'

«.

Apple. Macintosh.Coprocessor Platform-
Developer’s Guide

Beta Draft, 29 November 1989

Networking & Communications Publications
Network Integration Group

Keith Grigoletto

Apple Contidential
¢ APPLE COMPUTER, INC.

This manual is copyrighted by
Apple, with all rights reserved.
Under the copyright laws, this
manual may not be copied, in
whole or in part, without the
written consent of Apple
Computer, Inc. This exception
does not allow copies to be made
for others, whether or not sold,
but all of the material purchased
may be sold, given or lent to
another person. Under the law,
copying includes translating into
another language.

© Apple Computer, Inc., 1987,
1988, 1989

20525 Mariani Avenue

Cupertino, California 95014

(408) 996-1010

Apple, the Apple logo, AppleTalk,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

A/ROSE, LocalTalk, the Macintosh
Coprocessor Platform, and MPW
are trademarks of Apple Computer,
Inc.

AST and AST-ICP are trademarks
of AST Research, Inc.

DEC is a trademark of the Digital
Equipment Corporation.
Ethernet is a trademark of ??
NuBus is a trademark of Texas
Instruments.

Systems Network Architecture
(SNA) is a registered trademark of
International Business Machines
Corporation.

Simultaneously published in the
United States and Canada.

Part I

Contents

Figures and tables / xx

Preface / xx

What you should know

How to use this guide

Equipment and system requirements
Important safety instructions
Conventions used in this guide / xx
Terminology

Getting Started With MCP

What Is MCP? / 1-1

The components of MCP / 1-2
The MCP hardware / 1-3
The MCP software / 1-4
A/ROSE / 1-5
| A/ROSE Prep 7 16
Developmental diagnostics / 16
Developing with MCP / 1-6
Development opportunities and applications / 1-7
Off-loading task processing / 1-8
Parallel processing / 1-8
Interfacing or controlling / 1-8
Data acquisition / 1-8
Interetworking / 1-8
Limitations / 1-9

Getting Started / 2-1

Preparing to use MCP / 2-2
Installing the MCP card / 2-2
Installing MCP software / 2-6
Installing the A/ROSE Prep driver / 2-6

viii

iv

Contents

Running a sample program / 2-7
Selecting files for the sample exercise / 2-8
Downloading files to the card / 2-10
Verifying the sample exercise / 2-10
Where do you go from here? / 2-12

Part I Software Development /

3 The MCP Software Interface / 3-1

What is A/ROSE? / 3-2
A/ROSE primitives / 3-2
A/ROSE utilities / 3-2
A/ROSE managers / 3-2
Echo Manager / 34
InterCard Communications Manager (ICCM) / 3-5
Name Manager / 3-5
Print Manager / 3-5
Remote System Manager (RSM) / 3-5
Timer library and Timer Manager / 36
Trace Manager / 3-6
What is A/ROSE Prep? / 3-7
A/ROSE Prep driver / 37
A/ROSE Prep library / 3-8
A/ROSE Prep managers / 3-8
Functions of MCP software / 3-8
Using messages for interprocess communication / 3-9
Message structures / 3-9
Mechanisms for data transfer / 3-13
Message and status codes / 3-14
The dient/server relationship / 3-14
Client and server running on a smart card under A/ROSE 3-16
Client and server running on Macintosh using A/ROSE Prep / 3-18
Using task scheduling in a multitasking environment / 3-21
Task Identifiers / 3-21
Modes in which tasks run / 3-21
Timer services / 3-22
Task scheduling / 3-22
Task initialization / 3-22
Task execution / 3-23
Task termination / 3-23
Memory management / 3-23
Background on virtual addressing with A/ROSE
Flat address space
24-bit virtual addresses
32-bit virtual addresses
NuBus address
latched virtual address
Virtual memory support

Contents

4 A/ROSE Primitives / 4-1

Operating system primitives / 4-2
FreeMem() / 4-3
FreeMsg() / 44
GetMem() / 45
GetMsg() / 46
LockRealArea()
UnLockRealArea()
Receive() / 47
Reschedule() / 49
Send() / 412
Spi() / 413
StartTask() / 4-14
StopTask() / 4-17

5 A/ROSE Utilities / 5-1
A description of utilities / 5-3

BlockMove() / 5-3
AROSEDate2Secs() / 54
GetBSize() / 56
GetCard() / 57
AROSEGetDateTime() / 5-8
GetETick() / 5-9
GetgCommon() / 5-10
GetHeap() / 511
GetICCTID() / 5-12
GetNameTID() / 5-13
GetStParms() / 5-14
GetTCB() / 515
GetTickPS() / 5-16
GetTID() / 517
GetTimerTID() / 5-18
GetTraceTID() / 5-19
GetUCount() / 5-20
IncUCount() / 5-21
Islocal() / 52
Lookup_Task() / 5-23
MapNuBus() / 5-24
Netcopy()
Register_Task() / 5-25
AROSESecs2Date() / 5-26
SwapTID() / 5-27
ToNuBus() / 5-28

vi Contents

TraceReg() / 5-29

Contents vii

viii

6 A/ROSE Managers / 6-1

Echo Manager / 6-2
InterCard Communications Manager / 6-3
ICC_GETCARDS / 6-3
Name Manager / 64
Looking up tasks / 6-6
NM_LOOKUP_NAME / 66
NM_LOOKUP_TID / 6-7
Notification of Communications Loss / 6-8
NM_N_SLOT_REQ / 6-8
NM_N_SLOT_CAN / 6-9
Notification of Task Termination / 6-9
NM_N_TASK_REQ / 6-9
NM_N_TASK_CAN / 6-10
Registering tasks / 6-10
NM_REG_TASK / 6-10
NM_UNREG_TASK / 6-11
NM_UNREG_NAME
Printing support / 6-12
Print Buffer request / 6-12
Remote System Manager / 6-15
RSM_FreeMem / 6-13
RSM_GetMem / 6-14
RSM_StartTask / 6-14
RSM_StopTask / 6-15
Finding the Remote System Manager / 6-15
Loading remote tasks / 6-15
Timer library and Timer Manager / 6-19
Timer library / 6-16
TLInitTimer() / 6-16
TLStartTimer() / 6-17
TLCancelTimer() / 6-17
TLActiveTimer() / 6-17
TLReceive() / 6-18
Timer Manager / 6-18
Active Timer Query / 6-19
Cancel Timeout / 6-20
Request One-Shot Timeout / 6-20
Request Periodic Timeout / 6-21
Trace Manager / 6-24
Turn on tracing / 6-23
Turn off tracing / 6-23
Tracing messages / 6-23
DumpTrace / 6-23

Contents

7 Programming Notes for A/ROSE / 7-1

Intercard communications / 7-2
Address mapping / 7-2
Intercard buffer copy / 7-3
Intercard message passing / 7-3

VoidDCache() /7-3

Interrupt handlers / 74

Tick Chain / 7-6

Idle Chain / 7-8

Writing your own download program / 7-9
NewDownload
Return status
DynamicDownload / 7-19
Supporting routines

TestSlot
NewFindcard

StartCard
HaltCard

8 Developing Smart Card Applications / 8-1

Before you start / 81
How to create an application / 83
Creating new code / 83
Modifying the main program / 8-4
Modifying the makefile / 8-14
A/ROSE include files / 816
A/ROSE libraries / 817
Changes to the makefile / 817
Compiling and linking your code / 8-20
Downloading code to the MCP card / 8-21
Generic A/ROSE downloading
Calling the Download tool / 824
Download errors / 825
Using the download subroutines / 8-24
NewDownload
Return status
DynamicDownload
NewDownload (NDLD)
Interface specification
Load module description
Implementation strategy
A/ROSE Prep file

Contents ix

9

10

Contents

TestSlot
NewFindCard
StartCard
HaltCard

A/ROSE Prep / 9-1

The A/ROSE Prep software / 9-2

Using A/ROSE Prep / 9-2

A/ROSE Prep services / 9-3
CoseQueue() / 95
FreeMsg() / 96
GetCard() / 96
GetETick() / 9-7
GetICCTID() / 9-7
GetIPCg() / 9-7
GetMsg() / 9-8
LockRealArea
GetNameTID() / 99
GetTickPS() / 99
GetTID() / 99
IsLocal() / 99
KillReceive() / 9-10
Lookup_Task() / 9-10
OpenQueue() / 911
Receive() / 9-12
Register_Task() / 9-17
Send() / 918
SwapTID() / 9-18
UnlockRealArea
NetCopy

Using the Forwarder with A/ROSE Prep / 10-1

What is the Forwarder? / 10-2
How the Forwarder sends messages / 10-2
Initialization / 10-3
Normal processing with the Forwarder / 10-4
Completing communication with the Forwarder / 10-5
Using the Forwarder / 10-8
Installing the Forwarder / 10-6
Messages used by the Forwarder / 10-6
MC_CLOSECONNECT / 10-6
MC_CLOSESERVER / 10-7

MC_ECHO / 10-7

MC_OPENSERVER / 10-7

MC_READDATA / 10-8

MC_SENDDATA / 10-9
Using the Forwarder on the server machine / 10-9
Using the Forwarder from the client machine / 10-15
Message transactions while the Forwarder is active / 10-22
Errors returned by the Forwarder / 10-24

11 Troubleshooting Guide / 11-1

What happened? / 11-2
Troubleshooting A/ROSE / 11-3
Using dumpcard / 11-4
If A/ROSE crashes / 11-30
Using the load map / 11-30
Using A/ROSE error codes / 11-14
eBTHH — Bad Things Have Happened / 11-15
eCAIT — Cannot Allocate Idle Task / 11-16
eCAMS — Cannot Allocate Message Space / 11-16
eCAPR — Cannot Allocate Priority Table / 11-17
eCAPT — Cannot Allocate Process Table / 11-17
eFMSG — Attempt to Free Bad Message / 11-18
eMEMB — Attempt to Free Bad Memory Buffer / 11-18
eNPTR — No Processes to Run / 11-19
eOVFL — Stack Overflow Detected / 11-20
eSMSG — Attempt to Send Bad Message Buffer / 11-21
eSTPI — Stop Task cannot be called from interrupt routine / 11-21
eSTTI — Start Task cannot be called from interrupt routine / 11-21
eTIMQ — Task Not in Timer Queue / 11-21
Task Not Stopped / 11-22
If A/ROSE hangs / 11-22
gMajorTick is not incrementing / 11-23
Determining the cause / 11-24
gMajorTick is incrementing / 11-25
Is a task waiting on a blocking Receive reques? / 11-25
Has A/ROSE have run out of message buffers? / 11-27
Is a task running in block scheduling mode? / 11-27
Is a task executing in an infinite loop in slice scheduling mode? / 11-28
Is code on the Idle Chain executing in an infinite loop? / 11-28
Troubleshooting A/ROSE Prep / 1144
If A/ROSE Prep crashes / 1146
A/ROSE Prep crashes during Macintosh startup / 11-30
A/ROSE Prep INIT31 — Unit Table full / 11-3
A/ROSE Prep INIT31 — No DRVR resource in file / 1131
A/ROSE Prep INIT31 — Failed to open driver / 11-31

Contents

xi

xii

A/ROSE Prep crashes with improper parameter usage / 11-31
A/ROSE Prep FreeMsg — Bad message pointer / 11-32
A/ROSE Prep Send — Bad message pointer or mFrom / 11-32
A/ROSE Prep crashes during driver initialization / 11-32
A/ROSE Prep — Missing resource: A/ROSE Prep entries / 11-32
A/ROSE Prep — Unable to get space from system heap / 11-33
A/ROSE Prep Name Manager — Missing aipn resource: Name Manager entries / 11-33
IPC driver crashes during execution / 11-33
A/ROSE Prep KillReceive/CloseQueue — timeout queue error / 11-34
A/ROSE Prep Send — timeout queue error / 11-34
A/ROSE Prep Periodic processing — timeout queue error / 11-34
A/ROSE Prep Receive — timeout queue error / 11-35
A/ROSE Prep Receive — Interrupt routine did blocking Receive / 11-35
IPC Name Manager crashes during execution / 11-35
Name Manager Receive with Completion / 11-35
Name Manager Receive Request Failure / 11-36
Name Manager Receive Request without Completion / 11-36
If the IPC glue code crashes / 11-52
If A/ROSE Prep hangs / 11-52
Events that cause A/ROSE Prep to hang / 11-37
Macintosh II 32-bit mode debugger hangs / 11-37
blocking Receive request is Unsatisfied / 11-38
Examining the A/ROSE Prep global area / 11-38

Part I Hardware Development

12 MCP Card Specifications / 12-1

Introduction to the MCP card / 12-2
MCP card description / 12-2
ASIC MCP support
Processor / 12-3
ROM / 123
RAM / 123
Address map / 124
Timer / 124
Reset / 125
Interrupts / 12-5
NuBus interface / 12-6
NuBus address space / 126
Acquiring the internal 68000 bus / 12-7
Design notes for NuBus / 12-7

Contents

13 Listings for the MCP Card / 13-1

PAL listings / 13-1
PAL equation: arbitration / 13-2
PAL equation: bus driver / 13-3
PAL equation: bus master / 13-5
PAL equation: bus master control / 13-7
PAL equation: bus slave / 13-7
PAL equation: decode / 13-11
PAL equation: DMA example / 13-12
PAL equation: interrupt / 13-13
PAL equation: RAM / 1315
PAL equation: RAM24 / 13-17
Parts for the MCP card / 13-16

14 Diagnostics for the MCP Card / 14-1

MCP card dedaration ROM / 14-2
Power-up diagnostics / 14-4
68020/030 primary initialization tests / 14-5
Dataarea / 146
Error codes / 14-7

Appendix A Files on the MCP Distribution Disks / A-1

Files on A/ROSE 1 / A-2
Files on A/ROSE 2 / A-8

Appendix B Where to Go for More Information / B-1

Glossary / G-1

Index / I-1

Contents xiii

CHAPTER1

CHAPTER 2

CHAPTER?3

CHAPTER 4

CHAPTERS

CHAPTER6

Figures and Tables

What is MCP?

Figure1-1 Macintosh Coprocessor Platform for the Macintosh computer
Figure1-2 The MCP card
Table1-1 Features of A/ROSE

Getting Started

Figure 2-1 Aligning the card
Figure 2-2 MPW window
Figure 2-3 Select Current Directory window

The MCP Software Interface

Figure3-1 Structure of A/ROSE

Figure3-2 Flow of information between A/ROSE and managers

Figure3-3 Fixed-length message structure

Figure34 Client/server relationship for A/ROSE program modules (NuBus
card-to-NuBus card)

Figure 3-5 Client/server relationship for applications using the AROSE Prep
driver (Macintosh-to-Macintosh)

Table3-1 Structure for fixed-length messages

Table3-2 Message and status codes

A/ROSE Primitives

Table4-1 A/ROSE primitives
Table42 Macintosh Operating System Calls

A/ROSE Utilities
Table 5-1 A/ROSE utilities

A/ROSE Managers

Table6-1 A/ROSE Managers

Table6-2 Card status

Table6-3 Name Manager message codes
Table64 printf standard conversion
Table6-5 printf nonstandard conversion
Table66 Timer Manager calls

CHAPTERS

CHAPTER Y9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

Developing Smart Card Applications

Figure8-1 The NDLD Dialog Box

Table 8-1 Include files

Table8-2 Link command parameters
Table 8-3 Error constants for Download

A/ROSE Prep

Table9-1 A/ROSE Prep services

Table9-2 A/ROSE Prep Address Usage

Table 9-3 State stable for the Receive call
Table94 Emors returned

Using the Forwarder with Apple IIPC

Figure 10-1 Messages paths using the Forwarder
Figure 10-2 Initialization process using the Forwarder
Figure 10-3 Normal processing using the Forwarder
Figure 104 End of processing using the Forwarder
Table10-1 Messages used by the Forwarder

Table 10-2 Errors returned by the Forwarder

Troubleshooting Guide

Table 11-1 Crash area format

Table11-2 Dumpcard cross reference

Table 11-3 Error codes for A/ROSE

Table 114 Error codes for A/ROSE Prep driver

Table 11-5 Error messages from the INIT resource

Table 116 Ermror messages from the A/ROSE Prep driver/Name Manager

MCP Card Specifications

Figure 12-1 MCP card installed in the Macintosh II
Figure 12-2 MCP card functions

Figure 12-3 Generation of 20 MHz and 10MHz docks
Figure 124 A simple NuBus slave design

Figure 12-5 Read and writing timing cycles
Table12-1 Address map

Table 122 Interrupt priorities

Listings for the MCP Card
Table13-1 Parts lists for the MCP card

CHAPTER 14

APPENDIX A

APPENDIX B

Diagnostics for the MCP Card

Table 141 Data area
Table14-2 Error codes

Files on the MCP Distribution Disks

Table A-1 Files on A/ROSE 1
Table A-2 Files on A/ROSE 2

Where to Go for More Information

Table B-1 List of reference material
Table B-2 Additional references

Preface

This guide helps you create an interface to the Apple® Macintosh® II bus.
This guide is written for developers may be within Apple Computer, Inc., as
well as third-party developers working under a licensing agreement.

What you should know

You should be familiar with the Macintosh computer and NuBus™. Appendix
B lists developer tools, resources, and reference documents that may facilitate
your development efforts.

The Macintosh Coprocessor Platform™ (MCP) supports applications written
under the Macintosh Programmer’s Workshop™ (MPW) development
environment, which uses Assembler or C. This guide assumes that you are
familiar with MPW and have a working knowledge of MPW C, MPW
Assembler, or both.

How to use this guide
The following table provides a road map to information on various subjects
of the Macintosh Coprocessor Platform.

