
Apple Confidential

Jaguar Architecture
Derived from the Motorola 88000

3/30/89 Rev. 2.0

This is a specification of changes to the 88000 architecture required for the Jaguar family of
systems. Architectural and implementation issues are divided into the categories of: base
architecture, implementation dependent privileged operations, implementation dependent user
operations, and implementation mechanisms. The base architecture is the environment seen by
most system and user code. lt is implementation independent. Implementation dependent
privileged operations are performed by a limited, kernel portion of the operating system. They
include access to virtual to real address translation hardware, saving state information and
launching processes. Implementation dependent user operations are intended for use by a very
limited number of low level routines. They may be used, for example, to enhance the
performance of certain graphics or digital signal processing operations by making special use of
the capabilities of a particular implementation. Implementation mechanisms are the
specifications and operating details for a particular implementation. These include performance
and hardware configuration specifications. They also include the details of how, for example, a
combination of hardware and kernel software is used to handle some cases of IEEE floating point
arithmetic. This document covers the base architecture. Implementation dependent features for
the first Jaguar microprocessor are presented in the companion Cheetah Specification.

Two approaches for changes to the 88000 architecture are presented. The first approach
sacrifices binary compatibility with the existing 88000 in order to optimize the resulting
architecture. The second approach is to retain binary compatibility, with some compromise of
the additions and changes and some increase in complexity. Apple's proposal js that a detailed
architecture. but not a deyjce. specificatjon be deyeloped for each approach. and an effort be
made to conyjnce key exjstjng customers to accept the optjmjzed. bjnar:y jncompatible yersjon.

The compatible version will contain new instructions, most notably for floating point
operations, which are intended to supersede the existing mechanisms for similar operations.
The existing instruction encodings would be retained. However, it is important that most such
instructions in fact trap and are emulated by kernel software (which may make use of the new
instructions). Superseded instructions should be emulated in implementations of interest to
Apple so that the cost and performance of these parts is not adversely affected. Superseded
instructions should be emulated in all implementations, including those not of current interest
to Apple, because other customers will want to use one version of their applications software
across the 88000 product line. In these cases it is important to eliminate pressure to optimize
the performance of the superseded instructions.

lt the compatible approach is adopted and superseded instructions are emulated, most current
88000 customers will treat Jaguar implementations as binary incompatible. They will
recompile rather than suffer any performance degradation. The conflicts which will arjse wjth
the superseded jnstructjons are one of the prjncjpal reasons that we propose the binary
jncompatible approach.

With either the binary compatible or incompatible approaches, its not contrary to Apple's
interests if there are versions which implement subsets of the instructions which Jaguar uses.
For example, a design might not implement extended precision or any floating point operations
in hardware.

The architectural issues and changes are grouped into the categories: integer register
operations, floating point register operations, and comparison and program flow operations.

1

Apple Confidential 3/30/89 Rev. 2.0

Following these is a summary list of all changes for the binary incompatible and compatible
approaches.

The 88000 has (32) 32 bit registers which are used for all types of data. For Jaguar these are
considered integer registers and are used for address arithmetic and most non floating point data
operations. Separate floating point registers are added, as described later. The floating point
registers accommodate 32, 64 and 80-128 bit entities. The floating point units will typically
be implemented with the widest data paths. For this reason, and for maximum parallelism,
some graphics and data movement operations are defined to use the floating point registers.

Integer Register Operations

Memory Reference

The 88000 architecture is register oriented, with fixed 32 bit instructions and a three
register address format for most register to register operations. Register zero is hard wired to
be zero. In this context there should be register + displacement and register + register
addressing for load and store of bytes, half words and 32 bit words. The displacement should be
approximately 16 bits. Byte ordering should be big endian; 0, 1,2... Bit ordering can be big
endian or little endian. Loading and storing of two or more registers with a single instruction is
a minor performance enhancement; its assumed that there are separate floating point loads and
stores which are also the most efficient way to move multiple words of data. Address scaling and
sign extension are discussed in the following sections.

The 88000 provides register + displacement and register + register addressing for load and
store of bytes, half words, words and 64 bit register pairs. The displacement is a 16 bit
positive byte displacement. A programmable option allows 88000 byte ordering to be big
endian or little endian. This has a minor impact on the current implementation of the 88000;
but extra data path multiplexing will be required for versions where the data path between
registers and cache is wider than 32 bits. Our posjtjon on the little endjan optjon js that jt
should be jncluded jf jt really does wjden the appeal of the architecture: but multiple word little
endjan operations should reguire extra cycles jn a future jmplementation jf the cycle time would
othecwjse be lengthened.

Addressing modes with auto updating of the base register would be useful. In these modes,
designated as register + register++ and register + displacement++, the results of the addition
are stored into the (first) base register. The (second) index register or displacement is a
stride or auto increment value. For array operations its not very important whether the
effective memory address is the contents of the base register or the result of the computation.
For stack push and pop operations, it would be nice to have both. Motorola proposes that the
base register be the effectjye address jf the djsplacement or jndex regjster js posjtjye. and the
result of the computation be used jf the djsplacement or jndex regjster js negative.

Auto updating addressing modes don't require additional arithmetic, only the storing of the
address calculation. However, recovery from exceptions such as virtual to real address
translation page faults may be more complex for some implementations. Also, auto address
updating instructions perform an (additional) store operation to the integer register file, and
for integer memory reference operations, a more complex implementation may be required in
order to realize the performance gain which eliminating separate address updating instructions
could provide. Our posjtjon on these operatjons js pendjng further analysjs of thejr near and
longer term effects on jmplementatjons.

2

Apple Confidential 3/30/89 Rev. 2.0

There should be no architectural restrictions on the range or intermingling of code and data
within address spaces. Architecturally, a system call should be required before data or seif
modifying code is executed. A user address space should be mappable into the system address
space, without architectural restrictions on location. 110 should be mappable into any address
space, without architectural restrictions on location.

