
summary.doc Wed Sep 3 00:52:27 1986 1

Yacc (Yet Another Color Computer) Functional Description

The Yacc is a 68010 based single board computer. It's main components
are the 68010, a megabyte of RAM, up to 1/2 megabyte of ROM, a Zilog sec
for serial communicatJLon, an Apple IWM for controlling Sony microfloppies,
3 6522 VIA's, a byte wide port to a Priam Datatower (85 MB), and a byte
wide port to an Apple ProFile or a 3COM Ethernet box. The translation
buffer portion of a paged MMU is implemented. The following is a simple
description of each of the main components.

Memory Management Unit

The MMU consists of 2 - 2Kx8 static RAMs, comparators, multiplexors,
bus drivers, and a controlling PAL. There are two translation buffers that
are 1024 entries in lE~ngth, with each entry having 16 bits. Which of the
two buffers are selected are determined by the Supervisor/User output from
the 68010, and both buffers are accessible to the CPU when in Supervisor
state. The pages that are mapped by the MMU are 1024 bytes (lK) in size;
this allows the entirE~ megabyte of the machine to be mapped at one time.
The 16 bits of each entry are used as follows:

Bit US
Bit #14
Bit #13
Bit U2:03
Bit #02:00

- RefE~renced Bit. Set to '1' if the page is ever referenced.
- Modified Bit. Set to '1' is the page is ever written to.
- Valid Bit. User controlled, set to '1' is page is mapped.
- Physical Address. These are physical addresses 19:10.
- Tag Field. These map 8 logical megabytes to 1 physical meg.

The 16 megabyte address space of the 68010 is divided into two spaces,
Logical RAM and I/O space. The I/O space is selected by via address line
#23 being equal to 1; there is no protection feature that disables a user
from addressing the I/O space.

Because the haLrdware only supports the translation of addresses and
the referenced and modified bits, the entire overhead of providing a
virtual system must be done in software. The hardware will cause a bus
error if the page is not mapped; the software must maintain it's own
page tables and other such data structures.

Video Frame Buffer

The Yacc has an eight plane deep frame buffer with a 256 x 16 bit
color lookup table. ~~he video access to memory is interleaved with CPU
access; this interleave is transparent to the software. The physical
memory layout to support the 8 planes needs support by MMU mapping
to allow the 8 planes to appear contiguous. The memory can be viewed
as divided into 8 128Kb partitions. Each video plane resides in one
of these 8 partitions. The physical starting address is the same for
each of the planes, and can be viewed as an offset from the start of
partition. This starting address loaded from a 16 bit wide register.

Interrupt Structure

There are five lines into a 8 to 3 line priority encoder. They
consist of three interrupt request lines from the 3 VIA's, one interrupt
request line from the SCC, and a non-maskable interrupt. Each VIA has
2 timers that can inte:rrupt. The VIA #1 can interrupt because of
video blanking, mouse movement, every second from a real time clock,
and SCC data available(don't ask). The VIA #2 can interrupt because
of the Priam Port, and the Parallel Port. The VIA #3 is unconfigured

summary.doc Wed Sep 3 00:52:27 1986 2

and has no dedicated usage. The sec can interrupt because of available
data and other such state transistions. The NMI interrupt is caused by
pressing a button. The following is the assignment of the interrupt lines:

Interrupt Level
00
01
02
03
04
05
06
07

Chip Possible source

VIA #3
VIA #2
VIAU

sec

NMI

currently undedicated
Priam and Parallel Ports
Mouse, Video, Real Time Clock, SCC

sec state transistions

Button Push

yaccintosh.doc Wed Sep 3 00:52:27 1986 1

Interrupts

The CPU is capable of being interrupted at five different levels (1-3,5,7);
they are allocated as follows:

Level Function

1 Slow-speed general purpose parallel port (SSPvia)
2 Miscellaneous control I status (MSCvia)
3 MAC-compatible control I status (MACvia)
5 Serial communication controller (SCC)
7 'NMI' console button (NOT DEBOUNCED)

Memory Management Unit

Believe me, you really do not want to know how this works.

Serial I/O Subsystem

The YACCintosh uses the Zilog/AMD SCC Serial Communications Controller
as th~ heart of its asynchronous/synchronous communications subsystem.

I now suggest you read (skim) the AMD SCC/Z8530 Technical Manual for a
full description of the part; the following paragraphs will be significantly
easier to understand.

