
United States Patent [19J

Mourey et al.

[54] APPARATUS FOR EXECUTING A
PLURALITY OF PROGRAM SEGMENTS
HAVING DIFFERENT OBJECT CODE TYPES
IN A SINGLE PROGRAM OR PROCESSOR
ENVIRONMENT

[75] Inventors: Jean-Charles D. Mourey, Cupertino;
Sean R. Parent, Morgan Hill; Bruce
K. Jones, Mountain View; Alan W.
Lillich, Los Gatos; Erik L. Eidt,
Campbell; Eric P. Traut, Mountain
View, all of Calif.

[73] Assignee: Apple Computer, Inc., Cupertino,
Calif.

[21] Appl. No.: 993,923

[22] Filed: Dec. 18, 1992

[51] Int. Cl.6 .. G06F 9/44
[52] U.S. Cl 3951700; 364/DIG. 1;

364/281.3
[58] Field of Search 395/650, 700
[56] References Cited

U.S. PATENT DOCUMENTS

4,084,235 4/1978 Hirtle et al 364/DIG. 1
4,589,087 5/1986 Auslander et al 3641768
4,766,566 8/1988 Chuang 364/DIG. 1
4,779,187 10/1988 Letwin 364/DIG. 1
4,812,975 3/1989 Adachi et al 364/DIG. 1
4,825,358 4/1989 Letwin 364/DIG. 1
4,974,159 11/1990 Hargrove et al ..
5,027,273 6/1991 Letwin 364/DIG. 1

FOREIGN PATENT DOCUMENTS

0387172A2 2/1990 European Pat. Off ..
0414624A2 5/1990 European Pat. Off ..

OTHER PUBLICATIONS

AIX XL FORTRAN Compiler/6000, User's Guide,
Version 2.3, (Sep. 1992), pp. 179-193.
IBM J. Res. Develop., vol. 34, No. 1, (Jan. 1990), "IBM
RISC SYSTEM/6000 processor architecture'', by Oe
hler et al., pp. 23-36.
"IBM J. Res. Develop.", vol. 34, No. l(Jan. 1990), Ma
chine organization of the IBM RISC System/6000 pro
cessor, by Grohoski, pp. 37-58.
IBM J. Res. Develop., vol. 34, No. 1, (Jan. 1990), "Man
aging programs and libraries in AIX Version 3 for

I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111
US005452456A

[11] Patent Number: 5,452,456
[45] Date of Patent: Sep. 19, 1995

RISC System/6000 processors'', by Auslander, pp.
98-104.
Communications of the ACM, vol. 36, No. 2, (Feb.
1993), "Binary Translation", by Sites et al., pp. 69-81.
CD-ROM, "Code Warrior", Developer CD Series,
VO. IX, (Oct. 1991), The Apple Ile Card for the Macin
tosh LC, (May 1991), by Luther et al.
Press Release-"Apple Cuts Cost of Color by 60 Percent
with New Macintosh LC", (Oct. 1990).
Press Release-"Apple Ships Apple Ile Card for the
Macintosh LC Computer'', (Apr. 1991).

Primary Examiner-Thomas M. Heckler
Attorney, Agent, or Firm-Helene P. Workman

[57] ABSTRACT

The invention provides a method and apparatus for
switching between execution of a plurality of object
code types having different conventions for invoking
program procedures and performing stack manipula
tions. The invention may also be used to switch between
different calling conventions within a single object code
type. Briefly according to the invention, a computer
system comprises a routine descriptor, a stack switch
frame, a mode switching mechanism for switching from
a first processor, code or calling convention type to a
second processor, code or calling convention type and
means for executing instructions in various code type
codes. A routine descriptor describes a program or
code segment and its code type and calling conventions.
A routine descriptor contains, among other informa
tion, a "mixed mode" field which is set to a specific,
predetermined value such as a value indicating an in
struction which is not legal in the runtime environment
of a first processor, code or calling convention type.
When that instruction is encountered, control is trans
ferred to the mode switching mechanism. A routine
descriptor also contains a "procedure information" field
which is set to a value indicating the convention for
invoking a program segment and performing appropri
ate stack manipulations. When a routine calls a routine
having a different stack model, the mode switching
mechanism uses a stack switch frame to provide a tran
sition between the two different stack types.

44 Claims, 8 Drawing Sheets

U.S. Patent Sep. 19, 1995 Sheet 1of8 5,452,456

COMPUTER

10~ MEMORY 16
12~

CODESEG. 18a

CPU
CODESEG. 18b

18--..._, CODESEG. 18c

14-. ROUTINE
DESCRIPTOR 20

q EMULATOR
STACK

17 •
•
•
•

F•IG_I

MIXED MODE FIELD

SELECTOR FIELD

VERSION FIELD

PROCEDURE INFORMATION FIELD

CUSTOM PARAMETER PROCEDURE FIELD

INDICATOR FIELD
20 CODE TYPE FIELD 1

PROCEDURE POINTER 1

•
•
•

CODE TYPE FIELD N

PROCEDURE POINTER N

FIG_:::

21

-t-
...., t--
-I r'-
-ii--

"ii--

-I 1--

-ii--

~r--

-t--

+-

28

29

35
30

36

34

32
33 .·

32

33

27

U.S. Patent Sep. 19, 1995

CALLING CONVENTION FIELD -HO

£•IG_3~

CALLING CONVENTION FIELD -t-40

REGISTER PARAMETER FIELD -1-44

£•IG_3C

Sheet 2 of 8 5,452,456

CALLING CONVENTION FIELD , 40

42

43
RESULT SIZE FIELD - i-

PARAMETER SIZE FIELD -I-

F•IG_3H

CALLING CONVENTION FIELD -

RESULT SIZE FlaD -
SELECTOR SIZE FIELD -
PARAMETER SIZE FIELD -

I-

t-

I-

r--

40

46

47

48

FIG_3D

CALLING CONVENTION FIELD ... t-40 CALLING CONVENTION FIELD ~4o
SELECTOR SIZE FIELD -r 50 USER DEFINABLE FIELD -t--52

REGISTER PARAMETER FIELD - ~ 51

£•IG_3E F•IG_3F

REGISTER SUB-FIELD - t- 53

PARAMETER SIZE SUB-FIELD -1--54

£•IG_4

U.S. Patent Sep. 19, 1995 Sheet 3 of 8 5,452,456

58

soa

CALLER STACK
FRAME

FIRST SEGMENT

SECOND SEGMENT

THIRD SEGMENT

CALLEE STACK
FRAME

~ --..

r
63

64 60b

65

'-

68K CALLER STACK
FRAME

68K INPUT PARAMETERS I-66

POINTER TOT ABLE OF
I-CONTENTS 1 67

SAVE REGISTER AREA -1 I-69

POINTER TO PREVIOUS
I-FRAME ~ 68

RISC CALLEE STACK
FRAME !

E*IG_5.A £•IG_5H

58
RISC CALLER STACK

FRAME

INDICATOR

RISC REGISTER SAVE
AREA

SAVED PROCEDURE 74
INFORMATION

ROUTINE DESCRIPTOR 76
60c 68K REGISTER SAVE

AREA
78

68K RESULT SPACE 80

681< PARAMETERS

RETURN ADDRESS 84

68K CALLEE STACK

! FRAME

F•IG_5C

U.S. Patent Sep. 19, 1995 Sheet 4 of 8 5,452,456

BEGIN

YES

INTERPRET INFORMATION
IN PROCEDURE

INFORMATION FIELD

BUILD SWITCH STACK
FRAME

NO

NO

EXECUTE ROUTINE t----------,111'1

HANDLE ERROR
CONDITION

PERFORM
APPROPRIATE

LOADING FUNCTIONS

MOVE PARAMETERS
DEFINED IN PROCEDURE

INFORMATION FIELD FROM
THE 68K STACK INTO

RISC REGISTERS

BUILD SWITCH STACK
FRAME

MOVE RETURN
RESULT FROM 68K
STACK INTO RISC

RETURN REGISTER

RESTORE REGISTERS
TO VALUES WHICH

WERE SAVED

RELEASE STACK
SWITCH FRAME

. RETURN BACK TO
RISC CODE

TOFIG-6A2

£-I~_l:i.AI

U.S. Patent Sep. 19, 1995 Sheet 5 of 8

FROM FIG-SA 1

MOVE PARAMETERS FROM
68K REGISTERS INTO STACK

SWITCH FRAME

EXECUTE CODE

NO

MOVE PARAMETERS
FROM 68K REGISTERS
TO RISC REGISTERS

JUMP TO RISC CODE
THROUGH NORMAL
SUBROUTINE CALL

NO COPY RETURN VALUE, IF ANY

MOVE OUTPUT PARAMETERS
FROM STACK SWITCH FRAME

INTO 68K REGISTERS

FROM RISC REGISTER INTO
68KSTACK

RELEASE STACK SWITCH
FRAME

RETURN BACK TO 68K CODE

5,452,456

END

U.S. Patent Sep. 19, 1995 Sheet 6 of 8

BEGIN

CALL ROUTINE DESCRIPTOR OR
P=SETUPMIXEDMODE AND

(*P)(PARAMETER1 ,PARAMETER2, ...)

