
=- ~hli ~ ~i gent.
For Win dow S ™

and OS/2 ®

Developers

THE POWER OF

FRAMEWORKS

CD-ROM

includes

frameworks

for use

wi th

Windows and

OS/2

THE POWER OF FRAMEWORKS

FOR WINDOWS ™ AND OS/2 ® DEVELOPERS

TALIGENT
PRE S S

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid Sanjuan Paris Seoul Milan Mexico City Taipei

Library of Congress Cataioging-in-Publication Data

The Power of frameworks: for Windows and OS/2 developers.
p. cm.

Includes index.
ISBN 0-201-48348-3
1. Object-oriented programming (Computer science) 2. Microsoft

Windows (Computer file) 3. OS/2 (Computer file) 4. Computer
software-Development. 1. Taligent, Inc.
QA76.64.P69 1995
005.26-dc20 95-38031

CIP

Taligent, the Taligent logo, and People, Places, and Things are registered trademarks and
CommonPoint, the CommonPoint logo, cpConstructor, cpProfessional, and Task Centered Computing
are trademarks ofTaligent, Inc. All other trademarks belong to their respective owners.

This manual and the software described in it are copyrighted. Under the copyright laws, this manual or
the software may not be copied, in whole or part, without the prior written consent of Taligent.

The product described in this manual may be protected by one or more U.S. and International Patents.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information
or programs contained herein.

Copyright © 1995 by Taligent, Inc. 10201 N. De Anza Blvd., Cupertino, California 95014-2233 U.S.A.
All rights reserved.

No part ofthis publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America. Published simultaneously
in Canada.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sponsoring Editor: Martha Steffen
Cover and text design: Taligent Technical Communications Group, Gary Ashcavai

ISBN: 0-20l-48348-3

Set in lO-point New Baskerville

1 2 3 4 5 6 7 8 9 -CRS-99 98 97 96 95

First printing, September 1995

Addison-Wesley books are available for bulk purcli~es by corporations, institutions, and other
organizations. For more information pleaset~ntact the Corporate, Government and Special Sales
D~partment at (800) 238-9682.

CONTENTS

Preface ... XI

What you should know before you start ... XII

How to read th.e book .. XII

Acknowledg~ents .. XIII

Part 1 Introducing frameworks ; ... 1

Chapter 1
A first look at frameworks ... 3
Limits to object-oriented programming and design ... 4

Issues for the developer ... 4
Delivering developer productivity ... 7

What are frameworks? .. 8
Capturing domain expertise ... 9
Creating applications with. frameworks ... 10

Finding frameworks in th.e real world ... 16
What advantages do frameworks provide? ... 17

THE POWER OF FRAMEWORKS

II

Chapter 2
How frameworks work .. 21

Shifting to dynamic behavior ... 22

Evolution of the concept ... 22

Examining flow of control .. 24
Shifting control flow: not an absolute .. 27

Analyzing a simple application .. 27
Functional description .. 27
Writing pseudocode .. 29
Factoring .. 30

Expanding on the simple application ... 31
Implementing more complex functionality .. 31
Creating pseudocode .. 32

How frameworks call ensemble code .. 33
Delivering source code frameworks ... 33
Binary frameworks ... 35
Using language mechanisms .. 36
Composition- and inheritance-focused APIs ... 41
Where ensemble code resides .. 43

Working with framework code .. 44

Chapter 3
Developing frameworks ... 47
What makes a successful framework designer? ... 48
Analyzing your problem domain ... 49
Designing your framework ... 50

Identifying primary abstractions ... 50
Designing your client-framework interactions .. 52
Refining your framework .. 54

THE POWER OF FRAMEWORKS

III

Part 2 Applying frameworks .. : 59

Chapter 4
Applying frameworks to a real-world programming problem 61
A brief user interface specification ... 62
Application design issues ... 63

Converting numbers to text ... 63
Localizing numbers .. 64
Formatting numbers within a spreadsheet .. 65

Development platform issues .. 66
Windows development platform .. 66
OS/2 development platform .. 66

Where to go from here .. 67

Applying frameworks on Microsoft Windows .. 69

Chapter 5
Creating the application for Windows : .. 71
Designing the Windows application layer .. 71

Initializing the application ... 71
Window message dispatcher ... 72
Other functions ... 72

Designing the spreadsheet classes .. 72
User interface objects ... 72
Number formatting objects .. 72
NumberGrid class design ... 74
NumberCel1 class design .. 76
FormattableNumber class design ... 78
NumberFormat class design ... 79

Implementing the Windows interface .. 80
Implementing WinMain ... 80
Implementing WndProc ... 81
Implementing WndCommand ... 85
Implementing ProcessFocusChange .. 87

Implementing the spreadsheet classes ... 90
Implementing NumberGrid ... 90
Implementing NumberCel1 .. 9 2

Implementing NumberFormat .. 96
Implementing FormattableNumber .. 96

Putting the application together ... 97

FOR WINDOWS AND OS/2 DEVELOPERS

IV

Chapter 6
Designing a number formatting framework for Windows 99
Designing the framework ... 100

Designing TNumberFormatter ... 102
Designing TFormattableNumber ... 103
Designing TFloatingPointNumberFormatter .. 105
Designing TNumberFormatLocale .. 108
Implementing TNumberFormatter .. 109
Implementing TFormattableNumber .. 112
Implementing TFloatingPointNumberFormatter 113
Implementing TNumberFormatLocale ... 118

Updating the spreadsheet data objects ... 122
Updating NumberCel1 .. 122

Framework benefits .. 128

Chapter 7
Extending the framework on Windows .. 131
Designing a rational number formatter class ... 131

Design ofTRationalNumberFormatter .. 132
TRationalNumber helper class ... 134

Implementing the framework subclasses .. 135
Implementing TRationalNumberFormatter ... 135
Implementing TRationalNumber .. 137

Updating the application ... 140
Updating NumberCell's SetFormat function .. 140
Updating the Format Cell dialog box .. 141

Using extensibility to deliver features faster ... 142

Applying frameworks on OS/2 ... 145

Chapter 8
Creating the application for OS/2 ... 147
Desi~i?g.~e Presenta~on.Manager application layer 148

Inluahzlng the appllcauon .. 148
Presentation Manager message dispatcher .. 148
Other functions ... 148

Designing the spreadsheet classes ... 148
User interface objects .. 148
Number formatting objects .. 149
NumberGrid class design .. 150
NumberCel1 class design .. 152
FormattableNumber class design ... 154
NumberFormat class design ... 155

THE POWER OF FRAMEWORKS

v

Implementing the Presentation Manager interface 156
Implementing main .. 156
Implementing WindowSAIWndProc ... 160
Handling cell formatting .. 164
Changing input focus ... 168

Implementing the spreadsheet classes ... 169
Implementing NumberGrid ... 169
Implementing NumberCel1 .. 171

Implementing ProcessFocusChange .. 1 74
Handling format errors .. 177
Updating the NumberCel1 ... 178
Implementing FormattableNumber .. 179

Putting the application together ... 181

Chapter 9
Designing a number formatting framework for OS/2 183
Designing the framework .. 184

Designing TNumberFormatter .. 186
Designing TFormattableNumber ... 187
Designing TFloatingPointNumberFormatter ... 189
Designing TNumberFormatLocale .. 192
Implementing TNumberFormatter ... 193
Implementing TFormattableNumber .. 196
Implementing TFloatingPointNumberFormatter 197
Implementing TNumberFormatLocale ... 200

Updating the spreadsheet data objects .. 205
Updating NumberCel1 .. 205

Framework benefits .. 211

Chapter 10
Extending the framework for OS/2 ... 213
Designing a rational number formatter class ... 213

Design ofTRationalNumberFormatter ... 214
TRationalNumber helper class .. 216

Implementing the framework subclasses ... 217
Implementing TRationalNumberFormatter ... 217
Implementing TRationalNumber .. 219

Updating the application .. 222
Updating NumberCell's SetFormat function .. 222
Updating the Format Cell dialog box .. 223

Using extensibility to deliver features faster .. 225

FOR WINDOWS AND OS/2 DEVELOPERS

VI

Part 3 Leveraging frameworks ... 227

Chapter 11
Maximizing your framework benefits .. 229
When to develop, when to use frameworks? ... 229
Creating your own frameworks .. 230

Explaining your frameworks ... 230
Following common coding standards .. 231
Managing change .. 231
Managing dependencies ... 232
Publishing your framework ... 233

Reusing existing frameworks ... 235
Learning overhead .. 235
Loss of flow of control ... 235
Coding overhead ~ .. 236
Performance issues .. 238

Accruing framework benefits over time .. 238

Chapter 12
Introducing the CommonPoint application system 241
Key benefits of the CommonPoint application system 242

Providing services .. 242
System extensibility .. 242
Portability ... 243
A new user interface paradigm ... 243

A taxonomy of the CommonPoint appUcation system 244

Chapter 13
Creating an application using CommonPoint frameworks 251
Number formatting revisited ... 252

TFormattable ... 253
TFormatter ... 253
TFormatResult ... 253
Formatting numbers with the Text Scanning and ,

Formatting Framework ... 254
Locales .. 255

Designing the application .. 258
TSpreadsheetModel .. 259
TCel1 ... 260
TSpreadsheetPresenter ... 261
TSpreadsheetView .. 262

THE POWER OF FRAMEWORKS

VII

Implementing TSpreadsheetModel .. 263
TModel boilerplate ... 263
Constructors and destructor .. 263
Streaming operators ... 265
CreateSelection ... 266
Cell data accessors ... 267

Implementing TCel1 .. 268
Constructors and destructor .. ; 268
Streaming operators ... 269
Number formatter accessors .. 269
Value accessors .. 270

Implementing TSpreadsheetPresenter .. 271
Constructors and destructor .. 271
HandleCreateMainView ... 272
Menu creation and maintenance ... 272
HandleMenuAction .. 274
HandleViewAction .. 276
Creating number formatters .. 278

Implementing TSpreadsheetView .. 279
CreateControlList ... 280
DrawContents .. 280

Summing up the application ... 281

Chapter 14
The power of frameworks ... 283
Frameworks today .. 283
The future of frameworks .. ; 284

Frameworks as fundamental building blocks .. 284
Application systems gain acceptance and maturity 284
Frameworks as products ... 284
Improving design methodologies .. 285
Improving design and development tools ... 285
Frameworks and component software ... 285

The promise of frameworks ... 286

FOR WINDOWS AND OS/2 DEVELOPERS

VIn

Appendix A
Reading notation diagrams .. 289

Appendix B
Using the CD-ROM .. 293
Using the interactive presentation .. 293

Starting the presentation using Microsoft Windows 293
Starting the presentation using IBM OS/2 .. 294
Using the presentation (Windows or OS/2) ... 294

Running the sample applications .. 296
Microsoft Windows .. 296
IBM OS/2 ... 297

Using the spreadsheet source code ... 298
Microsoft Windows .. 298
IBM OS/2 ... 299

References .. 301

Recommended materials for further reading .. 305
Introduction to object technology .. 306
Object-oriented design and analysis .. 306
Learning C++ .. 307
Learning more about Taligent .. 307

Glossary .. : 309

Subject Index ... ' 3 1 5

Code Index .. 325

THE POWER OF FRAMEWORKS

IX

FOR WINDOWS AND OS/2 DEVELOPERS

x

THE POWER OF FRAMEWORKS

PREFACE

As software systems become more and more complex, software developers have
struggled with the task of managing the development process. Many of the
advances in the science of software engineering have been motivated by this
struggle. Object-oriented programming was a natural progression from the
structured design movement and has gained widespread acceptance in industry
and academia. Object-oriented technology has taken a long time to mature-its
roots go back more than thirty years.

As experience with object-oriented technology has grown, it has become clear
that objects alone are not in and of themselves sufficient to manage the
complexities of today's software. Frameworks were originally developed to
facilitate the creation of user-friendly applications for modern GUI-based systems
such as the Mac™OS, OS/2®, and Microsoft Windows. Application frameworks
provide developers with a basic application structure and flow of control,
reducing complexity and providing for design reuse. Application frameworks
also save developers from tasks such as having to create large amounts of
infrastructure for event handling, memory management, file input and output:
the basic structure of the application framework takes care of these issues for the
developer. Freeing developers from these tasks allows them to concentrate on
providing features that add value for the end user.

Application frameworks have become increasingly popular over the last few
years. Virtually every operating system available today has at least one application
framework available for it. Despite their popularity, framework design techniques
are poorly understood, with few articles or books published that cover the finer
points of framework design.

Further complicating matters, many developers think that frameworks are
suitable only for creating GUI-based applications. This is a common
misunderstanding because virtually all frameworks available today are
application frameworks. In fact, developers can use frameworks to solve virtually
any design problem-if ~hey understand exactly what a framework is and how to
use it.

FOR WINDOWS AND OS/2 DEVELOPERS

XI

XII PREFACE

WHAT YOU SHOULD KNOW BEFORE YOU START

This book is intended to address these issues. Mter reading this book, you
should know what a framework is, how to design frameworks, and how to use
existing frameworks.

WHAT YOU SHOULD KNOW BEFORE YOU START

Before you read this book, you should be familiar with the basic principles of
object-oriented design and programming. You should also be able to read and
understand c++ source code, but being able to program in C++ yourself is not
absolutely necessary. If you want to learn more. about object-oriented technology
and/ or C++, books and articles are listed in "Recommended materials for further
reading" on page 306.

~ NOTE Although C++ is used throughout this book in programming
examples, the principles are equally applicable to other object-oriented
languages, and even, to a lesser extent, to non-object-oriented languages.

How TO READ THE BOOK

The book is divided into three major parts:

r:J Part 1 provides an overview of object-oriented technology and explains the
fundamentals of frameworks and the principles of framework design.

El Part 2 shows the step-by-step development of a framework-based application,
starting with a simple object-oriented application, then developing a simple
framework and extending it to add support for a new end-user feature.

f3 Part 3 summarizes the framework design process and shows how the
CommonPoint application system makes using and developing
frameworks easier.

The book concludes with two appendixes: Appendix A describes the class
diagram notation used throughout the book; Appendix B describes how to use
the companion CD-ROM.

THE POWER OF FRAMEWORKS

PREFACE XIII

ACKNOWLEDGMENTS

ACKNOWLEDGMENTS

Creating this book/CD required a lot more work than I thought possible, and I
gained a new appreciation for the writing profession while working on it. Many
people contributed their time and effort to make this book happen, and I'm
indebted to them all.

Much credit is due the writers who worked with me on this book. I'm especially
grateful to Kate Payne for her effort on Part I, to Jim Showalter for his
contributions to the early drafts, and to the folks at IBM who provided OS/2
code and consultation.

I'd also like to thank the editors who took the rough edges off the prose, the
reviewers who read and commented on the book's many drafts, and the
production folks who transformed our drafts into the book you see before you.
Special thanks to Odile Sullivan-Tarazi for her efforts shepherding the project
through the development process.

FOR WINDOWS AND OS/2 DEVELOPERS

Andrew Shebanow

Taligent Technical Communications

Cupertino, California

THE POWER OF FRAMEWORKS

PART 1

INTRODUCING .

FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

2

THE POWER OF FRAMEWORKS

CHAPTER 1

A FIRST LOOK AT

FRAMEWORKS

There seems little doubt that object-oriented programming and design are a
genuine advance in software development technology.

Every year brings more growth in the use of object-oriented approaches in
programming. The industry is adopting object-oriented technology even for
mission-critical applications. There are fewer "What is an object?" questions and
more queries such as "How can my organization migrate to object-oriented
programming?" Allover the software landscape class libraries are appearing,
even in areas once thought to be the exclusive domain of procedural techniques.
Interest in C++ continues to grow.

Tools for object-oriented programming are maturing, and tools for full life-cycle
object-oriented development are making their way out of the lab and into the
hands of professional software developers. Fortune 500 companies increasingly
report success stories about using object-oriented technology. In some cases,
reuse metrics have been achieved far exceeding those for procedural
programming. The books and articles included in "Recommended materials for
further reading" on page 306 can give you more information about advances and
successes in object-oriented technologies.

Object-oriented technology is clearly a substantial addition to the developer's
arsenal, just as procedural programming, structured analysis, and high-level
languages (initially all considered risky, unproven technologies) were major
leaps forward in their day.

FOR WINDOWS AND OS/2 DEVELOPERS

3

4 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

LIMITS TO OBJECT-ORIENTED PROGRAMMING AND DESIGN

LIMITS TO OBJECT-ORIENTED PROGRAMMING

AND DESIGN

Issues for the
developer

Against the backdrop of expanding industry acceptance of object-oriented
programming and design is some well-founded criticism.

The complaint one usually hears goes something like this: "Object-oriented
approaches to software development truly do make programs more
understandable, better abstracted, robustly encapsulated, and reusable. We've
even seen respectable gains in developer productivity. But where are the major
productivity improvements that were promised?"

This question has some merit. Object-oriented techniques do not, in and of
themselves, eliminate the fundamental cause of low developer productivity,
which is that developers have to design and implement too much code. Using the
techniques of object-oriented technology alone-objects, classes, and class
libraries-does not guarantee reuse of design and code. You need specific
strategies for using these design and programming techniques to reduce the
workload and improve productivity.

Merely changing from procedural to object-oriented techniques does not
significantly reduce the amount of design or the volume of code that you must
write. These techniques do not automatically capture design solutions for future
applications. Class libraries provide fine-grained functionality in the form of
classes and objects, but you still have to put the pieces together to provide the
overall infrastructure of a program. You have to understand how large class
libraries, the origin of your classes, interrelate so that you can create the code
that controls their interaction.

With or without objects, as the developer you are responsible for providing the
behavior and flow of control of your program. A system library is basically passive:
it doesn't do anything unless you specify how to make it happen. You control the
interactions among all the objects in the program, including defining which
functions to call, when, and for which objects.

At times, it seems that the software industry has traded the traditional procedural
programming model for the object-oriented programming model.

In programming, concerns go beyond simply the volume of code to design and
write for each application. How much time and effort should you spen.d on
program maintenance and evolution? Can you build groups of applications that
work together and are consistent? How many times have you solved the same
problem without capturing the solution in a reusable design? All these factors
add to the issues inherent in software development.

THE POWER OF FRAMEWORKS

Application code Main

. t/'
Function 1 (" --

tJ ·<\'4 :V·· ~ ...
Function 1.1 J Function 1.2

Operating
system

-- -

CHAPTER 1 A FIRST LOOK AT }<'RAMEWORKS 5
LIMITS TO OlljECT-ORIENTED PROGRAMMING AND DESIGN

Function 2 J

• System call

PROCEDURAL PROGRAM STRUCTURE FOR A TRADITIONAL OPERATING SYSTEM

Application code

Operating
system

Main

• System call

OBJECT-ORIENTED-BASED PROGRAM STRUCTURE FOR A TRADITIONAL OPERATING SYSTEM

FOR WINDOWS AND OS/2 DEVELOPERS

6 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

LIMITS TO OBJECT-ORIENTED PROGRAMMING AND DESIGN

Limits to productivity When each developer is responsible for program infrastructure using a class
library-the repository of classes and objects-some negative effects influence
overall productivity. As suggested by Cotter and Po tel (Cotter with Potel1995),
working with large class libraries:

fJ Steepens the learning curve. You must learn the relationships among classes to use
them-nothing inherent in a class library expresses or enforces proper use
of its classes. Large class libraries require you to learn about hundreds of
classes and their relationships before you can use them effectively to modify
their default behavior or create new functionality. Documentation and
design guidance help you determine what was intended by the class library
developers-such as how and when functions call other functions or from
which classes you can derive new classes. With a large class library, this creates
a steep learning curve.

r:l Imposes considerable overhead on the developer. If you create your own class library, you
or your team of developers typically must assume responsibility for a large
infrastructure that you must design, implement, test, document, support,
maintain, and extend.

r:1 Misallocates expertise. You might be forced to write and maintain large amounts
of code that have little or nothing to do with the actual problem the
application is intended to address. You cannot focus your efforts on your
particular area of expertise. Instead, because you are forced to design and
implement code for problem domains in which you are not an expert, you
are more likely to make mistakes.

What if you want to write a spell checker and, in the process, need to provide
code for error handling, help, data storage, and other utilities? This
overhead slows down the development process, reduces productivity, and
creates a barrier for the independent developer.

£.! limits reuse and interoperability. Class libraries promote code reuse; each developer
can use the same classes to create an application. But, because the class
library leaves infrastructure to the clients, developers can use the same pieces
in different combinations. Two different developers can use the same set of
class libraries to write two programs that do exactly the same thing, but
whose structures vary. Because they don't share similar designs, two
applications that perform a similar task (such as word processing) have little
or no high-level code in common, cannot exchange data without converting
it to some lowest-common-denominator format (for instance, ASCII), and
are likely to have different commands, menus, and so on. This limits the
reuse and interoperability of programs created for related tasks, makes the
transfer of domain expertise from application to application difficult, and
adds to maintenance problems.

THE POWER OF FRAMEWORKS

Enter frameworks

Delivering developer
productivity

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 7
LIMITS TO OBJECT-ORIENTED PROGRAMMING AND DESIGN

What you really want is a way to reduce the amount of design you need to create
and code you need to write in the first place, and to increase the reusability of the
design and the interoperability of the code that you've written. Only this
approach fundamentally addresses the problem of low developer productivity.

One solution to this problem is called a framework. Frameworks carry the
object-oriented paradigm further than do class libraries and, in so doing, deliver
on the promise of greatly improved developer productivity.

Whether you are developing commercial applications as an independent
software vendor or custom applications in a corporate setting, building and using
frameworks increases productivity. Frameworks and systems that are based on
frameworks, such as the Taligent® CommonPoint™ application system (also
called "CommonPoint"), help developers achieve improved design and code
reuse, including reduced development requirements, reduced maintenance, and
higher reliability.

Improving developer productivity is a major challenge for the entire
. software industry. While current approaches have advanced to provide the

productivity and development leverage needed to solve today's complex
computing problems, the next generation of software should fully exploit
object-oriented technology.

The issue is one of properly implementing object-oriented technology, rather
than just switching to objects. The success of object-oriented approaches hinges
on an infrastructure (such as frameworks) that enables developers:

t3 To change their programming mindset to design general solutions

Il To design software that is more reusable and maintainable

Il To create innovative software that addresses business problems

FOR WINDOWS AND OS/2 DEVELOPERS

8 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHAT ARE FRAMEWORKS?

WHAT ARE FRAMEWORKS?

A framework embodies a generic design, comprised of a set of cooperating
classes, which can be adapted to a variety of specific problems within a given
domain (Cotter with Potel 1995).

Frameworks are aggregates of classes in the same way that classes are aggregates
of functions and data-but frameworks are more than just collections of
classes. They are architectural; that is, they provide structure. This reduces the
amount of design you must create and code you must write, which, in turn,
improves productivity.

The growth of framework technology

The first object-oriented frameworks were
designed to solve mathematical problems in
Simula and Smalltalk. The spread of
computing hardware in the 1980s, and the
emerging interactive paradigm of Graphical
User Interface (GUI) systems, made
windows and events (not mathematical
simulations) the real domains where
programmers needed help writing their
software.

The most popular GUls included those for
the Macintosh®, the X Window System, and
Microsoft Windows. Each of these systems
presented application developers with
complex procedural APls, and a multitude of
data structures for dealing with low-level
issues such as file input/output, memory
management, and printing.

The difficulty of building GUI applications on
these systems demanded a solution, and a
different kind of framework started to gain
popularity with frustrated programmers.
MacApp® and InterViews were two of these
new GUI frameworks, and they shared the
following characteristics: they organized
application initialization chores; they
provided useful, generic abstractions for
drawing views and windows; and they
offered an event-handling mechanism
based on the ModelNiew/Controller (MVC)
concepts from Smalltalk. Most importantly,

writing an application with any of these
frameworks was much easier, and resulted
in a more stable code base, than writing
directly in the basic GUI APls.

The developers of the first application
frameworks saw that typical applications
shared common patterns, and modified their
frameworks to address more areas of the
clients program. MacApp, for example,
provided a powerful facility that made it
much easier to represent application
documents and their commands. This
started the trend toward comprehensive
application frameworks.

Today, application frameworks vary in their
scope, type of problem solved, method of
implementation, and level of sophistication.
Some frameworks are academic research
projects; some are commercial-quality
packages that provide solutions in the
software industry. Frameworks are available
for most computers and operating systems.
The Macintosh has MacApp, the Think Class
Library (TCl), PowerPlant, and the
OpenDoc™ Developer Framework. UNIX
systems have ET ++. Microsoft Windows has
the Borland Object Windows Library (OWL)
and the Microsoft Foundation Classes
(MFC). Third-party vendors sell application
frameworks that run on one or more of these
platforms.

Because of this broad functionality, you can
use frameworks to address programming
problems as well as to develop GUI
applications. In fact, frameworks are an
appropriate solution wherever a problem
needs to be solved in a generalized,
extensible way. For example, a database
access framework such as Rogue Wave
db++.h or the Taligent Data Access
Framework can make working with an Sal
database much easier.
By applying framework design principles
throughout the entire application system,
Taligent has taken framework technology
beyond what others have done. Because the
same design principles are applied
throughout, the frameworks in the Taligent
system all "speak with one voice": they work
together as a single system smoothly and
efficiently. Fully utilizing object-oriented
architecture, individual frameworks in the
Taligent system employ many sophisticated
new features that don't exist in other
application frameworks. And the coverage is
broader-in addition to frameworks for text
and user interface applications, the Taligent
application system includes frameworks for
system software functions such as
networking, multimedia, and database
access.

THE POWER OF FRAMEWORKS

Capturing domain
expertise

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 9
WHAT ARE FRAMEWORKS?

Frameworks represent partial-to-complete solutions to a particular problem. You
can use a framework exactly as it was created. However, in many cases, you want
to extend or customize the framework for your specific problem.

A framework represents a generic design solution. It is a meta-solution
encompassing a set of possible solutions, rather than anyone solution, within a
particular problem domain. A framework reflects many solutions in the domain
at once, without necessarily solving anyone particular problem.

"A framework abstracts the essential entities, state, and behavior in the problem
domain. It provides key mechanisms, provides the interaction protocols for key
scenarios, and encapsulates and enforces fundamental invariants." (Andert
1994) It has strong "wired-in" connections among its objects. These connections
capture design decisions common to its problem domain.

The following figure illustrates the elements that you combine to create a
framework. The framework encompasses possible problems in the domain to
provide a generic solution. Based on the common parts of those problems, you
provide the specific domain expertise in the form of processes, rules, and policies
for that particular area. Object-oriented techniques are especially useful for
defining frameworks, and you can use your object-oriented design and language
expertise to implement the solution. Adding framework design expertise ties the
solution together in a flexible, usable form.

Framework design I • ••••••••.•.•.•••••••.•.....••..•••.• r·,:~::J expertise
!I' •••••••••••••••••••••••••••••••• -:- ••• : Ill: , ,

Framework
: ; : If: - Programming I

'-"~-"" -' language ex~p",e",rt"i,s,,,e_,,,,,,,"' __ "" ,', ~

All similar problems
within domain

... ·1································ ...) :

Domain expertise

A FRAMEWORK ENCOMPASSES EXPERTISE TO PROVIDE A GENERIC SOLUTION

I

FOR WINDOWS AND OS/2 DEVELOPERS

10 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHAT ARE FRAMEWORKS?

Creating applications
with frameworks

In this manner, a framework embodies the domain expertise of the designer of
the framework-it encompasses the programming expertise necessary to solve a
particular kind of problem.

For example, a financial domain expert can encompass domain expertise
dealing with currency conversion, exchange rates, and securities purchasing for
international markets to create a framework as the basis for multiple specialized
arbitrage applications.

A framework also defines and enforces the responsibilities of a developer who
wants to use the framework, as well as the degrees of freedom available to a
developer who wants to customize the framework. "The framework dictates the
architecture of your application. It will define the overall structure, its
partitioning into classes and objects, the key responsibilities thereof, how the
classes and objects collaborate, and the thread of control." (Gamma et al. 1995)

Working within the constraints imposed by the framework, you tailor the
framework to solve your particular problem. You do this by adding expertise
specific to your problem, in design and in implementation language, to solve
the requirements of the specific framework client. The framework contributes
the domain expertise. This way, you turn the generic solution represented by
the framework into a concrete instance of an application, as shown in the
following figure.

Specific problem
in domain

.. .

Framework usage
expertise

Programming
language expertise

00 expertise

Coding expertise
l _____

AN APPLICATION COMBINES A FRAMEWORK WITH CLIENT EXPERTISE

THE POWER OF FRAMEWORKS

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 11

WHAT ARE FRAMEWORKS?

Although you need to know how to use the framework to solve the problem, you
need not be a domain expert. By using the framework, you reuse the design
captured by the framework. In effect, you inherit the domain expertise and
problem-solving ability of the designer of the framework.

In contrast, as the following figure illustrates, to solve a problem without a
framework, you must be a domain expert (or have access to a domain expert)
and, in addition, you must design and implement a complete solution.

I
!

i

Platform expertise

...... Coding expertise

I
II II II! II! II II II II

~ Application design

............... !II II II

CREATING AN APPLICATION WITHOUT FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

12 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHA T ARE FRAMEWORKS?

Ensembles Developing an application using a framework consists of writing the additional
code that captures the specifics of a particular solution within the framework's
domain, but which is not already addressed in the general solution of the
framework itself. This code is called an ensemble.

An ensemble incorporates the domain knowledge, expertise, rules, and policies
of a particular solution. It is the part of the solution that varies from one problem
to another within the domain, as opposed to the framework, which captures the
invariant parts of a solution for that domain. The ensemble code conforms to the
protocols established by the framework and extends or completes it for the
specific solution (Andert 1994), as shown in the following figure.

ENSEMBLE CODE WORKING WITH A FRAMEWORK MAKES AN APPLICATION

In the simplest form, a framework and an ensemble make up an application as
shown in the preceding figure. The blocks provide the abstract overview; you
implement the ensemble by providing code that communicates with and extends
the various classes in the framework.

Together with its corresponding framework, an ensemble is a complete concrete
implementation of the service provided by the framework-in other words, an
application of that framework. The coding, language, object-oriented, and
framework client expertise form the ensemble; the ensemble and the framework
together form the application (or part of a larger application) that solves the
specific domain problem. The following figure illustrates this relationship.

THE POWER OF FRAMEWORKS

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 13

WHAT ARE FRAMEWORKS?

Application
r"
i 00 expertise

Framework

THE ENSEMBLE ISOLATES PROBLEM-SPECIFIC EXPERTISE

Programming
language expertise

Client expertise

Coding expertise

For example, a user interface framework can embody the way user interfaces
work in a general sense, while at the same time make no statement about how
windows look, how menus are activated, or how the details for a specific interface
are handled. An ensemble for that framework would specify precisely how
windows look, how menus are activated, and so forth.

FOR WINDOWS AND OS/2 DEVELOPERS

14 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHAT ARE FRAMEWORKS?

Multiple frameworks So far, applications and frameworks have been described in terms of a one-to-one
relationship: one application per framework, one framework per application. In
practice, you can implement an application using multiple frameworks. The
following figure demonstrates a situation that calls for multiple frameworks.

~----------------------I
• I : Problem Domain 1
I
I
I

I

• •
• Problem Domain 2 : .
~----------------------.

AN APPLICATION BASED ON MULTIPLE FRAMEWORKS

Application
expertise

The application uses Framework 1 to solve the problem in Domain 1 and
Framework 2 to solve the problem in Domain 2. The added expertise forms the
ensemble, which contains specific solution information for both Frameworks 1
and 2 and expertise to allow them to interact to provide the specific domain
solution. An application might need a user-interface framework together with an
accounting framework to create an end-user home-loan calculator.

In more complex framework structures, frameworks can use other
frameworks, thus layering solutions on different levels to solve different
aspects of the problem.

When you require multiple frameworks for an application, the ensemble for
the application consists of code for each of the frameworks.

THE POWER OF FRAMEWORKS

How to use frameworks

Client and
customization APls

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 15

WHAT ARE FRAMEWORKS?

More so than procedural or class libraries, frameworks are very flexible
programming constructs. You can use frameworks in three different and
complementary ways. These are listed below and appear in Inside Taligent
Technology (Cotter with Potel 1995):

Il Use as is. Use the framework without modifying it, like a specialized class
library. Some frameworks provide sufficient default behavior that you can
use them as they are, without making changes. This use doesn't preclude
more sophisticated use of the framework-it just means that the more
sophisticated uses are optional, rather than required.

u Complete. Add code to the framework to implement specific capabilities. A
framework represents a generic design solution, not anyone solution. A
framework doesn't have to exhibit complete default behavior-it can
bepartially filled in. A framework might not even be able to execute as
delivered-it might be abstract, requiring developer-supplied code to make
it concrete.

u Customize. Replace parts of the framework implementation. This is the most
sophisticated, and radical, way to use a framework. Through customization,
you replace some of the code in the framework to change the behavior of the
framework. You can replace some code or the entire implementation. You
can even implement some or all of the code in hardware (for example, a
graphics accelerator).

In all three of these implementations, the framework maintains the same
interface. Changes that you make to the framework's underlying implementation
don't affect the programs that use the framework for services.

You can compare these methods across the spectrum of the white-box
(customize) and black-box (use-as-is) frameworks (Johnson and Foote 1988) and
the "open-closed principle" (Meyer 1988).

Frameworks are represented by two basic application programming interfaces
(APIs): client and customization.

t:I Client API. Use the client API when you want to use a framework as is or by
completing it. You work with the framework without changing its
fundamental internal operations. The client API manifests the default
behavior of the framework.

t:I Customization API. Use the customization API to change some fundamental
behavior of the framework.

The difference between how you use the client and customization APIs is not
exact. Some of the same classes and member functions from one framework
might belong to both APIs. The distinction is in the degree- to which they are
used and how that impacts the behavior of the framework. Interestingly, for low-

FOR WINDOWS AND OS/2 DEVELOPERS

16 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHAT ARE FRAMEWORKS?

level frameworks often the only client of the framework is a framework in the
next layer up, rather than a developer writing an application. Despite this
"fuzziness," the idea that a framework has these two kinds of APIs is useful for
thinking about and describing the design of a framework.

Finding frameworks
in the real world

Ironically, while frameworks are a new and somewhat unfamiliar concept in the
field of software development, they are actually ubiquitous in everyday life. In
fact, they are so commonplace that it is arguable that frameworks are the way in
which we accomplish almost anything-software is the exception!

Frameworks aren't a radical concept at all-quite the opposite. It is unlikely that
we could manage our lives without frameworks. But software developers have not
yet widely embraced this concept. They often build a single solution to a specific
problem, rather than use a general framework to implement a specific solution
from a group of solutions.

Fortunately, although frameworks have been tardy in making their appearance in
the software industry, they have now begun to do so.

Frameworks in the everyday world

The concept of frameworks in the everyday
world carries over into software design. In a
sense, you can describe much of life as a
framework, and we all work with
fram~works every day without thinking
about it. Each process works a bit differently
each time, allowing flexibility within clearly
defined limits.
Consider these simple examples:

:mu Build·to·suit real estate, where a
company can rent a building shell and
have the interior finished to the
company's specifications.

f,] Pre·cut tailored suits, where the pieces
have been cut out and basted together
so that the tailor can fit the suit to a
Client, and then complete the final
stitching.

ru A board game such as Trivial Pursuit,
where players use the same board,
tokens, dice, and rules, but with
different sets of cards (for example,
sports trivia, '60s trivia).

These frameworks are static and fairly
inflexible. It is difficult to alter their
fundamental structure, and the
relationships among the various entities are
fixed. Much closer to the idea of a software
framewQrk are the more complex and
dynamic conceptual frameworks that we use
to perform a complex yet familiar task.

A wedding represents a complex framework
that you find in the everyday world. A large
set of protocols ("traditions") exists for how
to choreograph a wedding. These protocols
vary with different religions and cultures.
Formal traditional American weddings share

certain customs: brides wear white; the Best
Man manages the rings; flowers are thrown.
Guidelines dictate what ushers wear, where
family members sit, and so forth. The rules
are so complex that you can hire a
consultant to help you deSign your wedding
and various experts to orchestrate parts or
all of the procedure.

And yet, within this structure, no two
weddings are exactly alike. Some differences
are obvious-the bride and groom pair is
unique. Other differences range from the
music they select to the color of the
cummerbunds the male members of the
entourage wear to which church or location
serves as the venue.

And some very wild customizations are
possible: marriages while skydiving, at Star
Trek conventions, and so on.

THE POWER OF FRAMEWORKS

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 17

WHAT ADVANTAGES DO FRAMEWORKS PROVIDE?

WHAT ADVANTAGES DO FRAMEWORKS PROVIDE?

Frameworks return a number of benefits to developers. Some of these benefits
are directly attributable to frameworks supporting considerable reuse of code
(also present, to a lesser extent, when using well-designed class libraries). Other
benefits are unique to frameworks and are advantages that frameworks have over
both procedural and class libraries. Inside Taligent Technology (Cotter with Potel
1995) and several sources in "Recommended materials for further reading" on
page 306 describe the many benefits of frameworks. The following list describes
some of those benefits:

t:J Less code to design and implement. By providing the infrastructure-design,
structure, and code for an application-the framework dramatically
decreases the amount of standard software that you must design, code, test,
and debug. Because the infrastructure of the framework is already in place,
you write code only as required by the framework or to override some default
behavior of the framework that is inappropriate for the application (this is
sometimes called "programming by differences"). Typically, the amount of
code required for an ensemble is a fraction of the code required to create
the same application. This provides a corresponding decrease in the effort,
time, and cost required to implement the functionality, as well as an increase
in quality and a possible decrease in footprint (depending on the
framework's implementation).

Consider, for example, a user interface framework that handles routine tasks:
drawing windows, scroll bars, and menus; tracking the mouse; highlighting
menu items; detecting menu selections. Using the framework, you might
need to specify only the items in the menus. The framework enforces and
encapsulates the user interface policies and processes and promotes reuse
when you customize or extend the interface.

t:J Leverage domain experts' experience. When using a framework, you can focus on the
area where you can add the most value to your code. All you need to
understand is how to use other frameworks to support your domain-specific
application. Just as standard programming interfaces insulate software
routines from system dependencies and standard utilities facilitate
development, frameworks provide standard solutions. This frees developers
who are not experts in a certain area from the complexity of the underlying
details. Frameworks create an environment in which solving domain
problems-not programming problems-is possible.

FOR WINDOWS AND OS/2 DEVELOPERS

18 CHAPTER 1 A FIRST LOOK AT FRAMEWORKS

WHAT ADVANTAGES DO FRAMEWORKS PROVIDE?

c Proliferation of expertise. Good software design in a particular area requires
domain knowledge that you typically acquire only by experience.
Corporate and commercial development organizations as well as systems
integrators have acquired this experience in particular areas, such as
manufacturing, accounting, insurance, or financial instruments.
Frameworks allow organizations to package the common characteristics of
their expertise. This opens business opportunities for organizations to
resell specialized knowledge.

For example, frameworks give systems integration companies with expertise
in vertical markets a distribution mechanism for packaging, reselling, and
deploying their expertise.

1:::1 Enculturation. The more developers use frameworks, the more likely they are to
design and implement generic rather than special solutions. This shift in the
development culture means more frameworks become available so that you
and other developers can reuse them.

E! Improved consistency. Because frameworks embody expertise, you solve the
problems once-when first creating, buying, or leasing the framework-and
you can use the business rules and designs captured in the framework
consistently across all problems in the framework's domain.

Additionally, frameworks enforce the relationships among the objects and
classes in the framework, providing a higher degree of consistency than is
obtained with either procedural or class libraries.

£! Improved integration and interoperability. Frameworks support a high degree of
integration among multiple customizations. Much as individual objects hide
their internal complexity and present a simplified interface for use by other
objects, many different programs can use frameworks at the same time in a
way that allows the programs to share common behavior without interfering
with each other's specialized implementations. This is possible because the
client API of the framework remains unchanged.

When applications-use the same frameworks, they can work together (for
example, cut-copy-paste or drag-and-drop) in more substantial ways. The
result is that applications are better integrated from a user's point of view,
while requiring less work by developers to create compatible applications.

El Reduced maintenance overhead. Because your applications are based on a
framework, generally any change you make to tl?-e framework-fixing a bug
or adding a new feature-automatically updates in the applications. And
because you make the changes in only one place, you minimize the chance
of introducing errors in the code.

Maintenance is far easier, because you amortize maintenance of a framework
over many ensembles. A properly implemented ensemble adds or changes
only the pieces that are unique to the particular ensemble, so you have to
create less new code. More common code means more common
maintenance; less unique code means fewer unique bugs.

THE POWER OF FRAMEWORKS

CHAPTER 1 A FIRST LOOK AT FRAMEWORKS 19

WHAT ADVANTAGES DO FRAMEWORKS PROVIDE?

As you and your clients constantly reuse the framework, you refine the
features and bugs in the code. From this process evolves a very robust
framework. Code you reuse by using a framework has already been tested
and integrated with the rest of the framework (and with other frameworks in
the system). This allows an organization to build from a base that has been
proven to work in the past and minimizes the amount of testing required.
Thus, a new product contains significant amounts of mature code from the
framework, plus a smaller amount of new code in the ensemble, resulting in
higher overall quality.

IJ Orderly program evolution. Frameworks provide a mechanism for reliably
extending functionality. While objects and class libraries provide interfaces
for extending functionality at a fine-grained level, frameworks provide this
flexibility at a higher level. In this manner, you can develop applications by
using the framework as a starting point and writing smaller amounts of code
to modify or extend the framework's behavior. You can add these extensions
without sacrificing compatibility or interoperability because the interfaces
are well defined.

FOR WINDOWS AND OS/2 DEVELOPERS

20

THE POWER OF FRAMEWORKS

CHAPTER 2

How FRAMEWORKS WORK

In most situations, frameworks work by shifting the direction of the flow of
control between an application and the software on which it is based
frameworks call applications, rather than applications calling frameworks. To use
frameworks effectively, you have to change the way you think about the
interaction between the code that you design and write and the code other
developers design and write.

When you use a class or procedural library, you write the main body of the
application and call the code that you want to reuse. When you use a framework,
however, you reuse the main body of the application and write the code that it
calls. Writing an application using frameworks involves dividing responsibilities
among the various pieces of software that the framework calls, rather than
specifying how the different pieces should work together.

By owning the flow of control, a framework defines the infrastructure for the
solution. It establishes which objects call which other objects, and when, and why.
Your objects participate in this flow of control at the points determined by the
framework. A framework has been compared to a puppeteer, pulling the strings;
your code is the puppet. This relationship contrasts directly to what exists with
procedural or class libraries, where your program must provide all the structure
and flow of execution and make calls to system libraries whenever necessary.

FOR WINDOWS AND OS/2 DEVELOPERS

21

22 CHAPTER 2 How FRAMEWORKS WORK

SHIFTING TO DYNAMIC BEHAVIOR

SHIFTING TO DYNAMIC BEHAVIOR

Evolution of
the concept

Developing applications using frameworks requires a shift in location and
behavior of the flow of control. This shift, from sequential to dynamic flow, is
necessary as more applications depend on customers to determine the flow of
tasks. Frameworks provide solutions that allow you to reuse the common control
code and extend user activities for your particular domain.

The idea of turning over the flow of the control to the system has evolved over
years of application development. The following figure shows these stages.

Procedural
programs

Event-loop
programs

EVOLUTION OF APPLICATION PROGRAMMING STRUCTURES

Application
framework

Objects

Framework
programs

El Procedural programming. In this earliest approach, you provide all code for flow of
control. The operating system has libraries with procedures to perform
certain tasks that you can call. You control the flow in a program that
executes sequentially, instruction by instruction, down the page from start to
finish. The system takes action only when your program calls it.

THE POWER OF FRAMEWORKS

CHAPTER 2 How FRAMEWORKS WORK 23

SHIFTING TO DYNAMIC BEHAVIOR

c Event loops. With the introduction of graphical user interfaces (CUI), end
users started to interact ,vith applications in fundamentally different ways.
This called for a different solution to the control problem, because end users
could now decide which actions to perform and select the order of those
actions. A sequential control flow could no longer accommodate the user's
choices.

One solution devised to handle this problem involves the concept of the
event loop. Interacting mth a CUI, the user indicates choices and actions
through input devices-mouse, keyboard, trackball, and so on-which the
event loop senses. The user chooses the order in which events happen. When
the user makes a choice, the event loop calls sections of your application
program that handle the action the user requests.

However, you are still responsible for flow of control mthin the sections of
your program that the event loop calls to respond to user actions. These
sections of code call operating system libraries to carry out user requests. In
addition, parts of the application are not appropriate for an event-loop
approach, and so do not benefit.

c Application frameworks. In an application framework environment, the framework
code takes care of almost all flow of control and calls your code only when
necessary. You need not design and write the control code required by the
event-loop programs or code common to many applications that you want to
write once and reuse.

When you write a framework-based application, you turn over control to the
. user (as mth event-loop programs) and to the original framework
developers. From the combined effort mth the framework developers, you
can create more feature-rich, interoperating applications systems, rather
than individually re-create repetitive solutions for similar problems.

FOR WINDOWS AND OS/2 DEVELOPERS

24 CHAPTER 2 How FRAMEWORKS WORK

SHIFTING TO DYNAMIC BEHAVIOR

Examining flow
of control

Consider the following sample programs as examples of the shift of flow of
control. These samples contrast the procedural and framework approach to flow
of control by showing a debugger stack trace that follows the calls that each
sample makes. The illustrations show the logical arrangement of the modules
with the corresponding series of calls from the stack trace.

The following figure illustrates a traditional procedural-based application, in
which application modules make calls to other application modules and
occasionally to the operating system libraries for services.

Stack trace MySource.C

void HandleReset 0
int main 0 {
void HandleEvent (Event* event) number = 0
void HandleReset 0 Ih.- char* numString = atoi (number) ;

'~m$n;ml,j!j"iDa' ...

l' }

TRADITIONAL PROCEDURAL CODE TRACE

THE POWER OF FRAMEWORKS

CHAPTER 2 How FRAMEWORKS WORK 25

SHIFfiNG TO DYNAMIC BEHAVIOR

The following figure illustrates a simple framework-based application, in which
framework member functions call each other and occasionally call your'
ensemble code when the framework uses your functions. This is the opposite of
the procedural approach to flow of control.

Framework

Ensemble

Stack trace

TEventHandler::HandleEvent
TMenu::HandleMouseDown
TMenultem::MenuSelected

TResetView::HandleReset

MySource.C

boo I TEventHandler::HandleEvent 0 i
bool TMenu::HandleMouseDown ()
bool TMenultem::MenuSelected 0 :
tmml_tijli.~i.I:.~:~=·~ tmm1j;@g~'t·.d

i iP' {

SIMPLE FRAMEWORK CODE STRUCTURE

FOR WINDOWS AND OS/2 DEVELOPERS

. // ...
fValue = 0;
/1 ...

26 CHAPTER 2 How FRAMEWORKS WORK

SHIFTING TO DYNAMIC BEHAVIOR

The following figure illustrates a more complex framework structure, in which
both frameworks use the ensemble code.

Framework A

TEventHandler::HandleEvent
TMenu::HandleMouseDown
TMenultem::MenuSelected

Framework B

Stack trace

boo I TEventHandler::HandleEvent 0
bool TMenu::HandleMouseDown 0
bool TMenultem::MenuSelected

MULTIPLE FRAMEWORK CODE STRUCTURE

MySource.C

II ...
fValue = 0;
II ...

THE POWER OF FRAMEWORKS

Shifting control flow:
not an absolute

CHAPTER 2 How FRAMEWORKS WORK 27

ANALYZING A SIMPLE APPLICATION

The shift in direction of control flow when using a framework is not absolute.
Calls are not made universally in one direction: ensemble code often calls
framework code.

The shifting of control flow is a question of degree, with the goal being to shift as
much of the flow-of-control code into the framework as possible. Ideally, you
design and write only a small fraction of the total flow-of-control code required to
implement the application. A well-designed framework can handle all flow of
control for the generic solution.

All programs exist on a scale somewhere between 0% and 100%
framework-owned control flow. Application frameworks move the average
location of a program on this scale as far as possible in the direction of
100% framework-owned.

ANALYZING A SIMPLE APPLICATION

Functional description

To see these concepts illustrated, let's analyze a very simple example of an
application. This example illustrates the complexity of handling simple tasks with
direct code. It provides a concrete example to show how applications have
progressed from a procedural to a more object-oriented approach, and where
you might find frameworks useful. You are unlikely to build a framework for this
particular application, but it gives you some idea of scope of the problem and the
level of effort involved.

This simple application generates and displays a single number. The
application's window is a fixed size, big enough to display all numbers in the
range covered by the application; it has no scroll bars, does not zoom, and has no
other window controls except for a close box in the upper left corner. The
application has a single menu, the title of which appears at the top of the window.

A user can work through the features of the application using the following steps:

o To start the application, double-click its icon on the desktop.

o Menu

Q.'~~~
Double-click Open

FOR WINDOWS AND OS/2 DEVELOPERS

28 CHAPTER 2 How FRAMEWORKS WORK

ANALYZING A SIMPLE APPLICATION

f) To close the application, click in the application window's close box.

Click --t:~ M e_nu _______ --{

Close

B To reopen the application, double-click its icon on the desktop.

o Menu

q ~~::~"",;\,,'1r.,.;f!~
Double-click Open

Each time the user starts the application, the number it displays is
incremented from the value that it displayed the last time it was started and
closed. Because the application keeps a running count, each time it is
executed it provides a new value that is suitable to use, for example, as a
unique serial number.

B To reset the application counter to 0, select Reset from the menu.

o Menu

Select --+-_-/

The application's menu contains a single entry, Reset, which resets the
counter to 0 if selected.

This is a very simple example, but it serves as a basis for explaining framework
concepts, as shown in the following sections.

THE POWER OF FRAMEWORKS

Writing pseudocode

CHAPTER 2 How FRAMEWORKS WORK 29

ANALYZING A SIMPLE APPLICATION

Suppose you are asked to design and implement this application, and you have
no frameworks available. As a first step, you might write out pseudocode for the
overall flow of control of the system, particularly as it relates to your application.
A portion of the result would look something like this:

Il Track the mouse as it moves over the desktop, watching for
mouse-down events.

Ll When you detect a mouse-down event, check the location of the cursor.
Depending on the location of the cursor and the current state of the system,
take actions such as:

:.J Bringing a window to the foreground (which involves clipping other
windows that are now fully or partially obscured by the window that you
brought to the foreground, and so on).

Il Highlighting an icon on the desktop.

:.J Activating a menu.

c Closing, zooming, or minimizing a window.

:.J If you detect a second mouse-down event very close to the previous
mouse-down, handle this as a double-click.

Check the location of the cursor. Then, depending on the location of the
cursor, take actions, such as launching a document.

g Watch for mouse-up events. If you detect a mouse-up event, check the
location of the cursor. Depending on the location of the cursor and the
current state of the system, take actions, such as selecting a particular menu
item.

From this very high-level (and complex) analysis, you then isolate each individual
activity that pertains to your application and write out its pseudocode.

For example, a portion of the result of this more detailed analysis for the activity
"launch a document" would look something like this:

o Display an application window appropriate for the document on the screen.
(This includes displaying any menus associated with the window.)

EI Find the file or files representing the document on disk.

B Read in the part of the file(s) needed for display.

9 Display the information in the window.

You then write pseudocode for each subactivity you have identified, and each
sub-sub activity, and so on. What you are implementing includes many features of
an operating system, so eventually you can produce hundreds to thousands of
pages of fairly detailed pseudocode. Because this functionality requires so much
support code, you have to describe other services, which can lead to as much as

FOR WINDOWS AND OS/2 DEVELOPERS

30 CHAPTER 2 How FRAMEWORKS WORK

ANALYZING A SIMPLE APPLICATION

Factoring

hundreds of thousands of lines of finished code. Then all you have to do is turn
the pseudocode into real code, compile, and you're done. Within possibly
hundreds of developer years, you get your simple application (with its operating
system support) up and running.

Admittedly, the process just described is artificial. Nobody using today's systems
would actually design and implement a simple application this way, because the
system handles at least some of the routine activities. For example, all modern
systems provide at least some degree of mouse tracking for the developer.
Toolkits and class libraries can handle additional actions. But the issue of reusing
the overall design of the problem solution still remains.

However, before dismissing this example as completely artificial, look at the
activities. On a typical system, are all these activities handled automatically for
developers? Another way to formulate this question is to ask, out of all the code it
would take to implement the functionality required by your simple application,
what is the absolute minimum amount of code that you should have to design and
implement versus the amount of code the system can provide?

The answer, of course, is that you should have to write code only for elements
that are unique to your application (that is, that the system would not know how
to do). Using this criterion to factor the pseudocode into system responsibilities
and your responsibilities, you find that the only things unique to your application
in the pages of pseudocode are:

IJ Details to direct the system to handle the appearance of the user interface

t1 Size of the window

E! Title of the menu

EJ Number of items in the menu

El Title of the item in the menu

r:1 How the document icon appears on the desktop

II What to do when the user selects the item in your menu (and how to do it)

EJ Which data your application manages and manipulates

El How to read your data from and save your data to disk (including
incrementing the count when saving)

IJ How to display your data in your window

THE POWER OF FRAMEWORKS

CHAPTER 2 How FRAMEWORKS WORK 31
EXPANDING ON THE SIMPLE APPLICATION

Your ensemble should contain nothing but these elements. Everything else, from
your standpoint, is system-level detail. The system handles the following activities
(along with many others):

~ Making state transitions when mouse events come into the system

IJ Allocating screen real estate, opening and closing windows, and preserving
foreground/background relationships among the various windows on the
screen (and refreshing newly unhidden areas as they occur)

n Associating the document icon with the correct file(s) representing the
document

IJ Accessing the physical disk

[] Activating menus

If the system provides everything that is not unique to your application, you have
to write only the most minimal amount of code.

EXPANDING ON THE SIMPLE APPLICATION

Implementing more
complex functionality

Programmers familiar with a GUI API (such as MacApp, the X Window System,
or Microsoft Windows) won't find the previous application example particularly
compelling, because these GUI systems handle most, if not all, of the
functionality described in the pseudocode. Taligent wants to make much more
complex, distributed examples equally as simple.

For example, suppose that you want to implement a more complex feature, a
robust multilevel undo/redo capability in a text editor that you're developing.
With this capability, your end users can undo their most recent change, and the
one before that, and the one before that, and so forth, all the way back to when
they first opened the file for this editing session. Similarly, users can then redo
forward in time, to return to the most recent change to the document.

Think about this problem for a moment. What is required to make this undo/
redo feature work well enough that users would trust it with their data? Without
going to the same level of detail as in the previous example, can you write a
one-sentence pseudocode description for each of the more complex aspects of
this problem?

FOR WINDOWS AND OS/2 DEVELOPERS

32 CHAPTER 2 How FRAMEWORKS WORK

EXPANDING ON THE SIMPLE APPLICATION

Creating pseudocode

Factoring

Using one possible solution, your program should have the following
minimum capabilities:

c Encapsulating each discrete change users make to the file-defining a way to
represent user operations, such as "Cut" and "SetToBold."

c Applying an encapsulated change to the appropriate part of the file
defining a way to represent the item to "Cut" or "SetToBold."

f] Reverting the file to the previous state (undo) or advancing to the next state
(redo) using the encapsulated changes and their targets.

I:i Encapsulating each change as a single transaction so that if an error occurs
in the middle of a change, users can recover by reverting to the previously
completed transaction.

El Documenting each change to a log to support the roll-back and roll
forward capability

I:i Keeping the change log together with the edited file, but independent of the
file (otherwise, an error writing the file also destroys the log).

These capabilities are more difficult to support than those of the previous
example, and such support is certainly beyond the scope of what today's
application frameworks directly support.

Now factor this sample application into actions the system can perform (and
which the system should, therefore, be able to perform in a framework) and
actions that only you can perform for your application.

In this solution, the only actions the system should not perform are
the following:

[1 Encapsulating the changes specific to your application

I:i Targeting the encapsulated changes in ways specific to your application

Everything else is generic: transactions, logging, roll back, roll forward, and so
forth. The system should take care of all of this automatically, and then, when the
specific target and specific encapsulated change needs to be applied, the system
calls your code.

In the Taligent CommonPoint application system, the encapsulated change is a
command, and the target is a selection. You write those two objects and the system
provides the rest. For a simple application, you typically need to write fewer than
200 lines of code, .and you can use your solution over the network collaboratively
as well. This is the power of frameworks.

THE POWER OF FRAMEWORKS

CHAPTER 2 How FRAMEWORKS WORK 33
How FRAMEWORKS CALL ENSEMBLE CODE

How FRAMEWORKS CALL ENSEMBLE CODE

Delivering source
code frameworks

Delivery as source
files

Thus far, you know that frameworks call developer code, but you don't know
anything about how frameworks do this. Everything discussed up to this point
applies to all frameworks, but the actual mechanism whereby developer code is
inserted into a framework's flow of control is design- and implementation
dependent and can vary widely from one framework to another.

Despite the variety, all mechanisms for calling your code from framework code
belong to one of two major categories:

IJ The framework must be delivered to developers as source code.

II The framework can be delivered to developers in binary form (that is, with
only the interface to the framework provided as source code and the
corresponding implementation compiled into a binary).

Frameworks delivered as source code are based on the simple idea that you
lexically intermingle your developer source code with the framework's source
code, then compile the combination to produce an executable.

Two basic types of source code delivery are available:

o As source files

o Through code,generation

With source code delivery as source files, you receive the actual headers and
source files for the framework.

Because the framework code is available for modification, the framework can call
your code without using any special mechanisms to incorporate code. In fact, in
its simplest form, all you need is a text editor-you then edit the framework's
source code to make it call your ensemble routines. You can also more easily
debug flow-of-control problems from the source code.

However, do not confuse a framework delivered as source files with a simple
application skeleton (or, for that matter, with reuse that uses a copy-and-paste
procedure). The distinction is in the quality of support that the framework
provides for orderly extension and modification and in the degree to which the
framework properly factors the invariant portions of the problem domain into its
flow of control.

MacApp is an example of an extremely well thought-out source code framework.

FOR WINDOWS AND OS/2 DEVELOPERS

34 CHAPTER 2 How FRAMEWORKS WORK

How FRAMEWORKS CALL ENSEMBLE CODE

Delivery as code
generation

Macro expansion

Parameterized types

Tool support

Source code delivery as code generation uses one or more mechanisms to
semi-automate the intermingling of your code with the framework's code. This
can reduce the amount of code you need to write and limit the chance for error.

A rudimentary form of code generation is achieved through macro expansion,
where you fill in various macros with arguments as appropriate for your problem.
A preprocessor then expands these macros into the necessary boilerplate, which
is then compiled. This technique is limited by the expressive power of the macro
language used and by how well the designers of the macro set anticipated the
needs of the developer.

In some languages, you can achieve code generation through use of parameterized
types, called "templates" in c++ and "generics" in Ada and Eiffel. A parameterized
type is a class to which other types are supplied as arguments during
instantiation, thereby completing the specification and implementation of the
class. In the same way that instantiating a normal class creates an object,
specializing a parameterized type creates a class (which is then instantiated to
create an object). Parameterized types are not as common as the other language
mechanisms discussed in this book.

The parameterized type represents the invariant portions of the class. The
parameters represent the parts of the class that vary depending on the specific
problem addressed by the instantiation. In a sense, a parameterized type is itself a
mini-framework.

The textbook example of a parameterized type is a ListOf class. This class
abstracts the list-supporting properties, while at the same time leaving it to the
instantiator to specify the type of object to be stored in the list.

To some extent, parameterized types are a glorified macro expansion technique
(in fact, compilers often implement parameterized types using macro
expansion). However, parameterized types have the advantage of being more
type-safe and more object-oriented than macros, as well as 'offering the possibility
of code sharing to reduce footprint, which is generally not feasible with macros.
Parameterized types assume more importance in languages such as C++, where
objects do not all descend from a common ancestor; in this case, without
parameterized types there is no type-safe way to define a general ListOf class.

Providing a point-and-click interface can simplify code generation; through this
mechanism you can select bits of functionality, toggle modes using menu entries,
respond to dialog boxes with the names of types, and so forth. When you've
established all the settings, the tool generates source code in accordance with the
settings, which is then compiled. These sorts of tools are commonly referred to as
"application generators" or "application builders."

THE POWER OF FRAMEWORKS

Binary frameworks

CHAPTER 2 How FRAMEWORKS WORK 35
How FRAMEWORKS CALL ENSEMBLE CODE

It might seem odd to categorize an application builder as a way to deliver a
framework as source, but in a sufficiently sophisticated application builder, the
builder itself embodies domain knowledge about how to solve a particular kind of
problem. The builder uses this knowledge to generate an instance of an
application within its area of expertise, tailored by the developer's responses to
the builder's prompts.

While source code delivery is simple, it also has several drawbacks:

tJ Source code delivery exposes developers to software piracy. The
implementation is entirely exposed for anyone to use.

tJ The framework developer might not provide the necessary documentation
to learn and use the framework. (This is especially true for large
frameworks.) The source code alone is not sufficient to use effectively.

Il Source code delivery thwarts the goals of consistency and interoperability,
because different developers can make arbitrary changes not only to the
implementation of the framework but also to its public interface.

iJ The source code is recompiled for each instance of the framework. This can
create footprint issues and increase turnaround time.

Although most vendors ship frameworks as source code today, for the reasons
discussed, most would generally prefer binary delivery of frameworks. But
delivering a framework in binary is much more difficult than delivering a
framework in source code, for the following reasons:

iJ You cannot insert developer code into the flow of control with an editor. You
must now insert it through a language or runtime mechanism.

t:J The framework can be more difficult to understand and the learning curve
steeper, because developers cannot look at the source code to determine
what is going on. Accordingly, better documentation and training are
required.