The SCC interfaces via a control/data register protocol. The control
register is first loaded with the desired internal register ID (a number
from 0 to 15), then the SAME control register is read or written to access
the actual register contents. Thus an internal register access is
(MUST BE~) an INDIVISIBLE pair of control register accesses. A read of the
control register will always get the sec 'in sync' so that a write-address/
read-write-data sequence can be successfully performed (this synchronization
need only be done if it is not already known that the sec has been left
in a synchronized state). After a valid internal register data access, the
internal sec indirect pointer value is set to 0 (the status register) .

A data register access refers to the data buffer registers within the sec,
it is NOT used when rE!fering to internal SCC control registers (ie, the
external data register is actually just a fast way to access internal
register 8) .

Separate control and data register sets exist for each of the two channels
of the sec (A,B).

Note also that the SCC registers DO NOT access at the same external address
for reading and writing. Only byte moves to and from the sec are valid;
all other operations are UNDEFINED.

The two DCD ports of the sec are used not for serial I/O related functions,
but rather as input sources for movements of the mouse. See the below
section on the mouse interface for further details.

The SCC interrupts the processor at level Ox5.

yaccintosh.doc Wed Sep 3 00:52:27 1986 2

(This may all seem pretty wierd at first; but this is the way the MACintosh
did it, and the YACCintosh is MACintosh compatible) .

Notes

1) The sec hardware rE~quires a guaranteed minimum of 1800 nanoseconds
between any two references to its control register (address and/or data) .
This corresponds to four NOPs (or equivalent number of memory accesses to
instructions or data) on the YACCintosh.

2) A sample setup for ONE channel of the sec in async mode
that the ORDER of writing thew registers IS important) :

wr9 <- OxOO interrupts off
wrl <- OxOO ditto
wr15 <- OxOO ditto

wr4 <- Ox4C BRG in x16 mode, 2 stop bits, no parity
wrll <- OxDO RcvClk=XmtClk=BRG, BRG from XTAL
wrlO <- OxOO NRZ mode (necessary ?)
wr12 <- OxFF&(BRGcnt>>O) BRG low byte
wr13 <- OxFF&(BRGcnt>>8) BRG high byte
wr14 <- OxOl BRG from XTAL & enable
wr3 <- OxCl Rcv=8 bits & enable
wr5 <- Ox6A xmt==8 bits & enable, RTS enable

wr8 <- '?' Transmit some data

3) The formula for computing the BRG counter value is:

BRGcnt = 3686400/(2*16*baud) - 2;

is

Then for baud=9600, BRGcnt=lO (all numbers in decimal).
This assumes the BRG source = XTAL at 3.6864 MHz, and the
divider is in divicle-by-16 mode (REQUIRED FOR ASYNC MODE) .

EtherNet/3Com Subsystem

Priam DataTower Subsystem

=====================
Floppy Disk Interface

Believe me, you REALLY do NOT want to know how this works.

Mouse Interface

(note

yaccintosh.doc Wed Sep 3 00:52:27 1986 3

Believe me, you really do not want to know how this works.

Keyboard Interface

Believe me, you really do not want to know how this works.

Time-of-day Clock Interface

Believe me, you really do not want to know how this works.

VideoMap Lookup Table

Believe me, you really do not want to know how this works.

mmu.doc Wed Sep 3 00:52:26 1986 1

YACCintosh MMU Description DNN, 15-NOV-1984

OVERVIEW

The YACCintosh (YACC) memory management unit (MMU) implements a simple
subset of a demand-pa~red virtual memory architecture. Specifically,
hardware supports a translation buffer cache (TBUF) mechanism and
access control (valid/referenced/modified) bits on a per-page basis,
for one active user-level and a system-level process context.

The 24bit virtual add1~ess (VA) of the 68010 processor provides access to a
16 Megabyte (MB) procEiss address space. This is subdivided into two 8 MB
spaces; I/O space and R/W memory space.

I/O space is unmapped, and is thus the same for all processes (system and
user) . There is no access protection mechanism - any process may access
any I/O address. This is NOT a bug; as the YACC is a development
machine, unrestricted access to I/O was explicitly desired so that interfaces
to new I/O devices could be easily developed without having to write a
device driver and relink the kernal (on UNIX, for example) . Certain I/O
devices will just be 'off limits' to application access; violate this
protocol and the response of the operating system will be 'undefined'.

Memory space is mapped via the MMU to provide isolation between processes,
and allow process sizEis (program plus data) significantly larger than
the limits imposed by the actual lMB physical memory size:

lMB total - 0.3MB bitmap - O.l?MB os = 0.6MB available

Process memory space i.s divided into 8192 - 1024 byte pages (8MB total) .
The TBUF is a one-way set-associative direct-mapped cache of 1024 (pure
coincidence that this is also the page size) of the possible 8192 entries
in a process page table.