MCP Subject: Location in manual:
General information Part I — Getting Started
What makes up the Chapter 1, *What is MCP?”
Macintosh Coprocessor
Platform
Applications or potential Chapter 1
uses of MCP

X Installing the MCP card and Chapter 2, “Getting Started”
running a sample program
software specifics Part II — Software Developmens
A/ROSE™ and A/ROSE Prep Chapter 3, “Introduction to the
software in the Macintosh MCP Software”
II family of computers
Task scheduling in the Chapter 3
operating system
Interprocess Chapter 3 for general
communication between information (for additional
processes on the Macintosh information, see Chapter 9,
computer and tasks on the “A/ROSE Prep”)
MCP card
Fundamental services of Chapter 4, “A/ROSE Primitives”
the A/ROSE operating
system
Library routines available to Chapter 5, "A/ROSE Utilities”
tasks in your application
Operating-system Chapter 6, “A/ROSE Managers”
managers that provide
services to tasks

i About This Manual

To find out about:

Look in:

Peculiarities of A/ROSE and
programming notes (with
examples of code)

How to develop
applications by using MCP
software (with examples
of code)

A/ROSE services provided
on the Macintosh II
Forwarding data on an
AppleTalk® network
system using A/ROSE Prep

Troubleshooting MCP
software

The MCPcard NuBus

MCP card specifications and
information on accessing
the NuBus

PAL listings and parts lists

The diagnostics provided
for development of the
MCP Card

Chapter 7, “Programming Notes

for A/ROSE”

Chapter 8, “Developing smart
card Applications”

Chapter 9, “A/ROSE Prep”

Chapter 10, *Using the
Forwarder with A/ROSE Prep”

Chapter 11, “Troubleshooting
Guide”

Part III — Hardware and
Development

Chapter 12, “MCP Card
Specifications”

Chapter 13, “Listings for the
MCP Card”

Chapter 14, “Diagnostics for the
MCP Card”

About This Manual

iii

iv

Equipment and system requirements

To develop your code, you need the following equipment:

a NuBus-compatible Macintosh computer running System 6.0.2 or later
MPW, version 2.0 or later

one or more MCP cards

MCP distribution disks

MPW C and/or MPW Assembler

the appropriate debugging tools

Connectors and memory requirements are hardware-specific; refer to Part III,
“Hardware and NuBus Development®, for more information.

Important safety instructions

Before you plug in your Macintosh and get started, read the following
important safety instructions.

Conventions used in this guide

Each new term introduced in this book is printed in bold type where it is
first defined. That lets you know that the term has not been defined earlier,
and also indicates that there is an entry for it in the glossary.

Any text displayed in Courier typeface is used to represent:

text that you will see on the screen (such as source code or an example file)
a command that you enter on the keyboard

a program or subroutine name

a parameter or field name

Any text that is surrounded by colons (;) refers to the pathname of a particular
folder or file. For example, :A/ROSE:Examples: refers to the folder named
“Examples” within the folder named “A/ROSE”.

A/ROSE uses C calling conventions, and all registers are preserved except DO,
D1, A0, and A1l. The assembly-language macros also adhere to these
conventions.

About This Manual

The following typographic elements mark special mesages to you:

& Note: Text set off in this manner presents sidelights or interesting points of information.

A Important

A Caution

A Warning

Text set off in this manner—with the word Important—presents
important information or instructions. a

Text set off in this manner—with the word Caution—indicates
potentially serious problems. Actions could result in system hangs or
incompatibility with future versions. a

Text set off in this manner—with the word Warning—indicates
potentially hazardous consequences to you or to your equipment. a

Terminology
This document refers to processes on the Macintosh computer, and tasks
under A/ROSE and A/ROSE Prep. A process is an operation or function
performed by the Macintosh operating system. A task is a2 message-driven
transaction process that runs on the MCP card. The behavior of a task
depends on the messages it receives.

User refers to the end user of the hardware or software product that you
will develop by using the Macintosh Coprocessor Platform.

Refer to the glossary at the end of this guide for a comprehensive list of
terms and an explanation of each term.

About This Manual

Part I Getting Started With MCP

Part I, *Getting Started with MCP," provides:

an introduction to and overview of the Macintosh Coprocessor
Platform

descriptions of the hardware, software interface, and diagnostics
instructions for installing the MCP card, operating system, and
support software

a simple “hands-on” exercise that demonstrates how the operating
system works with the MCP card

Chapter 1 What Is MCP?

THE MACINTOSH COPROCESSOR PLATFORM™(MCP) isa
generic hardware and software foundation to help developers create add-on
cards and software applications for NuBus-compatible Macintosh®
computers.

Apple Computer, Inc., makes this platform available to assist developers in
quickly building Macintosh coprocessor prototypes and to reduce the time-to-
market for new products. The Macintosh Coprocessor Platform is available
through Apple Computer, Inc. under a licensing agreement. =

11

The components of MCP

The Macintosh Coprocessor Platform is made up of hardware and software:

Hardware: the MCP card, an intelligent NuBus™ prototype card (such cards may be referred to
as smart cards)

Software: two distribution disks (labeled A/ROSE 1 and A/ROSE 2) that include A/ROSE™ (Apple
Real-time Operating System Environment) and A/ROSE Prep (Macintosh II Driver)

A/ROSE is a multitasking operating system for smart cards, such as the MCP card, and provides
an intelligent peripheral-controller interface to NuBus on the Macintosh.

A/ROSE Prep includes a driver and support software installed in the Macintosh computer.
A/ROSE Prep allows Macintosh applications to communicate with an application running under
A/ROSE on the MCP card or on another computer.

Developmental diagnostic software: one distribution disk (labeled MCP_Diagnostic) that

includes the diagnostic application, support code, and examples to.test various functions of the
MCP-based hardware that you develop

Figure 1-1 shows the MCP software and hardware components for the Macintosh computer.

1-2

Macintosh Coprocessor Platform Developer’s Guide

® Figure 1-1 Macintosh Coprocessor Platform for the Macintosh computer

Macintosh Coprocessor

| A/ROSE and application
Platform

tasks in RAM

~4——— MCP Diagnostics in ROM and RAM

.
.
.
.

.................... A/ROSE Prep
in RAM on the
main logic board
A/ROSE 1
A/ROSE 2

You can customize each of these components, which are described in this chapter, for the particular
application or product you want to develop. For more detailed information, refer to Part II,
Software Developmens or Part 111, Hardware Developments.

The MCP hardware

With approximately 26 square inches of space available, the MCP card lets you create a prototype of
your application. Figure 1-2 shows the layout of the MCP card; shading indicates the primary area
available for development.

1 / What is MCP?

1-3

8 Figure 1-2 The MCP card

The MCP card itself has no input/output (I/0) interface, but is a generic master/slave 1/0 processor.
Affiliated 1/0 devices that you develop, such as RS-232 ports or token r ing connectors, give the
smart card access to the outside world.

The MCP card includes a Motorola 68000 processor operating at 10 megahertz and 512 kilobytes of
random access memory (RAM). The NuBus interface provides a bus master interface to NuBus on
the Macintosh main logic board. The MCP card acts as a “slot device” to the Macintosh operating
system, freeing the processor on the Macintosh to perform other functions.

During development efforts, you may additionally want to use a smart card that is available
commercially, such as the AST-ICP (Intelligent Communications Processor) smart card from AST
Research, Inc., which includes an I/O interface through four serial ports.

The MCP software

Software for the Macintosh Coprocessor Platform consists of A/ROSE, A/ROSE Prep, and support
software (include files, source code examples, and other development software tools). MCP
software was created to take advantage of the design features of the MCP card by providing
software services to smart card application programs.

The code for A/ROSE and A/ROSE Prep indudes a collection of traps, interrupt handlers, and tasks
that provide support for task naming, timing services, and intercard and intracard communications
using messages. These routines enable a smart card to support a multitasking distributed operating
environment for communications and other real-time services on the same card or on other smart
cards installed in the Macintosh computer.

@ NoteCard-dependent code has been separated from A/ROSE. The download subroutines will
load the appropriate card-dependent code when performing an initial load of A/ROSE
operating system to the card.

14 Macintosh Coprocessor Platform Developer’s Guide

A/ROSE

A/ROSE provides the operating system and core software services required by MCP cards for on-
board applications software. The design of A/ROSE is sufficiently general to support a wide variety
of software applications on MCP cards, and offers the functionality described in Table 1-1.

8 Table 1-1 Features of A/ROSE

Feature

Description

Configurability

Intercard services

Interprocess communication

Multitasking

Priority scheduling and timer services

Real-time responsiveness

For maximum flexibility in meeting the needs of a variety
of products, large parts of A/ROSE are configurable.
A/ROSE code that supports services not required by an
application need not be loaded onto the MCP card. To
complement configurability, the A/ROSE kernel is as small
as possible.

Allows communication between tasks on different
cards. Remote system facilities allow allocating and
freeing memory, as well as starting and stopping tasks,
to support dynamic downloading of tasks on a different
smart card in the same machine.

Interprocess communication is accomplished through
messages that are fixed-size but flexibly formatted.
A/ROSE allows dynamic name-binding of tasks to
support interprocess communication.

Multiple independent tasks share the CPU on the smart
card, under control of A/ROSE. Tasks are always executed
in the user mode on the 68000, while interrupt routines
and the main program are executed in supervisor mode.
This process is important because some 68000
instructions cannot be executed in user mode (such as
any instruction that modifies the status register).

Priority scheduling is available to control the order in
which tasks use the CPU. A/ROSE supports time slicing
and processing that cannot be preempted. Tasks may
request one-shot or recurrent notification of time
events.

To deal with the demands of realtime environments,
such as communications 1/O, both context switching
and message passing are designed for very high
performance. Memory management is available in an
efficient form.

Refer to Part II for more detailed information on A/ROSE and the services it provides.

1 / What is MCP? 1-5

A/ROSE Prep

A/ROSE Prep is composed of:

® 3 driver that runs under the Macintosh operating system

® A/ROSE Prep interface code

® library routines (in the file 1Pcglue.o)

& associated support code, including the A/ROSE Prep Name Manager and A/ROSE Prep Echo
Manager

8 card-dependent routines

& 2 portion of the download subroutines

The A/ROSE Prep driver handles all message passing (interprocess communication) between

processes running under the Macintosh operating system and MCP tasks running under A/ROSE.

Periodically, A/ROSE Prep scans for and processes incoming messages, times out slots that have

become inactive, and processes outgoing messages. The driver receives messages from and delivers
messages to Macintosh processes.

¢ Note: Since the Macintosh computer currently does not implement a multitasking operating
system, the functions are referred to as processes rather than tasks.

Refer to Part 11 for more detailed information on A/ROSE Prep and the services it provides.

Developmental diagnostics

Developmental diagnostics are provided in the firmware. The firmware is provided in the
declaration ROM on the MCP card.

These diagnostics are being provided solely as a framework for test verification of board designs.
Refer to Part IIl, Hardware Development, for more detailed information.

Developing with MCP

MCP provides hardware and software to assist you in creating

® an application-specific smart card

w Macintosh application software that uses A/ROSE Prep for communication with tasks on the card
® software that executes under A/ROSE on the card

1-6 Macintosh Coprocessor Platform Developer’s Guide

MCP provides a common design to save time in research, design, and development efforts, helping
you produce greater and more accurate results in a shorter period of time.

During development, you'll need MPW and standard development tools (linker, C compiler,
Assembler, and so forth). The MCP distribution disks provide source code files and examples for
A/ROSE and A/ROSE Prep, as well as all of the support software.

You will also need a Macintosh computer with one or more smart cards in the expansion slots. You
could conceivably create applications on a Macintosh computer without smart cards installed, and
then port it to a Macintosh computer with smart cards installed for testing.

Some of the specific concemns you may have in developing your own application may include the
following (refer to the chapters listed for detailed information):

® how to create an A/ROSE or A/ROSE Prep application (Chapter 8)

® how to create interrupt handlers (Chapter 7)

® how to to send data directly to another card (Chapter 5)

The next section describes some development opportunities and potential applications.

Development opportunities and applications

The communications and networking strategy of Apple Computer is to integrate the Macintosh

computer into other environments. Some of these environments include those offered by Digital
Equipment Corporation (DEC)™, IBM's Systems Network Architecture (SNA), and the proposed

Open Systems Integration (OSI) standard.

The on-board operating system provided with MCP gives you the capability to

® off-load tasks usually performed by the central processor, and thus have faster response times
(computational speed)

= control and arbitrate multiple communications protocols

8 control sessions among users

® run applications in the background

Applications developed with MCP may or may not require users to dedicate a Macintosh computer
for the application, depending on how you customize the interface on the card. It is possible to
create MCP card applications that, once downloaded, have no dependence on the Macintosh
operating system.

Any application or environment that requires the performance of a Macintosh computer can use
MCP-developed cards and software. Some of the potential development opportunities described in
this section include off-loading task processing, parallel processing, interfacing to or controlling
other equipment, data acquisition, and internetworking.

1 / What is MCP? 1-7

Off-loading task processing

With RAM and a processor on the MCP card, you can off-load a task from the main logic board of
the Macintosh and have A/ROSE handle the interprocess communication. A potential development
opportunity would be a digital signal processor or a high-speed modem.

Parallel processing

With shared data in a Macintosh computer, the user may want multiple processors to work on data
simultaneously. Using multiple cards, an application could

1 Load a task that processes the data onto MCP cards.

2 Send messages to the tasks on the cards with instructions and data.

3 Have the tasks compute in parallel.

4 Receive the results.

Data analysis is an example of this type of an application.

Interfacing or controlling

MCP-developed cards and applications are not strictly a communications interface, but rather a
connedtivity interface. The product you develop can tie into the Macintosh environment, using the
power of the Macintosh to control devices, collect data, or perform some type of analysis. In this
situation, the Macintosh computer is dedicated to controlling that device.

Some examples of potential products include

® 2 numeric controller, machine controller, or any type of device that needs a computerized
controller, such as process control in a factory environment (factory automation, specialized
devices, or robots)

® medical imaging, such as a system console for a Magnetic Resonance Imaging (MRI) machine

Data acquisition

By developing a SCSI or EDSI (External System Device Interface) connection on the MCP card, you
could connect a drive from the Macintosh computer to use it as a database machine distributed
over a network, with connections either to or from a host mainframe or other workstations.
Examples of applications include instrumentation in a lab, medical applications, or areas in which
there is a great deal of testing activity.

Internetworking

The Macintosh Coprocessor Platform offers cost-effective solutions for internetworking needs,
including

® providing an environment in which many different kinds of links are simultaneously active
8 |ocally distributing services across networks

1-8 Macintosh Coprocessor Platform Developer’s Guide

® using the intercard communications capability (such as LU 6.2 to EtherTalk)

® using the card as a gateway, bridge, or router into another environment (the other environment
may be a nonmainstream environment or a computer that does not use standard protocols)

® enabling other AppleTalk-connected machines to use the communication facilities of the
Macintosh

Limitations

When using MCP to develop a NuBus peripheral interface card and associated applications, you are
limited in just two aspects:

® what you can program on the card in the existing memory space

® what you can physically build onto the board in the remaining real estate

1/ What is MCP? 1-9

Chapter 2 Getting Started

THIS CHAPTER shows you how to install the MCP card and software.
Then, this chapter takes you through an exercise using the Macintosh
Coprocessor Platform card and source-code files. This exercise demonstrates a
simple function of the operating system and verifies that the smart card and
operating system are working.

This chapter assumes you have already set up your Macintosh II-family
computer, according to the instructions in your owner’s guide , but have not
yet installed any MCP hardware or software. m

2-1

Preparing to use MCP

Before you install the MCP card, follow these steps:
L Install MPW software on your hard disk into a new folder called MPW.
2 Install Macsbug into the System Folder of your Macintosh.

3 Make a backup copy of the two MCP distribution disks. When you finish copying the disks,
remember to put the master disks in a safe place.

One of the MCP distribution disks contains source code and programming examples you will need
for application software development and for the exercise in this chapter; the distribution disks
include A/ROSE, ROSE Prep, and the support software for both.

4 Note: Please be sure to follow instructions given in, “Installing MCP software,” later in this
chapter, when copying the contents of the MCP distribution disks to your hard disk. The
source code examples check certain locations in the hierarchical file structure for any files
needed, not only for the exercise given in this chapter but for all software development
efforts.

For a complete guide to the folders and files included on the MCP distribution disks, refer to
Appendix A, “Files on the MCP Distribution Disks.” (This chapter simply identifies the folders and
files you will need for the exercise.)

Now follow the instructions provided in the following sections to install hardware and software
for the Macintosh Coprocessor Platform.

Installing the MCP card

This section tells you how to install the MCP card in the Macintosh. If you are not familiar with
installing cards, refer to the owner's guide for your Macintosh and to the Preface of this guide for
important safety instructions. Follow all instructions and warnings dealing with your system
detailed in the owner's guide for your Macintosh.

For your own safety and the safety of your equipment, take the following precautions before
installing the MCP card:

® Do not turn on the computer system until you have completed the entire installation process.
Turning on the system at the wrong time could result in electrical shock to you or cause
damage to your computer system’s components.

® Disconnect cables for the monitor, mouse, and keyboard by pulling on the plugs, not the cords.
Leave the power cord plugged in. The plugged-in power cord acts as a ground for the system,
protecting its components from static electrical discharge. Do not defeat the purpose of the

grounding plug!

2-2 Macintosh Coprocessor Platform Developer’s Guide

8 Touch the power supply case inside the computer to discharge any static electricity that might
be on your clothes or body. You can safely touch the power supply if you've just unpacked
your computer. However, the power supply can get hot in normal use. If the computer has
been on, shut it off and let it cool down for at least five minutes before you open up the main
unit and touch the power supply.

To install the MCP card, follow these steps:
1. Choose the expansion slot in which you would like to install the MCP card.

For purposes of this exercise, you can use any slot except the second slot from the right of the
video card (slot D). However, any slot will work on the Macintosh llcx. The MCP software
downloaded in this example assumes that the MCP card in slot D has an SCC interface;
therefore, it is recommended that you use another slot, such as slot B, for this exercise.
Refer to the owner’s guide that came with your particular computer if you need help opening
the cover to reach an available expansion slot.