In addition, debugging requires more sophisticated tools. It must be possible
for you, as the developer, to visualize the flow of control of the application
when it steps into framework code, despite the fact that the framework code
is just a binary image, and you have limited information from the stack trace.

Il The vendor of the framework must be very responsive to bugs, because
developers cannot fix-and often cannot even work around-a bug in the
framework's code.

tJ The design of the framework must be better, because developers cannot
modify the interface. The framework must be more general, more flexible,
more modular, and more complete than ifit were delivered as source code.

FOR WINDOWS AND OS/2 DEVELOPERS

36 CHAPTER 2 How FRAMEWORKS WORK

How FRAMEWORKS CALL ENSEMBLE CODE

Using language
mechanisms

Despite these drawbacks, framework suppliers gain consistency,
interoperability, and prevention of piracy. With binary delivery, clients share
the same binary for the framework itself-only the code in their ensemble
contributes to footprint on shared library systems. These advantages are worth
the extra effort. This is particularly true for high-quality production-level
frameworks that are a major strategic asset for a company and a source of
considerable competitive advantage revenue.

The language mechanisms used to call developer code from framework code are
quite varied. However, they fall into two broad categories that reflect two
fundamentally different approaches to designing a framework:

El Composition-focused

E! Inheritance-focused

These terms reflect how a framework is used by a developer-whether the
developer instantiates and combines existing classes to change the framework's
behavior (composition-focused) or derives new classes to accomplish this goal
(inheritance-focused) .

Advantages

Disadvantages

Composition-focused

III Easy to use, use-as-is, "plug
and play"

El No subclassing, which
requires less programming
sophistication

II Inflexible, only applies to a
portion of the problem
solution

E:l Limited to only the
anticipated problem solutions

Inheritance-focused

El More flexible

El Can create more new,
unanticipated solutions,
allowing more general
solutions

El Requires creating subclasses;
more complex to create and
maintain

Ideally, composition-focused solutions should be broad-based, as flexible as
possible, and parameterized; inheritance-focused solutions should be just a
few things that you need to override the change in your application's
behavior. A framework can use a combination of methods and fall somewhere
along a spectrum between pure composition ("plug-and-play") and pure
inheritance focus.

THE POWER OF FRAMEWORKS

Composition-focused
frameworks

Callbacks

CHAPTER 2 How FRAMEWORKS WORK 37
How FRAMEWORKS CALL ENSEMBLE CODE

Composition-focused frameworks rely primarily on assembling or "composing"
collections of objects to create the structure that calls developer code. Clients
customize the behavior of the framework by passing to it different combinations
of programming constructs in components or code. The constructs that clients
pass into a framework affect what the framework does. However, the framework
specifies in its interface which constructs it accepts, and it defines in its
implementation how the passed-in constructs interact, thus preserving the
invariants in the problem domain.

One type of programming construct that can pass to a framework is a callback. A
callback is a function or procedure that the framework executes at some point in
the flow of control. When the framework executes the callback, control passes to
the developer's code in the callback. By supplying various callbacks to the
framework, you can produce a range of different behaviors. This is a widely used
technique for some frameworks, such as the X Window System.

For example, a menu can consist of a list of callbacks, each having an associated
title that the menu displays. When the user selects a particular item in the menu,
the framework invokes the callback associated with that item.

The following application example implements the Reset menu item as
a callback.

Framework

Menu
Menu Item
TTextmtle;
CallbackFuncPtr fCallBack;

void TCallbackMenultem::
MenuSelected 0

{
(*fCaIlBack) 0;

Ensemble

,L theMenu.Adoptltem(

new TCallbackMenultem(
"Reset", Reset));

void Reset 0
{

gCounter. ResetO;

.1
I

I
I
i

______ ~ _______ J

IMPLEMENTING A CALLBACK

FOR WINDOWS AND OS/2 DEVELOPERS

38 CHAPTER 2 How FRAMEWORKS WORK

How FRAMEWORKS CALL ENSEMBLE CODE

Functors

Ordinary objects

Another simple programming construct that can pass to a framework is a
functor (Coplien 1992). Functors are objects that serve the same purpose as a
callback. A functor has only one significant function. The framework calls this
function in the same way (expecting the same return value) that a framework
executes a callback.

Framework

Menu
:~" W· Menu Item

TTextmtle;
TFunctor* fFunctor;

void TFunctorMenultem::
MenuSelected 0

{
fFunctor->Do 0

IMPLEMENTING A FUNCTOR

Ensemble

theMenu.Adoptitem (
new TFunctorMenultem(
"Reset" ,new TResetFunctor));

void TResetFunctor::Do 0
{

·: .. :2::~~~. gCounter.Reset 0;

Functors are more flexible than callbacks, for the same reasons that objects are
more flexible than functions and procedures. For example, you can write a
functor to, or read it from, storage; however, you cannot do this with a callback in
most languages. A functor can also contain local state, and, if you clone it, you
can reset the state in the copy.

In contrast, a callback can contain (in some languages) local state, but there is
only one instance of that callback in the entire system, and so its local state is
shared by necessity among all invocations of the callback. In other languages, a
callback can reference only global state, which is even more limiting.

A further generalization is achieved by having frameworks accept ordinary
objects, rather than the more constrained (to a single function) functors. The
framework can call several functions on the object at various points in the flow of
control, can copy the object, can hand the object to some other object (which
might also have been supplied by the developer), and so on. This allows more
flexibility in design.

For example, in your simple application you might have a data model object that
contains your persistent state. At various points during the execution of your
application, the framework might call functions on your data model both to read
it from the file and to write it to the file. It might also call a cloning function on
your model when performing a copy-and-paste operation from your application's
window to a new document.

THE POWER OF FRAMEWORKS

Other constructs

Inheritance-focused
frameworks

CHAPTER 2 How FRAMEWORKS WORK 39
How FRAMEWORKS CALL ENSEMBLE CODE

Other mechanisms are available to support composition-focused coding.
For example:

IJ In some languages, such as Small talk and the Common Lisp Object System
(CLOS), classes are first-class objects. In such languages, you can pass classes
to a framework as just another form of data.

IJ Dataflow languages support composition of processes, filters, and pipes.

IJ Parameterized types can be used for composition.

Inheritance-focused frameworks rely primarily on subclasses and overrides to call
developer code.

An inheritance-focused framework defines a set of interacting classes (some of
which may have no actual implementation associated with them) that capture the
invariants in the problem domain. Clients derive application-specific classes from
the base classes provided by the framework, and override, as necessary, their
member functions. It is these subclasses and overrides that contain the
developer's code. The following figure illustrates this relationship.

Your code is executed when the framework calls the functions that have been
overridden in its base classes. Your code lives "underneath" the system, rather
than on top as in a conventional system. The exact details depend on the specific
implementation language.

I Base class
"t "~,.~,,, ~

Function I

FRAMEWORK EXECUTING ENSEMBLE CODE

FOR WINDOWS AND OS/2 DEVELOPERS

40 CHAPTER 2 How FRAMEWORKS WORK

How FRAMEWORKS CALL ENSEMBLE CODE

For example, suppose a user interface framework defines a base class, View, to be
used for displaying information on the screen. Suppose further that every
application window has a View object associated with it. Finally, suppose that View
defines a member function, DrawSelf, that does the actual drawing. (View might
define a number of other functions, but for this discussion focus solely on
DrawSelf.) The following figure graphically describes the flow of the application.

Window

aWindow.AdoptApplicationView
(new OurApplicationView);

void OurWindow::
AdoptApplicationView (
View* ourView)

delete fAppView;
fAppView = ourView;

View

void View::DrawSelf 0
{

II default: draw grey rectangle
/I ...

~""~~iilty OurApplicationView

Execute this code

FLOW OF THE SAMPLE APPLICATION

void OurApplicationView::
DrawSelf 0

/I default: draw grey rectangle

/I '"

The user interface framework calls the DrawSelf function whenever it determines
that a particular application window's view needs to be refreshed (as might
happen, for example, when a window that has been obscured is brought to the
foreground). The implementation of DrawSelf in the base class View provides
the default drawing behavior of the user interface framework, which is to draw a
grey rectangle inside the application's window.

THE POWER OF FRAMEWORKS

Composition- and
inheritance-focused
APls

CHAPTER 2 How FRAMEWORKS WORK 41
How FRAMEWORKS CALL ENSEMBLE CODE

To implement your simple application, display the current value of the counter.
To do this, create a subclass of View called OurApplicationView, and override
DrawSelfwith your own implementation, which displays the counter value. You
then tell the window to use your OurApplication View subclass instead of the
default View.

Whenever the framework determines that your view needs to be redrawn, it calls
the DrawSelf function for the view associated with your application window.
However, because your view is an OurApplicationView, not just a View, the
framework calls your DrawSelf function instead of the default implementation
provided by the user interface framework.

Frameworks that are heavily inheritance-driven can be difficult to use because
they require clients to write a substantial amount of code to produce new and
useful behavior. Purely composition-focused frameworks are generally easy to
use, but they can be inflexible. They depend on the availability of sufficient
plug-and-play, off-the-shelf components to create the behavior you need in your
application. If you don't have these components and you can't use inheritance to
create new subclasses, you can't extend the behavior of the framework.

Frameworks fall on a spectrum from being completely plug-and-play to needing
to create a large number of subclasses. The composition-focused API consists of
mechanisms that you use to pass your code into the framework. The
inheritance-focused API consists of the base classes from which you derive new
classes and functions that you override to make the framework call your code
through inheritance.

FOR WINDOWS AND OS/2 DEVELOPERS

42 CHAPTER 2 How FRAMEWORKS WORK

How FRAMEWORKS CALL ENSEMBLE CODE

One approach for building frameworks that is both easy to use and extensible is
to provide an inheritance-focused base with a composition-focused layer; that is,
provide a set of ready-to-use, off-the-shelf components that you can plug together
(composition-focused) and an API that allows you to customize (inheritance
focused). It is helpful to think of such frameworks as having two different APIs:
composition-focused and inheritance-focused.

For example, in the sample application described in "Inheritance-focused
frameworks" on page 39, we use the composition-focused API of the user
interface framework to substitute your OurApplicationView for the application
window's default View.

API matrix

Mechanism
Composition-focused API' ,

Inheritance:-focusedAPI

A framework's composition-focused and
inheritance-focused APls are related to its
client and customization APls. In fact, the
two pairs of APls form a matrix of
possibilities, in which the mechanisms in the
composition-focused and inheritance
focused APls can be used both by clients
and for customization. You can use this
matrix to describe how a particular
ensemble works.

Usage

ClientAPI Customization API

An ensemble can contain code that uses
all four or some combination of a
framework's APls.
For example, the ensemble for the Simple
application would contain code to add the
Reset functor to the menu (which involves
the client and composition-focused APls),
and code to subclass View and override
DrawSelf (which involves the client and

,

inheritance-focused APls). Because the
application is so simple, the ensemble
probably would not contain code that
involves the customization API.

As a rule, the customization API for a
framework tends to involve the inheritance
focused API more than the composition
focused API, because subclassing usually
provides more flexibility than composition.

THE POWER OF FRAMEWORKS

Where ensemble
code resides

CHAPTER 2 How FRAMEWORKS WORK 43
How FRAMEWORKS CALL ENSEMBLE CODE

The ensemble contains the code that you use to modify the behavior of the basic
framework. This code is not isolated in a single block of physical code. You
design and write code that physically resides throughout the framework code in
the form of added components and subclasses containing overrides.

The following figure shows the structure and interaction of the framework and
ensemble code at the class level. In inheritance-focused frameworks, shown in
this example, the frameworks call functions in subclasses to override functions in
a base class. Using composition-focused frameworks, the frameworks call the
components you provide. You modify the behavior of the framework in many
different code sections of the framework, rather than in a monolithic block of
ensemble code. Your code is intermixed with the actual framework code at the
level of classes, subclasses and overrides, and calls to components.

Framework 1 Ba,s~c~a~~~ L __
I Function i::::: '

Ensemble

. Sub.cJ~~. _ .. L.
I Override

Framework 3
r ; Base class
;

r-__ L~~.~class
L;;;::.:: ,:, Function

i Override

Framework 2 I Base class
r-·-~~····'-·'··· .,

;;'1 Function I

Framework 4
Base class

! L, ... ' ... h • h

.:,;, Function

ENSEMBLE CODE INTERACTS WITH FRAMEWORK CODE

FOR WINDOWS AND OS/2 DEVELOPERS

44 CHAPTER 2 How FRAMEWORKS WORK

WORKING WITH FRAMEWORK CODE

WORKING WITH FRAMEWORK CODE

Frameworks are the result of advancing strategies for developing applications.
The shift to dynamic behavior, demanded by user-driven applications, has
required shifting the flow of control from the developer's application code to
event-driven systems controlled by user input. Frameworks represent the next
step in this evolutionary process.

As you design your framework, you need to consider and balance the trade
offs involved:

EJ How to deliver frameworks-source code or binary code delivery
(along with the mechanisms needed to incorporate ensemble code into
your application).

D Whether to use inheritance- versus composition-focused framework
implementation. These methods are complementary and compatible; you
can use them together to create a more flexible framework.

fll Which type of API best supports your application implementation-
inheritance- or composition-focused APIs.

Using a framework to build an application, you "plug in" components or create
subclasses and use overrides to create your ensemble code. The framework calls
the ensemble code to produce the behavior that you want in your application.
This code, logically contained as ensemble code, is physically spread out
throughout your framework.

THE POWER OF FRAMEWORKS

CHAPTER 2 How FRAMEWORKS WORK 45
WORKING WITH FRAMEWORK CODE

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 3

DEVELOPING FRAMEWORKS

Chapter 1, "A first look at frameworks," explains that the cost, in time and
money, of producing a framework is substantially higher than that of the more
narrowly focused, single application or library of similar functionality. Generally,
you would create a framework only when the cost of producing the framework is
amortized over many application projects.

While the easiest solution is using an existing framework, the frameworks you
need might not be available. If you have a situation in which you can reuse a
design over many applications, you might want to design the framework yourself.
However, as useful as they are, frameworks can be difficult to develop: they
require deliberate, concerted effort.

The most obvious consideration is whether designing a general, extensible
framework is more work than repeatedly doing a design for a single application.
To create a new framework, you must be willing to put in the time up front, but
in the long run, designing for extensibility up front saves you and your
organization time and money.

This chapter introduces you to some general goals and guidelines to consider
when you design your own frameworks. It describes a top-down approach to
developing frameworks. You can see these applied to the frameworks explained
in Parts 2 and 3.

FOR WINDOWS AND OS/2 DEVELOPERS

47

48 CHAPTER 3 DEVELOPING FRAMEWORKS

WHAT MAKES A SUCCESSFUL FRAMEWORK DESIGNER?

WHAT MAKES A SUCCESSFUL FRAMEWORK DESIGNER?

Developing a framework differs from developing a standalone application. A
successful framework solves problems that, on the surface, are quite different
from the problem that justified its creation. You must capture the problem
solving expertise so that it is an abstraction of both the original problem and the
future solutions in which you use it; however, each program that uses the
framework should appear to be the one for which you designed it.

You have to identify clearly the class of problem a framework addresses. For your
clients to adapt the framework to new problems, they must understand both the
solution the framework provides and how to incorporate it into their programs.
Because other developers have to understand how to use your frameworks, it is
critical that you follow good software design practices.

Framework design demands considerable skill from designers. They need
excellent analytic, modeling, and general problem-solving skills in addition to
substantial experience with objects. Experience writing applications in the
problem domain helps to identify common design elements for framework
solutions. Most organizations find that their need for designers with these skills
outstrips their ability to hire or internally develop them, which makes buying
expertise already packaged in commercially-available frameworks attractive.

To achieve the high reuse demands of a framework, designers must look beyond
current needs and anticipate the needs of future ensembles. They must
understand both present and likely future behaviors. The framework must
correctly abstract the full range of essential entities in the problem domain. This
abstraction is crucial for a new ensemble to be able to reuse the framework's
existing designs. Looking beyond current needs to anticipate those of future
ensembles helps you to avoid the creeping requirements and continual design
changes that makes it difficult to distinguish between necessary framework
evolution and a design out of control.

THE POWER OF FRAMEWORKS

CHAPTER 3 DEVELOPING FRAMEWORKS 49
ANALYZING YOUR PROBLEM DOMAIN

ANALYZING YOUR PROBLEM DOMAIN

Think of frameworks as abstractions of possible solutions to problems. To
determine which frameworks you need, examine families of applications rather
than individual programs:

l:l Look for software solutions that you build repeatedly, particularly in key
business areas.

l:l Identify what the solutions have in common and what is unique to
each program.

If you are familiar with the problem domain, you can draw from your past
experience and former designs to abstract common elements and begin
designing your framework. If you're not familiar with the problem domain,
examine similar applications that you've written or those written by others and
consider writing an application in the domain. The problem that you are trying
to solve is likely to be very specific: abstract out the parts that are common to the
entire problem domain, and use these as the foundation ofa framework to suit
the entire domain. Factor these pieces into small, focused frameworks.

Factor the aggregate of these behaviors so that fundamental behaviors are
allocated to the framework. Andert (1994) discusses factoring as follows:

"Proper factoring is difficult and requires a great deal of domain knowledge. The
framework must provide default behavior yet still allow future ensembles
considerable latitude to vary that behavior. Thus, the designer o~ a framework
must have broad and deep domain expertise-much more than that required for
the more narrowly focused single application or library."

"This encapsulation keeps the rules out of the client code, which makes writing
client code easier. But more important, it greatly simplifies the evolution of that
knowledge. Proper partitioning of domain knowledge between the framework
and the ensembles depends on the domain and the business problem to be
solved by the framework. The best designs encapsulate each piece of knowledge
in just one place. Thus, the fundamental invariants are encapsulated in the
framework, while variable rules and policies are encapsulated in the ensambles."

Wherever you have a suite of applications that solve similar problems, you have
an opportunity for developing a framework. Look for potential frameworks in:

lJ Real-world models

c Processes performed by end users

l:l Source code f0r current software solutions

Mter you've identified the frameworks from the problem domain, you can go on
to create the individual frameworks.

FOR WINDOWS AND OS/2 DEVELOPERS

50 CHAPTER 3 DEVELOPING FRAMEWORKS

DESIGNING YOUR FRAMEWORK

DESIGNING YOUR FRAMEWORK

Identifying primary
abstractions

The first step in developing a framework is to analyze your problem domain and
identify the individual frameworks you need. Once you've decided which
framework or frameworks to build, you create each framework using the
following steps:

o Identify the primary abstractions.

f) Design how clients interact with the framework.

B Implement, test, and refine the design.

Identify the abstractions that your clients need to describe their problems and
then provide the logic for producing a valid solution with those abstractions. If
the problem maps to a process, describe the process from the user's perspective
or from the perspective of the external events affecting the process. For each
framework, identify the process it models. Once you've outlined the process, you
should be able to identify the necessary abstractions.

The easiest way to identify the abstractions is with a bottom-up approach-start
by examining existing solutions. First analyze the data structures and algorithms,
then organize the abstractions. Always identify the objects before you map out
the class hierarchy and dependencies.

When identifying abstractions, as suggested by Birrer and Eggenschwiler (1993),
you should:

113 Consolidate similar functionality across the system and implement it through
common abstraction.

£] Try to break down large abstractions, dividing them into several smaller
abstractions. Each of the smaller abstractions should have a small, focused
set of responsibilities.

£] Implement each variation of an abstraction as an object. This increases the
flexibility of the design.

rn Use composition instead of inheritance where possible. This reduces the
number of classes and the complexity for the framework client.

THE POWER OF FRAMEWORKS

CHAPTER 3 DEVELOPING FRAMEWORKS 51
DESIGNING YOUR FRAMEWORK

If the framework models a process, you can determine a pattern in the process
which steps the framework performs and which steps the client performs. By
describing the design of a framework in terms of patterns, you describe both the
design and the rationale behind the design. As you begin to design how the
framework works, you might also discover that you can break down the
framework into a collection of recurring design patterns, much the way you
decompose the initial problem into a set of frameworks (Gamma et al. 1995).

"Good designers know many design patterns and techniques that they know lead
to good designs. Applying recurring patterns to the design of a framework is one
form of reuse. Using formalized 'design patterns' also helps to document the
framework, making it easier for clients to understand, use, and extend the
framework." Uohnson 1993)

When you design a framework, look for recurring patterns that can be applied to
other problems. Reusing common patterns opens up an additional level of
design reuse, where the implementations vary, but the micro-architectures
represented by the patterns still apply.

Design patterns pOint to better frameworks

Design patterns identify, name, and abstract
common themes in object-oriented design.
They capture the intent behind a design by
identifying objects, how objects interact, and
how responsibilities are distributed among
the objects. They constitute a base of
experience for building reusable software,
and they act as building blocks from which
more complex designs can be built.

Each design pattern is a micro-architecture
for a recurring element. Patterns can
represent generic software elements or

FOR WINDOWS AND OS/2 DEVELOPERS

elements particular to a problem domain.
Some patterns are generic and some are
specific to a problem domain. Each pattern
can be characterized by its elements:

§l Preconditions-The patterns that must
be satisfied for this pattern to be valid.

Problem-The problem addressed by
the pattern.

iTI Constraints-The conflicting forces
acting on any solution to the problem
and the priorities of those constraints.

Solution-The solution to the problem.

Architect Christopher Alexander first
introduced the concept of patterns as a tool
to encode the knowledge of the design and
construction of communities and buildings.
Alexander's patterns describe recurring
elements and rules for how and when to
create the patterns. Designers of object
oriented software have begun to embrace
this concept of patterns and use it as a
language for planning, discussing, and
documenting designs.

(Gamma et al. 1993)

52 CHAPTER 3 DEVELOPING FRAMEWORKS

DESIGNING YOUR FRAMEWORK

Designing your
client-framework
interactions

Designing for flexibility
and extensibility

You need to define your constraints and assumptions clearly. This helps clients
determine whether a framework is applicable to their problem. In your
framework design, focus on how the client interacts with the framework-which
classes and member functions does the client use?

To be successful, design your framework to be:

El Complete-Frameworks support features needed by clients and provide default
implementations and default functionality where possible. Provide concrete
derivations for the abstract classes in your frameworks and default member
function implementations to make it easier for your clients to understand
the framework and allow them to focus on the areas they need to customize.

Ei Flexible-Abstractions can be used in different contexts.

o Extensible-Clients can easily add and modify functionality. Provide hooks so
that your clients can customize the behavior of the framework by deriving
new classes or through other mechanisms.

El Understandable-Client interactions with the frameworks are clear.

"If applications are hard to design, and toolkits are harder, then frameworks
are hardest of all. A framework designer gambles that one architecture will
work for all applications in the domain. Any substantive change to the
framework's design would reduce its benefits considerably, since the
framework's main contribution to the application is the architecture it defines.
Therefore it's imperative to design the framework to be as flexible and
extensible as possible." (Gamma et al. 1995)

Consider the following elements in this process:

I] Look for ways to reduce the amount of code that your clients must write:

El Provide concrete implementations clients can use directly.

o Minimize the number of classes clients must derive.

El Minimize the number of member functions clients must override.

El Simplify clients' interactions with the framework to help prevent client error.
Make it as clear as possible in both your interfaces and documentation what
is required of your clients.

f3 Isolate platform-dependent code to make it easier to port your framework.
Designing for portability reduces the impact porting has on your clients.

El Determine how the framework classes and member functions interact with
client code:

t:1 Which objects are created when the client calls framework functions?

13 When does the framework call client overrides?

o What can you do to protect against errors in developer's code, for
example, by catching exceptions?

THE POWER OF FRAMEWORKS

CHAPTER 3 DEVELOPING FRAMEWORKS 53
DESIGNING YOUR FRAMEWORK

When you design your framework, consider the following guidelines illustrated
by examples from the CommonPoint application system:

lJ Do as much in the framework as possible so that your developer's code is as
simple as possible. For example, if you need locking for thread safety, acquire
the lock, call the developer's code, then release the lock, so that your
developer's code can be single-threaded. Consider that you need to balance
flexibility and extensibility-the more your framework does, the more
constrained and difficult to change it is. If your framework does more than
necessary for the domain, it can needlessly degrade performance.

lJ High-level functionality tends to make limiting assumptions. Factor your
code so that clien ts can remove or easily override the code encapsulating
the assumption.

t:I Provide notification hooks that developers can use to react to important state
changes within the framework. For example, a cursor tool tracking
movement in a CUI needs to know when it has crossed a view boundary, and
a view needs to know when it has been added to the view hierarchy.

c Avoid lexical cycles to prevent deadlock. Otherwise, the framework calls an
extension that calls the framework and the system freezes in the cycle. When
you cannot avoid cycles, the framework must handle locking so that it can
detect and overcome callbacks into the framework from outcalls to
developer's code.

Supporting customization "A framework helps developers provide solutions for problem domains and
better maintain those solutions. It provides a well-designed and thought-out
infrastructure so that when better pieces are created, they can be substituted with
minimal impact on the other pieces in the framework." (Nelson 1994)

One of the things to consider is how to support customization-adding new
pieces to the code while maintaining the same interfaces. With customization,
you want to provide as flexible a framework as possible, but you also want to
maintain the focus of the framework and minimize the complexity for the client.
If you provide an overly flexible framework, it is difficult for your clients to learn
and difficult for you to support.

One approach is to build a very flexible, general framework from which you
derive additional frameworks for narrower problem domains. These additional
frameworks provide specialized default behavior and built-in functionality, while
the general framework provides the flexibility.

As you design the framework, also consider how the design can help
communicate how to use the framework. Class names, function names, and pure
virtual functions (in C++) can all provide clues for using the framework.

FOR WINDOWS AND OS/2 DEVELOPERS

54 CHAPTER 3 DEVELOPING FRAMEWORKS

DESIGNING YOUR FRAMEWORK

Refining your
framework

Simplifying your
frameworks

As your framework takes shape, continually look for ways to refine it by adding
more default behavior and additional ways for users to view and interact with
the data.

Building a framework is an iterative process. Beginning with your initial design,
work with your clients to determine how the framework can be improved
implement features, test them, and verity them with your clients. During this
process, go back and reanalyze the problem domain and refine your design
based on testing, client feedback, and your own insights. Wirfs-Brock (1990)
states that it takes three real applications to get a framework right. Thus, you
need to use your framework to solve real problems in more than one application
before you can have confidence in its design.

Because the framework controls design, changes in framework interfaces,
both syntactic and semantic, have an impact on your existing applications. As
a framework expands and changes, applications must change to
accommodate it. You must keep your frameworks loosely coupled to control
the impact of changes.

As your framework matures, you'll probably find more features to add and
identify opportunities for additional frameworks. These might be entirely
new frameworks or frameworks that support a particular subset of the
problem domain.

The concept of prototyping is not unique to framework development, but it is
very useful. A common approach is to implement a framework that applies to a
specific subset of a larger problem domain and then rework it to support more
general cases.

"The most profoundly elegant framework will never be reused unless the cost of
understanding it and then using its abstractions is lower than the programmer's
perceived cost of writing them from scratch." (Booch 1994)

As you refine your framework, keep the following goals in mind:

EJ Design for ease of use-the most important consideration. From the client's perspective, an
easy-to-use framework performs useful functions with little or no added
effort. The framework works with little or no client code, even if the default
implementations are simply placeholders, and it supports small, incremental
steps to get from the default behavior to sophisticated solutions. When in
doubt, err on the side of making it simpler for your clients to use the
framework, even if doing so makes implementing the framework more
difficult. A good framework designer strives to make the ensemble
developer's job as easy as possible. The ideal framework enables
nonframework domain experts to produce ensembles.

THE POWER OF FRAMEWORKS

CHAPTER 3 DEVELOPING FRAMEWORKS 55
DESIGNING YOUR FRAMEWORK

IJ Keep your frameworks small. Look for ways to break down frameworks into small,
focused frameworks. If they're designed to interoperate, small frameworks
are more flexible and can be reused more often. By breaking down the
original workflow framework into a set of small frameworks, you can use the
resulting frameworks in other contexts.

IJ Look for additional ways to make your clients' tasks easier. In some cases, it makes sense to
provide special tools with your frameworks. Code generators, CASE tools,
and CUI builders can make programming with frameworks easier, just as
they do for traditional software development.

Iterate to simplify, but choose a point when your framework is finished. Until you
release your framework to a wider user group, you won't gain any of the benefits
or learn about other needed enhancements. A simple framework requires fewer
iterations than more complex frameworks-another advantage of developing
smaller, focused frameworks.

Quick guidelines for developing frameworks

To design a framework, you first analyze the
problem domain. As you look at the
problem, break it into smaller, workable
elements.

Analyze your problem domain-Look for
the set of solutions to your problem.

CI Identify potential frameworks-Find
common solutions to a family of
processes or actions.

When you've decided on a particular
framework, you can design client-framework
interactions for that specific framework.

FOR WINDOWS AND OS/2 DEVELOPERS

Identify common elements
Ll Abstractions-Objects that

encapsulate the data structures
and algorithms that solve the
problem.

Design patterns-Collections of
recurring elements that solve
domain problems.

u Design for flexibility, extensibility, and
ease of use

Reduce the amount of client code.

Identify and simplify client
interaction with the framework to
minimize client errors.

tl Isolate platform-dependent code
for portability.

CI Determine how framework
classes and members interact
with client code.

Decide how to support cuslomizalion
As you use your new framework, you have
the opportunity to iterate and refine it.

u Simplify-Keep your frameworks small,
simple, and easy to understand.

Derive from existing frameworks-Build
new solutions from working
frameworks.

56 CHAPTER 3 DEVELOPING FRAMEWORKS

DESIGNING YOUR FRAMEWORK

Deriving from frameworks Once you've developed a general framework that provides a strong architectural
base, you can derive additional frameworks that apply to particular problem sets.
The overall framework provides generalized components and constraints to
which'the derived frameworks conform. Derived frameworks introduce
additional components and constraints that support more specific solutions.
They support a narrower set of applications than their more general base, and
they give you a safe way to provide more domain-specific default behavior. You
can contain potentially restrictive design decisions in derived frameworks without
"corrupting" the basic framework.

Derived frameworks are another method of providing default behavior for your
clients. You can provide the default behavior in the derived framework, rather
than in the core framework. If your framework consists of a number of abstract
classes, you might want to create one or more derived frameworks that provide
concrete implementations and additional built-in functionality.

THE POWER OF FRAMEWORKS

CHAPTER 3 DEVELOPING FRAMEWORKS 57
DESIGNING YOUR FRAMEWORK

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

PART 2

APPLYING
FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

59

60

THE POWER OF FRAMEWORKS

CHAPTER 4

APPLYING FRAMEWORKS

TO A REAL- WORLD

PROGRAMMING PROBLEM

Now that you have a basic understanding of what a framework is and what the
benefits of framework-based programming are, it's time to apply frameworks to a
problem that a programmer developing a "real" application would face.

The problem we've selected is one that many applications must handle:
formatting numbers for display to the user. Spreadsheet programs are the most
common type of program to address this problem, so our sample application
takes the form of a very simple spreadsheet.

Over the course of the next six chapters, we'll walk through the creation and
extension of the application. We've implemented the application for both
Microsoft VYindows and for IBM® OS/2, the two most popular operating systems
for PC-compatibles.

FOR WINDOWS AND OS/2 DEVELOPERS

61

62 CHAPTER 4 APPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM

A BRIEF USER INTERFACE SPECIFICATION

A BRIEF USER INTERFACE SPECIFICATION

A 2-by-IO grid of editable cells is presented to the user. Each cell within the grid
contains a number. The user can select a cell using the mouse and enter a
number using the keyboard. The user can then set the display format for each
cell using a dialog box, as shown in the following figure.

FORMATTING A CELL

Power of Frameworks I

Eormat Code:

#.###
####.#
####.##
#.###.#
#.###.## ';":7
11111111]111 "W:" "~""'1";'~'~'~'I'~ "",~"=",,~,w_ ~

Unlike in a true spreadsheet, the cells in the sample application cannot be "tied
together" by functions. The application resembles a spreadsheet in form only,
not in function.

THE POWER OF FRAMEWORKS

CHAPTER 4 APPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM 63
APPLICATION DESIGN ISSUES

APPLICATION DESIGN ISSUES

Converting numbers
to text

This is an overly simplified sample application: an "industrial-strength"
application would need to add many additional features to be usable. On the
other hand, this sample does illustrate the kinds of design and implementation
issues a real application would need to address.

The first of these issues is formatting numbers as text according to what the
user wants.

At the most basic level, converting a floating-point or integer number to text for
display is easy. We can use the C++ stream package or anyone of a number of
other standard C/ C++ functions to do the conversion. All of these functions are
simple to learn and use, and they get the job done.

For example, let's say the user can control the number of digits that appear after
the decimal point. We can do this in C++ using the standard streams package:

void ConvertNumToString(double num, int numDigits, ostrstream& str)
{

str « setprecision(numDigits) « num;
}

What if we want the user to be able to control whether or not numbers show up
in scientific notation? We can do it, but the code becomes more complicated:

void ConvertNumToString(double num, int numDigits,

{

}

int useScientific, ostrstream& str)

if (useScientific)
str.setf(ios::scientific);

else str.setf(0);
str « setprecision(numDigits) « num;

What if we need to support having commas separating the thousands? How do we
handle currency formatting for different countries? None of the C/C++ standard
library routines supports this kind of formatting directly; however, we could use a
number of calls to streaming operators, each with its own hardcoded format
string, to achieve the same effect. Neither the Windows 3.1 nor the Windows 95
APls provide a direct solution, although they do provide a way to determine the
thousands separator and currency symbol characters on the currently running
version of the system. The only solution is to write our own routines to convert
numbers to text.

FOR WINDOWS AND OS/2 DEVELOPERS

64 CHAPTER 4 ,ApPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM

,ApPLICATION DESIGN ISSUES

Localizing numbers

~ NOTE Some operating systems, such as Windows NT 3.5 and MacOS, provide
routines that will properly format numbers for you and handle other localization
issues as well. Developing the sample applications shown in this book on such an
operating system would be correspondingly easier, but any developer who wants
to develop an application that runs on other operating systems would still have to
address these issues.

We also need to address the issue of software localization.

Designing an application to support localization is an important part of
application design, because it allows a program developed in one country to be
used in other parts of the world. Even though we aren't going to export our
sample application, we should consider the implications of localization for the
domestic market. Ifwe were working on a currency trading program for an
investment bank, for example, that application would have to support the
simultaneous display of currencies from many different countries.

Fortunately, there are some simple things we can do that will make development
easier.in the future (and easier too for any company that wants to sell our
software in another country). The most important thing we need, though, is a
basic understanding of the issues involved in localizing applications.

Let's look at the issues of currency formatting. Many countries, including the
U.S., use a leading symbol ($, £, and so on), while others, such asJapan, use a
trailing symbol (¥). Similarly, we have to know how many significant digits should
be printed after the decimal point; how to print negative values; what the
monetary symbol, decimal point, and thousands separator characters are;
whether to use thousands separators; and whether to use spaces between the
monetary symbol and the numeric value. All of these monetary system
characteristics can change from country to country.

As mentioned, Windows, along with most other CUI-based operating systems,
provides a set of API routines that we can call to get information about the
current locale's currency formatting conventions. Converting this information
into a correctly formatted currency string is the responsibility of the
application. Similarly, the application must handle formatting noncurrency
numbers, dates, and so forth, although the Windows API provides the
information we need to set it up.

THE POWER OF FRAMEWORKS

Formatting numbers
within a spreadsheet

CHAPTER 4 ,ApPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM 65
,ApPLICATION DESIGN ISSUES

Another issue we need to look at is the manner in which we allow the user to
specify the number format.

Our spreadsheet-like example lets the user choose between various number
formats using the Format Cell dialog box.This dialog box lets the user set the
number of significant digits after the decimal place, control whether a thousands
separator character is shown, and decide whether to show a currency symbol. It
does so using a Microsoft Excel-style format string, with special characters
representing the various components of a formatted number.

Character
Digit

Represents

Single digit

Thousands separator character

Decimal point character

e Scientific notation exponent separator character

$ Currency symbol character

To illustrate the use of format strings and show a few of the possible
combinations that the application needs to represent, some examples follow.

The format string

$#,###.##

shows currency, with a thousands separator and with two digits following the
decimal place. If you format the floating-point number

3555.98765

using this format, it would display in the U.S. as

$3,555.99

In Switzerland, the same number would display as

Fr. 3'555.99

On the other hand, the format string

#.########e##

would display the same number (in the U.S.) as

3.55598765e03

The actual characters used to format the numbers vary from country to country,
based on the locale information returned by Windows.

FOR WINDOWS AND OS/2 DEVELOPERS

66 CHAPTER 4 APPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM

DEVELOPMENT PLATFORM ISSUES

DEVELOPMENT PLATFORM ISSUES

Windows development
platform

OS/2 development
platform

Depending on which operating system you develop applications for, you must
make some decisions about your development platform. We used C++ to develop
both the OS/2 and Windows versions of the application, but avoided using any of
the existing application frameworks such as the Borland ObjectWindows Library
(OWL) or the Microsoft Foundation Classes (MFC). Using either of these
frameworks would have made the spreadsheet application a lot simpler, but it
also would have limited the audience of the book to those who use a particular
application framework. If you haven't used one of these frameworks before, you
should investigate one or more of them, or, better still, use the CommonPoint
application system for your next application programming project.

In Chapters 5,6, and 7, the Windows application development was done using
the Borland C++ 4.5 development system running on Microsoft Windows 3.1.
The sample application should also run on any operating system that supports
16-bit Windows applications, such as Windows NT and OS/2.

In Chapters 8, 9, and 10, the OS/2 application development was done using the
IBM C Set ++® 2.1 development system running on OS/2 WarpTM Version 3,
using the OS/2 2.1 toolkit.

THE POWER OF FRAMEWORKS

CHAPTER 4 APPLYING FRAMEWORKS TO A REAL-WORLD PROGRAMMING PROBLEM 67
WHERE TO GO FROM HERE

WHERE TO GO FROM HERE

If you prefer to follow the development of the application on Microsoft Windows,
continue with Chapter 5.

If you would rather follow the development of the application on OS/2, you
should skip Chapters 5 through 7 and continue with Chapter 8.

The accompanying CD-ROM includes the source code for both versions of the
sample application. The CD-ROM also contains an interactive version of the
Windows development material, which you can use instead of reading it in
book form.

FOR WINDOWS AND OS/2 DEVELOPERS

68

THE POWER OF FRAMEWORKS

ApPLYING
FRAMEWORKS ON
MICROSOFT WINDOWS

FOR WINDOWS AND OS/2 DEVELOPERS

69

THE POWER OF FRAMEWORKS

CHAPTER 5

CREATING THE APPLICATION

FOR'WINDOWS

In Chapter 4, we created a specification for the initial version of the application.
In this chapter, we convert that specification into a functioning piece of code.

The application, like most Windows applications, begins with a main function
and a window message handler. Because the Windows API calls these functions,
and Windows does not support the use of C++ member functions as handlers,
these routines are written as standard C functions. To take advantage of object
oriented features of C++, we'll use these global functions as a liaison between the
Windows API and the application's classes. Thus, the application can be roughly
divided into two parts: a Windows application layer, and a set of classes that allows
the user to see and edit the spreadsheet data.

DESIGNING THE WINDOWS APPLICATION LAYER

Initializing the
application

We'll begin by designing the Windows application layer, which provides two key
pieces of functionality: a main function and a window message handler.

The main function of the application, WinMain, is responsible for initializing the
application. This is a standard part of any Windows application that corresponds
to the main function in a standard C program. WinMain needs to create the
application window and initiate the Windows message-dispatching loop.

FOR WINDOWS AND OS/2 DEVELOPERS

72 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

DESIGNING THE SPREADSHEET CLASSES

Window message
dispatcher

Other functions

WndProc is called when a message is sent to the application's window.
WndProc dispatches these messages to the appropriate piece of code in the
application. As the primary dispatch function, WndProc acts as the interface
between the application layer and the spreadsheet classes that manipulate the
application's data.

The application layer also includes several functions needed by other parts of the
program, such as a message handler routine for the Format Cell dialog box. We'll
discuss the design and implementation of these functions as they're needed by
other parts of the application.

DESIGNING THE SPREADSHEET CLASSES

User interface objects

Number formatting
objects

The spreadsheet classes are divided into two distinct sets. The first set
provides the user interface for our application and handles the messages that
WndProc delegates to them. The second set is responsible for converting
numbers into text.

Because the spreadsheet's user interface models a grid of cells, the first class to
create is a NumberGrid. NumberGrid maintains a list of cells and keeps track of
the currently selected cell for the user.

We also need to create a class, NumberCell, that represents a single cell.
NumberCell manages the editing and display of the cell's contents.

Next, we need to create a class to handle the formatting process. Because our
design goal is to separate data representation from the user interface as much as
possible, we'll make a class, FormattableNumber, that represents a number that
knows how to format itself as text, but doesn't perform any display or editing
operations.

Many variables affect the formatting process. To allow these variables to be
manipulated as a set, we create a NumberFormat class that keeps track of the
number format. FormattableNumber uses a NumberFormat object to perform
the formatting operation.

THE POWER OF FRAMEWORKS

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 73
DESIGNING THE SPREADSHEET CLASSES

The class hierarchy of the spreadsheet classes is shown in the following figure.

~ NOTE The notation used for the class hierarchy diagrams shown in this book
is described in "Appendix A: Reading notation diagrams."

NumberGrid
. _. --- --_. -------- --- --- _.-

ChangeFocus
GetCurrent
SetFormat

fGrid

FormattableNumber

Format
GetFormat

fCurrentCell

+n
/

" __ s_e_tF_o_r_m_a_t ____ _ GetValue
SetValue

fNumberFormat
fValue

~----------~

NumberCell

Format
SetFormat

fHwndEditControl
fNumber

SPREADSHEET CLASS HIERARCHY

Now that we've determined the basic set of classes, we'll continue by filling out
the class design.

FOR WINDOWS AND OS/2 DEVELOPERS

74 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

DESIGNING THE SPREADSHEET CLASSES

NumberGrid class
design

Standard C++ member
functions

NumberGrid provides three different sets of member functions:

f:l Standard C++ member functions, including the constructor and destructor

t1 Cell editing member functions, which handle basic user interface operations

f] Data accessor member functions, which allow you to manipulate the state of
the NumberGrid

Let's look at the declarations of each of these sets of functions.

The class declaration begins with the constructor and destructor. The
NumberGrid constructor takes the arguments needed to create the spreadsheet
grid, including the number of rows, number of columns, and the column width
(in characters) of each cell.

class NumberGrid {
public:

//---
// Standard c++ member functions

// constructor and destructor
NumberGrid(HINSTANCE hlnst, HWND hwnd , int xPos = 0, int yPos 0,

int rows = 0, int cols = 0, int nCharsPerCel1 = 0);
virtual -NumberGrid();

Editing member functions The most important functions in NumberGrid handle our user interface
functions. These functions are typically called by the application's user
in terface code.

// Format current cell according to a format code set by the user
// from the main menu
virtual void FormatCurrentCell(int nFormatCode);

// Reformat a cell in the grid according to its current user-specified format.
virtual int UpdateCell(int nCeIINo);

// Change the focus to cell number nCellNo.
virtual int ChangeFocus(int nCeIINo);

// Does nCellNo contain a valid numeric string?
virtual BOOL IsValidEntry(int nCeIINo);

// Move the upper-left corner of the grid to a new x,y position
virtual void Move(int x = 0, int y = 0);

// Center the grid in the client area.
virtual void Center(HWND hwnd);

THE POWER OF FRAMEWORKS

Accessor member
functions

Data members

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 75
DESIGNING THE SPREADSHEET CLASSES

The remaining member functions provide access to the state of the cell grid.
Convenience member functions are provided to make it easier to perform
common operations on the current cell. These member functions are usually
c~lled by the framework itself, rather than by clients.

II access the currently selected cell's id
virtual int GetCurrentCell();
virtual int SetCurrentCell(int nCurrent);

II set the format of the specified cell
virtual int SetFormat(int nCellNo, const NumberFormat& nf);

II Get the Windows edit handle to nCellNo.
virtual HWND GetHandle(int nCeIINo);

II Get the edit control's enclosing NumberCell.
virtual NumberCell* GetCell(int nCeIINo);

The class declaration concludes with the class's private data member
declarations. Of these data members, the two worth noting are fGrid, which is
a pointer to our array of cells, and fCurrentCell, which keeps track of the
current cell.

private:

} ;

NumberCell***
int
int
int
int

fGrid; II Pointer to the 2D grid of NumberCells.
fNRows, fNCols; II Number of rows, cols in grid.
fTop, fLeft; II Position of top, left corner of grid
fCellWidth, fCellHeight;
fCurrentCell; II The cell index of the current cell

FOR WINDOWS AND OS/2 DEVELOPERS

76 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

DESIGNING THE SPREADSHEET CLASSES

NumberCell class
design

Standard member
functions

The NumberCell class is more complicated than NumberGrid. A NumberCell
serves as a kind of pivot-point: it associates a C++ object (a cell) with a critical
Windows user interface element, and it shuttles the raw and formatted user input
data between this Windows user interface element and the C++ class responsible
for formatting.

What is this "critical Windows user interface element"? For the application to
actually display a NumberCell, the cell must encapsulate some user interface
element that Windows understands. Windows knows nothing about the
NumberCell object. Because we expect the user to select a cell (using the mouse)
and enter a number into it (using the keyboard), it seems logical to have the
NumberCell class be a wrapper for a Windows EditControl element. (An
EditControl is a text-entry user interface element with some built-in, primitive
editing functions such as select, append, insert, and delete.)

For reasons that will become apparent, we also need to design a two-way
communication path between NumberCell and its encapsulated EditControl. It's
easy to see how a NumberCell can access its EditControl: we just make the
EditControl a data member of the NumberCell. But how does a Windows
EditControl access its NumberCell? That's a little more complex. We'll discuss
that when we implement the NumberCell class in "Implementing NumberCell"
on page 92.

NumberCell is also pivotal in its role of shuttling raw and formatted user input
values between the EditControl and the class that's actually responsible for
formatting, but we have not yet described that formatting class. In Chapter 4, you
saw how the user of the application specifies a display format for a particular
spreadsheet cell by first selecting the cell (actually, the cell's EditControl), then
choosing a format from the Format Cell dialog box. Although, from the user's
perspective, it appears that the chosen format is applied directly to the cell, we
opted to less closely couple the NumberCell and its display format, which is
stored in a FormattableNumber.

Designing some distance between the cell and its format creates a buffer of
independence, which improves the potential for reuse. This makes each of the
two classes, NumberCell and FormattableNumber, more reusable because it
separates the cell's member functions for handling actions such as keyboard
input and display updating from the member functions responsible for
formatting the cell input value.

As usual, the class declaration begins with the constructor and destructor. The
hInst and hwndParent parameters are passed to the constructor by the
NumberGrid object when it creates the grid of cells.

THE POWER OF FRAMEWORKS

Editing member
functions

Accessor member
functions

Data members

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 77
DESIGNING THE SPREADSHEET CLASSES

class NumberCel1
{
public:

virtual

NumberCell(HINSTANCE hlnst, HWND hwndParent,
int xPos = 0, int yPos = 0,
int width = 0, int height = 0);

~NumberCell () ;

To support editing operations, NumberCell provides member functions to move
the cell, update the cell's value based on the EditControl text, and redraw the
cell's text.

II Move the cell to x,y with width wand height h
void Move(int x = 0, int y = 0, int w = 0, int h 0);
II Set the cell format to the edit format.
void Edit () ;
II Reformat the cell based on its new format.
int Update();

NumberCell also provides a number of accessor member functions to access the
state of the cell.

void

HWND
WORD

BOOL
void

BOOL
BOOL

SetFormat(const NumberFormat &nf);

GetEditHandle();
GetID() ;

GetFormatErrorStatus();
SetFormatErrorStatus(BOOL errorStatus);

HasBeenAltered();
SetAlteredStatus(BOOL newStatus);

Lastly, NumberCell declares its data members, including a handle to its
EditControl, the FormattableNumber, and a dirty flag.

NumberCell also declares several static data members. It keeps track of the last
cell ID number used in the static data member fCellNumber, ensuring that each
Windows EditControl object has a unique ID. NumberCell also tracks the
EditControl's overridden and original message handler to help implement the
application's customized EditControl.

static int
static FARPROC
static FARPROC

private:

} ;

HWND
FormattableNumber
BOOL
BOOL

fCellNumber;
fLpfnNewEditProc;
fLpfnOldEditProc;

fHwndEditControl;
fNumber;
fErrorlnFormat;
fAltered;

II last cell id used

II Handle to the enclosed edit control.
II Formattable number enclosed in the cell.
II Error status flag.
II Altered status flag.

FOR WINDOWS AND OS/2 DEVELOPERS

78 CHAPTER 5 CREATING niE APPLICATION FOR WINDOWS

DESIGNING THE SPREADSHEET CLASSES

FormattableNumber
class design

FormattableNumber translates a number into formatted text. Its key member
function is Format, which does the actual work of converting the
FormattableNumber object's current value and format options into a text string.
FormattableNumber also provides member functions to access the format
options and the value.

class FormattableNumber {
public:

II Standard member functions
FormattableNumber(double d = 0.0);
FormattableNumber(double d, const NumberFormat& nf);

virtual ~FormattableNumber() {};

virtual FormattableNumber&
operator=(const FormattableNumber &fn);

virtual FormattableNumber&
operator=(double v);

II Formatting member function
virtual void Format(char* fresult);

II Accessor member functions
virtual double GetValue();
virtual void SetValue(double d) const;

virtual const NumberFormat&
GetFormat();

virtual void SetFormat(const NumberFormat& nf) const;

private:

} ;

double
NumberFormat

fValue;
fFormat;

II Value part.
II Current format.

THE POWER OF FRAMEWORKS

NumberFormat
class design

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 79
DESIGNING THE SPREADSHEET CLASSES

The design of NumberFormat is straightfonvard. It provides accessors to allow
the caller to get and set the values of its various formatting data members. It also
provides a static member function GetGeneralNumberFormat that you can use
to set a NumberFormat to the defaults for the current locale.

class NumberFormat {
public:

static const char kCommaCharj
static const char kDollarSignChar;
static const char kPeriodChar;
static const int kDefaultPrecision;
static const int kZeroPrecision;

II Standard c++ member functions
NumberFormat(int prec = kDefaultPrecision,

BOOL delimtd = TRUE, BOOL curncy = FALSE,
char intSep = kCommaChar, char decSep = kPeriodChar,
char curncySym = kDollarSignChar);

NumberFormat(const NumberFormat &nf);
NumberFormat& operator=(const NumberFormat& nf);
-NumberFormat() {};

II Accessor member functions
void Set(int prec = kZeroPrecision,

BOOL delimtd = FALSE, BOOL curncy = FALSE,
char intSep = kCommaChar, char decSep = kPeriodChar,
char curncySym = kDollarSignChar)j

int GetPrecision() const;

BOOL IsThousandsDelimitted() const;
BOOL IsCurrency() const;

char GetlntSeparator() const;
char GetDecSeparator() const;
char GetCurrencySymbol() const;

II utility member function: creates a basic number format
static NumberFormat

GetGeneralNumberFormat();

private:
int
BOOL
BOOL
char
char
char

fPrecision;
fThousandsDelimitted;
fCurrency;
fIntSeparator;
fDecSeparator;
fCurrencySymbol;

}; .

~ NOTE This version of the application is not fully usable in countries other
than the U.S., because the GetGeneralNumberFormat member function hard
codes the values of the currency and separator characters to correspond to those
used in the U.S. As we'll discuss in Chapter 6, correcting this deficiency is a major
framework design task for the next version of this application.

FOR WINDOWS AND OS/2 DEVELOPERS

80 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE WINDOWS INTERFACE

IMPLEMENTING THE WINDOWS INTERFACE

Now that the basic application design is in place, we can implement the
application. We'll begin with the Windows interface code.

Implementing WinMain As with most Windows programs written in C or C++, WinMain is the initial entry
point for our program. C programmers who are not familiar with Windows
programming conventions can think of this function as equivalent to the main
function in a standard C program.

When WinMain is invoked by the Windows application runtime, it initializes its
WNDCLASS and creates a window. WinMain then drops into the message loop,
which is responsible for receiving keyboard and mouse events and dispatching
them to the appropriate application function where these events are processed.

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpszCmdParam, int nCmdShow)

{
HWND hwnd;
MSG msg;
WNDCLASS wndclass;

hInst = hInstance;

II set up our window class structure if this is our first instance
if (!hPrevInstance)
{

}

wndclass.style
wndclass.lpfnWndProc
wndclass.cbClsExtra
wndclass.cbWndExtra
wndclass.hInstance
wndclass.hIcon
wndclass.hCursor
wndclass.hbrBackground
wndclass.lpszMenuName
wndclass.lpszClassName
RegisterClass(&wndclass);

CS_HREDRAW I CS_VREDRAW;
(WNDPROC) WndProc;
0;
0;
hInstance;
LoadIcon(NULL,IDI_APPLICATION);
LoadCursor(NULL, IDC_ARROW);
GetStockObject(LTGRAY_BRUSH);
MAKEINTRESOURCE(MENU_l);
szAppName;

THE POWER OF FRAMEWORKS

}

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 81

II create our window
hwnd = CreateWindow(szAppName,

"Power of Frameworks
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL,
NULL,
hlnstance,
NULL) ;

ShowWindow(hwnd, nCmdShow);
UpdateWindow(hwnd);

IMPLEMENTING THE WINDOWS INTERFACE

I" ,
II window class name
II window caption

Iistyle
II initial x position
II initial y position
II initial x size
II initial y size
II parent window handle
II window handle menu
II program instance handle

II creation parameters

II handle incoming messages til we're told to quit
while (GetMessage(&msg, NULL, 0, 0»
{

}

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.wParam;

Implementing WndProc When a message is sent to the application window, the Windows routine
DispatchMessage passes that message to the WndProc function. WndProc's
primary job is to take this message and redispatch it within the application.

Window manipulation
messages

Menu command
messages

WndProc handles several different types of messages, including window
manipulation messages, menu commands, and some special number formatting
messages generated by the application.

Generally speaking, WndProc handles its window-related messages,
WM_CREATE, WM_SIZE, WM_CTLCOLOR, and WM_DESTROY, by calling the
appropriate routines from the Windows API.

WM_COMMAND messages are sent when the user chooses a menu command,
using the mouse or a keyboard accelerator. WndProc passes WM_COMMAND
messages to another global subroutine, WndCommand, for further processing.

FOR WINDOWS AND OS/2 DEVELOPERS

82 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE WINDOWS INTERFACE

Application-defined
formatting messages

At certain points in the execution of the application, it can be difficult to update
the user interface directly by calling application routines. Windows programs
allow applications to create and send their own custom message types to tell the
user interface to perform special actions. We use this technique in our program
in two ways:

Il WM_FORMATCELL messages are generated by the Format Cell dialog box
when the user clicks the OK button or double-clicks a format in the dialog
box's scrolling list. The dialog box message handler sends this message back
to the application to tell WndProc to update the cell's format.

User selects
"Format Cell"
menu item

: IDM_FORMATCELL message sent •
WndProc .11111111

~ ,..
h..

NumberFormatDlgProc
y

FORMAT CELL COMMAND PROCESSING

WM_FORMATCELL message

1I111111111111111111111111111111111111'.~

~ ...
~ o _
~

~~
[VII I'~~

'----------.-.--.-.-. pressed

I:=::================:j

Il WM_FORMATERROR messages are generated during focus-change
operations when the user enters an illegal number. When this message is
processed, it forces the focus to return to the cell containing the error and
beeps, giving the user the opportunity to correct the problem.

THE POWER OF FRAMEWORKS

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 83
IMPLEMENTING THE WINDOWS INTERFACE

The code for WndProc is show here in its entirety.

long _export FAR PASCAL WndProc(HWND hwnd, WORD message,
WORD wParam, LONG lParam)

{

FOR WINDOWS AND OS/2 DEVELOPERS

HDC hdc;
POINT point;

II create the grid if it hasn't been initialized previously
if (!theGrid)

theGrid = new NumberGrid«hInst, hwnd, 0, 0,
KNROWS, KNCOLS, KNCHARSPERCELL);

II default background color
const COLORREF KRGBLTGRAY = RGB(0xC0, 0xC0, 0xC0);
II cell with focus background color
const COLORREF KRGBDKGRAY = RGB(0x80, 0x80, 0x80);

static HBRUSH hBrushLtGray, hBrushDkGray;

switch (message)
{

case WM_CREATE
II Use a fixed-spaced font

'hdc = GetDC(hwnd);
SelectObject(hdc, GetStockObject(SYSTEM_FIXED_FONT»;
ReleaseDC(hwnd, hdc);

II set focus to first cell in grid
theGrid->ChangeFocus();

II create our gray brushes
hBrushLtGray CreateSolidBrush(KRGBLTGRAY);
hBrushDkGray = CreateSolidBrush(KRGBDKGRAY);
return 0;

case WM_SIZE:
II Center the grid:
theGrid->Center(hwnd);
return 0;

84 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE WINDOWS INTERFACE

}

}

case WM_CTLCOLOR:
II repaint edit controls in grid
if «int) HIWORD(IParam) CTLCOLOR_EDIT)
{

}

point.x = point.y = 0;
ClientToScreen(hwnd, &point);

II if we're handling the current cell
if (GetWindowWord«HWND)LOWORD(IParam), GWW_ID)

theGrid->GetCurrentCell(»
{

}

else
{

}

II draw hilited
SetBkColor«HDC) wParam, KRGBDKGRAY);
UnrealizeObject(hBrushDkGray);
SetBrushOrg«HDC) wParam, point.x, point.y);
return «DWORD) hBrushDkGray);

II draw unhilited
SetBkColor«HDC) wParam, KRGBLTGRAY);
UnrealizeObject(hBrushLtGray);
SetBrushOrg«HDC) wParam, point.x, point.y);
return «DWORD) hBrushLtGray);

break;

case WM_COMMAND:
II handle user command (from menus, etc.)
return WndCommand(hwnd, message, wParam, IParam);

case WM_FORMATCELL:
II reformat and display the cell text using the new format
theGrid->FormatCurrentCell«int) IParam);
return 0;

case WM_FORMATERROR:
II Format error, reset focus to cell with error
SetFocus(LOWORD(IParam»;
SendMessage(LOWORD(IParam), EM_SETSEL, 0, MAKELONG(0, 0x7fff»;
return 0;

case WM_DESTROY:
DeleteObject(hBrushLtGray);
DeleteObject(hBrushDkGray);
PostQuitMessage(0);
return 0;

return DefWindowProc(hwnd, message, wParam, IParam);

THE POWER OF FRAMEWORKS

Implementing
WndCommand

CHAPTER5 CREATING THE APPLICATION FOR WINDOWS 85

IMPLEMENTING THE WINDOWS INTERFACE

WndCommand is called by WndProc to handle any command messages that are
sent to the application. These command messages are typically sent by menus.

WndCommand performs the following actions:

o Checks whether the command message changes the focus from one cell
to another.

If so, WndCommand calls ProcessFocusChange and returns.

fJ Caches the current cell number and its corresponding EditControl for
future use.

This saves many calls to retrieve the current cell number and edit handle
later in the function.

B Executes the correct command handler for the command number using a
switch statement.

Three distinct commands are handled: the IDM_EXIT command message
tells the application to quit by converting the command into a WM_CLOSE
message; the IDM_ABOUT command displays a simple about box; the
IDM_FORMATCELL command displays the Format Cell dialog box, after
verifying that the cell contains valid numeric data.

WndCommand's implementation is shown here.

long WndCommand(HWND hwnd, WORD message, WORD wParam, LONG lParam)
{

NumberCell* ncp;

II if user has clicked on a new cell.
if (HIWORD(lParam) EN_KILLFOCUS I I HIWORD(lParam) == EN_SETFOCUS)
{

}

II Reset the format on the cell losing the focus, if necessary.
ProcessFocusChange(hwnd, lParam, theGrid);
return 0;

II get current cell and its handle
int current theGrid->GetCurrentCell();
HWND handle = theGrid->GetHandle(current);

FOR WINDOWS AND OS/2 DEVELOPERS

86 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE WINDOWS INTERFACE

}

switch (wParam)
{

}

SendMessage(hwnd, WM_CLOSE, 0, (1);
return 0;

case IDM_FORMATCELL:
ncp = (NumberCell*) GetProp(handle, (LPSTR) KNUMBERCELLPROP);
if (! ncp->HasBeenAltered(»

ncp->Edit () ;

II if the cell does not contain a valid numeric str~ng
if (!theGrid->IsValidEntry(current»
{

}

(theGrid->GetCell(current»->SetFormatErrorStatus(TRUE);
MessageBeep(0);
MessageBox(hwnd, "Invalid Numeric Format",

"Number Cell Error", MB_ICONEXCLAMATION);
SetFocus(handle);
SendMessage(handle, EM_SETSEL, 0, MAKELONG(0, 0x7fff»;
II return -- don't open the dialog
return 0;

II valid numeric format, display the format number cell dialog
IpfnNumberFormatDlgProc = (DLGPROC) MakeProcInstance(

(FARPROC) NumberFormatDlgProc, hInst);
DialogBox(hInst, MAKEINTRESOURCE(DIALOG_1), hwnd,

IpfnNumberFormatDlgProc);
FreeProcInstance(lpfnNumberFormatDlgProc);
return 0;

case IDM_ABOUT:
MessageBox(hwnd, "Power of Frameworks Sample Application\n"

Copyright 1995 Taligent, Inc.",
"Power of Frameworks I", MB_ICONINFORMATION 1MB_OK);

return 0;

default :
return DefWindowProc(hwnd, message, wParam, IParam);

THE POWER OF FRAMEWORKS

Implementing
ProcessFocusChange

Getting the new
NumberCell object

Getting the old
NumberCell object

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 87
IMPLEMENTING THE WINDOWS INTERFACE

ProcessFocusChange is called by WndCommand if the command message passed
in has the EN_KILLFOCUS or EN_SETFOCUS parameter set.

