
A Hitchhiker's
Guide to the

Bros

(C)l985 Atari Corp.
All Rights Reserved

- ------~-.~~---~---

("--" , ,

,,-,/

Introduction

Remember, DON'T PANIC. This is the new, improved introduc
tion to the Hitchhiker's Guide to the BIOS, which describes
the BIOS (and many other aspects) of Atari's ST computer
series. The introduction still won't tell you much, but at
least it tells you not to panic.

The Guide's intended audience:

Application writers (who will find some of the func
tions and hints here invaluable);

Those wishing to make use of some of the ST's
hardware-specific features (hacking palette colors,
configuring the RS232 port, and so on);

Those writing device drivers, video games, or
cartridge-based applications;

The habitually curious (including trivia trippers,
information junkies, and documentation addicts).

For many reasons this should still be considered a prelim
inary document. A whole host of things remain undocumented,
many GEMDOS issues have not even been approached by our
friends at Digital Research, and there are a/whole loti of
features we'd like to add to the software.

Periodically, as our roving reporters discover new ways to
enjoy life on a roving reporter's budget of one Denebian
slime dollar a day, we will be updating the Hitchhiker's
Guide to reflect sudden, violent changes in reality. Those
fortunates who do NOT own a Sub-etha Net auto-regressive
pan-galactic update droid (if you DO own one, you know how
difficult they are to get rid of) will have to call Atari
occasionally to see if an update has occurred. We have-no
plans for another release before the end of September.
Don't call /too/ often; there's an entire /galaxy/ of intel
ligent beings out there, and our operators are getting
freaked out.

REWARD:
One Denebian Slime Dollar to the first discoverer of a mis
documentation error. /Two/ slime dollars to the second dis
coverer, and so on

c

c

Introduction November 26, 1985 3

GEMDOS BIOS Calls;
Description

and
Deviation from the GEMDOS Spec.

The ST BIOS, contrary to the GEMDOS specification, is call
able from the 68000's user mode.

The BIOS is re-entrant to three levels. That is, there may
be up to three recursive BIOS calls before the system runs
into trouble. No level checking is performed; the first
sign of an overflow will be mysterious system behavior, and
an eventual crash.

Applications should NOT attempt disk or printer I/O (this
includes getbpb calls, and standard-output redirected to the
printer device) in critical-error, system-timer or process
terminate handlers.

(0)

NOTE

The BIOS modifies the function number (and the re
turn address) pushed on the stack by the applica
tion. The function number on the stack will be ZERO
on return. [For the curious: this feature saved
several cycles per BIOS call ... J

getmpb
VOID getmpb(p mpb)
LONG p mpb; -

Upon entry, 'p mpb' points to a 'sizeof(MPB),
block to be -filled in with the system initial
Memory Parameter Block. Upon return, the MPB is
filled in.

Structures are:

#define MPB
#define MD

struct mpb
struct md

(C)1985 Atari Corp., All Rights Reserved

GemDos BIOS November 26, 1985

#define PO struct

MPB

};

MD {

{
MD *mp mf1;
MD *mp-ma1;
MD *mp=rover;

MD *m link;
long iii start;
long m-length;

4

pd

/* memory free list */
/* memory allocated list
/* roving ptr */

/* next MD (or NULL) */
/* saddr of block */
/* #bytes in block */

*/

.PD *m_own;
};

/* owner's process descriptor */

[See 'System Variables' for more information
about setting up the initial TPA.]

(1) bconstat
WORD bconstat(dev)
WORD dev;

Return character-device input status, DO.L will
be $0000 if no characters available, or $ffff if
(at least one) character is available. 'dev' can
be one of:

o
1
2
3
4
5

PRT: (printer, the parallel port)
AUX: (aux device, the RS232 port)
CON: (console, the screen)
MIDI port (Atari extension)
Keyboard port (Atari extension)
Raw console output

Legal operations on character devices are:
(0) (1) (2) (3)

Operation PRT AUX CON MIDI

bconstat() no yes yes yes
bconin() yes yes yes yes
bconout() yes yes yes yes
bcostat() yes yes yes yes

(4)
KBO

no
no
yes
yes

The MIDI device has an interrupt-driven input
buffer of 80 characters.

The keyboard device (#4) is output-only, and can
be used to configure the intelligent keyboard (or
drive it insane).

The raw console device (#5) prints characters to
the screen without interpretation (control

(C)l985 Atari Corp., All Rights Reserved

(5)
RAW

no
no
yes
no

.Y

GemDos BIOS November 26, 1985 5

characters and escape sequences have no special
meaning) •

(2) bconin
WORD bconin('dev)
WORD dev;

'dev' is the character device number described in
function 1.

Does not return until a character has been input
(busy-wait). It returns the character value in
DO.L, with the high word zero.

For the console (CON:, device 2) it returns the
IBM-PC compatible scancode in the low byte of the
upper word, and the Ascii character in the low
byte of the low word.

If bit 3 in the system variable 'conterm' is set,
then the high byte of the upper word will contain
the value of the system variable 'kbshift' for
that keystroke. [The default state for 'con
term%%3' is OFF.]

(3) bconout
VOID bconout(dev, c)
WORD dev, c;

(4) rwabs

'dev' is the character device number described in
function 1.

Output character 'c' to the device. Does not
return until the character has been written.

LONG rwabs(rwflag, buf, count, recno, dev)
WORD rwflag;
LONG buf;
WORD count, recno, dev;

Read or write logical sectors on a device.
'rwflag' is one of:

o read
1 write
2 read, do not affect media-change
3 write, do not affect media-change

'buf' pOints to a buffer to read or write to
(unaligned transfers -- on odd boundaries -- are
permitted, but they are slow). 'count' is the
number of sectors to transfer. 'recno' is the
logical sector number to start the transfer at.
'dev' is the device number, and on the ST is one

(C)1985 Atari Corp., All Rights Reserved

91

GemDos BIOS November 26, 1985 6

of:

(5) setexc

o Floppy drive A:
1 Floppy drive B: (or "logical" drive A:

on single-disk systems).
2+ Hard disks, networks, etc.

On return, OL indicates a successful operation.
Any negative number indicates an error condition.
(It is the responsibility of the BIOS to detect
media changes, and return the appropriate error
code) •

Modes 2 and 3 force a physical disk operation
that will NOT affect media change, nor result in
one (this allows the GEMDOS disk formatter, for
instance, to read and write logical sectors after
formatting a disk, and still allow the BIOS to
recognize a media change on the volume just for
matted) •

[explain about "insert-disk" critical error hack
for single-drive systems]

LONG setexc(vecnum, vec)
WORD vecnum;
LONG vec;

'vecnum' is the number of the vector to get or
set. 'vec' is the address to setup in the vector
slot; no set is done if 'vec' is -lL. The
vector's previous value is returned.

vectors $00 through $FF are reserved for the
68000.

Logical vectors $100 through $lFF are reserved
for GEMDOS. Vectors currently implemented are:

$100 System timer interrupt
$101 Critical error handler
Sl02 Process terminate hook

$103 •. $107: Currently unused, reserved

Logical vectors $200 through $FFFF are reserved
for OEM use. The ST BIOS makes no provision for
these.

(6) tickcal
LONG tickcal()

Returns a system-timer calibration value, to the

(C)1985 Atari Corp., All Rights Reserved

---- ,-- ,-, ,-,

GemDos BIOS November 26, 1985 7

nearest millisecond.

This is a silly function, since the number of
elapsed milliseconds is passed on the stack dur
ing a system-timer trap.

(7) *getbpb
BPB *getbpb(dev)
WORD dev;

'dev' is a device number (0 for drive A, etc.)
Returns a pointer to the BIOS Parameter Block for
the specified drive, or OL if (for some reason)
the BPB cannot be determined.

(8) bcostat
LONG bcostat(dev)

'dev' is a character device number, as in func
tion 1. Returns character output status:

(9) mediach

-1 Device is ready to send (no waiting on
next device-output call).

o Device is not ready to send.

LONG mediach(dev)
WORD dev;

'dev' is a drive number. Returns one of:

o Media definitely has not changed
1 Media /might/ have changed
2 Media definitely has changed

GEMDOS will respond to a return value of '1' with
a read operation. If the BIOS detects an abso
lute media change, it will return a "media
change" error at that time.

(10) drvmap
LONG drvmap()

Returns a bit-vector that contains a '1' in a bit
position (0 .. 31) when a drive is available for
that bit, or a 0 if there is no drive available
for the bit.

Installable disk drivers must correctly maintain
the longword ' drvbits' [see: System Variables].

(11) kbshift
LONG kbshift(mode)
WORD mode;

If 'mode' is non-negative, sets the keyboard
shift bits accordingly and returns the old shift

(C)1985 Atari Corp., All Rights Reserved

GemDos BIOS November 26, 1985 8

bits. If 'mode' is less than zero, returns the
IBM-PC compatible state of the shift keys on the
keyboard, as a bit-vector in the low byte of DO.

Bit assignments are:

o Right shift key
1 Left shift key
2 Control key
3 ALT key
4 Caps-lock
5 Right mouse button (CLR/HOME)
6 Left mouse button (INSERT)
7 (reserved, currently zero)

(C)1985 Atari Corp., All Rights Reserved

c

c

Extended BIOS November 26, 1985 9

Extended BIOS Functions

These ~unctions are available through trap 14. The calling
conventions are the same as for trap 13. contrary to the
GEMDOS specification, the caller does NOT have to be in
supervisor mode. It is the caller's responsibility to
cleanup arguments passed to the trap (as per the C calling
standard) .

A typical trap handler, one that works from a C binding,
might be:

trap14:
- move. 1

trap
move. 1
rts

bss
tr14ret: ds.l

(sp)+,tr14ret
#14
tr14ret,-(sp)

and it might be used like:

/*

; pop ret addr
; do BIOS func
; return to

caller . ,

; saved ret. addr

* Stupid way to set the screen to a single value.
*/

set screen to(v)
WORD v; -
{

}

extern long trap14();
register WORD *p;
register int i;

scrbase = (WORD *)trap14(3);
for (i = Ox4000; i; --i)

*p++ = v;

/*
* Xor palettes in a range with a given value
*/

set palette range(start, fin, v)
WORD start,-fin, v;
{

while (start <= fin)
trap14(7, trap14(7, -1) - v);

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985 10

}

(0) initmous
VOID initmous(type, param, vec)
WORD type;
LONG param, vec;

Initialize mouse packet handler.
of:

type Action

disable mouse

'type' is one

o
1
2
3
4

enable mouse, in relative mode
enable mouse, in absolute mode
(unused)
enable mouse, in keycode mode

'param' points to a parameter block that should
look like:

struct param {
BYTE topmode;
BYTE buttons;
BYTE xparam;
BYTE yparam;

};

'topmode' should be:

o Y position -- 0 at bottom
1 Y-position -- 0 at top

'buttons'is a parameter for the keyboard's "set
mouse buttons" command.

'xparam' and 'yparam' are the X and Y threshold,
scale or delta factors, depending on the mode the
mouse is being placed in.

(C)1985 Atari Corp., All Rights Reserved

.. j

Extended BIOS November 26, 1985 11

(1) ssbrk

For mouse absolute mode, some extra parameters
immediately follow the parameter block:

struct extra {
WORD xmax;
WORD ymax;
WORD xinitial;
WORD yinitial;

};

'xmax' and 'ymax' specify the maximum X and Y
mouse positions. 'xinitial' and 'yinitial'
specify the initial X and Y mouse position.

'vee' points to a mouse interrupt handler; see
extended function number 34, 'kbdvbase', for
further information about ikbd subsystem
handlers.

LONG ssbrk(amount)
WORD amount;

Reserve 'amount' bytes from the
Returns a long pointing to the
cated memory. This function
before the as is initialized.

top of memory.
base of the allo

MUST be called

'ssbrk' is actually pretty useless. It DOES NOT
work after GEMDOS has been brought up, since the
TPA has already been set up.

(2) physBase
LONG physBase()

-Get the screen's physical base address (at the
beginning of the next vblank).

(3) 10gBase
LONG 10gBase()

-Get the screen's logical base, right away. This
is the location that GSX uses when drawing to the
screen.

(4) getRez
WORD getRez()

-Get the screen's current resolution (returning 0,
1 or 2).

(5) setScreen
VOID setScreen(logLoc, physLoc, rez)
LONG 10gLoc, physLoc;
WORD rez;

Set the logical screen location (logLoc), the

(C)1985 Atari Corp., All Rights Reserved

97

Extended BIOS November 26, 1985 12

physical screen location (physLoc), and the phy
sical screen resolution. Negative parameters are
ignored (making it possible, for instance, to set
screen resolution without changing anything
else) .

The logical screen location changes immediately.
The physical screen location hardware register is
changed immediately, but the new screen location
will take effect after the next vertical retrace.

When resolution is changed, the screen is
cleared, the cursor is homed, and the VT52 termi
nal emulator state is reset.

(6) setPallete
VOID
LONG

setPallete(palettePtr)
palettePtr;

Set the contents of the hardware palette register
(all 16 color entries) from the 16 words pointed
to by 'palettePtr'. 'paletteptr' MUST be on a
word boundary. The palette assignment takes
place at the beginning of the next vertical blank
interrupt.

(7) setColor
WORD
WORD

setColor(colorNum, color)
cOlorNum, color;

Set the palette number 'colorNum'
palette table to the given color.
color in DO.W. If 'color' is
hardware register is not changed.

in the hardware
Return the old
negative, the

(8) floprd
WORD floprd(buf, filler, devno, sectno, trackno,

sideno, count)
LONG buf, filler;
WORD devno, sectno, trackno, sideno, count;

Read one or more sectors from a floppy disk.
'filler' is an unused longword. 'buf' must point
to a word-aligned buffer large enough to contain
the number of sectors requested. 'devno' is the
floppy number (0 or 1). 'sectno' is the sector
number to start reading from (usually 1 through
9). 'trackno' is the track number to seek to.
'sideno' is the side number to select. 'count'
is the number of sectors to read (which must be
less than or equal to the number of sectors per
track) .