The 88000 provides the desired architectural attributes for system, user and 110 address
spaces. lt also allows the user address space to be a separate 4GB area with system access
through special load and store instructions. This mechanism requires data to be specified as
system or user at compile time. Jaguar maps a user address space into the system address
space, and won't use the special load and store instructions. Motorola and Apple agree that these
operatjons should be elimjnated jn order to save jnstructjon encodjng space. Apparently they
haven't been used and can be deleted without causing compatibility problems.

lnstructions should be aligned on word boundaries. The memory reference instructions should
require that data be aligned on its size boundary; half words on half word boundaries, words on
word boundaries, etc. However, unaligned accesses will be required in order to use some old
data. When memory reference instructions trap on an unaligned access, they should provide the
information necessary for kernel software to perform the access transparently to the offending
code. But the preferred mechanism for unaligned accesses should be to perform them in line
with a short sequence of instructions. In the Jaguar environment, the need to access unaligned
data is known at compilation, and special effort should be required to get compilers to create
unaligned data items. An application's typical response to encountering old, unaligned data
should be to request the user's permission to make a new, reformatted copy.

The 88000 requires instruction and data alignment. lt traps on unaligned data accesses.
Unaligned data can be efficiently accessed by alignment trap software transparently to the
offending code, or with an in line sequence of instructions.

Address Scaling and Relative Addresses

Immediate displacements can be scaled to squeeze out more reach; but it doesn't matter much if
they are as !arge as 16 bits. All pointers should be byte addresses. This means that if there is
register + displacement addressing, there should be a form which doesn't scale the register.
One register could be scaled in register + register addressing; ideally there is also an unscaled
form. With good compilers, scaling registers will not be a big advantage; the benefits and costs
are approximately equal.

The 88000 has register + displacement (unscaled), register + register (unscaled) and
register + scaled register addressing.

The 88000 has a load relative address instruction. lt has the same addressing modes as the
memory reference operations. These don't include program counter relative. All of its
operations are duplicated by other single instructions except register + scaled register for half
words, words and double words. Motorola proposes to delete most of the duplicated load relative
address forms. retajnjng regjster + scaled regjster. The deleted torms have not been used by
compilers. As a mjnor pojnt. we propose that the remajnjng torms of load relative address also
be deleted for the bjnary jncompatjble approach. They can be replaced by two instructions and
are believed to not be used frequently enough to optimize.

3

Apple Confidential 3/30/89 Rev. 2.0

Sign Extension of Immediates

For memory reference, sign extension gives more flexibility with little impact if the immediate
field is wide enough. lt can also be used to efficiently implement a data typing mechanism where
the sum of a pointer and the displacement being aligned indicates that the type matches.

The 88000 has 16 bit positive byte displacements. Motorola proposes to add new load and store
jnstructjons wjth sjgned 1 O bjt djsplacements. lf auto base regjster updatjng jnstructjons are
added. the regjster + djsplacement++ form would also haye 1 O bjt sjgned djsplacements. For
the bjnary jncompatjble approach. we propose that the exjstjng memory reference jnstructjons
be changed to haye sjgned djsplacements. All memory reference operations should haye the same
sjze djsplacement. whjch could be somewhat less than 16 bits to make room for added
jnstructjons.

We consider having signed displacements for memory reference instructions very desirable. As
discussed, we are continuing to investigate the advantages and disadvantages of our proposal for
memory reference instructions with auto base register updating. The new loads and stores
described in the floating point section are a must. Havino more than 1 O bjt displacements for
the added jnstructjons and havjng simple. uniform and non dupljcatjye memory reference
jnstructjon formats are jmportant reasons why we propose the bjnary jocompatjble approach.
The instruction format issues simplify implementations, and they are partly aesthetics. The
latter consideration is significant in winning customers.

For arithmetic, it doesn't matter if there is sign extension or not given that there are a complete
set of operations (eg. both add and sub) and the immediates are large (16 bits). More on
overflow and carry later. The 88000 doesn't sign extend arithmetic immediates which is
consistent with its current handling of memory reference displacements. As a mjnor pojnt. for
the bjnary jncompatjble approach we mopose that these be changed to be sjgn extended to
majntajn consistency.

For boolean operations, the 88000 has "upper" and "lower" application of 16 bit immediates.
The immediate operands are extended on the left or right with zeros, and also with ones for and.

Sign Extension of Bytes and Half Words

Bytes and half words are usually being manipulated as characters or other non-integer entities.
They should be loaded right justified with zero fill. Theo there should be suitably efficient
means of sign extension for when integer arithmetic or comparison is to be performed on these
8 or 16 bit quantities.

The 88000 loads bytes and half words as above, and also with sign extension. lts clever extract
field and shift right arithmetic instruction can be used to sign extend a byte or half word that
didn't come directly from memory. (The shift count can be 0-31 and the field width 1-32.
This allows any partial word quantity to be sign extended, in place or shifted right.) For the
bjnary jncompatjble approach, we propose to elimjnate the sjgn extendjng yersjons of byte and
half word loads ja order to reduce complexjty and saye jnstructjon encodjng space,

Integer Arithmetic

Signed and unsigned 32 bit add, subtract, multiply and divide are required. All of these
operations should be available in register x register and register x immediate forms. The
88000 is missing signed multiplies. Motorola proposes to add sjgned reoister x reoister

4

Apple Confidential 3/30/89 Rev. 2.0

multiply. but not an immediate form. or at least not one witb tbe same sized immediate as
otbers. because of jnstructjon encoding issues. Our position is tbat this is an open jssue. Eor
tbe bjnary jncompatjble approach. divide immediates would be preferable to delete if sometbjng
must be omitted.

The exception conditions for integer arithmetic are overflow and divide by zero. Signed
operations should affect a sticky overflow flag. There should also be a sticky divide by zero flag,
and trap enable flags for overflow and divide by zero. With these, exception handling for integer
operations is similar to floating point. This integer status is similar to the equivalent floating
point status. lt should be transferable to and from an integer register, and it is standard enough
that tbe bit patterns can be made part of the base architecture. This allows the results of an
individual operation to be tested witbout a trap with reasonable efficiency. We baye deleted our
orjgjnal proposa! to baye separate non stjcky flags tor tbjs.

Like floating point, in normal (parallel) mode, unrelated instructions tollowing a trapping
instruction may have been executed (the instruction and operands causing the exception and the
correct return location are always provided). There should be a serial mode whicb guarantees
that following instructions have not been executed. This would typically be used wben stepping
tbrough a program with a debugger. lt sbould be a privileged status bit.