ProcessFocusChange reformats and displays the cells that are losing and
receiving focus. The cell losing focus is displayed in the format the user selected
when that cell was current. The cell receiving focus is redisplayed in a generic
format suitable for editing.

Because ProcessFocusChange is a fairly complicated function, we'll walk through
its implementation step-by-step.

To begin with, ProcessFocusChange gets a pointer to the cell that is receiving
focus (that is, the cell that was just mouse-clicked by the user).

void ProcessFocusChange(HWND hwnd, LONG IParam, NumberGrid* grid)
{

II NumberCel1 id of cell losing the focus
int nOldCurrent;
II Windows handle of edit control losing the focus
HWND hwndOldCurrent;

II Get a pointer to the enclosing NumberCel1
NumberCell* newCel1 = (NumberCell*) GetProp(LOWORD(IParam),

(LPSTR) KNUMBERCELLPROP);

As described earlier, the NumberCell constructor stores a pointer to the
NumberCell in its EditControl member's property list. The ProcessFocusChange
function is passed a handle to the EditControl that is receiving focus in its IParam
parameter.

Next, ProcessFocusChange retrieves the NumberCell associated with the
EditControl that is losing focus. The following code does this.

II if we need to process a focus change
if (HIWORD(IParam) == EN_SETFOCUS)
{

II the edit control has received input focus ...
II save the cell number of the cell losing the focus
nOldCurrent = grid->GetCurrentCell();

II get a handle to the edit control losing the focus
hwndOldCurrent = grid->GetHandle(nOldCurrent);

II get a handle to the NumberCel1 enclosing the edit control
NumberCell* ncpOldCurrent = (NumberCell*)

GetProp(hwndOldCurrent, (LPSTR) KNUMBERCELLPROP);

FOR WINDOWS AND OS/2 DEVELOPERS

88 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE WINDOWS INTERFACE

Updating the old
NumberCeil's value

The first statement asks the NumberGrid for its index to the current cell. At this
point in the focus-change process, NumberGrid still considers the current cell to
be the one that is losing, not receiving, the focus. (We'll update NumberGrid's
current cell information later in this function.) Next, ProcessFocusChange
retrieves the handle of the EditControl that corresponds to the cell's index.
Finally, ProcessFocusChange gets a pointer to the NumberCell that encapsulates
this EditControl; it uses the property list just as it did for the cell receiving focus.

Now that ProcessFocusChange knows about the old and new NumberCell
objects, it can take the text the user entered in the old cell and convert it back to
a number. A number of error conditions can arise when doing this conversion.
To handle these errors, ProcessFocusChange verifies whether the cell has a
format error both before and after it attempts the conversion, and, if an error
condition exists, ProcessFocusChange passes a WM_FORMATERROR message to
the application's event queue and returns.

II if there's already a numeric format error
if (ncpOldCurrent->GetFormatErrorStatus(»
{

II return to the cell to edit it
PostMessage(hwnd, WM_FORMATERROR, 0, hwndOldCurrent);
II and try again
ncpOldCurrent->SetFormatErrorStatus(FALSE);
return;

}

II update appropriately sets the format error status
ncpOldCurrent->Update();

II if we have a format error produced by update
if (ncpOldCurrent->GetFormatErrorStatus(»
{

II return to the cell and edit it
PostMessage(hwnd, WM_FORMATERROR, 0, hwndOldCurrent);
return;

}

THE POWER OF FRAMEWORKS

Finishing the focus
change

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 89
IMPLEMENTING THE WINDOWS INTERFACE

Now that the text of the EditControl has been converted into a number,
ProcessFocusChange can complete the focus-change operation. It tells the grid
to change its currently selected cell and forces the window to redraw both the old
and new cells so that their background color reflects the new selection. Finally,
ProcessFocusChange tells the newly activated cell's EditControl to start its text
editing loop.

}
}

II OK update, highlight the new current cell
II set the current cell number to the cell receiving the focus
grid->SetCurrentCell(GetWindowWord(ncp->GetEditHandle(), GWW_ID»;

II invalidate (the rectangle) of the edit control losing the input focus
InvalidateRect(grid->GetHandle(nOldCurrent), NULL, TRUE);

II force the old EditControl to paint, thus turning off the
II highlighting for this cell
SendMessage(grid->GetHandle(nOldCurrent), WM_PAINT, 0, 0L);

II force it to paint, thus turning off the highlighting for this cell
InvalidateRect(grid->GetHandle(grid->GetCurrentCell(», NULL, TRUE);
SendMessage(grid->GetHandle(grid->GetCurrentCell(», WM_PAINT, 0, 0L);

II activate editing for the new current cell
ncp->Edit();

FOR WINDOWS AND OS/2 DEVELOPERS

go CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE SPREADSHEET CLASSES

IMPLEMENTING THE SPREADSHEET CLASSES

Implementing
NumberGrid

NumberGrid constructor

With the Windows application layer in place, we can implement our
spreadsheet classes.

We'll start by implementing the NumberGrid class.

The NumberGrid constructor sets up the application's default font, creates a grid
of cells, and initializes the selection to point to the first cell.

NumberGrid: : NumberGrid(HINSTANCE hlnst, HWNO hwnd , int xPos, int yPas,
int rows, int cals, int nCharsPerCell)

{

}

int i, j;
int xChar, yChar;

HOC hdc;
TEXTMETRIC tm;

II Get fixed font width and height:
hdc = GetOC(hwnd);
SelectObject(hdc, GetStackObject(SYSTEM_FIXEO_FONT»;
GetTextMetrics(hdc, &tm);
xChar = tm.tmAveCharWidth;
yChar = tm.tmHeight + tm.tmExternalLeading + tm.tmHeight I 2;
ReleaseOC(hwnd, hdc);

II create the grid cells:
fCellHeight = yChar;
fCellWidth = nCharsPerCel1 * xChar;
fNRaws = rows;
fNCals: = cals;
fGrid = new NumberCel1 ** [rows];
for (i = 0; i < rows; ++i)

fGrid[i] = new NumberCel1 * [cals];

for (i = 0; i < rows; ++i)
for (j = 0; j < cals; ++j)

fGrid[i][j] = new NumberCell(hlnst, hwnd,
xPas + j * fCellWidth,
yPas + i * fCellHeight,
fCellWidth, fCeIIHeight);

II first cell in the grid is the current cell
fCurrentCel1 = 0;

THE POWER OF FRAMEWORKS

Maintaining the
currently selected cell

Handling cell formatting

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 91
IMPLEMENTING THE SPREADSHEET CLASSES

NumberGrid has a number of member functions which maintain the current
selection. When the focus changes, NumberGrid changes the ID of the
currently selected cell and tells Windows to set the editing focus to the
EditControl of that cell.

int NumberGrid: :ChangeFocus(int nCellNo)
{

}

II return 0 if new cell invalid
if (nCellNo < 0 I I nCellNo > fNRows * fNCols)

return 0;

II set focus
SetFocus(fGrid[nCellNo/fNCols] [nCellNo % fNCols]->GetEditHandle());

II make it the current cell
SetCurrentCell(nCellNo);

return 1;

NumberGrid also has member functions to get and set the currently selected cell
ID and convenience member functions such as GetCell to provide easy access to
cell information. For the implementations of these member functions, refer to
the source code on the CD-ROM that accompanies this book.

When the user clicks the OK button or double-clicks a format item in the
scrolling list, the dialog box posts a WM_FORMATCELL message with its IParam
set to the index of the format. The message is eventually handled by WndProc,
which then calls NumberGrid's FormatCurrentCell member function to change
the format of the currently selected cell.

FormatCurrentCell then creates and initializes a NumberFormat that
corresponds to the format the user wants, changes the cell's format to match, and
then forces an update of that cell.

void NumberGrid: :FormatCurrentCell(int nFormatCode)
{

NumberFormat theFormat;

II change the format according to the user Format menu choice
switch (nFormatCode)
{

case 0:
theFormat.Set(0, FALSE, FALSE);
break;

case 1:
theFormat.Set(0, TRUE, FALSE);
break;

case 2:
theFormat.Set(l, FALSE, FALSE);
break;

case 3:
theFormat.Set(2, FALSE, FALSE);
break;

FOR WINDOWS AND OS/2 DEVELOPERS

92 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE SPREADSHEET CLASSES

Implementing
NumberCell

NumberCeli constructor

}

case 4:
theFormat.Set(l, TRUE, FALSE);
break;

case 5:
theFormat.Set(2, TRUE, FALSE);
break;

case 6:
theFormat.Set(2, FALSE, TRUE);
break;

case 7:
theFormat.Set(2, TRUE, TRUE);
break;

II set the current cell to the appropriate format
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->SetFormat(theFormat);

}

II update it
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Edit();
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Update();

The implementation of the NumberGrid class is now complete.

NumberCell's implementation is more complicated than that of NumberGrid,
due mostly to its interactions with the Windows EditControl it owns.

The NumberCell constructor creates the EditControl object and replaces its
standard EditProc with its own custom version, EditWndProc, which notifies the
NumberCell when the text of the EditControl has been altered. NumberCell
stores the old EditProc handle so that it can call it from the EditWndProc routine
to do the actual text editing. In this respect, Windows' handler system allows us
to achieve a simplified form of polymorphism, which is a lot less work than
creating a complete text editing control from scratch.

The constructor then stores a pointer to this NumberCell object in a named
property of the EditControl. NumberCell uses this pointer to convert an
EditControl handle, passed to it by Windows, into a NumberCell object pointer.

Finally, NumberCell initializes its data members as usual.

THE POWER OF FRAMEWORKS

Text editing support

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 93
IMPLEMENTING THE SPREADSHEET CLASSES

NumberCell: :NumberCell(HINSTANCE hlnst, HWND hwndParent , int xPos, int yPos,
int width, int height) : fNumber()

{

}

fHwndEditControl = CreateWindow("edit", NULL,
WS_CHILD I WS_VISIBLE I WS_BORDER
xPos, yPos, width, height,
hwndParent, fCeIINumber++,
hlnst, NULL);

II create a single thunk for the new edit proc
if (!fLpfnNewEditProc)

fLpfnNewEditProc = MakeProclnstance«FARPROC) EditWndProc, hlnst);

II subclass the old edit proc
fLpfnOldEditProc = (FARPROC) GetWindowLong(fHwndEditControl, GWL_WNDPROC);
SetWindowLong(fHwndEditControl, GWL_WNDPROC, (LONG) fLpfnNewEditProc);

II store the handle to the NumberCel1 in the edit control property list
SetProp(fHwndEditControl, (LPSTR) KNUMBERCELLPROP, (HANDLE) this);

II new cell, has never been altered, format is OK
fAltered = FALSE;
fErrorlnFormat = FALSE;

For NumberCell to know when to update the number in its
FormattableNumber object when the user types a new value, NumberCell keeps
track of when the user makes a change to the EditControl. As mentioned
previously, this is done in a custom EditWndProc. The implementation of
EditWndProc is simple. When the user types a character, EditWndProc sets the
dirty bit of the EditControl's cell object.

long _export FAR PASCAL EditWndProc(HWND hwnd, WORD message,
WORD wParam, LONG IParam)

{

}

II This procedure is used to subclass the edit control.
II The new edit proc intercepts keystrokes and "marks"
II the NumberCel1 as "altered."
switch (message)
{

}

case WM_KEYDOWN:
II user has typed character into edit control, set to altered
NumberCell* cell = (NumberCell*) GetProp(hwnd, (LPSTR) KNUMBERCELLPROP);
cell->SetAlteredStatus(TRUE);
break;

II Call the old Windows edit proc
return CaIIWindowProc(NumberCell: :fLpfnOldEditProc, hwnd, message, wParam,
IParam) ;

FOR WINDOWS AND OS/2 DEVELOPERS

94 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE SPREADSHEET CLASSES

Updating the cell's
display

Next, NumberCell handles the preparations for editing. When the user clicks in
a cell, the NumberCell reformats the number without any excess punctuation
such as dollar signs and commas. This makes it easier to validate the input, and
lets users see exactly what they're entering. To prepare, the Edit member
function creates a temporary FormattableNumber and uses it to get the
simplified text version of the number. It then sets the EditControl to that text.

void NumberCell::Edit()
{

}

char szBuffer[32] , szEditStr[32];

II if the cell has been altered, done editing
if (fAltered)

return;

II is the cell text empty? if so, return
if (IGetWindowText(fHwndEditControl, szEditStr, sizeof(szEditStr»)

return;

II Not empty, edit the cell in-place:
II create a temporary FormattableNumber
FormattableNumber aTempFNumber(fNumber.GetValue(), fNumber.GetFormat(»;

II set it to the "general format"
NumberFormat editFormat(2, FALSE, FALSE, NULL, '. ');
aTempFNumber.SetFormat(editFormat);

II Format its edit text
aTempFNumber.Format(szBuffer);

II Replace the edit control text with the newly formatted string
SetWindowText(fHwndEditControl, szBuffer);
fAltered = TRUE;

When an event occurs that causes editing to complete, such as a focus-change
message, NumberCell updates the FormattableNumber's value from the
EditControl's text. This is done in the Update member function.

Update verifies whether the text in the EditControl was altered. If nqt, it returns
immediately. If the text did change, Update extracts it and uses the standard
library function strtod to do the conversion. If no error occurs, Update changes
the text of the EditControl to match the newly formatted number, because the
user doesn't need to see the stripped-down editing format once editing is
complete.

If an error does occur, Update displays an error dialog box and aborts the
update process.

THE POWER OF FRAMEWORKS

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 95
IMPLEMENTING THE SPREADSHEET CLASSES

int NumberCell: :Update()
{

}

FOR WINDOWS AND OS/2 DEVELOPERS

char szBuffer[32] , *endPtrj
double dTempj

if (!fAltered)
return 1j

II is the cell empty?
if (!GetWindowText(fHwndEditControl, szBuffer, sizeof(szBuffer)))
{

}

II if so, format is OK
fErrorInFormat = FALSEj
fAltered = FALSEj
return 1j

II if we have a bad numeric format, abandon update.
if (fErrorInFormat)

return 0j

II attempt numeric conversion
dTemp = strtod(szBuffer, &endPtr)j

II if endPtr is NULL, conversion was successful
if (!*endPtr)
{

}

II update FormattableNumber value member
fNumber = dTempj

II compute the new format
fNumber.Format(szBuffer)j

II set the edit cell to that format
SetWindowText(fHwndEditControl, (LPSTR) szBuffer)j

fErrorInFormat = FALSEj
fAltered = FALSEj
return 1j

II Record that the user has typed-in a bad numeric format
fErrorInFormat = TRUEj

II Signal an error
MessageBeep(0)j
MessageBox(fHwndEditControl, "Invalid Numeric Format",

"Number Cell Error", MB_ICONEXCLAMATION) j

return 0j II unsuccessful update

96 CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS

IMPLEMENTING THE SPREADSHEET CLASSES

Implementing
NumberFormat

Implementing
FormattableNumber

Format member function

NumberFormat is a convenience class, and, as such, its implementation is very
simple. It consists almost entirely of getters for its component data members. It
also has a single member function, Set, which can be used to update the entire
format with a single call. The implementations of Set and GetIntSeparator, a
typical getter member function, are shown here.

void NumberFormat::Set(int prec, BaaL delimtd, BaaL curncy,
char intSep, char decSep, char curncySym)

{

}

fPrecision = preci
fThousandsDelimitted = delimtd;
fCurrency = curncYi
flntSeparator = intSepi
fDecSeparator = decSepi
fCurrencySymbol = curncySymi

char NumberFormat::GetlntSeparator() const
{

return flntSeparatori
}

FormattableNumber is responsible for the conversion of numbers to text. The
bulk of the class's implementation consists of accessor members.

As with the other classes in the application, FormattableNumber provides
accessor member functions that allow its format and numeric value to be
manipulated. The code for the format state accessors is shown here.

const NumberFormat& FormattableNumber: :GetFormat() const
{

return fMyFormati
}

void FormattableNumber::SetFormat(const NumberFormat &nf)
{

fMyFormat = nfi
}

The most important member function in FormattableNumber is Format, which
is responsible for converting the value and format into a string. To perform this
conversion, Format first divides the numeric value into its component parts by
calling the standard library function fcvt.

It then creates a formatted string by applying the sign, currency character, and
thousands separators to the number as needed. Notice that the positioning of
these characters in the number is fixed in this version of the application, which is
not very international-friendly.

THE POWER OF FRAMEWORKS

CHAPTER 5 CREATING THE APPLICATION FOR WINDOWS 97
PUTTING THE APPLICATION TOGETHER

void FormattableNumber::Format(char *fresult)
{

}

int decimal, sign;
char *buffer;
const int BUFFLEN = 81;
char outbuf[BUFFLEN];
ostrstream ostrstr(outbuf, BUFFLEN);

buffer = fcvt(fValue, fMyFormat.GetPrecision(), &decimal, &sign);

II negative sign?
if (sign)

ostrstr « "-";

II Currency?
if (fMyFormat.IsCurrency(»

ostrstr « fMyFormat.GetCurrencySymbol();

II print the decimal part:
for (char* digits = buffer; digits < (buffer + decimal); ++digits)

{

}

ostrstr « *digits;
II delimitted integer format?
if (fMyFormat.IsThousandsDelimitted(»

{
if «digits < (buffer + decimal - 1» &&

«buffer + decimal - digits - 1) I sizeof(char» % 3 0)
ostrstr « fMyFormat.GetlntSeparator();

}

if (fMyFormat.GetPrecision() > 0) II there's a decimal point
ostrstr « fMyFormat.GetDecimalSeparator();

while (*p) II print the decimal part
ostrstr « *p++;

ostrstr « NULL;

strcpy(fresult, outbuf);

PUTTING THE.APPLICATION TOGETHER

This version of the application is now complete. We have a simple but serviceable
spreadsheet, one that a user can use to edit and format numbers. Even though
the application has some problems with international formatting, its design lays
the foundation for a version that handles these issues correctly.

FOR WINDOWS AND OS/2 DEVELOPERS

98

THE POWER OF FRAMEWORKS

CHAPTER 6

DESIGNING A

NUMBER FORMATTING

FRAMEWORK FORVVINDOWS

At this point, we have a workable, if somewhat simplistic, Windows
application, which we will run through the usual process of testing and then
shipping to customers.

As customers use the product, they report bugs and submit feature requests.
Some of the feature requests are minor (use a different font, and so on), while
others are more complex. Of the feature requests we receive, two of the most
common are the ability to format numbers as fractions (to display stock prices)
and the ability to use the program in other countries. Time is short, so we decide
to concentrate on adding support for other countries first, but we also want to
make sure that it's possible to add support for fractions later without having to
redesign or rewrite a lot of code.

Our current implementation of the program has room for improvement. Even
though we've divided the problem into a set of objects, adding support for
international number formatting to the existing application forces us to make
significant changes to the design and implementation of our NumberCell and
NumberFormat classes.

However, because the application wasn't designed to be extensible, we can see
that these types of problems will probably reappear the next time we have to
add features.

Rather than just do a patch on the existing design, we decide to develop a
general solution to the number formatting problem: creating a number
formatting framework. We'll still be able to reuse, with some editing, much of the
code created for the first version of the sample, including virtually all the existing
code for the user interface.

FOR WINDOWS AND OS/2 DEVELOPERS

99

100 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

DESIGNING THE FRAMEWORK

In the current implementation of the application, the FormattableNumber class
is responsible for building the formatted number string. While having a single
object that can format itself seemed reasonable at the time, it poses a few
problems now. For example, to add support for displaying fractions to the
FormattableNumber, we'll need to add case and if statements to many different
formatting routines.

We also want to be able to add new number formatting capabilities to the
application later, without adding lots of new classes or revisiting existing ones.
Thus, the core of the framework should be a class that formats numbers
generically, TNumberFormatter. We'll create subclasses ofTNumberFormatter to
format numbers in more specific ways. For example, to format floating-point
numbers, we'll add a TFloatingPointFormatter class to the framework.

Because the current application design allows only the double value kept by
FormattableNumber to be used, we also want to provide a more general way of
passing numbers to TNumberFormatter. In its place, the framework provides a
more general TFormattableNumber class that can be passed to any
TNumberFormatter object. Like the old NumberFormatter class,
TNumberFormatter uses a double to represent the number being formatted.

Unlike NumberFormatter, this design lets us create a subclass of
TFormattableNumber to represent new data types, which in turn lets us
format numeric data types about which the framework itself knows nothing. A
future version of the application could use a Binary-Coded Decimal (BCD)
class for its calculations, and by using a TFormattableBCDNumber class, the
application would be able to format these values without modifying the
underlying framework.

This kind of flexibility is one of the keys to good framework design. The
framework provides reasonable default behavior that lets us format floating-point
numbers, but it also allows for future extensibility without affecting the
underlying framework design and implementation.

We also need a way to communicate formatting errors to framework clients.
Correctly designed classes usually respond to error conditions by throwing
exceptions or returning error codes, either of which is perfectly
appropriate when there are no shades of grey in the success or failure of a
particular operation.

However, when formatting a number, error conditions are not always so clear.
Number formatting operations rarely fail outright, but it is possible that the
result won't serve the needs of the client. For example, the space available to
display the number can be fixed in width, and you might want to display the

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 101

DESIGNING THE FRAMEWORK

number in a different format (such as scientific notation) to allow it to fit into
the allocated space. To address this issue, we need to create a class that allows us
to return more detailed results to the client. This class, TFormatResult, includes
error information and more general information about the formatting results.

Finally, we need a TNumberFormatLocale class, which stores the common
formatter types used for a given area of the world. This class is used to isolate the
international dependencies from the rest of the framework.

The class hierarchy of the framework is shown in the following figure.

TNumberFormatLocale

I:::. TNumberFormatter

I:::. Format

TFloatingPointNumberFormatter

Format

TText

TFormattableNumber

fValue

TFormatResult

CLASS HIERARCHY OF THE NUMBER FORMATTING FRAMEWORK

This method of formatting offers advantages over the previous technique we
used. For one, the TFormattableNumber object does not have to carry
specialized functions to format itself. It's 'Just" data. Formatting knowledge is
kept in the TNumberFormatter class hierarchy. This separation makes it easier to
use, maintain, and extend these classes.

Using these classes in the application requires minor revisions to the
NumberCell class, described in "Updating NumberCell" on page 122.

~ NOTE The framework also uses a TText class, which represents a standard
ASCII string. Because its implementation is straightforward, the design and
implementation of this class is not shown in the book. The source code for this
class is included on the accompanying CD-ROM.

Now that our basic design is in place, we'll begin filling out the design of the
framework's classes.

FOR WINDOWS AND OS/2 DEVELOPERS

102 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

Designing
TNumberFormatter

Format member functions

Formatting support
member functions

Accessor member
functions

The first class we need to design is TNumberFormatter. TNumberFormatter's
primary function is to "remember" a formatting style and to convert a numeric
value into a textual representation using that style.

The Format member functions are the core of the TNumberFormatter class,
and are the primary member functions called by clients of the framework. They
take a TFormattableNumber, convert it to text according to the format set in
the TNumberFormatter, and return the text to the caller, along with an
optional TFormatResult object that provides additional information about the
conversion process.

virtual bool
virtual bool

Format(constTFormattableNumber& num, TText& resultText);
Format(constTFormattableNumber& num, TText& resultText,

TFormatResult& result);

The Format member function relies on two protected member functions,
SetUpFormattableNumber and FormattableNumberToText, to handle the bulk
of its formatting efforts. SetupFormattableNumber tells TFormattableNumber
how it should process the numeric properties of its value.

FormattableNumberToText does the actual work of converting the numeric
properties of the TFormattableNumber into text. Subclasses of
TNumberFormatter need to override these member functions to provide
more specialized behavior. The default versions of these functions
implemented by TNumberFormatter can handle only simple floating-point
numbers without exponents.

virtual void
virtual void

SetUpFormattableNumber(TFormattableNumber& num);
FormattableNumberToText(const TFormattableNumber& num,

TText& text, TNumberFormatResult& result);

TNumberFormatter also provides a set of accessor member functions that allows
the formatting of the number to be controlled. TNumberFormatter doesn't
know whether the number should be formatted as a floating-point number or as
an integral number, so it can control only the formatting of the sign of the
number. Note that TNumberFormatter also provides accessors that control the
setting of prefix and suffix strings for both positive and negative numbers,
allowing TNumberFormatter to show negative numbers with parentheses.

virtual void
virtual void
virtual void
virtual void
virtual bool
virtual void

GetPlus(TText& prefix, TText& suffix) const;
SetPlus(const TText& prefix, const TText& suffix);
GetMinus TText& prefix, TText& suffix) const;
SetMinus(const TText& prefix, const TText& suffix);
GetShowPlusSign() const;
SetShowPlusSign(bool);

THE POWER OF FRAMEWORKS

Miscellaneous member
functions and data
members

Designing
TFormattableNumber

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 103

DESIGNING THE FRAMEWORK

The remainder of the member functions for the class consists of standard C++
constructors and an assignment operator. The data members store the suffix and
prefix strings, along with a flag that keeps track of whether we want to display the
positive sign prefix and suffix to the user.

TNumberFormatter& operator=(const TNumberFormatter&);

virtual

TNumberFormatter(const TNumberFormatter& format);
TNumberFormatter();
-TNumberFormatter();

private:

} ;

TText
TText
TText
TText
bool

fPlusPrefix;
fPlusSuffix;
fMinusPrefix;
fMinusSuffix;
fShowPlusSign;

TFormattableNumber's primary role is to provide the input number to the
TNumberFormatter, along with information about the number's properties. Its
class declaration is as follows:

class TFormattableNumber {
public:

virtual

TFormattableNumber();
TFormattableNumber(const double number);
TFormattableNumber(const TFormattableNumber& copy);
-TFormattableNumber();

virtual TFormattableNumber& operator=(const TFormattableNumber& toCopy);

typedef unsigned char Digit;
enum {kNoSignificandDigit = 253 };

11--
II Accessors for number's properties
11--

II access the value of the number
virtual double GetNumber() const;
virtual void SetNumber(double);

II Is the number negative
virtual bool IsNegative() const;

FOR WINDOWS AND OS/2 DEVELOPERS

104 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

Setting conversion
parameters

Numeric analysis
member functions

In addition to storing the number as a double, TFormattableNumber provides
access to the individual digits of the number for use by the text converter. It does
so using a string of byte-encoded digits (with "0" having a numeric value of zero),
called the significand. The implicit decimal point is placed after the first digit in
the string, as in scientific notation. Special values exist for infinity, illegal numeric
values (NaNs), and zero.

Before retrieving the significand, the user must allocate storage for the
significand buffer that is at least as large as GetSignificandLength multiplied by
the size of a Digit.

virtual void GetSignificand(Digit* theSignificand) const;
virtual size_t GetSignificandLength() const;

II Exponent represents powers of 10.
virtual long GetExponent() const;

II bool tests for Infinity, NaN and Zero (sign irrelevant)
virtual bool IsZero();
virtual bool IsInfinity();
virtual bool IsNan();

The accessor functions described above provide information about the
properties of the number. Determining these properties requires an analysis of
the value, and TFormattableNumber provides routines to control the number of
significant digits to preserve when doing this analysis.

II Get/SetDigitsFromDecimalPoint controls rounding to a fixed number of
II digits from the decimal point in the significand string when converting.
virtual short GetDigitsFromDecimalPoint() const ;
virtual void SetDigitsFromDecimalPoint(short digitsFromDecimalPoint);

As part of TFormattableNumber's protected interface, we provide routines to
analyze the numeric properties of the number and set its internal fields. The
setters are protected virtual functions; therefore they can be overridden if
necessary by a subclass to fine-tune the analysis process.

protected:
II analyze'the numeric value to determine its properties, using the
II rounding and precision settings of the number. Called automatically whenever
II the number value or any of the rounding/precision values is changed.
virtual void AnalyzeValue();

II set the properties of the number (used by analyzer routine)
virtual void SetAnalysisDirtyFlag(bool flag = TRUE);
virtual void SetSignBit(bool signIsMinus);
virtual void SetSignificand(Digit significand[], size_t length);
virtual void SetExponent(long theExponent);
virtual void SetInfinity();
virtual void SetNan(unsigned short nanCode);

THE POWER OF FRAMEWORKS

Designing
TFloatingPointNumber
Formatter

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 105

DESIGNING THE FRAMEWORK

The class declaration concludes with the definition ofTFormattableNumber's
private data members, which keep track of the number and its properties.

private:

} ;

enum {kBufferLength = 122};
enum {klnfinityDigit = 254};
enum {kNaNDigit = 255};

double
bool
long
size_t
Digit
unsigned short
unsigned short
double
bool

fNumber;
fI sSignMinus;
fExponent;
fSignificandLength;
fSignificand[kBufferLength+2];
fTotalDigitCount;
fDigitsFromDecimalPoint;
fRoundToMultiple;
fAnalysisDirtyFlag;

The TFloatingPointNumberFormatter class adds the ability to format
floating-point numbers to the basic formatting capabilities provided by
TNumberFormatter.

The class declaration begins with the definitions of types and enumerations that
define some of the allowable formatting parameters that the user can set.

class TFloatingPointNumberFormatter : public TNumberFormatter {
public:

typedef unsigned short DigitCount;
enum ESign { kMinusSign = -1, kNoSign = 0, kPlusSign = 1 };

The following are the standard constructors, destructor, and assignment
operator for this class.

TFloatingPointNumberFormatter();
TFloatingPointNumberFormatter(const TFloatingPointNumberFormatter& format);
virtual -TFloatingPointNumberFormatter();
TFloatingPointNumberFormatter&

operator=(const TFloatingPointNumberFormatter&);

FOR WINDOWS AND OS/2 DEVELOPERS

106 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

TNumberFormatter
formatting overrides

Formatting control
accessor functions

The numeric conversion routines SetupFormattableNumber and
FormattableNumberToText, originally defined by TNumberFormatter, are
overridden by TFloatingPointNumberFormatter. These routines do the actual
work of formatting the text string, using the current format state. The overridden
FormattableNumberToText function c~lls two new protected functions,
FormattableNumberToExponentText and FormattableNumberToDecimalText,
to handle the formatting of the exponent and decimal portions of the number.

virtual void SetUpFormattableNumber(TFormattableNumber& num);

virtual void

virtual void

virtual void

FormattableNumberToText(const TFormattableNumber&, TText&,
TNumberFormatResult&);

FormattableNumberToExponentText(const TFormattableNumber&,
TText&, TNumberFormatResult&);

FormattableNumberToDecimalText(const TFormattableNumber&,
TText&, TNumberFormatResult&);

The remainder of the class is made up of accessors that control the formatting of
floating-point numbers.

public:
11===
II Getters and setters.

II in text 1,234,567, the digit group separator text is , ,
II the separator spacing is 3.
II Call SetIntegerSeparator(TRUE) if the digit group separator
II is to be shown for the integer part.
virtual void GetDigitGroupSeparator(TText&) const;
virtual void SetDigitGroupSeparator(const TText&);
virtual DigitCount GetSeparatorSpacing() const;
virtual void SetSeparatorSpacing(DigitCount);
virtual bool GetIntegerSeparator() const;
virtual void SetIntegerSeparator(bool);

II minDigitCount is the minimum number of digits to display when formatting
II a number as text. Also known as zero-padding.
virtual DigitCount GetMinIntegerDigits() const;
virtual void SetMinIntegerDigits(DigitCount);

virtual void
virtual void
virtual void
virtual void

GetNanSign(TText&) const;
GetInfinitySign(TText&) const;
SetNanSign(const TText&);
SetInfinitySign(const TText&);

II SetDecimalSeparator sets the text to be used to separate the integer
II and the fraction parts of numbers. It defaults to a space
virtual void GetDecimaISeparator(TText&) const;
virtual void SetDecimalSeparator(const TText&);

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 107

DESIGNING THE FRAMEWORK

II SetDecimalWithInteger indicates if the decimal point should be
II displayed for integer numbers.
virtual bool GetDecimaIWithInteger() const;
virtual void SetDecimaIWithInteger(bool);

II SetFractionSeparator indicates if the digit group separator text,
II which is set through TNumberFormatter: :SetDigitGroupSeparator,
II should be displayed for the fraction part. It defaults to FALSE.
virtual bool GetFractionSeparator() const;
virtual void SetFractionSeparator(bool);

II SetExponentSeparatorText indicates the text to be used for
II the exponent separator. The default is 'E'.
virtual void GetExponentSeparatorText(TText&) const;
virtual void SetExponentSeparatorText(const TText&);

virtual DigitCount
virtual void
virtual DigitCount
virtual void

GetMinFractionDigits() const;
SetMinFractionDigits(DigitCount);
GetMaxFractionDigits() const;
SetMaxFractionDigits(DigitCount);

II == 1 for scientific, 3 for engineering formats
virtual DigitCount GetExponentPhase() const;
virtual void SetExponentPhase(DigitCount);

virtual double
virtual void
virtual double
virtual void

GetUpperExponentThreshold() const;·
SetUpperExponentThreshold(double);
GetLowerExponentThreshold() const;
SetLowerExponentThreshold(double);

Despite their simplicity, these functions are important to the design of the
framework because they provide a great deal of control over how numbers are
formatted. In fact, they provide more control than is strictly necessary for this
sample program. This is a common by-product of the framework design process:
we have to do more design and implementation work up front to make the
framework truly general. The alternative, of course, is to develop a framework
that is not truly general, and we end up having to redesign and reimplement
everything whenever we want to add new functionality.

Is the cost of adding all this generality worth it? It is if we would have to do most
of the work involved in designing the framework anyway. The previous version of
the program wouldn't work in countries other than the U.S., and it only
supported a limited number of number formats. Adding support for these
features to the previous version of the framework would require us to add a
similar amount of code to achieve the same level of functionality.

FOR WINDOWS AND OS/2 DEVELOPERS

108 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

The remainder of the class consists of the data members needed to store all of
this state.

private:

} ;

Designing TNumberFormatLocale

TText
TText
TText
DigitCount
DigitCount
bool
TText
TText
double
double
DigitCount
DigitCount
DigitCount
bool
bool
bool
bool
EMantissaType
EShowBaseType

fNanSign;
fInfini tySign;
fDigitGroupSeparator;
fMinlntegerDigits;
fSeparatorSpacing;
fHaslntegerSeparator;

II e.g. thousands separator ","
II 0-pad at least this many digits
II digit group length for separator

fDecimalSeparator; II '.' in 1.23
fExponentSeparator; II 'E' in 1E-3
fExponentUpperThreshold;11 when to switch to E notation
fExponentLowerThreshold;
fExponentPhase; II multiples of exponent to show
fMinFractionDigits; II 0-pad to fill
fMaxFractionDigits;
fDecimalWithlnteger;
fHasFractionSeparator; II use digit group separator?
fHasExponentSeparator; II use digit group separator?
fSignedExponent;
fMantissaType;
fShowBaseType;

The TNumberFormatLocale class provides a number of member functions to
create default formatters for both currency and floating-point formats. There is
always a default locale which corresponds to the user's location, and it can be
accessed by calling TNumberFormatLocale::GetUserLocale.

class TNumberFormatLocale {
public:

virtual

TNumberFormatLocale();
TNumberFormatLocale(const TNumberFormatLocale&);
-TNumberFormatLocale();

II member functions to create standard formatters for the current locale.
virtual TNumberFormatter* CreateCurrencyFormatter() const;
virtual TNumberFormatter* CreateFloatingPointFormatter() const;

static const TNumberFormatLocale& GetUserLocale();

private:
static TNumberFormatLocale* gUserLocale;

} ;

We use this class to isolate the locale dependencies from the rest of the
framework. The current design supports accessing the current locale only.
Future enhancements might include the addition of support for setting the
locale under program control and the use of the locale object to support access
to other localized classes. For this example, the current design is sufficient.

THE POWER OF FRAMEWORKS

Implementing
TNumberFormatter

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 109

DESIGNING THE FRAMEWORK

Now that the design of the framework's classes is in place, it's time to implement
the framework. Since it is assumed that you are familiar with constructors and
destructors, and because the getter and setter functions are so simple, not every
step of the implementation process is described here. The complete source code
is available on the CD-ROM that accompanies this book. This discussion
concentrates on the key member functions of the framework.

The key function ofTNumberFormatter is the Format member function. Format
takes a TFormattableNumber and converts it to text using the current settings of
the TNumberFormatter.

void TNumberFormatter: :Format(const TFormattableNumber& value, TText& theText,
TNumberFormatResult& result)

{

}

theText.del(0,theText.length(»;
SetUpFormattableNumber(value);

FormattableNumberToText(value, theText, result);

TText prefix;
TText suffix;

bool isNegative;
isNegative = value.GetSignBit();
if (isNegative)

GetMinus(prefix, suffix);
else if (GetShowPlusSign(»

GetPlus(prefix, suffix);

theText += suffix;
theText.prepend(prefix);

result.SetlntegerBoundary(result.GetlntegerBoundary() + prefix.GetLength(»;
result.SetDigitSequenceEnd(result.GetDigitSequenceEnd() + prefix.GetLength(»;

FOR WINDOWS AND OS/2 DEVELOPERS

1 10 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

FormattableNumber
setup and conversion
functions

The Format member function calls two member functions to handle most of the
number formatting operation. The first of these, SetUpFormattableNumber, sets
up the analysis parameters of the TFormattableNumber object. Subclasses of
TNumberFormatter can override this member function to customize the
behavior of the TFormattableNumber, as we do later when we describe the
implementation of TFloatingPointNumberFormatter.

void TNumberFormatter: :SetUpFormattableNumber(TFormattableNumber& num)
{

num.SetDigitsFromDecimalPoint(TFormattableNumber: :kNoSignificandDigit);
}

The second of these member functions is FormattableNumberToText.
FormattableNumberToText does most of the work of formatting for the Format
member function, and it is usually overridden by subclasses. The default version
supplied by TNumberFormatter handles thousands separators, but prints
numbers without exponents, filling with zeroes as needed.

void TNumberFormatter: : FormattableNumberToText(const TFormattableNumber& num,
TText& text, TNumberFormatResult& result)

{
char uc;

II delete any existing text
text.Delete(TTextRange(TTextOffset(0), text.GetLength()));

if (!num.lslnfinity() && !num.lsNan())
{

int numDigits = num.GetSignificandLength();
if (numDigits <= 0)
{

}

ConvertToNumeral(TFormattableNumber: :Digit(0),uc);
text.prepend(uc);
return;

II first, determine and allocate the correct size digit buffer
II must be at least as big as FormattableNumber returns, but
II may need extra space for leading zeros.
int n = num.GetExponent() + 1;
int exponent = n;
long places = (exponent> numDigits ? exponent: numDigits);
TFormattableNumber::Digit* digits = new

TFormattableNumber: :Digit[places];
num.GetSignificand(digits);

THE POWER OF FRAMEWORKS

}
}

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 6 . DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS III

II fill with zeros at end
if (exponent> numDigits)

DESIGNING THE FRAMEWORK

for (int i = numDigits; i < exponent; i++)
digits[i] = TFormattableNumber: :Digit(0);

II work back through number, filling in digits
int consecutiveDigits = 0;
int digit = 0;
for (int theDigit = exponent - 1; theDigit >= 0; theDigit--)
{

}

ConvertToNumeral(digits[theDigit],
text.prepend(uc);

uc) ;

if (GetlntegerSeparator()

{

}

&& ++consecutiveDigits
&& (theDigit < exponent -
&& (theDigit > 0»

GetSeparatorSpacing()
1)

TText separatorText;
GetDigitGroupSeparator(separatorText);
text.prepend(separatorText);
consecutiveDigits = 0;

II zero pad integral portion as needed
TFloatingPointNumberFormatter: :DigitCount minlntegerDigits

GetMinlntegerDigits();
if «minlntegerDigits > 0) && (minlntegerDigits > n»
{

}

ConvertToNumeral(0, uc);
for (int i = n; i < minlntegerDigits; i++)
{

text.prepend(uc);
}

result.SetlntegerBoundary(text.length(»;
result.SetDigitSequenceEnd(text.length(»;

delete [] digits;

II it currently just sets the confidence to be kPerfect.
result.SetConfidence(TNumberFormatResult: :kPerfect);

112 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

Implementing TFormattableNumber
TFormattableNumber contains a large number of accessor functions used to
retrieve information about the number, including its exponent, its sign, and so
on. Whenever a member function that returns analysis results is called,
TFormattableNumber checks a dirty flag to see whether it should reanalyze the
number's properties, as shown in the IsNegative member function:

bool TFormattableNumber: :IsNegative() const
{

}

if (fAnalysisDirtyFlag)
AnalyzeValue();

return flsSignMinus;

Similarly, when a member function is called that might change the analysis
results, TFormattableNumber sets the dirty flag in that member function, as
shown in the SetNumber member function:

void TFormattableNumber: :SetNumber(double number)
{

}

fNumber = number;
SetAnalysisDirtyFlag(TRUE);

The AnalyzeValue member function analyzes the number and extracts its
numeric properties, using the conversion settings provided. It uses the ANSI C
standard function fcvt to convert the number into its components.

void TFormattableNumber::AnalyzeValue()
{

int decimal, sign;
Digit* buffer;
int siglen = 0;
long digits = fDigitsFromDecimalPoint;
if (digits > 12)

digits = 12;

II fcvt determines the exponent, mantissa, and sign for us,
II but it uses ascii characters, which isn't very general, so we
II convert them to our internal Digit format.

}

buffer = (Digit*) fcvt(fNumber, digits, &decimal, &sign);
siglen = strlen(buffer);
for (int i = 0; i < siglen; i++)

buffer[i] = buffer[i] - '0';

SetSignBit« sign != 0 ? TRUE: FALSE»;
SetSignificand«Digit*) buffer, siglen);
SetExponent«long) decimal - 1);

SetAnalysisDirtyFlag(FALSE);

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 113

DESIGNING THE FRAMEWORK

Implementing TFloatingPointNumberFormatter

The key member functions ofTFloatingPointNumberFormatter are the two
overridden member functions of TNumberFormatter, SetUpFormattableNumber
and FormattableNumberToText.

Implementing SetUpFormattableNumber

The SetUpFormattableNumber member function sets up the conversion
parameters of the formattable number that the class has been asked to format.
The overridden implementation first calls the SetUpFormattable member
function it inherited from TNumberFormatter and then overrides the setting
that controls the number of decimal points to match the maximum permitted
digits parameter of TFloatingPointNumberFormatter.

void TFloatingPointNumberFormatter::SetUpFormattableNumber(TFormattableNumber& num)
{

TNumberFormatter: :SetUpFormattableNumber(num);

num.SetDigitsFromDecimalPoint(GetMaxFractionDigits(»;
}

FOR WINDOWS AND OS/2 DEVELOPERS

114 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

FormattableNumberToText

TFloatingPointNumberFormatter overrides the FormattableNumberToText
member function to handle both scientific and engineering notation for
floating-point numbers. It delegates the work to two new member functions,
FormattableNumberToExponentText and FormattableNumberToDecimalText.

void TFloatingPointNumberFormatter: :FormattableNumberToText(
const TFormattableNumber& num,

{

}

TText& text, TNumberFormatResult& result)

if (!num.lslnfinity() && !num.lsNan(»
{

}

else
{

}

II get absolute value of number
double number = num.GetNumber();
if (number < 0)

number = -number;

II determine whether to print as scientific notation or not, using
II the exponent threshold parameters.
if (number != 0.0 && (number < GetLowerExponentThreshold() I I

number> GetUpperExponentThreshold(»)
FormattableNumberToExponentText(num, text, result);

else FormattableNumberToDecimalText(num, text, result);

II we currently just set the confidence to be kPerfect.
result.SetConfidence(TNumberFormatResult::kPerfect);

II let the TNumberFormatter take care of the edge cases
TNumberFormatter: :FormattableNumberToText(num,text,result);

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 115

DESIGNING THE FRAMEWORK

FormaUableNumberToExponentText

FormattableNumberToExponentText generates a text string in scientific
notation. Rather than duplicate all the code to print a basic number, it uses a
TNumberFormatter to format the exponent as though it were a whole number
and then calls FormattableNumberToDecimalText to format the mantissa. Using
the appropriate separator text, it subsequently puts the two numbers together.

void TFloatingPointNumberFormatter: :FormattableNumberToExponentText(
const TFormattableNumber& num, TText& text,
TNumberFormatResult& result)

{

}

FOR WINDOWS AND OS/2 DEVELOPERS

long exponent = num.GetExponent();
long exponentAdjuster = 0;11 used later to process mantissa
long phase = (long) GetExponentPhase();
if (phase> 1)

{

}

II we round the exponent down using the phase value
II for engineering notation, phase is 3, so we get an
II exponent value rounded down to the nearest multiple
II of 3
long idealExponent;
if (exponent < 0)

idealExponent = «(-1 - exponent) I phase) * -phase) - phase;
else idealExponent = (exponent I phase) * phase;

exponentAdjuster = exponent - idealExponent;
exponent = idealExponent;

II first we format the exponent, using a basic TNumberFormatter which
II we handily initialize with this object's settings
TNumberFormatter exponentFormat(*this);
TText exponentText;
TNumberFormatResult exponentResult;
TFormattableNumber formattableExponent«double) exponent);
exponentFormat.Format(formattableExponent, exponentText, exponentResult);

II now we format the integral part of our number
II we make a new number which reflects only the mantissa, with the correct
II number of digits to match the exponent we've already printed
TFormattableNumber formattableMantissa(num.GetNumber() I

pow(10.0, exponentAdjuster»;
FormattableNumberToDecimalText(num, text, result);

TText exponentSeparator;
GetExponentSeparatorText(exponentSeparator);
text += exponentSeparator;
text += exponentText;

result.SetDigitSequenceEnd(text.GetLength(»;

116 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

FormattableNumberToDecimalText

FormattableNumberToDecimalText is responsible for formatting a floating-point
number in the standard (nonscientific) format. Its implementation is similar to
that ofTNumberFormatter::FormattableNumberToText, but it provides more
control over the formatting.

void TFloatingPointNumberFormatter: : FormattableNumberToDecimalText (
canst TFormattableNumber& num,

{
TText& text, TNumberFormatResult& result)

double number = 0.0;
TFormattableNumber: :Digit theDigit;
char uc;

if (!num.Islnfinity() && !num.IsNan(»
number = num.GetNumber();

long numDigits = num.GetSignificandLength();
TFormattableNumber: :Digit* digits new TFormattableNumber: :Digit[numDigits];
num.GetSignificand(digits);
long exponent = num.GetExponent() + 1;
long minPlaces exponent + GetMinFractionDigits();
long maxPlaces = exponent + GetMaxFractionDigits();

long places = numDigits;

if (places < minPlaces)
if (places> maxPlaces)

places
places

minPlaces;
maxPlaces;

II First the stuff to the left of the decimal place
long consecutiveDigits 0;
for (long i = exponent - 1; i >= 0; i--)
{

}

theDigit = (i >= numDigits ? 0 : digits[i]);
ConvertToNumeral(theDigit, uc);

text.prepend(uc);
if (GetlntegerSeparator()11

&& ++consecutiveDigits
&& i < exponent - 1

i. e., insert ", 11

== GetSeparatorSpacing() II

{

}

&& i > 0)

II more digits coming
TText separatorText;
GetDigitGroupSeparator(separatorText);
text.prepend(separatorText);
consecutiveDigits = 0;

result.SetlntegerBoundary(text.GetLength(»;

insert it here

THE POWER OF FRAMEWORKS

}

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 6 DESIGNING A NUMBER FORMATIING FRAMEWORK FOR WINDOWS 117

DESIGNING THE FRAMEWORK

II Now add the decimal point if we have decimal places or we always show it
if (places> exponent I I GetDecimalWithlnteger())
{

}

TText decimalSeparatorj
GetDecimalSeparator(decimalSeparator)j
text += decimalSeparatorj

II Add the decimal places
consecutiveDigits = 0;
for (i = exponent; i < places; i++)
{

}

theDigit = (i >= numDigits ? 0 : digits[i]);
ConvertToNumeral(theDigit, uc);
text += uc;

if (GetFractionSeparator()
&& ++consecutiveDigits
&& i < places - 1)

GetSeparatorSpacing()

{

}

II more digits coming
TText separatorText;
GetDigitGroupSeparator(separatorText);
text += separatorText;
consecutiveDigits = 0;

result.SetDigitSequenceEnd(text.GetLength());

delete [] digits;

118 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

Implementing
TNumberFormatLocale

TNumberFormatLocale is the most Windows-specific class in our framework. It
sets up the number formatters to match the settings it extracts from the Windows
locale information.

CreateCurrencyFormatter member function

CreateCurrencyFormatter creates a currency formatter that correctly formats
currency for the current locale by making calls to the Windows function
GetLocalelnfo and then modifYing a TFloatingPointNumberFormatter object's
settings to match the Windows information.

II table to determine properties for negative currency format
II returned by Windows via LOCALE_INEGCURR
static bool pLocaleCurrFmtTable[16] [5] = {

II 0, 1, 2, 3, 4
II useParens,prefixCurr,prefixSign,signFirst,currSpace
{ true, true, false, false, false }, II 0
{ false, true, true, true, false }, II 1
{ false, true, true, false, false }, II 2
{ false, true, false, false, false }, II 3
{ true, false, false, false, false }, II 4
{ false, false, true, false, false }, II 5
{ false, false, false, true, false }, II 6
{ false, false, false, false, false }, II 7
{ false, false, true, false, true }, II 8
{ false, true, true, true, true }, II 9
{ false, false, false, false, true }, II 10
{ false, true, false, false, true }, II 11
{ false, true, true, false, true }, II 12
{ false, false, false, true, true }, II 13
{ true, true, false, false, true }, II 14
{ true, false, false, false, true } II 15

};

TNumberFormatter* TNumberFormatLocale: :CreateCurrencyFormatter() const
{

unsigned character lcBuf[255];
TText decimalSep, thousandsSep, currencySym, posSym, negSym;
long thousandsSepGrouping, currencyDigits;
TText prefix, suffix;
long plusMode, negMode;

II get positive & negative currency modes
GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_ICURRENCY,lcbuf,sizeof(lcBuf»;
plusMode = atoi(lcbuf);
GetLocalelnfo (LOCALE_USER_DEFAULT,LOCALE_INEGCURR, lcbu f,sizeof(lcBuf»;
negMode atoi(lcbuf);

II make a formatter
TFloatingPointNumberFormatter* formatter new TFloatingPointNumberFormatter;

II get currency info from windows
GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SCURRENCY,lcbuf,sizeof(lcBuf»;
currencySym = lcbuf;

THE POWER OF FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 119

DESIGNING THE FRAMEWORK

II set up positive suffixes
II first, we get old prefix and suffix, since we're only going to change one
II or the other but not both.
GetLocalelnfo (LOCALE_USER_DEFAULT, LOCALE_SPOSITIVESIGN ,lcbuf,sizeof(lcBuf»;
posSym = lcbuf;
formatter->GetPlus(prefix,suffix);
boo I useSpace = true;
switch (plusMode)
{

}

case o:
useSpace = false;
II fall through ...

case 1:
default:

prefix = currencySym;
if (useSpace)

prefix += ' ';
break;

case 2:
useSpace = false;
II fall through ...

case 3:
if (useSpace)

suffix = ' ';
else suffix.del(0,suffix.length(»;
suffix += currencySym;
break;

SetPlus(prefix,suffix);

II set up negative suffixes
GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SNEGATIVESIGN,lcbuf,sizeof(lcBuf»;
negSym = lcbuf;
II look up settings in table
bool useParens = pLocaleCurrFmtTable[negMode] [0];
boo I currPrefix = pLocaleCurrFmtTable[negMode] [1];
bool signPrefix = pLocaleCurrFmtTable[negMode] [2];
bool signFirst = pLocaleCurrFmtTable[negMode] [3];
useSpace = pLocaleCurrFmtTable[negMode] [4];

II set up string based on settings
if (useParens)
{

}

else
{

}

II no Windows api to get parens from locale, so we
II hard-code!
prefix ' (, ;
suffix = ')';

prefix.del(0,prefix.length);
suffix.del(0,prefix.length);

120 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

DESIGNING THE FRAMEWORK

if (signFirst)
{

II signFirst true implies that sign and currency are next to each other

}

else
{

}

if (signPrefix)
{

}

else
{

}

prefix += negSym;
if (useSpace)

prefix += I ';
prefix += currencySym;

suffix += negSym;
if (useSpace)

suffix += I ';
suffix += currencySym;

if (currPrefix)
{

}

else
{

}

prefix += currencySym;
if (useSpace)

prefix += I ';
prefix += negSym;

if (useSpace)
suffix += I ';

suffix += currencySym;
suffix += negSym;

SetMinus(prefix,suffix);

GetLocalelnfo(LOCALE_USER_DEFAULT, LOCALE_SMONDECIMALSE P,lcbuf,sizeof(lcBuf»;
decimalSep = lcbuf;
formatter->SetDecimalSeparator(decimalSep);

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SMONTHOUSANDSEP,lcbuf,sizeof(lcBuf»;
thousandsSep = lcbuf;
formatter->GetDigitGroupSeparator(thousandsSep);

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SMONGROUPING,lcbuf,sizeof(lcBuf»;
TText tmpBuf(lcbuf);
long idx = tmpBuf.index(I;');
II strip off any trailing text
if (idx > 0)

tmpBuf.del(0,tmpBuf.length(»;
II now convert string to number and set the spacing
thousandsSepGrouping = atoi(tmpBuf.chars(»;
formatter->SetSeparatorSpacing(thousandsSepGrouping);

THE POWER OF FRAMEWORKS

}

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 121

DESIGNING THE FRAMEWORK

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_ICURRDIGITS, 1 cbuf,sizeof(lcBuf»i
currencyDigits = atoi(lcbuf);
formatter->SetMinFractionDigits(currencyDigits)i
formatter->SetMaxFractionDigits(currencyDigits);

return formatteri

CreateFloatingPointFormatter member function

CreateFloatingPointFormatter's implementation is similar to that of
CreateCurrencyFormatter, but because it doesn't have to address the issues of
sign and currency symbol formatting, it is slightly simpler.

TNumberFormatter* TNumberFormatLocale: :CreateFloatingPointFormatter() const
{

}

FOR WINDOWS AND OS/2 DEVELOPERS

TCHAR lcBuf[255];
TText decimalSep, thousandsSepi
long thousandsSepGrouping;
TText prefix, suffix;
TText plusMode, negMode;

II make a formatter and set it up
TFloatingPointNumberFormatter* formatter = new TFloatingPointNumberFormatter();

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SDECIMAL,lcbuf,sizeof(lcBuf»;·
decimalSep = lcbuf;
formatter->SetDecimalSeparator(decimalSep);

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_STHOUSAND,lcbuf,sizeof(lcBuf»;
thousandsSep = lcbufi
formatter->SetDigitGroupSeparator(thousandsSep)i

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_SGROUPING,lcbuf,sizeof(lcBuf»;
TText tmpBuf(lcbuf);
long idx = tmpBuf.index(' ;')i
II strip off any trailing text
if (idx > 0)

tmpBuf.del(0,tmpBuf.length(»;
II now convert string to number and set the spacing
thousandsSepGrouping = atoi(tmpBuf.chars(»i
formatter->SetSeparatorSpacing(thousandsSepGrouping);

GetLocalelnfo(LOCALE_USER_DEFAULT,LOCALE_IDIGITS,lcbuf,sizeof(lcBuf»;
currencyDigits = atoi(lcbuf)
formatter->SetMinFractionDig ts(currencyDigits)i
formatter->SetMaxFractionDig ts(currencyDigits);

return formatteri

122 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

UPDATING THE SPREADSHEET DATA OBJECTS

UPDATING THE SPREADSHEET DATA OBJECTS

Updating NumberCell

It's now time to update the application to use the framework we've created.

Note that we needed to alter almost nothing in the Windows-specific application
code to accommodate these new classes. In other words, WinMain, WndProc,
and ProcessFocusChange remain identical to the versions we wrote in Chapter 5
for the first version of the application.

Our second sample, the application with the new framework added, does not add
any new formatting features: we need only modify some of the internals of the
classes used by the application.

The majority of modifications required to accommodate the framework classes
occur in the NumberCell class. Note that the various clients of NumberCell (for
example, WndProc, ProcessFocusChange, and the NumberGrid class) were
unaffected; their interface to NumberCell is unchanged. The new NumberCell
class declaration is shown here. For the original version of the class, refer to
"NumberCell class design" on page 76.

class NumberCel1
{

public:
NumberCell(HINSTANCE hlnst, HWND hwndParent,

int xPos = 0, int yPos = 0,
int width = 0, int height = 0);

-NumberCell();

11===
II Getter member functions

II get the edit handle of the enclosed edit control
HWND GetEditHandle();
II get the child id of the enclosed edit control
WORD Get ID () ;
II get the cell format
NumberFormat& GetFormat();
II get the error status
BOOL GetFormatErrorStatus();
II return the edit status of the cell
BOOL HasBeenAltered();

11===
II Setter member functions

II change the altered status of the cell
BOOL SetAlteredStatus(BOOL newStatus);
II set the cell format
void SetFormat(const NumberFormat &nf);
1/ set the cell to the general format
void SetToGeneraIFormat(TNumberFormatter* tnf);
II Set the format error status flag.

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 123

UPDATING THE SPREADSHEET DATA OBJECTS

void SetFormatErrorStatus(BOOL errorStatus);

11===
II Cell operations

II move the cell to x,y
void Move(int x = 0, int y 0, int w 0, int h 0);
II set to general format, edit
void Edit();
II format a cell based on current format
int Update();

static FARPROC fLpfnOldEditProc, fLpfnNewEditProc;

private:
HWND
TFormattableNumber
TNumberFormatter*
NumberFormat

fHwndEditControl;11 enclosed edit control handle
fNumber; II enclosed formattable number
fFormatter; II pointer to cell's formatter
fMyFormat; II the NumberFormat for this cell

BOOL fErrorlnFormat; II error status
BOOL fAltered; II altered status
static int fCellNumber; II unique cell identifier

} ;

On the surface, only a few differences exist between the two versions of our
NumberCell class. We'll explore the significance of these differences as we
continue analyzing this version of the application.

Note that in the new version of NumberCell we replaced the
FormattableNumber data member, fNumber, with a TFormattableNumber from
the number formatting framework. We also added a new data member,
£Formatter, that contains a pointer to a TNumberFormatter object. Lastly, we
moved the NumberFormat data member from the old FormattableNumber class
to the new version of NumberCell. The NumberFormat object describes the
specific format attributes that the user selects through the Format Number
dialog box. It is not part of the framework-it exists only to keep track of the user
interface settings.

NumberCell also has two new member functions, GetFormat and SetFormat, that
provide access to the NumberFormat object.

We'll take a closer look at how these new data members are handled by the
NumberCell class. As described in Chapter 5, the application constructs a
NumberGrid which then constructs an array of NumberCell objects. In the
current version of the application, that remains unchanged, but the new
NumberCell constructor has been modified to accommodate its new
data members.

FOR WINDOWS AND OS/2 DEVELOPERS

124 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

UPDATING THE SPREADSHEET DATA OBJECTS

NumberCell::NumberCell(HINSTANCE hlnst, HWND hwndParent, int XPOS, int yPos,
int width, int height) : fNumber()

{

}

fHwndEditControl = CreateWindow("edit", NULL,
WS_CHILD I WS_VISIBLE I WS_BORDER ES_LEFT I ES_AUTOHSCROLL,
xPos, yPos, width, height,
hwndParent, fCeIINumber++,
hlnst, NULL);

if (!fLpfnNewEditProc) II create a single thunk for the new edit proc
fLpfnNewEditProc = MakeProclnstance«FARPROC) EditWndProc, hlnst);

II subclass the old edit proc
fLpfnOldEditProc = (FARPROC) GetWindowLong(fHwndEditControl, GWL_WNDPROC);
SetWindowLong(fHwndEditControl, GWL_WNDPROC, (LONG) fLpfnNewEditProc);

II store handle to enclosing NumberCel1 in the edit control property list
SetProp(fHwndEditControl, (LPSTR) KNUMBERCELLPROP, (HANDLE) this);
fAltered = FALSE; II new cell, has never been altered
fErrorlnFormat = FALSE; II default format is OK
fMyFormat = NumberFormat: :GetGeneraINumberFormat();11 default NumberFormat
fFormatter = (TNumberFormatter *) NULL;

The new and old NumberCell constructors are identical, with two small
exceptions that you'll find in the last two statements of the constructor. The
constructor initializes its TNumberFormatter pointer, £Formatter, to NIL. (We'll
get into the initialization of this pointer in the next section, "Using the
framework to handle cell updates.") The new NumberCell constructor also
initializes its NumberFormat data member with default settings using a call to the
static member function NumberFormat::GetGeneraINumberFormat.
GetGeneralNumberFormat returns a copy of a NumberFormat, initialized to the
default (general) settings.

NumberFormat NumberFormat: :GetGeneraINumberFormat()
{

}

NumberFormat nf;
nf.fPrecision = kDefaultPrecision;
nf.fThousandsDelimitted = FALSE;
nf.fCurrency = FALSE;
nf.flntSeparator = kCommaChar;
nf.fDecSeparator = kPeriodChar;
nf.fCurrencySymbol = kDollarSignChar;
nf.fFormatType = kFloatingPointFormat;
return nf;

This completes the modifications we need to make to the NumberCell
constructor.

THE POWER OF FRAMEWORKS

Using the framework to
handle cell updates

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 125

UPDATING THE SPREADSHEET DATA OBJECTS

We really gain access to the power of these added framework classes through the
Update member function, and it's here that we'll find the greatest number of
modifications to our original NumberCell class design.

