ds,f DW DWs DWs,f DL DLs DLs,f

where s is the starting address, and f is the last

5-3

GEM DOS PROGRAMMERS GUIDE

address that SI068 displays.

Memory is displayed on one or more lines. Each line
shows the values of up to 16 memory locations. For the
first three forms, the display line appears as follows:

aaaaaaaa bb bb ••• bb cc ••• cc

where
displayed.
locations
contents
characters

aaaaaaaa is the address of the data
The bb's represent the contents of the

in hexadecimal, and the cc's represent
of memory in ASCII. Any non-graphic
are represented by periods.

being
memory

the
ASCII

In response to the Os form of the 0 command, shown
above, SI068 displays 12 lines that start from the current
address.

Form
and f.
Os, and
l6-bit or

Os,f displays the memory block between locations s
Forms OW, OWs, and OWs,f are identical to 0,

Os,f except the contents of memory are displayed as
word values, as shown below:

aaaaaaaa wwww wwww wwww cccc

Forms OL, OLs, and OLs,f are identical to
Os,f except the contents of memory are
32-bit or longword values, as shown belOW:

cccc

0, Os, and
displayed as

aaaaaaaa 11111111 11111111 11111111 cccccccc •••

During a display, you can abort the 0 command by typing
any character at the console.

5.2.2 The E (Load for Execution) Command

The E command loads a file in memory so that a
subsequent G, T, or U command can begin program execution.
The syntax for the E command is

Efilename

where filename is the name of the file to be loaded.
If no filetype is specified, the filetype 68K is assumed.

An
command.
execution.

E command
Thus, you

reuses memory used by any previous E
can load only one file at a time for

When the load is complete, SI068 displays the starting
and ending addresses of each segment in the file. Use the V
command to display this information at a later time.

If the
successfully

file does not exist or cannot be
loaded in the available memory, SI068

5-4

('

GEM DOS PROGRAMMERS GUIDE

displays an error message.
messages returned by SID68.

See Appendix A for error

5.2.3 The F (Fill) Command

The
word, or

F command fills an area of memory
longword constant. The forms are

Fs,f,b FWs,f,w FLs,f,l

with a byte,

where s is the starting address of the block to be
filled, and f is the address of the final byte of the block
within the segment specified in s.

In response to the first form, SID68 stores the 8-bit
value b in locations s through f. In the second form, the
l6-bit value w is stored in locations s through f in standard
form: the high 8 bits are first, followed by the low 8
bits. In the third form, the 32-bit value 1 is stored in
locations s through f with the Most Significant Byte first.

If s is greater than f, SID68 responds with a question
mark. Also, if b is greater than FF hexadecimal (255),
w greater than FFFF hexadecimal (65,535), or 1 greater
than FFFFFFFF hexadecimal (4,294,967,295), SID68 responds
with a question mark. SID68 displays an error message
if it cannot read back the value stored in memory
successfully. This error indicates a faulty or
non-existent RAM location.

5.2.4 The G (Go) Command

The G command transfers
tested, and optionally sets
forms are as follows:

control to the program being
one to ten breakpoints. The

G G,bl, ••• blO Gs Gs,bl, ••• blO

where s is the address at which the program begins
executing and bl through blO are addresses of breakpoints.

In the first two forms, no starting address is
specified. SID68 starts executing the program at the address
specified by the Program Counter (PC). The first form
transfers control to the program without setting any
breakpoints. The second form sets breakpoints before
passing control to the program. The last two forms are
analogous to the first two except that the PC is first set to
s.

Once control has been transferred to the program under
test, it executes in real-time until it encounters a
breakpoint. At this point, SID68 regains control, clears all
breakpoints, and displays the CPU state in the same form
as the X command. When a breakpoint returns control to

5-5

GEM DOS PROGRAMMERS GUIDE

SID68, the instruction at the breakpoint address has not yet
been executed. To set a breakpoint at the same address, you
must specify a T or U command first.

5.2.5 The H (Hexadecimal Math) Command

The H command computes the sum and difference of two
32-bit values. The form is

Ha,b

where a and b are the values
difference SID68 computes. SID68
(ssssssss) and the difference (dddddddd)
as follows:

ssssssss dddddddd

whose sum and
displays the sum

truncated to 16 bits

5.2.6 The I (Input Command Tail) Command

The I command prepares a file control block (FCB) and
command tail buffer in the base page of the last file
loaded with the E command. The form is as follows:

I commandtai1

where commandtail is the character string which usually
contains one or more filenames. The first filename is
passed into the default File Control Block at OOSCH. The
optional second filename, if specified, is passed into the
second default File Control Block beginning at 0038H. The
characters in the command tail are also copied to the default
command buffer at 0080H. The length of the command tail
is stored at 0080H, followed by the character string
terminated with a binary zero.

If a file has been loaded with the E command, SID68
copies the File Control Block and command buffer from the
base page of SID68 to the base page of the program loaded.

5.2.7 The L (List) Command

The L command lists the contents of memory in assembly
language. The forms are as follows:

L Ls Ls,f

where s is the starting address, and f is the last
address in the list.

The first form lists 12 lines of disassembled machine
code from the current address. The second form sets the list
address to s and then lists 12 lines of code. The last
form lists disassembled code from s through f. In all three
cases, the list address is set to the next unlisted, location

5-6

(

GEM DOS PROGRAMMERS GUIDE

in preparation for a subsequent L command. When SID68
regains control from a program being tested (see G, T, and U
commands), the list address is set to the address in the
Program Counter (PC).

Long displays can be aborted by pressing any key
during the list process. Or, enter Ctrl-S (4S) to halt the
display temporarily. A Ctrl-Q (4Q) restarts the display
after AS halts it.

The syntax of the assembly language statements produced
by the L command is described in the Motorola l6-Bit
Microprocessor User's Manual, third edition,
MC68000UM(AD3). Section 5.2.17 describes some minor
differences between the assembly language statements produced
by the L command and standard Motorola 68000 assembly
language.

