
·

TALIGENT'S

GUID.E

TO

DESIGNING

PROGRAMS
\ .

,WELL-MANNERED OBjECT-

ORIENTED DESIGN IN C++

IJII T.hli ~ ..L~ gent.

TALIGENT'S GUIDE TO

DESIGNING PROGRAMS

WELL-MANNERED OBJECT-ORIENTED DESIGN IN C++

TALIGENT
PRE S S

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn Sydney
Singapore Tokyo Madrid Sanjuan Paris Seoul Milan Mexico City Taipei

Library of Congress Cataloging-in-Publication Data

Taligent's guide to designing programs : well-mannered object-oriented
design in C++.

p. cm.
"Taligent Press."
Includes index.
ISBN 0-201-40888-0
1. Object-oriented programming
(Computer program language)
QA76.64.T34 1994
005.2--dc20

(Computer science)
I. Taligent, Inc.

2. C++

94-1186
CIP

Taligent and the Taligent logo are registered trademarks of Taligent, Inc.
All other Trademarks belong to their respective companies.

This manual and the software described in it are copyrighted. Under the copyright laws, this manual
or the software may not be copied, in whole or part, without the prior written consent of Taligent.

The product described in this manual may be protected by one or more U.S. and
International Patents.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

Copyright © 1994 by Taligent, Inc. 10201 N. De Auza Blvd., Cupertino, California 95014-2233 U.S.A.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 and FAR 52.227-19.

Sponsoring Editor: Martha Steffen
Cover and text design: Taligent Technical Communications Group, Gary Ashcavai
Set in 10 point New Baskerville

4 5 6 7 8-CRS-9998979695
Fourth printing, May 1995

Addison-Wesley books are available for bulk purchases by corporations, institutions, and other
organizations. For more information please contact the Corporate, Government and Special Sales
Department at (800) 238-9682.

Taligent s Guide to Designing Programs is a collection of guidelines

and conventions that Taligent® engineers follow as they design

and build the Taligen t Application Environment.

This book is not meant to be read from cover to cover;

instead, pick a topic of interest and become familiar with it.

To find an interesting topic, open this book to any chapter, read

the annotated Contents, look at only the code samples, or scan

the Index.

What's important is to become familiar with the topics so that

when you have design questions, you'll know where to look.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

II

BRIEF CONTENTS

Preface .. XXIII

Introduction ... 1

Archi tectural goals .. 1

Object-oriented architecture .. 2

Putting it all together ~ .. 4

Object-oriented design guidelines .. 7
Classes .. 7
Abstract base classes ... 12

Inheritance ... 12

Multiple inheritance .. 17
Performance by design .. 19
Common design problems and pitfalls .. 22

c++ programming conventions ... 29
The C++ standard ... 29
Source file conventions ... 30
Name conventions ... 32
Class definition conventions ... 37
Type declaration conventions ... 40
Arguments and function results .. 43
Reference and value semantics: C++ versus everything else 46
Static object constructors .. 48
The C preprocessor ... 49
Things to avoid .. 52

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

III

D Taligent environment programming converitions 55
Taligent libraries .. 55
Storage management philosophy .. 57
Shared libraries ... 58
Binary compatibility considerations .. 60
Inline functions .. 62
Virtual functions ... 66
Friend functions and classes .. 74
Exception handling .. 74
Portable hash .. 84
Equality ... 86

Taligent environment programming tips and techniques 91
Surrogate objects .. 91
Storage management issues ... 96
Concurrency and shared library issues ... 99
Miscellaneous programming tips .. 104

Portability issues .. 109
Language and hardware assumptions ... 109

Synchronization .. 112

Portable data ... 1 1 2

Assembly language ... 1 13

Nonportable code .. 113

Class templates ... 115

Definitions and conventions .. 115

Sharing class template implementations .. 117
The example class: an owning stack .. 119

Sharing the implementation through private inheritance 123

Sharing the implementation by delegating to a member 130

Further reading .. 135

Bibliography ... 137

Index ... 141

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

IV CONTENTS

CONTENTS

Prefa ce .. XXIII

Introduction ... 1

Taligent architectural goals and the principles that help you design software
more effectively.

Object-oriented design guidelines .. 7
Classes .. 7
Follow these guidelines as you design individual classes.

Reflect the client's view .. 7
The client interface reflects precisely the information relevant to the client ~
problem domain, and no more. Doing this well is key to object-oriented
design.

Let resources find you .. 8
Resources register themselves with services; services should not look for
resources. If you need to use another object, let the client give it to you: don't
find it yourself.

Express all interfaces through objects .. 9
All interfaces in the Taligent Application Environment are expressed in
terms of objects, specifically, classes corresponding to the abstractions that a
developer must deal with.

Preserve class invariants ... 10

An invariant is an assertion about an object~ internal state that is helpful
in making sure that the object transitions from one valid state to another,
and meets the behavioral promises in its interface.

Object-oriented design with C++ ... 10

The C++ typing features are a great help in defining the interface to a class,
but the entire definition of a class can't be expressed in the C++ definition.
For a class definition to be complete, you must define its constructors and
destructor, copy constructor, and assignment operators.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS V

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

Abstract base classes : ... 12

Classes that act as base classes and are not meant to be instantiated are abstract
base classes. Follow the techniques in this section to make that clear.

Inheritance .. 12

There are two forms of inheritance in C++: type inheritance and implementation
inheritance. Either form allows a derived class to share or override behavior
inherited from a base class. However, type inheritance allows a derived class to
inherit type information as well, allowing for polymorphism.

Use type inheritance to share protocol .. 13
Use public base classes whenever a collection of classes shares protocol. The
only reason for a base class to be public is so that a pointer or reference to the
derived class can be converted into a pointer or reference to the base class.

Use implementation inheritance to override behavior 13
Use private and protected base classes when you want to inherit behavior or
override it but don't need to inherit public protocol, such as when inheriting
from a framework to override behavior.

Design the interfaces between the base and derived classes 14
The interface between a base class and its derived classes is the contract
between the base and derived classes. Design your interface to derived classes
so that a derived class that uses every supported aspect of that interface
doesn't compromise the integrity of your public interface.

Guarantee use of derived classes as arguments .. 15
Any function that accepts a reference or pointer to an object of a given class
must be prepared to receive a derived class as an actual argument.

Implement full protocol in derived classes .. 15
If a base class is public, the derived class must correctry implement all aspects
of the base class' public interface.

Preserve semantics in a derived class .. 16
Any public member function of the base class must not have its semantics
changed by the derived class, and must accept the same set of arguments. Be
especially careful when you have two or more public base classes; make sure
that the semantics of all of them are satisfied, particularly if they export the
same or similar protocol.

Avoid deep nesting in lightweight objects .. 17
Make sure that lightweight objects you intend to create or destroy quickly do
not use deeply nested inheritance or many embedded objects.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

VI CONTENTS

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

Multiple inheritance .. 17
Classes in the Taligent Application Environment are partitioned into two
categories: base classes that represent fundamental functional objects, and mixin
classes that represent optional functionality.

Be aware of problems with virtual bases .. 18
Virtual base classes can be hard to understand. Once you have a pointer to a
virtual base, there's no way to convert it back into a pointer to its enclosing
class. Virtual bases are always initialized by the most derived class, whether
they are accessible to that class or not.

Avoid multiple occurrences of a base ... 19
Use multiple occurrences of a base class only when there are data members
associated with it.

Performance by design .. 19
Design performance into your code from the beginning, and tune your code to
improve it.

Design performance in .. 19
Choosing the right data structures and algorithms is the most important
aspect of good performance. The best way to speed up code is to eliminate it.

Conduct performance analysis .. 20

You need hard data to solve performance problems. Measure your code to
find out what can be improved.

Perform controlled experiments ... 20

By making your performance tests controlled experiments, you understand
which variables change and which are constant. This shows what is
effective, and what is not.

Use static objects instead of temporaries .. 20

Use static objects rather than constant temporaries, but beware of
initialization order problems.

Use chunky iteration for performance .. 21

A chunky iterator returns multiple data elements at once. The iterator, not
the client, determines the count of elements to return based on the internal
structure of the data collection, which the client knows nothing about.

Use cache objects .. 2 1

Creating and destroying objects can take a lot of time; consider holding onto
objects for longer periods and reusing them.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS VII

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

Common design problems and pitfalls ... 22

Prepare to rethink your designs as they progress. Don't be afraid to change your
design based on experience gained.

Object bloat .. 22

A class definition requires a concise human language definition, or you
might have a problem.

Lost object focus ... 22

A class might start life with a concise definition, but over time that definition
often becomes fuzzy or nonexistent. Watch the class designs and make sure
that an object's role remains well-defined.

Hardening of the architecture .. 23
Don't put into base classes functionality that all derived classes won't use. If
you can't tell whether a function is needed or not, your design is getting out
of control.

Structification ... 23
An interface that is long on state-related functions and short on members
that perform an action is a sign of bad design.

Modulitis ... 23
Modulitis occurs when member functions don't refer to the t hi s pointer,
either directly or indirectly, or when the class has static members only.

Managers are not objects .. 24
Class definitions reflect the important objects from the client's problem
domain, not from the programmer's implementation domain.

Collections of functions are not objects ... 24
Functions must live with the objects that they affect, not in handy packages.
Functions that apply to more than one object should usually be static.

Encapsulation leakage ... 24
Don't let the details about a class' internal implementation leak out through
the interface. As more internal details become visible, there is less flexibility to
make changes later. Watch for member functions that return a reference or
pointer to a data member of the object.

Empty base classes .. 25
Base classes (especially public ones) should only exist if there is protocol to be
inherited.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

VIII CONTENTS

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

Common design problems and pitfalls, continued

Encapsulation leakage .. 24
Push those members that are not meaningful for all of their derived classes
down into a derived class; either a concrete class or a less abstract base class.

Overachieving base classes ... 25
Avoid functionality in base classes that all derived classes will not use,
especially if they have to override it to turn it off.

Distinguish is-a from has-a relationships ... 26
Use public base classes only when polymorphism is important; private or
protected base classes when behavior is going to be inherited; members when
behavior is only going to be used.

c++ programming conventions ... 29
The C++ standard : ... 29
The standard for the Taligent Application Environment C++ code assumes
nothing more than what is defined by the draft ANSI/ISO C++ specification.

Source file conventions ... 30
Source jile conventions are the basic rules for managing and documenting source
jiles when programming in C++.

Include copyright notices .. 30
In order to protect your organization's intellectual property, include a
copyright line at the front of every jile you create.

Use comments .. 30
If you must read the source code more than once or twice to jigure it out,
include a comment. Comments complement the source code, not parrot it.

Include function prototypes .. 30
Omit dummy argument names in function declarations only if the meaning
is clear without them. Include argument names when you have more than
one argument of the same type.

Do not use code names in filenames ... 31
File names should never contain code names. Use straightforward,
meaningful names.

Enclose definitions in header files .. 31
Enclose all header jile definitions, and all the necessary antecedents, in a
4Ii fndef construct.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS IX

CHAPTER 3 C++ PROGRAMMING CONVENTIONS

Include only related classes in one file ... 32
Limit each header file to a single class definition or a set of related class
definitions.

Name conventions .. 32
Select C++ identifiers carefully. Choose names to enhance readability and
comprehension; when a programmer sees a name, it might be out of context.
Follow the standard name conventions to make the scope of names explicit. Also,
in any name that contains more than one word, the first word follows the
convention for the type of the name, and subsequent words follow with the first
letter of each word capitalized.

Use specific names ... 34
Names should tend to the specific rather than the generic.

But use generic names for abstract base classes ... 34
The most abstract base class in a hierarchy should have the most generic,
abstract name with subclass names denoting refinement. Don't give an
abstract base class a name that is derived from a concrete derived class.

Avoid abbreviations .. 34
Abbreviations are only acceptable when they are consistent and universal.

Use special names for copy, create, and adopt routines 35
Routines that allocate storage or take responsibility for storage have special
names and guidelines.

Use global names only for classes ... 35
Only classes s/lould have names with global scope (that is, not nested within
a class). Placb ordinary functions and global variables into the scope of their
associated cl~ss. Most global functions and variables should be static
members of some class. The same applies to constant: make them members of
an enumeration inside a class, if possible.

Class definition conventions .. 37
Most naming conventions do not sufficiently convey the information that a client
or derived class needs to know.

Follow member function conventions .. 37
Conventions to follow when designing and using member functions.

State explicit use of public, private, and protected 38
Class definitions should always explicitly state the visibility of their members
and base classes.

Use separate class definition sections ... 39
Separate members in a class declaration into sections according to what
usually calls them. Place private virtual member functions that are meant to
be overridden ahead of public functions that clients and subclasses should
not call.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

X CONTENTS

CHAPTER 3 C++ PROGRAMMING CONVENTIONS

Type declaration conventions .. 40
When making a declaration, think about whether you should use an existing type
or make a new type to distinguish a new usage.

Avoid raw C types with dimensions ... 40
Declare types rather than using raw C types.

Use dimensionless raw C types .. 41
Use a raw C type because it's a dimensionless number and falls within the
definition of the C type, or define a typedef based on the function of the type,
not its concrete representation.

Avoid type casting ... 41
The only generally acceptable casts are the conversion kind. Avoid all casts
involving pointers unless absolutely necessary. Never allow nonpointer casts
to silently become coercions.

Use consistent return types for assignment operators 43
Assignment operators should return a type that is consistent to the developer,
usually a non-const reference.

State typedef class names before specifications .. 43
When declaring a typedef of class, place the name between the data type and
the member specifications.

Arguments and function results ... 43
Return results by value only when there is no need for polymorphism; use a
pointer to return an alias from a function; never return references from functions.

Pass variables when possible .. 44
When polymorphism is possible, allow the caller to pass in a variable (via
reference) for the result of a function, rather than create and return a result
yourself.

Use array arguments instead of pointers ··44
Use [] instead of* for arrays in argument lists, because it is clearer.

Limit default arguments .. 44
Avoid more than one or two default arguments. Further, because default
arguments constitute a form of in line declaration, avoid them.

Avoid functions with unspecified arguments (...) 45
There are very few functions that need (. ..); use default arguments or
function overloading instead.

Avoid returning pointers without allocation .. 45
Use lightweight surrogate-objects to set and get subobjects by value, and to
obviate the need for pointers.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XI

CHAPTER 3 C++ PROGRAMMING CONVENTIONS

Reference and value semantics: C++ versus everything else 46
c++ handles all types in a program the same way. This is a benefit, but there are
some implications for your c++ programming style.

Use pointers to make multiple references ... 46
Use pointers when you want multiple references to the same object or a
dynamic data structure. Better still, pass the class by value, or use a
surrogate, if you can.

Use references for a one-time reference .. 46
Use references when a parameter is to be passed by reference; use pointers
when the function you call retains a reference.

Allocate storage only if you must .. 47
Leave storage allocation to the class ({lient. No matter how clever or efJicient
your storage allocator, it can never be as fast. as allocating an object on the
stack, or as part of another object.

Pretend everything is a primitive .. 47
Design your classes so that using them is like using a primitive type in C.

Static object constructors .. 48
Don't rely on static objects in other Jiles being available in functions called at
static constructor time. Don't count on operations to work at static constructor
time unless they are specifically documented to do so, and most should not make
that promise.

The C preprocessor .. 49
c++ has features that supersede most of the techniques that required the C
preprocessor. Sometimes you need to use the preprocessor to accomplish things you
can't do with C++, but the need occurs far less often.

Use const instead of#define constants ... 49
Never usdfdefi ne for symbolic constants. Instead, use the C++ const storage
class.

Use enum instead of sets of constants .. 50
If your constants define a related set, don't use separate con s t definitions.
Instead, make your constants an enumerated type.

Use inlines instead of function macros .. 51
Declare functions inline to obviate the need for function macros.

Use templates for specialized functions and classes 51
Use templates whenever you want to define a family of classes or functions
that is specialized for a number of different types.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

XII CONTENTS

CHAPTER 3 C++ PROGRAMMING CONVENTIONS

Things to avoid .. 52
Some things make your code more readable, some can also make your code more
reliable.

Don't use goto .. 52
A goto completely invalidates the high-level structure of the code.

Avoid magic numbers ... 52
A magic number is any literal written in line rather than defined as a
symbol.

Avoid bit flags (& and /) ... 53
Use the built-in Boolean type if you want to keep Boolean flags. Use the C++
built-in bit-jield facility for handling single-bit flags.

Avoid using arrays as local variables or object fields 53
Arrays with fixed bounds often signal that an arbitrary limit exists in your
code. If that limit is exceeded, an exception or possible stack corruption
results. If you use large arrays with fixed bounds, consider whether your code
is general enough.

Taligent environment programming conventions 55
Taligent libraries ... 55
Use the Taligent Application Environment library routines rather than the
routines defined in the standard ANSI C libraries.

Avoid homegrown utility classes .. 56
Taligent doesn't permit custom alternatives to the provided Utility classes.

Use the Name Server .. 56
Use the Taligent Toolbox Name Server to name fixed resources; don't use it
for naming user-visible entities.

Storage management philosophy ... 57
lVhere possible, use automatic or static allocation instead of your own storage
management.

Hide allocation inside a class ... 57
If you must allocate storage, do so in a class, where it is easy to track.

Don't assume use of a heap ... 57
If you must assume that an argument is heap based, document that fact,
and if you plan to take responsibility for managing the storage, use the
proper naming convention.

Clarify ownership of storage in interfaces ... 57
Make storage management implications clear to the callers of an interface,
especially if the routine allocates storage for which the caller must take
responsibility.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XIII

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS

Don't use very large local variables or members .. 57
Don't allocate more than a few kilobytes at a time on the stack; use the heap
for objects larger than a few kilobytes; be wary of arrays as local variables or
object fields.

Shared libraries ... 58
Shared libraries have many advantages. However, because the library is shared
among many applications, unreferenced code and data can't be stripped. Static
data in particular is a problem.

Avoid static objects ... 58
Avoid modifiable static data in shared libraries, including static objects with
constructors. If you need it modifiable, allocate it on demand.

Consider alternatives to temporary objects .. 60
If you use an object as a constant, it:S better to create it once and use it
repeatedly.

Binary compatibility considerations .. 60
Once your code is released, you should not make changes that break compatibility.
Here are some how-to tips and considerations to avoid breaking your code.

Adding virtual and nonvirtual functions .. 60
You can use nonvirtual functions.

Changing a function from inline to noninline .. 60
Although you can do this, it won't affect any of the compiled code that calls
it. It only affects new callers.

Removing private nonvirtual functions not called by inlines 61
If you refer to a function from an inline, and that inline is called by clients
or derived classes, you can never remove the function (with some exceptions).

Using classes internal to your implementation .. 61
If you have a class whose definition does not appear in any public header
file, you can do anything you want. However, you have to recompile and
reship any code that does refer to the class definition.

Use virtual functions if overrides are possible .. 61
Member functions cannot be changed between virtual and nonvirtual
without breaking callers. If you think you might ever want to override a
function, make it virtual.

Rearranging, adding, and removing private data members
with restrictions .. 62
Private data members can be added, removed, and rearranged only in a few
circumstances.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

XIV CONTENTS

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

Inline functions ... 62
Inline definitions can be very useful, but in general avoid them because they get
compiled into your caller's code, making them difficult to revise.

Inlines that call something else ... 63
Inline Junctions can call something else that isn't inline, as long as the other
Junction has identical semantics.

Inline function definitions in .C files .. 63
Don't use an inline Junction definition in a . C file, it is not a portable
construct. Instead, define a private in line in the header file.

Inlines for extreme efficiency .. 64
Sometimes it's acceptable to use inlines if efficiency is extremely important.
However, if you do this, you will never be able to change orpatch this routine
once the code ships.

Don't write inlines in declarations .. 64
Don't write the Junction definition directly in the class declaration.

Inlines for exporting private and protected members 65
Use inline Junctions instead oj directly exporting data members as private or
protected.

Empty special members ... 65
An abstract base class with no storage and no implementation can have
special member Junctions explicitly empty in the class declaration. Don't do
this if there are any data members or if there is significant implementation.

Virtual inline functions where the type is not known 65
Use this technique when the type is not known statically.

Virtual functions ... 66
Use virtual Junctions to defer abstract-operation implementation to a derived
class, or to allow a derived class to augment the implementation oj an operation
defined in the base. Do not use virtual Junctions to trap calls, and then take an
action based on where the calls came Jrom.

Define class abstractions .. 66
The class must specify if and how virtual Junctions can be overridden, and
what the responsibilities oj the derived class are. The presence of virtual or
protected is not enough to define the interface to derived classes.

Decide now what might be overridden later .. 67
Any class that might allow polymorphism in the future should use virtual
functions now; any function that will eventually allow overriding should be
virtual now.

When to use pure virtual functions ... 67
A pure virtual function must be overridden before you can instantiate a
concrete class.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XV

CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

Private virtual functions to control access .. 68
A private virtual function can be overridden by derived classes, but can only
be called from within the base class. To avoid cascading the calls to inherited
functions, define an empty hook function.

Base class constructors cannot call virtual functions 68
Use an Initialize() function to call a special virtual function immediately
after constructing a base class instance. Never require the client to call a
separate virtual Initialize() function to finish initialization after
constructing all bases.

Destructors are not automatically virtual ... 71
A class must have a virtual destructor if it has any virtual functions, or if it
is deleted through a polymorphic pointer.

Switch statements indicate polymorphism ... 72
Switch statements are nature s way of saying that you should be using
polymorphism. The same thing applies to lookup tables.

When to use virtual assignment .. 72
There are several ramifications surrounding making assignment operator=,
virtual. This is an area of c++ where there is no single correct approach.
Theoretically, the correct approach would be to always make assignment
virtual, but doing so leads to problems of its own.

Friend functions and classes ... 74
Don't use friend declarations for loosery coupled classes. An alternative is to
define internal use only public member functions, and use a comment to denote
what they are for.

Exception handling .. 74
Use exceptions, not error codes, to deal with unusual circumstances.

Avoid interface specification ... 76
Interface specification defines the exceptions that a function can throw. Do
not use this technique.

Perform resource recovery .. 76
The easiest way to handle resource recovery is to tie it to automatic objects.
Many handlers just do the resource recovery and then pass the exception on.

Design exception classes .. 81
All exceptions generated by the Taligent Application Environment code
descend and inherit from TStandardException. Use it.

rALIGENT'S GUIDE TO DESIGNING PROGRAMS

XVI CONTENTS

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS

Exception handling, continued

Wh.en to signal an exception ... 82
Signal an exception when a condition occurs that prevents your function
from returning its normal result. Don't throw exceptions in destructors, and
don't call anything that might throw an exception unless you're prepared to
catch it and deal with it.

Wh.en to recover an exception .. 83
Recover from an exception only when you can take a sensible action. Also, do
not catch TStandardException or (. ..) and fail to rethrow it, separate error
recovery and resource cleanup handlers, and use assertions to signal error
conditions due to programming error.

Portable hash ... ~ ... 84
The Taligent Application Environment sometimes stores objects in disk files that
are accessed via a hash. In order for the index structures in these files to work
when the files are transported across platforms, the hash functions used must
return the same result on every platform.

Equality .. 86
Equality between two objects means that the logical contents of the objects are
identical in every respect. As far as the public interfaces are concerned, the two
objects always return the same values. The objects can have different internal
states that are not captured in an equality comparison, but those are not relevant
to the public values of the objects.

Wh.en equality does not apply .. 87
For some classes, equality doesn't make sense and you shouldn't create an
equality operator. One good test is that where assignment doesn't make sense,
equality doesn't either. If you can't define operator=, then you shouldn't
define operator==.

Equality between different types ... 88
If you allow different types to be equal, you must be very careful that the
invariant still holds: if X== Y, then y==x.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

II Taligent environment programming tips and techniques 91
Surrogate objects ... 91
Surrogate objects act as stand-ins for other objects. Typically you use a surrogate
to manipulate or refer to the master.

Explicit masters .. 93
An explicit master surrogate is a stand-in for a master object. While you can
access the master object directly, you will probably use the surrogate instead.

Handle surrogates .. 93
A handle surrogate is a conduit you use to get to the master object to avoid
direct creation or use of the master object. Handle surrogates are similar to
counted pointers.

Hidden masters .. 94
A hidden master surrogate creates and modifies a new copy of the master; the
master's existence is transparent to the client. Use hidden masters to lazy
evaluate expensive operations.

Surrogates that view masters ... 95
This kind of surrogate object encapsulates information about an aspect of
the master object, but is not necessarily a true surrogate for the master.
Instead, it is a synthetic or virtual perspective on that object, and it does not
necessarily share a common base class. Iterators associated with the
Collection classes are surrogates.

Storage management issues ... 96
Even though storage management is a design issue, there are some
implementation techniques to consider.

Follow naming conventions ... 96
If a routine allocates storage that it then hands back to the caller, or if the
caller hands it storage that it is then responsible for, name the function
appropriately.

Use copy semantics wherever possible .. 96
Use copy semantics with reference-based implementations.

Avoid storage manipulation in open code ... 98
The most error-prone thing you can do in C or C++ is raw storage
manipulation. Do not do it. If you must, use a Collection class. If you have
to do it yourself, wrap it in a class. Never include raw storage manipulation
in open code.

Allocate subobjects on the heap for debugging ... 98
Many objects have very localized scope and don't need to be allocated on the
heap.

LALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XVII

XVIII CONTENTS

CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

Concurrency and shared library issues .. 99
Preemptive scheduling causes many pains for concurrency and synchronization.
For some relief, synchronize high-level constructs only; avoid synchronizing low-
level constructs because synchronization has storage and time penalties.

Synchronization techniques .. 99
The Taligent Application Environment uses sychronization locks and
surrogates to perform synchronization. Always perform synchronization
inside an object, don't let a client do the work.

Synchronization and problems with memory access 100

Memory accesses are not atomic and are not safe to use for synchronization,
though multiple threads can safely read a storage location without
synchronization as long as no one is trying to change it at the same time.

Synchronization of global and static variables .. 100

Any globals (including static class members) that are written or read by more
than one thread must be protected by locking.

Shared memory between tasks ... 101

Avoid sharing memory between tasks. If you have to, modify your shared
memory from a server, and give clients read-only access.

Shared heaps ... 102

If an object allocates storage and you want the object in a shared heap, use a
special form of the new operator.

Shared memory problems with const.. .. l02

There are several techniques for working with canst functions. Use one
listed in this section.

Static destructors for subsystem cleanup .. 103

Use destructors for static objects to ensure that a subsystem in a shared
library performs some kind of cleanup at application quit time.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XIX

CHAPTER 5 T ALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

Miscellaneous programming tips ... 104

These are a collection of miscellaneous programming tips.

Create objects in a valid state .. 104

Don't create objects in an invalid state and later expect the client to call an
open function, or call a close function before destruction. Always allocate
needed resources in the constructor.

Use flattening rather than dynamic class instantiation 104

Use Resurrect to unflatten a flattened polymorphic object.

Check for self-assignment with operator =: .. 104

A common mistake when implementing assignment is to forget to check for
self reference-the t his pointer being the same as the argument being
assigned.

Balance overloaded operators ... 105

Include overloaded operators in balanced sets.

Use static members as constructors .. 105

When the standard constructor mechanism is too inflexible; use a static
member function that calls a private constructor to create a partially valid
object, then finish building it and return the result.

Differentiate overloaded constructors .. 105

When you want to overload constructors, but discover that the argument
types you want to use are not sufficient to differentiate those constructors, use
a lightweight (inline) nested class to wrap constructor arguments in a
distinct type that ~ easy to overload.

Hide implementation classes .. l0S

Classes that are used solely by your implementation need not be declared in
your public header file, as long as your class refers to them by pointer.

Use nil pointer deletion .. 106

You can use delete p, where p is a nil pointer, because nothing happens. It
can be very useful, especially in exception handlers.

Issues in overloading and overriding classes .. 106

If you override an overloaded member function (virtual or not), override all
the overloaded variants.

Control class access .. 107

Assign private and protected to special member functions to control access
and use of your class.

ALIGENT'S GUIDE TO DESIGNING PROGRAMS

XX CONTENTS

Portability issues ... 109

Language and hardware assumptions .. 109

To write portable code, don't make assumptions about the language or hardware.

Safe assumptions ... 109

There are few safe assumptions you can make about raw C and C++ data
types. In general, watch your assumptions carefully, and use typedefs instead
ofC types.

Bad assumptions ... 1 10

Bad assumptions make your code nonportable.

Synchronization ... 112

Do not use synchronization outside the scope of supported synchronization
constructs.

Portable data .. 112

If you write or read any data in a context where it might go to or come from a
different CPU running Taligent Application Environment, use TStream and
remember that some data types are not portable.

Assembly language .. 113

Do not use assembly language.

Nonportable code ... 113

Follow the steps in this section if you must write non portable code.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Class template.s ... 115
Template implementations are hard to maintain because they get compiled into
your client's code. Templates also, by their very nature, tend to bloat the resulting
object code. This guide provides design standards and conventions to increase
code maintainability, and to reduce the memory footprint.

Definitions and conventions .. 115
A class template is the definition of the template for the class; a specialized class is
a class produced by invoking the template. By convention, end class-template
names with prepositions. Also, place the noninline class-template method
implementations in a separate include file.

