
@

iiTaligent. ><

-<

i:.:

0

"'

-
z

0 TAI_; IGENT

rJl lN 'r ERNAL
~

\.>.I

TOOLS >

.~ .. if.-.···~ f ..,.

'>~

TALIGENT INTERNAL TOOLS

TALIGENT, INC.

10201 NORTH DE ANZA BOULEVARD

CUPERTINO, CALIFORNIA 95014-2233
USA

(408) 255-2525

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION

TALIGENT INTERNAL TOOLS

Copyright© 1994 Taligent, Inc. All rights reserved.
10201 N. De Anza Blvd., Cupertino, California 95014-2233 U.S.A.
Printed in the United States of America.

This manual and the software described in it are copyrighted.
Under the copyright laws, this manuaJ or the software may not be copied, in
whole or part, without prior written consent of Taligent. This manual and
the software described in it are provided under the terms of a license
between Taligent and the recipient and its use is subject to the terms of that
license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more
U.S. and International Patents.

TRADEMARKS: Taligent and the Taligent logo, are registered trademarks of
Taligent, Inc. All other Trademarks belong to their respective owners.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

CONTENTS

Preface ... 1x

A quick start .. x1
Getting started ... XI

Setting up for the first time .. XII

Installing builds .. XIII

Updating builds ... XIII

Running layer programs ... XIII

Running native programs .. XIV

Locating sample applications .. xiv
The source code repository .. xv

Layer source code editing and browsing with SNiFF + XVI

Installing SNiFF+ .. xvi
Creating a project .. xvi
Editing in SNiFF+ .. XVII

Compiling and linking .. XVII

Running a modified application .. XVIII

Debugging an application .. XVIII

System Tests ... XIX

BATs .. XIX

SSTs ... xix
System test applications ... xix

Problem reporting ... xx
Terms and definitions .. xx1

Native defect and change control process ... XXIII

Filling out ICBM forms .. xx1v

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

II

Chapter 1
Introduction , ... 1

Chapter 2
Working in the AIX environment ... 3
Setting up for Taligent Application Environment ... 3

Get the default startup scripts ... 3
Create your Work directory .. 4
Initialize your environment .. 5
Create your copy of source tree .. 5
Install the build .. 5

Setting up for Taligent Operating System .. 6
Prepare your environment .. 6
Install the Native TalOS build .. 7

Building projects .. 7
Checking files in and out ... 8

Checkout .. 8
New files .. 9
Checkin .. 9
Branching ... 1 o
Class and member descriptions .. 1 1

Other SCM tools .. 11

Starting and stopping the Taligent Application Environment 12

Starting the layer ... 12

Stopping the layer ... I 2

Starting and stopping Taligent Operating System programs 13
Transferring your program ... 13
Starting your program · ... 14
Stopping your program ... 14

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Ill

Chapter 3

Taligent SCM tools ... 17
Symbolic names .. i 8
Checkin ... 19
Checkout .. 22

CompareVersions ... 24

Latest ... 26
ListVersions .. 26
NameVersions .. 28
NativeRoot .. 31
SCMAdmin ... 31
SCMCreateDirectories ... 32
SCMDiff .. 33
SCMFetch ... 34
SCMinserilieader .. 36
SCMLog .. 36
SCMNormalize ... 37
SCMProjectFile ... 3 7
SetRoot ... 38
SyncSources .. 38

Chapter 4

The build environment .. 4 1

Taligent build terminology ... 41
The build process ... 42

Makefiles ... 43
Makefile description syntax .. 43
Target types ... 43

Makeit ... 44
Passing options to make ... 45
Creating makefiles .. 45
Universal.Make .. 45

Environment variables ... 46
SetRoot and NativeRoot ... 48
How to change environment variables .. 48
When to change environment variables .. 48

Real life examples .. 49
A simple sample .. 49
A faster build ... 5 I
A clean build ... 52
A not-so-simple makefile ... 52
A simple * .PinkMake .. 53
Adding link libraries ... 54

System builds .. 57

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

IV

Chapter 5
Taligent build tools ... 59
Create Make ... 60
FindSyrribols .. 61
Interimlnstall .. 64
IPCPurge ... 65
MakeExportList .. 6 5
Makeit .. 66
MakeSharedApp ... 68
MakeSharedLib .. 69
MakeSOL .. 69
mop ... 70
Nativelnstall .. 70
rp ... 71
RunDocument .. 72
runpink ... 73
SharedLibCache ... 7 3
slibclean .. 74
SmartCopy ... 7 4
S tartPink ... · · 7 5
StopPink .. 75

Chapter 6
CreateMake .. 77
application .. 78
binariessubfolderdir ... 78
binary ... 79
build .. 80
compileoption .. 80
developmentobject ... 81
end ... 81
export ... ; .. 82
header ... 83
headerdir .. 8 3
heapsize ... 84
library .. 84
link ... 84
loaddump .. 85
local ... 86
localheader ... 86
localheaderdir ... 87
make .. 87
object (tag) ... 88
object (target) ... 88

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

v

objectdir .. 8g
parentobject ... 8g
parentobjectdir .. go
private ... go
privateheaderdir ... g 1
program .. g1
public .. g2
server ... g2
source .. g3
sourcedir ... g3
start ... g4
subfolder ... g4
subfolderdir .. g5
subproject ... g5
testapplication .. g6
testlibrary .. g6
testparentobject .. g6
testserver ... g6
tool .. g7
trimdependencies .. g7

Chapter 7
Analysis tools .. gg
Overview ... 1 oo

Tools .. 101
Limitations ... 101
TLocalHeapMonitor ... 101
TLocalHeapAnalyzer .. 102
Heap monitoring file format .. 1 02
Heap analysis file format .. 103
Heap corruption ... 104
Debugging heap corruption ... 104
AIX notes ... 104

Dynamic analysis .. 1o5
Dynamic typing ... 1o5
Dynamic error detection .. 105
Garbage finding .. 106

Class descriptions ... 106
Local heap tool .. 106
Heap monitor classes .. 107
Heap analyzer classes .. 1 og
Tool utility classes ... i 13

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

VI

Chapter 8
Test tools ... 11 5
TCL .. 115

The TCL shell-ttclsh ... I 15

Running tests from TCL scripts .. 116

Learning more about TCL .. i i 6
Ensuring portability ... 11 7
A TCL example .. 1 1 7

Chapter 9
Xcdb .. 119

Setup ... 122

Installation ... 12 2

Signals .. I 2 2

Compiling .. 12 2

Running .. 123

Program starting .. 12 5
Program interrupting .. 125

Program terminating ... 125

Xcdb exit codes ... 125

Window organization ... 126

Window manipulation .. 12 7
Execution control ... 129

Format Control ... 130

Common Formats .. 130

Type-specific Formats .. 131
class, struct, and union formatting ... 132

Array formatting .. 134
Pointer formatting ... 137

Breakpoints ... 137

Preferences ... 138

Self-displaying C++ objects ... 139
Customization ... 140

Frequently asked questions .. 142
Reporting bugs , ... 14 7

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

VII

Chapter 10
GOB .. 149
Installing GDB .. 149
Running GDB ... 150

Source-level debugging ... 150
Executing programs .. 151
Getting help ... 151
Quitting GDB .. 151

Using breakpoints .. 152
Using steps .. 153
Examining data .. 153
Tracing instructions ... 154
Debugging shared libraries and rp-executables ... 154
Problems and other useful information ... 156

Appendix A

Tips & techniques ... 159
cdpath ... 159
xcdb-the debugger .. 160
OpusBug() .. 160
Emacs .. 162

Emacs shell .. 162
Emacs function keys .. 162
Emacs and tags .. 166

Emerge .. 167
Commands .. 167
Modes ... 168

Appendix B
Taligent source code maintenance .. 171
Terminology ... 171
Project Hierarchy ... 172

Index .. 175

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

VIII

ION PRELIMINARY

PRELIMINARY

PREFACE

Taligent Tools for AIX is a reference guide to the tools that Taligent engineers use
in everyday development work on the AIX® platform. Most of these tools were
developed specifically for building the Taligent Application Environment® and
the Taligent Operating System.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

IX

x

ION PRELIMINARY

A QUICK START

This summary, for internal Taligent developers only, is a quick overview to the
topics of this book. It includes information on:

w Setting up and using your AIX system, page xi

rn The SNiFF+ programming environment, page xvi

u System tests, page xix

w Defect and change control procedures for Taligent Operating System,
page xxiii

rn Problem reporting page xx

This summary is intended to quickly get you using the tools necessary to build
Taligent systems and applications. This is not a substitute for the rest of this book,
or for other more detailed company guides. To learn about the SNiFF+
programming environment, see the "Getting started" chapter in the SNiFF+
Reference Guide (Part III of Taligent Tools for AIX). Also, The Methodologies and
Processes Binder (The MAP) explains the Taligent software development·
methodologies and processes.

GETTING STARTED

PRELIMINARY

The instructions in this section will help you quickly set up your AIX
environment so that you can start building your code. However, the instructions
are terse with little or no explanation. For more detailed information on setting
up and using your AIX environment, see "Working in the AIX environment" on
page 3, which covers these steps in greater detail.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XI

XII A QUICK START

GETTING STARTED

Setting up for the
first time

D Ask Technical Support to set up your AIX workstation with the Taligent
standard setup and establish the appropriate server connections.

fJ Install the default startup files. This will overwrite the . cshrc, . profi 1 e,
. mwmrc, . Xdefaul ts, . 1 ogi n, .xini trc, and . emacs files on your system.

Q For layer work:

cd /usr/taligent/defaults
Install Defaults

0 For native work:

/usr/taligent/defaults/Nativelnit -/Work

II Log out completely and log in again to ensure proper execution of the new
scripts. To log out:

e Choose End Session from the root menu by holding down the right
mouse button on the desktop background. '

0 Choose OK.

II For layer work, create a working directory. The working directory will become
what is known as your $TaligentRoot. (Although you don't have to call your
working directory Wom, this is the Taligent standard name.)

cd $HOME
mkdir Work

l!I Initialize the environment variables. The option -1 indicates that you always
want the latest build. The -c option creates all of the $TaligentRoot
subdirectory trees on your local machine.

Q For layer work,

SetRoot -1 -c -/Work

0 For native work:

NativeRoot -1 -c -/Work

(I NOTE You need to run SetRoot or Nati veRoot each time you log in to a
terminal session that uses the Taligent build environment. If you get an error
message like "##fl: Command: Environment variable $TaligentRoot must be set!'',
it is because you didn't run SetRoot or Nati veRoot in the session.

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Installing builds

Updating builds

Running layer
programs

To install a build for the first time:

D Verify that your machine has 400 Mbyte of free disk space.

df

fJ Install the latest build:

9 For layer work,

cd -/Work
Interiminstall
SetRoot -/Work

© For native work:

cd -/Work
Nativeinstall
NativeRoot -/Work

To update to a later build

D For layer work, (the - b first removes the existing build):

cd -/Work
SetRoot -/Work
Interiminstal l -b
SetRoot -/Work

fJ For native work:

cd -/Work
NativeRoot -/Work
Nativeinstall -b
NativeRoot -/Work

A QUICK START XIII

GETTING STARTED

To run a program on the layer, first start the layer, and then run your program.

D Start the layer:

cd $TaligentSharedlibs
Startpink

fJ Run the Macrame program:

Macrame &

lJ Quit the Layer:

cd $TaligentSharedLibs
StopPink

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XIV A QUICK START

GETTING STARTED

Running native
programs

Locating sample
applications

To run a Taligent Operating System program:

D Transfer your program (/home/mpogue/MyTest) as binary to an Intel machine
(chrome):

cd $TaligentSharedlibs
ftp chrome
type binary
cd /home/mpogue/MyTest
put Macrame

fJ Start your program:

rlogin chrome
cd /home/mpogue/test
rp Macrame &

II Stop your program:

$ Run jobs to list running programs.

jobs
[1] + Running rp

0 Run k i 11 to stop the program.

ki 11 -9 %1
[1] Terminated rp

The $TaligentSharedLibs directory contains libraries and sample applications. If
you aren't already in the working directory, move there.

cd $TaligentSharedlibs

Here are three sample layer applications:

w To start the Mars application:

Mars documentName &

w To start the RunDocument Application:

RunDocument -c -o TTextStationery EditableTextlib&

m To start the Workspace Application (which brings up the Taligent Workspace
Environment):

CreateWorkspace
LaunchWorkSpace

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

The source code
repository

A QUICK START xv
GETTING STARTED

The source code repository is located in $TaligentSCMRoot. The directories on
your local machine (created with SCMCreateOi rectories) are parallel to the
repository directories.

Taligent has a set of wrappers and extensions for accessing files in the repository.
For example, when files are checked in or out, they are each associated with a
specific build version number such as D3 l. l. Here is summary of the key
commands and useful options to use when checking source in and out.

Checkout -a -r

Checkout -a -r -v 031.1

Checkout foo.C

Checkout -m foo.C

NameVersions -f foo.C

Checkin -a -r

Checkin -i foo.C

Checkin -a -r -n 031.1

CompareVersions 030.1 031.1

CompareVersions -latest

Recursively checks out the latest build.

Checks out all of the files in the directory that
are in the D31.l release.

Checks out the latest foo. C file.

Checks out the latest foo. C file for modification.

Display a list of all of the versions available for
foo.C.

Recursively checks in all of the files that are
checked out.

Checks in foo. C for the first time.

Recursively check in all of the files that are
checked out and set their build version to D31.l.

Compares what files have changed between
build D30.l and D31.l.

Shows what has changed in the current
workspace directory compared with the latest in
the repository.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XVI A QUICK START

LAYER SOURCE CODE EDITING AND BROWSING WITH SNIFF+

LAYER SOURCE CODE EDITING AND

BROWSING WITH SNIFF+

Installing SNiFF+

Creating a project

SNiFF+ provides a C/C++ development environment for browsing, cross
referencing, design visualization, documentation, editing, and debugging.
SNiFF + makes it possible to rapidly edit and browse large software systems in
both a textual and graphical manner.

For more detailed information about SNiFF+, see the "Getting started" chapter
in the SNiFF+ Reference Guide (Part III of Taligent Tools for AIX).

To use SNiFF+, you need to set three environment variables:

rn In C Shell:

setenv SNIFF_DIR /usr/talilocal/packages/SNIFF
setenv LM_LICENSE_FILE $SNIFF_DIR/license.dat

In your . cs h re file change the PATH variable to include:

$SNIFF_DIR/bin

m In Korn Shell or Bourne Shell:

SNIFF_DIR-/usr/talilocal/packages/SNIFF; export SNIFF_DIR
LM_LICENSE_FILE-$SNIFF_DIR/license.dat; export LM_LICENSE_FILE

In your . profi 1 e file change the PATH variable to include:

$SNIFF_DIR/bin

To work in the SNiFF+ programming environment, you must have a SNiFF+
project. This can be done from inside SNiFF + by following the instructions in
"Creating a new project" in the SNiFF+ Reference Guide (Part III of Taligent Tools for
AIX). Or, more easily, from outside of SNiFF+ with genproj, a command that
creates a project consisting of all of the files in the specified directory, as well as
creating subprojects in all of the corresponding subdirectories. Source Di rectory
is your working directory, and ProjectName is the name you want to call the
project. The -e indicates that subprojects should not be created in empty
subdirectories.

genproj SourceDirectory -p ProjectName -e

NOTE To see all Taligent header files in your project, create a subproject to
your project, and include in that subproject the header files in $Taligentincludes
($TaligentRoot/Taligentincludes/Public).

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Editing in SNiFF+

A QUICK START XVII

LA YER SOURCE CODE EDITING AND BROWSING WITH SNIFF+

SNiFF + provides two choices for editing source code:

SNiFF+'s own integrated editor (the default).

An interface to standard emacs. Refer to "Emacs integration" in the SNiFF+
Reference Guide (Part III of Taligent Tools for AIX) to understand how to
establish an interface between emacs and SNiFF+.

To edit source files:

D Check out the layer sources you want to work on:

SetRoot -/Work
SCMCreateDirectories
cd theDirectoryYouWantToWorkln
Checkout -a -r

fJ Start SNiFF+ with or without a project name. If you omit the project name,
SNiFF + loads an empty project. Starting SNiFF + with a project name loads all
of the source files, symbols and classes associated with that project for
browsing and editing in SNiFF+'s editor window:

sniff MyProjectName &

Compiling and linking The SNiFF + programming environment currently works well for editing,
browsing and debugging code. However, until SNiFF+ is integrated with the
Taligent build tools, you need to compile and link projects in a UNIX shell. This
shell can be either the Shell Window in SNiFF+ or a regular AIX shell window.

PRELIMINARY

D To compile and link:

SetRoot -/Work

fJ If the layer is running, stop it before executing Ma kei t:

cd $TaligentSharedLibs
StopPink

II Run Makeit to build your project:

cd theDirectoryYouWantToWorkin
Make it

Make it reads the <project>. Pi nkMake file and creates a makefile to compile
and link the project. To understand the syntax of the PinkMake files, see
"Makefiles" on page 43. You don't need to change the*. Pi nkMake file unless
you add a new module to your project.

A CAUTION The current build tools do not test to see if your component,
application, or library has the same name as one used by the system. The build
process will automatically overwrite the Taligent file with yours if you have a
duplicate name.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XVIII A QUICK START

LAYER SOURCE CODE EDITING AND BROWSING WITH SN1FF+

Running a modified
application

Debugging an
application

The linker, during Make it execution, installs each compiled executable program
in $TaligentSharedLibs. To run the application from an AIX shell window:

D Restart the layer that was stopped for Makei t:

cd $TaligentSharedlibs
StartPink

fJ Run your application:

YourApplicationName &

SNiFF+, through its communication with either the gdb or dbx debugger, can be
used to debug applications. Taligent 's specialized version of gdb is the default
SNiFF+ debugger. The gdb executable is located in /us r/l ocal /bi n/gdb.

Before running the debugger in SNiFF+, set up the Project Editor Preferences:

D Double click the project name in the bottom area of the SNiFF +window. A
Preferences dialog will appear.·

fJ Verify or setup the target (your application's name), the source path (the
path to your source code), and the Make command (it should be Makeit).

To start the debugger from within SNiFF+, choose Debug Target target from the
Exec menu of the Editor. This launches the debugger in a separate window from
which you can set breakpoints, step through code, and print variable values.

If you don't want to debug within the SNiFF+ environment, use xcdb. This
debugger brings up its own windowing environment in which to debug. Launch
xcdb by using the Taligent script xdb along with the SourcePath option
containing the path to your source.

xdb [-s SourcePath ...] yourApplicationName

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

SYSTEM TESTS

BATs

A QUICK START XIX

Taligent uses three kinds of system tests: Basic Acceptance Tests (BATs),
Subsystem Tests (SSTs) and System Test Applications.

To see what BATs are available and how to execute them:

cd $TaligentSharedlibs
RunBATS -h gives help on running BATs
RunBATS -1 lists the available BATs
RunBATS <BATname>runs the specified BAT

The BAT source code is located in the $Tali gentRoot/Tal i gent/Testbed/BATS
directory structure.

SYSTEM TESTS

SSTs Numerous tests exist for the various subsystems of the layer. To install the
prebuiltSSTs, use Interimlnstall with the -Toption.

System test
applications

PRELIMINARY

Interimlnstall -T

The SST test programs are in <SSTtestname>/scri pts and <SSTtestname>/bi n
subdirectories within Hali gentSha redL i bs/Test/SST. There is a wide variety of
SSTs available that you should try. For example, an audio video test which
executes a movie clip:

cd $TaligentSharedLibs/Test/SST/AVTests/scripts
AVTests .sh

The SST source code is located in the $Tali gentRoot/Tal i gent/Testbed/
SubSystemTests directory structure.

For a complete explanation of all of the SSTs locations, execution instructions
and result interpretations, reference the Test Roadmap in
Central Services:Taligent Library:Test Doc Library:Test Doc:Tests.

The System Tests Applications should now be available, but information was not
available when this book went to print. Please check with Product Test for
information.

TAL!GENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XX A QUICK START

PROBLEM REPORTING

PROBLEM REPORTING

When you file a ProTeam problem report, the two key fields that indicate a
problem report's state are Status and How Resolved. Here are the possible values
for those fields and what they mean in a problem report's life cycle:

When tested or
examined, and the
problem still exists

TALIGENT INTERNAL TOOLS

When tested or
examined, and the
problem still exists

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

Terms and definitions

Priority field

Status field

How Resolved field

A QUICK START XXI

PROBLEM REPORTING

Here are the standard definitions used by Taligent Operating System for
submitting Pro Team defect reports.

NOTE PO and Pl defects are your highest priority work.

PO - Showstopper

P1 - Highest Priority

P2 - High Priority

P3 - Medium Priority

P4 - Lowest Priority

Open

Fixed

Closed

Verified

Deferred

Fixed

Cannot Reproduce

Duplicate

Obsolete/No Change

Obsolete/Will Not Test

Required for next Intermediate Build (Build will be held for fix.)

Required ASAP

Required for next Final D Build

Required for current release, must be fixed by Finish Phase Completion

Not required for current release, fix only if time allows

This is the default status for all new problem reports (either code or
documentation). Open means action needs to be taken.

Code has been changed to repair the problem or feature. An ICBM notice has
been submitted. The code has been checked in, and name revisioned.The How
Resolved field should be set to "Fixed" or 'Obsolete/Will Not Test'. Remember,
you must also fill in your ICBM number.

There has been no change to code or documentation. Closed is used in
conjunction with several of the "How Resolved" field choices, for example,
Cannot Reproduce, Duplicate, Obsolete, User Error, and As Designed.

The problem report has been verified in a master build and the "How Resolved"
answer confirmed (such as "Yes it's fixed, yes there was User Error"). Fill in
the Verified By and Verified Build fields.

This problem report will not be addressed in the current release. The Bug
Priority Meeting (BPM) makes this decision. If a defect is deferred, its status
will change to Open once the current release ships.

Code changes have been completed and the ICBM form submitted.
Documentation corrections have been completed. Status also becomes Fixed

The condition could not be recreated. Status becomes Closed.

There's another report, or several reports detailing this same problem. You
should fill in the duplicate problem report number or numbers in the Duplicate
#field. Status becomes Closed.

The code or documentation is now obsolete. No change to source code or
documentation will occur. Status becomes Closed

The code or documentation is now obsolete. Code or documentation might
have changed, but became obsolete before testing was performed. Status
becomes Verified.

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XXII A QUICK START

PROBLEM REPORTING

Severity definitions

User Error

Will Not Fix

Deferred

Critical

Serious

Moderate

Minor

The reporter of the defect has misinterpreted how the software functions.
Status becomes Closed.

Use this field in conjunction with the Status field.

Additional Considerations Here: Does this user error indicate a problem in the
documentation? Should TechComm be notified? If the answer is "yes", you
have two choices:

•Write a new problem report against the documentation

• Change this report's Funct Area, Component, and Report Type to reflect a
Documentation Error and change the status to Open.

The problem will not be fixed for reasons noted in the description. Again,
check the documentation for accuracy and clarity. Status becomes Closed.

The ICBM or Release Team has decided this problem report should not be
addressed yet. Status becomes Deferred.

The problem results in data loss or the corruption of data. There is no work
around to the problem and it is directly impeding the completion of work.

The problem severely limits the use of the system or diminishes the
functionality of the system. A work-around is available for problem allowing
work to continue.

The problem limits the use of the system, but the majority of the necessary
work can be completed. A work-around is available.

The problem is annoying or unaesthetic, but is not a compromising problem.

Functional Areas and Note that functional areas and components do not always map directly to products. Some components
Components fields appear in several products, while others appear only in one particular product. Don't make any

assumptions about products, when submitting defects.

ICBM Scheduled Build field Along with future builds, this field also lists future products so that you can indicate when you are
deferring or delivering a response to the problem report.

Product field Indicates the product on which you found the bug. Any subsystem that is not targeted for a release, is
organized under the Internal product.

NOTE If you have a bug that occurs on multiple source streams (layer and
native, for example), submit the defect against the functional area and
component in the layer responsible for the defect. For example, all Collections
defects, even those that were found first on the Intel platform, need to go to:

Product = "Layer SD Kl"
Functional Area = "Collections Text"
Component= "Collections"

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

A QUICK START XXIII

NATIVE DEFECT AND CHANGE CONTROL PROCESS

If you have a bug that occurs on both native and OODDM builds, but the code is
not there in the layer build, submit the defect against the native build. If you're
not sure who to submit the defect against, ask your manager. There might be
unusual cases that need to be handled differently.

NATIVE DEFECT AND CHANGE CONTROL PROCESS

Taligent Operating System uses a simplified version of the defect resolution and
change process used by Taligent Application Environment. This section summary
covers the steps to make and submit changes for the native Taligent Operating
System build. This summary assumes that you are familiar with the basics of
source control, and with the Taligent DIF development process.

NOTE Follow these steps carefully to ensure that your defect change is
tracked properly. If you don't do it correctly, your change will probably get stuck
somewhere, while the Build Team tries to figure out what you really meant to do.
This could cause your fixes to be delayed!

Defect goes to -----

OPEN state.
D Submit a defect report, using Pro Team. This report normally takes less than

5 minutes to fill out.

You need to submit a ProTeam defect for all defects, and problems. Soon the
ICBM tickets will have Pro Team numbers, and vise-versa.

Defect goes to --·------·--------- fl Fix the defect. Open Pro Team, and change the state to Fixed. Save it.
FIXED state.

PRELIMINARY

If the resolution of the defect requires a change to the build, then the
resolver needs to fill out an ICBM ticket.

e Open the ICBM database, using the ICBM DB Opener. Filling it out gives
you a ticket number, for example, Native.1234. ICBM tickets typically
take about five minutes to fill out. See "Filling out ICBM forms" on
page xxiv for more information.

NOTE The Build Team does not own any code. Engineers own PinkMake
files, scripts, source code (*. c, *. h), and documentation (*. d). In some cases,
there is old code in the build because many of files were simply moved over from
the 68K build tree. If these files are in your functional area, then you own them.
This ensures that the right thing is done with the files (deletion, .PinkMake
modifications, renaming, and so on).

151 Use NameVers ions on all affected files. This is not necessary if the files are
being deleted. This way, only the . Pin kMa ke will change. You will have to
submit an ICBM ticket for the . Pi nkMake change.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

XXIV A QUICK START

NATIVE DEFECT AND CHANGE CONTROL PROCESS

El Copy the new version numbers and filenames into the ICBM ticket.

The ICBM ticket is then scheduled for a build. Normally this happens at the
weekly Intel bringup/ICBM meeting (Thursdays, lPM), but high priority
ICBM tickets can be scheduled when needed upon request. Open Pro Team,
and set the "Scheduled Build" field to the correct value.

Defect goes to -··---·-·- II When you verify that the bug has been fixed in an actual build, open
VERIFIED state. ProTeam and set the "How resolved'', "Verified by:", "Actual Build", and

"Verified Build" fields in the Pro Team bug report (see "Be sure to close the
window, and log completely off the ICBM database, so others can use it
efficiently-you must quit FileMaker Pro entirely." on page xxv). Change the
state to "VERIFIED", and save it.

Filling out ICBM forms

NOTE The assigned engineer is responsible for keeping the ICBM and
ProTeam databases synchronized and up-to-date.

To get the latest opener, see PacerForum Tech Tal k:TalAES Integration: ICBM.

Also see that forum for instructions on how to be notified about ICBM forms.

D Open the ICBM database. When it asks for a password, just leave it blank,
and click OK

fJ Create a new Change Notice with Cmd-N. The form will give you a unique
revision string at the top of the form that looks like this:

Native. changeNumber

This is the name you use with NameVers i ans on your changed files.

II Give the new Change Notice a meaningful title, for example, "PinkMake
should not refer to foo.h".

El Fill out the Submitter field with your name. Use the pop-up menu to ensure
consistency. Select the proper Functional Area using its pop-up menu.

m For Target Build, select "Native".

m If architect approval is required, get it. Then, check the Architect Approved
check box, and select the architect's name from the pop-up menu. Currently
your architect in Taligent Operating System is Roger Webster.

D Check the correct Change Classification, Change Type, and Client Impact. If
these fields are confusing, ask your manager for clarification.

El In the Fixed Bugs field, put the Pro Team defect numbers for all defects
repaired by this change. There are very few cases where an ICBM ticket will
not have an associated defect number. If you haven't already filed a defect for
this change, do so now.

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY

PRELIMINARY

A QUICK START XXV

NATIVE DEFECT AND CHANGE CONTROL PROCESS

Iii If your ICBM ticket requires that previously submitted ICBM's be integrated
before this one can be integrated, put the dependent ICBM's number into
the Dependent ICBM(s) field.

Di!l Check in the files associated with the change. Perform the name-revision
(with NameVers i ans) on the affected files, using the string from the form.

DD Generate a list of all affected files, and put it into the "Generate ALL file
paths ... " field. Each filename must contain the SCM revision number
associated with the file.

DfJ Go back to the Change Notice form and click the check box called "Form
Completed and files name revisioned 'Native.XXXX' ".

Be sure to close the window, and log completely off the ICBM database, so others
can use it efficiently-you must quit FileMaker Pro entirely.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

ION PRELIMINARY

PRELIMINARY

CHAPTER 1

INTRODUCTION

Taligent Tools for AIX describes the Taligent AIX development tools and how to
use them. It also includes instructions for setting up your Advanced Interactive
Executive (AIX) environment.

This guide assumes that Technical Support has installed the Taligent standard
setup on your AIX workstation. It also assumes that you are running the C Shell
(csh) which is the standard shell used for the Taligent build environment. If you
intend to use a different UNIX Shell, refer to the documentation appropriate for
that shell.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

2

ION PRELIMINARY

CHAPTER 2

WORKING IN THE AIX
ENVIRONMENT

Before you can build the Taligent Application Environment, the Taligent
Operating System, or an application for it, you need to set up your AIX
workstation. To build these applications, you need to know how to check source
files in and out, how to build programs, and how to start and stop the layer or
system.

To ensure that your environment will work with the Taligent AIX tools, you need
to create a working environment compatible with the Source Code Management
(SCM) and Build tools. For information about the SCM or Build environment,
see the subsequent chapters.

SETTING UP FOR TALIGENT APPLICATION ENVIRONMENT

Get the default
startup scripts

PRELIMINARY

If you are working on or using the Taligent Application Environment, follow the
setup instructions in this section. If you are working on or using the Taligent
Operating System, follow the instructions in "Setting up for Taligent Operating
System" on page 6.

Use Install Defaults to copy the Taligent provided startup scripts (. cshrc,
. login., .profile, .mwmrc, .Xdefaults. and .xi nitre). Thesescriptswerecreated
by the Tech Support and Build teams and they set up initial values for various
important shell variables related to building and running the layer, and then
merge the old and new files. Once you have run this command, you should never
need to run it again.

NOTE Instal 1 Defaults overwrites the startup files already in your home
directory. If you wish to save the information in your current startup files, rename
your files before running the install script.

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS

3

4 CHAPTER 2 WORKING IN THE AfX ENVIRONMENT

SETTING UP FOR TALIGENT APPLICATION ENVIRONMENT

Create your Work
directory

$home is a C Shell (csh)

variable that contains the

value of your home
directory.

D Run Instal lDefaults.

/usr/taligent/defaults/InstallDefaults

Ins ta l lDefaul ts copies the files in the /us r /tali gent/ defaults directory
(folder) to your home directory.

Iii Completely log out and log in again in order to ensure proper execution of
the new scripts. To log out:

fl' Choose End Session from the root menu by holding down the right
mouse button on the desktop background.

(l) Choose OK

Create the working directory where you want to install the Taligent Application
Environment files. This directory name will eventually be the value of your
$TaligentRoot shell variable.