~ NOTE Refer to "Implementing ProcessFocusChange" on page 87 for a
detailed discussion of the ProcessFocusChange function. This function is
responsible for calling the NumberCell::Update member function.

int NumberCell: :Update()
{

}

char szBuffer[KBUFSIZE],
char* endPtr;
double dTemp;
TText theString;

if (!fAltered) II if the cell has not been changed, exit
return 1;

II if the cell is empty
if (!GetWindowText(fHwndEditControl, szBuffer, sizeof(szBuffer)))
{

fErrorInFormat = FALSE;II cell empty so, format is OK,
fAltered = FALSE;II successfully updated, starts fresh/not altered, and
return 1;

}
dTemp = strtod(szBuffer, &endPtr);11 attempt conversion
if (!*endPtr) II if endPtr is NULL, conversion was successful
{

}

fNumber.SetNumber(dTemp);11 update TFormattableNumber value member
if (!fFormatter) II First time cell entry, set the format

SetFormat (fMyFormat) ; -
fFormatter->Format(fNumber,theString); II Create a formatted string

Iiset the edit cell to that format
SetWindowText(fHwndEditControl, (LPSTR) tx.chars());
fErrorInFormat = FALSE;
fAltered = FALSE;II successfully updated, starts fresh/not altered.
return 1;

II Record that the user has typed-in a bad numeric format
fErrorInFormat = TRUE;
II Signal an error
MessageBeep(0);
MessageBox(fHwndEditControl, "Invalid Numeric Format",_

"Number Cell Error", MB_ICONEXCLAMATION)4;
return 0; II unsuccessful update

FOR WINDOWS AND OS/2 DEVELOPERS

126 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

UPDATING THE SPREADSHEET DATA OBJECTS

The Update member function is very similar to the implementation in the
first version of this application, described in Chapter 5. The one significant
difference is in NumberCell's use of its TNumberFormatter member,
fFormatter, approximately midway into the function. In these statements, we
first set the NumberCell's TFormattableNumber to the value the user entered
into the NumberCell's EditControl. This value is read from the EditControl
and converted to a double in the same manner used by the previous version
of Update.

Next, Update formats the number, but note the primary difference between this
and our previous version of the NumberCell class. In the earlier version, the
formatting of the number was carried out by the FormattableNumber object. In
the new version, the TFormattableNumber is handed to the TNumberFormatter
which then creates a properly formatted text string and stores it in the TText
argument. This is accomplished with the statement

fFormatter->Format(fNumber, theString); II Create a formatted string

where fFormatter is the NumberCell's pointer to its TNumberFormatter,
fNumber is the NumberCell's TFormattableNumber, and theString is a local
TText object.

Note that before invoking its Format function, the Update member function
checks whether fFormatter is NIL. The NumberCell's constructor initializes
fFormatter to NIL, and fFormatter remains NIL until the user chooses a specific
format using the application's Format Number dialog box. If, however, the
Update member function is invoked before the user has explicitly selected a
display format, the following statement from the Update member function
ensures that the TNumberFormatter is reinitialized to the default, generic
display format.

if (!fFormatter) II First time cell entry, set the format
SetFormat(fMyFormat);

The remainder of this version of the Update member function is identical to that
described in Chapter 5.

THE POWER OF FRAMEWORKS

Handling changes to the
format of a NumberCell

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 127

UPDATING THE SPREADSHEET DATA OBJECTS

It may be helpful to examine the SetFormat member function that gets called in
the preceding code. SetFormat's primary task is to set various attributes of the
TNumberFormatter, based on the settings of the NumberFormat object passed
into the function.

void NumberCell: :SetFormat(const NumberFormat& nf)
{

}

II new entry or format has changed
if (!fFormatter I I (fMyFormat.GetFormatType() != nf.GetFormatType(»)
{

}

delete fFormatter;

II create a floating-point formatter
if (nf.IsCurrency(»

fFormatter =
TNumberFormatLocale: :GetUserLocale().CreateCurrencyFormatter()

else fFormatter =
TNumberFormatLocale::GetUserLocale() .CreateFloatingPointFormatter();

II set the precision and thousands delimtter:
fFormatter->SetlntegerSeparator(nf.IsThousandsDelimitted(»;

II set cell to the new format
fMyFormat = nf;

FOR WINDOWS AND OS/2 DEVELOPERS

128 CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS

FRAMEWORK BENEFITS

FRAMEWORK BENEFITS

We now have a complete, international-friendly application. The framework
handles all the details of number formatting, without requiring any significant
changes to the application's existing user interface code. Just as importantly, the
framework is extensible, which will yield additional benefits in future versions of
the application that we might want to implement, including reduced
maintenance effort and more end-user features.

Let's examine the effort it took to convert the application to its current form. As
it turns out, the text utility classes we used (but didn't have to write) in our
framework contained a number of member functions. We've split these classes
out of the analysis so that we have a more accurate account of the additional code
we had to create for the framework.

Member Lines of
Classes Functions Code

Nonframework-based application 4 57 1257

Text utility classes 3 236 2254

Framework-based application 11 389 4724

Framework Delta 4 96 1213

As you can see, we had to write four additional classes and approximately 100
additional member functions. Most of those additional member functions are
very short accessor member functions, though, so we had to write only 1213
additional lines of code. Considering how much extra functionality we got and
how well the framework positions our application for future enhancement, this is
a small amount of code to write. Most of our effort went into designing the
framework, not implementing it.

THE POWER OF FRAMEWORKS

CHAPTER 6 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR WINDOWS 129

FRAMEWORK BENEFITS

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 7

EXTENDING THE FRAMEWORK

ON WINDOWS

Now that we have a working version of our framework-based application, it's time
to see whether all our framework creation effort has paid off. Let's assume we've
been asked to add support for a new display format: displaying rational numbers
(that is, fractions). Very few modifications are required to add this feature to the
application using our framework, in contrast to the amount of work that would
have been necessary to implement this feature using the original, nonframework
based version of the application we created in Chapter 5. This chapter describes
the necessary updates, giving you a fairly accurate idea of what is involved in
extending the number formatting framework for other uses.

DESIGNING A RATIONAL NUMBER FORMATTER CLASS

We'll spend most of the effort required to update the application developing a
new rational number formatting subclass of TNumberFormatter and a simple
rational number class it uses. The new subclass, TRationalNumberFormatter,
overrides TNumberFormatter's Format member function to format the number
as text. The new helper class, TRationalNumber, handles the conversion of
TFormattableNumber data into a rationalized form. The class hierarchy for the
new classes is as follows:

FOR WINDOWS AND OS/2 DEVELOPERS

132 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

DESIGNING A RATIONAL NUMBER FORMATTER CLASS

•••••• ••••••••• w .. •••

II TNumberFormatter

II Format

~
TRationalNumberFormatter

Format

TRationalNumber

-.~----.---."--~--.-~---......, ..
TRationalNumber ...

ConvertFromFormattable

RATIONAL NUMBER FORMATTING. CLASS HIERARCHY

Design of TRationalNumberFormatter

As we did when designing TFloatingPointNumberFormatter, we want to make
sure the formatting code is as flexible as possible. Thus, we need to ensure that
TRationalNumberFormatter lets the caller have a great deal of control over its
formatting algorithm. The caller should be able to modify the following
properties of the formatter:

El Which string to use as a separator between the numerator and denominator
of the fraction

El Which string to use as a separator for the integer part of the rational number
(for example, the space after the "3" in "3 2/5")

El Whether to print the rational number as a proper fraction (where the
integer part, if any, is printed separately as, for example, in "12 1/4"") or as
an improper one (as, for example, in "49/4")

El Whether to print the numerator or denominator first

TRatiorialNumberFormatter must provide accessors to get and set
these parameters.

When TRationalNumberFormatter prints the integer part of the rational
number, it should have the same level of localized, user-customizable control
over the format as did TFloatingPointNumberFormatter. Rather than duplicate
the functionality of that class inside TRationalNumberFormatter,
TRationalNumberFormatter has an adopted TNumberFormatter, which it uses to
format the integer parts of the rational number.

Finally, TRationalNumberFormatter has to override TNumberFormatter's
Format function to actually do the work of using all these parameters to convert a
TFormattableNumber into text and return a TFormatResult.

THE POWER OF FRAMEWORKS

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 133
DESIGNING A RATIONAL NUMBER FORMATTER CLASS

The class definition for our TRationalNumberFormatter class is as follows:

class TRationalNumberFormatter : public TNumberFormatter {
public:

enum EFractionPropriety { kProperFraction, klmproperFraction };
enum EFractionDirection { kNumeratorFirst, kDenominatorFirst };

11===
II constructors, destructor, and standard c++ member functions

TRationalNumberFormatter();
TRationalNumberFormatter(EFractionPropriety thePropriety,

EFractionDirection theFractionDirection = kNumeratorFirst);
TRationalNumberFormatter(const TRationalNumberFormatter&);

virtual -TRationalNumberFormatter();
TRationalNumberFormatter& operator=(const TRationalNumberFormatter&);

11===
II TNumberFormatter overrides
virtual void FormattableNumberToText(const TFormattableNumber& num,

TText& text, TNumberFormatResult& result);

11===
II accessors
virtual void
virtual void

virtual void
virtual void

GetFractionSpace(TText&) const;
SetFractionSpace(const TText&);

GetFractionSign(TText&) const;
SetFractionSign(const TText&);

virtual EFractionPropriety GetFractionPropriety() const;
virtual void SetFractionPropriety(EFractionPropriety);

virtual EFractionDirection GetFractionDirection() const;
virtual void SetFractionDirection(EFractionDirection);

virtual TNumberFormatter* GetlntegerFormatter() const;
virtual void AdoptlntegerFormatter(TNumberFormatter*);

private:

} ;

FOR WINDOWS AND OS/2 DEVELOPERS

TText
TText
EFractionPropriety
EFractionDirection
TRationalNumber
TNumberFormatter*

fFractionSpace;
fFractionSign;
fFractionPropriety;
fFractionDirection;
fRationalNumber;
flntegerFormatter;

134 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

DESIGNING A RATIONAL NUMBER FORMATTER CLASS

TRationalNumber
helper class

The design ofTRationalNumber is very simple. It represents a rational number
as an integer part, a numerator, and a denominator. The core of this class is the
ConvertFromFormattable member function, which analyzes a
TFormattableNumber and converts it into a fraction. This member function is
called by the TRationalNumberFormatter to handle the mathematical portion of
the formatting operation.

class TRationalNumber {
public:

long
void

long
void

long
void

TRationalNumber(long i = 0, long n = 0, long d = 0);
TRationalNumber(const TFormattableNumber& fpNum);

Getlnteger();
Setlnteger(long integerPart);

GetNumerator();
SetNumerator(long numeratorPart);

GetDenominator();
SetDenominator(long denominatorPart);

void ConvertFromFormattable(const TFormattableNumber& number);

private:
long
long
long

};

fInteger;
fNumerator;
fDenominator;

THE POWER OF FRAMEWORKS

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 135
IMPLEMENTING THE FRAMEWORK SUBCLASSES

IMPLEMENTING THE FRAMEWORK SUBCLASSES

Now that we've designed the new subclasses for the framework, we can begin to
implement them.

Implementing TRationalNumberFormatter

Constructors, destructor,
standard C++ member
functions, and accessors

Creating the
fractional text

As a subclass of TNumberFormatter, TRationalNumberFormatter hooks into the
framework by overriding the number conversion routines called by
TNumberFormatter's Format member function.

TRationalNumberFormatter's constructors, destructor, and standard C++
member functions are not shown here, but are fairly straightforward. We've also
omitted the data accessor member functions shown earlier in the class
declaration. The complete source code of the application is available on the
accompanying CD-ROM.

The FormattableNumberToText member function, overridden from
TNumberFormatter, converts a TFormattableNumber into a textual
representation, using the parameters set by the caller. We can implement this
behavior with the following algorithm:

o Use TRationaINumber::ConvertFromFormattable to separate the number
into its integer, numerator, and denominator parts.

fJ Use the TNumberFormatter specified in flntegerFormatter to format the
integer part (if any, and only if the user asked for a proper fraction) into the
output text, followed by the space string stored in fFractionSpace.

B Write the numerator and denominator in the order specified by
fFractionDirection, separated by the specified fFractionSign string. The
numerator and denominator are also formatted using the
TNumberFormatter specified in flntegerFormatter.

FOR WINDOWS AND OS/2 DEVELOPERS

136 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

IMPLEMENTING THE FRAMEWORK SUBCLASSES

The implementation of FormattableNumberToText is as follows:

void TRationalNumberFormatter: : FormattableNumberToText(
const TFormattableNumber& num,

{
TText& text, TNumberFormatResult& result)

TNumberFormatResult tempResult;

if (!num.Islnfinity() && !num.IsNan(»
{

fRationalNumber.ConvertFromFormattable(num);

Boolean doNegative = fRationalNumber.Getlnteger() < 0 I I
fRationalNumber.GetNumerator() < 0;

if (fRationalNumber. Get Integer () II ! fRationalNumber. GetNumerator (»
{

}

TFormattableNumber theformattable;
theformattable.SetNumber(fRationalNumber.Getlnteger(»;
GetlntegerFormatter()->Format(theformattable, text, tempResult);
result.SetCanNormalize(tempResult.GetCanNormalize(»;
result.SetOutOfBoundsError(tempResult.GetOutOfBoundsError(»;
doNegative = FALSE;
result.SetlntegerBoundary(text.GetLength(»;
if (fRationalNumber.GetNumerator(»
{

}

TText fractionSpace;
GetFractionSpace(fractionSpace);
text += fractionSpace;
result.SetCanNormalize(FALSE);

else result.SetlntegerBoundary(0);

if (fRationalNumber.GetNumerator(»
{

result.SetCanNormalize(FALSE);

if (fRationalNumber.GetNumerator() < 0 && !doNegative)
fRationalNumber.GetNumerator() -fRationalNumber.GetNumerator();

TText numeratorText, denominatorText, fractionText;

TFormattableNumber theFormattable(fRationalNumber.GetNumerator(»;
GetlntegerFormatter()->Format(theFormattable,

numeratorText, tempResult);
if (tempResult.GetOutOfBoundsError(»

result.SetOutOfBoundsError(TRUE);

theFormattable.SetNumber(fRationalNumber.GetDenominator(»;
GetlntegerFormatter()->Format(theFormattable,

denominatorText, tempResult);
if (tempResult.GetOutOfBoundsError(»

result.SetOutOfBoundsError(TRUE);

THE POWER OF FRAMEWORKS

Implementing
TRationalNumber

Calculating the
numerator and
denominator

}
}

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 137
IMPLEMENTING THE FRAMEWORK SUBCLASSES

GetFractionSign(fractionText);
if (GetFractionDirection() == TRationalNumberFormatter::kNumeratorFirst)
{

}
else
{

}

fractionText.prepend(numeratorText);
fractionText += denominatorText;

fractionText.prepend(denominatorText);
fractionText += numeratorTextj

text += fractionText;
}
result.SetDigitSequenceEnd(text.GetLength(»;

result.SetConfidence(TFormatResult: :kPerfect);

Based on its design, TRationalNumber's implementation is fairly 'straightforward.
Most of its complexity is in the ConvertFromFormattable function.

TRationalNumber provides the usual constructors, destructor, and data member
accessors. Because these functions are all fairly basic for C++ programmers, their
implementations are not shown here.

ConvertFromFormattable takes a TFormattableNumber as input and separates it
into integer, numerator, and denominator by finding the greatest common
divisor (GCD) of the numerator and denominator. Getting the GCD of
floating-point numbers is difficult, so we need to find a way to generate the
numerator and denominator as long integers. We'll do this by first using the
standard C library routine frexp to convert the number into a mantissa and an
integral power of two. The frexp routine guarantees that the mantissa is in the
range

0.5 <= Iml < 1.0

Now we use the resulting integral exponent to generate integral numerators and
denominators. To do so, we'll calculate the numerator by multiplying the
mantissa by a power of two, (1 « multiplierBits), that will be just big enough to
fill up a long integer.

Next, we need to calculate the denominator using the formula 2 (multiplierBits-exp) ,

where exp is the exponent value returned by frexp. As a result, we get a
numerator and denominator with large integral values, returning a numeric
value nearly identical to the original floating-point number when the numerator
is divided by the denominator.

FOR WINDOWS AND OS/2 DEVELOPERS

138 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

IMPLEMENTING THE FRAMEWORK SUBCLASSES

At this point, we can extract the integer part of the number, if any, leaving a
proper fraction. We then reduce the proper fraction by finding any common
denominator and removing it. The denominator is calculated by the CalcGCD
member function, described in the next section.

The source code for ConvertFromFormattable is as follows:

void TRationalNumber: :ConvertFromFormattable(const TFormattableNumber& number)
{

}

int exp;
int multiplierBits;
double theFloat = number.GetNumber();

II use frexp to convert float to a mantissa (0.5 <= Ixl < 1.0)
II and an integral power of 2
double m = frexp(theFloat,&exp);

II now we need to make sure that we can fit the numerator and denominator
II in a long.
const kBitsPerByte = 8;
if (exp >= 0)
{

}

if (exp > (sizeof(long)*kBitsPerByte-2))
cerr « "illegal exponent value";

multiplierBits = (sizeof(long)*8-2);

else {

}

multiplierBits = exp+(sizeof(long)*kBitsPerByte-2);
if (multiplierBits < 0)

cerr « "illegal value";

II we make the numerator and denominator as large a multiple as we can
II while preserving ratio between them. This gives us best accuracy.
fNumerator = (long) (m * «long) 1 « multiplierBits));
fDenominator = (long) 1 « «long) multiplierBits - (long) exp);

II if number has integer part, separate it out
if (fNumerator > fDenominator)

{

flnteger = fNumerator/fDenominator;
fNumerator = fNumerator - (flnteger * fDenominator);

}

else flnteger = 0;

II reduce fraction part
long d1 = CalcGCD(fNumerator, fDenominator);
if (d1 != 1)

{

}

fNumerator 1= d1;
fDenominator 1= d1;

THE POWER OF FRAMEWORKS

Calculating the
greatest common
denominator

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 139
IMPLEMENTING THE FRAMEWORK SUBCLASSES

The CalcGCD member function, called by ConvertFromFormattable, is another
straightforward function. The algorithm is from the National Institute of Health
(NIH) class library.

long TRationalNumber: :CalcGCD(long uu, long vv)
{

B4:

}

1* gcd
*1

-- binary greatest common divisor algorithm - NIHCL,Algorithm B, p. 321.

long u
long k
long t;

labs(uu), v = labs(vv);
0;

if (u -- 0)
return V' ,

if (v -- 0)
return U' ,

II get rid of any common multiples of 2
while «u & 1) 0 && (v & 1) == 0)

{

}

U »= 1;
v »= 1;
k++;

if (u & 1)
{ t = -v; goto 84; }

else t = u;

do {
while ((t & 1) 0)
if (t > 0) u t;
else v = -t;
t = U-V;

} while (t ! = 0);

return u«k;

t 1= 2' ,

& NOTE Generally, using goto statements is considered poor programming
style. In this case, the benefits of reusing a well-tested, public domain library such
as the one shown here far outweigh the design issues involved.

This completes our examination of TRationalNumber.

FOR WINDOWS AND OS/2 DEVELOPERS

140 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

UPDATING THE APPLICATION

UPDATING THE APPLICATION

Updating
NumberCell's
SetFormat function

Now that we've implemented the new formatting classes, we'll need to update the
spreadsheet application to support it.

Update is called by the application to reformat a cell. In the previous two versions
of the sample, this function calls SetFormat to create a TNumberFormatter
whenever one does not already exist or the user has altered the format
specification for the cell since the last time the cell was formatted. The new
version of SetFormat has been modified to support the rational number format.
Notice that the type of number formatter created depends on the cell's display
format specification, which for this sample can be either a floating-point
(inclusive of currency format) or rational number representation.

void NumberCell: :SetFormat(const NumberFormat& nf)
{

}

if (!fFormatter I I fMyFormat.GetFormatType()!= nf.GetFormatType())
{

}

II format type has changed, delete the old formatter
delete fFormatter;
if (nf.GetFormatType() == NumberFormat::kFloatingPointFormat
{

}

II create a floating-point formatter
if (nf.lsCurrency())

fFormatter =
TNumberFormatLocale: :GetUserLocale().CreateCurrencyFormatter()

else fFormatter =
TNumberFormatLocale: :GetUserLocale().CreateFloatingPointFormatter();

else fFormatter = new TRationalNumberFormatter();

II set cell to the new format
fMyFormat = nf;

fj NOTE The implementation of this function illustrates a weakness in the
framework's current design. The hardcoded if statements determine the kind of
TNumberFormatter subclass we create. A more extensible approach would allow
new types of formats to be added dynamically, perhaps by using a dictionary to
map between the format types returned by the TNumberFormat object and the
corresponding TNumberFormatter object.

THE POWER OF FRAMEWORKS

Updating the Format
Cell dialog box

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 141

UPDATING THE APPLICATION

The modifications needed to add an additional format choice to the Format Cell
dialog box are minor. The WndProc function contains two switch statements.
The "case IDM_NUMBERCELL:" within the innermost switch is responsible for
displaying the Format Cell dialog box using a call to the NumberFormatDlgProc
function. An excerpt of the WndProc code is as follows:

case IDM_NUMBERCELL:
II if the cell does not contain a valid numeric string
II '" Refer to previous chapter for details ...

II valid numeric format
II display the format number cell dialog
IpfnNumberFormatDlgProc =

(DLGPROC) MakeProclnstance«FARPROC} NumberFormatDlgProc, hlnst};
DialogBox(hlnst, MAKEINTRESOURCE(DIALOG_l}, hwnd,

IpfnNumberFormatDlgProc};
FreeProclnstance(lpfnNumberFormatDlgProc};
return O;

To include the new rational number format choice in the dialog box, we need to
add another line to the function responsible for initializing the dialog box. This
function, InitializeAndCenterDialog, is invoked as a direct result of the
DialogBox function call in the preceding case statement. Each of the various
SendDlgItemMessage function calls results in the display of one format choice.

void InitializeAndCenterDialog(HWND hDIg }
{

}

HWND hwndOwner;
RECT rc, rcDIg, rcOwner;

II Set up initial dialog format listbox entries
SendDIgltemMessage(hDlg, IDC_LISTBOX1, WM_SETREDRAW, FALSE, 0L};
SendDIgltemMessage(hDlg, IDC_LISTBOX1, LB_ADDSTRING, 0,

(DWORD) (LPSTR) "####"};
SendDIgltemMessage(hDlg, IDC_LISTBOX1, LB_ADDSTRING, 0,

(DWORD) (LPSTR) "#,###"};
SendDIgltemMessage(hDlg, IDC_LISTBOX1, LB_ADDSTRING, 0,

(DWORD) (LPSTR) "####. #"};
II ... Five other format choices here ...
I I ... Our newly added rational number format choice ,follows
SendDIgltemMessage(hDlg, IDC_LISTBOX1, LB_ADDSTRING, 0,

(DWORD) (LPSTR) "### ###I###"};

SendDIgltemMessage(hDIg, IDC_LISTBOX1, WM_SETREDRAW, TRUE, 0L };

II Center the dialog box
II

FOR WINDOWS AND OS/2 DEVELOPERS

142 CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS

USING EXTENSIBILITY TO DELIVER FEATURES FASTER

USING EXTENSIBILITY TO DELIVER FEATURES FASTER

These are all of the modifications to the application required to support our new
rational number formatter. The application has added support for a new feature,
with no modifications to the framework and very few modifications to the user
interface code. A typical engineer could develop this feature in a relatively short
amount of time.

Adding this feature to the original version of the application developed in
Chapter 5 would have been much more difficult and time-consuming. Clearly,
using a well-designed framework has a direct benefit as programs are enhanced
over time.

THE POWER OF FRAMEWORKS

CHAPTER 7 EXTENDING THE FRAMEWORK ON WINDOWS 143
USING EXTENSIBILITY TO DELIVER FEATURES FASTER

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

ApPLYING

FRAMEWORKS

ON OS/2

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 8

CREATING THE APPLICATION

'FOR OS/2

In Chapter 4, we created a specification for the initial version of the application.
In this chapter, we convert that specification into a functioning piece of code.

The application, like most OS/2 applications, begins with a main function and a
window message handler. Because the Presentation Manager directly calls these
functions, and OS/2 does not support the use of C++ member functions as
handlers, these routines are written as standard C functions. To take advantage of
the C++ object-oriented features, we'll use these global functions as a liaison
between the Presentation Manager API and the application's classes. Thus, the
application can be roughly divided into two parts: a Presentation Manager
application layer, and a set of classes that allows the user to see and edit the
spreadsheet data.

FOR WINDOWS AND OS/2 DEVELOPERS

147

148 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
DESIGNING THE PRESENTATION MANAGER APPLICATION LAYER

DESIGNING THE PRESENTATION MANAGER APPLICATION LAYER

Initializing the
application

Presentation Manager
message dispatcher

Other functions

We'll begin by designing the Presentation Manager application layer, which
provides two key pieces of functionality: a main function and a window
message handler.

The primary function of the application, main, is responsibility for initializing
the application. The main function must create the window and handle
message dispatching.

WindowSAlWndProc is called when a message is sent to the application's
window. WindowSAlWndProc's function is to dispatch these messages to the
appropriate piece of code within the application. As the primary dispatch
function, WindowSAl WndProc acts as the interface between the application
layer and the spreadsheet classes that manipulate the application's data.

The application layer also includes functions needed by other parts of the
program, such as a message handler routine for the Format Cell dialog box. We'll
discuss the design and implementation of these functions as they are needed by
other parts of the application.

DESIGNING THE SPREADSHEET CLASSES

User interface objects

The spreadsheet classes are divided into two distinct sets. The first set provides
the user interface for our application and handles the messages that
WindowSAl WndProc delegates to them. The second set is responsible for
converting numbers into text.

Because the spreadsheet's user interface models a grid of cells, the first class to
create is a NumberGrid. NumberGrid maintains a list of cells and keeps track of
the currently selected cell for the user.

We also need to create a class, NumberCell, that represents a single cell.
NumberCell manages the editing and display of the cell's contents.

THE POWER OF FRAMEWORKS

Number formatting
objects

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 149
DESIGNING THE SPREADSHEET CLASSES

Next, we need to create a class to handle the formatting process. Because our
design goal is to separate data representation from the user interface as much as
possible, we'll make a class, FormattableNumber, that represents a number that
knows how to format itself as text, but that doesn't perform any display or editing
operations.

Many variables affect the formatting process. To allow these variables to be
manipulated as a set, we create a NumberFormat class that keeps track of the
number format. FormattableNumber uses a NumberFormat object to perform
the formatting operation.

The class hierarchy of the spreadsheet classes appears in the following figure.

~ NOTE The notation used for the class hierarchy diagrams appearing in this
bo~k is described in "Appendix A: Reading notation diagrams."

NumberGrid
_ .. _. -. --_. -- .. _.- -.. -- -- -.

ChangeFocus
GetCurrent
SetFormat

fGrid
fCurrentCell

+n

"
NumberCell

Format
SetFormat

fHwndEditControl
fNumber

i

FormattableNumber

Format
GetFormat

/

SetFormat
GetValue
SetValue

-
fNumberFormat
fValue

NumberFormat

SPREADSHEET CLASS HIERARCHY

I

FOR WINDOWS AND OS/2 DEVELOPERS

150 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
DESIGNING THE SPREADSHEET CLASSES

NumberGrid
class design

Data members

Standard C++
Member Functions

The NumberGrid object must create and maintain a two-dimensional array of
pointers to NumberCells. The number of rows and columns of cells a grid should
contain is specified when a grid is constructed. The NumberGrid constructor
allocates, via operator new, the m-row by n-column array of NumberCell pointers.
Next, the constructor allocates the actual NumberCells and stores pointers to
those NumberCells in the two-dimensional array. Whenever the grid needs to
access a particular cell, it uses standard array indexing syntax to retrieve a
NumberCell. From this discussion, the NumberGrid appears to be a simple class.

NumberGrid provides three sets of member functions:

[l Standard C++ member functions, including the constructor and destructor

c Cell editing functions, which handle basic user interface operations

[l Data accessor functions, which allow you to manipulate the state of the
NumberGrid

Let's look at the declarations of each of these sets of functions.

The class declaration begins with the constructor and destructor. The
NumberGrid constructor takes the arguments needed to create the spreadsheet
grid, including the number of rows, number of columns, and the column width
(in characters) of each cell.

class NumberGrid {
public:

11---
II Standard c++ member functions

II constructor and destructor
NumberGrid(HINSTANCE hlnst, HWND hwnd , int xPos = 0, int yPos 0,

int rows = 0, int cols = 0, int nCharsPerCell = 0);
virtual ~NumberGrid();

THE POWER OF FRAMEWORKS

Editing member
functions

Accessor member
functions

Data members

~HAPTER 8 CREATING THE APPLICATION FOR OS/2 151

DESIGNING THE SPREADSHEET CLASSES

The most important member functions in NumberGrid handle our user
interface functions. These functions are typically called by the application's user
interface code.

II Format current cell according to a format code set by the user
II from the main menu
virtual void FormatCurrentCell(int nFormatCode);

II Re-format a cell in the grid according to its current user-specified format.
virtual int UpdateCell(int nCeIINo);

II Change the focus to cell number nCellNo.
virtual int ChangeFocus(int nCeIINo);

II Does nCellNo contain a valid numeric string?
virtual BOOL IsValidEntry(int nCeIINo);

II Move the upper-left corner of the grid to a new X,y position
virtual void Move(int x = 0, int y = 0);

II Center the grid in the client area.
virtual void Center(HWND hwnd);

The remaining member functions provide access to the state of the cell grid.
Convenience member functions are provided to make it easier to perform
common operations on the current cell. These functions are usually called by the
framework itself, rather than by clients.

II access the currently selected cell's id
virtual int GetCurrentCell();
virtual int SetCurrentCell(int nCurrent);

II set the format of the specified cell
virtual int SetFormat(int nCellNo, const NumberFormat& nf);

II Get the Windows edit handle to nCellNo.
virtual HWND GetHandle(int nCeIINo);

II Get the edit contol's enclosing NumberCell.
virtual NumberCell* GetCell(int nCeIINo);

The class declaration concludes with the class's private data member
declarations. Of these data members, the two worth noting are fGrid, which is
a pointer to our array of cells, and fCurrentCell, which keeps track of the
current cell.

private:

} ;

NumberCell***
int
int
int
int

fGrid; II Pointer to the 2D grid of NumberCells.
fNRows, fNCols; II Number of rows, cols in grid.
fTop, fLeft; II Position of top, left corner of grid
fCellWidth, fCellHeight;
fCurrentCell; II The cell index of the current cell

FOR WINDOWS AND OS/2 DEVELOPERS

152 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
DESIGNING THE SPREADSHEET CLASSES

NumberCeli
class design

The NumberCell class is more complicated than NumberGrid. A NumberCell
serves as a kind of pivot-point: it associates a C++ object (a cell) with a critical
Presentation Manager user interface element, and it shuttles the raw and
formatted user input data between this Presentation Manager user interface
element and the C++ class responsible for formatting.

What is the "critical Presentation Manager user interface element"? For the
application to display a NumberCell, the cell must encapsulate some user
interface element that the Presentation Manager understands. Presentation
Manager knows nothing about the NumberCell object. Because we expect the
user to select a cell (using the mouse) and enter a number (using the keyboard),
it seems logical to have the NumberCell class be a "wrapper" for a Presentation
Manager edit control. (An edit control is a text~entry user interface element with
built-in, simple editing functions such as select, append, insert, and delete.)

For reasons that will become apparent, we also need to design a two-way
communication path between NumberCell and its encapsulated edit control. It's
easy to see how a NumberCell could access its edit control: we make the edit
control a data member of the NumberCell. But how does a Presentation
Manager edit control access its NumberCell? That's more complex. We'll discuss
that when we implement the NumberCell class in "Implementing NumberCell"
on page 171.

NumberCell is also pivotal in its role of shuttling raw and formatted user input
values between the edit control and the class that's actually responsible for
formatting, but we have not yet described that formatting class. In Chapter 4, you
saw how the user of the application specifies a display format for a particular
spreadsheet cell by first selecting the cell (actually, the cell's edit control), then
choosing a format from the Format Cell dialog box. Although, from the user's
perspective, it appears that the chosen format is applied directly to the cell, we
opted to less closely couple the NumberCell and its display format, which is
stored in a FormattableNumber.

Designing some distance between the cell and its format creates a buffer of
independence, which improves the potential for reuse. This makes each of
the two classes, NumberCell and FormattableNumber, more reusable because
it separates the cell's functions for handling actions such as keyboard input
and display updating from the functions responsible for formatting the cell
input value.

THE POWER OF FRAMEWORKS

Standard member
functions

Editing member
functions

Accessor member
functions

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 153
DESIGNING THE SPREADSHEET CLASSES

As usual, the class declaration begins with the constructor and destructor. The
hlnst and hwndParent parameters are passed to the constructor by the
NumberGrid object when it creates the grid of cells.

class NumberCel1
{
public:

virtual

NumberCell(HINSTANCE hlnst, HWND hwndParent,
int xPos = 0, int yPos = 0,
int width = 0, int height = 0);

-NumberCell();

To support editing operations, NumberCell provides member functions to move
the cell, update the cell's value based on the EditControl text, and redraw the
cell's text.

II Move the cell to X,y with width wand height h
void Move(int x = 0, int y = 0, int w = 0, int h 0);
II Set the cell format to the edit format.
void Edit();
II Reformat the cell based on its new format.
int Update();

NumberCell also provides a number of accessor member functions to access the
state of the cell.

void

HWND
WORD

BOOL
void

BOOL
BOOL

SetFormat(const NumberFormat &nf);

GetEditHandle();
GetID() ;

GetFormatErrorStatus();
SetFormatErrorStatus(BOOL errorStatus);

HasBeenAltered();
SetAlteredStatus(BOOL newStatus);

FOR WINDOWS AND OS/2 DEVELOPERS

154 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
DESIGNING THE SPREADSHEET CLASSES

Data members

FormattableNumber
class design

Lastly, NumberCell declares its private data members, including a handle to its
EditControl, the FormattableNumber, and a dirty flag.

NumberCell also declares several static data members. It keeps track of the last
cell ID number used in the static data member fCellNumber, ensuring that each
edit control object has a unique ID. NumberCell also tracks the edit control's
overridden and original message handler to help implement the application's
customized edit control.

private:

} ;

HWND
FormattableNumber
BOOL
BOOL

static int
static PFNWP

fHwndEditControl;
fNumber;
fErrorlnFormat;
fAltered;

fCellNumber;
fLpfnOldEditProc;

II Handle to the enclosed edit control.
II Formattable number enclosed in the cell.
II Error status flag.
II Altered status flag.

II last cell id used

FormattableNumber translates a number into formatted text. Its key member
function is Format, which does the actual work of converting the
FormattableNumber object's current value and format options into a text
string. FormattableNumber also provides functions to access the format
options and the value.

class FormattableNumber {
public:

II Standard member functions
FormattableNumber(double d = 0.0)';
FormattableNumber(double d, const NumberFormat& nf);

virtual -FormattableNumber() {};

virtual FormattableNumber&
operator=(const FormattableNumber &fn);

virtual FormattableNumber&
operator=(double v);

II Formatting member function
virtual void Format(char* fresult);

II Accessor member functions
virtual double GetValue();
virtual void SetValue(double d) const;

virtual const NumberFormat&
GetFormat();

virtual void SetFormat(const NumberFormat& nf) const;

private:
double fValue;

fFormat;
II Value part.

NumberFormat II Current format.
} ;

THE POWER OF FRAMEWORKS

NumberFormat
class design

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 155
DESIGNING THE SPREADSHEET CLASSES

~ NOTE This version of the application is not fully usable in countries other
than the U.S., because in the GetGeneralNumberFormat function, it hard
codes the values of the currency, decimal, and thousands separator characters
to correspond to those used in the U.S. As we'll discuss in Chapter 9,
correcting this deficiency is a major framework design task for the next
version of this application.

The design of NumberFormat is straightforward. It provides accessors to allow
the caller to get and set the values of its various formatting data members. It also
provides a static member function GetGeneralNumberFormat that you can use
to set a NumberFormat to the defaults for the current locale.

class NumberFormat {
public:

II Standard c++ member functions

II Accessor
void

int

BOOL
BOOL

char
char
char

NumberFormat(int prec = KDEFAULTPRECISION,
BOOL delimtd = TRUE, BOOL curncy
char intSep = ',', char decSep
char curncySym = KDOLLARSIGN);

NumberFormat(const NumberFormat &nf);
NumberFormat& operator=(const NumberFormat& nf);
~NumberFormat() {};

member functions
Set(int prec = KZEROPRECISION,

BOOL delimtd = FALSE, BOOL curncy
char intSep = KCOMMA, char decSep
char curncySym = KDOLLARSIGN);

GetPrecision() const;

IsThousandsDelimitted() const;
IsCurrency() const;

GetlntSeparator() const;
GetDecSeparator() const;
GetCurrencySymbol() const;

FALSE,
KPERIOD,

II utility member function: creates a basic number format
static NumberFormat

private:
int
BOOL
BOOL
char
char
char

};

GetGeneralNumberFormat();

fPrecision;
fThousandsDelimitted;
fCurrency;
fIntSeparator;
fDecSeparator;
fCurrencySymbol;

= FALSE,
KPERIOD,

FOR WINDOWS AND OS/2 DEVELOPERS

156 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Implementing main

Now that the basic application design is in place, we can implement the
application. We'll begin with the Presentation Manager interface code.

As with all standard C programs for Presentation Manager, main is the initial
entry point for the first sample program. The main function does very little
before it drops into a message dispatch loop that is responsible for retrieving and
dispatching messages directed at the application. Among other messages, the
message loop receives notification of keyboard and mouse events and directs
them to the appropriate window procedure (event handler code) where the
events are processed.

A style often used in Presentation Manager programming appends WndProc as a
suffix to a string identifying a pseudo class name for windows whose events are
handled by this window procedure. For example, the window procedure used in
our application (named "Sample I") is called WindowSA1WndProc. Window
procedures are often referred to as callback procedures, because they are called
by system code, rather than called directly from user code.

The main function, the initial entry point for our spreadsheet application,
performs the following actions:

o Registers window classes.

fJ Creates the window.

B Enters message dispatch loop.

S Closes the window and cleans up when the application is asked to quit.

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 157
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

The source code for main is as follows:

FOR WINDOWS AND OS/2 DEVELOPERS

int main (int argc, CHAR *argv)
{

QMSG qMsg; /* MSG structure to store messages */
PID idProcess;
TID idThread;
CHAR szW~ndowSA1Title[30];

hAB = WinInitialize(0);
if (hAB == NULLHANDLE)

return (-3);
hMQ = WinCreateMsgQueue(hAB, 0);
if (hMQ == NULLHANDLE)

return (-4);

/* Load program name string */
WinLoadString (hAB, hModFRAMEWRK, I DS_APP_NAME,

sizeof(szAppName), szAppName);

/* Step 1. Register window classes */
if (cwRegisterClasses() == false)

return (-5);

/* Display welcome dialog */
if (lWinDlgBox (HWND_DESKTOP, HWND_DESKTOP, (PFNWP)PanelWELCOMEDlgProc,

NULLHANDLE, ID_PANELWELCOME, (PVOID) (&hWndDeskTop»)
{

}
DosExit (EXIT_THREAD, 1);

/* Load window title string */
WinLoadString (hAB, hModFRAMEWRK, IDS_WINDOWSA1_TITLE,

sizeof(s~WindowSA1Title), szWindowSA1Title);

/* Step 2. Create the window */
hWndWindowSA1 = cwCreateWindow (HWND_DESKTOP,

HWND_DESKTOP,

if (hWndWindowSA1
return (false);

NULLHANDLE)

(PVOID) &hWndDeskTop,
szAppName,
szWindowSA1Title,
FCF_TITLEBAR I
FCF_SYSMENU I
FCF_MINBUTTON I
FCF_MAXBUTTON I
FCF_SIZEBORDER I
FCF_MENU I
FCF_ICON I
FCF_SHELLPOSITION,
0L,
0, 0,
0, 0,
ID_WINDOWSA1,
SWP _SHOW);

IS8 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Implementing
cwCreateWindow

}

/* Add application to Task Manager List */
WinQueryWindowProcess (hWndMain, &idProcess, &idThread);
Swctl.hwnd hWndMain;
Swctl.idProcess idProcess;
Swctl.uchVisibility SWL_VISIBLE;
Swctl.fbJump SWL_JUMPABLE;
strcpy(Swctl.szSwtitle, szWindowSAlTitle);
hSwitch = WinAddSwitchEntry(&Swctl);

/* Step 3. Enter message dispatch loop */
while (WinGetMsg(hAB, &qMsg, 0, 0, 0»

WinDispatchMsg(hAB, &qMsg);

/* Step 4. Close window, clean up memory */
if (hWndFRAMEWRKHelp != NULLHANDLE)
{

}

WinDestroyHelpInstance(hWndFRAMEWRKHelp);
hWndFRAMEWRKHelp = NULLHANDLE;

WinDestroyWindow(hWndMain);
hWndWindowSAl = NULLHANDLE;
WinDestroyMsgQueue(hMQ);
WinTerminate(hAB);
return (0);

The main function creates the application window by calling the
cwCreateWindow utility function. The cwCreateWindow function creates a
window and sets its initial size and position. A simplified outline of
cwCreateWindow follows. Code not critical to understanding the basic purpose
of cwCreateWindow has been omitted. The full source code appears in
SAMPLEI.CPP.

HWND cwCreateWindow
HWND hWndParent, /* Handle to parent of the window to
HWND hWndOwner, /* Handle to owner of the window to
PYOID pWindowData, /* Pointer to window data
PSZ szClassName, /* Class name of the window
PSZ szTitle, /* Title of the window

be
be

ULONG FrameFlags, /* Frame control flags for the window
ULONG flStyle, /* Frame window style

created
created

INT x, /* Initial horizontal and vertical location
INT y,
INT ex, /* Initial width and height of the window
INT cy,
USHORT ResID, /* Resource id value
USHORT uSizeStyle) /* User defined size and location flags

*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

THE POWER OF FRAMEWORKS

{

}

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 159
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

HPS hPS; 1* handle to a presentation space
SWP swp;
HWND hWndFrame; 1* Frame window handle
HWND hWndClient; 1* Client window handle
USHORT rc; 1* accepts return codes from function
USHORT SizeStyle; 1* local window positioning
FRAMECDATA CtlData; 1* Frame-control data
FONTMETRICS FontMetrics; 1* Font metrics data
float Xmod, Ymod;

II ... Local variables initilized (code omitted)
hWndFrame = WinCreateStdWindow(HWND_DESKTOP,

WS_VISIBLE,

options
calls

(PULONG) &(CtlData.flCreateFlags),
(PSZ)szClassName,
(PSZ)szTitle,
WS_VISIBLE,
(HMODULE)NULL,
ResID l

&hWndClient);
if (hWndFrame == NULLHANDLE) { ErrorBox(); return (NULLHANDLE); }
if (hWndClient == NULLHANDLE) { ErrorBox(); return (NULLHANDLE); }

II '" Set size options (code omitted)
rc = WinSetWindowPos (hWndFrame, HWND_TOP,

(SHORT) (x * Xmod) ,
(SHORT)(y * Ymod) ,
(SHORT)(cx * Xmod) ,
(SHORT)(cy * Ymod) ,
SizeStyle);

if (rc != true)
{

}

II .. , Display error message (code omitted)
return (NULLHANDLE);

II return handle of newly created window
return (hWndFrame);

*1

*1
*1
*1
*1
*1
*1

160 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Implementing
WindowSA1WndProc

Window manipulation
messages

Application-specific
message handlers

WindowSAI WndProc is the core of the spreadsheet application. It handles
several different types of messages, including window manipulation messages,
menu commands, and some special number formatting messages generated by
the application.

If you are familiar with Presentation Manager programming, you can easily
separate the case clauses used in typical applications from those inserted
specifically for our spreadsheet application. The following event cases are
handled by typical Presentation Manager programs.

switch (Message) {
I I ...

}

case WM_CONTROL:
case WM_CREATE:
case WM_SIZE:
case WM_COMMAND:

switch (SHORT1FROMMP(Paraml» {
II ... Handle menu selections

}

case WM_PAINT:
case WM_CLOSE:
I I ...

Generally, WindowSAI WndProc handles these messages by calling the
appropriate routines from the Presentation Manager API.

The following event cases are specific to our spreadsheet application.

switch (Message) {
I I ...

}

case WM_FORMATCELL:
case WM_FORMATERROR:
case WM_COMMAND:

II

switch (SHORT1FROMMP(Paraml» {
case IDM_WINDOWSA1_FORMAT_CELL:
case IDM_HELP_USINGHELP:
case IDM_HELP_PRODINFO:

}

The outline of application-specific event handler code is critical to analyzing the
behavior of user-defined windows. Looking at the code inside these case clauses
and dissecting functions called by this code reveals the essential features of the
spreadsheet example. I

THE POWER OF FRAMEWORKS

Menu command
messages

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 161

IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

For now, if you ignore the code designed to handle user requests for help,
you can narrow the preceding outline to three case clauses that require
further analysis.

case WM_FORMATCELL:
case WM_FORMATERROR:
case WM_COMMAND:

switch (SHORTIFROMMP(Paraml)) {
case 1DM_W1NDOWSA1_FORMAT_CELL:

}

The responses to menu items are processed by the WM_COMMAND message,
which is sent so that a control can notify its owner (the application window)
about a particular event. The Paraml argument to WindowSAlWndProc
contains the ID of the window or control sending the command message.

case WM_COMMAND:
{

switch (SHORTIFROMMP(Paraml))
{

case 1DM_W1NDOWSA1_FORMAT_CELL:
{

HWND hWndPanel = NULLHANDLE;
if (theGrid.1sValidEntry(theGrid.GetCurrent()))
{

}

II ... Error-handling code omitted.
II Set the error status to true for the
II currently selected NumberCell. Open
II error dialog to warn user.

break; II Return without opening Format Cell dialog.

II Create the dialog box named "PanelCELLFORM"
hWndPanel = WinLoadDlg (HWND_DESKTOP, II Parent

II Owner
II Message Proc

hWndMain,
PanelCELLFORMDlgProc,
hModFRAMEWRK,
1D_PANELCELLFORM,
(PVOID) &hWnd);

II Resource 1D

}
}

if (hWndPanel != NULLHANDLE)
{

USHORT rc;

II hWndCaller

rc = WinProcessDlg (hWndPanel); II Call the modal dialog
}

}

break;
I I ...

II end switch on Paraml
II end case WM_COMMAND

Essentially, this code creates and invokes a dialog box similar to the one shown in
the following figure.

FOR WINDOWS AND OS/2 DEVELOPERS

162 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Application-defined
formatting messages

FORMAT CELL DIALOG BOX

The call to WinLoadDlg creates a new window object, which is a dialog box. The
message-handling window procedure for this window is
PanelCELLFORMDlgProc, specified as the third argument. The dialog box is not
actually opened until WinProcessDlg is called. The message-handling code
within PanelCELLFORMDlgProc is explained in "Handling cell formatting" on
page 164.

At certain points in the execution of the application, it can be difficult to update
the user interface directly by calling application routines. Presentation Manager
programs allow applications to create and send their own custom message types
to tell the user interface to perform special actions. You use this technique in the
program in two ways:

rf WM_FORMATCELL messages are generated by the Format Cell dialog box
when the user clicks the OK button or double-clicks a format in the dialog
box's scrolling list. The dialog box message handler sends this message back
to the application to tell the main program to update the cell's format.

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 163
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

•..• ·• ·1

=J
WM_FORMATCELL message

WindOWSA ... 1WndProc .DDDDIDaDIIDlaEiflElaallaflDIIIIIIIIIII.~~~
'.---~.~. ~ o _ .. • II

~ 1: .. Num-b-er-Fo-rm-at-O,-gp-ro-c-1
ir
.::. iIIfI1' j;OK·'lfl •• ' ... • l .. I~.~1 '----t-- pressed

1::::===========::::::1
FORMAT CELL COMMAND PROCESSING

tJ WM_FORMATERROR messages are generated during focus-change
operations if the user entered an illegal number. When this message is
processed, it forces the focus to return to the cell containing the error,
allowing the user to correct the error.

The code for WindowSAl WndProc, which handles the WM_FORMATCELL and
WM_FORMATERROR messages, is as follows:

FOR WINDOWS AND OS/2 DEVELOPERS

switch (Message) {
I I '"

}

case WM_FORMATCELL: II Sent in response to choosing
{ I I OK in Format Cell dialog.

II Reformat and display the cell text
II using the new format.

theGrid.FormatCell«int)Param2);
}

break;
case WM_FORMATERROR:
{

II Format error, reset
II focus to cell with error.

WinSetFocus(HWND_DESKTOP, (HWND)Param2);
II

}

break;
I I ...

164 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Handling cell
formatting

When WindowSAIWndProc receives an IDM_WINDOWSAI_FORMAT_CELL
message, it handles the message by displaying the Format Cell dialog box. This
dialog box, like most Presentation Manager dialog boxes, has a custom message
handler. In this case, the message handler is PanelCELLFORMDlgProc. The
portion of WindowS Al WndProc responsible for the
IDM_WINDOWSAI_FORMAT_CELL message is as follows:

case IDM_WINDOWSA1_FORMAT_CELL:
{

}

HWND hWndPanel = NULLHANDLE;
hWndPanel = WinLoadDlg (HWND_DESKTOP, II Parent

hWndMain, II Owner
PaneICELLFORMDlgProc, II Message Proc
hModFRAMEWRK,
ID_PANELCELLFORM, II Resource ID
(PVOID) &hWnd); II hWndCaller

USHORT rc = WinProcessDlg (hWndPanel); II Call the modal dialog

The message-handling procedure for this dialog box is the third argument to
WinLoadDlg. A dialog box is a window just like an application window.
Therefore, a dialog box has a message-handling window procedure as do other
Presentation Manager controls. The control-flow structure of
PanelCELLFORMDlgProc is similar to WindowSAI WndProc.

MRESULT EXPENTRY PanelCELLFORMDlgProc (HWND hWnd,
ULONG Message,
MPARAM Paraml,
MPARAM Param2)

{
switch (Message) {

case WM_INITDLG:
case WM_CONTROL:
case WM_COMMAND: {

switch (SHORTIFROMMP(Paraml» {
case lOOK:

II Push button id
II Push button "-OK"

case IDCANCEL: II Push button "-Cancel"
}

}

default:
}
return ((MRESULT) false);

}

WM_INITDLG is invoked when the dialog box is first initialized. In addition to
handling menu commands, WM_COMMAND responds to push button events
such as when the user clicks the OK or Cancel button. WM_INITDLG sets up
dialog box controls: it adds appropriate format strings to the list box control
inside the Format Cell dialog box.

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 165
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

case WM_INITDLG:
{

}

char *formats[] = { "1111", "1,111", "1111.1", "1111.11", "1,111.1",
"#,11#.1#", "$#11#.1#", "$1,111.11" };

int i;
if (hWndFRAMEWRKHelp != NULLHANDLE)

WinAssociateHelplnstance (hWndFRAMEWRKHelp, hWnd);
for (i = 0; i < 8 ; ++i)

nSel = WinlnsertLboxltem(hwndListbox, LIT_END, formats[i]);
WinSendMsg(hwndListbox, LM_SELECTITEM, (MPARAM)0, (MPARAM)true);
cwCenter (hWnd, WinQueryWindow (hWnd, QW_OWNER));

break;

Eight format strings are added as specified in the formats array. Mter the strings
are added to the list box control, the first list box item is selected. Finally, the
dialog box is centered.

The controls used and the text displayed in the dialog box are specified in the
resource file for this application. The following code is found in SAMPLEl.RC.

DLGTEMPLATE ID_PANELCELLFORM LOADONCALL MOVEABLE DISCARDABLE
BEGIN

DIALOG "Select Cell Formatting", ID_PANELCELLFORM, 77, 31, 235, 116,
WS_VISIBLE I WS_CLIPSIBLINGS I WS_SAVEBITS I FS_DLGBORDER,
FCF_TITLEBAR I FCF_SYSMENU

END

BEGIN
LISTBOX lbCELLFORMAT, 25, 26, 180, 80, WS_VISIBLE I WS_TABSTOP
PUSHBUTTON "-OK", IDOK, 7, 4, 40, 14, WS_VISIBLE I WS_TABSTOP
PUSHBUTTON "-Cancel", IDCANCEL, 57, 4, 40, 14, WS_VISIBLE I WS_TABSTOP

END

The most important part of PanelCELLFORMDlgProc is the WM_COMMAND
clause, especially the code invoked when the user clicks the OK button after
selecting a format string.

FOR WINDOWS AND OS/2 DEVELOPERS

/ / ...
static int nSel;
/ / '"
case WM_COMMAND: {

}

switch (SHORT1FROMMP(Param1)) {
case IDOK:
{

}
}

nSel = WinQueryLboxSelectedltem(hwndListbox);
WinSendMsg(WinQueryWindow (hWnd, QW_OWNER),

WM_FORMATCELL, (MPARAM) 0 , (MPARAM)nSel);
WinDismissDlg (hWnd, true);
return «MRESULT) false);

166 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

The index of the selected string is saved in nSel. Next, a user-defined message,
WM_FORMATCELL, is sent to the window that owns the Format Cell dialog box.
The WM_FORMATCELL message is sent back to samplel's main message loop,
where it is dispatched to the application's window procedure,
WindowSAI WndProc. How WindowSAI WndProc handles this message is
described later. First, consider what happens if the user cancels the dialog box.

If the user clicks Cancel instead of OK, the dialog box is dismissed without
sending any notification message to its owner, the main application window.

case WM_COMMAND: {

}

switch (SHORT1FROMMP(Param1» {
case rDCANCEL:
{

}
}

WinDismissDlg (hWnd, false);
return «MRESULT) false);

Similarly, a close event (possibly generated by the dialog's system menu, if it has
one) shuts the dialog box without taking action.

case WM_CLOSE:
{

WinDismissDlg (hWnd, false);
break;

}

Any unrecognized events are handled by the default case clause.

default:
{

DefResult = WinDefDlgProc (hWnd, Message, Param1, Param2);
return (DefResult);

}

When the user chooses a format string for the currently selected NumberCell
and clicks OK, the dialog box sends the following notification message to the
main application window:

WinSendMsg(
WinQueryWindow
WM_FORMATCELL,
(MPARAM)0,
(MPARAM)nSel);

(hWnd, QW_OWNER), II arg 1, window handle of owner
II arg 2, message identifier
II arg 3, extra message parameter (ignored)
II arg 4, index of selected item in list box

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 167
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

This message is put in the message queue for the main application
(determined by the call to WinQueryWindow). When the message is removed
from the queue by the application's message dispatch loop, it is directed to the
application's window procedure, WindowSAl WndProc. Eventually the message
is caught by the WM_FORMATCELL case in the Message switch of the
application's window procedure.

The application's handler code for the WM_FORMATCELL message looks like:

MRESULT EXPENTRY WindowSA1WndProc (HWND hWnd,
ULONG Message,
MPARAM Paraml,
MPARAM Param2)

{

}

I I . ..
switch (Message)
{

}

II ...
case WM_FORMATCELL: II sent by Format Cell dialog
{

}

II ...

II Reformat the current NumberCell.
II Display text using the selected format.
theGrid.FormatCell((int)Param2);

The variable theGrid is an instance of NumberGrid declared as a static variable
inside the window procedure.

static NumberGrid theGrid(hlnst, hWnd,
0, 0, KNROWS, KNCOLS,
KNCHARSPERCELL);

This code creates and initializes the 2-by-lO grid of NumberCells used by the
applications. Because theGrid is accessed only by event handler code inside the
window procedure (WindowSAlWndProc), it is declared as a local variable.
Declaring theGrid as static assures that it is initialized only once rather than on
each call to WindowSAl WndProc.

FOR WINDOWS AND OS/2 DEVELOPERS

168 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE PRESENTATION MANAGER INTERFACE

Changing input focus

The call

theGrid.FormatCell«int)Param2)j

in WindowSAI WndProc takes the second parameter of the WM_FORMATCELL
message (the index of the selected number format string) and invokes
NumberGrid::FormatCell. FormatCell creates a new NumberFormat object and
sets the parameters of the grid's currently selected NumberCell from the format
code passed as an argument.

void NumberGrid: :FormatCell(int nFormatCode)
{

}

NumberFormat nfj
II
II set parameters of nf based on nFormatCode
II set format of current NumberCell to nf
II edit and update display of current NumberCell

The details of the constructor for theGrid (NumberGrid::NumberGrid) are
covered in "Implementing NumberGrid" on page 169. The full source code for
NumberGrid::FormatCell also appears in "Formatting the currently selected cell"
on page 170 and can be found in NGRID.CPP. The declaration for the
NumberGrid class is in NGRID.H.

The ProcessFocusChange function is called whenever the user selects a new
NumberCell for editing by pointing to the cell and clicking the left mouse
button. One of the main side effects of calling ProcessFocusChange is a call to
NumberGrid::SetCurrent. SetCurrent changes an instance variable inside the
NumberGrid object to remember the currently selected cell for the spreadsheet.

void ProcessFocusChange(HWND hwnd, MPARAM lParam, NumberGrid * grid
{

}

I I ...
grid->SetCurrent(SHORT1FROMMP(lParam))j
I I ...

So far we've been able to look at the implementations of our Presentation
Manager layer functions in order, without discussing too many of the details of
the interface between the Presentation Manager application layer and the
spreadsheet classes. We won't discussProcessFocusChange here, because its
implementation is much easier to understand once we've had an in-depth look at
the implementations of NumberGrid and NumberCell. We'll pick up the full
analysis of Process Focus Change in "Implementing ProcessFocusChange" on
page 174.

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 169
IMPLEMENTING THE SPREADSHEET CLASSES

IMPLEMENTING THE SPREADSHEET CLASSES

Implementing
NumberGrid

NumberGrid constructor

Now that most of the Presentation Manager application layer is in place, we can
implement our spreadsheet classes.

We'll start by implementing the NumberGrid class.

NumberGrid's constructor sets up the application's default font, creates a grid of
cells, and initializes the selection to point to the first cell.

NumberGrid: :NumberGrid(HINSTANCE hlnst, HWND hwnd , int xPos, int yPos,
int rows, int cols, int nCharsPerCel1)

{

}

int i, j;
int xChar, yChar;
FONTMETRICS fm;
HPS hps;

hps = WinGetPS(hwnd);
GpiQueryFontMetrics(hps, (LONG) sizeof fm, &fm);
WinReleasePS(hps);
xChar (int) fm.IAveCharWidth;
yChar = (int) (fm.IEmHeight + fm.IExternalLeading + fm.IEmHeight I 2);

II create the grid cells:
fCellHeight = yChar;
fCellWidth = nCharsPerCel1 * xChar;
fNRows, = rows;
fNCols = cols;
fGrid new NumberCel1 ** [rows];
for (i = 0; i < rows; ++i)

fGrid[i] = new NumberCell* [cols];
for (i = 0; i < rows; ++i)

for (j = 0; j < cols; ++j)
fGrid[i][j] = new NumberCell(hlnst, hwnd,

fCurrentCel1 0' ,

(xPos + «j * fCeIIWidth)+0»,
(yPos + «i * fCeIIHeight)+0»,
fCellWidth, fCellHeight);

II Select the first cell in
II the grid as the current cell.

FOR WINDOWS AND OS/2 DEVELOPERS

170 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE SPREADSHEET CLASSES

Formatting the currently
selected cell

Because each NumberCell is also a Presentation Manager edit control, it makes
sense to identify each cell with a unique integer. This is the reason that the
currently selected cell (saved in fCurrentCell) is remembered as an integer
rather than as a point or a similar two-element structure. This decision requires
your code to map integer cell identifiers to row and column coordinates
expected by fGrid. The following example of this mapping is extracted from
NumberGrid::FormatCell.

fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Update();

Understanding how this mapping works will make it easier to understand how
NumberGrid works.

The implementation for NumberGrid::FormatCell is found in NGRID.CPP. This
code includes several expressions that map fCurrentCell to the appropriate row
and column values for fGrid.

II Change the format of the currently selected cell
II according to the format code selected by the user.
void NumberGrid::FormatCell(int nFormatCode)
{

}

NumberFormat nf;
switch (nFormatCode
{

case o:
nf.Set(
break;

case 1 :
nf.Set(
break;

case 2:
nf.Set(
break;

case 3:
nf.Set(
break;

case 4:
nf.Set(
break;

case 5:
nf.Set(
break;

case 6:
nf.Set(
break;

case 7:
nf.Set(
break;

}

O, false,

0, true,

1, false,

2, false,

1, true,

2, true,

2, false,

2, true,

false, KCOMMA, KPERIOD);

false, KCOMMA, KPERIOD) ;

fals~ KCOMMA, KPERIOD);

false, KCOMMA, KPERIOD) ;

false, KCOMMA, KPERIOD) ;

false, KCOMMA, KPERIOD) ;

true, KCOMMA, KPERIOD);

true, KCOMMA, KPERIOD);

II set the current cell to the appropriate format
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->SetFormat(nf);
II update it
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Edit();
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Update();

THE POWER OF FRAMEWORKS

Implementing
NumberCell

Creating Presentation
Manager control
subclasses

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 171

IMPLEMENTING THE SPREADSHEET CLASSES

NumberGrid::FormatCell is called from the WM_FORMATCELL clause of the
WindowSAlWndProc window procedure, which is invoked whenever a user
selects a format string from the Format Cell dialog. This code appeared in the
previous section.

MRESULT EXPENTRY WindowSA1WndProc (HWND hWnd,
ULONG Message,
MPARAM Paraml,
MPARAM Param2)

{

}

I I . ..
switch (Message)
{

}

I I . ..
case WM_FORMATCELL: II sent by Format Cell dialog
{

}

I I . ..

II Reformat the current NumberCell.
II Display text using the selected format.
theGrid.FormatCell«int)Param2);

NumberCell's implementation is more complicated than that of NumberGrid,
due mostly to its interactions with its edit control.