Sharing class template implementations ... 117
To be reusable, the implementation class deals with objects at the level common to
all types that your template can be instantiated with. Any implementation-hiding
class template design depends upon the specifics of your code.

Sharing the implementation through private inheritance 123

This technique uses private inheritance to share the implementation class between
multiple specializations of the template.

Sharing the implementation by delegating to a member 130

An alterative to private inheritance is to delegate the implementation to a member.
This technique usually leads to cleaner code than achieved by using private
inheritance.

Bibliography .. 137
In addition to listing the documents cited in this book, here are other books you
can read for further study.

Index ... t ••• 141

rALIGENT'S GUIDE TO DESIGNING PROGRAMS

CONTENTS XXI

PREFACE

If you browse the computer section of any technical bookstore, you '11 find many
good books offering advice on how to do object-oriented design-books dealing
both with general design principles and with design principles specific to C++.
Why then does the industry need another book, one targeted not only to a
specific language (C++), but to a specific system?

My experience has been that 0 bject -orien ted design is best learned from using it
to actually build systems. The style guidelines and design rules in Taligent's Guide
to Designing Programs come from years of that kind of experience, building
large object-oriented C++ systems in the Taligent@ environment. If you plan
to develop for Taligent environments, this book will provide you with an
understanding of the philosophy underlying Taligent's designs, and the way
in which to fit your own work into Taligent's environments. If your interest is
simply in object-oriented design and C++, then my hope is that this book will
benefit you by showing the experiences of one company.

This book grew from an internal style guide I wrote, which Taligent uses to
develop its products, to train engineers, and to orient Taligent early developers
to the Taligentsystem. These guidelines, like most, are based partly on empirical
heuristics, and partly on principles. Although the focus has always been
specifically on the writing ofTaligent software, much of what we have learned is
applicable riot only to Taligent, but to any C++ system.

It is important for Taligent to have a consistent style of design across the many
components that make up our systems, but you may find a different style that
works well for you. We are interested in hearing about your experiences-if you
have comments, please send them to Internet: Taligent_DTS@Taligent.com or
CompuServe: 76711,1260.

This book assumes that you have a working knowledge of C++ and of
object-oriented design. If you are just starting out on either, you will find
several useful introductory books listed in the Bibliography.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

XXIII

XXIV PREFACE

Acknowledgments Although the list is too lengthy to present here, I would like to thank those
individuals, both at Taligent and other companies, whose contributions and
reviewshelpedmakethisbookpossible.I'dalsoliketothankTaligent'sTechnical
Communications department for taking my internal style guide and
transforming it, over several editions, into something more suitable for
publication.

Cupertino, California David Goldsmith

David Goldsmith is a Senior Scientist at Taligent, Inc., where he has contributed to the
architecture, design, and consistency of the Taligent Application Environment.
Previously, he led work on early versions of the MacApp application framework at
Apple Computer.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

PREFACE XXV

[ALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 1

INTRODUCTION

The Taligent Application Environment system software platform

introduces a powerful new programming model and architecture

that enables developers to build exciting applications for a variety

of platforms.

\RCHITECTURAL GOALS

To achieve its overall design goals, Taligent established several fundamental
architectural principles for the Taligent Application Environment:

Ii1i Ensure that the Taligent Application Environment is highly portable to new
architectures, that it is fully international, and that it encapsulate
environmental assumptions-enabling software developers to be flexible in
reacting to changes in customer requirements, market conditions, and new
technology.

Ii1i Ensure that the environment and APIs are consistent, coherent, and clear.

Ii1i Encourage system encapsulation through all service layers to minimize risk
and to allow for parallel development and extension.

Ii1i Promote robustness by designing quality into the behavior of the
environment, simplifying the coding effort required of developers.

The guidelines in this book helped Taligent meet its architectural goals for the
Taligen t Application Environment. Becoming familiar wi th them will provide you
with a better understanding of the design and coding choices made for the
Taligent Application Environment, enabling you to more effectively design
software for it or other object-oriented systems.

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

2 CHAPTER 1 INTRODUCTION

OBJECT-ORIENTED ARCHITECTURE

OBjECT-ORIENTED ARCHITECTURE

All interfaces are
expressed through
objects

Commonality is
managed through
inheritance

The object-oriented design of the Taligent Application Environment supports its
architectural goals. Some of the key features of this design are explored here.

To provide the most flexibility, the client interface to services should be through
classes and the objects of those classes. Achieving this flexibility means that,
among other things, messages, file formats, and data formats should never be
defined as attributes of the interface. Although all these services can be used in
the implementation of other services, they should never form part of another
service's interface.

But simply using objects is not enough: to perform well, objects must be correctly
defined. In the Taligent Application Environment objects are defined in terms
not of the implementation, but of the abstraction presented to the client. It is
tempting to pile everything into the class interface, but resist this urge. The key is
to design the class from the client's point of view, by asking these important
object-oriented design questions:

IIiII What are the entities involved?

IIiII What do I need to know about them?

IIiII What operations can I perform on them?

For more information, see "Reflect the client's view" on page 7 and "Express all
interfaces through objects" on page 9.

Commonality in software systems has traditionally been managed through the
commonality of implementation. For example, UNIX@ systems manage devices
by making everything look like a block device or a character device. Device
specific features are provided through extensions.

A better method is provided by type inheritance. A base class defines an
abstraction, and thus an interface, common to many objects. Specific objects
then derive from that base class, declaring themselves to be subtypes. These
objects implement those features unique to themselves, as well as those of the
common protocol. Several levels of abstract base classes thus yield successively
more refined points of commonality. Additionally, to support more than one
shared protocol, objects can inherit from multiple base classes. (See "Use type
inheritance to share protocol" on page 13.)

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

~bjects are leveraged
Nherever possible

=rameworks provide
he foundation

CHAPTER 1 INTRODUCTION 3
OBJECT-ORIENTED ARCHITECTURE

The benefit to clients is that they need only deal with the level of detail required
by talking to the abstract base class and by making themselves independent of the
details of the subclasses-allowing the details of the abstract base class to change,
or for new subclasses to be added, without breaking existing software.

Note that inheritance of code has nothing to do with type relationships, and
should be dealt with by has-a relationships (member objects), private base classes
(a special kind of has-a relationship), or protected interfa~es. However, it's
acceptable and common to inherit both code and type from the same base class.

Using an existing object is better than inventing or reinventing a new one. Less
code means a smaller memory footprint, yielding better performance; fewer
classes means less for the developer to learn; and less to implement means fewer
bugs, leading to a more reliable, more robust system. In the Taligent Application
Environment, for example, the Collection classes provide a set of tested and
debugged data stru~tures that you don't have to write and debug yourself.

Naturally, leveragability does not mean one size always fits all. In another context,
speed or space performance might demand use of a custom data structure.
That's OK. As Einstein said, "Everything should be made as simple as possible,
but not simpler."

Objects and inheritance help insulate clients from assumptions and unnecessary
details. But for a developer implementing a derived class, the interface
encapsulates assumptions about the object, but not assumptions about the
interactions between objects. This problem can be solved by frameworks-sets of
object-oriented classes that are designed to work together.

Taligent believes that frameworks provide the foundation for exploiting
object-oriented technology. Frameworks provide an infrastructure that decreases
the amount of code that a programmer must develop, test, and debug.
Developers write only the code necessary to extend or control the framework's
behavior to suit the requirements of a specific application.

Frameworks also allow two subsystems to interact while protecting them from
knowledge of each other (they need know only about the framework); whereas a
class interface only protects the client from the implementation of the provider.
So frameworks not only provide predesigned sets of classes, but also encapsulate
details in a way that lets multiple system components be connected together, a
feature which individual classes cannot manage.

The Taligent Application Environment uses frameworks extensively, providing
application-level frameworks for text and graphics editing, as well as underlying
support frameworks for networking, device drivers, file system support, and I/O.

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

4 CHAPTER 1 INTRODUCTION

PUTTING IT ALL TOGETHER

Let resources find you Traditionally, programs have the names of resources or collections of resources
built into them; when executed, they then search for these names, whether they
will need them or not. A key design principle in the Taligent Application
Environment is to "let resources find you." That is, assumptions about where
resources come from aren't built into objects that don't need to know. Instead,
resources are described as objects, enabling the substitution of equivalent
resource objects later on.

Suppose, for example, an object represents a SCSI device. How should that
object deal with the SCSI interface? Should it call a function of some SCSI
manager? In a system with more than one SCSI bus, such as a personal computer
with optional SCSI cards, this represents a problem because the traditional
approach assumes only one SCSI manager. The driver that knows where to find
the SCSI interface can't deal with this situation. The traditional approach forces
a complicated fix that makes multiple buses look like one bus.

If the SCSI bus is an object, however, that gets passed to the SCSI device object
when it is created, the SCSI device doesn't need knowledge of how to find the
resource (the SCSI bus)-it lets the resource find it.

For more information about working with resources, see "Let resources find you"
on page 8.

PUTTING IT ALL TOGETHER

Taligent's Guide to Designing Programs is the rule book that Taligent engineers
follow as they develop the Taligent Application Environment. Occasionally you
will see directions for engineers to consult their architect. In these situations, if
you don't have an architect, or if you are the architect, use your best judgement.

As you develop and design your applications, consider these rules for Taligent
engineers to be guidelines for you. However, if you are building a program for
the Taligent Application Environment, pay close attention to these conventions
to better understand the reason behind the implementation, and to help ensure
that your application will be compliant with the Taligent environment.

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

CHAPTER 1 INTRODUCTION 5
PUTTING IT ALL TOGETHER

rALIGENT'S GUIDE TO DESIGNING PROGRAMS

CLASSES

Reflect the
client's view

CHAPTER 2

OBJECT-ORIENTED

DESIGN GUIDELINES

Object-oriented design requires that you identify the objects in

your system, and then design classes to represent them. As a class

designer, you have to know the specifics of the class you are

designing and be aware of how that class interacts with other

classes. The art of good class design comes from experience: this

chapter is a collection of the results of many such experiences.

NOTE Before you begin designing classes, you should have a solid
understanding of what classes are and why they are important. If you are new to
object-oriented programming, see the Bibliography for introductory books on
this subject.

Underlying the functionality of any application is the quality of its design. When
designing an individual class, follow the guidelines outlined in this section.

The client is the calling code that uses the services of a class: it calls the public
interface. The benefits of object-oriented design come from making an interface
reflect the client's view of a class rather than the implementer's view, and from
introducing abstractions that simplify the client's work. The client interface
should reflect precisely the information relevant to the client's problem domain,
and no more. The easiest way to do this is to design classes that correspond to the
natural abstractions of a domain. Learning to do this well is key to learning
object-oriented design.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

7

8 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

CLASSES

Let resources find you

Remember that developers of derived classes are also clients, and you should
design the interface to simplify their work. Martin Carroll expressed this
principle in "Design of the USL Standard Components," c++ Report, June 1993:
"Contrary to popular belief, it is rarely possible to take an arbitrary class and
derive a new, useful, and correct subtype from it unless that subtype is of a
specific kind anticipated by the designer of the base class. A given class can be
made extensible only in certain directions."

Resources should register themselves with services; services should not go out
looking for resources. This approach is bottom-up rather than top-down. At
Taligent, the idea of letting resources find you is a fundamental architectural
principle.

Whenever possible, resources should register themselves in the Workspace and
services should be told what resources to use via choices from the Workspace, so
that users need remember only one way to choose things. For example, SCSI
software would enumerate the devices attached to a SCSI bus and create device
drivers for each device. This would happen once at boot time. From then on, the
driver, not the SCSI software, provides access to the resources it represents. A
SCSI disk, for instance, registers itself as a raw device to allow users to select it for
formatting or partitioning.

If the SCSI disk contains volumes, it also registers itselfwith the File System to
allow the volumes to be mounted. The File System in turn registers the new
volumes on the desktop to allow users to select or open them. Note that in each
case, the services only need to know the minimum information. That is, the File
System only needs to know that something is a storage device, not whether it is a
disk, tape, SCSI, or whatever. And the Workspace only needs to know that
something is a resource. In the same way, when that resource is selected, the
application only needs to know it is a storage device.

A similar example is a SCSI scanner application that looks on the SCSI bus and
uses the first scanner it finds. If you have two scanners with different capabilities
that you want to use alternately, you're out of luck, because the assumption built
into the application is that there is only one scanner.

In the Taligent Application Environment, the scanner application waits for the
user to tell it which scanner to use; the scanner might not even be on a SCSI bus.
You don't have to rewrite the application to support a scanner that uses some
other connection technique: knowledge of how to talk to the scanner is built into
the scanner object that is handed to the application.

If you need to use another object, let the client give it to you-don't find
it yourself.

,j

Developers of
derived classes
are clients too.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 9

Express all interfaces
through objects

Almost all interfaces in the Taligent Application Environment are expressed as
objects, specifically classes, which correspond to the abstractions that a developer
must deal with. Interfaces should not be expressed by struct's, dictionaries,
arrays, or any other kind of data structure. You can use these data structures in
the interface (as function arguments, for example), but they can't embody the
interface. Parameter blocks in the Macintosh® operating system are an example
of a data structure that embodies the interface.

Avoid using global variables or functions in an interface. Global variables that are really
constants are exceptions, as are overloaded operators; for symmetry, the latter
must sometimes be global friend functions rather than member functions.

Functions should be members of some class: either regular members, if they can be
characterized as an operation on some object, or static members, if they don't
apply to one object in particular.

Avoid objects or classes that do not correspond to concepts the developer must
deal with. A common example is classes whose name contains "Manager" and of
which there is only one in a given application or task. These are really modules
that have been turned into classes (see "Modulitis" on page 23); they do not
make good objects. Usually, their member functions should be dispersed among
other classes, either as regular members or as static members. If you have an
object that communicates with a server, the object should not be visible in your
interface: the existence of servers should never be visible in class interfaces
(except for those used to implement servers).

Avoid using types that are not objects to represent abstractions that should be objects.
One good example of this is ID types; other examples from the Macintosh as
include refNums and resource IDs. The problem with these ID types is that they
represent an abstraction, but there is no object.

In the Taligent Application Environment kernel interface, task IDs are replaced
by task handle objects. It's still possible to get the task ID for informational
purposes, but it has been supplanted by the object as the primary identifier.
Similarly, the Window Server uses unique IDs to identify system windows
internally, but these IDs aren't visible in the client interface to the Window
Server: instead, the client creates system window objects.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CLASSES

10 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

CLASSES

Preserve class
invariants

Object-oriented
design with C++

c++ doesn't express
full object interface

An invariant is an assertion about an object's internal state. Such assertions are
helpful in making sure that the object transitions from one valid state to another
and that it meets the behavioral promises of its interface.

To preserve class invariants:

Oil Know the invariants in a class you design.

Ill! Only allow an invariant to be invalid internally as long as it does not become
visible outside the implementation of the class.

Ill! Do not leave invariants invalid for too long.

A good Taligent illustration of all three points is TStream, which encapsulates a
concept of a logical end of stream. The invariant is simply that the class
represents the correct logical end of stream.

The inline write functions of TStream modify the current position in the stream
without checking the logical end. Thus, the class must catch up whenever it next
gets a chance (that is, when a virtual function gets called). TStream must then
infer the new logical end from the new stream position and other data members.
If the computation is not performed immediately, that information can change
again, and the new logical end will not be correctly computed.

In summary, learn what your invariants are and strive to keep them correct. The
Assert function from the Test framework is very helpful. It allows you to test
invariants when testing is turned on, but skips the check otherwise. If even that is
too expensive, you can conditionally compile your assertions for debugging.

In addition to general object-oriented principles, the Taligent Application
Environment implements several design principles specific to C++.

Although the strong typing features of C++ are a great help in defining the
interface to a class, the entire definition of a class can't be expressed in the C++
class definition. The following important aspects (among others) of a class
interface can't be adequately expressed in C++:

Class semantics-Not all of the semantic con,straints on an object can be expressed
through the C++ type system.

Concurrency-The behavior of an object in the presence of multiple threads of
execution can't be expressed in C++.

Storage management-If an object has specific storage management semantics, they
can't be expressed through the class definition.

Special conventions can help to document all these facets of a class in the class
definition, but the compiler certainly can't use that information to check your
code. Many semantic constraints can only be expressed in human language.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

c++ requires definition
of special member
functions

Include to show ----
that you didn't
forget it

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 11

For a class definition to be complete, you must define its constructor(s) and
destructor, copy constructor, and assignment operators. If you don't define these
special members, the compiler will, and it can generate them as inlines (which
you want to avoid) or make incorrect assumptions about your class structure. If
you don't want to allow clients to assign your class or return it from functions,
make the copy constructor and assignment operators pri vate with no
implementation; this keeps the compiler from generating them for you.

Constructors and destructor-Every class should have a destructor and at least one
constructor, even if they do nothing or are defined to do nothing. Be explicit; do
not leave this up to the compiler.

Copy constructor-The copy constructor for TFoo is of the form TFoo(const TFoo&)
or TFoo(TFoo&). This constructor defines the behavior of your class when it is
passed by value as an argument, returned by value from a function, or used to
initialize one instance with the value of another. You must define this constructor
so that your objects are copied properly; otherwise, the compiler generates a
default inline version for you.

Assignment operator-The assignment operator (operator=) is called when one
instance of your class is assigned to another; if you don't define it, the compiler
generates a default inline version for you. If you allocate subsidiary data
structures on the heap or consume any other kind of shared resource, you need
to define an assignment operator and a copy constructor. The compiler doesn't
define assignment operators if you declare an assignment operator with
argument type ofTFoo, TFoo&, or const TFoo&.

!fyou let the compiler generate your copy constructor or assignment operator, at
least insert a commented declaration:

II TFoo& operator=(const TFoo&); II Use default version.

Also remember that this constitutes an inline declaration; therefore, if you ever
want to allow for a nondefault implementation, you must define these special
members explicitly. See "Inline functions" on page 62.

Streaming operators-Although streaming operators (operator«= and operator»=)
are not special members in the C++ sense, many of the same considerations
apply. The compiler does not generate them for you, but the base class'
operators will be inherited (if your' base class has them) and might not do the
right thing.

CLASSES

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

12 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

ABSTRACT BASE CLASSES

ABSTRACT BASE CLASSES

INHERITANCE

Classes that act as base classes and not meant to be instantiated are called abstract
base classes. Many classes in the Taligent Application Environment, such as
TStream, fall into this category. If you have an abstract base class, use two
techniques to make that clear:

Make abstract base class constructors protected to ensure that only a derived class can call
the constructor, and so that clients can't try to create an object of that class.

NOTE Although you can make destructors private or protected to prevent
stack allocation, do not make abstract base class destructors private or protected
unless you don't want clients to delete an object given a pointer to a base class.
This isn't usually the case. See "Control class access" on page 107 for
more information.

Use pure virtual functions in your abstract class for those functions that must be overridden
by derived classes. For example, before you can create a concrete class (one that
can be instantiated), you must override this pure virtual function:

class TAbstract
public:

virtual void MustOverride() 0;
} ;

For more information about virtual functions, see ''Virtual functions" on page 66.

NOTE An abstract base class can itself be derived from another class, which
might or might not be abstract itself.

There are two forms of inheritance in C++: type inheritance and implementation
inheritance. In both forms of inheritance, a derived class can share or override
behavior inherited from a base class. However, use type inheritance only when it
is necessary for a derived class to inherit type information as well. The primary
reason to inherit type information is to allow for polymorphism.

Express type inheritance by deriving a class from a public base class; express
implementation inheritance by deriving a class from a private or protected base
class. Strict guidelines for choosing the correct form of inheritance are described
in this section.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Use type inheritance
to share protocol

Use implementation
inheritance to
override behavior

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 13

INHERITANCE

Use public base classes or public derivation whenever a collection of classes
shares protocol in common. The only reason for a base class to be public is so
that a pointer or reference to the derived class can be converted into a pointer or
reference to the base class. The most important reason to perform these
conversions is to allow for polymorphism (for example, a function that expects a
Base& is handed a Deri ved& instead). Polymorphism occurs when a collection of
related classes can be used via the protocol they all have in common. This allows
one component of a system to deal with other components at the highest level of
abstraction possible (the base class) and ignore any irrelevant details (of the
derived class) .

Type inheritance is also known as subtyping, deriving a class from a public base
class states that the new class is a subtype. This statement places important
constraints on the base class and the derived class. If these constraints are not
met, serious errors can occur later. Compilers can't catch many of these errors.

If you want to share only portions of a base class' protocol, make the class private
and reexport the members you want to make public (or factor that partial
protocol out into a separate base). Use public base classes only when you need
polymorphism.

Use private and protected base classes or private and protected derivation to
inherit behavior or override it when you don't need to inherit public protocol.
Implementation inheritance is often appropriate for inheriting from a
framework to override behavior. For example, MRemoteCaller and
MRemoteDispatcher in the Taligent Client/Server framework are usually
inherited as protected base classes.

When a derived class inherits from a private or protected base class, the derived
class has access to all the members of the base, but they are not publicly exported
as members of the derived class. For clients, it also means that the derived class is
not treated as a subtype of the base class, and no automatic conversions are
performed for function arguments or assignments. However, this is only true
outside the derived class; within the derived class, the behavior is exactly as if the
base class had been declared public.

NOTE C++ lets you reexport public members of private or protected bases via
access control declarations.

As with type inheritance, if you want to share only portions of a base class'
protocol, make the class private and reexport the members you want to make
public. If a class is used by another class purely in a client relationship, that class
should be a member rather than a private or protected base class. Use private or
protected base classes only when behavior is inherited or overridden, as in a
framework.

Use public base
classes only when
you need
polymorphism.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

14 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

INHERITANCE

Design the interfaces
between the base and
derived classes

Expected calls

Group override

Design the interface between a base class and its derived classes just as carefully
as the class' interface to clients; it's the contract between the base and derived
classes. If this interface is not designed properly, it can lead to violating the type
subtype relationship, which can cause very obscure problems. It can also violate
encapsulation of the base class.

The protected portion of the class interface can only be accessed by derived
classes. This feature is helpful but can't express the totality of the relationship
between a class and its derived classes. Other important factors include which
functions might and might not be overridden, and how they must behave. It is
also crucial to consider the relationship between member functions; some of
them might need to be overridden in groups to preserve the class' semantics.

The bottom line is this: design your interface to derived classes so that a derived
class that uses every supported aspect of that interface (including overriding
virtual functions) doesn't compromise the integrity of your public interface.
Because C++ can't express the complete interface to derived classes, it is quite
easy for a developer who derives a class from yours to violate your class invariants
no matter what you do. Make it clear through your interface and documentation
how to make a derived class that preserves those invariants.

A simple example of not preserving the base class invariants is when a derived
class overrides a function that the base class is counting on the derived class
calling. If the derived class doesn't call the base class function, or calls it
incorrectly, the base class' invariants are violated and unpredictable results can
occur.

You can avoid this problem by making the function in question a hook for derived
classes to override, and moving the inherited version into the code that calls the
hook. This only works for one level of derivation; overriding the same function at
multiple levels is error prone. Hook functions are the cleanest way to interact
with derived classes. For more information, see ''Virtual functions" on page 66.

Sometimes a base class requires that you override virtual functions in groups;
correct interaction between the base and its derived classes requires that you
override all of the functions in a group together.

This is why a base class designer must make it very clear how its virtual functions
can be overridden, not just whether they can be. Keep in mind that just because a
function is virtual does not mean you can override it (see ''Virtual functions" on
page 66).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Getters and setters

Guarantee use
of derived classes
as arguments

Implement full
protocol in derived
classes

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 15

INHERITANCE

Get and set functions should not be virtual unless they are used by the class that
defines them. If the base class does direct field access, you usually can't override
the get and set functions correctly. Suppose a derived class overrides a set
function so that it can update its own information whenever the base class
information is updated. But, if the base class changes the corresponding field
directly, a derived class never gets notified and its information becomes stale.

A common practice is to make get functions nonvirtual and set functions virtual.
This makes internal access fast, but gives subclasses a chance to react to changes.

NOTE An example of where this rule of thumb is intentionally violated is a
class with a write-only attribute. If the data member being changed can't be read
through the class interface (for example, a cache), it is acceptable for the class to
set it directly even if there is a virtual interface function that also sets it. However,
this is rather unusual; in most cases, if you do not use your own virtual get and set
functions you're making a mistake.

What this amounts to is, don't assume that putting vi rtual or protected in front
of your member functions defines the interface to derived classes. That interface
must be as carefully designed and documented as the client interface.

Any function that accepts a reference or pointer to an object of a given class must
be prepared to receive a derived class (if derived classes are allowed) as an actual
argument. Some functions have no choice but to accept a reference, for
example, the copy constructor. This means that the receiving function must deal
with the argument through an interface guaranteed to be preserved in derived
classes. This needn't be the public interface; the interface can be public,
protected, or even private. However, it must remain a valid interface in all
derived classes, or the function call will fail when used with derived classes.

Note that there are two responsibilities here: the base class designer must design
an interface for derived classes that allows them to maintain the interface
semantics, and clients of a class that permits polymorphism must allow for it.

If you can't make this guararitee, explicitly state in the class' documentation that
it can't be used as a public base class.

If a base class is public, the derived class must correctly implement all aspects of
the base class' public interface (or the inherited implementation must operate
correctly). Every member function must function properly for the same range of
arguments as accepted by the base class. If this isn't the case, the derived class is
not a true subtype of the base, which can cause subtle and mysterious errors. If
you don't want to implement everything the base class exports, make it a private
base class.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

16 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

INHERITANCE

Preserve semantics
in a derived class

Even worse than not implementing a base class' public interface is subtly
changing its meaning. Any public member function of the base class must not
have its semantics changed by the derived class, and must accept the same set of
arguments. Again, this is the responsibility of both the base class designer
(making preservation of the semantics possible) and the derived class designer
(honoring those semantics).

Suppose a class TBase has an operator== function that takes a const TBase&
argument; any override of this function by a derived class TDerived must then
preserve its semantics. In particular, the TDerived class override must not assume
the argument is of type const Deri ved& and downcast it to that type, because that
changes the meaning of the member function that is inherited from TBase's
public interface. Downcasts are often a warning sign of such design problems.

In this case, it is better to overload operator== to accept an argument of type
const Deri ved&, and then either reexport the inherited operator== or make the
operators global for symmetry.

Be especially careful when you have two or more public base classes; make sure
that the semantics of all of them are satisfied, particularly if they export the same
or similar protocol. In earlier versions of the Taligent Application Environment,
for example, MCollectible had a virtual function, IsEqual, that took a const
Meo 11 ect i b 1 e& argument and returned a Boolean. Derived classes of
MCollectible overrode this function to implement the comparison used when
those derived classes were inserted into collections. When one of those
MCollectible-derived classes and one of its own derived classes wanted to define a
comparison differently, and the derived class was inserted into a collection of
base class objects, that collection didn't behave properly. Overriding was not the
proper mechanism for this function.

The current Taligent approach, based on templates, works better: specify a
comparator object. Default comparators are available that use overloaded
operator==. IfTBase and TDerived both need comparison functions, define
them as follows:

Boolean operator==(const TBase &, canst TBase &);
Boolean operator==(const TDerived &, const TDerived &);

NOTE operator== can be defined as either a friend or a member function.

Because of the overloading mechanism, the appropriate comparison function is
used for the appropriate object. Another solution for a given collection is to use a
pointer to a function or member function to define a comparison, rather than
assuming a fixed operator. Or, write a custom comparator.

Watch for this problem: it can cause bugs that are extremely difficult to find. It is
especially problematic when inheriting from two or more base classes, each of
which defines a function with the same name but with different semantics.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Avoid deep nesting
in lightweight objects

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 17
MULTIPLE INHERITANCE

Whether you use an object or inherit from it, there's a finite cost. The object you
use or inherit from must be constructed or destructed every time your object is
constructed or destructed. Usually, that means a function call. Make sure that
lightweight objects intended to be created or destroyed quickly do not use deeply
nested inheritance or many embedded objects with constructors.

MULTIPLE INHERITANCE

Multiple inheritance is a fairly new feature in object-oriented languages, and it is
easy to design a confusing class hierarchy that resembles a bowl of spaghetti.
Here are some design guidelines useful for managing multiple inheritance.

Classes in the Taligent Application Environment are artificially partitioned into
two categories: base classes that represent fundamental functional objects (like a
car), and mixin classes that represent optional functionality (like power steering).
To distinguish between the two, base class names begin with T, and mixin class
names begin with M (see "Name conventions" on page 32). To control multiple
inheritance:

A class may inherit from zero or one base classes, plus zero or more mixin classes. If a class does not
inherit from a base class, it probably. should be a mixin class (though not always,
such as if it is at the root of a hierarchy).

A class that inherits from a base class is itself a base class; it can't be a mixin class. Mixin
classes can only inherit from other mixin classes.

The net effect of these two guidelines is that base classes form a conventional,
tree-structured inheritance hierarchy rather than an arbitrary acyclic graph. This
makes the base class hierarchy much easier to understand. Mixins then become
add-in options that do not fundamentally alter the inheritance hierarchy.

