‘ Apple Confidential 3/30/83 Rev. 2.0

Jaguar Architecture
Derived from the Motorola 88000

This is a specification of changes to the 88000 architecture required for the Jaguar family of
systems. Architectural and implementation issues are divided into the categories of: base
architecture, implementation dependent privileged operations, implementation dependent user
operations, and implementation mechanisms. The base architecture is the environment seen by
most system and user code. It is implementation independent. Implementation dependent
privileged operations are performed by a limited, kernel portion of the operating system. They
include access to virtual to real address translation hardware, saving state information and
launching processes. Implementation dependent user operations are intended for use by a very
limited number of low level routines. They may be used, for example, to enhance the
performance of certain graphics or digital signal processing operations by making special use of
the capabilities of a particular implementation. Implementation mechanisms are the
specifications and operating details for a particular implementation. These include performance
and hardware configuration specifications. They also include the details of how, for example, a
combination of hardware and kernel software is used to handle some cases of |IEEE floating point
arithmetic. This document covers the base architecture. Implementation dependent features for
the first Jaguar microprocessor are presented in the companion Cheetah Specification.

Two approaches for changes to the 88000 architecture are presented. The first approach
sacrifices binary compatibility with the existing 88000 in order to optimize the resulting
architecture. The second approach is to retain binary compatibility, with some compromise of

the addmons and changes and some |ncrease in complexlty AQQLe_s_Qmpgs_a]_j_s_m_aLa_d_e_[aﬂg_d

The compatible version will contain new instructions, most notably for floating point
operations, which are intended to supersede the existing mechanisms for similar operations.
The existing instruction encodings would be retained. However, it is important that most such
instructions in fact trap and are emulated by kernel software (which may make use of the new
instructions). Superseded instructions should be emulated in implementations of interest to
Apple so that the cost and performance of these parts is not adversely affected. Superseded
instructions should be emulated in all implementations, including those not of current interest
to Apple, because other customers will want to use one version of their applications software
across the 88000 product line. In these cases it is important to eliminate pressure to optimize
the performance of the superseded instructions.

If the compatible approach is adopted and superseded instructions are emulated, most current
88000 customers will treat Jaguar implementations as binary incompatible. They will

recompile rather than suffer any performance degradation. The conflicts which will arise with
the superseded instructions are one of the principal reasons that we propose the binary
: bl l

With either the binary compatible or incompatible approaches, its not contrary to Apple's
interests if there are versions which implement subsets of the instructions which Jaguar uses.
For example, a design might not implement extended precision or any floating point operations
in hardware.

The architectural issues and changes are grouped into the categories: integer register
operations, floating point register operations, and comparison and program flow operations.

‘ Apple Confidential 3/30/89 Rev. 2.0

Following these is a summary list of all changes for the binary incompatible and compatible
approaches.

The 88000 has (32) 32 bit registers which are used for all types of data. For Jaguar these are
considered integer registers and are used for address arithmetic and most non floating point data
operations. Separate floating point registers are added, as described later. The floating point
registers accommodate 32, 64 and 80-128 bit entities. The floating point units will typically
be implemented with the widest data paths. For this reason, and for maximum parallelism,
some graphics and data movement operations are defined to use the floating point registers.

Integer Register Operations

Memory Reference

The 88000 architecture is register oriented, with fixed 32 bit instructions and a three
register address format for most register to register operations. Register zero is hard wired to
be zero. In this context there should be register + displacement and register + register
addressing for load and store of bytes, half words and 32 bit words. The displacement should be
approximately 16 bits. Byte ordering should be big endian; 0,1,2... Bit ordering can be big
endian or little endian. Loading and storing of two or more registers with a single instruction is
a minor performance enhancement; its assumed that there are separate floating point loads and
stores which are also the most efficient way to move multiple words of data. Address scaling and
sign extension are discussed in the following sections.

The 88000 provides register + displacement and register + register addressing for load and
store of bytes, half words, words and 64 bit register pairs. The displacement is a 16 bit
positive byte displacement. A programmable option allows 88000 byte ordering to be big
endian or little endian. This has a minor impact on the current implementation of the 88000;
but extra data path multnplexung will be required for versions where the data path between

registers and cache ns wider than 32 bns Qummﬂg_n_muﬂg_hﬁ]g_e_ndmnﬂg_n_m_mam

Addressing modes with auto updating of the base register would be useful. In these modes,
designated as register + register++ and register + displacement++, the results of the addition
are stored into the (first) base register. The (second) index register or displacement is a
stride or auto increment value. For array operations its not very important whether the
effective memory address is the contents of the base register or the result of the computation.

For stack push and pop operatlons it would be nice to have both Mg_tg_m_la_pmpgse_s_thaung

Auto updating addressing modes don't require additional arithmetic, only the storing of the
address calculation. However, recovery from exceptions such as virtual to real address
translation page faults may be more complex for some implementations. Also, auto address
updating instructions perform an (additional) store operation to the integer register file, and
for integer memory reference operations a more complex implementation may be required in
order to realize the performance gain which eliminating separate address updating instructions

could provide. Qur position on these operations is pending further analysis of their near and
longer term effects on implementations,

‘ Apple Confidential 3/30/89 Rev. 2.0

There should be no architectural restrictions on the range or intermingling of code and data
within address spaces. Architecturally, a system call should be required before data or self
modifying code is executed. A user address space should be mappable into the system address
space, without architectural restrictions on location. 1/O should be mappable into any address
space, without architectural restrictions on location.