NumberCells are implemented as Presentation Manager edit controls. More
precisely, NumberCells have an instance variable that refers to the edit control
used to edit and display the text for each of the spreadsheet cells. This makes
NumberCell's constructor more complicated than other constructors presented
in this chapter. You've already reviewed the techniques and code used to
implement most of the constructor for NumberCell objects.

The following discussion focuses on the role of various instance variables ~thin
NumberCell. For reference, the private instance variables inside NumberCell are:

class NumberCel1
{

I I ...
private:

} ;

HWND fHwndEditControl;
FormattableNumber fNumber;
bool fErrorlnFormat;
bool fAltered;
static int fCellNumber;

II Handle to the enclosed edit control.
II Formattable number enclosed in the cell.

II Error status flag.
II Altered status flag.
II Cell number in a grid.

The key to understanding NumberCell's constructor is in knowing how to modify
the behavior of a standard Presentation Manager edit control. Modifying the
behavior of a standard window control is referred to as "subclassing the control."
You must define and register a new class of window. This new class is, in effect, a

FOR WINDOWS AND OS/2 DEVELOPERS

172 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING THE SPREADSHEET CLASSES

subclass of an existing window, usually a standard control provided by
Presentation Manager. You must create a new window procedure to handle event
messages for your new control. You must also save a pointer to the old window
procedure for the existing control. Saving the old procedure and calling it from
your own window procedure is what distinguishes creating a window subclass
from creating an entirely new window control.

In "NumberCell class design" on page 152, the basic technique for subclassing
window controls was mentioned. As stated, a NumberCell object is primarily a
wrapper for an edit control and a number.

The technique for subclassing windows in both Windows and Presentation
Manager programming is borrowed directly from object-oriented programming.
The environment provides windows (in this case, an edit control) that already
exhibit most of the behavior you want. You want to modify this behavior only
slightly by doing some processing either before or after the original window
procedure for the control is invoked.

You must save the pointer to the old window procedure someplace where it can
be accessed whenever the window procedure for the new window is invoked. The
logical place to store the pointer to the edit control message handler is as a class
variable (declared as a static inside a C++ class) inside NumberCell. The saved
window procedure is called by our customized window procedure, EditWndProc.

II This window procedure is used to subclass the edit control
II used inside of NumberCell objects.
II The new edit procedure intercepts keystrokes and marks
II the NumberCell as altered.
MRESULT EXPENTRY EditWndProc(HWND hwnd, ULONG message, MPARAM Paraml,

MPARAM Param2)
{

}

switch (message)
{

case WM_CHAR: II The user has typed a character
II in an edit control.

«NumberCell*) GetProp(hwnd, (LPSTR) "nc"»->
SetAlteredStatus(true); II Mark cell as altered.

break;
}
II Call the old window procedure for the edit control.
return (NumberCell::fLpfnOldEditProc) (hwnd, message, Paraml, Param2);

The main reason for creating subclasses for the existing control is to intercept
keystroke events from the user. Whenever a key is pressed inside an active edit
control for a NumberCell, the cell is marked as altered by calling
NumberCell::SetAlteredStatus. Mter this call, the keystroke event is passed on to
the old window procedure to be handled normally.

Note how the NumberCell object is retrieved from the edit control handle for
which EditWndProc was invoked.

((NumberCell*) GetProp(hwnd, (LPSTR) "nc"))

THE POWER OF FRAMEWORKS

NumberCell constructor

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 173
IMPLEMENTING THE SPREADSHEET CLASSES

This code casts the value returned by GetProp as a pointer to a NumberCell. This
cast makes it possible to get at a NumberCell object from the window handle for
the control. With the pointer to the appropriate NumberCell, SetAlteredStatus
can be called by the new window procedure.

«NumberCell*) GetProp(hwnd, (LPSTR) "nc"))->SetAlteredStatus(true);

GetProp and SetProp are global interface functions (defined in SAMPLEl.CPP)
that implement the concept of properties for edit controls. Using the extra bytes
facility available to all windows, GetProp and SetProp treat the string "nc" as a key
to store and retrieve pointers to NumberCell objects. GetProp allows you to get
to the NumberCell from the edit control's window handle. This is the
Presentation Manager analog of storing a pointer to the edit window control as a
private instance variable inside all NumberCell objects.

NumberCell's constructor creates the edit control object and changes its window
procedure to its own custom version, EditWndProc, which keeps track of whether
the format text has changed. The constructor then stores a pointer to this
NumberCell object in a named property of the EditControl. Finally, NumberCell
initializes its data members as usual.

NumberCell: :NumberCell(HINSTANCE hInst, HWND hwndParent , int xPos, int yPos,
int width, int height) : fNumber()

}

II Create the edit control
fHwndEditControl =
WinCreateWindow (hwndParent,

WC_ENTRYFIELD,

(WS VISIBLE
I ES_LEFT
I ES_MARGIN),

xPos,
yPos,
width,
height,
hwndParent,
HWND_BOTTOM,

II
II
II

II
II
II
II
II
II

Parent
Control Class
Control Text

Control Style
Control X position
Control Y position
Control Width
Control Height
Owner

fCeIINumber++, II Control ID
0, II No Control Data
o); II No Pres Params

II Subclass the edit control's window procedure
fLpfnOldEditProc = WinSubclassWindow(fHwndEditControl, EditWndProc);
II store the handle to the enclosing NumberCel1 in the
II edit control property list
SetProp(fHwndEditControl, (LPSTR) "nc", (HANDLE) this);
fAltered = false; II new cell, has never been altered
fErrorInFormat = false; /1 default format is OK

FOR WINDOWS AND OS/2 DEVELOPERS

174 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING PROCESsFoCUSCHANGE

IMPLEMENTING PROCESsFoCUSCHANGE

Now that you have a better understanding of the NumberGrid, NumberCell, and
NumberFormat classes, you are ready to work with ProcessFocusChange. As
mentioned, ProcessFocusChange is called whenever the user selects a new
NumberCell for editing

The entire definition for ProcessFocusChange indicates that a lot of
bookkeeping is involved. You need to save references to the old cell losing input
focus. You also need to get pointers to the NumberCells associated with the old
edit control handle and the new edit control handle.

This aside, ProcessFocusChange formats the display text for the old cell before
allowing input focus to be changed to the new cell. If a formatting error occurs,
the change of focus is aborted and an error message (WM_FORMATERROR) is
sent to the main application window. WindowSAI WndProc handles this message
by setting input focus back to the cell that caused the format error.

MRESULT EXPENTRY WindowSA1WndProc (HWND hWnd,
ULONG Message,
MPARAM Paraml,
MPARAM Param2)

{
switch (Message) {

I I ...
case WM_FORMATERROR:
{

II Format error, reset focus to cell with error

}
}

WinSetFocus(HWND_DESKTOP, (HWND)Param2);
}

break;
I I ...

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 175
IMPLEMENTING PROCESsFoCUSCHANGE

The following pseudocode of ProcessFocusChange should make the actual
definition easier to understand.

void ProcessFocusChange(HWND hwnd, MPARAM IParam, NumberGrid * grid)
{

}

II hwnd is the edit control receiving input focus
II SHORT1FROMMP(IParam) contains Control id
II SHORT2FROMMP(IParam) contains Notification Code
Get a pointer to the NumberCel1 from the edit control (hwnd).
If Notification Code is EN_SETFOCUS
{

}

The edit control is receiving input focus.
Remember the old cell (the one losing focus).
If the old cell already has a format error

Send a WM_FORMATERROR application with old cell handle as Param2
RETURN from this procedure without changing current cell.

Call NumberCell: :Update for the old cell.
If Update produces a format error for the old cell

Send a WM_FORMATERROR application with old cell handle as Param2
RETURN from this procedure without changing current cell.

Success (we have not returned).
Change the currently selected cell.
Turn OFF highlighting for OLD cell.
Turn ON highlighting for NEW cell.

This is the actual definition of ProcessFocusChange, which you should be able
to read now. You have already seen most of the individual statements in one
form or another.

FOR WINDOWS AND OS/2 DEVELOPERS

void ProcessFocusChange(HWND hwnd, MPARAM IParam, NumberGrid * grid
{

int nOldCurrent; II NumberCell id of cell losing the focus
HWND hwndOldCurrent; II Windows handle of edit control losing the focus
II hwnd is the edit control receiving input focus
II SHORT1FROMMP(IParam) contains Control id
II SHORT2FROMMP(IParam) contains Notification Code
II Get a pointer to the enclosing NumberCel1
NumberCel1 * ncp = (NumberCell*) GetProp(

WinWindowFromID(hwnd, SHORT1FROMMP(lParam)), (LPSTR) "ncD);
II process a focus change
if (SHORT2FROMMP(IParam == EN_SETFOCUS)
{

II the edit control has received input focus
II save the cell number of the cell losing the focus
nOldCurrent = grid->GetCurrent();
II get a handle to the edit control losing the focus
hwndOldCurrent = grid->GetHandle(grid->GetCurrent());
II get a handle to the NumberCell enclosing the edit control
NumberCel1 * ncpOldCurrent = (NumberCell*) GetProp(

hwndOldCurrent, (LPSTR) "ncD);

176 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING PROCESsFoCUSCHANGE

}
}

II if there's already a numeric format error
if (ncpOldCurrent->GetFormatErrorStatus()
{

II return to the cell to edit it
WinPostMsg(hwnd, WM_FORMATERROR, 0, (MPARAM) hwndOldCurrent);
ncpOldCurrent->SetFormatErrorStatus(false); II try again
return;

}

II Call to Update sets format error status, if any.
ncpOldCurrent->Update();
if (ncpOldCurrent->GetFormatErrorStatus()
{

II format error produced by update
II return to the cell and edit it
WinPostMsg(hwnd, WM_FORMATERROR, 0, (MPARAM)hwndOldCurrent);
return;

}

II OK update, highlight the new current cell
II set the current cell number to the cell receiving the focus
grid->SetCurrent(SHORT1FROMMP(lParam));
II invalidate (the rectangle) of the edit control losing the input focus
WinlnvalidateRect(grid->GetHandle(nOldCurrent), NULL, true);
II force old cell to paint, turns OFF highlighting for this cell
WinSendMsg(grid->GetHandle(nOldCurrent), WM_PAINT, 0, 0L);
WinlnvalidateRect(grid->GetHandle(grid->GetCurrent()), NULL, true);
II force current cell to paint, turns ON highlighting for this cell
WinSendMsg(grid->GetHandle(grid->GetCurrent()), WM_PAINT, 0, 0L);
ncp- >Edit () ;

THE POWER OF FRAMEWORKS

Handling format errors

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 177
IMPLEMENTING PROCESS Focus CHANGE

Various errors can occur when you are formatting a cell, and various events can
trigger a format. The next if statement in ProcessFocusChange handles
formatting errors that might have already occurred, but have not been cleared
from an edit prior to this invocation of ProcessFocusChange.

In such a case, a WM_FORMATERROR is sent to the control receiving input
focus and the format error status flag of the old NumberCell. The function then
aborts through an early return.

II if there's already a numeric format error
if (ncpOldCurrent->GetFormatErrorStatus()
{

}

II return to the cell to edit it
WinPostMsg(hwnd, WM_FORMATERROR, 0, (MPARAM) hwndOldCurrent);
ncpOldCurrent->SetFormatErrorStatus(false); II try again
return;

If no format error is detected, the next several statements format the number in
the cell losing input focus. Similar error recovery code is also included here for
errors resulting from the call to Update.

II Call to Update sets format error status, if any.
ncpOldCurrent->Update();
if (ncpOldCurrent->GetFormatErrorStatus()
{

}

II format error produced by update
II return to the cell and edit it
WinPostMsg(hwnd, WM_FORMATERROR, 0, (MPARAM)hwndOldCurrent);
return;

As before, a format error resulting from Update causes aWM_FORMATERROR
to be placed in the application's message queue. This message is processed by the
WM_FORMATERROR case clause ofWindowSAlWndProc.

FOR WINDOWS AND OS/2 DEVELOPERS

178 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING PROCESsFoCUSCHANGE

Updating the
NumberCell

The role of NumberCell::Update is to format a NumberCell's current value
according to the format the user selected from the Format Cell dialog box.

int NumberCell: :Update()
{

}

char szBuffer[32];
char *endPtr;
double dTemp;
if (I fAltered

return 1;
if (I WinQueryWindowText (fHwndEditControl,

{

}

if

sizeof(szBuffer), szBuffer » II is the cell empty?

fErrorInFormat = false;
fAltered = false;
return 1;

fErrorInFormat
return 0;

II if so, format is OK,
II set altered to false
II successfully updated

II bad numeric format,
II abandon update

dTemp = strtod(szBuffer, &endPtr);
if (I *endPtr)

II attempt conversion
II if endPtr is NULL,

{ II conversion was successful
fNumber = dTemp; II update FormattableNumber value
fNumber.Format(szBuffer); II generate new format string
WinSetWindowText(fHwndEditControl,

(LPSTR) szBuffer); Iiset the edit cell's text to
fErrorInFormat = false; II the formatted string
fAltered = false; II set altered to false
return 1; II successfully updated

}

II Record that the user has typed-in a bad numeric format
fErrorInFormat = true;
II Signal an error
MessageBeep(0);
MessageBox(fHwndEditControl, "Invalid Numeric Format",

"Number Cell Error", MB_ICONEXCLAMATION);
return 0; II ERROR: unsuccessful update

NumberCell::Update will return immediately if the cell has not been altered
since it was last formatted. Update will also return early if the cell's edit control is
empty. Otherwise, Update attempts to convert the cell's current edit control text
to a double using the ANSI library function strtod. If the conversion fails, Update
sets the cells fErrorInFormat instance variable to true, beeps, and displays a
warning dialog box to the user. When the user closes this dialog box, Update
returns the value 0, indicating a failure condition.

THE POWER OF FRAMEWORKS

Implementing
FormattableNumber

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 179
IMPLEMENTING PROCESsFoCUSCHANGE

If conversion is successful, Update assigns the double to the fNumber instance
variable of the NumberCell.

fNumber = dTemp; II update FormattableNumber value

Next FormattableNumber::Format is called with the edit controls text string as an
argument.

fNumber.Format(szBuffer); II generate new format string

Format takes the generic number representation in szBuffer and converts it to
the format selected for the cell by the user. The string in szBuffer is modified by
Format; then the display text for the edit control is set to the modified string.

WinSetWindowText(fHwndEditControl,
(LPSTR) szBuffer); Iiset the edit cell's text to

The format error and cell-altered flags are cleared before returning a value of 1,
indicating a successful update of the NumberCell.

fErrorlnFormat = false;
fAltered = false;
return 1;

II the formatted string
II set altered to false
II successfully updated

FormattableNumber is responsible for converting numbers to text. The bulk of
the class's implementation consists of accessor members.

As with the other classes in the application, FormattableNumber provides
accessor member functions that allow its format and numeric value to be
manipulated. The code for the format state accessors is:

canst NumberFormat& FormattableNumber: :GetFormat() canst
{

return fMyFormat;
}

void FormattableNumber::SetFormat(const NumberFormat &nf)
{

fMyFormat = nf;
}

FOR WINDOWS AND OS/2 DEVELOPERS

180 CHAPTER 8 CREATING THE APPLICATION FOR OS/2
IMPLEMENTING PROCESsFoCUSCHANGE

Format function The most important member function in FormattableNumber is Format, which
is responsible for converting the value and format into a string. To perform this
conversion, Format first divides the numeric value into its component parts by
calling the standard library function fcvt.

It then creates a formatted string by applying the sign, currency character, and
thousands separators to the number as needed. Notice that the positioning of
these characters in the number is fixed in this version of the application, which
make it unusable in some other countries.

void FormattableNumber: :Format(char *fresult)
{

}

int decimal, sign;
char *buffer;
char outbuf[BUFFLEN];
ostrstream ostrstr(outbuf, BUFFLEN);
II source = int(source);
buffer = f~vt(fValue, fMyFormat.GetPrecision(), &decimal, &sign);
if (sign) II negative sign?

ostrstr « "-";
if (fMyFormat.IsCurrency() II Currency?

ostrstr « "$";
II print the decimal part:
for (char *p = buffer; p < (buffer + decimal); ++p)
{

ostrstr « *p;
if (fMyFormat.IsThousandsDelimitted() II delimited integer format?

II not the end and comma?
if ((P < (buffer + decimal - 1)) &&

((buffer + decimal - p - 1) I sizeof(char)) % 3 0)
ostrstr « fMyFormat.GetlntSeparator();

} ;
if fMyFormat.GetPrecision() > 0) II there's a decimal point

ostrstr « ".";
while (*p) II print the decimal part

ostrstr « *p++.;
ostrstr «'\0'; II append a NULL
strcpy(fresult, outbuf);

Format uses a standard floating point to string conversion utility from the ANSI
library, fcvt. The fcvt function converts the Nalue instance variable of the
FormattableNumber into a character string using the precision attribute of
fMyFormat (an instance of Number Format). Format then determines the sign of
the number and whether the user wants to format the value entered as currency.
This version of Format always uses a $ symbol for currency. Note that you are
using a standard C++ output stream for a working buffer.

THE POWER OF FRAMEWORKS

CHAPTER 8 CREATING THE APPLICATION FOR OS/2 181

PUTTING THE APPLICATION TOGETHER

Format starts building up the integer part of the string representation checking
to see whether the user wants to display a thousands separator. If so, Format
notes the digit positions and inserts the delimiter in the appropriate places. Next
Format checks whether the representation calls for a decimal point by again
testing the precision attribute of fMyFormat. If required, a decimal point is
inserted into the output stream.

Now the decimal part of the number is inserted. A NULL character is inserted
into the stream to mark the end of the character buffer. The work buffer now
contains a properly formatted string representing the number. This string is
copied to the buffer passed in by the caller. In this case, the caller is
NumberCell::Update, which uses the returned string to set the text of the edit
control to the formatted number.

PUTTING THE APPLICATION TOGETHER

This version of the application is now complete. We have a simple but serviceable
spreadsheet, one that the user can edit and format. Even though the application
has some problems with international formatting, its design lays the foundation
for a version that handles these issues correctly.

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 9

DESIGNING A

NUMBER FORMATTING

FRAMEWORK FOR OS/2

At this point, we have a workable, if somewhat simplistic, OS/2 application,
which we will run through the usual process of testing and then shipping
to customers .

. As customers use the product, they report bugs and submit feature requests.
Some of the feature requests are minor (using a different font, and so on), while
others are more complex. Of the feature requests we receive, two of the most
common are the ability to format numbers as fractions (to display stock prices)
and the ability to use the program in other countries. We decide to concentrate
on adding support for other countries first, but we also want to make sure that it's
possible to add support for fractions later without having to redesign or rewrite a
lot of code.

Our current implementation of the program has room for improvement. Even
though we've divided the problem into a set of objects, adding support for
international number formatting to the existing application forces us to make
significant changes to the design and implementation of our NumberCell and
NumberFormat classes.

However, because the application wasn't designed to be extensible, we can see
that these types of problems will probably appear again the next time we have to
add features.

Rather than just do a patch on the existing design, we decide to develop a
general solution to the number formatting problem: creating a number
formatting framework. We'll still be able to reuse, with substantial editing, much
of the code created for the first version of the sample, including virtually all the
existing code for the user interface.

FOR WINDOWS AND OS/2 DEVELOPERS

184 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

DESIGNING THE FRAMEWORK

In the current implementation of the application, the FormattableNumber class
is responsible for building the formatted number string. While having a single
object that can format itself seemed reasonable at the time, it poses a few
problems now. For example, to add support for displaying fractions to the
FormattableNumber, we'll need to add case and if statements to many different
formatting routines.

We also want to be able to add new number formatting capabilities to the
application later, without adding new classes or revisiting existing ones. Thus, the
core of the framework should be a class that formats numbers generically,
TNumberFormatter. We'll create subclasses ofTNumberFormatter to format
numbers in more specific ways. For example, to format floating-point numbers,
we'll add a TFloatingPointFormatter class to the framework.

Because the current application design allows only the double value kept by
FormattableNumber to be used, we also want to provide a more general way of
passing numbers to TNumberFormatter. Therefore, the framework provides a
more general TFormattableNumber class, which can be passed to any
TNumberFormatter object. Like the old NumberFormatter class,
TNumberFormatter uses a double to represent the number being formatted.

Unlike NumberFormatter, this design lets us create a subclass of
TFormattableNumber to represent new data types, which in turn lets us
format numeric data types about which the framework itself knows nothing. A
future version of the application could use a Binary-Coded Decimal (BCD)
class for its calculations, and by using a TFormattableBCDNumber class, the
application would be able to format these values without modifying the
underlying framework.

This kind of flexibility is one of the keys to good framework design. The
framework provides reasonable default behavior that lets us format floating-point
numbers, but it also allows for future extensibility without affecting the
underlying framework design and implementation.

We also need a way to communicate formatting errors to framework clients.
Correctly designed classes usually respond to error conditions by throwing
exceptions or returning error codes, either of which is appropriate when there
are no shades of grey in the success or failure of a particular operation.

However, when formatting a number, error conditions are not always so clear.
Number formatting operations rarely fail.outright, but it is possible that the
result won't serve the client's needs. For example, the space available to display
the number might be fixed in width, and you might want to display the number
in a different format (such as scientific notation) to allow it to fit into the
allocated space. To address this issue, we need to create a class that allows us to
return more detailed results to the client. This class, TFormatResult, includes
error information and more general information about the formatting results.

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 185
DESIGNING THE FRAMEWORK

Finally, we need a TNumberFormatLocale class, which stores the common
formatter types used for a given area of the world. This class is used to isolate the
international dependencies from the rest of the framework.

The class hierarchy of the framework is shown in the following figure.

TNumberFormatLocale I
:+n
t

, - ... · .. · · · ... · 1,-

i D. TNumberFormatter
1-

l D. Format

TFloatingPointNumberFormatter

Format

TText

,,.... TFormattableNumber

fValue

TFormatResult I

CLASS HIERARCHY OF THE NUMBER FORMATTING FRAMEWORK

This method of formatting offers advantages over the previous technique we
used. For one, the TFormattableNumber object does not have to carry
specialized functions to format itself. It's 'Just" data. Formatting knowledge is
kept in the TNumberFormatter class hierarchy. This makes an efficient
separation for the use, maintenance, and extension of these classes.

Using these classes in the application requires minor revisions to the
NumberCell class, described in "Updating NumberCell" on page 205.

~ NOTE The framework also uses a TText class, which represents a standard C
string. Becaus~ its implementation is straightforward, the design and
implementation of this class is not shown in the book. The source code for this
class is included on the accompanying CD-ROM.

Now that our basic design is in place, we'll begin filling out the design of the
framework's classes.

FOR WINDOWS AND OS/2 DEVELOPERS

186 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

Designing
TNumberFormatter

Format member
functions

Formatting support
member functions

Accessor member
functions

The first class we need to design is TNumberFormatter. TNumberFormatter's
primary function is to "remember" a formatting style and to convert a numeric
value into a textual representation using that style.

The Format member functions are the core of the TNumberFormatter class,
and are the primary functions called by clients of the framework. They take a
TFormattableNumber, convert it to text according to the format set in the
TNumberFormatter~ and return the text to the caller, along with an optional
TFormatResult object that provides additional information about the
conversion process.

virtual boo 1
virtual bool

Format(const TFormattableNumber& num, TText& resultText);
Format(const TFormattableNumber& num, TText& resultText,

TFormatResult& result);

The Format member function relies on two protected member functions,
SetUpFormattableNumber and FormattableNumberToText, to handle most of its
formatting efforts. SetupFormattableNumber tells TFormattableNumber how it
should process the numeric properties of its value. FormattableNumberToText
does the actual work of converting the numeric properties of the
TFormattableNumber into text. Subclasses of TNumberFormatter need to
override these member functions to provide more specialized behavior. The
default versions of these functions implemented by TNumberFormatter can
handle only simple floating-point numbers without exponents.

virtual void
virtual void

SetUpFormattableNumber(TFormattableNumber& num);
FormattableNumberToText(const TFormattableNumber& num,

TText& text, TNumberFormatResult& result);

TNumberFormatter also provides a set of accessor member functions that allow
the formatting of the number to be controlled. TNumberFormatter doesn't
know whether the number should be formatted as a floating-point number or as
an integral number, so it can control only the formatting of the sign of the
number. Note that TNumberFormatter also provides accessors that control the
setting of prefix and suffix strings for both positive and negative numbers,
allowing TNumberFormatter to show negative numbers with parentheses.

virtual void
virtual void
virtual void
virtual void
virtual bool
virtual void

GetPlus(TText& prefix, TText& suffix) const;
SetPlus(const TText& prefix, const TText& suffix);
GetMinus TText& prefix, TText& suffix) const;
SetMinus(const TText& prefix, const TText& suffix);
GetShowPlusSign() const;
SetShowPlusSign(bool);

THE POWER OF FRAMEWORKS

Miscellaneous member
functions and data
members

Designing
TFormattableNumber

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 187
DESIGNING THE FRAMEWORK

The remainder of the member functions for the class consists of standard C++
constructors and an assignment operator. The data members store the suffix and
prefix strings, along with a flag that keeps track of whether we display the positive
sign prefix and suffix to the user.

TNumberFormatter& operator=(const TNumberFormatter&);

protected:
TNumberFormatter(const TNumberFormatter& format);
TNumberFormatter();

private:

} ;

TText
TText
TText
TText
bool

fPlusPrefix;
fPlusSuffix;
fMinusPrefix;
fMinusSuffix;
fShowPlusSign;

TFormattableNumber's primary role is to provide the input number to the
TNumberFormatter, along with information about the number's properties. Its
class declaration is as follows:

class TFormattableNumber {
public:

virtual

TFormattableNumber();
TFormattableNumber(const double number);
TFormattableNumber(const TFormattableNumber& copy);
~TFormattableNumber();

virtual TFormattableNumber& operator=(const TFormattableNumber& toCopy);

typedef unsigned char Digit;
enum {kNoSignificandDigit = 253 };

11--
II Accessors for number's properties
11--

II access the value of the number
virtual double GetNumber() const;
virtual void SetNumber(double);

II Is the number negative
virtual bool IsNegative() const;

In addition to storing the number as a double, TFormattableNumber provides
access to the individual digits of the number for use by the text converter. It does
so using a string of byte-encoded digits (with "0" having a numeric value of zero),
called the significand. The implicit decimal point appears after the first digit in
the string as in scientific notation. Special values exist for infinity, illegal numeric
values (NaNs), and zero.

FOR WINDOWS AND OS/2 DEVELOPERS

188 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

Setting conversion
parameters

Numeric analysis
member functions

Before retrieving the significand, the user must allocate storage for the
significand buffer that is at least as large as GetSignificandLength multiplied by
the size of a Digit.

virtual void GetSignificand(Digit* theSignificand) const;
virtual size_t GetSignificandLength() const;

II Exponent represents powers of 10.
virtual long GetExponent() const;

II bool tests for Infinity, NaN and Zero (sign irrelevant)
virtual bool IsZero();
virtual bool IsInfinity();
virtual boo 1 IsNan();

These accessor functions provide information about the properties of the
number. Determining these properties requires an analysis of the value, and
TFormattableNumber provides routines to control the number of significant
digits to preserve when doing this analysis.

II Get/SetDigitsFromDecimalPoint controls rounding to a fixed number of
II digits from the decimal point in the significand string when converting.
virtual short GetDigitsFromDecimalPoint() const ;
virtual void SetDigitsFromDecimalPoint(short digitsFromDecimalPoint);

As part ofTFormattableNumber's protected interface, we provide routines to
analyze the numeric properties of the number and set its internal fields. The
setters are protected virtual functions; therefore they can be overridden if
necessary by a subclass that fine-tunes the analysis process.

protected:
II analyze the numeric value to determine its properties, using the
1/ rounding and precision settings of the number. Called automatically whenever
II the number value or any of the rounding/precision values is changed.
virtual void AnalyzeValue();

II set the properties of the number (used by analyzer routine)
virtual void SetAnalysisDirtyFlag(bool flag = true);
virtual void SetSignBit(bool signIsMinus);
virtual void SetSignificand(Digit significand[], size_t length);
virtual void SetExponent(long theExponent);
virtual void SetInfinity();
virtual void SetNan(unsigned short nanCode);

THE POWER OF FRAMEWORKS

Designing
TFloatingPointNumber
Formatter

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 189
DESIGNING THE FRAMEWORK

The class declaration concludes with the definition of TFormattableNumber's
private data members, which keep track of the number and its properties.

private:

} ;

enum {kBufferLength = 122};
enum {klnfinityDigit = 254};
enum {kNaNDigit = 255};

double
bool
long
size_t
Digit
unsigned short
unsigned short
double
bool

fNumber;
fIsSignMinus;
fExponent;
fSignificandLength;
fSignificand[kBufferLength+2];
fTotalDigitCount;
fDigitsFromDecimalPoint;
fRoundToMultiple;
fAnalysisDirtyFlag;

The TFloatingPointNumberFormatter class adds the ability to format
floating-point numbers to the basic formatting capabilities provided by
TNumberFormatter.

The class declaration begins with the definitions of types and enumerations that
define some of the allowable formatting parameters that can be set by the user.

class TFloatingPointNumberFormatter : public TNumberFormatter {
public:

typedef unsigned short DigitCount;
enum ESign { kMinusSign = -1, kNoSign = 0, kPlusSign = 1 };

The following are the standard constructors, destructor, and assignment
operator for this class.

TFloatingPointNumberFormatter();
TFloatingPointNumberFormatter(const TFloatingPointNumberFormatter& format);
virtual ~TFloatingPointNumberFormatter();
TFloatingPointNumberFormatter&

operator=(const TFloatingPointNumberFormatter&);

FOR WINDOWS AND OS/2 DEVELOPERS

190 .CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

TNumberFormatter
formatting overrides

Formatting control
accessor functions

The numeric conversion routines SetupFormattableNumber and
FormattableNumberToText, originally defined by TNumberFormatter, are
overridden by TFloatingPointNumberFormatter. These routines do the actual
work of formatting the text string, using the current format state. The overridden
FormattableNumberToText function calls two new protected functions,
FormattableNumberToExponentText and FormattableNumberToDecimalText,
to handle the formatting of the exponent and decimal portions of the number.

virtual void SetUpFormattableNumber(TFormattableNumber& num);

virtual void

virtual void

virtual void

FormattableNumberToText(const TFormattableNumber&, TText&,
TNumberFormatResult&);

FormattableNumberToExponentText(const TFormattableNumber&,
TText&, TNumberFormatResult&);

FormattableNumberToDecimalText(const TFormattableNumber&,
TText&, TNumberFormatResult&);

The remainder of the class is made up of accessors, that control the formatting of
floating-point numbers.

public:
11===
II Getters and setters.

II in text 1,234,567, the digit group separator text is
II the separator spacing is 3.
II Call SetIntegerSeparator(true) if the digit group separator
II is to be shown for the integer part.
virtual void GetDigitGroupSeparator(TText&) const;
virtual void SetDigitGroupSeparator(const TText&);
virtual DigitCount GetSeparatorSpacing() const;
virtual void SetSeparatorSpacing(DigitCount);
virtualbool GetIntegerSeparator() const;
virtualvoid SetIntegerSeparator(bool);

II minDigitCount is the minimum number of digits to display when formatting
II a number as text. Also known as zero-padding.
virtual DigitCount GetMinIntegerDigits() const;
virtual void SetMinIntegerDigits(DigitCount);

virtual void
virtual void
virtual void
virtual void

GetNanSign(TText&) const;
GetInfinitySign(TText&) const;
SetNanSign(const TText&);
SetInfinitySign(const TText&);

II SetDecimalSeparator sets the text to be used to separate the integer
II and the fraction parts of numbers. It defaults to a space
virtual void GetDecimaISeparator(TText&) const;
virtual void SetDecimalSeparator(const TText&);

II SetDecimalWithInteger indicates if the decimal point should be
II displayed for integer numbers.
virtual boo I GetDecimalWithInteger() const;
virtual void SetDecimaIWithInteger(bool);

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 191
DESIGNING THE FRAMEWORK

II SetFractionSeparator indicates if the digit group separator text,
II which is set through TNumberFormatter: :SetDigitGroupSeparator,
II should be displayed for the fraction part. It defaults to false.
virtual bool GetFractionSeparator() const;
virtual void SetFractionSeparator(bool);

II SetExponentSeparatorText indicates the text to be used for
II the exponent separator. The default is 'E'.
virtual void GetExponentSeparatorText(TText&) const;
virtual void SetExponentSeparatorText(const TText&);

virtual DigitCount
virtual void
virtual DigitCount
virtual void

GetMinFractionDigits() const;
SetMinFractionDigits(DigitCount);
GetMaxFractionDigits() const;
SetMaxFractionDigits(DigitCount);

II == 1 for scientific, 3 for engineering formats
virtual DigitCount GetExponentPhase() const;
virtual void SetExponentPhase(DigitCount);

virtual double
virtual void
virtual double
virtual void

GetUpperExponentThreshold() const;
SetUpperExponentThreshold(double);
GetLowerExponentThreshold() const;
SetLowerExponentThreshold(double);

Despite their simplicity, these functions are important to the design of the
framework because they provide control over how numbers are formatted. In
fact, they provide more control than is strictly necessary for this sample program.
This is a common by-product of the framework design process: we have to do
more design and implementation work up front to make the framework truly
general. The alternative, of course, is to develop a framework that is not truly
general, and we end up having to redesign and reimplement everything
whenever we want to add new functionality.

Is the cost of adding all this generality worth it? It is if we would have to do most
of the work involved in designing the framework anyway. The previous version of
the program wouldn't work in countries other than the U.S., and it only
supported a limited number of number formats. Adding support for these
features to the previous version of the framework would require us to add a
similar amount of code to achieve the same lev<rl of functionality.

FOR WINDOWS AND OS/2 DEVELOPERS

192 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

Designing
TNumberFormatLocale

The remainder of the class consists of the data members needed to store all of
this state.

private:

} ;

TText
TText
TText
DigitCount
DigitCount
bool
TText
TText
double
double
DigitCount
DigitCount
DigitCount
bool
bool
boo 1
bool
EMantissaType
EShowBaseType

fNanSign;
fInfini tySign;
fDigitGroupSeparator;
fMinlntegerDigits;
fSeparatorSpacing;
fHaslntegerSeparator;

II e.g. thousands separator ","
II 0-pad at least this many digits
II digit group length for separator

fDecimalSeparator; II ' , in 1.23
fExponentSeparator; II 'E' in 1E-3
fExponentUpperThreshold;11 when to switch to E notation
fExponentLowerThreshold;
fExponentPhase; II multiples of exponent to show
fMinFractionDigits; II 0-pad to fill
fMaxFractionDigits;
fDecimalWithlnteger;
fHasFractionSeparator; II use digit group separator?
fHasExponentSeparator; II use digit group separator?
fSignedExponent;
fMantissaType;
fShowBaseType;

The TNumberFormatLocale class provides a number of member functions to
create default formatters for both currency and floating-point formats. One
default locale corresponds to the user's location, and it can be accessed by calling
GetUserLocale.

class TNumberFormatLocale {
public:

virtual

TNumberFormatLocale();
TNumberFormatLocale(const TNumberFormatLocale&);
-TNumberFormatLocale();

II member functions to create standard formatters for the current locale.
virtual TNumberFormatter* CreateCurrencyFormatter() const;
virtual TNumberFormatter* CreateFloatingPointFormatter() const;

static const TNumberFormatLocale& GetUserLocale();

protected:
virtual void HandleSymbols(bool csPrecedes,

private:

bool useSpace, bool useSign, boo 1 signFirst,
TText& currSym, TText& signSym,
TText& prefix, TText& suffix);

static TNumberFormatLocale* gUserLocale;
} ;

THE POWER OF FRAMEWORKS

Implementing
TNumberFormatter

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 193
DESIGNING THE FRAMEWORK

We use this class to isolate the locale dependencies from the rest of the
framework. The current design supports accessing the current locale only.
Future enhancements might include the addition of support for setting the
locale under program control, and the use of the locale object to support access
to other localized classes. For this example, the current design is sufficient.

Now that the design of the framework's classes is in place, it's time to implement
the framework. Since it is assumed that you are familiar with constructors and
destructors, and because the getter and setter functions are so simple, not every
step of the implementation process is described here. The complete source code
is available on the CD-ROM that accompanies this book. This discussion
concentrates on the key member functions of the framework.

The key function ofTNumberFormatter is the Format member function. Format
takes a TFormattableNumber and converts it to text using the current settings of
TNumberFormatter.

void TNumberFormatter: :Format(const TFormattableNumber& value, TText& theText,
TNumberFormatResult& result)

{

}

theText.del(0,theText.length());
SetUpFormattableNumber(value);

FormattableNumberToText(value, theText, result);

TText prefix;
TText suffix;

bool isNegative;
isNegative = value.GetSignBit();
if (isNegative)

GetMinus(prefix, suffix);
else if (GetShowPlusSign())

GetPlus(prefix, suffix);

theText += suffix;
theText.prepend(prefix);

result.SetlntegerBoundary(result.GetlntegerBoundary() + prefix.GetLength());
result.SetDigitSequenceEnd(result.GetDigitSequenceEnd() + prefix.GetLength());

FOR WINDOWS AND OS/2 DEVELOPERS

194 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

FormattableNumber
setup and conversion
functions

The Format member function calls two member functions to handle most of the
number formatting operation. The first of these, SetUpFormattableNumber, sets
up the analysis parameters of the TFormattableNumber object. Subclasses of
TNumberFormatter can override this member function to customize the
behavior of the TFormattableNumber, as we do later when we describe the
implementation ofTFloatingPointNumberFormatter.

void TNumberFormatter: :SetUpFormattableNumber(TFormattableNumber& num)
{

num.SetDigitsFromDecimalPoint(TFormattableNumber: :kNoSignificantDigit);
}

The second of these member functions is FormattableNumberToText.
FormattableNumberToText does most of the work of formatting for the Format
member function, and it's usually overridden by subclasses. The default version
supplied by TNumberFormatter handles thousands separators, but prints
numbers without exponents, filling with zeroes as needed.

void TNumberFormatter::FormattableNumberToText(const TFormattableNumber& num,
TText& text, TNumberFormatResult& result)

{

char uc;

II delete any existing text
text.Delete(TTextRange(TTextOffset(0), text.GetLength(»);

if (!num.lslnfinity() && !num.lsNan(»
{

int numDigits = num.GetSignificandLength();
if (numDigits <= 0)
{

}

ConvertToNumeral(TFormattableNumber: :Digit(0),uc);
text.prepend(uc);
return;

II first, determine and allocate the correct size digit buffer
II must be at least as big as FormattableNumber returns, but
II may need extra space for leading zeros.
int n = num.GetExponent() + 1;
int exponent = n;
long places = (exponent> numDigits ? exponent: numDigits);
TFormattableNumber: :Digit* digits = new

TFormattableNumber: :Digit[places];
num.GetSignificand(digits);

II fill with zeros at end
if (exponent> numDigits)

for (int i = numDigits; i < exponent; i++)
digits[i] = TFormattableNumber: :Digit(0);

THE POWER OF FRAMEWORKS

}
}

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 195

II work back through number, filling in digits
int consecutiveDigits = 0;
int digit = 0;

DESIGNING THE FRAMEWORK

for (int theDigit = exponent - 1; theDigit >= 0; theDigit--)
{

}

ConvertToNumeral(digits[theDigit],
text.prepend(uc);

uc) ;

if (GetlntegerSeparator()

{

}

&& ++consecutiveDigits
&& (theDigit < exponent -
&& (theDigit > 0»

GetSeparatorSpacing()
1)

TText separatorText;
GetDigitGroupSeparator(separatorText);
text.prepend(separatorText);
consecutiveDigits = 0;

II zero pad integral portion as needed
TPositionalNumberFormatter::DigitCount minlntegerDigits

GetMinlntegerDigits();
if «minlntegerDigits > 0) && (minlntegerDigits > n»
{

}

ConvertToNumeral(0, uc);
for (int i = n; i < minlntegerDigits; i++)
{

text.prepend(uc);
}

result.SetlntegerBoundary(text.length(»;
result.SetDigitSequenceEnd(text.length(»;

delete [] digits;

/1 it currently just sets the confidence to be kPerfect.
result.SetConfidence(TNumberFormatResult: :kPerfect);

196 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

Implementing
TFormattableNumber

TFormattableNumber contains a large number of accessor functions used to
retrieve information about the number, including its exponent, its sign, and so
on. Whenever a member function that returns analysis results is called,
TFormattableNumber checks a dirty flag to see whether it should reanalyze the
number's properties, as shown in the IsNegative member function:

bool TFormattableNumber: :IsNegative() const
{

}

if (fAnalysisDirtyFlag)
AnalyzeValue();

return flsSignMinus;

Similarly, when a member function is called that might change the analysis
results, TFormattableNumber sets the dirty flag in that member function, as
shown in the SetNumber member function:

void TFormattableNumber: :SetNumber(double number)
{

}

fNumber = number;
SetAnalysisDirtyFlag(true);

The AnalyzeValue member function analyzes the number and extracts its
numeric properties, using the conversion settings provided. It uses the ANSI C
standard function fcvt to convert the number into its components.

void TFormattableNumber: :AnalyzeValue()
{

int decimal, sign;
Digit* buffer;
int siglen = 0;
long digits = fDigitsFromDecimalPoint;
if (digits> 12)

digits = 12;

II fcvt determines the exponent, mantissa, and sign for us,
II but it uses ascii characters, which isn't'very general, so we
II convert them to our internal Digit format.

}

buffer = (Digit*) fcvt(fNumber, digits, &decimal, &sign);
siglen = strlen(buffer);
for (int i = 0; i < siglen; i++)

buffer[i] = buffer[i] - '0';

SetSignBit« sign != 0 ? true: false»;
SetSignificand«Digit*) buffer, siglen);
SetExponent«long) decimal - 1);

SetAnalysisDirtyFlag(false);

THE POWER OF FRAMEWORKS

Implementing
TFloatingPointNumber
Formatter

Implementing
SetUpFormattableNumber

FormattableNumberToText

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 197
DESIGNING THE FRAMEWORK

The key member functions ofTFloatingPointNumberFormatter are the two
overridden member functions of TNumberFormatter,
SetUpF ormattableNumber and FormattableNumberToText.

The SetUpFormattableNumber member function sets up the conversion
parameters of the formattable number that the class has been asked to format.
The overridden implementation first calls the SetUpFormattable member
function it inherited from TNumberFormatter and then overrides the setting
that controls the number of decimal points to match the maximum permitted
digits parameter of TFloatingPointNumberFormatter.

void TFloatingPointNumberFormatter: :SetUpFormattableNumber(TFormattableNumber& num)
{

TNumberFormatter::SetUpFormattableNumber(num);

num.SetDigitsFromDecimalPoint(GetMaxFractionDigits(»;
}

TFloatingPointNumberFormatter overrides the FormattableNumberToText
member function to handle both scientific and engineering notation for
floating-point numbers. It delegates the work to two new member functions,
FormattableNumberToExponentText and FormattableNumberToDecimalText.

void TFloatingPointNumberFormatter: :FormattableNumberToText(
const TFormattableNumber& num,

{

}

TText& text, TNumberFormatResult& result)

if (!num.lslnfinity() && !num.lsNan(»
{

}

else
{

}

II get absolute value of number
double number = num.GetNumber();
if (number < 0)

number = -number;

II determine whether to print as scientific notation or not, using
II the exponent threshold parameters.
if (number != 0.0 && (number < GetLowerExponentThreshold() I I

number> GetUpperExponentThreshold(»)
FormattableNumberToExponentText(num, text, result);

else FormattableNumberToDecimalText(num, text, result);

II we currently just set the confidence to be kPerfect.
result.SetConfidence(TNumberFormatResult::kPerfect);

II let the TNumberFormatter take care of the edge cases
TNumberFormatter: :FormattableNumberToText(num,text,result);

FOR WINDOWS AND OS/2 DEVELOPERS

Ig8 CHAPTER g DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

FormaUableNumberToExponentText

FormattableNumberToExponentText generates a text string in scientific
notation. Rather than duplicate all the code to print a basic number, it uses a
TNumberFormatter to format the exponent as though it were a whole number
and then calls FormattableNumberToDecimalText to format the mantissa. Using
the appropriate separator text, it subsequently puts the two numbers together.

void TFloatingPointNumberFormatter: : FormattableNumberToExponentText(

{

}

const TFormattableNumber& num, TText& text, TNumberFormatResult& result)

long exponent = num.GetExponent();
long exponentAdjuster = 0;11 used later to process mantissa
long phase = (long) GetExponentPhase();
if (phase> 1) .

{

II we round the exponent down using the phase value
II for engineering notation, phase is 3, so we get an
II exponent value rounded down to the nearest multiple
II of 3
long idealExponent;
if (exponent < 0)

idealExponent = «(-1 - exponent) I phase) * -phase) - phase;
else idealExponent = (exponent I phase) * phase;

}

exponentAdjuster = exponent - idealExponent;
exponent = idealExponent;

II first we format the exponent, using a basic TNumberFormatter which
II we handily initialize with this object's settings
TNumberFormatter exponentFormat(*this);
TText exponentText;
TNumberFormatResult exponentResult;
TFormattableNumber formattableExponent«double) exponent);
exponentFormat.Format(formattableExponent, exponentText, exponentResult);

II now we format the integral part of our number
II we make a new number which reflects only the mantissa, with the correct
II number of digits to match the exponent we've already printed
TFormattableNumber formattableMantissa(num.GetNumber() I

pow(10.0, exponentAdjuster»;
FormattableNumberToDecimalText(num, text, result);

TText exponentSeparator;
GetExponentSeparatorText(exponentSeparator);
text += exponentSeparator;
text += exponentText;

result.SetDigitSequenceEnd(text.GetLength(»;

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 199
DESIGNING THE FRAMEWORK

FormattableNumberToDecimalText

FormattableNumberToDecimalText is responsible for formatting a floating-point
number in the standard (nonscientific) format. Its implementation is similar to
that of TNumberFormatter::FormattableNumberToText, but it provides more
control over the formatting.

void TFloatingPointNumberFormatter: :FormattableNumberToDecimalText(
const TFormattableNumber& num,

{

FOR WINDOWS AND OS/2 DEVELOPERS

TText& text, TNumberFormatResult& result)

double number = 0.0;
TFormattableNumber: :Digit theDigit;
char uc;

if (!num.Islnfinity() && !num.IsNan(»
number = num.GetNumber();

long numDigits = num.GetSignificandLength();
TFormattableNumber: :Digit* digits new TFormattableNumber: :Digit[numDigits];
num.GetSignificand(digits);
long exponent = num.GetExponent() + 1;
long minPlaces exponent + GetMinFractionDigits();
long maxPlaces = exponent + GetMaxFractionDigits();

long places = numDigits;

if (places < minPlaces)
if (places > maxPlaces)

places
places

minPlaces;
maxPlaces;

II First the stuff to the left of the decimal place
long consecutiveDigits 0;
for (long i = exponent - 1; i >= 0; i--)
{

}

theDigit = (i >= numDigits ? 0 : digits[i]);
ConvertToNumeral(theDigit, uc);

text.prepend(uc);
if (GetlntegerSeparator()11

&& ++consecutiveDigits
&& i < exponent - 1

&& i > 0)
{

II more digits coming

i. e., insert ","
== GetSeparatorSpacing() II

TText separatorText;
GetDigitGroupSeparator(separatorText);
text.prepend(separatorText);
consecutiveDigits = 0;

}

result.SetlntegerBoundary(text.GetLength(»;

insert it here

200 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

Implementing
TNumberFormatLocale

CreateCurrencyFormatter
member function

}

II Now add the decimal point if we have decimal places or we always show it
if (places> exponent I I GetDecimalWithlnteger(»
{

}

TText decimalSeparator;
GetDecimalSeparator(decimalSeparator);
text += decimalSeparator;

II Add the decimal places
consecutiveDigits = 0;
for (i = exponent; i < places; i++)
{

}

theDigit = (i >= numDigits ? 0 : digits[i]);
ConvertToNumeral(theDigit, uc);
text += uc;

if (GetFractionSeparator()
&& ++consecutiveDigits
&& i < places - 1)

GetSeparatorSpacing()

{

}

II more digits coming
TText separatorText;
GetDigitGroupSeparator(separatorText);
text += separatorText;
consecutiveDigits = 0;

result.SetDigitSequenceEnd(text.GetLength(»;

delete [] digits;

TNumberFormatLocale is the most OS/2-specific class in our framework. It sets
up the number formatters to match the settings it extracts from the OS/2
Presentation Manager's locale.

CreateCurrencyFormatter creates a currency formatter that correctly formats
currency for the current locale by making calls to the OS/2 function localeconv
and then modifying a TFloatingPointNumberFormatter object's settings to
match the locale information.

TNumberFormatter* TNumberFormatLocale: :CreateCurrencyFormatter() const
{

TText prefix, suffix;
bool signFirst = false;
bool useSign = true;

II make a formatter
TFloatingPointNumberFormatter* formatter

II get locale info from OS/2
lconv* localelnfo = localeconv();

new TFloatingPointNumberFormatter();

THE POWER OF FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 201

DESIGNING THE FRAMEWORK

II set positive currency info
switch (localelnfo->p_sign_posn)
{

}

case 0:
II enclose in parens
II no localized parens available, so we hardcode
prefix += '(';
HandleSymbols(localelnfo->p_cs_precedes,

suffix += ')';
break;

case 1:

localelnfo->p_sep_by_space, false, false,
localelnfo->currency_symbol,
localelnfo->positive_sign,
prefix, suffix);

II sign precedes quantity and currency symbol
prefix += localelnfo->positive_sign;
HandleSymbols(localelnfo->p_cs_precedes,

break;
case 2:

localelnfo->p_sep_by_space, false, false,
localelnfo->currency_symbol,
localelnfo->positive_sign,
prefix, suffix);

II sign follows quantity and currency symbol
HandleSymbols(localelnfo->p_cs_precedes,

localelnfo->p_sep_by_space, false; false,
localelnfo->currency_symbol,
localelnfo->positive_sign,
prefix, suffix);

suffix += localelnfo->positive_sign;
break;

case 3:
II sign precedes currency symbol
signFirst = true;
II fall through ...

case 4:
II sign follows currency symbol
HandleSymbols(localelnfo->p_cs_precedes,

localelnfo->p_sep_by_space, true, signFirst,
localelnfo->currency_symbol,
localelnfo->positive_sign,

break;
default:

prefix, suffix);

II don't print sign at all
break;

202 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

II set the formatter's positive prefix and suffix
SetPlus(prefix,suffix);

II set up negative suffixes
prefix.del(0,prefix.length());
suffix.del(0,suffix.length());
signFirst = false;
switch (localelnfo->n_sign_posn)
{

}

case 0:
II enclose in parens
II no localized parens available, so we hardcode
prefix += '(';
HandleSymbols(localelnfo->n_cs_precedes,

localelnfo->n_sep_by_space, false, false,
localelnfo->currency_symbol,
localelnfo->negative_sign,

suffix += ')';
break;

case 1:

prefix, suffix);

,II sign precedes quantity and currency symbol
prefix += localelnfo->negative_sign;
HandleSymbols(localelnfo->n_cs_precedes,

localelnfo->n_sep_by_space, false, false,
localelnfo->currency_symbol,
localelnfo->negative_sign,

break;
case 2:

prefix, suffix);

II sign follows quantity and currency symbol
HandleSymbols(localelnfo->n_cs_precedes,

localelnfo->n_sep_by_space, false, false,
localelnfo->currency_symbol,
localelnfo->negative_sign,
prefix, suffix);

suffix += localelnfo->negative_sign;
break;

case 3:
II sign precedes currency symbol
signFirst = true;
II fall through ...

case 4:
II sign follows currency symbol
HandleSymbols(localelnfo->n_cs_precedes,

localelnfo->n_sep_by_space, true, signFirst,
localelnfo->currency_symbol,
localelnfo->negative_sign,

break;
default:

prefix, suffix);

II don't print sign at all
break;

THE POWER OF FRAMEWORKS

}

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 203

II set the formatter's negative prefix and suffix
SetMinus(prefix,suffix);

DESIGNING THE FRAMEWORK

II set up grouping and separators
formatter->SetDecimalSeparator(localelnfo->decimal_point);
formatter->SetDigitGroupSeparator(localelnfo->mon_thousands_sep);
II OS/2 allows setting spacing of each set of digits separately.
II Our framework only allows one spacing, so we just use
II the first grouping
formatter->SetSeparatorSpacing(localelnfo->mon_grouping[0]);
formatter->SetMinFractionDigits(localelnfo->frac_digits);
formatter->SetMaxFractionDigits(localelnfo->frac_digits);

return formatter;

CreateCurrencyFormatter calls HandleSymbols, a protected member function of
TNumberFormatLocale, to do most of the work of setting up the prefix and
suffix strings.

void TNumberFormatLocale: :HandleSymbols(bool csPrecedes,

{

}

FOR WINDOWS AND OS/2 DEVELOPERS

if (csPrecedes)
{

}

else
{

}

if (useSign && signFirst)
prefix += sign;

prefix += currSym;
if (useSign && !signFirst)

prefix += sign;
if (useSpace)

prefix += ' ';

if (useSpace)
suffix = ' ';

if (useSign && signFirst)
suffix += sign;

suffix += currSym;
if (useSign && !signFirst)

suffix += sign;

bool useSpace, bool useSign, bool signFirst,
TText& currSym, TText& signSym,
TText& prefix, TText& suffix)

204 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
DESIGNING THE FRAMEWORK

CreateFloatingPointFormatter member function

CreateFloatingPointFormatter's implementation is similar to that of
CreateCurrencyFormatter, but because it doesn't have to address the issues of
sign and currency symbol formatting, it is much simpler.

TNumberFormatter* TNumberFormatLocale: :CreateFloatingPointFormatter() const
{

}

TText prefix, suffix;

II make a formatter
TFloatingPointNumberFormatter* formatter

II get locale info from OS/2
lconv* localelnfo = localeconv();

new TFloatingPointNumberFormatter();

II set up grouping and separators
formatter->SetDecimalSeparator(localelnfo->decimal_point);
formatter->SetDigitGroupSeparator(localelnfo->thousands_sep);
II OS/2 allows setting spacing of each set of digits separately.
II Our framework only allows one spacing, so we just use
II the first grouping
formatter->SetSeparatorSpacing(10calelnfo->grouping[0]);

return formatter;

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 205

UPDATING THE SPREADSHEET DATA OBJECTS

UPDATING THE SPREADSHEET DATA OBJECTS

Updating NumberCell

At this point, we'll use the framework we've created to update the application.

Note that we need to alter almost nothing in the Presentation Manager-specific
code to accommodate these new classes. Therefore, main, WindowSAl WndProc,
and ProcessFocusChange remain identical to the versions we examined in
Chapter 8.

Our second sample, the application with the new framework added, does not add
any new formatting features: we need only modify some of the internals of the
classes used by the application.

The majority of modifications required to accommodate the framework classes
occur in the NumberCell class. Note that the various clients of NumberCell (for
example, WindowSAlWndProc, ProcessFocusChange, and the NumberGrid
class) were unaffected; their interface to NumberCell is unchanged. The new
NumberCell class declaration is as follows. For the original version of the class,
refer to "NumberCell class design" on page 152.

class NumberCel1
{

public:
NumberCell(HINSTANCE hlnst, HWND hwndParent,

int xPos = 0, int yPos = 0,
int width = 0, int height = 0);

~NumberCell();

11===
II Getter methods

II get the edit handle of the enclosed edit control
HWND GetEditHandle();
II get the child id of the enclosed edit control
WORD GetID();
II get the cell format
NumberFormat& GetFormat();
II get the error status
bool GetFormatErrorStatus();
II return the edit status of the cell
boo I HasBeenAltered();

FOR WINDOWS AND OS/2 DEVELOPERS

206 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
UPDATING THE SPREADSHEET DATA OBJECTS

11===
II Setter methods

II change
bool

the altered status of the cell

II set the cell
void
II set the cell
void

SetAlteredStatus(bool newStatus);
format
SetFormat(const NumberFormat &nf);
to the general format
SetToGeneraIFormat(TNumberFormatter* tnf);

II Set the
void

format error status flag.
SetFormatErrorStatus(bool errorStatus);

11===
II Cell operations

II move the cell to x,y
void Move(int x = 0, int y 0, int w 0, int h 0);
II set to general format, edit
void Edit();
II format a cell based on current format
int Update();

static FARPROC fLpfnOldEditProc, fLpfnNewEditProc;

private:

} ;

HWND
TFormattableNumber
TNumberFormatter*
NumberFormat
bool
bool
static int

fHwndEditControl;11 enclosed edit control handle
fNumber; II enclosed formattable number
fFormatter; II pointer to cell's formatter
fMyFormat; II the NumberFormat for this cell
fErrorlnFormat; II error status
fAltered; II altered status
fCellNumber; II unique cell identifier

On the surface, only a few differences exist between the two versions of our
NumberCell class. We'll explore the significance of these differences as we
continue analyzing this version of the application.

Note that in the new version of NumberCell, we replaced the
FormattableNumber data member, £Number, with a TFormattableNumber from
the number formatting framework. We also added a new data member,
£Formatter, that contains a pointer to a TNumberFormatter object. Lastly, we
moved the NumberFormat data member from the old FormattableNumber class
to the new version of NumberCell. The NumberFormat object describes the
specific format attributes that the user selects through the Format Number
dialog box. It is not part of the framework-it exists only to keep track of the user
interface settings.

NumberCell also has two new member functions, GetFormat and SetFormat, that
provide access to the NumberFormat object.

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 207

UPDATING THE SPREADSHEET DATA OBJECTS

We'll take a closer look at how these new data members are handled by the
NumberCell class. As described in Chapter 8, the application constructs a
NumberGrid which then constructs an array of NumberCell objects. In the
current version of the application, that much remains unchanged, but the
new NumberCell constructor has been modified to accommodate its new
data members.

NumberCell: :NumberCell(H1NSTANCE h1nst, HWND hwndParent , int xPos, int yPos,
int width, int height) : fNumber()

{

}

II Create the edit control
fHwndEditControl =

WinCreateWindow(hwndParent,
WC_ENTRYF1ELD,

II Parent
II Control Class
II Control Text

(WS_V1S1BLE ES_LEFT
xPos,

ES_MARG1N) ,II Control Style

yPos,
width,
height,
hwndParent,
HWND_BOTTOM,
fCeIINumber++,
0,
o) j

II subclass the edit control window procedure

II Control X position
II Control Y position
II Control Width
II Control Height
II Owner

II Control 1D
II No Control Data
II No Pres Params

fLpfnOldEditProc = WinSubclassWindow(fHwndEditControl, EditWndProc)j
II store the handle to the enclosing NumberCel1
II in the edit control property list
SetProp(fHwndEditControl, (LPSTR) "nc", (HANDLE) this)j
fAltered = falsej II new cell, has never been altered
fError1nFormat = falsej II default format is OK
fMyFormat = NumberFormat::GetGeneraINumberFormat()j
fFormatter = NULLj

The new and old NumberCell constructors are identical, with two exceptions in
the last two statements of the constructor:

fMyFormat = NumberFormat: :GetGeneraINumberFormat()j
fFormatter = NULLj

FOR WINDOWS AND OS/2 DEVELOPERS

208 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
UPDATING THE SPREADSHEET DATA OBJECTS

Using the framework to
handle cell updates

The new constructor initializes its TNumberFormatter pointer, £Formatter, to
NIL. The "filling-in" of this pointer is discussed later in this chapter. The new
NumberCell constructor also initializes its NumberFormat data member with
default settings. This is accomplished via the call to the trivial static member
function, NumberFormat::GetGeneraINumberFormat.

NumberFormat NumberFormat: :GetGeneraINumberFormat()
{

}

NumberFormat nf;
nf.fPrecision = KDEFAULTPRECISION;
nf.fThousandsDelimitted = false;
nf.fCurrency = false;
nf.flntSeparator = KCOMMA;
nf.fDecSeparator = KPERIOD;
nf.fCurrencySymbol = KDOLLARSIGN;
nf.fFormatType = kFloatingPointFormat;
return nf;

This completes the modifications we need to make to the NumberCell
constructor.

We really gain access to the power of these added framework classes through the
Update member function, and it's here that we'll find the greatest number of
modifications to our original NumberCell class design.

~ NOTE Refer to "Implementing ProcessFocusChange" on page 174 for a
detailed discussion of the ProcessFocusChange function. This function is
responsible for calling the NumberCell::Update member function.

int NumberCell: :Update()
{

char szBuffer[KBUFSIZEJ, *endPtr;
double dTemp;
TText tx;

if (! fAltered
return 1;

II if cell has not been changed,
II exit

if !WinQueryWindowText(fHwndEditControl,

{

}

sizeof(szBuffer), szBuffer)) II is the cell empty?

fErrorlnFormat = false;
fAltered = false;
return 1;

II if so, format is OK,
II successfully updated

THE POWER OF FRAMEWORKS

}

CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2 209

dTemp = strtod(szBuffer, &endPtr);
if (! *endPtr)
{

fNumber.SetNumber(dTemp);
if (!fFormatter)

SetFormat(fMyFormat);

UPDATING THE SPREADSHEET DATA OBJECTS

II attempt conversion
II if endPtr is NULL,
II conversion was successful
II update FormattableNumber value member

II first time cell entry, set the format

fFormatter->Format(fNumber, tx); II create a formatted string
WinSetWindowText(fHwndEditControl,

(LPSTR) tx.chars()); Iiset the edit cell to that format
fErrorInFormat = false;
fAltered = false; II successfully updated
return 1;

}

II Record that the user has typed-in a bad numeric format
fErrorInFormat = true;
II Signal an error
DosBeep(0, 0);
WinMessageBox(HWND_DESKTOP,

return 0;

fHwndEditControl,
"Invalid Numeric Format-,
"Number Cell Error-,
0,
MB_ICONEXCLAMATION);

II unsuccessful update

The Update member function is very similar to the implementation in the first
version of this application, described in Chapter 8. The one significant
difference is in NumberCell's use of its TNumberFormatter member, £Formatter,
approximately midway into the function. In these statements, we first set the
NumberCell's TFormattableNumber to the value the user entered into the
NumberCell's EditControl. This value is read from the EditControl and
converted to a double in the same manner used by the previous version of
Update.