Like all guidelines, these are not meant to be hard and fast rules. You can and
should use multiple inheritance in other ways as well if it makes sense.
Remember, people are better at understanding regular structures than arbitrary
directed acyclic graphs.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

18 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

MULTIPLE INHERITANCE

Be aware of
problems with
virtual bases

When using virtual bases, be aware of these multiple inheritance problems (a
Taligent engineer must confirm with an architect before using multiple
inheritance) :

Virtual bases can be confusing and hard to understand: Try to avoid getting into a situation
where you have a virtual base; no matter which alternative you choose,
programmers tend to have a hard time understanding them.

ClassD has one ClassA
if ClassA is a virtual base of ClassB and ClassC;
otherwise it has two

Once you have a pointer to a virtual base, there's no way to convert it back into a pointer to its
enclosing class. This means that if you have MCollectible as a virtual base (even
indirectly), for example, and stick your object in a collection, there's no way to
convert it back to the right type via a cast when you get it out of the collection.
This problem doesn't occur with the template versions of the Taligent Collection
classes, but watch for it in your own classes. Also, avoid casting base classes to
derived classes if at all possible; templates help with that, too.

NOTE Dynamic casts, a new feature of C++, can circumvent this problem, but
are an expensive technique. For information about dynamic casts, see "Avoid
type casting" on page 41.

Virtual bases are always initialized by the most derived class, whether they are accessible to that
class or not. So, if a class TBase has a private virtual base VVirtual, then
constructors for class TDerived (which has TBase as a base) must supply the
constructor arguments for VVirtual, even though Virtual is not accessible to
TDerived. This is a violation of encapsulation, but that's how it works.

NOTE A base class should either always be a virtual base or never be a virtual
base; it should almost never be a virtual base of some derived classes and a
nonvirtual base of others. This is because there are special (and problematic)
constructor semantics for virtual base classes that you must take into account in
their design. This is also why virtual base classes have special naming
conventions. For more information, see "Name conventions" on page 32.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Avoid multiple
occurrences of
a base

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 19

PERFORMANCE BY DESIGN

Sometimes the same base class (which should be a mixin) occurs more than once
as an ancestor of a class (this often happens with MCollectible). However, only
one version of a virtual function can exist for a given class, and it's only useful to
have multiple occurrences of a base class if there are data members associated
with it.

Although you might need to have the same base class occur more than once,
there are costs: there are multiple virtual table pointers and clients who want to
cast to the base class that have to supply a casting path to indicate which of the
duplicates the cast is for. !fyou don't need to cast back, and you don't need two
copies of the data, this is one of the situations where virtual base classes might be
better.

PERFORMANCE BY DESIGN

Design
performance in

Good performance is just one attribute of quality code. Like reliability, it comes
from two things: designing it in from the beginning and fixing problems with it
during debugging.

Designing performance in does not mean writing everything in assembly
language. Good micro-level code is only one component of good performance,
and it is usually not the most important. Choosing the right data structures and
algorithms is the most important aspect of getting good performance. Having the
fastest linked list code in the world is a waste if you should have used a hash table.
Similarly, it isn't smart to use a hash table when all you ever do is sequential
access. It is also misspent energy to worry about whether a function call should be
inline when the function does a disk operation.

Remember that there is no code faster than no code-the best way to speed up
code is to eliminate it. If you can avoid a computation by caching the result, or by
finding some other way to get what you need, that's a big win.

There's a lot of oral tradition in this area (except that it is written down), and it's
well worth reading everything you can get your hands on. Here are some
recommended written sources of information on this topic:

11m Writing Efficient Programs (Bentley).

11m "Hints for Computer System Design" (Lampson) in Proceedings of the Ninth
ACM Symposium on Operating System Principles, Operating System Review Vol.
17 No.5 (pp. 33-48). Good observations by someone who's been through
the wringer a few times.

11m Programming Pearls and More Programming Pearls (Bentley).

11m The Psychology of Computer Programming (Weinberg) has some choice bits
about what drives programmers to worry about efficiency.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

20 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

PERFORMANCE BY DESIGN

Conduct performance
analysis

Perform controlled
experiments

Use static objects
instead of
temporaries

In any complex system (any program longer than three lines), it's not possible to
completely determine its behavior a priori. To solve performance problems you
need hard data. Informed speculation is useful, but your most valuable tool is
empiricism. Measure your code to find out what's happening. In addition to the
standard performance tools (PC sampling and call tracing), there are some other
tricks you can use.

One technique that has worked well in the Taligent Application Environment is
to take things out one by one. Set up a timing harness for the code in question;
then remove pieces of the computation one by one. This can be very helpful in
pinning down where the time is going, something you can't always tell from
other techniques. For example, when Taligent engineers worked on the View
system, they thought it spent a lot of time in one loop. They put retu rn in front
of the loop. The code no longer worked correctly, but it was possible to tell how
much time it spent in the loop.

In the spirit of an empirical approach to performance, make sure you don't
change too many variables at once. If you make eight separate changes and then
measure a performance difference, you have no idea which changes helped and
which hurt.

By making your performance tests controlled experiments, you understand
which variableS change and which are constant. This lets you know what is
effective and what is not.

This doesn't mean you have to make changes one at a time. You can still throw in
a whole slew of changes; just make sure you can control them individually. Put
each change under the control of a Boolean flag, either local to the object or
global to the class. Then you can turn each flag on and off individually or in
combination and measure the results.

One tip for improving performance is to use static objects rather than constant
temporaries. Beware of initialization order problems (see "Static object
constructors" on page 48 and "Consider alternatives to temporary objects" on
page 60).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

~se chunky iteration
lor performance

Use cache objects

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 21

PERFORMANCE BY DESIGN

If you have an iterator over some collection of data, but have performance
problems from paying a function call for accessing each member of the
collection, you might be tempted to make the internal data structures of that
collection public for direct access.

Instead, to preserve data abstraction and still improve performance, amortize the
function call over multiple data members, by introducing a chunky iterator. A
chunky iterator returns multiple data elements at one time. The iterator, not the
client, determines the number of elements to return based on the internal
structure of the data collection, which the client knows nothing about. The
iterator also indicates how many elements were returned with each call.

For example, consider an iterator over a string of characters. Making a function
call for each character is very expensive. But exporting the data structure directly
precludes using some other data structure in the future. By using a chunky
iterator, you can get the best performance possible:

Where the string is just an array of characters, the chunky iterator returns a pointer to the
array and the length of the array, thus returning the whole string at once.

For a string that consists of several such arrays (such as text stored in a recursive run array
or other noncontiguous chunks), the iterator returns each array successively,
indicating how many characters are in each one.

If a string does not use an array of characters internally at all, the iterator has an internal
array of characters of some predetermined size (large enough to amortize the
costs of the iterator function calls). For each iteration, it copies characters out of
the string into its internal array, then returns a pointer to the array and indicates
the number of characters.

In each case, the client knows nothing about the internal data structures, and still
gets good performance. It's even possible to preserve the easier one-at-a-time
interface by using inline functions that turn around and call the chunky
interface (in fact, it is preferable because it is simpler for clients). This is the
technique used by TStream and the C stdi 0 library functions, such as getchar().

Creating and destroying objects can take a lot of time. If you can, consider
holding onto objects for longer periods and reusing them. This makes the most
sense for heavyweight objects: lighter ones can be cheaper to create than the
caching mechanism. In addition, watch out for concurrency issues you might not
have with locally created objects but that might show up with a cache.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

22 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

COMMON DESIGN PROBLEMS AND PITFALLS

COMMON DESIGN PROBLEMS AND PITFALLS

Object bloat

Lost object focus

Object-oriented design is an iterative process. Don't be afraid to change your
class design based on experience you gain, and don't be afraid to change it for a
second, third, or fourth time. You will be rewarded by seeing layers of cruft drop
out of your code. If the class design isn't right, the grief that clients might have
down the road will overshadow the inconvenience of having changed the design
up front. Fix design problems as early as possible; redesigning late in the
development cycle is always a problem (and often impossible).

Object bloat (TKitchenSink) is a symptom of failure to reconsider your design
(see "Hardening of the architecture" on page 23). A class definition starts out
simple and clean, but as time goes on and changes are made, it becomes larger
and larger, with the class identity becoming harder to state concisely. Some of the
possible actions to solve this problem are:

III!! Move some of the functions into new classes that the object would use.

III!! Break up the class into two or more classes.

III!! Rethink the class definition based on experience gained.

This isn't an exhaustive list. A rule of thumb is: if you can't give a concise human
language definition of the class, you likely have a problem.

Lost. object focus is another manifestation of problems with class definitions. An
object's purpose is stated in its class definition (remember, the class definition is
more thanjust the C++ declaration). A class might start with a concise definition,
but over time the definition becomes fuzzy or nonexistent. You might also have a
reasonable class definition, but one function might not fit in with the rest.

The only solution to this problem is the same as for object bloat: keep a careful
eye on the class design and make sure that an object's role remains
well defined. If an object loses focus, you need to modify the design.

This is terribly important. The ability to easily work with any object-oriented
system depends on how well the classes are defined. If the classes are clearly
delineated, well defined, and self-contained, a developer can treat them as
abstractions. The less this is true, the more the developer must treat them as
collections of loosely related functions, which increases the complexity. People
deal with complexity by inventing abstractions. To help them, make sure that:

II The abstractions exist.

IIII! You supply abstractions so that developers do not need to invent their own.

II Your classes map onto the abstractions directly.

Design is as mu(
about discovery
it is about
construction.

No complex
software system
winds up with th
same design it
started with.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

iardening of the
Irchitecture

)tructification

Modulitis

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 23

COMMON DESIGN PROBLEMS AND PITFALLS

Hardening of the architecture happens when you keep making incremental
changes to an existing class. Ifit doesn't quite handle a situation, someone adds a
tweak. When the next problem comes up, another tweak is added. Or when a
new feature is requested, another tweak is added, and so on.

One of the most important skills you can develop is a little red warning light
inside your head that causes you to think, 'Wait a minute, this is starting to get
messy." When your class gets convoluted, it's time to reexamine the design. Here
are some of the warning signs that the time has arrived:

There are bugs because the internal state of an object is too hard to track and fixes consist of
adding patches. Patches are characterized by code that looks like: "If this is the
case, then force that to be true," or "Do this just in case we need to," or "Do this
before calling that function, because it expects this."

There are member functions that do not fit in very well with the class definition.
(See "Object bloat" and "Lost object focus" on page 22.)

Structification results in an implementation and interface that are closely
related; the interface merely parrots the internal implementation of the class.
The result is almost never a good class definition. Structification is a technique
for class creation that results from the following sequence of events:

1. You have a struct.

2. You replace struct with cl ass.

3. You make all data members pri vate.

4. For every data member foo, you define GetFoo and SetFoo.

Get and set functions are a natural part of a well-designed interface, but an
interface that is long on state-related functions and short on members that
actually perform an action is a sign of a bad design. Avoid it.

Modulitis occurs when you take a C header file (or Pascal unit), make it a class,
and turn all functions into members. A good way to recognize this problem is
when member functions do not refer to the thi s pointer, either directly or
indirectly, or when the class has nothing but static members. The result is usually
a poor class definition.

If you can't tell
whether or not
code is needed,
your design is
getting out of
control.

fALIGENT'S GUIDE TO DESIGNING PROGRAMS

24 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

COMMON DESIGN PROBLEMS AND PITFALLS

Managers are
not objects

Collections of
functions are not
objects

Encapsulation leakage

The presence of a manager object typically signifies a problem with your design,
the result of which is a client interface expressed as objects outside the client's
problem domain.The word managerin a class name often indicates this problem.
A centralized implementation, either within an address space or between address
spaces, is just an implementation detail. For example, suppose you want a
function to apply to multiple windows, such as CloseAlIOpen Windows. The
wrong way to do this is to have clients call a TWindowManager class. The correct
way is to make CloseAlIOpenWindows a static member of TWin dow. It is
associated with the class it applies to, and its multiobject function is reflected by
its being static.

A manifestation of modulitis is collecting associated functions into an object.
Functions must live with the objects that they affect, not in handy packages.
Functions that apply to more than one object usually should be static members.
Only when you apply overloading (as in the case of operators, or with some
templates) is it appropriate to use true global functions-that is, those outside
the scope of any class.

This problem occurs when details about a class' internal implementation start to
leak out through the interface. As more internal details become visible, there is
less flexibility to make changes in the future. If an implementation is completely
open, there is almost no flexibility for future changes.

It is fine to reveal implementation when it's intentional, necessary, and carefully
controlled. However, don't make such a decision lightly: it is quite easy to do it by
accident.

For example, public or protected data members or inline functions that access
private data members reveal an important aspect of your implementation. If
developers use those functions (not just application developers, but any
programmer building on top of the Taligent Application Environment), the
system's requirement of binary compatibility means that you can't:

!IliI Change the location or type of that data member in your class.

!IliI Change the semantics of the member, control how its contents are changed,
or control when they can be changed.

Also watch out for member functions that return a reference or pointer to a data
member of the object. Although this gives you the flexibility of moving that data
member around, it is equivalent to declaring the member public and should be
avoided. More controlled versions of the same thing return a canst pointer (at
least the caller can't change the member) or have a pair of member functions
along the lines of "I want to use this subobject" and "I'm done with this subobject."

Class definitions
reflect the
important objecl
from the client's
problem domain
not from the
programmer's
implementation
domain.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Empty
base classes

Overeducated
base classes

Overachieving
base classes

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 25

COMMON DESIGN PROBLEMS AND PITFALLS

This latter variety is especially desirable because it gives you the flexibility to
synthesize the object on request. If the functions are the constructor or
destructor of an accessor object, you can let c++ handle exceptions for you (see
"Exception handling" on page 74).

It is also possible to achieve the efficiency of pointers while retaining copying
semantics (see "Surrogate objects" on page 91).

An empty base class occurs when an abstract base class has no member functions
other than the constructor and destructor (or other special members). Many
developers create such base classes because there is some idea they want to have
represented by a class, even though it has no protocol.

Base classes (especially public ones) should exist only if there is protocol to be
inherited. Public bases should only exist if they are to be used polymorphically. If
there is no such protocol, there is no type relationship (or behavior inheritance) ,
and there is no need for a base class. If you wind up in this situation, rethink your
class hierarchy. Not every idea needs to be expressed as a class, and classes don't
always correspond one-to-one with real-world entities.

The opposite of the empty base class is a base class that contains members that
aren't meaningful for all of its derived classes. The correct design solution is to
push those members down into a derived class-either a concrete class or a less
abstract base class. For example, originally the Video Device framework had
protocol in the TVideoDevice base class for setting pixel depths, loading color
tables, and so on. These operations pertain only to frame buffers, and not all
video devices are necessarily frame buffers (such as intelligent graphics boards).

Avoid functionality in base classes that all derived classes will not use, especially if
they have to override it to turn it off. An exception is default implementations
that work for most derived classes and are intended to be overridden.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

26 CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES

COMMON DESIGN PROBLEMS AND PITFALLS

Distinguish is-a
from has-a
relationships

Failure to correctly distinguish between is-a and has-a relationships is a common
design problem; It happens most often when a class should be a member, or a
private base class is inherited as a public base class.

Use public base classes only when polymorphism is important, and the derived class is used
through a pointer or reference to the base class.

Use a private or protected base when behavior is going to be inherited: polymorphism is not
needed, but you want to use the class as a base internally, or the base will be
called from within a framework. This is like public inheritance, but only visible to
your own class or to a framework.

Use a member when behavior is only going to be used, and when your class is a client of
that behavior.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 2 OBJECT-ORIENTED DESIGN GUIDELINES 27

COMMON DESIGN PROBLEMS AND PITFALLS

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 3

c++ PROGRAMMING

CONVENTIONS

A software engineer's responsibility is to produce a business asset

that is going to last many years. If an engineer can't understand

someone else's code, it might as well be thrown away and rewritten

from scratch. Unfortunately this happens all too often. Making

code readable and maintainable is as important as, or more

important than, making it work correctly. If it doesn't work, it can

be fixed. If it can't be maintained, it's scrap.

fHE C++ STANDARD

History shows that designing language extensions is a nontrivial exercise,
especially with a complex language like C++. The trail of the C++ standardization
effort is littered with innocuous-looking extensions that proved to be extremely
difficult to define in a rigorous fashion. Trying to define and implement
nonstandard features can be very difficult and time consuming, so if you are on a
project team trying to ship a product in a short time, avoid nonstandard
extensions. Taligent C++ code doesn't assume anything more than what is
defined by the current ISO/ANSI C++ draft standard.

NOTE A runtime can be extended because it's implemented by a runtime
library, not by the compiler. For example, the capabilities of Taligent's runtime
that Taligent's C++ code depends on (such as dynamic class loading) can be
emulated by the runtimes of most C++ systems.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

29

30 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

SOURCE FILE CONVENTIONS '

At Taligent, use oflanguage constructs or implementation dependencies beyond
those specified by the ISO/ANSI C++ draft standard must be approved by the
architecture team. No such additions have been approved for the Taligent
Application Environment beyond dynamic class loading.

SOURCE FILE CONVENTIONS

Include copyright
notices

If your system doesn't
support the "©" character,
make sure that you spell
out "Copyright"

Source file conventions are the basic rules for managing and documenting
source files when programming in C++.

To assist in protecting your organization's intellectual property, include a
copyright notice at the front of every file you create:

II Copyright © 1994 YourCompany. Inc. All rights reserved. ,
If you significantly modify a file, list the year of the modification. The years
correspond to publication, not creation, dates. Separate consecutive years with a
dash, but off-years with a comma.

II Copyright © 1992. 1994-1996 Taligent. Inc. All rights reserved.
No publication in 1993 ------------',

Use comments

Include function
prototypes

Any binary files you ship should contain, within the first fifty lines, a copyright
notice that appears if the code is displayed or printed.

Comments aren't a replacement for reading the code; source code should be as
readable as possible. However, the source code isn't capable of representing all
information concerning a subtle implementation. If source code isn't completely
obvious, include a comment.

Make comments short and informative, and echo the code as little as possible. As
a rule of thumb, if you must read the code a couple of times to figure out what is
happening, include a comment.

Omit dummy parameter names in function declarations only if the meaning is
clear without them. It's almost always necessary to include parameter names
when you have more than one parameter of the same type; otherwise it's
impossible to figure out which one is which.

If you are getting compiler warnings such as ''warning: foo not used" where foo is
a parameter of a function, stop the warning by leaving the parameter name out
of the function header for the function's definition (you can include the
parameter name inside a 1* *1 comment). Whether or not a parameter name
appears in the function's declaration has no bearing on the warning.

Comments
complement
source code; they
don't parrot it.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

)0 not use code
lames in filenames

:nclose definitions
n header files

:nclose definitions in ----i
1 #ifndef construct

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 31
SOURCE FILE CONVENTIONS

Code names change all too frequently and are easily misunderstood when
encountered at a later date, such as by another developer trying to maintain your
code. Therefore, the names of files should never contain code names. (This is
also true for names within header and source files.) Always use straightforward,
meaningful names. See "Name conventions" on page 32 for more information.

Enclose all header file definitions, and all the necessary antecedents, in a 4/i fndef
construct. This saves you and your clients from having to figure out whether you
have already included them.

,----------- The symbol is your company's name,
/ / My C 1 a s s . h I followed by one underline,
4/i fndef ITa 1 i gent_MYCLASS I followed by the filename in uppercase
4/define Taligent_MYCLASS
4/ifndef Taligent_PREREQUISITEl (withoutthe.h)
4/include "prerequisitel.h"
flendi f
4/ifndef Taligent_PREREQUISITE2
4/include "prerequisite2.h"
4/endif
... definitions for MyClass
4/endif

Now developers can include your header as many times as they want without
errors. More importantly, you can include your header's prerequisites without
caring whether they've already been included elsewhere (assuming that everyone
follows this convention).

To speed up compilation, use the following construct in your files that include
other files. (Don't use this for ANSI C or C++ header files because the symbols
vary between compilers.):

4/ifndef MyCompany_FOO
4/include "Foo.h"
4/endif

This skips the overhead of reading and parsing F 0 0 • h. This practice works
especially well with symbol table load/dump; because the dump file defines the
symbols, the include files need not be opened at all.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

32 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

NAME CONVENTIONS

Include only
related classes
in one file

To keep your class definitions under control and to make life easier for those
trying to decipher them, limit each header file to a single class definition or a set
of related class definitions. This is a common convention, and a compiler with a
load/ dump facility removes the penalty for having many small include files
rather than a few large ones.

Put only one class implementation in a given source file; declare and implement
classes private to the class implementation in the same source file. Name the file
after the class, but without the initial T. For example, put the class
TContainerView in Contai nerVi ew. C. Also, be consistent about case when naming
and referring to include files, as some development environments are sensitive to
case in filenames.

NAME CONVENTIONS

Select C++ identifiers (including types, functions, and classes) carefully. When a
programmer sees a name, it might be out of context; choose names to enhance
readability and comprehension. A name that seems cute or easy to type can cause
trouble to someone trying to decipher code. Remember, code is read many more
times than it is written; err on the side of long, readable names. Internal code
names should not appear anywhere in the interfaces to the system. Even inside
your implementation, it's better to use the prosaic form if there is one.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Name conventions

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 33
NAME CONVENTIONS

To make the scope of names explicit, Taligent uses the following conventions.

Identifier
Types

Base classes

Mixin classes

Enumeration types

Raw C types

Virtual base classes

Members

Static variables

Static data members

Locals and parameters

Constants

Convention
Begin with a capital letter

Begin with T

Begin with M;
see "Multiple inheritance" on page 17

Begin with E

Avoid using C types; see "Avoid raw C types
with dimensions" on page 40

Begin with V, rather than Tor M

Begin with ffor
functions begin with a capital letter

Begin with g; applies to static variables in
functions and global variables (excluding
static data members of a class)

Begin with fg; includes class globals

Begin with a word whose initial letter is
lowercase; local automatic variables only,
treat statics like globals

Begin with k; including names of
enumeration constants and constant statics

, Example

Boolean

TContai nerView

MPrintable

EFreezeLevel

VBaseClass

fViewList, DrawSelfO

g DeviceList

TView::fgTokenClient

seed, port,
theCurrentArea

kMenuCommand

----------"----- -----------------------------
Acronyms

Template arguments

Getters and setters

Allocator and adopters

All uppercase

Begin with A

Begin with Set. .. , Get ... , or Is ... (Boolean);
use sparingly (see "Structification" on
page 23)

Begin with Create ... , Copy ... , Adopt..., or
Orphan ... ; see "Use special names for copy,
create, and adopt routines" on page 35

1 Field is a historical name for data member

TNBPName, not
TNbpName

AType

SetLastO, GetNextO,
IsDoneO

CreateNameO

In any name that contains more than one word, the first word follows the
convention for the type of the name, and subsequent words follow with the first
letter of each word capitalized, such as TTextBase. Do not use underscores
except for 11defi ne symbols.

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

34 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

NAME CONVENTIONS

Use specific names

But use generic
names for abstract
base classes

Avoid abbreviations

In general, make names specific rather than generic. For example, the type for
Taligent's graphics coordinates was once called Number; out of context, this is
very hard to figure out and likely to accidentally conflict with identifiers from
other header files. The new type, GCoordinate, is far more descriptive. Use
generic names only when there is true generality, such as TSetOf.

The most abstract base class in a hierarchy should have the most generic, abstract
name, with names of subclasses denoting refinement. Don't give an abstract base
~lass a name that is derived from a concrete derived class. Also, avoid names like
TBaseFoo or TAbstractFoo, where TFoo is a subclass, because nothing in the
name distinguishes TFoo from other subclasses ofTBaseFoo. TStandardFoo is
only marginally better, but acceptable.

NOTE There is an exception: if your abstract base class can have one and
only one concrete derived class, it is acceptable to give that derived class the
generic name. In that case, the abstract class should have Abstract in its name. For
example, the model class hierarchy has TAbstractModel, from which descended
TModel and TModelSurrogate. TModel is the base for all concrete derived
classes (as a surrogate, TModelSurrogate doesn't count).

If you find you have trouble with these rules, perhaps your class hierarchy needs
rethinking. For example, an earlier text class hierarchy included TText and
TBaseText; TBaseText was an abstract base class from which TText descends.
Normally, TText, as the more generic name, should be used for the base class.
The new hierarchy works this way, with TStandardText as the default
implementation.

Avoid abbreviations whenever possible, especially ad hoc ones. If you use
commonly or easily understood abbreviations, use them consistently.
Inconsistent abbreviations make it difficult to remember the correct name of a
function or variable, as for example, using Visible Region some places and VisRgn
others. Remember, code is read many more times than it is written: long,
readable names will better stand the test of time.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Ise special names
[)r copy, create,
nd adopt routines

Ise global names
Inly for classes

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 35
NAME CONVENTIONS

Routines that allocate, manage, or take responsibility for storage have special
names and abide by the following guidelines:

Routines that make a new object that the caller must delete begin with Create ...

Routines that copy an existing object, where the caller must delete the copy, begin with
Copy ... A member function that copies an object should be CopyO.

Routines that abandon an object and pass deletion responsibility to the caller begin
with Orphan ...

Routines that accept an object the caller has allocated and take responsibility for eventually
deleting it begin with Adopt ... (This style of programming is error prone; avoid it
if possible.)

Adopting routines that cannot follow the previous rule (such as constructors) start the name of
the argument with adopt ...

Ideally, only classes should have names with global scope (that is, not nested
within a class). For this reason, avoid globally scoped functions, enumeration
types, or constants. Make functions static members of some class, and define
enums and constants within a class. It's even possible to nest classes inside other
classes, if they don't need global scope. There are only two general exceptions;
(at Taligent, an architect must approve all others):

1\ Functions (such as operators) that must be declared as friends rather
than members.

1\ Some template functions.

By keeping the global name space uncluttered, you reduce name collisions and
make it easier to figure out where a name is coming from. C++ helps by allowing
declarations in class scope, allowing static members, and providing qualification
to access identifiers declared inside classes.

class TFoo {
public:

enum EWho {kFred, kBarney};

} ;

TFoo::EWho person = TFoo::kFred;

This lets you put constants associated with different classes into different name
spaces, similar to when C changed a few years back so that structure members
from different struct's were in different name spaces.

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

36 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

NAME CONVENTIONS

Place ordinary

functions and ~
global variables
into the scope of
their associated
class

Avoid ordinary globals

NOTE All nested declarations appear in the class' name space, even the
enumeration type. Because class declarations can be nested, scopes can nest to
multiple levels and require multiple levels of qualification. Within the body of a
class, however, names declared in its scope don't require qualification.

To avoid name collisions, use static members to put ordinary functions and
global variables into the scope of their associated class.

class TView {
public:

} ;

static void Initialize();
static const TText kMagicWord;
static const long kMagicNumber;

TV i ew: : In it i ali z e () ;
... TVi ew: : kMagi cWo rd ...
i = TView::kMagicNumber;

Most global functions and variables should be static members of some class. The
same applies to constants-make them members of an enumeration inside a
class, if possible. Global variables that aren't constants of the sort illustrated in
the previous example shouldn't be public at all; instead, access them through
member functions, static or normal:

class TFoo {
public:

static Boolean fgSomeFlag;
}

TFoo::fgSomeFlag = TRUE;

II BAD!

II BAD!

The C++ namespace feature allows the same kind of scoping control for global
names. A namespace construct acts like a class definition by providing a name
scope. Unlike class declarations, declarations within a name space needn't be
contiguous-for example, declarations in the same name space can be in
different header files. Also, there is a using construct that imports names from a
name space into the local scope. The Taligent Application Environment might
use the namespace feature; however, it is better to move names into class scope.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 37
CLASS DEFINITION CONVENTIONS

CLASS DEFINITION CONVENTIONS

Follow member
~unction conventions

When the MacApp® application framework was being created, issues arose
regarding conventions such as how to indicate certain attributes of member
functions, and whether they are called by clients never, rarely, or often. Based on
experience with the MacApp software, such conventions do not sufficiently
express the information a client or derived class needs. However, there are a few
conventions that help.

Follow these conventions when designing and using member functions:

Protected constructors or pure virtual functions indicate an abstract base class in the Taligent
Application Environment (in C++, only a pure virtual function indicates an
abstract base class; protected constructors do not) .

A private copy constructor or assignment operator indicates a class that cannot be copied.

A function whose implementation is inline doesn't change its implementation (although it
might be extended).

Protected members can only be accessed by derived classes.

Private virtual functions can be overridden but not called.

If a member function is defined to have no implementation (for all eternity), it is
permissible to define it as an empty body in the class declaration. This is much
better than not providing a constructor at all.

class TFoo
public:

TFoo() 0;
} ;

II Will ALWAYS be empty!

& NOTE Don't assume that a virtual function may be overridden. The class
author might want to allow overriding in the future, but that doesn't mean you
may override it now. The rules for subclassing must be spelled out in the class'
documentation (see "Design the interfaces between the base and derived classes"
on page 14). Neveroverride a function that isn't documented to be overridable.
And never override a function in a way that isn't in accordance with its
documentation.

In general, define an empty body only for special members of abstract base
classes with no implementation or storage.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

It's much better
to spell things
out explicitly
than to expect
people to infer
them from the
declaration.