D Move to your home directory.

~~~- cd $home 

Iii Create the working directory. (You can use any legal AIX filename; however, 
this manual assumes that it is called Work.) 

mkdir Work 

(iJ Create the root directory for your copy of the source code tree. 

"-"isacshshortcutthatrefers -- mkdi r ~/Work/Tal igent 
to your the home directory. 

A CAUTION Do not create symbolic links from one directory to another, or from 
one file to another, in the repository or in your workspace. Problems can occur 
because the tools see these links as two separate directories. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Initialize your 
environment 

Create your copy 
of source tree 

Install the build 

CHAPTER 2 WORKING IN THE AIX ENVIRONMENT 5 
SETTING UP FOR TALIGENT APPLICATION ENVIRONMENT 

Initialize your environment with Set Root. Set Root sets the value of $TaligentRoot 
and several related shell variables. $TaligentRoot is the directory from which all 
of your Taligent Application Environment directories and files descend. 

D Run SetRoot and specify your working directory. Optionally, you can include 
-0 to specify Optimize during compilation. 

SetRoot -1 -/Work 

NOTE You need to run Set Root each time you login to a terminal session that 
uses the Taligent build environment. If you get an error message like 
"### Command: Environment variable $TaligentRoot must be set!", it is because 
you didn't run Set Root in the session. 

Never set $TaligentRoot directly-use Set Root instead because it also sets other 
important related variables. For more information, see "SetRoot" on page 38. 

To work with source files and use the SCM tools, you must set your source tree to 
mirror the directory structure in the SCM repository. Use SCMCreateDi rec tori es 
to create the directory structure in your environment. 

D Move to your Taligent directory. 

cd $TaligentRoot/Taligent 

6 Run SCMCreateDi rectories. It might take a few minutes to complete. 

SCMCreateDirectories 

For more information, see "SCMCreateDirectories" on page 32 and Appendix B, 
"Taligent source code maintenance" on page i 7 i. 

To install the current Taligent Application Environment build, run 
Interi mI nsta 11. Interi mI n sta 11 is a temporary script that installs a build into 
your Work directory. 

D Move to your Work directory in your working directory. 

cd $TaligentRoot 

6 Run Interiminstal 1. It might take a few minutes to complete. 

Interiminstal 1 

For more information, including how to specify particular builds to install, see 
"Interimlnstall" on page 64. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



6 CHAPTER 2 WORKING IN THE AJX ENVIRONMENT 

SETTING UP FOR TALIGENT OPERATING SYSTEM 

SETTING UP FOR TALIGENT OPERATING SYSTEM 

Prepare your 
environment 

If you are working on the Taligent Operating System, follow the setup 
instructions in this section. If you are working on the Taligent Application 
Environment, follow the instructions in "Setting up for Taligent Application 
Environment" on page 3. 

Use Nati veini t to set up your entire AIX environment and prepare it for 
building Taligent Operating System code. Once you have run this command, you 
should never need to run it again. Native In it 

ill Sets up the .cshrc, .login, .profile, .mwmrc, .Xdefaults, .xinitrc,and 
. Tali gentSta rt up files. These scripts, created by the Tech Support and Build 
teams, set up initial values for various important shell variables related to 
building and running the layer, and then merge the old and new files. 

ill Sets your environment variables correctly. 

t: Creates a directory tree (wherever you want it) to hold Taligent Operating 
System source code and binaries. This tree is called your workspace. 

~NOTE Nati vein it will request to backup your existing startup scripts 
(. cshrc, etc.). The default is to save copies of your files. 

To prepare your environment: 

D Run Native In it and specify the absolute path for your workspace. If the 
workspace directory doesn't exist, Nati velni t creates one for you. 

/usr/taligent/defaults/Nativelnit -/Work 

fJ Log out completely and log in again in order to ensure proper execution of 
the new scripts. To log out: 

e Choose End Session from the root menu by holding down the right 
mouse button on the desktop background. 

@ Choose OK. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Install the 
Native TalOS build 

CHAPTER 2 WORKING IN THE AlX ENVIRONMENT 7 
BUILDING PROJECTS 

To install the current Taligent Operating System build into the directory 
structure you have just created, run Native I nsta 11. This script installs binaries, 
libraries, and tools into the proper places in your workspace (install source code 
separately with Checkout). 

D Move to your Work directory. 

cd Ha 1 i gent Root 

fJ Run Nati velnsta 11, it might take a few minutes to complete. For this 
transition, the release name is NlO.l. 

Nativelnstall -b -r NlO.l 

Native I nsta 11 automatically retrieves the tools that the specified build requires, 
and installs them in the correct $TaligentRoot/ToolsDir. Unlike the layer build 
environment, native tools are always synchronized with native source code 
releases to help ensure correct builds. You can override tool installation with the 
Nati velnstal 1 -T option. 

A CAUTION Do not create symbolic links from one directory to another, or from 
one file to another, in the repository or in your workspace. Problems can occur 
because the tools see these links as two separate directories. 

NOTE Do not use Interimlnstal 1 (for TaligentApplication Environment) 
and Nati velnstal 1 to install in the same workspace. 

If you want to be able to switch between the two build environments, know that: 

s Native Ini t directoryNameperforms a Nati veRoot directoryName as part of the 
installation procedure. Nati veRoot is equivalent to the SetRoot command 
used in the layer environment. 

n You can switch between build environments, as long as you always execute 
Nati veRoot directoryNameor SetRoot directoryNamefirst. Be careful, because 
these commands change . Tali gentStartup in your home directory. Because 
of this, you can't easily have a simultaneous native and layer build. 

BUILDING PROJECTS 

For details about building projects, see Chapter 4, "The build environment." 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



8 CHAPTER 2 WORKING IN THE AlX ENVIRONMENT 

CHECKING FILES IN AND OUT 

CHECKING FILES IN AND OUT 

Change your working 
directory first 

Checkout 

Examples 

Once you have set up your environment to work with the SCM and Build tools, 
you can check source files in or out of the SCM version control database. To 
check files in or out, use the Checkin and Checkout commands. These and other 
SCM tools are documented in Chapter 3, "Taligent SCM tools." For information 
about the SCM database, see Appendix B, "Taligent source code maintenance." 

Before using Checki n or Checkout, you must move to the directory in your 
workspace to which the corresponding files will be checked out. This directory 
corresponds to the directory in the project hierarchy where the source file 
resides. For example, to check out the files from the Heap Tool project, change 
your current directory accordingly: 

cd $TaligentRoot/Taligent/Instrumentation/HeapTool 

Checkout retrieves files from the SCM directory hierarchy and puts them into 
your directory hierarchy-your working directory. For information about 
Checkout, see "Checkout" on page 22. 

Check out read-only copies of the latest versions of the specified files: 

Checkout fi7el fi7e2 ... 

Check out modifiable (-m) copies of all (-a) the files in the project directory: 

Checkout -m -a 

Check out versions of all files corresponding to the symbolic name D4Rekase: 

Checkout -v D4Release -a 

Check out all the files in the project directory that have the symbolic name 
d32.l_Final. The -r option tells Checkout to operate recursively in all 
subdirectories in the project and performs the same Checkout in each. This 
example gets the sources for a particular build: 

Checkout -v d32.l_Final -a -r 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



New files 

Checkin 

Examples 

PRELIMINARY 

CHAPTER 2 WORKING JN THE A!X ENVIRONMENT 9 
CHECKING FILES IN AND OUT 

In order for the SCM files to work properly, source files require a comment near 
the beginning of the file that contains either "$Revision:$" or "$Header:$". The 
SCM tools store the file's version information in this string, and update it every 
time you check the file out. 

Files you check out should already contain one of these two magic strings. You 
need to include one of these strings when checking in a file new to the project. 
When you use Checki n -i to check in a new file, it calls SCMinsertHeader to insert 
the string for you. For more information, see "SCMinsertHeader" on page 36. 

Checki n submits your changed files into the SCM repository. For information 
about Checki n, see "Checkin" on page ig. 

Initialize the file. Use this when a file is not already in the project. This command 
checks in the first version of the file. If your working directory has no 
corresponding directory in the project, you get an error: 

Checkin -i filel 

Initialize the file, and create a project directory if one does not already exist that 
corresponds to this working directory. This is useful when first checking a whole 
subtree into the project: 

Checkin -I fi7el 

Check in all files and immediately check them out for modification: 

Checkin -m -a 

Check in files and designate the newly checked-in versions with the symbolic 
name ap_latest, even if another version of the file is already designated with that 
name (see "NameVersions" on page 28 for information about symbolic names): 

Checki n -N ap_l a test fi 7el fi7e2 ... 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



I 0 CHAPTER 2 WORKING IN THE AlX ENVIRONMENT 

CHECKING FILES IN AND OUT 

Branching 

Making a branch 

Using a branch 

To create a branch, check a version out for modification, then check it in again; 
Checkout does not actually create the branch-Checki n does. The method for 
branching depends on whether or not the version you are branching from is the 
highest version on the trunk or branch. 

To branch from version 1.27 of a file, when version 1.27 is not the last version on 
the trunk, use: 

Checkout -m -v 1.27 file 
Checkin -f file 

# Gets version 1.27 for modification. 
#Creates a branch, 1.27.1.1. 

The result is that you have created a branch, and the file you will have in your 
workspace is version 1.27.1.1. 

If the version you want to branch from is the highest-numbered version on its 
trunk or the branch (such as version 1.30): 

Checkout -m file 
Checkin -f -v 1.30.1.1 file 
SCMAdmin -u -v 1.30 file 

# Gets version 1.30, the top of the trunk 
# Creates a branch 
#Cancels your lock on 1.30 

Because you acquired a lock on version 1.30, and then checked in version 
1.30.1.1, you must do the extra step of releasing your lock on version 1.30, which 
is what SCMAdmi n does. 

After creating a branch, you can perform all the normal functions, such as 
designating versions on the branch with symbolic names using NameVersi ons. 
Those versions can be retrieved when you check out by name, use SyncSources, 
and so on. You can check out versions for modification and check them back in, 
but you have to do so carefully. If you use Checkout only, you always get the 
highest-numbered version on the trunk. To get a version from a branch you must 
specify the version number or use a symbolic name: 

Checkout -v 1.30.1.5 file 

When you check out a branch version for modification, you can use Checki n 
without any special arguments to check that version in again. The new version 
will be checked in to the branch, and that version will be checked out again as a 
read-only file in your workspace. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Naming a branch 

CHAPTER 2 WORKING IN THE AIX ENVIRONMENT 1 1 

CHECKING FILES IN AND OUT 

One good way to work on a branch is to name it. When you create the branch, 
pick a name like JohnsBranch to designate each new version on that branch. Use 
that name every time you check out the file (or a set of files you have branched). 
Also, every time you check in new versions of the files you have branched, 
designate the new version with that name. That way the name always designates 
the latest version on the branch you are working on. For example, assuming that 
the latest version ofWorkFile.C is 1.17: 

Checkout -m WorkFile.C 
<edit the file> 
Checkin -v 1.17.1.1 -n JohnsBranch WorkFile.C 

This creates the branch. To later modify your branched version of the file: 

Checkout -v JohnsBranch -m WorkFile.C 
<edit the file> 

Notethecapital'N'. ---- Checkin -N JohnsBranch WorkFile.C 

Class and member 
descriptions 

Other SCM tools 

This checks out the latest version on the branch and checks in a new version, 
carrying the nameJohnsBranch along to the new version. Use the uppercase -N 
because the name JohnsBranch already designates one version of the file, and 
you want to change the version this existing name refers to. 

Check in class and member description files (*.d) in a Docs subdirectory. For 
example, if you have a header Foo.h that resides in Hali gentRoot/Tal i gent/ 
Platform/ AIX then the corresponding description file Foo.d resides in 
... /Platform/AIX/Docs. 

NOTE For native builds in the MPW build environment, class and member 
description files (*. d) were usually kept in the source code directory itself. 
Because the AIX build environment uses automated tools to grab the files and 
format them, be sure to keep all* .d files in the /Docs subdirectories. 

In addition to Checki n and Checkout, other useful SCM tools and scripts include: 

m SyncSources-an optimized Checkout that does not check out those files for 
which you already have the correct version in your workspace. 

Comp a re Ver s i ans-displays the difference between a file in your workspace 
against a file in the project. See page 24. 

"' Li stVersi ans-reports the workspace version of each file in the current 
directory. See page 26. 

n NameVersions-associates a symbolic namewith a set of files in an SCM 
project or project hierarchy. See page 28. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



12 CHAPTER 2 WORKING IN THE A!X ENVIRONMENT 

STARTING AND STOPPING THE TALIGENT APPLICATION ENVIRONMENT 

STARTING AND STOPPING THE 

TALIGENT APPLICATION ENVIRONMENT 

To run a Taligent Application Environment program on AIX, you must currently 
execute the program on the Taligent AIX reference layer. 

Starting the layer To start the layer, run StartPi nk. 

D Move to the directory containing Sta rt Pink. 

cd $TaligentSharedlibs 

lfJ Run StartPink. 

StartPink 

For more information, see "StartPink" on page 75. 

If Sta rtPi nk is successful, you can start an application. For example, to run 
Macrame or SimpleText: 

The"&" runs the command - Macrame & 

in the background. 

Stopping the layer 

SimpleText & 

Run Stop Pink to safely stop the layer. For more information, see "StopPink" on 
page 75. 

D Run Stop Pink to safely stop the layer. 

StopPink 

To restart the layer, rerun StartPink. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 2 WORKING IN THE A!X ENVIRONMENT 13 

STARTING AND STOPPING TALIGENT OPERATING SYSTEM PROGRAMS 

STARTING AND STOPPING 

TALIGENT OPERATING SYSTEM PROGRAMS 

Transferring your 
program 

To run a Taligent Operating System program, you must transfer your program to 
an Intel-based computer, and explicitly start the program and system. 

To transfer your program to an Intel machine, use ftp. 

D Move to the AIX directory containing your program. 

cd $TaligentSharedLibs 

fJ Run ftp. In this example, the target machine is chrome.Enter your password, 
when requested. 

ftp chrome 

8 Set the transfer type to binary. 

type binary 

19 Optionally, turn transfer feedback on to print"#" for every block transferred. 

hash 

m Change your ftp working directory on the remote machine to the directory 
where you want to put the Intel binary. 

cd /home/mpogue/test 

m Copy the file from your AIX workstation to the Intel machine. 

put Macrame 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



14 CHAPTER 2 WORKING IN THE AJX ENVIRONMENT 

STARTING AND STOPPING TALIGENT OPERATING SYSTEM PROGRAMS 

Starting To execute on the Intel machine, use rl ogi n to remotely login. 
your program 

The"&" runs the program ---------

in the background. 

Stopping 
your program 

D Run rl ogi n from your AIX workstation. Enter your password when 
requested. 

rlogin chrome 

fJ On the remote machine, change to the directory containing the binary 
image you transferred. 

cd /home/mpogue/test 

ID Run rp to start your program. (rp replaces the run pink program previously 
used to load and run programs.) 

rp Macrame & 

NOTE To debug your program, use gdb. For information about gdb, see 
Chapter 10, "GDB" on page 149. 

Use the UNIX ki 11 command to safely stop your program. 

D Run jobs to list running programs. 

jobs 
[l] + Running rp 

% 1 kills the [1] program 

D Run ki 11 to stop the program. 

----kill -9 %1 
[l] Terminated rp 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 2 WORKING IN THE AfX ENVIRONMENT 15 

STARTING AND STOPPING TALIGENT OPERATING SYSTEM PROGRAMS 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



PRELIMINARY 

CHAPTER 3 

TALIGENT SCM TOOLS 

Before you start to use the Source Code Management (SCM) tools, run Set Root 
(layer) or NativeRoot (native) to set the environment variables that these tools 
depend on. Also make sure you have created a mirror of the SCM project by 
using SCMCreateDi rec tori es. If you have not done this, follow the instructions in 
"Setting up for Taligent Application Environment" on page 3. 

Most of the SCM tools assume you are in the working directory of interest before 
running the tool. For example, before working on the Albert project, change to 
the Albert directory. 

cd $TaligentRoot/Taligent/Portable/AES/Albert 

Then, check out all the files in the Albert project from one consistent build. 

Checkout -a -r -v 032.29 

At this point, you have all the source files for the Albert project that were 
checked out from their home in the SCM hierarchy. 

NOTE Each user has a private snapshot of the system. When you build a 
project (or project hierarchy), everything is on the local file system- header files, 
export files, and executables. This is your workspace. 

The only way other that people can see your changes is if you check in your 
changes using Checki n and NameVersi ans. Others can then see your changes in 
the next system build, or when they directly check out and build your project. 

NOTE All Taligent tools require that the filename argument be the last 
argument on the command line; all options must precede fil.ename. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



18 CHAPTER 3 TALIGENT SCM TOOLS 

SYMBOLIC NAMES 

SYMBOLIC NAMES 

The system of symbolic names (used by NameVersions and the other tools) is 
implemented using a file called names in a subdirectory called . Tali gentSCM 

(note the initial period) that is created in the repository and in your workspace. 
There is one names file per directory in the repository. Normally this is invisible 
to you. However, there are several considerations that you should be aware of: 

;;; The names file in the repository is the final word about symbolic names for 
that directory. Files in workspaces are local copies of the file in the 
repository. If the local file's last-modified date and time are newer than the 
file in the repository, then its contents are used. If the file's date and time are 
older, a fresh copy is checked out. This is all done internally-you never see 
it. However, this means that the clocks of the machines on the network 
should be synchronized, or at least very close. 

w The names files are controlled by SCM,just like your source files. This 
prevents corruption that can occur if two people run Name Versions at the 
same time in the same directory. If two people do step on each other, one of 
them gets a message that the "names file could not be checked out." If this 
happens, just rerun Name Versions. 

"' Because of the locking mechanism used by SCM, two NameVersi ons processes 
run by users with the same name can cause corruption of the names files. This 
can happen if you run NameVersi ons twice in parallel on a single machine, or 
anywhere on the network, using the same login name. 

A CAUTION Do not run two NameVersi ons commands anywhere on the net at the 
same time with the same user ID. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHECKIN 

Syntax 

Arguments 

CHAPTER 3 TALIGENT SCM TOOLS 19 

Checki n submits your files into the SCM repository. Run Checki n for all project 
files that you checked out for modification. 

CHECKIN 

Checkin [-n Name I -N Name] [-i I -I [-b] J [-v version] [-a] [-CJ [-f] [-m] 
[-r] [-q] [-DJ [filename ... ] 

-a 

-b 

-C 

-D 
-f 

-i 

-I 

-m 
-n Name 

-N Name 

-Q 

-r 

-v version 

filename 

all: Check in all files in the workspace directory into the corresponding project 
directory. Use -a in place of filename. 

binary: Declare the checked in files as binary. Suppresses header substitution 
on the magic strings during checkout. Only works with -i and -I. 

Comment: Suppress comments strings for all files that are checked in; all files 
will have empty comment strings for that version. Checki n does not read 
standard input. 

debug. Include debug information in the output for debugging Checki n. 

force: Force Checki n to use a new version, even if the files are unchanged. 

initialize: Initializes a new file (the first version) in the project directory when a 
file is not already in the project. An error occurs if your working directory has 
no corresponding project directory. 

Initialize: Initializes a new file and creates a project directory if none 
correspond to this working directory. Note: the parent of the working 
directory must exist in the project. 

modify: After checking the file in, check it out for modification. 

Check in the files and designate the symbolic name Name as the new version. 
See "NameVersions" on page 28 for more information about symbolic 
names. 

Check in files and designate the symbolic name Name as the new version, 
even if another version of the file already has that name. 

quiet: Suppress commentary (but still report errors). 

recursive: Run this Checki n command in this directory and recursively down 
the subdirectories in the workspace. 

version: Specifies a particular version of each file. version can be a version 
number (like 1.4). 

The name of file in the corresponding project directory. Separate multiple 
filenames with white space. Use -a when you want all the files in the project. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



20 CHAPTER 3 TALIGENT SCM TOOLS 

CHECKIN 

Usage 

Comments 

Messages 

Before using Checki n, change to the directory in your workspace that contains 
the file you plan on checking in. For example, to check in the files from the 
Tokens project, change to your corresponding Tokens directory: 

cd $TaligentRoot/Taligent/Portable/OES/Tokens 

After checking in the file, Checki n retrieves a read-only copy for you. If you want 
to keep your lock on the file, use -m to check the file in, and then immediately 
check out again for modification. 

Checki n -m fil el. C 

Checki n prompts for a comment that applies to all files that are checked in. 
Checki n reads the comment from standard input so you can redirect to it from a 
file. If you want a separate comment for each file, run Checki n separately for 
each. 

NOTE The Checki n prompt instructs you to finish your comment by typing a 
single period or Ctrl-D. Be sure to avoid the common mistake of pressing Return 
and endlessly waiting for a new prompt. 

After Checki n submits a file, it displays a message indicating the file's status and 
new version. The three file-status messages are: 

rn check.in-a normal check in 

* new-a new file 

m revert-the file reverted to the previous version because the file is identical to 
that version 

When you use -a to check in all files in the current project, Checki n prints a 
warning for files not checked out, but continues checking in the rest of the files. 

Promptforcomment--11 enter log message, terminate with single or CTRL-D (end of file) 
Comment-·-·------· This is the user-entered comment text. 
End the comment ···-················· 
Notcheckedin -----------11 Checkin: ERROR: foo.C is NOT checked out for modification by arn 
Notcheckedin II Checkin: ERROR: bar.C is NOT checked out for modification by am 
Normal check in checki n file. C, 1.10 

For recursive check ins that use -r, the listing looks the same, except that there is 
an additional message for each project that it traverses. 

f recursively checking in for /home/_/Toolbox/Tokens ... 

If you attempt to check in a file that has never been checked in, Cheek in displays: 

111111 Checkin: WARNING: "file.C" is not part of the current project 
111111 if "file.C" is a new file, use the -i/-I option with Checkin 

As the message says, you should include -i to indicate an initial version of the file. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 3 TALIGENT SCM TOOLS 21 

New files or projects To add a new project to the existing hierarchy, such as TestWindowServer, a new 
sub-project of the WindowServer project: 

D Create the directory on your local file system if you have not done so already. 

f.J Copy all the source files and TestWindowServer.PinkMake into the directory. 

ID Move to that directory and check in the files. Include -a to check in 
everything, and -I to create the project directory and initialize the files. 

% Checkin -I -a 
Checki n messages ___ , # Checkin - Creating res dir "/Repository/tools/Checkin/test" ... 

new foo.C,1.1 

Examples 

PRELIMINARY 

new bar.C,1.1 

Check in files and designate the symbolic name ReadyForBuiUl as the newly 
checked-in version: 

Checkin -n ReadyForBuild filel.C 

Check in files and designate the symbolic name D34.FINAL as the newly checked
in version, even if another version of the file is already designated with that 
name: 

Checkin -N 034.FINAL files ... 

Force a new version to be checked in even for files that have not changed 
(otherwise unchanged files revert to the previous version): 

Checkin -f -N 035.FINAL files ... 

Check in all the files in the current directory and immediately check them out 
for modification: 

Checkin -m -a 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

CHECKIN 



22 CHAPTER 3 TALIGENT SCM TOOLS 

CHECKOUT 

CHECKOUT 

Syntax 

Arguments 

Checkout retrieves files from the SCM directory hierarchy (the source code 
databases) and puts them into your directory hierarchy-your working directory. 

Checkout [-a] [-m] [-c] [-r] [-o outFile] [-q] [-DJ {-v version ... I -latest} filename ... 

You must specify either -1 a test or -v. 

-a 

-D 
-latest 

-m 

-o outFile 

-p 

-q 

-r 

-v version 

filename 

all: Check out all files from the corresponding project directory into the 
workspace directory. Use -a in place of [filename ... ]. 

cancel: Cancel the check out of files checked out for modify. 

debug: Include debug information in the output. 

Check out the highest numbered version on the trunk. You must specify either -
la test or -v. 

modify: Check out the files for modification. Only one person can have a 
particular version of a file checked out for modification. 

output: Write the checked-out file to outFile instead of its own name. Use this to 
make a temporary copy of some version of a file without disturbing the copy in 
your workspace. For example, to get version 1.5 of Bundles.C and save it to 
BundlesTemp: 

Checkout -vl.5 -o BundlesTemp Bundles.C 

You cannot use -o with -m, -p, -r, -a, -c, or with more than one filename. 

Write the checked out file to s tdout instead of a file on disk. You cannot use -p 
with -m, -o, -r, -a, -c, or with more than one filename. 

quiet: Suppress commentary (but still report errors). 

recursive: run this Checkout command in this directory and recursively down 
the subdirectories in the project. 

version: Specifies a particular version of each file. version can be a version 
number (like 1.4) or a symbolic name (see "NameVersions" on page 28). If you 
specify multiple -v arguments, Checkout behaves as if you gave multiple 
commands, one for each symbolic name (version), in the order given. 

You must specify either -v or -1 a test. 

The name of file in the corresponding project directory. Separate multiple 
filenames with white space. Use -a when you want all the files in the project. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Messages 

Checkout messages 

Locked revisions 

CHAPTER 3 TALIGENT SCM TOOLS 23 
CHECKOUT 

Before using Checkout, change to the directory in your workspace to which the 
corresponding files will be checked out; the directory corresponding to the 
project hierarchy where the file resides. For example, to check out the files from 
the Tokens project, change to the corresponding Tokens directory: 

cd $TaligentRoot/Taligent/Portable/OES/Tokens 

After Chee kout retrieves a file, it displays a message indicating the file's status and 
the version that was checked out. 

% Checkout file.C simple.C hello.C 
readonly file.C,1.5 
readonly simple.C,1.9 
readonly hello.C,1.5 

Occasionally when you attempt to check out a file, Chee kout tells you that 
someone else has the file checked out for modification. For example, if Arn has 
file.C is checked out, Checkout responds: 

co error: revision 1.8 already locked by "arn" 

There are several things you can do when you get this message. 

Ask the other user to either check in or cancel the check out of the file. This is the safest procedure. 
To cancel a file checked out for modification: 

Checkout -c file.C 

Check out another version of the file on a branch. You can use Chee kout to check out the file 
readonly with the intent of checking it back in on a branch. See "Check in files 
and designate the newly checked-in versions with the symbolic name ap_latest, 
even if another version of the file is already designated with that name (see 
"Name Versions" on page 28 for information about symbolic names):" on page g 
for specific information. 

Change the access permission of the file. The mro script (modify-read-only) changes the 
access permission for you. To avoid conflict with your coworkers, use this 
sparingly. It is easy to forget that you changed the file access. The following week 
you might wonder why you are the only one in the group who can build your 
project (or the only one who can run anything). 

mro File.C 

Li stVersi ans can help track down some of these problems. See "Latest" on page 
26 for more information. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



24 CHAPTER 3 TALIGENT SCM TOOLS 

CoMPAREVERSIONs 

Examples Check out the latest versions of file.C to the workspace for reading only: 

Note that 

Checkout file.C 

Check out version 1.8 of each file: 

Checkout -v 1.8 file.C hello.C simple.C 

Check out all (-"a) the files in the project directory out into the workspace 
directory. If a version of a file is designated as Master.55, Change.187, or 
Change.189, then check out the last version specified on the command line 
(Checkout handles this internally as if separate commands were issued): 

Checkout -a -v Master.55 -v Change.187 -v Change.189 

Get all sources for the D34.FINAL build. Check out all the files in the project 
directory with a symbolic name, and recurs to all subprojects in the project. 

Sync Sources does -- Checkout -v 034. FINAL -a -r 

the same thing, but is 
quicker 

COMPARE VERSIONS 

Syntax 

Arguments 

Comp a reversions displays the differences between files in your workspace and 
files in the project. It can also compare two sets of files designated with symbolic 
names in the project against each other. 

CompareVersions [-h] [-nnn] [-latest I namel [ name2 J J 

-h 

-latest 

-nnn 

name1 name2 

headings: suppress the column headings. 

latest: Compare the files in your workspace against the latest versions of those 
files. Latest means highest-numbered on the trunk. For this option, the left 
column of the report contains the files in your space, and the right contains 
the latest versions in the project. 

The columns to include; the default is-123 for all three columns. For example, 
-1 outputs only column one, -2 only column two, and -23 outputs both 
columns two and three. Omitting a column suppresses all characters for that 
column-no spaces, no tabs. 

Compare the files and versions designated by name1 against those designated 
as name2, and report the similarities and differences. Omit name2to compare 
against the current files in your workspace. Either name can be a 
NameVers i ans symbolic name. See "NameVersions" on page 28. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Examples 

PRELIMINARY 

CHAPTER 3 TALIGENT SCM TOOLS 25 

CoMPAREVERSIONS 

CompareVersi ans prints a report in a three-column format.In the following 
example, version 1.4 ofjungle.C is designated with the name D34.FINAL. No 
version ofjungle.C is designated D35.FINAL; while the opposite is true ofFoo.C 
version 1.8. Both names designate the same version of MyFile.C version 1.4. 
Changing.Chas one version designated D34.FINAL, and a different version 
designated D35.FINAL. 

Files that have a version 
designated as name 1, but no 
version designated by name2 

Files where the same 
version is designated by 
both symbolic names 

Files that have a version 
designated as name2, but no 
version designated by name1 

The file ---;i.,11<o-- 034.FINAL SAME 035.FINAL -..011111----

specified by Jungle.C, 1.4 
name1 Foo.C,1.8 

MyFile.C, 1.4 
Changing.C, 1.14 Changing.C,1.18 

t t 
Files with two different versions designated by both 
names appear in both the left and right columns 

Compare the files and versions designated with D34.FINAL against those 
designated with D35.FINAL, and report the similarities and differences. 

CompareVersions 034.FINAL 035.FINAL 

The file 
specified by 
name2 

When you provide one name only, Campa revers i ans compares that name against 
the files in your workspace. In this case, the right column is labeled (current). 

CompareVersions 034.FINAL 

Compare the files in your workspace against the latest versions of those files-the 
highest-numbered on the trunk. 

CompareVersions -latest 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



26 CHAPTER 3 TALIGENT SCM TOOLS 

LATEST 

LATEST 

Syntax 

Arguments 

Examples 

LISTVERSIONS 

Syntax 

Arguments 

Latest reports the latest trunk version of files in the project directory. Unlike 
Li st Versions, which reports the version of the files in your directory, Latest 
reports on the files in the repository. 

Latest [-r] [filename_.] 

-r 

filename 

recursive: operate recursively through workspace directories, skipping project 
directories that are not in the workspace. 

The name of a file in the corresponding project directory; you can specify 
more than one. Omit filename to report the latest version of all files in the 
current workspace directory. 

Report the latest trunk workspace version of all files in the directory: 

Latest 

Report the latest trunk workspace version of each named file. 

Latest filel.C file3.h 

Li stVersi ons reports the workspace version of each file in the current directory. 
It also tells you which files are checked out for modification. 

ListVersions [-c] [-m] [-n] [-x] [+c] [+m] [+n] [+x] [-r] [filename_] 

Dash (-) options combine to suppress listing of multiple categories. Plus ( +) 
options combine to list multiple categories. 

--c 

+c 

-m 

+m 

-n 

+n 

-r 

Omit files checked out read-only. 

Only list files checked out read-only. 

Omit files checked out for modification. 

Only list files checked out for modification. 

Omit files not in the project. 

Only list files not in the project. 

Recursive: operate recursively through workspace directories, skipping 
project directories that are not in the workspace. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Examples 

CHAPTER 3 TALIGENT SCM TOOLS 27 

-x 

+x 

Omit modify-read-only (mro) files. 

Only list modify-read-only (mro) tiles. 

LISTVERSIONS 

filename The name of tile in the corresponding project directory; you can specify more 
than one. Omit filename to get the versions of all files in the current 
(workspace) directory. 

Li st Ve rs i ans looks for the $Revision$ tag-line at the beginning of each file in 
your working directory ( SCM I nsertHeader inserts this line). If Li stVers i ans 
cannot find the line, it prints a warning and attempts to figure out what the 
version is. 