Next, Update formats the number, but note the primary difference between this
and our previous version of the NumberCell class. In the earlier version, the
formatting of the number was carried out by the FormattableNumber object. In
the new version, the TFormattableNumber is handed to the TNumberFormatter,
which then creates a properly formatted text string and stores it in the TText
argument. This is accomplished with the statement

fFormatter->Format(fNumber, theString); II Create a formatted string

where £Formatter is the NumberCell's pointer to its TNumberFormatter,
tNumber is the NumberCell's TFormattableNumber, and theString is a local
TText object.

FOR WINDOWS AND OS/2 DEVELOPERS

210 CHAPTER 9 DESIGNING A NUMBER FORMATTING FRAMEWORK FOR OS/2
UPDATING THE SPREADSHEET DATA OBJECTS

Handling changes to the
format of a NumberCell

Note that before invoking its Format function, the Update member function
verifies whether fFormatter is NIL. The NumberCell's constructor initializes
fFormatter to NIL, and fFormatter remains NIL until the user chooses a specific
format using the application's Format Number dialog box. If, however, the
Update member function is invoked before the user has explicitly selected a
display format, the following statement from the Update member function
ensures that the TNumberFormatter is reinitialized to the default, generic
display format.

if (!fFormatter) II First time cell entry, set the format
SetFormat(fMyFormat);

The remainder of this version of the Update member function is identical to that
described in Chapter 8.

It is helpful to examine the NumberCell::SetFormat member function that gets
called in the preceding code. SetFormat's primary task is to set various attributes
of the TNumberFormatter, based on the settings of the NumberFormat object
passed into the function.

void NumberCell: :SetFormat(const NumberFormat& nf)
{

}

II new entry or format has changed
if (!fFormatter I I (fMyFormat.GetFormatType() != nf.GetFormatType(»)
{

delete fFormatter;

II create a floating point formatter
if (nf.lsCurrency(»

fFormatter =
TNumberFormatLocale: :GetUserLocale().CreateCurrencyFormatter()

else fFormatter =
TNumberFormatLocale: :GetUserLocale().CreateFloatingPointFormatter();

}

II set the preC1Slon and thousands delimtter:
fFormatter->SetlntegerSeparator(nf.lsThousandsDelimitted(»;

II set cell to the new format
fMyFormat = nf;

THE POWER OF FRAMEWORKS

CHAPTER 9 DESIGNING A NUMBER f'ORMA TTING FRAMEWORK FOR OS/2 21 1

FRAMEWORK BENEFITS

FRAMEWORK BENEFITS

We now have a complete and international-friendly application. The framework
handles all the details of number formatting, without requiring any significant
changes to the application's existing user interface code. Just as importantly, the
framework is extensible, which will yield additional benefits in future versions of
the application that we might want implement, including reduced maintenance
effort and more end-user features.

The following table reviews the effort it took to convert the application to its
current form. The text utility classes we used (but didn't have to write) in our
framework contained a number of member functions. We've split these classes
out of the analysis so that we have a more accurate account of the additional code
we had to create for the framework.

Member Lines of
Classes Functions Code

Nonframework-based application 4 66 2086

Text utility classes 3 236 2254

Framework-based application 10 395 5803

Framework Delta 3 93 1463

As you can see, we had to write three additional classes and fewer than 100
additional member functions. Most of those additional functions are very short
accessor functions, though, so we had to write only 1463 additional lines of code.
Considering how much extra functionality we got and how well the framework
positions our application for future enhancement, this is a small amount of code
to write. Most of our effort went into designing the framework, not
implementing it.

FOR WINDOWS AND OS/2 DEVELOPERS

212

THE POWER OF FRAMEWORKS

CHAPTER 10

EXTENDING THE FRAMEWORK

FOR OS/2

Now that we have a working version of our framework-based application, we'll
determine whether all the framework creation effort has paid off. Let's assume
we've been asked to add support for a new display format: displaying rational
numbers (that is, fractions). Very few modifications are'required to provide this
feature on top of our framework, in stark contrast to the amount of work that
would have been necessary to implement this feature using the original,
nonframework-based version of the application we created in Chapter 8. This
chapter describes the necessary updates, giving you a fairly accurate idea of what
would be involved to extend the number formatting framework for other uses.

DESIGNING A RATIONAL NUMBER FORMATTER CLASS

We'll spend most of the effort required to update the application developing a
new rational number formatting subclass of TNumberFormatter and a simple
rational number class it uses. The new subclass, TRationalNumberFormatter,
overrides TNumberFormatter's format function to format the number as text.
The new helper class, TRationalNumber, handles converting
TFormattableNumber data into a rationalized form. The class hierarchy for the
new classes is as follows:

FOR WINDOWS AND OS/2 DEVELOPERS

214 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2
DESIGNING A RATIONAL NUMBER FORMATTER CLASS

........................ ~

/),. TNumberFormaHer

/),. Format

~
TRationalNumberFormaHer

Format

TRationalNumber

~

RATIONAL NUMBER FORMATTING CLASS HIERARCHY

Design of TRationalNumberFormatter

TRationalNumber

ConvertFromFormattable

As we did when designing TFloatingPointNumberFormatter, we want to make
sure the formatting code is as flexible as possible. Thus, we need to ensure that
TRationalNumberFormatter lets the caller have a great deal of control over its
formatting algorithm. The caller should be able to modify the following
properties of the formatter:

f:] Which string to use as a separator between the numerator and denominator
of the fraction

f:] Which string to use as a separator for the integer part of the rational number
(for example, the space after the "3" in "3 2/5")

I:l Whether to print the rational number as a proper fraction (where the
integer part, if any, is printed separately as, for example, in "12 1/4'''') or as
an improper one (as, for example, in "49/4")

I] Whether to print the numerator or denominator first

TRationalNumberFormatter must provide accessors to get and set these
parameters.

When TRationalNumberFormatter prints the integer part of the rational
number, it should have the same level of localized, user-customizable control
over the format as did TFloatingPointNumberFormatter. Rather than duplicate
the functionality of that class inside TRationalNumberFormatter,
TRationalNumberFormatter has an adopted TNumberFormatter, which it uses to
format the integer parts of the rational number.

Finally, TRationalNumberFormatter has to override TNumberFormatter's
Format function to actually do the work of using all these parameters to convert a
TFormattableNumber into text and return a TFormatResult.

THE POWER OF FRAMEWORKS

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 215

DESIGNING A RATIONAL NUMBER FORMATTER CLASS

The class definition for our TRationalNumberFormatter class is as follows:

class TRationalNumberFormatter : public TNumberFormatter {
public:

enum EFractionPropriety { kProperFraction, klmproperFraction };
enum EFractionDirection { kNumeratorFirst, kDenominatorFirst };

11===
II constructors, destructor, and standard c++ member functions

TRationalNumberFormatter();
TRationalNumberFormatter(EFractionPropriety thePropriety,

EFractionDirection theFractionDirection = kNumeratorFirst);
TRationalNumberFormatter(const TRationalNumberFormatter&);

virtual ~TRationalNumberFormatter();

TRationalNumberFormatter& operator=(const TRationalNumberFormatter&);

11===
II TNumberFormatter overrides
virtual void FormattableNumberToText(const TFormattableNumber& num,

TText& text, TNumberFormatResult& result);

11===
II accessors
virtual void
virtual void

virtual void
virtual void

GetFractionSpace(TText&) const;
SetFractionSpace(const TText&);

GetFractionSign(TText&) const;
SetFractionSign(const TText&);

virtual EFractionPropriety GetFractionPropriety() const;
virtual void SetFractionPropriety(EFractionPropriety);

virtual EFractionDirection GetFractionDirection() const;
virtual void SetFractionDirection(EFractionDirection);

virtual TNumberFormatter* GetlntegerFormatter() const;
virtual void AdoptlntegerFormatter(TNumberFormatter*);

private:

} ;

FOR WINDOWS AND OS/2 DEVELOPERS

TText
TText
EFractionPropriety
EFractionDirection
TRationalNumber
TNumberFormatter*

fFractionSpace;
fFractionSign;
fFractionPropriety;
fFractionDirection;
fRationalNumber;
flntegerFormatter;

216 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2
DESIGNING A RATIONAL NUMBER FORMATTER CLASS

TRationalNumber
helper class

The design ofTRationalNumber is very simple. It represents a rational number
as an integer part, a numerator, and a denominator. The core of this class is a
member function, ConvertFromFormattable, that analyzes a
TFormattableNumber and converts it into a fraction. This member function is
called by the TRationalNumberFormatter to handle the mathematical portion of
the formatting operation.

class TRationalNumber {
public:

long
void

long
void

long
void

TRationalNu~ber(long i = 0, long n =.0, long d = 0);
TRationalNumber(const TFormattableNumber& fpNum);

Getlnteger();
Setlnteger(long integerPart);

GetNumerator();
SetNumerator(long numeratorPart);

GetDenominator();
SetDenominator(long denominatorPart);

void ConvertFromFormattable(const TFormattableNumber& number);

private:
long
long
long

};

fInteger;
fNumerator;
fDenominator;

THE POWER OF FRAMEWORKS

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 217

IMPLEMENTING THE FRAMEWORK SUBCLASSES

IMPLEMENTING THE FRAMEWORK SUBCLASSES

Now that we've designed the new subclasses for the framework, we can begin to
implement them.

Implementing TRationalNumberFormatter

Constructors, destructor,
standard C++ member
functions, and accessors

Creating the
fractional text

As a subclass ofTNumberFormatter, TRationalNumberFormatter hooks into the
framework by overriding the number conversion routines called by
TNumberFormatter's Format member function.

TRationalNumberFormatter's constructors, destructor, and standard C++
member functions are not shown here, but are fairly straightforward. We've also
omitted the data accessor member functions shown earlier in the class
declaration. The complete source code of the application is available on the
accompanying CD-ROM.

The FormattableNumberToText member function, overridden from
TNumberFormatter, converts a TFormattableNumber into a textual
representation, using the parameters set by the caller. We can implement this
behavior with the following algorithm:

o Use TRationaINumber::ConvertFromFormattable to separate the number
into its integer, numerator, and denominator parts.

f) Use the TNumberFormatter specified in flntegerFormatter to format the
integer part (if any, and only if the user asked for a proper fraction) into the
output text, followed by the space string stored in fFractionSpace.

m Write the numerator and denominator, in the order specified by
fFractionDirection, separated by the specified fFractionSign string. The
numerator and denominator are also formatted using the
TNumberFormatter specified in flntegerFormatter.

FOR WINDOWS AND OS/2 DEVELOPERS

218 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2
IMPLEMENTING THE FRAMEWORK SUBCLASSES

The implementation of FormattableNumberToText is as follows:

void TRationalNumberFormatter: : FormattableNumberToText (
const TFormattableNumber& num,

{
TText& text, TNumberFormatResult& result)

TNumberFormatResult tempResult;

if (!num.Islnfinity() && !num.lsNan(»
{

fRationalNumber.ConvertFromFormattable(num);

Boolean doNegative = fRationalNumber.Getlnteger() < 0 I I
fRationalNumber.GetNumerator() < 0;

if (fRationalNumber. Getlnteger () II ! fRationalNumber. GetNumerator (»
{

}

TFormattableNumber theformattable;
theformattable.SetNumber(fRationalNumber.Getlnteger(»;
GetlntegerFormatter()->Format(theformattable, text, tempResult);
result.SetCanNormalize(tempResult.GetCanNormalize(»;
result.SetOutOfBoundsError(tempResult.GetOutOfBoundsError(»;
doNegative = false;
result.SetlntegerBoundary(text.GetLength(»;
if (fRationalNumber.GetNumerator(»
{

-- }

TText fractionSpace;
GetFractionSpace(fractionSpace);
text += fractionSpace;
result.SetCanNormalize(false);

else result.SetlntegerBoundary(0);

if (fRationalNumber.GetNumerator(»
{

result.SetCanNormalize(false);

if (fRationalNumber.GetNumerator() < 0 && !doNegative)
fRationalNumber.GetNumerator() -fRationalNumber.GetNumerator();

TText numeratorText, denominatorText, fractionText;

TFormattableNumber theFormattable(fRationalNumber.GetNumerator(»;
GetlntegerFormatter()->Format(theFormattable,

numeratorText, tempResult);
if (tempResult.GetOutOfBoundsError(»

result.SetOutOfBoundsError(true);

theFormattable.SetNumber(fRationalNumber.GetDenominator(»;
GetlntegerFormatter()->Format(theFormattable,

denominatorText, tempResult);
if (tempResult.GetOutOfBoundsError(»

result.SetOutOfBoundsError(true);

THE POWER OF FRAMEWORKS

Implementing
TRationalNumber

Calculating the
numerator and
denominator

}
}

}

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 219

IMPLEMENTING THE FRAMEWORK SUBCLASSES

GetFractionSign(fractionText);
if (GetFractionDirection() == TRationalNumberFormatter: :kNumeratorFirst)
{

}
else
{

}

fractionText.prepend(numeratorText);
fractionText += denominatorText;

fractionText.prepend(denominatorText);
fractionText += numeratorText;

text += fractionText;

result.SetDigitSequenceEnd(text.GetLength());

result.SetConfidence(TFormatResult: :kPerfect);

Based on its design, TRationalNumber's implementation is fairly straightforward.
Most of its complexity is in the ConvertFromFormattable function.

TRationalNumber provides the usual constructors, destructor, and data member
accessors. Because these functions are all fairly basic for C++ programmers, their
implementations are not shown here.

ConvertFromFormattable takes a TFormattableNumber as input and separates it
into integer, numerator, and denominator by finding the greatest common
divisor (GCD) of the numerator and denominator. Getting the GCD of floating
point numbers is difficult, so we need to find a way to generate the numerator
and denominator as long integers. We'll do this by first using the standard C
library routine frexp to convert the number into a mantissa and an integral
power of two. The frexp routine guarantees that the mantissa will be in the range

0.5 <= Iml < 1.0

Now we use the resulting integral exponent to generate integral numerators
and denominators. We'll calculate the numerator by multiplying the mantissa
by a power of two, (l « multiplierBits), that will be just big enough to fill up a
long integer.

Next, we need to calculate the denominator using the formula 2 (multiplierBits-exp) ,

where exp is the exponent value returned by frexp. As a result, we get a
numerator and denominator with large integral values, returning a numeric
value nearly identical to the original floating-point number when the numerator
is divided by the denominator.

At this point, we can extract the integer part of the number, if any, leaving a
proper fraction. We then reduce the proper fraction by finding any common
denominator and removing it: The denominator is calculated by the CalcGCD
member function, described in the next section.

FOR WINDOWS AND OS/2 DEVELOPERS

220 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2

IMPLEMENTING THE FRAMEWORK SUBCLASSES

The source core for ConvertFromFormattable is as follows:

void TRationalNumber::ConvertFromFormattable(const TFormattableNumber& number)
{

}

int exp;
;int multiplierBits;
double theFloat = number.GetNumber();

II use frexp to convert float to a mantissa (0.5 <= Ixl < 1.0)
II and an integral power of 2
double m = frexp(theFloat,&exp);

II now we need to make sure that we can fit the numerator and denominator
II in a long.
canst kBitsPerByte = 8;
if (exp >= 0)
{

}

if (exp > (sizeof(long)*kBitsPerByte-2»
cerr « "illegal exponent value";

multiplierBits = (sizeof(long)*8-2);

else {

}

multiplierBits = exp+(sizeof(long)*kBitsPerByte-2);
if (multiplierBits < 0)

cerr « "illegal value";

II we make the numerator and denominator as large a multiple as we can
II while preserving ratio between them. This gives us best accuracy.
fNumerator = (long) (m * «long) 1 « multiplierBits»;
fDenominator = (long) 1 « «long) multiplierBits - (long) exp);

II if number has integer part, separate it out
if (fNumerator > fDenominator)

{

flnteger = fNumerator/fDenominator;
fNumerator = fNumerator - (flnteger * fDenominator);

}
else flnteger = 0;

II reduce fraction part
long d1 = CalcGCD(fNumerator, fDenominator);
if (d1 != 1)

{

}

fNumerator 1= d1;
fDenominator 1= d1;

THE POWER OF FRAMEWORKS

Calculating the greatest
common denominator

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 221

IMPLEMENTING THE FRAMEWORK SUBCLASSES

The CalcGCD member function, called by ConvertFromFormattable, is another
straightforward function. The algorithm is from the National Institute of Health
(NIH) class library.

long TRationalNumber: :CalcGCD(long uu, long vv)
{

B4:

}

1* gcd -- binary greatest common divisor algorithm - NIHCL Algorithm B, p. 321.
*1
long u laos(uu), v = labs(vv);
long k 0;
long t;

if (u -- 0)
return V' ,

if (v -- 0)
return u;

II get rid of any common multiples of 2
while «u & 1) 0 && (v & 1) == 0)

{

}

U »= 1;
V »= 1;
k++;

if (u & 1)
{ t = -v; goto B4; }

else t = u;

do {
while «t & 1)
if (t > 0) u
else v = -t;
t = u-v;

} while (t != 0);

return u«k;

0) t 1= 2;
t· ,

~ NOTE Generally, using goto statements is considered poor programming
style. In this case, the benefits of reusing a well-tested, public domain library such
as the one shown here far outweigh the design issues involved.

This completes our examination of TRationalNumber.

FOR WINDOWS AND OS/2 DEVELOPERS

222 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2
UPDATING THE APPLICATION

UPDATING THE APPLICATION

Updating
NumberCell's
SetFormat function

Now that we've implemented the new formatting classes, we'll need to update the
spreadsheet application to ~upport it.

Update is called by the application to reformat a cell. In the previous two versions
of the sample, this function calls SetFormat to create a TNumberFormatter
whenever one does not already exist or the user has altered the format
specification for the cell since the last time the cell was formatted. The new
version of SetFormat has been modified to support the rational number format.
Notice that the type of number formatter created depends on the cell's display
format specification, which for this sample can be either a floating-point
(inclusive of currency format) or rational number representation.

void NumberCell: :SetFormat(const NumberFormat& nf)
{

}

if (!fFormatter I I fMyFormat.GetFormatType()!= nf.GetFormatType(»
{

}

II format type has changed, delete the old formatter
delete fFormatter;
if (nf.GetFormatType() == NumberFormat: :kFloatingPointFormat
{

}

II create a floating-point formatter
if (nf.lsCurrency(»

fFormatter =
TNumberFormatLocale::GetUserLocale().CreateCurrencyFormatter()

else fFormatter =
TNumberFormatLocale::GetUserLocale().CreateFloatingPointFormatter();

else fFormatter = new TRationaINumberFormatter();

II set cell to the new format
fMyFormat = nf;

~ NOTE The implementation of this function illustrates a weakness in the
framework's current design. The hardcoded if statements determine the kind of
TNumberFormatter subclass we create. A more extensible approach would allow
new types of formats to be added dynamically, perhaps by using a dictionary to
map between the format types returned by the TNumberFormat object and the
corresponding TNumberFormatter object.

THE POWER OF FRAMEWORKS .

Updating the Format
Cell dialog box

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 223

UPDATING THE APPLICATION

The modifications needed to add an additional format choice to the Format Cell
dialog box are minor. The WindowSAlWndProc function contains two nested
switch statements. The "case IDM_WINDOWSAl_FORMAT_CELL:" within the
innermost switch statement is responsible for displaying the Format Cell dialog
box using a call to the PanelCELLFORMDlgProc function. An excerpt of that
code from WindowSAl WndProc is as follows:

MRESULT EXPENTRY WindowSA1WndProc(HWND hWnd, ULONG Message,
MPARAM Paraml, MPARAM Param2)

{

}

I I ...
switch (SHORT1FROMMP(Paraml)) {

}

II

case IDM_WINDOWSA1_FORMAT_CELL:
HWND hWndPanel = NULLHANDLE;
II if the cell does not contain a valid numeric
II ... Refer to previous chapter for details

string

II This makes a call to the dialog box named
hWndPanel = WinLoadDlg (HWND_DESKTOP,

hWndMain,
PanelCELLFORMDlgProc,
hModFRAMEWRK,
ID_PANELCELLFORM,
(PVOID) &hWnd);

if (hWndPanel != NULLHANDLE)
{

USHORT rc;

"PanelCELLFORM"
II Parent
II Owner
II Message Proc

I I Resource ID
I I hWndCaller

rc = WinProcessDlg (hWndPanel); II Modal Dialog
}

}

break;
II

FOR WINDOWS AND OS/2 DEVELOPERS

224 CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2
UPDATING THE APPLICATION

To include the new rational number format choice in the dialog box, we need to
add another line to the function responsible for initializing the dialog box. This
code is found in the "case WM_INITDLG:" clause of the message switch for the
dialog box's window procedure.

MRESULT EXPENTRY PanelCELLFORMDlgProc (HWND hWnd,
ULONG Message,
MPARAM Param1,
MPARAM Param2)

{

I I ...
switch (Message)
{

case WM_INITDLG:
{

char *formats[] { "####", "#,###", "####.#", "####.##", "#,###.#",
"#,###.##", "$####.##", "$#,###.##","## ##1##" };

I I ...
for (i 0; i < 9; ++i)

nSel = WinInsertLboxItem(hwndListbox, LIT_END, formats[i]);

}

}

II

}

II

II

Finally, we must add an additional case to the switch statement in the FormatCell
member function to add support for our new format code.

void NumberGrid::FormatCell(int nFormatCode)
{

NumberFormat nf;
switch (nFormatCode)
{

case 0:
nf.Set(0, false, false, KCOMMA, KPERIOD);
break;

case 1:
nf.Set(0, true, false, KCOMMA, KPERIOD);
break;

case 2:
nf.Set(l, false, false, KCOMMA, KPERIOD);

break;
case 3:

nf.Set(2, false, false, KCOMMA, KPERIOD);
break;

case 4:
nf.Set(l, true, false, KCOMMA, KPERIOD);
break;

case 5:
nf.Set(2, true, false, KCOMMA, KPERIOD);
break;

case 6:
nf.Set(2, false, true, KCOMMA, KPERIOD);
break;

THE POWER OF FRAMEWORKS

}

}

CHAPTER 10 EXTENDING THE FRAMEWORK FOR OS/2 225

USING EXTENSIBILITY TO DELIVER FEATURES FASTER

case 7:
nf.Set(2, true, true, KCOMMA, KPERIOD);
break;

case 8:
nf.Set(2, true, true, KCOMMA, KPERIOD, KDOLLARSIGN,

NumberFormat::kRationaINumberFormat);
break;

fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Edit();
II set the current cell to the appropriate format
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->SetFormat(nf);
II update it
fGrid[fCurrentCell/fNCols] [fCurrentCell % fNCols]->Update();

USING EXTENSIBILITY TO DELIVER FEATURES FASTER

These are all the modifications to the application required to support our new
rational number formatter. The application has added support for a new feature,
with no modifications to the framework and very few modifications to the user
interface code. A typical developer can develop this feature in a relatively short
amount of time.

Adding this feature to the original version of the application developed in
Chapter 8 would have been much more difficult and time-consuming. Clearly,
using a well-designed framework has a direct benefit as programs are enhanced
over time.

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

PART 3

LEVERAGING
FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

227

228

THE POWER OF FRAMEWORKS

CHAPTER 11

MAXIMIZING YOUR

FRAMEWORK BENEFITS

As you've seen, the benefits gained from developing frameworks are not
necessarily immediate: frameworks are a long-term investment. Underlying all
discussion of frameworks is the issue of time. Framework designers need more
time initially to create a framework than they do to create a procedural or class
library. Clients might need more time to learn to use a framework than is
necessary with a procedural or class library.

Although writing your own frameworks has a number of benefits, you can get
even more leverage by using frameworks that are already available from other
sources, either internally in your own company or purchased from vendors who
design framework solutions. Consider the advantages and disadvantages in both
these approaches as you begin to work with frameworks.

WHEN TO DEVELOP, WHEN TO USE FRAMEWORKS?

When should you develop your own frameworks, and when should you use
someone else's preexisting framework?

Consider writing your own framework if:

&J No existing framework is available.

ra You expect the framework to be reused.

&J You expect the design requirements to change over time.

FOR WINDOWS AND OS/2 DEVELOPERS

229

230 CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS

CREATING YOUR OWN FRAMEWORKS

On the other hand, if a developer has the appropriate domain expertise and
makes a framework available, consider using it if:

r:J The framework's design fits your needs with little or no customization
required.

r:J You have confidence in the long-term maintainability of the code and in
support from the provider.

r:J The framework provider has done the necessary design work to ensure a
robust framework.

Frameworks are a long-term win: the cost of designing a framework is paid up
front, while the benefits accrue over time.

CREATING YOUR OWN FRAMEWORKS

Explaining your
frameworks

Documenting your
framework

Chapter 3 discusses the basics of developing a framework; Part 2 takes you
through the actual steps you need to create a framework. The following topics
discuss issues to consider when you build, release, and maintain your framework
as a product.

Well-commented headers, complete documentation, and sample code are a
necessary part of any programming project, but they are especially important
when developing frameworks. As a framework developer, you have to provide
information so that your clients understand how to use the framework to
produce the solution they want.

Make it clear which classes your clients can use directly, which classes they must
instantiate, and which classes and member functions they must override. Clients
want to know how your framework helps them solve their problems, so the details
of the framework implementation itself are not as important.

When you document your framework, include the following information:

It1 Diagrams of the framework architecture, including design patterns

!TI Descriptions of the framework

r:J Directions for using the framework

Limitations for framework use-what the framework does not cover as a
guide for customer extensions

THE POWER OF FRAMEWORKS

Including sample
programs

Following common
coding standards

Managing change

CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS 231

CREATING YOUR OWN FRAMEWORKS

At a minimum, provide as many sample programs as possible. In the process of
developing and testing your framework, you'll have to develop applications that
exercise your framework-often these applications can become the foundation
for a set of sample applications. Try to provide a variety of samples that
demonstrate how to use the framework in different contexts-a well-rounded set
of sample programs is invaluable for clients learning your framework and
essential if you do not distribute the source code for your framework. Consider
designing the sample programs so that they show a progression of the
architectural features of the framework.

When more than one developer works on a software project, having a common
coding style becomes increasingly important. Using coding standards
consistently helps to make your frameworks more understandable and can help
address common design errors. Taligent has compiled lists of coding do's and
don'ts in Taligent's Guide to Designing Programs: Well-Mannered Object-Oriented Design
in C++ (Taligent 1994). This book provides an excellent basis for developing
coding standards for object-oriented programming projects.

Frameworks evolve, especially as your understanding of the problem domain
expands and the number of clients grows. However, once you release a
framework for client use, you need to limit the changes-a constantly changing
framework is difficult to use.

As a general rule, you should:

t:l Fix bugs immediately (clients can have difficulty working around a bug in
your flow of control).

El Add new features occasionally. Add new interfaces instead of redefining
existing ones.

t:l Change existing interfaces as infrequently as possible.

During the development ofa framework, changes happen much more
frequently. However, once clients start using a framework, you might still need to
make changes that affect their work.

When you do update a framework, minimize the impact on your clients. It's
better to add new classes instead of changing the existing class hierarchy and to
add new functions instead of changing or removing existing functions. On the
other hand, avoid bloating the framework with unnecessary classes
and functions.

Give your clients advance notice of framework updates and allow time for them
to adapt to the changes. One approach is to add the new and changed classes in
an interim release and flag the old ones with obsolete warnings. This way, your
clients are forewarned as to when classes they are using are going to change.

FOR WINDOWS AND OS/2 DEVELOPERS

232 CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS

CREATING YOUR OWN FRAMEWORKS

Managing
dependencies

Project architect

Isolate
interdependencies

Projects can often be factored into a number of separate frameworks and
assigned to small teams. If it takes more than three or four developers to produce
a framework, decide whether the project can be split into a set of smaller
frameworks. Teams of two to four are also more effective than one developer
working alone, unless the single developer is both an experienced framework
developer and a domain expert.

Working with several small teams introduces additional management challenges:

13 Developers focus on one aspect of a large project and might not understand
all the interrelationships and client implications.

13 Architectural consistency must be maintained across teams. Determine
which frameworks can best store functionality across projects.

13 Dependencies between frameworks can create bottlenecks.

To alleviate these problems, you can adopt several strategies:

13 Appoint a project architect who maintains the "big picture," ensuring that
the frameworks ultimately work together.

13 Establish and follow standard design and coding guidelines.

13 Decouple the frameworks by isolating their interdependencies in
intermediary classes and, if necessary, provide libraries or classes, or
frameworks to tie them together.

Having a project architect on your team who is responsible for the overall design
integrity of all your software can help you keep control over your software. A
good architect has enough domain expertise to understand the specific technical
problems being solved by each framework, while still having a general
understanding of the team's effort as a whole. The architect can enforce using
frameworks over many projects and encourage framework distribution.

If you are the architect for your team, stay focused on the big picture. The best
architects act as guides through the design process, leaving the details of the
design and implementation to the domain experts.

Often when one framework requires the services of another, the connection can
be implemented through an interface or server object. Then, only one object is
dependent on the other framework. Until the other framework can support the
necessary operations, the intermediary class provides stub code that allows you to
test the dependent framework. Loosely-coupled frameworks are generally more
flexible from the client's perspective as well.

For example, let's say you're working on a database query tool, and you need to
use a communications framework to set up a connection to a remote database
across the network. The framework provides a class that represents a network
address, stream classes for reading and writing data, and various exception
classes that handle network errors. You could use the framework as is, using its
data types directly throughout your framework's interfaces. The downside is that

THE POWER OF FRAMEWORKS

Publishing your
framework

CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS 233

CREATING YOUR OWN FRAMEWORKS

your framework's interface is inextricably linked to the communications
framework-changes to that framework might break your interfaces, and you are
never able to use your framework on a platform where the communications
framework does not exist.

A better alternative is to provide an abstract class that addresses your framework's
communication needs and to use that class within your framework. You can then
implement the abs~ract class (through a concrete subclass) using the
communications framework to handle the details. This allows you to use new
frameworks as they become available. If you later have to port your framework,
you can reimplement the class (as a different concrete subclass) using a different
underlying framework or library.

At times it is appropriate to let your dependencies show through. For example,
an application's user interface module that contains platform-specific user
interface code should use that platform's facilities to the fullest extent, because
the portability and modularity issues don't apply. Similarly, you can expose
external dependencies in a framework's interface if you know that these
dependencies are unlikely to cause problems in the future.

You can use this same approach to isolate platform-dependent code or code that
accesses a particular applications framework. When you use different platforms
or application frameworks, you need to modify only an isolated piece of the
framework. This modification does not affect your clients. You can also use
intermediaries to access legacy data or nonframework services.

To get the maximum benefit-reuse-from your framework, you must distribute
it to others who can use it. Whether you design your framework to use internally
or to distribute outside your company, treat it as a product from the start. In
addition to documenting the framework thoroughly, plan how to distribute and
support the finished product for both internal and external clients.

Consider publishing your framework outside your company. Weigh the
disadvantages against the advantages. One of the obvious disadvantages is that
you often must continue to provide support. But the advantages can outweigh
this factor. Widening the range of your framework's use correspondingly widens
the range of feedback you'll receive. This leads to more robust frameworks and
the opportunity to add features based on customer input. In addition, your
framework can be a source of revenue for your company.

FOR WINDOWS AND OS/2 DEVELOPERS

234 CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS

CREATING YOUR OWN FRAMEWORKS

Distributing your
frameworks

Encouraging reuse

Encouraging feedback

Providing support

To ensure that other developers can use your frameworks, they need to know not
only that the frameworks exist, but also how to access them. You must establish a
a process for distributing your frameworks so that developers can use them.
Ideally, all frameworks should be kept in a central repository, with a repository
manager responsible for notifying clients about newly developed frameworks and
updates to existing ones. With a large enough repository of existing frameworks,
other developers can select the appropriate frameworks from which to build
when developing new applications.

There's more to reuse, though, than merely making the frameworks available:
your organization must actively cultivate reusing frameworks. One way is to adjust
the recognition structures-encourage and support developers who write and
distribute frameworks that others can use. And, equally important, reward the
developers who use them. The following ideas can help promote reuse:

fJ Evaluate productivity based on client functionality implemented, instead of
using lines of code or other size-based metrics. The best implementation is
one that gets the most done for the client, and reusing a framework is a good
way to get a lot done with less effort.

12 Maintain a repository of reusable code, and provide awards and/or
recognition to the developers of widely reused code.

Be sure to release your framework to your clients early in your iterative
development cycle, in time to incorporate feedback. Early feedback from
developers ensures that your design meets the needs of your clients. Take an
active role in encouraging feedback, and be sure that your clients know that
you'll respond to their feedback.

To fully realize the benefits frameworks can provide, your organization should
commit the necessary resources to support its frameworks over time.
Developers will not use your frameworks unless you respond to problem
reports and feature requests.

Early in its creation, a framework requires routine maintenance to fix bugs and
provide new functionality. But framework support is not limited to bug fixing and
minor feature additions. Over time, even a well-crafted framework needs design
alterations to support client requirements as they change.

With frameworks, this is where the investment pays off. Over the lifetime of a
framework, the cost of supporting it actually becomes a benefit. The cost of
supporting one framework with three dependent applications is less than the
cost of supporting three independent applications with duplicate code. The
more applications using a framework, the bigger the savings. In the long run,
using frameworks can substantially reduce support and maintenance costs.

THE POWER OF FRAMEWORKS

CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS 235

REUSING EXISTING FRAMEWORKS

REUSING EXISTING FRAMEWORKS

Learning overhead

Loss of flow of control

Preserving creativity

Reusing existing frameworks can make programming more productive and more
rewarding, because you can concentrate your efforts on adding value to the
application in your area of domain expertise instead of implementing your
application's infrastructure. Before you can reuse frameworks effectively,
however, you must address several issues.

You have to know how a framework works to begin writing software with it. You
need to understand what the various classes are and the functionality they
provide. You also need to understand how these classes interact with each other,
and what they expect from your code. Acquiring all this knowledge takes time.

If you start by learning the basics, and build your knowledge of the framework
incrementally, you can program and debug productively with that framework. In
addition, because much of the overhead comes from understanding in general
how frameworks work, learning how to use one framework can often help when
learning another.

Programming using frameworks, as described by Dave Wilson (1994) has been
likened to the developer being inside a box, in the dark. Occasionally the
framework opens the lid of the box for a moment, yells something at the
developer such as "Draw yourselfl" and theD: slams the lid shut. You do the
framework's bidding, not the other way around.

The key to overcoming uncertainty in the "don't call us, we'll call you" world of
frameworks is to learn to think in terms of the responsibilities of objects-what
the objects are required to do-and let the framework determine when the
objects should do it. Once developers understand frameworks, they can begin to
realize the enormous advantages that framework-oriented programming can
deliver over other development approaches.

Getting over the loss of the flow of control is the single biggest stumbling block to
becoming an accomplished framework user. Some developers believe that
frameworks impose a particular canonical way of doing things, thus
compromising their creativity. It is true that frameworks require that code adhere
to their protocols (how else could a framework call your code?), but this misses
the larger issue-in return for orthodoxy at the statement and declaration level,
you are often given more power and flexibility at the design level.

The rewards of using frameworks, however, are considerable. By
relinquishing flow of control, you gain the potential for substantial reuse, a
large base of existing functionality, and the ability to focus on your problem'S
unique aspects instead of less relevant implementation details. As a

FOR WINDOWS AND OS/2 DEVELOPERS

236 CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS

REUSING EXISTING FRAMEWORKS

Debugging

Coding overhead

consequence, your overall code size is reduced, your time to market is
reduced, and your code's reliability and usability is greatly increased.
Frameworks let you express your creativity where it makes the biggest
impact-in the form of radically new and powerful features.

Using frameworks that take over the flow of control can make debugging your
program more difficult. Unless you are familiar with the internal structure of the
framework, it is difficult to know how code was called inside the program.
Consequently, the program's behavior is difficult to follow when debugging. Of
course, the better designed the framework, and the more knowledge you have of
its design, the less of a problem framework debugging becomes.

You can help alleviate this problem by becoming an expert at using your
debugger's breakpoints. Setting a breakpoint on one of your own member
functions to see where and by which code it is called can be very informative.
Setting a conditional point on a member function so that it breaks only when
called for a certain object helps track down difficult problems.

Finally, having a high-quality source-level debugger, and especially a debugger
that understands objects, is of enormous benefit.

Frameworks impose a certain amount of coding overhead: they require some
"boilerplate" code to support particular protocols. A minimal CommonPoint
application-the Taligent version of a "Hello world" program-works out to
about 200 lines of code.

Keep in mind that a CommonPoint system version of "Hello world" has more
features than a five-line version on a UNIX workstation. In the CommonPoint
system, even the minimal program offers features available to all CommonPoint
applications, including:

ID Embedding compound documents

r::l Multilevel undo/redo

&1 Document saving and version control

1'3 Collaboration

fJ Printing

m Localization

m Hypermedia linking and traversal

m Windows, panes, menus, and screen support

If you are familiar with X Window System or Windows programming, estimate
the level of effort required by those systems to provide the same features as those
listed for a similar "Hello world" program.

THE POWER OF FRAMEWORKS

Overhead versus
complexity

CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS 237

REUSING EXISTING FRAMEWORKS

Developers typically don't write trivial "Hello world" sorts of programs. What they
write instead are complex applications that require multiple developers and a
significant investment. On conventional systems, these applications require
considerable design and coding. In the CommonPoint system, however, the total
amount of design and coding is greatly reduced, both because of the presence of
frameworks and because of the reuse that comes from components.

The CommonPoint system often requires a higher initial overhead to implement
any given component, but this is more than offset by combining components to
provide more complex functionality. As the complexity of the target application
increases, the cost on a CommonPoint system grows much more slowly than the
cost on a traditional system, despite the higher overhead at the beginning-at
some point early in the development process the two curves cross.

"C co
Q)
.c
CD
> o

Traditional system

Complexity

LEARNING OVERHEAD VERSUS SYSTEM COMPLEXITY

Common Point
Application
System

Thus, despite higher initial overhead, the average cost per delivered
capability is much lower for the CommonPoint system than on other systems.
This cost differential is analogous to the time and cost it takes to set up a
production line versus doing custom work: while the production line is slower
getting started, once it starts to produce, it quickly beats the time needed to
create custom products.

In the CommonPoint system, think of the coding overhead required by the
frameworks as the cost of getting the production line built. Once a wide variety of
components are available, the production line can generate production-quality
applications in a fraction of the time required on a conventional system.

FOR WINDOWS AND OS/2 DEVELOPERS

238 CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS

ACCRUING FRAMEWORK BENEFITS OVER TIME

Performance issues Performance can also be an issue when using frameworks, especially when a
generic framework is used to solve a simple problem. A generalized framework
always has more runtime overhead than a hand-tailored, single-use solution.
However, careful design and tuning of the framework minimizes these problems.
In addition, the extensibility of the framework pays off over time, as the program
gets larger. In fact, for production-quality programs (with, for example, more
than 25,000 lines of code), a framework-based program normally offers size and
speed benefits, because the overhead of the framework becomes less and less
significant as programs become larger.

ACCRUING FRAMEWORK BENEFITS OVER TIME

Frameworks are still a new concept, even for developers used to object-oriented
design and programming. Whether you choose to develop your own frameworks
or use those available through other sources for your programming solutions,
the productivity gains do not automatically follow the first or second use of the
technology. Frameworks provide the greatest gains in productivity through
multiple uses. The benefits from using and reusing frameworks are felt only over
time. Once developers and organizations understand-and experience-these
benefits, they accept frameworks as an important and usable approach to
software development.

Object-oriented technology, using frameworks in particular:

m Makes development faster once you've mastered the initial learning curve

13 Integrates maintenance into the iterative process of your development cycle

D Makes delivery and training easier

Frameworks take you a step beyond class libraries. Class libraries help one
programmer create one application program one time. Two programming teams
using same class library can create two application programs with similar design
and structure. But if the two teams both use the same framework, the two
resulting programs have very similar structure. These programs, based on a
common framework, are more likely to interoperate. The two programs can be
enhanced in similar ways over time. Members of one team can move to the other
team and be productive. Teams can write new programs to interact with the first
two. All this happens as a result of working with the framework-"the common
DNA"-as the basis of the application.

THE POWER OF FRAMEWORKS

CHAPTER 11 MAXIMIZING YOUR FRAMEWORK BENEFITS 239
ACCRUING FRAMEWORK BENEFITS OVER TIME

To maximize the benefits of developing with frameworks, consider how best your
projects and organization can use frameworks. You can take or combine two
approaches:

IJ Develop your own frameworks.

IJ Use existing internal or commercially-available frameworks.

If you choose to develop your own frameworks, treat the framework as a product
from the very beginning of the process:

IJ Develop the framework with good documentation.

!J Use consistent coding standards.

I] Design with methods to manage change.

!J Manage your projects to use frameworks over a group of applications and
promote reuse throughout your projects. _

!J Release the framework to internal and external customers to get feedback to
improve the framework.

If you use available frameworks, consider how best to handle issues such as the
following:

!J Education to minimize the learning curve

!J Loss of control to the framework

!J Complexity issues and coding overhead

!J Performance

FOR WINDOWS AND OS/2 DEVELOPERS

Comm fit
pom~~·

(Taligent~1!> ~

THE POWER OF FRAMEWORKS

CHAPTER 12

INTRODUCING THE

COMMONPOINT

APPLICATION SYSTEM

By now, you should have a sense of how reusing frameworks can help you create
more feature-rich, maintainable, and extensible programs more efficiently than
you ever could before. However, a survey of the marketplace shows that few
frameworks are available for purchase, except in the category of the CUI
application frameworks including Microsoft Foundation Classes (MFC), the
Borland Object Windows Library, and MacApp.

Does this mean that you are going to be forced to design and implement all of
the frameworks you need by yourself? Fortunately, the answer is no. More and
more frameworks become available every day. Better still, the Taligent
CommonPoint application system includes nearly 100 frameworks, designed to
solve a wide variety of problems commonly faced by application and system
programmers.

FOR WINDOWS AND OS/2 DEVELOPERS

242 CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM

KEy BENEFITS OF THE COMMONPOINT APPLICATION SYSTEM

KEy BENEFITS OF THE

COMMONPOINT APPLICATION SYSTEM

Providing services

System extensibility

To show you how powerful framework reuse can be, the following topics provide
a brief overview of the benefits, including breadth, depth, and extensibility of
services provided and the high-level structure of the CommonPoint application
system. For more details on the features of the CommonPoint system and the
philosophy behind its design, refer to the CommonPoint developer
documentation or to Inside Taligent Technology (Cotter with Potel 1995).

The CommonPoint system environment provides services that cover many more
areas of application programming than any preceding application system.
(Virtually everything in the system is handled via object interfaces.) In addition
to providing more extensive document-, view-, and command-handling
mechanisms than previous generation CUI application frameworks, the
CommonPoint system supplies object-oriented support for everything from
multimedia and graphics, to file and database access, and even tasks and threads.

The CommonPoint system offers not only object-oriented facilities for a broad
range of functionality, it also provides a great deal of depth in that functionality.
The Data Access Frameworks, for example, are designed to communicate with
databases through a large number of standard protocols, including ODBC. The
Localization Services provide an unprecedented level of support for
international text formatting and editing. All the frameworks that comprise the
CommonPoint system are designed to work with as broad a range of existing
systems as possible.

Working with established systems is necessary, but it's not enough. For a system
to be truly useful, it has to work with future technologies as well. CommonPoint
application system frameworks are designed to be extensible, fully leveraging
the capabilities of framework design. Furthermore, this extensibility is not
designed just for use by Taligent as it develops future versions of the system.
The system is purposely designed so that application developers and OEMs can

. also provide extensions.

THE POWER OF FRAMEWORKS

Portability

A new user
interface paradigm

CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM 243

KEy BENEFITS OF THE COMMONPOINT APPLICATION SYSTEM

The CommonPoint system is a portable application system that lives on top of
and cooperates with many different operating systems, including AIX®, HP-UX®,
OS/2, Mac as, Windows 95, and Windows NT. Because of the breadth and depth
of the CommonPoint system functionality, you can write most application
programs without making any calls to the underlying system's APls.
CommonPoint applications should port very smoothly to run on different
systems, furnishing developers with an easy and cost-effective way of managing
multiplatform software development.

The CommonPoint system design lays the foundation for a new user interface
paradigm, grounded in the People, Places, and Things® metaphor and focused
on Task Centered Computing™. CommonPoint applications are compound
document-based, enabling unprecedented support for collaborative computing.

GARDEN SUPPLY CORP.

MEMORANDUM

a/17/95

PLace

Calender

Edit

View

Window LL Customer Service Representati'ves
,.."....r--_~....JIIS (CECSS group)

RE M I H DE R

Station B4

10
Bulletin board ---f+,.,y,.,-"-+-G In response to your suggestions to speed customer

service, two new enhancements come on-Line today:
Customer
service
representative's
personal
calendar

notice
• Annotation and color coding

I ncoming orders and service requests will be color coded
to highlight problems and sales opportunities. To speed
order processing, first address the highlighted areas. Use
the annotation stationery to make product and process
impro'vements.

• Directed call routing
CaLls to Customer Service and TechnicaL Support wilL be
routed to the Representati've who's previously handled
the customer's account. We"-e also enhanced the routing
sys~m to recognize the product specialties Listed in your

COMMONPOINT SYSTEM USER INTERFACE METAPHOR

FOR WINDOWS AND OS/2 DEVELOPERS

11

12p Lunch

1 ConsuLtation

StationB4

244 CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM

A TAXONOMY OF THE COMMONPOINT APPLICATION SYSTEM

A TAXONOMY OF THE

COMMONPOINT APPLICATION SYSTEM

Application
Frameworks

The CommonPoint application system offers the developer substantial breadth
and depth of programming functionality. At its highest level, think of the system
as providing two distinct sets of services:

EJ Application Frameworks, used to create powerful, interactive applications.

E:I System Services, used to manipulate data, to communicate with other
computers, and to interface to the underlying operating system. These
frameworks insulate applications from the underlying operating system, thus
providing portability across platforms.

The following sections describe the frameworks available from Taligent in the
CommonPoint system: Application Frameworks and System Services.

Embeddable Allow viewing and editing of complex data types, with full support for linking and embedding.
Data Types

Desktop
Frameworks

Graphics Editing
Framework

Text Editing
Framework

Document Data
Access
Framework

Time Media
User Interface
Framework

Allows structured editing of graphical objects.

Allows editing of text with full support for styles and languages.

Provides an embeddable document component that represents a database query and
its results.

Provides standard document parts that can be used to present video, audio, and other time
media data.

Support the Common Point application model, including its user interface policy, its look and
feel, and its compound document architecture. -_ .• --------_._ ... __ ._.-...•....•. _---------------_._---_._-----_ _-----_._------_._-

Workspace
Framework

Presentation
Framework

Document
Frameworks

Allows developers to create extensions to the Taligent People, Places, and Things
user interface.

Unifies a number of user interface and document model mechanisms, making it easier to
create fully featured, document-based CommonPoint applications.

Provide a document model as the basis for data representation.

Shared Document Allows compound documents to be used in a collaborative
Framework environment across a network.

Compound Document Supports active linking and embedding data from other documents.
Framework

Basic Document
Framework

Supports the basic document architecture of the system, including
storage and command processing.

THE POWER OF FRAMEWORKS

Application
Frameworks
(continued)

Desktop
Frameworks
(continued)

Application
Services

User Interface
Frameworks

Interoperability
Services

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 12 INTRODUCING THE COMMON POINT APPLICATION SYSTEM 245

A TAXONOMY OF THE COMMON POINT APPLICATION SYSTEM

Support the creation and use of interactive user interface elements.

Cursor Tools

Dialogs

Clipboard

Drag and Drop

Windows

Frames

Controls

Views

Actions

Input

User Interface
Utilities

Support creation of generic cursor tools, which can be used to
manipulate many data types.

Allow sets of user interface elements to be grouped together.

Provides a mechanism for the user to store and retrieve data on the
clipboard, within or between applications.

Provides an abstract protocol for direct manipulation of user
interface objects.

Provide a set of basic window types and handle common window
management operations, including resizing, zooming, and moving.

Provide a selectable, manipulatable frame around a view.

Provide a wide range of interactive user interface elements, including
buttons, scroll bars, and menus.

Provide a basic mechanism for dividing a user interface into a
hierarchical collection of views, each of which may have its own
coordinate system, transform, and buffering mechanism.

Allow a handler to be notified when the user performs an action.

Provides a mechanism for converting user input into user
interface events.

Provide miscellaneous services for creating user interfaces, including
support for labels and decorations.

Support media- and data-handling services needed to create industrial-strength,
interactive applications.

Allow CommonPoint applications to interoperate with other systems.

OpenDoc and OLE Provides interoperability with Open Doc and OLE.
Compatibility

Graphics Converters Provide conversion of several industry-standard graphics formats
into the Common Point system graphics format.

Text Converters

Data Translation
Framework

Supports conversion of plain and styled text into the Common Point
system text format.

Provides a framework for data exchange with non-CommonPoint
software.

246 CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM

A TAXONOMY OF THE COMMONPOINT APPLICATION SYSTEM

Application
Frameworks
(continued)

Application
Services
(continued)

Printing

Scanning

Time Media

Localization
Services

Supports platform- and printer-independent printing.

Document Printing Supports the printing of CommonPoint documents.

Print Jobs Support user- and printer-customizable print jobs.

Basic Printing Provides a model for printing pages to a printer.

Printing Devices Provide a hardware-independent abstraction of a printer.

Provides an abstract mechanism for control of scanners.

o....:llnlnnrtc a rich set of time media data types.

MIDI

Audio

Telephony

Video

Allows use of MIDI devices to produce and record music.

Supports general sound production and recording facilities.

Allows voice communications to be integrated into
Common Point applications.

Supports video playback and recording.

Support multilingual and localizable user interface elements and text.

Date and Time Supports language-sensitive conversion of dates and times into and
Conversion from a textual form.

Text Analysis Supports language-sensitive text collation, pattern matching, and
boundary searching.

Text Input and Output Supports transliteration, virtual keyboards, and other text
liD services.

Text Scanning
and Formatting

Supports the reading and writing of numbers and other binary data in
a textual form.

Locales Provide a hierarchy of archived resources localized for each
geographic region.

-.-----~-.-.--.----.-.--.---.-.----.-----.--.--------.------..... - ... -.-----.. -.-.-----.----.---------.. ------_ ... _. __ _-----
Text Supports styled, multilingual text data.

Line Layout

Paragraph Styles

Text Styles

Text and Style
Storage
Management

Character Sets

Support for text direction, highlighting, and line-by-line display of
multilingual styled text.

Support paragraph styles, including indents and line spacing.

Support for text styles, including fonts, sizes, positioning, and color.

Provides basic support for storage of textual information, including
styles, text ranges, and text positions.

Support Unicode characters and other character sets via transcoding.

THE POWER OF FRAMEWORKS

Application
Frameworks
(continued)

System
Services

Application
Services
(continued)

Enterprise
Services

Graphics

Data Access
Framework

Caucus
Framework

System
Management

Messaging
Services

Concurrency
Control and
Recovery

Remote Object
Call Services

FOR WINDOWS AND OS/2 DEVELOPERS

CHAPTER 12 INTRODUCING TilE COMMONPOINT APPLICATION SYSTEM 247

A TAXONOMY OF THE COMMON POINT APPLICATION SYSTEM

Provide a rich set of services for modeling and rendering 2-D and
3-D graphics.

2-D Graphics

3-D Graphics

Colors

Font Support

Sprites

Pixel Buffers

Graphic Devices

Displays

Support 2-D graphics, including geometries, attribute bundles,
transforms, and high-level 2-D graphics objects.

Support 3-~ graphics, including geometries, attribute bundles,
transforms, and high-level 3-~ graphics objects.

Support multiple color spaces and color matching.

Provides font rendering support independent of font format.

Support bitmap animation.

Provide an abstraction for onscreen and offscreen pixel buffers.

Provide basic capabilities for graphics device drivers, including
rasterization, device transforms, and color mapping.

Provide an abstract display screen.

Provide a set of services that allow the CommonPoint application system to interoperate with
other computers distributed within an enterprise.

Allows data on local or remote databases to be accessed, queried, and modified.

Provides multicast communications facilities for collaborative applications.

Supports administration of computers throughout the enterprise, including software
installation, system configuration, maintenance, security, and support.

Licensing Services Provide an abstract software licensing mechanism to control
software use and distribution.

Authentication
Services

Provide an abstract authentication mechanism to help ensure
system security.

Provide store-and-forward messaging services independent of platform and protocol.

Provides basic transaction-processing services to ensure the consistency of data accessed by
multiple tasks.

Provide a mechanism for invoking services of remote servers on Common Point and
non-Common Point systems.

248 CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM

A TAXONOMY OF THE COMMONPOINT APPLICATION SYSTEM

System
Services

Foundation
Services

Notification

Identifiers

Object Storage

Testing

Math and
Language
Libraries

Provide a fundamental set of object services that make it easier to write
object-oriented programs.

Provides a systemwide mechanism to propagate change information from one object
to another.

Provide several different methods for associating a textual name with other data.

Attributes Provide a simple mechanism for associating names with arbitrary,
immutable data.

Properties

Tokens

Provide a mechanism for storing collections of named data items,
with a powerful query mechanism that allows property collections to
be searched.

Provide a lightweight wrapper for static text strings, allowing text
sharing and efficient comparisons.

Provides mechanisms to support the persistent storage of objects and the structuring of
objects in memory.

Archives

Data Structures and
Collections

Streams and
Persistence

Safe Pointers

Allow collections of objects to be stored on disk and
retrieved individually.

Allow objects to be organized into various kinds of type-safe and
efficient collections.

Provide a mechanism for converting a collection of objects into a
persistent, canonical byte-encoded stream for storage on disk or for
sending across a network.

Provides several kinds of special wrapper classes that make using
C++ pointers safer.

Provides a suite of tools and services to aid in the testing of objects.

Assertions

Test Framework

User Interface
Testing

Utility Tests

Provide a mechanism for asserting invariants in a program,
generating exceptions when these invariants are not met.

Provides a framework for executing, logging, and evaluating tests.

Provides tools and services for driving the user interface of a
Common Point application from a test.

Provide standard tests for common object behaviors, including
hashing and streaming.

Support the Common Point application system's math and runtime libraries.

Numerics Provide a high-precision numeric environment, using a
Common Point-style object interface or the ANSI standard interface.

Standard C and C++ Support the ANSI C runtime libraries and the proposed ANSI
Libraries C++ libraries.

THE POWER OF FRAMEWORKS

System
Services
(continued)

OS Services

CHAPTER 12 INTRODUCING THE COMMONPOINT APPLICATION SYSTEM 249

A TAXONOMY OF THE COMMONPOINT APPLICATION SYSTEM

Provide basic support for creating programs that work across a wide variety of host operating
systems and hardware platforms.

Communications Support local and remote communications.

Directory Services

Service Access
Framework

Message Streams

Protocols

Provide a homogeneous view of the network's name spaces,
including support for DNS, X.500, AGCE, and DCE.

Provides a mechanism for identifying and accessing
network services.

Provide a consistent mechanism for sending data between tasks on
local or remote machines, independent of the underlying protocol.

Support various standard communications protocols, including TCP/
IP, AppleTalk®, and Novell Netware. .

File System Provides an object abstraction for manipulating volumes, directories, and files.

Time Services Provide a hardware-independent, customizable model of time.

Object Runtime Support the CommonPoint application system's object runtime.
Services

Microkernel
Services

Memory Heaps

Exceptions

Shared Libraries

Metadata

Provide a multithread-safe way to allocate memory.

Provide runtime support for c++ exceptions and a set of common
exception types for use by the Common Point application system.

Provide a mechanism for packaging code and data into dynamically
loadable shared libraries.

Provides a mechanism for accessing information about the type of an .
object and allows dynamic instantiation of an object at run time.

Provide an abstract interface to the microkernel facilities necessary for the Common Point
application system to run, independent of the host operating system.

Tasks and Threads Provide abstractions for creating and managing tasks and threads.

Interprocess
Communication

Synchronization
Services

Virtual Memory
Management

System Shutdown

Provides a mechanism for sending messages to tasks and threads on
the local machine.

Provide semaphores, monitors, and other services to synchronize
multiple tasks and threads.

Provides a set of services that allow virtual memory segments to be
created and managed.

Provides a staged, well-defined protocol for shutting down the
CommonPoint application system.

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 13

CREATING AN APPLICATION

USING COMMONPOINT

FRAMEWORKS

Now that you've been introduced to the key features of the CommonPoint
application system, it's time to see how easy it is to develop an application using
the frameworks provided by the CommonPoint system instead of the
framework we developed in Part 2. As you review the implementation of the
application, note that many of the details of CommonPoint programming have
been omitted because they go beyond the scope of this book. Instead, view the
sample code as a guide to the basic principles of CommonPoint programming
and compare the total program size and complexity with that of the samples we
developed earlier. When you consider how much extra functionality the
CommonPoint application provides, the advantages of reusing CommonPoint
system frameworks are evident.

CommonPoint system development tools ease application development

The application code shown in this chapter
was developed without the use of any
special development tools. Taligent has
several such tools, which can make
application development substantially easier
than we've shown here.

The first of these tools, cpConstructor™,
allows developers to create user interface
elements in a graphical editing
environment. cpConstructor stores user
interface elements in fully localized
archives. If we had used cpConstructor to
create the user interface elements of our
application, much of the window and menu
management code in the application would
have been replaced with code that accessed
the archived user interface elements,
greatly simplifying the application.

FOR WINDOWS AND OS/2 DEVELOPERS

The second of these tools, CodeAuthor,
generates the source code for a
Common Point application using a user
interface archive created in cpConstructor
as input. If we were to use CodeAuthor to
generate our application, the amount of
code we would have to write would drop to
nearly none.
The third of CommonPoint's development
tools, cpProfessional™, is a full-featured,
object-oriented development environment.
With true incremental compiling and
linking, turnaround times are much lower
than those of traditional development
tools. The cpProfessional browsers and
editors make the creation and modification
of C++ programs much easier. Although
using cpProfessional would not have a

direct effect on the amount of code we'd
have to write for our application, it would
make the development process faster and
more enjoyable.
These tools weren't used to create the
Common Point system version of the
application because that would have made
the code so small and simple that it would
have made a comparison between the
Common Point application and the Windows
or OS/2 application meaningless. Creating
our Common Point application using C++
exclusively lets us see everything needed to
create a CommonPoint application.

If you create your own CommonPoint
application, these development tools
deserve a serious look.

252 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

NUMBER FORMATTING REVISITED

NUMBER FORMATTING REVISITED

CommonPoint includes a number formatting framework which bears a close
resemblance to the framework we developed earlier in the book. Instead of
writing your own number formatting framework, you can use the Text Scanning
and Formatting Framework supplied with the CommonPoint application system,
saving yourself a great deal of effort.

The Text Scanning and Formatting Framework is more sophisticated than the
number formatting framework we developed in Part 2, so a brief overview of its
design is in order.

The Text Scanning and Formatting Framework's protocol is as follows:

n
..--____ .1. TFormaHable .1. TFormaHer

Formatter scan or format
instances of formattable data.

I-. I __________ ... r --. -_. -_. _ .. -_. -[.1. TDateTimeFormaHer

, __ T_F_o_rm_·· .. ··~_~_~~_··~_b_I~_N_·u_m_b_e_r_-.l···J. --- -- -_. -- --- --f~TN~~b~;F~;;;,~;~; .. · .. ~ .. -...... ~ .. J-
TFormattableText ----------------I TSimpleTextFormaHer

TChoiceFormaHer

TEXT SCANNING AND FORMATTING FRAMEWORK CLASS DIAGRAM

THE POWER OF FRAMEWORKS

TFormattable

TFormatter

TFormatResult

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 253

NUMBER FORMATTING REVISITED

TFormattable classes provide a wrapper for a specific data type, allowing it to be
manipulated by the formatter for that type of data. Data types are provided for
numbers, time, text, and for lists of TFormattable parameters.

TFormatter classes perform the actual conversions, with a specific TFormatter
subclass working with a particular type ofTFormattable data. Several different
types ofTFormatter subclasses are provided:

D TNumberFormatter is the abstract base class for classes that format and
scan numeric data, much like the number formatting framework we
designed in Part 2.

IJ TDateTimeFormatter is the abstract base class for a family of classes that
format and scan time data.

11 TSimpleTextFormatter formats and scans text strings. It is used primarily by
the TParameterFormatter and TChoiceFormatter classes.

IJ TParameterFormatter takes a list ofTFormattable data parameters and
formats them into text strings (or scans text strings into a list of data
parameters). This class is typically used to create variably-formatted strings
for the user such as:

As of <date>, <time>, there are <n> tasks remaining.

11 TChoiceFormatter specifies a mapping between numerical values and a set
of strings or TParameterFormatter instances. It is typically used in
combination with TParameterFormatter to generate different forms of
a string:

There is 1 task remaining.

There are 5 tasks remaining.

TFormatResult classes return information about the conversion process, so that
the results of the formatting operation can be analyzed.

FOR WINDOWS AND OS/2 DEVELOPERS

254 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

NUMBER FORMATTING REVISITED

Formatting numbers
with the Text Scanning
and Formatting
Framework

As previously mentioned, the Text Scanning and Formatting Framework provides
an abstract TNumberFormatter class used to scan and format numeric data. As
with the simple framework we designed, this class has a number of subclasses that
can format numbers a particular way. Unlike our framework, though, the Text
Scanning and Formatting Framework provides full support for Arabic, Han
(Chinese), and Hebrew numeric systems, and provides formatters that can
output numbers as roman numerals, outline labels, and more.