There are two separatEi, non-interacting TBUF contexts; one is used while the
processor is accessing memory in SYSTEM mode, the other while in USER mode.

During memory accesses (not I/O), access validation (VALID bit and TAG field
compare), maintenance of REFERENCED/MODIFIED status bits, and physical memory
address generation is done automatically for all pages mapped validly by the
contents of the TBUF. Any access fault interrupts the processor, which must
fix the problem (TBUF maintenance, page faults), and then continue the faulting
process. (!o'-c/Jo2'1,bylt.p'jS1 .JL I .,'l. '20)

f
r.-i~~ p~ Trn~e. ~ 711-c., l VA t. .

·r13of ~ Lr~ I ~oJ l vrtlil l I l J I L ~
DETAILED OPERATION rs 1c.t •) 11. " 16 er ,. , c.. s ~ '3 ~ , D

('lmb Ulr+o.rJr/f"'OG~
(1mb ph~cs mtlVlJ

Here is a pseudo-code description of the MMU operation; first some
definit.ions:

VA<23:00>
23
22:20
19:10
09:00

- processor virtual address
O=memory I l=I/O space
tag compare field, if memory
TBUF index field, if memory
displacement in page, if memory

MA<19:00> - memory address

DB<15:00> - processor data bus

TB[0 .. 2047]<15:00> - the TBUF itself

II IAC::. I PAG£ l AP'R. ·~ P4Gt (
I ''!I 1 1 I L t Lt ' ' I ' ' ' u . .1 ' 1 1 1 ll Zl. l I 20 l'i fv n 11. Ir D~ 13 ft ,. I• .. ' .., ~ s") 2. I "'

REF 15 referenced bit, set by hdwe on any access
MOD 14 modified bit, set by hdwe on WRITE access
VAL 13 valid bit, set by sfwe if TBUF entry is valid

mmu.doc

PFN
TAG

Wed Sep 3 00:52:26 1986 2

12:03
02:00

physical page frame number; set by sfwe
TBUF tag entry; VA<22:20> of the PTE to
which this entry corresponds; set by sfwe

WRITE 1 for cpu write cycle, 0 for read cycle

CNTXT 1 for cpu in SYSTEM mode, 0 in USER mode

On a per-memory cycle basis, the operation of the MMU proceeds as follows:

/* 'I I' is bitfield concatenation*/

if (VA<23> eq 0) {
/* VA<23>=0: i:/w memory access */
I = CNTXT I I VA<19:10>; /* just for clarity */
if (TB[I]<VAL> eq 1 and VA<22:20> eq TB[I]<TAG>) {

/* TBUF entry is correct ... proceed*/
TB [I] <REF> = 1; I* set REF bit *I
TB[I]<MOD> = TB[I]<MOD> or WRITE; /* set MOD bit on write */
MA<19:00> = TB[I]<PFN> I I VA<09:00>; /* compute memory address */
ALLOW_MEMORY_WRITE (); /* but only if WRITE set * /
return(DTACK); /*and return OK*/

else {
/* TBUF entry is NOT valid for this virtual address */
INHIBIT_MEMORY_WRITE(); /*since MA is junk */
return (BUS_ERROR); /* return ERROR & abort */

else {
/* VA<23>=1: i/o access */
if (VA<23:20> eq Ox900000>>20)

/* i/o access to mmu register set */
I = VA<12> I I VA<lO:Ol>; /* just for clarity */
if (WRITE eq 1) {

/* register write - SYSTEM only */
if (CNTXT eq SYSTEM) {

TB[I] = DB<15:00>;

else
/* register read */
DB<15:00> = TB[I];

return(DTACK);
else {

/*some other i/o ... *I

PROGRAMMING INFORMATION

Power-Up Initialization

/* always return OK */

When the system is first powered on or RESET, the contents of the MMU will
be somewhat random. ~·he POWER UP bit in the MAC VIA will be ON, relocating
the ROM to start at address OxO, thus fetching the restart PC/SP from ROM.
The ROM initialization code will then set the system-level MMU context to be
a (linear) map of all available memory (lMB), with VALID bits set and the MMU
tag field set to OOOb. The ROM code then begins executing at its image
starting at Ox80xxxx, and clears the POWER_UP bit. This effectively turns
the MMU ON, and the lMB RAM memory now appears at OxOOOOOO-OxOFFFFF, each
page mapped uniquely and marked as valid.