The 88000 currently detects oyerflow for sjgned operatjons and djyjde by zero. but tbese traps
can't be disabled and tbey aren't sticky. Parallel/serial mode is a prjyileged status bjt which is
defjned for floating pojnt. but not explicitly tor other operations. Motorola proposes to add all
of tbe desjred exceptjon handljng. and expand tbe definition of parallel/serial mode. They also
propose tbat unsjgned multiply aftect the oyerflow flag. lt sbould not do tbjs: its purpose is tor
operations where oyerflow sbould be jgnored. We jnjtjally proposed tbat unsjgned multiply
"oyerflow" jnto tbe carry flag for symmetry with otber unsigned operations. as described
below. But tbere is no important reason to do tbis. and tuture implementatjons may otherwise
be simplified.

Basic building blocks should be provided for extended precision integer arithmetic. The intent
is to provide moderate support for precisions greater than 32 bits, and not 64 bits or any other
in particular. A reasonable set of operations is:

A carry out of 32 bits flag which is set by the unsigned register x register torms of add
and subtract. The flag is set with the electrical carry out for all operations; (the
compliment of borrow for subtraction).

Register x register forms of signed and unsigned add and subtract which use the carry flag
as input. In addition to supporting extended precision arithmetic, these can be used to load
the carry flag into a register for testing the results of unsigned operations.

A register x register form of unsigned multiply wbich leaves a 64 bit result in a register
pair.

A register x register form of unsigned divide whicb divides a 64 bit register pair by a 32
bit register and leaves 64 bits of result/remainder in a register pair.

A less desirable option would be a special register for extended multiply and divide to use.
Within reason the speed of extended multiply and all divide operations is not important (eg. one
bit per clock tor divides and extra clocks tor accessing and saving register pairs).

5

Apple Confidential 3/30/89 Rev. 2.0

The integer overflow flag is only affected by signed arithmetic. The carry flag is only affected
by unsigned arithmetic. The carry flag is not affected by unsigned operations with immediates,
which are normally used for address calculations, or by address arithmetic within memory
reference instructions.

The 88000 has the extended precision oriented add and subtract operations described above. lt
also has signed add and subtract which modify the carry flag and ones which input and modify the
carry flag. lt has unsigned add and subtract which don't modify the carry flag and ones which
input but don't modify the carry flag. These additional operations add negligible complexity and
consume insignificant instruction encoding space.

Motorola proposes to add sjgned and unsjgned yersjons of extended precjsjon orjented multiply
and djyjde. Howeyer. the extended djyjde should produce a 32 bjt potentially jncomplete
product. and a 32 bit remajnder. Addjng a sjgned yersjon of thjs djyjde js a better jdea than our
orjgjnal proposal to also haye sjgned and unsjgned remajnder jnstructjons. lt the extended
precjsjon sjgned multjply js added. the cases of ejther operand bejng negative should trap to a
kernel software jmplemeotatjon. Our posjtjon js that addjng thjs jnstructjon js a mjnor open
i.s.s.WL

We orjgjnally proposed that sjgned and unsjgned 32 bjt remajnder jnstructions be added. Hayjng
both sjgned and unsjgned extended precjsjon djyjsjon operatjons js sufficjent. The remainder
that they return could be chopped (rounded toward zero, rem(-5/2) = -1) or a floor (rounded
to -oo, rem(-5/2) = 1). Chop remainder is probably the best choice because it is more
common and defined by some languages. Whichever is provided, either can be calculated from
the other. We propose to not add the four separate remajnder operatjons suggested by Motorola
in response to our jnjtjal reguest.

Comparison operations are entwined with each architecture's mechanisms for conditional
branching. These are discussed later.

Boolean Arlthmetic

The basic and, or and xor operations are required. There should be register x register, and a
complete set of immediate operations. With a fixed 32 bit instruction format, applying a 16 bit
immediate to the upper or lower half of a register is desirable. The 1 's complement not
operation is infrequent, and can be emulated by xor with ones.

The 88000 has the and, or and xor operations described above. lt also has register x 1 's
complement register for all operations, and immediates with both zero and ones fill for and.

Bit and Shift Operations

Left and right with zero fill, arithmetic right, and rotate, of 32 bits are required. The count
should be a literal or taken from a register (computed). lts desirable to have efficient
extraction of fields for emulating instructions. Other bit manipulations are frequently
provided, but are not used enough to justify their existence.

The 88000 provides the left, right, arithmetic right and rotate operations described above. lt
performs the left, right and arithmetic right operations with very clever extract and shift
instructions. Specifying a field width of 32 bits results in a basic shift. The extract and shift
arithmetic right operation can be used to sign extend any sized partial ward quantity. The
88000 also has set and clear field and scan for first set or clear bit instructions. As a mjnor

6

Apple Confidential 3/30/89 Rev. 2.0

pojnt. we propose that the set and clear jnstructjons be deleted for the bjnary jncompatjble
approach. We would also delete the scan jnstructjon. but accept jt sjnce jt js desjred by other
customers and its cost js small.

7

Apple Confidential 3/30/89 Rev. 2.0

Floating Point Register Operations

This section deals with the floating point register and arithmetic operations which are part of
the base architecture. There is also a class of special user operations which are implementation
dependent. This includes pixel and digital signal processing operations. These are presented in
the companion Cheetah specification for the first implementation.

Register Structure

The 88000 has (32) 32 bit registers which are used for all types of data. For Jaguar these are
considered integer registers and are used for address arithmetic and most non floating point data
operations. Separate floating point registers are added. This increases the amount of execution
parallelism that can be achieved with a given level of design complexity. Formost Jaguar
implementations, the performance of floating point operations will approach that of integer
arithmetic. This will result in many more applications using floating point data
representations. The benefits of the increased register storage are worth the costs for these
applications. The increase in time to save or restore state information is an insignificant part
of the overall execution time, and an insignificant part of the time consumed by the operating
system related to process switching. Most implementations will minimize save and restore time
by only saving or restoring the floating point registers when they have been modified.

Single, double and extended precision floating point data must be supported. The registers
should be able to contain at least 16 of any of the data types, with one of the 16 a hard wired
zero. The architecture should be able to reference registers containing 32 of any of the data
types. In addition it is desirable that single and double operands can make maximum use of the
available register storage. In foreseeable implementations, the extended precision will be 80
bits; however it should be transparently extendible up to 128 bits. Double and extended
operands should be aligned an appropriate boundaries in registers (and an two and four ward
boundaries respectively in memory). The instruction encoding of register addresses should
allow the same full width operands to be accessed regardless of the sizes that will actually be
used.