The report contains the filename, the version number of the file in the 
workspace, and one trailing mark: 

(blank) File is checked out for reading only 

+ 

# 

<not in project> 

File is checked out for modification by you 

File is MRO: workspace version is writable, but you do not 
have that version checked out for modification 

File is not in the project (there is no corresponding file in 
the repository) 

Binary files have a question mark (?) instead of a version number because the 
version number cannot be known; binary files do not contain the $Revision$ tag
line. 

To report the version of file.C in your current working directory: 

% ListVersions file.C 
ListVersions ~~-- file.C,1.1 
message 

ListVersions 
messages 

To report all files in the current directory, omit the filename. 

% ListVersions 
filel.C, 1.1 
file2.C,l.2+ 
file3.h,l.2<not in project> 

Report the workspace version of all files except those not in the project, or those 
that are modify read only: 

ListVersions -n -x 

Report the workspace version of all files in the directory that are checked out for 
modification, or that are modify-read-only: 

ListVersions +m +c 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



28 CHAPTER 3 TALIGENT SCM TOOLS 

NAME VERSIONS 

NAME VERSIONS 

Syntax 

Arguments 

Name Versions associates a symbolic name with a set of files in an SCM project or 
project hierarchy. It can designate a name, report what versions are designated 
with a name, display all names that designate any version of a file, and delete 
names. You can use the symbolic name when checking files out. 

NameVersions [-c I -C J -1 J -L I -v version I -V version J -f I -d] 
[ - r J symbo 7 i cName [ fi 7 ename ... ] 

-c 

-C 

-d 

-f 

-1 

-L 
-r 

-v version 

-V version 

filename 

current: designate the current version(s) of the file(s) in your workspace with 
symbolicName. 

current same as -c, but override an earlier definition of the symbolic name. 

delete: remove symbolicName so it does not designate any version of the files. If 
you omit filename, the symbolic name is completely deleted so it does not 
designate any version of any file. 

find: find versions designated with symbolicName. Display the version number of 
the files that the name designates. Omit symbolicName to display all the names 
that designate any version of any file in the current directory. 

latest: designate the latest version(s) of the file(s) in the project with 
symbolicName. This option does not look at files in your current directory, it only 
refers to the corresponding SCM directory. 

Note, this option can cause problems because latest means the highest
numbered on the trunk, not the most-recently checked in. Avoid this option. 

latest: same as -1, but override an earlier definition of the symbolic name. 

recursive: operate recursively through workspace directories, skipping project 
directories that are not in the workspace. 

version: designate symbolicNameto the version of the files. version can itself be 
a symbo/icName. 

version: same as -v, but override an earlier definition of the symbolic name. 

The name of file in the corresponding project directory; you can specify more 
than one. Omit filename to specify all files in the current workspace directory. 

The lower-case options (-c,-1, and-v) let you designate a version with a name if 
that name does not currently designate any versions of the files, but these options 
do not let you change what version an existing name designates. The upper-case 
options let you change an existing name. 

In the lower-case forms, if symbolicName already designates any version of any of 
the files you are applying it to, NameVers ions stops and reports an error, and no 
changes occur. If applying the name to one file is not allowed, then it is not 
applied to any of them. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Modes of operation 

Binary files 

CHAPTER 3 TALIGENT SCM TOOLS 29 

NAME VERSIONS 

NameVersi ans names versions of files so that you can refer to the named set of 
files for checking in or out. For example, if each engineer designates their 
project ReadyToBuiUl when they are done, one person can later check out the 
entire project by that name and perform a complete build. 

When you change what version of a file (or set of files) a symbolic name 
designates, that does not affect any other files which may have versions 
designated with that name. For example, Winner.C version 1.2 and BigWin.C 
version 1.5 are both designated with the name ReadyToBuild. If you run 

NameVersions -V 1.7 ReadyToBuild BigWin.C 

the result is that the name ReadyToBuild is moved to version 1.7 ofBigWin.C. 
However, this does not affect which version ofWinner.C, or any other file, is 
designated with that name. 

NameVersi ons has five basic modes of operation: 

;; Designate the current versions in the current directory (-c) with a name 

rn Find a name (-f) 

m Designate the latest version (-1) of a file or files with a name 

m Designate a particular version (-v) of a file or files with a name 

m Delete a name (-d) 

Name Versions does not designate any version of a binary file when you use -c or 
-C. By definition, the SCM tools cannot tell what version of a binary file is in your 
workspace. However, if you include-bin addition to -c or -C, NameVersions 
designates the latest version of any binary files with symbolicName. For example, if 
you have the source file MunchData.C and a binary file TheData in a directory 
and you issue 

NameVersions -c BuildVers MunchData.C TheData 

you will get a warning telling you that Name Versions could not tell what version 
ofTheData is in your current directory, and no version was tagged with the name. 
If you issue 

NameVersions -b -c BuildVers MunchData.C TheData 

then the current version ofMunchData.C will be designated, and so will the latest 
version of TheData. In this manner you are telling the tool what version you 
have. You are specifying that you have the latest version, so that's the one you 
want designated with the name. 

In this context, the latestversion is the highest-numbered version on the trunk 
(no branches). This is the same version reported by Latest. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



30 CHAPTER 3 TALIGENT SCM TOOLS 

NAME VERSIONS 

Examples To name only two files: 

NameVersions -c Defiant.1042 Filel.C File2.h 

To associate Defiant.1042with the latest versions of all the files in the project: 

NameVersions -1 Defiant.1042 

To associate Defiant.1042with the with the 1.4 version of File LC: 

NameVersions -v 1.4 Defiant.1042 Filel.C 

To recursively find versions designated Defiant.1042 in all files, from the current 
project directory down, and designate those versions of those files D37.1: 

NameVersions -r -v Defiant.1042 037.1 

To designate to version 1.4 offile3.C with the name Defiant.1042, even ifthat 
name already designates another version: 

NameVersions -V 1.4 Defiant.1042 file3.c 

To list the files associated with Defiant.1042: 

NameVersions -f Defiant.1042 

If you no longer need a symbolic name, remove it with -d: 

NameVersions -d Defiant.1042 

To delete a particular file from a name: 

NameVersions -d Defiant.1042 file3.c 

Avoid the common 

mistake of 

inadvertently omitting 
the symbolic name 

when you specify 

multiple filenames. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 3 TALIGENT SCM TOOLS 31 

NATIVEROOT 

NATIVEROOT 

Nati veRoot initializes your environment for Taligent Operating System (native) 
by setting the value of Hali gentRoot and several related shell variables. 
$Tali gent Root is the directory from which all your Taligent source directories 
and files descend. To initialize your environment for the layer environment, use 
SetRoot (see page 38). 

A CAUTION Never set Hali gent Root directly-instead, always use Nati veRoot 
because it also sets other important related variables. 

Syntax NativeRoot [-c] [-1] directoryName 

Arguments 

Examples 

SCMADMIN 

Syntax 

Arguments 

Examples 

-c 

-1 

directoryName 

Create: Make all the directories needed for installation. 

Latest: Use the latest directory structure available. 

The directory from which all your Taligent files will descend 

NativeRoot -/Work 

NativeRoot -0 -/Work 

SCMAdmi n reports and sets the attributes of a file, and breaks another user's lock ~ 

on a file. 

SCMAdmin [-v Version] [ rcsOptions J filename 

rcsOptions 

-v Version 

filename 

Options to pass to res. 

Administer this version of the file; can be a number or symbolic name. 

The name of file in the workspace directory 

Unlock the version of the file designated D34.FINAL; -u is the unlock option to 
break the lock on file.C. (Be sure to notify the owner of the lock first.) 

SCMAdmin -u -v 034.FINAL file.C 

Mark file.C as binary : 

SCMAdmin -ko file.C 

Mark file.Casa normal text (non-binary) file: 

SCMAdmin -kkv file.C 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



32 CHAPTER 3 TALIGENT SCM TOOLS 

SCMCREA TEDIRECTORIES 

SCMCREATEDIRECTORIES 

Syntax 

Arguments 

Usage 

SCMCreateDi rectories examines the project and creates corresponding 
directories in your workspace. 

SCMCreateDirectories [-d] 

-d Refrain from creating directories named "Docs" (note the initial capital). 
These are the class and member description files directories. Using this 
option you can create a workspace which does not include those directories. 
This option is for use by Pre Build and Integration teams (PBls) and the build 
room, because having those directories slows down their check out 
operations. 

SCMCreateDi rectories creates directories recursively starting with your current 
directory. That is, if you start it from Hali gentRoot/Tal i gent/NetComm, it creates 
directories that exist in the project below $Ta 1igentSCMRoot/Ta1 i gent/NetComm. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



SCMDIFF 

Syntax 

Arguments 

Examples 

CHAPTER 3 TALIGENT SCM TOOLS 33 

SCMDi ff uses di ff to compare a file in your workspace against a version of that 
file in the project. 

SCMDi ff [ -v version [ -v version2] J [ diffOptions J filename 

diffOptions Options to pass to ct i ff. 

-v Version Compare the workspace file against Version. Version can be a version 
number or a symbolic name. 

-v Version1 -v Version2 Compare these two versions of the file. 

filename The name of file in the corresponding project directory. If you omit -v 
options, compare the current working file against the locked version of 
that file, or against the latest version on the trunk if you do not have it 
locked. 

Compare version 1.3 of file.C against the version designated with D34.FINAL: 

SCMDiff -v 1.3 -v 034.FINAL file.C 

Compare file.C in your workspace against the latest version on the trunk. Pass -c 
to di ff to supply context around the differences: 

SCMDiff -c file.C 

Compare file.C in your workspace against the version designated with 
D34.FINAL. Pass -b to di ff to ignore differences in indenting and spaces: 

SCMDiff -b -v LastDRelease file.C 

SCMDIFF 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



34 CHAPTER 3 TALIGENT SCM TOOLS 

SCMFETCH 

SCMFETCH 

Syntax 

Arguments 

Usage 

SCMFetch is used by xcdb to get a copy of a source file for debugging when xcdb 

can't find a copy on its own. 

SCMFetch [-build] [-xfile fname] [-xpath dirname] [-which] [filename ... ] 

-build 

-which 

-xfile fname 

-xpath dirname 

filename 

Update the SCMFetch cache. 

Report how SCMFetch found the file you asked for, rather than actually 
producing its contents on standard output. 

Exclude the file fname when updating the cache 

Exclude the directory dirname, and its children, when updating the 
cache. 

Look for filename in the source code hierarchy. If found, echo its 
character content to standard output (console). 

SCMFetch maintains a cache of the files in the project; the cache contains the 
containing directory name of each file in the project. It maintains this cache in 
the root directory of the SCM repository, $Tali gentSCMRoot. 

When the debugger calls for a file, SCMFetch searches for it in this order: 

'* If Hali gentSCMFetchPath is set, SCMFetch looks in those directories for the 
file. You can specify more than one directory by separating them with colons: 
/home/joe/dirl:/home/joe/dir2 

'* If$Tal igentSCMFetchPath is not set, or if the file is not in those directories, 
SCMFetch consults its cache for the project directory that contains the file. It 
then looks for the file in your corresponding workspace directory. 

m If the file is not found in the workspace, SCMFetch checks the file out from 
the repository. If the file Hali gent Root/Tali gentSCM/Bu i 1 dName exists, then 
SCMFetch uses that file's contents as a version name to check out. Otherwise it 
checks out the latest version on the trunk. 

The directory that the file belongs in must exist in your workspace. Make 
sure your workspace contains all directories with SCMCreateDi rectories. 

'* If the file is not found in the repository, SCMFetch writes an error message to 
stderr and exits. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Building the cache 

Example 

CHAPTER 3 TALIGENT SCM TOOLS 35 

Sometimes there is more than one file in the world with the same name. To 
ensure SCMFetch finds the file that you want, set Hali gentSCMFetchPath to 
include the file's directory. This ensures that SCMFetch searches the directory 
before searching the cache. 

SCMFETCH 

When SCMFetch checks a file out from the repository, it uses the Bui 1 dName file to 
supply a -v version to Checkout. If you are working with a version that does not 
match the version in Bui 1 dName, manually check out the versions of the files that 
you are using so SCMFetch uses the ones in your workspace. 

The -bui 1 d option builds a cache file. When you build a cache, use -xfi 1 e and 
-xpath to prune the cache of unwanted directory and file entries, and to ensure 
that the correct file appears when two files in the repository have the same name. 

Use -xfi 1 e nnn to omit from the cache those files whose names end with the 
pattern nnn. SCMFetch compares the pattern against the full path name of each 
file before adding the file to the cache. You can supply more than one -xfi 1 e. 

Use -xpath ppp to omit from the cache those directories whose names end with 
the pattern ppp. SCMFetch compares the pattern against the full path name of 
each directory. If it matches, then SCMFetch omits that directory and all its 
subdirectories. You can supply more than one -xpath. 

Assume that you have directory Sources/Tools in your repository, and that 
directory has some files in it. To split Tools into Devel opmentTool sand 
Anal ys i sTool s, you cannot just delete the Tools directory because then you could 
not build versions from before the split. To keep SCMFetch from finding the files 
in Tools: 

-xpath /Tools 

Assume that Seri pts is another directory containing files. To split it and put some 

of the files in the new directory Extra Seri pts, you have to make sure that the old 
file do not appear to SCMFetch: 

-xfile /Scripts/oldl -xfile /Scripts/old2 

The patterns in the example start with slashes because they are matched against 
filenames like Sources/Seri pts/ol dl and Sources/ExtraScri pts/ol dl. Without 
the leading slash, both of these would match and would both be omitted. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



36 CHAPTER 3 TALIGENT SCM TOOLS 

SCMINSERTHEADER 

SCMINSERT HEADER 

Syntax 

Arguments 

Usage 

SCMLoc 

Syntax 

Arguments 

Usage 

SCMinsertHeader prepares files for initial check in to SCM. It removes old SCCS 
(Source Code Control System) tag lines from previous sessions, and it inserts an 
SCM $Revision:$ tag-line. It ignores files that already have a $Revision:$ or 
$Header:$ header-tag. 

SCMinsertHeader filename ... 

filename The name of file in the corresponding project directory; you can specify more 
than one. 

If filename contains a SCCS tag lines, SCMinsertHeader uses the comment leader 
on those lines for the new SCM tag line. Otherwise, if there is no SCCS tag line, 
SCMinsertHeader guesses a comment based on the filename: 

n 11 comments for .C, .c, .h, and .Pink.Make files 

m If comments for .Make files, and for files ending with Makefile and makefile. 

If file does not contain a SCCS tag, and if SCMinsertHeader cannot determine 
which comment leader to use from filename, SCMinsertHeader does not modify 
the file and a prompt instructs you to add an SCM tag manually. 

SCMinsertHeader modifies the file in place; it does not make a copy. 

SCMLog displays the revision history of the file. 

SCMLog [-v version] [ rlogOptions J filename 

rlogOptions 

-v version 

filename 

Options to pass to rl og. 

Compare the workspace file against the specified version. 

The name of file in the workspace directory. 

SCMLog takes the same arguments as rl og; see man rl og on-line for more details. 
Unlike rl og, however, you cannot pass a range of version numbers to SCMLog, only 
a single version number or name, and you must use -r to pass it a version 
number. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 3 TALIGENT SCM TOOLS 37 
SCMNORMALIZE 

SCMNORMALIZE 

Syntax 

Arguments 

Usage 

Examples 

SCMNorma l i ze produces a normalized form of either a file or a directory name. The 
normalized form is a full pathname, not a relative pathname, and starts with /mnt if 
the real directory starts /tmp_mnt/mnt. 

SCMNormalize [filename \ directoryName] 

directoryName 

filename 

The name of a directory in your workspace. 

The name of the file in the workspace. 

SCMNormal i ze prints the pathname to standard output. 

Use SCMNorma l i ze when setting the shell variable $Tali gent Root, which must be 
in normalized form in order for the SCM tools to work properly. Set Root and 
NewRootCommands use SCMNorma l i ze to set Hali gentRoot for you. 

Here are two examples of SCMNormal i ze: 

% SCMNormalize ~tsoi 
SCMNormal i ze result ... /home/tsoi 

% SCMNormalize /usr/taligent/bin 
SCMNorma l i ze result - /us r /ta l il oca l /tali gent/bin 

SCMPROJECTFILE 

Syntax 

Arguments 

Usage 

PRELIMINARY 

SCMProjectFi le reports the full path name in the Hali gentSCMRoot repository of 
a file in your working directory. It can also report the path to the corresponding 
working directory's path. 

SCMProjectFile [filename] 

filename The name of the file in the workspace directory. This file does not have to exist 
in your workspace. If you omit filename, it returns the full pathname of the 
corresponding project directory. 

Use SCMProj ectFi le when writing scripts that need pathnames. SCMProjectFi le 
prints the pathname to standard output. 

If the current directory does not descend from Hali gent Root, SCMProjectFi le 
reports an error and exits with nonzero status. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



38 CHAPTER 3 TALIGENT SCM TOOLS 

SET ROOT 

SET ROOT 

SetRoot initializes your TaligentApplication Environment environment by 
setting the value of Ha 1 i gentRoot and several related shell variables. 
Ha 1 i gent Root is the directory from which all your Taligent source directories 
and files descend. To initialize your environment for the layer environment, use 
Nati veRoot (see page 31). 

A CAUTION Never set Ha 1 i gent Root directly-use Set Root instead because it also 
sets other important related variables. 

Syntax Set Root [ -0] di rectoryName 

Arguments 

Examples 

SYNCSOURCES 

Syntax 

Arguments 

-0 

directoryName 

SetRoot -/Work 

Optimize: turn optimization on for your compiles (affects the setting of 
$Compile0ptions) 

The directory from which all your Taligent files will descend 

SetRoot -0 -/Work 

SyncSources compares the files in the workspace against those versions of the 
files in the project designated with a specified symbolic name, and checks out the 
files necessary to get your workspace in sync with the project. 

SyncSources [-a] [-e] [-r] [-latest] [-s] [-d] [-w] 

-a 

-d 

-e 

-latest 

{ syncName I -v syncName [-v syncName] ... } 

all: report on files that are the same and therefore are not checked out, and on 
files in the project that do not have a version named syncName. 

delete: delete files in the workspace that are not in the repository (not 
controlled). It executes rm commands unless you also include -s, then it 
prints the rm commands to standard output. It does not generate rm 
commands for directories. 

exhaustive: report files that are in your workspace and which are not in the 
project (a condition necessary for a clean build). -e also retrieves the same 
files as -a. 

Designates the /atestversions of files, not just those which are designated by a 
symbolic name. In this context, the latest version is the highest-numbered 
version on the trunk (no branches). This is the version that Latest reports. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Examples 

PRELIMINARY 

-r 

-s 

-v syncName 

-w 

CHAPTER 3 TALIGENT SCM TOOLS 39 
SYNCSOURCES 

recursive: operate recursively through subdirectories in your workspace, 
silently skipping subdirectories in your workspace that aren't in the project, 
and reporting subdirectories that are in the project and not in your workspace. 

script generate a script on standard output which, if executed, would perform 
the check outs. 

The symbolic name that designates the versions of the files to compare 
against the files in your workspace.If you include more than one syncName, 
SyncSources behaves as if you gave multiple commands, one for each 
symbolic name, in the order given. 

Displays which symbolic name caused a version of a file to be checked out. 

SyncSources checks out all files with a version designated with syncName, similar 
to Checkout - r -v syncName, but skips the files for which you already have the 
right version. In this case, it is an optimized check out. 

SyncSources does not overwrite files you have checked out for modification, or 
modify-read-only files; for those it reports an error. 

SyncSources reports the reason for each check out that it does, such as whether 
the file was missing in your workspace, if was there already, what version was 
there, and what version is being checked out. 

Check out and sync all files designated Master.55: 

SyncSources Master.55 

The -v option is required for multiple versions, like this: 

SyncSources -v Master.55 -v Change.187 

Checks out and synchronizes all (-a) the files in the project directory out into the 
workspace directory. If a version of a file is designated Master.55, Change.187, or 
Change.189, then check out the last one specified on the command line 
(SyncSou rces handles this internally as if separate commands were issued): 

SyncSources -a -v Master.55 -v Change.187 -v Change.189 

Check out the latest versions of the files in the workspace directory: 

SyncSources -latest 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



CHAPTER 4 

THE BUILD ENVIRONMENT 

The Taligent AIX build environment was designed to allow individual 
contributors to efficiently accomplish their work, to allow full-system (or major 
subsystem) builds-and to accomplish both in a similar fashion. Once you know 
how to do the first, the second is easy. This chapter focuses on how you, the 
individual contributor, use the build environment. 

TALIGENT BUILD TERMINOLOGY 

PRELIMINARY 

Taligent uses these terms when describing the build environment: 

w Build-run the necessary tools to generate client and executable files in the 
proper order on any project or any project hierarchy. To accomplish this, 
each project (or project hierarchy) must have its own makefile. See 
"Makefiles" on page 43 for more information. 

,, Client file~ headers and export files. 

,, Header files (.h files)-files containing your C++ class definitions. 

'iii Export files (.e files)-files containing a list of all entry points in your shared 
library. Your clients link against .e files and the runtime system binds the calls 
to your shared library at run time. 

n Binarie~executable programs or applications that use shared libraries 
during execution. 

'" Shared libraries-Class libraries used by multiple programs are usually loaded 
dynamically at runtime. To build a shared library, compile your source files, 
generate your . e file, and link against other . e files. For building the layer or 
layer applications, use Ma keSh a red Lib (see page 69 for more details). When 
building native, the link is handled automatically by Universal. Make. Intel, 

which calls Plink. 

Executables-binaries or shared libraries. To build a program or executable, 
compile your source files and link against . e files using Ma keSha redApp. Your 
source files must contain a main entry point. (See "MakeSharedApp" on 
page 68 for more details.) 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

41 



42 CHAPTER 4 THE BUILD ENVIRONMENT 

THE BUILD PROCESS 

THE BUILD PROCESS 

The Taligent Application Environment is a big web of interdependencies. To 
solve these interdependencies, the build process is occurs in four phases that first 
build all client files, and then build all executables. This automated process 
generates both client and executable files. 

Includes 

Objects 

Exports 

Exports all public header 
files for clients 

Compiles all .C files into .o 
files 

Combines all .o, and 
generates .e files for 
clients 

i Binaries Generates all shared 
'-.._..,...., .......... ~--~-./ libraries and executables 

The build process makes header files 
(*.h) by copying them from the project 
into a common directory where other 
projects {clients) can access them 

The build process makes export files 
(*.e) by compiling *.C files, combining 
them into one .o (or .a), and then using 
MakeExportL i st to generate the,.e 
file (see "MakeExportlist" on page 65) 

NOTE For Taligent Operating System builds, files currently have different 
extensions than those cited in the illustration: object files are *. i p, libraries are 
*. 1 i b, and export files are*. client. i p. 

To automate the build process, use makefile descriptions to specify the files to 
build, and use CreateMake to translate the makefile descriptions and to build the 
files. 

A CAUTION The current build tools do not test to see if your component, 
application, or library has the same name as one used by the system. The build 
process will automatically overwrite the Taligent file with yours if you have a 
duplicate name. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



MAKEFILES 

Makefile 
description syntax 

Target types 

Library 

Program 

CHAPTER 4 THE BUILD ENVIRONMENT 43 
MAKEFILES 

The makefiles associated with each project are makefil,e descriptions, not standard 
makefiles. During a build, Makei t calls CreateMake to translate the makefile 
description to a standard-makefile. Makei t then calls make to analyze the 
dependencies of the generated makefiles and update the project. Because 
makefile descriptions are source code, you can check them in to SCM; but, do 
not check in the generated makefiles. Makefile descriptions have filenames in 
the form Project.PinkMake, where Project is the name of the project or directory. 

NOTE Chapter 6, "CreateMake," describes makefiles in detail. 

~------------------------------- Type of target, 
·········· ······················r .........••.. 

TypeOfTarget TargetName 
Label: 

Fi l e Li st -------------------- ---------------------
Label: 

FileList 

Name of the target 

Identifies the build topic, typically 
Source, Link, or PublicHeaders 

The files to process 

CreateMake generates different build rules for each type of target. Here are a few 
common target descriptions; for more, see Chapter 6, "CreateMake." 

Generates rules to build a shared library. 

common types 
include Library, 
Program, 
ParentObject, and 
SubProjectlist 

Library WidgetLib { 
Source: 

---------- Build WidgetUb, also generates Widget.e to allow 

AbstractWidget.C 
Widget. C 

PublicHeaders: 
Widget. h 

Link: 
TestFrameworkLib 
ToolboxLib 

other Widget.h files to link in. 

WidgetUb is built from 
these two files 

--------------- Export Widget.h to allow other projects to use 
Widget objects 

~--------------------- Specifically link with these files 

Generates rules to build an application. 

Program ShowWidget { 
Source: 

ShowWidget.C 
} 

··-----------------------·-- Use all system libraries because there 
is no Link label 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



44 CHAPTER 4 THE BUILD ENVIRONMENT 

MAKEIT 

ParentObject 

SubProjectlist 

MAKE IT 

Syntax 

Generates rules to build and combine the source files. Frequently used to 
combine several projects into one larger library. 

ParentObject FooBarLib 
source: 

Foo.C 
Bar.C 

publicheaders: 

Generate Foobarlib.o to be 
included in the build of another 
library 

Foo.h 
Bar. h 

1---------- Exported for clients 

} 

ParentObject targets do 
not require a Link label 
because they are not 
Jinked 

A special type of target that lists all the sub projects that you want to build; it does 
not have a target name or any labels. Ma kei t uses this list when traversing the 
project hierarchy and only builds from those directories listed. 

SubProjectlist { 
SubProj 1 1-------·---- Build SubProject1 and SubProject2, but ignore SubProject3, 
Sub Pro j 2 _J even though itis part of the project 

Once your have a makefile description, use Make it to build your project. Ma kei t is 
a specialized wrapper (or front end) to make. Makei t simplifies builds, provides 
consistency, and has the ability to traverse project hierarchies and convert 
makefile descriptions to real makefiles along the way. 

Makeit [options] [Targets] 

Ma kei t only has a few options. If you specify any other options, Make it passes 
them along to make. So in effect, Make it has the same options as make. For 
information about Makei t and its options, see "Makeit" on page 66. 

Ifyou omit options and targets, Makeit goes through each targetin the build 
process (Includes, Objects, Exports, and Binaries), and builds the necessary 
dependencies. However, because Make it is really a wrapper for make, it accepts 
any legitimate target in a makefile. 

Make it Demo App 

A common mistake is to build one target (like the previous example), and not 
realize that Make it is going to do a make on all subprojects of DemoApp-many 
of which do not have a target DemoApp. To prevent Make it from building 
subprojects, include -c. 

Makeit -c DemoApp 

For more robust examples, see "Real life examples" on page 49. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Passing options 
to make 

Creating makefiles 

Universal.Make 

Other Global Targets 

CHAPTER 4 THE BUILD ENVIRONMENT 45 

Ma kei t passes any options it does not recognize. You can use this feature to pass 
options to make. Makei t passes arguments to options, and can override variables 
in makefiles. For example, to override the COPTS variable in the makefile: 

Makeit COPTS=-g Binaries 

When Makei t builds a makefile on the fly, it does so because either 

> The *.Make file does not exist 

v The *.PinkMake file is newer than the *.Make file, or 

"' The -M option forced automatic makefile generation. 

Make it uses Crea teMa ke to translate the makefile descriptions (*.Pin kMa ke) to 
UNIX makefiles(* .Make). For more information, see "CreateMake" on page 60. 

To prevent duplication in each makefile, and to allow more flexibility, Crea teMa ke 
includes Universal . Make in every generated makefile (*.Make). 

NOTE Each target platform has a separate version of Uni versa 1 . Make. For 
native builds, the file is Uni versa 1 . Make. Inte 1. 

Universal. Make contains global targets and rules. Some of the familiar global 
targets are: Includes, Objects, Exports, and Binaries. Other targets are useful 
because they are applied only to the projects in the build and not to every 
directory in the hierarchy. For example you can have a subsystem that is checked 
into SCM, but is not part of the build. These targets will not be applied to those 
projects. 

Global Target 

Clean 

Complete 

Makefiles 

Task 

Remove all .o's, .e's, and libraries that were built. 

Expand into the standard targets: Includes, Objects, Exports, and Binaries. 

Allows you to traverse the directory and rebuild makefiles as needed. 

The includes, objects, exports, binaries, and clean targets have lower-case 
synonyms, so capitalization is not required. 

NOTE Before you build anything with Ma kei t, follow the installation 
procedures in Chapter 2, "Working in the AIX environment" to check out a 
correct version of Uni versa 1 . Make or Uni versa 1 . Make. Intel into your 
$Ta 1igentRoot/Ta1 i gent directory. 

MAKE IT 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



46 CHAPTER 4 THE BUILD ENVIRONMENT 

ENVIRONMENT VARIABLES 

ENVIRONMENT VARIABLES 

The AIX build environment relies heavily on two types of environment variables: 

Pathname environment variables contain pathnames that are specific to each user. All the 
build tools and makefiles refer to the standard locations through environment 
variables. This allows you to define the location of your working directories. 
Ha 1 i gent Root, set by SetRoot, is the basis for all other pathname variables. For 
example, here are two pathnames as set by Set Root: 

The{} bound variable ---setenv Ta 1 i gent Includes ${Ta 1 i gent Root} I Pi nkI ncl udes 
references in shell scripts. setenv Tali gentExports ${Ta 1 i gent Root} I Exports 

Variable 

LIB PATH 

TaligentBATRoot 

TaligentBinaries 

TaligentDefaultHomePlace 

TaligentExports 

TaligentExtension Includes 

Taligentlncludes 

TaligentlncludesDir 

Taligentlibs 

Tai igentObsolete Includes 

TaligentPlacesRoot 

TaligentPrivatelncludes 

TaligentRoot 

TaligentSCMRoot 

TaligentShared Libs 

Path to 

Taligent shared libraries used during runtime. 

Root of the area where all BAT scripts, data, and results reside. 
BAT libraries, and servers go in the nontest (standard library, 
server, program) areas. 

Taligent runtime binaries. 

Repository for the current user's home place (Only one user 
currently for the system.) The Workspace group will provide a 
better object API for getting access to the current user and storage 
areas related to that user in future releases. 

Taligent shared library interface files that developers link with to 
access Taligent shared libraries. 

Directory containing interfaces to system extension developers. 

Main /Ii ncl udes directories used in Taligent builds. 

Base parent directory of all Taligent/li ncl udes (this is the parent 
of $Taligentlncludes, $TaligentExtensionlncludes, and 
$Taligent0bsoletel ncl udes). 

Directory for certain nonshared libraries. 

Directory containing interfaces that should not exist in the SDK 
release but cannot, or that have not had their dependencies 
successfully removed. This directory will go away by SDK2. 

Repository where Places for the machine reside. 

Private /Ii ncl udes used internally. 

The base of everything in the build and runtime system. 

The repository for Pink source. 

Taligent runtime shared libraries. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 4 THE BUILD ENVIRONMENT 47 
ENVIRONMENT VARIABLES 

Variable 

TaligentSource 

TaligentSystemDataRoot 

TaligentSourceRoot 

TaligentSystemlibraries 

TaligentSystemPrograms 

TaligentSystemRoot 

TaligentSystemServers 

TaligentTemporaries 

TaligentTestlibraries 

TaligentTestPrograms 

TaligentTestServers 

TaligentTools 

TaligentToolsEtc 

TaligentUniversalMake 

Path to 

The root of the source tree. Ta 1 i gentsou rce is not used by the 
build, but is used by some tools that the Build room uses. 
TaligentSource is the root of the native and layer source tree; 
eventually there will be settings for Hoops, CompTech, and 
possibly more. 

Repository for system data files. These are typically configuration 
files, not first class user data such as movies, images, or sounds. 

Root of the Taligent source tree hierarchy. 

Repository for system software shared libraries. 

Repository for system software shared libraries. 

Root of the Taligent system software area. 

Repository for system software servers. 

Repository for temporary files until people use real Pluto 
temporary file support. 

Repository for system test shared libraries. 

Repository for system software shared libraries. 

Repository for the test servers. 

Internal tools. 

Additional internal tools, scripts, etc. 

Universal.Make file used in build system. 

Option environment variables contain the standard options to the standard tools that the 
build uses. Having the options in an environment variable allows you to change 
and experiment with certain options (like debugging options) without 
disturbing others. Never add options to the compiler (or to any build tools) in 