2 Insert the MCP card into the expansion slot but do not touch the pins on the bottom
of the card; handle the MCP card by the top edges only.
If your card has a bracket, the expansion cover shield on the card attaches to the inside of the
back panel in the same way as the shield you removed in step 1. Just align the card so that the
guide fits through the lower slot.
Align the connector on the bottom of the card, directly over the slot, as shown in Figure 2-1.
Place one hand along the top edge of the card, directly over the connector area, and push down
firmly until the connector is fully seated.

2 / Getting Started

2-3

® Figure 2-1 Aligning the card

A Important Don't force the card. If you meet a lot of resistance, pull the card out and try
again.
Don't wiggle the card from side to side when you insert it. Wiggling the

card puts unnecessary stress on the card and the slot, and may break
electrical connections. a

You can test to see if the card is properly connected by gently trying to lift the card. If it
resists and stays in place, it is connected.

3. If you have purchased other peripheral devices that require cards, install them now.

You can use this same method for installing all expansion cards in your Macintosh at any time.
Read and follow any instructions that come with other expansion cards you may have. If you
plan to install more cards, see Appendix C in the owner’s guide to your Macintosh for details on
the power available for expansion slots.

4. Now that the card is installed, reconnect the monitor, the mouse, the keyboard, and
plug in any necessary cables.

24 Macintosh Coprocessor Platform Developer’s Guide

If you installed additional cards (such as the AST-ICP smart card) that interface to a network or
some other device, connect those cables at this time.

The owner’s guide for your Macintosh shows different ways to connect Apple DeskTop Bus™
devices (the keyboard, the mouse, and other devices such as a graphics tablet, a joystick, or
another keyboard). You can either daisy-chain them to the keyboard or use one of the back-
panel connectors.

& Note: Avoid turning on the power prematurely. The steps are presented in this order so that
the last thing you do is connect the keyboard to a power source. Once the keyboard has
power, you could accidentally press the Power On key and turn on your computer before it

is appropriate.

5. Connect any other equipment you plan to use, such as a printer, external disk drive,
or modem.

You will find instructions for connecting those devices in the manuals that came with them. If
you're using an external device of any kind that uses a SCSI (Small Computer System Interface)
connector, you must connect that device to the one SCSI port on the back of the Macintosh.

A Warning Connecting a SCSI device to the wrong port can damage your system. You
can also damage the system if you mistakenly connect a non-SCSI device
(with an RS-232 plug, for example) to this port. Read “Adding SCSI
Terminators” in Appendix A of the owner’s guide to your Macintosh for
important instructions about SCSI terminators. a

Once you are satisfied that everything is connected properly, arrange the Macintosh components
conveniently in your work area. Tumn the main unit so that it faces you, and place the monitor
where you want it (on top of the main unit is fine). Position the keyboard and mouse where you
can reach them comfortably.

2 / Getting Started

2-5

Installing MCP software

To install MCP software, reboot your Macintosh and do the following:

1. Create a new folder called MCP Software on your Macintosh desktop.

2 Copy the contents of the MCP distribution disks to the new MCP Software folder.
It takes just a couple of minutes to copy all files from the MCP distribution disks.

A Important Because of naming conventions required by A/ROSE, do not change the
names of any of the files or folders copied from the distribution disks. Of
course, you can create your own names for the hard disk and first-level
folder to which you copy the MCP files and folders. &

& Note: The A/ROSE folder and A/ROSE Prep folder must be at same level within the new folder
you just created, because certain items within the a/rose prep file use data in the
include files in the A/ROSE folder.

Installing the A/ROSE Prep driver

Now that the files and folders for the MCP software are installed on your hard disk, you will need
to install the A/ROSE Prep driver into the System Folder on the Macintosh. Here are the steps that
you should follow:

1. Select the A/ROSE Prep folder within the new folder you created on the Macintosh
desktop.

2. Within the A/ROSE Prep folder, open the Examples folder and select the a/rose
prep file.

3. Copy the a/rosE prep file into the System Folder of the Macintosh.

4 Note: You can copy the file in one step by holding down the Option key while dragging the
a/RosE Prep file into the System Folder.

4. Reboot the Macintosh.

The A/ROSE Prep driver is loaded into the system heap during system startup by an INIT31
resource within the A/ROSE Prep file.

2-6 Macintosh Coprocessor Platform Developer's Guide

Running a sample program

This section describes how to run a sample program that shows the features and functions of the
A/ROSE operating system on the MCP card.

To execute this exercise, you must first run MPW. To do so:

1. Open the MPW folder.

You can open the folder either by selecting it, then selecting Open from the File menu, or by
double-clicking the MPW folder icon.

2. Run MPW by double-clicking on the application called MPW Shell
An MPW worksheet appears, similar to that shown in Figure 2-2.

® Figure2-2 MPW window

e I R R [

2 / Getting Started

2-7

Selecting files for the sample exercise

Now you must select the appropriate files to use for the exercise. To do 5o, first open the folders in
which they are located. Follow these steps:

1. Choose Set Directory... from the Directory menu.
A dialog box appears similar to that shown in Figure 2-3.
4 Note: The contents of this dialog box will vary depending on the contents of your hard disk.

® Figure 2-3 Select Current Directory window

& Flle Edit Find Merk Window Project Directory Build

New Baby:MPW:lWarksheet

Select Current Directory:

[convert 3] < New Baby

0 Examples
3 Interfaces
0 Libraries

CJ ROM Maps ST
O Scripts ——
0 Temp files
£ Tools

The box beneath the directory title shows all the items in that folder.

2 Locate and open the folder named MCP Software that you created earlier in this
chapter.

To open the folder, select the file name, then dick Open. You can also open folders and files by
double-clicking on the name of the folder you want.

Open the folder named A/ROSE.
4. Open the folder named Examples.
S. Select the folder named Binaries.
6. Click the Directory button.

W

To verify the directory (folder) in which you are working, type the MPW command
directory and press Enter. To continue the example in this chapter, you should see the
following lines on the screen:

28 Macintosh Coprocessor Platform Developer's Guide

directory
'New Baby:MCP Software:A/ROSE:Examples:Binaries:'

where: directory is the command you entered to the folder

'New Baby:MCP Software:A/ROSE:Examples:Binaries:® is the pathname

@ Note: Your screen will display the pathname and name of the hard disk you are using instead
of the text shown in this example.

8. To see the name of the files in the Binaries Examples folder, type the MPW command
files and press Enter. You should see the following list of all files in the Binaries Examples
folders.

files

echo.c.o
GenAROSE.c.o
name_tester.c.o
osmain.c.o

ossccint.a.o
pr_manager.c.o
printf.c.o

start

start.map
start.xrf
timeIt.c.o
timer_tester.c.o
trace_manager.c.o

For this exercise, you will use the files named download and start. The download file contains
an MPW tool that loads code from A/ROSE to the card; the start file is sample code that runs on the
smart card. (Refer to Part II for more detailed information on the download tool.)

2 / Getting Started 29

Downloading files to the card

To download a file, enter both the command name and the name of the sample file, as follows:
'New Baby:MCP Software:A/ROSE:Downloader':download start

The start file is now running with the A/ROSE operating system on the MCP smart card in your
Macintosh. Until you verify that the program is running by using the process described in the next
section, you will not see any activity on the screen.

Verifying the sample exercise

Using an MPW tool called the print manager (pr_manager), provided on the MCP distribution
disks, you can verify that

® the card is running the sample program and file

® communication processes between the card and Macintosh are functioning correctly

The print manager is also designed to run on a card that has an SCC for printing to a terminal (such
as an AST-ICP card).

To verify that the program is running, follow these steps:

L In the MCP Software folder, find the folder named A/Rose Prep, then the folder named
Examples.

Follow the steps listed for “Selecting Files for the Sample Exercise,” given earlier in this chapter.
2 Verify the directory using the MPW command directory.
You should see the following text displayed on the screen:

directory
‘New Baby:MCP Software:A/ROSe Prep:Examples:’

3. Verify the files in that folder using the MPW command files.
You should see the following listing on the screen:

files
:DumpTrace:
'A/ROSE Prep'
'AROSE Prep.r'
echo.c
echo_example
echoglobals.a
Makefile
name_tester
name_tester.c
pr_manager
pr_manager.c
RSM_File
RSM_File.c

2-10 Macintosh Coprocessor Platform Developer's Guide

RSM_tester
RSM_tester.c
TestR

TestR.c

timeit
timelIt.c
trace_monitor.c
TraceMonitor

- - - - - - - - = . = - - - = = =S W = > - D W > > - - - - - - - - . - - - - - - D - D D . 5 -

Notice the file for the print manager (named pr_manager).
3. To view the activity of the card, type pr_manager and press Enter.

You'll see messages similar to the following on the screen; for example, the Task Identifier (TID)
numbers would be different for different slots.

pr_manager

Print Manager TID = 4

Starting Main Loop

TID = b00000a echo tid = b000005

TID = b000008 - Sent message, waiting for reply ==---

TID = b000008 - Received msg = FBO706AC, ID = FB002476

TID = b000008 - From: 0364, To: B000008, mCode = -32666, mStatus = =-32768
TID b00000c - RAM test @Sfb064898 passed.

TID = b00000c - Testing Slot B

TID = b000008 -~ About to send msg = FBO706AC, ID = FB0029AC

TID = b000008 - To: 0464, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, walting for reply ==---

TID = b000008 - Received msg = FBO708F0, ID = FBO029AC

TID = b000008 -~ From: 0464, To: B0O00008, mCode = -32666, mStatus = -32768
TID = b000008 - About to send msg = FB070638, ID = FBO029BC

TID = b000008 - To: 0564, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FBO708F0, ID = FB0029BC

TID = b000008 - From: 0564, To: B0O00008, mCode = -32666, mStatus = =32768
TID = b000008 - About to send msg = FBO706AC, ID = FB0029D1

TID = b000008 - To: 0664, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ==--

TID = b000008 - Received msg = FBO708F0, ID = FB0029D1

TID = b000008 - From: 0664, To: B0O00008, mCode = -32666, mStatus = -=32768
TID = b000008 - About to send msg = FB07087C, ID = FBOO29El :

TID = b000008 - To: 0764, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply =----

TID = b000008 - Received msg = FBO708F0, ID = FBO0O29El

TID = b000008 - From: 0764, To: B0O00008, mCode = -32666, mStatus = =-32768
TID = b000008 - About to send msg = FB070638, ID = FBOO29F5S

TID = b000008 - To: 0864, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b00000c - RAM test @$fb064dl8 passed.

TID = b000008 - Received msg = FBO708F0, ID = FBO029F5

- T > ———— - — - -~ T - - - — -~ - -~ - — - - - -

2 / Getting Started

2-11

where: pr_manager is the command you entered
Print Manager isthe name of the program that started running under A/ROSE
TID=-4 is the Task Identifier (TID) assigned to that task by A/ROSE
00000 isatask (Note that there are several tasks running at the same time.)

These messages originate on the MCP card. This activity not only shows that MCP is functioning
correctly, but also displays that multitasking activities are taking place.

The program continues to execute. To stop the activity, press the Command-period key
combination. MPW stops the program and displays the following message on the screen:

CloseQueue Called
#4# MPW Shell - pr_manager aborted.

You can direct this output as you would do anything else in MPW, such as saving it to a temporary
file for printing later.

Where do you go from here?

Now that you've been through a sample exercise, it is time to work on your own applications.

Part II, Software Development, provides information on software development using A/ROSE and
A/ROSE Prep; Part 111, Hardware Development, provides information on hardware development and
diagnostics.

2-12 Macintosh Coprocessor Platform Developer’s Guide

Part II Software Development

Part 11, “Software Development,” provides

]
3
=

an introduction to and an overview of A/ROSE and A/ROSE Prep (Chapter

definitions of A/ROSE operating system primitives, utilities, and
managers and A/ROSE Prep Services and managers, along with examples in
both assembly language and C (Chapters 4, 5, 6)

information on how to use A/ROSE and A/ROSE Prep (Chapter 7, 9 and 10)

an exercise to modify standard MCP files to build an application program

(Chapter 8)

programming guidelines and notes for A/ROSE, with program

listings for selected examples (Chapter 7)

a discussion of the Forwarder, an unassociated piece of code that allows
A/ROSE tasks to run over AppleTalk.

a troubleshooting section for crashes and hangs with either
A/ROSE or A/ROSE Prep (Chapter 11)

Chapter 3

The MCP Software Interface

SOFTWARE for the Macintosh Coprocessor Platform includes A/ROSE,
A/ROSE Prep, and support software (development tools, include files, and
examples). This software was created to take advantage of the common
design features of the MCP card by providing a common software

environment.

This chapter describes the components of the MCP software in greater detail.

31

What is A/ROSE?

A/ROSE (Apple Real-time Operating System Environment) is a multitasking operating system for
smart card devices, such as the MCP card, and provides an intelligent peripheral-controller interface
to NuBus.

A/ROSE is a kemel operating system that operates in supervisor mode (sometimes referred to as
server mode). The basic part of the kernel is as small as possible, with the fewest functions
necessary to do real work. The design philosophy of the operating system is to not get in the way
of what most people want to do; A/ROSE makes minimal assumptions about how things operate.
A/ROSE provides basic support services to tasks through system calls (primitives) and library
routines (utilities).

A/ROSE primitives

A primitive is an A/ROSE system call that provides fundamental services; it is part of the operating
system kernel. You must use these services to start and stop tasks, get and free memory, get and
free message buffers, send and receive messages, change the scheduling parameters of a task, and
set the hardware-interrupt priority level. Refer to Chapter 4 for more detailed information on
A/ROSE primitives.

A/ROSE utilities

A utility is the library code needed to make the functional call interface between the kernel and
other code providing higher-level services (such as the A/ROSE managers or code you develop for
other tasks). The utilities allow you to move data, manage buffers, obtain the operating
environment, translate NuBus addresses, and register and look up task names through the Name
Manager. Refer to Chapter 5 for more information on A/ROSE utilities.

A/ROSE managers

Managers are tasks that carry out higher-level services on behalf of other tasks. A/ROSE managers
extend the kernel to provide services that are not in the kernel, but are useful for all users of the
A/ROSE operating system.

3-2 Macintosh Coprocessor Platform Developer’s Guide

Managers exist on top of the kernel. Because code for the managers is provided on the MCP
distribution disk, you can incorporate desired functions into the application program you develop
using appropriate calls. Both managers and application code for tasks that you develop operate in
user mode (sometimes referred to as client mode).

Figure 3-1 shows the relationship between the A/ROSE kernel, primitives, utilities, and managers.

® Figure 3-1 Structure of A/ROSE

Supervisor mode

Message interface

User mode

System trap interface

Figure 3-2 illustrates the flow of information between A/ROSE and the managers on an MCP card.

3 / Introduction to the MCP Software Interface 3.3 -

® Figure 3-2 Flow of information between A/ROSE and managers

“~— NuBus interface

nnmgeréprocessesg

:——— % m :
A/ROSE Prep driver o drivers |

R R R R B SR R

Path that a message may take

This section provides a brief description for each of the A/ROSE managers (refer to Chapter 6 for
more detailed information):

Echo Manager

InterCard Communications Manager
Name Manager

Print Manager

Remote System Manager

Timer Manager and Timer Library
Trace Manager

Echo Manager
The Echo Manager retumns each message it receives to the sender. You can use the Echo Manager
primarily during the early stages of development for

® sending test messages
8 determining the time required for a round-trip message response

34 Macintosh Coprocessor Platform Developer’s Guide

InterCard Communications Manager (ICCM)

The InterCard Communications Manager (ICCM) is responsible for sending and receiving all
messages between smart cards installed in the same machine. A/ROSE delivers any messages
addressed off-card (off the active MCP card) to A/ROSE Prep or ICCM. ICCM forwards the message
to a peer ICCM on the destination smart card or A/ROSE Prep on the Macintosh main board for
delivery. ICCM also allows tasks to request information about other cards; namely, the tasks ask
for information about the existence of a smart card in a given slot and the task identifier of its
Name Manager.

Name Manager

The Name Manager allows A/ROSE tasks to find the task IDs of other A/ROSE tasks, given the
names of those tasks.

To provide these naming services, the Name Manager allows tasks to
& register and unregister their own name with the Name Manager

® ook up the task identifier of named tasks

B ook up the name of a task corresponding to a given task identifier
]

become visible to other tasks on the same card and, optionally, to tasks on the Macintosh main
logic board or other smart cards

The Name Manager supports searching for names using wildcard characters; the Name Manager also
provides for notifying tasks of the loss of communication with a smart card or the termination of
a task.

The Name Manager operates with a single message loop: for each message it receives, it performs
the service specified in the message code. The Name Manager handles errors by indicating the failure
status in the message sent back to the requesting task.

Print Manager
The Print Manager is a diagnostic tool that allows you to put print statements in your program and

get the output printed on a display. The display can be output either on the Macintosh or to a serial
port.

Remote System Manager (RSM)

The Remote System Manager (RSM) provides a mechanism for supporting dynamic downloading of
tasks to another smart card in the same machine. RSM provides two types of services:

® getting and freeing memory

® starting and stopping tasks

3 / Introduction to the MCP Software Interface

35

RSM operates with a single message loop; for each message it receives, it performs the service
specified in the message code. For each kind of request message, RSM on the remote (destination)
card executes the applicabie A/ROSE primitive on behalf of the requesting task. RSM handles errors
by indicating the failure status in the message sent back to the requesting task.

Timer library and Timer Manager

The timer library allows user tasks to receive “wake-up” calls and activates timing, cancels timing,
sets timing, and so forth. Use the timer library when you want to use periodic timers, for high-
performance timers, and when you want to cancel a timer reliably when an event occurs.