38 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

CLASS DEFINITION CONVENTIONS

State explicit use of
public, private, and
protected

Always state ------I
public sections
first and private
sections last.
You may omit
any section

Though C++ frequently allows you to leave out the pri vate keyword, don't do it.
Class definitions should always explicitly state the visibility of their members and
base classes. When you have multiple instances of the sections, they should
appear in the following order (such as one set of public-protected-private
followed by another set of public-protected-private) :

class TFoo: public TBar. protected MBlat. private MBaz {
public:

II public members;

protected:
II protected members;

private:
II private members;

} ;

NOTE The private section is necessary only to make the compiler happy, so it
should be last. When using the Taligent Development System, the private
interface might not even be visible to clients, and the protected interface might
only be visible to subclasses (private virtual functions are an exception).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Use separate class
~efinition sections

Group functions -~---j
in sections
according to who

A separate public -{
section just before
the private section
for functions not
called by clients

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 39
CLASS DEFINITION CONVENTIONS

Frequently you have functions that must be public, but that are not meant to be
called by clients. Consider a function that is called only by another related class
which you don't want to make a friend. To clarify the use of these members,
separate them in the class declaration into sections according to who usually calls
them, with a comment at the front of each section. Place private virtual member
functions that are meant to be overridden ahead of public functions that clients
and subclasses should not call.

class TFoo {
public:

II Normal client functions:
void Memberl();

II Seldom-used functions:
void BlueMoonl();

protected:

public:
I I Internal use only; do not call:
void MagicMemberl();

private:

} ;

Public and internal aren't the only categories into which members fall: feel free
to divide them up into as many sections as you like to help people to understand
them, for example, API, SPI, and internal.

NOTE If the set of users of internal public members is small, fixed, and
known, use the C++ fri end feature and make them private instead. This gives you
more control (see "Friend functions and classes" on page 74).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

40 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

TYPE DECLARATION CONVENTIONS

TYPE DECLARATION CONVENTIONS

Avoid raw C types
with dimensions

One way to think of types is as if they were physical units, like kilograms or watts
or furlongs per fortnight. These are all distinct types, and trying to mix them is
like mixing apples and oranges. When making a declaration, think about
whether you should use an existing type or make a new type to distinguish a
new usage.

Declare types rather than using raw C types so that if your implementation
changes, you don't have to do a lot of editing by hand. It's much better to declare
a type (via cl ass definition or typedef) that represents the abstract concept, and
to phrase your declarations that way. This lets you change your implementation
by editing the original type definition.

InsteadOf"'llong time;
short mouseX;
char *menuName;

Use (for example) ----1
typedef long TimeStamp;
typedef short Coordinate;
class TString { ... };

TimeStamp time;
Coordinate mouseX
TString menuName;

NOTE A typedef doesn't introduce a new, distinct type; it's just a synonym.
Also, the compiler doesn't warn you if you mix it with any other type that is
defined synonymously.

For more information about raw C types, see "Bad assumptions" on page 110.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Use dimensionless
raw C types

Avoid type casting

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 41

TYPE DECLARATION CONVENTIONS

It's acceptable to use a raw C type under certain circumstances, such as when the
quantity is machine dependent, or when it can be characterized as a
dimensionless number (for example, a sma 11 i nt). Otherwise, it's best to give
yourself flexibility.

However, types that merely wrap existing C types are not helpful:

typedef unsigned char UChar; II Bad usage

Either use a raw C type because it's a dimensionless number and falls within the
definition of the C type, or define a typedef based on the function of the type, not
its concrete representation. To help you with this, the header file
Pri mi t i veTypes. h contains useful definitions of primitive types. Two ANSI C
header files, stddef. hand 1 i mi ts. h, contain definitions as well, here are two:

The type returned by the built-in C ;!~-eof function. This is useful for
representing the sizes of things. --

A type that can represent the difference between any two pointers.

You might have noticed that these names don't conform to Taligent conventions.
In the interest of clarity and portability, it is better to use the names as defined by
ISO/ANSI C. However, a useful non-ISO/ANSI C type is voi d*, which is for
pointers to raw storage.

(I NOTE If a data type is unsigned, declare it unsi gned; this helps avoid nasty
bugs down the road.

Type casting, though dangerous and very uncontrolled, is occasionally necessary
in C and C++; however, always question the need before you use it. There are
three kinds of casts in C++:

A cast can change an object from one type to another. This includes casts between the built-in
arithmetic types, and casts involving classes (not pointers to classes) or pointers
to classes related by inheritance. These are fairly safe, because an actual
conversion is taking place.

A cast that involves pointers and type coercion. This is the killer. The bit pattern of one type
is interpreted as another type. This is very unsafe, and causes your code to die
horribly (or worse, die subtly).

A runtime-checked casttakes the form dynami c_cast<type)(expressi on). At run time, if
the type of the expression can be converted to type, you get that type; otherwise,
you get 0 or an exception. Although this type of conversion is safe and can be
very handy (for more dynamic dispatching and for optimizations), it is easy to
abuse. Talk to your architect before using it.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

42 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

TYPE DECLARATION CONVENTIONS

Silent coercion

Cast operators

Summary

Unfortunately, some C++ constructs can be interpreted as either conversion or
coercion. For example, a cast from one class pointer type to another is conversion
if the two types are related by type inheritance, but coercion if they are not. The
C++ compiler doesn't necessarily warn you if you intend the former but wind up
with the latter. Worse still, a cast between pointers to member functions can be a
conversion for the class, but a coercion for the function prototype.

Some types of casts are always coercion-for instance, casting a const or volatile
pointer to one without those same attributes. If you make a member function
const because it doesn't change the object semantics, you must cast your thi s
pointer to non-const to make changes to the internal object state (unless your
compiler supports muta b 1 e). Avoid this technique. Instead, overload the function
or try another way (see "Concurrency and shared library issues" on page 99).

Casts to and from vo; d* are dangerous, but in a fairly local way. Avoid such casts
except where necessary. Do not use voi d* to avoid specifYing a type for a variable
or parameter. Use it only for manipulation of raw storage. (See "Avoid storage
manipulation in open code" on page 98 for information about raw storage.)

Finally, although casts from a base class pointer to a derived class pointer are
conversions (known as type narrowing), avoid them. If you accidentally specify
types not related by inheritance, you silently get a coercion. This is also a poor
programming technique and removes important information used for type
checking. Templates in C++ and the Taligent Collection classes obviate the need
for most such casts.

C++ now has a set of operators for performing casts. These operators remove the
risk of unintended consequences for casting by making the programmer's
intention explicit. However, they still don't make casting a good approach to a
design. Very few compilers currently support these operators, but as they become
widely available, use them as a safer alternative to old-style casts:

stat; c_cast<ta rget_type>(express; on) performs a conversion from the type of
the expression to the target type, if such a conversion is allowed. It never silently
reinterprets bits as a different type.

const_cast<ta rget_type> (express; on) removes const and vol at il e modifiers.
The target type must be the same as the type of the expression, except for const
or vol at; 1 e modifiers.

rei nterpret_cast<ta rget_type> (express; on) coerces the expression to be the
target type, without conversion. This is inherently unsafe and implementation
dependent.

!III The only generally acceptable casts are the conversion type.

III!l Avoid all casts involving pointers unless absolutely necessary.

IIiI'!l Nonpointer casts can never silently become coercions.

For a complete description of the casting operators, see an up-to-date C++
language reference.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Use consistent
return types for
assignment operators

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 43
ARGUMENTS AND FUNCTION RESULTS

Assignment operators should return a type that is consistent to the client. Usually
this is a non-const reference, because that is what the built-in types and the
standard C++ library classes return. Declare assignment operators like this:

class TFoo {

TFoo& operator=(argument): II "argument" is usually: const TFoo &

State typedef When declaring a typedef of cl ass, place the name between the data type and
class names before the member specifications.
specifications
~ typedef class T { ... }:

Correct form For compatibility with C, many compilers currently support declaring the name
after the member specifications, though this is bad form and not guaranteed to
be supported by C++ compilers.

Bad form ------- typedef class {. .. } T:

& NOTE A C++ class-type is a cl ass, struct, or uni on.

ARGUMENTS AND FUNCTION RESULTS

Use the following conventions for function arguments and function results (at
Taligent, any deviation requires an architect's approval). Additionally, for
information about when to pass a reference as opposed to a pointer, see "Use
references for a one-time reference" on page 46.

Here are some rules for what a function should return:

Return results by value only when there is no need for polymorphism and when the size of the type
isn't too large, because the result will be copied. Remember, if you return an
object by value, one of its constructors will be called (see the ISO/ANSI C++ draft
standard for details on function result semantics).

Use a pointer to return an alias from a function. If storage is being allocated on behalf of the
caller, the function name should start with Create ... or Copy ... (see "Name
conventions" on page 32).

Never return references from functions (or at least check with your architect first). It isn't
possible to bound the reference's scope of use (unlike when a reference is passed
in, in which case it is guaranteed not to be used after the fun~tion call). If you
must do this, return a pointer (but see "Avoid returning pointers without
allocation" on page 45).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

44 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

ARGUMENTS AND FUNCTION RESULTS

Pass variables
when possible

Use array arguments
instead of pointers

Limit default
arguments

When polymorphism is possible, allow the caller to pass in a variable (via
reference) for the result of a function rather than creating and returning a result
yourself. For example, if you make a call that returns a collection of things, it is
better to let the caller specify the kind of the collection (by supplying it) rather
than creating a collection and passing it back. By specifying the argument type as
TColl ectionOfO & (or a subclass, if you need to be more restrictive), you give the
caller flexibility to choose the appropriate collection type. It also eliminates a
potential source of storage leaks. However, beware of assignment to these
parameters: unless the assignment operator is virtual, such assignments
might slice.

Use [] instead of * for arrays in argument lists, because it is clearer.

Default arguments are a C++ feature that let you avoid overloading functions in
some circumstances. Although they are OK to use, they have several properties
that restrict their use .

. Avoid more than one or two default arguments. If you have that many options on a function
or constructor, rethink your interface. Specifying large numbers of options via
function arguments is confusing and not very extensible. Having large numbers
of options is also confusing.

Default arguments constitute a form of inline declaration. Specifically, a declaration with
default arguments like this

class TFoo {
public:

void Bar(int iltern = 10);
} ;

is exactly equivalent to the following inline declaration, with all of the
consequences that implies (see "In line functions" on page 62):

class TFoo {
public:

void Bar(int iltern);
inline void Bar() { Bar(lO); };

} ;

If you ever want to change the value of the default argument, or if it might ever
become convenient to specifically handle the case with no argument, you don't
have that option; the call to Ba r (i nt i I tern) with a value of lOis compiled directly
into client code. There's no way to go back and make it call BarO instead.

If you ever want the option of changing what happens, use overloading instead of
default arguments.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Avoid functions
with unspecified
arguments (...)

Avoid returning
pOinters without
allocation

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 45
ARGUMENTS AND FUNCTION RESULTS

c++ allows you to declare functions that take unspecified numbers and types of
arguments. The classic example is:

void printf(char *);

This leftover feature from C subverts quality programming. There are very few
functions that need an interface like this; use default arguments or function
overloading instead.

When you return an internal pointer to an internal object, you reveal the object's
existence. Consider what this revelation will cost you in the future. It doesn't
matter whether the object is a direct member of the called object, or whether it is
allocated and pointed to by the called object. If you return a pointer from a
function and you're not allocating memory, and if the pointer points to an
independent object that is already visible to the caller, there is no problem.
(Although in any open network of data structures you must think carefully about
memory management, concurrency, and so on-but that's another problem.)

If you simply return an internal pointer, you must consider that the caller can
retain and use this pointer for an arbitrarily long time.

II1II Be sure to specify how long the pointer is good for-don't assume the
developer realizes it's no good after you delete the object that returned it.

II1II Specify what the caller can do with the returned pointer, especially if it isn't
const-the caller can modify the object (though the latter possibility isn't
acceptable at Taligent).

II1II If the caller can modify the pointee at any time (in another thread,
asynchronously!?) you will have a hard time figuring out how to use it within
your class.

A better approach is to bound the use of the subobject by requiring callers to
declare when they are done with it. For example, imagine member functions
(like UseObject) that return a modifiable pointer to the subobject, and those
that (like DoneWithObject)invalidate that pointer and give the container a
chance to react to any changes. This approach is also good for const pointers, as
it gives you a chance to synthesize the subobject if you don't want it around all
the time (you can delete the synthesized object at the DoneWithObject call). Of
course, this only works for one client at a time.

Even better is to use the lifetime of a lightweight object to bound the access to
the subobject, rather than explicit UseObject and DoneWithObject calls.

The best approach is not to return pointers to subobjects. Instead, use
lightweight surrogate objects to set and get subobjects by value, and to obviate
the need for pointers. This technique also works with concurrency. For more on
this technique, see "Surrogate objects" on page 91.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

46 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

REFERENCE AND VALUE SEMANTICS: C++ VERSUS EVERYTHING ELSE

REFERENCE AND VALUE SEMANTICS: C++ VERSUS EVERYTHING ELSE

Use pointers to
make multiple
references

Use references
for a one-time
reference

c++ treats pointers differently than other object-based languages, such as Object
Pascal or Small talk. C++ is value based and treats classes like primitive types,
whereas Object Pascal and Smalltalk are reference based (assignment means
copying a pointer) and treat objects very differently from primitive types. This is
a benefit of C++, because it handles all types in the same style, as opposed to
multiple styles in Object Pascal (Smalltalk, like C++, is also self-consistent).
However, there are some implications for your C++ programming style.

Use pointers when you want multiple references (aliases) to the same object or a
dynamic data structure. If you really just want to pass something by reference to
avoid copying, use a reference instead. In fact, pass a class by value if the copying
overhead isn't too high and you don't care about polymorphism (for example, if
the class has no virtual functions).

C++ provides two mechanisms for accessing objects indirectly: pointers and
references. By using pointers and references appropriately, you can increase the
readability of your code by giving the reader hints as to what is going on. These
mechanisms have a lot in common (indeed, they are implemented the same
way), so it is important to know which one to use and when.

Use references when a parameter is to be passed by reference; the called function forgets about
the argument as soon as it returns. Use a regular reference if you are going to
modify the argument (TFoo&), and a const reference if you aren't going to modify
it but don't want the overhead of call by value (const TFoo&).

Use pointers when the function you call retains a reference (an alias) to the object you are
passing in, such as when you construct a dynamic data structure. For example,
when you put an object into one of the Taligent Collection classes, the collection
retains a pointer to your object. Explicitly using pointers lets the reader know
that aliasing is occurring.

Developers sometimes pass in a nil pointer to indicate a default value. The
correct way to achieve the same effect is to provide a reference with a static
default argument, or to overload the function:

class TFoo
public:

} ;

static const TBar kDefault;

Techniquel(const TBar &arg = kDefault);

Technique2(const TBar &arg);
Technique2();

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Allocate storage
only if you must

Pretend everything
is a primitive

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 47
REFERENCE AND VALUE SEMANTICS: C++ VERSUS EVERYTHING ELSE

Leave storage allocation up to the class client. In a reference-based language like
Object Pascal or Smalltalk, all objects are allocated on the heap. In C++, it's
better to treat values the same way you would in C. For example, overload the
assignment operator instead of defining a copy function; have the caller pass one
in by reference and set it instead of allocating and returning an object. This
allows you to treat classes just like primitive types, and in the same style.

By doing so, you can make use of one of C++'s unique features: the ability to have
automatic and static objects, and objects as members of classes. No matter how
clever or efficient the storage allocator, it can never be as fast as allocating an
object on the stack, or as part of another object. If an object can be local to a
function, there is no storage allocation overhead. Many objects have very
localized scope and do not need to be allocated on the heap.

NOTE There is one exception to the rule about allocating an object and
returning a pointer: you must do this when the type of the returned object might
vary. A Taligent example is TCollectionOf, which has the virtual function
CreateIterator, that returns an iterator for the collection. This is done because
different subclasses of TCollectionOf return different subclasses of
TIteratorOver. You can't tell until run time what subclass of TCollectionOfyou
have, so you can't preallocate the iterator; the CreateIterator function must
allocate it for you and return it. Any time a function must choose what type of
object to return, the function must allocate the object, not the caller.

NOTE It is useful to allow for monomorphic allocation when it's permitted.
For example, if you know the type of a collection, you can declare the iterator
yourself rather than call CreateIterator.

It is still appropriate for the caller to allocate storage even when the type of the
object being passed in might vary, because you can use references, like pointers,
polymorphically (that is, you can specify a TSubFoo& to an argument of type
TFoo&). The key question is whether the caller or the function must determine
the type. In the former case, leave allocation to the client; in the latter, the
function must allocate the object on the heap and return it.

Design your classes so that using them is just like using a primitive type in C. This
allows the client to use them in a style which is natural for C. In cases where you
want to avoid copying, pass arguments by reference. Use pointers only when you
want a truly dynamic data structure, or when polymorphism -demands it (note
that references allow for polymorphism also, as they are really just a different
kind of pointer).

If your problem naturally calls for value semantics, but you don't want to pay the
overhead of copying, see "Surrogate objects" on page 91.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

48 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

STATIC OBJECT CONSTRUCTORS

STATIC OBJECT CONSTRUCTORS

Don't rely on static objects in other files being available in functions called at
static constructor time. C++ guarantees that, within a file, static objects are
constructed in order from the top of the file to the bottom. But the order of
execution isn't guaranteed between files. If, in the course of executing the
constructor for a static object, you make reference to another static object
(directly or indirectly, through a function call), the chances are 50-50 that the
other static object's constructor hasn't executed yet, and the reference will fail.

It's not clear that this problem can be overcome, especially in the context of
shared libraries. To solve it, the shared library loader must be able to deduce the
dependency between static objects, which is almost impossible considering that
dependencies can arise after multiple levels of indirect function calls-especially
virtual functions calls whose targets cannot be known at load time.

Because you can't count on things to work at static constructor time unless they
are specifically documented to do so-and most should not make that promise
avoid exporting static objects as part of an interface that can be called from static
object constructors (this is also important for performance reasons, as described
earlier). For more information, see "Avoid static objects" on page 58.

NOTE The Annotated C++ Reference Manual (Stroustrup) discusses a technique
(not based on static objects) that achieves much of the same benefit as static
objects but doesn't suffer from this problem. Read §3.4, "Start and Termination,"
if you are thinking about exporting static objects to clients.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 49
THE C PREPROCESSOR

THE C PREPROCESSOR

Use canst instead of
Ifdefi ne constants

Though the C preprocessor is one of the most powerful features of C and C++,
avoid using it. Except for 4/i ncl ude files, preprocessor symbols, and conditional
compilation, C++ has features that supersede most of the techniques that
required the C preprocessor. Sometimes you need to use the preprocessor to
accomplish things you can't with C++, but the need occurs far less often than
when using straight C. For example, the Taligent Application Environment uses
macros in some places to create meta-information that cannot be found via the
current, interim runtime. Be careful though-the Taligent Development System
restricts how you can use the preprocessor.

Never use 41defi ne for symbolic constants. Instead, use the C++ const storage
class. As with 41defi ne symbols, const declarations are evaluated at compile time
(for types and expressions that qualify as compile-time constants). Unlike
41defi ne symbols, they follow the C scope rules and have types associated with
them. You can also use enum to prevent a host of problems. For example:

41define kGreen 1
const int kGreen = 1;
enum Color {kRed, kGreen, kBlue}

II Bad
II Better
II Best

If you accidentally redefine a name with a 41defi ne, the compiler silently changes
the meaning of your program. With const or enum you get an error message. Even
better, with enum you can put the identifiers in the scope of a class (see "Use
global names only for classes" on page 35). As an added bonus, each
enumeration is treated as a separate type for purposes of type checking (much
like the way scalars are handled in Pascal) and for purposes of overloading.

Unlike in ANSI C, objects in C++ that are declared const and initialized with
compile-time expressions are themselves compile-time constants (but only if they
are of integral or enumeration type). Thus, they can be used as case labels or in
compile-time expressions.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

50 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

THE C PREPROCESSOR

Use enum instead
of sets of constants

If your constants define a related set, don't use separate const definitions.
Instead, make your constants an enumerated type. Remember to document
whether the constants may be added to an enumerated type in subsequent
releases. Absence of comment implies that the set is unchanging for all eternity.

-{

const int kRed = 0;
Bad definition style const i nt kBl ue = 1;

const int kGreen = 2;

Best style ------- enum ColorComponent {kRed, kBl ue, kGreen};

This causes ColorComponent to become a distinct type that the compiler type
checks. Values of type ColorComponent are automatically converted to i nt as
needed, but integers can't be changed to ColorComponents without a cast. If you
need to assign particular numerical values, you can do that too:

II kBlue and kGreen do not need explicit values because they are
II assigned increasing values automatically. However, it doesn't hurt.
enum ColorComponent {kRed = -1, kBlue = 0, kGreen = 1};

The type declaration should occur within the scope of a class. Then, references
to the constants outside of the class' member functions must be qualified:

class TColor {
public:

enum ColorComponent {kRed, kGreen, kBlue};

}

foo = TColor::kRed;

NOTE Until recently the enum type name wasn't local to the class; only the
actual constants were; the enum type name wasn't qualified. The ANSI base
document now states that such type names (indeed all nested type definitions)
are local to the class' scope and must be qualified. Thus, the variable foo in the
last example was previously declared as a ColorComponent, but must now be a
TColor: :ColorComponent.

Another language limitation is that compile-time constants other than enum can't
have class scope-they must be global. It is illegal to have an initializer for a static
class member in the class declaration. However, it is legal to have a static const
data member that has a definition elsewhere-such a member is a compile-time
constant, but its definition must appear before its use (such as in a header file);
otherwise, it isn't usable as a compile-time constant.

Though you can use en urn to achieve the same effect, use global constants rather
than abusing enum when something must be a compile-time constant. The new
C++ names pace feature might ameliorate this problem when it is available in
compilers.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Use in lines instead
of function macros

Use templates for
specialized functions
and classes

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 51

THE C PREPROCESSOR

Don't use function macros; they are problematic. Instead, declare the functions
inline to obviate the need for function macros (see "Inline functions" on page 62
for restrictions). Like canst, inline functions follow the C++ scope rules and allow
argument type-checking. Both member functions and nonmember functions can
be declared inline. Consider this classic example:

#define SQUARE(x) «x)*(x»

I I and ...

SQUARE(y++) ; II y incremented twice

When written as an inline, it is actually more efficient than the macro version.
What's more, it's correct.

inline int Square(int x)
{

return x*x;
} ;

Square(y++); II y incremented once

One use for the C++ preprocessor was to generate classes and other definitions
from templates in order to implement genericity. This is now superseded by the
C++ template type facility, which is available in the Taligent C++ Compiler. For
information about template conventions, see "Class templates" on page 115.

NOTE For a quick overview of templates, see The C++ Programming Language
(Stroustrup), or The C++ Primer (Lippman). Templates are usefui whenever you
want to define a family of classes or functions that is specialized for a number of
different types, rather than one that works with only a single type. They are also
extraordinarily useful for generating boilerplate, for example, generating a
derived class in a stereotypical way.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

52 CHAPTER 3 C++ PROGRAMMING CONVENTIONS

THINGS TO AVOID

THINGS TO AVOID

Don't use goto

Avoid magic numbers

The following tips help keep your code readable and maintainable.

The C++ gata statement is a serious impediment to the maintainability and
readability of code. When the visible appearance of code and the control flow
correspond, it greatly aids comprehension and correctness. Using gata subverts
this. With gata, you must read every line or you don't know what is going on.

Returning from the middle ofa procedure is similarly suspect. Don't use either
of these constructs. If you feel a burning need to do this, consult your architect.

A magic number is any literal written inline rather than defined as a symbol, except
for certain distinguished values such as 1,0, 10, and so on. For example:

a &= OxFFFOOOOO;
b = 42;

Always define such literals as identifiers so that you can easily change their values
without having to search the code. The most insidious example is sizes of arrays
that are hard-coded in the program text. If a change is made to the size of the
array, it is difficult to find all the places where it's hard-coded.

A gata completf
invalidates the hi~
level structure of
the code.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

~void bit flags
& and Il

~void using arrays
IS local variables
Ir object fields

CHAPTER 3 C++ PROGRAMMING CONVENTIONS 53
THINGS TO AVOID

Use the Taligent-defined Boolean type if you want to keep Boolean flags. Unless
saving space is important in a data structure or argument, the code required to
interpret single-bit flags is larger and slower than the code to interpret the
Boolean type.

fI NOTE In the future, Taligent might support boo 1, the new c++ built-in type
for Booleans. For now, stick with the Taligent-defined type.

If you need to use sets of single-bit flags, don't use the & and I operators to test
and set these flags because doing so is error prone. (More than one bug has
arisen from & used instead of I). Instead, use C++'s (and C's) bit-field facility. This
lets the compiler allocate the storage and generate the code for testing and
setting. Also, the compiler can take advantage of special instructions not
accessible via I and &.

The bit-wise operators are useful in cases where bits must be laid out carefully in
storage to match some existing definition or hardware registers, rather than left
up to the vagaries of the compiler. However, such code is usually not portable
and should be isolated. For more information on isolating code, see
"Nonportable code" on page 113.

Aside from questions of stack size, arrays used as local variables or object fields
must have their bounds determined at compile time. Using arrays with fixed
bounds often signals that an arbitrary limit exists in your code. If that limit is
exceeded, an exception or possible stack corruption results. If you use large
arrays with fixed bounds, consider whether your code is general enough. If you
are tempted to think, ''Who would ever have more than 100 elements in this
array?" please remember a similar query: ''Who would ever want more than 64K
(or 640K!) of memory in a personal computer?" On the other hand, if the size of
your array is derived from the log of the number of elements you deal with
(because, for example, it is a stack for a recursive algorithm) and it has 100
elements in it, you are probably safe.

For more information on storage management issues, see "Storage management
philosophy" on page 57.

lALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 4

TALIGENT ENVIRONMENT

PROGRAMMING CONVENTIONS

No application seems finished before it has to ship: there are always

changes you'd like to make or features you'd like to add. Rather

than delay delivery, you make those changes in updates or

55

To ensure a high degree of certainty that your code will '-''-'.LI.'' 1,,;:liff~I;j:;<\;5:;:';;:;H;gm!1!;Fn;::1

work as your program changes and interacts with other programs,

you must establish guidelines to follow as you write code. The

conventions and guidelines in this chapter are the construction

rules Taligent follows to ensure that code written today will be

robust, portable, and extensible in the coming years.

fALl GENT LIBRARIES

When they exist, use Taligent Application Environment library routines rather
than the routines defined in the standard ANSI C libraries. Taligent Application
Environment routines might have a more efficient implementation than their C
library equivalents, and Taligent maintains control over their definition,
semantics, and performance. For example, use memory allocation routines
defined in the class TMemHeap rather than rna 11 DC and rea 11 DC (better still, use
new and de 1 ete rather than rna 11 DC and free).

Standard C libraries are more generic and are not always aware of conditions that
Taligent Application Environment routines must know about. For example, the
standard C string functions don't support Unicode properly, and rnerncpy ()

doesn't handle overlapping moves from lower to higher addresses (use
TMemorySurrogate instead).

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

56 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

T ALI GENT LIBRARIES

Avoid homegrown
utility classes

Use the Name Server

Taligent doesn't permit its engineers to use homegrown alternative utility classes
in code that Taligent supplies. The Taligent Utility classes provide a complete
spectrum of support, from the very general collection classes to a set of primitive
data structure classes that are very efficient. These latter classes have largely
inline implementations where it counts, and are just as efficient as a hand-coded
al ternative.

Given that reuse of code is one of the driving principles of the Taligent
Application Environment, that reimplementation of standard algorithms is a
significant source of bugs (data structure bugs can be particularly hard to track
down), and that there is no efficiency imperative, there is no reason to write your
own utility class when programming for the Taligent Application Environment.
Taligent requires an architect's approval before an engineer may construct data
structures that duplicate supplied functions.

Use the Taligent Toolbox Name Server to name fixed resources; but don't use it
for naming user-visible entities. Think of it as naming C++ static variables, rather
than instances of objects. Like static variables, the servers named in the Name
Server have fixed names that are hard-wired into client code (in their client
objects). Object instances, on the other hand, don't necessarily have names, and
the way they are identified varies from subsystem to subsystem. If you have
multiple instances of servers that act like object instances, or that correspond to
an open-ended set of user-visible entities (such as mounted file system volumes or
disks), consider using an alternative way of identifying them.

Although it's technically possible for the Name Server to map server identifiers
into a character string, don't do it. The Name Server's database needs to be
resident, and you have to rework the server startup code to dissociate the server
name from the program name-it is hard to uniquely map to and from strings.

NOTE Eventually a more powerful local Name Server that uses objects as keys
and values will replace the current Name Server. The current Name Server API
will continue to be supported as an alternative interface.

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 57
STORAGE MANAGEMENT PHILOSOPHY

STORAGE MANAGEMENT PHILOSOPHY

Hide allocation
inside a class

Don't assume
lise of a heap

Clarify ownership
Df storage in
interfaces

Don't use very large
local variables or
members

Storage management is a real burden. The best rule of thumb to make life easier
is don't do it. use automatic or static allocation instead. Failing that, follow the
guidelines given in this section for managing your storage.