The 88000 provides the desired architectural attributes for system, user and 1/0 address
spaces. It also allows the user address space to be a separate 4GB area with system access
through special load and store instructions. This mechanism requires data to be specified as
system or user at compile time. Jaguar maps a user address space into the system address

space, and won't use the special load and store instructions. Motorola and Apple agree that these
operations should be eliminated in order to save instruction encoding space. Apparently they

haven't been used and can be deleted without causing compatibility problems.

Instructions should be aligned on word boundaries. The memory reference instructions should
require that data be aligned on its size boundary; half words on half word boundaries, words on
word boundaries, etc. However, unaligned accesses will be required in order to use some old
data. When memory reference instructions trap on an unaligned access, they should provide the
information necessary for kernel software to perform the access transparently to the offending
code. But the preferred mechanism for unaligned accesses should be to perform them in line
with a short sequence of instructions. In the Jaguar environment, the need to access unaligned
data is known at compilation, and special effort should be required to get compilers to create
unaligned data items. An application's typical response to encountering old, unaligned data
should be to request the user's permission to make a new, reformatted copy.

The 88000 requires instruction and data alignment. It traps on unaligned data accesses.
Unaligned data can be efficiently accessed by alignment trap software transparently to the
offending code, or with an in line sequence of instructions.

Address Scaling and Relative Addresses

Immediate displacements can be scaled to squeeze out more reach; but it doesn't matter much if
they are as large as 16 bits. All pointers should be byte addresses. This means that if there is
register + displacement addressing, there should be a form which doesn't scale the register.
One register could be scaled in register + register addressing; ideally there is also an unscaled
form. With good compilers, scaling registers will not be a big advantage; the benefits and costs
are approximately equal.

The 88000 has register + displacement (unscaled), register + register (unscaled) and
register + scaled register addressing.

The 88000 has a load relative address instruction. It has the same addressing modes as the
memory reference operations. These don't include program counter relative. All of its
operations are duplicated by other single instructions except register + scaled register for half

words, words and double words Mmmmmmmmmmmmmmmm

Mﬂmmmﬁmmmnannm_apmm They can be replaced by two instructions and

are believed to not be used frequently enough to optimize.

‘ Apple Confidential 3/30/89 Rev. 2.0

Sign Extension of Immediates

For memory reference, sign extension gives more flexibility with little impact if the immediate
field is wide enough. It can also be used to efficiently implement a data typing mechanism where
the sum of a pointer and the displacement being aligned indicates that the type matches.

The 88000 has 16 bit positive byte displacements. Motorola proposes to add new load and store

We consider having signed displacements for memory reference instructions very desirable. As
discussed, we are continuing to investigate the advantages and disadvantages of our proposal for
memory reference instructions with auto base register updating. The new loads and stores

descrlbed |n the floatmg point sectlon are a must ﬂaymg_m_o_ne_m_anJ_Q_mmm_aggm_e_ms_m

The instruction format issues ssmphfy tmplementatlons and they are partly aesthetlcs The
latter consideration is significant in winning customers.

For arithmetic, it doesn't matter if there is sign extension or not given that there are a complete
set of operations (eg. both add and sub) and the immediates are large (16 bits). More on
overflow and carry later. The 88000 doesn't sign extend arithmetic immediates which is
consnstent wuth its current handling of memory reference dlsplacements As_a_mmgf_p_o_lm._tg_[

For boolean operations, the 88000 has "upper" and "lower" application of 16 bit immediates.
The immediate operands are extended on the left or right with zeros, and also with ones for and.

Sign Extension of Bytes and Half Words

Bytes and half words are usually being manipulated as characters or other non-integer entities.
They should be loaded right justified with zero fill. Then there should be suitably efficient
means of sign extension for when integer arithmetic or comparison is to be performed on these
8 or 16 bit quantities.

The 88000 loads bytes and half words as above, and also with sign extension. Its clever extract
field and shift right arithmetic instruction can be used to sign extend a byte or half word that
didn't come directly from memory. (The shift count can be 0-31 and the field width 1-32.
Thls aIIows any partial word quantity to be s:gn extended |n place or shlfted nght) EQ_r_th_e

Integer Arithmetic

Signed and unsigned 32 bit add, subtract, multiply and divide are required. All of these
operations should be available in register x register and register x immediate forms. The

88000 is missing signed multiplies. Motorola proposes to add signed reqister x register

‘ Apple Confidential 3/30/89 Rev. 2.0

The exception conditions for integer arithmetic are overflow and divide by zero. Signed
operations should affect a sticky overflow flag. There should also be a sticky divide by zero flag,
and trap enable flags for overflow and divide by zero. With these, exception handling for integer
operations is similar to floating point. This integer status is similar to the equivalent floating
point status. It should be transferable to and from an integer register, and it is standard enough
that the bit patterns can be made part of the base architecture. This allows the resuits of an
individual operation to be tested without a trap with reasonable efficiency. We have deleted our

original proposal to have separate non sticky flags for this,

Like floating point, in normal (parallel) mode, unrelated instructions following a trapping
instruction may have been executed (the instruction and operands causing the exception and the
correct return location are always provided). There should be a serial mode which guarantees
that following instructions have not been executed. This would typically be used when stepping
through a program with a debugger. It should be a privileged status bit.