On return, DO contains a status code. If DO is
zero, the operation succeeded. If DO is nonzero,
the operation failed (and DO contains an error

(C)1985 Atari Corp., All Rights Reserved

98'

(-\
./

Extended BIOS November 26, 1985 13

(9) f10pwr
WORD f1opwr(buf, filler, devno, sectno, trackno,

sideno, count)
LONG buf, filler;
WORD devno, sectno, trackno, sideno, count;

Write one or more sectors to a floppy disk.
'buf' must point to a word-aligned buffer.
'filler' is an unused longword. 'devno' is the
floppy number (0 or 1). 'sectno' is the sector
number to start writing to (usually 1 through 9).
'trackno' is the track number to seek to.
'sideno' is the side number to select. 'count'
is the number of sectors to write (which must be
less than or equal to the number of sectors per
track) .

On return, DO contains a status code. If DO is
zero, the operation succeeded. If DO is nonzero,
the operation failed (and DO contains an error
number) .

Writing to the boot sector (sector 1, side 0,
track 0) will cause the media to enter the "might
have changed" state. This will be reflected on

_the next rwabs() or mediach() BIOS call.

(10) flopfmt
WORD flopfmt(buf, filler, devno, spt, trackno, sideno,

-interlv, magic, virgin)
LONG buf, filler;
WORD devno, spt, trackno, sideno, interlv, virgin;
LONG magic;

Format a track on a floppy disk. 'buf' must
point to a word-aligned buffer large enough to
hold an entire track image (8K for 9 sectors
per-track). 'filler' is an unused longword.
'devno' is the floppy drive number (0 or 1).
'spt' is the number of sectors-per-track to for
mat (usually 9). 'trackno' is the track number
to format (usually 0 to 79). 'sideno' is the
side number to format (0 or 1). 'interlv' is the
sector-interleave factor (usually 1). 'magic' is
a magic number that MUST be the value $87654321.
'virgin' is a word fill value for new sectors.

On return, DO contains a status code. If DO is
zero, the operation succeeded. If DO is nonzero,
the operation failed (and DO contains an error
number). The format function can soft-fail when
it finds bad sectors during the verify pass. The
caller has the choice of attempting to re-format

{C)1985 Atari Corp., All Rights Reserved

99

Extended BIOS November 26, 1985 14

the media, or recording the bad sectors so they
will not be included in the file system.

A null-terminated (O.W) list of
numbers is returned in the buffer.
necessarily in numerical order. (If
no bad sectors, the first word in the
be zero.)

bad sector
They are not
there were
buffer will

A good value for 'virgin' is $E5E5. The high
nibble of each byte in the 'virgin' parameter
must not be equal to $F. Resist the temptation
to format a disk with sectors initialized to
zero.

Formatting a track will cause the media to enter
the "definitely changed" state. This will be
reflected on the next rwabs() or mediach() BIOS
call.

(11) used-by-BIOS
VOID used-by-BIOS()

[Obsolete function]

(12) midiws
VOID midiws(cnt, ptr)
WORD cnt;
LONG ptr;

Writes
number
points

a string to the MIDI port. 'cnt' is the
of characters to write, minus one. 'ptr'

to a vector of characters to write.

(13) mfpint
VOID mfpint(interno, vector)
WORD 'Interno;
LONG vector;

(14) iorec

Set the MFP interrupt number 'interno' (0 to 15)
to 'vector'. The old vector is written over (and
thus unrecoverable).

LONG iorec(devno)
WORD devno:

Returns a pointer to a serial device's input
buffer record. 'devno' is one of:

devno

o
1
2

Device

RS232
Keyboard
MIDI

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985 15

The structure of the record is:

struct iorec
{

};

LONG ibuf;
WORD ibufsiz;
WORD ibufhd;
WORD ibuft1;
WORD ibuflow;
WORD ibufhi;

/* pointer to buffer */
/* size of buffer */
/* head index */
/* tail index */
/* low-water mark */
/* high-water mark */

For RS-232, an output-buffer record immediately
follows the input-buffer record. The format of
the output-buffer record is identical.

'ibuf' pOints to the device's buffer. 'ibufsiz'
is the buffer's size. 'ibufhi' is the buffer's
high-water mark. 'ibuflow' is the buffer's low
water mark.

If flow control is enabled and the number of
characters in the buffer reaches the high-water
mark, the ST requests (according to the flow
control protocol) the sender to stop sending
characters. When the number of characters in the
buffer drops below the low-water mark, the ST
tells the sender to resume transmission.

The flow-control operation is similar for the
RS-232 output record.

(15) rsconf
VOID rsconf(speed, f1owctl, ucr, rsr, tsr, scr)
WORD speed, flowctl, ucr, rsr, tsr, scr;

Configure RS-232 port. If any parameter is -1
($FFFF), the corresponding hardware registe~ is
not set. 'speed' sets the port's baud rate, as
per:

speed Rate (bps)
----- ----------

0 19,200
1 9600
2 4800
3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS

10
11
12
13
14
15

November 26, 1985

200
150
134
110
75
50

'flow' sets the flow control, as per:

flow Flavor

16

o
1
2
3

No flow control [powerup default]
XON/XOFF (""S/-Q)
RTS/CTS
XON/XOFF and RTS/CTS [is this useful?]

'ucr', 'rsr', 'tsr', and 'scr' set the appropri
ate 68901 registers.

(16) keytbl
LONG keytbl(unshift, shift, capslock)
LONG unshift, shift, capslock;

Sets pOinters to the keyboard translation
for unshifted keys, shifted keys, and
caps-lock mode. Returns a pointer to the
ning of a structure:

tables
keys in
begin-

struct key tab {
LONG unshift;
LONG shift;
LONG capslock;

/* -) unshift table */
/* -) shift table */
/* -) capslock table */

};

Each pOinter in the structure should point to a
table 128 bytes in length. A scancode is con
verted to Ascii by indexing into the table and
taking the byte there.

(17) random
LONG random()

-Returns a 24-bit psuedo-random number in DO.L.
Bits 24 .. 31 will be zero. The sequence /should/
be different each time the system is turned on.
[The algorithm is from vol. 2 of Knuth:

S = [S * C] + K

where K = 1, C = 3141592621, and S is the seed.
S » 8 is returned. The ~nitial value of S is
taken from the frame-counter '_frclock'.]

(C)1985 Atari Corp., All Rights Reserved

(~
"-,/

Extended BIOS November 26, 1985 17

The function's behavior is surprisingly good,
except that bit 0 has an jexact/ distribution of
50%. Therefore it is probably not a good idea to
test individual bits and expect them to be well
behaved.

(18) protobt
VOID protobt(buf, serialno, disktype, execflag)
LONG buf, seria1no;
WORD disktype, execf1ag;

Prototype an image of a boot sector. Once the
boot sector image has been constructed with this
function, write it to the volume's boot sector.

'buff pOints to a 512-byte buffer (which may con
tain garbage, or already contain a boot sector
image) .

'serialno' is a serial number to stamp into the
boot sector. If 'serialno' is -1, the boot
sector's serial number is not changed. If 'seri
alno' is greater than or equal to $01000000, a
random serial number is generated and placed in
the boot sector.

'disktype' is either -1 (to leave the disk type
information alone) or one of the following:

0: 40 tracks, single sided (180K)
1: 40 tracks, double sided (360K)
2: 80 tracks, single sided (360K)
3: 80 tracks, double sided (720K)

If 'execf1ag' is 1, the boot sector is made exe
cutable. If 'execf1ag' is 0, the boot sector is
made non-executable. If 'execflag' is -1, the
boot sector remains executable or non-executable
depending on the way it was originally.

(19) f10pver
WORD flopver(buf, filler, devno, sectno, trackno,

sideno, count)
LONG buf, filler;
WORD devno, sectno, trackno, sideno, count;

Verify (by simply reading) one or more sectors
from a floppy disk. 'buff must point to a word
aligned 1024-byte buffer. 'filler' is an unused
10ngword. 'devno' is the floppy number (0 or 1).
, s'ectno' is the sector number to start reading
from (usually 1 through 9). 'trackno' is the
track number to seek to. 'sideno' is the side
number to select. 'count' is the number of

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985 18

sectors to verify (which must be less than or
equal to the number of sectors per track).

On return, DO contains a status code. If DO is
zero, the operation succeeded. If DO is nonzero,
the operation failed (and DO contains an error
number) •

A null-terminated (O.W) list of bad sector
numbers is returned in the buffer. They are not
necessarily in numerical order. (If there were
no bad sectors, the first word in the buffer will
be zero.)

(20) scrdmp
VOID scrdmp()

Dump screen to printer. [Currently this is the
monochrome-only version from CES. Will be fixed
soon.]

(21) cursconf
WORD cursconf(function, operand)
WORD function, operand;

Configure the "glass terminal" cursor.
'function' code is one of the following:

o Hide cursor
1 Show cursor
2 Cursor set to blink
3 Cursor set not to blink

The

4 Set cursor blink timer to 'operand'
5 Return cursor blink timer value

The cursor blink rate is based on the video
rate (60hz for color, 70hz for monochrome,
for PAL). The 'rate' parameter is equal to
half the cycle time.

(22) settime
VOID settime(datetime)
LONG datetime;

Sets the intelligent keyboard's idea of the
and date. 'datetime' is a 32-bit DOS-format
and time (time in the low word, date in the
word) •

(23) gettime
LONG gettime()

scan
50hz
one-

time
date
high

Interrogates the intelligent keyboard's idea of
the time and date, and returns that value (in DOS
format) as a 32-bit word. (Time in the low word,
date in the high word).

(C)l985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985 19

(24) bioskeys
VOID bioskeys()

Restores the powerup settings of the keyboard
translation tables.

(25) ikbdws
VOID ikbdws(cnt, ptr)
WORD cnt;
LONG ptr;

Writes a string to the intelligent keyboard.
'cnt' is the number of characters to write, minus
one. 'ptr' pOints to a vector of characters to
write.

(26) jdisint
VOID jdisint(intno)
WORD intno;

Disable interrupt number 'intno' on the 68901.

(27) jenabint
VOID jenabint(intno)
WORD intno;

Enable interrupt number 'intno' on the 68901.

(28) giaccess
BYTE giaccess(data, regno)
BYTE data;
WORD regno;

Read or write a
'regno' is the
with:

register on the sound chip.
register number. logically ORed

SOO to read [well, ok, you don't
/rea11y/ OR with this ..•]

S80 to write

'data' is a byte to write to the register.

Sound chip registers are not shadowed. Pro
cedures that change register values by reading a
register, modifying a local copy of it, and writ
ing the result back to the register, should be
critical sections. In particular, the BIOS (f~e
quently) updates the PORT A register, and any
code that read-modify-writes PORT A must be
atomic.

(29) offgibit
VOID offgibit(bitno)
WORD bitno;

Atomically set a bit in the PORT A register to
zero.

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985

(30) ongibit
VOID ongibit(bitno)
WORD bitno;

20

Atomically set a bit in the PORT A register to
one.

(31) xbtimer
VOID xbtimer(timer, control, data, vec)
WORD timer, control, data;
LONG vec;

'timer' is the timer number (0, 1, 2, 3
corresponding to 68901 timers A, B, C and D).
'control' is the timer's control-register set
ting. 'data' is a byte shoved into the timer's
data register. 'vec' is a pOinter to an inter
rupt handler.

Timers are allocated:

(32) dosound

Timer
A
B
C
D

VOID dosound(ptr)
LONG ptr;

Usage
Reserved for end-users and applications
Reserved for graphics (hblank sync, etc.)
System timer (200hz)
RS-232 baud-rate control (this timer's
interrupt vector is available to anyone).

Set sound daemon's
'ptr' points to
bytes.

"program counter" to 'ptr'.
a set of commands organized as

Command numbers SOO through SOF take a one byte
argument to be shoved into a sound chip register.
(Command SOO shoves the byte into register 0,
command 1 shoves the byte into register 1, and
you get the idea .••)

Command S80 takes a one byte argument which is
shoved into a temporary register.

Command S8l takes three one-byte arguments. The
first argument is a- register number to load,
using the temp register. The second argument is
a 2's complement value to'be added to the temp
register. The third argument is the termination
value. The instruction is executed (once on each
update) until the temp register equals the termi
nation value.

Commands S82 through SFF take a one-byte

(C)1985 Atari Corp., All Rights Reserved

c
Extended BIOS November 26, 1985 21

argument. If the argument is zero, the sound is
terminated. Otherwise the argument reflects the
number of system-timer ticks (at 50hz) until the
next update.

(33) setprt
WORD setprt(config)
WORD config;

Set/get printer
is -1 ($FFFF)
guration byte.
it's old value.

configuration byte. If 'config'
return the current printer confi
Otherwise set the byte and return

Bits currently defined are:

(34) kbdvbase

Bit#

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

When 0 When 1

Dot matrix Daisy wheel
Color device Monochrome device
Atari printer "Epson" printer
Draft mode Final mode
Parallel port RS232 port
Form-feed Single sheet

reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

Must be zero

LONG kbdvbase()
Returns a pointer to the base of a structure:

struct kbdvecs {
LONG midivec;
LONG vkbderr;
LONG vmiderr;
LONG statvec;
LONG mousevec;
LONG clockvec;
LONG joyvec;
LONG midisys;
LONG ikbdsys;

};

/* MIDI-input */
/* keyboard error */
/* MIDI error */
/* ikbd status packet */
/* mouse packet */
/* clock packet */
/* joystick packet */
/* system MIDI vector */
/* system IKBD vector */

'midivec' is initialized to point to a buffering

(C)1985 Atari Corp., All Rights Reserved

Extended SIOS November 26, 1985 22

routine in the SIOS. DO.S will contain a charac
ter read from the MIDI port.