If you have to allocate storage, do so inside a class where it is easy to track. For
example, THashTable allocates subsidiary data structures (the hash table) that
are invisible to clients. You can also use a surrogate that does reference counting
to allocate and deallocate real objects (see "Surrogate objects" on page 91).

When writing an interface, don't assume that objects that get passed in are on
the heap, because this method doesn't ~ork well for objects on the stack. If you
must assume that an argument is heap based, document that fact; and if you plan
to take responsibility for managing the storage, use the proper naming
convention. Begin the function name with Adopt ... , as explained in "Name
conventions" on page 32.

Make storage management implications clear to the callers of an interface,
especially if the routine allocates storage for which the caller must take
responsibility. The names for these routines must begin with Create ... , Copy ... , or
Orphan ... ; if they take responsibility for arguments, they begin with Adopt
Make these issues explicit by using comments, naming conventions, and
documentation.

Auto (local) variables and members of objects that are themselves auto variables
are allocated on the stack. However, stack sizes are platform dependent, and in a
layered environment, the thread stack sizes can be up to the host operating
system. Large data structures can blow the stack as your program moves between
platforms and hosts.

Conversely, if you decide to place large objects on the heap, you might notice
that it takes several hundred microseconds to allocate them. Follow these
guidelines when trying to determine whether to put a variable on the stack (as
part of another object) or on the heap:

Don't allocate more than a few kilobytes at a time on the stack. ~his is a rule of thumb, and
you'll have to use your best judgment. Think of it as the point where you should
start wondering whether something should really be on the stack. Talk to an
architect if you have questions. In addition, avoid algorithms that use recursion

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

58 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

SHARED LIBRARIES

in an unbounded fashion, as the default stack always has some preset size.
Algorithms that use recursion in a bounded fashion, such as Quicksort, are
acceptable. The deeper you recurse, the less stack space you should use on each
recursion.

Use the heap for larger objects, not the stack, regardless of performance. There are a
number of custom storage allocation techniques you can use (such as pooling
objects for reuse) to cut down on the overhead for large heap objects.

For information about memory issues with local arrays, see "Avoid using arrays as
local variables or object fields" on page 53.

SHARED LIBRARIES

Avoid static objects

Shared libraries have many advantages, including easy software updates, code
sharing, and the ability to dynamically load objects. However, they have one
disadvantage: because the library is shared among many applications,
unreferenced code and data can't be stripped. This is a minor problem for code,
because it is immutable and is shared among all clients. Additionally, unused
code doesn't get paged in, and the segmentation capabilities of the Taligent
Linker segregate code into contiguous chunks that are used together to reduce
fragmentation. Static data, however, is a problem.

Avoid modifying static data because the page it is on will no longer be shared.
This is not an absolute rule; it's all right to have modifiable static data or static
objects with constructors in a library, as discussed next.

The best way to avoid modifying static data is to not have it in a shared library.
This includes static objects with constructors, because the constructors run after
library initialization and modify the storage for the object, resulting in a separate
copy for each task (plus anything else on the same page). Static objects or
struct's initialized by C-style initializers can be shared between all tasks.

If you need static data that is modifiable or is an object, allocate it on demand.
For example, rather than having a static array, have a static pointer, and allocate
the array the first time it is needed. The same is true for objects with constructors;
allocate them as needed. One useful trick is to place static objects inside
functions rather than at file scope; then they are initialized the first time the
function is called. This works for heap storage as well:

void TFoo::Bar()
{

static TBaz *gWhatever new TBaz();

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Vlodifiable statics
n a library

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS 59
SHARED LIBRARIES

The allocation only happens once. Of course, this is useful only inside one
function, but that function can be of the GetWhateverO variety and can be a
static member. Destructors for static local objects are called at static destructor
time, but with a pointer (as in the example) there is no destructor, so the object
is not destroyed automatically. Remember too that there are concurrency
considerations for all static variables, including those declared inside a
function-such as when more than one thread calls TFoo::BarO.

You can have modifiable static data or static objects with constructors in a library.
Just remember that they take space, and if they aren't used the space is wasted. If
the objects are small and few, that's not a problem compared to the added
complexity of allocating them on demand. If they're used frequently, allocating
them on demand can take more space for the allocation code. Look at your link
map to discover how much space your static objects require. Then look at each
static object in your library and ask yourself which ones are used infrequently and
how big are they?

It's not a good idea to export static objects with constructors from the interface
of your library, because you can run into the infamous order of execution of
constructors of static objects problem described in "Static object constructors" on
page 48 (for a full discussion and ideas on how to work around it, see the next
section, "Consider alternatives to temporary objects"). If you try to use an
exported static object from your own static object constructor, you have a 50-50
chance of hitting the problem. Thus, it's best to use a different technique. Static
objects that don't have constructors or destructors do not have this problem.

rALIGENT'S GUIDE TO DESIGNING PROGRAMS

60 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

BINARY COMPATIBILITY CONSIDERATIONS

Consider alternatives
to temporary objects

Constructors, like any function, take time to execute. If you use an object as a
constant, it's better to create it once and use it repeatedly. One way to do this is to
make the object static. By placing it at file scope, it is implicitly static, or if only
used by one function, it can be static inside the function. Unless the class in
question relies implicitly on other static objects, this latter technique has the
advantage of not falling prey to the dreaded order of static constructors problem
described in "Static object constructors" on page 48. Unfortunately, it has
concurrency implications, whereas an object at file scope does not. So,
for example:

Potentially expensive --- Foo(TToken("Hi Mom")); II Pay for constructor each time, but safe.

--{

TToken hiMom("Hi
void Bar()

Consider this instead {
Foo(hiMom);

}

Mom"); II No concurrency issues, but always
II constructed even if never used.

Or~~ -------------

void Bar()
{

static TToken hiMom("Hi Mom"); II NOTE: Potential concurrency problems!

Foo(hiMom);
}

BINARY COMPATIBILITY CONSIDERATIONS

Adding virtual
and nonvirtual
functions

Changing a
function from inline
to noninline

One of the most important goals for the Taligent Application Environment is
binary compatibility from release to release. Once your code is released, you may
not make changes that break compatibility. This section covers some do's and
don'ts to help you achieve this.

Both the current and final Runtime systems allow you to add nonvirtual
functions. Also, the final Runtime system will allow the addition of new virtual
functions. See ''Virtual functions" on page 66 for more information.

Although you can do this, changing a function from an inline to a noninline
won't affect any of the compiled code that calls it. It only affects new callers. See
"Inline functions" on page 62 for more information.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

lemoving private
onvirtual functions
ot called by inlines

Ising classes
lternal to your
nplementation

Ise virtual functions
i overrides are
ossible

learranging, adding,
nd removing
rivate data members
,ith restrictions

CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 61
BINARY COMPATIBILITY CONSIDERATIONS

If you refer to a function from an inline, and clients or derived classes call that
inline, you can never remove the function or change it from virtual to nonvirtual
(or vice versa).

You can remove private functions that are not virtual if the implementation no longer
references them. This includes references from in line functions.

You can remove virtual privates (or change to nonvirtual) if you did not specify in your
documentation that they can be overridden.

You can change a private function from nonvirtual to virtual, but you must recompile all your
own code that calls it.

If you have classes whose definition does not appear in any public header file,
you can do anything you want. However, you have to recompile and reship any
code that does refer to the class definition.

It's acceptable for the class' name to appear in a public header file if it only
appears as a forward declaration (for example, c 1 ass T F 00;).

Member functions can't be changed between virtual and nonvirtual without
breaking callers (except for private functions under some conditions). If you
think you might ever want to override a function, make it virtual (unless it's
private, in which case you can safely change it to virtual later if it's not called from
an inline). It is possible to add a second function that is virtual and have the
original one call it, but that's less efficient (you always pay for two function calls).

Private data members can be added, removed, and rearranged only if:

They are not referenced from any public or protected inline function that is available to
clients or derived classes (part of the Taligent API or SPI).

Doing so doesn't change the offset of a data member that is referenced from any public or
protected inline function. It can be hard to determine the impact on portability,
as different processors align data differently. It's not clear at this point whether
this includes changing the vtable pointer offset. To avoid this latter problem,
declare a virtual function before any data members (always place public
declarations first).

Doing so doesn't change the size of the class.

ALIGENT'S GUIDE TO DESIGNING PROGRAMS

62 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

INLINE FUNCTIONS '

If your class is more complex than the very simplest (such as TGRect), take these
steps to leave yourself room for future data expansion.

o Add a private data member with the following declaration at the beginning
of your private declaration section:

void *fExtension; II room for growth

II Make sure that all of your special member functions (constructors,
destructor, assignment, copy constructor, and streaming operators) are
defined and not in line.

m If you have to add fields in the future, you can make an extension structure
and change the declaration to:

TFooExtension *fExtension;

Mter that, because TFooExtension's declaration isn't public, you can do
whatever you want to it from release to release (see the next section, "Inline
functions"). The disadvantage is that it is allocated on the heap. If you have a
class for which that is unacceptable, make sure you will neverneed to grow the
size of your class-for example, to add more than one pointer'S worth of
reserved space.

NOTE Some C++ runtimes allow you to change sizes of objects without such
workarounds, but it is not clear when or if Taligent will support such a feature.

INLINE FUNCTIONS

Avoid in line definitions because they get compiled into your caller's code,
making them difficult to revise. For clients to compile a class that contains an
inline, they must have the source code for that function. Once the source is in
circulation, it cannot be changed without breaking binary compatibility. What's
more, if an inline refers to internal details of a class, those details can never
change. Because of these ramifications, at Taligent an architect must approve
every in line function.

There are times, however, when inlines are acceptable. In each of these cases, the
function implementation is defined by its declaration.

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

llines that call
Dmething else

nline function
lefinitions in .C files

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS 63
INLINE FUNCTIONS

If your in line function just calls something else that is not inline, it's fine, as long
as the other function has, by definition, identical semantics. For example, Taligent
had a class, MCollectible, that defined a virtual function IsEqual that compared
two objects for equality. It also had an inline definition for operator==, as a
notational convenience. Because operator== just called the IsEqual function, it
was all right for it to be inline and not virtual. This does not apply if your function
just happens to have a one-line implementation. Another example is
constructors or destructors declared empty.

A more subtle question concerns operator== versus operator !=. Should you
define operator!= as an inline that just says! (a==b)? It would be highly
questionable to have this be semantically invalid, as that would confuse clients
tremendously.

However, making such an in line declaration precludes supplying a more efficient
implementation in the future. Because people often make a test based on the
expected outcome, it might be possible to supply custom implementations of ==
and ! = that were optimized for expected == and expected ! =, respectively. Having
an inline implementation of != makes this impossible.

Sometimes having this inline implementation doesn't help, and making the
inline declaration saves writing an extra routine (and having extra code). There
is a gray line, however, somewhere between the simple case of the same function
with two names (like IsEqual and ==) and two substantially different functions.
Err on the side of caution; talk to an architect if you are not sure.

Also, if you have a function in an abstract base class, think about whether it
should have an empty implementation or be a pure virtual function. If it must be
overridden by subclasses, it should be a pure virtual function. If it's acceptable for
it not to be overridden, consider whether you really want the empty definition
inline. Remember, you might decide to add default behavior to that function
some day; if you've made it inline, you no longer have that opportunity.

Taligent previously advocated putting some inline function definitions in .C files,
so that only internal functions would get the inline version (normal clients would
call it out-of-line). However, avoid this because it is not a portable construct.

An equivalent portable alternative is to have a private inline defined in the
header file. Internal clients can call the private inline, and you can provide a
public (out-of-line) function for normal clients to call that turns around and calls
the inline.

NOTE As with all inlines, of course, if the function is more than a few lines
you should not make it inline.

The greater the
extent that the
implementation is
in the inline
function, the less
flexibility you have
in the future.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

64 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

INLINE FUNCTIONS

Inlines for extreme
efficiency

Don't write inlines
in declarations

Sometimes it's acceptable to use inlines if efficiency is extremely important.
However, if you do this, you can never change this routine once your code ships, and
frequently you do not save that much.

Consider that Taligent's complex number implementation makes addition and
subtraction functions inline (fairly short); but, multiplication and division are
regular functions because they are longer-the overhead for a call is less
important and code size is more important. Here, the efficiency consideration
together with the low probability of a future change makes an inline a good idea.

System performance can decrease by making something inline; code size might
increase due to duplication of code, and that increases the amount of code that
must fit in ROM or be paged off disk. One extra trip to the disk costs around
2,000 subroutine calls (the faster the processor, the more it costs). Also, once a
function is longer than a couple of lines, the call overhead is a small fraction of
the total time. Additionally, the calling conventions of Taligent's final runtime
will make the overhead even smaller. You don't save much by making it inline.

If you don't know that your implementation must be inline, do not make it inline.
Build it normally and then measure the performance. Experience has shown
again and again that programmers spend lots of time optimizing code that hardly
ever gets executed, while totally missing the real bottlenecks.

NOTE For more information about inlines and efficiency, refer to
The Psychology of Computer Programming (Weinberg), and to Programming Pearls and
Writing Efficient Programs (Bentley).

The empirical approach is much more reliable. Although better algorithms or
smarter data structures generally buy you a lot more performance than random
code tweaking, there is a legitimate role for such inlines, and there are many in
the TaligentApplication Environment. However, when a Taligent engineer
wishes to make a function inline, the engineer must have either a compelling
argument or objective performance data to sway the architect to approve it.

C++ has two ways of declaring an inline member function. One is to declare the
member function normally and then supply an inline function definition later in
the same header file. The other is to write the function definition directly in the
class declaration. Don't use this latter form-always declare the function normally
and then put an in line definition at the end of the file. That way, it's much easier to
change between inline and regular implementations of a function, and it's no
less efficient. The fact that something is inline should not be obvious in the class
declaration because clients might start counting on it.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

llines for exporting
rivate and protected
lembers

mpty special
lembers

irtual inline
mctions where the
,pe is not known

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS 65

class TFoo {
public:

int TweedleDee() return 1; };
int TweedleDum();

} ;

inline int TFoo::TweedleDum()
{

return 2;
} ;

II Bad!
II Good!

INLINE FUNCTIONS

One exception to this guideline concerns functions that are declared to be empty
(usually in abstract base classes); you can write these directly in the declaration,
as in:

class TFoo {
public:

virtual ~TFoo() {};
} ;

II Declared to be empty

However, don't do this unless you know you will never, ever change it.

Although inline functions have problems, using them is better than directly
exporting data members as public or protected. For example, you can make a
data member available for reading only via an inline, but not if it is public.
Taligent requires an architect's approval for all such constructs in Taligent code.

If you have an abstract base class with no storage and no implementation, it's
acceptable to make the special member functions explicitly empty in the class
declaration, as shown in the last example (~TFoo() declared to be empty). If
there are any data members or if there is significant implementation, don't do
this. When in doubt, talk to an architect.

This might strike you as a contradiction in terms, but a virtual inline makes
perfect sense. If the compiler knows the type of the object statically, it's called as
an inline. If the type is not known statically, a virtual function call is made. If you
are using an inline for valid reasons, such as when a pointer or reference is used
to access the object, this can be a useful technique. The thi s pointer is included,
so calls to virtual inline members of the same object always occur virtually. Recall
that writing MyMember(); is equivalent to writing this->MyMember();.

ALIGENT'S GUIDE TO DESIGNING PROGRAMS

66 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

VIRTUAL FUNCTIONS

VIRTUAL FUNCTIONS

Define class
abstractions

Virtual functions allow the system to decide which functions to execute at run
time. Use them to defer abstract-operation implementation to a derived class
(best), or to allow a derived class to augment the implementation of an operation
defined in the base (not as good).

Do not use virtual functions to trap calls and then take an action based on where
the calls came from. Such traps are often used to handle erroneous conditions in
the caller. These mechanisms wreak havoc with the data abstractions and ruin
one of the major benefits of object-oriented programming. If you override a
function, the override must make sense in terms of the definition of the function
itself and that of its class.

Virtual functions inherently allow function calls to cascade back through the base
classes-for example, DerivedDerived::Foo calls Derived::Foo, which calls
Base::Foo. To avoid cascading calls to inherited functions, define an empty hook
function. If it is called inside the base class only, make the hook function a private
virtual. You can make it protected, but that solves the problem only for the first
derived class. Subsequent classes must know whether to call the inherited hook.

For the client to be able override a virtual function, you must make a clear
definition of what the function does, even if the client only calls the inherited
version after a little processing. The class must specify whether and how virtual
functions can be overridden, and what the derived class' responsibilities are.

The presence of vi rtua 1 or protected is not enough to define the interface seen
by a derived class, just as a class definition by itself is not enough to specify the
interface seen by clients. The interfaces seen by clients and derived classes have a
semantic component as well as a syntactic one; the C++ syntax often expresses
only a small fraction of the total interface. If a function can be overridden, you
must state so explicitly in the class specification (unless it's a pure virtual
function). Your interface must be thought through and well documented. The
next two sections go into more detail.

A function must
make sense in
terms of the obje
to which it
belongs, without
any reference to
its possible
callers or when
they might call it

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

lecide now
,hat might be
verridden later

~hen to use pure
irtual functions

CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 67
VIRTUAL FUNCTIONS

Because the calling site for a function must execute different code depending on
whether it is virtual or not, it is not possible to change a function from virtual to
nonvirtual, or vice versa, without breaking binary compatibility. Therefore, any
class that might allow polymorphism in the future should use virtual functions now, and
any function that will eventually allow overriding should be virtual now. This is true
even if derived classes and overriding are not allowed now. Because this is an
irrevocable decision, it's better to pay the few extra cycles and reserve the option
to allow derived classes later. (Virtual function calls in the Taligent Runtime
system have very low overhead relative to regular function calls.)

Remember, making something virtual does not mean it can be overridden;
whether and how member functions can be overridden must be stated in the
class definition.

Of course, if you are sure that you will never have derived classes, or that a given
function should never be overridden, you don't need to make your functions
virtual. You can find examples in the Taligent Application Environment,
including TGPoint, TToken, and the compl ex class. And if your class can afford
an extra function call, you can add a virtual version later and have the nonvirtual
version call it.

NOTE Inline functions can be virtual. When the compiler knows the type of
the object at compile time, it generates the inline; when it does not (such as
when a pointer or reference is used), it calls the function through a virtual
dispatch. See ''Virtual inline functions where the type is not known" on page 65
for more on this.

The presence of the keyword vi rtua 1 does not mean that a function can be
overridden. This must be explicitly stated in the class specification. A pure virtual
function, however, is an exception. Declare a pure virtual function like this:

class TAbstract {
public:

virtual void MustOverride() 0;
} ;

Before a concrete class (one that can be instantiated) can be created, all pure
virtual functions that it contains must be overridden. This is valuable both for
documentation and for forcing compile-time checking.

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

68 CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS

VIRTUAL FUNCTIONS

Private virtual
functions to control
access

Base class
constructors cannot
call virtual functions

c++ has access control, but not visibility control. This means that private
functions are visible but not accessible. A private virtual function can be
overridden by derived classes, but can only be called from within the base class.
This is actually a useful construct when you want that effect.

Private ---
virtual can
be overriden

Overrides
base;
is visible but
not accessible

Calls from within
TBaseClass execute the
definition of
TDerivedClass:: Foo()

Calls from outside TBaseClass
are in error because it is not
accessible

When a base class constructor is executing, the object is a base class object. Any
virtual function calls execute the base class virtual functions, not the overriding
functions in the (as yet unconstructed) derived class. But sometimes some
initialization associated with the base class must be done using derived cl;:tss
(overriding) virtual functions. To handle such a case, it is necessary to call a
special virtual function immediately after constructing the instance. Always name
this type of function Initialize.

NOTE Derived classes only override Initialize 0 if they want to add their own
post-construction initialization calls.

For example, sometimes during construction you need to create items that can't
be created until the most derived class is constructed. Suppose you have a guard
element of a linked list, where overridding DoMakeLinkO in a derived class can
change the type of the link element. By postponing the Initialize 0 call to the
most derived constructor, you call the proper DoMakeLink.

Never require the client to call a separate virtual Initialize 0 function to finish
initialization after constructing all bases. Requiring the client to remember this is
extremely error prone; if the client forgets, the object will not be properly
constructed.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

'he cost of failing
[t call1nitializeO

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS 69
VIRTUAL FUNCTIONS

The overhead of checking for failure to call Initialize 0 is comparable to or
greater than the following alternative schemes for achieving the same end:

Lazy evaluation. In every client function, check a flag (set to FALSE in the
constructor); then complete initialization by calling the virtual initializer at that
time. This works well only in a limited number of cases.

External/internal constructors. Classes in the hierarchy affected by the need for virtual
initialization should have both internal (protected) and external (public)
constructors. The internal constructors don't call virtual InitializeO. The
external constructors call the internal one (actually, a shared private function),
as well as the internal constructors of all bases. The external constructors then
call the virtual Initialize(). This is error prone too, but only for subclasses as
opposed to all clients.

Clients call the external constructor, and derived classes call the internal
constructors of their base classes. This method calls the virtual Initialize () for the
most derived class only, the one the client constructed directly.

class Base
public:

Base() {InitBase(); Initialize();};
protected:

virtual void Initialize();
enum {kInternal} InternalMarker;
Base(InternalMarker) {InitBase();};

private:
void InitBase();

} ;

class Derived: public Base {
public:

Derived() : Base(kInternal) {InitDerived(); Initialize(););
protected:

virtual void Initialize();
Derived(InternalMarker) {InitDerived();};

private:
void InitDerived();

} ;

fALIGENT'S GUIDE TO DESIGNING PROGRAMS

70 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

VIRTUAL FUNCTIONS

Use virtual base class semantics. Include a virtual base class in the affected class
hierarchy, and make use of the fact that only the outermost call to that base class'
constructor is used. The Taligent Application Environment will include a class
similar to this:

#include <typeinfo.h>
#include <stdio.h>
class Vlnitialize {
public:

Vlnitialize(const typeinfo& t) : fCompleteType(t) {}
void CheckForlnitialize() { if (typeid(*this) == fCompleteType) Initialize(); }
void CheckForFinalize() { if (typeid(*this) == fCompleteType) Finalize(); }
virtual void Initialize() = 0;
virtual void Finalize() = 0;

private:
const typeinfo& fCompleteType;

} ;

class Base {
public:

Base() {} Class that does not -{
care about special } ;
initialize/finalize

First class that cares

Only called if this is
the complete class

class JoesParent public Base, public virtual Vlnitialize {
public:

JoesParent() Base(), Vlnitialize(typeid(J'oesParent)) {
CheckForlnitialize(); II normal initialization

} ;
-JoesParent() {

CheckForFinalize();
}

protected:

II normal finalization

virtual void Initialize();
virtual void Finalize();

II only called if this is the complete class
II only called if this is the complete class

} ;

class JoeClass: public JoesParent {
public:

JoeClass() : JoesParent(), Vlnitialize(typeid(JoeClass)) {
CheckForlnitialize(); II normal initialization

}

-JoeClass() {
CheckForFinalize();

}
II normal finalization

protected:

} ;

void
void
void
void

virtual void Initialize();
virtual void Finalize();

JoesParent::lnitialize()
JoesParent::Finalize()
JoeClass::lnitialize()
JoeClass::Finalize()

{
{
{
{

II only called if this is the complete class
II only called if this is the complete class

puts("Called JoesParent::lnitialize()"); }

puts("Called JoesParent::Finalize()"); }

puts("Called JoeClass::lnitialize()"); }

puts("Called JoeClass::Finalize()"); }

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Ou~ut------------~

Destructors are not
automatically virtual

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 71

int main() {
puts("--- creating a JoesParent ___ H);
JoesParent *x - new JoesParent;
puts("--- creating a JoeClass ___ H);
JoeClass *y = new JoeClass;
puts("--- deleting a JoesParent ___ H);
delete x;
puts("--- deleting a JoeClass ___ H);
delete y;
return 0;

creating a JoesParent --
Called JoesParent::lnitialize()
--- creating a JoeClass --
Called JoeClass::lnitialize()
--- deleting a JoesParent --
Called JoesParent::Finalize()
--- deleting a JoeClass --
Called JoeClass::Finalize()

VIRTUAL FUNCTIONS

A class must have a virtual destructor if it has any virtual functions, or if it is
deleted through a polymorphic pointer. Destructors are not automatically virtual
in classes that have other virtual functions. If you delete such a class through a
pointer to one of its bases, the derived class destructors are not called unless the
destructor is virtual. So, as with any other member function that you want to call
through a base class pointer, the destructor must be virtual if you want the right
one to be called.

Remember also that any virtual functions called from a constructor or destructor
resolve to the implementation of the class whose constructor or destructor is
being executed. This is because any derived class' state has not yet been
constructed or has already been destructed. For more information, see "Base
class constructors cannot call virtual functions" on page 68.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

72 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

VIRTUAL FUNCTIONS

Switch statements
indicate polymorphism

When to use virtual
assignment

Any time you find yourself writing code that looks like "If it's an A, do this; if it's a
B, do that; if it's a C ... ," reconsider your design. If A, B, and C all have a common
base class, that base class needs a virtual function that each subclass can override.
You then call that virtual function instead of your switch statement.

This applies even when you're trying to create an object. If you have a set of
objects, and you want to create an object that corresponds to an object in that set,
ask the first object to create the new object. The alternative-testing the object
type and creating the second object on that basis-is not extensible when new
types of objects are introduced.

Consider video device configuration. Different video devices have different
capabilities. For this reason, the user interface for configuring a video device is
highly device dependent. Some devices are not frame buffers; to those, concepts
like bit depth are meaningless. Rather than query the device to figure out what
kind of user interface to use ("Are you a frame buffer? How many bit depths do
you have?"), have the video device return a user interface object via a virtual
member function. The function can even return an object that can later create
that user interface object-a reference surrogate. For more information, see
"Surrogate objects" on page 9l.

This does not imply that every video device must implement its own user
interface. If most devices have common characteristics, Taligent might provide a
standard user interface object for most devices to return. This way you can
handle devices with special requirements without having to revise the system to
know about them.

NOTE Classes used at boot time must be careful about referring to classes
that, in turn, refer to things in high-level shared libraries. Using indirect
reference objects alleviates that problem.

Assignment, or operator=, is a function that requires careful consideration
before you make it virtual. You might think that, like other members, it is better
to make it virtual to be safe. Otherwise, you run into problems like this:

void Bar(TFoo &arg)
{

arg = value;
}

If TFoo: : operator= is not virtual, this assignment will slice the object. So
shouldn't assignment always be virtual?

There is a catch. Because C++ automatically overloads assignment in each new
class, you need to supply two assignment operators. If you have a base TBase and
its derived class TDerived, and TBase has virtual operator=, then TDerived might
need to override TBase: : operator=, in addition to defining its own operator=. If

Switch statemenl
are nature's way I
saying that you
should be using
polymorphism.
The same thing
applies to lookup
tables.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 4 TALIGENT ENVIRONMENT PROGRAMMING CONVENTIONS 73
VIRTUAL FUNCTIONS

TDerived defines virtual operator , its subclasses must override
TBase: : operator- and TDer; ved: : operator=, in addition to defining their own
operator=. And so on.

Clearly this gets out of hand quickly. It only makes sense to make assignment
virtual when there are additional restrictions that keep this geometric
progression from occurring.

Consider a shallow class hierarchy, where the classes are convertible between
each other. See the discussion of TColor in "Equality" on page 86 for an
example. Another example is TText; different subclasses should be convertible
among themselves, and the class hierarchy is unlikely to get deep.

Another possibility is that the inherited virtual operator= would rarely be
overridden. Overriding happens only if the base class implementation is
adequate in most cases (unlikely), or if it is implemented in terms of other virtual
functions that subclasses do override. This latter method is better than
overriding operator= itself because the other virtual functions do not
automatically get overloaded by the compiler in every subclass.

There is also an issue with implementing derived class assignment. Usually, when
you do this, you invoke the assign men t operator of your base class (or classes) .
However, if your base class does have a virtual operator=, or if the base's
operator= is otherwise defined to work correctly for all derived classes (for
example, it calls virtual functions to do all the work), you must be careful when
writing operator= for derived classes. If you call the base class version too, the
assignment will likely occur twice! In this situation, you need to think of the
derived class assignment as a special case where more specific argument types are
known. If special case handling is not necessary, the derived version can just call
the base class version:

TDer;ved& TDer;ved::operator=(const TDer;ved &d)
{

TBase::operator=(d);
}

Always supply an assignment operator in such cases, because the default version
C++ supplies will surely do the wrong thing: in addition to calling the base class
operator, it will copy all your data members.

On the other hand, if a class is going to be used in situations where references
are likely to be assigned to, either the base class operator= must always work or
assignment has to be virtual. Otherwise, clients get sliced objects, which leads to
subtle bugs.

This is an area of C++ where there is no single correct approach. Theoretically, the
right thing is to always make assignment virtual, but doing so leads to problems of
its own. Because of these trade-offs, whether to make assignment virtual is
something you should consider carefully, in consultation with an architect.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

74 CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

FRIEND FUNCTIONS AND CLASSES

FRIEND FUNCTIONS AND CLASSES

The fri end declaration lets a class specify that a function or class has access to its
private or protected members. Avoid fri end declarations for loosely coupled
classes because they control access at a very coarse granularity and don't specify
what's acceptable and what's not (unless you document it). Taligent's preferred
alternative is to define internal use only public member functions and denote with
a comment what they are for (see "Class definition conventions" on page 37).