Basic building blocks should be provided for extended precision integer arithmetic. The intent
is to provide moderate support for precisions greater than 32 bits, and not 64 bits or any other
in particular. A reasonable set of operations is:

A carry out of 32 bits flag which is set by the unsigned register x register forms of add
and subtract. The flag is set with the electrical carry out for all operations; (the
compliment of borrow for subtraction).

Register x register forms of signed and unsigned add and subtract which use the carry flag
as input. In addition to supporting extended precision arithmetic, these can be used to load
the carry flag into a register for testing the results of unsigned operations.

A register x register form of unsigned multiply which leaves a 64 bit result in a register
pair.

A register x register form of unsigned divide which divides a 64 bit register pair by a 32
bit register and leaves 64 bits of result/remainder in a register pair.

A less desirable option would be a special register for extended multiply and divide to use.
Within reason the speed of extended multiply and all divide operations is not important (eg. one
bit per clock for divides and extra clocks for accessing and saving register pairs).

* Apple Confidential 3/30/89 Rev. 2.0

The integer overflow flag is only affected by signed arithmetic. The carry flag is only affected
by unsigned arithmetic. The carry flag is not affected by unsigned operations with immediates,
which are normally used for address calculations, or by address arithmetic within memory
reference instructions.

The 88000 has the extended precision oriented add and subtract operations described above. It
also has signed add and subtract which modify the carry flag and ones which input and modify the
carry flag. It has unsigned add and subtract which don't modify the carry flag and ones which
input but don't modify the carry flag. These additional operations add negligible complexity and
consume insignificant instruction encoding space.

that they return could be chopped (rounded toward zero, rem(-5/2) = -1) or a floor (rounded
to -, rem(-5/2) = 1). Chop remainder is probably the best choice because it is more
common and defined by some languages. Whlchever is provnded elther can be calculated from
the other.)

Comparison operations are entwined with each architecture's mechanisms for conditional
branching. These are discussed later.

Boolean Arithmetic

The basic and, or and xor operations are required. There should be register x register, and a
complete set of immediate operations. With a fixed 32 bit instruction format, applying a 16 bit
immediate to the upper or lower half of a register is desirable. The 1's complement not
operation is infrequent, and can be emulated by xor with ones.

The 88000 has the and, or and xor operations described above. It also has register x 1's
complement register for all operations, and immediates with both zero and ones fill for and.

Bit and Shift Operations

Left and right with zero fill, arithmetic right, and rotate, of 32 bits are required. The count
should be a literal or taken from a register (computed). Its desirable to have efficient
extraction of fields for emulating instructions. Other bit manipulations are frequently
provided, but are not used enough to justify their existence.

The 88000 provides the left, right, arithmetic right and rotate operations described above. It
performs the left, right and arithmetic right operations with very clever extract and shift
instructions. Specifying a field width of 32 bits results in a basic shift. The extract and shift
arithmetic right operation can be used to sign extend any sized partial word quantity. The
88000 also has set and clear field and scan for first set or clear bit instructions. As @ minor

‘ Apple Confidential 3/30/89 Rev. 2.0

WLMMMWEW i . T

‘ Apple Confidential 3/30/89 Rev. 2.0

Floating Point Register Operations

This section deals with the floating point register and arithmetic operations which are part of
the base architecture. There is also a class of special user operations which are implementation
dependent. This includes pixel and digital signal processing operations. These are presented in
the companion Cheetah specification for the first implementation.

Register Structure

The 88000 has (32) 32 bit registers which are used for all types of data. For Jaguar these are
considered integer registers and are used for address arithmetic and most non floating point data
operations. Separate floating point registers are added. This increases the amount of execution
parallelism that can be achieved with a given level of design complexity. For most Jaguar
implementations, the performance of floating point operations will approach that of integer
arithmetic. This will result in many more applications using floating point data
representations. The benefits of the increased register storage are worth the costs for these
applications. The increase in time to save or restore state information is an insignificant part
of the overall execution time, and an insignificant part of the time consumed by the operating
system related to process switching. Most implementations will minimize save and restore time
by only saving or restoring the floating point registers when they have been modified.

Single, double and extended precision floating point data must be supported. The registers
should be able to contain at least 16 of any of the data types, with one of the 16 a hard wired
zero. The architecture should be able to reference registers containing 32 of any of the data
types. In addition it is desirable that single and double operands can make maximum use of the
available register storage. In foreseeable implementations, the extended precision will be 80
bits; however it should be transparently extendible up to 128 bits. Double and extended
operands should be aligned on appropriate boundaries in registers (and on two and four word
boundaries respectively in memory). The instruction encoding of register addresses should
allow the same full width operands to be accessed regardless of the sizes that will actually be
used.