ALLOCATE STACK SWITCH FRAME

SAVE RISC NONVOLATILE REGISTERS
IN STACK SWITCH FRAME

NO

MOVE INPUT PARAMETERS FROM
RISC REGISTERS INTO 68K REGISTERS

NO

YES

ALLOCATE SPACE IN 68K STACK

PUSH PARAMETERS PASSED IN FROM
RISC ROUTINE ONTO 68K STACK

TO FIG-682

F•IG_EiiBI

5,452,456

U.S. Patent Sep. 19, 1995

FROM FIG-681

SET RETURN ADDRESS TO ADDRESS
OF SPECIAL ROUTINE DESCRIPTOR

PUT ROUTINE ADDRESS FROM
ROUTINE DESCRIPTOR INTO

68K PROGRAM COUNTER

EXECUTE EMULATOR

EXECUTE ROUTINE DESCRIPTOR

NO

YES

MOVE RETURN RESULT FROM STACK
TO RISC RETURN REGISTER

RESTORE NONVOLATILE REGISTERS

RELEASE STACK SWITCH
FRAME

RETURN BACK TO RISC CALLER
ROUTINE

Sheet 7 of 8 5,452,456

END

U.S. Patent Sep. 19, 1995

16 •
""- •

•
r

90
•
•
•

'-

•
•
•

Sheet 8 of 8

-v
- f--

-r--

92a

92

92

5,452,456

5,452,456
1 2

and pp. 23-36, respectively, the disclosures of which are
hereby incorporated by reference.

Background information on IBM's RISC subroutine
linkage conventions may be found in "AIX XL FOR-

APPARATUS FOR EXECUTING A PLURALITY OF
PROGRAM SEGMENTS HAVING DIFFERENT

OBJECT CODE TYPES IN A SINGLE PROGRAM
OR PROCESSOR ENVIRONMENT

FIELD OF THE INVENTION

This invention relates generally to computer systems,
and more specifically to a computer system which al
lows code written in incompatible object codes to be
mixed in a single program for execution.

S TRAN Compiler/6000 User's Guide Version 2.3",
Chapter 10, September 1992, International Business
Machines Corporation, Armonk, N.Y. and in "Manag
ing programs and libraries in AIX Version 3 for RISC
System/6000 processors", by Marc A. Auslander, pub-

BACKGROUND OF THE INVENTION

10 lished in IBM Journal of Research of Development,
Vol. 34, No. 1, January 1990, pp. 98-104, the disclosures
of which are hereby incorporated by reference. AIX is
a trademark of International Business Machines Corpo
ration. When a new computer processor is developed, exist- 15 ing applications or programs, herein "applications",

which executed properly on a prior computer processor
may not execute properly on the new computer proces
sor. These old, or in other words, non-native applica
tions are typically "ported", i.e. rewritten or translated, 20
to run on the new processor. Usually, until an applica
tion is ported, it is unable to take advantage of any
beneficial features in the new processor. Depending on
the amount of effort required to port the application,
there may be a substantial amount of time lost before an 25
application can benefit from the new processor.

Typically a computer system having the new com
puter processor will have a separate environment for
running "old" applications written for the old proces
sor. This environment is called a "compatibility box". 30
In these systems there is substantially no interaction
between the compatibility box and the new processor
environment, otherwise known as the "native" environ
ment. Thus, "old" applications can not take advantage
of performance benefits and other advantageous fea- 35
tures available in the native environment.

Some computer systems have emulators which per
mit the computer system to execute code which is writ
ten for a processor other than the processor which is
native to the computer system. Typically, these emula- 40
tors assume a single runtime environment, that is to say
that they assume that the conventions for invoking
program procedures and performing stack manipula
tions are common to both the native and non-native or
emulated code. These emulators typically just alter the 45
instructions set and are not structured to handle two
different types of program object code which have
different routine calling and stack manipulation conven
tions. For example, these emulators are ill-equipped to
handle CISC ("Complex Instruction Set Computer") so
such as Motorola 68000 (herein "68K") and RISC ("Re
duced Instruction Set Computer") code (such as the
IBM PowerPC or the IBM RISC System/6000) herein
"RISC" simultaneously on the same machine. Po
werPC, IBM and RISC System/6000 are registered ss
trademarks of International Business Machines Corpo
ration, Armonk, N.Y.

Background information on CISC machines can be
found in "Inside Macintosh", Vols. I-VI, published by
Addison-Wesley Publishing Co., 1985-1991, the disclo- 60
sure of which is hereby incorporated by reference.
Background information on IBM's RISC System/6000
machine can be found in "Machine organization of the
IBM RISC System/6000 processor" by Gregory F.
Grohoski and "IBM RISC System/6000 processor ar- 65
chitecture" by R. R. Oehler and R. D. Groves, both
articles published in IBM Journal of Research and De
velopment, Vol. 34, No. 1, January 1990, at pp. 37-58

In a 68K environment, a procedure pointer addresses
the 68K routine itself, but in some other environments
such as RISC, a procedure pointer addresses a structure
such as a data structure or executable code which con-
tains among other information an address of the routine.
In the RISC System/6000 environment, the structure
contains an address of an entry point to the routine, an
address of a table of contents for a module in which that
routine is bound and a pointer to an environment for
languages that require such a pointer. If the RISC code
were conformed to match the 68K runtime model, no
advantages of the RISC instruction set could be used.

In some prior computer systems, to execute on a
single processor two or more programming languages
having different calling conventions the programming
languages are altered to each use a common baseline
calling convention. In other prior systems, a program
ming language is structured to explicitly handle the
different calling conventions of the other languages.

Typically, computer systems which emulate prior
processors in addition to supporting a new native pro
cessor only support one environment at a time. In other
words, applications running simultaneously are exe
cuted in the same processor environment or mode. For
example, when multiple applications are being executed
at the same time, even if only one of the applications is
written for a non-native processing environment and all
of the other applications are designed for the native
environment, ALL of the applications will be executed
in an emulated environment appropriate for that one
non-native application. Thus, none of those applications
benefit from the advantages provided by the new, na
tive processor.

SUMMARY OF THE INVENTION

It is a principal object of this invention to provide a
transparent mechanism for switching between a plural
ity of processor modes such that an application or pro
gram can access any processor mode.

Another object of this invention is to provide a mech
anism for an application to explicitly access a particular
processor mode.

Another object of this invention is to provide a mech
anism for identifying the appropriate processor mode
on which to execute a particular program segment.

Another object of this invention is to support multi
ple applications in multiple environments at substan
tially the same time.

Another object of this invention is to permit a com
puter system to execute system software which is based
in part on a plurality of processors.

Another object of this invention is to allow an execut
ing program to change from a first processor mode to a

5,452,456
3

second processor mode without changing the pro
gram's code.

This invention provides a method and apparatus for
switching between execution of a plurality of object
code types having different conventions for invoking 5
program procedures and performing stack manipula
tions. The invention may also be used to switch between
two or more different calling conventions within a sin
gle object code type. Briefly according to the invention,
a computer system comprises a means for executing 10
instructions for one or more code types, a routine de
scriptor, a stack switch frame, and a mode switching
mechanism for switching between processor types or
code types, herein referred to as "modes". The inven
tion may also include other mechanisms for creating, 15
manipulating and setting information within a routine
descriptor and for accessing information associated
with a particular routine descriptor.

The means for executing instructions may be for
example a central processing unit and an emulator, a 20

plurality of central processing units, or a single central
processing unit having a plurality of modes of opera
tion. The means for executing instructions further in
~ludes any related software used to execute the instruc-

25
tlons.

A routine descriptor describes the characteristics of a
program segment or portion of code such as its proces
sor or code type and calling convention. Optionally, a
routine descriptor can describe a plurality of program 30
segments performing substantially the same function,
but implemented in a variety of processor or code types
and calling conventions. For descriptive purposes the
term "processor environment" is used to denote a pro-
cessor and/or program environment. 35

4
When a routine calls a routine having a different stack

model, the mode switching mechanism uses a stack
switch frame to provide a transition between the two
different stack types. An appropriate stack switch frame
is allocated on the stack between the caller's stack frame
and the callee's stack frame.