5.2.8 The M (Move) Command

The M command moves a block of data values from
one area of memory to another. The form is as follows:

Ms,f,d

where s is the starting address of the block to be
moved, f is the address of the final byte of the block
to be moved, and d is the address of the first byte of the
area to receive the data. Note that if d is between sand
f, part of the block being moved will be overwritten
before it is moved, because data is transferred starting from
location s.

5.2.9 The P (Pass Points) Command

The P command sets, clears, and displays pass points.
The forms are as follows:

Pa,n Pa -P

A pass point is a permanent breakpoint that remains
in effect until you expl~citly remove it, as opposed to
breakpoints set with the G command that must be reentered
with each G command. Pass points have associated pass counts
ranging from 1 to OFFFFH. The pass count indicates how many
times the instruction at the pass point executes before
the control returns to the console. SID68 can set up to 16
pass points at a time.

An important distinction between breakpoints and pass
points is that when execution stops at a breakpoint, the
instruction at the breakpoint has not been executed. When
execution stops due to a pass point whose pass count has
reached 1, the instruction at the pass point has been
executed. This makes it simple to proceed from a pass point

5-7

GEM DOS PROGRAMMERS GUIDE

with a
point.

G command without encountering the same pass

Forms Pa,n and Pa set pass points. Form Pa,n sets a
pass point at address a (pass point address) with a pass
count of n (from 1 to OFFFH). If a pass point is already
active at a, the pass count is changed to n. SI068
responds with a question mark if there are already 16 active
pass points.

Form Pa sets a pass
of 1. If a pass point
pass count is changed
with a question mark if
points.

point at address a with a pass count
is already active at address a, the

to 1 if it is not 1. SI068 responds
there are already 16 active pass

The -P form is used to clear pass points.

5.2.10 The R (Read) Command

The R command reads a file to a contiguous block in
memory. The format is

Rfilename

where filename is the name and type of the file to be
read.

SID68 reads the file into memory and displays the
starting and ending addresses of the block of memory occupied
by the file. A Value (V) command can redisplay the
information at a later time. The default display
pointer, for subsequent Display (D) commands is set to the
start of the block occupied by the file.

5.2.11 The S (Set) Command

The S command can change the contents of bytes,
words, or longwords in memory. The forms are

Ss SWs SLs

where s is the address at which the change is to occur.

SI068 displays the memory address and its current
contents. In response to the first form, the display is

aaaaaaaa bb

In response to the second form, the display is

aaaaaaaa wwww

In response to the third form, the display is

5-8

(

GEM DOS PROGRAMMERS GUIDE

aaaaaaaa 11111111

where bb, wwww, and 11111111 are the contents of memory
in byte, word, and longword formats, respectively.

In response to one of the above displays, you can alter
the memory location or leave it unchanged. If you
enter a valid hexadecimal value, the contents of the byte,
word, or longword in memory is replaced with that value.
If you do not enter a value, the contents of memory are
unaffected and the contents of the next address are
displayed. In either case, 5I068 continues to display
successive memory addresses and values until either a period
or an invalid value is entered.

SID68 displays an error message if it cannot read back
the value stored in memory successfully. This error
indicates a faulty or non-existent RAM location.

5.2.12 The T (Trace) Command

The T command traces program execution for 1 to
OFFFFFFFFH program steps. The forms are

T Tn Tw

where n is the number of instructions to execute
before returning control to the console.

After SID68 traces each instruction, it displays the
current CPU state and the disassembled instruction in the
same form as the X command display.

Control transfers to the program under test at the
address indicated in the program counter. If you do not
specify n, one instruction is executed. Otherwise,
SI068 executes n instructions and displays the CPU state
before each step. You can abort a long trace before all
the steps have been executed by pressing any character at
the console.

The Tw form traces execution without calls to
subroutines. The entire subroutine called from the program
level being traced is treated as a single program
step and executed in real time. This allows tracing at a
high level of the program, ignoring subroutines that are
already debugged.

After a T command, the list address used in the L
command is set to the address of the next instruction to
be executed.

Note that SI068 does not trace through a BOOS
interrupt instruction since SI068 itself makes BOOS calls and
the BOOS is not reentrant. Instead, the entire sequence of

5-9

GEM DOS PROGRAMMERS GUIDE

instructions from the BOOS interrupt through the return from
BOOS is treated as one traced instruction.

5.2.13 The U (Untrace) Command

The U
except that
instruction
forms are

U Un

command is identical to the Trace (T) command
the CPU state is displayed only after the last

is executed, rather than after every step. The

where n is the number of instructions to execute before
control returns to the console. You can abort the
command before all the steps have been executed by pressing
any key at the console.

5.2.14 The V (Value) Command

The V command displays information about the last file
loaded with the Load For Execution (E) or Read (R) commands.
The form is

V

If the last file was loaded with the E command, the V
command displays the starting address and length of each of
the segments contained in the file, the base page
pointer, and the initial stack pointer. The format of the
display is

Text base=00000500 data base=00000B72 bss base=00003FOA text
length=00000672 data length=00003468 bss length=OOOOAlBO base
page address=00000400 initial stack pointer=00006604

If no file has been loaded, SI068 responds to the V
command with a question mark.

5.2.15 The W (Write) Command

The W command writes the contents of a contiguous block
of memory to disk. The forms are

Wfilename Wfilename,s,f

The filename is the file specification of the disk file
that receives the data.

If you use the first form, SI068 assumes the values
for sand f from the last file read with an R command. If
no file has been read by an R command, SI068
responds with a question mark. This form is useful for
writing out files after patches have been installed, assuming
the overall length of the file is unchanged.

5-10

GEM DOS PROGRAMMERS GUIDE

In the second form the letters sand f are the first
and last addresses of the block to be written. If f does not
specify the last address, SID68 uses the same value that
was used for s.

If the file specified in the W command already
exists on disk, SID68 deletes the existing file before it
writes the new file.