In the following figure, (a) provides for all of the above requirements and desires. The shaded
areas are the possible, forward compatible extensions. In the instruction field to register
address mapping, (s) bits select a portion of a location and (x) bits are unused but should be
zero for future compatibility. The problem is that three 7 bit fields are required for a three
register address architecture. This would use too much of the instruction encoding space. A
reasonable alternative is a two register address structure. However, the possible extensions
are not very likely to be implemented. If they are, access to more than 32 single or double
operands would be most useful to graphics and signal processing applications which use special,
implementation dependent operations. Thus, access to more than 32 single or double operands
could also be implementation dependent. Accepting this as the case makes (b) the favored
architecture.

(b) in its basic (b1) form supports all of the requirements and desires. (b2) and (b3) are the
possible extensions of (b1) which support all of the requirements. However, (b3) does not
allow maximum use of the available registers for single operands and (b2) does not allow
maximum use of the available registers for single or double operands. (b2) is the most likely
extension. It supports 32 operands of any type; and the extended precision format can
separately be extended to 128 bits. (b3) extends the extended precision format to 128 bits, and
increases the number of double operands to 32. (b2) and (b3) are forward compatible
extensions of (b1), and a full width (b2) is a forward compatible extension of (b3). Of course

«

Apple Confidential

3/30/89 Rev. 2.0

nothing so horrid as loading single r1 and depending on that to replace part of the mantissa of

double r0 is allowed.

Floating Point Register Structures

(a)
0 1 3
4 5

(b1)
0 1
2 3
30 31
double,
single extended

116 OI11TX

i 51 0 0|

. single
instr 9

double extended

fielg LLLLIsls]

I8 0 5 3 R O I W 3 53

. Zs s :

rog :
addr —88

31

single, double, extended

. -

(b3)
0 1 1d | 1d
2 3 | 3d | ad

30 31 31d 31d

single double extended

NEEECRENENE

[[s] | BN 0|

‘ Apple Confidential 3/30/89 Rev. 2.0

Execution Model

Typical Standard Apple Numerics Environment (SANE) applications represent primary data as
single or double precision quantities, but internal calculations and temporaries are extended
precision. Apple's lower level graphics and signal processing operations wnll only use smgle or
double premsxon representatlons and operatlons

required. Most other 88000 customers will be primarily interested in single and double
precision performance.

Conversion from single or double to extended precision requires exponent arithmetic and simple
multiplexing. Conversion from extended to single or double precision requires exponent and
rounding arithmetic. The proposed operations are designed to make it as easy as possible to
reduce extra cycles for these conversions by eliminating the extra cycles or overlapping them
with other operations. For maximum single and double performance, calculations must be able
to be performed to these precisions directly. This avoids any conversion time, and the extra
time that many implementations will require for operations such as multiply and divide in
extended precision.

The following table summarizes the operand precisions and conversions for three possible
execution models. Upward conversion includes converting the exponent to the new format. With

1. Source specified; Each source and result Source and destination
no conversion; specified; specified;
3 combinations. result >= source; destination <= source;
14 combinations. 6 combinations.
2. Source and destination One specification for Source and destination
specified; sources and destination; specified;
destination >= source; no conversion; destination <= source;
6 combinations. 3 combinations. 6 combinations.
3. Source specified; Result specified; Destination specified;
no conversion; each source specified by its tag; source specified by its tag;
format saved as tag; result >= source; destination <= source;
3 combinations. 3 (14 effective) combinations. 3 (6 effective) combinations.

All of these execution models support direct operations on single and double precision data
without conversion of sources or results. For SANE they combine upward conversion with
loading or execution and downward conversion with storing. (1) performs upward conversion
during execution. (2) combines upward conversion with load operations. (3) is a tagged

10

‘ Apple Confidential 3/30/89 Rev. 2.0

version of (1). Tags could also be used with (2) or other models. The advantage of tags is that
less instruction encoding space is required. However, we agree with Motorola that the added
complexity is undesirable for minimum and very parallel implementations.

and implementation issues, Details are discussed in the following sections.

Memory Reference

The following load and , ired | , els (1) and (2)

load (1) single single
double double
extended extended

load (2) single extended, double, single
double extended, double
extended extended

store single single
double single, double
extended single, double, extended

Extended operands are stored as 128 bits in memory even though fewer bits are implemented in
registers. For future compatibility they must be left justified in the four memory words,
which differs from Motorola's proposal. and unused bits should be zero,

Downward conversion is part of the store operations. In SANE most stores will do downward
conversion and conversions by themselves are infrequent. This is a partial justification for
combining the two. Downward conversion requires exponent and rounding arithmetic, and will
take one or more cycles. A simple implementation may only save instruction space and
bandwidth and not execution time. Combining conversion and store makes it easier for more
complex implementations, including ones with muitiple execution units, to overlap the time
required for the conversion with following operations.