The timer library is available in the file os.o on the MCP distribution disk. The timer library
provides three types of timing services to tasks:

® time-event notification

B time-event query

® time-event cancellation

The user task can request two types of time events:
® one-shot, in which only one time-event notification message is sent
® periodic, in which time-event notifications are sent at specified intervals

The Timer Manager is provided with this version of the A/ROSE software for compatibility with
previous versions; its function has been replaced by the Timer Library.

Trace Manager

The Trace Manager provides a way to dynamically trace all the message exchanges in the operating
system. The Trace Manager can be an extremely useful debugging facility; when all else fails, you
can trace messages and slow the process down in order to see things you could not see before. The
Trace Manager traces everything except itself: every message that is sent is put in a log file.

A Caution A limitation of using the Trace Manager is that it alters time where a
program is concerned, and therefore may affect the operation of a task if
timing is a factor. Therefore, some operations work while others do not
when the Trace Manager is running.

For example, the Trace Manager may impact programs that control high-
speed 1/O devices. Because messages are traced, they may not return fast
enough to activate the device, or the timing may be altered. This results in
errors that are time-dependent. A

3-6 Macintosh Coprocessor Platform Developer's Guide

What is A/ROSE Prep?

A/ROSE Prep is a combination of a driver and support software found in the A/ROSE Prep file in the
A/ROSE Prep folder on the MCP distribution disk.

A/ROSE Prep provides message-passing and naming services for communication among the
Macintosh, tasks on the Macintosh, and tasks on smart cards. Interprocess communication is
accomplished through messages that are fixed-size but flexibly formatted. (A/ROSE Prep provides
functionality similar to the InterCard Communications Manager on A/ROSE).

& Note: This document refers to processes on the Macintosh, and tasks under A/ROSE and
A/ROSE Prep.

An application that uses A/ROSE Prep must have an initial call to openqueue to establish its use
of A/ROSE Prep. Messages are sent and received via the send and Receive calls, much like tasks
under A/ROSE. Several source-language examples of applications are provided in the A/ROSE
Prep:Examples folder on the MCP distribution disk. Refer to Chapter 9 for a more detailed
description of the services provided by A/ROSE Prep.

A/ROSE Prep driver

A/ROSE Prep services are handled by the A/ROSE Prep driver, which handles all message passing
between processes running under the Macintosh operating system and A/ROSE tasks on the smart
card over the NuBus. Using calls to the A/ROSE Prep driver, the Macintosh process sends messages
to and receives messages from tasks on the smart card and on processes on the Macintosh.

You will need to place the A/ROSE Prep file in the System Folder; routines contained in the file are
installed by the INIT31 mechanism during system startup. (Refer to Chapter 2, “Getting Started,”
for installation instructions.)

During initialization, the driver sets up a communication area, and then searches NuBus slots for the
ICCM communication areas of smart cards installed in the Macintosh, much as the A/ROSE ICCM
does. For each valid ICCM communication area found, the driver stores the address of the A/ROSE
Prep communication area in a vector in the ICCM’s communication area.

Periodically, A/ROSE Prep scans for rReceive operations that have timed out, incoming messages,
active slots that have timed out, and outgoing messages. The driver receives messages from and
delivers messages to the Macintosh processes.

3 / Introduction to the MCP Software Interface

37

A/ROSE Prep library

The interface between a Macintosh application and the A/ROSE Prep driver is made through the
object routines, or glue code, in the A/ROSE Prep library. These routines provide for opening and
closing the message queue to the driver, getting and freeing message buffers, and sending and
receiving messages.

In addition, the A/ROSE Prep library provides access to many of the same utilities as provided by
A/ROSE, such as moving data, obtaining the operating environment, and registering and looking up
task names through the A/ROSE Prep Name Manager. These routines are located in the file A/rosE
Prep:IPCGlue.o on the MCP distribution disks. (All of these routines use the C calling

sequence.)

A/ROSE Prep managers

The managers for A/ROSE Prep are the Echo Manager and the Name Manager. These A/ROSE Prep
managers perform functions identical to and have the same message interface as their A/ROSE
counterparts; minor differences are due to the slightly different interface to A/ROSE Prep.

The A/ROSE Prep managers are processes that carry out higher-level services on behalf of
applications on the Macintosh computer. These managers are often referred to as slot 0
managers, and the Macintosh main logic board itself is sometimes referred to as the slot 0 card.

@ Note: The slot 0 card is not to be confused with the Slot Manager in the Macintosh (part of
the Macintosh Operating System).

Functions of MCP software
The functions of MCP software include the following:

® using messages for interprocess communication

® ysing the client/server relationship as a mechanism for data transfer
8 using task scheduling in the A/ROSE multitasking environment

8 managing memory under A/ROSE

3-8 Macintosh Coprocessor Platform Developer’s Guide

Using messages for interprocess communication

Messages are the fundamental means for communication between A/ROSE tasks and A/ROSE Prep
processes. Message structures are allocated from and returned to a special area of memory dedicated
to holding messages. Intracard messaging is accomplished through the operating-system kernel;
intercard messaging is handled by ICCM and A/ROSE Prep.

Message structures

A message is a fixed-length data structure that is sent between tasks. Some of the fields in a
message indude

a destination address, which is the identifier of the task to which the message is directed
a source address, which is the identifier of the task that sent the message

a message code specified by the task that sent the message

three long words of data for the task to which the message is directed

three long words of data that should be returned untouched in a response to the task that sent
the message

a pointer to a data buffer
the size of the data buffer
a message identifier

message priority

message status

Some of the fields in 2 message structure in C are:

long mId; /* Message ID */

short mCode; /* Message code */

short mStatus; /* Message return status */

unsigned short mPriority; /* Message priority ¥/

tid_type mFrom; /* Message source */

tid_type mTo; /* Message destination */

unsigned long mSData(3]; /* Sender’s private data */

unsigned long mOData(3]; /* Sender's shared data */

long mDataSize; /* Size of data buffer */
/* in bytes */

char *mDataPtr; /* Address of data */

lFigure 3-3 illustrates the fields contained in fixed-length messages for A/ROSE and A/ROSE Prep.

3 / Introduction to the MCP Software Interface

39

® Figure 3-3 Fixed-length message structure

mNext

mid

mCode

— mStatus

mPriority

Hnnmnm

...................

b « @ © © @ o ® © o o @ e - e - - 4

E mDataPtr

Table 3-1 describes some of the fields in the message structure and provides a brief description of each.
4 Note: Always use the message structure as defined in the includes file.

® Table 3-1 Structure for fixed-length messages

Field Name Field Size Description/Usage

mNext Ptr a pointer used internally by A/ROSE for linking message
buffers that are in a queue. While the message buffer is
being used by the application, the mNext field can serve
any function.

mId long a statistically-unique, 32-bit number to identify the
message, initialized when a message is obtained from

3-10 Macintosh Coprocessor Platform Developer's Guide

A/ROSE or the A/ROSE Prep driver by way of a2 GetMsg ()
request. Your applications should never modify the
message ID field of a message

3 / Introduction to the MCP Software Interface 3-11

Field Name Feld Size Description/Usage

mCode short a 16-bit message code understood only by the
sender and receiver of a message
By convention, an even mCode is a request message, and
an odd mcode is a reply message.
You can find examples of this convention in the files
:A/ROSE:includes:managers.a and
:A/ROSE:includes:managers.h. For example, the
ICCM request code 1cc_GETCARDS (150) is even; the
ICCM reply code 1cc_GETcaRrDs+1(151) isodd. The
Name Manager request code NM_REG_TASK (100) is even;
the Name Manager reply code NM_REG_TAsk+1 is odd.
The A/ROSE operating system, the A/ROSE Prep driver, and
the managers (Name Manager, ICCM, and others) set the
high bit of the mcode in a message if the mcode is not
recognized or the message is undeliverable. User tasks
should also set the high bit if the message code was not
recognized. The file managers.a and the file
managers.h in the folder :A/ROSE: includes: list the
mCodes known by A/ROSE, the A/ROSE Prep driver, and
the managers.

mStatus short a 16-bit status code, with the upper 8 bits of mstatus
designated as an A/ROSE system status code and the lower
8 bits of mstatus designated as a user status code. The
msStatus values used by A/ROSE, A/ROSE Prep, and the
managers are found in the files managers.a and
managers.h in the folder :A/ROSE:includes:.
User tasks should set the mstatus to
OS_Unknown_Message if the message code was not
recognized.
For any message that is undeliverable, A/ROSE and A/ROSE
Prep change the entire mstatus word to a value of $8000.
If a message with mstatus already set to $8000 is found
to be undeliverable, A/ROSE and A/ROSE Prep free the
message.

mPriority short unsigned a 16-bit unsigned word representing the priority of
the message (0 is the lowest priority)

mFrom long a source address (the task that sent the message)

By convention, mFrom is the Task Identifier (TID) of the
task sending the message. A/ROSE automatically fills in the
mFrom field to that of the current TID when a message is
obtained by a GetMsg () request. A task receiving a

3-12 Macintosh Coprocessor Platform Developer’s Guide

message should swap the mFrom and mTo fields before
sending a message in reply.

3 / Introduction to the MCP Software Interface 3-13

Field Name Field Size Description/Usage

To declare the TID number, use tid_type TYPEDEF des-
cribed later in this chapter. Do not assume anything about
the format of fields in the TID. For example, the slot number
may not always appear in the same location of the TID.

mTo long a destination address (the task to which the message is
directed)
The mro field is the Task Identifier (TID) of the task to
which you want to send a message. This field must be filled
in before doing a sena request. To declare the TID
number, use tid_type TYPEDEF . Do not assume
anything about the format of fields in the TID. For
example, the slot number may not always appear in the
same location of the TID.

mSData 3 long words "12 bytes of data defined by the sender, associated with the
message, that should be returned unchanged and
unexamined by the receiver in a reply message. This field
contains internal context information meaningful only to
the tasks that sent the request.

By convention within A/ROSE, a task receiving a request
message copies the three mspata words from the
request to the mspata words of the reply message. The
task receiving the request should not otherwise manipulate
this msData.

mOData 3long words 12 bytes of data defined by the receiver, associated with the
message.
By convention, these 3 long words are meant to be used
between the requesting task and the replying task for
passing information.

mDataSize long the size of an associated data buffer pointed to by
mDataPtr. This size is in 8-bit bytes.
l mDataPtr long a pointer to an associated data buffer.

Messages are obtained by a Receive request in the following order:
L The message must fit any match criteria that was specified in the Receive request.
2 The highest mpriority message fitting the match criteria is obtained.

3-14 Macintosh Coprocessor Platform Developer’s Guide

4 Note: If two or more messages fitting the match criteria have the highest mprioricy,
the first one received and queued for the task is obtained (as in a First-In/First-Out, or
FIFO, queue).

Mechanisms for data transfer

Data is transferred between tasks by one of three mechanisms: in the message code, in three long
words in the message, or in a data buffer. A task may use all three mechanisms simuitaneously
when sending a message. Here is a description of these three mechanisms:

8 the message code

Through bilateral agreement between cooperating processes, the message code alone may
convey the entire meaning of the message.

s three long words in the message

The second mechanism allows a task to pass three long words of data in the message
(moData (0], moData(1], and moData(2]) whose meaning is specified by the receiving
task (refer to the Timer Manager on the MCP distribution disk for an example).

In addition, the task may pass another three long words of data in the message (mspata (o],
mSData(1], and msData(2)) that the receiver returns untouched. The mspata long
words are private to the sending task; these words are not altered by the receiving task and
should be returned to the requesting task unchanged. This feature allows tasks to pass context
and other information, such as return addresses for processing, for the sending task’s private
use within the messaging mechanism.

& Note: This passing of information by tasks for private use is a convention; it is not
enforced by the A/ROSE operating system.

® 2 data buffer

The third mechanism involves passing the address of a data buffer and its size (that is, its
length in bytes) in the message to the receiving task for it to use. The address of the buffer is
placed in mpataptr and the size of the buffer is placed in mpatasize.

In an environment that includes intercard communications, mpatartr could be pointing to
an off-card buffer. The MCP card supports 32-bit accesses; however, with some other smart
cards, all reads and writes to off-card buffers from a 32-bit CPU must be made with accesses of
16 or fewer bits.

3 / Introduction to the MCP Software Interface

3-15

Message and status codes
Table 3-2 lists message and status codes, with a brief description.

® Table 3-2 Message and status codes

Fleld Size Description/Comments

mCode 16-bit message code field
O the upper bit is reserved for undeliverable messages
O use an even number to request services
O use an odd number for replies

mStatus 16-bit message status field
O the upper 8 bits are used for passing operating-system
status
O use the lower 8 bits used passing user status

The reply mcode 10 a request for service is the original mcode, plus 1.

The Receive system call uses message code 0 to indicate a match of any value. Therefore, you
should not use message code 0 in the mcode field, as the field cannot be explicitly matched. By
convention, the message code OxFFFF (~1) is not used.

When a message cannot be delivered, the operating system changes the message code and message
status as follows:

® the message code bit 1<<15 is set (mcode | 0x8000)

® the message status is assigned a value of 0x8000

If the operating system is unable to retumn the message to the sender (that is, if the sender has

stopped or does not exist), the operating system frees the message but not any buffer associated
with the message (pointed to by mDataptr).

A task that receives a message it does not recognize must check if (mcode & 0x8000) is true (bit 1 <<
15 is set).
® [f true, the message was undeliverable and should be released via FreeMsg (). Any buffer

associated with the message must not be released. This requirement ensures that messages will
not loop and shared buffers are not freed.

® [f false, mcode should be modified by setting bit 1<< 15 (mcode | 0x8000). The message
status, mstatus, should be set to os_unkNowN_MEssAGE. The task should then swap the
source and destination TIDs and return the message to the sender.

3-16 Macintosh Coprocessor Platform Developer's Guide

The client/server relationship

The life of a typical message buffer begins in the message buffer pool. This message buffer pool is
available to any task that may request a message buffer from the system.

When a task sends a message, it either utilizes a message buffer it owns (usually the message buffer it
just received) or requests a message buffer from the system using a GetMsg () call. After filling the
message with required addressing information and data, the task sends the message to its
destination with a sena system call. The sending task has then lost rights to the message buffer,
and it should not read from or write into the message buffer (or otherwise use the message buffer).

Upon receipt, the destination task either reutilizes the message buffer for an outgoing message, or
retumns it to the message buffer pool using a FreeMsg () call.

3 / Introduction to the MCP Software Interface 3-17

Client and server running on a smart card under A/ROSE

This section provides an example of a client and server running on a smart card under A/ROSE. You
can find the source code for this example in the folder :A/ROSE: Examples:. The client is a timing test
found in the timeit.c file; the server is the Echo Manager (similar to the echo example found in
the echo.c file). (See the file Makerile in the folder :A/ROSE:Examples: for making the
echo.c and timeit.c examples.)

Both tasks are started within osmain, the main program, during A/ROSE initialization. The server
first uses the A/ROSE utility Register_Task to register its name so that clients can find it. The
server then enters its main loop and issues a Receive utility, waiting for messages from clients.

A client locates the server it wants to communicate with, using A/ROSE Lookup_Task utility to
obtain the TID of the server. The client next obtains a message buffer, stores the TID of the server
into the mTo field of the message buffer, sets the desired mcode request in the message buffer,
and uses the send utility to send the message buffer to the server. Next, the client issues a
Receive 0 wait for a reply from the server.

The server receives the message, takes any action that is required of it, swaps the contents of the
mFrom and mTo fields of the message, sets an appropriate mcode reply in the message buffer,
and uses the send utility to send the message buffer to the client. The server next issues a
Receive utility to wait for another message from a client.

The client receives the reply from the server and takes appropriate action.
Figure 34 illustrates the client/server relationshp for tasks running under A/ROSE on the MCP card.

3-18 Macintosh Coprocessor Platform Developer’s Guide

® Figure 34 Client/server relationship for A/ROSE program modules

NuBus card-to-NuBus card

A/ROSE
on MCP
CHent task card Server task
Initiallze Initialize
CT_tid = GetTID ()
ST_tid = GetTID ()
NM_tid = GetNameTID ()
ok = Register_ Task ("Example”,
NM_tid == 02 "Server®, Don't depend on
the value of FALSE)
Initialize index to 0
ok == 0 2
P ST_tid = Lookup_Task ("Example”,
"Server®, NM_tid, &index)
Remove
ST_tid == 0 2 Message
from
- msg = GetMsg () Pool
msg == 0 ?
mid = msg->mId 2
- Formulate Request
msg->mTo = ST_tid
msg->mFrom = CT_tid
msg->mCode = code
Send (msg) Forward msg = Receive (OS_MATCH_ALL,
Message OS_MATCH_ALL, OS_MATCH_ALL,
05_NO_TIMEOUT)
Perform Service
Formulate Response
Swap TID (msg)
msg=->mCode++
msg = Receive (mid, == Forward Send (msgqg)
OS_MATCH_ALL, OS_MATCH_ALL, Message
0S_NO_TIMEOUT)
Process Response
Done ?
Add
FreeMsg (msqg))t!:ssaqe
Pool

A

3 / Introduction to the MCP Software Interface

3

19

Client and server running on Macintosh using A/ROSE Prep

The sequence of actions needed for a client and server running on the Macintosh using A/ROSE Prep
is similar to that described earlier. This section also describes some of the differences between an
application program running on the Macintosh and program modules running under A/ROSE on the
MCP card.

Server and client processes using the A/ROSE Prep driver on the Macintosh are different from server
and client processes running under A/ROSE because of the differences between A/ROSE and the

~ Macintosh operating system; that is, A/ROSE is a multitasking operating system, and the
Macintosh operating system assumes that there is a single application.

The source code for the example discussed in this section is found in the file MakeFile in folder
:A/ROSE: A/ROSE Prep:Examples, as follows:

= For the client, source code for a timing example can be found inthe timeit.c file (Timeit is an MPW
tool)

s For the server, source code for'the Echo Manager can be found in the os.o file

The Echo Manager is started during INIT31 resource processing.