In a computer system embodying the invention, an
application containing program segments having differ
ent object code types or being designed for different
processors can execute on a single processor such that
each program segment is executed in a mode appropri
ate for its code and processor type. Thus, native code
benefits from advantageous features of the native pro
cessor, while at the same time, non-native code per
forms substantially as usual and can implicitly benefit
from the native code without modification or knowl
edge of the native code's existence.

Another advantage of the invention is that although
native applications may be aware that a program seg
ment or code segment may be any of a plurality of code
types, it can access features of an existing non-native
application system software or program segment with
out knowing the exact code type of that non-native
application system software or program segment.
Moreover, non-native applications or system software
do not have to be modified for a native application to
access it.

The invention also permits code of a first code type to
execute code of a second type or code of the first type
without prior knowledge of the actual code type being
executed. That is to say, that code of substantially any
code type can execute substantially any other code
without knowing the code type of that code.

BRIEF DESCRIPTION OF THE DRAWINGS
A routine descriptor contains, among other inform.a- The above and further advantages of the invention

tion, a "mixed mode" field which is set to a specific, may be better understood by referring to the following
predetermined value such as an illegal instruction or an description in conjunction with the accompanying
illegal memory address. The value of the mixed mode drawings, in which:
field may vary depending upon the means for executing 40 FIG. 1 shows a computer system having elements
instructions and the type of switching operation being suitable for executing mixed modes in accordance with
performed. Additionally, a routine descriptor may con- this invention;
tain a "procedure information field" indicating a con- FIG. 2 shows a routine descriptor;
vention for invoking a program segment and perform- FIGS. 3A-3F show the contents of a procedure in-
ing appropriate stack manipulations. 45 formation field;

The mixed mode field may be set to a value indicating FIG. 4 shows the contents of a register parameter
an instruction which is not implemented or, in other field;
words, illegal in at least one of the modes. For example, FIGS. SA-SC show various configurations of a stack
when the means for executing instructions is a single switch frame;
central processing unit and an emulator, the mixed 50 FIGS. 6Al-6A2 and 6Bl-6B2 show the steps in-
mode field may be set to an instruction implemented volved in switching from a 68K mode to a RISC mode
only by that emulator and not by any other runtime and from a RISC mode to a 68K mode, respectively;
environment or mode. When the emulator encounters and
this instruction, control is transferred to the mode FIG. 7 shows a preferable embodiment for handling a
switching mechanism. 55 routine having multiple calling conventions.

Similarly, when the means for executing instructions
is a plurality of central processing units, the mixed mode
field may be set to an instruction which is not imple
mented by at least one of the central processing units.

However, there are situations in which the mixed 60
mode field may be set to a legal instruction. For exam
ple, when using the invention to switch between two or
more calling conventions of a single code type, the
"mixed mode" field can be set to a legal instruction of
that code type such as, for example, a branch or a trap 65
instruction, such that the execution of that instruction
would invoke a program segment capable of perform
ing the mode switching operation.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

Referring to FIG. 1 of the drawings, reference nu
meral 10 designates generally a computer having at least
one central processing unit ("CPU") 12, a stack 14 and
a memory 16. Stack 14 may be located within memory
16. Optionally, the computer 10 may have one or more
registers 17. Memory 16 contains a plurality of code
segments or portions of code 18. For illustration, mem
ory 16 is shown to contain a first code segment 18a, a
second code segment 18b and a third code segment Uk.
Memory 16 also contains a routine descriptor 20 and,

5,452,456
6 5

preferably, an emulator 21, except if computer 10 has a
plurality of central processing units 12 or if computer 10
has a single central processing unit 12 having multiple
modes.

well as others, may be considered when determining
which program or code segment type to execute.

When the list 27 contains more than one pair 31 and
a routine descriptor is invoked, a preferred code type is

ROUTINE DESCRIPTOR
5 selected from the code type fields 32 in the pairs 31.

As shown in FIG. 2, the routine descriptor 20 prefer
ably includes a mixed mode field 28 and a selector field
29. Also, the routine descriptor includes a procedure
information field 30 and a list 27 having one or more 10
pairs 31, each pair 31 having a code type field 32 and a
procedure pointer 33. Moreover, routine descriptor 20
may also include an indicator field 34, a version field 35
and a custom parameter procedure field 36. FIG. 2
merely illustrates an implementation of the routine de- 15
scriptor; the exact arrangement of the fields within the
routine descriptor may vary.

The mixed mode field 28, sometimes referred to as a
first field, differentiates between processor modes.
When an application is a native application or is a non- 20
native application executing native code, the mixed
mode field 28 is set to a mixed mode value indicating an
instruction that will be implemented only by an emula
tor or an instruction that is illegal in at least one proces
sor mode. For example, this value could be an unused 25
instruction, an unused A-Trap or an unused F-line in
struction, in other words, any value which is not a legal
instruction in the non-native mode.

Optionally, the mixed mode field 28 may be set to a
value such that a native application can be unaware that 30
a program or code segment may be any of a plurality of
code types. The first half of the mixed mode field may
be set to an unobtrusive RISC instruction and the sec
ond half the mixed mode field could be a RISC illegal
instruction or branch. The instruction is used to invoke 35
the mode switching mechanism and other mechanisms
such as those for creating and manipulating routine
descriptors.

The selector field 29, sometimes referred to as a third
field, contains a value indicating the type of mode 40
switching operation to be performed. The selector field
29 can define services or functions particular to a spe
cific embodiment of the invention.

Preferably, the selector field 29 may contain values
indicating a load and execute, execute, or return opera- 45
tion. The load and execute operation permits a program
segment of a native code type to be loaded by the code
of the non-native code type in a way which is consistent
for that non-native code type. Then, when the selector
field specifies a load and execute operation, the mode 50
switching mechanism performs operations specific to a
native application's code type such as relocation, run
time binding and initialization.

The procedure information field 30, sometimes re
ferred to as a fourth field, provides information about 55
the calling conventions and parameters used by the
routine referenced by the routine descriptor and as
further described below.

The list 27 allows a routine descriptor to describe a
plurality of program segments performing substantially 60
the same function, but implemented in a variety of pro
cessor or code types and calling conventions. In some
cases, it may be desirable to have program or code
segments which perform the same function written in
two or more code types so that the program or code 65
segment which is best suited for the current runtime or
processor environment can be chosen. Factors such as
execution speed or available features or processors, as

This preferred code type may be the code type that will
best utilize the advantages of the particular computer
system 10. Thus, a routine descriptor and its accompa-
nying program segments can be invoked unmodified on
a plurality of computer systems embodying the inven
tion in various ways. For example, a dual 68K/RISC
routine descriptor, that is a routine descriptor 20
wherein list 27 includes a pair 31 with a code type field
indicating 68K and another pair 31 with a code type
field indicating RISC, can be executed both on a com
puter which is only 68K and on a RISC computer hav-
ing a 68K emulator. On the 68K-only computer, the
68K code type is selected, while on the RISC computer,
the RISC code type is selected for its better perfor
mance and other beneficial features. The selection crite
ria may vary, but preferably the selection is based on
performance and availability of various code types.

The code type field 32, sometimes referred to as a
first segment, indicates the code or processor type in
which the routine is written.

The procedure pointer 33, sometimes referred to as a
second segment, points to the routine described by the
routine descriptor 20 in a manner appropriate to the
routine's natural code type.

The routine descriptor indicator field 34, sometimes
referred to as a fifth field, identifies that portion of mem
ory 16 as a routine descriptor.

The version field 35, sometimes referred to as a sixth
field, indicates the version of the routine descriptor.
This is useful if the structure of the routine descriptor
changes in later revisions.

The custom parameter procedure field 36, sometimes
referred to as seventh field, is used to point to a proce
dure that is provided when a routine descriptor is cre
ated. That procedure knows how to perform a transi
tion between a code type of the caller routine and a
code type of the callee routine. The custom parameter
procedure field 36 is typically used to handle special
cases which can not be easily defined by the procedure
information field. However, a routine descriptor 20 may
not include a custom parameter procedure field 36 and
the procedure information field 30 may be used to han
dle the special cases and indirectly identify a procedure
for transitioning between two object code types.