The general capability to execute one or more stores of integer or floating point data out of
sequence is necessary for multiple execution unit implementations to work effectively. The
performance gain relative to the cost and complexity is also very favorable for less ambitious
implementations. Stores perform address calculation and memory management operations in
sequence, but are completed when the data to be stored is ready (following load addresses must
be checked against any outstanding store addresses). This significantly increases the
parallelism between loads, stores, integer and floating point operations in most cases; and,
combined with stores, SANE downward conversion can also be overiapped.

In SANE most data needs to be converted to extended when it is brought into CPU registers. It is
proposed that these conversions be combined with either the load or execution operations. In
most implementations it is believed that these upward conversions won't lengthen or add
execution cycles, and the savings in instruction space and bandwidth is worthwhile. The choice
between execution models (1) and (2) depends on implementation and instruction encoding
issues.

11

‘ Apple Confidential 3/30/89 Rev. 2.0

Floating point loads and stores use integer registers for addresses. These instructions should be
consistent with the integer register loads and stores in most ways. They should have the same
addressing modes, displacements, byte and bit ordering, address space attributes and data
alignment requirements. As with integer register loads and stores, the benefits and costs of
address scaling are about equal. The balance between the benefits and costs of auto updating
addressing modes is more favorable than for integer register operations because different
register files are used for data access and address updating.

desirability of these operations as part of the base architecture depends on whether most
implementations will have the data paths and reguster bandwndth to reallze lncreased

If we were starting from scratch, the base architecture would have byte, half word and word
integer register loads and stores, and single, double, extended and possibly 128 bit double
register pair floating point loads and stores. Double or double register pair floating point would
be used for moving blocks of data. Multiple integer registers could be loaded and stored for task
switching by privileged implementation dependent operations if the benefit outweighed the cost.

Floating Point Arithmetic

The 88000 architecture is register oriented, with fixed 32 bit instructions and a three
register address format for most register to register operations. Single, double and extended
. hould be hard wired 1o |

Add, subtract, multiply and divide are required. With a firm hand on the lid of Pandora's box of
proliferating instructions, remainder and square root should also be provided. Their
performance is important for many applications, they are usually fairly easy to implement in
conjunction with the basic operations, and they are specified by the IEEE standard. Floating
point remainder needs to be interruptible, or defined as a partial remainder step operation,
since a pathological case could take a long time. It should also provide the signed low order

12

‘ Apple Confidential 3/30/89 Rev. 2.0

integer quotient bits as a four bit 2's complement number. The remainder quotient bits can be
accessed along with the other floating point status information. Remainder and square root
would typically be implemented as function calls rather than in line if not defined in the basic
architecture. lIts intended that all implementations will be able to efficiently trap and decode
unimplemented instructions Thus, even if an implementation trapped and emulated remainder
and square root in kernel software, their performance would not be significantly less than a
function call.

In our original proposal we noted that the IEEE standard recommends additional operations
which are not part of the official standard, and that arguments are made for some of them to be
part of the base architecture. These include: scale (x * 2**n), log (exponent of x as a floating
point number), next (floating point number nearest x in the direction of y), and class (a code
indicating what type of floating point number x is). We wanted to discuss these operations, but
they weren't formally requested. Log and next are the most worthwhile. Scale is easily
emulated within the floating point registers, and class is very infrequent. Actually all of these
operations can be performed by an amount of software which is reasonable given their low
frequency. Motorola proposes to add these operations. and also round floating point to nea

The latter is also
infrequent, but is defined as part of the IEEE standard.

Most implementations of the architecture will have separate data paths for floating point
addition/subtraction and multiplication. It may be desirable to make a multiply/accumulate
instruction part of the architecture. To do so, it must be suitably general, and offer significant
performance advantages over the life of the architecture. A likely alternative is that
increasingly parallel implementations will accomplish the same effect with the existing
instructions. i i i i i

!] ion d I :

Conversion from single, double and extended to 32 bit integer are required. There should be
conversion from integer to double or to double and extended with execution model (1).
Converting to double and then to extended is identical to a direct conversion. There should be
conversion from integer to double and extended with execution model (2). Conversion from
integer directly to single is not necessary. It is more complex than converting from integer to
double or extended, and conversions either direction between integer and floating point formats
are usually infrequent. Converting integer to double or extended and then to single is identical
to a direct conversion. Performing conversions between floating point formats with memory
operations is acceptable. However specific instructions for these conversions will be
aesthetically desirable to many customers.

From a conceptual viewpoint the source of an integer to floating point conversion should be an
integer register and the destination should be a floating point register. From a conceptual
viewpoint the source of a floating point to integer conversion shouid be a floating point register
and the destination should be an integer register. The implementation is easier if all sources
and destinations are floating point registers. If this is the definition then there must be a way to
transfer 32 bit integers between memory and the floating point registers. The standard single
to single floating point loads and stores are fine as long as the conversion instructions use the
appropriate fields within register file entries.