the makefile-use the environment variables instead. 

Variable 

CompileOptions 

MakeSharedAppOptions 

LinkOptions 

Options to 

xl c command line during builds as the options for building 
Taligent code and default search paths to Tali gent /fai nc 1 udes. 

Ma keSha redApp as default options for building a Taligent shared 
library. 

xl clink command line during builds. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

Makefile variables 
area common 
alternative to 

environment 

variables, but are 

disastrous in our 

build environment. 



48 CHAPTER 4 THE BUILD ENVIRONMENT 

ENVIRONMENT VARIABLES 

SetRoot and 
Native Root 

How to change 
environment variables 

When to change 
environment variables 

NOTE Occasionally a project requires a special option (such as working 
around a compiler bug). For special cases when the project cannot build or will 
not work unless it has a particular option, add the option to the makefile 
description file (*.Pi nkMake). To add an compiler option, add the following line 
to the*. Pi nkMake file: 

compileoptions: -NewOptions 

Set Root defines the standard values for all the environment variables that the 
Taligent build environment requires. You can review the complete Set Root list of 
the environment variables (and descriptions) by looking at the /usr/ta 1 i gent/ 
bi n/NewRootCommand script. Always use Set Root to initially set the variables and 
pathnames. If you need to change a variable, do so after running SetRoot. 

NOTE Set Root is the layer command. If you are working on Taligent 
Operating System, use Nati veRoot instead. For more information, see "Initialize 
your environment" on page 5 and "Prepare your environment" on page 6. 

The easiest way to change an environment variable is to add to it. For example, in 
a shell script, to add -D_MYDEBUG_ as an option to the compiler: 

setenv CompileOptions "-D_MYDEBUG_ HCompileOptions}" 

If you frequently add the same option, put the setting in a startup file. 

It is easy to change the environment variables to customize your environment, 
but be careful not to get too carried away with additions. Remember, other 
people need to build your project too; do not become dependent on a particular 
-D you have defined in your environment variable. The system builds use the 
default options as defined in the BuildOptions file. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 4 THE BUILD ENVIRONMENT 49 
REAL LIFE EXAMPLES 

REAL LIFE EXAMPLES 

A simple sample 

How to create 
SimpleSample 

By now you should understand the organization of projects and have a 
fundamental grasp of how the build works. This section ties together everything 
you have learned by using several real life examples. 

NOTE Before you begin this section, make sure your initial set up is correct 
(see Chapter 2, "Working in the AIX environment") including checking out the 
Universal. Make file. 

SimpleSampw is similar to Kernighan and Ritchie's hello world program. This 
program is ideal for demonstrating how to create, build, and execute an 
application. 

D Create a directory named Si mpl eSampl e. You can create the directory 
anywhere on your file system; in your home directory is probably best. 

fJ Create a source file he 11 o . C and enter: 

#include <stdio.h> 
void main() 
{ 

printf("Hi there everybody!\n"); 
} 

Use your favorite editor to create hello.C. For custom features that can 
improve Emacs efficiency, see "Emacs" on page 162. 

Bl Create a makefile description called Si mpl eSampl e. Pi nkMa ke and enter: 

program SimpleSample { 

} 

source: 
hello.C II A single source file 

The name of the *.Pin kMa ke file must be the same as the name of the 
directory in which it resides. The example resides in .. ./Simpl eSampl e. 

D Build SimpleSample using Ma kei t without any options or targets (See the 
section Makeit, "Default operation:" on page 22): 

Make it 

NOTE When compiling for Taligent Operating System, Nati veRoot 
automatically sets up your environment so that Make it uses the -i nte 1 argument 
to generate Uni versa 1 . Make. Intel instead of Uni versa 1 . Make. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



50 CHAPTER 4 THE BUILD ENVIRONMENT 

REAL LIFE EXAMPLES 

The build log 

Makeit messages 

2 

3 

The Includes phase 

4 

5 

6 

7 

8 

The Objects phase 

9 

10 

11 

12 

13 

The Exports phase 

14 

15 

16 

17 

18 

The Binaries Phase 

19 

20 

21 

22 

23 

The Copy phase 

What follows is the build log; yours should look similar. 

The first message is from Ma keit stating that it did not find Si mp l eSamp le. Make in 
the project. Therefore, Make it built a makefile from Si mpl eSampl e. Pi nkMake. 
Line 3 is the CreateMake command that Makeit issued to create the makefile. 

### Makeit: No makefile found in '/home/EeeDee/SimpleSample'. 
### However one will be built from 'SimpleSample.PinkMake'. 
# CreateMake > SimpleSample.Make; 

Since SimpleSample.PinkMake did not specify any public header files, Ma kei t did 
not build any include files. 

# 
#Making "Includes" for "/home/EeeDee/SimpleSample" ... 
#make -f SimpleSample.Make Includes 
If 
make: Nothing to be done for 'Includes'. 

Compiles hello.C to hello.o, and contains the make line that Makei t called. 

If 
#Making "Objects" for "/home/EeeDee/SimpleSample" ... 
# make -f SimpleSample.Make Objects 
If 
#Compile hello.C to produce hello.a 

Did not build a shared library because SimpleSample did not build an export 
file. 

If 
#Making "Exports" for "/home/EeeDee/SimpleSample" ... 
#make -f SimpleSample.Make Exports 
If 
make: 'Exports' is up to date. 

Creates the executable application by calling MakeSharedApp (as echoed from 
make). For more information, see "MakeSharedApp" on page 41 

If 
#Making "Binaries" for "/home/EeeDee/SimpleSample" ..• 
# make -f SimpleSample.Make Binaries 
If 
MakeSharedApp -L. -L/usr/lib/dce -o SimpleSample hello.a /home/EeeDee/work/Expo 
rts/Runtimelib.e /home/EeeDee/work/Exports/Opixlib.e /home/EeeDee/work/Exports/T 
oolboxlib.e /home/EeeDee/work/Exports/Timelib.e /home/EeeDee/work/Exports/TestFr 
ameworklib.e /home/EeeDee/work/Exports/HighlevelAlbert.e /home/EeeDee/work/Expo 
rts/LowLevelAlbert.e /home/EeeDee/work/Exports/AlbertPixelBuffers.e 

Copies the built application to $Ta l i gentB i na ri es, the standard location for 
executable files, and leaves a copy in the current directory. 

SmartCopy SimpleSample /home/EeeDee/work/TaligentBinaries 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



How to execute 
SimpleSample 

A faster build 

PRELIMINARY 

CHAPTER 4 THE BUILD ENVIRONMENT 51 

REAL LIFE EXAMPLES 

When the build completes, execute SimpleSample program by typing its name at 
the UNIX prompt. It should look like this: 

% SimpleSample 
OPIX compile timestamp = Jan 22 1994, 08:25:22 -------TheTaligentAIXLayerprintsatime-stamp 
Hi there everybody! whenitrunsanapplication. 
% 

NOTE See "Starting and stopping Taligent Operating System programs" on 
page 13 for information about running the Simple Sample program on Taligent 
Operating System. 

A slightly faster and more efficient way to use Make it is to include the target 
name. For example, change SimpleSample to use a Taligent object, and then 
rebuild it. 

D Change hello.C to look like this: 

#include <Geometry.h> 

void main() 
{ 

TGRect unUsedRect(O, 1, 2, 4); 
unUsedRect.PrintObject(); //Print coordinates 

} 

fJ Rebuild the application. 

Makeit SimpleSample. 

The build log looks similar to this: 

# 
#Making "SimpleSample" for "/home/EeeDee/SimpleSample" ... 
#make -f SimpleSample.Make SimpleSample 
/I 
#Compile hello.C to produce hello.a 
MakeSharedApp -L. -L/usr/lib/dce -o SimpleSample hello.a /home/EeeDee/work/Expo 
rts/Runtimelib.e /home/EeeDee/work/Exports/Opixlib.e /home/EeeDee/work/Exports/T 
oolboxlib.e /home/EeeDee/work/Exports/Timelib.e /home/EeeDee/work/Exports/TestFr 
ameworklib.e /home/EeeDee/work/Exports/HighlevelAlbert.e /home/EeeDee/work/Expo 
rts/LowlevelAlbert.e /home/EeeDee/work/Exports/AlbertPixelBuffers.e 

Running the new SimpleSample should print these results: 

%SimpleSample 
OPIX compile timestamp =Jan 22 1994, 08:25:22 
TGRect (top = 1.000000, left= 0.000000, bottom 4.000000, right 2.000000) 
% 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



52 CHAPTER 4 THE BUILD ENVIRONMENT 

REAL LIFE EXAMPLES 

A clean build 

A not-so-simple 
makefile 

Used by all compile 

commands. 

Copy these make --""-"" ___ ", 
commands into the 
beginning of the 
generated makefile. 

To ensure a successful build, delete all the object files before you build a project 
(or project hierarchy). Cl ea n instructs Makeit to delete the object files before 
building the project. 

Makeit Clean Complete 

TuffyData is an application with several dependency files. This makefile 
description for TuffyData (TuffyData. Pi nkMake) is typical of a Taligent 
application. 

II $Revision: 1.1 $ 
II Copyright (c) 1994 Taligent, Inc. All Rights Reserved. 

compileoption: -D_DEBUG_ -DUSE_FILE_SEGS 

start { 
TestHeaderDir- .. 1 .. IAESIUEILocalincludes 

Local Includes : : 
test -d $(TestHeaderDir) I I mkdir $(TestHeaderDir) 

} 

Directory of headers---- local headerdi r: $(TestHeaderDi r) 
to export. 

Dependencies and ----i 
makefile commands for 
creating the runtime 
library. 

library CellModelLib { 
publicheaders: 

Cell Model .h 
CellModelView.h 
CellSelectioninteractor.h 

source: 
CellModel.C 
CellModelView.C 
CellSelections.C 
CellModelCommands.C 
CellSelectionlnteractor.C 

link: 

} 

GraphicDocumentLib 
StandardDocumentlib 
NewGraphicApplicationlib 
BDFTestL i b 
CompoundDocumentlib 
BasicDocumentlib 
NewControlslib 
ConstructorArchiveLib 
AlbertScreens 
{Universallinklist} 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Create make --------" 
dependencies for 

TuffyData, and build a 

single executable with 

these sources linked in. 

A simple * .PinkMake 

binary CreateTuffyData 
source: 

CreateTuffyData.C 
link: 

Ce 11 Model Lib 
StandardDocumentlib 
GraphicDocumentLib 
NewGraphicApplicationlib 
BDFTestL i b 
CompoundDocumentlib 
BasicDocumentlib 
NewControlslib 
ConstructorArchivelib 
AlbertScreens 
{Universallinklist} 

CHAPTER 4 THE BUILD ENVIRONMENT 53 
REAL LIFE EXAMPLES 

·How do you determine which link files you need to specify in your*. Pin kMa ke 
file? If you don't specify any link files, Crea teMa ke links all library files. As you can 
imagine, this is not economical. Currently, the only way to determine which link 
files to include is by trial and error, and with a little help from Fi ndSymbol s. 

Consider this makefile description called JustAVi ew. Pi nkMa ke.JustAView builds a 
shared library and an application binary. To link all library files, create 
JustAView.PinkMake like this: 

library JustAViewLib 
source: 

MyView.C 
} 

binary JustAView { 
source: 

Main.C 
} 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



54 CHAPTER 4 THE BUILD ENVIRONMENT 

REAL LIFE EXAMPLES 

Adding link libraries To determine which library files to link, include link: targets and specify 
{Si mpl el i nkli st} as the tag in each list. {Si mpl el in kl i st} is a variable specifying 
a minimal set of libraries that most applications require: 

library JustAViewlib { 
source: 

MyView.C 

1 ink: 
{Simplelinklist} 

} 

binary JustAView { 
source: 

Main.C 

1 ink: 

} 

JustAViewlib 
{Simplelinklist} 

II Minimal set 

II The JustAView library created above 
II Minimal set 

When you build theJustAView project, Makei twill list errors for undefined 
symbols encountered when MakeSharedL i b executes. In the messages, look for 
errors like these below the MakeSharedL i b command line: 

MakeSharedlib -o JustAViewlib ... 
ld: 0711-317 ERROR: Undefined symbol: .TGArea: :-TGArea() 
ld: 0711-317 ERROR: Undefined symbol: .TRGBColor::-TRGBColor() 
ld: 0711-317 ERROR: Undefined symbol: . TGRect: :-TGRect() 
ld: 0711-317 ERROR: Undefined symbol: ~vtt12TContentView 

To find the library files in which these symbols are defined, use Fi ndSymbol s. 
(The first time you run Fi ndSymbol s, it parses all library files and builds a 
database file so that subsequent lookups execute quickly.) To perform a lookup, 
run Fi ndSymbo 1 s and specify the symbol exactly as it appears in the error listing. 
The symbol name must be enclosed within apostrophes (single quotes). 

FindSymbols '.TGArea::-TGArea()' 

Which produces a listing like this: 

TGArea::-TGArea(): 
HighlevelAlbert 

This is the unique set of libraries identified: 
Link tag to add----------- High Leve 1A1 be rt 

This listing indicates that the symbol is in HighlevelAlbert. Add thatname as the 
tag in the library's 1 ink: target. To look for multiple symbols at once, include 
each as a separate argument on the Fi ndSymbol s command line: 

Fi ndSymbol s '. TRGBCol or: :-TRGBCol or()' '. TGRect: :-TGRect()' ' vtt12TContentVi ew' 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



PRELIMINARY 

Which produces this listing: 

TRGBColor::-TRGBColor(): 
Lowlevel A 1 bert 

TGRect::-TGRect(): 
CommonAlbert 
HighLevelAlbert 
~vtt12TContentView: 

NewGraphicApplicationLib 

This is the unique set of libraries identified: 
CommonAlbert 
HighLevelAlbert 
LowlevelAlbert 
NewGraphicApplicationlib 

CHAPTER 4 THE BUILD ENVIRONMENT 55 
REAL LIFE EXAMPLES 

Notice that TGRect: :-TGRect(): appears in Common A 1 bert and High Level A 1 be rt. 
When you get multiple libraries, you probably need to include only one. Try one 
and if you still get errors for the symbol, try the other. In a worst case, include 
both. This example only needed HighLevelAl bert. 

library JustAViewlib 
source: 

MyView.C 

1 ink: 
HighLevelAlbert 
LowLevelAlbert 
NewGraphicApplicationLib 
{Si mp 1 e Li n k Li st} 

binary JustAView { 
source: 

Main.C 

1 ink: 
{Si mpl el i nkl i st} 

} 

II Add 
II Add 
II Add 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



56 CHAPTER 4 THE BUILD ENVIRONMENT 

REAL LIFE EXAMPLES 

Add link targets -

Even if you lookup every symbol in the list, it probably won't be enough to build 
completely, because the libraries might also require other libraries. When you 
buildjustAView again, you get these errors: 

MakeSharedLib ... 
ld: 0711-317 ERROR: Undefined symbol: ~vtt5TView 
ld: 0711-317 ERROR: Undefined symbol: .TView::GetClassMetainformation() 
ld: 0711-317 ERROR: Undefined symbol: .TEventSenderSurrogate::GetClassMetainformation() 

Repeat the lookup and*. Pi nkMake modification until MakeSharedL i b doesn't 
return an error. 

Once your build gets past Ma keSha red Lib without error, you will probably find 
MakeSharedApp producing similar errors: 

MakeSharedlib .. . 
MakeSharedApp .. . 

ld: 0711-317 ERROR: Undefined symbol: TView::virtual-fn-table-ptr-table 
ld: 0711-317 ERROR: Undefined symbol: .TView::GetClassMetainformation() 
ld: 0711-317 ERROR: Undefined symbol: .TEventSenderSurrogate::GetClassMetainformation() 
ld: 0711-317 ERROR: Undefined symbol: .TinputDevice::GetClassMetainformation() 
ld: 0711-317 ERROR: Undefined symbol: . TViewRoot: :-TViewRoot() 
ld: 0711-317 ERROR: Undefined symbol: .TViewRoot::TViewRoot(TRequestProcessor*l 
ld: 0711-317 ERROR: Undefined symbol: .TViewRoot::AdoptChild(TView*) 

Use FindSymbols again, but this time, add the link: tags to the binary target. 

library JustAViewlib { 
source: 

MyView.C 

1 ink: 

} 

ViewSystemLib 
Input Lib 
HighLevelAlbert 
LowLevelAlbert 
NewGraphicApplicationLib 
{Simplelinklist} 

binary JustAView { 
source: 

Main.C 

1 ink: 
---·--! ViewSystemlib 

I InputLib 
L __ JustAVi ewL i b 

{Simplelinklist} 
} 

Repeat the process until Makei t completes the build. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



SYSTEM BUILDS 

CHAPTER 4 THE BUILD ENVIRONMENT 57 
SYSTEM BUILDS 

Often you need to build the entire system to ensure that your application pieces 
are functioning together. You can install a copy of the latest build to your file 
system with Interimlnstal 1 (layer) or Nativeinstal 1 (native). These scripts copy 
a set of headers, libraries, and shared libraries to your local system. Once you 
install a build and its associated files, you can modify, debug, or build on top of 
that particular build. 

For more information about Interiminstal 1, see "Interimlnstall" on page 64, 
and for Nati veinsta 11, see "Nativelnstall" on page 70. To install a system build, 
follow the instructions provided in "Install the build" on page 5 or "Install the 
Native TalOS build" on page 7. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED Il\'FORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



PRELIMINARY 

CHAPTER 5 

TALIGENT BUILD TOOLS 

The Taligent build tools include tools and scripts that you run from the 
command line, and tools and scripts that those tools call. While this chapter 
documents how to run all of the Taligent build tools, there are some tools that 
you should avoid and are so noted. In addition , some tools require you to log on 
with super user access. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

59 



60 CHAPTER 5 TALIGENT BUILD TOOLS 

CREATEMAKE 

CREATEMAKE 

Installation 

Syntax 

Arguments 

Usage 

Makefile format 

Crea teMa ke reads a file Project.PinkMake and creates a UNIX makefile for 
building the project. CreateMa ke writes the makefile to stdout; by convention, 
you should redirect the output to Project.Make. 

CreateMake is located in /us r/tal i gent/bin and requires no installation. Make 
sure this directory is in your command search path. 

CreateMake [sourcefile] [-fast] [-D define] ... [-target target] [-I includePath] ... 
[-noum] [-vers] > outputfile 

-D define Include the specified definition during processing. 

-fast Preprocess the source files and create a single .c that/Ii ncl udes the source 
files to build each target. this results in faster builds, but is notto be used for 
final builds. 

-target target Generate a makefile for a specific target. Currently used only by Taligent 
Operating System and the target is i nte l. Use Uni versa 1 . Make. Intel 
instead of Universal. Make. 

-I inc/udePath Add the path to the /Ii n c 1 ude directory search-list. 

-noum Generate a makefile that does not rely on Universal.Make for processing. 

outputfi/e The file containing the new makefile. If you omit outputfile, output goes to 
stdout. 

sourcefile The input file to process is usually a * .PinkMake filename. If you omit sourcetile, 
c rea teMa ke assumes the current directory name is the project. For example, if 
the current directory is /TestL i b, the sourcefile is Testlib.PinkMake. 

-vers Echo the current version and copyright information to stderr. This is the same 
header that appears at the top of created makefiles. If you use this option with no 
other parameters, the information echoes and c rea teMa ke exits. Otherwise, the 
information echoes and processing continues. 

You do not usually call CreateMake directly; instead, you should use Makei t to 
automatically invoke it (see "Makeit" on page 66). Ma keit executes CreateMa ke if 
the makefile is out-of-date or missing. 

See Chapter 4, "Makefiles," for a formal definition and syntax for the makefile 
descriptions. 

CreateMake generates a standard AIX makefile whose content depends on the 
targets in sourcefile. Each makefile supports the standard Taligent build steps 
(Includes, Objects, Exports, and Binaries). 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Examples 

FINDSYMBOLS 

Syntax 

Arguments 

Usage 

CHAPTER 5 TALIGENT BUILD TOOLS 61 

FrnDSYMBOLS 

Simple projects require simple make commands. For example, to create a 
makefile named Sample.Make which builds a target from the C source files in the 
working directory: 

CreateMake Sample.PinkMake > Sample.Make 

Fi ndSymbo ls reports the shared libraries that contain the specified symbols. 

FindSymbols 

'symbol 

'symbol' ... J 

The mangled, demangled, or mixed-form symbol to locate. The argument 
must be enclosed in single quotes('). 

Use Fi ndSymbol s when MakeSharedL i b or MakeSharedApp report unresolved 
symbols, and you want to know which libraries you should add to the link list in 
your*.PinkMake file. 

The first time you run Fi ndSymbol s, it builds a cache file: $Tali gentExport/ 
_A 11 Symbols. Subsequent runs consult that cache file. To rebuild or update the 
file, delete it and rerun Fi ndSymbol s. When you install a new build, 
Interimlnstal l should delete the cache. 

NOTE If Fi ndSymbol s can't locate a symbol that you are certain exists, the 
symbol is probably an inline. There is no way to find inlines, because they are 
compiled into client code, as opposed to being compiled into and exported from 
a library for use by clients. 

Because the implementation of an inline must be compiled with the header, you 
should be able to find the inline declaration if you do enough searching: it will 
either be hidden down near the bottom of the header, or in another file that is 
an 1/i ncl ude in the header (typically similar to "XXXXImplementation. [ih]"). 

A compiler is free to not inline an inline if doing so would generate worse code. 
This means that some symbols declared inline might not actually be inlined, and 
so can wind up compiled into and exported from a library which-if not in the 
*.Pi nkMake's link list-would lead to an unresolved symbol error. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



62 CHAPTER 5 TALIGENT BUILD TOOLS 

FINDSYMBOLS 

Example You will typically use Fi ndSymbo l s to locate the library that caused an "Undefined 
symbol" error when your build fails. For example, Ma kei t might list errors for 
undefined symbols encountered when MakeSharedlib executes. In the messages, 
look for errors like these below the Ma keSharedL i b command line: 

Link tag to add to --

your *.PinkMake 

MakeSharedlib -o JustAViewlib ... 
l d: 0711-317 ERROR: Undefined symbol: . TGArea::-TGArea() 
l d: 0711-317 ERROR: Undefined symbol: .TRGBColor::-TRGBColor() 
l d: 0711-317 ERROR: Undefined symbol: .TGRect::-TGRect() 
l d: 0711-317 ERROR: Undefined symbol: - vtt12TContentView 

To find the library files in which these symbols are defined, run Fi ndSymbol sand 
specify the symbol exactly as it appears in the error listing. The symbol name 
must be enclosed within apostrophes (single quotes). 

FindSymbols '.TGArea::-TGArea()' 

Which produces a listing like this: 

TGArea::-TGArea(): 
HighLevelAlbert 

This is the unique set of libraries identified: 
HighLevelAlbert 

This listing indicates that the symbol is in Hi ghLevelAl bert. 

To look for multiple symbols at once, include each as a separate argument on the 
Fi ndSymbol s command line: 

FindSymbols '.TRGBColor::-TRGBColor()' '.TGRect::-TGRect()'' vtt12TContentView' 

Which produces this listing: 

TRGBColor::-TRGBColor(): 
LowLevelAlbert 

TGRect::-TGRect(): 
CommonAlbert 
HighLevelAlbert 

vtt12TContentView: 
NewGraphicApplicationlib 

This is the unique set of libraries identified: 
CommonAlbert 
HighLevelAlbert 
Low Level Albert 
NewGraphicApplicationLib 

Notice that TGRect: :-TGRect(): appears in CommonA l bert and Hi ghlevel Al be rt. 
When you get multiple libraries, you probably need to include only one. Try one 
and if you still get errors for the symbol, try the other. In a worst case, include 
both. This example only needed Hi ghlevel Al be rt. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



PRELIMINARY 

CHAPTER 5 TALIGENT BUILD TOOLS 63 
FINDSYMBOLS 

It's also possible to find symbols before using Ma kei t. To do so, you must take a 
symbol from C++ code and put it into the canonical form used by the linker. This 
isn't easy. Here are some rules for functions that work 80-90% of the time: 

D Remove the return value. 

fJ Preface the function with the ClassNamefollowed by"::". 

E Remove all argument names. 

II Remove all whitespace, except: 

a There should be exactly one blank after all canst keywords inside a 
function's argument-parenthesis. 

@ There should be exactly one blank after a function's closing')' and 
before a canst keyword. 

For example: 

class TSameClass { 
int SameFunc( canst TSomeType* sameArg, 

TOtherType& atherArg ) canst; 

becomes: 

TSameClass::SameFunc(canst TSameType*,TOtherType&J canst 

Complications creep in when one or more of the types involved are f/defi ne's or 
typedef's. In such cases, it's better to choose a different function. 

With practice, you can get good at this technique, and can even find other kinds 
of symbols (en urn's, for example). This may seem like a lot of work, but at least you 
don't have to keep running the linker. 

This technique is best when you have a program that is already compiled and 
working, and you add some new functionality to it. Then you have a good idea of 
what new symbols you've introduced, and what symbols to search for. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



64 CHAPTER 5 TALIGENT BUILD TOOLS 

lNTERIMINSTALL 

INTERIMINSTALL 

Syntax 

Arguments 

Example 

Interi minsta 11 is a script that automates the installation process for the layer; to 
install native, use Nati veI nsta 11. I nteri ml nsta 11 installs the most recent build by 
default, or can install a specific build. 

Interimlnstall [ -1 [ -s I -D -0 J [-b] [-r re7easeName J 

-D 
-b 

-1 

-0 

Install the Debug release. 

Blastthe release currently installed on your system. Most of the files in the 
Taligent directories are not writable, but must be removed before a new build can 
be installed over them. This option removes the pertinent directories under 
$TaligentRoot, but does not modify $TaligentRoot/Taligent except to remove 
universal.Make. 

List the builds currently available for downloading. You cannot use this with any 
other option. 

Install the optimized release. 

-r releaseName A specific release to install. If you do not specify a release, Interiminstal 1 
downloads the current build. 

-s Install the stripped release. 

To install MS-0.07 debug and remove the existing release: 

Interiminstall -D -b -r MS-0.07 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 5 TALIGENT BUILD TOOLS 65 

IPCPURGE 

Syntax 

I PC Purge purges global shared interprocess resources (such as global semaphores 
and shared segments) from memory. Usually IPCPurge is called from mop, which 
is called from Stop Pink. 

I PC Purge 

A CAUTION I PC Purge causes running Taligent applications to end abnormally. 

I PC Purge is used within the layer only; the native environment doesn't have an 
equivalent function. 

MAKEEXPORT LIST 

Usage 

Example 

PRELIMINARY 

MakeExportL i st generates an .e file from an .o file (which is a combination of one 
or more xl C compiled .C files). Clients of a shared library link with the .e file, 
which is a text list of all the symbols that the shared library provides. 

Crea teMa ke executes this command for you when you are building libraries. You 
should not have to run it independently. 

MakeExportlist -1 Sharedlib Mylib.o > Sharedlib.e 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

IPCPuRGE 



66 CHAPTER 5 TALIGENT BUILD TOOLS 

MAKE IT 

MAKE IT 

Installation 

Syntax 

Arguments 

Make it is a wrapper (a front end) to make. Make it simplifies the builds and 
provides consistency. It has the ability to traverse project hierarchies and convert 
makefile descriptions to real makefiles (by calling CreateMake). 

Make It is located in /usr/tal i gent/bin and requires no installation. Make sure 
this directory is in your command search path if Make It fails to run. 

Ma kei t has only a few options; however, it passes all other options onto make. So in 
effect, Make it has the same options as make, plus its own options. 

Makeit [options] [Targets] 

Makei t passes any unrecognized arguments on to make. 

-c 

-D 
-i 

-fast 

-M 

-T 
VAR= value 

-vers 

Targets 

Do not build subprojects. By default, Ma kei t operates recursively on 
subprojects from the bottom up, executing targets at every project it finds in a 
subprojectO block. 

Do not rebuild a make file, even if it is out of date. 

Do not stop when errors are encountered. This is passed on to make as :.. i. 

CreateMake option; Makeit passes this option to CreateMake. 

Force all makefiles to be rebuilt on the fly by calling CreateMa ke even if files 
are up-to-date. 

Traverse the project tree, but do not build anything. 

Assign value to the variable named VAR. Ma kei t passes this expression to 
make to alter makefile variable usage. 

Echo the current version and copyright information to stderr. 

The targets to build. If you omit this option, Make it builds each target in the 
current project (Includes, Objects, Exports, and Binaries) and the necessary 
dependencies. You can also specify complete to build the four targets. 

Makefiles is a special targetthat generates a new makefile, but does not build 
anything. Use this for debugging. 

Makeit Makefiles 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Usage 

Passing options to make 

Creating makefiles 

CHAPTER 5 TALIGENT BUILD TOOLS 67 

Go through each build process target (Includes, Objects, Exports, and Binaries) 
and build the necessary dependencies. 

Ma kei t 

To build DemoApp, and its subprojects: 

Ma keit Demo App 

A common mistake is to tell Ma kei t to build one target (like the previous 
example), and not realize that it will execute make Demo App on all subprojects
many of which do not have a target DemoApp. To prevent Makeit from building 
subprojects: 

Makeit -c DemoApp 

To require Makeit to execute only the Includes and Exports targets in each 
directory. 

Makeit Includes Exports 

Make it accepts (and passes) all options to make. You can use this feature to pass 
options to make. For example if you want make to continue building even if an 
error occurs ( -i option for make): 

Makeit -i Objects 

This works similarly for any make option. Ma kei t is smart enough to pass on any 
arguments for options too. For example, you can override variables in makefiles 
as you can with make. To override the COPTS (compiler options) variable in the 
makefile: 

Makeit COPTS=-g Binaries 

Makeit can build makefiles on the fly. Makeit rebuilds a makefile if: 

the *.Make file does not exist 

the * .PinkMake file is newer than the *.Make file 

n you specify -M to override the automatic makefile generation 

Makeit uses CreateMake to translate the makefile descriptions (*.PinkMake) to 
makefiles (*.Make). CreateMa ke is akin to the CreatePi n kMa kefil e tool used by 
the native system in MPW. For more information see "CreateMake" on page 60. 

MAKE IT 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



68 CHAPTER 5 TALIGENT BUILD TOOLS. 

MAKESHAREDAPP 

Universal.Make 

Other global targets 

capitalization ----f 
is optional l 

To prevent duplication in each makefile, and to allow for more flexibility, Make it 

includes Universal.Make in every makefile (*.Make). Universal.Make contains 
global targets and rules, such as Includes, Objects, Exports, and Binaries. 

NOTE Be sure to follow the installation procedures in "Setting up for 
Taligent Application Environment" on page 3 and check out a correct version of 
Universal.Make to your Hali gentRoot/Ta l i gent. Do this before you attempt to 
build anything with Makei t. 

In addition to the global targets previously mentioned, other global targets are 
also useful because they are applied only to the projects in the build and not to 
every directory in the hierarchy. For example you might have an entire 
subsystem, that exists, has been checked into SCM, but is not part of the build. 
These targets will not be applied to those projects: 

Global Target Task 

Clean 

Complete 

Makefiles 

Removes all .o and .e files, and libraries that were built. 

Expands into the four standard targets: Includes, Objects, Exports, 
and Binaries. 

Allows you to traverse the directory and rebuild makefiles as needed. 

MAKES HARED APP 

Usage 

Example 

Ma keSha redApp builds executable applications or programs (it is a wrapper for an 
xl C command with special options). MakeSharedApp is a layer application; the 
native environment doesn't have an equivalent function because 
Universal . Make. Intel automatically calls Plink to handle this. 

CreateMake generates this command for you when you build binaries or 
programs (applications). You should not need to run it independently. 

The following example builds the MyApp executable, and specifies two search 
paths - L. (current directory) - L/usr/l i b/dce which will be searched in the order 
specified to load shared libraries SharedLibl and SharedLib2. If SharedLibl and 
SharedLib2 are not in these directories, the AlX runtime searches in the path 
specified by LIBPATH. 

MakeSharedApp -o MyApp AppMain.o Sharedlibl.e Sharedlib2.e -L. -L/usr/lib/dce 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 5 TALIGENT BUILD TOOLS 69 
MAKESHAREDLIB 

MAKE SHARED LIB 

Usage 

Example 

MAKESOL 

Syntax 

Arguments 

Usage 

Ma keSha red Lib is a wrapper to the AIX ma keC++Sha red Lib script, which combines 
.o and .a files into a single shared library, and uses .e files to resolve external 
symbols located in other shared libraries. Ma keSha red Lib is a layer application; 
the native environment doesn't have an equivalent function because 
Universal . Make. Intel automatically calls Plink to handle this. 

CreateMake generates this command for you when you are building libraries. You 
should not have to run it independently. 

To create a shared library named SharedLibl that uses the code in MyLib.o, and 
resolves external symbols by looking in SharedLib2.e: 

MakeSharedlib -p 6000 -o Sharedlibl Mylib.o Sharedlib2.e 

Make SOL registers export-file libraries for Taligent Application Environment. 

MakeSOL [-c I -t I -e pattern I -i pattern I -I files I -E files] [-a file] [-v] 

-a file 

-c 
-e pattern 

-E file 

-i pattern 

-I file 

-t 

-v 

An additional file to register. 

Detects linking against . e files that don't have corresponding library files. 

Excludes files matching the pattern. 

Excludes the files listed. 

Includes files matching the pattern. 

Includes the files listed. 

Includes the test libraries. By default, they aren't included. 

Lists-to stdout-status messages and the files registered. If you omit this 
option, only warning and error messages appear. 

Use MakeSOL to add new libraries; ones that aren't already in the build. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



70 CHAPTER 5 TALIGENT BUILD TOOLS 

MOP 

MOP 

Syntax 

NATIVEINSTALL 

Syntax 

Arguments 

Example 

mop is a wrapper for I PC Purge. In addition to calling I PC Purge, it removes 
temporary files created by the AIX implementation of ScreamPlus. You can run 
Mop independently, but it is best to let Sta rtpi nk or Stop Pink call it. 

mop 

mop is used within the layer only; the native environment doesn't have an 
equivalent function. 

Native I nsta 11 is a script that automates the installation process. Native Ins ta 11 
installs the most recent build by default, or can install a specific build. 

Nativelnstall 

-b 

-1 

-r re/easeName 

-T 

-1 [ -D J [-b] [-r releaseName J 

Blast the release currently installed on your system. Most of the files in the 
Taligent directories aren't writable, but must be removed before a new build can 
be installed over them. This option removes the pertinent directories under 
$TaligentRoot, but does not modify $TaligentRootffaligent except to remove 
Universal .Make. 

List the builds currently available for downloading. You cannot use this with any 
other option. 

A specific release to install. If you do not specify a release, Nati velnstal l 
downloads the current build. 

Do not install tools into $TaligentRootrroolsDir. Instead, let Nati velnstal 1 
install tools that are synchronized with your source code. 

To install NIO.l and remove the existing release: 

Nativelnstall -b -r Nl0.1 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



RP 

Syntax 

Arguments 

Usage 

PRELIMINARY 

CHAPTER 5 TALIGENT BUILD TOOLS 71 

rp loads and runs a Taligent Operating System program that was built with 
shared libraries; for programs that don't use shared libraries, use run pink 
instead. 

rp [ +a args ] programName 

+a args 

programName 

Pass the specified arguments to the program. 

The shared-libraries built Taligent Operating System program. 

NOTE rp is only available within Taligent Operating System. For layer 
programs, use Sta rt Pink. 

Before invoking rp, you need to start up the Shared Library server. To do this: 

rp _libserver & 

Then, start up your program with: 

rp MyProgram 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

RP 



72 CHAPTER 5 TALIGENT BUILD TOOLS 

RuNDocuMENT 

RuNDocuMENT 

Run Document creates, opens, or deletes a document that accesses a shared library 
already running in the Taligent Application Environment workspace. 

Syntax RunDocument [-c Class SharedLib / -o [-s Mode J [ -p Way J / -d ] [ DocumentName 

Arguments 

Usage 

-c Class Sharedlib 