'vkbderr' and 'vmiderr' are called whenever an
overrun condition is detected on the keyboard or
MIDI 6850s. [Probably not a useful vector to
grab.]

'statvec', 'mousevec', 'c1ockvec', and 'joyvec'
point to ikbd status, mouse, real-time clock, and
joystick packet handlers. The packet handlers
are passed a pOinter to the packet received in
AO, and on the stack as a LONG. GEM/GSX uses the
mouse vector. Handlers should return with an
RTS, and should not spend more than lms handling
the interrupt.

The 'midisys' and 'ikbdsys' vectors are called
when characters are available on the appropriate
6850. Initially they point to default routines
(the MIDI handler indirects through 'midivec',
and the ikbd handler parses-out ikbd packets and
calls the appropriate subsystem vectors).

(35) kbrate
WORD kbrate(initial, repeat)
WORD initial, repeat;

Get/set the keyboard's repeat rate. 'initial'
governs the initial delay (before key-repeat
starts). 'repeat' governs the rate at which
key-repeats are generated. If a parameter is -1
($FFFF) it is not changed. Times are based on
system ticks (50hz).

Returns the old key-repeat values, with 'initial'
in the high byte of the low word and 'repeat' in
the low byte of the low word.

(36) prtblk
VOID 'prtblk ()

-Prtblk() primitive [see manual pages on PRTSLK].

(37) vsync
VOID vsync()

Waits until the next vertical-blank interrupt and
returns. Useful for synchronizing graphics
operations with vblank.

(38) supexec
VOln supexec(codeptr)
LONG codeptr;

'codeptr' points to a piece of code, ending in an
RTS, that is executed in supervisor mode. The

(C)1985 Atari Corp., All Rights Reserved

Extended BIOS November 26, 1985 23

code cannot perform BIOS or GEMDOS calls. This
function is meant to allow programs to hack
hardware and protected locations without having
to fiddle with GEMDOS get/set supervisor mode
call.

(39) puntaes
VOID puntaes()

Throws away the AES, freeing up any memory it
used. If the AES is still resident, it will be
discarded and the system will reboot. If the AES
is not resident (if it was discarded earlier) the
function will return.

There is NO way to throwaway the AES and return
the reboot MUST be performed. [Ok, ok -- we

know this is a lose.]

(C)1985 Atari Corp., All Rights Reserved

Terminal Escapes November 26, 1985 24

CONOUT Escape Sequences

These are the escape functions interpreted
conout() function. For the most part they
terminal [that's the easy one to do]. There
to hack screen colors, control screen wrap,
simple functions.

by the BIOS'
emulate a VT-52
are extensions
and a few other

ESC A
Cursor Up

ESC B

This sequence moves the cursor up one line. If the
cursor is already on the top line of the screen, ~his
sequence has no effect.

Cursor Down

ESC C

the cursor down one line. If the cursor is
the last line of the screen, this escape
no effect.

This moves
already on
sequence has

Cursor Forward

ESC D

This moves the cursor one position to the right. If
this function would move the cursor off the screen,
this sequence has no effect.

Cursor Backward

ESC E

This move the cursor one position to the left. This is
a non- destructive move because the character over
which the cursor now rests is not replaced by a blank.
If the cursor is already in column 0, this escape
sequence has no effect.

Clear Screen (and Home Cursor)

ESC H

This moves the cursor to column 0, row I (the top
left-hand corner of the screen), and clears all charac
ters from the screen.

Home Cursor

ESC I

This move the cursor to column 0, row O. The screen is
NOT cleared.

Reverse Index
Moves the cursor to the same horizontal position on the

(C)1985 Atari Corp., All Rights Reserved

(/
Terminal Escapes November 26, 1985 25

ESC J

preceding lines. If the cursor is on the top line, a
scroll down is performed.

Erase to End of Page

ESC K

Erases all the information from cursor (including cur
sor position) to the end of the page.

Clear to End of Line
This sequence clears the line from the current cursor
position to the end of the line.

ESC L
Insert Line

ESC M

Inserts a new blank line by moving the line that cursor
is on, end all following lines, down one line. Then,
the cursor is moved to the beginning of the new blank
line.

Delete Line
Deletes
places
all the
line at

the contents of the line that the cursor is on,
the cursor at the beginning of the line, moves
following lines up one line, and adds a blank
the bottom.

ESC Y
Position Cursor

ESC b

The two characters that follow the "Y" specify the row
and column to which the cursor is to be moved. The
first character specifies the row, the second specifies
the colum. Rows and columns number from 1 up.

Set Foreground Color
The Foreground Color is the color in which the charac
ter is displayed.

Escape-b must be followed by a color selection charac
ter. Only the four least significant bits of the color
character are used:

Bit Pattern of Control Byte:

7 6 5 4 3 2 1 o
+-----+-----+-----+-----+-----+-----+-----+-----+

x x x x color index

+-----+-----+-----+-----+----~+-----+-----+-----+
(X = "don't care")

(C)1985 Atari Corp., All Rights Reserved

//1

Terminal Escapes November 26, 1985 26

ESC c
Set Background Color

ESC d

This function selects Background Color, the color of
the cell that contains the characters.

Escape-c must be followed by a color selection charac
ter. Only the four least significant bits of the color
character are used. (See diagram for ESC-b function)

Erase Beginning of Display

ESC e

This sequence erases from beginning of the display to
the cursor position. The cursor position is erased
also.

Enable Cursor

ESC f

This sequence causes the cursor to be invisible.
cursor may still be moved about on the display,
escape sequence defined in this appendix.

The
using

Disable Cursor

ESC j

This sequence causes the cursor to be invisible.
cursor may still be moved about on the display,
escape sequences defined in this appendix.

The
using

Save Cursor Position

ESC k

This sequence preserves
You can restore the
position with ESC-k.

the current cursor position.
cursor to the previously saved

Restore Cursor Position

ESC 1

This sequence restores the cursor to a previously saved
position. If you use this sequence without having pre
viously saved the cursor position, then the cursor is
moved to the home position, the top left-hand corner of
the screen.

Erase Entire Line

ESC 0

This sequence erases an entire line and moves the cur
sor to the leftmost column.

Erase Beginning of Line

ESC P

Erases from the beginning of the line to the cursor and
includes the cursor position.

Enter Reverse Video Mode

(C)1985 Atari Corp., All Rights Reserved

II~

C···"
, ~j

Terminal Escapes November 26, 1985 27

ESC q

Enters the reverse video mode so that characters are
displayed as background color characters on a fore
ground colored cell.

Exit Reverse Video Mode
Exits the reverse video mode.

ESC v
Wrap at End of Line

This sequence causes the first character past the last
displayable position on a line to be automatically
placed in the first character position on the next
line. The page scrolls up if necessary.

ESC w
Discard at End of Line

Following invocation of this sequence, after the last
displayable character on a line has been reached, the
characters overprint. Therefore, only the last charac
ter received is displayed in the last column position.

(C)1985 Atari Corp., All Rights Reserved

Interrupts November 26, 1985 28

Traps, Interrupts and Interrupt vectors

The ST makes use of four of the sixteen TRAP vectors pro
vided by the 68000. All other traps are available for
applications.

Trap

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Use

(none)
GEMDOS interface
DOS extensions (GEM, GSX)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
(none)
BIOS
Atari BIOS extensions
(none)

68901 interrupts are based at $100. The sixteen longwords
at this location are bound by the hardware to:

vector
$100
$104
$108
SlOe
$110
$114
$118
$llc
$120
$124
$128
$12c
$130
$134
$138
$13c

Function
(disabled) Parallel port into
(disabled) RS232 Carrier Detect
(disabled) RS232 Clear-To-Send
(disabled)
(disabled)
200hz System clock
Keyboard/MIDI [6850]
(disabled) Polled FDC/HDC
HSync (initially disabled)
RS232 transmit error
RS232 transmit buffer emtpy
RS232 receive error
RS232 receive buffer full
(disabled)
(disabled) RS232 ring indicator
(disabled) Polled monitor type

(C)1985 Atari Corp., All Rights Reserved

c
Interrupts November 26, 1985 29

The divide-by-zero vector is pointed at an RTE.

All other traps (Bus Error, et al) are pointed at a handler
that dumps the processor state and attempts to terminate the
current process. [See: System Initialization]

The Line 1010 ("Line Aye") vector is used as a short-circuit
around the VDI to the ST's graphics primitives. It is a
powerful and useful interface; see the 'Line A' document for
further information.

The Line 1111 ("Line Eff") trap is currently being used
internally to the system. If you fiddle with this vector
the AES will break.

The FDC/HDC interrupt may be enabled by a hard disk device
driver. The floppy disk code, however, assumes this inter
rupt is disabled (it busy-waits on the input bit's state).
It is the responsibility of other drivers in the system to
ensure that, when the floppy disk read/write/format code
gets control, the FDC/HDC interrupt is disabled.

The processor's normal interrupt priority level is 3. This
is to prevent HBLANK (autovector level 2) interrupts from
occurring on every scanline. [It would eat about 10% of a
system running in a color graphics mode, or about 22% of a
system running in monochrome. Yuck.] The default HBLANK
interrupt handler modifies the interrupted process' IPL to 3
and performs an RTE. This is to discourage programs from
using IPL 0 -- to use HBLANK, use an IPL of 1.

To prevent "jittering" in programs that change screen colors
on the fly, using the HBLANK and HSYNC interrupt vectors,
the following hack will keep the system intact and still
yield a solid display:

[1] Re-vector the keyboard/MIDI interrupt to a routine
that lowers the IPL to 5 and then jumps through the
original vector.

[2]

[3]

During the "critical" section of the screen, re
vector the 200hz system clock interrupt vector to
point to a routine that increments a counter and
RTEs. The counter keeps track of the number of sys
tem ticks that occur during the critical section.

After the critical section, block interrupts (at IPL
6) and call the sytem clock handler (JMP through the
interrupt vector, with a fake SR and return address
on the stack) the number of times indicated by the
counter.

(C)1985 Atari Corp., All Rights Reserved

TRAPs from interruptsNovember 26, 1985 30

Calling the SIOS
From an Interrupt Handler

[This section needs some work.]

It is possible to do a BIOS call from an interrupt
handler. More specifically, it is possible for EXACTLY
ONE interrupt handler to call the BIOS at a time. It is
NOT possible to do GEMDOS, VDI or AES traps from inter
rupt handlers.

The basic problem is a critical section in the BIOS trap
handler code. The critical section occurs when the
registers are being saved or restored in the register
save area; the variable "savptr" must be maintained
correctly.

*+
*
* *-

Calling the BIOS from an interrupt, safely.

* These are from the BrOS listing:
savptr = $4a2; BIOS register-save ptr
sav amt = 23*2; #words BIOS saves on the stack

interrupt_handler:

* Create safe TRAP enviroment:
sub.l #sav_amt,savptr

• lotsa BIOS traps (#13, #14 only)

* Restore old trap enviroment:
add.l #sav_amt,savptr

rte ; (or whatever)

DANGER ---
Only IIIONEIII interrupt handler may do this. That is,

(C)1985 Atari Corp., All Rights Reserved

TRAPs from interruptsNovember 26, 1985 31

two interrupt handlers cannot nest and do BIOS calls in
this manner.

(C)1985 Atari Corp., All Rights Reserved

//1'

System Variables November 26, 1985 32

System Variables

This is a list of variables in the ST BIOS that have been
"cast in concrete". Their locations and meanings in
future revisions of the ST BIOS are guarenteed not to
change.

Any other variables in RAM, routines in the ROM, or vec
tors below $400 that are not documented here are almost
certain to change. It is important not to depend on
undocumented variables or ROM locations.

etv timer (long) $400
-Timer handoff vector (logical vector $100). See GEM

DOS documentation.

etv critic (long) $404
-Critical error handoff vector (logical vector $101).

See GEMDOS documentation.

etv term (long) $408
-Process-terminate handoff vector (logical

$102). See GEMDOS documentation.

etv xtra (longs) $40c
-Space for logical vectors $103 through $107).

memvalid (long) $420

vector

Contains the magic number $752019F3, which (together
with 'memva12') validates 'memcntlr' and indicates a
successful coldstart.

memcntlr (byte) $424
Contains memory controller configuration nibble (the
low nibble). For the full story, see the hardware
manual. Some popular values are:

Memory size
128K
512K
256K (2 banks)
1MB (2 banks)

resvalid (long) $426

Value
o
4
o
5

If 'resvalid' is the magic number $31415926 on system
RESET, the system will jump though 'resvector'.