13

‘ Apple Confidential 3/30/89 Rev. 2.0

wam_nugad_an_d_sm_[e_mesias_az_mumegﬂs_. The Jaguar arch|tecture addresses greater than
32 bit integer arithmetic with the building blocks described in the integer register section.
Conversion between greater than 32 bit integers and floating point is done in software. To
support 64 bit integers more aggressively we would add a complete set of 64 bit integer
operations which would use the integer registers, and conversion operations between floating
point and 64 bit integers with all operands in the floating registers for implementation
convenience.

ThIS eliminates the need for data path connectlons between the integer and floating pomt
registers.

Floating point status must include the rounding mode and the five trap on exception enables and
associated sticky exception flags specified by the IEEE standard. It should also include the low
order quotient bits from floating point remainder. The floating point status should be a special
register which can be transferred to or from an integer register, and it is standard enough that
the bit patterns can be made part of the base architecture. This allows the results of an
individual operation to be tested without a trap with reasonable efficiency. We have deleted our

iginal Lo | icky flags for thi

On the current 88000 floating point status is accessed by loading, storing or exchanging integer
and control registers, and user code can not read (or wnte) |mplementatlon dependent status.

The architecture must provide complete support of the IEEE standard for floating point and
integer data. Any reasonable implementation will use a combination of hardware and kernel
software to provide the basic operations. What's in hardware and what's accomplished with the
modern equivalent of firmware depends on the cost and performance benefits for a given
implementation. As a minimum, most implementations will handle the trap enable and sticky
exception flags and almost all cases in round to nearest mode with traps disabled in hardware.

Some time critical procedures may knowingly generate overflows or very small results which
underflow or should be denormalized. The normal environment for these routines is round to

nearest and all traps disabled. Ideally the hardware will be able to generate the correct IEEE

14

‘ Apple Confidential 3/30/89 Rev. 2.0

Architecturally, during normal (parallel) execution, unrelated instructions following a
trapping instruction may have been executed. All information required to implement the IEEE
standard, and the correct return location, will always be available. There should be a serial
mode which guarantees that following instructions have not been executed. This parallel/serial
mode should apply to floating point and other operations. It would typically be used when
stepping through a program with a debugger. It should be a privileged status bit.

The current 88000 supports the desired parallel/serial mode for floating point instructions.
The issue has otherwise been mute. Motorola will explicitly extend the architectural definition
of this capability to cover floating point and other operations,

Comparison operations are entwined with each architecture's mechanisms for conditional
branching. Floating point and integer comparisons are discussed later.

15

‘ Apple Confidential 3/30/89 Rev. 2.0

Comparison and Program Flow Operations

Conditional and unconditional branches, calls and returns should have an optional delay slot. If
the delay slot is specified, then the next sequential instruction is executed regardless of whether
or not the branch, call or return is taken. For implementation flexibility, there should be the
architectural restriction that the delay slot instruction cannot be a program flow altering
instruction or the target of such an instruction. If the delay slot is not specified, then the next
sequential instruction is executed only if the (conditional) branch is not taken. There shouldn't
be any restrictions on the type of operation performed by the next sequential instruction in this
case.

Conditional branches should have static prediction. That is they come in two flavors; predicted
to branch and predicted not to branch. Implementations can use or not use this information
depending on their prefetching capabilities. This is a valuable feature with only a set of rules
for prediction at compilation. Its even more effective if operating system or application code is
executed on a simulator and the results are used to adjust the prediction before release.

Data comparisons may be combined with branches or be separate instructions. If separate, the
results may be saved in an integer register or as condition code status information. The
following are preferred. Full arithmetic comparisons of integer register or floating point data
are separate compare instructions. They leave their results in an integer register. Conditions
which take a small portion of a cycle to evaluate, such as testing individual bits and zeroness of
an integer register, are combined with branch operations.

In order to most efficiently implement the IEEE standard, there should be two forms of floating
point comparison. One signals invalid if either operand being compared is a Nan, and an invalid
trap happens if enabled. The other does not signal invalid. In either case, invalid is one of the
possible results of the comparison.

Condition codes may be a small implementation convenience, but they limit code placement
flexibility and parallelism. Condition code architectures need a complete set of arithmetic
instructions which don't alter the condition codes as well as selected operations which do.
Generally, the arithmetic results of a comparison can be saved as well as setting the condition
codes. However, this will rarely save cycles over the preferred combination of operations
described above.

Normal addressing for branches and call operations is PC + displacement. Call instructions and
unconditional branches should have the widest possible displacement. The displacement should
be approximately 16 bits for conditional branches. There should be an unconditional branch
whose target address is the contents of an integer register. This is typically used for return
operations since call instructions leave their return address in an integer register. There
should also be a call operation whose target address is in a register. This is important for
dynamic binding of procedures, and a convenience in several other situations.

There must be some kind of trap or system call operation. Ideally this is an instruction with a
literal parameter which is used to vector to one of many (in the range of 256) entry points. A
register (computed) parameter form of system call is not required.

Special loop branches are not worth including. Typically rx = rx + ry and branch if the
original rx was negative, positive, zero, etc. Often this special branch doesn't fit a compiler's
optimization of count and addressing indices for a particular loop. When it does, cycles won't be
saved unless there aren't enough branch and load delay cycles in which the arithmetic can be
performed with regular instructions.