The actual contents of the procedure information
field 30 depends upon the calling convention used by
the routine being called. In each case, field 30 (FIG. 3A)
contains a calling convention field 40 indicating the
calling convention used by the routine, i.e. Pascal and C
stack-based routines, register-based routines, stack
based dispatched routines and register-based dispatched
routines. A calling convention is, among other things, a
mechanism used to invoke a software routine. The
"IBM Dictionary of Computing", (Ninth edition, 1991),
defines calling conventions as "[s]pecified ways for
routines and subroutines to exchange data with each
other". The term "invoking mechanism" can be used
interchangeably with the term calling convention, or in
some instances, it may consist of a calling convention
plus additional knowledge on the actual number and
formats of the parameters. The difference is that a call-
ing convention describes only the general mechanism,
which can be applied to any combination of parameters,

5,452,456
8 7

but the invoking mechanism may also include knowl
edge of about the parameters, specifically number and
size.

For example, as shown in FIG. 3B, for Pascal and C
stack-based routines the procedure information field 30 5
also contains a result size field 42 indicating the number
of bytes returned by the routine and a parameter size
field 43 describing the size of each parameter. The pa
rameter size field 43 may be a list of parameter size
values terminated by a zero value. FIG. 3C shows that 10
for register-based routines the procedure information
field 30 contains a register parameter field 44 which lists
the registers in the same order as the parameters in the
native interface. The register parameter field 44 may
contain one or more input and output parameters. For 15
example, parameter field 44 may contain two output
parameters followed by four input parameters.

FIG. 3D shows for stack-based dispatch routines,
that is routines which are accessed via a single entry
point to a routine dispatcher (not shown), the procedure 20
information field 30 contains a result size field 46 indi
cating the number of bytes returned by the routine, a
selector size field 47 indicating the size of the selector,
and a parameter size field 48 describing the size of each
parameter and having the same format as field 43. 25

As shown in FIG. 3E, for register-based dispatch
routines, i.e. routines where the parameters are passed
in registers and the selector is passed on the stack, the
procedure information field 30 also includes a selector
size field 50 indicating the size of the selector on the 30
stack and a register parameter field 51 describing the
parameters in the same format as register parameter
field 44 (FIG. 3C).

FIG. 3F shows a procedure information field 30 for
handling situations other than those described above. 35
Procedure information field 30 contains a calling con
vention field 40 and a user definable field 52. The user
definable field 52 can be configured in a manner appro
priate for the routine being described by the routine
descriptor 20. 40

As shown in FIG. 4, for each parameter, field 44 may
contain a register sub-field 53 and a parameter size sub
field 54.

Program or code segments having an "old" or non
native code type may execute whether or not there is a 45
routine descriptor associated with them. However, a
program or code segment having a "new" or "native"
code type, typically has a routine descriptor associated
with it.

A routine descriptor is especially useful when a pro- 50
gram segment may be any of a plurality of code types.
When it is known that program segments will be a par
ticular code type and not any other code type, then a
subroutine or library call can be used to access the mode
switching mechanism directly without using the mixed 55
mode field 28.

APPLICATION INTERFACE

Routine descriptors can be created statically when a
program is compiled into object code and then resolved 60
by a run-time linker which links object code segments
together to form an executable program. At other times,
however, it may be desirable to dynamically allocate
and release routine descriptors, access information in a
routine descriptor and set or change information in a 65
routine descriptor.

Preferably, therefore, an interface provides means for
an application to create and release routine descriptors.

For example, a command to create a routine descriptor
preferably accepts the following parameters: a pointer
to a routine, identification of the type of the procedure,
procedure information and, optionally, a custom param
eter procedure pointer, a mode indicator indicating a
current mode, or optionally, an appropriate processor
mode if it is different from the current mode, and re
turns a routine descriptor or pointer thereto. An imple
mentation of this command in C programming language
may look as follows: Routine Descriptor= New Rou
tine Descriptor (ProcPtr theProc, ProclnfoType pro
clnfo, CodeType executionMode).

Similarly, a command to release a routine descriptor
and free any storage allocated thereto accepts a routine
descriptor or a pointer thereto. For example, this com
mand may be implemented as the following: Dis
poseRoutineDescriptor (RoutineDescriptor *theRou
tine).

The interface may also allow an application to access
information about a routine descriptor. For example,
there may be commands to find out for a particular
routine the type of code in which it is written, the pro
cedure information associated with it, or the custom
parameter procedure associated with it. For example,
GetCodeType (RoutineDescriptor *theRoutine) may
be used to access the type of code in which the routine
being described is written.

Additionally, the interface may allow an application
to change information in a routine descriptor. For ex
ample, commands may allow a procedure pointer to be
changed or a procedure information field to be set. A
command such as OSErr=SetProclnfo (RoutineDe
scriptor *theRoutine, Procinfo Type proclnfo) changes
a routine descriptor's procedure information field to the
given proclnfo.

A program or code segment of an "old" or non
native code type such as 68K may call a native program
or code segment through a routine descriptor without
knowing that it is calling such native code. In that case
for 68K, a routine descriptor is called directly as if it
were a 68K procedure pointer and the parameters
passed to the command are passed to the routine. If the
routine is 68K, then the routine descriptor is really a
68K procedure pointer and the procedure to which it
points is invoked. If the routine is native, or if it is a 68K
routine of a different calling convention than expected
by the caller routine, then the routine descriptor is a
native or 68K routine descriptor starting with a mixed
mode field 28 having a mixed mode value which trig
gers the mode switching mechanism.

Essentially, since the mixed mode field contains and is
treated as being code of a non-native code type, refer
ences to a routine descriptor 20 and direct references to
code or program segments having a non-native code
type such as 68K are interchangeable. In the non-native
code type environment, a routine descriptor is treated
as a code or program segment which is executed, while
in the new or native code type environment a routine
descriptor is treated as data that is used by a means for
accessing that data. Thus, a reference to non-native
code can be replaced with a means for accessing a rou
tine descriptor.

Preferably, the application interface permits an appli
cation or program segment to call a routine descriptor.
This command calls the routine as described by a given
routine descriptor and passes back any results. The
purpose of this command is to allow an application or
program segment to invoke routines of any code type.

9
5,452,456

10
For example, this mechanism permits native code to
access the mode switching mechanism.

In a first embodiment of the invention, the command
to call a routine descriptor accepts a routine descriptor,
procedure information, and a list of parameters. For 5
example, CallRoutineDescriptor (RoutineDescriptor
*theRoutine, ProclnfoType proclnfo, short num
Params, ...) may be used to call a routine described by
a given routine descriptor.

However, in some RISC environments, there may be IO
substantial parameter shifting when the call to the rou
tine is made. During execution of a CallRoutineDe
scriptor command, each parameter to that command is
placed in a separate register and the procedure informa
tion parameter is used to transform parameters for the 15
routine being described by the routine descriptor. Each
parameter for the routine being described by the routine
descriptor is then placed in a separate register, too.
However, the register into which a parameter for the
routine described by the routine descriptor is placed 20
when calling CallRoutineDescriptor may be different
than the register in which that routine expects to find its
parameters. Thus, to execute that routine, those param
eters must be moved into the appropriate registers. This
parameter shifting is time-consuming and, particularly 25
unnecessary and undesirable if no mode switch is to
actually occur.

Therefore, in a preferable embodiment the informa
tion describing the parameters is encapsulated before
the routine is called. For example, a command to ac- 30
complish this may look like: P=SetUpMixedMode(
RoutineDescriptor *theRoutine, ProclnfoType pro
clnfo, ¶meter13block). When the program or code
segment initiating the SetUpMixedMode command and
the program or code segment identified by the routine 35
descriptor are the same code type, the SetUpMixed
Mode command returns a valid pointer to the ptogram
or code segment identified by the routine descriptor.
The program or code segment which issued the SetUp
MixedMode command then directly calls the routine 40
identified by the routine descriptor, e.g.
(*P)(parameterl, parameter2, . . .), thereby reducing
the amount of parameter shifting and increasing the
performance speed.

When the program or code segment initiating the 45
SetUpMixedMode command has a native code type and
the program or code segment identified by the routine
descriptor has a non-native code type, the SetUpMixed
Mode command returns a pointer to a routine such that
when invoked this routine can find a pointer to the 50
parameter block identified by the ¶meter13block
parameter. Basically, a parameter block is a block of
available memory. The routine descriptor and proce
dure information passed as parameters to the SetUp
MixedMode command are stored in the parameter 55
block. The program or code segment initiating the
SetUpMixedMode command then executes the routine.

STACK SWITCH FRAME

stack model or calling convention than the caller, a
stack switch frame 60a is positioned on stack 14 be
tween the caller's stack frame 61 and the callee's stack
frame 62. The caller's stack frame 61 is in a stack format
appropriate for its code or process type, while the cal
lee's stack frame 62 is in a stack format appropriate for
its own code or process type.