Friends make perfect sense for some situations, such as tightly coupled classes
like TSetOf and TSetIteratorOver from the Collection classes. These classes are
implemented in tandem and must know about one another's implementation, so
it's appropriate to make them friend classes. Also, overloaded operators or
functions must sometimes be global for symmetry, and therefore often must be
declared as fri end. A Taligent engineer must confer with an architect before
making fri end declarations.

EXCEPTION HANDLING

Exceptions checklist

The Taligent Application Environment uses exceptions, not error codes, to deal
with unusual circumstances. Exceptions are more robust than error codes; your
application should not define error, codes, and functions should not signal status
by returning them. Exceptions are part of C++ and are described in The C++
Programming Language (Stroustrup).

NOTE For a good discussion of the design issues for C++ exception handling,
and for reasons why exception handling is superior to error codes, see Chapter 9
of The C++ Programming Language (Stroustrup), and pages 149 through 176 of
"Exception Handling for C++," in 1990 Usenix C++ Conference Proceedings.

1. Learn how exceptions work.

2. Recover resources.

3. Design your exceptions.

4. Know when to throw.

5. Know when to catch.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Exceptions syntax

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 75

To review, you throw an exception by saying:

throw anException;

And you catch it like this:

try {
... code that might throw an exception;

}

catch (const TFooException &a)
... handle a foo exception;

}

catch (const TBarException &a)
... handle bar exception;

}

catch (...) {
... handle anything else;

}

EXCEPTION HANDLING

The type of anExcepti on and the argument lists to the catch clauses can be any
type; but the Taligent Application Environment convention is to throw an
instance of a non-const TStandardException subclass, and to catch it by const
reference to avoid slicing. A catch clause is found by searching up the stack until
a clause is found that matches the type of the exception (using the C++ function
selection rules, based on anException's static type).

Exceptions can be thrown anywhere, including inside catch clauses. A special
case that is only valid inside a catch clause (or functions called from a catch
clause) is:

throw;

This rethrows the exception being processed with the same type as originally
thrown (useful when you don't know the exact type, and you often won't). Note
that saying

throw arg;

(where a rg is the argument to your handler) does not work, because throw uses
the static type. If a rg is a reference, you'll slice the object.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

76 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EXCEPTION HANDLING

Avoid interface
specification

Perform resource
recovery

Automatic objects

Scope within which
monitor lock will

One syntactical element you should not use is the interface specification, see §9.6 of
The C++ Programming Language (Stroustrup). This specifies, in a function
declaration, those exceptions the function can throw. It looks like this:

void Foo(int) throw(a, b, c);

If an exception that is not in the list is thrown, the default action is to terminate
the program. Because exception handling should be robust against errors, this is
counterproductive. To correctly use this feature, you must list all unhandled
exceptions that can be thrown by any called function (direct or indirect); this is
impractical. For example, a disk error might cause a high-level application action
to be unsuccessful. If you use interface specification, disk error must appear in
every function declaration in the call chain.

Any exception thrown by the Taligent Application Environment should be a
descendant of TStandardException, so assume that any function can throw a
TStandardException (similar to Stroustrup's hypothetical Fail exception). Mter
all, you can always do something sensible with a TStandardException, including
produce an error message.

Taligent engineers use interface specification only with an architect's approval.

The great m<yority of exception-handling concerns center on recovering
resources when your function is terminated due to an exception. Most handlers
just do resource recovery and then pass the exception on.

The easiest way to handle resource recovery is to tie it to automatic objects (stack
allocated, of storage class auto) . An automatic object lives within the scope of the
function, and its destructor is called if it still exists when the function is
terminated. By tying your resource allocation to the lifetime of an automatic
object, you do not have to explicitly catch exceptions.

For example, TMonitorEntry, which is used to acquire a monitor lock, can be
allocated on the stack within the scope of the lock. If you exit the scope because
of an exception, the lock is automatically released:

void aFunction() {
I I ...

be held -------i {

Lock automatically
released, including
when exception is
raised

r---+---}

I I ...
}

TMonitorEntry anEntry(myMonitor);
II ... do stuff ...

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 77
EXCEPTION HANDLING

Automatic cleanup also applies to base classes and members of an object under
construction. If the constructor encounters an exception, it calls the destructors
for those base classes and members that have already had their constructors
called. The body of your constructor never executes if a base class or data
member throws an exception from within its constructor.

& NOTE The ISO/ANSI draft specification is currently silent on what happens
if an exception occurs during the execution of the constructor in new T F 00 ;.

According to the constructor rule, any base or member objects with completed
constructors will have their destructors called. But there is a storage leak, because
no pointer is returned (evaluation of the expression is terminated). The
prevailing opinion is that operator del ete should be called automatically in such
situations because there is no other way to completely recover. Taligent expects
ISO / ANSI to adopt this specification; the Taligent c++ Compiler is implemented
this way.

void f() {

TFoo *t = 0;
try {

t = new TFoo;
catch (...) {

The problem is -------- /I t == 0 s till
that allocation
happened, but the
constructor failed

}

Also consider the TPrimitiveTypeArray template class from the Collection classes.
Unlike a variable length C array that you heap-allocate yourself, there's no need
to free the array storage if the TPrimitiveTypeArray is on the stack because the
destructor cleans it up automatically.

NOTE Heap storage isn't the only resource that must be released when there
is an exception. The rest of this section goes into greater detail, especially the
discussion ofTJanitor on page 80.

Stroustrup also discusses cleanup using automatic variables in §9.4 of The C++
Programming Language. This is the easiest method if you can cast your resource
allocation and deallocation in this form. Otherwise, you must explicitly handle
exceptions; the remainder of this section discusses a few guidelines.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

78 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EXCEPTION HANDLING

Passing exceptions

One technique -------j

Most handlers just do resource recovery and then pass the exception on. In
keeping with that observation, such handlers should look like the following. (For
information on when to try to recover from an exception, see ''When to recover
an exception" on page 83.)

catch (...) {
... do your cleanup ...
throw;

}

Place your handlers where you allocate resources in your function. One style is to
have many little handlers with cleanup code specific to th~ resources in that '
allocated scope:

void Foo() {

}

TBar *pl. *p2. *p3;

pI = new TBar;
try {

}

p2 = new TBar;

try {
p3 new TBar;

catch (...) {
delete p2;
throw;

}

catch (...) {
delete pI;
throw;

}

delete pI;
delete p2;
delete p3;

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Better technique -----I

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 79
EXCEPTION HANDLING

As you can see, the previous example is rather messy. Following is a better
organizing technique that takes advantage of the fact that you can delete a nil
pointer (see "Use nil pointer deletion" on page 106 for more information):

void Foo() {

}

TBar *pl=NIL, *p2=NIL, *p3=NIL;

try {
pI
p2
p3

}

new TBar;
new TBar;
new TBar;

catch (...) {
delete pI;
delete p2;
delete p3;
throw;

delete pI;
delete p2;
delete p3;

You still have to include the normal deletes of pI, p2, and p3. There's no good way
to avoid this problem, unless you don't need access to local variables, in which
case you can call a common function to handle it.

Even if your cleanup doesn't involve deleting a pointer, you can use a similar
technique with your own flag variables to indicate something needs cleaning up.
Although the previous example comes out better with such flags, sometimes
nested try blocks are more appropriate (though deep nesting is hard to read and
understand); one size does not fit all.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

80 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EXCEPTION HANDLING

T Janitor This simple example illustrates an even easier way to handle the storage
allocation by using objects. If you have a helper class declared like this:

template <class A) class TJanitor {
public:

0; TJanitor(A* anA) : p(anA
TJanitor() : p(NIL) {};
~TJanitor() { delete p; };
TJanitor& operator =(A* anA) { p
operator A*() { return p; };
A* operator -)() { return p; };

private:
A* p;
TJanitor(const TJanitor&);

anA; };II Should throw exception if not NIL
II convenience
II convenience

II no copies
TJanitor& operator=(const TJanitor&); II no assignments

} ;

Then you can use it like this:

void Foo() {

}

TJanitor<TBar) pl. p2. p3;

pl new TBar;
p2 new TBar;
p3 = new TBar;

As it stands, this class does not implement smart pointers, and so doesn't deal with
more than one TJanitor pointing at the same object. Smart pointers require
considerably more work. The Taligent Application Environment has two classes
like TJanitor that you can use: TDeleterFor<> and TDeleterForArrayOf<>.

NOTE Although the c++ books state that operator new returns 0 when
allocation fails, the ISO/ANSI committee has decided to change this to throw an
exception, and that is what Taligent implements. This is somewhat moot as it is
difficult with a heavily heap-oriented architecture to recover from out-of-memory
conditions (at least in the default heap; other heaps are not a problem). Taligent
is considering a MacApp-like scheme (prohibit all but critical allocations when
available space gets low), but you should still expect operator new to throw
an exception.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Design exception
classes

What to subclass

CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 81
EXCEPTION HANDLING

All exceptions generated by Taligent Application Environment code descend
and inherit from TStandardException. This inheritance ensures sensible error
message generation and allows exceptions to stream between tasks. Subclasses of
TStandardException represent the actual exceptions or error conditions, and
they can be further parameterized by instance variables of the specific class.

All exceptions
descend from
TSandardException.

Broad
categories
encompass
particular
exceptions.

Specific categories for
exceptions the client
wants to recover.

NOTE TStandardException is a very low-level class that can safely be used in
primitive parts of the system, such as device drivers (assuming the specific
subclasses of TStandardException do not have additional dependencies).

As with any interface, make the categorization client driven. The key is to think
about what clients want to catch. Categories allow the clients to specifY what they
think they can recover. As such, introduce a broad base class only when you are
sure clients want a uniform way to catch and recover from errors that descend
from that base. Don't introduce a base class unless you are sure some clients want
to catch and recover from errors that descend from that base in a uniform way.

Similarly, don't specialize a specific exception class unless you think that clients
will take different recovery actions based on the distinction you are making. For
example, TTruncatedSectorError is probably too detailed because most clients
only care that a disk error occurred.

You can always record specific error causes as a data member of your exception
subclass. (For example, TDiskError could have an en urn member with a getter and
setter, and the enurn would be over possibilities like kSectorMarkMissing and
kTruncatedSector.) In fact, TStandardException contains a handy integer that is
intended for that purpose, and the default message formatting code uses it to
select the right text. This way the end user is told precisely what the problem is.

The e++ exception
mechanism uses
inheritance for
exception
classification.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

82 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EXCEPTION HANDLING

When to subclass

Summary

When to signal
an exception

Destructors

There are two reasons to subclass TStandardException:

Define a category of exceptions that is handled in a unique way. With your own subclass, clients
can catch only the exceptions of interest to them, perform whatever custom
cleanup is appropriate, and then rethrow them for standard handling by the
Application framework.

Provide scoping for the fetching of error message texts. The error text template is identified by
the actual class type (a subclass of TStandardException), and an enum scoped to
the subclass. Your subsystem should contain a subclass ofTStandardException to
which you can add your specific enum value and associated text template.

When you are designing your exception classes:

II1lI Design the class hierarchy to reflect how clients write their catch clauses to
recover from errors.

II1lI Group together those errors you recover in the same way. You cannot
anticipate all such groupings, but you can reflect the common ones in the
hierarchy. Remember that the try-catch syntax allows multiple catch clauses.

Signal an exception when a condition occurs that prevents your function from
returning its normal result. Of course, part of designing a function is deciding
what's a normal result and what's an exception. Stroustrup's rule of thumb is a
good one: use exceptions for exceptional or unusual conditions, not as novel flow
of control techniques. Think of an exception as something that has message text
explaining the problem associated with it.

NOTE The Taligent standard requires that all error conditions in the
Taligent Application Environment be reported through exceptions, not through
error codes.

Do not throw exceptions in destructors, and do not call anything that might
throw an exception unless you're prepared to catch it and deal with it (see the
next section, ''When to recover an exception"). Destructors that exit with an
exception never finish executing, and the uncleaned resources are lost.

Additionally, the ISO/ANSI draft standard states that if the exit occurs during a
stack unwind (while handling an exception), and while searching for an
exception handler, the special function term; nate() is called. As you might
gather from the name, term; nate() takes rather draconian measures. Although
you can install your own terminate function instead, it cannot be done in a clean
way by library software, but must instead be left to the application developer.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

When to recover
an exception

CHAPTER 4 T ALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 83
EXCEPTION HANDLING

There are several reasons for recovering an exception:

Try to recover from an exception only when you can take a sensible action. Limit your handlers to
fairly narrow categories of errors, with an obvious recovery action. If you do not
know what really happened, it is better to let the error surface than to try a
random recovery action and hope that the problem goes away. If the recovery
action does not work, you might make it worse.

Do not catch TStandardException or (...) and fail to rethrow it. An exception to this rule is in the
Application framework, which catches unhandled exceptions, puts up an alert
for the end user, and then attempts to continue. Another exception is within the
body of destructors. If a destructor does something that can generate an
exception, surround that action with a try-catch block that fields any exception
(using catch (...)) and then attempts to continue. As discussed in the previous
section, do not allow an exception to escape from a destructor.

Separate error recovery and resource cleanup handlers occurring in the same function. It is
better to avoid resource cleanup inside the error recovery handler because doing
so might result in your duplicating cleanup code throughout your handlers. You
can nest the recovery handlers inside the try block for the resource cleanup
handlers. Or even better, use the technique described in "Automatic objects" on
page 76 to avoid resource cleanup handlers altogether. But don't do both in the
same handler.

Use assertions to signal error conditions due to programming error, which clients wouldn't want
to recover from. A violated assertion drops into a debugger during testing, but
throws a standard programming error exception in production use. If the error
can occur other than from programmer error, or if clients might want to catch
and recover from it, use an exception you define yourself.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

84 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

PORTABLE HASH

PORTABLE HASH

The Taligent Application Environment sometimes stores objects in disk files that
are accessed via a hash. Examples of classes that do this are TDiskSetOf and
TDiskDictionaryOf. In order for the index structures in these files to work when
the files are transported across platforms, the hash functions used must return
the same result on every platform.

To do a portable hash, follow these rules:

Only use other portable-hash results or portably converted primitives as elements in your
calculations.

Store the hash result as a value; never interpret it as a sequence of bytes.

All of the primitives that you use must be converted to a portable form, with precisely the same
results on all machines. This means that you convert all primitive values to
HashResult (unsigned long), using only 32 bits.

III! For all integer values, this is a simple mask and cast (assume kMask32 is a
named constant that stands for the masking value OxFFFFFFFFU):

result = (HashResult) (x & kMask32);

This works because:

a. If one operand is unsi gned long, the other is converted to
uns i gned long.

b. If a shorter unsigned value is converted to a longer one, the value is
preserved.

c. If a signed value is converted to unsigned, it must have the correct value
mod 2/\n, where n is the number of bits in the unsigned type. So, a
conversion to uns i gned long yields identical values on different
machines as long as the number of bits in an unsi gned long is the same.

d. If the number of bits in an unsi gned long is greater than or equal to 32,
the least 32 bits of the result in from the previous step (c.) is the same
across all such machines.

III! For doubl e and f1 oat, the Hash supplied by Numeri cs. h is portable.

result = Hash(x);

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

trive for uniform
istribution

10 not implement
lash via member
Jnctions

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 85
PORTABLE HASH

All arithmetic operations that you perform in combining elements must be portable; they must have
precisely the same results on all hardware. This means that every operation on
HashResult must be masked to 32 bits afterwards. Restrict yourself to the
arithmetic operations (+, -, *, /, %) and logical operations (I" &, I, -, », «,
RotateUp, RotateDown).

result - (x + y) & kMask32

You must guarantee to all clients that you will never change the hashing algorithm, even if there are
bugs in it. The only exception to this would be if you had a bug in your algorithm
so severe that its prior results were useless. For example, if Hash 0 returns
TRandomNumberGenerator::FirstO, the old data isn't retrievable. So changing
Hash 0 to return 0 is permissible because it allows new applications to work,
while the old ones already don't work.

If you want your hash function to return hash values that are uniformly
distributed across what the return type can represent, send your result as a seed
to a random number generator that returns values of that type. Because the
semantics of the random number generator are to return numbers that are
uniformly distributed, this makes your hash function also generate values with
the same property.

In the future, the Taligent Application Environment will define APIs to assist in
computing portable hashes. In the meantime, you might want to write your own
helpers, such as a masking function.

For many objects, Hash (and comparison) aren't intrinsic properties of the
objects, but of the collections they are inserted into. Thus, they shouldn't be
implemented via member functions. To illustrate why this is a problem, consider
TFontIdentifierStyle, which identifies the font to use for text in style sets and line
layout. A hash function was added for line layout so that TFontIdentifierStyles
could be found. This Hash function was based on the name of the font. However,
no one realized that TStyie already defined a Hash function based on the type of
the style-it was a TFontIdentifierStyle. So, when this new Hash function was
introduced, TFontIdentifierStyles stopped working in style sets.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

86 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EQUALITY

EQUALITY

Implications

Equality between two objects means that the logical contents of the objects are
identical in every respect; that is, the two objects can be freely substituted for
each other in any context that deals with their values-that excludes address
references-without changing the results. As far as the public interfaces are
concerned, the two objects always return the same values. The objects can have
different internal states that aren't captured in an equality comparison (such as
caches or seeds values), but those aren't relevant to the public values of the
objects.

i1II IfX==Y, then Y==X.

i1II If X==Y, and you perform X=Y, then X's behavior should not change in any
value context.

If your comparison compares only one aspect of two objects, name the method accordingly-do
not make it an equality operator. (TComparators aren't subject to this restriction,
because they explicitly compare only some aspect of the objects.) For example, if
your equality operator only ensures that two objects have the same area, you
should name it HasSameAreaO, not==. Ifit only ensures that two objects have
the same name, it should be HasSameNameO.

Ensure that your Hash method is coordinated with your equality. The invariant is: if X==Y, then
Hash(X) = Hash(Y). For information on Hash methods, see "Portable hash" on
page 84.

Watch for subclasses-in the majority of cases two objects of different classes are not
equal. Because of polymorphism, you must check the types of classes to get this
right. Because runtime type information (RTTI) isn't currently supported, you
will generally do this with an MCollectible check (see the "Equality sample" in
the next section) .

The equality semantics of surrogate classes should depend on whether they act like
pointers or act like values. If they act like pointers, they should compare equal if
they refer to the same object. If they act like values, they should compare equal if
the objects they refer to compare equal.

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

'hen equality does
Dt apply

quality sample

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 87

For some classes, equality doesn't make sense and you shouldn't include an
equality operator. Perhaps the clearest example is in Taligent's Properties, where
there are classes that are named envelopes for other classes that are represented
as voi d*'s. In this case, the envelope can't determine equality among its fields
and cannot meaningfully determine when it is equal to another. Other Taligent
examples are TView, TStream, TMonitor, and TThreadProgram.

NOTE Taligent's MCollectible might force you to supply equality; make it
very clear with comments and documentation that this is temporary.

One good test is that where assignment doesn't make sense, equality doesn't
either. If you cannot define operator=, you shouldn't define operator==.

If different subclasses are always unequal, your equality operator should follow
this general form. You can skip step 2 in the following code if your superclass
already checks it. If you do have cases where objects of different classes should
compare equal, then you have a bit more work to do:

II TB inherits from TA
Boolean TB::operator == (const TB& other) const {

Boolean result;
II Step 1. fast address check, useful if it occurs often
if (this == &other) result = TRUE;

II Step 2. must be same class
else if (typeid(*this) != typeid(other)) result FALSE;

II Step 3. check superclasses ==
else if (TA::operator!=(other)) result FALSE;

EQUALITY

II Step 4. fields
else if (fField1 other.fField1 && fFieldN other.fFieldN) result TRUE;

return result;
} ;

It is usually more efficient to define operator== as a global function. Do this for
the highest class in your hierarchy, where that class' definition should include
steps 1 and 2 of the example, and a call to a protected member function
Pri vateEqual ity(const TMyCl ass&). Any subclass then needs to override
PrivateEquality to do steps 3 and 4. This makes sure that if X== Y, then Y==X, and
avoids making multiple checks in steps 1 and 2:

:'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

88 CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS

EQUALITY

Equality between
different types

Implementation

If you allow different types to be equal, be very careful that the invariant still
holds: if X== Y, then Y==X. Color spaces are an excellent example of equality
between different types. The following description explains how assignment
works between color space objects of different classes: apply the same sort of
conversion lessons to equality.

The Taligent Application Environment supports many color spaces: RGB, XYZ,
Gray, and so on. In addition, developers can add new color spaces. Colors can be
assigned to each other, even if they are different subclasses of TColor, the
abstract base class of all colors. They can also be constructed from each other,
effectively converting color spaces. Using colors like value-based objects makes
them very developer friendly. For example:

TRGBColor rgb(.5, .5, .1);
TRGBColor rgb2(rgb);
rgb2 = rgb;
TXYZColor xyz(rgb);
xyz = rgb;

II Plain copy construction
II Plain assignment
II Converting construction
II Converting assignment

NOTE Clients need to note that color conversion can lose precision and is
therefore, in general, not reversible; for example, converting an RGB to a
GrayColor and back results in a gray RGB color.

The trick is to define pure virtual casting operators in TColor which convert any
given subclass to a TXYZColor. Any color subclass, therefore, has to know how to
convert itself to the canonical XYZ color space.

Also, any color subclass should have a constructor that takes a single TXYZColor
argument (unfortunately, this cannot be enforced with pure virtuals). Therefore,
subclasses have to know how to do the conversion the other way around (from
XYZ to their own type). Once these two things are in place, you can define a pure
virtual assignment operator in TColor:

virtual TColar& operatar=(canst TColor& other) = 0;

Its implementation in a typical subclass might look like this:

TColor& THLSColor::operator=(const TColor& other)
{

if(typeid(other) == typeid(*this)) II Fake RTTI calls
*this (const THLSColor&)other; II Use our assignment

else
*this THLSColor(other); II Convert and use our assignment

}

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

CHAPTER 4 TALI GENT ENVIRONMENT PROGRAMMING CONVENTIONS 89

With real RTTI, typei d (*thi s) can be replaced by typei d (THLSCol or).

The optional type check improves efficiency by using a straight (nonconverting)
assignment if the two objects are of the same TColor subclass. The else clause
deals with polymorphic assignment: the argument is converted to a TXYlColor
by the arguments override of the XYl casting operator. That XYl color is then
passed to the XYl color constructor of THLSColor. This way, the other color is
first up-converted to XYl (the canonical color space) and subsequently down
converted into the target color space. These conversions aren't necessarily cheap
(they can involve matrix multiplies, and so on).

Color subclasses must also have a monomorphic assignment operator
(see ''When to use virtual assignment" on page 72).

THLSColor& THLSColor::operator=(const THLSColor&);

You should call this one from the polymorphic assignment implementation, as in
the previous example. This avoids having the same thing implemented in
two places.

II Temporary until RTTI support
#define typeid(x) *«x).GetMetalnformation()->GetClassNameAsToken(»

II TColor base class
class TColor : {

}

virtual TColor& operator=(const TColor& other) =0;
virtual operator TXYZColor() const = 0;

II an example color subclass
class THLSColor : public TColor

II converting ct

EQUALITY

THLSColor(const TXYZColor& other);
THLSColor(const THLSColor&);
virtual TColor& operator=(const TColor& other);
virtual operator TXYZColor() const;

II monomorphic copy constructor
II polymorphic assignment
II conversion operator

THLSColor& operator=(const THLSColor& other); II monomorphic assignment

}

fALlGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 5

TALIGENT ENVIRONMENT

PROGRAMMING TIPS

AND TECHNIQUES

No matter how cutting edge your application is, you always draw on

the programming skills you learned in previous experiences. This

chapter presents tips and techniques to help you avoid some of the

common mistakes and subtle gotchas you can encounter while

programming for the Taligent Application Environment. You '-'....,.L.~;;,:',:~

be sure that at one time or another, each of these topics was the

unfortunate misstep, or eye-opening experience, of some fellow

programmer.

~URROGATE OBJECTS

Sometimes it is more useful to deal with a reference to an object than to directly
create and manipulate the object itself. Other times, it's your only choice, such as
for objects in another address space. Objects that act as stand-ins for other
objects are surrogates. Surrogates are useful in many different situations and can
operate in several different ways.

rALlGENT'S GUIDE TO DESIGNING PROGRAMS

92 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

SURROGATE OBJECTS

Taxonomy of surrogates Though it is an incomplete list, this chapter describes five kinds of surrogates:

An explicit master-Where the programmer can create and manipulate a master
object, and can also create a surrogate object that can be used to manipulate or
refer to the master. Usually, the only way to release resources is to destroy the
master. The name for this type of surrogate should be the master object's name,
followed by Surrogate, as in TFooSurrogate.

A handle to an explicit master-Where the programmer can't explicitly create or
manipulate the master object (although this is not a requirement for this
model). Instead, creating the surrogate creates a new master object. The
semantics are explicitly shared semantics, and the master object might be
reference-counted and deleted when the last surrogate is destroyed. Because this
type of surrogate is a conduit to the real object, end the name of these surrogates
with Handle, as in TFooHandle. Do this even ifTFoo doesn't appear in a public
header file.

A hidden master-Where the master object'S existence is transparent to the
programmer. This is similar to the previous case, but the semantics are not shared
semantics. Sharing occurs behind the scenes to avoid overhead, but modifying
the surrogate object does not modify the master object; instead, a new copy of
the master is made and modified (copy on write seman tics). This surrogate has no
specific naming convention because the existence of a master object is
transparent to the client. Thus, it's an implementation technique and not part of
the class interface. If you have a modifier, put it on the internal class. For
example, if the surrogate is TFoo, the internal class is TFooImplementation or
TFooStorage or whatever.

A surrogate that views the master-Like the first case, but the surrogate isn't a direct
stand-in for the master object. Instead, it is a synthetic or virtual perspective on
that object, a satellite of the master object. It's used to encapsulate information
about an aspect of the master object. Mter a massive thesaurus overdose, the
conclusion is that the name for this kind of surrogate depends on the situation.
The name of the viewed class should have something in common with the
surrogate (for example, TUpdateRegion and TUpdateRequest).

Objects used to get other objects-An object that can be used as a compact reference to
another object, which could itself be a surrogate. This surrogate has no protocol
other than to obtain the referenced object (which could even be created). The
name of this surrogate should end with Reference.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

:plicit masters

andle surrogates

CHAPTER 5 T ALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 93
, SURROGATE OBJECTS

An explicit master surrogate is a stand-in for a master object. While you can
access the master object directly, you will probably use the surrogate instead. For
example, in the TaligentApplication Environment, using the Window Server you
can create a TSystemWindow and have surrogate objects that refer to that system
window. Only destroying the master object causes the actual resource to
disappear. The surrogate nature of the object is visible, and dangling references
are possible.

Surrogates are
stand-ins for
other objects Surrogate names are the master's

name ending with Surrogate

Client interactions usually occur through the surrogate,
though the programmer can access the master

A handle surrogate is a conduit you use to get to the master object to avoid direct
creation or use of the master object. Use handle surrogates to avoid copying
large objects that are too big to pass by value, and where internal use of pointers
(rather than copying) is preferable. Some handle surrogates are little more than
counted pointers wrapped in a class that delegates calls to the master object. Use
this technique anywhere that counted pointers are useful-that is, where storage
management is difficult due to a multiplicity of references to shared objects.

Handles create
and manipulate
the master
objects

The handle surrogate's name is the
master's name ending with Handle

Client interactions all occur through the surrogate;
the programmer can access the master

~ALlGENT'S GUIDE TO DESIGNING PROGRAMS

94 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

SURROGATE OBJECTS '

Hidden masters

A handle surrogate is similar to a counted pointer, but because the surrogate has
object semantics rather than pointer semantics, it is possible to avoid some of the
problems of counted pointers. For example, you can prevent the client from
getting hold of a regular C pointer and thus having a dangling reference (which
can be avoided with counted pointers, but is a fair bit of work) . See
"Synchronization techniques" on page 99 for more examples.

Because you don't directly create the master object, the surrogate creates the
master when you create the surrogate. Once the master object exists, you can
create additional handle objects of the same class that reference that same
master. If you are reference counting, the master object exists until the
destruction of the last handle, which then destroys the master.

The Taligent Application Environment's kernel interface has such classes as
TTaskHandle and TThreadHandle. These have no actual master object (just a
reference), and they do not perform reference counting. You must explicitly
release the resources they refer to, which can leave dangling references. All such
handles need to be safe to use if they contain a dangling reference (for example,
throw an exception rather than crash).

Unlike other surrogates, a hidden master surrogate doesn't modify the master
object. Instead, it creates and modifies a new copy of the master (cOPy on write
semantics); the master's existence is transparent to the client. A Taligent example
of a hidden master surrogate is TGArea, which has the hidden master
TAreaGeometryHandle.