5.2.16 The X (Examine CPU State) Command

The X command displays the entire state of the CPU,
including the Program Counter (PC), User Stack Pointer
(USP), System Stack Pointer (SSP), Status Register (ST,
displayed by field), all eight data registers, all eight
address registers, and the disassembled instruction at the
memory address currently in the PC. The forms are

X Xr

where r is one of the following registers:

DO to D7, AO to A7, PC, USP, or SSP

The first form displays the CPU state as follows:

PC=00016000 USP=00001000 SSP=00002000 ST=FFFF=> (etc.) D
00001000 00000D01 00000001 A OOOBOAOO 000A0010 ...
00000000 lea $16028,AO

The first line includes:

PC
USP
SSP
ST

program counter
user stack pointer
system stack pointer
status register

Following the status register contents on the first
display line, you see the values of each bit in the
status register, as shown in the following sample:

TR SUP IM=7 EXT NEG ZER OFL CRY

This sample display includes:

TR
SUP
IM=7
EXT
NEG
ZER
OFL
CRY

Trace Bit
Supervisor Mode Bit
Interrupt Mask=7
Extend
Negative
Zero
Overflow
Carry

The second form, Xr, allows you to change the value in

5-11

?d9

GEM DOS PROGRAMMERS GUIDE

the registers of the program being tested. The r ,/ "
identifies the register. SID68 responds by displaying the ",,-,J

current contents of the register, leaving the cursor on that
line. If you type a Return, the value is not changed. If
you type a new valid value and then a Return, the register is
changed to the new value. You can change the contents of
all registers except the status register.

5.2.17 Assembly Language Syntax for the L Command

In general, the syntax of the assembly language
statements used in the L command is standard Motorola 68000
assembly language. Several minor exceptions are given in
the following list:

* SID68 prints all numeric values in hexadecimal.

* SID68 uses lowercase mnemonics.

* SID68 assumes word operations unless a byte or longword
specification is explicitly stated.

5-12

()

GEM DOS PROGRAMMERS GUIDE

A. ERROR MESSAGES

This appendix lists the error messages returned by the
internal components of GEM DOS and by the GEM DOS
programmer's utilities. subsections are arranged
alphabetically by the name of the internal component or
utility. Each subsection has error messages listed
alphabetically, with explanations and suggested user
responses.

A.I. AS68 ERROR MESSAGES

The GEM DOS assembler, AS68, returns both nonfatal,
diagnostic error messages and fatal error messages. Fatal
errors stop the assembly of your program. There are two
types of fatal errors: user-recoverable fatal errors
and fatal errors in the internal logic of AS68.

A.I.I. AS68 Diagnostic Error Messages

Diagnostic messages report errors in the syntax and
context of the program being assembled without interrupting
assembly. Refer to the Motorola I6-Bit Microprocessor
User's Manual for a full discussion of the assembly language
syntax.

Diagnostic error messages appear in the following format:

& line no. error message text

The ampersand (&) indicates that the message comes from
AS68. The line no. indicates the line in the source code
where the error occurred. The error message text describes
the error. Diagnostic error messages appear at the console
after assembly, followed by a message indicating the total

A-I

GEM DOS PROGRAMMERS GUIDE

number of errors. In a print-out, they print on the line '
preceding the error. Table A-l lists the AS68 diagnostic
error messages in alphabetical order.

Table A-l. AS68 Diagnostic Error Messages

Message Meaning

& line no. backward assignment to *
The assignment statement in

illegally assigns the location
Change the location counter to
reassemble the source file.

& line no. bad use of symbol

the line indicated
counter (*) backward.

a forward assignment and

A symbol in the source line indicated has been defined
as both global and common. A symbol can be either global
or common, but not both. Delete one of the directives
and reassemble the source file.

& line no. constant required

An expression on the line indicated requires a
constant. Supply a constant and reassemble the source file.

& line no. end statement not at end of source

The end statement must be at the end of the source J

code. The end statement cannot be followed by a comment or
more than one carriage return. Place the end statement at
the end of the source code, followed only by a single
carriage return, and reassemble the source file.

& line no. illegal addressing mode

The instruction on the line
invalid addressing mode. Provide a
mode and reassemble the source file.

& line no. illegal constant

indicated has an
valid addressing

The line indicated contains an illegal constant. Supply
a valid constant and reassemble the source file.

& line no. illegal expr

The line indicated contains an illegal expression.
Correct the expression and reassemble the source file.

& line no. illegal external

The line indicated illegally contains an external
reference to an 8-bit quant~ty. Rewrite the source code

A-2

(

GEM DOS PROGRk~MERS GUIDE

to define the reference locally or use
reference and reassemble the source file.

& line no. illegal format

a 16-bit

An expression or instruction in the line indicated
is illegally formatted. Examine the line. Reformat
where necessary and reassemble the source file.

& line no. illegal index register

The
register.
file.

line
Supply

indicated contains an invalid index
a valid register and reassemble the source

& line no. illegal relative address

An addressing mode specified is not valid for
the instruction in the line indicated. Refer to the
Motorola l6-Bit Microprocessor User's Manual for valid
register modes for the specified instruction. Rewrite the
source code to use a valid mode and reassemble the file.

& line no. illegal shift count

The instruction in the line indicated shifts a
quantity more than 31 times. Modify the source code to
correct the error and reassemble the source file.

& line no. illegal size

The instruction in the line indicated requires one of
the following three size specifications: b (byte), w
(word), or 1 (longword). Supply the correct size
specification and reassemble the source file.

& line no. illegal string

The line indicated contains an illegal string. Examine
the line. Correct the string and reassemble the source
file.

& line no. illegal text delimiter

The text
format.
("text")

file.

wrong
quotes
source

delimiter
Use single
to delimit

in the line indicated is in the
quotes ('text') or double
the text and reassemble the

& line no. illegal a-bit displacement

The line
larger than
source file.

indicated illegally contains a displacement
a-bits. Modify the code and reassemble the

A-3

GEM DOS PROGRAMMERS GUIDE

& line no. illegal a-bit immediate

The line indicated illegally contains an immediate
operand larger than a-bits. Use the 16- or 32-bit form
of the instruction and reassemble the source file.