A server or client running under A/ROSE automatically has a TID associated with it; a server or client
using the A/ROSE Prep driver on the Macintosh must first make itself known to the driver by
issuing an OpenqQueue () request. The openQueue() request makes the task known to the
driver and assigns the requesting task a TID. The server in this example registers its name with the
Name Manager as it did under A/ROSE so that clients can find it.

Under A/ROSE, both the server and the client can issue a blocking Receive request. A/ROSE has
separate stacks for each task and saves each task’s registers when switching between tasks. Using
A/ROSE Prep on the Macintosh, only one process at a time (either the server or the client) can issue a
blocking Receive request. Since the Macintosh operating system assumes that there is a single
application, it will not switch to another application while one application is waiting for something
to finish. ‘

Using the A/ROSE Prep driver on the Macintosh, the receive calling sequence includes an extra
parameter. This parameter is the address of a completion routine to be called when the A/ROSE Prep
driver receives a message that satisfies the Receive request. A task not using a completion
routine to receive messages and not blocking must periodically issue a nonblocking Receive
request to determine if there are any messages for it.

3-20 Macintosh Coprocessor Platform Developer's Guide

In the case of A/ROSE Prep Echo Manager code, the server issues 2 Receive request with a
completion routine specified. The code following the Receive request exits the server;
effectively, the server is no longer running. The server becomes a dangling piece of code tucked
away in memory, called by the A/ROSE Prep driver when the driver receives a message satisfying its
Receive request.

¢ Note: The echo.c file has no AS references within it. An assembly language routine is used
to access echo.c globals.

The client locates the server it wants to communicate with, using Lookup_Task to obtain the
TID of the server. The client next obtains a message buffer, sets the TID of the server into the
nTo field of the message buffer, sets the desired mcode request in the message buffer, and uses
the send request to send the message to the server. The client then issues a2 Receive request
to wait for a reply from the server, specifying the address of a completion routine.

The A/ROSE Prep driver calls the server at the server’s completion routine address, passing the
message to the server. The server takes any action required of it, swaps the contents of the mFrom
and mTo fields of the message, sets an appropriate mcode reply in the message buffer, and uses
the send request to send the message buffer to the client. The server must be carefully designed
in how it handles the completion routine, since the completion routine may be called from an
interrupt.

The client receives the reply from the server and takes appropriate action. The client then issues a
CloseQueue request to notify the A/ROSE Prep driver that the client is finished talking to the
A/ROSE Prep driver.

Figure 3-5illustrates the client/server relationship for applications using the A/ROSE Prep driver. The
first Receive request in the completion routine processes all messages in the queue. When there
are no more messages, the second Receive request specifies the same completion routine again
so that the routine will be called when there is another message.

@ Note: Two Receive requests are specified so that the stack will not be overrun.

3 / Introduction to the MCP Software Interface

3-21

® Figure 3-5 Client/server relationship for applications using the A/ROSE Prep driver

Server task

Macintosh to Macintosh
Client task Apple IPC
Initialize
: ok = OpenQueue (0)
ok == 0 2
ok = GetTID ()
E NM _tid = GetNameTID ()
NM_tid == 0 ?
Initialize index to 0
ST_tid = Lookup_Task ("Example®,
"Server”®, NM tid, &index)
Remove
| ST_tid == 0 2 [y Message
from
E msg = GetMsg () Pool

msg == 0 ?

mid = msg->mId
Formulate Request
msg->mTo = ST_tid
msg->mFrom = CT_tid

msg->mCode = code
Send (msg)

msg = Receive (mid,
OS_MATCH_ALL, OS_MATCH_ALL,
OS_NO_TIMEOUT, 0)

Process Response

Done?

FreeMsg (msqg)

CloseQueue ()

fepd Forward

Message

Forward
Message

Add

g Message

Pool

Initialize

ok = OpenQueue (0)

ok == 0 2

ok = Register_Task (“Example®”,
"Server®, Don't depend on
the value of FALSE)

ok w= Q0 ?

Receive (OS_MATCH_ALL,

OS_MATCH_ALL, OS_MATCH_ALL,
0S_NO_TIMEOUT, completion)

Completion routine

completion (msg)

Perform Service

ST_tid = GetTID ()

Formulate Response

Swap TID (msg)
msg->mCode++

3-22

Macintosh Coprocessor Platform Developer’s Guide

Send (msg)

msg = Receive (OS_MATCH_ALL,
OS_MATCH_ALL, OS_MATCH_ALL,
-1, 0)

msg > 0 2
Receive (OS_MATCH_ALL,

OS_MATCH_ALL, OS_MATCH_ALL,
OS_NO_TIMEOUT, completion)

Using task scheduling in a multitasking environment

A task is a message-driven transaction processor that runs on the MCP card. The behavior of a task
depends on the messages it receives.

Tasks include the Idle Task; managers, such as the ICCM, Name Manager, Print Manager, Remote
System Manager, Timer Manager, and Trace Manager; and any developer-written tasks.

Task Identifiers

Tasks are known by and referred to A/ROSE by Task Identifiers (TIDs). These identifiers are for
internal use and are automatically assigned by A/ROSE when it starts a task.

Modes in which tasks run

There are two modes in which tasks run:
tun-to-block mode (also referred to as block mode)
2 slice mode

In run-to-block mode, a task has control of the CPU until the task explicitly releases it, either by
changing its scheduling parameters (using a Reschedule call), or by waiting to receive a message
(using a blocking Receive call) or by using an A/ROSE library routine that waits for a response to
2 message (printf, Lookup_Task, and so forth). The purpose of run-to-block mode is to
guarantee uninterrupted use of the CPU to tasks that need it; an example of a place where you
should use run-to-block mode is in critical sections of code.

@ Note: Do not confuse run-to-block mode with the blocking receive operation in which a
message is awaited. The name “run-to-block” captures the idea that the task holds onto the
processor until it performs a blocking receive. A blocked task is one that waits for a2 message,
having performed a blocking Receive.

In slice mode, the task can be time-sliced; that is, the operating system temporarily suspends
execution of the task to allow tasks of equal or higher priority to run.

A task can change its running mode as necessary by using the A/ROSE primitive Reschedule (),
see Chapter 4.

3 / Introduction to the MCP Software Interface

3-23

Timer services

You can schedule tasks using timer services provided by A/ROSE. For timer services and message
reception done with a timeout, time is specified in major ticks, A major tick is the smallest time unit
recognized by tasks in the operating system. This value is specified in all blocking Receive and
timing operations.

A Caution All code segments that have been installed in the Tick chain run when a
major clock tick is detected by the operating system. These segments are
executed even if the current task is in run-to-block mode. Refer to
Chapter 7 for more information about the Tick chain. a

Task scheduling

Tasks are scheduled in round-robin fashion in each priority ring. There are 32 priorities, ranging from
0 (lowest) to 31 highest). The operating system scans the priority table, beginning at the highest
priority, for a task that is eligible to run. Tasks with the same priority are scheduled on a first-come,
first-served basis. Over time, this scheduling allows all tasks in a priority ring to be given an equal
opportunity to execute. Tasks of equal priority therefore share the processor.

A task of higher priority can indefinitely keep a lower priority task from executing, but in common
practice, a task always does a blocking Receive that permits lower priority tasks to execute.
Obviously, priorities of tasks must be chosen carefully, so that the most critical tasks have the
highest priorities. A task may change its scheduling mode by using 2 Reschedule call.
Scheduling decisions are made at every major tick of the system clock.

= If the current task is in slice mode, it can be preempted; that is, another task with a higher priority
* can take precedence over the task running in slice mode. If a high-priority task is available (not
blocked), that task will be scheduled before the lower-priority task running in slice mode.

® If the current task is in run-to-block mode, it is always allowed to continue.

Task initialization

During initialization, a task performs whatever functions may be necessary for its execution. Every
task has different needs, but typical functions include

® setting its scheduling mode as necessary

= waiting for other required tasks to begin

® registering its name with the Name Manager

The choice of scheduling mode depends on the function the task performs:

8 Slice mode is used for tasks that are pre-emptible. Time-slicing of such tasks permits other
tasks to share the CPU.

® Run-to-block mode is for tasks that, because of time constraints or the need to be protected
during critical sections of code, cannot give up the CPU to other tasks.

3-24 Macintosh Coprocessor Platform Developer’s Guide

4 Note: Tasks can take exclusive control of the CPU only in situations where other tasks do
not need to execute; if other tasks are ever to execute, the task must change its scheduling
mode or perform a blocking receive to free the CPU.

In response to its needs, a task can change its scheduling mode as it executes.

A/ROSE always creates one task during its initialization; that task is the Idle task. The Idle task
increments a counter, calls the Idle Chain, and issues the Reschedule primitive to allow tasks to
run. The Idle task runs in block mode, and is given the lowest priority (priority 0). When no other
task is eligible for execution on the processor, A/ROSE schedules the Idle task. Code segments can be
run when A/ROSE is idle by installing them in the Idle Chain (refer to Chapter 7 for more
information).

A Caution The Idle task must always be eligible for execution. The system halts if it
can find no tasks to schedule; hence a2 stopTask should not be
performed on the Idle task. a

Task execution
The bulk of a task is a message loop in which a message is waited for, received, and processed.
Actually, 2 message is both waited for and received through the Receive primitive.

Task termination

If a task must terminate, it notifies the operating system via a2 stopTask call. startTask
initializes a task such that, if the main routine returns, a stopTask is automatically issued.

Memory managment

To increase performance of the A/ROSE operating system, developers must make a distinction
between using general-purpose memory and using message buffers.

For general-purpose memory, the available pool of memory extends from the last address in which
the operating-system code is loaded, up to the system stack area that occupies the last cosstack
bytes of RAM. The system stack occupies the last portion of RAM and the stack is the size you
specify. Therefore, the amount of memory available in the pool depends on the size of the code and
data spaces. You can allocate and free general-purpose memory to tasks using the cetMem and
FreeMem calls, described in Chapter 4.

During initialization, the operating system sets aside a block of memory large enough to hold the
maximum number of messages that you specified. This block of memory is then linked together to
form the free list of messages. Messages can be quickly allocated and released from this list. You
specify the number of messages allocated to the operating system in the call to osinit () from

main ().

3 / Introduction to the MCP Software Interface

3-25

When using this document to manage memory on MCP, be aware of the following specialized
terminology used in this document. The terminology refers to locations on the main logic board of
Macintosh and the MCP card. The main logic board in any Macintosh computer is called slot 0. In
the descriptions that follow, slot refers to the Macintosh main logic board or any smart NuBus
card. This document also uses the term MuBus address even though some members of the
Macintosh family do not actually have a NuBus.

Background on virtual addressing with A/ROSE

This section shows how virtual addressing functions on Macintosh, particularly with A/ROSE. Each smart
NuBus card has a 680x0 processor and local memory; a virtual address is the address used by a task to reference
its own memory.

For example, assume a task is running on a smart NuBus card that has a 68000 processor. The card is in slot 0x0d.
The task has a buffer in local memory at address 0x00005000 and can reference this local memory using address
0x00005000. Since 2 68000 processor ignores the most significant byte of every address, the task can also
reference this local memory using virtual address 0xfd005000 or any virtual address 0XMN005000, where M and N
are any hex digits. Each of these addresses (0x00005000, 0xfd005000, and 0xMNO05000) is a virtual address that the
task can use to refer to its own memory. In the example just mentioned, the task has multiple virtual addresses
for the same memory.

A NuBus address is the address of the memory location through the nubus,

@ Note: A card can be constructed so that not all local memory addresses can be accessed from
the NuBus. A card can also be constructed so that certain card addresses can be accessed
from the NuBus but cannot be accessed locally.

In this example (which could be called a flat address space), assume a task is running on a smart NuBus card in
slot 0x0d and the task has a buffer in its local memory at address 0x00005000. Two possibilities exist for the
NuBus address (the actual NuBus address depends on the hardware on the NuBus card in slot 0x0d).

One address could be 0xfd005000. This is the Minor NuBus address of the buffer. The buffer is in slot 0x0d.
Local addresses on a card that respond to Minor NuBus addresses a have 0xfd as the most significant byte of
the address.

The other address could be 0xd0005000. This is the Major NuBus address of the buffer. Local addresses on a card
that respond to Major NuBus addresses all have 0xdM as the most significant byte of the address.

NuBus cards, however, can respond to both Minor and Major NuBus addresses.

¢ Note: The Apple MCP card only responds to Minor NuBus addresses.

3-26 Macintosh Coprocessor Platform Developer's Guide

The descriptions of the A/ROSE Prep services and the A/ROSE primitives and utilities refer to several
different types of memory addresses. The types of virtual addresses used in the remainder of this
document are described in the next four sections. Only NuBus addresses and 32-bit virtual
addresses (with associated TID) can be passed freely between slots in a Macintosh computer.

Flat address space

A flat address space means that the virtual address of any byte in memory is the same as the rea/ address of
the byte. -

In the previous example, a flat address space would be the instance where the task in slot 0x0d referenced its
local buffer using address 0xfd005000 and the real address of the buffer was 0xfd005000.

4 Note: The MCP card uses a flat address space for local addresses.

Some Macintosh computers come with 68030 processors containing a PMMU. A PMMU allows the
implementation of some special memory management functions, described in the following two examples.

4 Note: On a Macintosh computer containing a PMMU, NuBus accesses from smart cards to
memory on the Macintosh main logic board to Macintosh main board memory do not go
through the PMMU.

In this example, assume a task is running on the Macintosh main logic board containing a PMMU. Assume the
task has a local buffer at its virtual address 0x00005000. Because a PMMU exists, the buffer does not have to be at
real address 0x00005000. The buffer could be at real address 0x00060000, for example. In fact, a buffer does not
even have to be contiguous in real memory. Assume that the buffer has a very large capacity. The large buffer
can still start at virtual address 0x00005000. Assume the large buffer goes through virtual address 0x0000F000. In
this case, virtual address 0x00005000 through 0x00007FFF could be at real addresses 0x00060000 through
0x00067FFF. In addition, Virtual address 0x00008000 through virtual address 0x0000F000 could be at real address
000080000 through 0x00087000.

At the lowest level, NuBus cards accessing memory on the Macintosh main board must use NuBus addresses
and access real memory.

Notice how the use of virtual memory is possible using 2 PMMU and a backing store such as a disk drive.
Assume 2 task is running on the Macintosh main board and the task has a local buffer at virtual address
0x00005000. With a PMMU and backing store, the buffer does not have to be in real memory unless the buffer is
being accessed by the task. The buffer can also be at different rea/ memory locations each time the buffer is
paged in from disk.

24-bit virtual addresses

A 24-bit virtual address identifies a location within the address space of a Macintosh main logic
board. All versions of the Macintosh operating system use 24-bit virtual addresses. Applications

3 / Introduction to the MCP Software Interface '3-27

running on the Macintosh main logic board use 24-bit virtual addresses internally when accessing C
and assembly language variables. <What about applications that don't run on the main logic
board?>>

On the Macintosh main logic board, a 24-bit virtual address itakes the form “m0aa aaaa”, where “m”
contains bits used by the Memory Manager. Since the Memory Manager modifies these bits
independently of the active application, all 24-bit virtual addresses whose lower 24 bits are identical
refer to the same memory location.

24-bit virtual addresses cannot be passed to smart NuBus cards. An application running on the
Macintosh main logic board must call the Macintosh operating system trap _stripAddress t0
convert a 24-bit virtual address to a 32-bit virtual address before passing the address to a NuBus
smart card.

A Caution A/ROSE does not support the 24-bit “NuBus-like” addresses used by
applications such as MacsBug. These 24-bit addresses are of the form “00sa aaaa®, where “s”
is the number of the slot containing the memory location.. a

32-bit virtual addresses

A 32-bit virtual address identifies the local address space of a particular slot. A 32-bit virtual
address takes the form “aaaa aaaa®, where all bits are treated as part of the address.

Because the RAM on the main logic board of a Macintosh IIci is not contiguous, consecutive 32-bit
virtual addresses can refer to memory locations with very different NuBus addresses.

When the 32-bit virtual address is passed to a task on another slot, the TID of that task (on the slot
containing the memory location) must also be passed to provide contextual information. Because
of the unusual NuBus address space of the Macintosh Ilci, 32-bit virtual addresses are
recommended for passing addresses between slots.

The A/ROSE, MapNuBus, LockRealArea, UnlockRealArea, and NetCopy primitives and services discussed later in
this document all require 32-bit addresses. These A/ROSE primitives and utilities take 32-bit virtual addresses as
input parameters and return 32-bit virtual address results.

A Caution Do not use 24-bit addresses with A/ROSE functions. The Macintosh operating
system trap _stripAddress should be used on the Macintosh main logic board to convert 24-bit addresses,
which may contain memory manager information, into 32-bit addresses. a

NuBus address

A NuBus address uniquely identifies the entire NuBus address space of the Macintosh computer.
The Macintosh recognizes a distinction between two types of NuBus addresses: minor NuBus
addresses and major NuBus addresses. The minor NuBus address takes the form “Fsaa aaaa”,
where “s” is the number of the slot containing the location. The major NuBus address takes the
form “saaa aaaa”, where “s” is the number of the slot containing the location.

The main logic board of a Macintosh computer responds only to NuBus accesses using major
NuBus addresses. MCP-based smart NuBus cards respond only to NuBus accesses using minor
NuBus addresses. However, Smart NuBus cards can be designed to respond to either minor or
major NuBus addresses, or both.

3-28 Macintosh Coprocessor Platform Developer’s Guide

The NuBus address of a memory location can be passed freely between slots without additional
contextual information.

RAM on the main logic board on all Macintosh computers, except the Macintosh Ilci, is contiguous:
the main logic board of an 8MB Macintosh IIx, for example, contains RAM at major NuBus
addresses 0x00000000 through 0x007FFFFF. A Macintosh with contiguous RAM is said to have a
flat address space (discussed earlier in this section).The main logic board of the Macintosh Ilci
contains discontiguous RAM. As a result, the RAM on Macintosh IIci does not have a flat address
space.