The stack switch frame 60a contains a first segment
63 with information referencing the caller's stack frame
61 so that control can be returned to the caller once the
callee's code or program segments has finished execut
ing, a second segment 64 with parameters converted
from the caller's format to the callee's format and a
third segment 65 with any other content appropriate to
configure the stack switch frame 60a in a format that is
expected, or in other words can be handled, by the
callee.

FIG. SB shows a stack switch frame 60b for use when
a 68K routine calls a native RISC routine. The arrow on
the side of the stack indicates the direction in which the
stack grows as stack frames are added to it. The stack
switch frame 60b preferably includes 68K input parame
ters 66 (derived from the 68K parameters), a pointer 67
to a table of contents for global variables and a pointer
68 which refers back to the previous stack frame. The
low bit in the pointer 68 is set to 1 to indicate that it is
a stack switch frame. The stack switch frame 60b may
also include a save register area 69 so that the callee
routine can preserve the value of non-volatile registers.

FIG. SC shows a stack switch frame 60c for use when
a RISC routine calls a 68K routine. The stack switch
frame 60c includes an indicator 70, a RISC register save
area 72, saved procedure information 74, a routine de
scriptor area 76, 68K register save area 78, a 68K result
space 74, 68K parameters 76 and a return address 78.
The indicator 70 is set to a value that is a non-valid
value for a frame pointer, i.e. 0, -1, or an odd value.
The RISC register save area 72 is used to save the RISC
non-volatile registers on the stack every time a mode
switch is done. The routine descriptor area 76 prefera
bly contains a mixed mode field 28 and a selector field
29 (FIG. 2). The 68K result space 80 and the 68K pa
rameters 82 are pushed on the stack 14 as necessary,
depending on the calling convention of the 68K callee.
The parameters 82 are derived and converted from the
RISC input parameters. The return address 84 contains
the address of the routine to be called when the 68K
code finishes executing.

MODE SWITCHING MECHANISM

In use, when a routine calls another routine having a
different stack model, the caller pushes its stack frame
on the stack 14. Then the mode switching mechanism
pushes a stack switch frame on the stack 14. The stack
pointer S8 is then set to point to the bottom of the stack
switch frame. If it is a stack switch frame 60c, the 68K
stack pointer is set to point to the bottom of the stack
switch frame as well.

A stack switch frame 60b is released from the stack 14
FIG. SA shows a stack switch frame 60a which pro- 60 by setting the stack pointer 58 to the value of pointer 68

vides a transition between two different program seg- and storing the return address stored in the location in
ments having different stack models and calling conven- the caller's stack referenced by pointer 68 in a register
tions. The stack switch frame permits two different 17. A stack switch frame 60c is released by restoring the
types of stack frames to coexist on a single stack model saved non-volatile registers and resetting the stack
with a single stack pointer 58 by providing a transition 65 pointer accordingly.
area between the two different stack conventions. The stack 14 can be traversed frame by frame even if

When a program segment (caller) invokes another there is a stack switch frame 60b or 60c in the stack. For
program segment (callee) and the callee uses a different a stack switch frame 60b, if the low-bit in the pointer 68

5,452,456
11

is set to 1 then it is a stack switch frame and the rest of
the bits in the pointer 68 point to the caller's stack frame
pointer. For a stack switch frame 60c, if the indicator 70

12
descriptor having a selector field equal to a return
value.

The routine address is taken from the routine descrip
tor and the emulator is invoked. The emulator executes is equal to a non-valid value for a frame pointer, then it

is a switch frame. 5 the code and when it is finished it tries to execute a
return address which was set to be the beginning of a
special routine descriptor. When the emulator tries to
execute it, control is transferred back to the mode

In use, when code is executing and a routine or func
tion call is executed, the pointer associated with that
call points to either 68K code or to a routine descriptor.
The code type field in the routine descriptor is used to
determine whether a mode switch should occur. FIGS. 10
6Al-6A2 and 6Bl-6B2 show a mode switching mecha
nism for switching between 68K and PowerPC RISC
modes. As described in FIG. 6Al-6A2, if the mixed
mode field 28 equals the mixed mode value or if a mode
switch is otherwise indicated, then the routine descrip- 15
tor is checked to make sure that it is a valid routine
descriptor. If it is valid, then the select field is checked
to see which operation should be performed.

If it is an execute operation then the procedure infor
mation field is interpreted to determine if it is a register- 20
based or stack-based routine. If it is a register-based
routine, then the stack switch frame is built. If the RISC
routine will modify registers or return results in them,
then the parameters are moved out of the 68K registers
into the reserved space on the stack switch frame. Then, 25
in either case, the parameters are moved into RISC
registers.

If it is a stack-based routine, then all of the parameters
defined by the procedure information field are taken off
the 68K stack and placed in RISC registers. The stack 30
switch frame is then built.

Whether it is a stack- or register- based routine, the
target address from the routine descriptor is then used
to jump to the RISC code. After executing the code,
check to see if register- or stack-based. If register-based 35
then move output parameters from the stack switch
frame back into 68K registers. However, if stack-based
then copy a return value, if any exists in the procedure
information field from the RISC register to the 68K
stack. In either case, release the stack switch frame and 4-0
jump back into 68K code.

If it is a load and execute operation, then any other
loading operations beyond those already performed by
the non-native code are performed. These loading oper
ations may include, for example, relocation, runtime 45
binding and initialization. Then the procedure informa
tion is interpreted and the same steps as described for
the execute operation are performed.

If it is a return operation then the return result is
pulled off of the 68K stack and put into a native RISC 50
return register. The nonvolatile registers that were
saved are restored and the stack switch frame is re
leased. Control then returns back to the calling code.

FIG. 6Bl-6B2 shows a mechanism for switching
between RISC code and 68K code. A routine descrip- 55
tor is called using either of the alternative embodiments
described above. The stack switch frame is then allo
cated and all RISC nonvolatile registers are saved in the
stack switch frame to be restored later.

It is then determined whether it is register-based or 60
stack-based. Ifit is register-based then input parameters
are pulled out of native registers and put into 68K regis
ters.

The 68K stack frame is then built. If the 68K routine
will return a value, then space is allocated in the stack 65
frame for it. Parameters that were passed in from the
RISC code are put in the 68K stack frame. The return
address is set to a value pointing to a special routine

switching mechanism. The mode switching mechanism
checks the selector field which equals the return opera
tion and performs the appropriate actions as described
above.

MULTIPLE CALLING CONVENTIONS IN A
SINGLE OBJECT CODE TYPE

The invention can also be used to switch between
different calling conventions within an object code
type. For example, the invention can be used to switch
between FORTRAN and PASCAL. In this case, the
mode switching mechanism is substantially identical
except that no execution or code type mode switching
occurs, but rather only the calling convention transfor
mation is performed. Also, the stack switch frame may
be simplified because switching occurs merely between
calling conventions, not code types.

MULTIPLE CALLING CONVENTIONS IN A
SINGLE ROUTINE

The invention may also be used in routines, that is
code or program segments, which have multiple calling
conventions. For example, a routine may be a function
where a first parameter is a selector and the other pa
rameters vary in number, size, content and type depend
ing on the value of the selector. FIG. 7 shows a prefera
ble embodiment wherein memory 16 contains a lookup
table 90 having a plurality of fields 92. A routine de
scriptor 20 is associated with each valid selector value
and that routine descriptor references a program or
code segment corresponding to that selector value. A
first field 92a in the lookup table 90 contains an instruc
tion for branching to a program or code segment which
looks up an appropriate field 92 in the lookup table
corresponding to the routine. That field 92 in conjunc
tion with the selector value is used to determine which
routine descriptor to use and thereby which code or
program segment to execute.

For example, a routine may have a first parameter
which is a selector capable of having three different
valid values, e.g. 1, 2, or 3, and depending on the value
of the selector, there may be one, two or three parame
ters which follow, respectively. In other words, if the
selector value is 1, then one parameter follows the selec
tor, but if the selector value is 2, then two parameters
follow the selector. For each selector value, a routine
descriptor 20 is associated with a code or program seg
ment to perform that routine for the appropriate num
ber of parameters.

When the routine is looked up in table 90, the selector
value is used to determine which routine descriptor to
use and, thereby, which code or program segment to
execute.

The foregoing description has used a specific embodi
ment of this invention. It will be apparent, however,
that variations and modifications may be made to the
invention with the attainment of some or all of its ad
vantages. Therefore, it is the object of the appended
claims to cover all such variations and modifications as
come within the true spirit and scope of the invention.

13
5,452,456

14
We claim:
1. An apparatus for executing a plurality of modes in

a processor environment in a computer system having a
processor and a memory, said apparatus comprising:

a mixed mode field for differentiating between 5
modes, said mixed mode field capable of specifying
at least a first and second state, said mixed mode
field being set to a specific, predetermined value
when in said second state;

frame on said stack and said pointer has a low bit set to
1.