The class hierarchy of the number formatting classes is as follows:

TNumerals 114-----1 /::,. TNumberFormatter

TAdditiveNumberFormatter I
TOutiineNumberFormatter TPositionalNumberFormatter

TFloatingPointNumberFormatter

-'----'--'---'---1 '----! TRomanNumberFormatter

niversalNumberFormatter

THanNumberFormatter

NUMBER SCANNING AND FORMATTING CLASS HIERARCHY

As you can see, the breadth of formatting functionality provided is impressive,
and allows CommonPoint to support the full range of international markets.
This discussion concentrates on the details of the classes that are most relevant to
our application.

THE POWER OF FRAMEWORKS

Locales

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 255

NUMBER FORMATflNG REVISITED

tl TNumberFormatter provides the ability to format and scan
TFormattableNumber data items to and from text. TFormattableNumber
stores the numeric information as a double.

tl TPositionalNumberFormatter provides the protocol for formatting numbers
in a value-based system, where the total value of the number is determined by
the position and value of each digit. The decimal numbering system used is
an example of such a system.

tl TFloatingPointNumberFormatter is a subclass of
TPositionalNumberFormatter and provides the ability to format floating
point numbers into a decimal form, in either scientific or standard notation.

tl TRationalNumberFormatter formats noninteger values as a ratio of two
integers (a fraction). Both proper ("35/8") and improper ("29/8") fractions
are supported.

Another aspect of number formatting our framework did not address was the
ability to provide full support for multilingual applications. Although our
application does use the number formatting information correctly (for
example, currency symbol, thousands separator), it does so only for the current
location in use.

The CommonPoint system provides full support for multilingual applications via
a locale mechanism. A locale is a collection of objects that are localized for a
particular geographic region and is represented by a TLocale. The classes
provided by the Locale Services are shown in the following figure.

TLocale

GetRootLocale
GetlSetCurrentLocale
FindLocale
IsParentLocale
GetlSetParentLocale
GetChildLocales
GetlSetName
CreateLocaleltemlterator
Itemlslnherited

LOCALE SERVICES CLASS DIAGRAM

TLocaleltem<AType>

Copyltem

GetlSetLocalizedName
GetlSetlnternalName
GetlSetDefaultName

TLocaleltemlterator

TLocaleltemlterator iterates
over the items in a particular
locale, returning the name of
each item.

FOR WINDOWS AND OS/2 DEVELOPERS

256 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

NUMBER FORMATTING REVISITED

Each TLocale has a unique TLocalizableName object, which specifies the
internal name of the locale and provides a set of names for that locale that
have themselves been localized. These localized versions of the name can be
used to display the correct name for a locale to the user. For example, the
"English" locale's name would be displayed as "Anglais" when accessed from a
French system.

Locales can contain any kind of object that you want to localize. Each item within
a TLocale is wrapped by a TLocaleItem object. You can use a
TLocaleItemIterator to iterate through all the TLocaleItem objects in the
TLocale or retrieve individual TLocaleItem objects from a TLocale by using its
internal name.

Each TLocale can, in turn, contain other TLocales. This allows a hierarchy of
locales to be maintained, with each level of the hierarchy representing an
increasingly fine-grained geographic region. The CommonPoint system always
provides a root locale, along with locales for each language, country, and time
zone supported by the system.

Locales effectively inherit items from their parents, so items can be placed in the
hierarchy at the appropriate level. Item inheritance allows us to build a complete
hierarchy without duplicating items within the locale hierarchy. Items in
sublocales override those in the parent with the same name. A sample locale
hierarchy is shown in the following figure.

Pacific Standard
Time Zone

Root Locale

A TYPICAL LOCALE HIERARCHY

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 257

NUMBER FORMATTING REVISITED

You can access the root locale using the static TLocale function GetRootLocale,
and the user's current locale can be accessed using the static function
GetCurrentLocale. You can find a particular TLocale object in the hierarchy by
calling FindLocale. Usually, you use the current default locale, because it
contains the formats the user expects to see.

The CommonPoint system's locale hierarchy always contains certain items that
are needed for the system to operate. These items include the default text font,
default time and date formatters, and time zone information. More importantly
for our purposes, locales always include default currency and number formatters.
The code to access these default formatters is straightforward:

II Get the current locale
TLocale currentLocale = TLocale: :GetCurrentLocale();

try {

}

II make a locale item
TLocaleltem<TNumberFormatter> numberFormatterltem;

II TDeleterFor automatically deletes the TNumberFormatter when it goes out of scope
II The call to Copyltem creates a duplicate of the default formatter for the current
II locale
TDeleterFor<TNumberFormatter> numberFormatter =

numberFormatterltem.Copyltem(TLocale: :kNumberFormatID, currentLocale);

catch (const TArchiveException&) {
II rethrow the exception, or create a number formatter by hand

}

Locales provide a powerful mechanism for multilingual application
programming.

FOR WINDOWS AND OS/2 DEVELOPERS

258 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

DESIGNING THE APPLICATION

DESIGNING THE APPLICATION

Like most CommonPoint applications, our application uses the Presentation
Framework as a base for its user interface and document model. The
Presentation Framework is the CommonPoint framework most similar to more
traditional application frameworks such as MacApp. It makes it easy to create
compound document-based applications that follow the CommonPoint
application system's user interface guidelines. Although a complete description
of the Presentation Framework is beyond the scope of this book, a brief
description can help you understand the implementation of our application.

At its simplest, creating a new application using the Presentation Framework
involves creating several different classes to represent our application:

El A model to represent the data of the document

IJ A presenter to create the windows and menus of the program

IJ A view to allow the user to see and edit the data in the model

Taken as a whole, these classes comprise our application's ensemble, as discussed
in Chapter 1, "A first look at frameworks." We provide the classes that know what
a spreadsheet is, and the system provides everything else needed to create a full
featured CommonPoint application.

This application does everything our original sample application did, and more:
among other capabilities, our spreadsheet data can now be embedded in another
document, and can also be printed; moreover, the application supports saving
and versioning of files. The following figure shows the sample application
running on the CommonPoint system.

THE POWER OF FRAMEWORKS

TSpreadsheetModel

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 259

DESIGNING THE APPLICATION

...... ,.
~ r~ Cl Untitled 13 0 .

Services ~

Document ~

Edit ~

""\"indovJ ~

h h _ _ _ ~_ _ ~fi _ ~ __ ~~_ _ • • _____ _ n __ ~d_ _ _h _ • h_ _._ •..••.• _ •• __ .~ .• ___ ._ •.•. ___ ~H __ •• _ •• _. __ ._ •••••• _ _._ ••• _.

! $1234.35 0.0
I

Format ~ 147/8 0.0
I
1$1,234,567.89 0.0
i

[x] Format 5986.5551 0.0

#.###
\ 478,895,526.00 0.0

###.# 0.0 0.0

###.##

#,###.#
0.0 0.0

#,###.## 0.0 0.0

$####.##

$#,###.##

##/##

SAMPLE APPLICATION RUNNING ON THE COMMONPOINT SYSTEM

Our model object, TSpreadsheetModel, is very simple. Each cell of the
spreadsheet is represented by a Teell object, which is described as follows:

class TSpreadsheetModel : public TModel {
public:

II Provides boilerplate overrides needed by all TModel subclasses
ModeIDeclarationsMacro(TSpreadsheetModel);

public:

virtual
TSpreadsheetModel();
~TSpreadsheetModel();

II These methods read and write the data of the object to a stream.
virtual TStream& operator»=(TStream& toStream) const;
virtual TStream& operator«=(TStream& fromStream);

II This method returns a selection over the whole model.
II It is used for embedding
virtual TModeISelection*CreateSelection() const;

II This method returns an iterator over the cells in the model in row order
TIteratorOver<TCell>* CreateCellIterator();

FOR WINDOWS AND OS/2 DEVELOPERS

260 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

DESIGNING THE APPLICATION

Teell

II grid size information accessors
unsigned short GetNumberOfRows() canst;
unsigned short GetNumberOfColumns() canst;

II methods to get cell at x,y and to tell the model the cell should be changed.
virtual TCell* GetCellAt(unsigned short row, unsigned short col) const;
virtual void CellChangedAt(unsigned short row, unsigned short col);
virtual void CeIIChanged(TCell* cell);

TSpreadsheetModel&
TSpreadsheetModel(const TSpreadsheetModel& source);
operator=(const TSpreadsheetModel& source);

private:

};

II Even though we use
II to the user, its a
TArrayOf<TCell>
unsigned short
unsigned short

a two-dimensional array to represent
one dimensional array internally.

fCells;
fNoOfRows;
fNoOfColumns;

enum EVersion { kOriginalVersion };

the spreadsheet

The data stored by the model is represented by a Teell. Each cell has a
TNumberFormatter and a floating-point data value. Accessor member functions,
called GetValue and SetValue, are provided for these fields.

class TCell
{
public:

virtual

virtual TStream&
virtual TStream&

TNumberFormatter*
void

double
void

private:
TNumberFormatter*
double

TCell () ;
TCell(const TCell&);
-TCell() ;

operator»=(TStream& toStream) canst;
operator«=(TStream& fromStream);

GetNumberFormatter() canst;
AdoptNumberFormatter(TNumberFormatter* theNumberFormatter);

GetValue() canst;
SetValue(double theValue);

fNumberFormatter;
fValue;

enum Version { kOriginalVersion };
} ;

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 261

DESIGNING THE APPLICATION

TSpreadsheetPresenter The TSpreadsheetPresenter class is the core of our application. It creates and
maintains the application's windows and menus, and it handles many of the
user's actions. The key functions of TSpreadsheetPresenter are:

c HandleCreateMain View-Creates and returns the TSpreadsheetView that
users use to view and edit the cell data.

IJ CreateViewSubMenuItem-Called by the Presentation Framework to create
our Format submenu so that the user can change formats for cells.

c HandleMenuAction-Called to respond to a click on one of our custom
menu items.

class TSpreadsheetPresenter public TGUIPresenter
{
public:

TSpreadsheetPresenter(const TGUIBundle&);
TSpreadsheetPresenter(const TSpreadsheetPresenter&);
TSpreadsheetPresenter();

virtual ~TSpreadsheetPresenter();

TaligentTypeExtensionDeclarationsMacro(TSpreadsheetPresenter)

enum ENumberFormatType {
kAllDigitsMenuItem, II ####
kDigitDotDigitsMenuItem, II #.###
kDigitsDotDigitMenuItem, II ###.#
kDigitsDotTwoDigitsMenuItem, II ###.##
kDigitsWithCommaDotDigitMenuItem, II #,###.#
kDigitsWithCommaDotTwoDigitsMenuItem, II #,###.##
kDollarDigitsDotTwoDigitsMenuItem, II $####.##
kDollarDigitsWithCommaDotTwoDigitsMenuItem, II $#,###.##
kDigitsWithFractionMenuItem II ## ##1##

} ;

virtual TSubMenuItem* CreateViewSubMenuItem() const;

virtual TView*
virtual void
virtual bool
virtual bool

HandleCreateMainView(TGUIBundle*) const;
HandleMenuActivate(TMenu& theMainMenu);
HandleMenuAction (TMenuAction& action);
HandleViewAction(TViewAction& action);

private:
void CreateAndAdoptMenuItem(

TMenu* menu,

} ;

FOR WINDOWS AND OS/2 DEVELOPERS

TFloatingPointNumberFormatter*
TFloatingPointNumberFormatter*
TRationalNumberFormatter*

TSubMenuItem*
TTextControl*
TCell*
TFloatingPointNumberFormatter*

ENumberFormatType numberFormatType,
const TStandardText menuText) const;

CreateNumberFormatter();
CreateCurrencyFormatter();
CreateRationalNumberFormatter();

fgFormatMenu;
fCurrentTextControl;
fCurrentCell;
fAnchorNumberFormatter;

enum EVersion { kOriginalVersion };

262 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

DESIGNING THE APPLICATION

TSpreadsheelView TSpreadsheetView is responsible for displaying the grid of spreadsheet cells. Its
implementation relies on a collection of TTextControl objects, provIded by the
CommonPoint application system to handle the display and editing of the cell's
text. TSpreadsheetView needs only to draw a border around the cells.

class TSpreadsheetView : public TDocumentComponentView
{

public:
TaligentTypeExtensionDeclarationsMacro(TSpreadsheetView)

virtual

TSpreadsheetView();
TSpreadsheetView(TGUIBundle*);
~TSpreadsheetView();

II creates the text controls that are used to edit cell contents
void CreateControlList(long numRows, long numColumns);

II returns an iterator over the controls in the view
TlteratorOver<TTextControl>* CreateControllterator();

virtual void

II These methods
virtual TStream&
virtual TStream&

DrawContents(TGrafPort&) const;

read and write the data of the object to a stream.
operator»=(TStream& toStream) const;
operator«=(TStream& fromStream);

private:

} ;

TSpreadsheetView&
TSpreadsheetView(const TSpreadsheetView&);
operator=(const TSpreadsheetView&);

enum EVersion { kOriginalVersion };

TArrayOf<TTextControl>fControls;

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 263

IMPLEMENTING TSPREADSHEETMoDEL

IMPLEMENTING TSPREADSHEETMoDEL

TModel boilerplate

Constructors and
destructor

Now that we've defined the classes needed for our application, it's time to
implement them. The first class we'll implement is TSpreadsheetModel, which is
one of the simpler classes in our application.

The first step is to handle a standard boilerplate needed by every
Presentation Framework-based application. This boilerplate is usually
created automatically by the CommonPoint system-specific development
tools such as cpProfessional, but we've shown it here because we're writing
this application by hand. The ModelDefinitionsMacroOne declaration
implements the standard TModel functions originally defined by the
ModelDeclarationsMacro from the class definition.

ModelDefinitionsMacroOne(TSpreadsheetModel, kOriginalVersion, TModel);

Next, we need to write the constructors, destructor, and assignment operator.
The basic constructor creates the fixed-size grid of cells and stores them in the
model's fCells array. The destructor reverses the process, deleting all the cell
objects. The copy constructor and the assignment operator are very similar; they
copy the cell data out of another TSpreadsheetModel.

TSpreadsheetModel: :TSpreadsheetModel()
{

}

fNoOfRows = 8;
fNoOfColumns = 2;

for (int col=0; col < fNoOfColumns; col++)
{

}

for (int row=0; row < fNoOfRows; row++)
{

fCells.Add (new TCell());
}

TSpreadsheetModel::~TSpreadsheetModel()

{

fCells.DeleteAll();
}

FOR WINDOWS AND OS/2 DEVELOPERS

264 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETMoDEL

TSpreadsheetModel::TSpreadsheetModel(const TSpreadsheetModel& source)
: TModel(source)

{

}

fNoOfRows = source.fNoOfRows;
fNoOfColumns = source.fNoOfColumns;

fCells.DeleteAll();

TDeleterFor< TIteratorOver<TCell> > iter = source.CreateCellIterator();
for (canst TCell* theCell = iter->First();

{

}

theCell != NIL;
theCell = iter->Next(»

TCell *newCell = : :CopyPointer(theCell);
fCells.Add(newCell);

TSpreadsheetModel& TSpreadsheetModel::operator=(const TSpreadsheetModel& source)
{

}

if (&source != this)
{

TModel::operator=(source);
}

fNoOfRows = source.fNoOfRows;
fNoOfColumns = source.fNoOfColumns;

fCells.DeleteAll();

TDeleterFor< TIteratorOver<TCell> > iter = source.CreateCellIterator();
for (canst TCell* theCell = iter->First();

{

}

theCell != NIL;
theCell = iter->Next(»

TCell *newCell = : :CopyPointer(theCell);
fCells.Add(newCell);

return *this;

THE POWER OF FRAMEWORKS

Streaming operators

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 265

IMPLEMENTING TSPREADSHEETMoDEL

Next, we need to implement the streaming operators for our model. The
CommonPoint system's persistent object model requires these functions to be
written for any class that can exist across application sessions or be sent across
process boundaries. In general, all your objects should implement streaming
operators. In our case, the streaming operators read and write our collection of
TCell objects. The TCell streaming operators (implemented later in this
chapter) do all the work.

~ NOTE The streaming operators shown here use the global CommonPoint
system functions Flatten and Resurrect to write and read objects. These functions
know how to write objects polymorphically. We use them here because we want
the correct kind ofTNumberFormatter object to be written and resurrected, and
there is no way to tell at compile time which subclass of TNumberFormatter (if
any) will actually be stored in our fNumberFormatter data member.

The code for our stream-out operator is as follows:

const Versionlnfo kOriginalVersion = 0;

TStream& TSpreadsheetModel: :operator»=(TStream& toStream) const
{

}

: :WriteVersion(toStream, kOriginalVersion);

TModel: :operator»=(toStream);

fNoOfRows »= toStream;
fNoOfColumns »= toStream;

for (int col = 0; col < fNoOfColumns; col++)
{

}

for (int row = 0; row < fNoOfRows; row++)
{

}

TCell *cell = GetCellAt(row,col);
: :Flatten(cell,toStream);

return tOStream;

FOR WINDOWS AND OS/2 DEVELOPERS

266 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETMoDEL

CreateSelection

Next we have the code for the stream-in operator, which reads everything back in
exactly the same order in which it was written using the stream-out operator.

TStream& TSpreadsheetModel: :operator«=(TStream& fromStream)
{

}

: :ReadVersion(fromStream, kOriginalVersion, kOriginalVersion);
TModel: :operator«=(fromStream);

fCells.DeleteAll();

fNoOfRows «= fromStream;
fNoOfColumns «= fromStream;

for (int col = 0; col < fNoOfColumns; col++)
{

}

for (int row = 0; row < fNoOfRows; row++)
{

}

TCell *newCell;
: :Resurrect(newCell,fromStream, TAllocationHeap(this»;
fCells.Add (newCell);

return fromStream;

We'll now need to implement the CreateSelection function. It returns a
TModelSelection that represents the entire model. We actually use a
prebuilt template class provided as part of the CommonPoint application to
do all the work.

TModelSelection* TSpreadsheetModel: :CreateSelection() canst
{

return new TGUIModelSelectionFor<TSpreadsheetModel>;
}

THE POWER OF FRAMEWORKS

Cell data accessors

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 267

IMPLEMENTING TSPREADSHEETMoDEL

Finally, we reach the functions that allows the user interface to access and modify
the cell data. These functions are fairly straightforward. The only point we need
to emphasize is that any function that changes the data of the model must call
the inherited member function NotifyOfChange to tell the model that the data
needs to be saved.

TlteratorOver<TCell>* TSpreadsheetModel: :CreateCelllterator()
{

return fCells.Createlterator();
}

unsigned short TSpreadsheetModel: :GetNumberOfRows() const
{

return fNoOfRows;
}

unsigned short TSpreadsheetModel: :GetNumberOfColumns() const
{

return fNoOfColumns;
}

TCell* TSpreadsheetModel::GetCeIIAt(unsigned short row, unsigned short col) const
{

return fCells.At«row*fNoOfColumns)+col);
}

void TSpreadsheetModel: :CeIIChangedAt(unsigned short row, unsigned short col)
{

NotifyOfChange(TNotification(GetAIIChangeslnterest(»);
}

void TSpreadsheetModel: :CeIIChanged(TCell* cell)
{

NotifyOfChange(TNotification(GetAIIChangeslnterest(»);
}

This is the complete TSpreadsheetModel class.

FOR WINDOWS AND OS/2 DEVELOPERS

268 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TCELL

IMPLEMENTING TCELL

Constructors and
destructor

TCell's implementation is very straightforward because it is really just a container
for the cell's number formatter and value.

First we have the constructors and destructor. Note the use of the
TaligentTypeExtensionMacro at the beginning of the class implementation,
which implements some special mechanisms needed by the Taligent
application's object runtime.

TaligentTypeExtensionMacro(TCell);

TCell: : TCell ()
{

TFloatingPointNumberFormatter* floatingPointNumberFormatter
= new TFloatingPointNumberFormatter;

fValue = 0.0;
fNumberFormatter NIL;

II Get the current locale
TLocale currentLocale = TLocale: :GetCurrentLocale();

try {
TLocaleItem<TNumberFormatter> numberFormatterItem;

fNumberFormatter = numberFormatterItem.CopyItem(TLocale: :kNumberFormatID,
currentLocale);

}

}

catch (canst TArchiveException&) {

}

II rethrow the exception, but first create a basic formatter
fNumberFormatter = new TFloatingPointNumberFormatter;
throw;

TCell: :TCell(const TCell& source)
{

}

fNumberFormatter = : :CopyPointer(
(canst TNumberFormatter*) source.fNumberFormatter);

fValue = source.fValue;

TCell: : -TCell ()
{

delete fNumberFormatter;
}

THE POWER OF FRAMEWORKS

Streaming operators

Number formatter
accessors

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 269

IMPLEMENTING TCELL

Just as we implemented streaming operators for TSpreadsheetModel, we must
implement them for Teell. The code itself is straightforward; we read or write
each of our data members using the stream provided by the system.

const Versionlnfo kOriginalVersion = 0;

TStream& TCell: :operator»=(TStream& toStream) const
{

}

: :WriteVersion(toStream, kOriginalVersion);

: :Flatten(fNumberFormatter, toStream);
fValue »= toStream;

return toStream;

TStream& TCell: :operator«=(TStream& fromStream)
{

: :ReadVersion(fromStream, kOriginalVersion, kOriginalVersion);

delete fNumberFormat;
: :Resurrect(fNumberFormatter, fromStream, TAllocationHeap(this));

fValue «= fromStream;

return fromStream;
}

Next, we have the functions that are used to access the number formatter
associated with the cell. Note that to adopt a new TNumberFormatter, we delete
the old formatter first to prevent a memory leak.

TNumberFormatter* TCell: :GetNumberFormatter() const
{

return fNumberFormatter;
}

void TCell: :AdoptNumberFormatter(TNumberFormatter* theNumberFormatter)
{

}

delete fNumberFormatter;
fNumberFormatter = theNumberFormatter;

FOR WINDOWS AND OS/2 DEVELOPERS

270 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TCELL

Value accessors Next, we have the member functions that get and set the numeric value of the
cell. These functions are self-explanatory.

double TCell: :GetValue() canst
{

return fValue;
}

void TCell::SetValue(double& theValue)
{

fValue = theValue;
}

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 271

IMPLEMENTING TSPREADSHEETPRESENTER

IMPLEMENTING TSPREADSHEETPRESENTER

Constructors and
destructor

Most of our application is implemented in TSpreadsheetPresenter.

As usual, the first thing to implement is the standard constructors and
destructor. Because we have several different constructors, the code common
to them has been broken out into a separate member function,
CreateControlList, which is as follows:

TaligentTypeExtensionMacro(TSpreadsheetPresenter);

TSpreadsheetPresenter: :TSpreadsheetPresenter(const TGUIBundle& bundle)
: TGUIPresenter(bundle)

{

}

fCurrentTextControl = 0;
fCurrentCell = 0;
fgViewMenu = NIL;

fAnchorNumberFormatter CreateNumberFormatter();

TSpreadsheetPresenter: :TSpreadsheetPresenter()
: TGUIPresenter()

{

}

fCurrentTextControl
fCurrentCell = 0;

fAnchorNumberFormatter

0' ,

CreateNumberFormatter();

TSpreadsheetPresenter: :TSpreadsheetPresenter(const TSpreadsheetPresenter& source)
: TGUIPresenter(source)

{

}

fCurrentTextControl = source.fCurrentTextControl;
fCurrentCell = source.fCurrentCell;
fAnchorNumberFormatter = : :CopyPointer(source.fAnchorNumberFormatter);

TSpreadsheetPresenter: :~TSpreadsheetPresenter()
{

delete fAnchorNumberFormatter;
}

FOR WINDOWS AND OS/2 DEVELOPERS

272 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETPRESENTER

HandleCreateMainView

Menu creation and
maintenance

Next, we need to implement the HandleCreateMainView function. This function
is called when a new presentation is being created. It creates a TSpreadsheetView
objects, and then puts the TTextControl objects into the view.

TView* TSpreadsheetPresenter: :HandleCreateMainView(TGUIBundle* bundle) const
{

}

TSpreadsheetView* contentView = new TSpreadsheetView(bundle);

const TModelPointerTo<TSpreadsheetModel> model(GetModelReference(»;

contentView->CreateControlList(model->GetNumberOfRows(),
model->GetNumberOfColumns(»;

contentView->SetAllocatedArea(TGRect(TGPoint(0,0), TGPoint(500, 340»);

return contentView;

Next, we create the code to maintain our menus. Whenever the application is
activated by the user, the Presentation Framework calls the HandleMenuActivate
member function; whenever the application is deactivated, it calls the
HandleMenuDeactivate member function. Notice that we check to see whether
the format menu has ever been created before, and, if not, we call
CreateViewSubMenuItem to create it.

void TSpreadsheetPresenter: : HandleMenuActivate(TMenu& theMainMenu)
{

}

TGUIPresenter: :HandleMenuActivate(theMainMenu);
if (fgFormatMenu == NIL) {

}

fgFormatMenu = CreateViewSubMenuItem();
theMainMenu.AdoptLast(fgFormatMenu);

CreateViewSubMenuItem creates the format menu. For each format we
support, it makes a menu item and adds it to the menu. Each menu item is
given a unique ID, so that we can tell which format to apply when the user
selects a format command.

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 273

IMPLEMENTING TSPREADSIIEETPRESENTER

TSubMenultem* TSpreadsheetPresenter:: CreateViewSubMenultem() canst
{

}

TMenu* formatMenu = new TMenu;

II #### Menu
CreateAndAdoptMenultem(formatMenu, kAIIDigitsMenultem,

TStandardText("####"»;
II #.### Menu
CreateAndAdoptMenultem(formatMenu, kDigitDotDigitsMenultem,

TStandardText("#.###"»;
II ###.# Menu
CreateAndAdoptMenultem(formatMenu, kDigitsDotDigitMenultem,

TStandardText("###.#"»;
II ###.## Menu
CreateAndAdoptMenultem(formatMenu, kDigitsDotTwoDigitsMenultem,

TStandardText("###.##"»;
II #,###.# Menu
CreateAndAdoptMenultem(formatMenu, kDigitsWithCommaDotDigitMenultem,

TStandardText("#,###.#"»;
II #,###.## Menu
CreateAndAdoptMenultem(formatMenu, kDigitsWithCommaDotTwoDigitsMenultem,

TStandardText("#,###.##"»;
II $####.## Menu
CreateAndAdoptMenultem(formatMenu, kDollarDigitsDotTwoDigitsMenultem,

TStandardText("$####.##"»;
II $#,###.## Menu
CreateAndAdoptMenultem(formatMenu, kDollarDigitsWithCommaDotTwoDigitsMenultem,

TStandardText("$#,###.##"»;
II ## ##1## Menu
CreateAndAdoptMenultem(formatMenu, kDigitsWithFractionMenultem,

TStandardText("## ##1##"»;

return new TSubMenultem(formatMenu, new TTextLabel(TStandardText("Format"»);

canst TMenuDomainID gSpreadsheetPresenterDomainID("SpreadsheetPresenter");

void TSpreadsheetPresenter: :CreateAndAdoptMenultem(
TMenu *menu,

{

}

FOR WINDOWS AND OS/2 DEVELOPERS

TMomentaryMenultem* newMenultem

ENumberFormatType numberFormatType,
canst TStandardText& menuText) canst

new TMomentaryMenultem(new TTextLabel(menuText»;

newMenultem->SetID(numberFormatType);
newMenultem->SetDomainID(gSpreadsheetPresenterDomainID);
newMenultem->AdoptState(

new TMomentaryMenuActionControlState(menu, newMenultem»;

menu->AdoptLast(newMenultem);

274 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEET PRESENTER

HandleMenuAction We now implement HandleMenuAction, one of the most complicated functions
in our application. When the user selects one of the format commands, we
perform the following steps:

o Verify that the active cell contains a valid number;

If the number is in an illegal format, we need to handle the error. In this
application, we set the value to zero and continue, but a commercial
application would probably display an error dialog box.

6 Create a new number formatter that matches the format the user wants.

m Apply the new formatter to the active cell.

o Reset the text of the TTextControl associated with that cell.

boo 1 TSpreadsheetPresenter: :HandleMenuAction(TMenuAction& action)
{

bool handled = TGUIPresenter: :HandleMenuAction(action);

if (!fCurrentCell)
return handled;

TNumberFormatter* theCellNumberFormatter;
TFloatingPointNumberFormatter* numberFormatter;
TRationalNumberFormatter* rationalNumberFormatter;

if (!handled && (action.GetMenuItem()->GetDomainID()
gSpreadsheetPresenterDomainld»

{

handled = true;
switch (action.GetMenultem()->GetID(»
{

case kAllDigitsMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetPrecision(0.5,

TPositionalNumberFormatter: :kRoundEven);
numberFormatter->SetMinFractionDigits(0);
numberFormatter->SetMaxFractionDigits(0);
theCellNumberFormatter = numberFormatter;
break;

case kDigitDotDigitsMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetExponentPhase(l);
numberFormatter->SetUpperExponentThreshold(lE+l);
numberFormatter->SetPrecision(0.000005,

TPositionalNumberFormatter: :kRoundEven);
theCellNumberFormatter = numberFormatter;
break;

THE POWER OF FRAMEWORKS

}

FOR WINDOWS AND OS/2 DEVELOPERS

}

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 275
IMPLEMENTING TSPREADSHEETPRESENTER

case kDigitsDotDigitMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetPrecision(0.5,

TPositionalNumberFormatter::kRoundEven);
numberFormatter->SetMinFractionDigits(l);
numberFormatter->SetMaxFractionDigits(l);
theCellNumberFormatter = numberFormatter;
break;

case kDigitsDotTwoDigitsMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetPrecision(0.005,

TPositionalNumberFormatter: :kRoundEven);
numberFormatter->SetMinFractionDigits(2);
numberFormatter->SetMaxFractionDigits(2);
theCellNumberFormatter = numberFormatter;
break;

case kDigitsWithCommaDotDigitMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetlntegerSeparator(true);
numberFormatter->SetPrecision(0.05,

TPositionalNumberFormatter: :kRoundEven);
numberFormatter->SetMinFractionDigits(l);
numberFormatter->SetMaxFractionDigits(l);
theCellNumberFormatter = numberFormatter;
break;

case kDigitsWithCommaDotTwoDigitsMenultem:
numberFormatter = CreateNumberFormatter();
numberFormatter->SetlntegerSeparator(true);
numberFormatter->SetPrecision(0.005,

TPositionalNumberFormatter::kRoundEven);
numberFormatter->SetMinFractionDigits(2);
numberFormatter->SetMaxFractionDigits(2);
theCellNumberFormatter = numberFormatter;
break;

case kDollarDigitsDotTwoDigitsMenultem:
numberFormatter = CreateCurrencyFormatter();
theCellNumberFormatter = numberFormatter;
break;

case kDollarDigitsWithCommaDotTwoDigitsMenultem:
numberFormatter = CreateCurrencyFormatter();
numberFormatter->SetlntegerSeparator(true);
theCellNumberFormatter = numberFormatter;
break;

case kDigitsWithFractionMenultem:
rationalNumberFormatter = CreateRationalNumberFormatter();
theCellNumberFormatter = rationalNumberFormatter;
break;

}

fCurrentCell->AdoptNumberFormatter(theCellNumberFormatter);

return handled;

276 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETPRESENTER

HandleViewAction HandleViewAction is the next function of the TSpreadsheetPresenterwe need to
implement. This function is called whenever the user changes the focus from
one cell to another. We use it to keep track of the active selection.

bool TSpreadsheetPresenter: :HandleViewAction(TViewAction& action)
{

bool handled = false;

TStandardText text InField;
TFormattableNumber formattable;
TStandardText formatResult;
TNumberScanResult scanResult;
MTextControlState* textControlState;
TNumberFormatter* theCellNumberFormatter;
TTextControl* textControl;
TCell* theCell;
unsigned short row = 0;
unsigned short col = 0;
TSpreadsheetView*theView = (TSpreadsheetView*) action.GetSender().GetView();

if (action.GetEventType() == TTextControlAction: :kActivate)
{

TDeleterFor<TIteratorOver<TTextControl> > controlIterator
= theView->CreateControIIterator();

TModeIPointerTo<TSpreadsheetModel> model(GetModeIReference(»;

for (textControl = controIIterator->First();
(row < model->GetNumberOfRows(» && (textControl != NIL);
row++)
for (; (col < model->GetNumberOfColumns(» && (textControl != NIL);

col++, textControl = controIIterator->Next(»
{

if (textControl->IsActive(»
{

double hum = 0.0;

if (fCurrentTextControl != 0)
{

II right now fCurrentCel1 is the previously selected cell.
textControlState = fCurrentTextControl->GetState();
textControIState->GetTextState(textInField);
TStandardText zeroText(10.0");

if (zeroText == textInField)
{

}

else
{

num = 0.0;
fCurrentCell->SetValue(num);
textControIState->SetTextState(zeroText);
model->CeIIChanged(fCurrentCell);

fAnchorNumberFormatter->Scan(textInField,
TTextRange: :GetMaximumRange(),
formattable, scanResult);

THE POWER OF FRAMEWORKS

}

FOR WINDOWS AND OS/2 DEVELOPERS

}

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 277

}

IMPLEMENTING TSPREADSHEETPRESENTER

TScanResult: :EScanResult confidence
scanResult.GetConfidence();

}

if (confidence == TScanResult::kPerfect)
{

}

else
{

}

num = formattable.GetNumber();

fCurrentCell->SetValue(num);
theCellNumberFormatter =

fCurrentCell->GetNumberFormatter();
theCeIINumberFormatter->Format(formattable,

formatResult) ;
model->CeIIChanged(fCurrentCell);

textControIState->SetTextState(formatResult);

num = 1ll.1ll;
fCurrentCell->SetValue(num);
textControIState->SetTextState(zeroText);
model->CellChanged(fCurrentCell);

II now we process the newly selected current cell.
textControlState = textControl->GetState();
theCel1 = model->GetCeIIAt(row,col);
num = theCell->GetValue();
if (num == Ill. Ill)
{

}

else
{

}

textControIState->SetTextState(zeroText);

formattable.SetNumber(num);
fAnchorNumberFormatter->Format(formattable,

formatResult);
textControIState->SetTextState(formatResult);

fCurrentTextControl = textControl;
fCurrentCel1 = theCell;
model->CeIIChanged(theCell);
break;

}

handled true;
}

return handled;

278 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETPRESENTER

Creating number
formatters

In our formatting-menu handling code, we relied on three utility functions,
CreateCurrencyFormatter, CreateNumberFormatter, and
CreateRationalFormatter, to create the default number formatters for this locale.
These routines retrieve formatters from the current locale and return them to
the caller. The implementation of CreateNumberFormatter is as follows. The
other two functions have very similar implementations and aren't shown here.

TFloatingPointNumberFormatter* TSpreadsheetPresenter: :CreateNumberFormatter()
{

}

TFloatingPointNumberFormatter *numberFormatter = NIL;

II Get the current locale
TLocale currentLocale = TLocale: :GetCurrentLocale();

try {
TLocaleItem<TNumberFormatter> numberFormatterItem;

numberFormatter = (TFloatingPointNumberFormatter*)
numberFormatterItem.CopyItem(TLocale: :kNumberFormatID,

currentLocale);
}

catch (const TArchiveException&) {
II rethrow the exception.
throw;

}

return numberFormatter;

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 279

IMPLEMENTING TSPREADSHEETVIEW

IMPLEMENTING TSPREADSHEETVIEW

TSpreadsheetView is the last class we have to implement. Once again, we begin
by defining the standard constructors and destructor.

TaligentTypeExtensionMacro(TSpreadsheetView);

TSpreadsheetView::TSpreadsheetView(TGUIBundle* bundle)
: TDocumentComponentView(bundle)

{
}

TSpreadsheetView::TSpreadsheetView(const TSpreadsheetView& other)
: TDocumentComponentView(other)

{

}

II this method has to exist even though it is a private, and views
II aren't supposed to be copyable.
: :Assertion(false, "Can't copy TSpreadsheetView.");

TSpreadsheetView: :TSpreadsheetView()
: TDocumentComponentView()

{
}

TSpreadsheetView::~TSpreadsheetView()

{
}

FOR WINDOWS AND OS/2 DEVELOPERS

280 CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS

IMPLEMENTING TSPREADSHEETVIEW

CreateControlList

DrawContents

CreateControlList creates our set of TTextControl objects.

void TSpreadsheetView: :CreateControlList(long numRows, long numCols)
{

}

TViewHandle viewHandle;
TStandardText initialText("0.0");
TStyleSet initialStyles;

initialStyles.Add(TTextColorStyle: :GetRed());
initialStyles.Add(TFontldentifierStyle("TaligentSans"));
initialStyles.Add(TFontPointSizeStyle(18));

for (int col= 0; col < numCols; col++)
{

}

for (int row = 0; row < numRows; row++)
{

}

TTextActionControlState* state =
new TTextActionControlState(initialText , viewHandle);

TTextControl* control = new TTextControl(state);

control->SetTextBorderThickness(l);
control->SetControlLayout(MControl: :kLeftToRight);
control->SetEnabled(TRUE);
control->SetlnitialTextStyles(initialStyles);

control->SetAllocatedArealnParent(TGRect(TGPoint (50 + 200 * col,
50 + 30 * row),

TGPoint(250 + 200 * col,
50 + 30 * (row + 1))));

fControls.Add(control);

Next, we need to implement the DrawContents member function, which is called
whenever the view needs to be redrawn. DrawContents draws a border around
our grid of cells.

void TSpreadsheetView: :DrawContents(TGrafPort& port) const
{

}

II Just draw a border
TGRect aRectangle (TGRect(TGPoint (50 , 50),

TGPoint (450, 290)));
port.Draw(aRectangle);

THE POWER OF FRAMEWORKS

CHAPTER 13 CREATING AN APPLICATION USING COMMONPOINT FRAMEWORKS 281

SUMMING UP THE APPLICATION

SUMMING UP THE APPLICATION

This is all we needed to complete our application. It is surprising how little code
is required, and how much functionality the application gets in return. As we did
in Part 2, the following table lets us compare the size of the applications, in
classes, member functions, and lines of code.

Member Lines
Classes Functions of Code

Nonframework-based Windows application 4 64 1257

Framework-based Windows application 11 516 4724

Common Point application 4 44 1035

Note that our CommonPoint application has even fewer member functions and
lines of code than our original, nonframework-based Windows sample, while
providing a great deal more functionality.

Compared with the other versions of our application, it should be clear that:

Il Using existing frameworks such as those provided by the CommonPoint
application system can make writing your applications a lot easier.

f'! Framework-based programs get more done than conventional programs with
relatively little effort, once you learn how to use the framework.

Il Development tools that work with frameworks can dramatically reduce the
amount of boilerplate code we need to write, providing additional
productivity gains over and above those already mentioned.

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

CHAPTER 14

THE POWER OF FRAMEWORKS

Let's review what we have worked on and what you have learned about
frameworks. We'll take a look back at the issues that have come up in the book to
see where we stand with frameworks today, and we'll look forward to see what the
future of frameworks might be.

FRAMEWORKS TODAY

Over the course of this book, we've covered the state of'frameworks in the
software industry today. We've looked at:

!l What frameworks are, and the advantages that frameworks have over
"traditional" object-oriented programming: faster development cycles,
increased leverage of domain expertise, improved design consistency, lower
maintenance overhead, and improved extensibility.

c The principles of good framework design, which you should follow whenever
you create your own frameworks. These principles can make a significant
difference in the quality of your framework designs.

c The do's and don'ts of framework reuse and the ways to make the reuse
process work smoothly. Reusing existing frameworks is very different from
writing and using your own.

c When it makes sense to write your own framework instead of reusing an
existing framework. Making the right choice can be critical to the success of
your projects.

c The frameworks provided by the CommonPoint application system, showing
how a complete set of well-designed, reusable frameworks can be much more
than the sum of its parts.

If you've made it to this point, you should have a good understanding of what
frameworks are all about and how to take advantage of their power in your
own work.

FOR WINDOWS AND OS/2 DEVELOPERS

284 CHAPTER 14 THE POWER OF FRAMEWORKS

THE FUTURE OF FRAMEWORKS

THE FUTURE OF FRAMEWORKS

Frameworks as
fundamental
building blocks

Application systems
gain acceptance and
maturity

Frameworks as
products

Even though the CommonPoint application system provides a quantum leap
forward in using frameworks in the software industry, frameworks still have a long
way to go before they become an everyday part of sofware engineering.

Some possible directions frameworks can grow are discussed here.

~ NOTE Although Taligent is working on growing its product line in many of
these directions, the following information does not constitue a product
announcement.

Class libraries are rapidly supplanting procedural libraries as the fundamental
building blocks for constructing software-a process that has been aided by
visual programming environments such as Microsoft's Visual Basic. In the future,
it is likely that frameworks will supplant class libraries, because frameworks
provide developers with the same plug-and-play capabilities as today's class
libraries, while allowing the developer to customize the framework.

Application systems such as the CommonPoint application system will continue
to grow and mature, adding new frameworks and adding new features to existing
frameworks. Because the majority of these new features can be added to the
application system while maintaining full compatibility, existing applications will
be able to take advantage of these features without recompiling.

Frameworks enable (but do not require) a new business model where the speed
with which new solutions are delivered to the marketplace is dramatically
accelerated and where every player in the computing industry gains tremendous
advantage.

In this new business model, third-party developers can and will provide
frameworks that tackle specific product domains, in vertical markets and across
broad product categories.

One of the key factors enabling the frameworks-as-a-business model is the
inclusion of licensing mechanisms as a built-in feature of the application system,
which make it possible for developers to control the distribution and use of their
frameworks in a reliable way. The CommonPoint application system is the first
product to include these licensing mechanisms, although other application
system and as vendors may eventually follow.

THE POWER OF FRAMEWORKS

Improving design
methodologies

Improving design
and development tools

Patterns and
framework design

Frameworks and
component software

CHAPTER 14 THE POWER OF FRAMEWORKS 285

THE FUTURE OF FRAMEWORKS

Although the framework design techniques described in this book have been
well proven, they are not the final word on good framework design. AB
framework technology matures in the marketplace, improved methodologies will
undoubtedly become available.

Developing object-oriented software, and in particular framework-based
software, poses special challenges to the developer. Managing an extensive
library of frameworks requires special tools that let developers find and use
frameworks more efficiently than they can with today's development tools.

The Taligent cpProfessional development environment provides a powerful
object-oriented development environment designed to expedite framework
based application development. Future versions of cpProfessional, along with
other advanced development tools from Taligent and other companies, will make
it possible to develop applications with even less programming and facilitate the
development and reuse of frameworks throughout a development organization.

Patterns can be very helpful in the correct design of frameworks. The book Design
Patterns: Elements of Reusable Object-oriented Software (Gamma et al. 1995) provides a
basic set of patterns that covers many of the patterns used in today's frameworks.
AB the knowledge of patterns throughout the software development world grows,
the library of patterns will undoubtedly improve, making it easier for developers
to design their frameworks right the first time.

In the future, development tools may provide more direct support for pattern
based programming. Imagine a tool that allowed you to design your framework
by plugging prebuilt, pretested design patterns into your framework. Such a tool
would greatly speed the creation of domain-specific frameworks.

Component software is another emerging trend in the software development
arena. Component software allows applications to be created with little or no
programming by combining already-created software components. The
CommonPoint application system provides support for components, and
OpenDoc and OLE provide support for a more limited component model.
Future versions of CommonPoint will provide additional components for use by
custom software development, and Taligent and others will provide sophisticated
component-based programming tools.

FOR WINDOWS AND OS/2 DEVELOPERS

286 CHAPTER 14 THE POWER OF FRAMEWORKS

THE PROMISE OF FRAMEWORKS

THE PROMISE OF FRAMEWORKS

Clearly, the future of framework-based programming holds a lot of promise.
Whether that promise can become reality depends on the efforts of software
developers such as yourself. Taligent is doing everything it can to help software
developers succeed with frameworks. We hope that you will consider using a
framework to solve your next big programming problem and that you will look
into using the CommonPoint application system as the base for your future
application development.

THE POWER OF FRAMEWORKS

CHAPTER 14 THE POWER OF FRAMEWORKS 287

THE PROMISE OF FRAMEWORKS

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

APPENDIX A

READING NOTATION DIAGRAMS

The notation diagrams used throughout this book are designed to show the static
relationships between classes. These diagrams are selective about which classes
and relationships appear and do not always include all classes in a subsystem or
framework.

Notation diagrams use the following conventions to depict classes and
relationships.

FOR WINDOWS AND OS/2 DEVELOPERS

289

290 APPENDIx A READING NOTATION DIAGRAMS

~ "'" ~ ~-- ~ ~ ~,,~~-~ ~~., ~- ,..., ~ ,.."""'''''',,,., ..,..,"".,

ClassName J

I
···· .. ·· .. ,
. TClassName

[-~ --.. -~:--~.~:--....... - .. --.... -'

. TClassName • I

[A TClassName I

[ClassA :JI-----I ... ~ 1 ClassB I

. _c_'a .. ss .. A __ .. I-- .. --.. (.2.[ClassB

[: c.'.as.s.A ___ .. I-- -- ----~ c. _____

l .. : .c.'.a.ss.A __ .. I- -- -- --~ l ClassB

Shaded boxes show classes that are the focus of
the diagram.

Unshaded boxes show that a class is outside the focus
of the diagram.

The dot on the right side of the class box marks this class
as a developer-created class.

The C on the right side of the class box marks this class as
a convenience class.

The A symbol to the left of the name denotes an abstract
base class.

The triangle symbol indicates ClassB inherits from
ClassA.

The solid arrow indicates objects of ClassA own objects
of ClassB.

The dashed arrow indicates objects of ClassA maintain a
reference to objects of ClassB but do not own them .

The parentheses over the dashed arrow indicate ClassA uses
objects of ClassB but does not maintain a reference to them.

The plus symbol over the solid arrow indicates ClassA
creates and owns objects of ClassB.

The plus symbol over the dashed arrow indicates
ClassA creates but does not own objects of ClassB.

An n over the solid arrow indicates ClassA owns a
variable number of objects of ClassB.

An n over the dashed arrow indicates ClassA maintains a
reference to a variable number of objects of ClassB.

The envelope symbol over the dashed arrow indicates an
object of ClassB uses notifications from objects of ClassA.

THE POWER OF FRAMEWORKS

APPENDIX A READING NOTATION DIAGRAMS 291

Notation diagrams show the member functions associated with a class.

Public members ~
above dashed lin~

Protected members -[
below dashed line

Private members ~
below solid line

TSample Class

PublicFunction
I!J. AbstractPublicFunction --1--- Pure virtual functions

use the II symbol.
Protected Function
MemberGroup ... -----.-- Groups of members

end with an ellipsis (...).
fPrivateDataMember

The simple class diagram below shows an example of the notation.

() r-------,

• u ow __ , l TGrafBundle J
...,.....t : () [-------,

:.-----.- .. TGrafMatrix I
, .. ___ ___ . ----. --. --. -.\! ["--TGP~"i;~~n~~']

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORKS

APPENDIX B

USING THE CD-ROM

The CD-ROM that accompanies this book contains an interactive demonstration
of framework development, along with the binary executable and source code
for every version of the application discussed in this book.

USING THE INTERACTIVE PRESENTATION

Starting the
presentation using
Microsoft Windows

The interactive presentation covers the development of a framework-based
spreadsheet application developed for the Microsoft Windows platform.

The steps you need to follow to view the interactive presentation vary depending
upon the operating system your personal computer is running. Refer to the
section that corresponds to your system.

To view the interactive presentation on Microsoft Windows, follow these steps:

o Insert the CD-ROM into your CD drive.

We'll assume that your CD drive is drive D:. If your CD drive has a different
letter, substitute the correct drive letter.

EI Open the File Manager, and select the icon for drive D: from the icon strip at
the top of the File Manager window.

\

B Double-click the file PWRFW.EXE from the pane on the right side of the File
Manager window.

This runs the interactive presentation.

FOR WINDOWS AND OS/2 DEVELOPERS

294 APPENDIX B USING THE CD-ROM
USING THE INTERACTIVE PRESENTATION

Starting the
presentation using
IBM OS/2

Using the presentation
(Windows or OS/2)

To view the interactive presentation on IBM OS/2, follow these steps:

o Insert the CD-ROM into your CD drive.

We'll assume that your CD drive is drive D:. If your CD drive has a different
letter, substitute the correct drive letter.

f) Click to open the OS/2 System icon, click the Drives icon, and then click the
Drive D icon.

The contents of the CD-ROM are displayed.

m Double-click the PWRFW' icon in the Drive D window.

This runs the interactive presentation.

When the presentation starts, you see a title screen with two buttons on it.

TITLE SCREEN OF THE INTERACTIVE PRESENTATION

When you click the About This CD button, a series of screens appears
explaining how the interactive presentation is put together. It also shows you
the legal notices.

THE POWER OF FRAMEWORKS

.t!H:n" , , . "J Designing the Framework

In(H"CllT.rt~l~ntat!On.th+r4'$poOSib.lltYrorbujldlng.theronn8ttedntJn"t>erstrlnglayWlhttit
FormattabltNlJIl'tI« class. 'Hhllt havlnQ a Sing. OO,IeCt W'I'IlCh knoYf3 hOw to foonat tsd 6e-~m&d
rnsonabktatth09tm..l~e-s a rewproblernsrorus now. ForSt.art&n.'W9 wart to add stWOrttor
dl$pla.ylngfractlona to 011 Formattable ntJ'l"'tler, M now ha..,.. to .. dd s eral cas • • nd I'stat«nert3to
o\lrormawngrOIJ:I~

ForolS~'NOr1C. w. wart to make !ollt that'tY'ft (an add MWtyp.eS ctformattlng IatM, wlthOl.t
a1dlng a bunch cl newclasse-s. ThUS,ttle heart or Ot("fr'9Jrloe'tK'l!1< IS Il class thatkllO'N$ hOwtororrnata
noot>erac9rtamway. 'Nf"ch"""·lIcaIlTN~tter.W.·11 hav.to'H'l.sutxla~of
TNlI11>effonnatt.r which rormatdal:3. In ~cri(:. '!\'ayt. For Instance, for formatting n~ as 1'Ioatlfl9
polrt., ~ Will nHd a TFloatin9PoIntformattM.

'.

ApPENDIX B USING THE CD-ROM 295

USING THE INTERACTIVE PRESENTATION

I

DEVElOPllffifRAMEWORK,. AI'PlYlNGFlAMEWORKS. UV[R.\(;IHGFRAMEWORKS Click the right arrow to move through
• PlE'IIOU5Mfllij • HIT • 4 ., • - the presentation.

A TYPICAL INFORMATION SCREEN

You progress through the screens by clicking the right arrow at the bottom of the
screen. Once you've finished reading the information in this section, you return
to the title screen.

~ NOTE Don't be concerned if your screen does not match the one shown here
exactly: the content of the interactive presentation may have changed slightly
since these screen shots were captured.

Now you're ready to look at the rest of the presentation. Click the Exploring
Frameworks button on the right of the title screen. A menu screen similar to the
one shown below appears. You can click one of the buttons in the middle of the
screen to go to a specific section of the presentation directly, or you can click the
right arrow to move through the presentation one slide at a time.

1---+--- Menu screen buttons.

A TYPICAL MENU SCREEN

FOR WINDOWS AND OS/2 DEVELOPERS

296 APPENDIX B USING THE CD-ROM
RUNNING THE SAMPLE APPLICATIONS

You can also click the PREVIOUS MENU button to return to the menu that
contains the section of the presentation that you're currently viewing. If you click
this button repeatedly, you'll eventually arrive at the top level menu screen.

The EXIT button exits the presentation.

At the bottom left, a status display labeled ... MORE ... appears when you are
viewing one of a series of related screens. If you are viewing a single screen, or if
you are viewing the last slide in a series, the status area is blank.

Notice the buttons labeled DEVELOPING FRAMEWORKS, APPLYING
FRAMEWORKS, and LEVERAGING FRAMEWORKS. Clicking one of these
buttons takes you directly to the main menu of the corresponding section of
the presentation.

These are all the instructions you need to use the interactive presentation.

RUNNING THE SAMPLE APPLICATIONS

Microsoft Windows

Binary executables are provided for each version of the spreadsheet application,
for both Windows and OS/2.

The executables for the Microsoft Windows versions of the applications is found
on the CD-ROM in the following directories:

\POFSRC\WIN31

\POFSAMP1\ Contains the first, nonframework-based spreadsheet.

\POFSAMP2\ Contains the framework-based spreadsheet.

\POFSAMP3\ Contains the extended framework-based spreadsheet,
with support for rational numbers.

THE POWER OF FRAMEWORKS

IBM OS/2

ApPENDIX B USING THE CD-ROM 297

RUNNING THE SAMPLE APPLICATIONS

To run one of these spreadsheet applications on Microsoft Windows, follow
these steps:

o Insert the CD-ROM into your CD drive.

We'll assume that your CD drive is drive D:. If your CD drive has a different
letter, substitute the correct drive letter.

I?) Open the File Manager, and select the icon for drive D: from the icon strip at
the top of the File Manager window.

In the left pane of the File Manager window, select the folder that
corresponds to the application that you want to run, as listed in the table
above.

m Double-click the file SAMPLE1.EXE, SAMPLE2.EXE, or SAMPLE3.EXE,
depending on which sample you want to run, from the pane on the right side
of the File Manager window.

This runs the interactive presentation.

The executables for the OS/2 versions of the applications is found on the
CD-ROM in the following directories:

\POFSRC\OS2

\POFSAMP1\ Contains the first, nonframework-based spreadsheet.

\POFSAMP2\ Contains the framework-based spreadsheet.

\POFSAMP3\ Contains the extended framework-based spreadsheet,
with support for rational numbers.

To run one of these spreadsheet applications on OS/2, follow these steps:

o Insert the CD-ROM into your CD drive.

We'll assume that your CD drive is drive D:. If your CD drive has a different
letter, substitute the correct drive letter.

I?) Click to open the OS/2 System icon, click the Drives icon, and then click the
Drive D icon.

The contents of the CD-ROM are displayed.

m Double-click the icon labeled SAMPLEl, SAMPLE2, or SAMPLE3,
depending on which sample you want to run.

FOR WINDOWS AND OS/2 DEVELOPERS

2g8 APPENDIX B USING THE CD-ROM
USING THE SPREADSHEET SOURCE CODE

USING THE SPREADSHEET SOURCE CODE

Microsoft Windows

You can browse the source code for the various versions of the spreadsheet
application.

The source code to the Microsoft Windows versions of the application is found
on the CD-ROM in the following directories:

\POFSRC\WIN31

\POFSAMP1\ Contains the first, nonframework-based spreadsheet.

\POFSAMP2\ Contains the framework-based spreadsheet.

\POFSAMP3\ Contains the extended framework-based spreadsheet,
with support for rational numbers.

You can view the source code files using any text editor or development
environment, although the files are intended to be used with the Borland
C++ 4.5 development environment.

To compile the spreadsheet application on Microsoft Windows, follow
these steps:

o Copy the source code directory (or directories) you want to compile to your
hard drive (usually Drive C).

f) If you have not already done so, start the Borland C++ development
environment.

B From Borland C++, choose Open Project. .. from the Project menu.

In the dialog box, navigate to the directory to which you copied the source
code files, and open the file that has an .IDE suffix.

D Choose Project. .. from the Options menu.

Modify all the include, library, and binary directory paths to point to your
copy of the source code directory.

m Click the Make and Run icon on the toolbar (the lightning bolt), or
choose Make all from the Project menu, and then choose Run from the
Debug menu.

The application is compiled, linked, and run.

THE POWER OF FRAMEWORKS

IBM OS/2

ApPENDIX B USING THE CD-ROM 299

USING THE SPREADSHEET SOURCE CODE

The source code to the IBM OS/2 versions of the application is found on the
CD-ROM in the following directories:

\POFSRC\OS2

\POFSAMP1\ Contains the first, nonframework-based spreadsheet.

\POFSAMP2\ Contains the framework-based spreadsheet.

\POFSAMP3\ Contains the extended framework-based spreadsheet,
with support for rational numbers.

You can view the source files using any text editor or development environment,
although the files are intended to be used with the IBM C Set ++ 2.1
developmen t environmen t.

To compile the spreadsheet application on OS/2, follow these steps:

o Copy the source code directory (or directories) you want to compile from
the CD-ROM to your hard drive (usually Drive C).

f) Open an IBM C/C++ Tools 2.01 Window.

D Change directories to the directory on your hard disk that contains the
example that you want to compile.

D Edit the batch file, called Sl.CMD, S2.CMD, or S3.CMD, depending on
which version of the spreadsheet you are working.

~ Edit the directory paths to point to your source code directories.

m To build the application, run the batch file by typing Sl, S2, or S3,
as appropriate.

D Once the application has been compiled and linked, you can execute it by
typing SAMPLE1, SAMPLE2, or SAMPLE3, as appropriate.

FOR WINDOWS AND OS/2 DEVELOPERS

300

THE POWER OF FRAMEWORKS

REFERENCES

::l Andert, Glenn. 1994. "Object Frameworks in the Taligent OS." Proceedings of
the IEEE COMPCONSpring 94.

[] Birrer, Andreas and Thomas Eggenschwiler. 1993. "Frameworks in the
Financial Engineering Domain: An Experience Report." European Conference
on Object-Oriented Programming (1993).

[1 Booch, Grady. 1994. "Designing an Application Framework." Dr. Dobb's
Journal 19, no. 2 (February).

[] Coplien, James. 1992. Advanced C++ Programming Styles and Idioms. Reading,
MA: Addison-Wesley.

K1 Cotter, Sean with Mike Potel. 1995. Inside Taligent Technology. Reading, MA:
Addison-Wesley.

Freytag, Asmus. 1994. "Build a Multilingual User Interface for Your
Application with Win32®." Microsoft SystemsJournal9 no. 6 aune).

n Gamma, Erich, Richard Helm, RalphJohnson, andJohn Vlissades.
1993. "Design Patterns: Elements of Reusable Object-oriented Software."
European Conference on Object-Oriented Programming (1993).

[] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissades.
1995. Design Patterns: Elements of Reusable Object-oriented Software. Reading, MA:
Addison-Wesley.

K1 Hall, William S. 1994. "Internationalization in Windows NT, Part I:
Programming with Unicode." Microsoft SystemsJournal9 no. 6 aune).

----. 1994. "Internationalization in Windows NT, Part II: Programming
with Unicode." Microsoft SystemsJournal9 no. 7 auly).

FOR WINDOWS AND OS/2 DEVELOPERS

302 REFERENCES

£'I johnson, Ralph E.1993. "How to Design Frameworks." OOPSlA '93 Tutorial
Notes.

EI johnson, Ralph E. and Brian Foote. 1988. "Designing Reusable Classes." The
Journal of Object-Oriented Programming, Vol. 1, no. 2.

EI Meyer, Bertrand. 1988. Object-Oriented Software Construction. Englewood-Cliffs,
Nj: Prentice Hall.

EI Nelson, Carl. 1994. "A Forum for Fitting the Task." IEEE Computer 27, no. 3
(March).

£'I Taligent,. Inc. 1994. Taligent's Guide to Designing Programs. Reading, MA:
Addison-Wesley.

£'I Taligent, Inc. 1995. Text, Native.Language Support, and Time Media.
CommonPoint application system Version B For AIX® developer
documentation.

£'I Wilson, Dave. 1994. "Designing Object Oriented Frameworks" (seminar).
Personal Concepts, Palo Alto, CA.

£'I Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. 1990. Designing
Object-Oriented Software. Englewood Cliffs, NJ: Prentice Hall.

THE POWER OF FRAMEWORKS

REFERENCES 303

FOR WINDOWS AND OS/2 DEVELOPERS

THE POWER OF FRAMEWORK5

RECOMMENDED MATERIALS

FOR FURTHER READING

The experiences of other developers are a great source of information and
inspiration-you should read about what other groups are doing, as well as
publish articles about your own endeavors.

This section includes standard object-oriented design references and new
publications and articles about frameworks from a variety of sources. Many of the '
examples included in this book are based on information obtained from the
articles listed here.

For more information about reading resources, see the Taligent home page on
the World Wide Web (http://www.taligent.com) . Taligent provides a list of
recommended resources in the document, "Object Technology Resources,"
available from the home page or directly from Taligent.

FOR WINDOWS AND OS/2 DEVELOPERS

306 RECOMMENDED MATERIALS FOR FURTHER READING

INTRODUCTION TO OBJECT TECHNOLOGY

INTRODUCTION TO OBJECT TECHNOLOGY

EJ Taylor, David A. Object-Oriented Technology: A Manager's Guide. Reading, MA:
Addison-Wesley, 1990.

£:! Tkach, Daniel, and Richard Peptic. Object Technology in Application
Development. Redwood City, CA: Benjamin/Cummings, 1994.

OBJECT-ORIENTED DESIGN AND ANALYSIS

t1 Booch, Grady. Object-Oriented Analysis and Design with Applications, 2nd ed.
Redwood City, CA: Benjamin/CulI!mings, 1994.

t1l Coad, Peter. "Object-Oriented Patterns." Communications oftheACM35, no. 9
(September 1992).

f:l Coleman, Derek, and Patrick Arnold, and Stephanie Bodoff, Chris Dollin,
Helena Gilchrist, Fiona Hayes, and PaulJeremaes. Object-Oriented Development:
The Fusion Method. Englewood-Cliffs, NJ: Prentice Hall, 1994.

13 Eggenschwiler, Thomas, and Erich Gamma. "ET ++ SwapsManager: Using
Object Technology in the Financial Engineering Domain." OOPSLA '92
Conference Proceedings, ACM SIGNotices27, no. 10 (1992).

[l Gamma, Erich, and Richard Helm, RalphJohnson, and John Vlissades.
Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA:
Addison-Wesley, 1993.