(C)1985 Atari Corp., All Rights Reserved

(,c- .. ,\

(~

(.. ~

/"

System Variables November 26, 1985 33

resvector (long) $42a
System-RESET bailout vector, valid if 'resvalid' is a
magic number. Called early-on in system initializa
tion (before /any/ hardware registers, including the
memory controller configuration register, have been
touched). A return address will be loaded into A6.
Both stack pointers will contain garbage.

phystop (long) $42e
Physical top of RAM. Contains a pointer to the first
unusable byte (i.e. $80000 on a 5l2K machine).

membot (long) $432
- Bottom of available memory. The 'getmpb' BIOS func

tion uses this value as the start of the GEMDOS TPA.

memtop (long) $436
- Top of available memory. The 'getmpb' BIOS function

uses this value as the end of the GEMDOS TPA.

memva12 (long) $43a
Contains the magic number $237698AA which (together
with 'memvalid') validates 'memcntlr' and indicates a
successful coldstart.

flock (word) $43e
Used to lock usage of the DMA chip. Should be
nonzero to ensure that the OS does not touch the DMA
chip registers during vertical blank. Device-driver
writers TAKE NOTE: this variable MUST be nonzero in
order to make use of the DMA bus.

seekrate (word) $440
Default floppy seek rate. Bits zero and one contain
the default floppy disk seek rate for both drives:

00 6ms
01 l2ms
10 2ms
11 3ms [default]

timr ms (word) $442
System timer calibration (in ms). Should be $14 (20
decimal), since the timer handoff vector is called at
50hz. Returned by BIOS function I tickcal', and
passed on the stack to the timer handaff vector.

fverify (word) $444
- Floppy verify flag. When nonzero,

floppies are read-verified. When
verifies take place. The default
system-reset) is to verify.

all writes to
zero, no write
state (after

(C)1985 Atari Corp., All Rights Reserved

I/f

System Variables November 26, 1985 34

bootdev (word) $446
- contains the device number the system was booted

from. The aIOS constructs an enviroment string from
this variable before bringing up the desktop.

palmode (word) $448
When nonzero, indicates the system is in PAL (50hz
video) mode. When zero, indicates the system is in
NTSC (60hz video) mode.

defshiftmd (byte) $44a
Default video resolution.
change from monochrome
'defshiftmd'contains the
switch to.

sshiftmd (word) $44c

If the system is forced to
mode to a color resolution,
resolution the system will

Contains shadow for 'shiftmd' hardware register:

o 320x200x4 (low resolution)
1 640x200x2 (medium rez)
2 640x400xl (high rez / "monochrome")

v bas ad (long) $44e
PoInter to base of screen
byte boundary. Always
memory.

vblsem (word) $452

memory. Always on a 512-
points to 32K of contiguous

Semaphore to enforce mutual exclusion in vertical
blank interrupt handler. Should be '1' to enable
vblank processing,

nvbls (word) $454
Number of longwords that '_vblqueue' points to. (On
RESET, defaults to 8).

_vblqueue (long) $456
Pointer to a vector of pointers to vblank handlers.

colorptr (long) $45a
Pointer to a vector of 16 words to load into the
hardware palette registers on the next vblank. If
NULL, the palettes are not loaded. 'colorptr' is
zeroed after the palettes are loaded.

screenpt (long) $45e
Pointer to the base
the next vblank.
changed.

_vbClock (long) $462

of screen memory, to be setup on
If NULL, the screen base is not

(C)1985 Atari Corp., All Rights Reserved

(/
System Variables November 26, 1985 35

Count of vertical-blank interrupts.

frclock (long) $466
- Count of vertical-blank interrupts that were pro

cessed (not blocked by 'vblsem').

hdv init (long) $46a
-Vector to hard disk initialization. NULL if unused.

swv vec (long) $46e
-The system follows this vector when it detects a
transition on the "monochrome monitor detect" input
(from low to high rez, or visa-versa). 'swv vec'
initially pOints to the system reset handler; there
fore the system will reset if the user changes moni
tors.

hdv bpb (long) $472
-Vector to routine to return a hard disk's Bios Param
eter Block (BPB). Same calling conventions as the
BIOS function for GETBPB. NULL if unused.

hdv rw (long) $476
-Vector to routine to read or write on a hard disk.

Same calling conventions as the BIOS function for
RWABS. NULL if unused.

hdv boot (long) $47a
-Vector to routine to boot from hard disk.

unused.

hdv mediach (long) $47e

NULL if

-Vector to routine to return
change mode. Same as BIOS
NULL if unused.

a hard disk's media
binding for floppies.

cmdload (word) $482
- When nonzero an attempt is made to load and execute

COMMAND.PRG from the boot device. (Load a shell or
an application in place of the desktop). Can be set
to nonzero by a boot sector.

conterm (byte) $484
Contains attribute bits for the console system:

Bit Function
o nonzero: enable key-click
1 nonzero: enable key-repeat
2 nonzero: enable bell when ~G is written to CON:
3 nonzero: on BIOS conin() function, return the

current value of 'kbshift' in bits
24 .. 31 of DO.L.

zero: leave bits 24 .• 31 alone •.•

(C)1985 Atari Corp., All Rights Reserved

I.J../

System Variables November 26, 1985 36

themd (long) S48e
Filled in by the BIOS on a 'getmpb' call; indicates
to GEMDOS the limits of the TPA. The structure is:

struct MD
{

MD *m link; /* ->next MD [NULL]
long m start; /* start of TPA */

*/

long m-length; /* size of TPA (bytes)
PD *iii_own; /* ->MD's owner [NULL]

} . ,

The structure may NOT be changed once GEMDOS has been
initialized. In addition, there may be only ONE of
these suckers (you can't use the 'm link' field in
the first MD). Someday these (with-a better GEMDOS)
these limitations may be lifted.

savptr (long) S4a2
Pointer to register save area for BIOS functions.

nflops (word) S4a6
- Number of floppy disks actually attached to the sys

tem (0, 1, or 2).

sav context (long) S4ae
-Pointer to saved processor context (more on this
later) .

bufl (long) S4b4
- Two (GEMDOS) buffer-list headers. The first list

buffers data sectors, the second list buffers FAT and
directory sectors. Each of these pointers points to
a BCB (Buffer Control Block), that looks like:

struct BCB
{

BCB *b link; /* next BCB */
int b bufdrv; /* drive#, or -1
int b=buftyp; /* buffer type */

*/

int b bufrec; /* record# cached here
int b-dirty; /* dirty flag */

*/
*/

*/

DMD *b dm; /* -> Drive Media Descriptor
char *b=bufr; /* -> buffer itself */

} . ,

hz 200 (long) S4ba
-Raw 200hz system timer tick. Used to divide-by-four

for a 50hz system timer.

(C)1985 Atari Corp., All Rights Reserved

*/

System Variables November 26, 1985 37

the env (byte[4]) $4be
-The default enviroment string. Four bytes of $00

drvbits (long) $4c4
- 32-bit vector, returned by the "DRIVEMAP" BIOS func

tion (#10), of "live" block devices. If any floppies
are attached, this value is 3.

dskbufp (long) $4c6
- Points to a 1024-byte disk buffer somewhere in the

system's BSS. The buffer is ALSO used for some GSX
graphics operations, and should not be used by inter
rupt routines.

prt cnt (word) $4ee
- Initialized to -1. Pressing the ALT-HELP key incre

ments this. The screen dump code checks for $0000 to
start imaging the screen to the printer, and checks
for nonzero to abort the screen print.

sysbase (long) $4f2
- Points to the base of the OS (in ROM or RAM).

shell p (long) $4f6
- Points to shell-specific context.

end os (long) $4fa
-Points just past the last byte of low RAM used by the
operating system. This is used as the start of the
TPA (end_os is copied into _membot).

exec os (long) $4fe
This points to the shell that
after system initialization
this points to the first byte
mente

gets exec'd by the BIOS
is complete. Normally

of the AES' text seg-

POST MORTEM INFORMATION

If a diagnostic cartridge is not inserted, all "unused"
interrupt vectors are pointed to a handler in the BIOS

(C)1985 Atari Corp., All Rights Reserved

System Variables November 26, 1985 38

that saves the processor's state in low memory (see
below) and displays a number of icons in the middle of
the screen. The handler attempts to restart the system
after the crash -- it is not always (honestly: it isn't
very often) successful.

The exact number of icons represents the exception that
occurred (2 for bus error, 3 for address error, and so on
-- see the ~Exception Processing' section in the Motorola
68000 manual).

The processor state is saved in an area of memory that is
NOT touched by a system reset. Therefore it is possible
to examine a post-mortem dump after resetting the system
to reboot.

Post-mortem dump area;
*+
*
*
*

processor state saved here on uncaught exception:

*-
proc_ lives equ $380 · $12345678 iff valid ,
proc_dregs equ $384 · saved 00-07 ,
proc_aregs equ $3a4 · saved AO-A6, supervisor ,
proc_enum equ $3c4 · first byte is exception ,

equ $3c8 · saved user A7 ,

A7

proc_usp
proc_stk equ $3cc · sixteen words popped from ,

If the longword at $380 is the magic number $12345678,
then the following information is valid (unless it's been
stepped on by another crash).

DO-07, AO-A6, and the supervisor A7 are copied to loca
tions $384 to $3cO. The exception number (2 for bus
error, etc.) is recorded in the byte at $3c4. The user
A7 is copied to $3c8. The first sixteen words at the
supervisor A7 are copied to the sixteen words starting at
$3cc.

(C)1985 Atari Corp., All Rights Reserved

(SSP)
,/~~',

SSP

C'"
'. --/

Supervisor Mode November 26, 1985

Getting Into and Out Of
Supervisor Mode in GEMDOS

39

DRI hasn't bothered to document this function yet, so

Yes, there IS a way to get into (or out of) supervisor
mode in GEMDOS. While you read the following descrip
tion, please bear in mind that the original intent was to
provide a binding usable at the C level. It is clumsy to
use from assembly language.

The function is Trap 1, number 32 (hex $20).
three hats:

LONG super(stack)
LONG stack;

It wears

If 'stack' is -1 ($FFFFFFFF), then the function returns
(in DO.L) either a 0 (indicating that the processor is in
user mode) or a 1 (indicating that the processor is in
supervisor mode).

If the function is called when the processor is in user
mode, GEMDOS will return with the processor in supervisor
mode. The old value of the supervisor stack will be
returned in DO.L. If 'stack' was NULL ($00000000), then
the supervisor stack will be the same as the user stack
before the call. Otherwise the supervisor stack will be
set to 'stack'.

If the function is called when the processor is in super
visor mode, GEMDOS will return with the processor in user
mode. 'stack' should be the value of the supervisor
stack that was returned by the first call to the func
tion.

The old value of the supervisor
before the process terminates.
result in a crash).

stack MUST restored
(Failure to do so may

(C)1985 Atari Corp., All Rights Reserved

Supervisor Mode November 26, 1985

An example of how to use it from C:

superstuff()
{

}

long save ssp;
long trapI () ;

/*
* Get into supervisor mode:
*/

save_ssp = trap1(Ox20, OL);

••• do lots of supervisor stuff

/* * Get out of supervisor mode,
* restore old supervisor stack:
*/

trap1(Ox20, save_ssp);

(C)1985 Atari Corp., All Rights Reserved

40

Supervisor Mode November 26, 1985 41

(_j And from assembly:

*+
* superstuff - play around in supervisor mode
* *
superstuff:

do user stuff

clr.l -(sp)
move.w #$20,-(sp)
trap #1
addq #6,sp
move. 1 dO, save_ssp

do supervisor stuff

move. 1
move.w
trap
addq

save ssp,-(sp)
#$20;-(sp)
#1
#6,sp

do user stuff

· we want our own stack ,
· get/set supervisor mode ,
· (do it) ,
· (clean up) ,
· save old SSP ,

; push old SSP
; get/set supervisor mode
; (do it)
; (clean up)

(C)1985 Atari Corp., All Rights Reserved

Relocation Format November 26, 1985

GEMDO$ Relocation Format
(Clarification to GEMDOS manual)

42

This is the REAL GEMDOS fixup bytestream format, as
implemented by the function xpgmld() in GEMDOS (as
opposed to what is documented in the GEMDOS manual):

$00
$01

no more relocation information
add $FE to the dot

$02 .• $FF add N to the dot, and fixup the longword there

So, to fixup a longword $100 bytes from the current one
(the dot), RELMOD would generate:

$01 $02

[note that only longwords can be fixed up, and that they
must be on word boundaries.]

(C)1985 Atari Corp., All Rights Reserved

/~I

Error Numbers November 26, 1985 43

Error Handling

Error numbers are returned by certain BIOS and most GEM
DOS functions. Note that some GEMDOS functions return
WORD error numbers instead of LONG ones (that is, bits
16 •• 31 of DO.L are garbage). Someday DRI will get around
to fixing these .•••

[Describe critical-error handler calling conventions,
whenever DRI gets around to defining them so they're use
ful.]

o (OK)
Successful action (the anti-error).

-1 (ERROR)
All-purpose error.

-2 (DRIVE NOT READY)
Device was not ready, or was not attached, or has
been busy for a long time.

-3 (UNKNOWN CMD)
Device aidn't know about a command.

-4 (CRC ERROR)
Soft error while reading a sector.

-5 (BAD REQUEST)
Device couldn't handle a command (the command might
be valid in other contexts). Command parameters may
be bad.

-6 (SEEK ERROR)
Drive couldn't seek.

-7 (UNKNOWN MEDIA)
Attempt-to read foriegn media (usually means a cor
rupted or zero boot sector).

-8 (SECTOR NOT FOUND)
Sector-could not be located.

-9 (NO PAPER)
Printer is out of paper (this cannot happen on disks,
right?)

(C)l985 Atari Corp., All Rights Reserved

/t29

Error Numbers November 26, 1985 44

-10 (WRITE FAULT)
Failure on a write operation.

-11 (READ FAULT)
Failure on a read operation.

-12 (GENERAL MISHAP)
Reserved-for future catastrophes. [This seems to be
a useless error right now.]

-13 (WRITE PROTECT)
Attempt to write on write-protected or write-only
media.

-14 (MEDIA CHANGE)
Media changed since last write -- the operation (read
or write) did NOT take place. (This is more a mes
sage to the file system than a real error).

-15 (UNKNOWN DEVICE)
Operation specified a device the BIOS doesn't know
anything about.

-16 (BAD SECTORS)
Format operation succeeded (for the most part) but
yielded bad sectors.