-d 

-o 

-p Way 

-s Mode 

DocumentName 

Creates a new document from the TAbstractDocumentStationery subclass 
Class, which is defined in the shared library Sharedlib. Can be combined 
with -o to open and create at the same time. 

If DocumentName already exists, Run Document appends an integer <n> 
to the name, where <n> is 2 or greater such that the name is unique. 

Deletes DocumentName. 

Opens DocumentName. Can be combined with - c to open and create at 
the same time. 

Specifies the task in which to open the document. Way can be: 

0 =open in same task (default.). 
1 =open in a new task. 

Specifies the mode in which to open the document. Mode can be: 

0 =examine store (default.). 
1 =assume this is a basic document. 
2 =assume this is a compound document. 

The document created, opened, or deleted. If you omit DocumentName, 
use "Untitled" as the default. 

RunDocument prints, to stdout, one of these status codes: 

0 No error. 

I Syntax error in arguments. 

2 Stationery class not found. 

3 Document not found. 

4 Could not delete document. 

5 Could not open document. 

6 Could not determine document store type. 

NOTE In SDKI, if you are running multiple instances ofRunDocument, two 
of them can pick up the same document name. One will successfully create that 
document, but the other will get an exception that causes a SIG I OT. Be sure to use 
a unique name for each instance. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



RUNPINK 

Syntax 

Arguments 

Example 

CHAPTER 5 TALIGENT BUILD TOOLS 73 

run pi n k loads and runs a Taligen t Operating System program that don't use 
shared libraries; for programs that use shared libraries, use rp instead. 

runpink [ +f J [ +a args J programName 

+a args 

+f 

programName 

Pass the specified arguments to the program. 

Do not invoke the built-in runpink debugger. Just execute the program. 

The Taligent Operating System program. 

NOTE rp is only available within Taligent Operating System. For layer 
programs, use StartPink. 

Start a program, and pass two arguments: 

rp +a "couch" MyProgram 

RUNPINK 

SHARED LIB CACHE 

Syntax 

Arguments 

Usage 

PRELIMINARY 

Sharedl i bCache builds a cache of symbol addresses at the end of shared libraries 
for fast subroutine lookup during TStream::Flatten and TStream::Resurrect. 
Ma keSha redL i b uses Sha red Li bCache to cache the default constructors of 
MCollectibles for resurrection. 

SharedlibCache [-d sharedLibJ [-da sharedLibJ [-r sharedLibJ 

-d sharedLib 

-da sharedLib 

-r sharedLib 

Create cache of symbols required for flatten/resurrect. 

Create cache of all formal symbols {rarely used). 

Display the contents of an existing cache. 

Running strip on a shared library destroys its cache; rerun SharedlibCache to 
rebuild the cache. 

NOTE Sha red Li bCache is also called s 1 cache. 

Sharedl i bCache is used within the layer only; the native environment doesn't 
have an equivalent function. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



74 CHAPTER 5 TALIGENT BUILD TOOLS 

SLIBCLEAN 

SLIBCLEAN 

Syntax 

Usage 

SMARTCOPY 

Syntax 

Arguments 

sl i bcl ean cleans up global semaphores and global variable space. (Run by 
Stop Pink.) 

slibclean 

Run s l i be 1 ea n between running different versions of Taligent Application 
Environment. The file /etc/sl i bcl ean should be owned by root and swi d. 

sl i bcl ean is used within the layer only; the native environment doesn't have an 
equivalent function. 

SmartCopy is a cp imitator that solves one specific problem: during the Includes 
phase of the build, when header files are copied to Hali gent Includes, if a file 
exists in Hali gent Includes, and it is write protected, cp fails but Smart Copy does 
not. Smart Copy performs one other important task: it preserves the modification 
date to prevent unnecessary rebuilds. Sma rtCopy copies a file unless the target file 
has exactly the same date and time, and the same size as the source file. This 
should save you the time of copying the same file over itself, and is more certain 
to copy a file that is truly different. 

SmartCopy sourceFile_ destFile 

destfile 

sourcefile 

The destination of the file being copied. 

The file(s) to c;opy. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



START PINK 

Syntax 

Arguments 

Usage 

STOP PINK 

Syntax 

Usage 

CHAPTER 5 TALIGENT BUILD TOOLS 75 
STARTPINK 

Sta rt Pink starts the Taligent AIX reference layer and several servers. The 
remaining servers are started when they are needed (when you launch a Taligent 
Application). 

StartPink [-a applicationName ] [-q] [-n [-s] ] 

-a app/icationName Load and run the named application. 

-n 

-q 

-s 

Use merged servers. If you omit this option, Sta rt Pink uses non
merged servers. 

Merged servers give you a smaller memory footprint, faster start-up, 
and better interactive performance, but less stability. 

Do not load shared libraries. 

Start merged servers as a one. If you omit this option, the merged 
servers start in three groups. -s has no effect if you omit-n. 

When the Sta rt Pink script finishes, it displays a message, similar to this: 

Welcome to the Taligent AIX Layer 
Based from vl.Od29 

Copyright (C) 1993, 1994 Taligent, Inc. 
All rights reserved. 

StartPi nk is used within the layer only; the native environment doesn't have an 
equivalent function. 

StopPink safely takes down the TaligentAIX layer. StopPink seeks out and kills 
the servers that StartPi nk started. It also runs mop and sl i bcl ean, see "mop" on 
page 70. 

StopPink 

Stop Pink only kills system servers and applications, not applications that are 
running. Always quit your applications before running Stop Pink. 

Stop Pink is used within the layer only; the native environment doesn't have an 
equivalent function. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



PRELIMINARY 

CHAPTER 6 

CREATEMAKE 

Crea teMa ke generates *.Make files for use with the Taligent build system. This 
chapter describes each of the targets, tags, and options that are available for 
input into CreateMake. For information about using CreateMake, see "Makefiles" 
on page 43. 

NOTE When building for Taligent Application Environment, references to 
compile and link methods are referring to the IBM xl C compiler and linker. 
When building for Taligent Operating System, references to compile and link 
methods are referring to the Comptech-on-AIX C++ compiler and the Plink-on
AIX linker. 

CreateMake is a Taligent AIX tool that evolved from a similar Macintosh tool 
called CreatePi nkMakeFi le. CreateMake is faster and can perform more 
operations than its predecessor. Also, Crea teMa ke does not require external tools, 
such as the old MakeMake. CreateMake accepts most of its predecessor's keywords; 
however, these keywords are not implemented: 

asmoption, dependson, exportclient, exportsample, ISR, makemakeoption, 
opusbugtempl ate, otherheaderdi r, othersourcedi r, pl i nkcl i entopti on, 
pl in kl i bra ryopt ion, pl i nkopt ion, prelude, programdata, and resident. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

77 



78 CHAPTER 6 CREATEMAKE 

APPLICATION 

Keyword categories 

Path names 

APPLICATION 

There are four categories of CreateMake keywords: 

Targets generate dependencies for a specific output target. All targets contain at 
least one source file declaration with which to build the target. Targets can contain 
various tags, but never other targets. 

Tags are target specific identifiers for components within that target. Use tags 
within targets to specify, for example, source and header files. 

Variables are keywords used within the generated makefile to control various 
options. 

Customs are keywords that allow custom control over the generated makefile. 
start and end are examples of custom keywords. 

If a file name contains a slash or starts with a variable, such as$( ... ), CreateMake 
assumes that you have specified a complete file name. To interpret the name 
literally, enclose the name in single quotes; that is, CreateMake will not prepend a 
directory or append a suffix. 

This is an obsolete target; use binary instead. 

BINARIESSUBFOLDERDIR 

Syntax 

Argument 

Example 

This variable overrides the default destination for binaries built by the makefile 
that CreateMake generates. The default directory is $TaligentBinaries. 

binariessubfolderdir: directoryPath 

directoryPath The path location to copy the built binaries to. This can be an explicit path or a 
shell variable. 

binariessubfolderdir: $(TaligentRoot)/MyBinaries: 
library Mylibrary { 
source: 

Library.c 
} 

NOTE For Release A, this keyword is a synonym for subfol derdi r, the 
directory identifier used by export{subfol der:}. In later releases, this variable 
will work as described. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



BINARY 

Syntax 

Argument 

Example 

PRELIMINARY 

CHAPTER 6 CREATEMAKE 79 

This target creates dependencies for a Taligent application, generates all make 

dependencies for creating a Taligent application, and builds an executable/ 
library pair with all sources in the library. 

binary name { 
} 

BINARY 

name The name of the target, and the narne used as a prefix for makefile variables, 
include lists, and dependencies. 

An unsupported version of this target is available with the ubi nary keyword. 
Unsupported targets are similar to supported targets, except that they are not 
built in the normal build process (Ma kei t) and require the desired target to be 
explicitly stated for the build to occur. 

Produce a makefile for compiling the three source files, link them together with 
standard Taligent libraries, and create a main program binary and a shared 
library containing most of the code. Both of which contain the name "MyApp": 

binary "MyApp"{ 
source: 

} 

main.c 
TMyApp.c 
TMyView.c 

NOTE program is a synonym for binary. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



So CHAPTER 6 CREATEMAKE 

BUILD 

BUILD 

Syntax 

Example 

This tag is for specifying build rules that control a specific target, from within 
that target. The lines following build must have the correct indentation; they are 
copied directly into the generated makefile. 

build: 
"$(0bj0ir)/Sample.op" : Sample.txt 

$(BuildHelp) Sample.txt -o target 

libraryMySample { 
source: 

SampleStartup.c 
Sampleindex.c 

build: 
$(0bj0ir)/Sample.op" : Sample.txt 

$(BuildHelp) Sample.txt -o target 

link: 
Sample.op 

} 

COMPILEOPTION 

Syntax 

Argument 

Examples 

This variable sets a local variable in the makefile that is used in any compile 
commands executed. 

compileoption: -d option 

option Any option you want to pass on all compile command-lines generated. 

Create a parent object that requires one source file. Pass _WHATEVER_ to the 
compiler when that source file is compiled: 

compileoption: -d _WHATEVER_ 

parentobjects MyObject{ 
source: 

HandleObject.c 
} 

NOTE cpl us option is a synonym for comp i l eopt ion that will soon be 
eliminated. Change all occurrences of cpl us option to compi l eopt ion. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 6 CREA TEMAKE 8 1 

DEVELOPMENTOBJECT 

DEVELOPMENTOB JECT 

Syntax 

Argument 

Examples 

END 

Syntax 

Argument 

Example 

PRELIMINARY 

This target combines the specified source files into a library object, and copies 
the result object file to $TaligentDevelopment. 

developmentobject name { 
} 

name The name of the target. 

developmentobject "SampleObject" { 
source: 

Sampleinput.c 
SampleOutput.c 

NOTE devel opmentobject is currently treated the same as object. 

This custom target allows you to supply a block of make commands to copy into 
the end of the generated makefile. 

end { 
makeCommands 

} 

makeCommands Any valid makefile syntax. CreateMa ke places this block directly into the 
generated makefile; pay careful attention to indentations and syntax. 

end { 
Foo Bar 

ffbuild rules 
} 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



82 CHAPTER 6 CREATEMAKE 

EXPORT 

EXPORT 

Syntax 

Argument 

Example 

A variable that specifies that files in your project be exported to various Taligent 
directories. 

export { 
export Tags 

export Tags Control which files are exported. Valid tags are: binary, client, 
subfol der, program, data, script, server, 1 i brary, testl i brary, 
testdata, and script. 

The example shows the destination of each of the supported tags. 

export { 
binary: 

SampleExportBinary II to $(TaligentBinaries) 
client: 

SampleExportClient II to $(Taligentlibraries) 
subfolder: 

SampleExportSubfolder II to $(TaligentBinaries)lsubfolder 
program: 

SampleExportProgram II to $(TaligentBinaries) 
data: 

SampleExportData 
script: 

SampleExportScript II to ${TaligentSamples) 
server: 

SampleExportServer II to $(0PD)IServers: 
library: 

SampleExportExportlibrary II to $(0PD)ISharedlibaries: 
testlibrary: 

SampleExportTestLibrary II to $(0PD)ISharedlibraries: 
TestSharedLibaries: 

testdata: II to $(TaligentTests)TestData: 
SampleExportTestData 

,testscript: II to $(TaligentTests)TestScripts: 
SampleExportTestScript 

} 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



HEADER 

Syntax 

Argument 

Examples 

HEADERDIR 

Syntax 

Example 

CHAPTER 6 CREATEMAKE 83 

Header files listed after this tag specify an explicit dependency for the target. 

header: 
headerFiles 

headerFiles The header files on which the target is dependent. 

library Mylibrary { 
source: 

Li brarylnit.c 
LibraryIO.c 

header: 
$(CustomHeaders)Library.h 

} 

NOTE In Release A, header acts like publ i cheader in that the specified files 
are exported to $Taligentlncludes. header will act as described in future releases. 

This tag specifies an alternate directory in which header files are stored. By 
default, Crea teMa ke generates makefiles with references to headers in the same 
directory as the makefile. CreateMake passes the reference to the compiler. 

headerdir: 

headerdir: _/MyHeaders: 

HEADER 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



84 CHAPTER 6 CREA TEMAKE 

HEAPSIZE 

HEAP SIZE 

Syntax 

Argument 

Example 

LIBRARY 

Syntax 

Argument 

Examples 

LINK 

Syntax 

Argument 

This target controls the allocated heap size of a built Taligent application. 

heapsize: heapSizex 

heapSize 

binary QECalc { 
source: 

The size, in bytes, of the heap. 

Main.c 
heapsize: 1000000 
} 

II 1,000,000 bytes 

This target creates dependencies and makefile commands for creating an library 
to be used in the Taligent runtime system. 

1 ibrary name { 
} 

name The name of the target. 

library "Mylibrary" { 
source: 

} 

Library!nit.c 
LibraryIO.c 

This tag specifies all file's to link within a target. 

1 ink: 
7 inkFiles 

linkFi/es These files are linked with the listed source files and any other object listed in 
the target. If you omit this tag, nothing is explicitly linked in, and 
$Universallinklist is used. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Example 

LOAD DUMP 

Syntax 

Argument 

Example 

CHAPTER 6 CREA TEMAKE 8 5 

This example produces a Taligent program (see "binary" on page 79) by linking 
with the files Menul i band Wi ndowl i b, in that order. 

binary MyProgram 
source: 

main.c 
Testl.c 

1 ink: 
Menulib 
Windowlib 

This target creates build rules for creating a loaddump file with the specified 
headers. All targets built in a *. Pin kMa ke file will have dependencies on the 
specified loaddump file. 

loaddump 7oadDumpFi7ePath 
} 

loadDumpFilePath The path of the loaddump file. If this file does not exist during the build's 
objects phase, the build creates this file. 

NOTE This syntax is not supported when building for Taligent Application 
Environment until the AIX development environment supports loaddump files. 
This feature is supported when building for Taligent Operating System with 
Comptech-on-AIX. 

Create a loaddump file called My Project. Dump in the directory pointed to by 
$(Tali gentRoot) /Dumps: with the given header files included in it. The header 
files must be valid files in $Taligentlncludes or $TaligentPrivatelncludes. 

loaddump "$(TaligentRoot)/Dumps/MyProject.Dump"{ 

} 

Application.h 
Test.h 
Format.h 
Dialogs.h 

LOAD DUMP 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



86 CHAPTER 6 CREATEMAKE 

LOCAL 

LOCAL 

Syntax 

LOCALHEADER 

Syntax 

Argument 

Examples 

See the description of "localheader." 

local: 

This tag specifies header files to export to the local headerdi r header directory. 

local header: 
header Fi 7 es 

headerFiles The files to export to the local headerdi r directory. 

Export the file Parents.h into a directory called : Local Headers:. If you omit the 
tag local headerdi r, the file is copied to the current directory. 

localheaderdir: ./LocalHeaders: 

parentobject MyParentObj { 
source: 

Parentl .c 
Parent3.c 
Parent5.c 

local header: 
Pa rents. h 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 6 CREATEMAKE 87 
LOCALHEADERDIR 

LOCALHEADERDIR 

Syntax 

Argument 

Example 

MAKE 

Syntax 

Argument 

Examples 

PRELIMINARY 

This variable specifies the directory in which to export header files for the target. 

1oca1 headerdi r: 7 oca 7 headerPath 

loca/HeaderPath The directory in which to export local headers. if you omit this variable, the 
headers are copied into the same directory as the source files. 

See the example for "localheader." 

With this target you can specify you own build rules. Unlike start and end, the 
make target can appear anywhere in the input, and you can have multiple make 
blocks in the input. 

make { 
buildRules 

} 

build Ru/es 

make { 
Foo : Bar 

Your own build rules. 

I/build rules 
} 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



88 CHAPTER 6 CREATEMAKE 

OBJECT (TAG) 

OBJECT (TAG) 

Syntax 

Argument 

Example 

This tag specifies a target's a dependency on object files that might be built 
within another target or project. 

object: 
objectFi7es 

objectFiles Link these object files in after any other files produced from specified source 
files within the target. 

Create a dependency for My Li bra r y on the file Li b IO . c . o, which is an existing 
object from another target in the same project or another project. The explicit 
path to the object file is not required. 

library Mylibrary { 
source: 

Main.c 
object: 

_/QbjectFiles:LibIO.c.o 
} 

OBJECT (TARGET) 

Syntax 

Argument 

Example 

This target combines files into a single library object for later use in another 
target or project. 

object name { 
} 

name The name of the target. 

Combine three files into a single library object called MyObject, and copy it to 
$0bjDir, if it is not the default. 

object MyObject { 
source: 

} 

MySample.c 
MyOtherSample.c 
MyExtraSample.c 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



OBJECTDIR 

Syntax 

Argument 

Example 

PARENTOBJECT 

Syntax 

Argument 

Examples 

CHAPTER 6 CREATEMAKE 89 
OBJECTDIR 

This variable specifies the directory for compile output and link input (object 
files) built within the current project. 

objectdir: path 

path The directory for all compile output and link input. If you omit this variable, the 
build stores these files within the current project in the : Obj ectFi 1 es: 
directory. 

Change the directory for built objects to MyObj ects, one directory up in the tree. 

objectdir: _/MyObjects: 

NOTE In Release A, objectdi r does nothing. This will be fixed in a later 
release. 

This target is similar to the object target. It combines the specified files into a 
single library object, then it copies the built object into $ParentObjectDir as 
specified by the pa rentobj ectdi r variable. 

parentobject name { 
} 

name The name of the target. 

Create My Object from the compiled output of the three specified files, then copy 
it to the $ParentObjectDir directory. 

parentobject MyObject { 
source: 

MySource.c 
MyMenus.c 
MySample.c 

NOTE In Release A, pa rentobj ect does not export the created object to the 
parent directory. This will be fixed in a later release. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



go CHAPTER 6 CREATEMAKE 

PARENTOBJECTDIR 

PARENTOB JECTDIR 

Syntax 

Argument 

Examples 

PRIVATE 

Syntax 

Argument 

Examples 

This variable changes the default directory in which to copy objects built from 
the pa rentobj ect target. 

parentobjectdir: path 

path The directory for pa rentobj ect targets. If you omit this variabl.e, the target 
copies the files to the Obj ectFi l es directory in the parent directory. 

Use only paths based on the current directory or a known directory tree. Do 
not use a declaration scoped to a specific user volume. 

Change the destination of parentobject copies to the Object Fil es directory in a 
project called Sample in the parent directory. 

parentobjetdir: _ISampleslObjectFilesl 

A CAUTION Do not depend on directories that can change in other projects. In 
example, if the Samples*. Pi nkMake file ever has a different $0bjDir (set with 
obj ectdi r), this declaration might copy the built object to the wrong place. 

Use this tag within a target to specify a dependency on header files located locally 
to the project. 

private: 
headern 7 es 

headerFiles The local header files for the project. If you omit a header file, the build 
searches for the file in the local directory, then in $Taligentlncludes, followed 
by $TaligentPrivatelncludes. When you include a header file, the build 
searches in the local directory only. 

parentobject MyObject { 
source: 

MySource.c 
MyMenus. c 
MySample.c 

private: 

} 

MySource.h 
MySampl e. h 

II Look for MyMenus.h locally, then in the other directories 

II In local directory only 
II In local directory only 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 6 CREA TEMAKE g l 
PRIV ATEHEADERDIR 

PRIVATEHEADERDIR 

Syntax 

Argument 

Example 

PROGRAM 

This variable points to a directory to search for header files not in the source 
directory. 

privateheaderdir: path 

path An optional directory for the compiler to search for header files not in the 
source directory. 

Pri vateHeader. h is not in the current directory. Without the reference to its 
location, compiles cannot locate it if main. c tries to include it. 

privateheaderdir: _IPrivateHeaders: 

library Mylibrary{ 
source: 

main.c 
header: 

PrivateHeader.h 
} 

II not in source directory 

This is an obsolete target; use binary instead. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



92 CHAPTER 6 CREATEMAKE 

PUBLIC 

PUBLIC 

Syntax 

Argument 

Examples 

SERVER 

Syntax 

Argument 

Examples 

This tag specifies which target headers the pub 1 i c tag can export to 
$Taligentlncludes. 

public: 
headerFiles 

headerFiles The header files that can be exported. 

Create a dependency for My Library on the file Lib I 0. as usual. During the build's 
Includes phase, export this file to $Taligentlncludes. 

library Mylibrary { 
source: 

main.c 
LibIO.c 

public: 
LibIO.h 

} 

This target creates dependencies for a Taligent application. All make 
dependencies for creating a Taligent application will be generated for you. This 
target builds a single executable with all sources linked in 

server name { 
} 

name The name of the target, and the name used as a prefix for makefile variables, 
include lists, and dependencies. 

An unsupported version of this target is userver. 

Produce a makefile for compiling the three source files, link them together with 
standard Taligent libraries, and create a main program binary and a shared 
library containing most of the code. Both of which contain the name "MyServer". 

server "MyServer" { 
source: 

} 

main.c 
Server.c 
ServerView.c 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



SOURCE 

Syntax 

Argument 

Examples 

SOURCED IR 

Syntax 

Argument 

Examples 

CHAPTER 6 CREATEMAKE 93 

This tag specifies source files within targets. The order of the files in the list is the 
order used to compile, link, and export. 

source: 
targets 

targets 

binary "My App" { 
source: 

main.c 
TMyApp.c 
TMyView.c 

The target files. 

This variable specifies the directory to search for source files. 

sourcedir: path 

path The directory for source files. If you omit this variable, the build searches in 
the same directory as the*. Make file. 

Base this path name on the current directory; do not rely on specific volume 
names or base directory paths-they can change from user to user. 

Change the default location of source files to a directory called Source within the 
current project. 

sourcedir: /Source 

SOURCE 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



94 CHAPTER 6 CREATEMAKE 

START 

START 

Syntax 

Argument 

Examples 

SUBFOLDER 

Syntax 

Argument 

Examples 

This custom target allows you to supply a block of make commands to copy into 
the beginning of the generated makefile. 

start { 
makeCommands 

} 

makeCommnds Any valid makefile syntax. c rea teMa ke places this block directly in the 
generated makefile; pay careful attention to indentations and syntax. 

start { 
Foo : Bar 

//build rules 
} 

This tag identifies files within the export target to export to the $SubfolderDir 
within $TaligentBinaries. 

subfolder: 
export Fi 7 es 

exportFiles The files to export. 

Export to the specified files to /MySampl es/ within the $TaligentBinaries path. 

subfolderdir: /MySamples 

export { 
subfolder: 

MySampleStuff 
MyOtherSampleStuff 

} 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



SUBFOLDERDIR 

Syntax 

Argument 

Examples 

SUBPROJECT 

Syntax 

Argument 

Examples 

CHAPTER 6 CREATEMAKE 95 

This variable specifies the subfolder that is copied to from within an export 

block. 

subfolderdir: directory 

directory The directory to receive export files. 

See example for "subfolder." 

SUBFOLDERDIR 

NOTE In Release A, bi nari essubfol der is a synonym that acts the same as 
subfol de rd i r. In later releases, bi na ri ess ubfo l der will not be a synonym. See the 
"binariessubfolderdir" on page 78 for more information. 

This target specifies subprojects to be included when the build system recursively 
builds directories. CreateMake places these subproject names in the 
$SubProjectList variable in *.Make files. 

subproject { 
subProjects 

subProjects The sub projects to build. 

Generate the *.Make file with the three specified subproject/ directory names in 
the $SubProjectList, and allow the build system to recursively execute the *.Make 

files in each of these subprojects whenever a make is done on is project. 

subproject { 
FancyText 
FancyDraw 
FancyPri nt 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



96 CHAPTER 6 CREATEMAKE 

TESTAPPLICA TION 

TEST APPLICATION 

Syntax 

TESTLIBRARY 

This target is similar to the binary target, but only gets built if "Makeit testing 
complete" is used. See "binary" on page 79 for more information. 

testapplication name { 
} 

This target is similar to the library target, but only gets built if "Makeit testing 
complete" is used. See "library" on page 84 for more information. 

Syntax testl ibrary name { 
} 

TESTPARENTOBJECT 

Syntax 

TESTSERVER 

Syntax 

This target is similar to the pa rentobj ect target, but only gets built if "Makeit 
testing complete" is used. See "parentobject" on page 89 for more information. 

testparentobject name { 
} 

This target is similar to the testserver target, but only gets built if "Makeit 
testing complete" is used. See "testserver" on page 96 for more information. 

testserver name { 
} 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



TOOL 

Syntax 

CHAPTER 6 CREATEMAKE 97 

This target is similar to the bi nary target. See "binary" on page 79 for more 
information. 

tool name { 
} 

TOOL 

TRIMDEPENDENCIES 

Syntax 

Argument 

Examples 

PRELIMINARY 

This target specifies header file paths to remove from the generated makefile. 

trimdependencies { 
headerPaths 

headerPaths The list of header file paths to remove from the generated makefile. If you omit 
these paths, CreateMake includes the list of dependencies found in 
$Taligentlncludes and $TaligentPrivateincludes 

By default, Crea teMa ke includes the list of dependent header files found in 
$Taligentlncludes and $TaligentPrivateincludes. In most cases, these headers do 
not change and the extra dependencies result in larger make files that take 
longer to process. With trimdependenci es, CreateMake removes any dependencies 
found in the list of header files from the generated makefile. 

Strip out any dependencies that begin with $Taligentlncludes or 
$TaligentPrivatelncludes. You can do the same thing with any pathname, 
although generally, you only need to do this with the Taligent public and private 
includes. 

trimdependencies{ 
$(Taligentincludes) 
$(TaligentPrivateincludes) 

} 

A CAUTION Be careful when using this feature. If a Taligent header used by one of 
your source files changes, that file will not be recompiled. You must manually 
force the file to be recompiled. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



98 

ION PRELIMINARY 



PRELIMINARY 

CHAPTER 7 

ANALYSIS TOOLS 

The heap analysis tools are a set of applications and classes that allow you to 
perform heap-related debugging and dynamic analysis operations. These tools 
are classes that you instantiate and control dynamically, and that use 
TMemoryHook to receive notification of allocations and deletions in a memory 
heap. 

The heap tools let you: 

m Track block allocation to see who allocated each block (when it is possible to follow 
call chains) through several levels of indirection. 

im Categorize all heap blocks to determine the type of blocks in the heap (for 
example, this block is a TStandardText). 

w Browse heaps to see all the blocks in the heap, with their size, type, who 
allocated them, who deleted them, and so on. 

m Record memory usage over time by recording the relative time of each allocation 
and deletion for later analysis. 

w Zap memory by filling uninitialized and deleted blocks with odd byte patterns to 
catch bad pointer usage errors. 

w Detect heap corruption by automatically checking the heap for corruption at each 
allocation and deletion. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

99 



100 CHAPTER 7 ANALYSIS TOOLS 

OVERVIEW 

OVERVIEW 

Tradeoffs 

There are two basic modes of operation: 

rn Heap monitoring (the simplest operation) watches the heap at the event 
level and records allocation and deletion events. This produces an ASCII text 
file where each line in the file describes an event. 

Heap analysis gathers the same data as heap monitoring, but processes the 
events further to produce annotated blocks within a model of the heap. It 
also detects anomalies in heap usage. When it stops watching, the analyzer 
writes a block-by-block description of the heap to an ASCII text file, where 
each line in the file describes a block in the heap. 

Heap Monitoring Heap Analysis 

Reports each event in the heap. Keeps and reports data for blocks currently in 
the heap or that were most recently deleted. 

Reports more data, generates a larger data file. Reports less data, generates a smaller data file. 

Runs slower. Runs faster. 

Does not detect problems. Detects problems, such as double deletion. 

To use the local heap tools, modify your code to instantiate a heap tool object
either TLocalHeapMonitor or TLocalHeapAnalyzer. Once the object is 
instantiated, monitoring or analysis starts. When you destroy the object (such as 
if it goes out of scope) monitoring or analysis stops. 

Consider a class called TLeaksLikeASieve, which leaks storage when its Leak() 
method is called. The following code starts monitoring, calls the suspect method, 
then automatically stops monitoring when the monitor object goes out of scope: 

#include <LocalHeapMonitor.h> II for TLocalHeapMonitor 
void main() 
{ 

} 

II Start monitoring; continue until object 'monitor' is destroyed. 
TLocalHeapMonitor monitor; 
TLeakslikeASieve leaker; 
1 eaker. Leak(); 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Tools 

Limitations 

TlocalHeapMonitor 

CHAPTER 7 ANALYSIS TOOLS 101 

Both the heap monitoring tools and the heap analysis tools are available as 
remote (monitor a different team) or local (monitor the same team) .There is no 
separate garbage finding tool. Garbage finding is available as a function of the 
other tools. 

TlocalHeapMonitor 

TlocalHeapAnalyzer 

heap monitoring 

heap analysis 

local team 

local team 

TLocalHeapMonitor and TLocalHeapAnalyzer have minimal dependencies. 

The heap tools contain these limitations: 

The heap analyzer currently keeps data for only the most recently deleted 
heap block. As new blocks come in, old deleted block data is lost. 

The heap tools consider the heap to be one logical object. In reality, the 
heap consists of two subheaps, the chunky and tree heaps. 

The TLocalHeapMonitor constructor has several options: 

enum EignoreOld { kReportOld = 0, kignoreOld = 1 }; 
enum EZapMemory { kDontZapMemory = 0, kZapMemory = 1 }; 

TLocalHeapMonitor(const char* outputFileName=O, 
EignoreOld ignoreOld=kReportOld, 
EZapMemory zapMemory=kDontZapMemory, 
FrameCount depth=8, 
TStandardMemoryHeap* whichHeap=O); 

OVERVIEW. 

v OutputFileName specifies the name of the output file; the default is "heap_trace". 

+ lgnoreOld, if set to klgnoreOld, causes all blocks on the heap when monitoring 
was started to be ignored. The default shows all such blocks. 

n ZapMemory, if set to kZapMemory, causes the memory hook to fill blocks with 
recognizable patterns for the purpose of debugging reference-before
initialization and reference-after-deletion errors. 

Uninitialized memory gets filled with the pattern OxDEAFBEED. 

Deleted memory gets filled with the pattern OxFEEDDEAD. 

Depth is the maximum count of functions which the stack crawls will contain. 
Increasing this option provides more data in some cases, but takes up more 
memory and slows down the tool. 

m Which Heap specifies which heap to monitor. If unspecified, the default heap is 
monitored. 

PRELIMINARY TALIGENT CONFIDENTIAL; REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



102 CHAPTER 7 ANALYSIS TOOLS 

OVERVIEW 

Tloca I HeapAna lyze r 

Heap monitoring 
file format 

The TLocalHeapAnalyzer constructor has several options: 

enum EignoreOld { kReportOld = 0, kignoreOld = 1 }; 
enum EOnlyGarbage { kAllBlocks = 0, kOnlyGarbage 1 }; 
enum EZapMemory { kDontZapMemory = 0, kZapMemory = 1 }; 

TLocalHeapAnalyzer(const char* outputFileName=O, 
EignoreOld ignoreOld = kReportOld, 
EOnlyGarbage onlyGarbage = kAllBlocks, 
EZapMemory zapMemory = kDontZapMemory, 
FrameCount depth-8, 
TStandardMemoryHeap* whichHeap=O); 

0 OutputFileName specifies the output file name; the default is "heap_analysis". 

m OnlyGarbage, if set to kOnlyGarbage, causes the analyzer to list only blocks 
which were allocated, but not deleted. The default lists all blocks in the heap. 

All other options are the same as those for TLocalHeapMonitor. 

In heap monitoring output files, each line describes an event that indicates that: 

m A block was allocated. 

ra A block was deleted. 

0 A block was already in the heap when monitoring was begun. 

m The heap was corrupted. 

Here is an example of each type of event: 

Thread 
2-22982 
2-22982 
0-0 

Time of event 
759537687555872 
759537687558595 
old 

Address 
Oxb2362718 
Oxb2362950 
Oxb24020d0 

Size 
del 
12 
48 

Type 
Titerator 
novtbl 
TLocalSemaphore 

Stack crawl 
TArrayiterator ... 
THybri dNumber ... 

Thread-the identifier for the thread that called new() or delete(). For old blocks, 
this field is 0 -0. 

Time of event-the time, in microseconds, of the event. Use this value to determine 
the order of events and to compute the time between events, such as to find the 
age of a block at deletion. For blocks already on the heap when monitoring 
starts, this field is al d. 

Address-the address of the first byte of the block. 

Size-the size of the block in bytes. If this is a deletion event, the size field is de l. 

Type-the type of the block, for blocks that represent C++ objects. If the v-table 
pointer is NIL, this field is novtb l. If the v-table pointer is non-NIL, but it cannot 
be followed to a valid destructor, this field .is notype. Note that only deletion 
events and pre-existing block events can have type information. Allocation events 
are always novtbl because the constructor, if any, has not been called yet. 

TAL!GENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Heap analysis 
file format 

CHAPTER 7 ANALYSIS TOOLS 103 

Stack crawl-the function that called new() or delete(). For old blocks, this field is 
empty. The stack crawl consists of several function names, separated by 'I' 
characters. The first function name is the innermost. It was called by the next 
function name, and so forth. In the example, the stack crawls have been 
abbreviated. A full stack crawl looks like this: 