In the following figure, (a) provides for all of the above requirements and desires. The shaded
areas are the possible, forward compatible extensions. In the instruction field to register
address mapping, (s) bits select a portion of a location and (x) bits are unused but should be
zero for future compatibility. The problem is that three 7 bit fields are required for a three
register address architecture. This would use too much of the instruction encoding space. A
reasonable alternative is a two register address structure. However, the possible extensions
are not very likely to be implemented. lf they are, access to more than 32 single or double
operands would be most useful to graphics and signal processing applications which use special,
implementation dependent operations. Thus, access to more than 32 single or double operands
could also be implementation dependent. Accepting this as the case makes (b) the favored
arch itecture.

(b) in its basic (b1) form supports all of the requirements and desires. (b2) and (b3) are the
possible extensions of (b1) which support all of the requirements. However, (b3) does not
allow maximum use of the available registers for single operands and (b2) does not allow
maximum use of the available registers for single or double operands. (b2) is the most likely
extension. lt supports 32 operands of any type; and the extended precision format can
separately be extended to 128 bits. (b3) extends the extended precision format to 128 bits, and
increases the number of double operands to 32. (b2) and (b3) are forward compatible
extensions of (b1), and a full width (b2) is a forward compatible extension of (b3). Of course

8

Apple Confidential 3/30/89 Rev. 2.0

nothing so horrid as loading single r1 and depending on that to replace part of the mantissa of
double rO is allowed.

(a)

0

4

60

(b 1)

0

2

30

single

! 1 1 1 !sl

2

5 6

61 62

1

3

31

double,
extended

! 1 1 1 !xi
....._ _ __._j s....,I ..__ _ __.i ol

Floating Point Register Structures

3

instr
single double extended

7 1 1 1 1 lslsl 1 1 1 1 lslxl 1 1 1 1 lxlxl field

reg 1 s SI lslol 1 ool
addr

63

(b2) (b3)

0 0 1 1d 1d

2 3 3d 3d

30 31 31d 31d

31

single, double, extended single double extended

1 1 1 1 ! 1 1 1 l_sl ! 1 1 1 _lsl ! 1 1 1 !xi
.

jsl_ _ _..·l.;:;.isl_ _ __._j o ... 1

9

Apple Confidential 3/30/89 Rev. 2.0

Motorola proposes to add floatjng pojnt regjsters sjmilar to (b2). Ibis js certajnly acceptable.
and adyaotageous for double and extended precjsjon. Durjng the early desjgn phase we should
both confirm that the reduced multiplexjng and access tjme and program efficjencjes are worth
the additional 1280 bjts of storage relative to (bl) for the initial and future jmplementatjons.

Execution Model

Typical Standard Apple Numerics Environment (SANE) applications represent primary data as
single or double precision quantities, but internal calculations and temporaries are extended
precision. Apple's lower level graphics and signal processing operations will only use single or
double precision representations and operations. We want the Jaguar archjtecture to proyjde
the opportunjty for the best performance for typjcal SANE appljcatjons. and also provide the
opportunjty for the best performance when only sjngle or double precjsjon calculatjons are
regujred. Most other 88000 customers will be primarily interested in single and double
precision performance.

Conversion from single or double to extended precision requires exponent arithmetic and simple
multiplexing. Conversion from extended to single or double precision requires exponent and
rounding arithmetic. The proposed operations are designed to make it as easy as possible to
reduce extra cycles for these conversions by eliminating the extra cycles or overlapping them
with other operations. For maximum single and double performance, calculations must be able
to be performed to these precisions directly. Ibis avoids any conversion time, and the extra
time that many implementations will require for operations such as multiply and divide in
extended precision.

The following table summarizes the operand precisions and conversions for three possible
execution models. Upward conversion includes converting the exponent to the new format. Wi.tb.
or wjthout conyersjon. data js assumed to be multiplexed so as to be aligned ja regjsters as
Motorola proposes. Wjth thjs alignment. mantjssa's are left justjfied tor all formats. and
though not stated. unused bjts are set to zero wheneyer a regjster js a destjnatjon.

1 .

2.

3.

Load (from memory)

Source specified;
no conversion;
3 combinations.

Source and destination
specified;

destination >= source;
6 combinations.

Source specified;
no conversion;
format saved as tag;
3 combinations.

Execute

Each source and result
specified;

result >= source;
14 combinations.

One specification for
sources and destination;

no conversion;
3 combinations.

Result specified;
each source specified by its tag;
result >= source;
3 (14 effective) combinations.

Store Oo memory)

Source and destination
specified;

destination <= source;
6 combinations.

Source and destination
specified;

destination <= source;
6 combinations.

Destination specified;
source specified by its tag;
destination <= source;
3 (6 effective) combinations.

All of these execution models support direct operations on single and double precision data
without conversion of sources or results. For SANE they combine upward conversion with
loading or execution and downward conversion with storing. (1) pertorms upward conversion
during execution. (2) combines upward conversion with load operations. (3) is a tagged

1 0

Apple Confidential 3/30/89 Rev. 2.0

version of (1). Tags could also be used with (2) or other models. The advantage of tags is that
less instruction encoding space is required. However, we agree with Motorola that the added
complexity is undesirable for minimum and very parallel implementations.

Motorola proposes to always cooyert to extended on loads. pertorm all executjoo ja extended. and
cooyert downward on stores. We propose ejther (1) or <2). depeodjog on jostructjoo encodjog
and jmplementatjoo jssues. Details are discussed in the following sections.

Memory Reference

The followjog load and store operatjoos are regujred for executjoo models (1) and (2).

lnstructjoo

load (1)

load (2)

store

Source

single
double
extended

single
double
extended

single
double
extended

Destjoatjoo

single
double
extended

extended, double, single
extended, double
extended

single
single, double
single, double, extended

Extended operands are stored as 128 bits in memory even though fewer bits are implemented in
registers. Eor future compatjbility they must be left justjfied ja the four memory words.
whjch djffers from Motorola's proposal. and unused bjts should be zero.

Downward conversion is part of the store operations. In SANE most stores will do downward
conversion and conversions by themselves are infrequent. This is a partial justification for
combining the two. Downward conversion requires exponent and rounding arithmetic, and will
take one or more cycles. A simple implementation may only save instruction space and
bandwidth and not execution time. Combining conversion and store makes it easier for more
complex implementations, including ones with multiple execution units, to overlap the time
required for the conversion with following operations.