-17 (INSERT DISK)
Ask user to insert a disk (this is more a message to
the shell GEM or COMMAND.PRG to start a
dialouge with the user).

(C)1985 Atari Corp., All Rights Reserved

(.... ~

(" /

Cartridges November 26, 1985 45

Cartridge Support

There are two kinds of cartridges. 'Application' car
tridges are recognized by GEM and the desktop. 'Diagnos
tic' cartridges are executed almost immediately after
system reset (before the 68000 touches any RAM), and may
take over the entire system.

The ST hardware maps cartridge space to a 128K region
starting at $FAOOOO, extending to $FBFFFF. The longword
at $FAOOOO has special meaning to the OS. It should be
one of the following:

$FA52255F indicates that a diagnostic cartridge
is inserted.

$ABCDEF42 indicates that an application cartridge
is inserted.

anything else is ignored.

On system RESET, if a diagnostic cartridge is inserted
the OS will (almost immediately) jump to location
$FA0004. A6 will contain a return address (should the
cartridge ever wish to continue with system initializa
tion). The stack pOinter will be garbage. Most of the
ST's hardware registers will not have been touched. The
most significant of these registers is the memory con
troller the diagnostic cartridge is responsible for
sizing memory and initializing the memory controller.

Application cartridges should provide 'application
header' at location $FA0004 (immediately following the
magic longword). An application header contains informa
tion about an application in ROM. There may be any
number of applications in a cartridge.

CARTRIDGE APPLICATION HEADER
+-----------------------+ I CA NEXT I 0 ->next header

+-----------------------+ I CA INIT I 4 ->init code

+-----------------------+ I CA RUN I 8 ->run code

+-----------------------+ I CA TIME I $c DOS time
+-----------------------+

(C)1985 Atari Corp., All Rights Reserved

/~I

Cartridges November 26, 1985 46

CA DATE $e DOS date
+-----------------------+ I CA SIZE I $10 "size" of apple

+-----------------------+
CA NAME $14 asciz name

(NNNNNNNN.EEE\O)

+-----------------------+
CA NEXT is a pOinter to the next application header. If
CA-NEXT is $00000000, then there are no more headers in
the list.

CA INIT is a pOinter to the application's initialization
cooe. If CA INIT is NULL, there is no initialization
code. The initialization vector is called at system
startup time, as controlled by magic bits in the high
byte of this longword (see below).

CA RUN is a pointer to the application's main entry
poInt.

CA TIME and CA DATE are DOS-format time and date stamps.
[They are kind of useful for keeping track of version
numbers and things like that, but are otherwise useless]
CA SIZE is a silly field that is the "size" of the appli
cation. [This field is pointless, but DRI wanted it,
sooo •••.]

CA NAME is the NULL-terminate
It should be in the same
filename, without a path (i.e.
acters, optionally followed
characters of extension, and a

name of the application.
format as a DOS acceptable
up to eight leading char
by a dot and up to three
final NUL ($00».

The high 8 bits (24 •• 31) of CA INIT have special meaning:
o - Set to execute application (through CA INIT vec

tor) before interrupt vectors, display memory
(etc.) have been initialized.

1 - Set to ~xecute application (through CA INIT vec
tor) just before GEMDOS is initialized~

2 - (unused)

3 - Set to execute application (through CA INIT vec
tor) immediately before a disk-boot. [***FOR
NOW*** Applicable to boot ROM only.]

(C)l985 Atari Corp., All Rights Reserved

c

(~ i ,
~

c

Cartridges November 26, 1985 47

4 - (unused)

5 Set if the application is a desk accessory.

6 Set if the application is NOT a GEM application.
That is, it runs under DOS and doesn't do any AES
calls.

7 - Set if non-GEM application (see bit 6) requires
commandline parameters before execution.

(C)1985 Atari Corp., All Rights Reserved

Vertical Blank November 26, 1985 48

Vertical Blank Interrupts

This section describes the OS's Vertical Blank Interrupt
(VBI) handler, entered through the VBI vector at $70.

The VBI handler increments the "frame counter" 'frclock'
and then checks for mutual exclusion by testing 'vblsem'.
If 'vblsem' is less than or equal to zero, no other VBI
code is executed. Otherwise, all registers are saved on
the stack and the "vblank counter" 'vbclock' is incre
mented.

If the system is currently in high-resolution mode
(SHIFTMD >= 2) and a low-resolution monitor is attached,
the resolution is set to 'defshiftmd'. (or zero, if
'defshiftmd' is >= 2). This test is necessary because
some low-resolution monitors may "burn up" when driven by
the ST's high-resolution video signal.

The handler calls the cursor-blink routine.

If 'colorptr' is nonzero, then the 16 color palettes are
loaded from the 16 words that 'colorptr' points to.
'colorptr' is then zeroed.

If 'screenpt' is nonzero, then the screen's physical base
address set to 'screenpt'. 'screenpt' is then zeroed.

There may be any number of "deferred" VBI vectors. These
are executed just before the VBI handler returns. The
variable 'nvbls" contains the current number of deferred
vector slots. 'vblqueue' points to an array of NVBL
pOinter slots that in turn point to deferred VBI code or
NULL (in the case of an empty slot):

(C)1985 Atari Corp., All Rights Reserved

/

(;
Vertical Blank November 26, 1985 49

+----------+
Ivblqueue 01----+
+----------+ 1

+--------------------------+
........... 'NVBL' entries

/ +-------+-------+-------+-------+-------+-------+
+-> 1 0 1 1 1 0 1 1 1 +---1---+-------+-------+---1---+-------+-------+

+---> handler... +---> handler ...

The as initially allocates 8 VBI slots. The first slot
is reserved for GEM's VBI code. To add another deferred
handler, place a pointer in a free (NULL) slot. If there
are no more free slots, then allocate a larger VBI array,
copy the current vectors to the new array (clearing any
new, unused entries), and update 'vblqueue' and 'nvbls'.

Deferred VBI handlers should return with RTS, not RTE.
They may use any registers except the user stack-pointer.

Applications are responsible for cleaning up vbl-vectors
they have installed prior to process termination.

(C)1985 Atari Corp., All Rights Reserved

System Startup November 26, 1985 50

ROM System Initialization

[1] Initial PC set from location $FCOOOO, initial SP
(trash, really) set from location $FC0004.

Catch system RESET. Raise processor IPL to 7, exe
cute RESET instruction to reset hardware registers.

If a diagnostic cartridge is inserted, load a return
address into A6 and jump to the cartridge.

[2] If memory was setup (i.e. this is a warmstart) the
initialize the memory controller.

[3] If the RESET-bailout vector is valid, load a return
address into A6 and jump to the reset handler.

[4] Initialize the PSG (deselect floppies), setup
scan rate (50 or 60hz), write default values to
color palettes, and set the display pointer
OxlOOOO.

the
the
to

If memory was sized on a previous reset, go to step 8.

[5] Size both banks of memory.

[6] [This used to perform a memory test.]

[7] Once memory has been sized and zeroed, record the
fact by setting two magic longwords in low memory.

[8] Clear the low 64K of memory, from 'endosbss' to
Oxffff. Initialize all kinds of OS variables.
Setup interrupt vectors. Call the serial BIOS' ini
tialization entry-point.

[9] Execute %%2 cartridge applications.

Initialize the screen resolution.

[11] Execute %%0 cartridge applications.

[12] Enable interrupts (all but HBLANK) by bringing the
IPL to 3.

[13] Execute %%1 cartridge applications.

(C)1985 Atari Corp., All Rights Reserved

1.:1' ~.

(j

C·· \
"

System Startup November 26, 1985 51

[14] Call GEMDOS' initialization routine.

[15] Attempt to boot from floppy disk, if the system
variable 'bootdev' is less than 2. If there are no
floppies, no attempt is made to boot from floppy.

Attempt to load a boot sector from the DMA bus. For
each of the eight DMA bus devices, a read operation
is attempted on logical sector O. If the read is
successful, and the sector checksums to $1234, then
the sector is executed. [See the section "DMA Bus
Boot"]

ALL devices are checked. The boot sector code may
return, in which case the BIOS will attempt to load
boot sectors from the rest of the devices.

[16] Turn on the cursor. Do autoexec. Attempt to exec
COMMAND.PRG.

[17] Do autoexec. Kludge up an enviroment string.
the AES (in ROM).

Exec

If [16] or [17] ever complete, restart the system by
going back to [1].

(C)1985 Atari Corp., All Rights Reserved

/~7

System Startup November 26, 1985

YES
/-<

System
RESET

I
V

+-----------------------+
I Diagnostic I

Cartridge check
+-----------------------+

I
V

+-----------------------+

(1)

Memory Controller (2)
(fast init)

+--------~--------------+
I
V

+-----------------------+ I RESET bailout I (3)
vector

+-----------------------+
I
V

+-----------------------+
init PSG (4)
init 50hz/60hz
init palettes
display at $10000

+-----------------------+
I
V

Has memory been
sized? [is this
a warmstart?]

NO

V

+-----------------------+
I size memory I

and clear it
+-----------------------+

I
V

+-----------------------+ I indicate successful I
warms tart

+-----------------------+
I

(7)

(C)1985 Atari Corp., All Rights Reserved

52

C',·'\
, /

System Startup November 26, 1985

\-------------\
I
V

+-----------------------+
Clear bottom 64K (8)
Init variables
Init interrupts
Init serial BIOS

+-----------------------+
I
V

+-----------------------+ I Execute %%2 cartridge I
applications

+-----------------------+
I
V

+-----------------------+ I Init screen I
resolution

+-----------------------+
I
V

+-----------------------+ I Execute %%0 cartridge I
applications

+-----------------------+
I
V

+-----------------------+

(9)

(10)

(11)

I Bring IPL to 3 I (12)

+-----------------------+
I
V

+-----------------------+
I Execute %%1 cartridge I

applications
(13)

+-----------------------+
I
V

+-----------------------+ I Initialize GEMDOS I (14)

+-----------------------+
I
V

+-----------------------+ (15)
1 Attempt to boot 1>------\

from floppy <--\
+-----------------------+ 1

1 \---/

execute
boot
sector

(C)1985 Atari Corp., All Rights Reserved

53

System Startup November 26, 1985

YES
/-<

I
V

+-----------------------+ (15a)
Poll devices on >------\
DMA bus, requesting

boot sectors
+-----------------------+

I
V

cmdload == 0 ?

NO I
V

+-----------------------+

<--\

I
\---/

Turn on cursor (16)
Exec \AUTO*.PRG
Exec COMMAND.PRG

+------~----------------+
I \--------------------\

\ ----_._------- \
I
V

+-----------------------+
Exec \AUTO*.PRG (17)
Kludge up enviro.

string
Exec AES (in ROM)

+-----------------------+
<-------------------/

V
Reset system,

start over again

execute
boot
sector

(C)1985 Atari Corp., All Rights Reserved

54

(
ROM Header November 26, 1985

PUNTAES and the
OS Header

(Gory Details)

The OS variable sysbase [$4F2] points to the base
operating system. The operating system may be in
RAM (if sysbase is greater than phystop then the
in ROM).-

The base of the OS is a structure that looks like:

(sysbase) -----\
- I

/------------/
I
\--> +-----------------------+ I BRA to reset handler I

+-----------------------+ I OS version number I
+-----------------------+ I -> reset handler I
+-----------------------+ I -> base of OS I
+-----------------------+ I -> end of OS RAM usage I
+-----------------------+ I (unused, reserved) I
+-----------------------+ I -> GEM memory usage I

parameter block
+-----------------------+ I Date of system build I

($YYYYMMDD)
+-----------------------+ I OS configuration bits I
+-----------------------+ I DOS-formatted date the I

system was built
+-----------------------+

O.w

2.w

4.L

8.L

$c.L

$lO.L

$14.L

$18.L

$lc.w

$le.L

55

of the
ROM or
OS is

The GEM memory usage parameter block (hereinafter

(C)1985 Atari Corp., All Rights Reserved

/~

ROM Header November 26, 1985 56

referred to as ~~the magic") informs the OS about GEM's
memory requirements, and GEM's start address. The magic
looks like:

+-----------------------+

I $87654321 I
(our favorite magic#)

+-----------------------+

I -> end of system I
(OS+GEM) BSS

+-----------------------+

I -> start (execution) I
address of GEM

+-----------------------+

O.L

4.L

S.L

$C

The OS header contains a pointer to the magic. The magic
parameter block is validated if the number $87654321
appears in its first longword. GEM is started up ONLY if
there is a valid magic. In addition, on a RAM-loaded
system, if the magic is not valid then the memory nor
mally used by GEM is included in the initial TPA.

The extended BIOS call puntaes() (#39) checks to see if
the magic is valid. If the magic is NOT valid, it
returns immediately. Otherwise it checks if the magic is
located in ROM, and if it is, puntaes() returns. Finally
puntaes() invalidates the magic (by zeroing its first
longword) and jumps to the system reset handler.

Puntaes will either return (meaning that the AES was
already punted, or more accurately, that the magic was
invalid) or clobber the magic and restart the operating
system. The OS must be restarted because GEMDOS does not
allow the TPA to be expanded after GEMDOS has been ini
tialized [fooey!].

The country-specific configuration word (~'os_conf")
looks something like:

2 1 o
--+-------+-------+-------+

country# PALl
NTSC

--+-------+-------+-------+

The country-number assignments are:

o USA
1 Germany
2 France

(C)1985 Atari Corp., All Rights Reserved

(
ROM Header November 26, 1985 57

3 UK

Bit a of the word indicates NTSC when a and PAL when 1;
the "syncmode" hardware register is initialized accord
ingly during system startup. The country bits may be
expanded in the future.