OVERVIEW 

TArrayiterator::-TArrayiterator(llTHybridNumerals::AddFormattingPairAbsolutely(unsigned 
short,longllTHybridNumerals::AddFormattingPair(unsigned 
short,longllTHybridNumerals::CreateStandardHexNumeralsC)ITTieredTextBuffer::NumberFormat 
CllTTieredTextBuffer::operator<<(const longllTTieredTextBuffer::operator<<Cconst 
intllTLocalHeapMonitorTest::ShowMem(void*,long) 

Heap analysis output files have two sections: the anomaly section and the heap 
dump. In the anomaly section, any anomalies which were detected are described. 
See"Dynamic error detection" on page 105 for explanations of the anomalies 
that can be detected. 

In the heap dump section, each line describes a block in the heap. By default, it 
displays all blocks of the heap. You can also specify to ignore old blocks, or to 
show only undeleted blocks. Use the latter for finding storage leaks. See 
"TLocalHeapAnalyzer" on page 102 for more information. 

Address 
Oxb0c496b4 

Size 
1028 

Type 
TFoo 

Allocation 
' 

Age Thread Time 
285198 2-22981 759_ 

Address-the address of the first byte of the block. 

Size-the size of the block. 

Stack 
Tlocal... 

Deletion 
; 

Thread 
notask 

Stack 
nochain 

Type-the type of the block. If the v-table pointer is NIL, this field is novtb 1. If the 
v-table pointer is non-NIL, but it cannot be followed to a valid destructor, this 
field is notype. Note that only deletion events and pre-existing block events can 
have type information. Allocation events are always novtbl because the 
constructor, if any, has not been called yet. 

Age-the block in microseconds. If the block has been deleted, this is the age of 
the block when it was deleted. 

Allocation thread-the thread that allocated this block. 

Allocation time-the time of the allocation, in microseconds. Use this to determine 
the order in which blocks were allocated. 

Allocation stack crawl-the function that allocated this block. 

Deletion thread-the thread that deleted this block, or not ask if the block has not 
been deleted. 

Deletion stack crawl-the function that deleted this block, or nocha in if the block has 
not been deleted. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT.INTERNAL TOOLS 



104 CHAPTER 7 ANALYSIS TOOLS 

OVERVIEW 

Heap corruption 

Debugging heap 
corruption 

AIX notes 

Both the heap analyzer and the heap monitor detect heap corruption by calling 
TMemoryHeap::Check after each allocation event and before each deletion 
event. When the heap is found to be corrupt, the tool writes a message similar to 
the following to the output file and echoes it to the console~ In heap monitor 
output files, an asterisk (*) precedes each subsequent line to indicate that the 
corrupt heap. 

********************************************************* 
*** 

Tree heap corrupt with error 5. *** 
*** 
*** 

See Private!ncludes/TreeHeapExceptions.h for enums. 

********************************************************* 

The message states that either the tree heap or the chunky heap is corrupt, and it 
specifies an error number. This number is the return value of the Reason() 
method in the TChunkyHeapCorrupted or TTreeHeapCorrupted exception 
object. To determine its meaning, refer to TreeHeapExceptions.h or 
ChunkyHeapExceptions.h in the Pri vate!ncl udes directory. 

If you have a heap corruption bug, use a heap monitor to debug it. Although the 
heap analyzer also notifies you of heap corruption, it does not help you pinpoint 
the problem. The heap monitor shows the pattern of allocations and deletions 
leading up to the corruption. 

In order to debug the corruption, examine the event before the corruption 
message. If the message that the heap is corrupt occurs before any other events, 
you must start monitoring earlier. Starting with the code indicated by the 
preceding event's stack crawl, trace forward until you find the corruption. You 
can either read the source code or step in a debugger. The bug will usually 
involve violating array boundaries or misusing pointers. If you see another heap 
event (allocation or deletion), backup; you have gone too far. 

On AIX, the heap tools trigger and catch segment violation signals (SIGSEGV) 
during the dynamic typing of blocks. Usually this will be invisible to you. 
However, if you run the heap tools under a debugger, it will trap the signal 
SIGSEGV, and you will enter the debugger that is executing the heap tool code. 
To avoid this, tell the debugger to ignore the signal 11, SIGSEGV. For example, 
in the shell, use 

xdb -i 11 Foo & 

where Foo is your program's name. Within dbx, use: 

ignore 11 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL; REGISTERED INFORMATION PRELIMINARY 



CHAPTER 7 ANALYSIS TOOLS 105 

DYNAMIC ANALYSIS 

DYNAMIC ANALYSIS 

Dynamic typing 

Dynamic error 
detection 

In processing block events, the heap tools analyze incoming data in many ways. 

The heap tools attempt to determine the type of blocks in the heap (the class 
they instantiate). For raw block events, all allocation events have no type 
information because they represent unconstructed objects. Many blocks cannot 
be typed. 

Dynamic error detection, or discipline, is the programmatic detection of errors in 
either the heap code itself, or calls to the heap indirectly through operators new 
and delete. 

The heap analyzer has an extensible discipline architecture consisting of a set of 
instances of concrete subclasses ofTHeapDiscipliner. (These objects are equal, 
by default, if they are of the same type.) This class has the virtual method 
CheckBlockEvent; subclasses override this to provide discipline behavior. 

The heap model has several varieties of discipline are built into it (there is no 
THeapDiscipliner subclass for these anomalies): 

Bad address deletion-the detection of addresses that do not correspond to allocated 
blocks in the heap. A subset of this is double deletion detection. Therefore, these 
two anomalies are detected by the same class in an either-or fashion. 

Double deletion detection-the detection of two deletions of the same block. This is 
complicated by the fact that the heap allocates blocks to the same address once 
that address is free. The tool tracks old blocks that have been deleted. When a 
delete of the wrong type or is unmatched by a corresponding new occurs, it is an 
error. 

Non-unique allocate return values-according to the The Annotated C++ Reference Manual 
(by Ellis and Stroustrup), operator new must return unique values (until such 
blocks are deleted). The toll checks this by verifying new allocations against live 
blocks in the existing block map. 

Heap corruption-detected by calling TMemoryHeap::Check at each allocation and 
deletion. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION T ALIGENT INTERNAL TOOLS 



106 CHAPTER 7 ANALYSIS TOOLS 

CLASS DESCRIPTIONS 

Garbage finding Garbage finding is locating blocks in the heap that represent storage leaks. Mam
and-sweep garbage finding looks in the address space for pointers to blocks, and if 
there are no pointers to a block, considers the block garbage. This technique 
searches other blocks in the heap, local variables on the stack, and the static data 
areas. Allocation-deletion matching is a simpler scheme that considers a block 
garbage at some point in time if it has been allocated but not deleted. The latter 
scheme has fewer dependencies, and so it is more portable, but it gives more 
false positives. 

Garbage finding is not implemented as a subclass of THeapDiscipliner. It is 
handled separately. 

CLASS DESCRIPTIONS 

Local heap tool 

TlocalHeapMonitor 

The main classes are TLocalHeapMonitor, TLocalHeapAnalyzer, and 
THeapMirror. In addition, these classes pull in a few auxiliary classes. 

The classes TLocalHeapMonitor and TLocalHeapAnalyzer allow you to analyze 
heaps in the same team under programmatic control. 

Tlocal HeapMoni tor begins monitoring ofa TStandardMemoryHeap when 
TLocalHeapMonitor object is constructed. Destroying the object terminates 
monitoring. At construction time, you can specify the name of the output file, to 
ignore old blocks, to zap memory, and the maximum depth of stack crawls. 

class TLocalHeapMonitor 
{ 

} ; 

public: 
enum EignoreOld { kReportOld - 0, kignoreOld = 1 }; 
enum EZapMemory { kDontZapMemory - 0, kZapMemory = 1 }; 

TLocalHeapMonitor(const char* outputFileName=O, 
EignoreOld ignoreOld=kReportOld, 
EZapMemory zapMemory=kDontZapMemory, 
FrameCount depth-8, 
TStandardMemoryHeap* whichHeap=O); 

virtual ~TLocalHeapMonitor(); 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



TlocalHeapAnalyzer 

CHAPTER 7 ANALYSIS TOOLS 107 

CLASS DESCRIPTIONS 

Tlocal HeapAnalyzer begins monitoring and analysis ofa TStandardMemoryHeap 
when a TLocalHeapAnalyzer object is constructed. Destroying the object 
terminates monitoring. At construction time, you can specify the name of the 
output file, to ignore old blocks, to show only garbage, to zap memory, and the 
maximum depth of stack crawls. 

class TLocalHeapAnalyzer 
{ 

} ; 

public: 
enum EignoreOld 
enum EOnlyGarbage 
enum EZapMemory { 

kReportOld - 0, kignoreOld - 1 }; 
{ kAllBlocks - 0, kOnlyGarbage - 1 }; 
kDontZapMemory - 0, kZapMemory - 1 }; 

TLocalHeapAnalyzer(const char* outputFileName-0, 
EignoreOld ignoreOld - kReportOld, 
EOnlyGarbage onlyGarbage - kAllBlocks, 
EZapMemory zapMemory - kDontZapMemory, 
FrameCount depth-8, 
TStandardMemoryHeap* whichHeap-0); 

virtual ~TLocalHeapAnalyzer(); 

Heap monitor classes These are the heap monitor classes. 

TBlockEvent TBl ockEvent: public MCol l ecti b 1 e represents one of three possible occurrences 
in the heap: a block allocation, a block deletion, or the registration of a pre
existing block. The last type of event is needed because when watching starts, 
there are blocks in the heap already for which no context information is known. 

PRELIMINARY 

Block events have the following state information: 

w The thread in which the event happened, a TSurrogateTask. 

'" The time of the event, a TTime. 

t The first byte address of the block in question, avoid *. 

v The length of the block in bytes, as i ze_t. 

v The object's v-table pointer, if any, avoid *.This field does not exist for 
allocation events because newly-allocated blocks contain garbage. 

n The call chain of the event, a TCallChain. This call chain is limited to a 
maximum frame depth which is a constructor parameter to TBlockEvent. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



108 CHAPTER 7 ANALYSIS TOOLS 

CLASS DESCRIPTIONS 

TBlockEventHandler 

TAddressPeeker 

TBl ockEventHandl er: public MCol l ecti bl e is an abstract base class that defines 
protocol for classes that process block event information. Such classes might, for 
example, write block event data to a text file, or use the block events to maintain 
a dynamic model of the heap's state. 

class TBlockEventHandler : public MCollectible { 
public: 

} ; 

II Framework methods. These will be called in the order: Handleinitialize, 
II HandleBlockEvent (for each event), HandleFinalize. 
virtual void HandleBlockEvent(const TBlockEvent&, TAddressPeeker&) = O; 
virtual void Handleinitialize(TAddressPeeker&) {}; II Override if desired 
virtual void HandleFinalizeCTAddressPeeker&) {}; II Override if desired 

TAddressPeeker allows you to perform address-space-specific operations from 
another team. It maps addresses to symbolic names (function names), finds 
destructor addresses of objects, and reads the contents of memory in the remote 
address space. Use this class whenever freezing occurs in order to convert 
addresses in the target team into text symbols. 

TAddressPeeker caches function names it finds, under the assumption that the 
same address will be looked up frequently. Because of this caching, instances of 
TAddressPeeker should be shared; that is, if multiple clients on a team need its 
services, they should share a single instance of it. 

TAddressPeeker uses a TTeamHeapMonitor, a client of 
TTeamHeapMonitorDispatcher, to do its work. 

class TAddressPeeker { 
II This is not an MCollectible. Do not copy it, assign it, stream it, clone it, 
II or do any other MCollectible operations. 
public: 

TAddressPeeker(TTeamHeapMonitor* aliasedMonitor); 
virtual -TAddressPeeker(); 

II Functions in remote address space. These methods are multithread-safe. 
II DescribeFunction returns an unmangled function name, which it also caches 
II for subsequent calls. DescribeCallChain returns a tab-delimited list of 
II function names for a call chain. Describe object returns the class name 
II of an object on the heap. 

} ; 

canst TText& DescribeFunction(const void* address); 
canst TText& DescribeCallChain(const TCallChain&J; 
canst TText& DescribeObject(const void* address); 
canst TText& DescribeVTable(const void* address·, canst void* destructor-OJ; 
void CopyMemory(void* localCopy, canst void* address, size_t bytesToCopy); 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Heap analyzer classes 

THeapBlock 

CHAPTER 7 ANALYSIS TOOLS 109 

CLASS DESCRIPTIONS 

These are the heap analyzer classes. 

THeapBl ock: public TAbstractHeapBl ock represents a single block within a 
THeapMirror. It has state: live or frozen, allocated or deleted, first byte address, 
size, time of allocation, age, allocation context and deletion context, dynamic 
type. If it is frozen, the context information is flattened to text; otherwise, it 
consists of addresses in the target teams address space. 

class THeapBlock: public TAbstractHeapBlock { 
pub 1 i c: 

} ; 

II Construct from the allocation event. Normally this is a allocation 
II or an already exists event. This can also be a deletion event, which 
II is anomalous, but will be handled correctly. 
THeapBlock(const TBlockEvent&); 

II Canonical methods 
THeapBlock(const THeapBlock&); 
THeapBlock& operator-(const THeapBlock&): 
virtual -THeapBlock(); 
virtual TStream& operator>>- (TStream& towhere); 
virtual TStream& operator<<= (TStream& fromwhere); 
MCollectibleDeclarationsMacro(THeapBlock); 

II Deletion 
void Delete(const TBlockEvent&); 
void DeleteAnomalous(); 

II Delete using the block event 
II Mark as deleted; we never got deletion event! 

II Characteristics 
II Boolean IsDeleted() canst: 
II void* GetAddress() const: 
size_t GetSizeinBytes() canst: 

II Inherited 
II Inherited 

TTime GetAllocationTime() canst; 
TTime GetAge() canst: II computes on the fly if needed 

void GetClassName(TText&); II dynamic type: THIS IS USELESS AT THIS POINT 

II Describe 
void DescribeBlock(TAddressPeeker&, TText&) : 
void DescribeAllocation(TAddressPeeker&, TText&) 
void DescribeDeletion(TAddressPeeker&, TText&) 

II address size type age 
II thread time stackcrawl 
II thread time stackcrawl 

void Describe(TAddressPeeker&, TText&, UniChar separator); 

II Context 
canst TCallChain* GetAllocationContext() const; 
canst TCallChain* GetDeletionContext() canst; 
TSurrogatethread GetAllocationThread() canst; 
TSurrogatethread GetDeletionThread() canst; 

I I Freezing 
Boolean IsFrozen() canst; 
void Freeze (): 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



110 CHAPTER 7 ANALYSIS TOOLS 

CLASS DESCRIPTIONS 

TAbstractHeapBlock 

MHeapDiscipliner 

TAbstractHeapBl ack: public MOrderabl eCal l ecti bl e represents a block on the 
heap, and is an abstract base class descending from MOrderableCollectible. It 
has only two pieces of state d;;ita: its address and whether or not it is deleted. The 
latter defines canonical comparison methods (IsEqual, IsGreaterThan, 
IsLessThan) based on the address and deletion status. This allows you to search 
for a block in a collection at a certain address-either a deleted or a live block. 

MHeapDi sci p 1 i ner: pub 1 i c MC a 11 ecti bl e is an abstract class that defines the 
protocol for classes that monitor the correctness of heap behavior and usage. 
The method CheckBlockEvent verifies that the given block event is valid on the 
given heap model. If there is a pre-existing block at the address of the event, it is 
passed in. If CheckBlockEvent detects a problem, it creates a new 
THeapAnomaly on the heap and returns it; otherwise it returns 0. 

class MHeapDiscipliner : public MCallectible { 
public: 
· virtual THeapAnamaly* CheckBlackEvent(const THeapMirrar& heapBefareTheBlackEvent, 

THeapMirror 

canst THeapBlack* preExistingBlackOrNil, canst TBlackEvent& newEvent) = 0; 
VersianDeclaratiansMacra(MHeapDiscipliner); 

} ; 

THeapMi rrar: public MCall ecti bl e is a model that mirrors the contents of the 
heap. It maintains a sorted list of all blocks in the heap. When a block is deleted, 
it keeps the block in the model until a new block is allocated at the same address. 
This allows discipliners to differentiate a double deletion from a deletion of a 
non-block address. In fact, the mirror maintains deleted blocks until a new block 
is allocated and deleted. the mirror can store up two blocks at the same address: 
the last block that was deleted, and the current live one. 

NOTE Differentiating a double deletion from a deletion of a non-block 
address is insufficient in some cases. An example of this is if you allocate block 
#1, then delete it, then allocate block #2 at the same address, then delete it, then 
allocate block #3 at the same address, then delete a pointer to block #1. This final 
deletion will be incorrectly reported as a double deletion of block #2 rather than 
ofblock#l. 

The heap model has data for each block in the heap. It maintains state 
information for the heap as a whole: whether it is live or frozen. If live, the heap 
has pointers into the team being watched and also contains an anomaly list. 

If the heap is live, it is connected to a team, and contains a TAddressPeeker 
which allows it to resolve addresses to symbolic names and retrieve memory 
contents. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



class THeapMirror: public MCollectible { 
public: 

II Canonical methods 
THeapMirror(): 
THeapMirror(const THeapMirror&): 
THeapMirror& operator-(const THeapMirror&): 
virtual ~THeapMirror(): 
virtual TStream& operator>>- (TStream& towhere): 
virtual TStream& operator<<- (TStream& fromwhere): 
MCollectibleDeclarationsMacro(THeapMirror); 

II Accessing blocks 

CHAPTER 7 ANALYSIS TOOLS 1 1 1 

CLASS DESCRIPTIONS 

Titerator* CreateBlockiterator() canst: // Exception on failure 
THeapBlock* FindBlockAt(void* address) canst: 
THeapBlock* FindDeletedBlockAt(void* address) canst; 
void AdoptBlock(THeapBlock*): 
void DeleteBlock(const THeapBlock&); 
long GetBlockCount() canst: 
canst TSortedSequence& GetBlocks() canst: 

II Connect/disconnect 
Connectsthemirrortoan~ enum Estate {kConnected, kNotConnected, kBusy}; //Busy means in transition 
existing, running team ." --- void ConnectToTeam( canst TthreadHandl e&, FrameCount maxDepth) : 

~void LaunchAndConnectToTeam(const char* teamName, FrameCount maxDepth); 
Launchesanewteamand ------ void Disconnect(Boolean freezeModel-TRUE): 
watches it until it dies void Wait Fo rDi s connect() : 

II Information 
EState GetState() canst: 
TthreadHandle GetTargetTeam() canst: 
void GetTeamDescription(TText&) canst: 

II Invalid team if not connected 

Dumps a text description of --- ---- void Describe (): 
the heap to a text file 

II Freezing, reset. Later may add Unfreeze(TthreadHandle). 
Boolean IsFrozen() canst: 

Updates the internal model, 

and also passes on the 

event to the attached set of 

THeapDiscipliner 
subclasses for checking 

} : 

void Freeze(): 
void Reset(); //Clear out all blocks and anomalies 

II Discipliners 
Titerator* CreateDisciplineriterator() canst: 
void AdoptDiscipliner(MHeapDiscipliner*): 

II Anomalies 
Titerator* CreateAnomalyiterator() canst: 
void AdoptAnomaly(THeapAnomaly*); 

II Called by THeapMirrorAgent 
void IncorporateBlockEvent(const TBlockEvent&); 

II Exception on failure 
II Adds discipliner to set 

II Exception on failure 
II Adds anomaly to list 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



I 12 CHAPTER 7 ANALYSIS TOOLS 

CLASS DESCRIPTIONS 

THeapAnomaly THeapAnomaly: public MCol lecti ble is an abstract class associated with 
THeapDiscipliner. Each THeapDiscipliner, if it finds an anomaly, constructs and 
returns a corresponding subclass of THeapAnomaly. The heap model maintains 
a list of such anomalies and displays them graphically. Anomalies can be 
connected to specific THeapBlocks. 

Three concrete classes are TDeleteTwiceAnomaly, TDeleteNonBlockAnomaly, 
and TAllocTwiceAnomaly. 

class THeapAnomaly: public MCollectible { 
public: 

II Canonical methods 
THeapAnomaly(const THeapAnomaly&); 
THeapAnomaly& operator=Cconst THeapAnomaly&); 
virtual -THeapAnomaly(); 
virtual TStream& operator>>= CTStream& towhere) canst; 
virtual TStream& operator<<= CTStream& fromwhere); 

II Description 
void SetDescription(const TText&); II Subclasses should call in their ct 

THeapMirrorException 

void GetDescription(TText& toReceiveDescription) canst; 

II Do not delete result of GetAssociatedBlock. 
THeapBlock* GetAssociatedBlock() canst; II 0 if none 

protected: 
THeapAnomaly(const THeapBlock* associatedBlock); 

private: 
THeapAnomaly(); II Disallowed; not defined 

} ; 

THeapMi rro r Exception: pub l i c TS ta nda rd Exception is the exception class thrown 
by THeapMirror. It includes codes for invalid team, already watching team, not 
watching team, could not create iterator, block not found, and freeze without 
peeker. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Tool utility classes 

TCallChain 

Classes in this section are defined in the ToolUtilities project. 

CHAPTER 7 ANALYSIS TOOLS 

CLASS DESCRIPTIONS 

TC a 11 Chain: pub 1 i c MCo 11ectib1 e represents a call chain or stack crawl at a 
particular point of execution. It has methods that update its contents to reflect 
the current call point, and can skip some number of frames to get to the 
interesting part of the stack. TCallChain has a variable depth (it can grow or 
shrink at runtime) but it only changes its depth during copying or assignment. 
Otherwise it traverses the stack until its buffer is full. The size of this buffer is the 
maximum frame depth, and is a settable parameter in the heap tools. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

113 



ION PRELIMINARY 



TCL 

The TCL shell-ttclsh 

CHAPTER 8 

TEST TOOLS 

The test tool included with Release A is TCL. 

TCL 7.3 (pronounced "tickle") is a public domain scripting language from UC 
Berkeley. It is specifically written as a tool to integrate development tools. Its 
syntax is much like that of other UNIX shells (csh, sh, etc.), but it provides 
several specific advantages over the others, most notable is that it is highly 
extensible, portable, and embeddable inside of other programs. 

Getting started with TCL is easy, but like any programming language, learning to 
take full advantage of its power takes time. Start with basic scripts, and learn 
more as you go. 

NOTE This documentation is intended to get you up and running quickly as 
a tester using TCL. This is not a language reference or tutorial, but it does cover 
basic usage of the language for testing purposes. 

ttcl sh is a variant of the standard tel sh provided with the TCL distribution (the 
extra "t" is for Taligent). This implements TCL, and should be available on your 
AIX system. ttcl sh includes several important TCL extensions: - [i ncr tel J (an 
object programming extension), Test Framework extensions, and (eventually) 
extensions to allow distributed script execution. 

You can invoke ttcl sh interactively, in which case it works much like csh. This 
can be handy when debugging scripts. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

115 



I 16 CHAPTER 8 TEST TOOLS 

TCL 

Running tests from 
TCL scripts 

Learning more 
aboutTCL 

To run t tc ls h on UNIX systems, all test script files should have execute 
permissions and have a first line that reads: 

#!/usr/taligent/bin/ttclsh 

On native systems, TCL will be the only scripting engine available, and this line 
will be ignored. 

NOTE Test scripts should have a . tc 1 suffix so that its type of script is 
obvious. 

Run tests from TCL by calling ta l_runtest. tal_runtest is a wrapper for runtest; 
all runtest command options work with ta l _runtest. 

tal_runtest -echo d -t TMyTest MyTestLib 

Before calling ta l_runtest, start the Taligent AIX layer with Sta rt Pink. 

Like other UNIX scripting languages, TCL provides a great deal of support for 
complex scripts, including control flow structures, user-defined procedures, and 
local and global variables. Use these features when writing test scripts. 

You can find out more about the features by reading the TCL documentation, 
which is available online or in printed form. The online documentation is in man 
pages. You can find useful TCL man pages in the /usr/tal i gent/man/manl and 
/usr/taligent/man/mann. 

There are also raw PostScript '" documents in: 

$TaligentRoot/Taligent/DevelopmentTools/Platform/AIX/tcl/docs 

To get printed versions of these documents, request them from your Area 
Assistant. Though there is a 300 page book on TCL available for reference, due 
to copyright restrictions, we are unable to make copies for individuals. However, 
you can copy via FrP from: 

harbor.ecn.purdue.edu: /pub/tcl/sprite-mirror/book*.ps.Z 

These files can be uncompressed and printed on a LaserWriter '" printer using 
ShowPages, DropPS, or equivalent utility. Remember, though, that it is 300 
pages! · 

NOTE If you do not have physical access to Taligent, you can obtain the TCL 
documents from the same ftp site. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 8 TEST TOOLS 117 

Ensuring portability TCL allows you to execute any UNIX command. However, do not use any 
commands other than built-in TCL commands in your scripts, because not all 
UNIX commands are portable to other systems. The only exception to this rule is 
launching Taligent Application Environment applications, because these should 
be available on any system you test. 

Here are some commands to watch out for; do not use these commands in your 
scripts: 

1 s 
cat 
grep 
awk 
sed 
perl 
find 

A TCL example This example TCL script is an excerpt from the much larger Test Framework test 
script, but it is a complete example in and of itself. The only changes needed 
from the sh original were adding the header and doing a search and replace 
from Run Test to ta l _runtest and from echo to puts: 

PRELIMINARY 

#!/usr/taligent/bin/ttclsh 
1F $Revision:$ 
1F +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# I Test script for TestTestFrameworklib 
1F I Alan Liu 
# I Copyright (c) 1992-1993 Taligent, Inc. 
IF I 
# I This script relies on the libraries Testlib, BaseTestlib, & 
# I TestTestFrameworkLib. 
IF I Hi story: 
I I 12/09/93 ET Changed to shell script for AIX. 
IF I 12/20/93 AGS Converted to tel 
IF +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - c - - - - - - -

puts "IFIFIF TestTestFrameworkLib.Script - Start ... " 

puts "lffNF TNothi ngTest" 
tal_runtest -log -t TNothingTest TestTestFrameworklib 
tal_runtest -log -e t -t TNothingTest TestTestFrameworkLib -n 100 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

TCL 



u8 

ION PRELIMINARY 



PRELIMINARY 

CHAPTER 9 

XCDB 

Xcdb is a graphically oriented symbolic debugger for C, C++, and FORTRAN 
programs running under AIX Version 3, Release 2 (and later). It is a standalone 
program, not a windowed front-end to dbx. Xcdb has the breakpointing, stepping, 
and traceback capabilities common to most debuggers, but particular attention 
has been paid to presentation and ease of use. Xcdb understands the name 
mangling schemes used by xl C for typesafe linkage. It can display C++ class 
objects, display and set breakpoints in template instantiations, and display the 
internal contents of virtual function tables. 

Xcdb runs under the Xl 1 Release 4 (and later) windowing system and makes full 
use ofX capabilities. Since Xcdb runs in a separate X window from the program 
being debugged, each has unrestricted use of the screen, mouse, and keyboard. 
The debugger is mouse driven, meaning that most interactions are performed by 
positioning the mouse over an appropriate screen location and clicking a key or 
button. Xcdb requires little or no typing. 

With Xcdb, you can: 

,,, Inspect the local environment of any function in the call chain and display 
the format (signed, unsigned, hex, etc.) of any individual variable 

"' Expand aggregate objects (cl asses, structs, unions, and arrays) to reveal 
arbitrary levels of detail 

n Tailor window layout to your preferences by making appropriate entries in 
your . Xdefaul ts file 

Dereference pointers to reveal pointed-to objects 

'" Obtain the type, size, and address of any object 

rn Call upon C++ class instances to display themselves 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

ll9 



120 CHAPTER g XCDB 

The pointing hand 
icon marks the 
source line 
corresponding to 
the current 

When Xcdb traps a program interruption, either planned (by setting breakpoints) 
or unplanned (due to program exceptions or external signals), Xcdb makes the 
program state available for inspection. The display includes window panes for: 

w A traceback of uncompleted function calls 

m A view of the source code for the current function, positioned at the current 
line 

m A view of variables defined in the scope of the current function 

a A view of variables defined outside the scope of any function 

If the program interruption is of a type that allows execution to be continued, 
then you can resume program execution, perhaps after setting or clearing 
breakpoints. You can either ignore the signal that caused the interruption or pass 
it to the program. 

Here is a typical display following a program exception. 

instruction. -------

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

icon to convert 
it to a normal 
window. 
Left-click the 
title bar to 
convert it to an 
icon. 

PRELIMINARY 



Activate this menu, 
by left-clicking the "x". 

int zz 

snbr(x) 
char *X; 
t { 

123; 

1115":X = ZZ; 
} 

'' 
More detail 
Less detail 
Format as ... 

. .. bits 

... string 

ililiiliiiiil···array 
... pointer 
... address 
... type 
..• size 
... default 
Select subrange 
Change value 
Change type 
Set mark 
Use mark 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

CHAPTER 9 XCDB 1 2 1 



1 2 2 CHAPTER g XcDB 

SETUP 

SETUP 

Installation 

You must be running Xll Release 4 or later, with a graphics display and mouse. 

Use two displays if you will be debugging programs that create virtual hft 
terminals (graPHIGS programs, for example). One display should be used for X 
and the other for the application program. 

Download xcdb6000. ta rbi n as a binary file, and process it with the tar. For 
example, if you have xcdb6000. ta rbi n and in /tmp, use the following commands 
to extract the tarfile contents into /usr/bin: 

SU 
cd /usr/bin 
tar xvf /tmp/xcdb6000.tarbin 

# become super user 
#go to destination directory 
# extract contents (Xcdb) 
#now click Ctrl-d to become normal user again 

Xcdb lays out its window panes according to a predefined format. The layout is 
scaled to fit the window size specified by your .Xdefaul ts file, by a command line 
parameter, or by the window manager. "Customization" on page 140 describes 
how you can change the layout (and colors) to your preferences. 

Signals To be able to interrupt your program or Xcdb asynchronously from the keyboard, 
define appropriate signal keys using stty. This document assumes that Ctrl-c 
generates an INTR signal and that Ctrl-\ generates a QUIT signal. These are the 
default values on AIX systems. 

Compiling Compile and link the program to be debugged with the -g option in order to 
make the necessary symbolic information available. Do not use -0 with -g. Xcdb 
cannot reliably debug the resulting program due to code and register motions 
introduced by the compiler's optimizations. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



RUNNING 

Arguments 

CHAPTER 9 XcDB 123 

RUNNING 

xcdb [-geometry WxH+X+Y] 
[-font fontname] 
[-title title] 
[-bw] 
[-wb] 
[-I dirname] 
[-a pid] 
[ -r funcname] 
[ -e nume 7 ts] 
[-c numca77s] 
[-d numdetails] 
[-b numbreaks] 
[-i signo] 
[-f fetcher] 
[ -1] 
[-q] 
[-v] 
[-n] 
[-p] 
program [args ... ] 

-geometry WxH+X+Y A window size and position, overriding the specification in . Xdefau l ts (if any). 

-font fontname 

-title title 

-bw 

-wb 

-I dirname 

-a pid 

-r funcname 

The name of a font, overriding the specification in . Xdefaul ts (if any). 

A title to place on the window border. 

Use a black on white color scheme. 

Use a white on black color scheme. 

A directory to search for source files which cannot be found in the current 
directory (multiple - I flags are cumulative; up to 50 directories will be searched 
in the order listed). You can also specify the search path after Xcdb is running: 
see "Preferences" on page 138. 

The ID of an existing process to attach to, instead of starting a new process. 

Specifies how far to run the program's initialization routines. Normally the 
program runs to the symbol main, the standard starting point for C programs. To 
stop at some other function, specify its name. For example, to stop at the 
program's first instruction, specify -r \verb,_, start. 
To stop at the function which initializes C++ static objects, specify 
-r \verb,_,C\verb,_,runtime\verb,_,startup. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



124 CHAPTER 9 XcDB 

RUNNING 

Example 

-e numelts 

-c numcal/s 

-d numdetails 

-b numbreaks 

-i signo 

-f fetcher 

-I 

-q 

-v 
-n 

-p 

program 

args 

The maximum count of elements to display for any array (default is 1000). 

The maximum count of functions to display in the function call traceback (default 
is 20). 

The count of detail levels to add (or remove) when More( or Less) detail is 
selected from a data object formatting menu. 

The maximum count of breakpoints that can be set simultaneously (default is 50). 

The number of a signal to ignore and pass to the program (multiple -i flags are 
cumulative). 

The name of a program to call when the debugger needs to display a source file 
that it cannot find in the regular unix file system. The debugger invokes the 
program, passes it the name of the desired file as a command line argument, and 
display its output in the Listing window pane. Use this feature if, for example, 
your source files are kept in an SCCS or RCS database. 

Write window layout information to a file named s amp l e-1 ayout when the 
debugger exits. You can then copy this file into your. Xdefaul ts file where it 
will be read when you next run the debugger. See "Customization" on page 140. 

Run quietly, only revealing the debugger if the program being debugged stops 
due to a signal or runtime exception. 

Run verbosely, print status information and commentary while running. 

Do not include shared object file symbols when loading the program. For large 
shared libraries, this option can significantly speed up the debugger and reduce 
the amount of virtual memory used. 

Ignore compiler-generated filename qualifiers appearing in the program symbol 
table. This allows source files to be found (by searching the directories specified 
with - I} even if they were moved after the executable was generated. 

The name of the program to execute. 

Arguments to be pass to the program. 

xcdb -I/u/derek/myproject -e2000 -c20 -i14 -i30 stuff one two three 

invokes Xcdb and: 

n Runs the program stuff with arguments "one two three" 

rn Looks for source files in either the current directory or the directory 
/u/derek/myproject 

rn Displays up to 2000 elements for any array 

n Displays up to 20 functions in the Callers window pane 

"" Ignores signals 14 (SIGALRM) and 30 (SIGUSRl), passing them directly to 
the program without stopping 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Program starting 

Program interrupting 

Program terminating 

Xcdb exit codes 

CHAPTER g XcDB 1 2 5 

To start a program running, left-click the Run command. 

To interrupt a running program and return to the debugger, point the mouse to 
the window from which the program was invoked and press Ctrl-c. 

To resume execution, left-click the Run command. 

To exit the debugger, left-click the Exit command. 

You can also terminate the debugger and executing program by pressing Ctrl-\ 
on the xterm window from which you invoked the debugger. Do this only if both 
the debugger and the program are unresponsive to keyboard input. 

The exit code Xcdb returns to the operating system is determined as follows: 

rn If the program terminated normally, Xcdb returns the value passed by the 
program to its exit() function. 

g If the program terminated due to an exception, Xcdb returns 255. 

s If Xcdb terminated abnormally, then a value of 1 is returned. 