16

* Apple Confidential 3/30/89 Rev. 2.0

The 88000 has an integer register compare which puts a 10 bit result string into an integer
register. Each bit indicates one of the possible relationships between the registers compared as
if signed and unsigned. Five of the bits are the complement of the others, eg. equal and not equal.

Floating point compare puts a 12 bit result string into an integer register. 8 of the bits
indicate greater than, less than, equal unordered, and therr complements The other 4 bits are

All branches, calls and returns have delay slots with the desired attributes. Conditional
branching is provided for a specified integer register bit set or clear and all relationships of an
integer register compared with zero. Addressing is PC + displacement *4 with a 16 bit sign
extended displacement. Unconditional branch addressing is an integer register (for return
operations) or PC + displacement * 4 with a 26 bit sign extended displacement. Call addressing
is also an integer register or PC + displacement * 4 with a 26 bit sign extended displacement.
If the delay slot instruction is executed, the return address is correctly incremented by 4.

System call instructions on the 88000 are conditional, with the same tests as conditional
branches. They trap to one of 512 entry points, 8 bytes apart. The first 128 entries cannot be
entered in user mode. Testing r0 for zero guarantees a trap. Details of the privileged aspects of
system calls and returns (launching processes) are discussed in the companion Cheetah
specification for the first implementation.

The 88000 lacks static prediction. Otherwise it has a nearly ideal set of comparison and

program flow operations. Mmmﬂmmm_admmmmmmmmmmmmnm

The 88000 also has a trap on bounds check instruction. It performs an unsigned register x
register or register x 16 bit zero extended displacement comparison and traps if the first
register is larger than the second register or displacement. This instruction is in effect an
arithmetic compare and branch, to a particular trap entry point, and predicted not to branch.
The model for the architecture is otherwise separate compare instructions and branch
instructions. With static prediction, the branch instructions can result in zero cycles if
predicted correctly. With this degree of parallelism, the normal architectural model can equal
the performance of the special bounds check instruction; and provide more flexibility in

testing, and in handling violations within the executing process. As a minor point, we propose to

17

‘ Apple Confidential 3/30/89 Rev. 2.0

18

‘ Apple Confidential 3/30/83 Rev. 2.0

Binary Incompatible Summary

Proposed Changes Apple Motorola
1. Drop little endian support unless others really want it. minor issue ?

2. Add auto base register updating integer register loads and depends on will do with
stores; register + register++, register + displacement++ implemen- 10 bit signed

Displacements signed and size consistent with other tation displacement,
memory reference instructions. larger is
compatibility
issue
3. Delete the separate user space addressing mode. minor issue yes
4a. Delete unscaled forms of load relative address. minor issue yes
4b. Delete all of load relative address. minor issue compatibility
issue
5. Make address displacements signed. Shorten size slightly very compatibility
if necessary so that all memory reference instructions important issue, add new
are consistent, including new ones. 10 bit signed

6. Make arithmetic immediates signed for consistency with minor issue see (5)

(5).

7. Delete sign extending byte and half word loads. minor issue compatibility
and ? issue
8a. Add signed register x register multiply. important yes
8b. Add signed register x immediate multiply important no
9a. Add sticky integer overflow and divide by zero flags and important yes
enables similar to floating point.
9b. Add non sticky integer overflow and divide by zero flags. no agree
10. Define the existing serial/parallel mode to apply to important yes
floating point and other operations.
11a. Unsigned multiply should affect the carry flag. no agree
11b Unsigned multiply should not affect the overflow flag. important missunder-
standing?
12a. Add unsigned extended multiply. important yes
12b Don't add signed extended multiply. minor issue ?

19

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Apple Confidential

Add signed and unsigned extended divide with 32 bit
(partial) quotient and 32 bit remainder as result.

Add signed and unsigned remainder instructions.

Don't add signed and unsigned extended remainder
instructions.

Delete set and clear bit instructions.

Delete scan instruction.

Delete existing floating point instructions.

Add floating point registers. Proposed architecture is
(82) 80 bit, holding single, double or extended.
Register zero is hard wired to zero.

Add floating point loads and stores which support single,
double and extended execution. Displacements signed and

size consistent with other memory reference instructions.

Extended is left justified in memory in four words with
zero fill.

Add auto base register updating floating point loads and

stores; register + register++, register + displacement++

Displacements signed and size consistent with other
memory reference instructions.

Add 128 bit double floating point register pair loads and
stores.

Delete double integer register pair loads and stores if
there isn't enough instruction encoding space.

20

3/30/89 Rev. 2.0

important

no, use (13)

not
required

minor issue

no, desired
by others

very
important

very
important

very
important

important

depends on
implemen-
tation

depends on
implemen-
tation

keep if
encoding
space

yes, but

missunder-
standing on
remainder?

added per
original
request

missunder-
standing?

compatibility
issue

agree

compatibility
issue

yes

always
convert to
and from
extended;

10 bit signed
displacement,
larger is
compatibility
issue

not left
justified

will do with
10 bit signed
displacement,
larger is
compatibility
issue

no

compatibility
issue

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Apple Confidential

Add floating point add, subtract, multiply, divide,
remainder and square root supporting single, double and
extended execution.