A Caution A NuBus address cannot arbitrarily be used to access more than one byte of
memory on the Macintosh Ilci main logic board. To ensure compatibility with the Macintosh Ilci, your
application should avoid using NuBus addresses wherever possible.. a

Latched virtual address

The latched virtual address is unique to MCP-based cards and other smart NuBus cards that
cannot directly access the entire NuBus address space of a Macintosh computer (see Chapter 12,
MCP Card Specifications). A latched virtual address is of the form “00Aa aaaa”. The upper 12 bits
of a latched virtual address are the actual hexadecimal digits 0x00A.

Despite the *virtual” in its name, a latched virtual address suffers from the same disadvantages as a
NuBus address on the Macintosh Ilci <<what are the disadvantages?>>. In addition, latched
virtual addresses are subject to memory boundary restrictions that make them even more awkward
and dangerous to use.

Before accessing an off-card (off the MCP card) memory directly from code running on an MCP-
based card, make sure that some task calls the A/ROSE MapNuBus utility. In addition, make sure
MapNuBus contains the NuBus address of the memory location you're trying to access. The
MapNuBus utility sets the MCP-based card’s page latch registers for the task and returns a latched
virtual address. The latched virtual address is used in accessing the off-card memory location. The
latched virtual address is valid only for the task that called the MapNuBus utility and only until the
task’s next call to the MapNuBus utility. A/ROSE saves and restores the card's page latch registers
during task scheduling.

A Caution On MCP-based NuBus cards, the A/ROSE MapNuBus utility sets up a one-megabyte
window beginning on a one-megabyte boundary. If you must use latched virtual addresses, your task must
issue a new call to MapNuBus when the low 20 bits of the latched virtual address overflow..

In addition, you cannot arbitrarily use a latched virtual address to access more than one byte of

memory on the Macintosh Ilci main logic board. To ensure compatibility with the Macintosh Ilci,

your application should avoid using latched virtual addresses whenever possible. a

Virtual memory support

The physical memory of the Macintosh Iici is noncontiguous so a memory management unit is
used to map a contiguous virtual memory onto noncontiguous physical memory. However, only
accesses by the main Macintosh logic board processor are mapped, leaving smart card processors
with the problem of being able to deal only with physical memory.

3 / Introduction to the MCP Software Interface 3-29

Solutions to the Macintosh Iici support problem can conveniently be applied when working with
virtual memory in System 6.0.4.

In System 6.0.4.., the Macintosh operating system provides a call to acquire contiguous and, in the
case of virtual memory, frozen and locked memory. Locked memory means that the memory area
will always be in the physical memory and will not be swapped out to disk; however, the memory
area can move within the real memory. “Frozen” memory means the memory area will stay in the
same place and will not be eligible for paging to the backing store. Also, the operating system will
provide a way to unlock and unfreeze this memory through another call. A/ROSE provides these
system calls to provide access to main memory from smart cards.

Extreme care should be exercised by users of the A/ROSE MapNuBus function. Direct access of
Macintosh main logic board memory from the card is hazardous because to use NuBus addresses
means that you must lock pages in physical memory for the period that the NuBus address is to be
used. As more pages are locked in physical memory, fewer are available for swapping. This can
result in an overall reduction in performance if too many pages become ineligible for swapping since
those pages are locked. As a limit, if all pages are locked, the system will crash on the next page
fault, because no more pages are eligible to be swapped out. When youuse BlockMove to
move data quickly, (the only situation where you might use MapNuBus) , you must be aware
that the memory addresses you use might be virtual addresses and might not correspond to the
actual NuBus addresses. Two new routines are provided to help users run A/ROSE in the Macintosh
IIci and virtual memory environments. These routines are LockRealArea (), and
UnlockRealArea (), (both described in Chapter 4). You must use LockRealArea () and
UnlockRealArea () callsto get the actual NuBus addresses. The BlockMove routine is a
simple assembly language loop that moves long words from one area to another and so is very fast.
Developers must take care to set up the addresses for the call so that the addresses are real and are
present.

In the Macintosh Ilci and virtual memory environments, the CopyNuBus () utility would not
be safe and has been removed from A/ROSE. The NetCopy () utility (described in Chapter 5)
copies data from one virtual address to another safely, but requires two additional parameters to
specify the context of the virtual source and destination addresses. These two parameters are the
TaskIDs of the source and destination tasks.

4 Note: The virtual address passed to the A/ROSE Prep, LockRealArea services and
UnlockRealArea must be 32-bit clean addresses and must not contain memory manager
bits. In addition, the virtual address must be in the same address space as the process that
calls these services.

The A/ROSE Prep driver has been augmented to provide calls corresponding to the Macintosh
operating system calls that acquire and free contiguous memory. By having applications go
through A/ROSE Prep to acquire and free their buffers, A/ROSE Prep can access the information
needed for optimization.

The existing MapNuBus () routine within A/ROSE will not be changed in the Macintosh operating
system running in virtual memory environment.

3-30 Macintosh Coprocessor Platform Developer's Guide

The input parameter to MapNuBus () continues to be a NuBus address. MapNuBus () will
return an address that must be used to reference this NuBus address.

3 / Introduction to the MCP Software Interface 3-31

Chapter 4 A/ROSE Primitives

THIS CHAPTER describes the operating-system primitives used for
A/ROSE. A primitive is similar to a system call, in that a primitive provides
fundamental services from the operating system. Primitives are invoked as
hardware traps and thus operate in supervisor, or server, mode. =

41

Table 4-1 lists the primitives provided by A/ROSE and gives a brief description of each.

s Table41 A/ROSE primitives

Name Description

FreeMem () Frees a block of memory
FreeMsg () Frees a message buffer
GetMem () Allocates a block of memory
GetMsg () Allocates a message buffer
Receive () Receives a message
Reschedule () Changes a task's scheduling mode
Send () Sends a message

spl() Sets the hardware-priority level
StartTask () Initiates a task

StopTask () Stops a task

These primitives are calls that are made by most tasks running under A/ROSE. Some primitives are
used in main (), the program that executes before anything else starts. You can modify main ()
for whatever application you are writing.

® Table 4-2 Macintosh Operating System Calls

Macintosh Operating System Calls Functon

_StripAddress The _stripAddress call converts a 24-bit virtual address
to a 32-bit virtual address. A 32-bit virtual address passed to
_StripAddress is returned unchanged.

_SwapMMUMode The _swapMMUMode call toggles the addressing mode of
the Macintosh main logic board between 24-bit virtual and 32-
bit virtual addressing,

& Note: A/ROSE uses C calling conventions, and all registers are preserved except po, D1, a0,
and a1. The assembly-language macros also adhere to these conventions.

Operating system primitives

This section describes each of the operating system primitives and provides examples of how to call
primitives from both C and assembler. Both calling sequences take arguments and use similar data
structures.

4-2 Macintosh Coprocessor Platform Developer's Guide

FreeMem()

FreeMen() frees a block of memory that was acquired earlier by a call to GetMem(). A/ROSE
decrements the usage count associated with the buffer. If the resulting usage count is zero, the
memory is returned to the free memory pool; if the usage count is non-zero, the memory is not

released.

The C declaration of FreeMem() is

void FreeMem(ptr)
char *ptr; /* pointer to memory buffer to free */

The form for the FreeMem macro is as follows, where p1 is the address of the memory block to
be freed:

[Label] FreeMem Pl
P1 can be specified as a register (a0-a6, D0-D7), or can use any 68000 addressing mode valid in an
LEA instruction to specify the location containing the desired address.
A Caution A/ROSE will execute an illegal instruction if an attempt is made to free a

memory buffer that has not been allocated by A/ROSE. a

FreeMem will retum to the caller doing nothing if PTR is NIL <<What does this mean, doing
nothing?>>

4 / A/Rose Primitives 43

FreeMsg()

FreeMsg() freesa message buffer that was acquired earlier by a call to GetMsg ().

The operating system distinguishes between messages and memory in order to speed up the
acquisition and disposal of messages. The number of messages initially available depends upon the
number requested in the call to osinit () from main().

The C declaration of FreeMsg () i

void FreeMsg(mptr)
message *mptr; /* pointer to message buffer to free */

The form for the FreeMsg macro is as follows, where p1 is the address of the message buffer to
be freed:

[Label] FreeMsg Pl

P1 can be specified as a register (a0-a6, D0-D7), Or can use any 68000 addressing mode valid in an
LEA instruction to specify the location containing the desired address.

A Caution In most cases, A/ROSE will execute an illegal instruction if an attempt is
made to free 2 message after it has been sent and when a message buffer
that has not been allocated by A/ROSE is freed using FreeMsg(). a

4-4 Macintosh Coprocessor Platform Developer’s Guide

GetMem()

GetMem() requests a block of memory from the free memory pool. The size of the free memory
pool depends upon the size of the program or code space loaded and the amount of memory
installed on the card.

GetMem() returns either a pointer to the allocated block of memory or 0. If the memory could
not be allocated, a call to FreeMem() releases the memory. The allocated message block is
initialized to 0 by GetMem() if the number of bytes requested is greater than 0; otherwise, the
memory is not initialized. For example, GetMem(-10) retums a pointer to a block of 10 bytes.
GetMem(10) retums a pointer to a block of 10 bytes that have been initialized to zero. The usage
count associated with the buffer is set to 1. (See A/ROSE utilities Getucount and IncUCount
in Chapter 5.)

The C declaration of GetMem() is

char *GetMem(size)

long size; /* size of block to allocate */
The form for the GetMem macro is as follows, where p1 is the size of the memory block to be
allocated:

[Label) GetMem P1
P1 can be specified as a register (A0-A6, D0-D7), or an immediate value (#<abs expr>), Or can use
any 68000 addressing mode valid in an LEA instruction to specify the location of a long word holding

the desired block size. The address of the allocated block is retumned in po unless the block could
not be allocated, in which case 0 is returned in po.

4 / A/Rose Primitives

4-5

GetMsg()

GetMsg () requests a message buffer from the free message pool. GetMsg () either returns a
pointer to the allocated message or 0 if the message could not be allocated. A call to FreeMsg ()
releases the message.

A/ROSE clears all fields in the message, except Message ID (mID) and From address (mFrom),
before the pointer to the message is returned. Message ID (mID) is set to a number that is
statistically unique to the field. mFrom is set to the current task identifier.

The C declaration of GetMsg() is
message *GetMsg ()

The form for the GetMsg macro is
[Label] GetMsg

The address of the allocated message buffer is retumed in po unless no buffer was available. In
that case, o is returned in Dpo.

LockRealArea()

LockRealArea enables the Netcopy call to use information for performance improvements

JAN Caution LockRealArea must be called by the task in the same virtual address space as the
buffer to be locked and frozen in memory. A

Once called, LockRealArea creates a table entry informing A/ROSE, running on NuBus smart cards, of any areas
that are successfully locked. LockRealArea then returns the physical addresses and lengths of the memory areas
that are successfully locked in memory. <<how does this benefit programmers who want to use MapNubus?>>

LockRealArea should be used to lock a memory buffer that needs to be accessed frequently and quickly.
LockRealArea is especially useful because it speeds up NetCopy (described in chapter 5) requests. In the future,
you might be required to use LockRealArea to lock down memory buffers residing on smart NuBus cards.

LockRealArea should be called when the buffer is obtained to lock the memory in place. LockRealArea is a slow
operation. Trial and error will determine when best not to use LockRealArea. LockRealArea will lock memory so
it cannot be paged. Do not use LockRealArea to lock down an infrequently-used buffer that does not have to be
accessed quickly. Do not use LockRealArea to lock down large buffers because of the dangers of page-fault
thrashing.

LockRealArea () will accept as input a virtual address and a length and will attempt to lock the

memory associated with this virtual address into physical memory. The virtual address must be in

the same address space as the routine that called LockRealArea. Therefore, a NuBus card

cannot lock memory on the Macintosh main logic board. Likewise, another NuBus card and the

mother board cannot lock memory on any other NuBus card. If successful, the physical

address/length pairs of the memory associated with the virtual address are returned.

4-6 Macintosh Coprocessor Platform Developer’s Guide

The structure addressareas, in which LockRealArea retuns the physical address/length
pair is defined as the following:

struct addressareas

{

void *address; /* Physical address of memory area */
unsigned long length; /* Length of memory area */

}:

The calling sequence for LockRealArea () is the following:

short LockRealArea(void w*virtualaddr,unsigned long length,
struct addressareas *buffer, unsigned long count);

virtualaddr is the virtual address of the memory area to be mapped. lengtn is the length of
the memory area. buf fer is the area where the physical address map is retumed. butferisa
pointer to an array of structure addressareas. count is the number of physical
address/length pairs (addressareas structures) that the buffer can hold. This is the same as
the number of elements in the array addressareas.

You can declare the buffer in the following way:

struct addressareas buffer(16];

If the size of the buf fer [] is large enough for only one entry; that is, count has a value of one,
the pages are forced to be contiguous. Otherwise, the pages may not to be contiguous when
locked in memory.

The physical address/length pairs are returned in buffer. Any unused address/length entries in the
buffer are initialized to zero.

LockRealArea () retumns zero if successful. If the pages could not be locked and frozen in
physical memory or if the buffer was not large enough to contain the entire physical address map
then LockRealArea () will either retumn an error code of “erLockFailed” or an error code returned
by Macintosh Operating System. The memory is neither locked nor frozen if an error is returned.

UnlockRealArea()

UnlockRealArea is the inverse operation of LockRealArea. Only buffers that were previously locked using
LockRealArea can be unlocked using UnlockRealArea.

UnlockRealArea should be called when the buffer is no longer going to be shared across the NuBus.
UnlockRealArea is a slow operation.

A Caution UnlockRealArea must be called by the task that locked the buffer in memory. a

4 / A/Rose Primitives . 4-7

UnLockRealArea takes a virtual address and a length as parameters, and will attempt to unlock and
unfreeze the memory associated with this virtual address into physical memory. If successful, the
physical address(es) of the pages associated with the virtual address are returned.

The structure address area is defined in the following way:

UnlockRealArea () unlocks a memory area that was previously locked with a call to
LockRealArea() .

The calling sequence for unlockRealArea() is

short. UnlockRealArea(void *virtualaddress, unsigned long length);

virtualaddress is the beginning virtual address of an area of memory that was previously
locked and frozen. 1ength is the length of the memory area that was locked and frozen.

UnlockRealArea () retums zero if the address was successfully unlocked. Otherwise, an error is
returned.

2 Note: The address and length parameters specified in a call to UnlockRealarea()
must exactly match the virtual address and length specified in a previous call to
LockRealArea() . UnlockRealArea() cannot handle fragmented unlocking in this release,
that is, you cannot unlock a portion of a previously locked and frozen memory area.

UnlockRealArea() returns a status of zero if the virtual memory support is not available.a

4-8 Macintosh Coprocessor Platform Developer’s Guide

Receive()

Receive () returns the highest priority message from the task’s message queue that matches the
specified criteria. Like the Reschedule primitive, Receive may be used to enable the CPU to
run other tasks. Unlike Reschedule, Receive allows tasks of lower priority to run.

The C declaration of Receive() is

message*Receive(mID, mFrom, mCode, timeout)

unsigned long mID; /* Unique message ID to wait on */
tid_type mFrom; /* Sender address to wait on */
unsigned short mCode; /* Message code to wait on */
long timeout; /* Time to wait in major ticks
/ / before giving up

*/

The first three criteria (mID, mFrom, and mCode) may be set to match either a specific value (by
specifying the value), or to match any value (by specifying the symbol os_MATcH_ALL), of to no
value (by specifying the symbol os_MATCH_NONE).

The timeout parameter in major ticks takes one of the three values described here:

& A value of timeout < 0 requests a nonblocking Receive. A nonblocking Receive returns
control immediately to the task, regardless of whether a message matching the criteria was
found or not. If no message was found, o is retumed. Any negative value can be used.

8 A value of timeout = 0 requests a blocking Receive with no timeout. This Receive
returns control only when a message matching the criteria is found.

® A value of timeout > 0 requests a blocking Receive with a timeout. This Receive returns
when either the timeout parameter expires or a message matching the criteria is received,
whichever occurs first. A timeout returns @.

The form for the Receive macro is as follows, where p1 is the message ID match code, p2 is
the sender address match code, p3 is the message code match code, and 24 is the timeout code:

[Label] Receive P1, P2, P3, P4
P1 through P4 can each be specified as a register (A0-a6, D0-D7) or an immediate (# <abs-expr>)
or it can use any 68000 addressing mode valid in an LEA instruction to specify the location of a long

word containing the desired value. The address of the returned message buffer is retuned in Do
unless no message was available. In that case, o is returned in Do.

4 / A/Rose Primitives 4-9

The following example shows how to use the Receive primitive in your code segment to delay a
task for five seconds:

Receive (OS_MATCH_NONE, OS_MATCH_NONE, OS_MATCH_NONE,
5*GetTickPsS());

The Rreceive criteria for message ID, sender’s address, and message code must never be satisfied
in order to delay for a specified period of time. After every five seconds, A/ROSE causes the task to
be eligible for execution. To implement a delay, you can use a Receive with matching criteria
that can match no message.

A Important Take care using the mcode selector in Receive requests. The
operating system will set bit 15 of mCode (mCode | 0x8000) when a
message cannot be delivered. If a task does 2 Receive and waits on
mCode, Receive Will never see its message criteria matched if the
message is undeliverable; hence the program will never get what it’s
waiting for. It's better to wait on message ID (mID),because the
operating system does not change this field. a

410 Macintosh Coprocessor Platform Developer's Guide

Reschedule()

The Reschedule() primitive is used to give tasks of the same or higher priority a chance to run
before scheduling the task that issues the Reschedule call. Reschedule() never causes
tasks of lower priority to run.