& line no. illegal 16-bit displacement

The line indicated illegally contains a displacement
larger than 16-bits. Modify the code and reassemble the
source file.

& line no. illegal 16-bit immediate

The line indicated illegally contains an immediate
operand larger than 16-bits. Use the 32-bit form
of the instruction and reassemble the source file.

& line no. invalid data list

One or more entries in the
indicated is invalid. Examine the
entry. Replace it with a valid
source file.

data list in the line
line for the invalid

entry and reassemble the

& line no. invalid first operand

The first,operand in an expression in the line indicated
is invalid. Supply a valid operand and reassemble the
source file. " e;

& line no. invalid instruction length

The instruction in the line indicated requires one of
the following three size specifications: b (byte), w
(word), or 1 (longword). Supply the correct size
specification and reassemble the source file.

& line no. invalid label

A required operand is not present
or a label reference in the line
format. Supply a valid label and
file.

& line no. invalid opcode

in the line indicated,
is not in the correct
reassemble the source

The opcode in
or invalid. Supply
source file.

the line indicated is non-existent
a valid opcode and reassemble the

& line no. invalid second operand

The
indicated

second
is

operand
invalid.

in an expression in the line
Supply a valid operand and

A-4

GEM DOS PROGRAMMERS GUIDE

reassemble the source file.

& line no. label redefined

This message indicates that a label has been defined
twice. The second definition occurs in the line
indicated. Rewrite the source code to specify a unique
label for each definition and reassemble the source file.

& line no. missing)

An expression in the line indicated is missing a
right parenthesis. Supply the missing parenthesis and
reassemble the source file.

& line no. no label for operand

An operand in the line indicated is missing a
label. Supply a label and reassemble the source file.

& line no. opcode redefined

A label in the line indicated has the same mnemonics as
a previously specified opcode. Respecify the label so that
it does not have the same spelling as the mnemonic for the
opcode. Reassemble the source file.

& line no. register required

The instruction in the line indicated requires either
a source or destination register. Supply the
appropriate register and reassemble the source file.

& line no. relocation error

An expression in the line indicated contains more than
one externally defined global symbol. Rewrite the source
code. Either make one of the externally defined global
symbols a local symbol, or evaluate the expression within
the code. Reassemble the source file.

& line no. symbol required

A
symbol.
file.

statement
Supply a

in the line indicated requires a
valid symbol and reassemble the source

& line no. undefined symbol in equate

One of the symbols in the equate directive in
line indicated is undefined. Define the symbol
reassemble the source file.

& line no. undefined symbol

A-5

the
and

GEM DOS PROGRAMMERS GUIDE

The line indicated contains an undefined symbol that / .~.
has not been declared global. Either define the symbol
within the module or define it as a global symbol and
reassemble the source file.

A.l.2. User-recoverable Fatal Error Messages

Table A-2 describes fatal error messages for AS68. When
an error occurs because the disk is full, AS68 creates a
partial file. Erase the partial file to ensure that you do
not try to link it.

Table A-2. AS68 User-recoverable Fatal Error Messages

Message Meaning

& cannot create init: AS68SYMB.DAT

AS68 cannot create the initialization file because the
path name is incorrect or the disk to which it was writing
the file is full. If you used the -S switch to redirect
the symbol table to another disk, check the path name. If
it is correct, the disk is full. Erase unnecessary files,
if any, or insert a new disk before you reinitialize
AS68. Erase the partial file that was created on the full
disk to ensure that you do not try to link it.

& expr opstk overflow

An expression in the line indicated contains too
many operations for the operations stack. Simplify
the expression before you reassemble the source code.

& expr tree overflow

The expression tree does not have space for the number
of terms in one of the expressions in the indicated line
of source code. Rewrite the expression to use fewer
terms before you reassemble the source file.

& I/O error on loader output file

The disk to which AS68 was writing the loader output
file is
unnecessary
reassemble
was created
link it.

full. AS68 wrote a partial file. Erase
files, if any, or insert a new disk and
the source file. Erase the partial file that

on the full disk to ensure that you do not try to

& I/O write error on it file

The disk to which AS68 was writing the intermediate
text file is full. AS68 wrote a partial file.
Erase unnecessary files, if any, or insert a new disk
and reassemble the source file. Erase the partial file

A-6

(

c

GEM DOS PROGRAMMERS GUIDE

that was created on the full disk to ensure that you do not
try to link it.

& it read error itoffset= no.

The disk to which AS68 was writing the intermediate
text file is full. AS68 wrote a partial file. The
variable itoffset= no. indicates the first zero-relative byte
number not read. Erase unnecessary files, if any, or insert
a new disk and reassemble the source file. Erase the
partial file that was created on the full disk to ensure
that you do not try to link it.

& Object file write error

The disk to which AS68 was writing the object file is
full. AS68 wrote a partial file. Erase unnecessary
files, if any, or insert a new disk and reassemble the
source file. Erase the partial file that was created on the
full disk to ensure that you do not try to link it.

& overflow of external table

The source code uses too many externally defined
global symbols for the size of the external symbol
table. Eliminate some externally defined global
symbols and reassemble the source file.

& Read Error On Intermediate File: ASXXXXn

The disk to which AS68 was writing the intermediate
text file ASXXXX is full. AS68 wrote a partial file.
The variable n indicates the drive on which ASXXXX is
located. Erase unnecessary files, if any, or insert a new
disk and reassemble the source file. Erase the partial
file that was created on the full disk to ensure that you do
not try to link it.

& symbol table overflow

The program uses
table. Eliminate some
source code.

too many symbols
symbols before

& Unable to open file filename

for the symbOl
you reassemble the

filename indicated by the variable filename
has an invalid path name. Check the path

filename. Respecify the command line before
the source file.