The version number is $0000 for the boot ROM, and nonzero
for ROM-based operating systems. The format of the ver
sion word is $VVRR (VV = version#, RR = release#), and
the first OS ROMs will have the version $0100.

Several dates, in various formats, are in the header.
The first is (more or less) human-readable, in hexade
cimal it is a longword that reads like $YYYYMMDD (YYYY =
year, MM = month, DD = day). The second date is a
GEMDOS-format timestamp.

DISCLAIMER
Atari makes no promsises that version numbers in future
revisions of the operating system will reflect reality,
since the outside world's version of reality is different
from Atari's. We may release bug fixes without changing
the OS version number, or (contrariwise) we may change
version numbers without changing the operating system.

IN OTHER WORDS:
Do not write software that depends on operating system
version numbers!

(C)1985 Atari Corp., All Rights Reserved

Boot Sectors November 26, 1985 58

Boot Sectors

The boot sector contains

o A volume serial number
o A BIOS parameter block
o Optional boot code and boot parameters

An executable boot sector must word-checksum to the magic
number $1234. During system initialization the boot sec
tor from a disk drive is loaded into a buffer. If the
checksum is correct, the system JSRs the first byte of
the buffer. [Since the location of the buffer is
indeterminant, any code contained in the boot sector must
be position-independent.] See the section on system ini
tialization for further details on writing bootable
applications.

When a "Get BPB" call is made, the BIOS reads the boot
sector and examines the prototype BIOS parameter block
(BPB). A BPB is constructed from the prototype. If the
prototype looks strange (for instance, if critical fields
in it are zero) the BIOS returns NULL (as an error indi
cation) •

A BPB is normally computed and written when the volume is
formatted.

The 24-bit serial number is used to determine if the user
has changed disks. (see the [still nonexistant] section
on "Disk Changes"). The serial number is computed and
written by the FORMAT utility, and is (hopefully) unique.

(C)1985 Atari Corp., All Rights Reserved

Boot sectors November 26, 1985 59

+-----------------------+
I BRA.S I $0

(wherever)
branch to boot code

+-----------------------+
filler $2 reserved for OEMs

(OEM
cruft)

+-----------------------+
SERIAL
24-bit volume
serial number

+-----------------------+
I~ BPS I
+-----------------------+ I SPC I
+-----------------------+
I~ RES I
+-----------------------+ I NFATS I
+-----------------------+
I~ NDIRS t

+-----------------------+
I~ NSECTS I
+-----------------------+ I MEDIA I
+-----------------------+
I~ SPF I
+-----------------------+
I~ SPT I
+-----------------------+
I~ NSIDES I
+-----------------------+
I~ NHID I
+-----------------------+ I boot code I

(if any)

I I +-----------------------+

$8 volume serial number
written by FORMAT

$b #bytes/sector

$d #sectors/cluster

$e #reserved sectors

$10 #FATs

$11 #directory entries

$13 #sectors on media

$15 media descriptor

$16 #sectors/FAT

$18 #sectors/track

$la #sides on media

$lc #hidden sectors

$le

$200

(C)1985 Atari Corp., All Rights Reserved

Boot Sectors November 26, 1985

The prototype BPB is software compatible with
version 2.x BPB. (This does not mean the
sectors written by, or write sectors readable
controller other than the WDC 1770/1772).

60

an MS-DOS
ST can read
by, a disk

The low byte of a 16-bit field in the BPB (such as 'BPS')
occupies the lower address [as on the 8086.]

BPS is the number of bytes per sector (for floppies on
the ST, it will be 512).

SPC is the number of sectors per cluster (on floppies,
usually 2 for a cluster size of 1K).

RES is the number of reserved sectors at the beginning of
the media, including the boot sector. RES is usually I
on floppies.

NFATS is the number of File Allocation Tables on the
media.

NDIRS is the number of directory entries.

NSECTS is the total number of sectors on the media
(including the reserved sectors).

MEDIA is a media descriptor byte. The ST BIOS does not
use this byte, but other file-systems might.

SPF is the number of sectors in each FAT.

SPT is the number of sectors per track.

NSIDES is the number of sides on the media. (Single-
sided media can be read on double-sided drives, but not
vice-versa).

NHID is the number of "hidden" sectors. (The ST BIOS
currently ignores this value for floppies).

The last word in the boot sector (at offset $lFE) is
reserved for "evening out" checksums. In particular, the
"_protobpb" extended BIOS function modifies this word.

(C)l985 Atari Corp., All Rights Reserved

Floppy Formatting November 26, 1985 61

Formatting a Floppy Disk

[1] Use the 'flopfmt()' (#10.) extended BIOS call to for
mat all tracks on the floppy disk. If tracks 0 or 1
have any bad sectors then the media is unusable.

The ST standard format is

1 or 2 sides;
80 tracks;
9 sectors per track;
no interleave (sequential sectors).

Zero the first two tracks (this will zero the FAT and
directory sectors).

[2] Use the 'protobt()' (#18.) extended BIOS call to
create a boot sector. The 'disktype' parameter
should be 2 or 3 for 1 or 2 sided 80-track media
respectively. The 'serialno' parameter should be a
random number (or $1000000).

The 'execflag' parameter should be
prototyping buffer contains code
the Loader) that you want executed
booted.

zero unless the
(such as a copy of
when the disk is

[3] Write the boot sector, (prototyped in the buffer in
step [2]) to track 0, side 0, sector 1 of the new
disk. Do NOT use the 'rwabs' call; use the extended
BIOS function 'flopwr'.

It is possible to create disks in wierd formats by vary
ing the number of sectors per track, formatting a few
extra tracks, or specifying strange interleave factors.

The 1772 "write track" codes used to format a track are:

COUNT BYTE what
----- ----------------
60 $4e (start of track)

For each sector:
12 $00
3 $f5 (writes $a1)

(C)1985 Atari Corp., All Rights Reserved

Floppy Formatting November 26, 1985 62

1 $fe (ID address mark)
1 track# (0 .. $4f)
1 side# (0 .. 1)
1 sector# (1 •• 9)
1 $02 (512 bytes/sector)
1 $f7 (2 CRCs written)
22 $4e
12 $00
3 $f5 (writes $a1)
1 $fb (data address mark)
512 xx (virgin data)
1 $f7 (2 CRCs written)
40 $4e

End of track:
1401 $4e (filler at end of track)

(C)1985 Atari Corp., All Rights Reserved

(' - '"
,

_/

DMA Bus Boot November 26, 1985 63

DMA Bus Boot Code

This code, extracted from the ST's BIOS, attempts to load
boot sectors from devices on the DMA bus. The code can
be used:

gpip

diskctl
fifo
dmahigh
dmamid
dmalow

o As an example of how to use the DMA bus (useful
for boot-sector and device-driver writers);

o To provide information about the timeout and
command characteristics expected from bootable
DMA bus devices;

equ $fffffaOl · (B) 68901 input register ,

equ $ffff8604 · (W) disk controller data ,
equ $ffff8606 · (W) DMA mode control ,
equ $ffff8609 · (B) DMA base high ,
equ $ffff860b · (B) DMA base medium ,

$ffff860d · (B) DMA base low equ ,

access

flock equ $43e · (W) DMA chip lock variable ,
dskbufp equ $4c6 · (L) -> 1K disk buffer ,

-hz 200 equ $4ba · (L) 200hz counter ,

*+

*
*
*
*
*

dmaboot - attempt to boot from a device on the DMA pus
Passed: nothing

*
*
*
*
*
*
*
*
*
*
*

Returns:

Uses:

Discussion:

*
dmaboot:

moveq

maybe-never (although it depends ••.)

everything

Attempts to read boot sectors from eight devices connected
to the DMA bus. If a sector is read, and it is executable
(word checksum is $1234), then it is executed.

This code should take about 0.5 sec to execute if nothing
is connected to the DMA bus. Of course, if something IS
hooked up, it should provide us with a boot sector, right?

#0,d7 ; start with dev #0

(C)1985 Atari Corp., All Rights Reserved

DMA Bus Boot November 26, 1985 64

dmb 1: bsr dmaread · attempt to read boot sector ,
bne dmb 2 · (failed -- try next dev) ,
move. 1 dskbufp,aO · aO -> disk buffer ,
move.w ISOOff,dl · checksum $100 words ,
moveq #O,dO · checksum = 0 ,

dmb 3: add.w (aO)+,dO · add (next) word ,
dbra dl,dmb 3
cmp.w #bootmagic,dO · is the sector executable? ,
bne dmb 2 · (nope) ,
move. 1 dskbufp,aO · aO -> disk buffer ,
jsr (aO)

dmb 2: add.b #S20,d7 · next devno ,
bne dmb 1 · (do all eight devs) ,
rts

*+
*
*
*
*
*
*
*
*

dmaread - attempt to read boot sector from DMA bus device
Passed: d7.b = dddOOOOO

('ddd' is the ACSI device number, 0 .. 7)

Returns: NE: read failed;
EO: successful read,

sector data in (*_dskbufp)[];

* Preserves: d7.w
*
*
*
* *-

dmaread:

Uses:

lea
lea
st

move.l
move.b
move.b
move.b
addq

move.w
move.w
move.w
move.w

move.w

move.b
or.b
swap
move.w

everything else

fifo,a6
diskctl,a5
flock

dskbufp,-(sp)
3(sp), dmalow
2(sp), dmamid
l(sp),dmahigh
#4,sp

#S098,(a6)
#S198,(a6)
#S098,(a6)
#1,(a5)

#S088,(a6)

d7,dO
#S08,dO
dO
#S088,dO

; a6 -> DMA control register
; a5 -> DMA data register
; lock up DMA against vblank

; setup DMA pointer

; toggle R/W, leave in Read state

; write sector count register (= 1)

; select dma bus (not SCR)

; setup dO.L with devno+command
; dO.b = devno«5 .OR. "READ" command bits

(C)1985 Atari Corp., All Rights Reserved

('

(~\

__ J~'

(~:

DMA Bus Boot November 26, 1985 65

bsr
bne

moveq
move. I

wcbyte
dmr_q

#3,d6
#SOOOOO08a,dO

; dO.L = xxxxxxxxDDD01000xxxxxxxOlOOOlOlO
; (punt on timeout)

; (count = 4)

dmr_Ip: bsr wcbyte
; dO.L = generic command (SOOOO)
; write bytes 2, 3, 4 and 5

bne
dbra

move. I
move.w
bsr
bne

move.w
move.w
and.w
beq

*--- reset DMA,

dmr q
d6,drnr_Ip

#SOOOOOOOa,(a5)
#400,d1
wwait
drnr_q

#S08a,(a6)
(a5), dO
#SOOff,dO
drnr r

return NE

; (punt on timeout)
; (loop for more bytes)

; write byte 6 (final byte)
timeout = 2.0 sec

; wait for completion
; (punt on timeout)

; select status reg
; get return code from DMA device
; strip crufty bits
; (return if OK)

drnr_q:

drnr r:

*+
*
*
*
*
*
*
*
*
*
*
* *-

moveq
move.w
tst.b
sf
rts

#-I,dO
#S080,(a6)
dO
flock

; return -1 (error)
; cleanup DMA chip for floppy driver
; (test for NE on return)
; unlock DMA chip
; return

wcbyte - write ACSI command byte, wait for IRQ
Passed: DO.L = command byte and FIFO contrOl

Returns:

Uses:

bits 16 .• 23 = command byte,
bits 0 .. 7 = FIFO control bits

a5 -> Sff8604

NE on failure (timeout)
EQ on successful ACK

d1

wcbyte:

wwait:
ww 1:

ww w:

move. I
moveq
add.l
btst.b
beq
cmp.l
bne
moveq
rts

dO,(a5)
#IO,dl

hz 200,d1
i5,gpip
ww w
hz 200,d1 wI

#-I,d1

; write WDC, WDL [due to jwtJ
; wait 1/20th second
; dl = time to quit at ...
; disk done?
; (yes, return)
; timeout?
; (not yet -- wait some more •..)
; ensure NE (timeout error) return

(C)1985 Atari Corp., All Rights Reserved

Partitions November 26, 1985 66

Hard Disk Partitioning

The first sector (logical sector #0) on a hard disk con
tains partition information.

offset
+-----------------------+ I hd siz I $lc2

+-----------------------+
pO flg $lc6
pO-id $lc7
pO=st $lca

pO_siz $lce

+-----------------------+
p1 flg
p1-id
pl=st

+-----------------------+

$ld2
$ld3
$ld6

p2 flg $lde
p2-id $ldf
p2=st $le2

p2_siz $le6

+-----------------------+
p3 flg $lea
p3-id $leb
p3=st $lee

p3_siz $lf2

+-----------------------+
bsl st $lf6

bsl cnt $lfa

+-----------------------+ I (reserved) I $200
+-----------------------+

(C)1985 Atari Corp., All Rights Reserved

(

c

Partitions November 26, 1985 67

'hd siz' is the total size of the disk, in logical sec
tors.

'bsl st' specifies the starting sector# of the bad sector
list. [Typically the bad sector list will be located at
the end of the device.]

'bsl cnt' specifies the /number/ of bad sectors. Each
bad -sector is specified by a longword containing the
sector's number. The total number of sectors used up by
the bad sector list is therefore 'bsl siz' / 4. If
'bsl_cnt' is zero, there are no bad sectors:

A disk may contain up to four partitions. The first sec
tor in a partition is a boot sector (which, on the ST,
will contain a BPB).