Reschedule () selects the operating mode of the task, which can be any one of the options
listed in Table 4-3. Block mode differs from slice mode only in that the task will not give up the
CPU until the task is explicitly blocked by Receive () or executes another call to
Reschedule ().

s Table 43 Reschedule options

Option New scheduling mode Schedule a higher-or equal priority task
before returning to the task that issued
the Reschedule request?

0S_SLICE_MODE Slice Yes

0S_BLOCK_MODE Block Yes

OS_SLICE_IMMED Slice No

0S_BLOCK_IMMED Block No

OS_RTN_MODE Does not change Yes

OS_RTN_IMMED Does not change No

os_sLIcE_MODE changes the scheduling mode of the task to time-slice scheduling, and allows
any higher-priority or equal-priority task to execute before this task executes again.

os_BLocK_MopE changes the scheduling mode of the task to run-to-block scheduling mode, and
allows any higher-priority or equal-priority task to execute before this task executes again.

os_srIce_IMMED changes the scheduling mode of the task to time-slice scheduling mode, and
continues execution of this task until the next time-slice interval, when nomal task scheduling
occurs.

os_Brock_iMMeD changes the scheduling mode of the task to run-to-block mode, and continues
execution of this task until the task blocks itself by doing another Reschedule ora blocking
Receive request.

os_RTN_MODE retumns the current scheduling mode of the task without changing the scheduling
mode, and allows any higher-priority or equal-priority task to execute before this task executes

again.

4 / A/Rose Primitives

4-11

os_RTN_IMMED returns the current scheduling mode of the task, and continues execution of the
current task without attempting to schedule any other higher-priority or equal-priority task.

The C declaration of Reschedule() is

short Reschedule(mode)
short mode; /* Scheduling mode */

Reschedule returns the previous scheduling mode.

The form for the Reschedule macro is as follows, where p1 specifies the new operating mode
of the task:

[Label] Resched Pl

P1 can be specified as a register (a0-as, D0-D7), an immediate value (#<abs-expr>), Of use any
68000 addressing mode valid in an LEA instruction to specify the location of a long word containing
the desired operating mode. The previous scheduling mode is returned in po.

Reschedule may be useful when combined with a nonblocking Rreceive request to give other
tasks a chance to run, as shown in the following example.

This example describes how to use Reschedule for two tasks implementing two different
layers of the X.25 protocol. Suppose one task implements X.25 Level 2; the other task implements
X.25 Level 3. In this example, both tasks execute with the same scheduling priority. The Level 2 task
is operating in block scheduling mode; the Level 3 task is operating in either time slice or block
scheduling mode and should not depend on what the Level 2 layer is doing.

Accordingly, a portion of the Level 2 task might look like the following:

{
message *msg *m;

/* Initialize and send message to level 3 task indicating data is present
*/

If (msg=GET MSG ())

{

/* Fill in msg to send */

Send (msg);
m = Receive(OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, -1);
/* See if data present from Level 3 */

Send (m) ; /* Send data to Level 3 task */

if (m == 0) /* If nothing from Level 3 yet */
{

412 Macintosh Coprocessor Platform Developer's Guide

Reschedule (0OS_BLOCK_MODE); /* Let Level 3 task execute */
m = Receive(OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, -1);
/* Try to get data from Level 3 */

/* Three cases exist:
*1. No information was available; m = 0
*2, Information was previously available from Level 3 before we

* did the Send; m = address of message
*3, Level 3 task had enough time to provide information after
* we did the send; m = address of message
*/
/* See if data present from level 3 */
if (m != 0)

/* If Level 3 task has information to be sent, */
/* send I frame message with information. */

/* If Level 3 did not have information to be sent, */
/* send RR frame. */

The Level 2 task gives up the CPU by way of the Reschedule request in order to allow the Level
3 task to execute. In the case of an X.25 implementation, this could allow Level 2
acknowledgements to be piggy-backed with data from Level 3.

4 / A/Rose Primitives

413

Send()

send() places a message on the task’s queue specified by the message field, mTo. The message is
placed in the queue in priority order (from highest to lowest).

A Caution In most cases, A/ROSE executes an illegal instruction if an attempt is made
to send a message that is not available to a task for sending. For example,
do not send the same message twice; also, do not send a message and then
freeit. a

The C declaration of send() is

void Send(mptr)
message *mptr; /* pointer to message buffer */

If a message is undeliverable, it will be returned to the sender with the message status (mstatus)
set to 0x8000 and the message code (mcode) having bit 15 set.

& Note: send () assumes that all fields have been filled in (nFrom, mTo, mCode,andso
forth) when this call is made.

The form for the send macro is as follows, where p1 is the address of the message buffer to be
sent:

[Label] Send Pl

P1 can be specified as a register (A0-a6, D0-D7) or use any 68000 addressing mode valid in an LEA
instruction to specify the location containing the address of the message buffer to be sent.

414 Macintosh Coprocessor Platform Developer's Guide

Spl()

Programmers modify the status register to temporarily disable interrupts; A/ROSE provides the
spl() system call to allow user-mode tasks to set the hardware interrupt-priority level.

Tasks are always executed in the 68000's user mode, while interrupt routines and main () are
executed in supervisor mode. This process is important because some 68000 instructions cannot be
executed in user mode (such as any instruction that explicitly modifies the status register).

While a task is running with an elevated (non-zero) interrupt priority, it temporarily behaves as if it
is in run-to-block mode.

A Warning Depending upon the elevated priority, interrupt handlers may still
execute. a

In addition, if the task calls rReceive and blocks with an elevated priority level, the priority level
of the hardware is changed to the priority level of the next task that A/ROSE schedules. Therefore,
you should not call Receive with an elevated priority level.

spl() expects an integer from 0 to 7, and returns the previous priority as an integer from 0 to 7 (0
is the lowest interrupt priority and 7 is the highest interrupt priority).

The C declaration of sp1() is

short Spl(npr)
short npr; /* New interrupt priority =/

The form for the s1L macro is as follows, where 1 specifies the new interrupt priority (0 to 7):

[Label] SIL P1; not Spl

A Caution The name of the macro is sIL, not the 68000 instruction spl to avoid
. any conflict with the 68000 instruction. a

P1 can be specified as a register (a0-a6, D0-D7), an immediate value (#<abs-expr>), Or can use
any 68000 addressing mode valid in an LEA instruction to specify the location of a long word

containing the desired interrupt priority level. The previous interrupt priority level is returned in po.

4 / A/Rose Primitives

4-15

StartTask()

startTask () is used to create a task and make it eligible for execution. startTask () returns
either the task identifier of the created task, or 0 if the task could not be created. The new task is
initially started in slice mode.

The C declaration of startTask() is

tid_type StartTask(STpb)
struct ST_PB *STpb;

The format of the parameter block referenced by *sTpb is shown next.

struct ST_PB

char *CodeSegment; /* memory region on card for code

char *DataSegment; /* memory region on card for */
/* global data */

char *StartParmSegment; /* memory region on card for */

/* start parameters */

struct ST_Registers InitRegs; /* initial register set for */
/* starting task */

long stack: /* initial stack size (in bytes) */
long heap; /* initial heap size (in bytes) */
short return_code; /* error code if task not started */

/* (Tid = 0) */
unsigned char priority; /* priority of task */
tid_type ParentTID; /* TID of Parent on Network/Host */
)}z

struct ST_Registers
{

long D_Registers [8]; /* DO - D7 */
long A_Registers (8]; /* A0 - A7 Note: A7 not used */
long PC; /* Program Counter */

416 Macintosh Coprocessor Platform Developer's Guide

*/

These parameters include the following:

® priority, which is the scheduling priority at which the task will run. There is currently no
way to change this priority once a task is created. Priority 0 is the lowest; priority 31 is the
highest.

® stack, which is the size of the task’s stack in bytes. There is no way to change this size after
execution of startTask().

® heap, which is the amount of heap storage in bytes that the task will need to start up. Using
heap prevents tasks from coming up and not being able to run due to lack of memory. The
pointer to this storage is accessible via GetHeap() .

® parentTID, the task ID of the task that is designated as the parent of the running task; use
GetTID () to obtain the TID to be used for the parent TID.

The parameter block contains pointers to up to three memory segments that must have been
previously allocated by calls to GetMem().

In all cases, codesegment and Datasegment must be zero if the task being started was
linked into the operating system.

If the task was not linked into the operating system, you must issue a2 GetMem() Oran
RSMGetMem () request to reserve the space for the code segment. The codesegment
parameter must be set to the value retumed by GetMem(). If the task was linked to the
operating system, set the cCodeSegment parameter to zero.

A GetMem request must be issued to reserve space for the Datasegment, if the Datasegment
is present. The Datasegment must be set to the value returned by GetMem(), or zero if the
DataSegment iS NOL present.

If there are parameters, a2 GetMem request must be issued to get memory for the
StartParmSegment. StartParmSegment i$ set to zero if there are no start parameters (o
pass to the task; otherwise, the startParmsegment must be set to the value returned by
GetMem().

The registers hold the initial values of the registers when the task is started. The value specified for
Register A7 is not used; the value is replaced by the pointer to the stack when the task is started.
The program counter contains the absolute address of the start code.

The task is initially started in slice mode. If the task was not started (if it returns 0), the return code
specifies the reason, as shown here:

STE_NO_ERRORS /* The start task functions */
/* successfully */
STE_NO_TCB /* No room in task table or */

/* no memory avallable for stack */
/* or heap */

4 / A/Rose Primitives

4-17

A Warning FreeMem() mustnot be called by your application to release the memory
allocated for codesegment, DataSegment, Of StartParmSegment,
because releasing memory is done automatically by stopTask (). Refer
to the section later in this chapter on stopTask () for more
information. a

The form for the startTask macro is as follows, where p1 is the address of a startTask

parameter block:
[Label] StartTask P1

P1 can be specified as a register (A0-a6, D0-D7), an immediate (#<abs-expr>), Of use any 68000
addressing mode valid in an LEA instruction to specify the location of a long word containing the
address of the parameter block. The task ID of the started task is returned in Do unless the task
could not be started, in which case 0 is returned in po.

To start a task on a different smart card that is also running A/ROSE, send a message to the Remote
System Manager on the other card to reserve memory for the task; download the task to the card,
then send messages to the Remote System Manager to start executing the task.

418 Macintosh Coprocessor Platform Developer's Guide

StopTask()

stopTask () Kills a currently executing task. stoprask() is automatically called to kill the task
when the task fails or returns from the task’s main().

If the task was started with any codesegment, DataSegment,Of StartParmSegment,
stopTask () calls FreeMem() to release each memory buffer.

The C declaration of stopTask() is

void N StopTask(tid)
tid_type tid; /* Task ID to kill */

The form for the stopTask macro is as follows, where p1 specifies the task ID of the task to
stop:

[Label] StopTask Pl

P1 can be specified as a register (a0-a6, D0-D7) or as an immediate value (#<abs-expr>) Or it
can use any 68000 addressing mode valid in an LEA instruction to specify the location of a long word
containing the desired task ID.

The task identifier specified must not be that of the idle task (TID = 0), and it must be a task
running on the requester’s card.

If a task calls stopTask() and specifies its own task identifier, the task will cease functioning
and stop your program. To stop a task on a different smart card that is also running A/ROSE, send a
message to the Remote System Manager on the other card.

A Warning If one task stops another task, that task being stopped will not have
the opportunity to release any message buffers that it is currently
processing.

4 / A/Rose Primitives

4-19

Chapter 5 A/ROSE Utilities

This chapter describes the operating system utilities available with A/ROSE. A
utility is a library code segment linked with your application. =

5-1

Table 5-1lists the A/ROSE utilities, and provides a brief description of each.

Lookup_Task ()

MapNuBus ()

NetcopyQ
Register_Task ()

ARoseSecs2Date ()

SwapTID()
ToNuBus ()
TraceReg ()

® Table 51 A/ROSE utilities
" Name Description

BlockMove () Copies a block of data from the source physical address to the
destination physical address

ARoseDate2Secs () Calculates and returns the number of seconds given a specific date and
time

GetBSize() Returns the size of a memory buffer in bytes

GetCard () Returns the NuBus slot number of the card on which the calling
process or task is running

AROSEGetDateTime () Returns the number of seconds between 12:00 P.M. (Midnight), January
1, 1904, and the time that the function was called

GetETick () Returns the number of major ticks since the A/ROSE was started

GetgCommon () Returns the address of the gcommon operating system data area

GetHeap () Returns the address of the heap area allocated to the task

Get ICCTID () Returns the task identifier of the InterCard Communication Manager

GetNameTID () Returns the task identifier of the Name Manager

GetStParms () Returns the address of the calling task’s Start Parameters

Get TCB () Returns the address of the calling task’s Task Control Block

GetTickPS () Returns the number of major ticks in 1 second

GetTID () Returns the task identifier of the calling task

GetTimerTID() Returns the task identifier of the Timer Manager

GetTraceTID() Retums the task identifier of the Trace Manager

GetUCount () Returns the usage count associated with a buffer

IncUCount () Increments the usage count associated with a buffer

IsLocal () Returns an indication of whether or not an address is local

Returns the task identifier of the task that matches the Object Name
and the Type Name specified

Translates a NuBus address into a local address and sets any address-
mapping hardware

Takes virtual addresses for its address arguments

Registers a task with the Object Name and the Type Name specified

Calculates and retums the corresponding date and time record, given a
number of seconds

Swaps the mFrom and mTo fields in 2 message buffer
Translates a local address into a NuBus address
Registers the current task as the Trace Manager

5-2 Macintosh Coprocessor Platform Developer’s Guide

A description of utilities

This chapter describes each of the operating system utilities and provides examples of the C
declarations for each utility. This chapter also describes the assembler macros; these macros have a
one-to-one relationship to the calls and require the same number of parameters. A/ROSE uses C
calling conventions, and all registers are preserved except po, b1, ao, and a1. A/ROSE macros
adhere to this convention.

4 Note: The routines MapNuBus and ToNuBus are hardware dependent. Code written in C
that uses these calls may not be portable. Code written in Assembler that makes calls to
MapNuBus and ToNuBus Wwill not be portable.

Three date- and time-related routines are provided with A/ROSE; the calling sequences and
structures for these routines are defined in the file os.n in the folder :A/ROSE:includes:. These
routines are identical to the routines AROSEGetDateTime (), AROSEDate2Secs (),and
AROSESecs2Date () Wwithin the Macintosh II operating system.

BlockMove()

BlockMove () does a simple move of bytes from the source to the destination, without checking
for overlapping source and destination addresses. The number of bytes is specified in count.

A Caution Overlapping the source and destination blocks could cause partial
overwriting of the destination block. a

The C declaration for BlockMove () is

void BlockMove (source, destination, count)
char *source;
char *destination;
long count;

The following example shows how to call BiockMove in assembly language.

MOVE.L #Count, - (A7)
PEA Destination
PEA Source

JSR BlockMove
ADD.L #12,A7

5 / MCP A/Rose Utilities 5-3

AROSEDate2Secs()

AROSEDate2Secs () takes the given date/time record, converts it to the corresponding number
of seconds elapsed since 12:00 P.M. (Midnight), January 1, 1904, and returns the result in the location
whose address is contained in the secs parameter.

The C declaration for ARosEDate2secs() is

pascal void AROSEDate2Secs(Date, secs)

AROSEDateTimeRec *Date;
unsigned long *secs;
extern;

The following example program shows how to use all three date/time utilities.

#include "os.h"
main()
{

unsigned long secs;
AROSEDateTimeRec dtrec;
unsigned long newsecs;

GetDateTime (&secs);
Secs2Date (secs, &dtrec);
Date2Secs (dtrec, &newsecs);

printf(™ Date = %d/%d/%d, Time = $%d:%d:%d\na",
dtrec.year, dtrec.month, dtrec.day,
dtrec.hour, dtrec.minute, dtrec.second);

printf(“Secs = %d, Day of week = %d, New secs = %d\n",
secs, dtrec.dayOfWeek, newsecs);
}

The following example shows how to call pate2secs in assembly language:

PEA Date ; Address of Date/time record
PEA secs ;s Address for result
JSR Date2Secs

A Caution In the previous version of the operating system, a routine
Date2Secs () Wwas included to give code running on NuBus cards the same functionality as the
Macintosh toolbox Date2secs() call. Unfortunately, the parameters were declared different
from the Macintosh toolbox call.

The A/ROSE calling sequence caused C to push the entire DateTimeRec structure onto the stack
instead of pushing a pointer to the DateTimeRec structure. The code within the previous
version of the operating system would then get the DateTimeRec structure off the stack.

To be compatible with MPW 3.0 C, A/ROSE passes a pointer to the pateTimeRec. The code that processes the
Date2Secs () request has been changed to expect a pointer. a

54 Macintosh Coprocessor Platform Developer’s Guide

GetBSize()

The input t0 GetBsize() isa pointer to a memory data buffer. The pointer was obtained by a
cll to GetMem(). The output from GetBsize() is either the size of the buffer in bytes or 0.
Each buffer has an associated buffer header that is not included in the value returned by
GetBSize().

GetBsize () accepis 0 as input and retumns 0 as output. GetBsize () does not check the input
pointer for validity. The C declaration for GetBsize() is

unsigned long GetBSize (buffer)
extern unsignedchar *buffer; /*pointer to buffer */
The following example shows how to call GetBsize in assembly language:

; buffer pointer in A4

MOVE.L A4,~-(A7) ; move buffer address onto stack
JSR GetBSize ; get the buffer size

ADD.L #4,A7 ; pop the stack

TST.L Do ; DO has the size

BEQ.S XXX ; bad buffer

® Note: If a pointer to the buffer is given to GetBsize () which was not obtained through
the cetMem() call, the return results are not predictable.

5 / MCP A/Rose Utilities

5-5

GetCard()
GetCard() returns the NuBus slot number of the card on which the calling task is running.

The C declaration for Getcard() is

char GetCard ():;

The following example shows how to call cetcard inassembly language:

JSR GetCard

Upon return, po contains the slot number. The slot number is kept in location gsiotNum in
the gcommon data area.