The source
is invalid or
name and the
you reassemble

& Unable to open input file

The filename in the command line indicated does not
exist or has an invalid path name. Check the path name and

A-7

GEM DOS PROGRAMMERS GUIDE

the filename. Respecify the command line before you
reassemble the source file.

& Unable to open temporary file

You used an invalid path name or the disk to which AS68
was writing is full. Check the path name. If it is
correct, the disk is full. Erase unnecessary files, if
any, or insert a new disk before you reassemble the source
file.

& Unable to read init file: AS68SYMB.DAT

The path name used to specify the initialization file
is invalid or the assembler has not been initialized.
Check the path name. Respecify the command line before
you reassemble the source file. If the assembler has not
been initialized, refer to Section 5 for instructions.

& Write error on init file: AS68SYMB.DAT

The disk to which AS68 was writing the initialization
file is full. AS68 wrote a partial file. Erase
unnecessary files, if any, or insert a new disk and
reassemble the source file. Erase the partial file that
was created on the full disk to ensure that you do not try to
link it.

& write error on it file

The disk to which AS68 was writing the intermediate text
is full. AS68 wrote a partial file. Erase unnecessary
files, if any, or insert a new disk. Erase the partial file
that was created on the full disk to ensure that you do not
try to link it. Reassemble the source file.

A.l.3. AS68 Internal Logic Error Messages

The following are messages indicating fatal errors in the
internal logic of AS68:

& doitrd: buffer botch pitix=nnn itbuf=nnn end=nnn
& ~oitwr: it buffer botch
& invalid radix in oconst
& i.t. overflow
& it sync error itty=nnn
& seek error on it file
& outword: bad rlflg

A.2. L068 ERROR MESSAGES

The GEM DOS Linker, L068, returns
fatal error messages: diagnostic and logic.
fatal error messages have the following format:

A-8

two types of
Both types of

/ "

(

GEM DOS PROGRAMMERS GUIDE

error message text

The colon (:) indicates that the error message comes
from L068. The "error message text" describes the error.

A.2.l. Fatal Diagnostic Error Messages

A fatal diagnostic error prevents your program from
linking. When the error is caused by a full disk, erase
the partial file that L068 created on the disk that received
the error to ensure that you do not use the file. The L068
diagnostic errors are listed in Table A-3 in alphabetic order
with explanations and suggested user responses.

Table A-3. L068 Fatal Diagnostic Error Messages

Message Meaning

duplicate definition in p,filename

The symbol indicated by the variable p is defined
twice. The variable filename indicates the file in
which the second definition occurred. Rewrite the
source code. Provide a unique definition for each symbol and
reassemble or recompile the source code before you relink the
file.

: file format error: filename

The file indicated by the variable filename is either
not an object file or the file has been corrupted. Ensure
that the file is an object file, output by the assembler
or compiler. Reassemble or recompile the file before you
relink it.

: File Format Error: Invalid symbol flags = flags

L068 does not recognize the symbol flags indicated by
the variable flags. The file L068 read is either not an
object file or has been corrupted. Ensure that the file is
an object file, output by the assembler or compiler.
Reassemble or recompile the file before you relink it.

: File Format Error: invalid relocation flag in filename

The contents of the file indicated by the variable
filename are incorrectly formatted. The file either is not
an object file or has been corrupted. Ensure that the file
is an object file, output by the assembler or compiler. If
the file is an object file but this error occurs, the file
has been corrupted. Reassemble or recompile the file before
you relink it.

: File Format Error: no relocation bits in filename

A-9

GEM DOS PROGRAMMERS GUIDE

The file indicated by the variable filename either is
not an object file or has been corrupted. Ensure that the
file is an object file, output by the assembler or compiler.
If the file is an object file but this error occurs, then
the file has been corrupted. Reassemble or recompile the
file before you relink it.

: Illegal option p

The option in the command line indicated by the variable
p is invalid. Supply a valid option and relink.

: Invalid 1068 argument list

This message indicates format errors or invalid options
in the command line. Examine the command line to locate the
error. Correct the error and relink.

: output file write error

The disk to which L068 is writing is full. Erase
unnecessary files, if any, or insert a new disk before you
reenter the L068 command line.

: read error on file: filename

The object file indicated by the variable filename does
not have enough bytes. The file either is incorrectly
formatted or has been corrupted. This error is commonly
caused when the input to L068 is a partially assembled or
compiled object file. The assembler, AS68, and some
compilers create partial object files when they receive the
disk full abort message while assembling or compiling a file.
Ensure that the file is a complete object file. Reassemble
or recompile the file before you relink it.

: symbol table overflow

The object code contains too many symbOlS for the size
of the symbol table. Rewrite the source code to use fewer
symbols. Reassemble or recompile the source code before you
relink the file.

: Unable to create pathname

The output file indicated by pathname has an invalid
path name, or the disk to which L068 is writing is full.
Check the path name. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert a new disk before
you reenter the L068 command line.

: unable to open filename

The filename indicated by the variable filename is
invalid or the file does not exist. Check the filename

A-10

(

(

(~ ..
/

GEM DOS PROGRAMMERS GUIDE

before you reenter the L068 command line.

: Unable to open temporary file: pathname

Either the file, indicated by pathname, has an
invalid drive code in the path name, specified by the f
option, or the disk to which L068 is writing is full. Check
the path name. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert a new disk before
you reenter the L068 command line.

: Undefined symbol(s)

The symbol or symbols which are listed one per
line following the error message are undefined. Provide a
valid definition and reassemble the source code before
you reenter the L068 command line.

A.2.2. L068 Internal Logic Error Messages

This section lists messages indicating fatal errors in
the internal logic of L068.

: asgnext botch
finalwr: text size error
relative address overflow at lx in sn

: seek error on file filename
: short address overflow in filename

unable to reopen filename

A.3. AR68 ERROR MESSAGES

The
types of
types of
occur.