The general capability to execute one or more stores of integer or floating point data out of
sequence is necessary for multiple execution unit implementations to work effectively. The
performance gain relative to the cost and complexity is also very favorable for less ambitious
implementations. Stores perform address calculation and memory management operations in
sequence, but are completed when the data to be stored is ready (following load addresses must
be checked against any outstanding store addresses). This sigoificantly increases the
parallelism between loads, stores, integer and floating point operations in most cases; and,
combined with stores, SANE downward conversion can also be overlapped.

In SANE most data needs to be converted to extended when it is brought into CPU registers. lt is
proposed that these conversions be combined with either the load or execution operations. In
most implementations it is believed that these upward conversions won't lengthen or add
execution cycles, and the savings in instruction space and bandwidth is worthwhile. The choice
between execution models (1) and (2) depends on implementation and instruction encoding
issues.

1 1

Apple Confidential 3/30/89 Rev. 2.0

Floating point loads and stores use integer registers for addresses. These instructions should be
consistent with the integer register loads and stores in most ways. They should have the same
addressing modes, displacements, byte and bit ordering, address space attributes and data
alignment requirements. As with integer register loads and stores, the benefits and costs of
address scaling are about equal. The balance between the benefits and costs of auto updating
addressing modes is more favorable than for integer register operations because different
register files are used for data access and address updating.

Motorola proposes floatjng pojnt loads and stores wjth regjster + regjster. regjster + sjgned 1 O
bjt djsplacement. regjster + regjster++ and regjster + sjgned 1 O bjt djsplacement++
addressjng modes. There are no scaled address modes and the auto base regjster updatjng modes
are the same as those proposed for integer regjster operatjons. Wjth auto updatjng the base
regjster js the effectjye address jf the djsplacement or jndex regjster js positive, and the result
of the computatjon js used jf the djsplacement or jndex regjster js negatjye.

We would like to haye wider djsplacements. With the bjnary jocompatjble approach. the integer
and floatjng pojnt memor:y reference jostructjons could be reorganjzed so that they would all
haye the same djsplacement formats. We are neutral on address scaling. Our posjtjon on auto
base regjster updatjng js pendjng further analysjs of the near and longer term effects on
jmplementations.

In our orjgjnal proposal. we suggested load and store 128 bjts between memory and a double
floatjng point regjster pair (separate from load and store extended to extended). The
desirability of these operations as part of the base architecture depends on whether most
implementations will have the data paths and register bandwidth to realize increased
performance. lt they are included. only addressing modes wjthout djsplacements mjght be
proyjded ja order to saye jostructjon encodjng space. Our posjtjon js pendjng further analysjs of
probable jmplementations.

lt we were starting from scratch, the base architecture would have byte, half word and word
integer register loads and stores, and single, double, extended and possibly 128 bit double
register pair floating point loads and stores. Double or double register pair floating point would
be used for moving blocks of data. Multiple integer registers could be loaded and stored for task
switching by privileged implementation dependent operations if the benefit outweighed the cost.
The current 88000 has 64 bjt integer regjster pair loads and stores. These jnstructions were
jmportant because all operatjons jncludjng floatjng pojnt used the same registers. For the
bjnary jocompatjble approach. we propose to keep them as lang as jostructjon encoding space js
not an jssue for more jmportant operatjons.

Floating Point Arlthmetic

The 88000 architecture is register oriented, with fixed 32 bit instructions and a three
register address format for most register to register operations. Single. double and extended
regjster zero should be hard wjred to be zero,

Add, subtract, multiply and divide are required. With a firm hand on the lid of Pandora's box of
proliferating instructions, remainder and square root should also be provided. Their
performance is important for many applications, they are usually fairly easy to implement in
conjunction with the basic operations, and they are specified by the IEEE standard. Floating
point remainder needs to be interruptible, or defined as a partial remainder step operation,
since a pathological case could take a long time. lt should also provide the signed low order

1 2

Apple Confidential 3/30/89 Rev. 2.0

integer quotient bits as a four bit 2's complement number. The remainder quotient bits can be
accessed along with the other floating point status information. Remainder and square root
would typically be implemented as function calls rather than in line if not defined in the basic
architecture. lts intended that all implementations will be able to efficiently trap and decode
unimplemented instructions Thus, even if an implementation trapped and emulated remainder
and square root in kernel software, their pertormance would not be significantly less than a
function call.

Motorola proposes to add all of the aboye operatjons for the new floatjng pojnt regjsters. but
only tor extended operations. Single and double operations must be proyided within the
framework of executjon model (1) or (2). for the binary incompatjble approach the integer
register floatjng point operatjons should be deleted.

In our original proposal we noted that the IEEE standard recommends additional operations
which are not part of the official standard, and that arguments are made for some of them to be
part of the base architecture. These include: scale (x * 2**n), log (exponent of x as a floating
point number), next (floating point number nearest x in the direction of y), and class (a code
indicating what type of floating point number x is). We wanted to discuss these operations, but
they weren't formally requested. Log and next are the most worthwhile. Scale is easily
emulated within the floating point registers, and class is very infrequent. Actually all of these
operations can be pertormed by an amount of software which is reasonable given their low
frequency. Motorola proposes to add these operatjons. and also round floatjng pojnt to nearest
integral yalued floatjng pojnt. Our position js neutral to negatjye on adding any of these
operatjons to the base archjtecture. except possjbly round to integral yalue. The latter is also
infrequent, but is defined as part of the IEEE standard.

Most implementations of the architecture will have separate data paths for floating point
addition/subtraction and multiplication. lt may be desirable to make a multiply/accumulate
instruction part of the architecture. To do so, it must be suitably general, and offer significant
pertormance advantages over the life of the architecture. A likely alternative is that
increasingly parallel implementations will accomplish the same effect with the existing
instructions. We agree with Motorola that combjned multjply/accumulate jnstructjons should
be jmplementatjon dependent user operatjons.

Conversion from single, double and extended to 32 bit integer are required. There should be
conversion from integer to double or to double and extended with execution model (1).
Converting to double and then to extended is identical to a direct conversion. There should be
conversion from integer to double and extended with execution model (2). Conversion from
integer directly to single is not necessary. lt is more complex than converting from integer to
double or extended, and conversions either direction between integer and floating point formats
are usually infrequent. Converting integer to double or extended and then to single is identical
to a direct conversion. Pertorming conversions between floating point tormats with memory
operations is acceptable. However specific instructions for these conversions will be
aesthetically desirable to many customers.