5-6 Macintosh Coprocessor Platform Developer's Guide

AROSEGetDateTime()
AROSEGetDateTime () returns the number of seconds between 12:00 P.M. (Midnight), January 1,
1904, and the time that the function was called.

The C declaration for AROSEGetDateTime() iS

extern pascal void AROSEGetDateTime (secs)
unsigned long *secs;
extern;

The following example shows how to call ARosEGetDateTime in assembly language:
PEA secs ; Address for result

JSR AROSEGetDateTime

Refer to the utility ARoSEDate2secs () earlier in this chapter for an example program that
shows how to use each date/time utility.

5/ MCP A/Rose Utilities

5-7

GetETick()

GetETick () returns the number of major ticks—that is, the elapsed time in ticks—since the
operating system started.

The C declaration for GetETick() is

externunsigned long GetETick():;

The following example shows how to call GetETick in assembly language. and shows the
location of the number of major ticks

JSR GetETick

Upon return, po contains the number of major ticks since the operating system started.

5-8 Macintosh Coprocessor Platform Developer’s Guide

GetgCommon()

GetgCommon () returns the address of the A/ROSE operating system data area, gcommon. Refer
to the include files on the MCP distribution disks for the structure of gcommon.

The C declaration for GetgcCommon () is

extern struct gCommon *GetgCommon();

The following example shows how to call Getgcommon in assembly language.

JSR GetgCommon
MOVE.L DO -> A0 /* AO contains the beginning */
/* address of the gCommon data area*/

The gcommon address is contained in the constant gcommon.

5 / MCP A/Rose Utilities

59

GetHeap()

GetHeap() returns the address of the heap area allocated to the task. If no heap area has been
allocated, cetHeap returns 0. The heap size is specified in a parameter to the A/ROSE
startTask utility.

The C declaration for GetHeap() is

char *GetHeap();

The following example shows how to call GetHeap in assembly language:

JSR GetHeap ; on return, DO has pointer to heap
TST.L DO ; check if heap present
BEQ.S XXX ; jump if no heap

A Caution FreeMem() mustnot be called by your application to release the heap
area allocated, as this process is done automatically by stopTask (). &

5-10 Macintosh Coprocessor Platform Developer’s Guide

GetICCTID()

GetICCTID() returns the task identifier of the InterCard Communication Manager. If there is no
ICCM registered, Get1ccTip retums 0. The C declaration for GeticcTID() is

extern tid_type GetICCTID ();

The following example shows how to call cet1ccTiD in assembly language. The task identifier
of the InterCard Communication Manager is kept in the location gIccTask inthe gcommon
data area. -

JSR GetICCTID

Upon return, po contains the task identifier of the ICCM.

5/ MCP A/Rose Utilities

5-11

GetNameTID()

GetNameTID() returns the task identifier of the Name Manager. The C declaration for
GetNameTID() is

extern tid type GetNameTID ();

The following example shows how to call GetNameTID in assembly language. The task
identifier in the Name Manager is kept in the location gNameTask inthe gcommon data area.

- JSR GetNameTID

Upon return, po contains the task identifier of the Name Manager.

5-12 Macintosh Coprocessor Platform Developer's Guide

GetStParms()

GetsStParms () returns the address of the calling task’s start Parameters. If the calling
task has no startParameter, GetstParms returns 0. The C declaration for GetstParms ()
is

extern char *GetStParms ()

The following example shows how to call Getstrarms in assembly language:

JSR GetStParms ; on return, DO has pointer to
; Start Parameters
TST.L DO ; check if Start Parameters present
BEQ.S XXX ; Jjump if no Start Parameters
A Caution Your application must not call FreeMem() to release the memory

allocated for its start parameters; this process is done automatically by
StopTask (). &

5/ MCP A/Rose Utilities 5-13

GetTCB()

GetTCB() returns the address of the calling task’s Task Control Block (TCB). The C include ﬁles
contain information on the TCB structure. The C declaration for GetTcB() is

extern struct pTaskSave *GetTCB ():

The following example shows how to call GetTcB in assembly language. The address of the
calling task’s Task Control Block is kept in location gcurrTask inthe gcommon dataarea

JSR GetTCB

Move.L Do, so ;address of task control bolock

5-14 Macintosh Coprocessor Platform Developer's Guide

GetTickPS()

GetTickPs () returns the number of major ticks in one second. The C declaration for
GetTickPS() is

extern unsigned short GetTickPS ();

The following example shows how to call GetTickps in assembly language. The number of
major ticks in 1 second is kept in the location gTickPersec inthe gcommon data area.

JSR GetTickPS

Upon return Do contains the number of major ticks in one second

A Warning Because of hardware limitations, the number of major ticks per second multiplied
by the length of one tick may not equal one second. a

5 / MCP A/Rose Utilities ~ §-15

GetTID()

GetTID() returns the task identifier of the calling task.

The C declaration for GetTID() is

extern tid_type GetTID ();

The following example shows how to call GetTID in assembly language. The task identifier of
the calling task is kept in the location gTID inthe gcommon data area.

JSR GetTID

Upon return, Do contains task identifier of calling task.

5-16 Macintosh Coprocessor Platform Developer’s Guide

GetTimerTID()

GetTimerTID () retums the task identifier of the Timer Manager. If there is no Timer Manager
registered, GetTimer returns .

The C declaration for GetTimerTID() is

extern tid_type GetTimerTID ():

The following example shows how to call GetTimerTID in assembly language. The task
identifier of the Timer Manager is kept in the location gTimerTask inthe gcommon data area.

JSR GetTimerTID

Upon return, Do contains task identifier of calling task.

5/ MCP A/Rose Utilities

5-17

GetTraceTID()

GetTraceTID() retums the task identifier of the Trace Manager. If there is no Trace Manager
registered, then GetTraceTID returns 0.

The C declaration for GetTraceTID() is

extern tid_type GetTraceTID ()3

The following example shows how to call GetTraceTID in assembly language. The task
identifier of the Trace Manager is kept in the location gTraceTask inthe gcommon data area.

JSR GetTraceTID

Upon return, Do contains task identifier of calling task.

5-18 Macintosh Coprocessor Platform Developer’s Guide

GetUCount()

GetUCount () provides information when one task is sending information to many tasks; that is,
when there are multiple tasks sharing a buffer. cetucount () returns the usage count associated
with the buffer. The buffer must have been allocated by a call to GetMem () . The usage count
starts at 1 and is incremented by calling the A/ROSE IncuCount utility. A return value of 0
indicates that the pointer passed was 0.

The C declaration for Getucount () is

extern unsigned char GetUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows how to call Getucount from assembly language:

MOVE.L AO,-(A7) ;7 push buffer address
JSR GetUCount ; usage count is returned in DO
ADD.L #4,A7 ; pop the stack

& Note: If a pointer to a buffer not obtained through the cetMem() call is givento
GetUCount () , the return results are not predictable.

5 / MCP A/Rose Utilities

5-19

IncUCount()

IncUCount () is useful where buffers are shared between different tasks and a mechanism is
needed to ensure the orderly release of the buffers. 1ncucount () increments a buffer’s usage
count and retums the incremented usage count (when it has a value of 2 or greater) of the buffer,
or 0. A return value of 0 indicates that the pointer passed was 0 or that the usage count has not
been incremented because an overflow of the usage count field would have resulted. The buffer
must have been allocated with a call to GetMem (). The usage count is decremented when the
buffer is freed using FreeMem().

The C declaration for Incucount () is

unsigned char IncUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows how to call Incucount in assembly language:

MOVE.L A4,-(A7) ; push buffer address
JSR IncUCount ; usage count is returned in DO
ADD.L #4,77 ; pop the stack

& Note: If a pointer to a buffer not obtained through the cetMem() call is givento
IncUCount (), the return results are not predictable.

5-20 Macintosh Coprocessor Platform Developer’s Guide

IsLocal()

IsLocal() returns a true or false indication of whether or not a2 NuBus address is local.

The C declaration for IsLocal() is

extern short IsLocal (address)
char *address; /* address to test. */

IsLocalQ returns true (non-zero) if the NuBus address passed is local. 1sLocal () returns false
(zero) if the address passed is a remote Nubus address.

The form for the IsLocal macro is as follows, where p1 is the address to examine:

[Label) IsLocal Pl

P1 can be specified as a register (A0-A6, D0-D7) or an immediate (#<abs-expr>) Or it can use any
68000 addressing mode valid in an LEA instruction to specify the location of a long word containing
the desired value.)

S / MCP A/Rose Utilities

5-21

Lookup_Task()

Lookup_Task () returns either the task identifier of the task that matches the Object Name and
Type Name specified, or 0 if no matching task is found. The wildcard character = is allowed.
Initially, the index must be set to 0; on subsequent calls, it should be left unchanged.
Lookup_Task () modifies the variable index; this index allows Lookup_Task () to find any
additional entries that may match the criteria in subsequent calls.

A Caution Lookup_Task () communicates with the Name Manager and issues a blocking
Receive; therefore, the task gives up control of the CPU during this call.. Do not use the Lookup_Task
utility in a completion routine or from a routine on the tick or idle chain. a

The C declaration for Lookup_Task () is

tid_type Lookup_Task (object, type, nm_TID, index)
char object(]:

char typel]: !

tid_type nm_TID;

unsigned short =*index;

The task identifier of a Name Manager is nm_t1D, and may be obtained by using GetNameTID ()
or by sending the message 1cc_GetCards tothe ICCM. Lookup_Task() returns the task
identifier of the first task that matches the criteria,

The following code provides an example of how to look up all tasks on the current card:
short index ;

tid_type tid ;

index = 0 H
while ((tid = Lookup_Task ("=", "=", GetNameTID (), &index)) > 0)
printf ("TID %x Found \015\012%, tid);

The following example shows how to call LookupTask in assembly language:

MOVE.W #0, INDEX ; initialize index

PEA INDEX ; address of index
MOVE.L TID,DO ; value of tid on stack
MOVE.L DO, -(A7) ; place on stack

PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME; address of object name
JSR Lookup_Task

ADD.W #16,A7 ; pop the stack

TST.L DO ; check if found

BNE.S DO, XXX ; Jjump if found

5-22 Macintosh Coprocessor Platform Developer’s Guide

MapNuBus()

MapNuBus exists only under A/ROSE running on the smart NuBus card. MapNuBus does not exist within the
A/ROSE Prep driver running on the Macintosh main board. The operating system preserves the state of the page
latch registers if any, for each task.

The input parameter to MapNuBus is the NuBus address of a buffer that is guaranteed to be frozen and locked.
MapNuBus sets up page latch registers, if any, and returns a 32-bit virtual address that can be used for accessing
the physical memory location.

MapNuBus is dangerous to use. Use MapNuBus only when speed is most important. Most programmers can
use NetCopy (described next) in place of MapNuBus with great satisfaction .Programmers choosing to use
MapNuBus must know the hardware limitations of the smart NuBus card being used. For example, on certain
smart NuBus cards, such as the MCP card, the page latch register moves a NuBus address space window. The
NuBus address space window for the MCP card is one-megabyte long and always begins on a one-megabyte
boundary. A new MapNuBus request must be done each time a one-megabyte boundary is crossed.

Programmers choosing to use MapNuBus must also know information about the buffer to be
accessed. For example, the buffer on the Macintosh main board might be paged out to disk unless
the programmer takes special care that it is not paged.

MapNuBus () translates a pointer that may contain a NuBus address to a local pointer. This local
pointer is used by the calling task to access the associated data. MapNuBus () also sets up any
address mapping hardware required for the access. The local pointer is only valid for the task that
called MapNuBus because each task may set up the address mapping hardware differently.

® Note: The local pointer is hardware specific. See Part II for details on the numeric value or
the bounds on the value.

MapNuBus () passes through 0 and local addresses without modifying them. You should assume
that only a single off-card mapping for a task is active at any given time on each card; each call to
MapNuBus () by a particular task invalidates any mapping established by the task’s previous calls
t0 MapNuBus().

The C declaration for MapNuBus() is

char *MapNuBus (ptr)
char *ptr;

The following example shows how to call MapNuBus in assembly language. Only the register
supplied is modified. The address may be specified by an A register or a D register. The mapped
address is returned in the register supplied.

MapNuBus AO

5/ MCP A/Rose Utilities ~ 5-23

A Caution To move data across the NuBus, use Netcopy () (described next). Tasks
that use the A/ROSE utility MapNuBus () must assume the
responsibility for checking NuBus boundaries. Some hardware cards,
including the MCP card, have a limited NuBus address space through which
NuBus accesses are made. The hardware page latch that controls this
NuBus address space needs to be changed whenever address boundaries
are crossed. Netcopy () checks for and correctly handles these
boundaries. a

The Macintosh Ilci also has memory discontinuities that further complicate the use of MapNuBus.

NetCopy()

NetCopy is a solution to many problems involving virtual memory. NetCopy exists in both A/ROSE running on a
smart NuBus card and the A/ROSE Prep driver running on the Macintosh main board.

NetCopy takes two virtual addresses for its address parameters. NetCopy then examines internal A/ROSE
structures to determine if it can convert the virtual addresses to NuBus addresses. These internal structures are
initizlized when A/ROSE on the smart NuBus card and the A/ROSE Prep driver on the Macintosh main board
initialize. The internal structures are then updated if LockRealArea or UnlockRealArea services are called on the
Macintosh main logic board in a virtual memory environment.

If NetCopy cannot convert a virtual address to a NuBus address, NetCopy sends an internal A/ROSE message to
a task located in the appropriate virtual address space that can perform the conversion. An internal A/ROSE
message is returned to NetCopy when the conversion is completed.

In a virtual memory environment, LockRealArea increases the execution speed of NetCopy. When converting
virtual addresses to NuBus addresses, NetCopy examines the internal structures updated by LockRealArea and
UnlockRealArea . NetCopy does not have to send internal A/ROSE messages if the buffers were locked down
using LockRealArea.

4 Note: NetCopy will never be as fast as using MapNuBus and doing the copying directly.
However, NetCopy is much safer than using MapNuBus.

NetCopy () will copy data from a source virtual address to a destination virtual address.
NetCopy () has been designed to be safe and convenient, although you are advised to use only
NetCopy for your data transfers. If the memory areas specified are locked and frozen in
memory, then the copy process will go very fast.

5-24 Macintosh Coprocessor Platform Developer’s Guide

A Caution NetCopy may send messages and issue blocking receive requests to wait for
replies. Therefore, NetCopy must not be called at interrupt level by code that must be
run in run-to-block mode, or called by code on the tick or idle chain. a

The C declaration for Netcopy () is the following:

short NetCopy(tid_type srcTID, void *srcAddress,
tid_type dstTID, void *dstAddress,

long bytecount);

The virtual address srcaddress is the virtual address space of the task whose Task ID is
sreTID. The virtual address dstAddress is the virtual address space of the task whose Task ID
iS dstTID.

Netcopy () will safely, perhaps slowly, copy data from the source to the destination. Both the
source and destination virtual addresses can be paged out to disk in a virtual memory environment.
Netcopy () will cause these pages to be brought back into physical memory and perform the
copy. The copying of data might be done by the processor on the Macintosh main logic board
rather than by the NuBus card.

NetCopy () returns zero if the copy was successful. Otherwise, NetCopy () returns an error
status.

Error Codes:
Non zero if there was an error in NetCopy () .

A Warning srcAddress and dstAddress must both be 32-bit clean virtual
addresses. Memory manager flags must not be in the high byte of a Macintosh main logic board
address.

Do not call Netcopy from interrupt routine because it does a blocking receive. Do not call
NetCopy in idle chain because you cannot block idle chain. a

If you call Netcopy from task that runs under run to block mode, be aware that Net Copy may
do a receive and give up the control of the CPU.

5 / MCP A/Rose Utilities

5-25

Register_Task()

Register_Task () allows a task to register itself with the object and type names specified,
using the Name Manager. The object and type names must not exceed 32 characters. If the task
should be visible only to other tasks on the same card, 1ocal_only is set non-zero. If the task
should be seen by other tasks on other cards, then local_only issetto (. Register_Task ()
returns a non-zero value if the task was registered; otherwise, 0 is returned.

N\

A Warning Register_Task () communicates with the Name Manager and issues a blocking
Receive; therefore, the application gives up control of the CPU during this call. Do not use the register-task
utility in code that can be called at interrupt level, such as a completion routine, or the tick or idle chain. a

The C declaration for Register_Task() is

typedef boolean short;

char Register_Task (object, type, local_only)
char object []:
char type [(1]:

boolean local_only:

The following code provides an example of how to register a task:

if (!Register_Task ("my_name", "my_type", 0))
printf ("Could not Register Task");

The following example shows how to call the Register_Task routine in assembly language:

MOVE.L #LOCAL, -(A7) ; value of local on stack
PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME ; address of object name
JSR Register_Task

ADDQ.W #12,A7 ; pop the stack

TST.B DO ; check if register ok
BNE.S OK ; jump if OK

5-26 Macintosh Coprocessor Platform Developer’s Guide

AROSESecs2Date()

AROSESecs2Date () takes the number of seconds elapsed since 12:00 P.M. (Midnight), January 1,
1904, as specified by the seconds parameter, converts it to the corresponding date and time, and
returns the corresponding date/time record in the date parameter.

The C declaration for AROSESecs2Date() is

pascal void AROSESecs2Date(secs, Date)

long secs;
DateTimeRec *Date;
extern;

The following example shows how to call ARosEsecs2pate from assembly language:

Move.L secs, -(A7) ; number of seconds
PEA Date ; Address for result -

; date/time record
JSR Secs2Date

Refer to the utility ARCsEDate2secs () earlier in this chapter for an example program that
shows how to use each date/time request.

5/ MCP A/Rose Utilities

5.27

SwapTID()
swapTID() swaps the mFrom and mTo fields of a message buffer.

The C declaration of swapTID() is

void Sw