TFoo creates
and modifies the
hidden master
TFooStorage

Attempting to modify
TFooStorage makes a
new master

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

urrogates that
iew masters

CHAPTER 5 T ALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 95
SURROGATE OBJECTS

A hidden master surrogate's semantics are not shared, although sharing is used
behind the scenes to avoid overhead.

Use hidden masters to lazy evaluate expensive operations. Clients often copy an
area and then modify the copy (rather than the original). However, area
modifying operations frequently need to make a copy of that copy while
performing their operations. By using surrogates, you can avoid copying the
copy. Instead, the modifying operation creates and modifies another surrogate. It
then processes the master objects of both surrogates, and installs the operation
result as the master object of the target surrogate.

NOTE This technique results in a significant reduction of work and you
should use it where expensive operations can be delayed or eliminated. Several
of the books in the Bibliography discuss this technique.

Be careful using this kind of surrogate in a multithread situation. A caller might
make a copy of a surrogate for another thread (not knowing there is a hidden
master), and expect that thread to alter its (supposedly) private copy without
synchronizing. Because the original surrogate and the copy both point at the
same data, there is a potential for a race condition. This problem can be avoided
by following these two rules:

Use MReferenceCounted to keep the reference count; it's multithread safe.

Once you create a master object, it must be immutable (you never change it once it is created).
There is one exception: for operations that modify the object, you can modify
the master directly when the reference count is one. This is because only one
caller has the surrogate, and the reference count cannot change during the call
because the sole surrogate is busy with the modifying call. This is not true,
however, if another thread has an alias to the surrogate (pointer or reference);
but this would be an unsafe situation anyway because if a second thread tries to
read a surrogate while the first thread modifies it, you have a race condition. Do
not share the surrogate; this technique is safe only when you give each thread its
own surrogate.

This kind of surrogate object encapsulates information about an aspect of the
master object, but is not necessarily a true surrogate for the master. Instead, it is a
synthetic or virtual perspective on that object, and it does not necessarily share a
common base class. In the Taligent Application Environment, iterators
associated with the Collection classes are such surrogates.

NOTE The C++ Answer Book (Hansen) also shows an instance of this
technique: a SubString class which is a view onto a String class.

ALIGENT'S GUIDE TO DESIGNING PROGRAMS

96 CHAPTER 5· TALIGENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

STORAGE MANAGEMENT ISSUES

Another example of this surrogate is making a bit-vector class that looks like an
array of Booleans; specifically, you can use this surrogate to implement the
subscript operator. It's fairly easy to define an operator that returns a Boolean:

Boolean operator [](int foo);

But this can't appear on the left side of an assignment because you can't return a
Bool ean&-there is no Boolean to return a reference to (remember, it is a bit
vector). Instead, define a TBit class that the subscript operator returns:

TBit operator [](int foo);

TBit has assignment defined for Boolean arguments-TBit& operator=
(Boolean)-and also has a coercion operator for changing it into a Boolean
operator Boolean o. It's implemented as a friend class of TBitVector or uses
public SetBit and TestBit functions. On assignment of a Boolean, it does a SetBit
on the corresponding bit, and it does a TestBit on coercion to Boolean.

This solution illustrates a powerful technique that the Taligent C++ Compiler
does well; but be aware that some compilers generate abysmal code for this.

STORAGE MANAGEMENT ISSUES

Follow naming
conventions

Use copy semantics
wherever possible

In any system that allocates storage dynamically, storage management is an
important design issue. This is also true in the presence of garbage collection.
However, without garbage collection (as in the TaligentApplication
Environment), the problem is that much harder. Even though storage
management is a design issue, here are some implementation techniques to
consider.

If a routine allocates storage that it then hands back to the caller, or if the caller
passes storage that the caller is then responsible for, name the function
appropriately. See "Name conventions" on page 32 for more information.

By using the surrogate techniques discussed in "Surrogate objects" on page 91,
it's possible to use copy semantics with a reference-based implementation. Of
course, this has higher overhead, sometimes too high to allow copy semantics.
Even then, it's possible to use reference counting, but be careful to get the
implementation right or you will have storage leaks. Use the Taligent
MReferenceCounted class to implement reference counting; it is fast and
multithread safe.

The Taligent cla~
TArrayDf uses tl
technique to retj
a TArrayDfElemf
Reference from
operator[].

TALIGENT'S GUIDE TO DESIGNING PROGRAM~

CHAPTER 5 T ALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 97
STORAGE MANAGEMENT ISSUES

Although it is possible to reference-count objects without a surrogate object, it's
more error prone. The trick is to correctly increment or decrement the count
whenever and wherever necessary. Using a surrogate object lets C++ do the work.

A counted pointer can either be exposed directly to clients or embedded inside a
surrogate as an implementation technique. Here is a simple example of a
counted pointer template to illustrate the technique:

template<class T> class TCountedPointer {
public:

TCountedPointer() { fPointer = NIL;};
operator T* () const { return fPointer;};
T* operator ->() const { return fPointer;};
TCountedPointer(const TCountedPointer& other)

II Dangerous!
II Safer

{ fPointer=other.fPointer; fPointer->AddReference();};
TCountedPointer(T* p) { fPointer = p; p->AddReference();};
TCountedPointer &operator =(const TCountedPointer& other)

{

T* old = fPointer;
fPointer=other.fPointer;
fPointer->AddReference();
old->RemoveReference();
} ;

TCountedPointer &operator =(T* p)
{

T* old = fPointer;
fPointer=p;
p->AddReference();
old->RemoveReference();
} ;

private:
T* fPointer;

} ;

Notice that defining the coercion operator to T* is dangerous because it creates
ordinary pointers. Because those ordinary pointers aren't counted, they can
become dangling references later on. It is safer to define the appropriate
operators on your counted pointer type (unary *, unary ->, and [J). Then it's
impossible to create an ordinary pointer from a counted pointer. If you
additionally override unary & on the actual object to return a counted pointer
instead of a regular pointer, you should only have counted pointers. Though it is
impossible to prevent references from being used, they are less error prone.

Several references in the Bibliography describe this technique and give more
examples.

!\LIGENT'S GUIDE TO DESIGNING PROGRAMS

98 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

STORAGE MANAGEMENT ISSUES

Avoid storage
manipulation in
open code

Allocate subobjects
on the heap
for debugging

Probably the most error-prone thing you can do in C or C++ is raw storage
manipulation. Any time you do pointer arithmetic, calculate lengths of storage
blocks, or move them around, you risk an error that is extraordinarily difficult to
track down and is among the worst kind of bug to find. Raw storage
manipulation (such as storage copying and si zeof calculations) should never
appear in open code; Taligent engineers must talk to an architect first. If you feel
that you must do it, here are some guidelines to follow:

Don't do it! Don't try to save time by shortcutting the compiler because you know
what it will do and you know a faster trick. When the compiler changes, the
assumptions change, or if you get it wrong, you're going to be in hot water.

Use a collection class. The Taligent Collection classes already handle many kinds of
storage manipulation including variable length arrays. The primitive forms of the
Collection classes are extremely efficient. As an added bonus, the code is shared.

Wrap it in a class. Determine the basic abstraction that requires storage
manipulation, and wrap it. That way, you only have to write the storage
manipulation code once instead of spreading it throughout your code.

As discussed in "Allocate storage only if you must" on page 47, there is no storage
allocation overhead if an object can be local to a function. Many objects have very
localized scope and do not need to be allocated on the heap.

TIP When you do early development, it is sometimes useful to allocate
subobjects on the heap to avoid some recompilation when their declarations
change. Because the subobject isn't inline, the layout of the owner doesn't
change when the subobject does. If you do this, make sure you take it out before
you release your code. .

TALIGENT'S GUIDE TO DESIGNING PROGRAM:

CHAPTER 5 T ALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 99
CONCURRENCY AND SHARED LIBRARY ISSUES

~ONCURRENCY AND SHARED LIBRARY ISSUES

:ynchronizalion
~chniques

There's an old proverb: "Be careful what you ask for-you might get it." This
definitely applies to preemptive multitasking. It solves many problems, but like
any panacea, it introduces new ones. The big problem for preemptive scheduling
is concurrency and synchronization. If multiple threads are changing or reading
data structures at the same time, the chance that the data structures will be
consistent is about nil.

One approach is to require that every object in the system be safe for use by
multiple concurrent threads. This works, but has a big performance impact and
very little benefit. For example, consider an object A, which is built out of other
objects B, C, D, and E, which are all safe for use by multiple threads. This does not
mean that A is therefore safe for use by multiple threads. Although B, C, D, and E
all separately preserve their individual invariants, that doesn't mean that A's
invariants are preserved. In fact, in making A multithread safe, it is often the case
that the components' being multithread safe is of little or no use, as it is A in its
entirety which must be synchronized.

Therefore, synchronize high-level constructs only; avoid synchronization at a low
level because it has storage and time penalties. There are some exceptions;
Taligent's MReferenceCounted is multithread safe because it enables
programming that is also multithread safe without any additional overhead (see
"Surrogate objects" on page 91). However, the Collection classes are not
multithread safe because you usually use them to construct other objects, rather
than access them directly from multiple threads.

The classic synchronization technique is to use some form of lock. There are two
kinds of synchronization locks in the Taligent Application Environment:

IIIIi Monitors for synchronizing most data structures with multiple writers. Use
monitors except when the semaphore model fits better.

IIIIi Semaphores for when there are many readers and one writer. There is less
contention, because semaphores directly support multiple readers.

Another technique is to use surrogates (see "Surrogate objects" on page 91). If
you can split an object into immutable shared data and per-thread mutable data,
you can avoid some of the need for synchronization. For example, TGArea's are
not shared between threads, but the master objects they point to are. Only the
reference counts in the master objects need to be synchronized, because
otherwise they do not change.

fI NOTE Synchronization should almost always be performed inside an object,
not by clients. Counting on clients to make acquire and release Gills is asking for
trouble, as they are sure to forget one or the other at some point.

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

100 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

CONCURRENCY AND SHARED LIBRARY ISSUES

Synchronization
and problems with
memory access

Synchronization of
global and static
variables

One assumption people frequently make is that memory accesses are atomic and
are therefore safe to use for synchronization. This is definitely not true. For
example, if you have an i nt variable (declared volatile so that the compiler
doesn't put it in a register), you might assume that if the only values written to it
are in some set, another thread reading that variable sees one of the values in
that same set. That isn't the case, because vagaries in instruction processing and
memory subsystems make it possible for the variable to momentarily assume
values outside the set when read in an un synchronized way. Also, writes and reads
from different processors on a multiprocessor can appear out of sequence.

In general, it isn't possible to write portable C++ code where multiple threads
~imultaneously read and write a memory location. Of course, multiple threads
can safely read a storage location without synchronization as long as none are
trying to write it at the same time. Taligent engineers must consult with an
architect before doing so.

Because global and static variables are shared by all threads in an address space,
the synchronization considerations apply to them as well. Any globals (including
static class members) that are written or read by more than one thread must be
protected by locking or other means. An exception is a canst global with file
scope; these are initialized at static constructor time, when only one thread is
running, and don't change afterwards.

A particularly insidious problem occurs with static variables defined inside
functions. Local static variables with an initializer are initialized the first time the
function is called, not at static constructor time. If more than one thread can
make the initial call, they might try to do so simultaneously, resulting in a crash.
Local statics are a good way to cut down on overhead, but you must consider this
concurrency issue if the function can be called from multiple threads. See "Avoid
static objects" on page 58 for more information.

An initializer can
be an object's
constructor or a
primitive type's
initializer.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

ihared memory
letween tasks

A

CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 101

CONCURRENCY AND SHARED LIBRARY ISSUES

If a function can be called by multiple threads, you can only use primitive C types
that don't have constructors, such as pointers or numbers, and they must be
initialized by compile-time constant expressions; they are initialized before your
code starts running. To use an object, you can write code similar to:

void Foo() {

}

static TBar *gBar - NIL:
gProtect.Acquire():
if (gBar -- NIL)

gBar - new TBar():
gProtect.Release():
Function(gBar):

II Semaphore can't be function static

II Safe: above guarantees that gBar is valid

The semaphore itself can't be static inside the function because it would have the
same synchronization problem. If your class is used by multiple threads, you
might already have a semaphore or monitor to protect the initialization.

CAUTION You might be tempted to optimize the previous example by testing for
gBar being NIL before you acquire the lock, because the most frequent case is
that it has already been initialized. This is not safe! Although gBar might be non
NIL, that does not mean it has settled into a correct state. Enclosing the
initialization sequence in an if (gBa r == NIL) test makes the function call's
reference to gBar unsafe. Unsynchronized access is subtle and dangerous!

Whenever possible, avoid sharing memory between tasks. Shared memory is
often overused, and subsystems using shared memory might not work on secure
versions of the Taligent Application Environment or on loosely coupled
multiprocessors.

If you have to share memory between tasks, avoid client-writable memory because
this greatly compromises the system's reliability. Instead, modify your shared
memory from a server, and give clients read-only access. At Taligent, an architect
approves all client-writable shared memory.

rALIGENT'S GUIDE TO DESIGNING PROGRAMS

102 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

CONCURRENCY AND SHARED LIBRARY ISSUES

Shared heaps

Shared memory
problems with
canst

Shared heaps in the Taligent Runtime system provide a convenient method for
sharing memory. If an object allocates storage and you want the object in a
shared heap, use this form of the new operator:

new(kSameHeap, this) TFoo(arg)

This form of new is defined as new(EHeapType, voi d *, s i ze_t), and it allocates
the storage in the voi d* argument's heap. If the argument doesn't point to a
heap, the allocation occurs in the default heap. This guarantees that any storage
this object refers to is going to be in the same shared heap so that it is accessible
from all address spaces. Storage allocated in the default heap is accessible only
from the address space in which it was allocated.

As with any shared memory, access to objects in your shared heap must be
synchronized, unless they do not change once created. For example, if objects
built using MReferenceCounted don't change, you need to synchronize the code
that locates them, but not the code that uses them. Do any such synchronization
with global rather than local semaphores.

The interpretation of const in C++ is a matter of confusion. The language
defines const to mean that the representation of an object does not change.
Many people argue that this violates the data abstraction principle that is so
important to object-oriented programming-clients shouldn't care if the
representation changes, only if the semantic state of the object changes. This is
an important point because, for example, a class can have an internal cache that
changes on a call to a member function, but doesn't change the semantic state.
Should that member function be const or not? Should it change when the
implementation changes?

A C++ compiler sometimes needs to know this information. Also, it's important
that you know this when placing objects in read-only memory (such as a shared
area that only has read access), or when worrying about concurrency (acquiring
a shared rather than exclusive lock). It's not reassuring to know that the semantic
state is unchanged if you get a bus error, or worse, a subtle race condition.

You can solve the concurrency issue by protecting the object internally with a
semaphore, but you really cannot solve the read-only memory problem. However,
there are some workarounds you can use:

You can have both const and non-const versions of the same function. Because the C++
function overloading mechanism is sensitive to the const nature of member
functions, the compiler uses one for a const objec:t, and the other for a non
const object. This allows the non-const version to change the cache, while the
const version cannot. The only problems are the usual ones for overloading,
such as the way it interacts with overriding (see "Issues in overloading and
overriding classes" on page 106). Also, there is less benefit for things like caching
when you use const. This overloading applies to function arguments as well.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

;tatic destructors
or subsystem
:Ieanup

CHAPTER 5 TALIGENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 103

CONCURRENCY AND SHARED LIBRARY ISSUES

Use an accessor object (a type of surrogate, see page 95) to get the performance
benefits of a cache and not change the object. Any modifiable state (like a cache)
goes in the surrogate object-which might need to be a friend of the object to
which it refers. The collection TIterators are an example of accessor objects
they are modified as you iterate, but the underlying collection is unchanged.

NOTE This technique is also useful for general concurrency issues, as it
sometimes removes the need for synchronization. For example, iterators from
several different threads can freely access a collection that does not change.

:,"#

If you must modify an object inside a canst member function, cast the thi s pointer to a non
canst pointer or declare the member in question as mutabl e (a new ANSI feature
not yet added to many C++ compilers). If you do this, however, you must
document that the function may not be called for an object in read-only memory,
and you must either protect the object's state with an internal semaphore, or
document that the function modifies the object internally (for example, it's not
multithread safe). Taligent engineers must check with an architect first.

U sing destructors for static objects is the only way to ensure that a subsystem in a
shared library performs some kind of cleanup at application quit time. Any static
object destructor in your library can take care of finalization.

Because tasks don't always quit cleanly, you can't depend on shared library code
to clean up resources used by the whole system; if the task quits unexpectedly, the
resources do not get cleaned up. For those cases, have a server that manages the
resources. You can use the connection capabilities of PROSE (part of the
Message Streams library) and the Remote Object framework to track clients who
die. If the client terminates normally, the normal cleanup can happen; but if the
task disappears, the server must clean up all resources used by that task.

fALIGENT'S GUIDE TO DESIGNING PROGRAMS

104 CHAPTER 5 TALIGENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

MISCELLANEOUS PROGRAMMING TIPS

MISCELLANEOUS PROGRAMMING TIPS

Create objects in
a valid state

Use flattening
rather than dynamic
class instantiation

Check for self
aSSignment with
operator=:

Here is a collection of miscellaneous programming tips.

Construct objects in a valid, ready-to-use state, with all public member functions
ready to do something sensible. Don't create objects in an invalid state and then
expect the client to call an open routine, or to call a close routine before
destruction.

Always allocate needed resources in the constructor because it is more
convenient, and they are properly freed by the destructor if an exception occurs
and the object is destroyed in a stack unwind.

NOTE There are only two exceptions to this rule. One is the virtual
Initialize O. (For more information about Initialize 0 , see "Base class constructors
cannot call virtual functions" on page 68.) The other exception is that a
constructor may make an invalid object to be streamed into, but it must still be
valid enough for the destructor to run.

If you need to dynamically instantiate a class, you will find it's usually easier to do
so by using Taligent's Resurrect to unflatten a flattened polymorphic object. This
is much easier than using the general interface for dynamically instantiating a
class (especially as the latter doesn't currently exist in the Taligent Application
Environment) .

When the dynamic instantiation interface is there, go ahead and use it.
U nflattening a flattened object is just much easier. In some cases, you might need
the full interface, but definitely think about unflattening an object first.

A common mistake when implementing an assignment is to forget to check for
self-references (the thi s pointer being the same as the argument being
assigned). Clients will not normally do this intentionally, but it can happen
accidentally, and with aliasing you cannot always tell when it's going to happen. It
can also happen to surrogates, where the surrogate being assigned points at the
same master object as the target of the assignment.

To avoid self-assignment, do nothing if thi s and the assignment argument are
the same; but, if the argument is a reference, take its address. Also, make sure
you do things in the right order: for example, when reference counting,
increment the count of the new master before decrementing the count of the
old master.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Blance overloaded
~erators

se static members
s constructors

lifferentiate
Iverloaded
:onstructors

Hide implementation
~Iasses

CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 105
MISCELLANEOUS PROGRAMMING TIPS

Include overloaded operators in balanced sets; for example, if you define ,
then define 1==.

When the standard constructor mechanism is too inflexible, you can use a static
member function that calls a private constructor to create a partially valid object,
then finishes building it, and returns the result.

Static member constructors are useful because they can have different names,
and you can force an object to be on the heap by making all constructors private.
The disadvantage is that if you want the object to work both heap allocated and
non-heap allocated, you need two versions of the static function, and the
nonheap version must copy the object.

This technique can be useful occasionally, but use it sparingly.

Sometimes you want to overload constructors, but discover that the argument
types you want to use are not sufficient to differentiate those constructors. A
good solution is to use a lightweight (inline) nested class to wrap constructor
arguments in a distinct type that's easy to overload. For example, in the Graphics
system, one early design for TGrafMatrix had constructors that were similar to:

TGrafMatrix(const Translate &);
TGrafMatrix(const Rotate &);
TGrafMatrix(const Scale &);

The three argument types are nested classes whose constructors take appropriate
arguments. A call to create a translation matrix looks like this:

TGrafMatrix(TGrafMatrix::Translate(point»;

Eventually, with name spaces, the helper classes might not have to be nested,
which will make this kind of construct easier to type.

Classes that are used solely by your implementation needn't be declared in your
public header file, as long as your class refers to them by pointer or reference.
You only need a partial declaration, like this:

class Tlmplementation;

This suffices as long as you don't embed such an object, create one, or access any
of its members outside of your private implementation.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

106 CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES

MISCELLANEOUS PROGRAMMING TIPS

Use 'nil pOinter
deletion

Issues in
overloading and
overriding classes

c++ defines del ete p, where p is a nil pointer, to be a valid operation (nothing
happens). This can be very useful, especially in exception handlers.

If you override an overloaded member function (virtual or not), your override
hides all overloaded variants of that member function, not just the one you overrode.
To properly override an overloaded member function, you must override all the
overloaded variants. Of course, the overriding function can turn around and call
the one from the base class.

In the following example, bar.Foo(2) calls B::Foo(double) after coercing the i nt
argument to doubl e. This is because the override ofFoo(double) introduces the
name Foo in B's scope, hiding that name from A's scope; again, the rule is that all
overloaded variants constitute one name that is hidden or not.

class A {
public:

} ;

void Foo(long);
void Foo(double);

class B: public A {
public:

void Foo(double);
} ;

B bar;
bar.Foo(2);

II Override hides Foo(long)

II Coerced to double

However, a call to an A object goes to A::Foo(long) because the override in B
hides Foo(long) only in B's name scope, not in A's.

A& br = bar;
br.Foo(2); II Calls A::Foo(long)

NOTE The Taligent C++ Compiler warns you if you override some but not all
of a set of overloaded virtual member functions.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

:ontrol class access

CHAPTER 5 TALI GENT ENVIRONMENT PROGRAMMING TIPS AND TECHNIQUES 107

MISCELLANEOUS PROGRAMMING TIPS

Assign pri vate and protected to special member functions to control access and
use of your class.

Type of control

Only derived classes can call them

The object cannot be copied

Only derived classes can copy the object

Clients cannot delete the object directly or
allocate it on the stack

Client cannot allocate object on the heap

Controlled by making ...

Some constructors protected

Assignment and copy constructor p r i va te

Assignment and copy constructor protected

Destructors pri vate or protected

Operator new pri vate or protected

Remember, C++ has access control, not visibility control, so making something
private means it's still defined, but some clients can't use it.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 6

PORTABILITY ISSUES

One important goal for the Taligent Application Environment is'

portability to a wide variety of processor architectures. Experience:!

shows that achieving portability takes diligence and hard work. As

you develop your application, be careful not to leave traps that will

cause your code to stumble when it moves to another platform.

This chapter contains some important rules for achieving a smooth

transition between platforms.

LANGUAGE AND HARDWARE ASSUMPTIONS

Safe assumptions

To write portable code, avoid assumptions about the language or hardware.
Assumptions tend to lurk behind the scenes and then leap into the spotlight at
inopportune moments.

There are few safe assumptions that you can make about raw C and C++ data
types, and these are all you can safely assume:

II!II cha r is guaranteed to hold only 0 to 127, and can be either uns i gned or
s i 9 n ed c h a r; you cannot assume one or the other. Avoid c h a r unless you do
not care about sign extension.

!!II! uns i gned cha r can hold from 0 to 255; it can hold more.

!!II! signed cha r can hold from -127 to + 127; it can hold more.

!!II! short can hold from -32,767 to 32,767 (signed) or 0 to 65,535 (unsigned).

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

109

110 CHAPTER 6 PORTABILITY ISSUES

LANGUAGE AND HARDWARE ASSUMPTIONS

Bad assumptions

I!I! i nt can hold from -32,767 to 32,767 (signed) or 0 to 65,535 (unsigned). Ints
cannot be counted on to hold any more than a short. If you need something larger
than a short, use along. If a short is big enough, use i nt instead to improve
efficiency by taking advantage of a processor's natural word size.

Always read and write an i nt by casting it to a short, because that's all you're
guaranteed to get.

The Taligent stream classes do not read or write i nt because i nt doesn't have
a portable representation.

I!I! long can hold from -2,147,483,647 to 2,147,483,647 (signed) or 0 to
4,294,967,295 (unsigned).

I!I! float is a IEEE single-precision number and doubl e is a IEEE double
precision number. This is because the Taligent Application Environment
runs only on processors that support the IEEE floating point standard and
that support the single- and double-precision types.

If you need exact information about a raw data type, use the symbols defined in
1 i mi ts. hand float. h. However, remember that the values of these symbols can
change from processor to processor or compiler to compiler, within the limits
defined above (for more information, see the ANSI/ISO C specification).

In general, watch your assumptions carefully, and use typedefs instead ofC types.
For examples, see "Avoid raw C types with dimensions" on page 40.

Bad assumptions make your code nonportable. For example, don't assume that:

11!11 i nt and long are the same size; these can vary between processors

I!I! fong, float, doubl e, or long doubl e can be at any even address

I!I! You know the memory layout of a data type, including its byte order

11!11 You know how a struct or class is laid out in memory, or that it can be
written to or read from a data file as a memory image

I!I! You know the alignment restrictions or sizes for data types

I!I! You know how the calling conventions are implemented, or indeed any
detail of the language implementation or runtime. For example, some
architectures pass arguments on the stack, others in registers.

On some machinl
a 32-bit operatio.
is more efficient
than a 16-bit
operation becau5
there is no need;
do masking.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 6 PORTABILITY ISSUES 1 1 1

LANGUAGE AND HARDWARE ASSUMPTIONS

Additionally, here are a few points to remember when writing your program:

Pointers and integers are not interchangeable. Neither is guaranteed to hold the other.

Use voi d* if you want an untyped pOinter, not cha r*. Pointer arithmetic can't be done
using void* pointers; instead, use a typed pointer (char* for bytes).

Long double is an inherently nonportable data type and can vary in size and precision from
processor to processor. It is guaranteed to hold any number a float or doub 1 e
can hold, but that's about all you can count on (for example, many RISe
processors don't support any IEEE extended-precision format). Therefore,
long doub1 e is suitable only for in-memory computations, not for data storage or
network transmission. What's more, along doub1 e is sometimes implemented in
software and is therefore slower on some platforms.

Don't make assumptions about memory alignment because of variations between processors
and compilers. Here are some common problems with alignment:

IIIIIi 68020 processors and later allow access to any primitive data type without
alignment restrictions (such as when a voi d* or cha r* pointer is cast to a
longer data type). Because most RISe processors don't support this kind of
access, code that assumes the lack of restriction is not portable.

IIIIIi Most RISe processors require that 4-byte quantities (long, float) be on a 4-
byte boundary and that 8-byte quantities (double) be on an 8-byte boundary.
The compiler forces this alignment on structure elements, but if you make
assumptions, you can get structures with lots of unused space.

IIIIIi Some compilers, such as MPW™ e, let you have long elements of a s t ruct or
c 1 ass on a 2-byte boundary. This is inefficient on 68020 and later processors,
because the placement requires two memory accesses rather than one.

NOTE Avoid problems like this by ordering the data members in descending
order of size to minimize alignment problems (both space and speed) on
most architectures.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

112 CHAPTER 6 PORTABILITY ISSUES

SYNCHRONIZATION

SYNCHRONIZATION

Do not use synchronization outside the scope of the supported synchronization
constructs (such as semaphores, monitors, and Taligent's MReferenceCounted).
Rapid changes in hardware designs make all such constructs potentially unsafe
and nonportable. For example, on both the PowerPC™ and Alpha architectures,
reads and writes can appear to happen in different orders to different processors
within a multiprocessor.

At Taligent, there are no exceptions unless specifically granted by an architect.

PORTABLE DATA

The Taligent Application Environment runs on different processors-sometimes
concurrently. If you write or read any data in a context where it might go to or
come from a different CPU running the Taligent Application Environment, you
have to worry about formats. Such situations include reading or writing disk files,
or sending IPC messages that go over a network (or even over an expansion bus).
The other CPU might even have a different byte order!

A solution to this problem is to pick a canonical format for messages and data
files that is the same no matter what the CPU. The Taligent Application
Environment package for reading and writing objects (TStream) already does
this. TStream also has static member functions you can call to convert to and
from this canonical format without using a stream.

Just because you have a canonical format doesn't mean you must pay a big
overhead every time you access your data. One alternative is to perform the
translation to or from the canonical format at a predetermined time. For
example, TrueType outline fonts have a certain canonical format that depends
heavily on the 680xO architecture. However, you could convert them to a
convenient local format when they are installed or when they are used, rather
than accessing them directly in their canonical format.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

CHAPTER 6 PORTABILITY ISSUES 113

AsSEMBLY LANGUAGE

Some data types aren't portable:

iii! Certain data types can't be written to be portable to disk or on a network.
These include i nt, long double, and any pointer or pointer to member.

iii! Many standard types, such as ANSI's size_t and ptrdiff_t, have definitions
that vary between CPUs.

I!III Some objects (such as TThreadHandle) have no meaning when written to
disk or over the network; they are valid only during one session on one
system. Such objects signal an exception in their flatten and unflatten
operators when the TStream has the kDeepFreeze attribute. (A kDeepFreeze
attribute of the stream is set if the flattening should store the object in its
most general form-that is, a form that can be resurrected on another CPU
or saved to disk and resurrected.)