GEM DOS Archive utility, AR68, returns two
fatal error messages: diagnostic and logic. Both
fatal error messages show at the console as they

A.3.l. Fatal Diagnostic Error Messages

Table A-4 lists
alphabetical order with
responses.

AR68 fatal
explanations

error messages in
and suggested user

Table A-4. AR68 Fatal Diagnostic Error Messages

Message Meaning

filename not in archive file

The object module indicated by the variable filename is
not in the library. Check the filename before you reenter
the command line.

cannot create filename

A-ll

GEM DOS PROGRAMMERS GUIDE

The path name for the file indicated by the
variable filename is invalid, or the disk to which AR68 is
writing is full. Check the path name. If it is valid, the
disk is full. Erase unnecessary files, if any, or insert
a new disk before you reenter the command line.

cannot open filename

The file indicated by the variable filename cannot be
opened because the filename or the path name is incorrect.
Check the path name and the filename before you reenter the
command line.

invalid option flag: x

The symbOl, letter, or
indicated by the variable x
Section 3 of this manual for
command line options. Specify
the command line.

not archive format: filename

number in the command line
is an invalid option. Refer

an explanation of the AR68
a valid option and reenter

The file indicated by the variable filename is not
a library. Ensure that you are using the correct filename
before you reenter the command line.

not object file: filename

The file indicated by the variable filename is not
an object file, and cannot be added to the library. Any
file added to the library must be an object file, output by
the assembler, AS68, or the compiler. Assemble or compile
the file before you reenter the AR68 command line.

one and only one of DRTWX flags required

The AR68 command line requires one of the D, R, T, W, or
X commands, but not more than one. Reenter the command line
with the correct command. Refer to Section 7 for an
explanation of the AR68 commands.

filename not in library

The object module indicated by the variable filename is
not in the library. Ensure that you are requesting
the filename of an existing object module before you
reenter the command line.

Read error on filename

The file indicated by the variable filename cannot be
read. This message means one of three things: the file
listed at filename is corrupted; a hardware error has
occurred; or when the file was created, it was not

A-14

(

GEM DOS PROGRAMMERS GUIDE

correctly written by AR68 due to an error in the internal
logic of AR68.

Cold start the system and retry the operation. If
you receive this error message again, you must erase
and recreate the file. Use your backup file, if you
maintained one.

temp file write error

The temporary file is full. Erase unnecessary files,
if any, or insert a new disk before you reenter the command
line.

usage: AR68 DRTWX[AV][F D:] [OPMOD] ARCHIVE
[OBMOD2 •••] [>filespec]

OBMODl

This message indicates a syntax error in the command
line. The correct format for the command line is given, with
the possible options in brackets.

Write error on filename

The disk to which AR68 is writing the file indicated by
the variable filename is full. Erase unnecessary files,
if any, or insert a new disk before you reenter the
command line.

~. A.3.2. AR68 Internal Logic Error Messages

The following are messages that indicate fatal errors in
the internal logic of AR68:

cannot reopen filename
seek error on library
Seek error on tempname
Unable to recreate--library is in filename

For the last error, Unable to recreate--library is in
filename, you should rename the temporary file indicated
by the variable filename. AR68 used the library to create
the temporary file, then deleted the library in order to
replace it with the updated temporary file. This error
occurred because AR68 cannot write the temporary file back to
the original location. The entire library is in the temporary
file.

A.4. DUMP ERROR MESSAGES

DUMP returns fatal, diagnostic error messages at the
console. Table A-5 lists the DUMP error messages in
alphabetical order with explanations and suggested user
responses.

A-13

Message

GEM DOS PROGRAMMERS GUIDE

Table A-5. DUMP Error Messages

Meaning

Unable to open filename

the
is
you

Either the
variable

misspelled.
reenter the

path name for the input file
filename is incorrect, or
Check the filename and path
DUMP command line.

Usage: dump [-shhhhhh] file

indicated by
the filename
name before

The command line syntax is incorrect. The correct syntax
is given in the error message. Specify the DUMP command
and the filename. If you want to display the contents of
the file from a specific address in the file, specify the
-S option followed by the address. Refer to Section 8.2
for discussion of the DUMP command line and options.

A.5. SIZE68 ERROR MESSAGES

SIZE68 returns fatal, diagnostic error messages at the
console. Table A-6 lists the SIZE68 error messages in
alphabetical order with explanations and suggested user
responses.

Message

Table A-6. SIZE68 Error Messages

Meaning

File format error: filename

The file indicated by the variable filename is neither
an object file nor a command file. SIZE68 requires either
an object file, output by the assembler or the compiler, or
a command file, output by the linker. Ensure that the file
specified is one of these and reenter the SIZE68 command
line.

read error on filename

The
truncated.
relink the
line.

file indicated by the variable filename is
Rebuild the file. Reassemble or recompile, then
source file before you reenter the SIZE68 command

unable to open filename

Either the path name is incorrect, or the file indicated
by the variable filename does not exist. Check the path
name and filename. Reenter the SIZE68 command line.

A.6. SENDC68 ERROR MESSAGES·

A-14

(

GEM DOS PROGRAMMERS GUIDE

SENDC68 returns two types of fatal error messages:
diagnostic and internal logic error messages.

A.6.1. Diagnostic Error Messages

Table A-7 lists the SENDC68 diagnostic error messages in
alphabetical order with explanations and suggested user
responses.

Table A-7. SENDC68 Diagnostic Error Messages

Message Meaning

file format error: filename

The file indicated by the variable filename is not
a command file. The file input to SENDC68 must be a command
file output by the linker (L068). Ensure that the file
specified is a command file.

read error on file: filename

The file indicated by the variable filename is
truncated. Rebuild the file by recompiling or reassembling,
and relink it before you reenter the SENDC68 command line.

unable to create filename

This message indicates an invalid path name for the
output file indicated by the variable filename. It can also
mean that the disk to which SENDC68 is writing is full.
Check the path name. If it is correct, the disk is full.
Erase unnecessary files, if any, or insert a new disk before
you reenter the SENDC68 command line.

unable to open filename

The input file indicated by the variable filename does
not exist. Check the filename and retype the SENDC68
command line.