RUNNING 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



126 CHAPTER 9 XCDB 

WINDOW ORGANIZATION 

WINDOW ORGANIZATION 

Xcdb has these windows.: 

Listing 

Locals 

Non Locals 

Callers 

Functions 

Files 

Breakpoints 

Command 

Messages 

Displays the source code for the function selected in the Callers or Functions 
windows, the file selected in the Files window, or a breakpoint selected in the 
Breakpoints window. The window's title indicates the file's name. 

Set or clear a breakpoint by clicking on the line to affect. If the source file was used 
to generate code multiple times (as for functions generated from a C++ template 
file or an out of /inedinline), a menu prompts you to choose the function instance 
to breakpoint. 

Displays variables defined in the scope of the function selected in the Callers 
window. Click on a value in this window to activates a display-format menu (see 
"Format Control" on page 130). 

Displays variables defined outside the scope of any function (this includes static 
C++ class members), grouped by translation unit. Click on a value in this window 
to activates a display-format menu (see "Format Control" on page 130). 

Displays a traceback of suspended function activations (most recent at top). Click 
on a function name to display the source code for that function in the Listing 
window and to display its local variables in the Locals window. 

Displays the names of the functions comprising the program. Click on a name to 
display the source code for that function in the Listing window. 

Displays the names of the source files comprising the program. Click on a name to 
display the source code for that function in the Listing window. 

Displays a list of breakpoints currently set. Click on a breakpoint to display the 
source code for that breakpoint in the Listing window. Lines with breakpoints are 
marked with stop sign icons. 

Displays the commands which can be used to control the debugger. Click on 
command to execute it. 

This window pane displays messages from time to time. It is invisible unless there 
is a message to see. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 9 XCDB 127 

WINDOW MANIPULATION 

WINDOW MANIPULATION 

Left button 

Right button 

Window and mouse clicks display and control all aspects of the debugger. 

The left button manipulates the contents of a window. To scroll a window, drag the 
contents; the contents scroll in a direction and amount proportional to the 
motion of the mouse. 

Title bar 

End of a scroll bar 

Middle of a scroll bar 

Brings up a menu: 

Move 

Resize 

Lower 

Minimize 

Normalize 

Maximize 

Horizontal S.B 

Vertical S.B. 

Changes the window's position 

Changes the window's size 

Pushes the window down 

Reduces the window to an icon 

Restores the window's original size 

Enlargse the window to fit the application window 

Togglse horizontal scrollbars on or off 

Toggles vertical scrollbars on or off 

Scrolls the contents one line or column (fast click) or one page (slow click)1. 

Sets the window to an absolute position on the contents (position is 
proportional to the distance of the mouse from the end of the scrollbar). 

······················ 

1 A fast click is made by pressing and releasing the button in under 1/4 second; anything else is a slow click. 

The right mouse button changes the shape, position, or visibility of a window. 

Center of window 

Corner or edge of window 

To drag the window to a new position. 

Right-click without moving the mouse pushes the window 
beneath any other windows it might have been obscuring. 

To resize the window. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



128 CHAPTER 9 XCDB 

WINDOW MANIPULATION 

Keys Keys navigate through the window, and execute searches. 

Enter 

Arrow 

Page-up 

Page-down 

Home 

End 

:nnn 

/XXXX 

\XXXX 

Makes a selection; same as left-click. 

Moves cursor, scrolling the window if necessary. 

Scrolls window back. 

Scrolls window forward. 

Moves cursor to first column of window. 

Moves cursor to last column of window. 

Moves cursor to line number nnn (but not past end of file). 

Search forward to next occurrence of the string XXXX; omit the XXXXto repeat 
search from current position. 

Moves cursor backward to preceding occurrence of XXXX; omit the XXXXto 
repeat search from current position. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 9 XCDB 129 

EXECUTION CONTROL 

EXECUTION CONTROL 

Commands 

Issue commands by left-clicking on an item in the Commands window to bring 
up the Commands menu. 

Run 

Line step 

Call step 

Return step 

Signal 

Edit 

Restart 

Exit 

Preferences 

Executes the program until a breakpoint is encountered or a signal is received. 

Executes the program until a breakpoint is encountered, a signal is received, or control 
passes to a new line of source code. Executes functions called by the current line without 
stopping. 

Executes the program until a breakpoint is encountered, a signal is received, control passes 
to a new line of source code, or a function call is made.1 

Executes the program until a breakpoint is encountered, a signal is received, or control 
returns to the caller of the current function. 

Resumes execution at the current instruction, passing whatever signal caused the 
interruption back to the program. Any signal sent to the program interrupts execution and 
returns control to the debugger. Signals can arise from: 

A signal key (Ctrl-c, for example) clicked in the controlling terminal's window. You probably want 
the program to ignore the signal and so would resume execution with the Run command. 

A signal received in an alarm() or wait() system call. You probably want the program to process 
the signal and so would resume execution with the Signal command. 

A signal generated by a runtime exception. Execution cannot continue, but the debugger can 
still inspect the environment that caused the exception. Re-execute the program with the 
Res ta rt command. 

Invokes an editor on the file in the Listing window. Specifies the editor with xcdb. Edit in 
your . Xdefaul ts. Use %sand %d symbols for filename and line number, respectively. For 
example, to invoke vi: 

xcdb.Edit: (xterm -+0-0 -n Vi -e vi +%d %s &) 

To invoke emacs: 
xcdb.Edit: (emacs '+%d' '%s' &) 

To invoke v: 
xcdb.Edit: (v -1 %d %s &) 

Terminates the program, reloads it, and sets its execution point back to the beginning; all 
breakpoints and data format selections remain unchanged. If stdi n is a file, it is rewound to 
start-of-file. 

If the debugger was attached to a process using -a, then the process is allowed to resume 
execution (if you want the process to die, you must use ki 11 -9 from an xterm window
there's no explicit command to do this from Xcdb); otherwise, the process terminates and 
the debugger returns to the operating system. 

A menu prompts adjustments for Xcdb's behavior. See"Preferences" on page 138. 

1 Call stepping into a kernel function is not possible (because there's no way to set a breakpoint-the text segment is 
read only). Xcdb handles this by running the program until the kernel function returns to the point of call. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



i 30 CHAPTER 9 XCDB 

FORMAT CONTROL 

FORMAT CONTROL 

Common Formats 

You can reformat objects in the Locals and NonLocals windows in a variety of 
ways, depending on their type. 

Point the cursor to an object's name or value and left-click to invoke a menu. 

Point the cursor to a menu selection and click again to reformat the object as specified. 

Click outside the menu (or on its title bar) to close the menu without making a change, 
and leave the object's format unchanged. 

All objects share a common subset of formatting options. 

Default 

Address of 

Type of 

Size of 

Save 

Recall 

Edit 

Displays the object's value in a representation appropriate to its type: 

char 

int 

unsigned 

fl oat 

en urn 

function 

class, struct,or 
union 

array 

pointer 

A singly quoted letter: 'a' 

A signed integer: -123 

An unsigned integer: 4294967173 

A floating point number: 1.23 

An enumerator name. 

A function name. 

A class name (or a member list, see "class, struct, 
and union formatting" on page 132). 

The word "array" (or an element list, see "Array 
formatting" on page 134). 

The word "ptr" (or a pointed-to object, see "Pointer 
formatting" on page 137). 

Displays the object's memory address. 

Displays the object's type. 

Displays the object's size. 

Remembers the object's display format for later reference by Recall. 

Changes the object's display format to match that of the object most recently 
referenced by Save. 

Edits the object's value. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Type-specific Formats 

Integer 

Float 

Complex 

Class, Struct, or Union 

Class 

Array 

Type-specific formatting options are also available. 

Character 

Signed 

Unsigned 

Octal 

Hex 

decimal 

Scientific 

Hex 

Decimal 

Scientific 

Hex 

Letter format: 'a' 

Signed integer format: -123 

Unsigned integer format: 4294967173 

Octal format: 0177 

Hex format: Ox7f 

"f" format 

"e" format 

Hex format: Ox7f 

Real and imaginary parts of the number in "f" format. 

Real and imaginary parts of the number in "e" format.. 

Displays the real and imaginary parts of the number in hex format 

Reveals the members, horizontally. 

Reveals the members, vertically. 

Hides the members. 

CHAPTER g XcDB 131 

FORMAT CONTROL 

Flatten 

More detail 

Less detail 

Show self Runs the object's xcdb() member function (if any). See "Self-displaying C++ 
objects" on page 139. 

More detail Reveals array elements. 

Less detail Hides array elements. 

String Displays an array of characters as a null terminated string: "abc". 

Select subrange Selects a subrange of the array for display. A prompt asks for the subscripts of the 
elements you wish to see. See"Array formatting" on page 134. 

PRELIMINARY TALIGENT CONFIDE1''TIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



132 CHAPTER 9 XcDB 

FORMAT CONTROL 

Pointer 

class, struct, and 
union formatting 

Less detail Hides the pointed-to object. 

Hex The pointer in hex format. 

String A pointer to character as a null terminated string. 

Array At pointer to X as an array of X 

Select subrange A selected subrange of the pointed-to array. A prompt asks for the elements you 
wish to see. 

Cast Changes (casts) the base type of the pointed-to object. A list of struct, union, and 
typedef names prompts to select a new base type. Subsequent formatting of the 
pointed-to objects treats them as if they are of the type you select. 

Downcast Converts a C++ pointer to abstract base class into a pointer to most derived class 
by inspecting the pointed-to object's virtual function table pointer. 

Less detail Hides the pointed-to object, for example: 

class X { ... };/I base class 

class Y public X { ... }: II derived class 

f{) { 
X x; 
g(&x); 

y y; 
g(&y); 
} 

g(X *p) { 

} 

II pass a 'pointer-to-X' 

II pass a 'pointer-to-Y' 

II at run time 'p' could be either 
II 'pointer-to-X' 
II or 'pointer-to-Y' 
II 
II click on 'p' and select 'Downcast' 
II to reveal the actual type 

Choosing More detai 1 multiple times on a structure reveals increasing levels of 
detail. At the minimum level of detail, only the structure name displays. At the 
maximum level of detail, all of the member names and values display. Similarly, 
clicking Less detail successive times causes the object's format to fold up. 
Consider the following declaration: 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



struct node 
{ 

struct node *next; 
struct data 

{ 

int type; 
float value; 
} data; 

Node - { 0, { 1, 123 } }: 

This sequence shows how you might inspect the object: 

Click Mo re deta i 1 here 
N,ode: node 

Node: NULL data } 
Click More detai 1 here --· 

Node: next: NULL 
Click Mo re deta i 1 here ------- data: data 

Node: next: NULL 
Click More detai 1 here data: { 1 123.000000 } 

Node: next: NULL 
data: type: 1 

value: 123.000000 

Node: next: NULL 
Click More detail here data: type: 1 

value: 123.000000 

Node: next: NULL 
Click Less detail here ... ________ ,, 

data: { 1 123.000000 } 

Node: next: NULL 
Click Less deta i 1 here ._ ..... _.; data: data 

Node: NULL data } 
Click Less deta i 1 here --·--' 

Node: node 

CHAPTER 9 XCDB 133 

FORMAT CONTROL 

You can also examine just a particular field of interest by clicking on that field: 

Node: { NULL data } 
Click Mo re deta i 1 here 

Node: { NULL { 1 123.000000 } } 
Click Type here ----·----·--·--------·--.. --J 

Node: { NULL { 1 fl oat } } 
Click Hex here ·-·--... -----·-.... ____ __! 

Node: { NULL { 1 Ox42f60000 } } 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



134 CHAPTER 9 XcDB 

FORMAT CONTROL 

Array formatting Xcdb displays arrays similar to structures, except that the elements are identified 
by indices rather than member names. At the minimum level of detail, only the word 
"array" displays. At the maximum level, the indices and values of all the array 
elements display. 

Statically allocated arrays Consider the following declaration. 

Click More detai 1 here 

Click More detai 1 here 

Click More detai 1 here 

Click More detail here 

Click More detai 1 here 

struct point 
{ 

char *name; 
int coord[3J: 
} Set[] - { 

{"one", 
{"two", 
{"three", 
{"four", 
{"five", 
{"six", 
} ; 

{1,1,1}}. 

{2,2,2}}, 
{3,3,3}}. 
{4,4,4}}, 
{5,5,5}}. 
{6,6,6}}. 

This sequence shows how you might inspect the object: 

Set: array 

Set: { point point point point ... } 

Set: 0: point 
1: point 
2: point 
3: point 

Set: 0: { ptr array } 
1: { ptr array } 

--··---··2-:--r' pt r array } 
3: { ptr array } 

Set: 0: { ptr array } 
1: name: ptr 

coord: array 
2: { ptr array } 
3: { ptr array } 

Set: 0: { ptr array } 
1: name: ptr 

coord: { 2 2 2 
2: { ptr array } 

3: { ptr array } 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Dynamically allocated 
arrays 

CHAPTER g XcDB i35 
FORMAT CONTROL 

In the previous section, the array dimensions were defined at compile time and 
known to the debugger. But for arrays with runtime defined dimensions, the 
debugger has no idea of the outer array dimension, so it assumes a value of 1 
until you tell it otherwise. Consider the following declaration: 

main () 
{ 

char **stuff - malloc(3 * sizeof(char *)); 
stuff[OJ "abc"; 
stuff[l] - "def"; 
stuff[2] - "ghi"; 
return O· 
} 

To format stuff as an array of character pointers, step the program until the 
array has been completely initialized, and then: 

stuff: ->->Ox61 
Click St r i n g here --------------- ______ j 

stuff: ->"abc" 
C/ickSelect subrange __ ; 

here, enter "0,2, ... " 
stuff: { "abc" "def" NULL } 

Click Mo re deta i 1 here ______ J 

PRELIMINARY 

stuff: 0: "abc" 
1: "def" 
2: "ghi" 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



136 CHAPTER g Xcns 
FORMAT CONTROL 

Subrange selection Select specific subranges of array elements by clicking on the array and choosing 
Select subrange from the menu. Then, type the subscript or range of subscripts 
of the element(s) that you wish to see. Use an expression of the form: 

subrangeSpecifier sectionSpecifier { ',' sectionSpecifier } ... 

sectionSpecifier '[' subdimensionSpecifier { ',' subdimensionSpecifier } ... ']' 

subdimensionSpecifier lo . . hi II subdim elements between 1 o and hi, inclusive . . . . 
lo . '*' II all elements of subdimension, starting at 'l 0. 

'*' ' . hi II all elements of subdimension, 
'*' . . '*' II all elements of subdimension 
'*' II a 11 elements of subdimension 
n II n'th element of subdimension 

The count of subdi mens i onSpeci fi ers must match the count of array 
dimensions. Here are some examples: 

char array[4][2]; II a 4 by 2 array 

[O' *] II matches elements: 

[1 .. 2, 1]. [ 3, 0 .. 1] II matches elements: 

[0,0] 
[0,1] 

[l,l] 
[2,1] 
[3,0] 
[3,1] 

ending 

If a subrange specifier would display more than 1,000 elements, then the 
remainder display as " ... ". Change this limit by specifying a different value using 
-e or the xcdb.Arraylimits item in .Xdefaults. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

at . hi . 

PRELIMINARY 



Pointer formatting 

CHAPTER 9 XCDB 137 
BREAKPOINTS 

At the minimum level of detail, only the word "ptr" displays for a pointer object. 
Click More detail to reveal the pointed-to object. Consider the following: 

typedef int (*FUNCP)(); 
FUNCP Table[3J - {main, exit }; 

I* a function pointer */ 
I* table of pointers */ 

The sequence below shows how you might inspect the object: 

Table: array 
ClickMoredetail here ___J 

Click More de ta i 1 here 

Click More de ta i 1 here 

Table: { ptr ptr NULL} 
_____ __] 

Table: 0: ptr 
1: ptr 
2: NULL 

ClickType here ....................................................................................................... , 
Table: 0: -> n ( ) 

1: ptr 
2: NULL 

Click Type here ----------

ClickType here 

BREAKPOINTS 

Table: 0: function-returning-int 
1: ptr 
2: NULL 

Table: 0: pointer-to-function-returning-int 
······-1 1: ptr 

2: NULL 

Table: 3-item-array-of-pointer-to-function-returning-int 

Set or remove unconditional breakpoints by clicking on the line in the Listing 
window. Set or remove conditional breakpoints that releate to the line indicated 
by the pointing hand icon as follows: 

D Run the program to the line where the breakpoint is to be set. 

a If you set a breakpoint to get there, remove it. 

fJ Left-click on an integer or pointer object in the Locals or NonLocals window, 
and select Breakpoint from the menu. 

liJ Enter a breakpoint trigger value for the object, at the prompt. 

Xcdb indicates the breakpoint with a stop sign icon on the source line and with 
an asterisk-marked (*) entry in the Breakpoints window 

Xcdb stops the program whenever the specified line executes, and the object has 
the specified trigger value. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



138 CHAPTER g XcnB 
PREFERENCES 

PREFERENCES 

Preference settings 

To specify your preferences, use the Preferences option from the Commands 
menu in the Commands window. 

Language Controls printing of variable names and interpretation of array element addresses. 
Normally, Xcdb determines the language automatically, based on the initial stopping 
point in the program. You can change this by clicking either mouse button to cycle 
through the possibilities: 

c 
C++ 

FORTRAN 

Array element addresses are computed in row majorform. 

Array element addresses are computed in row majorform; variable 
names are demangled; nested class members are labeled. 

Array element addresses are computed in column majorform. 

Variables Controls printing of variables in the Locals window pane. 

Lexically scoped Displays only the variables in the scope of the current instruction. 

Unscoped Displays all variables in the current function, even those in other 
lexical blocks. This option is a work-around for a bug in some 
compilers-see "Frequently asked questions" on page 142. 

Secret variables Controls visibility of C++ compiler-generated variables. 

Hidden Does not display secret variables. 

Visible Displays secret variables. 

Include Files Controls interpretation of file symbols appearing in the symbol table. 

Respect 

Ignore 

The debugger makes use of /ti ncl ude file information appearing 
in the symbol table. 

The debugger ignores /ti ncl ude file information appearing in the 
symbol table. This option is a work-around for bugs in cpp, cc, 
and.cfront-see "Frequently asked questions" on page 142. 

File search path Specifies the directories to search when displaying source files in the Listing window. 
Enter a list of directory names, separated by spaces. See also the description of -s. 

Upon fork follow Controls tracing of fork() system calls: 

Auto raise 

Detail per click 

Parent 

Child 

Follows the parent process after a fork() 

Follows the child process after a fork<> 

When stepping through a fork() statement, you must use Line Step and not Call 
Step; otherwise, the debugger gets stuck trying to trace the system call. 

Controls automatic raising of interior window upon mouse entry. 

Controls the count of levels of detail to reveal (hide) when requesting More detail (Less 
detail) on a structure, union, array, or pointer object. Right-click to increase the value, 
and left-click to decrease it. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 9 XCDB 139 
SELF-DISPLAYING C++ OBJECTS 

SELF-DISPLAYING C++ OBJECTS 

Example 

Notes 

PRELIMINARY 

This is an experimental feature that allows C++ objects in a program to show 
themselves in response to a request from the debugger. When a C++ object is 
selected on the Locals or NonLocals window, and you choose Show self from the 
menu, Xcdb executes a member function named xcdb (), if found. For every class 
you wish to examine, write an xcdb ( ) member function with these constraints: 

"' no arguments 
n of type void 

m must not be inline 

every class must have its own xcdb() member function (they cannot be 
inherited; they may be virtual, but must be defined for each subclass) 

When you want a class instance to run its xcdb ( l member function, click on the 
object (as usual), format the object as a "structure" (choose More Detail if you 
only have a pointer to the object), and choose Show self. This runs the object's 
xcdb ( ) member function. Control then returns to the debugger. 

An xcdb ( l member function can be written to do anything at all. It might say 
something interesting, display pretty pictures, and so on. Use your imagination. 

class Mumble 
{ 

private: 
public: 
public: 
public: 

} ; 

canst char *name; 
Mumbl e(const char *name) : name(name) O 
const char *name() { return name; } 
void xcdb(); 

void Mumble::xcdb() { printf("My name is '%s'.\n", name());} 

main () 
{ 

Mumble& mumble - *new Mumble("mumble"); 
} 

Clicking on the variable "mumble" in the Locals pane and selecting Show self 

from the menu displays 

My name is 'mumble'. 

in the xterm window that invoked the debugger. 

Attempting to Show self on a cl ass or struct for which no xcdb() member 
function is defined produces a complaint, but is otherwise harmless. 

Any breakpoint or exception inside the xcdb() member function, while running 
in the context of Show self, terminates the function (returning control to Xcdb), 

and is otherwise ignored. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



140 CHAPTER 9 XCDB 

CusTOMIZA TION 

CUSTOMIZATION 

General 

Layout 

Create layout entries from 

your working environment 
with - l ; see "Running" on 

page 123 for information. 

Change Xcdb's window shape, position, font, colors, and window layouts with 
\$HOME/. Xdefaul ts. For information about available fonts and colors see /usr/ 
l pp/Xll I def aults/Xfonts and /us r /l i b/Xll I rgb. txt, respectively. 

The following tables summarize the . Xdef au l ts entries. Values to the right of the 
colon indicate acceptable entries, where: 

geometry 

font 

color 

is a geometry specification such as "100x300+10-5" 

is the name of a font, such as "Rom I 0.500" 

is the name of a color, such as "Slate Blue" or ''\#7 AD" 

Geometry: geometry 

Font: font 

AutoRaise: on loff 

SaveUnder: on loff 

Main window size and placement 

Font to use for text 

Behavior of window when mouse enters 

Handling of pixels obscured by popup menus. On some X servers, 
popup menus run faster with SaveUnder set on; others run faster with 
SaveUnder set off. Try both settings and see which works best for you. 

The layout entries customize each window in the debugger. You must specify settings for all or none of 
the windows; you cannot specify some of the windows. 

SpecialLayout: yes I no Do window specifications follow? 

xxxxGeometry: geometry Size and placement for normal window 

xxxxlconGeometry: geometry Size and placement for iconized window 

xxxxlconifyOk: yes I no Permit iconization of this window? 

xxxxlconStartup: yes I no 

xxxxScrollbars: vertical I 
horizontal I both I none 

lconize window at start-up? 

Scroll bar style 

where xxxxis one of Callers, Functions, Files, Breakpoints, Commands, Listing, Locals, NonLocals, 
Formats, or Messages. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Color 

Xcdb ignores color entries 
on monochrome displays or 

when-bw or-wbhas 

been specified. 

Other 

Borderldle: color 

BorderActive: color 

Foreground: color 

Background: color 

MouseBody: color 

MouseOutline: color 

CursorForeground: color 

CursorBackground: color 

MarkForeground: color 

MarkBackground: color 

TitleForeground: color 

TitleBackground: color 

DialogForeground: color 

DialogBackground: color 

DimForeground: color 

DimBackground: color 

Scrollbuttonldle color 

ScrollbuttonActive color 

Editor: command 

Language: language 

Window borders, mouse outside 

Window borders, mouse inside 

Normal text 

Normal text 

Mouse body 

Mouse outline 

Cursor 

Cursor 

Marked text 

Marked text 

Window pane titles 

Window pane titles 

Command lines 

Command lines 

Non-selectable menu items 

Non-selectable menu items 

Scroll buttons, mouse outside 

Scroll buttons, mouse inside 

CHAPTER 9 XCDB 141 

CUSTOMIZATION 

The specified command is invoked when the Edit command is selected 
from the Commands window (see earlier). 

The debugger's behavior is adjusted for the specified language, as 
described in the Preferences menu section (see earlier). language 
must be one of: 

q c 
C++ 

z FORTRAN 

RespectlncludeFiles: yes I no Controls interpretation of file symbols appearing in the symbol table, 
as described in the {\it Preferences} menu section (see earlier). 

Arraylimits: NNNN Controls data formatting, as described for the "-e" command line flag 
(see earlier). 

DetailPerClick: NNNN Controls data formatting, as described for the "-d" command line flag 
(see earlier). 

UnsignedCharFormat: Selects default data formatting style for unsigned char numbers. 
decimal I hex 

UnsignedShortFormat Selects default data formatting style for unsigned s hart numbers. 
decimal I hex 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



142 CHAPTER 9 XCDB 

FREQUENTLY ASKED QUESTIONS 

Example xcdb.Font: Rom17.500 
xcdb.Background: slate blue 
xcdb. Edit: (emacs '+%d' '%s' &) 
xcdb.RespectincludeFiles: yes 
xcdb.Arraylimits: 2000 
xcdb.DetailPerClick: 2 
xcdb.UnsignedCharFormat: hex 
xcdb.FloatFormat: scientific 
xcdb.AutoRaise: on 
xcdb.SaveUnder: off 

FREQUENTLY ASKED QUESTIONS 

Here are the answers to some frequently asked questions. 

Q: This document makes reference to menu item XX.XX, but I don't see it on my 
menu. 

A: Your window pane is either too small or the item has scrolled out of view. Press 
Home and then use the cursor keys to scroll the window contents until you find 
the item you are looking for. 

Q: A window pane or menu appears to be empty. 

A: See the answer to the previous question. 

Q: My program runs fine when invoked from the debugger, but doesn't run when 
invoked from the shell command line. 

A: Unlike the command shell, Xcdb loads your program without searching the 
$PATH environment variable. You've probably got a program by the same name 
somewhere in your $PATH. Try explicitly qualifying the program name when you 
type it on the command line. For example, type: 

./test a b c # run program in current directory \end{verbatim} 

instead of: 

test a b c #oops, this probably invokes /bin/test \end{verbatim} 

TALJGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



PRELIMINARY 

CHAPTER g XcDB 143 
FREQUENTLY ASKED QUESTIONS 

Q: The debugger stops with a Signal 0 when it encounters the system() function 
in my program. 

A: This is normal.Just click the Signal item on the command pane to continue, 
or reinvoke Xcdb with "-i O." 

Q: I can't set a breakpoint on some lines of my C++ program (compiled with 
cfront). 

A: There are bugs in /lib/ cpp, the preprocessor used by cfront to perform 
macro expansion. Try another macro preprocessor-some people have had luck 
with /us r /1 pp/Xll I Xamp l es I ut i l I cpp/ cpp. Point to it with the CC's "cppC" 
environment variable, and then recompile. 

There are also bugs in cfront related to generation of /fl i ne directives for 
templates and include files. Try setting Include files: Ig;nore in the Preferences 
menu and see if this helps. 

Q: Xcdb displays the wrong source file and/or line number in my C++ program 
(compiled with cfront). 

A: Try setting Include files: Ig;nore in the Preferences menu and see if this helps. 

Q: Xcdb displays the wrong source file and/ or line number in my C++ program 
(compiled with xlC). 

A: Make sure you have set Include files: R.espect in the Preferences menu. Another 
possibility is that the source file contains more than 65,534 lines. Due to an AIX 
symbol table design feature, line information for such files is stored incorrectly. 
The only workaround is to split the source file into smaller pieces. 

Q: I can't see one of my local variables, but I know it's there. 

A: This is due to a compiler bug. Try the Variables: Unscoped option on the 
Preferences menu. 

Q: My program seems to be running correctly, but the variables displayed by 
Xcdb look wrong. 

A: You probably compiled your program with both -g and -0. The resulting 
compiler optimizations confuse the debugger. Recompile your program with 
either -g or -0, but not both. 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



144 CHAPTER 9 XCDB 

FREQUENTLY ASKED QUESTIONS 

Q: I can't see code generated from #include files. 

A: You need a newer version of xl C (such as version 01.02.0000.0000, or later). 

Q: Xcdb complains about an ambig;uous breakpoint when I try to set a breakpoint 
on certain parts of my program. 

A: You probably tried to set a breakpoint on an instruction that was one of several 
"instantiations" generated from the same ffi ncl ude file. 

If you are debugging template code generated by the xl C compiler, make sure 
you've set the Language: C++ option on the Preferences menu. 

Otherwise, if you are debugging non-template code, or code generated by 
compilers other than xl C, there is no mechanism by which Xcdb can infer the 
instruction instantiation to which you refer, so it is not possible to set a 
breakpoint on the specified line. Sorry. 

Q: I can't see a traceback in the Callers window pane when I set a breakpoint in a 
signal handler. 

A: This is a deficiency in Xcdb that is being addressed. 

Q: I get an error when attempting to attach the debugger to a process using -a. 

A: This seems to have something to do with shared libraries. If you can reproduce 
this problem with a small program, please send a bug report to the Taligent Tools 
Team. 

Q: Xcdb is sluggish when stepping. How can I make it faster? 

A: Display update performance during stepping operations can be improved by 
iconifyingthe NonLocals window pane if it is not needed. The debugger is then 
saved the expense of reading and formatting (potentially large) amounts of 
global data from the program's execution image. Also, choosing the -n 
command line option will help here, by reducing the number of symbols that 
Xcdb must search. Reducing the size of the main window or using a larger font 
will also help, because it reduces the amount of window drawing that takes place. 
Also, enabling xcdb. SaveUnder in your . Xdefaul ts file may improve performance 
of pop-up menus (see "Customization" on page 140). 

TAL!GENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



PRELIMINARY 

CHAPTER 9 XCDB 145 
FREQUENTLY ASKED QUESTIONS 

Q: How can I format a number of variables, all in the same style, without 
tediously clicking more detail on each one? 

A: Try using the Save and Recall selections on the Formats menu to propagate 
the formatting information from one object to all the others. 

Q: How can I change the display format of all the elements of an array at once, 
without tediously clicking on each one? 

A: Try this: 

D Format the first item in the array 

fl Use Select subrange to (re)select the elements you wish to see 

The format of the first element propagates through to all the other elements 

Q: How can I invoke Xcdb from inside my program? 

A: Try something like this: 

main() 
{ 

foo(); 
} 

foo() 
{ 

bar(); 
} 

bar() 
{ 

trouble(); 
} 

trouble() 
{ 

extern char **p_xargv; /* undocumented variable */ 
char cmd[lOOJ; 
sprintf(cmd, "xcdb -a %d %s", getpid(), p_xargv[OJ); 

if (fork() == 0) 
system(cmd); 

else 
pause(); 

} 

/* runs Xcdb *I 

/*waits until Xcdb issues "Run", "Line Step", etc. */ 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



i46 CHAPTER 9 XCDB 

fREQUENTL Y ASKED QUESTIONS 

Q: When I SelRct a subrange, I only see the first 1,000 elements of my selection. 
Where are the rest? 

A: As a safety feature, Xcdb displays at most 1,000 elements per array. Use -e or 
xcdb.Arraylimits in your .Xdefaults file to change this limit. 

Q: How can I display a region of memory as an unstructured hex dump? 

A: Try this (ok, it's a bit ofa kludge, but it works): 

D Determine the address of the region you wish to inspect (using Format ... as 
address, for example) 

fJ Take any convenient char pointer in your program and set its value to the 
address you wish to inspect (using Edit) 

ID Select the number of elements to be displayed (usingSelect subrange) 

Q: What version of Xcdb do I have? 

A: Type xcdb (no arguments) to find out. 

Q: Where can I get the latest version of Xcdb? 

A: Obtain XCDB6000 PACKAGE from your nearestAIXTOOLS service machine. 

Q: What's new in the latest version of Xcdb? 

A: Please read the XCDB6000 NEWS file that is shipped with each XCDB6000 
PACKAGE. 

Q: I have a question that isn't answered here. 

A: Please report any problems you discover (or wish list items) to the Taligent 
Tools Team. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



CHAPTER 9 XCDB 147 
REPORTING BUGS 

REPORTING BUGS 

If you encounter a problem with Xcdb, file a Taligent bug report. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



,_ 

ION PRELIMINARY 



CHAPTER 10 

GDB 

To debug the Taligent Operating System, use the GNU Debugger (GDB). This 
chapter help you use the GDB debugger quickly. For more detailed information, 
refer to the GDB Reference Manual. For information about debugging Taligent 
Application Environment, see Chapter g, "Xcdb." 

INSTALLING GDB 

Internal Note The installation procedures have not been finalized at this time. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

1 49 



150 CHAPTER 10 GDB 
RuNNINGGDB 

RUNNING GDB 
To debug MyProgram (a runpink executable): 

D Place MyProgram.Herbiein the source-code directory, if you want symbols. 

You can also specify the symbol-table file with the -se command-line option. 

II At the UNIX shell prompt, run gdb and specify the name of the program to 
debug: 

% gdb MyProgram 

GOB Taligent Version 4.11.07 (rs6000-ibm-aix3.2), 
Copyright 1993 Free Software Foundation, Inc. 

The GOB command prompt --- ( gdb) 

Source-level 
debugging 

GDB is now ready to start debugging. 

fl NOTE For information about rp executables, see "Debugging shared 
libraries and rp-executables" on page 154. 

By default, GDB looks for source-level debugging source-code in the current 
directory. To specify another directory, use di rectory or the -cd command-line 
option: 

(gdb) directory /home/Work/Taligent/Development/Portable/Albert/Source 

To search multiple directories, use di r, or the -d command-line option, to add a 
directory to the search path: 

(gdb) dir /home/Work/Taligent/Development/Portable/Albert/Test 

To report which directories are in the search path, use show di r: 

(gdb) show dir 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

I• 

PRELIMINARY 



Executing programs 

Getting help 

Quitting GDB 

CHAPTER 10 GDB 151 

RUNNINGGDB 

To start you program, use run. If the program needs command-line arguments, 
include them on the run command line: 

(gdb) run argl arg2 

You can also use set a rgs to set command-line arguments, and info a rgs to find 
out what they are. 

To get online help, use help. For help on a specific topic, specify the topic. 

(gdb) help breakpoints 

To quit GDB, use quit. If you need to quit while a program is running (and you 
can't get to the GDB prompt), use Ctrl-C. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



152 CHAPTER 10 GDB 
USING BREAKPOINTS 

USING BREAKPOINTS 

Resuming execution 

To set a breakpoint, use breakpoint (which you can abbreviate to b). To break 
when entering a function, specify the function name: 

(gdb) b myfunc 

To break at a particular line number in a specific file: 

(gdb) b mysourcefile.C:228 

To break at a specific address: 

(gdb) b *OxdefOOOOO 

C++ mangles the names of member functions. To choose the member function 
from a list, specify the class and function name, followed by a tab character: 

(gdb) b 'fooclass::foofunc<TAB> 