[J Goldstein, Neal, and Jeff Alger. Developing Object-Oriented Software for the
Macintosh. Reading, MA: Addison-Wesley, 1992.

tl Jacobson, Ivar, and Magnus Christerson, PartikJonsson, and Gunnar
Overgaard. Object-Oriented Software Engineering (Revised 4th printing).
Reading, MA: Addison-Wesley, 1993.

tl Johnson, Ralph E. "How to Design Frameworks." OOPSLA '93 Tutorial
Notes.

rn Meyer, Bertrand. Object-Oriented Software Construction. Englewood-Cliffs, NJ:
Prentice Hall, 1988.

£:! Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener. Designing Object
Oriented Software. Englewood Cliffs, NJ: Prentice Hall, 1990.

£] Wong, William. Plug & Play Programming, An Object-Oriented Construction Kit.
New York, NY: M&T Books, 1993.

THE POWER OF FRAMEWORKS

LEARNING C++

RECOMMENDED MATERIALS FOR FURTHER READING 307
LEARNING C++

c Cargill, Tom. C++ Programming Style. Reading, MA: Addison-Wesley, 1992.

c Coplien,james. Advanced C++ Programming Styles and Idioms. Reading, MA:
Addison-Wesley, 1992.

tl Stroustrup, Bjarne. The C++ Programming Language, 2nd ed. Reading, MA:
Addison-Wesley, 1991.

LEARNING MORE ABOUT TALIGENT

c Cotter, Sean with Mike Potel. Inside Taligent Technology. Reading, MA:
Addison-Wesley, 1995.

c Taligent, Inc. Building Object-Oriented Frameworks (white paper). 1994.

tl Taligent, Inc. Leveraging Object-Oriented Frameworks (white paper). 1993.

c Taligent, Inc. Taligent's Guide to Designing Programs: Well-Mannered
Object-Oriented Design in C++. Reading, MA: Addison-Wesley, 1994.

FOR WINDOWS AND OS/2 DEVELOPERS

308

THE POWER OF FRAMEWORKS

GLOSSARY

--_._-------._-------_._._---- ---_. __ .. _--_._--_._-_._-_._-_._----_._-

abstraction

black-box framework

callback

class

class library

client API

FOR WINDOWS AND OS/2 DEVELOPERS

The process of extracting the essential characteristics of a problem and its
solutions to develop a framework composed of interrelated objects. Each
object should represent a single variation of an abstraction and have a
small, focused set of responsibilities.

A metaphor for a framework whose inner workings are concealed from
the framework client. Such frameworks are designed to be used as-is and
do not expose an API for extending the framework.

COMPARE white-box framework

SEE ALSO composition, inheritance

A function or procedure that the framework executes at some point in the
flow of control. Callbacks are passed to a framework to customize the
behavior of the framework.

SEE ALSO functor

A data structure that serves as a pattern for the creation of objects. A class
can be thought of as a programmer-defined type, in which you specify the
data members and the member functions of objects belonging to the
class.

---_._--_._. __ ._----_.

A collection of one or more classes that implement an area of
functionality. Programmers use a class library by instantiating its classes
and invoking their methods.

COMPARE framework

The part of a framework's interface that allows a client to access the
default behavior of the framework and use the framework without
changing its fundamental internal operations.

COMPARE customization API

310 GLOSSARY

command In user interfaces, an instruction to a program from the end user that
causes an action to take place. The user can choose the command from a
menu, type it from the keyboard, or execute it from a button.

-_ .. _---_._--_. __ . __ .. __ .---_._----_._ .. _._. __ .. _ .. _--_._._--_ ... _. __ .. _---_ _._-_._.--_ ... __ .. _._._-_._ ... _ .. __ .. _---_ .. _-_ .. _-_._-----_. __ ... _---

component

composition

convenience class

coupling

customization API

data abstraction

decomposition

design pattern

A discrete software entity that can be interactively combined with or
connected to other elements to create a custom software solution. In the
CommonPoint system, the key programming abstraction for data
centered applications is the embeddable component-a special type of
ensemble that can be integrated with any compound document.

SEE ALSO ensemble, module

A technique for using frameworks in which the developer instantiates and
combines existing classes to change the framework's behavior.

COMPARE inheritance

A specialized class that provides domain-specific functionality.
Convenience classes are often simple, concrete implementations of
abstract base classes and are normally designed to be used directly.
Frameworks often provide convenience classes as shortcuts for framework
clients.

The interdependencies among frameworks and between frameworks and
ensemble code. When these interdependencies are isolated in
intermediary classes, frameworks are described as loosely-coupled.
Because dependencies can create bottlenecks and result in fragile code,
frameworks should be loosely-coupled wherever possible.

The part of a framework's interface that allows a client to alter the
behavior of the framework by replacing parts of the framework
implementation.

COMPARE client API

The process of representing information in terms of its interface with the
user and defining new data types for these representations. Abstraction
separates the external behavior of an object from its internal
implementation. In C++, classes support data abstraction .

.. _----------------

SEE factoring

A microarchitecture for a recurring element in an object-oriented design.

THE POWER OF FRAMEWORKS

encapsulation

ensemble

factoring

framework

functor

helper class

information hiding

inheritance

FOR WINDOWS AND OS/2 DEVELOPERS

GLOSSARY 31 1

The protection of the attributes and behaviors of an object from direct
access by other objects. Typically, an object's structure and its member
function implementations are not exposed. Through encapsulation, a
program's data and functionality are confined within individual objects
instead of being scattered throughout the code. Also known as information
hiding or data hiding. .

The developer code that captures the specifics of a particular software
solution based on one or more frameworks. The domain knowledge,
expertise, rules, and policies provided by the developer form the
ensemble. Together, the ensemble and the frameworks form the
application (or part of a larger application) that solves the specific
domain problem.

COMPARE framework

The process of breaking down a· problem into a set of discrete
subproblems and determining which of those problems can be solved by
creating new frameworks. Also known as decomposition.

A group of interrelated classes that provide a structure for solving a set of
related problems. A framework abstracts the essential entities, state, and
behavior in its problem domain. It provides key mechanisms, defines the
interaction protocols for key scenarios, and encapsulates and enforces
fundamental invariants. Programmers can use, extend, or customize
frameworks for specific computing solutions.

COMPARE class library

An object with one significant function that is executed by the framework
at some point in the flow of control. Functors are passed to a framework
to customize the behavior of the framework.

SEE ALSO callback

A class that provides a behavior used by one or more other classes.

SEE encapsulation

A technique for using frameworks in which the developer derives new
classes to change the framework's behavior. Inheritance-focused
frameworks typically manage the flow of control by calling specific
functions overridden by developers.

COMPARE composition

312 GLOSSARY

instance

invariant

locale

localization

modularity

_ .. __ ._--_._-_._----

module

multiple inheritance

object

override

parameterized type

polymorphism

An occurrence of an object.

SEE object

Part of a solution in a particular problem domain that remains constant
from one problem to another. Such invariants can be captured in a
framework, providing a shared protocol for solutions in that domain.

SEE ALSO framework

A collection of all the preferred objects for a particular geographic
region. These include number, date, and time formatters, keyboard
layout, and language-specific text processing objects.

The process of preparing a product for release in a particular geographic
region by tailoring it to conform to the local language, customs, and
conventions.

The property of a system in which abstractions have been packaged into
discrete units to facilitate the independent design and revision of
different parts of the system.

A discrete unit that represents part of a system or application.

SEE ALSO modularity, component

The ability~to derive a class from more than one base class. Multiple
inheritance allows you to combine independent concepts, represented as
classes, into a composite concept represented as a derived class.

A representation of an entity in terms of its attributes (the data it can
contain) and its behaviors (the operations it can perform on that data).
An object can represent a programming entity such as a pushdown stack
or a window, or it can represent an abstraction of a real-world entity such
as a chess piece or a rectangle. An object is an instance of a class.

Replacing a member function inherited from a base class with a member
function of the same name in a derived class, typically to change or add to
the behavior.

SEE template

The mechanism by which objects of different classes related through
inheritance respond uniquely to the same member function call.

THE POWER OF FRAMEWORKS

selection

template

white-box framework

wrapper

FOR WINDOWS AND OS/2 DEVELOPERS

GLOSSARY 313

A specification of a set of data elements that can be acted upon by a
command.

In C++, a class defined to have a parameter of unknown type. The types of
the parameters are supplied when an object of the class is instantiated.
Also known as generic or parameterized type.

A metaphor for a framework whose inner workings are exposed through
an API that allows framework clients to extend the framework and modify
its behavior.

COMPARE black-box framework

SEE ALSO composition, inheritance

An encapsulator for another object; the wrapper makes the object
accessible to, or usable by, other objects.

THE POWER OF FRAMEWORKS

SUBJECT INDEX

A
About This CD button, 294
abstract class, 233
abstracting common elements, 49
abstractions

breaking down large, 50
identifying, 50
implementing as objects, 50

adding new features, 231
advantages of frameworks, 17
analyzing problem domain, 49
API

client, 15
composition-focused, 41
customization, 15
inheritance-focused, 41
matrix, 42
routines, 64

application builders, 34
application design issues, 63-65
Application Frameworks, 245, 246, 247
application frameworks, 23,66 .. .
Application Frameworks in the CommonPOlnt applIcatIOn

system, 244-247
application generators, 34
application layer for Presentation Manager, 148
application programming interface see API
application systems, 284
application-defined formatting messages, 82

FOR WINDOWS AND OS/2 DEVELOPERS

applications
analyzing a simple, 27-31
comparing size, 281
compound document-based, 258
creating without frameworks, 11
designing, 258-261
initializing, 71
localization, 64
using frameworks, 10-16

Applying Frameworks button, 296
architectural consistency, 232
array of pointers to NumberCells, 150
avoiding lexical cycles, 53

B
benefits

CommonPoint application system, 242
frameworks, 238
frameworks (OS/2), 211
frameworks (Windows), 128

benefits of frameworks, 17
binary frameworks, 35

limitations, 35
Binary-Coded Decimal (BCD), 100, 184
black-box (use-as-is) frameworks, 15
boilerplate code, 236
boilerplate, TModel, 263
Borland ObjectWindows Library (OWL), 66
breakpoints, 236
buffer, 104
builders see application builders

316 SUBJECT INDEX

c
c++ stream package, 63
CjC++ functions, 63
callback procedures, 156
callbacks, 37

example, 37
calling example of ensemble code, 39
capturing domain expertise, 9
CD-ROM

Microsoft Windows version, 296
using, 293-299
with application, 67

cells
formatting, 62,91
maintaining the currently selected, 91
updates, 125
updating the display of, 94

changes in framework interfaces, 54
class hierarchy

number formatting, 185
of spreadsheet classes, 73, 149

class libraries, 4, 6, 238, 284
interoperability limits, 6
learning overhead, 6
limits to reuse, 6
overhead, 6

classes
application-specific, 39
minimizing the number of, 52
reusing, 152

client API, 15
client.expertise, 10
client feedback, 234
client-framework interactions, designing, 52
clients' interactions, simplifying, 52
close event, 166
code

calling, 43
designing less, 17
implementing less, 17
platform-dependent, 233
reducing amount to write, 52
reuse, 6,17,235-238
working with frameworks, 44

code generation
macro expansion, 34
parameterized types, 34
source code delivery, 34
tool, 34

CodeAuthor development tool, 251
coding

overhead, 236
versus complexity, 237

standards, 231, 232
collaborative computing, 243
column array, 150
combining components, 237
commas separating the thousands, 63
CommonPoint application system, 32, 241-249

Application Frameworks, 244-247
benefits, 242
comparisons, 281
component software, 285
compound document-based, 243
creating an application, 251-281
development tools, 251
extensibility, 242
object-oriented support, 242
portability, 243
providing services, 242
support for multilingual applications, 255
System Services, 247-249
taxonomy, 244
user interface paradigm, 243

CommonPoint applications, 236,251,258
complete, method for using frameworks, 15
complex functionality, 237·
component software, 285
components, 37
composition, 50
composition-focused

API, 41
frameworks, 37
language mechanisms, 36

compound document-based applications, 258
concrete subclass, 233
consistency of frameworks, 18
constraints, 51
control code, 23

THE POWER OF FRAMEWORKS

control flow, 27
convenience member functions, 75
conversion parameters, setting, 104
converting numbers to text, 63, 179
cpConstructor development tool, 251
cpProfessional development tool, 251, 263, 285
creating

CommonPoint applications, 251-281
new frameworks, 47
number formatters, 278
subclasses, 36, 39,41, 172
your own frameworks, 230-234

currency
formatter, 118, 257
formatting, 64
locale, 118
symbols, 65

cus tomization
method for using frameworks, 15
supporting, 53

customization API, 15

D
data objects, updating for a spreadsheet, 122-127
dataflow languages, 39
debugger stack trace, 24
debugging, 236
default behavior, 56
default case clause, 166
delivery

frameworks in binary, 35
source code, 35

as code generation, 34
as source files, 33

denominator, 214
fractions, 132

dependencies, managing, 232
derived frameworks, 56
design

application issues, 63-65
consistency, 283
methodologies, 285
patterns, 51
reuse, 6,11,17
tools, 285

FOR WINDOWS AND OS/2 DEVELOPERS

designers
of ~rameworks, 48
skills, 48

designing
applications, 258-261
client-framework interactions, 52
customization, 53
for ease of use, 54
for flexibility and extensibility, 52
for portability, 52

SUBJECT INDEX 317

frameworks, 48,50-56,100-121,184-204
guidelines, 53
less code with frameworks, 17
Presentation Manager application layer, 148-155
rational number formatter class (Windows), 131-134
spreadsheet classes, 72-79
Windows application layer, 71

Desktop frameworks, 244
developer

overhead, 6
productivity, 4

increasing with frameworks, 7
limits to, 6

developing frameworks, 55
Developing Frameworks button, 296
development platform issues, 66
development tools, 285

CodeAuthor, 251
CommonPoint application system, 251
cpConstructor, 251
cpProfessional, 251,263,285

dispatch function, 148
DispatchMessage, 81
distributing frameworks, 234
documentation for source code delivery, 35
documenting frameworks, 230
domain expert, 1 1

domain expertise, 6, 10, 283
capturing, 9
leveraging, 17

domain knowledge, partitioning, 49
dynamic behavior, shifting to, 22-27
dynamic flow of control, 22

3 I 8 SUB]ECT INDEX

E F
ease-of-use designing, 54
edit control, 152
EditControl, 76, 85, 87-89
Embeddable Data Types frameworks, 244, 245
EN_KILLFOCUS parameter set, 87
EN_SETFOCUS parameter set, 87
encapsulation, 49
enculturation of frameworks, 18
ensemble code, 33-43

example of, 39
interacts with framework code, 43
location, 43

ensembles, 12,43, 258
calling example, 39
language mechanisms, 36
with multiple frameworks, 14

Enterprise Services frameworks, 247
errors, format, 177
even t cases, 160
event handler code, 156, 160
event loops, 23
evolution

of flow of control, 22
of program, 19

Exit button, 296
expanding

sample number display, 31
simple application, 31

expertise
client, 10
domain, 10
for a design solution, 9
language, 10
misallocated, 6
object-oriented, 10
proliferation of, 18

Exploring Frameworks button, 295
extending the framework (Windows), 131-142
extensibility, 142, 225

CommonPoint application system, 242

factoring, 30,32,49
feedback, 234
first-class objects, 39
fixing bugs, 231
Flatten, CommonPoint system function, 265
flexibility, 184

in frameworks, 53
floating-point formats, 108, 192
floating-point numbers, 184

formatting, 100,105,184,189
GDE of, 219
scientific and engineering notation, 114, 197
simple, 102, 186
standard (nonscientific) format, 116, 199

flow of control, 4, 21
evolution, 22
illustrating shift of, 24-27
inserting developer code, 35
loss of, 235
sequential, 22
stack trace, 24
using frameworks, 27

flow of the sample application, 40
focus change

finishing, 89
message, 94
operations, WM_FORMATERROR, 82

Format Cell
command processing, 82
dialog box, 65,76-89,141,162-168,223-225

example, 162
format errors, 177
format strings, 65, 165
FormattableNumber (OS/2), 184
formatting, 184

cells, 62, 91
currency, 64
errors, 184
messages, application-defined, 82
numbers, 63

within a spreadsheet, 65
Foundation Services frameworks, 248
fractional text, 217
fractions, 99,100,131,183,213,255

denominators, 132
integer part, 132
numerator, 132

THE POWER OF FRAMEWORKS

frameworks
advantages, 17
API

client, 15
customization, 15

application, 23
benefits, 17,238
benefits (OS/2), 211
benefi ts (Windows), 1 28
binary, 35
black-box (use-as-is), 15
changes in interfaces, 54
code, 44
code structure, 25, 26
CommonPoint application system, 241-249
composition-focused, 37,41
creating

applications with, 10-16
applications without, 11

new, 47
your own, 230-234

defined, 8
deriving from, 56
design, 283

client interaction, 52
guidelines, 53
identifying abstractions, 50
methodologies, 285
patterns, 51
simplifying, 54
solutions, 9
steps, 50

designer skills, 48
designers, 48
designing, 48,50-56,100-121,184-204

a single pattern, 51
customization, 53

developing, 55
distributing, 234
documenting, 230
elements

domain expertise, 10
object-oriented expertise, 10
object-oriented language expertise, 10

enculturation, 18

FOR WINDOWS AND OS/2 DEVELOPERS

ensemble code, 33-43
ensembles, 12
everyday examples, 9
extending functionality, 19
flexibility, 53
flow of control, 27, 235
future of, 284
general, 107
guidelines for developing, 55
history of, 8
in a real-world problem, 61-67
in the software industry today, 283
inheritance-focused, 39
iterative process, 54
learning overhead, 235
managing

change, 231
dependencies, 232
teams, 232

methods of use
complete, 15
customize, 15
use as is, 15

multiple, 14
number formatting, 99,123,183
performance issues, 238
publishing, 233
real-world use, 16
refining, 54
repository, 234
reuse, 283
sample programs, 231
size, 55
solution for low productivity, 7
source code, 33
spreadsheet programs, 61
subclasses, 217
supporting, 234
time issues, 229
tools, 55
using, 15

existing, 47, 230

white-box (customize), 15
working with the code, 44
writing your own, 229

SUBJECT INDEX 319

320 SUBJECT INDEX

functional description, 27
functionality, 234

for the sample application, 31
functions, C/C++, 63
functors, 38
future of frameworks, 284

G
generality in frameworks, 107, 191
generators, application, 34
generic

design solution, 9
framework, 238

generics, parameterized types, 34
goto statements, 139, 221
graphical user interface (GUI), 23
greatest common divisor (GCD), 137, 2 19
grid, spreadsheet, 150
guidelines for developing frameworks, 55

H
handling cell formatting, 91

IBM OS/2
CD-ROM source code, 299

identifying abstractions, 50
IDM_ABOUT command, 85
IDM_EXIT command, 85
IDM_FORMATCELL command, 85
IDM_WINDOWSAl_FORMAT_CELL message, 164
if statements, 222
implementing

framework subclasses (OS/2), 217
framework subclasses (Windows), 135-139
Presentation Manager interface, 156-168
ProcessFocusChange, 174-181
spreadsheet classes, 169-173
spreadsheet objects, 90-97
Windows interface, 80-89
WndCommand, 85

Infinity, 187

infrastructure of a program, 4
inheritance-focused

API, 41
frameworks, 39
language mechanisms, 36

initializing, the application, 71
input focus, 168
integer part, 132,214
integration of frameworks, 18
interacting classes, 39
interdependencies, isolating, 232
interfaces

framework changes, 54
updating, 231

interoperability, 6, 18
invariants

in the problem domain, 39
parameterized types, 34

isolating
interdependencies, 232
platform-dependent code, 52

iterative process, building frameworks, 54

L
language expertise, 10
language mechanisms, 36

composition-focused, 36
inheritance-focused, 36

layering solutions, 14
learning overhead, 235, 237

class libraries, 6
Leveraging Frameworks button, 296
lexical cycles, avoiding, 53
licensing, 284 \
limits

reuse, 6
to productivity, 6

ListOf class, parameterized types, 34
locale, 108, 192, 255-257

currency, 118
dependencies, 193
hierarchy, 256
isolate dependencies, 108
root, 256

THE POWER OF FRAMEWORKS

localizing
applications, 64
numbers, 64
soft~are, 64

location, ensemble code, 43
locking, 53
loss of flow of control, 235

M
macro expansion, 34
main function, 71, 156
maintaining the currently selected cell, 91
maintenance overhead, 6

reduced, 18
managing

change, 231
dependencies, 232
teams, 232

manipulation messages for windows, 81
matrix, API, 42
mechanisms for calling code, 33
memory leak, 269
menu command messages, 81
message handler, 164
message loop, WinMain, 80
messages

application-defined formatting, 82
manipulation, for windows, 81
menu command, 81

micro-architecture, 51
Microsoft Foundation Classes (MFC) , 66
Microsoft Windows

CD-ROM applications, 296
CD-ROM source code, 298

misallocated expertise, 6
m-row by n-column array, 150
multilingual applications, 255
multiple frameworks, 14

with ensembles, 14

FOR WINDOWS AND OS/2 DEVELOPERS

N
NaNs, 187
notation diagrams, 289
notification hooks, 53
number formats, 107, 191
number formatters, 257

creating, 278

SUBJECT INDEX 321

number formatting, 99, 183
frameworks, 99,123, 183,252-257

class hierarchy, 101, 185
objects, 72, 149

numbers
converting to text, 63
formatting, 63
localizing, 64

numerator, 214
fractions, 132

o
object-oriented

development environment, 251,285
program structure, 4
programming and design

limits to, 4-7
subclassing, 172

programming benefits, 238
support for the CommonPoint application system, 242
technology, 3, 7

objects, 4, 7
composing collections of, 37
number formatting, 72, 149
ordinary, 38
spreadsheet, implementing, 90-97
user interface, 72, 148

ObjectWindows Library (OWL), 66
open-closed principle, 15
operating system

traditional, 4
ordinary objects, 38
as Services frameworks, 249
OS/2 development platform issues, 66
OurApplication View subclass, 41
overhead, developer, 6
overrides, 39

322 SUBJECT INDEX

p
parameterized types, 34, 39

invarian ts, 34
ListOf class, 34

partitioning domain knowledge, 49
pattern elements, 51
patterns, 285

of design, 51
reusing, 51

performance issues, 238
persistent object model, 265
platform-dependent code, 233

isolating, 52
platforms

development issues, 66
OS/2 development, 66
Windows development, 66

polymorphism, 92
portability

CommonPoint application system, 243
designing for, 52

preconditions, 51
Presentation Framework, 258-262, 272

defined, 258
standard boilerplate, 263

Presen tation Manager
designing the application layer, 148-155
edit control, modifying, 171
implementing the interface, 156-168
NumberCell, 152

Previous Menu button, 296
principles of good framework design, 283
problem domain, 9

abstracting common elements, 49
analyzing, 49
invariants, 39

procedural programming, 4, 22
ProcessF ocusChange

changing, 168
error conditions, 88
implementing, 174-181
pseudocode, 175

product domains, 284

productivity
increasing with frameworks, 7
limits to, 6

program evolution, 19
program flow of control, 22
program structure

application frameworks based, 23
event loop, 23
evolution of, 22
infrastructure, 4
object-oriented based, 4, 23
procedural-based, 4, 22

programming
by differences, 17
object-oriented

subclassing, 172
pattern-based, 285

project architect, 232
proto typing, 54
pseudocode

creating, 32
outline of ProcessFocusChange, 175
sample application, 29

public domain library, 221
publishing frameworks, 233

R
rational numbers, 131, 213

formatting class hierarchy, 132, 214
reading notation diagrams, 289
refining frameworks, 54
repository for frameworks, 234
Resurrect, CommonPoint system function, 265
reusing

classes, 152
code, 17
common patterns, 51
design, 11
design and code, 6
FormattableNumber, 76
frameworks, 233, 235-238
NumberCell, 76

root locale, 256

THE POWER OF FRAMEWORKS

s
sample application, 27

expanded single number display, 27
flow of, 40
single number display

factoring, 30
functional description, 27
pseudocode, 29

sample programs, 231
scientific notation, 101,104, 187
sequential flow of control, 22
setting conversion parameters, 104
significand, 104, 187

buffer, 104
simplifying

clients' interactions, 52
frameworks, 54

size of frameworks, 55
size, comparing applications, 281
small frameworks, 55
software

localization, 64
piracy, 35

source code
delivery, 33

limitations, 35
files, 33
frameworks, 33
IBM OS/2 CD-ROM application, 299
Microsoft Windows CD-ROM application, 298
using the spreadsheet, 298

source files, delivery of source code, 33
source level debugger, 236
spreadsheet

class hierarchy, 149
data objects, updating, 122-127, 205-210
grid, 150
objects, implementing, 90-97
programs, 61
source code, using, 298

FOR WINDOWS AND OS/2 DEVELOPERS

spreadsheet classes
designing, 72-79
hierarchy, 73, 149
implementing, 169-173

stack trace
debugging with, 24
examples, 24
for flow of control, 24

SUBJECT INDEX 323

multiple framework code structure, 26
simple framework code structure, 25
traditional procedural code, 24

standards for coding, 231,232
statements

goto, 139, 221
if, 222

streams package, 63
stub code, 232
subclasses, 39

concrete, 233
creating, 36,41,172
implementing framework (OS/2), 217
implementing framework (Windows), 135-139
OurApplicationView, 41
rational number formatting, 131

supporting
customization, 53
frameworks, 234

symbols for currency, 65
system complexity, 237
system library, 4
System Services in the CommonPoint application

system, 247-249

324 SUBJECT INDEX

T W
TaligentTypeExtensionMacro, 268
taxonomy of the CommonPoint application system, 244
teams, managing, 232
templates, parameterized types, 34
text converter, 187
Text Scanning and Formatting framework, 252, 254
theString as a TText object, 126
thread safety, 53
time issues using frameworks, 229
TModel boilerplate, 263
tool support, generating source code, 34
tools, 55

application builders, 34
application generators, 34
development, 285

two-dimensional array, 150
type-safe, 34

u
unique elements in your application, 30
updating

cell's display, 94
interfaces, 231

. spreadsheet data objects, 122-127,205-210
the application (OS/2), 222-225
the application (Windows), 140-141
the old NumberCell's value, 88

use as is, method for using frameworks, 15
user interface

objects, 72, 148
paradigm, 243

using
existing frameworks, 47, 230
frameworks, 15
the CD-ROM, 293, 299

white-box (customize) frameworks, 15
window manipulation messages, 81
window message dispatcher, 72
Windows

application layer, designing, 71
development platform issues, 66
interface

implementing, 80-89
WinMain function

initializing the application, 71
message loop, 80

WM_COMMAND message, 81,161,164
WM_FORMATCELL message, 82,91,162,166,167
WM_FORMATERROR message, 82, 88, 163, 174, 177
WM_INITDLG message, 164
WndCommand, implementing, 85
writing your own framework, 229

THE POWER OF FRAMEWORKS

CODE INDEX

A
AdoptIntegerF ormatter function

TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

AdoptNumberFormatter function
TCell (CommonPoint), 260,269

AnalyzeValue function
TFormattableNumber (OS/2), 188, 196
TFormattableNumber (Windows), l04? 112

assignment operator (OS/2)
TFloatingPointNumberFormatter, 189

assignment operator function
TNumberFormatter (OS/2), 187
TNumberFormatter (Windows), 103

c
CalcGCD function

TRationalNumber (OS/2), 219,221
TRationalNumber (Windows), 138, 139

Cell Changed function
TSpreadsheetModel (CommonPoint), 260,267

CellChangedAt function
TSpreadsheetModel (CommonPoint), 260,267

ChangeFocus function
NumberGrid (Windows), 91

class (CommonPoint)
TCell, 260
TSpreadsheetModel, 259
TSpreadsheetPresenter, 261
TSpreadsheetView, 262

FOR WINDOWS AND OS/2 DEVELOPERS

class (OS/2)
FormattableNumber, 154
NumberCell, 153,171,205
NumberFormat, 155
NumberGrid, 150
TFloatingPointNumberFormatter, 189
TFormattableNumber, 187
TNumberFormatLocale, 192
TRationalNumber, 216
TRationalNumberFormatter, 215

class (Windows)
FormattableNumber, 78
NumberCell, 77,12.2
NumberFormat, 79
NumberGrid, 74
TFloatingPointNumberFormatter, 105
TFormattableNumber, 103
TNumberFormatLocale, 108
TRationalNumber, 134
TRationalNumberFormatter, 133

constructor (CommonPoint)
TCell, 260, 268
TSpreadsheetModel, 259, 263
TSpreadsheetPresenter, 261, 271
TSpreadsheetView, 262, 279

constructor (OS/2)
NumberCell, 171,173,205,207
NumberGrid, 150, 169
TFloatingPointNumberFormatter, 189
TFormattableNumber, 187
TNumberFormatLocale, 192
TNumberFormatter, 187
TRationalNumber, 216
TRationalNumberFormatter, 215

326 CODE INDEX

constructor (Windows)
NumberCell, 92, 122, 124
NumberGrid, 74
TFloatingPointNumberFormatter, 105
TFormattableNumber, 103
TNumberFormatLocale, 108
TNumberFormatter, 103
TRationalNumberFormatter, 133

ConvertFromFormattable function
TRationalNumber (OS/2), 216, 219,220
TRationalNumber (Windows), 138
TRationalNumberFormatter (Windows), 135

CreateAndAdoptMen ul tern function
TSpreadsheetPresenter (CommonPoint), 261

CreateCellIterator function
TSpreadsheetModel (CommonPoint), 259, 267

CreateControlList function
TSpreadsheetPresenter (CommonPoint), 280

CreateCurrencyFormatter function
TNumberFormatLocale (OS/2), 200
TNumberFormatLocale (Windows), 108, 118
TSpreadsheetPresenter (CommonPoint), 261,278

CreateFloatingPointFormatter function
TNumberFormatLocale (OS/2), 204
TNumberFormatLocale (Windows), 108,121

CreateNumberFormatter function
TSpreadsheetPresenter (CommonPoint), 261,278

CreateRationalFormatter function
TSpreadsheetPresenter (CommonPoint), 278

CreateRationalNumberFormatter function
TSpreadsheetPresenter (CommonPoint), 261

CreateSelection function
TSpreadsheetModel (CommonPoint), 259, 266

CreateViewSubMenuItem function
TSpreadsheetPresenter (CommonPoint), 261, 273

cwCreateWindow utility function, 158

D
destructor (CommonPoint)

TCell, 260, 268
TSpreadsheetModel, 259,263
TSpreadsheetPresenter, 261,271
TSpreadsheetView, 262, 279

destructor (OS/2)
NumberCell, 205
TFloatingPointNumberFormatter, 189
TFormattableNumber, 187
TNumberFormatLocale, 192
TRationalN umberF ormatter, 215

destructor (Windows)
NumberCell, 122
NumberGrid, 74
TFloatingPointNumberFormatter, 105
TFormattableNumber, 103
TNumberFormatLocale, 108
TRationalNumberFormatter, 133

DialogBox function (Windows), 141
DrawContents function

TSpreadsheetView (CommonPoint), 262,280

E
Edit function

NumberCell (OS/2), 206
NumberCell (Windows), 94,123

EditWndProc, 172
EditWndProc function

NumberCell (Windows), 92

F
fCurrentCell data member

NumberCell (OS/2), 151,170
NumberCell (Windows), 75

fcvt function
FormattableNumber (OS/2), 180
TFormattableNumber (OS/2), 196
TFormattableNumber (Windows), 112

fErrorInFormat instance variable, 178
NumberCell (OS/2) ,178

THE POWER OF FRAMEWORKS

fFormatter data member
FormattableNumber (OS/2), 206,210
NumberCell (Windows), 123,126

fFractionDirection data member
TNumberFormatter (OS/2), 217
TRationalNumberFormatter (Windows), 135

fFractionSign data member
TNumberFormatter (OS/2), 217
TRationalNumberFormatter (Windows), 135

fFractionSpace data member
TNumberFormatter (OS/2), 217
TRationalNumberFormatter (Windows),. 135

fGrid data member
NumberCell (OS/2), 151, 170
NumberCell (Windows), 75

FindLocale function
TLocale (CommonPoint), 257

flntegerFormatter data member
TNumberFormatter (OS/2), 217
TRationalNumberFormatter (Windows), 135

fNumber data member
FormattableNumber (OS/2), 206
N urn berCell (Windows), 1 23

fNumber instance variable, 179
NumberCell (OS/2), 179

Format function
FormattableNumber (OS/2), 179,180
FormattableNumber (Windows), 96
TFormattableNumber (OS/2), 193
TNumberFormatter (OS/2), 186
TNumberFormatter (Windows), 102,109

FormatCell function
NumberGrid (OS/2), 168, 224

FormatCurrentCell function
NumberGrid (Windows), 91

FormattableNumber (OS/2), 149,152,154,179
fcvt function, 180
fFormatter data member, 206, 210
fNumber data member, 206
Format function, 179, 180
FormattableNumber class, 154
Nalue instance variable, 180
GetGeneralNumberFormat function, 155

FOR WINDOWS AND OS/2 DEVELOPERS

CODE INDEX 327

FormattableNumber (Windows), 72, 76, 78,96, 100
class, 78
Format function, 96
GetFormat function, 96
GetGeneralNumberFormat function, 79
SetFormat function, 96
temporary, 94

FormattableNumberToDecimalText
TFloatingPointNumberFormatter (OS/2), 199
TFloatingPoin tN umberF ormatter (Windows), 106

FormattableNumberToDecimalText function
TFloatingPointNumberFormatter (Windows), 116
TNumberFormatter (OS/2), 190

FormattableNumberToExponentText
TFloatingPointNumberFormatter (Windows), 106

FormattableNumberToExponentText function
TFloatingPointNumberFormatter (OS/2), 198
TFloatingPointNumberFormatter (Windows), 115
TNumberFormatter (OS/2), 190

FormattableNumberToText
TRationalNumberFormatter (Windows), 136

FormattableNumberToText function
TFloatingPointNumberFormatter (OS/2), 197
TFloatingPointNumberFormatter (Windows), 106, 114
TFormattableNumber (OS/2), 193
TNumberFormatter (OS/2), 186, 190, 194
TNumberFormatter (Windows), 102,110
TRationalNumberFormatter (OS/2), 215

frexp function
TRationalNumber (OS/2), 219
TRationalNumber (Windows), 137

Nalue instance variable, 180

G
GetCellAt function

TSpreadsheetModel (CommonPoint), 260, 267
GetDecimalSeparator function

TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

GetDecimalWithlnteger function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 190

GetDenominator function
TRationalNumber (OS/2), 216

328 CODE INDEX

GetDigitGroupSeparator
TFloatingPointNumberFormatter (Windows), 106

GetDigitGroupSeparator function
TNumberFormatter (OS/2), 190

GetDigitsFromDecimalPoint function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

GetEditHandle function
NumberCell (OS/2), 205
NumberCell (Windows), 122

GetExponentfunction
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104.

GetExponentPhase function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetExponentSeparatorText function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetFormat function
FormattableNumber (Windows), 96
NumberCell (OS/2), 205
NumberCell (Windows), 122

GetF ormatErrorStatus function
NumberCell (OS/2), 205
NumberCell (Windows), 122

GetFractionSeparator function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetFractionSign function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

GetFractionSpace function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

GetGeneralNumberFormat
FormattableNumber (Windows), 79
NumberFormat (Windows), 79

GetGeneralN umberF ormat function
FormattableNumber (OS/2), 155
NumberCell (Windows), 124
NumberFormat (OS/2), 155,207

GetID function
NumberCell (OS/2), 205
N umberCell (Windows), 1 22

GetlnfinitySign function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

GetInteger function
TRationalNumber (OS/2), 216

GetIntegerSeparator function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

GetlntSeparator function
NumberFormat (Windows), 96

GetLocalelnfo function
TNumberFormatLocale (Windows), 118

GetLowerExponentThreshold function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetMaxFractionDigits function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetMinFractionDigits function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetMinlntegerDigits function
TNumberFormatter (OS/2), 190

GetMinus function
TNumberFormatter (OS/2), 186
TNumberFormatter (Windows), 102

GetNanSign function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

GetNumber function
TFormattableNumber (OS/2), 187
TFormattableNumber (Windows), 103

GetNumberFormatter function
TCell (CommonPoint), 260, 269

GetNumberOfColumns function
TSpreadsheetModel (CommonPoint), 260, 267

GetNumberOfRows function
TSpreadsheetModel (CommonPoint), 260, 267

GetNumerator function
TRationalNumber (OS/2), 216

GetPlus function
TNumberFormatter (OS/2), 186
TNumberFormatter (Windows), 102

GetProp function
NumberCell (OS/2), 173

THE POWER OF FRAMEWORKS

GetRootLocale function
TLocale (CommonPoint), 257

GetSeparatorSpacing function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

GetShowPlusSign function
TNumberFormatter (OS/2), 186
TNumberFormatter (Windows), 102

GetSignificand function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

GetSignificandLength function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

GetUpperExponentThreshold function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

GetValue function
TCell (CommonPoint), 260, 270

H
HandleCreateMain View function

TSpreadsheetPresen ter (CommonPoin t), 261, 272
HandleMenuAction function

TSpreadsheetPresenter (CommonPoint), 261,274
HandleMen uActivate function

TSpreadsheetPresenter (CommonPoint), 261,272
HandleSymbols function

TNumberFormatLocale (OS/2), 203
HandleViewAction function

TSpreadsheetPresenter (CommonPoint), 261,276
HasBeenAltered function

NumberCell (OS/2), 205
NumberCell (Windows), 122

hInst parameter (OS/2), 153
hInst parameter (Windows), 76
hwndParent parameter (OS/2), 153
hwndParent parameter (Windows), 76

FOR WINDOWS AND OS/2 DEVELOPERS

implementing
WndProc, 81

CODE INDEX 329

InitializeAndCenterDialog function (Windows), 141
IsInfinity function

TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

IsNan function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

IsNegative function
TFormattableNumber (OS/2), 187, 196
TFormattableNumber (Windows), 103,112

IsZero function

L

TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

localeconv function (OS/2), 200

M
main function, 148
Move function

N

NumberCell (OS/2), 206
NumberCell (Windows), 123

NotifyOfChange function
TSpreadsheetModel (CommonPoint), 267

nSel, 166
NumberCell (OS/2), 148,152

class, 153,171,205
constructor, 171,173,205,207
destructor, 205
edit control, 152
Edit function, 206
fCurrentCell data member, 151, 170
fGrid data member, 151, 170
GetEditHandle function, 205
GetFormat function, 205
GetFormatErrorStatus function, 205

330 CODE INDEX

GetID function, 205
GetProp function, 173
HasBeenAltered function, 205
Move function, 206
pointers, 150
SetAlteredStatus function, 172, 206
SetFormat function, 206, 210, 222
SetFormatErrorStatus function, 206
SetProp function, 173
SetToGeneralFormat function, 206
Update function, 177,206,208,222

NumberCell (Windows), 72,76,87,92-95
class, 77,122
constructor, 92,122,124
destructor, 122
Edit function, 94, 123
EditControl, 76
EditWndProc function, 92
fCurrentCell data member, 75
fFormatter data member, 123, 126
fGrid data member, 75
£Number data member, 123
GetEditHandle function, 122
GetFormat function, 122
GetFormatErrorStatus function, 122
GetGeneralNumberFormat function, 124
GetID function, 122
HasBeenAltered function, 122
Move function, 123
SetAlteredStatus function, 122
SetFormat function, 122, 127; 140
SetFormatErrorStatus function, 123
SetToGeneralFormat function, 122
Update function, 94, 123, 125, 140

NumberFormat (OS/2), 149, 155
GetGeneralNumberFormat function, 155, 207
NumberFormat class, 155

NumberFormat (Windows), 72,79,96
class, 79
GetGeneralNumberFormat, 79
GetIntSeparator function, 96
Set function, 96

NumberFormatDlgProc function (Windows), 141

NumberGrid (OS/2), 148, 150
class, 150
constructor, 150, 169
FormatCell function, 168, 224
member functions, 150
SetCurrent function, 168

NumberGrid (Windows), 72,88,90-92
ChangeFocus function, 91

p

class, 74
constructor, 74,90
design, 74
destructor, 74
FormatCurrentCell function, 91
member functions, 74

PaneICELLFORMDIgProc, 162,164,165,223
ProcessFocusChange function, 85,87-89

s
SendDlgItemMessage function (Windows), 141
Set function

NumberFormat (Windows), 96
SetAlteredStatus function

NumberCell (OS/2), 172, 206
NumberCell (Windows), 122

SetAnalysis function
TFormattableNumber (Windows), 104

SetAnalysisDirtyFlag function
TFormattableNumber (OS/2), 188

SetCurrent function
NumberGrid (OS/2), 168

SetDecimalSeparator function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

SetDecimalWithInteger function
TFloatingPoin tN urn berF ormatter (Windows), 107
TNumberFormatter (OS/2), 190

SetDenominator function
TRationalNumber (OS/2), 216

SetDigitGroupSeparator
TFloatingPointNumberFormatter (Windows), 106

THE POWER OF FRAMEWORKS

SetDigitGroupSeparator function
TNumberFormatter (OS/2), 190

SetDigitsFromDecimalPoint function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetExponent function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetExponentPhase function
TFloatingPointNumberFormatter (Windows),
TNumberFormatter (OS/2), 191

SetExponen tSeparatorText function
TFloatingPointNumberFormatter (Windows),
TNumberFormatter (OS/2), 191

SetFormat function
FormattableNumber (Windows), 96
NumberCell (OS/2), 206,210,222
NumberCell (Windows), 122,127

SetFormatErrorStatus function
NumberCell (OS/2), 206
NumberCell (Windows), 123

SetFractionDirection function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

SetFractionPropriety function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

SetFractionSeparator function
TFloatingPointNumberFormatter (Windows),
TNumberFormatter (OS/2), 191

SetFractionSign function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

SetFractionSpace function
TRationalNumberFormatter (OS/2), 215
TRationalNumberFormatter (Windows), 133

SetInfinity function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetInfinitySign function
TFloatingPoin tNumberFormatter (Windows),
TNumberFormatter (OS/2), 190

SetInteger function
TRationalNumber (OS/2), 216

FOR WINDOWS AND OS/2 DEVELOPERS

107

107

107

106

CODE INDEX 331

SetIn tegerSeparator function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

SetLowerExponentThreshold function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

SetMaxFractionDigits function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

SetMinFractionDigits function
TFloatingPoin tN umberFormatter (Windows), 107
TNumberFormatter (OS/2), 19 1

SetMinIntegerDigits function
TNumberFormatter (OS/2), 190

SetMinus function
TNumberFormatter (OS/2), 186

SetNan function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetNanSign function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

SetNumber function
TFormattableNumber (OS/2), 187,196
TFormattableNumber (Windows), 103,112

SetNumerator function
TRationalNumber (OS/2), 216

SetPlus function
TNumberFormatter (OS/2), 186

SetProp function
NumberCell (OS/2), 173

SetSeparatorSpacing function
TFloatingPointNumberFormatter (Windows), 106
TNumberFormatter (OS/2), 190

SetShowPlusSign function
TNumberFormatter (OS/2), 186

SetSignBit function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetSignificand function
TFormattableNumber (OS/2), 188
TFormattableNumber (Windows), 104

SetToGeneralF ormat function
NumberCell (OS/2), 206
NumberCell (Windows), 122

332 CODE INDEX

SetUpFormattableNumber function
TFloatingPointNumberFormatter (OS/2), 197
TFloatingPointNumberFormatter (Windows), 106, 113
TFormattableNumber (OS/2), 194
TNumberFormatter (OS/2), 186,190
TNumberFormatter (Windows), 102,110

SetUpperExponentThreshold function
TFloatingPointNumberFormatter (Windows), 107
TNumberFormatter (OS/2), 191

SetValue function
TCell (CommonPoint), 260, 270

streaming operators (CommonPoint)
TCell, 260,269
TSpreadsheetModel, 259,265
TSpreadsheetView, 262

strtod, 178

T
TCell (CommonPoint), 260

AdoptNumberFormatter function, 260,269
constructor, 260, 268
destructor, 260, 268
GetNumberFormatter function, 260, 269
GetValue function, 260, 270
SetValue function, 260,270
streaming operators, 260, 269

TChoiceFormatter (CommonPoint), 253
TDateTimeFormatter (CommonPoint), 253
TFloatingPointNumberFormatter .(CommonPoint), 255
TFloatingPointNumberFormatter (OS/2)

assignment operator, 189
class, 189
constructor, 189
destructor, 189
FormattableNumberToDecimalText, 199
FormattableNumberToExponentText function, 198
FormattableNumberToText function, 197
SetUpFormattableNumber function, 197

TFloatingPointNumberFormatter (Windows), 105, 113
class, 105
constructor, 105
destructor, 105
FormattableNumberToDecimalText function, 106, 116

FormattableNumberToExponentText function, 106,
115

FormattableNumberToText function, 106, 114
GetDecimalSeparator function, 106
GetDecimalWithInteger function, 107
GetDigitGroupSeparator function, 106
GetExponentPhase function, 107
GetExponentSeparatorText function, 107
GetFractionSeparator function, 107
GetInfinitySign function, 106
GetIntegerSeparator function, 106
GetLowerExponentThreshold function, 107
GetMaxFractionDigits function, 107
GetMinFractionDigits function, 107
GetNanSign function, 106
GetSeparatorSpacing function, 106
GetUpperExponentThreshold function, 107
SetDecimalSeparator function, 106
SetDecimalWithInteger function, 107
SetDigitGroupSeparator function, 106
SetExponentPhase function, 107
SetExponentSeparatorText function, 107
SetFractionSeparator function, 107
SetInfinitySign function, 106
SetIntegerSeparator function, 106
SetLowerExponentThreshold function, 107
SetMaxFractionDigits function, 107
SetMinFractionDigits function, 107
SetNanSign function, 106
SetSeparatorSpacing function, 106
SetUpFormattableNumber function, 106, 113
SetUpperExponentThreshold function, 107

TFloatingPointNumberFormatter function
TNumberFormatter (OS/2), 194

TFormatResult (CommonPoint), 253
TFormatResult (OS/2), 184
TFormatResult (Windows), 101

objeCt, 102
TFormattable (CommonPoint), 253
TFormattableNumber, 100

THE POWER OF FRAMEWORKS

TFormattableNumber (OS/2)
AnalyzeValue function, 188, 196
class, 187
constructor, 187
destructor, 187
fcvt function, 196
Format function, 193
FormattableNumberToText function, 193
GetDigitsFromDecimalPoint function, 188
GetExponent function, 188
GetNumber function, 187
GetSignificand function, 188
GetSignificandLength function, 188
IsInfinity function, 188
IsNan function, 188
IsNegative function, 187, 196
IsZero function, 188
SetAnalysisDirtyFlag function, 188
SetDigitsFromDecimalPoint function, 188
SetExponent function, 188
SetInfinity function, 188
SetNan function, 188
SetNumber function, 187, 196
SetSignBit function, 188
SetSignificand function, 188
SetUpFormattableNumber function, 194

TFormattableNumber (Windows), 103
AnalyzeValue function, 104, 112
class, 103
constructor, 103
destructor, 103
fcvt function, 112
GetDigitsFromDecimalPoint function, 104
GetExponent function, 104
GetNumber function, 103
GetSignificand function, 104
GetSignificandLength function, 104
IsInfinity function, 104
IsNan function, 104
IsNegative funct~on, 103, 112
IsZero function, 104
SetAnalysis function, 104
SetDigitsFromDecimalPoint function, 104
SetExponent function, 104
SetInfinity function, 104

FOR WINDOWS AND OS/2 DEVELOPERS

SetNan function, 104
SetNumber function, 103, 112
SetSignBit function, 104
SetSignificand function, 104

TFormatter (CommonPoint), 253
theGrid variable, 167
TLocale (CommonPoint), 255

FindLocale function, 257
GetRootLocale function, 257

TLocaleItem (CommonPoint), 256

CODE INDEX 333

TLocaleItemIterator (CommonPoint), 256
TLocalizableName (CommonPoint), 256
TModel (CommonPoint), 263
TNumberFormat (Windows), 140
TNumberFormatLocale (OS/2), 185,200

class, 192
constructor, 192
CreateCurrencyFormatter function, 192, 200
CreateFloatingPointFormatter function, 192, 204
destructor, 192
HandleSymbols function, 203

TNumberFormatLocale (Windows), 101,108,118-121
class, 108
constructor, 108
CreateCurrencyFormatter function, 108, 118
CreateFloatingPointFormatter function, 108, 121
destructor, 108
GetLocalelnfo function, 118

TNumberFormatter (CommonPoint), 253,255,265
TNumberFormatter (OS/2), 186,213,222

assignment operator function, 187
constructor, 187
fFractionDirection data member, 217
fFractionSign data member, 217
fFractionSpace data member, 217
fIntegerFormatter data member, 217
Format function, 186
FormattableNumberToDecimalText function, 190
FormattableNumberToExponentText function, 190
FormattableNumberToText function, 186, 190, 194
GetDecimalSeparator function, 190
GetDecimalWithInteger function, 190
GetDigitGroupSeparator function, 190
GetExponentPhase function, 191
GetExponen tSeparatorText function, 191

334 CODE INDEX

GetFractionSeparator function, 19l
GetInfinitySign function, 190
GetIntegerSeparator function, 190
GetLowerExponentThreshold function, 19l
GetMaxFractionDigits function, 19l
GetMinFractionDigits function, 19l
GetMinlntegerDigits function, 190
GetMinus function, 186
GetNanSign function, 190
GetPlus function, 186
GetSeparatorSpacing function, 190
GetShowPlusSign function, 186
GetUpperExponentThreshold function, 19l
SetDecimalSeparator function, 190
SetDecimalWithlnteger function, 190
SetDigitGroupSeparator function, 190
SetExponen tPhase function, 19l
SetExponentSeparatorText function, 19l
SetFractionSeparator function, 19l
SetInfinitySign function, 190
SetIntegerSeparator function, 190
SetLowerExponentThreshold function, 19l
SetMaxFractionDigits function, 19l
SetMinFractionDigits function, 19l
SetMinlntegerDigits function, 190
SetMinus function, 186
SetNanSign function, 190
SetPlus function, 186
SetSeparatorSpacing function, 190
SetShowPlusSign function, 186
SetUpFormattableNumber function, 186, 190
SetUpperExponentThreshold function, 19l
TFloatingPointNumberFormatter function, 194

TNumberFormatter (Windows), 100, 103, 109, 131
assignment operator function, 103
constructor, 103
Format function, 102, 109
FormattableNumberToText function, 102, 110
GetMinus function, 102
GetPlus function, 102
GetShowPlusSign function, 102
SetUpFormattableNumber function, 102, 110

TParameterFormatter (CommonPoint), 253
TPositionalNumberFormatter (CommonPoint), 255

TRationalNumber (OS/2)
CalcGCD function, 21g, 221
class, 216
constructor, 216
ConvertFromFormattable function, 216, 21g, 220
frexp function, 21g
GetDenominator function, 216
Getlnteger function, 216
GetNumerator function, 216
SetDenominator function, 216
Setlnteger function, 216
SetNumerator function, 216

TRationalNumber (Windows), 131-139
CalcGCD function, 138, 139
class, 134
ConvertFromFormattable function, 138
frexp function, 137

TRationalNumberFormatter (CommonPoint), 255
TRationalNumberFormatter (OS/2), 213, 217

AdoptIntegerFormatter function, 215
class, 215
constructor, 215
destructor, 215
FormattableNumberToText function, 215

TRationalNumberFormatter (OS/2), 218
GetFractionSign function, 215
GetFractionSpace function, 215
SetFractionDirection function, 215
SetFractionPropriety function, 215
SetFractionSign function, 215
SetFractionSpace function, 215

TRationalNumberFormatter (Windows), 131, 134
AdoptIntegerFormatter function, 133
class, 133
constructor, 133
ConvertFromFormattable function, 135
destructor, 133
fFractionDirection data member, 135
fFractionSign data member, 135
fFractionSpace data member, 135
flntegerFormatter data member, 135
FormattableNumberToText, 136
GetDenominator, 134·
GetFractionSign function, 133
GetFractionSpace function, 133

THE POWER OF FRAMEWORKS

GetIn teger, 134
GetNumerator, 134
SetDenominator, 134
SetFractionDirection function, 133
SetFractionPropriety function, 133
SetFractionSign function, 133
SetFractionSpace function, 133
SetInteger, 134
SetNumerator, 134

TSimpleTextFormatter (CommonPoint), 253
TSpreadsheetModel (CommonPoint), 259, 263-267

CellChanged function, 260, 267
CellChangedAt function, 260, 267
constructor, 259, 263
CreateCellIterator function, 259, 267
CreateSelection function, 259, 266
destructor, 259, 263
GetCellAt function, 260, 267
GetNumberOfColumns function, 260, 267
GetNumberOfRows function, 260,267
NotifyOfChange function, 267
streaming operators, 259, 265

TSpreadsheetPresenter (CommonPoint), 261,271-278
constructor, 261, 271
CreateAndAdoptMenuItem function, 261
CreateControlList function, 280
CreateCurrencyFormatter function, 261, 278
CreateNumberFormatter function, 261,278
CreateRationalFormatter function, 278
CreateRationalNumberFormatter function, 261
CreateViewSubMenuItem function, 261,273
destructor, 261, 271
HandleCreateMainView function, 261,272
HandleMenuAction function, 261, 274
HandleMenuActivate function, 261, 272
HandleViewAction function, 261,276

TSpreadsheetView (CommonPoint), 262
constructor, 262, 279
destructor, 262, 279
DrawContents function, 262,280
streaming operator, 262

TText (OS/2), 185
TText (Windows), 101,126

FOR WINDOWS AND OS/2 DEVELOPERS

CODE INDEX 335

u
Update function

NumberCell (OS/2), 177,206,208,222
NumberCell (Windows), 94, 123, 125, 140
SetFormat (Windows), 140

v
void ConvertNumToString function (OS/2), 63
void ConvertNumToString function (Windows), 63

w
WindowSAIWndProc, 148,160,163,223
WinLoadDlg, 162
WinMain function, 71, 80
WinQueryWindow, 167
WNDCLASS, 80
WndCommand function, 81,85-87
WndProc function, 72, 83, 85, 141

implementing, 81

IMPORTANT- READ CAREFULLY BEFORE OPENING.

By opening this sealed disk package, you indicate your acceptance of the
following Taligent License Agreement.

This is a legal agreement between you, the end user, and Taligent, Inc. BY
OPENING THIS SEALED DISK PACKAGE, YOU ARE AGREEING TO BE BOUND BY
THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF
THIS AGREEMENT, PROMPTLY RETURN THE UNOPENED DISK PACKAGE AND
THE ACCOMPANYING ITEMS (including written materials and binders or other
containers) TO THE PLACE YOU OBTAINED THEM FOR A FULL REFUND.

TALIGENT LICENSE TERMS

1. License. Taligent grants to you the right to use one copy of the enclosed
Taligent software program (the "SOFTWARE") on a single terminal connected to a
single computer (Le. with a single CPU). You may not network the SOFTWARE or
otherwise use it on more than one computer or computer terminal at the same
time. The SOFTWARE is provided for instructional purposes and is not intended
for productive use.

2. COPYRIGHT. The SOFTWARE is owned by Taligent or its suppliers and is
protected by United States copyright laws and international treaty provisions.
Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g.
a book or musical recording) except that you may either (a) make one copy of the
SOFTWARE solely for backup or archival purposes, or (b) transfer the SOFTWARE
to a single hard disk provided you keep the original solely for backup or archival
purposes. You may not make derivative works of the SOFTWARE or copy the
written materials accompanying the software.

3. RIGHTS RESERVED. All right, title and interest to all intellectual property with
respect to the SOFTWARE including any patent, copyright, trademark or trade
name rights shall remain exclusively with Taligent or its suppliers.

3. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you
may transfer the SOFTWARE and accompanying written materials on a permanent
basis provided you retain no copies and the recipient agrees to be bound by the
terms of this Agreement.

4. SOURCE CODE. The source code of the SOFTWARE licensed hereunder
represents and embodies trade secrets of Taligent and/or its licensors. The
source code and embodied trade secrets are not licensed to you and any
modifications, additions or deletions to the source code are strictly prohibited.
You agree not to disassemble, decompile, or otherwise reverse engineer the
SOFTWARE in order to discover the source code and/or the trade secrets
contained in the source code.

5. CUSTOMER REMEDIES. Taligent's entire liability and your exclusive remedy
shall be, at Taligent's option, either (a) return of the price paid or (b) repair or
replacement of any SOFTWARE which is found to be defective within 90 days of
licensing and which is returned to Taligent with a copy of your receipt. This
Limited Warranty is void if failure of the SOFTWARE has resulted from accident
abuse, or misapplication. Any replacement SOFTWARE will be warranted for th~
remainder of the original warranty period or 30 days, whichever is longer.

. 6. NO OTHER WARRANTIES. TALIGENT DISCLAIMS ALL OTHER WARRANTIES,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, WITH RESPECT TO THE SOFTWARE AND THE ACCOMPANYING
WRITIEN MATERIALS. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE TO STATE.

7. NO LIABILITY FOR CONSEQUENTIAL DAMAGES. IN NO EVENT SHALL
TALIGENT OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE
THIS TALIGENT PRODUCT, EVEN IF TALIGENT HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW
THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

8. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE and
documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subdivision
(b)(3)(ii) of "The Rights in Technical Data and Computer Software" clause at
252.227-7013. Contractor/manufacturer is Taligent, Inc. 10201 North De Anza
Blvd., Cupertino, CA 95014-2233.

9. GOVERNING LAW. This Agreement is governed by the laws of the State of
California.

ADDISON-WESLEY WARRANTY TERMS

Addison-Wesley warrants the enclosed disk to be free of defects in materials and
faulty workmanship under normal use for a period of ninety days after purchase.
If a defect is discovered in the disk during this warranty period, a replacement
disk can be obtained at no charge by sending the defective disk, postage prepaid,
with proof of purchase to:
Addison-Wesley Publishing Company
Editorial Department
Trade Computer Books Division
One Jacob Way
Reading, MA 01867

After the ninety-day period, a replacement will be sent upon receipt of the
defective disk and a check or money order for $10.00, payable to
Addison-Wesley Publishing Company.

Addison-Wesley makes no warranty or representation, either express or implied,
with respect to this software, its quality, performance, merchantability, or fitness
for a particular purpose. In no event will Addison-Wesley, its distributors, or
dealers be liable for direct, indirect, special, incidental, or consequential damages
ariSing out of the use or inability to use the software. The exclusion of implied
warranties is not permitted in some states. Therefore, the above exclusion may
not apply to you. This warranty provides you with specific legal rights. There may
be other rights that you may have that vary from state to state.

THE POWER OF FRAMEWORKS FOR WINDOWS AND OS/2 DEVELOPERS

PC PROCRAI\1l\lINC / V\' INDO\\"S PROGRAJI,(j\IIN(;

THE POWER OF FRAMJ:~WORKS
"Thf rml j)()1uer of frarneworks is that thry l'ransform jJrogrmnrning into an exjJrfssive,
adaj)tablf, and affordable endeavor for today 's prvduclivily-conscious worhj)lacf."

- Mill!' PO/l'l , \ 'icf' J>midflli , n 'c/1II0/0,1.,,)' j)fr/lf,IOjJ/l/flli, Ta/igflli , 111 1'.

Recent activit), in object technology has extended beyond class libraries to

focus on frameworks. Frameworks represent the nextle\TI ofabstraClion in

programming and offer proof o[the promises of reu!'e and increased

prod uctivi ty.

Because frameworks are used frequently in creating CUI-bascd

applications , many programmers believe that framework usc is limited to this

type of application coding. However, framcworks can be used to sol\'c \'irtually

any design problem ifprogrammers understan'cl exactl)' what fralllc\\'orks arc

and how to use them .

Taligent, Inc., bases its COlllmonPoint " application cllvironment

architecture on frameworks. This architecture exercises the filII power of

frameworks programming and is unique in that it allow~ for straightf()rward.

cross-platform implementation.

For readers familiar with tile basic principles of ol~icct-ori('nl('d

design and C++ programming, TIl(' j>owf' rfljIitlllll'Workl book and

CD-ROM provide :

• lnsight into what frameworks are, how to use them , and how to

design them

• Preconstructed frameworks and an interanin:' presentation of class

hierarchies, as well as source code for executable samples

• An opportunit), for V\' indows ''I and OS/ 2 developers to cxpericnce the

bene(jL~ of working with frameworks as they Illodif~ ', cnhancc. and extencl

thc samples.

Minimum system requirements:
• Intel 386 SX-compatible

• 8 MB RAM
• 10MB free hard disk space to compile sample applications
• Microsoft Windows 3.1 , Windows 95, or IBM OS/2 Warp
• Display card and monitor capable of 640x480, 256-color resolution or better
• CD-ROM drive

• Mouse

ADDISON-WESLEY PUI3L1SlIlNC CO~IPi\NY

~ The Taligent Rekrencc

~ Lilmll-Y is the oflicial

~A~I;ESN~ documentation f()r

developers working in tilc T,tiigelll

Application EIl\'ironll1cnt.

FOllnded in March 1992. Taligcnl

is an indcpendent s\ 'stelll sortware

com pan\', owncd by Apple . 1B'\1 , and

Hcwlctt-Packarcl . The cOlllpall\ i~

den'loping sysLt'1l1 software

CIl\'irOIlIl1Cllts based completely on

objcct-oriented techllolo~·. \\'hich

\\'ill be 01X'1] for extension at alllc\'C1s

Iw sofh\'are den'lopers , hardwarc

OEMs, and systems \'endors. Taligent.

along with its ill\'estors wililict'nse.

ll1arket. ancl support its software

products \\·orldwidc.

90000

9 780201 483482

ISBN 0-201-48348-3