Erom a conceptual viewpoint the source of an integer to floating point conversion should be an
integer register and the destination should be a floating point register. Erom a conceptual
viewpoint the source of a floating point to integer conversion should be a floating point register
and the destination should be an integer register. The implementation is easier if all sources
and destinations are floating point registers. lf this is the definition then there must be a way to
transfer 32 bit integers between memory and the floating point registers. The standard single
to single floating point loads and stores are fine as long as the conversion instructions use the
appropriate fields within register file entries.

1 3

Apple Confidential 3/30/89 Rev. 2.0

Motorola proposes conversions from all floating point formats to integer. integer to double and
extended. and between all floating point formats. Tbe source and destjnation are floating poiot
registers for all operations. Howeyer an integer as a source or result is a 32 bit guantity sign
extended to 64 bits. 64 bit integer floatjng point loads and stores are provided for these. We
want to load and store tbese as 32 bit integers. The Jaguar architecture addresses greater than
32 bit integer arithmetic with the building blocks described in the integer register section.
Conversion between greater than 32 bit integers and floating point is done in software. To
support 64 bit integers more aggressively we would add a complete set of 64 bit integer
operations wbich would use the integer registers, and conversion operations between floating
point and 64 bit integers with all operands in the floating registers for implementation
convenience.

Our original proposal suggested instructions to moye data both directions between floating point
and integer registers. These. and conyersions either directjon between floating point and
integer formats. are relatjyely jnfreguent operations. Moving data througb memory and using
floating point regjsters as tbe source and destjnatjon for conversions is completely acceptable.
Ibis eliminates the need for data path connections between the integer and floating point
registers.

Floating point status must include the rounding mode and the five trap on exception enables and
associated sticky exception flags specified by the IEEE standard. lt should also include the low
order quotient bits from floating point remainder. The floating point status should be a special
register which can be transferred to or from an integer register, and it is standard enough that
the bit patterns can be made part of the base architecture. Ibis allows the results of an
individual operation to be tested without a trap witb reasonable efficiency. We baye deleted our
original proposal to baye separate non sticky flags for this.

On the current 88000 floating point status is accessed by loading, storing or exchanging integer
and control registers, and user code can not read (or write) implementation dependent status.
Motorola's proposal for Jaguar js to contjnue tbjs desjrable arrangement. except tbat an
implementatjon dependent floatjng point regjsters modified bit would be accessible by users.
We would like tbjs flag to be jn a privileged status regjster.

The architecture must provide complete support of tbe IEEE standard for floating point and
integer data. Any reasonable implementation will use a combination of hardware and kernel
software to provide the basic operations. What's in hardware and wbat's accomplished with the
modern equivalent of firmware depends on the cost and performance benefits for a given
implementation. As a minimum, most implementations will handle the trap enable and sticky
exception flags and almost all cases in round to nearest mode with traps disabled in hardware.

Seme Urne critical procedures may knowingly generate overflows or very small results which
underflow or should be denormalized. Tbe normal environment for tbese routines is round to
nearest and all traps disabled. ldeally tbe hardware will be able to generate tbe correct IEEE
results for tbese sjtuatjons wjtbout software assistance. Ibis jncludes Naas. precludjng the
flexjbility of lettjng tbe formal of tbese be specjfied by kernel software as we originally
proposed. lt tbe correct IEEE result can't be deliyered. tben tbere must be a special mode where
sometbjng arjtbmetically acceptable js produced wjtbout software involyement. Ibis jocludes
acceptjng Naas as joput (deoormalized numbers doo't need to be accepted as long as tbey aren't
produced while ja tbe special mode). producjng infinjties and Nans as specjfied by the IEEE
standard. and producjng zero or tbe smallest magnitude normalized numbers when tininess

1 4

Apple Confidential 3/30/89 Rev. 2.0

occurs. lt a specjal mode js necessary. jt sbould be consjdered an jmplementatjon dependent
user feature. and non prjyileged routjnes should be able to enable and djsable it djrectly.

Architecturally, during normal (parallel) execution, unrelated instructions following a
trapping instruction may bave been executed. All information required to implement the IEEE
standard, and the correct return location, will always be available. There should be a serial
mode which guarantees that following instructions have not been executed. This parallel/serial
mode should apply to floating point and other operations. lt would typically be used wben
stepping tbrougb a program with a debugger. lt should be a privileged status bit.

The current 88000 supports the desired parallel/serial mode for floating point instructions.
The issue has otherwise been mute. Motorola will explicitly extend the archjtectural definitjon
of tbjs capability to coyer floatjng pojnt and otber operatjons.

Comparison operations are entwined with eacb architecture's mechanisms for conditional
brancbing. Floating point and integer comparisons are discussed later.

1 5

Apple Confidential 3/30/89 Rev. 2.0

Comparison and Program Flow Operations

Conditional and unconditional branches, calls and returns should have an optional delay slot. lf
the delay slot is specified, then the next sequential instruction is executed regardless of whether
or not the branch, call or return is taken. For implementation flexibility, there should be the
architectural restriction that the delay slot instruction cannot be a program flow altering
instruction or the target of such an instruction. lf the delay slot is not specified, then the next
sequential instruction is executed only if the (conditional) branch is not taken. There shouldn't
be any restrictions on the type of operation performed by the next sequential instruction in this
case.

Conditional branches should have static prediction. That is they come in two flavors; predicted
to branch and predicted not to branch. lmplementations can use or not use this information
depending on their prefetching capabilities. This is a valuable feature with only a set of rules
for prediction at compilation. lts even more effective if operating system or application code is
executed on a simulator and the results are used to adjust the prediction before release.

Data comparisons may be combined with branches or be separate instructions. lf separate, the
results may be saved in an integer register or as condition code status information. The
following are preferred. Full arithmetic comparisons of integer register or floating point data
are separate compare instructions. They leave their results in an integer register. Conditions
which take a small portion of a cycle to evaluate, such as testing individual bits and zeroness of
an integer register, are combined with branch operations.

In order to most efficiently implement the IEEE standard, there should be two forms of floating
point comparison. One signals invalid if either operand being compared is a Nan, and an invalid
trap happens if enabled. The other does not signal invalid. In either case, invalid is one of the
possible results of the comparison.

Condition codes may be a small implementation convenience, but they limit code placement
flexibility and parallelism. Condition code architectures need a complete set of arithmetic
instructions which don't alter the condition codes as well as selected operations which do.
Generally, the arithmetic results of a comparison can be saved as well as setting the condition
codes. However, this will rarely save cycles over the preferred combination of operations
described above.