NOTE Breakpoints can have a pass count or a condition, and you can 
execute commands after a breakpoint occurs. Type help break for more 
information. 

To resume program execution, use continue. To step command-by-command, or 
until a specific event, follow the instructions in the next section. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



USING STEPS 

CHAPTER 10 GDB 153 

To step between function calls or machine instructions, use these commands: 

step 

next 

stepi 

Steps one source code line. 

Steps over a function call. 

Steps one machine instruction. 

USING STEPS 

nexti Steps one machine instruction, stepping over function calls. 

All of the variants of step and next accept a pass count, for example to step 
twenty lines at once: 

(gdb) step 20 

For more specialized control: 

finish Finishes a function. 

unti 1 7 i nenumber Runs until linenumber. Be careful, if your program doesn't 
reach this line number, your program can hang. 

return va 7 ue Forces a return with the optional given value. 

goto 7 abe 7 Forces a goto in the program you are debugging. 

EXAMINING DATA 

GDB has several commands for examining data. 

print expression Prints, in a formatted manner, the value of an expression. 

x address Examines (or dumps) a memory address. 

memberfunc Toggles printing of member functions. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



154 CHAPTER 10 GDB 
TRACING INSTRUCTIONS 

TRACING INSTRUCTIONS 

Taligent's version ofGDB has an instruction-trace facility. To use it, set up GDB in 
the usual way, and run to the breakpoint where you wish to start tracing. Then, 
put your trace into a file with outfi le and begin the trace: 

(gdb) outfile MyTracefile 

You can trace to an end of function, a discrete number of instructions, or a 
particular address: 

(gdb) trace 
(gdb) trace 500 
(gdb) trace Oxdlc40000 

When you are finished, close the output file by calling outfi le with no 
arguments: 

(gdb) outfile 

DEBUGGING SHARED LIBRARIES AND RP-EXECUTABLES 

To debug shared libraries and rp-style executables: 

0 Make sure you have these files: 

w The rp program and one extra terminal session. 

m The shared library version of LLSystemL i b (the nonshared library version 
is LLSystem. lib). 

m LLSystemL i b. Herbie and your target program's . Herbie file in the same 
directory where you run LLSystemL i b. 

fJ Start the library server in the extra terminal session, this becomes the libseroer 
session: 

rp _libserver 

IJ Run GDB and LLSystemL i bin your original session, this is the gdb session: 

gdb LLSystemLib 

Once the ( gdb) prompt appears, LLSystemL i b is in memory, _StaticDatalnit 
has been called, and you can set breakpoints in LLSystemLib. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Reporting shared 
library symbol tables 

CHAPTER 10 GDB 155 

DEBUGGING SHARED LIBRARIES AND RP-EXECUTABLES 

19 Use run to execute the program: 

run MyProgram argl arg2 

Before running your program, LLSystemL i b calls GDB's 
LibraryLoadedCallBack function, which causes GDB to load 
MyProgram. Herbie to retrieve the symbolic information. 

NOTE As it is currently enabled, GDB's LibraryLoadedCallBack function 
causes a break into the debugger so that you can set breakpoints in your program 
before it runs. (Eventually there will be a mechanism similar to the 68K ci's 
run -d option.) When this break occurs, GDB prompts something like this: 

Reading symbols: your_program.Herbie 
Symbol base at Ox20400108 
LibraryloadedCallBack: Doing breakpoint 
Gdb selected thread NN 

Program received signal SIGTRAP (5), Trace/BPT trap 
Oxab8c4 in ?? () 

LibraryLoadedCallBack is defined not to have symbolic information display for 
itself, hence the hex address. Use where to see the LLSystemL i b stack trace. 

To list all shared library symbol tables loaded, use info shared: 

(gdb) info shared 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



156 CHAPTER 10 GDB 
PROBLEMS AND OTHER USEFUL INFORMATION 

PROBLEMS AND OTHER USEFUL INFORMATION 

If you encounter a bug in GDB, file a Proteam bug report-GDB should soon be 
a component on the bug tracking system. meanwhile, here are some known 
problems and remedies: 

m Your copies of gdb and gdbnub must be checked with the bless it script. As 
the root user, run b 1 es sit on both files. Once these files have been checked, 
1 s -1 shows the following permissions and ownership: 

-rwsrwxr-x 1 root system 

rn Your machine should be running snames and mac hid. Run ps -A \ grep 
snames to see ifit has been set up to do so. 

{f Variable and type information is not currently supported. Use the x to 
examine memory. 

m When you are using LLSystemL i b, attaching to a program that is blocked in a 
system call works as far as getting the current user state, but the program. 
aborts if you step, continue, or detach. 

Internal Note Got any clues as to why? 

rn If you don't get a complete stack crawl when running LLSystemL i b or 
multiple threads, run t 1, and try it again. It usually works the second time. 

{f Don't restart a program in the same GDB session once the program 
terminates or is already running. Instead, quit and restart GDB and your 
program. 

m: Sometimes when continuing from a breakpoint, the program seems to hang. 
If you Ctrl-C to interrupt it, GDB shows that it didn't continue from the 
breakpoint. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



PRELIMINARY 

CHAPTER 10 GDB 157 

PROBLEMS AND OTHER USEFUL INFORMATION 

The Debugger call currently isn't provided in LLSystemL i b. For your program 
to give control to the debugger, execute an int 3 breakpoint instruction. 
One way to do this is to link an assembly module, Debugger. s, to your 
program: 

Debugger function 
char 
ret 
end 

Assemble it as follows: 

extern 
Ox cc 

Assembler.x86 Debugger.s 

n The current version has some thread support. The thread commands for 
Mach conflicted with the standard GDB thread commands, so Taligent 
changed them by modifying the command prefixes to mthread and mtask 
(help mthread and help mtask reveal which commands are available). Where 
a thread argument use the MID, not the slot number. 

The following aliases are defined: 

mth 

tl 

ts 

mthread 

mthread list 

mthread select 

The prefix 

Display thread list 

Select a thread 

GDB has the concept of a current thread that determines which registers and 
stack is displayed. The current thread is initially the thread where the 
breakpoint is hit. ts and mthread select specify a different thread to be the 
current thread. tl and mthread list report the known threads. Use the MID 
number to specify threads in all the commands. In the thread list, the 
current thread is marked with an "*" following the MID. 

'" If you step inside a function with no source map information GDB might give 
you a message like "Cannot access memory at address O," or some message 
about not knowing the size of the function. Some of this will eventually be 
fixed. For now, use one of the following: 

n s i (perhaps with dis pl ay) to assembly step 

n finish to go to the end of call 

" frame to change to a frame with source and then set a breakpoint 
following the call you are in 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



CD PATH 

PRELIMINARY 

APPENDIX A 

TIPS & TECHNIQUES 

Everybody has their own work style, but there are some simple tricks you can do 
to make yourself more productive. Here are some useful pointers. 

This chapter assumes you have the standard AlX environment. Make sure you set 
up your account to the specifications defined in Chapter 2, "Working in the AlX 
environment." 

The cdpath shell variable contains a list of directories that shell searches when 
you use ed. For example, if you are in your $HOME directory, you can type: 

cd Envious 

and the shell will take you right there. The shell looks in the current directory 
first, and if it does not find Envious there, it searches the directories in cdpath, 
which is what happens in the previous example. 

This little trick saves a massive amount of typing when you are navigating around 
the Taligent source tree. Here is an example of settings to add to your . cshrc file: 

set cdpath-( - \ 
${HOME} \ 
${HOME}/Taligent \ 
${HOME} /tools \ 
${HOME}/Taligent/Toolbox \ 
${HOME}/Taligent/Toolbox/Internationa1Utilities \ 
${HOME}/Taligent/Toolbox/Document2 \ 
${HOME}/Taligent/Toolbox/Runtime \ 
${HOME}/Taligent/Albert/Main \ 
${HOME}/Taligent/Instrumentation/TestSystem\ 
${HOME}/Taligent/Time \ 
/home/local \ 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

1 59 



160 APPENDIX A TIPS & TECHNIQUES 

XCDB-THE DEBUGGER 

XCDB-THE DEBUGGER 

OPusBuG() 

Taligent uses xcdb (an internal IBM project) as its Taligent Application 
Environment debugger. Be sure to read Chapter g, "Xcdb," before using this 
debugger. However, there are two things that can make your work with xcdb 

easier: 

w Use SCMFetch to checkout sources from the SCM source data base (for more 
information, see"SCMFetch" on page 34). 

r.1 Use the suggested . Xdefaul ts file for standard behavior. 

Instead of calling xcdb directly, use the xdb script which install SCMFetch and turns 
off some interrupts that you probably do not need. 

Within the Taligent Application Environment, Opus Bug ( ) is a function that calls a 
UNIX program script which runs a debugger to attach to your running process. 
Opus Bug() emulates the functionality of the DebugStr() call found in many 68K 
development environments. While fairly limited because the UNIX environment 
is very different than other development environments, Opus Bug() provides the 
rudiments of printing a message and starting a debugger. 

Within the Taligent Operating System, Opus Bug() prints a debugging string, and 
then calls the debugger. 

NOTE The origin of the name OpusBugis lost in obscurity. 

When you call Opus Bug () within the Taligent Operating System it prints a 
message, and drops directly into the debugger. 

When you call OpusBug() within the TaligentApplication Environment, it 

ID prints a message. 

&; uses system() to call pi nk_debugger: the program script. pi nk_debugger must 
be in your $PATH. 

ID then puts your process to sleep for five seconds. This is generally enough 
time for a debugger to get started and attach to the process to be debugged. 
The debugger comes up with s 1 eep () on the top of the stack; below s 1 eep () 

should be Opus Bug() and then the routine that called Opus Bug(). You should 
be able to debug from there. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Arguments from -----; 

OpusBug() 

AfPENDIX A TIPS & TECHNIQUES 161 

Because Opus Bug() invokes pink_debugger via a system() call, it carries a few 
restrictions: 

The pi nk_debugger script must terminate with an exit status of zero. 

The pi nk_debugger script must not be blocking. This means that anything 
that requires interaction, like a debugger, must be run in the background. 

Here is the prototype for OpusBug( ): 

OPusBuc() 

void OpusBug(char *message): II Print the message, and call pink_debugger 

Opus Bug() passes two arguments, the process ID and the calling program name, 
to provide enough information for a debugger to attach to a running process. 

Here is a sample pi nk_debugger. 

fl! /bin/sh 
fl 
fl This program starts an xdb session in the background. 
/I 

PROCESS ID=$1 
PROGRAM_NAME=$2 

echo 
echo 
echo "*** Entering pink_debugger ***" 
echo "*** PROCESS_ID == $PROCESS_ID ***" 
echo "*** PROGRAM_NAME == $PROGRAM_NAME ***" 

Call/the debugger---- tal db -a $PROCESS_ID $PROGRAM_NAME & 

Must return 0 ------
echo "*** Exiting pink_debugger ***" 
exit 0 

To print the message, but not start a debugger, pi nk_debugger should be nothing 
more than exit with a zero return status. 

fl Do not start the debugger 
exit 0 

To neither print a message nor start a debugger ( do nothing), set the 
PINK_DONT_USE_OPUSBUG environment variable. 

setenv PINK_DONT_USE_OPUSBUG 

PRELIMINARY TAL!GENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



I 62 APPENDIX A TIPS & TECHNIQUES 

EMACS 

EMACS 

Emacs shell 

Create a new shell 

Create multiple shells 

Emacs function keys 

F1-Build 

Many engineers use the Emacs editor on AIX. This section details certain major 
aspects of Emacs that you might find useful if you use the editor. 

AIX has built-in terminals (AJXTerms) that most users do not need or like. As 
such, users tend to prefer using Emacs in shell mode, which is similar to an MPW 
Worksheet because you can scroll back, edit, and re-execute commands (unlike 
inAIXTerm). 

To create an emacs shell session: 

D Press ESC-x 

fJ Type shel 1 

To have multiple shells sessions open, first rename your open shell buffer: 

D Press ESC-x 

fJ Type rename-buffer 

Then create another new shell. 

This section provides detail about each function key including, how and when 
you can use them. Each table includes the key, the command that Emacs 
executes, and a brief description of the action. 

On page i 68, you will find a function key quick reference to post next to your 
workstation. 

Use Fl to build your subsystems. Emacs calls Makei t to execute a build (see 
page 66 for Make i t specific information). You can type these commands in the 
shell buffer, but it is better to use Fl because Emacs redirects the output of the 
build is *compilation*buffer, which is used by the error finding key, F2. 

F1 

Ctrl-F1 

S-F1 

Makeit [target] 

By default, F1 builds Includes, Objects, Exports, and Binaries for the current project and 
all its subprojects. You can change the default target by typing new target. 

Makeit Clean Complete 

Executes a clean build on the current project and all its subprojects. If you change these 
targets, they will not be remembered next time you use C-F1. 

Makeit -c [target] 

Builds the specified target in the current project only. Emacs remembers target after you 
first type it in. This is useful when you are building the same application over and over. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



F2-Locate compiler 
messages 

F3-Search 

APPENDIX A TIPS & TECHNIQUES 163 

Meta-F1 Makeit Binaries 

Builds the binaries target for the current and all it's subprojects. This is useful for 
rebuilding shared Libraries. If you change these targets, Emacs does not remember 
them the next time you use Meta-F1. 

Meta-Sh-F1 Ma keit -c Binaries 

EMACS 

Builds the binaries target for the current project. This is useful if you have already built a 
single subproject, and you want to rebuild a shared library that is built in the parent 
directory. 

Ctrl-Sh-F1 Makeit -c Clean Complete 

Executes a clean build on the current project only. If you change these targets, Emacs 
does not remember them the next time you use Ctrl-F1. 

Locates errors or warnings generated during a compile, and which are in the 
*compilation*buffer. To get the compiler messages in this buffer, use Fl. 

F2 

Sh-F2 

Meta-F2 

Locate Next Message 

Opens the file to the location that the compiler message refers to. This key finds 
(W)arnings, (E)rrors that the compiler fixed, and (S)erious errors that break the build. 
Note: you can use F2 to locate the result of a search, see below. 

Locate Next Serious Error (Not implemented ye~ 

Finds the next (S)erious compiler error, and skip the(E)rror and (W)arning messages. 

Locate Next Error Message (Not implemented ye~ 

Finds the next (S)erious or (E)rror compiler message, and skip the (W)arning messages. 

Internal Note Are the keys implemented yet? 

NOTE Theses keys might not work with the Comptech compiler. 

Searches (grep) for patterns in specific locations, and redirects the result to a 
special buffer that F2 can use locate the match. 

F3 Searches Taligentlncludes 

Prompts you for a pattern and then searches for that pattern in Ha 1 i gentI n c 1 udes, 
Ha 1 i gentPri vate Includes, and then your local project, in that order. 

Sh-F3 Searches Current project (Not implemented ye~ 

Meta-F3 

Prompts you for a pattern and then searches for the pattern in your local project. 

General purpose search 

Prompts you with a grep (search) command for general purpose searches. Unlike a 
terminal, the result goes to a special buffer so you can view the matches with F2. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



164 APPENDIX A TIPS & TECHNIQUES 

EMACS 

F4 -Taligent AIX layer 

F5-Goto 

F6 and F7-Change 
buffers 

Starts and stops the Taligent AIX reference layer, and a Taligent application 
within that layer. 

F4 

Sh-F4 

Ctrl-F4 

Starts the AIX Layer 

Eexecutes Sta rt Pink to start the AIX reference layer. 

Stops the AIX Layer 

Executes StopPi nk to stop the AIX reference layer. Does not kill applications that are 
running; you must close those application first. 

Starts a Taligent application 

Launches the specified application. Emacs remembers the application name after the 
first time you type it in. 

Meta-Sh-F4 Starts a Taligent application with xcdb 

Launches the specified application using the xcdb debugger. Emacs remembers the 
application name after the first time you type it in. 

NOTE Theses keys might not work with the Comptech compiler. 

Goes to and reports your location in the buffer. 

F5 GoTo line 

Prompts you for a line number, and then takes you to that line in the current buffer. 

Ctrl-F5 What line? 

Prints the cursor's line number to the status line. 

Sh-F5 GoTo Help 

Brings up a buffer with a quick reference to all the function keys. 

Switches your current buffer. There are many other ways to change your current 
buffer, but this makes it easy. 

F6 Previous buffer 

Brings the last buffer you visited (before current one) to the current buffer. 

Sh-F6 Burry buffer 

Puts the current buffer last in the list of buffers and brings the front most buffer in the 
list to the front. Think of this as a buffer que. 

F7 Next buffer 

Bring. 

Sh-F7 Unburry buffer 

Bring. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



FB-Open 

F9, F10, and F11-
Keyboard macros 

F12-Find and replace 

APPENDIX A TIPS & TECHNIQUES i65 

Opens the current selection, or open the .PinkMake for the current project. 

F8 Opens current selection 

Open a file by the name of the current selection. Searches Hali gent Includes, 
Hali gentPri vatelncl udes, and the current directory. Useful in opening header 
files by select the filename on the #include line. 

Sh-FB Opens Current PinkMake 

Opens the .PinkMake file for the current project. 

Ctrl-FB Comments-out current selection 

Put C++ style comments at the beginning of each line in the current selection. 

Defines and runs keyboard macros. Macros are useful when you have to perform 
repetitious editing tasks. If you find yourself running a sequence of commands 
over and over again, it might be efficient to define a macro for the commands. 

F9 Start keyboard marco 

Begins recording commands and key strokes. 

F10 End keyboard macro 

Stop recording. 

F11 Call last keyboard macro 

Execute the last keyboard macro recorded. 

To name the last macro to save it for later use (and not record over it): 

D Press ESC-x 

fJ Type name-1 ast- kbd-macro and press Return. 

Emacs then prompts you for the name. 

Searches and replaces strings. 

F12 

Sh-F12 

Query replace string 

Emacs prompts you for the search string, then prompts you for the replacement string. 
Emacs then moves your insertion point to the first occurrence of the string and prompts 
you about replacing the string. It then goes to the next occurrence. 

Replace string 

Does a global search and replace; Emacs prompts you for the search string, and then 
prompts you for the replacement string. 

EMACS 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



166 APPENDIX A TIPS & TECHNIQUES 

EMACS 

F13 (Print Screen)
Checkout 

F14 (Scroll Lock)
Checkin key 

Navigation keys 

Emacs and tags 

Checks out the current buffer for modification. A second buffer shows the 
Checkout information. 

Checks in the current buffer to its RCS project. A second buffer shows the 
Checkin information. 

Here is a quick reference of navigation keys: 

Home Move cursor to beginning of line 

End Move cursor to end of line 

Ctrl-Home Move cursor to beginning of buffer 

Ctrl-End Move cursor to end of buffer 

Strl-Home Move cursor to beginning of window 

Sh-End Move cursor to last line of window 

Page Up Scroll down 

Page Down Scroll up 

Ctrl-PageUp Scroll other window down 

Ctrl-PageDown Scroll other window up 

Tags are helpful in finding class definitions and member functions. Taligent AlX 
layer system builds have a TAGS file for the Taligent include files. The standard 
Emacs configuration file (current cpg. el) automatically loads the TAGS file. 

To use tags, place the cursor over the class or member function to look up, and 
press Esc-. (Esc-period). Emacs opens the file where that class or member 
function is defined. Esc-, (Esc-comma) finds the next occurrence of the tag. 

NOTE The Taligent Operating System environment does not build these tag 
files. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



EMERGE 

Commands 

PRELIMINARY 

APPENDIX A TIPS & TECHNIQUES 167 

Emerge is a set of Emacs macros that merge two di ff files (the result of 
comparing three source files). 

In edit mode, you must use Ge or C-c to begin commands; you can use 
commands in fast mode without the prefix. 

Key Binding Key Binding 

C-] e me rg e-abo rt negative argument 

emerge-find-difference 0--9 digit argument 

< emerge-scroll-left > emerge-scroll-right 
A emerge-scroll-down a emerge-select-A 

b emerge-select-8 c Prefix Command 

d Prefix command e emerge-edit-mode 

emerge-fast-mode Prefix Command 

emerge-jump-to-difference emerge-recenter 

m emerge-mark-difference n emerge-next-difference 

p emerge-previous-difference q emerge-quit 

s Prefix command v emerge-scroll-up 

x Prefix command emerge-scroll-reset 

Cb emerge-copy-as-kill-8 ca emerge-copy-as-kill-8 

db emerge-default-8 da emerge-default-A 

ib emerge-insert-8 ia emerge-insert-A 

SS emerge-skip-prefers sa emerge-auto-advance 

xx emerge-set-combine-versions-template xt emerge-split-difference 

XS emerge-split-difference xm emerge-set-merge-
mode 

xi emerge-line-numbers xj emerge-join-differences 

xf emerge-file-names xC emerge-combine-
versions-register 

xc emerge-combine-versions xi emerge-one-line-
window 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

EMERGE 



l 68 APPENDIX A TIPS & TECHNIQUES 

EMERGE 

Modes Emerge has several modes of operation. 

Emacs function keys 

Fundamental mode is used for comparison with the other modes. 

Emerge mode minor mode (indicator is emerge) is used by Emerge when merging files, 
and can be entered through one of the functions: 

emerge-files 

emerge-files-with-ancestor 

emerge-buffers 

emerge-buffers-with-ancestor 

emerge-files-command 

emerge-files-with-ancestor-command 

emerge-files-remote 

emerge-files-with-ancestor-remote 

Emerge fast mode minor mode (indicator is F--fast mode) disables ordinary Emacs 
commands, and Emerge commands do not need a C-c or c-c prefix. 

Key Function Description 
················•········ 

Build F1 compile Makeit 

Ctrl-F1 makeit-clean-complete Makeit clean complete 

Sh-F1 makeit-c Makeit -c 

Meta-F1 makeit-binaries Makeit binaries 

Meta-Sh-F1 makeit-c-binaries Makeit -c binaries 

Ctrl-Sh-F1 makeit-c-clean-complete Makeit -c clean complete 

Message F2 next-error Step to next error or search result 
and search F3 search-in-pinkincludes Search for pattern in include directories 

Ctrl-F3 grep Search for pattern 

Taligent AIX Ctrl-F4 start-pink-app Start a Pink application 
layer Meta-Sh-F4 start-pink-xdb-app Start a Pink application under xdb control 

Sh-F4 stop-pink Stop Pink! 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



Emacs function keys Key 
····················································•·· 

Got and F5 
change 
buffer 

Ctrl-F5 

Sh-F5 

F6 

F7 

Sh-F6 

Sh-F7 
............................................ 

Open files F8 

Ctrl-F8 

Sh-F8 

Keyboard F9 
macros F10 

F11 

F12 

Ctrl-F12 

PrintScreen 

Scroll Lock 

Pause 

Sh-Pause 
''"''''""'"""' .. -. ....... ., .. 

Navigation Home 

End 

Ctrl-Home 

Ctrl-End 

Sh-Home 

Sh-End 

Page Up 

Page Down 

CtrlcPageUp 

Ctrl-PageDown 
---·--·~···----·---··---.. ________ , __________ -~-- -·-----

Function 

goto-line 

what-line 

open-helpfile 

previous-buffer 

next-buffer 

bury-buffer 

unbury-buffer 

APPENDIX A TIPS & TECHNIQUES 169 

Description 

Go to specified line number 

Display current line numbers 

Display this help file 

Go to previous buffer in buffer list 

Go to next buffer in buffer list 

EMERGE 

Push this buffer to the end of the buffer list 

Oops--bring it back to the front 
·························· .............................................................................................. . 

open-selection 

cpl us-comment-region 

open-pink-makefile 

start-kbd-macro 

end-kbd-macro 

call-last-kbd-macro 

query-replace 

replace-string 

check-out-buffer 

check-in-buffer 

cpg-emerge 

cpg-special-merge 

beginning-of-line 

end-of-line 

beginning-of-buffer 

end-of-buffer 

beginning-of-window 

end-of-window 

scroll-down 

scroll-up 

scroll-other-window-down 

scroll-other-window-up 

Open current selection as a file 

Make lines in current selection into C++ comments 
(insert//) 

Open the standard Pink makefile in . (current 
directory) 

Start recording keyboard macro 

Stop recording keyboard macro 

Execute last recorded keyboard macro 

Query replace! 

Replace string! 

Check out current file from SCCS 

Check in current file to SCCS 

Three-way merge of file revisions 

Three-way merge of specific builds 

Move cursor to beginning of line 

Move cursor to end of line 

Move cursor to beginning of buffer 

Move cursor to end of buffer 

Move cursor to beginning of window 

Move cursor to end of window 

Scroll down! 

Scroll up! 

Scroll other window down 

Scroll other window up 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



TERMINOLOGY 

APPENDIX B 

TALIGENT SOURCE CODE 

MAINTENANCE 

Taligent source code is stored in a hierarchy of directories maintained by our 
SCM tools. To check source code in and out of SCM, you must first create a 
directory hierarchy in your workspace that mirrors the SCM hierarchy. 

To set up your working environment to work with the Taligent source code 
maintenance system (SCM), follow the steps in Chapter 2, "Working in the AIX 
environment." 

Taligent uses the following terms and definitions when discussing source code 
management: 

rn Project-a directory that contains source code, other projects (subprojects), 
or both. 

''" Project hierarchy-a tree of projects of arbitrary depth. 

"" Workspace--your own directory hierarchy that mirrors the source code 
project hierarchy. You check out files to your workspace. 

n TaligentRoot-the root of your workspace hierarchy. The path to TaligentRoot 
is contained in the Ha 1 i gentRoot shell variable. 

"'• TaligentSCMRoot-the root of the source-code server hierarchy. The path to 
TaligentSCMRoot is contained in the $Ta 1 i gentSCMRoot shell variable. 

$Ta 1 i gentSCMRoot is a link to the SCM repository. Use this logical directory to 
access the repository because the physical directory can move. 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 

i71 



l 7 2 APPENDIX B TALI GENT SOURCE CODE MAINTENANCE 

PROJECT HIERARCHY 

PROJECT HIERARCHY 

6 NOTE This diagram is a snapshot of the hierarchy-the hierarchy can and 
will change until code freeze. 

. .................................. . 

Platform specific; . 
code 

[f > Tali&mlt •··. • •• - , ------· Glue code for AIX 

Contains code .................................... .. 
common to all 
platforms 

this code 

i ..... fj w~s/ 

AES/OS code based ........................ / 

I 
on OS interfaces 

••••·••)Pi/~sfirt;tM;i:h•····••· .. , 

· :¢9il~rJ!.rdiive) :1 
·•+n:•1~~ 

""' \:B19~\l@iffie$•-·· 

: ...... •i•.•'-~fiialt..liiiltiil!i 

L. ... ~.::·::· 

•·· ··• TestFfilnt.r'k I 
ii¥>1bC)iijtilti~ ' : I 
: t9$tsyste!11 .•... I 
·ir~ns' . . I 

· ··--· Uti1ityc1al!Se~ · 

I 
l. 

TALIGENT INTERNAL TOOLS TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 

I•· 
I 



PRELIMINARY 

APPENDIX B TALIGENT SOURCE CODE MAINTENANCE 173 
PROJECT HIERARCHY 

As an Taligent engineer, you have a mirror of the SCM hierarchy on your local 
file system. The mirrored directory structure is your workspace or working directory. 
When you retrieve or check out a file from the SCM hierarchy, Checkout places 
the file in your corresponding working directory. For example, if your home 
directory is /home/ a rn, then your working directory hierarchy is probably 
underneath /home/arn/Work. 

/Home 

/Arn 

/Work 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION TALIGENT INTERNAL TOOLS 



ION PRELIMINARY 



INDEX 

& (background command), 12 
~ (home directory), 4 

A 
AIX, i 

logging out, XII, 4 
AIX reference layer 

See layer 
analysis tools, 99 
applications 

B 

background execution, 12 
building, 43, 68 
running, 12, 51 

background execution, 12 
Basic Acceptance Tests 

See BATs, XIX 

BATs, XIX 

binaries, 41 
build 

clean, 52 
definition, 41 
Emacs, using, 162 
environment variables, 46 
examples, 48 
generating, 66 
global targets and rules, 45 
installing Layer, 5 
installing Native, 7 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

log listing, 50 
mistake, one target, 44 
phases of, 42 
process, 42 
system build, 57 
terminology, 41 

build tools, 59-7 5 
building projects, 41-57 

c 
cd, shortcuts, 159 
cdpath (environmentvariable), 159 
changing directories, shortcuts, 159 
Checkin, 19 
checking in 

files, 9, 19 
files with Emacs, i 66 
newfiles, 9 

checking in and out, 8-11 
checking out 

files with Emacs, i 66 
latest version, 38 
latest versions, 39 

Checkout, 22 
class 

description files, storage location, l l 

opening editor to definition, i 66 
client files, 41 
CompareVersions, 24 

TALIGENT TOOLS FOR AIX 



176 INDEX 

comparing files, 24 
between workspace and RCS, 33 
checking out latest, 38 

E 
.e 

See export file compiler 
error, goto with Emacs, 163 
options, 48 

Emacs, 162-166 

warning, goto with Emacs, 163 
copying files, 7 4 
cp 

See Smart Copy 

cpg.el, 166 
CreateMake 

definition, 60 
syntax, 77-97 

.cshrc 
directory shortcuts, 159 

.cshrc (startup script), 3 

D 
.d files, storage location, 11 
debugger 

See xcdb 

debugging, getting matching source file, 34 
diff, called by SCMDi ff, 33 
difference between files, 24 
directory 

- (home directory), 4 
changing to, shortcuts, 159 
creating to match project, 32 
$home, 4 

home, 4 
name, normalized, 37 
source tree, mal<ing your copy, 5 
working, creating, 4 

TALIGENT TOOLS FORAIX 

buffer switching, 164 
building subsystems, 162 
checking in files, I 66 
checking out files, i 66 
class definition, opening to, i 66 
*compilation* buffer, 162 
compiler error in file, goto, 163 
Emerge macros, 167 
function key summary, i 68 
goto line, 164 
layer, starting and stopping, 164 
line number, report current, 164 
macro recording, 165 
member function definition, opening to, 166 
navigation keys, i 66 
open selected file, 165 
opening .PinkMake files, 165 
replace, 165 
search, 165 
search for patterns, 163 
shell, 162 

Emerge, 167 
environment variables 

build, 46 
setting, 46-48 

error 
"Undefined symbol", 62 

error message 
"Environment variable must be set!", 5 

error message, "names file could not be checked out" i 8 
executables ' 

building, 68 
definition, 41 

executing applications, 51 
export file 

definition, 41 
generating, 65 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



F 
file 

attributes, setting and getting, 31 
checking in, 19 
checking out latest version, 38 
comparing against another file, 24 
comparing against project, 24 
comparing against RCS, 33 
copying, 74 
filename, normalized, 37 
locks, breaking, 31 
modifiable, reporting, 26 

opening with Emacs, 16 5 
revision history, 36 
TAGS, 166 

unlocking, 2 3 
version, latest trunk in workspace, 26 

version, listing, 26 

filenames, normalized, 3 7 
Fi ndSymbol s, 61 

G 
generating 

H 
.h 

builds, 66 
executables, 68 
export files, 65 
libraries, 69 

See header file 
$Header:$, 9 
header file, 41 
heap corruption, 104 
heap tools, 99 
hierarchy, workspace, 173 
history, revision, 36 
$home, 4 
home directory 

-, 4 
$home, 4 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

include-file tags (Emacs), 166 
InstallDefaults, 3 
installing builds, 5, 7 
Interimlnstall, 64 
I PC Purge, 65 

See also mop 

K 
kill, 14 

L 
Latest, 26 
latest files, checking out, 39 
layer, 12 

cleaning up after, 12 

Emacs, starting and stopping with, 164 
restarting, 12 

starting, 12 

stopping, 12 

libraries 
building from smaller libraries, 44 
generating, 69 
linking to export files, 65 

links, symbolic, 4 
ListVersions, 26 
lock 

breaking, 31 
unlocking, 23, 31 

logging out of AIX, xn, 4 
.login (startup script), 3 

TALIGENT TOOLS FOR AIX 

INDEX 177 



178 INDEX 

M N 
macro recording with Emacs, 165 
make 

receiving options from Ma kei t, 45 
See also Makeit, 44 

.Make, missing builds new makefile, 45 
MakeC++Sharedlib, 69 
MakeExportList, 65 
makefile, 43-44 

description 
check in to RCS, 43 
naming convention, 43 
standard makefile, translating to, 43 
syntax, 43 
target types, 43 

standard makefile, creating, 43 
syntax, 43 
targets, 43 
when to build, 45 

Makeit, 44-45 
definition, 66 
log listing, 50 
makefiles, when to build, 45 
passing options to make, 45 

MakeSharedApp, 68 
Ma keSh red Lib, 69 

MakeSOL, 69 
member function 

description files, storage location, 11 

opening editor to definition, i 66 
MHeapDiscipliner, 110 

mop, 70 
mro, 23 
.mwmrc (startup script), 3 

name, assigning symbolic, 28 
names (symbolic names file), 18 

NameVersions 

definition, 28 
modes of operation, 29 

native 
program stopping, 14 
programs, running, 13 

Nativeinit, 6 
Nativeinstall, 70 
NativeRoot, 31 

newfiles, g 
NewRootCommand, 48 

0 
options 

compiler, 48 

TALIGENT TOOLS FOR AIX 

overridding with variables, 4 7 

p 
pathname 

file in working directory, 37 
normalized form, 3 7 
working directory, returning, 37 

PBI, 32 
.PinkMake 

newer than *.Make, 45 
opening with Emacs, 165 

.profile (startup script), 3 
programs 

background execution, 1 2 

building, 68 
running, 12 

project 
building, 44 
building subprojects, 44 
creating new, 21 

definition, 171 
project hierarchy, 171 

See also project 

TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

I'" 

PRELIMINARY 



R 
reference layer 

See layer 
replace with Emacs, i65 
resources, purging, 65 
$Revision:$, g, 36 

from SCMinsertHeader, 36 
revision history, 36 
rl og 

See SCMLog 
rm, called by SyncSources, 38 
rp, 71 
RunDocument, 72 
running applications, 51 
runpi nk, 14, 73 

s 
SCCS tag lines, removing, 36 
SCM 

definition, 1 71 
terms and definitions, 171 
tools, 17-39 

SCMAdmin, 31 
SCMCreateDirectories, 32 
SCMDiff, 33 
SCMFetch, 34 
SCMinsertHeader, 36 
SCMLog, 36 
SCMNormalize, 37 
SCMProjectFile, 37 
ScreamPlus, 70 
scripts, 3 

InstallDefaults, 3 
Nativeinit, 6 
startups, downloading, 3, 6 

search with Emacs, 165 
Set Root 

definition, 38 
script location, 48 

PRELIMINARY TALIGENT CONFIDENTIAL: REGISTERED INFORMATION 

shared libraries 
building, 43 
definition, 41 
generating, 69 
linking to export files, 6 5 

SharedLibCache, 73 
slcache 

See Sha red Li bCache 
Slibclean, 74 
Sma rtCopy, 7 4 
source code 

location, 1 71 
tree, making your copy, 5 

source code maintenance 
SeeSCM 

SSTs, XIX 

Sta rt Pink, 75 
startup scripts, 3, 6 
Stop Pink, 75 
subproject, building, 44 
Subsytem Tests 

See SSTs, XIX 

symbolic links, 4 
symbolic names 

assigning, 28 
description of, 18 

SyncSources, 38 
system build, 57 
system tests 

tests, system, XIX 

System Tests Applications, XIX 

TALIGENT TOOLS FOR AIX 

INDEX 179 



180 INDEX 

T W 
TAbstractHeapBlock, 110 

TAddrcssPeeker, 108 

tags (Emacs) , 1 66 
$TaligentRoot 

normalized pathname requirement, 37 
setting, 5 

TaligentRoot, 171 
.TaligentSCM (subdirectory), 18 

Hali gentSCMRoot, 171 
TaligentSCMRoot, 171 
TBlockEvent, 107 
TBlockEventHandler, 108 

TCallChain, 113 
terminology, SCM terms and definitions, 1 71 
THeapAnomaly, 112 

THeapBlock, 109 

THeapMirror, 110 

THeapMirrorException, I 1 2 

tips and techniques, 159 
TLocalHeapAnalyzer, 102, 107 
TLocalHeapMonitor, 101, 106 

u 
Universal .Make, 45 
Universal .Make.Intel, 45 
unlock, 23 

v 
version 

file, latest trunk in workspace, 26 
listing a file's, 26 

working directory, creating, 4 
workspace 

definition, 1 71 
hierarchy, 173 

x 
xcdb (debugger), 160 
xdb, 160 
.Xdefaults. (startup script), 3 
.xinitrc (startup script), 3 
xLC, wrapper for, 68 

TALIGENT TOOLS FOR AIX TALIGENT CONFIDENTIAL: REGISTERED INFORMATION PRELIMINARY 



U94208-01A 