Usage: sendc68 [-] commandfile [outputfile]

This' message indicates
SENDC68 command line. The
error message. Retype the
syntax.

a syntax error in the
correct syntax is given in the
command line using the correct

A.6.2. SENDC68 Internal Logic Error Messages

The following is a message that indicates a fatal error
in the internal logic of SENDC68:

seek error on file filename

A-15

GEM DOS PROGRAMMERS GUIDE

A.7. SID68 ERROR MESSAGES

The
messages:
messages
SID68.

GEM DOS debugger, SID68, returns two types of error
nonfatal diagnostic error messages, !ind

indicating fatal errors in the internal logic of

A.7.1. Diagnostic Error Messages

Diagnostic error messages are returned at the console as
the errors occur. Table A-8 lists the SID68 error
messages in alphabetical order with explanations and
suggested user responses.

Table A-8. SID68 Diagnostic Error Messages

Message Meaning

Bad or non-existent RAM at HEX no.

This error occurs in response to a Set (S), Set Word
(SW), or Set Longword (SL) command. The message indicates
one of two things:

* The memory location at HEX no. is Read-Only, an I/O
port, or non-existent. Use another location.

* The memory location is damaged. Check the hardware.

Bad relocation bits

This message is returned from the BDOS Program Load
Function (59), and means one of two things:

* The command file has been corrupted. Rebuild the file.
Reassemble or recompile the source file, then relink
the file before you reenter the SID68 command line.

* The file is linked to an absolute location in
memory

that is already occupied by SID68. Link the file to
another location.

SID68 occupies approximately 20K of memory, and resides
at the highest addresses within the TPA. The
recommended location for linking your file is the base
address of the TPA + IOOH. BDOS Function 63, Get/Set TPA
Limits, returns the high and low boundaries of the TPA.

Cannot create file

This error occurs during a write (W) command. The disk
to which SID68 is writing has no more directory
space available; in effect, the disk ~s full. If you
have another drive available, reenter the w command and

A-16

(

c

GEM DOS PROGRAMMERS GUIOE

direct the file to the disk on that drive. If you do not
have another drive available, you must exit SI068 (and lose
the contents of memory). Erase unnecessary files, if any,
or insert a new disk.

Cannot open file

This error occurs during a R command. It indicates
an incorrect path name or filename. Check the path name
and filename before you reenter the command line.

Cannot open program file

This message occurs in response to an E command.
It indicates an incorrect path name or filename. Check
the path name and filename before you reenter the command
line.

ERROR, no program or file loaded

This error message occurs in response to a V command
when you specify the command but no file is loaded. Load a
file before you reenter the V command. The file can be
loaded with an E or R command, or by specifying the filename
when you invoke SI068.

File too big -- read truncated

This message occurs during a R command when the file
being read is too large to fit in memory. SI068 reads only
the portion of the file that can be read into the
existing memory. To debug this program, additional memory
boards must be added to the system configuration.

File write error

The disk to which SI068 is writing is full or the
disk contains a bad sector. Retry the command. If the
error persists, and you have another disk drive
available, redirect the output to the disk on that drive.
If you do not have another drive available, you must exit
SI068. Use the STAT command to check the space on the
disk. If it is full, erase unnecessary files, if any, or
insert a new disk. Because the contents of memory are
lost when you exit SI068, you must reload the file in
memory. If the disk was not full, it has a bad sector.
You should replace the disk.

**illegal size field

This error occurs during an L command. The size field
of the instruction being disassembled has an illegal
value. Use a D command to display the location of the error.
This error could be caused by one of three things:

A-17

*

*

*

GEM DOS PROGRAMMERS GUIDE

The memory location being disassembled does not contain
an instruction. Ensure that the area selected is an
instruction. If not, reenter the L command with a
correct location.

The size field of the instruction has been corrupted.
Use the debugging commands in SID68 to look for an
error that causes the program to overwrite itself.
Refer to Section 5 for a complete description of the
SID68 commands and options.

An invalid instruction was generated by the compiler or
assembler used to create the program. Recompile or
reassemble the source file before you reinvoke SID68.

Insufficient memory or bad file header

This message occurs in response to an E command. The
error could be caused by one of three things:

*

*

*

The system you are using does not have enough memory
available. Ensure that the program and SID68 fit into
the TPA. Exit SID68. Use the SIZE68 utility to
display the amount of space your program occupies in
memory. SID68 is approximately 20K bytes. The BDOS
Get/Set TPA Limits Function (63) returns the high and
low boundaries of the TPA. If you do not have
sufficient space in the TPA to execute your command
file and SID68 simultaneously, additional memory boards
must be added to your system configuration.

The file is not a command file or has a corrupted
header. If the command file does not run, but you are
sure that your memory space is adequate, use the R
command to look at the file and check the format. You
might be trying to debug a file that is not a command
file. If it is a command file, the header might have
been corrupted. Reassemble or recompile the source
file before you reenter the E command line. If the
error persists, it might be caused by an error in the
internal logic of SID68.

The command file you are debugging is linked to an
absolute location in memory that is already occupied by
SID68. SID68 is approximately 20K bytes, and usually
resides in the highest addresses of the TPA. The
recommended location for linking your file is the base
address of the TPA + lOOH. The BDOS Get/Set TPA Limits
Function (63) returns the high and low boundaries of
the TPA.

Read error

This message indicates one of three things. Try
the operation again. If the error persists, you have one

A-l8

(

(
~

/

GEM DOS PROGRAMMERS GUIDE

of the following problems:

* A write error at the time the file was created. You
must recreate the file. If the error reoccurs, or if
you cannot write to the disk, the disk ·is bad.

* A bad disk. Use PIP or COpy to copy the file from the
bad disk to a new disk. Any files that cannot be
copied must be recreated or replaced from backup files.
Discard the damaged disk.