Normal addressing for branches and call operations is PC + displacement. Call instructions and
unconditional branches should have the widest possible displacement. The displacement should
be approximately 16 bits for conditional branches. There should be an unconditional branch
whose target address is the contents of an integer register. This is typically used for return
operations since call instructions leave their return address in an integer register. There
should also be a call operation whose target address is in a register. This is important for
dynamic binding of procedures, and a convenience in several other Situations.

There must be some kind of trap or system call operation. ldeally this is an instruction with a
literal parameter which is used to vector to one of many (in the range of 256) entry points. A
register (computed) parameter form of system call is not required.

Special loop branches are not worth including. Typically rx = rx + ry and branch if the
original rx was negative, positive, zero, etc. Often this special branch doesn't fit a compiler's
optimization of count and addressing indices for a particular loop. When it does, cycles won't be
saved unless there aren't enough branch and load delay cycles in which the arithmetic can be
performed with regular instructions.

1 6

Apple Confidential 3/30/89 Rev. 2.0

The 88000 has an integer register compare which puts a 1 O bit result string into an integer
register. Each bit indicates one of the possible relationships between the registers compared as
if signed and unsigned. Five of the bits are the complement of the others, eg. equal and not equal.

Floating point compare puts a 12 bit result string into an integer register. 8 of the bits
indicate greater than, less than, equal, unordered, and their complements. The other 4 bits are
a range check. lts not stated. but jts assumed that invalid js sjgnaled jf unordered js true. The
range check seems too specja!ized to jnclude jn the base archjtecture. but jt has negligible cost.
We would propose to delete jt for the binary jncompatjble approach unless jts desjred by other
customers. We also propose that another floating pojnt compare be added whjch delivers results
sjmilar to the curreot one. but jt doesn't signal invalid on unordered. The one whjch sjgnals
invalid js used jf the promam source specifies predjcates whjch should sjgnal invalid jf
unordered: je. > ,<-. <. >-. <> (- js used as the complement of <> for the statjc branch
predjction mechanjsm proposed below. and not for the eguality predjcatel. and <=> (ordered. the
unordered bjt js jts complemeot for branch predjctjon. and not the unordered predjcate). lt
unordered js true than all other condjtjons are false. The other compare js used jf invalid should
not be sjgnaled. je. ?>. ?<=. ?<, ?>=. ?<>. ?=, ? Ohe ordered bjt js jts complement for branch
prediction. and not the <=> predjcatel. and = land jts complement which js used for branch
predjctjon. and not the <> predjcatel. lf unordered js true than all other condjtjons are true
except = and jts complement.

All branches, calls and returns have delay slots with the desired attributes. Conditional
branching is provided for a specified integer register bit set or clear and all relationships of an
integer register compared with zero. Addressing is PC + displacement *4 with a 16 bit sign
extended displacement. Unconditional branch addressing is an integer register (for return
operations) or PC + displacement * 4 with a 26 bit sign extended displacement. Call addressing
is also an integer register or PC + displacement * 4 with a 26 bit sign extended displacement.
lf the delay slot instruction is executed, the return address is correctly incremented by 4.

System call instructions on the 88000 are conditional, with the same tests as conditional
branches. They trap to one of 512 entry points, 8 bytes apart. The first 128 entries cannot be
entered in user mode. Testing rO for zero guarantees a trap. Details of the privileged aspects of
system calls and returns (launching processes) are discussed in the companion Cheetah
specification for the first implementation.

The 88000 lacks static prediction. Otherwise it has a nearly ideal set of comparison and
program flow operations. Motorola proposes to add statjc predjctjon by the conyention that
branch on bjt js predjcted to be taken and branch on bjt clear js predjcted to not be taken. The
current branch on comparjson wjth zero will be predjcted to be taken and and a new branch on
comparjson wjth zero will be predjcted to not be taken.

The 88000 also has a trap on bounds check instruction. lt performs an unsigned register x
register or register x 16 bit zero extended displacement comparison and traps if the first
register is larger than the second register or displacement. This instruction is in effect an
arithmetic compare and branch, to a particular trap entry point, and predicted not to branch.
The modal for the architecture is otherwise separate compare instructions and branch
instructions. With static prediction, the branch instructions can result in zero cycles if
predicted correctly. With this degree of parallelism, the normal architectural model can equal
the performance of the special bounds check instruction; and provide more flexibility in
testing, and in handling violations within the executing process. As a mjnor pojnt. we propoSe to

1 7

Apple Confidential 3130189 Rev. 2.0

delete tbe trap an bounds check jnstructjon for tbe bjnary jncompatjble approacb jn order to
reduce complexjty and saye jnstructjon encodjna space.

1 8

Apple Confidential 3/30/89 Rev. 2.0

Binary lncompatible Summary

Proposed Changes Apple Motorola

1. Drop little endian support unless others really want it. minor issue ?

2. Add auto base register updating integer register loads and dependson will do with
stores; register + register++, register + displacement++ implemen- 1 O bit signed
Displacements signed and size consistent with other tation displacement,
memory reference instructions. larger is

compatibility
issue

3. Delete the separate user space addressing mode. minor issue yes

4a. Delete unscaled forms of load relative address. minor issue yes

4b. Delete all of load relative address. minor issue compatibility
issue

5. Make address displacements signed. Shorten size slightly very compatibility
if necessary so that all memory reference instructions important issue, add new
are consistent, including new ones. 1 O bit signed

6. Make arithmetic immediates signed for consistency with minor issue see (5)
(5).

7. Delete sign extending byte and half word loads. minor issue compatibility
and? issue

Ba. Add signed register x register multiply. important yes

8b. Add signed register x immediate multiply important no

9a. Add sticky integer overflow and divide by zero flags and important yes
enables similar to floating point.

9b. Add non sticky integer overflow and divide by zero flags. no agree

10. Define the existing serial/parallel mode to apply to important yes
floating point and other operations.

11 a. Unsigned multiply should affect the carry flag. no agree

11 b Unsigned multiply should not affect the overflow flag. important missunder-
standing?

12a. Add unsigned extended multiply. important yes

12b Don't add signed extended multiply. minor issue ?

1 9

Apple Confidential

1 3. Add signed and unsigned extended divide with 32 bit
(partial) quotient and 32 bit remainder as result.

1 4. Add signed and unsigned remainder instructions.