+-----------------------+ I root boot I
+-----------------------+
+-----------------------+ I partition 0 I
+-----------------------+
+-----------------------+ I partition 1 I

(optional)
+-----------------------+
+-----------------------+
I partition 2 I

(optional)
+-----------------------+
+-----------------------+ I partition 3 I

(optional)
+-----------------------+
+-----------------------+

optional
bad sector
list

+-----------------------+
Each partition is described by a 12-byte structure:

+-----------------------+ I p*_f1g I (+0)

(C)1985 Atari Corp., All Rights Reserved

Partitions November 26, 1985 68

+-----------------------+
p*_id (+1)

+-----------------------+
p*_st (+4)

+-----------------------+
p*_siz (+8)

+-----------------------+
(+12.)

'p* f1g' should be nonzero to indicate that the partition
exists. The BIOS will boot the first partition that has
bit 7 set in this byte.

'p* id' is a three-byte field that identifies the parti
tion. For GEMDOS partitions, the field contain the three
ascii characters "GEM".

'p*_st' specifies the logical sector number of the begin
ning of the partition.

'p* siz' specifies the size of the partition, in logical
sectors.

(C)1985 Atari Corp., All Rights Reserved

Boot Loader November 26, 1985 69

The Loader

The Loader is a generic system-loader. It lives on boot
sectors, and is brought into RAM and executed during sys
tem initialization. The Loader has the capability to
load an "image" file or a set of contiguous sectors from
disk.

The six reserved bytes starting at offset 2 in the boot
sector must be:

'Loader'

for some tools to be able to manipulate Loader boot sec
tors.

An image file contains no header or relocation informa
tion. It is an exact image of the program to be exe
cuted. The loader is capable of loading any file from
disk, regardless of where it appears in the directory or
whether the file is contiguous or not.

Loader information immediately follows the BPB in the
boot sector:

+-----------------------+ I EXECFLG I
+-----------------------+ I LDMODE I
+-----------------------+ I SSECT I
+-----------------------+ I SECTCNT I
+-----------------------+

LDADDR

+-----------------------+
FATBUF

$le
cmdload

$20
load mode

$22
sector start

$24
#sectors

$26
load-address

$2a
FAT address

(C)1985 Atari Corp., All Rights Reserved

Boot Loader November 26, 1985

+-----------------------+
FNAME n

n
n
n
n
n
n
n
e
e
e

+-----------------------+ I (reserved) I
+-----------------------+ I BOOTIT I

code

$2e

$39

$3a

EXECFLG is a word that is copied to ' cmdload'.

70

LDMODE governs the loading mode. If LDMODE is zero, a
file is searched for and loaded. If LDMODE is nonzero,
then 'SECTCNT' sectors, starting with logical sector
number 'SSECT', are loaded from the disk.

SSECT is the logical sector number to start loading from
(valid iff LDMODE is nonzero).

SECTCNT is the number of sectors to load (valid iff
LDMODE is nonzero).

LDADDR is the load-address of the file (or the sectors).

FATBUF points to a place to put the FAT and directory
sectors.

FNAME is a filename to load (valid iff LDMODE is zero).
It consists of eight character name and a three character
extension.

[See also: documentation on the BOOTGEN utility.]

(C)1985 Atari Corp., All Rights Reserved

Soft System November 26, 1985 71

Boot Sequence

[1] The boot sector is loaded. The Loader takes con
trol of the system.

[2] The boot device's directory and 2nd FAT buffer are
read into memory, starting at membot. The Loader
searches for a file (usually) called TOS.IMG. If
it is not found, it returns with an error code in
DO.

[3] TOS.IMG is read into memory, starting at $40000.

[4] Control is passed to the first byte of TOS.IMG.

TOS.IMG consists of three parts:
[1] A relocator (RELOCRL) that moves TOS.IMG to where

it expects to be executed in memory. RELOCRL
takes control of the system, fades the screen,
performs a fast block-copy, and passes control to
the first byte in the operating system.

[2] An image of the operating system ('prox 90K).

[3] An image of the desktop and GEM ('prox llOK).

System initialization proceeds as normal (except for
clearing memory) once the OS has control.

(C)l985 Atari Corp., All Rights Reserved

/S7

Das Boot November 26, 1985 72

Boot ROM

The ST boot ROM (AKA "Das Boot") contains a subset of the
BIOS. The only functions available relate to reading
floppy disks.

System initialization is identical to the normal OS pro
cedure. However, the locations and intepretations of the
system variables may have changed. See the end of this
section for a list of "safe" system variables.

The normal course of events is:

The boot ROM catches RESET and
system. It puts up some
Kids'll love it.

initializes the
pretty graphics.

An attempt is made to boot from both floppies.
'bootdev' will contain the device number on a
successful boot sector load. [Someday there may
be a version of the boot ROM that understands
about hard disks.]

The boot sector is executed. [See-also: Loader]

Das Boot's version number (the second word in the ROM, at
$FC0002) is $0000.

BIOS functions on trap 13:

func Name [see: GEMDOS spec]

0: [unused]
1: [unused]
2: [unused]
3: [unused]
4: rwabs (read only)
5: [unused]
6: [unused]
7: getbpb

Extended functions on trap 14:

func Name [see: Extended BIOS Functions]

0: [unused]

(C)1985 Atari Corp., All Rights Reserved

Das Boot November 26, 1985 73

1: ssbrk
2: [unused]
3: [unused]
4: [unused]
5: [unused]
6: [unused]
7: [unused]
8: _floprd (read sectors)

DAS BOOT uses memory from $10000 to $20000 for screen
buffers. Avoid loading stuff into this region (until you
take over the system) when writing directly-bootable
applications.

Between the time when DAS BOOT was released and the time
the first RAM-loaded systems were shipped (will be
shipped?) the variables in low memory were added to and
relocated.

«<give list of "safe" variables here»>

(C)1985 Atari Corp., All Rights Reserved

GEMDOS Quickref November 26, 1985

GEMDOS CALL
(QUICKER) REFERENCE GUIDE

74

Functions are available through trap #1. The first
number is the trap number (first word on the stack when
the trap is made). The function's name (as given in
OSBIND.H) is next, along with the named arguments. The
number in brackets is the number of bytes that must be
cleaned up off the stack after the call is made (for
those of us doing traps from assembly). The argument
declarations (if any) follow the first line. Then a
short description of the function is given.

In general,. GEMDOS calls return LONGs in DO. However,
there larel exceptions. When testing for error returns,
it is best to examine DO.W only. In addition, GEMDOS may
occasionally return BIOS error numbers (that is, between
-1 and -31).

SOO PtermO() [2]
Terminate process (with return code of SO).

SOl Cconin() [2]
Return cooked character from stdin.

S02 Cconout(chr) [4]
char chr;

Write character to stdout.

S03 Cauxin() [2]
Return character from AUX:.

S04 Cauxout(chr) [4]
char chr;

Write character to AUX:.

$05 Cprnout(chr) [4]
char chr;

Write character to PRN:.

$06 Crawio(wrd) [4]
WORD wrd;

If (wrd -- OxOOff) return char from stdin
If (wrd != OxOOff) print it on stdout;

(C)1985 Atari Corp., All Rights Reserved

\ !
~.

GEMDOS Quickref November 26, 1985 75

$07 Crawcin() [2]
Return raw character from stdin (without echo).

$08 Cnecin() [2]
Read char from stdin
characters (~S, ~Q,

have effect.

without echo. Control
~C) are interpreted and

$09 Cconws(str) [6]
char *str;

Write null-terminated string to stdout.

$Oa Cconrs(buf) [6]
char *buf;

Read edited string from stdin. On entry,
buf[O] contains size of data part of buf[]. On
exit, buf[l] contains number of characters in
data part of buf[]. The data part of buf[]
starts at buf[2].

SOb Cconis() [2]

$Oe

Return -1 [nonzero] if character is available
on stdin, 0 otherwise.

Dsetdrv(drv) [4]
WORD drv;

Select current
Returns a bitmap
= A, •...)

drive (O=A:, l=B:, etc.).
of drives in the system (bit 0

$10 Cconos() [2]
Returns -1 [nonzero] if console is ready to
receive a character, 0 if it is "unavailable."

$11 Cprnos() [2]
Returns -1 [nonzero] if PRN: is ready to
receive a character, 0 if it is "unavailable."

$12 Cauxis() [2]
Returns -1 [nonzero] if char is available on
AUX:, 0 otherwise.

$13 Cauxos() [2]
Returns -1 [nonzero] if AUX: is ready to
receive a character, 0 if it is "unavailable."

$19 Dgetdrv() [2]
Returns number of current drive (O=A:, etc.)

$la Fsetdta(ptr) [6]
LONG ptr;

Set disk transfer address (used by Fsfirst(».

(C)1985 Atari Corp., All Rights Reserved

/~/

GEMDOS Quickref November 26, 1985 76

$20 Super(stack) [6]
LONG stack;

Hack processor prive1ege mode. If 'stack' is
-lL, return 0 or 1 (processor is in user or
supervisor mode). If in user mode, switch to
supervisor mode and use 'stack' as the supervi
sor stack (or the value from USP if 'stack' is
NULL). If in supervisor mode, switch to user
mode and use 'stack' as the supervisor stack.
Return the old supervisor stack value.

$2a Tgetdate() [2]
Returns date:

bits
o .. 4
5 •• 8
9 •• 15

$2b Tsetdate(date) [4]
WORD date;

day 1. .31
month 1 •. 12
year 0 •• 119 since 1980

Set date in the format described above.

$2c Tgettime() [2]
Return time in the format:

bits
o .. 4
5 •• 10
11 •• 15

$2d Tsettime(time) [4]
WORD time;

second 0 •• 59 (2-second resolution)
minute 0 •. 59
hour O •• 23

Set time in the format described above.

$2f Fgetdta() [2]
Return current DTA.

$30 Sversion() [2]
Return current version number.

$31 Ptermres(keep, ret) [8]
LONG keep;
WORD ret;

Terminate and stay resident. 'keep' has number
of bytes to keep in the process descriptor.
'ret' is the process' return code.

$36 Dfree(buf, drv) []
LONG buf;
WORD drv;

(C)1985 Atari Corp., All Rights Reserved

(/'

GEMDOS Quickref November 26, 1985 77

Return information about allocation on drive
'drv' (O=current, l=A:, 2=B:, etc.). 'buf'
points to a structure where stuff will be
returned:

LONG b free;
LONG b-total;
LONG b-secsiz;
LONG b=Clsiz;

S39 Dcreate(path) [6]
char *path;

Create a directory.

S3a Ddelete(path) [6]
char *path;

Delete a directory.

S3b Dsetpath(path) [6]
char *path;

#free clusters on drive
total #clusters on drive
#bytes in a sector
#sectors in a cluster

Set current directory.

S3c Fcreate(name, attr) [8]
char *name;
WORD attr;

Create a file with the given pathname. Returns
a handle or a (negative) error#. Bits in the
attribute word are:

SOl set to readOnly
S02 hidden from directory search
S04 system file, hidden from dir search
S08 volume label (first 11 bytes of name)

S3d Fopen(name, mode) [8]
char *name;;
WORD mode;

Open a file. Mode is 0, 1 or 2 for read,
write, and read/write. Returns a handle or a
(negative) error#.

S3e Fclose(handle) [4]
WORD handle;

Close the handle.

S3f Fread(handle, count, buf) [12]
WORD handle;
LONG count;
char *buf;

Read bytes from a file. Return count read, or
a negative error#.

(C)1985 Atari Corp., All Rights Reserved

GEMDOS Quickref November 26, 1985

$40 Fwrite(handle, count, buf) [12]
WORD handle;
LONG count;
char *buf;

78

Write bytes to a file. Return count written,
or a negative error#.

$41 Fdelete(name) [6]
char *name;

Delete the file.

$42 Fseek(offset, handle, mode) [10]
LONG offset;
WORD handle;
WORD mode;

Seek within the file (handle). 'offset' is the
(signed) number of bytes to seek by. Mode is
one of:

o from beginning of file
1 from current position
2 from end of file

$43 Fattrib(path, mode, mode) [10]
Get file attributes if 'mode' is 0, set them if
'mode' is 1. Bits are:

$01 readOnly
$02 hidden
$04 system (hidden.hidden)
$08 volume label
$10 subdirectory
$20 written to and closed

$45 Fdup(stdhandle) [4]
WORD stdhandle;

Returns non-standard handle that refers to the
same file.

$46 Fforce(stdhandle, nonstdhandle) [6]
WORD stdhandle;
WORD nonstdhandle;

Force standard handle to point to same file or
dev as the nonstandard handle.

$47 Dgetpath(pathbuf, drv) [8]
char *pathbuf;
WORD drv;

Return current directory for drive 'drv'
(O=default, l=A:, etc.) in the buffer. Buffer
must be at least 64 bytes long.

(C)1985 Atari Corp., All Rights Reserved

GEMDOS Quickref November 26, 1985 79

$48 Ma110c(amount) [6]
LONG amount;

'amount' contains # bytes to allocate. (or -1,
which returns maximum available memory).
Return pOinter to block (on word boundary) of
'amount' bytes, or zero on allocation failure.

$49 Mfree(addr) [6]
char *addr;

Free a block of memory.
failure.

$4a Mshrink(zero, mem, size) [12]
WORD zero;
LONG mem;
LONG size;

Nonzero return on

'zero' must be a word containing O. 'mem' con
tains beginning of memory block. 'size' is the
the amount of memory to RETAIN in the block.
Nonzero return on failure.

$4b Pexec(mode, path, command1ine, enviroment) [16]
WORD mode;
char *path;
char *command1ine;
char *enviroment;

'mode' is one of:

o load and go
3 just load
4 just go
5 create basepage

'command1ine' is the command tail, which is
copied into the basepage. 'enviroment' is the
enviroment string; if NULL, the parent process'
enviroment string is inheirited.

For mode 0, the return code is the child's
return code, or a negative (OS) error. If the
load or create-basepage fails, a negative error
number is returned.