* A hardware error.
hardware.

If the error persists, check your

unknown opcode

This error occurs in response to a L command if the
memory location being disassembled does not contain a
valid instruction. The error might have been caused by
one of three things:

* You gave the L command the wrong address. Reenter the
L command with the correct address.

* The file is not a command file. Make sure that the
file you specify is a command file and reenter the L
command.

* The command file has been corrupted. Reassemble or
recompile the source file before you reread it into
memory with a Load for Execution (E) or Read (R)
command, as appropriate. If the problem persists, use
the debugging commands in SID68 to look for an error in
the program that causes it to overwrite itself. Refer
to the Section 9 for a complete description of the
SID68 commands and options.

A.7.2. SID68 Internal Logic Error Messages

The following are messages indicating fatal errors in
the internal logic of SID68:

illegal instruction format #

Unknown program load error

A-19

GEM DOS PROGRAMMERS GUIDE

B. MOTOROLA S-RECORD FORMAT

The Motorola S-record format is a method of
representing binary memory images in an ASCII form.
The primary use of S-records is to provide a convenient form
for transporting programs between computers. Since most
computers have a means of reading and writing ASCII
information, the format is widely applicable. The SENDC68
utility provided with GEM DOS can be used to convert programs
into'S-record form.

An S-record file consists of a sequence of S-records of
various types. The entire content of an S-record is ASCII.
When a hexadecimal number needs to be represented in an
S-record, it is represented by the ASCII characters for the
hexadecimal digits comprising the number. Each S-record
contains the five fields shown in Figure B-1. Table B-1
describes each field.

+---------+---------+---------+---------+---------+---------+
S type I length I address I data cksum

+---------+---------+---------+---------+---------+---------+
1 1 2 2, 4 or 6 varies

(size in characters)

Figure B-1. S-record Format

B-1

2

GEM DOS PROGRAMMERS GUIDE

Field

Table B-1. S-record Field Descriptions

Description

S

The ASCII characterS. This signals the beginning of the
S-record.

type

A digit between 0 and 9, represented in ASCII, with the
exceptions that 4 and 6 are not allowed. The use of each
type value is explained in Table B-2.

length

The number of character pairs in the record, excluding
the first three fields. (That is, one half the number of
total characters in the address, data, and checksum fields.)
This field has two hexadecimal digits, representing a
one-byte quantity.

address

The address at which the data portion of the record is
to reside in memory. The data goes to this address and
successively higher numbered addresses. The length of this ~,
field is determined by the record type in the second byte of
the S - record. ',~,

data

A variable length field containing the actual data to
be loaded into memory. Specify each byte of data as a pair of
hexadecimal digits in ASCII.

cksum

A checksum compute over the length, address, and
data fields. Compute the checksum as follows:

*
*
*

add the
address,
take the
drop the

values of the character pairs
and data fields
one's complement of the sum
most significant byte

in the length,

Enter the least significant byte value in the checksum
field as two ASCII hexadecimal digits. .

There are eight types of S-records. They can be divided
into two categories: records containing actual data and
records used to define and delimit groups of data-containing
records. Types 1, 2, and 3 are reserved for records in the
first category; types 0, 5, 7, 8, and 9 for reserved for

B-2

/"

\ "l

GEM DOS PROGRAMMERS GUIDE

records in the second category. Types 4 and 6 are not
allowed. Table B-2 defines the types.

Note: All byte values in Table B-2 are expressed as two
ASCII characters representing the hexadecimal value.

Type

o

Table B-2. S-Record Type Definitions

Meaning

This type is a header record used at the beginning of a
group of S-records. The data field can contain any desired
identifying information. The address field is two bytes long
and is normally zero.

1

This type of record contains normal data. The address
field is two bytes long.

2

This type is the same as type 1 except the address
field is 3 bytes long.

3

This type is the same as type 1 except the address
field is 4 bytes long.

5

This type indicates the number of type 1, 2, and 3
records in a group of S-records. The count is placed in the
address field. The data field is empty.

7

This record signals the end of a block of type 3
S-records. If desired, the 4-byte address field can be used
to contain an address at which to pass control. The data
field is empty.

8

block
long.

9

This type is the same as type 7 except that it ends a
of type 2 S-records and the address field is 3 bytes

This is the same as type 7 except ending a block of
type 1 S-records and the address field is 2 bytes long.

B-3

GEM DOS PROGRAMMERS GUIDE

INDEX TO GEM DOS PROGRAMMERS GUIDE

Index to Figures

B-1 S-record Format • • • • • • • . • • • • • .B-1

Index to Tables

1-1 Assembler Options. • • . . • • 1-2
1-2 AS68 Directives. • • • . . . • • • • • •• 1-3
1-3 Instruction Set Summary •.••••••••.••• 1-11
1-4 Variations of Instruction Types • • • • • .1-13
2-1 LINK68 Command-line Options. • • • . • •. 2-3
2-2 L068 Options. • • • • • • • • • • . . . • • . .2-6
3-1 AR68 Command Line Components. • . . • .3-1
4-1 DUMP Command Line Components. • • • • • • •• .4-2
5-1 SID68 Command Summary. • • • • • ••••• 5-2
A-1 AS68 Diagnostic Error Messages. • .A-2
A-2 AS68 User-recoverable Fatal Error Messages. • . • .A-6
A-3 L068 Fatal Diagnostic Error Messages. . • .A-9
A-4 AR68 Fatal Diagnostic Error Messages. • • .A-11
A-5 DUMP Error Messages • . • • • • • . • • . .A-14
A-6 SIZE68 Error Messages • • • . • . • • . . • • . . .A-14
A-7 SENDC68 Diagnostic Error MessagesA-15
A-8 SID68 Diagnostic Error Messages • . • • •• • .A-16
B-1 S-record Field Descriptions • • • .B-2
B-2 S-Record Type Definitions • • • • • • • • •. .B-3

INDEX-1