Setting a context

mm.u.doc Wed Sep 3 00:52:26 1986 3

The TBUF accesses as two 1024-entry banks of word-wide registers in I/O
space. The single usE~r context is accessible at Ox900000-0x9007FE; the
single system context is at Ox901000-0x9017FE. See the above tables (or
the file 'yacc-hdwe.h") for the exact format of an entry. Note that only
word-wide write accesses are allowed to the TBUF (no byte writes) .
The TBUF is readable from any process; only a process in system mode
can write to it, howe~rer. This provides a reasonable level of protection
between mutually interfering processes.

Translation buffer faults, page faults

Any error in translating the current VA thru the TBUF (due to either a
'real' page fault; or a TBUF fault when the indexed TBUF entry holds a
tranlation entry for another page) will result in a BUS ERROR to be
generated on the 68010 CPU. It will then stack however many words it
feels is necessary to save its state, and enter the BUS ERROR interrupt
routine, which then SE~rvices the TBUF fault or page fault (determined
by looking at the faulting VA on the stack and the contents of the TBUF
location it would index) . Note that this implementation is NOT a high
performance virtual memory system; but it will get the job done. There
is enough hardware support to allow emulation of a reasonable subset of
the of the Motorola MMB/MMC/PMMU subsystem.

For a TBUF fault, the current contents of the desired TBUF location must
be saved in the memory image of the process's page table, and then the
TBUF location loaded with the appropriate data from the new page table
entry [this is all done by software] .

Referenced, modified bits

These bits are set automatically by the hardware whenever an indexed TBUF
entry is valid and subsequently accessed or written, respectively. All
other bits in a TBUF emtry are not modified by the hardware in any way.

adrmap Wed Sep 3 00:52:28 1986 1

YACCintosh AddressMap DNN, 06-Feb-85

222211111111110000000000
BaseAddr 321098765432109876543210

$00,0000
$40,0000
$00,0000

$8C,0000
$8D,0000
$8E,0000
$8F,0000

OOxx .. 00**************** Ar/- d ROM (64KB), power-up
Olxx**'k***************** A r/w c RWM (1024KB), power-up
O*****;'***************** A r/w c RWM (8192KB), normal

1000 .. 00**************** Ar/- d ROM (64KB, bankO)
1000 .. 01**************** Ar/- d ROM (64KB, bankl)
1000 .. 10**************** Ar/- d ROM (64KB, bank2)
1000 .. 11**************** Ar/- d ROM (64KB, bank3)

$9F,E800 1001 *.**********OW r/w d MemoryManagement

$AC,FFFF
$AD,FE00
$AE,
$AF,

$BC,FF81
$BD,
$BE,
$BF,

1010 .. 00 1 L r/w d FastPPort (fast access)
1010 .. 01 ********OW r/w d VideoMap
1010 .. 10 - -/- d unused
1010 .. 11 - -/- d unused

1011 .. 00 ******1 L r/w d PriamPort
1011 .. 01 - -/- d unused
1011 .. 10 - -/- d unused
1011 .. 11 - -/- d unused

$C., 1100 -·-/-dunused

$DC,FFFE
$DD,FFE1
$DE,FFF8
$DE,FFF9
$DF,

$EC,FFFF
$ED,FF80
$ED,FF40
$ED,FF20
$EE,FFFE
$E:E',FFFE

$FC,
$FD,
$FE,
$FF,FFFE

1101 .. 00 *A -/w p MicroFloppySpeed (PWM)
1101 .. 01 ****1 L r/w p MicroFloppyData/Cntl (IWM)
1101 .. 10 **0 Ur/- p SerialIO (SCC)
1101 .. 10 **1 L -/w p SerialIO (SCC)
1101 .. 11 - -I- p unused

1110 .. 00 1 L r/w p FastPPort (slow access)
1110 .. 01 100****0 U r/w p VIA, GP SlowPort
1110 .. 01 010****0 U r/w p VIA, MACbits
1110 .. 01 001****0 U r/w p VIA, MISCbits
1110 .. 10 0 W r/w p SoundBuffer DMAddress
1110 .. 11 0 W r/w p VideoBuffer DMAddress

1111. .00 - -/-
1111 .. 01 - -/-
1111 .. 10 - -/-
11111111 * A. r/w
----====----====----====\! I
222211111111110000000000 I I
321098765432109876543210 I I

I I
I I

p unused
p unused
p unused
p InterruptAcknowledge
I
d fast dtack cycle
c == conditional dtack cycle
p peripheral (vpa) cycle

I r == read access allowed
I w == write access allowed

II
unused space, all accesses NOPed

* A word/byte access, any combination
0 W word access only
* B upper or lower byte access only
0 U upper byte access only
1 L lower byte access only