1 5. Don't add signed and unsigned extended remainder
instructions.

1 6. Delete set and clear bit instructions.

17. Delete scan instruction.

1 8. Delete existing floating point instructions.

1 9. Add floating point registers. Proposed architecture is
(32) 80 bit, holding single, double or extended.
Register zero is hard wired to zero.

20. Add floating point loads and stores which support single,
double and extended execution. Displacements signed and
size consistent with other memory reference instructions.

21 . Extended is left justified in memory in four words with
zero fill.

22. Add auto base register updating floating point loads and
stores; register + register++, register + displacement++
Displacements signed and size consistent with other
memory reference instructions.

23. Add 128 bit double floating point register pair loads and
stores.

24. Delete double integer register pair loads and stores if
there isn't enough instruction encoding space.

20

3/30/89 Rev. 2.0

important yes, but
missunder­
standing on
remainder?

no, use (13) added per
original
request

not
required

minor issue

no, desired
by others

very
important

very
important

very
important

important

dependson
implemen­
tation

dependson
implemen­
tation

keep if
encoding
space

missunder­
standing?

compatibility
issue

agree

compatibility
issue

yes

always
convert to
and from
extended;
1 O bit signed
displacement,
!arger is
compatibility
issue

not left
justified

will do with
1 O bit signed
displacement,
!arger is
compatibility
issue

no

compatibility
issue

• Apple Confidential 3/30/89 Rev. 2.0

25. Add floating point add, subtract, multiply, divide, very extended only
remainder and square root supporting single, double and important
extended execution.

26. Neutral- on adding floating point scale, log, next and class not ?
instructions. required

27. Neutral+ on adding floating point round to integral value not ?
instruction. required

28. Don't add multiply/accumulate instructions to the base implemen- agree
architecture. tation

dependent

29. Add conversion from single, double and extended floating very yes, but
point to 32 bit integer instructions. important 64 bit sign

extended 32
bit result

30. Add conversion from 32 bit integer to double and (or) very yes, but
extended floating point instructions. important 64 bit sign

extended 32
bit source

31. Add instructions for conversion between floating point minor issue yes
formats without going through memory.

32. Add move instructions between floating point and integer no agree
registers.

33. Add non sticky floating point exception flags. no agree

34. Add floating point registers modified bit, as privileged important yes, but
status. user status

35. Provide enough hardware support for the IEEE standard so very ?
that round to nearest with traps disabled does not need important
software assistance, or provide a mode, as an
implementation dependent user feature, which doesn't
require software assistance, but has some exceptions to
the IEEE standard.

36. Add a floating point compare similar to the current one very ?
which doesn't signal invalid. important

37. Delete the range check bits from floating point compare. keep if compatibility
desired by issue
others

38. Add static prediction to conditional branches. important yes

39. Delete the trap on bounds check instruction. minor issue compatibility
issue

21

Apple Confidential 3/30/89 Rev. 2.0

Binary Compatible Summary

Proposed Changes Apple Motorola

1 . Drop little endian support unless others really want it. minor issue ?

2. Add auto base register updating integer register loads and depends on will do with
stores; register + register++, register + displacement++ implemen- 1 O bit signed

displacement Displacements signed. tation

3. Delete the separate user space addressing mode.

4. Delete unscaled forms of load relative address.

5. Add signed displacement load and store byte, half ward and
word instructions.

6a. Add signed register x register multiply.

6b. Add signed register x immediate multiply

7a. Add sticky integer overflow and divide by zero flags and
enables similar to floating point.

7b. Add non sticky integer overflow and divide by zero flags.

8. Define the existing serial/parallel mode to apply to
floating point and other operations.

9a. Unsigned multiply should affect the carry flag.

9b. Unsigned multiply should not affect the overflow flag.

1 Oa. Add unsigned extended multiply.

1 Ob Don't add signed extended multiply.

11 . Add signed and unsigned extended divide with 32 bit
(partial) quotient and 32 bit remainder as result.

1 2. Add signed and unsigned remainder instructions.

1 3 . Don't add signed and unsigned extended remainder
instructions.

1 4. Implement existing floating point instructions in
software.

22

minor issue

minor issue

very
important

important

important

important

no

important

no

yes

yes

will do with
10 bit
displacements

yes

no

yes

agree

yes

agree

important missunder-
standing?

important yes

minor issue ?

important yes, but
missunder­
standing on
remainder?

no, use (11) added per
original req

not
required

very
important

missunder­
standing?

agree

• Apple Confidential 3/30/89 Rev. 2.0

15. Add floating point registers. Proposed architecture is very yes
(32) 80 bit, holding single, double or extended. important
Register zero is hard wired to zero.

16. Add floating point loads and stores which support single, very always
double and extended execution. Displacements signed. important convert to

and from
extended;
will do with
1 o bit signed
displacement

17. Extended is left justified in memory in four words with important not left
zero fill. justified

18. Add auto base register updating floating point loads and dependson will do with
stores; register + register++, register + displacement++ implemen- 1 o bit signed
Displacements signed. tation displacement

1 9. Add 128 bit double floating point register pair loads and dependson no
stores. implemen-

tation

20. Add floating point add, subtract, multiply, divide, very extended only
remainder and square root supporting single, double and important
extended execution.

21. Neutral- on adding floating point scale, log, next and class not ?
instructions. required

22. Neutral+ on adding floating point round to integral value not ?
instruction. required

23. Don't add multiply/accumulate instructions to the base implemen- agree
architecture. tation

dependent

24. Add conversion from single, double and extended floating very yes, but
point to 32 bit integer instructions. important 64 bit sign

extended 32
bit result

25. Add conversion from 32 bit integer to double and (or) very yes, but
extended floating point instructions. important 64 bit sign

extended 32
bit source

26. Add instructions for conversion between floating point minor issue yes
formats without going through memory.

27. Add move instructions between floating point and integer no agree
registers.

28. Add non sticky floating point exception flags. no agree

23

Apple Confidential 3/30/89 Rev. 2.0

29. Add floating point registers modified bit, as privileged important yes, but
status. user status

30. Provide enough hardware support for the IEEE standard so very ?
that round to nearest with traps disabled does not need important
software assistance, or provide a mode, as an
implementation dependent user feature, which doesn't
require software assistance, but has some exceptions to
the IEEE standard.

31. Add a floating point compare similar to the current one very ?
which doesn't signal invalid. important

32. Add static prediction to conditional branches. important yes

24