5. An apparatus defined in claim 4 wherein said stack
switch frame further includes a list of input parameters.

6. An apparatus defined in claim 5 wherein said stack
switch frame further includes a save register area for
preserving the value of registers.

7. An apparatus defined in claim 3 wherein said stack
switch frame includes a first segment containing infor-

means for specifying a software routine;
a procedure information field for indicating a mecha

nism capable of initiating the execution of the spec
ified software routine and for specifying one or
more characteristics of parameters to be used by
the executing specified software routine;

10 mation referencing said first stack frame, a second seg
ment containing parameters converted from a format of
said first mode to a format of said second mode, and a
third segment for configuring said stack switch frame in
a format that is expected by a routine in the second

15 mode.
means for setting said mixed mode field to a specific,

predetermined value, said setting means arranged
for accessing said mixed mode field;

means for setting said procedure information field to
indicate an initiating mechanism and parameter 20
characteristics for the specified software routine;

means for determining the value of the mixed mode
field, said determining means arranged for access
ing the value of said mixed mode field;

means for switching from a first mode to a second 25
mode, said switching means being coupled to said
determining means and being activated in response
to a determination that said mixed mode field has
said specific, predetermined value;

means for using the execution initiating mechanism 30
and the parameter characteristics specified by the
procedure information field to invoke the specified
software routine, thereby causing the specified
software routine to execute, said using means being
coupled to said switching means such that said 35
using means is invoked when said switching means
switches from a first mode to a second mode; and

means for returning to the first mode, said returning
means being activated upon completion of the exe-
cution of the specified software routine. 40

2. An apparatus defined in claim 1 further compris
ing:

a stack arranged within the apparatus so that it can be
accessed by the processor, said stack having a first
stack frame associated with a first specified soft- 45
ware routine and a second stack frame associated
with a second specified software routine, said first
and second stack frames having different formats;
and

a stack switch frame, positioned in the stack between 50
said first and said second stack frames, said stack
switch frame having a first segment referencing the
first stack frame, a second segment having parame
ters in a format of the second stack frame, said
parameters having been converted from a format 55
of the first stack frame, and a third segment specify
ing information so that the stack switch frame is in
a format that can be referenced by the second stack
frame, said first segment being placed in the stack
upon execution of said first specified software rou- 60
tine, and said second and third segments being
placed in the stack after said switching means
switches from a first mode to a second mode.

3. An apparatus defined in claim 2 wherein said tran
sitioning means includes a stack switch frame placed on 65
said stack between said first and second stack frames.

4. An apparatus defined in claim 3 wherein said stack
switch frame includes a pointer to the previous stack

8. An apparatus defined in claim 2 wherein said stack
switch frame further includes an indicator which is set
to a non-valid frame pointer value.

9. An apparatus defined in claim 1 wherein said spe
cific, predetermined value is an illegal instruction.

10. An apparatus for executing a plurality of modes in
a processor environment, the plurality of modes includ
ing at least a first and a second mode, said apparatus
comprising:

a routine descriptor for describing a code segment;
a mixed mode field disposed within said routine de

scriptor for differentiating between modes;
means for setting said mixed mode field to a specific,

predetermined value;
means for specifying a plurality of operations;
a selector field disposed within said routine descrip

tor for indicating one operation from within the
specified plurality of operations;

means for setting said selector field to specify one
operation of the plurality of operations;

means for executing a plurality of instructions;
means for determining during the execution of each

instruction of the plurality of instructions whether
a routine descriptor having a mixed mode field
which is set to the specific, predetermined value is
encountered, said determining means being cou-
pled to said executing means;

means for switching from a first mode to a second
mode, said switching means coupled to said deter
mining means such that said switching means is
activated when said determining means determines
that the mixed mode field is set to the specific,
predetermined value;

means for performing the operation specified in the
selector field of the routine descriptor referenced
by the instruction being executed, said performing
means being coupled to said switching means such
that said performing means is activated after said
switching means switches from the first to the sec-
ond mode; and

means for returning to the first mode, said returning
means being activated upon completion of the exe
cution of the specified operation.

11. An apparatus for executing a plurality of modes in
a processor environment, the plurality of modes includ
ing at least a first and a second mode, said apparatus
comprising:

a routine descriptor for describing a code segment,
the code segment being written in a programming
language having a protocol for passing parameters
and results to and from the code segment;

a mixed mode field disposed within said routine de
scriptor for differentiating between modes;

15
5,452,456

means for setting said mixed mode field to a specific,
predetermined value;

a procedure pointer disposed within said routine de
scriptor, said procedure pointer specifying the
code segment described by the routine descriptor; 5

a procedure information field disposed within said
routine descriptor for indicating a protocol for
passing parameters and results for the code seg
ment specified by the procedure pointer;

means for setting said procedure information field to 10
specify the protocol for passing parameters and
results for the code segment specified by the proce
dure pointer;

means for executing a plurality of instructions;
means for determining during the execution of each 15

instruction of the plurality of instructions whether
a routine descriptor having a mixed mode field
which is set to the specific, predetermined value is
encountered, said determining means being cou-
pled to said executing means; 20

means for switching from a first mode to a second
mode, said switching means being coupled to said
determining means such that said switching means
is activated when said mixed mode field has said

25
specific, predetermined value;

means for executing the code segment specified by
the procedure pointer said executing means l:leing
activated after the switching means switches from
a first mode to a second mode, said executing 30
means using the protocol specified in said proce
dure information field to pass parameters to the
code segment; and

means for returning to the first mode,said returning
means being activated upon completion of the exe- 35
cution of the code segment.

12. An apparatus defined in claim 11 further compris
ing:

a stack arranged within the apparatus so that it can be
accessed by the processor, said stack having a first 40
stack frame associated with a first specified code
segment and a second stack frame associated with a
second specified code segment, said first and sec
ond stack frames having different formats; and

a stack switch frame, positioned in the stack between 45
said first and said second stack frames, said stack
switch frame having a first segment referencing the
first stack frame, a second segment having parame
ters in a format of the second stack frame, said
parameters having been converted from a format 50
of the first stack frame, and a third segment specify
ing information so that the stack switch frame is in
a format that can be referenced by the second stack
frame, said first segment being placed in the stack
upon execution of said first specified code segment 55
and said second and third segments being placed in
the stack after said switching means switches from
a first mode to a second mode.

13. An apparatus defined in claim 12 wherein said
transitioning means includes a stack switch frame 60
placed on said stack between said first and second stack
frames.

14. An apparatus defined in claim 13 wherein said
stack switch frame includes a pointer to the previous
stack frame on said stack. 65

15. An apparatus defined in claim 14 wherein said
stack switch frame includes means for indicating it is a
stack switch frame.

16
16. An apparatus defined irf claim 15 wherein said

indicating means is a low bit in said pointer that is set to
1.

17. An apparatus defined in claim 14 wherein said
stack switch frame further includes a list of input param
eters.

18. An apparatus defined in claim 14 wherein said
stack switch frame further includes a save register area
for preserving the value of a register.

19. An apparatus defined in claim 14 wherein said
stack switch frame includes an indicator which is set to
a non-valid frame pointer value.

20. An apparatus defined in claim 14 wherein said
stack switch frame further includes a save register area
for preserving the value of a register, a result area, a
parameter area and a return address.

21. An apparatus defined in claim 11 wherein said
specific, predetermined value is an illegal instruction.

22. An apparatus defined in claim 11, said routine
descriptor further including

a second field for addressing the code segment de
scribed by the routine descriptor,

a third field for indicating the type of mode switching
operation to be performed after the switching
means to a new mode, and

a list of one or more pairs, each pair having a first
segment for indicating the code type of the code
segment being described by the routine descriptor
and a second segment for indicating which routine
is described by said routine descriptor.

23. An apparatus defined in claim 11, said routine
descriptor further including:

a parameter field containing a pointer to a routine for
converting a parameter from a first mode to a sec
ond mode;

a procedure pointer addressing a code segment de
scribed by the routine descriptor;

a selector field for indicating which operation should
be performed after the switching means switches to
a new mode; and

a code type field indicating a code type of the code
segment being described by the routine descriptor.