Neutral- on adding floating point scale, log, next and class
instructions.

Neutral+ on adding floating point round to integral value
instruction.

Don't add multiply/accumulate instructions to the base
architecture.

Add conversion from single, double and extended floating
point to 32 bit integer instructions.

Add conversion from 32 bit integer to double and (or)
extended floating point instructions.

Add instructions for conversion between floating point
formats without going through memory.

Add move instructions between floating point and integer
registers.

Add non sticky floating point exception flags.

Add floating point registers modified bit, as privileged
status.

Provide enough hardware support for the IEEE standard so
that round to nearest with traps disabled does not need
software assistance, or provide a mode, as an
implementation dependent user feature, which doesn't
require software assistance, but has some exceptions to
the IEEE standard.

Add a floating point compare similar to the current one
which doesn't signal invalid.

Delete the range check bits from floating point compare.

Add static prediction to conditional branches.

Delete the trap on bounds check instruction.

21

3/30/89 Rev. 2.0

very
important

not
required

not
required

implemen-
tation
dependent

very
important

very
important

minor issue

no
important

very
important

very
important

keep if
desired by
others
important

minor issue

extended only

agree

yes, but

64 bit sign
extended 32
bit result

yes, but

64 bit sign
extended 32
bit source

yes

agree

agree

yes, but
user status

?

compatibility
issue
yes

compatibility
issue

‘ Apple Confidential 3/30/89 Rev. 2.0

Binary Compatible Summary
Proposed Changes Apple Motorola
1. Drop little endian support unless others really want it. minor issue ?

2. Add auto base register updating integer register loads and depends on will do with
stores; register + register++, register + displacement++ implemen- 10 bit signed

Displacements signed. tation displacement
3. Delete the separate user space addressing mode. minor issue yes
4. Delete unscaled forms of load relative address. minor issue yes
5. Add signed displacement load and store byte, half word and very will do with
word instructions. important 10 bit
displacements
6a. Add signed register x register multiply. important yes
6b. Add signed register x immediate multiply important no
7a. Add sticky integer overflow and divide by zero flags and important yes
enables similar to floating point.
7b. Add non sticky integer overflow and divide by zero flags. no agree
8. Define the existing serial/parallel mode to apply to important yes
floating point and other operations.
9a. Unsigned multiply should affect the carry flag. no agree
9b. Unsigned multiply should not affect the overflow flag. important missunder-
standing?
10a. Add unsigned extended multiply. important yes
10b Don't add signed extended multiply. minor issue ?
11. Add signed and unsigned extended divide with 32 bit important yes, but
(partial) quotient and 32 bit remainder as result. missunder-
standing on
remainder?
12. Add signed and unsigned remainder instructions. no, use (11) added per
original req
13. Don't add signed and unsigned extended remainder not missunder-
instructions. required standing?
14. Implement existing floating point instructions in very agree
software. important

22

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Apple Confidential

Add floating point registers. Proposed architecture is
(32) 80 bit, holding single, double or extended.
Register zero is hard wired to zero.

Add floating point loads and stores which support single,
double and extended execution. Displacements signed.

Extended is left justified in memory in four words with
zero fill.

Add auto base register updating floating point loads and
stores; register + register++, register + displacement++
Displacements signed.

Add 128 bit double floating point register pair loads and
stores.

Add floating point add, subtract, multiply, divide,
remainder and square root supporting single, double and
extended execution.

Neutral- on adding floating point scale, log, next and class
instructions.

Neutral+ on adding floating point round to integral value
instruction.

Don't add multiply/accumulate instructions to the base
architecture.

Add conversion from single, double and extended floating
point to 32 bit integer instructions.

Add conversion from 32 bit integer to double and (or)
extended floating point instructions.

Add instructions for conversion between floating point
formats without going through memory.

Add move instructions between floating point and integer
registers.

Add non sticky floating point exception flags.

23

3/30/89 Rev. 2.0

very
important

very
important

important

depends on
implemen-
tation

depends on
implemen-
tation

very
important
not
required

not
required

implemen-
tation
dependent

very
important

very
important

minor issue

no

yes

always
convert to
and from
extended;
will do with
10 bit signed
displacement

not left
justified

will do with
10 bit signed
displacement

no

extended only

agree

yes, but

64 bit sign
extended 32
bit result

yes, but

64 bit sign
extended 32
bit source

yes

agree

agree

29.

30.

31.

32.

Apple Confidential

Add floating point registers modified bit, as privileged
status.

Provide enough hardware support for the IEEE standard so
that round to nearest with traps disabled does not need
software assistance, or provide a mode, as an
implementation dependent user feature, which doesn't
require software assistance, but has some exceptions to
the IEEE standard.

Add a floating point compare similar to the current one
which doesn't signal invalid.

Add static prediction to conditional branches.

24

important

very
important

very
important

important

3/30/89 Rev. 2.0

yes, but
user status

?

yes