$4c Pterm(code) [4]
WORD code;

Terminate current process, returning 'code' to
the parent.

$4e Fsfirst(spec, attr) [8]
char *spec;
WORD attr;

'attr' is a set of attributes to match (see
function #43 for details). 'spec' may contain

(C)1985 Atari Corp., All Rights Reserved

GEMDOS Quickref November 26, 1985 80

wildcard characters in the filename, but not in
the pathname. Returns 0 if a file is found,
EFILNF if no file was found. Dumps stuff into
the DTA:

bytes
o .. 20
21
22-23
24-25
26-29
30-43

$4f Fsnext() [2]

junk
file attributes
file time stamp
file date stamp
file size (longword)
name+extension of found file

Continue with with Fsfirst().

$56 Frename(zero, old, new) [12]
WORD zero;
char *old;
char *new;

Change the name of a file from 'old' to 'new'.
'zero' is reserved, and must be O.

$57 Fdatime(handle, buf, set) [10]
WORD handle;
char *buf;
WORD set;

'buf' points to buffer containing file date and
time information. 'handle' is a handle to the
file. If 'set' is zero, get the time and date.
If 'set' is 1, set the file time and date.

(C)1985 Atari Corp., All Rights Reserved

.. ~ ..

(/

c

PRTBLK(2) Atari Corp. PRTBLK(2)

NAME
prtblk - print block of BitMap or text memory onto a printer

SYNOPSIS
include <prtblk.h>

int prtcnt;

int prtblk (args)
PRTARG *args;

DESCRIPTION
PRTBLK is a device dependent primitive routine that prints a
block of memory onto an Atari ST series monochrome/color dot
matrix or monochrome daisy wheel printer. Prtblk can be
used by any GEM application program via an ST Extended BIOS
function trap 14 call. The function supports the printing
of both BitMap (bit aligned) and text (character) data, with
several BitMap source and destination resolution modes
available that compensate for the graphics resolution
disparities between the host ST computer display and the
target printer device. The prtblk function is designed to
be a primitive routine, and does not support the following
print transformations (BitMap transformations should be
applied prior to calling prtblk):

0
0
0
0
0

application level GEM VDI functions for printers.
operating system level print screen utility.
horizontal or vertical scaling.
arbitrary aspect ratio compensation.
data block page placement.

Printer commands to set left margin and line feed may be
used to perform page placement of a BitMap data block.
Arguments are passed to prtblk via a pOinter to the follow
ing structure:

typedef struct
{

char *blkptr;

/* PRTARG prtblk arguments */

/* block pointer */
/* bit offset */
/* x dimension */
/* y dimension */
/* left leading x */

unsigned short offset;
unsigned short width;
unsigned short height;
unsigned short left;
unsigned short right;
unsigned short srcres;
unsigned short dstres;
unsigned short *colpal;
unsigned short type;
unsigned short port;
char *masks;

/* right trailing x */
/* source resolution */

} PRTARG;

Printed 11/26/85 5 September 1985

/* destination resolution*/
/* color palette pointer */
/* printer type */
/* printer port */
/* halftone masks pOinter*/

1

I~"

PRTBLK(2) Atari Corp. PRTBLK(2)

All arguments are copied and are guaranteed to be protected
against modification. Invalid parameter detection, argument
value out of bounds, and printer device time out errors are
handled by prtblk. On error the function aborts and returns
a PBERR (-1) to the calling routine, otherwise a zero (0) is
returned.

Please note that the printer system variable prtcnt must be
set to 1 prior to the invocation of prtblk. At its conclu
sion in BitMap mode prtblk sets prtcnt to -1, resets the
line spacing, and resets the color to black (if applicable).

BLKPTR is a byte address that pOints to either the first
byte of a BitMap or the first byte of a block of text to be
printed. If the height argument is zero the data is inter
preted as text characters, otherwise the data is assumed to
be a BitMap in Atari ST video display memory form (the block
origin must be in plane 0). BitMaps are printed raster-wise
in 8 bit vertical pixel mode with the vertical line spacing
set prior to each print pass. Text string characters are
printed raw for a length of the value contained in the width
argument.

OFFSET is the left to right bit displacement into the first
byte pointed to by blkptr (0 == most significant bit, 7 ==
least significant bit). The offset argument applies only to
BitMap origins and is ignored if the data block is a text
string.

WIDTH and HEIGHT determine the size of a data block in bit
or byte units. Width can either be interpreted as the X
dimension of a BitMap in pixels or the length of a text
string in characters. The width of a BitMap data block is
clipped using the appropriate display resolution dimension
to encourage WYSIWYG printing. Height can either contain
the Y dimension of a BitMap in rasters or a zero, in which
case prtblk will interpret the data block as a text string.

LEFT and RIGHT specify the left leading and right trailing
horizontal pixel offsets used by prtblk to wrap to the next
BitMap raster line. Both left and right are not referenced
if the data block is a text string.

The following diagram depicts a BitMap data block embedded
in Atari ST video display memory form and summarizes the
interrelationships of width, height, left, and right:

Printed 11/26/85 5 September 1985 2

I~I

("

PRTBLK(2) Atari Corp. PRTBLK(2)

->

I I
<--- left --->

I
<- width -> <--- right --->

height
I
->

SRCRES is the display resolution mode of the source ST com
puter. The following are valid display resolution modes
supported by prtb1k:

o == Low 320 x 200, 4 planes, 16 color palette
1 == Medium 640 x 200, 2 planes, 4 color palette
2 == High 640 x 400, 1 plane, monochrome

The srcres argument is ignored if the data block is a text
string.

DSTRES is the destination resolution which specifies print
quality and density. Two print resolution modes are sup
ported by prtb1k:

o == Draft (low density)
1 == Final (high density)

The dstres argument is ignored if the data block is a text
string. The source and destination resolutions are used to
determine the pixel mapping technique employed by prtb1k.
In the following diagrams each source pixel is mapped to an
area represented by the lower case letter 'p' (vertical
spacing is 1/144 inch):

Low pppp
1:4

pppp

pppp
pppp
pppp
pppp

Medium pp
1:2

pp

pp
pp
pp
pp

High pp
1:1

pp
pp

Draft Final Draft Final Draft Final

The above pixel mappings approximate the source display
aspect ratio and allow the subsequent application of mono
chrome or color half toning. BitMap pixel mapping cannot be
disabled.

Printed 11/26/85 5 September 1985 3

I~f

PRTBLK(2) Atari Corp. PRTBLK(2)

COLPAL is a word address that points to the first of 16
color palette words in Atari ST color lookup table form.
The color palette may be logical or physical, with each
color palette entry containing 3 bits of red, green, and
blue intensity levels aligned on low nibble boundaries
(-----rrr-ggg-bbb). In high source resolution mode the
least significant bit of the first color palette entry is
used to determine normal video (0 is black and 1 is white)
or inverse video (1 is black and 0 is white). If the data
block is a text string, then the colpa1 argument is not
referenced.

TYPE designates the BitMap operating characteristics of the
destination printer. Currently four valid printer types are
supported by prtblk:

0
1
2
3

--
==
==
==

monochrome dot matrix printer (1/160 inch BitMap mode)
color dot matrix printer (1/160 inch BitMap mode)
monochrome daisy wheel printer (no BitMap mode)
monochrome dot matrix printer (1/120 inch BitMap mode)

The type argument is ignored if the data block is a text
string. The printer type code selects the proper escape
sequence for BitMap mode and specifies the use of monochrome
or color half toning. The Atari STC504 is capable of both
monochrome and color operation, and color is not set or
reset in high source resolution mode. The following is a
list of command escape sequences used by prtblk:

"ESC Y" n1 n2 data 1/160 inch BitMap mode
"ESC L" n1 n2 data 1/120 inch BitMap mode

"ESC X" 6 set color to yellow
"ESC X" 5 set color to magenta
"ESC X" 3 set color to cyan

"ESC 3" 1 1/144 inch pixel line spacing
"ESC 1" 7/72 inch raster line spacing

"ESC 2" reset line spacing to 1/6 inch
"ESC X" 0 reset color to black

PORT specifies the printer device output port, either paral
lel or serial, to be used by prtblk:

o == printer parallel port
1 == modem serial port

The port argument is required for both BitMap and text data
modes.

Printed 11/26/85 5 September 1985 4

171)

(.-

'~-, "

PRTBLK(2) Atari Corp. PRTBLK(2)

MASKS is a byte address that pOints to the first of 9 double
bytes containing 4 by 2 halftone masks aligned on low order
nibbles (halftone matrix courtesy Foley and Van Dam). If
the value of masks is zero, then prtblk will apply its
predefined set of default halftone masks:

char dmasks[] = /* default halftone masks */
{

OxOf, OxOf, OxOd, Ox06, Ox09, Ox06,
OxOS, Ox06, OxOS, Ox02, OxOS, OxOO,
OxOS, OxOO, OxOS, OxOO, OxOO, OxOO

};

When using default halftone masks, trailing white space is
truncated to economize printer head movement. In high
source resolution mode each pixel is mapped directly without
halftone application. The masks argument is not referenced
if the data block is a text string.

A monochrome half toning technique is employed in low and
medium source resolution modes in order to facilitate color
rendering on a monochrome printer. Color palette entries
are obtained via the col pal pointer and are individually
converted to halftone levels using the NTSC RGB summation
formula, that is the Y component of the YIQ color model, for
luminance (actually reflected luminance). A summary of the
color palette to default monochrome halftone conversion pro
cess is as fOllows:

0 test for pure white -- a special case.
0 luminance = (30% red) + (59% green) + (11% blue) .
0 use luminance value to index halftone:

I 84 125 I I I I I
I BB BB I I BB WB I I BW WB I I BW WW I 16 73 BB BB WB BW WB BW WB BW

- I - - I - - I - - I - - I -
Luminance Zero (dark) One Two Three

I I I I I BW WW I I BW WW I
I:: I

I BW WW I WW BW WW WW WW WW
- I - - I - - I - - I -
Four Five Six Seven (bright)

B for black, W for white.

The resultant monochrome halftone is masked in during the
prtblk pixel mapping process.

A color half toning hue, saturation, and intensity scheme is
applied in order. to approximate 512 colors on a printer

Printed 11/26/85 5 September 19S5 5

/'7/

PRTBLK(2) Atari Corp. PRTBLK(2)

capable of 8 colors. Each color palette entry is obtained
from the palette pOinted to by col pal and is converted to a
default color halftone via the following process:

o test for pure white -- a special case.
o intensity = maximum (red, green, blue) + 1.
o saturation = minimum (red, green, blue).
o hue = (red, green, blue) - (saturation + 1).

o black (•••)
1 blue (•• B)
2 green (• G.)
3 cyan (.GB)
4 red (R ••)
5 magenta (R.B)
6 yellow (RG.)
7 white (RGB) NB -- special case.

o index using saturation and intensity values:

1 I 15 74 I
83 26

- I -

I I HH HH I
HH HH

- I -

I
I HH WH 1

WH HW
- I -

1 I I HW WH I I HW ww I
WH HW WH HW

- I - - I -
Saturation Zero (pure) One Two Three

I
I HW WW I

WW HW
- 1 -

1

I:: I
- I -

1 I
I:: I I HW WW I ww WW
- I - - I -

Four Five Six Seven (weak)

H for hue, W for white.

I 84125 I
16 73

- 1 -
Intensity

1

I BB BB I
BB BB

- 1 -
Zero (dark)

1

I BB HB I
HB BH

- 1 -
One

I
I BH HB I

HB BH
- I -
Two

I
BH HH
HB BH

I
Three

1

I BH HH I
HH BH

- 1 -

1

I BH HH I
HH HH

- 1 -

I
I BH HH I

HH HH
- I -

I I BH HH I
HH HH

- I -
Four Five Six Seven (bright)

H for hue, B for black.

The resultant color halftones are masked in during the
prtblk pixel mapping process.

Intensity has ex post facto priority over saturation since
the intensity halftone is masked in after the saturation

Printed 11/26/85 5 September 1985 6

17 fl.,

,----'-

/ "

,,"-/

PRTBLK(2) Atari Corp. PRTBLK(2)

halftone. The intensity value will always be greater than
or equal to the saturation value, as depicted by the tex
tured area in the following two dimensional representation
of saturation and intensity:

pure
bright bright

I \\\\\\\\\
N \\\\\\\\
T \\\\\\\
E \\\\\\
N \\\\\
S \\\\
I \\\
T \\
y \

dark ---------
weak pure

SAT U RAT ION

SEE ALSO
A Hitchhiker's Guide to the BIOS.
GEM (GSX) Programmer's Guide Volume 1: VOl.

DIAGNOSTICS

BUGS

The integer constant PBERR (-1) is returned on error, other
wise a zero (0) is returned.

o Needless to say, the process of squeezing a gamut of 512
colors into 9 luminance levels or 72 combinations of hue,
saturation, and intensity is a loathsome undertaking.
Both the monochrome and color half toning algorithms could
be improved upon.

o A mechanism to disable pixel mapping is not provided.

o Only draft destination resolution and a reduced pixel map
are available in 1/120 inch BitMap mode.

o Prtblk is printer device dependent. Only Atari ST and
Epson MX compatible BitMap escape sequence formats are
supported. Since a line feed is issued at the end of
each raster, only lines of 8 inch width are supported.

PRINTERS
Atari SMM804 Monochrome Impact Dot Matrix Printer.
Atari STC504 Color Thermal Transfer Dot Matrix Printer.
Atari SDM124 Monochrome Daisy Wheel Printer.
Epson MX Compatible Monochrome Impact Dot Matrix Printers.
IBM 5152 Compatible Monochrome Impact Dot Matrix Printers.

Printed 11/26/85 5 September 1985 7

/7.3