24. An apparatus for executing a plurality of program
segments having different object code types in a proces
sor environment, said apparatus comprising:

a processor;
a memory;
a stack accessible by said processor, said stack having

a first stack frame and a second stack frame, said
first stack frame being associated with a first code
segment having a first object code type and said
second stack frame being associated with a second
code segment having a second object code type
wherein said first and second object code types are
incompatible thereby causing said first and second
stack frames to have different formats, said first
code type being associated with a first invoking
mechanism and said second code type being associ
ated with a second invoking mechanism wherein
said first and second invoking mechanisms are in
compatible;

a stack switch frame, positioned in said stack between
said first and said second stack frames, said stack
switch frame having a first segment referencing the
first stack frame, a second segment having parame
ters in a format of the second stack frame, said
parameters having been converted from a format
of the first stack frame, and a third segment infor-

17
5,452,456

mation so that the stack switch frame is in a format
that can be referenced by the second stack frame;

means for indicating a switch from a first mode to a
second mode, wherein said executing means exe
cutes said first code segment in said first mode and 5
said second code segment in said second mode, said
indicating means being initiated when said first
code segment invokes said second code segment
using said first invoking mechanism;

means for switching from a first mode to a second 10
mode, said switching means being activated by said
indicating means;

means for executing code segments having one of a
plurality of object code types, said executing means
allocating said first stack frame on said stack at 15
execution of said first code segment and, upon said
switching means switching from the first to the
second mode, allocating said stack switch frame
and said second stack on said stack and executing
said second code segment using said second invok- 20
ing mechanism; and

means for returning to said first mode, said returning
means being activated by the completion of the
execution of said second code segment.

25. An apparatus defined in claim 24 further compris- 25
ing means for deallocating the stack switch frame from
said stack, said deallocating means being coupled to said
returning means such that the stack switch frame is
deallocated upon returning to said first mode from said
second mode. 30

26. An apparatus for executing a plurality of mecha
nisms for invoking software routines having a same
object code type but incompatible invoking mecha
nisms, said apparatus comprising:

a processor; 35
a memory capable of being accessed by said proces

sor;
a stack accessible by said processor, said stack having

a first stack frame and a second stack frame, said
first stack frame being associated with a first code 40
segment having a first object code type and said
second stack frame being associated with a second
code segment having a second object code type
wherein said first and second object code types are
incompatible thereby causing said first and second 45
stack frame to have different formats, said first
code type being associated with a first invoking
mechanism and said second code type being associ
ated with a second invoking mechanism wherein
said first and second invoking mechanisms are in- 50
compatible;

a stack switch frame, positioned in said stack between
said first and said second stack frames, said stack
switch frame having a first segment referencing the
first stack frame, a second segment having parame- 55
ters in a format of the second stack frame, said
parameters having been converted from a format
of the first stack frame, and a third segment specify
ing information so that the stack switch frame is in
a format that can be referenced by the second stack 60
frame;

means for specifying a first software routine and a
second software routine, said first and second soft
ware routines having the same object code type,
said first software routine capable of being invoked 65
by a first invoking mechanism and said second
software routine capable of being invoked by a
second invoking mechanism, where said first in-

18
voking mechanism is incompatible with said sec
ond invoking mechanism;

means for using said second invoking mechanism to
invoke said second software routine in response to
an attempt by said first software routine to use said
first invoking mechanism to invoke said second
software routine, said using means allocating said
stack switch frame and said second stack on said
stack and executing said second software routine;
and

means for returning to said first mode, said returning
means being activated by the completion of the
execution of said second software routine.

27. An apparatus for executing a software routine
having a plurality of invoking mechanisms, said soft
ware routine having one or more parameters, the first
parameter being a selector and the other parameters
varying in number, size, content and type depending on
the value of the selector, said apparatus comprising:

a memory
means for defining one or more selector values, each

selector value associated with a specific configura
tion of the one or more parameters;

a plurality of routine descriptors, each selector value
being coupled with a separate one of the plurality
of routine descriptors, said routine descriptor refer
encing a code segment for implementing the soft
ware routine with the specific parameter configu
ration associated with the coupled selector value;

means for specifying a selector value:
a table located in said memory, said table having a

plurality of fields,. said plurality of fields including
a first field referencing an instruction for branching
to a program for looking up an a field in the table
and a plurality of other fields, each of said other
fields coupling a routine descriptor with each valid
defined selector value

means for looking up a selector value field in said
table according to the specified selector value; and

means for executing the code segment identified by
the routine descriptor coupled to the specified
selector value field.

28. An apparatus for executing a plurality of object
code types within a processor environment having a
processor and a memory, the plurality of object code
types having at least a first object code type and a sec
ond object code type, said first and second object code
types being incompatible, said apparatus comprising:

means for specifying a first software routine having
said first object code type;

means for specifying a second software routine hav
ing said second object code type;

means for specifying a switch from said first object
code type to said second object code type, said
specifying means being transparent to said first
software routine;

means for switching from said first object code type
to said second object code type when said specify
ing means is encountered during execution of said
first software routine, said switch occurring in a
manner which is transparent to said first software
routine;

means for executing said second software routine,
said executing means being coupled to said switch
ing means such that said executing means is acti
vated upon a switch from said first object code
type to said second object code type; and

5,452,456
20 19

means for returning to said first object code type
upon completion of the execution of said second
software routine, said returning means resuming
execution of said first software routine.

30. An apparatus for executing a single routine de
scriptor referencing a plurality of code segments having
incompatible object code types in a processor environ
ment in a computer system having a processor and a

29. An apparatus for executing a plurality of modes in
a processor environment in a computer system having
at least a first mode and a second mode, said apparatus

5 memory, said apparatus comprising:

comprising:
a memory;
a routine descriptor for describing a software routine; 10
a mixed mode field disposed within said routine de-

scriptor for differentiating between modes;
means for setting said mixed mode field to a specific,

predetermined value;
a procedure pointer field disposed within said routine 15

descriptor for indicating an address of a software
routine;

a procedure information field disposed within said
routine descriptor for indicating a mechanism ca
pable of initiating the execution of the software 20

routine having an address indicated in said proce
dure pointer field, said procedure information field
further specifying one or more characteristics of
par~eters to be used by the executing software

25
routme;

means for invoking a software routine in the second
mode, said invoking means capable of accepting
one or more parameters for the software routine
addressed by the procedure information field of 30
said routine descriptor;

a pointer to a buffer in the memory;
a processor, said processor capable of executing said

invoking means;
means for encapsulating in the buffer the one or more 35

parameters, said encapsulating means coupled to
said invoking means such that the one or more
parameters are encapsulated in the buffer prior to
execution of the invoking means, whereby said
processor passes the pointer to the buffer to said 40
invoking means upon execution of said invoking

a routine descriptor;
a mixed mode field in said routine descriptor for dif

ferentiating between modes, said mixed mode field
capable of specifying at least a first and second
state, said mixed mode field being set to a specific,
predetermined value when in said second state;

means for specifying a plurality of software routines
in said routine descriptor, each software routine
having a different object code type;

means for indicating one of the plurality of software
routines;

means for indicating a mechanism capable of initiat
ing the execution of the indicated software routine
and for specifying one or more characteristics of
parameters to be used by the executing indicated
software routine;

means for setting said mixed mode field to a specific,
predetermined value, said setting means arranged
for accessing said mixed mode field;

means for determining the value of the mixed mode
field, said determining means arranged for access
ing the value of said mixed mode field;

means for switching from a first mode to a second
mode, said switching means being coupled to said
determining means and being activated in response
to a determination that said mixed mode field has
said specific, predetermined value;

means for using the execution initiating mechanism
and the parameter characteristics of the indicated
software routine to invoke the indicated software
routine, thereby causing the indicated software
routine to execute, said using means being coupled
to said switching means such that said using means
is invoked when said switching means switches
from a first mode to a second mode; and

means; means for returning to the first mode, said returning
means for setting said procedure information field to means being activated upon completion of the exe-

a value indicating that parameters are to be encap- cution of the specified software routine.
sulated in a buffer; 45 31. An apparatus defined in claim 30 wherein said

means for executing a plurality of instructions; means for specifying is a list of one or more pairs, said
means for determining during the execution of each list being stored in said routine descriptor, each of said

instruction of the plurality of instructions whether one or more pairs having a first segment for indicating
a routine descriptor having a mixed mode field an object code type of a software routine of the plural-
which is set to the specific, predetermined value is 50 ity of software routines, and a second segment for refer-
encountered, said determining means being cou- encing the software routine.
pied to said executing means; 32. An apparatus defined in claim 31 wherein said

means for switching from a first mode to a second means for indicating one of the plurality of software
mode, said switching means coupled to said deter- routines indicates a criteria for use in selecting a soft-
mining means such that said switching means is 55 ware routine from the plurality of software routines,
activated when said determining means determines said apparatus further comprising means for selecting a
that the mixed mode field is set to the specific, software routine from the plurality of software routines
predetermined value; based on the indicated criteria and using that selected

means for performing the operation specified in the software routine as the indicated software routine, said
selector field of the routine descriptor referenced 60 selecting means comprising means for determining
by the instruction being executed, said performing which pair in said list has a first segment specifying a
means being coupled to said switching means such code type which best satisfies the indicated criteria.
that said performing means is activated after said 33. An apparatus defined in claim 30 wherein said
switching means switc.hes from the first to the sec- means for indicating one of the plurality of software
ond mode; and 65 routines indicates a criteria for use in selecting a soft-

means for returning to the first mode, said returning ware routine from the plurality of software routines,
means being activated upon completion of the exe- said apparatus further comprising means for selecting a
cution of the specified operation. software routine from the plurality of software routines

21
5,452,456

22
based on the indicated criteria and using that selected
software routine as the indicated software routine.

34. An apparatus defined in claim 33 wherein said
criteria is execution speed, such that said selecting
means chooses the software routine from the plurality 5
of software routines which will execute fastest in the
processor environment.

35. An apparatus for executing a plurality of software
routines having different object code types in a proces-
sor environment, said apparatus comprising: 10

a routine descriptor for describing a software routine;
a mixed mode field disposed within said routine de

scriptor for differentiating between modes;
means for settfug said mixed mode field to a specific,

predetermined value; 15
a procedure pointer disposed within said routine de

scriptor, said procedure pointer specifying a soft
ware routine;

means for indicating an object code type of the speci
fied software routine, said indicating means being 20

disposed within said routine descriptor;
means for setting said indicating means to specify the

object code type of the specified software routine;

and 25
means for executmg said specified software routme

when said specified software routine is called from
one of the other of the plurality of software rou
tines, said other software routine having an object
code type which is incompatible with the object 30
code type of said specified software routine.

36. An apparatus for executing a plurality of mecha
nisms for invoking software routines having a same
object code type but incompatible invoking mecha-
nisms, said apparatus comprising: 35

a processor;
a memory capable of being accessed by said proces

sor;
means for specifying a first software routine and a

second software routine, said first and second soft- 40
ware routines having the same object code type,
said first software routine capable of being invoked
by a first invoking mechanism and said second
software routine capable of being invoked by a
second invoking mechanism, where said first in- 45
voking mechanism is incompatible with said sec
ond invoking mechanism;

means for using said second invoking mechanism to
invoke said second software routine in response to
an attempt by said first software routine to use said 50
first invoking mechanism to invoke said second
software routine, said using means executing said
second software routine; and

means for returning to said first mode, said returning
means being activated by the completion of the 55
execution of said second software routine.

37. A method for executing a plurality of modes in a
processor environment in a computer system having at
least one processor and a memory, each mode having an
associated set of valid instructions which can be exe- 60
cuted by the processor, said method comprising the
steps of:

allocating a routine descriptor in the memory;
setting a pointer to the address of the routine descrip-

tor; 65
setting contents of a first field in the routine descrip

tor equal to an instruction which is invalid in a first
mode, the first field being positioned so that the

pointer to the routine descriptor points to the con
tents of the first field;

setting contents of a procedure pointer field in the
routine descriptor to an address of a software rou
tine capable of being executed in a mode other than
the first mode;

executing in the first mode contents of said first field;
switching mode upon execution of an instruction

which is invalid in the first mode, the second mode
being different than said first mode and being a
mode in which the software routine can execute;

after switching to the second mode, executing the
routine addressed by the procedure pointer field;
and

upon completion of execution of the routine, return
ing to the first mode.

38. A method defined in claim 37 further comprising
the steps of:

setting contents of a selector field in the routine de
scriptor to a value indicating the type of mode
switching operation to be performed after switch
ing to the second mode; and

after switching to the second mode, but before exe
cuting the software routine, performing the opera
tion indicated by the contents of the selector field.

39. A method defmed in claim 38 further comprising
the steps of:

setting contents of a code type field within the routine
descriptor to a code type of the routine addressed
by the procedure pointer field of that routine de
scriptor; and

using the content of the code type field to switch to a
second mode whereby the software routine can be
executed in a mode corresponding to the code type
specified by the code type field.

40. A method defined in claim 39 further comprising
the steps of:

when the selector field indicates an execute opera
tion, determining if the routine described by the
routine descriptor is register-based or stack-based;

if the routine is register-based, allocating a stack
switch frame, inserting information into the stack
switch frame, pushing the stack switch frame onto
a stack and moving parameters into registers

moving parameters into registers, allocating a stack
switch frame, inserting information into the stack
switch frame and pushing the stack switch frame
onto a stack;

jumping to the address of the routine being described
by the routine descriptor;

executing the routine being described by the routine
descriptor;

after the routine fmishes executing, if the routine is
register-based, moving output parameters from the
stack switch frame into registers and if the routine
is stack-based, copying a return value from a regis
ter into a stack;·and

releasing the stack switch frame.
41. A method defined in claim 39 further comprising

the steps of:
when the selector field indicates a load and execute

operation, performing load operations specific to a
code type of the routine being described by the
routine descriptor;

if the routine is register-based, allocating a stack
switch frame, inserting information into the stack
switch frame, pushing the stack switch frame onto
a stack and moving parameters into registers

5,452,456
23

if the routine is stack-based, moving parameters into
registers, allocating a stack switch frame, inserting
information into the stack switch frame and push
ing the stack switch frame onto a stack;

jumping to the address of the routine being described 5

by the routine descriptor;
executing the routine being described by the routine

descriptor;
after the routine finishes executing, if the routine is 10

register-based, moving output parameters from the
stack switch frame into registers and if the routine
is stack-based, copying a return value from a regis
ter into a stack; and

releasing the stack switch frame.
42. A method for executing a plurality of modes in a

processor environment in a computer system having at
least one central processing unit and a memory, said
method comprising the steps of:

allocating memory space for a routine descriptor;
setting a pointer to the address of the first routine

descriptor;

15

20

setting contents of a mixed mode field in the first
routine descriptor equal to a nonvalid instruction;

executing contents of the field; 25

switching from a first mode to a second mode when
executing contents of the mixed mode field which
are equal to a nonvalid instruction;

setting contents of a selector field in the first routine 30
descriptor to a type of mode switching operation to
be performed after switching to the second mode;

after switching to the second mode, performing the
operation indicated by the contents of the selector
field; 35

allocating a second routine descriptor;
setting the selector field in the second routine de

scriptor to a value indicating a return to the first
mode operation;

allocating a stack switch frame;
saving values of registers in the stack switch frame;
determining if the routine being described by the first

40

routine descriptor is register-based or stack-based
and if the routine is register-based, moving input 45
parameters from first mode registers and putting
them into second mode registers;

putting information into the stack switch frame;
if the routine returns a value, allocating space in the

stack switch frame for it; 50
putting parameters into the stack switch frame;
setting a return address in the stack switch frame

equal to the address of the second routine descrip-
tor;

55

60

65

24
executing the routine described by the first routine

descriptor;
checking the selector field of the second routine de

scriptor; and
when the selector field of the second routine descrip

tor indicates a return operation, returning to the
first mode.

43. A method for executing a plurality of mechanisms
for invoking a software routine within a single routine,
said method comprising the steps of:

creating a lookup table having a plurality of fields;
setting a first field in said plurality of fields to iden
tify a mode switching mechanism;

writing a code or program segment to handle each
valid selector value for a routine;

creating a routine descriptor for each of-the code or
program segments;

setting a field in the lookup table for each of the
routine descriptors;

looking up a particular field in the lookup table based
on a selector value; and

executing a routine described by a routine descriptor
identified by that particular field.

44. A method for executing a plurality of modes in a
processor environment in a computer system having a
processor and a memory, each mode having an associ
ated set of valid instructions which can be executed by
the processor, said method comprising the steps of:

allocating a routine descriptor in the memory;
setting a pointer to the address of the routine descrip

tor;
setting contents of a first field in the routine descrip

tor equal to an instruction which is invalid in a first
mode, the first field being positioned so that the
pointer points to the contents of the first field;

setting contents of a procedure pointer field in the
routine descriptor to an address of a software rou
tine capable of being executed in a mode other than
the first mode;

encapsulating in a buffer characteristics of parameters
to be used by the software routine;

executing in the first mode contents of said first field;
switching to a second mode upon execution of an

instruction which is invalid in the first mode, the
second mode being different than said first mode
and being a mode in which the software routine
can execute;

after switching to the second mode, executing the
software routine addressed by the procedure
pointer field using the parameter characteristics
encapsulated in the buffer; and

upon completion of execution of the software routine,
returning to the first mode.

* * * * *