ASSEMBLY LANGUAGE

Do not use assembly language. It isn't portable and must be rewritten for every
processor that the Taligent Application Environment runs on. Taligent does not
allow use of assembly language except where specifically approved in advance by
an architect.

NONPORTABLE CODE

If you have to write nonportable code, take the following steps (a Taligent
engineer must first clear it with an architect):

D Clearly mark the code with a comment indicating it is nonportable.

II??? NOT PORTABLE

It is then easy to find such constructs with a global search.

If) Identify the errvironment for which the code is specific.

NOTE Contact Taligent for detailed guidelines.

I) Include the name of the processor family somewhere in the filename, such as
FooCl assRS6000. C, if the entire file is processor dependent.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

APPENDIX A

CLASS TEMPLATES

Template implementations are hard to maintain because they get compiled
your client's code. Templates also, by their very nature, tend to bloat the
resulting object code. This guide provides design standards and convlentlOQS;
increase code maintainability, and to reduce the memory footprint.

There are many possible designs for template; some are easier to wrltt'l~lSll'U11eil({(;
others share more of the implementation details. The best design depends upon
the specifics of your code. This guide recommends a standard design, but also
gives some alternatives for special circumstances.

DEFINITIONS AND CONVENTIONS

Template conventions

The nomenclature of templates is confusing. According to the ANSI drafts, a class
template is the definition of the template for the class.

template <class AType>
class TArrayOf { ... } ;

A specialized class is a class produced by invoking the template.

TArrayOf<TGPoint> array;

By convention, class template names end in prepositions. Choose the preposition
that makes the most sense when you describe the specialized class in English:

!ill TArrayOf<TGPoint> is an array ofTGPoints.

II TCommandOn<TGPoint> is a command on a TGPoint reference.

II TFunnelFor<TFile> is a passive iterator forTFile objects.

In class template declarations, begin the type-argument type-id with a capital A:

template<class AType>
class TArrayOf ... ;

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

115

1 16 APPENDIX A CLASS TEMPLATES

DEFINITIONS AND CONVENTIONS

Include file
conventions

MyFile.h .----...... -.----.-.-....... -.. --.---

MyFile TemplateMethods.h
contains noninline
class template method
implementations

The implementation of your noninline class template methods should be hidden
from your clients. Unfortunately, many C++ compilers require that the source of
the noninline class template methods implementation be available at the client's
compile time. To keep the noninline class template method implementations
from cluttering your include file, place them in a separate include file, and
IIi ncl ude the separate include file at the end of the regular include file.

If your include file is My F i 1 e. h, name the implementation include file
MyFileTemplateMethods.h. (The filename should be MyFileTemplateMethods.C; but
the current build tools require header files to end in . h.)

#ifndef Taligent_MYFILE
#define Taligent_MYFILE

template <c,lass AType>
class TMyTemplate { ... };

#ifndef Taligent_MYFILETEMPLATEMETHODS
#include <MyFileTemplateMethods.h>
Ilendi f

#endif

#ifndef Taligent_MYFILETEMPLATEMETHODS
#define Taligent_MYFILETEMPLATEMETHODS

#ifndef Taligent_MYFILE
#include <MyFile.h>
Ilendi f

template <class AType>
TMyTemplate::TMyTemplate() { ... }

Ilendi f

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

APPENDIX A CLASS TEMPLATES 1 17

SHARING CLASS TEMPLATE IMPLEMENTATIONS

~HARING CLASS TEMPLATE IMPLEMENTATIONS

Jeneral rules for
mplementation
:Iasses

Any implementation-sharing class template design has to answer the following
questions:

III!I How does the class template delegate to the implementation class?

fill How does the implementation class perform type-specific operations?

The best design, however, depends upon the specifics of your code.

To be reusable, the implementation class deals with objects at the level common
to all types that your template can be instantiated with. For maximum reuse, your
implementation should be vo; d; for rare cases it can be a more specific type. For
polymorphism, refer to the objects using pointers (vo; d*) .

fi NOTE Because it is contrary to the normal style rules, you should not use a
pointer to pass an argument to a method that is not going to alias or own the
argument. But, because vo; d& is illegal in C++, you must use vo; d* in all such
cases-even though the method is not going to alias or own the argument.

An implementation class does not have enough information to perform type
specific operations, so it delegates these operations to a specialized class. The
specialized class' methods cast the vo; d* arguments back to the correct type and
perform the type-specific operation. Because these casts are blind casts, the
object must always be cast to and from the same type. If you pass in the object as a
base class, but extract it as a derived class, the C++ compiler will not perform the
pointer fix-up, and you will end up with an incorrect pointer value.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

1 18 APPENDIX A CLASS TEMPLATES

SHARING CLASS TEMPLATE IMPLEMENTATIONS

class TBase { ... };
class TDerived : public TBase. virtual public VVirtual { ... };
void FunctionTakingTBaseAsVoid(void* item);

void f()
{

}

TBase base;
TDerived derived;
FunctionTakingTBaseAsVoid(item);
FunctionTakingTBaseAsVoid(d&erived);
FunctionTakingTBaseAsVoid«TBase*) &derived);

void FunctionTakingTBaseAsVoid(void* item)
{

TBase* asBase - (TBase*) item;

II Correct
II Incorrect
II Correct

TDerived* asDerived - (TDerived*) item;
Correcton/yifyou ------ TDerived* asDerived - (TDerived*) (TBase*) item;

II Correct
II Incorrect
II Correct. conditionally

somehow know the
item is a TOerived
(Not a great design)

}

The C++ compiler catches most attempts to perform type-specific operations on
vo i d obje<;:ts; however, the de 1 ete operator is the one exception. Deleting a
pointer to an object that is held as a voi d* silently releases the storage that the
object occupies, but does not call that object'S destructor.

void* baseAsVoid - new TBase(...);

delete baseAsVoid; II Incorrect. Destructor not called.
TBase* base - (TBase*) baseAsVoid;
delete base; I I Correct

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

APPENDIX A CLASS TEMPLATES 119

THE EXAMPLE CLASS: AN OWNING STACK

rHE EXAMPLE CLASS: AN OWNING STACK

~xample1.h ------I

The remainder of this guide uses an owning stack to illustrate the various template
techniques. The example uses a stack because it is simple to implement. The
owning feature forces the examples to deal with type-specific copy and delete
operations. To make the examples short, there is no error checking.

Here is the owning stack as an ordinary, nonspecialized class:

II Copyright (C)1994 Taligent, Inc. All rights reserved.
II $Revision: $
#ifndef Taligent_EXAMPLEl
#define Taligent_EXAMPLEl

class TCollectibleLong;

class TOwningStackOfl
{

public:
TOwningStackOfl();
TOwningStackOfl(const TOwningStackOfl& other);

virtual ~TOwningStackOfl();
II Operator= omitted. It's like the copy constructor.

virtual void Adopt(TCollectibleLong* item);
II Orphan omitted. It's like Adopt.

vi rtua 1 uns i gned i nt
private:

Count() const;

} ;

TCollectibleLong*
unsigned int

#endif

fStack[lO];
fount;

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

120 APPENDIX A CLASS TEMPLATES

THE EXAMPLE CLASS: AN OWNING STACK

Examplelmplementation. C

II Copyright (C)1994 Taligent. Inc. All rights reserved.
II $Revision: $
#ifndef Taligent_EXAMPLEl
#include <Examplel.h>
flendi f

#ifndef Taligent_CLASSICDATASTRUCTURES
#include <ClassicDataStructures.h>
flendi f

TOwningStackOfl::TOwningStackOfl()
: fCount(O)

{
}

TOwningStackOfl::TOwningStackOfl(
const TOwningStackOfl& other)
: fCount(other.fCount)

{

for (unsigned int i = 0; i < fCount; i++)
{

fStack[i] = new TCollectibleLong(*other.fStack[i]);
}

}

TOwningStackOfl::~TOwningStackOfl()

{

}

for (unsigned int i = 0; i < fCount; i++)
{

delete fStack[i];
}

void TOwningStackOfl::Adopt(TCollectibleLong* item)
{

fStack[fCount++] = item;
}

unsigned int TOwningStackOfl::Count() const
{

return fCount;
}

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Examp/e2.h ------I

APPENDIX A CLASS TEMPLATES 1 2 1

THE EXAMPLE CLASS: AN OWNING STACK

To templatize the class without sharing the implementation:

II Copyright (C)1994 Taligent. Inc. All rights reserved.
II $Revision: $
#ifndef Taligent_EXAMPLE2
#define Taligent_EXAMPLE2

#ifndef Taligent_PRIMITIVECLASSES
#include <PrimitiveClasses.h>
#endif

template <class AType>
class TOwningStackOf2
{

public:
TOwningStackOf2();
TOwningStackOf2(canst TOwningStackOf2<AType>& other);

virtual -TOwningStackOf2();
virtual void Adopt(AType* item);
virtual unsigned int Count() canst;

private:
AType* fStack[lO];
unsigned int fCount;

} ;

#ifndef Taligent_EXAMPLE2TEMPLATEIMPLEMENTATION
#include <Example2TemplateImplementation.h)
#endif

flendi f

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

122 APPENDIX A CLASS TEMPLATES

THE EXAMPLE CLASS: AN OWNING STACK

Example2lmplementations.h

#ifndef Taligent_EXAMPLE2TEMPLATEIMPLEMENTATION
#define Taligent_EXAMPLE2TEMPLATEIMPLEMENTATION

#ifndef Taligent_EXAMPLE2
#include <Example2.h>
#endif

template<class AType>
TOwningStackOf2<AType>::TOwningStackOf2()

: fCount(O)
{
}

template<class AType>
TOwningStackOf2<AType>::TOwningStackOf2(canst TOwningStackOf2<AType>& other)

: fCount(other.fCount)
{

}

for (unsigned int i - 0; i < fCount; i++)
{

fStack[i] - new AType(*other.fStack[i]);
}

template<class AType>
TOwningStackOf2<AType>::-TOwningStackOf2()
{

}

for (unsigned int i - 0; i < fCount; i++
{

delete fStack[i];
}

template<class AType>
void TOwningStackOf2<AType>::Adopt(AType* item)
{

fStack[fCount++] - item;
}

template<class AType>
unsigned int TOwningStackOf2<AType>::Count() const
{

return fCount;
}

flendi f

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

APPENDIX A CLASS TEMPLATES 1 23
SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

,...,
~HARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

~Iass definitions

Naming conventions

Instance variables

This technique uses private inheritance to share the implementation class
between multiple specializations of the template. For an alternate technique of
holding the implementation class as a member variable, see "Sharing the
implementation by delegating to a member" on page 130.

If your class template is TXXX, define two classes:

TXXXlmplementation is a nontemplatized abstract base class that has methods for
implementing the operations of the template. When the implementation
methods need to perform a type-specific operation, they delegate to private pure
virtual methods. The pure-virtual type-specific methods typically include
deleting, copying, comparing, and streaming.

TXXX is a class template for a concrete class that privately inherits from
TXXXImplementation. It has public methods that delegate to the
TXXXImplementation implementation methods, and private virtual methods
that implement the TXXXImplementation type-specific methods.

Follow these three naming conventions:

For the implementation class, if your class template is TFoo, the private implementation
class should be TFoolmplementation.

For the implementation methods, if an implementation method does not have a type
specific signature (it does not have AType in its argument list), name it the same
as the public template method, and reexport it by using the qualified name in
the class declaration. Otherwise, change the name to prevent the compiler from
generating warnings. If your template method is Bar, the implementation
method should be ImplementBar.

For the type-specific methods, if your type-specific operation is IsEqual, the type-specific
method should be TypeSpecificIsEqual.

Place both type-specific and non-type-specific instance variables in the
implementation class. Treat non-type-specific instance variables normally, and use
their real type. For type-specific instance variables, hold them by a pointer to the
most derived common base type, which is usually vo; d.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

124 APPENDIx A CLASS TEMPLATES

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

Type-specific methods
and implementation
class constructors and
destructors

Type-specific methods are virtual methods. You cannot call them from the
implementation class' constructors or destructors, because they will not be
defined when the implementation class' constructor runs.

To perform type-specific operations at construction time, add a separate
ImplementConstructor method to the implementation class. Call it from the
class template's constructor, after the implementation class is constructed.

To perform type-specific operations at destruction time, add an ImplementDestructor method
to the implementation called from the class template's destructor.

Here is the wrong way to implement the TOwningStackOf copy constructor:

template <class AType>
TOwningStackOf::TOwningStackOf(const TOwningStackOf<AType>& other)

: TOwningStackOflmplementation(other)
{

}

TOwningStackOflmplementation::TOwningStackOflmplementation(
const TOwningStackOflmplementation& other)

{
: fCount(other.fCount)

for (unsigned int i = 0; i < fCount; i++)
{

Fails-TypeSpecificCopy
is virtual and cannot be
called from a constructor

----- fStack[i] = TypeSpeci fi cCopy(other. fStack[i]) ;
}

}

Here is the correct way:

TOwningStackOf::TOwningStackOf(const TOwningStackOf<AType>& other)
{

ImplementConstructor(other);
}

void TOwningStackOflmplementation::lmplementConstructor(
const TOwningStackOflmplementation& other)

{

}

fCount = other.fCount;
for (unsigned int i = 0; i < fCount; i++)
{

fStack[i] = TypeSpecificCopy(other.fStack[i]);
}

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

llining the class
~mplate's public
lethods

:Iass templates that
I1herit from
pecialized classes

~n implementation
:haring example

:xamp/e3.h ------I

APPENDIX A CLASS TEMPLATES 125

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

The class template's methods do little more than delegate to the implementation
class. Like all normal Taligent Application Environment methods, you should
declare most of the class template's methods virtual. Additionally, make the
implementations inline to avoid an extra method call where the class template is
used non polymorphically.

Do not inline the class template's type-specific methods. The implementation
class is the only client, and it will always call them polymorphically.

You can use this technique with public inheritance from a templatized base class.
If you do so, don't mix an implementation class into any of the public base class.
Defer all the implementation to the derived classes to avoid the diamond
inheritance problem. See "Be aware of problems with virtual bases" on page 18.

Putting all of these rules together, here's the owning stack implemented with
private inheritance for implementation sharing.

II Copyright (C)1994 Taligent. Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE3
#define Taligent_EXAMPLE3

#ifndef Taligent_PRIMITIVECLASSES
#include <PrimitiveClasses.h)
#endif

class TOwningStackOf3Implementation
{

public:
TOwningStackOf3Implementation();

virtual ~TOwningStackOf3Implementation();
void ImplementConstructor(const TOwningStackOf3Implementation& other);
void ImplementDestructor();
void ImplementAdopt(void* item);
virtual unsigned int Count() const;

private:
virtual void * TypeSpecificCopy(const void* item) = 0;
virtual void TypeSpecificDelete(void* item) = 0;
void* fStack[lO];
unsigned int fCount;

} ;

LALIGENT'S GUIDE TO DESIGNING PROGRAMS

126 APPENDIX A CLASS TEMPLATES

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

Examp/e3.h ------I

template <class AType>
class TOwningStackOf3

: private TOwningStackOf3Implementation
{

public:
TOwningStackOf3();
TOwningStackOf3(const TOwningStackOf3<AType>& other);

virtual ~TOwningStackOf3();
virtual void Adopt(AType* graphic);

II Reexport Count
TOwningStackOf3Implementation::Count;

private:
virtual void * TypeSpecificCopy(const void* item);
virtual void TypeSpecificDelete(void* item);

} ;

#ifndef Taligent_EXAMPLE3TEMPLATEIMPLEMENTATION
#include <Example3Templatelmplementation.h>
#endif

II Inlines go here

template<class AType>
inline
TOwningStackOf3<AType>::TOwningStackOf3()
{
}

template<class AType>
inline
TOwningStackOf3<AType>::TOwningStackOf3(const TOwningStackOf3<AType>& other)
{

ImplementConstructor(other);
}

template<class AType>
inline
TOwningStackOf3<AType>::~TOwningStackOf3()
{

ImplementDestructor();
}

template<class AType>
inline
void TOwningStackOf3<AType>::Adopt(AType* item)
{

ImplementAdopt(item);
}

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

'xample3Implementation. C

APPENDIX A CLASS TEMPLATES 127

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

II Copyright (C) 1994 Taligent. Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE3
#include <Example3.h)
#endif

TOwningStackOf3Implementation::TOwningStackOf3Implementation()
: fCount(O)

{
}

TOwningStackOf3Implementation::-TOwningStackOf3Implementation()
{
}

void TOwningStackOf3Implementation::ImplementConstructor(
const TOwningStackOf3Implementation& other)

{

}

fCount - other.fCount;
for (unsigned int i - 0; i < fCount; i++)
{

fStack[i] - TypeSpecificCopy(other.fStack[i]);
}

void TOwningStackOf3Implementation::ImplementDestructor()
{

}

for (unsigned int i - 0; i < fCount; i++)
{

TypeSpecificDelete(fStack[i]);
}

void TOwningStackOf3Implementation::ImplementAdopt(void* item)
{

fStack[fCount++] - item;
}

unsigned int TOwningStackOf3Implementation::Count() const
{

return fCount;
}

lALIGENT'S GUIDE TO DESIGNING PROGRAMS

128 ,ApPENDIX A CLASS TEMPLATES

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

Example3lmplementation.h

II Copyright (C)1994 Taligent, Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE3TEMPLATEIMPLEMENTATION
#define Taligent_EXAMPLE3TEMPLATEIMPLEMENTATION

#ifndef Taligent_EXAMPLE3
#include <Example3.h)
Ilendi f

template<class AType)
void* TOwningStackOf3<AType)::TypeSpecificCopy(const void* item)
{

return new AType(* (canst AType*) item);
}

template<class AType)
void TOwningStackOf3<AType)::TypeSpecificDelete(void* item)
{

delete (AType*) item;
}

Ilendi f

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

mple3TemplateMethods. C

APPENDIX A CLASS TEMPLATES 129

SHARING THE IMPLEMENTATION THROUGH PRIVATE INHERITANCE

II Copyright (C)1994 Taligent, Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE3
#include <Example3.h>
#endif

TOwningStackOf3Implementation::TOwningStackOf3Implementation()
: fCount(O)

{
}

TOwningStackOf3Implementation::~TOwningStackOf3Implementation()
{
}

void TOwningStackOf3Implementation::ImplementConstructor(
const TOwningStackOf3Implementation& other)

fCount = other.fCount;
for (unsigned int i = 0; i < fCount; i++)
{

fStack[i] = TypeSpecificCopy(other.fStack[i]);

void TOwningStackOf3Implementation::ImplementDestructor()
{

for (unsigned int i = 0; i < fCount; i++)
{

TypeSpecificDelete(fStack[i]);

void TOwningStackOf3Implementation::ImplementAdopt(void* item)
{

fStack[fCount++] = item;
}

unsigned int TOwningStackOf3Implementation::Count() const
{

return fCount;
}

:ALIGENT'S GUIDE TO DESIGNING PROGRAMS

130 APPENDIX A CLASS TEMPLATES

SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

An example of
delegating to a
member

The delegation
example's naming
conventions

An alterative to private inheritance is to delegate the implementation to a
member. This technique usually leads to cleaner code than achieved by using
private inheritance.

No matter which implementation sharing technique you choose, you must still
connect the implementation class with the type-specific operations. There are
several ways to achieve this:

The implementation defines pure virtual functions for the type-specific operations. These are
overridden by a derived class template. (This is what is done in the private
inheritance case.)

The implementation is given a pointer or reference to an object which has virtual methods for
the type-specific operation. (This is what happens in the following example.)

The implementation is given a set of pointer-to-member functions to the type-specific operations.

The following is an example of a class template that delegates the
implementation to a member. It has two main features:

The type-specific protocol is encapsulated in a small standalone abstract base class; public class
template creates concrete instances.

The public class template has an implementation class as a member, which has a pointer to the
type-specific protocol class.

While there are more classes involved, and more delegation, this design is
cleaner than the private implementation example on page 125. Because the type
specific class is passed into the implementation class, the implementation class
constructors and destructors are free to use the type-specific operators. So there
is no need to treat construction or destruction specially.

For this technique, if TXXX is the class template, the naming conventions are:

TXXX is the class template.

TXXXlmplementation is the implementation.

TXXXTypeSpecificOperationsBase is the abstract base of the type-specific operations.

TXXXTypeSpecificOperations is the class template for the type-specific operations.

Because there is no inheritance between the class template and the
implementation class, there is no chance of a name collision. In this way, the
method names of the implementation classes don't require a special prefix.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

he delegating-to-a
lember example

xample4.h -------i

,ApPENDIX A CLASS TEMPLATES 131

SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

Ii Copyright (C)1994 Taligent. Inc. All rights reserved.
/! $Revision: $

#ifndef Ta11gent_EXAMPLE4
#define Taligent_EXAMPLE4

#ifndef Taligent_PRIMITIVECLASSES
#include <PrimitiveClasses.h>
#endif

class TOwningStackOf4TypeSpecificOperationsBase:

class TOwningStackOf4Implementation
{

public:
TOwningStackOf4Implementation(

TOwningStackOf4TypeSpecificOperationsBase* adopt):

TOwningStackOf4Implementation(
TOwningStackOf4TypeSpecificOperationsBase* adopt.
const TOwningStackOf4Implementation& other):

virtual -TOwningStackOf4Implementation():
virtual void Adopt(void* item):
virtual unsigned int Count() const:

private:
TOwningStackOf4TypeSpecificOperationsBase* fTypeSpecificOperations:
unsigned int fCount:
void* fStack[lO]:

} :

template <class AType>
class TOwningStackOf4
{

public:
TOwningStackOf4():
TOwningStackOf4(const TOwningStackOf4<AType>& other):

virtual -TOwningStackOf4():
virtual void Adopt(AType* graphic):
virtual unsigned int Count() const:

private:
TOwningStackOf4ImplementationfImplementation:

} :

#ifndef Taligent_EXAMPLE4TEMPLATEIMPLEMENTATION
#include <Example4TemplateImplementation.h>
flendif

II Inlines go here

'ALIGENT'S GUIDE TO DESIGNING PROGRAMS

132 APPENDIX A CLASS TEMPLATES

SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

Examp/e4.h -------I

template<class AType>
inline
TOwningStackOf4<AType)::TOwningStackOf4()

: flmplementation(new TOwningStackOf4TypeSpecificOperations<AType»)
{
}

template<class AType>
inline
TOwningStackOf4<AType)::TOwningStackOf4(const TOwningStackOf4<AType>& other

flmplementation(new TOwningStackOf4TypeSpecificOperations<AType).
other.flmplementation)

{
}

template<class AType>
inline
TOwningStackOf4<AType)::~TOwningStackOf4()
{
}

template<class AType>
inline
void TOwningStackOf4<AType>::Adopt(AType* item)
{

flmplementation.Adopt(item):
}

template<class AType>
inline
unsigned int TOwQingStackOf4<AType>::Count() const
{

return flmplementation.Count():
}

template<class AType>
inline
TOwningStackOf4TypeSpecificOperations<AType)::TOwningStackOf4TypeSpecificOperations()
{
}

lIendif

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

:xample4Implementation.h

APPENDIX A CLASS TEMPLATES 133
SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

II Copyright (C) 1994 Taligent, Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE4TEMPLATEIMPLEMENTATION
#define Taligent_EXAMPLE4TEMPLATEIMPLEMENTATION

#ifndef Taligent_EXAMPLE4
#include <Example4.h>
#endif

class TOwningStackOf4TypeSpecificOperationsBase
{

public:
TOwningStackOf4TypeSpecificOperationsBase() {};

virtual ~TOwningStackOf4TypeSpecificOperationsBase() {};
virtual void * Copy(const void* item) = 0;
virtual void Delete(void* item) = 0;

} ;

template<class AType>
class TOwningStackOf4TypeSpecificOperations

: public TOwningStackOf4TypeSpecificOperationsBase
{

public:

} ;

TOwningStackOf4TypeSpecificOperations();
virtual void * Copy(const void* item);
virtual void Delete(void* item);

template<class AType>
void*
TOwningStackOf4TypeSpecificOperations<AType>::Copy(const void* item)
{

return new AType(* (const AType*) item);
}

template<class AType>
void
TOwningStackOf4TypeSpecificOperations<AType>::Delete(void* item)
{

delete (AType*) item;

#endif

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

134 APPENDIx A CLASS TEMPLATES

SHARING THE IMPLEMENTATION BY DELEGATING TO A MEMBER

Example4lmplementation. C

II Copyright (C) 1994 Taligent, Inc. All rights reserved.
II $Revision: $

#ifndef Taligent_EXAMPLE4
#include <Example4.h>
#endif

II Methods of TOwningStackOf4Implementation
TOwningStackOf4Implementation::TOwningStackOf4Implementation(

TOwningStackOf4TypeSpecificOperationsBase* adopt
: fTypeSpecificOperations(adopt), fCount(O)

{
}

TOwningStackOf4Implementation::TOwningStackOf4Implementation(
TOwningStackOf4TypeSpecificOperationsBase* adopt,

const TOwningStackOf4Implementation& other)
fTypeSpecificOperations(adopt), fCount(other.fCount)

{

for (unsigned int i = 0; i < fCount; i++)
{

fStack[i] = fTypeSpecificOperations->Copy(other.fStack[i]);
}

}

TOwningStackOf4Implementation::~TOwningStackOf4Implementation()
{

}

for (unsigned int i = 0; i < fCount; i++)
{

fTypeSpecificOperations->Oelete(fStack[i]);
}

delete fTypeSpecificOperations;

void TOwningStackOf4Implementation::Adopt(void* item)
{

fStack[fCount++] = item;
}

unsigned int TOwningStackOf4Implementation::Count() const
{

return fCount;
}

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

APPENDIX A CLASS TEMPLATES 135
FURTHER READING

~URTHER READING

For more information about templates, see:

I!III Advanced C++ Programming Styles and Idioms (Coplien), §7.4.

III Working Paper for Draft Proposed American International Standard for Information
Systems-Programming Language C++, § 14.

I!III The C++ Programming Language, Second Edition (Stroustrup), Chapter 8.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

BIBLIOGRAPHY

Bentley,jon. Programming Pearls. Reading, MA: Addison-Wesley, 1989.

---. More Programming Pearls. Reading, MA: Addison-Wesley, 1988.

---. Writing Efficient Programs. Englewood Cliffs, Nj: Prentice-Hall, 1982.

Booch, Grady. Object Oriented Design with Applications. 2d ed. Redwood City, CA:
Benjamin/Cummings, 1994. This is one of the best books on object-oriented
design. Mr. Booch thoroughly covers the ins and outs of it. If you read
nothing else, read this book.

Cargill, Tom. C++ Programming Style. Reading, MA: Addison-Wesley, 1992. This
book contains that rare and useful information-examples of bad code with
analyses. Like the original Elements of Programming Style, this book is quite
helpful because it shows what not to do.

Carroll, Martin. "Design of the USL Standard Components." C++ Report 5, no. 5
Gune 1993).

Coplien, james O. Advanced C++ Programming Styles and Idioms. Reading, MA:
Addison-Wesley, 1992. Lots and lots of useful techniques. However, it can be
fairly dense at points, it isn't well organized, and some of the examples run
counter to rules in this and other books.

Ellis, Margaret, and Bjarne Stroustrup. The Annotated C++ Reference Manual
Reading, MA: Addison-Wesley, 1990. This book has been supplanted by the
current working paper for the draft ANSI C++ standard. It reflects the state of
the language at the start of the standardization process a few years ago.
Neither this book (abbreviated as the ARM) nor the working paper are light
bedtime reading. However, it's essential to have one of them close at hand if
you hope to make optimum use of C++. If you can possibly stay awake, read
one all the way through. If you can get a copy of the working paper, that is
preferable to using the ARM.

Goldstein, Neil, and jeff Alger. Developing Object-Oriented Software for the Macintosh.
Reading, MA: Addison-Wesley, 1992. This book provides another excellent
perspective on object-oriented design. It explodes some common myths.
Don't let the title fool you-it's really not that specific to the Macintosh.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

137

138 BIBLIOGRAPHY

Hansen, Tony. The c++ Answer Book. Reading, MA: Addison-Wesley, 1990.

ISO /IEC. ISO /IEC 9899:1990, International Standard for Information Systems
Programming Language C. This is essentially the same as
ANSI C, X3J11/88-159.

ISO/ANSI C++ Standardization Committee. "Working Paper for Draft Proposed
American International Standard for Information Systems-Programming
Language C++." This is essentially the same as the ANSI X3/J16 working
paper for programming language C++.

Lampson, Butler. "Hints for Computer System Design" from the Proceedings of
the Ninth ACM Symposium on Operating System Principles. Operating System
Review 17, no. 1 (1983): 33-48. It's got lots of good observations by someone
who's been through the wringer a few times.

Lippman, Stanley. The C++ Primer. 2d ed. Reading, MA: Addison-Wesley, 1991. A
gentler tutorial for C++ than The C++ Programming Language, 2nd Edition. The
second edition of Stroustrup's book is much better organized and is more
approachable, lessening the need for this book. Also, this book does not
cover classes until the later chapters.

Meyers, Scott. Effective C++. Reading, MA: Addison-Wesley, 1992. This book
presents 50 good rules for designing and writing with C++. The intent of
Meyers is not unlike that of Taligent's Guide to Designing Programs.

Murray, Robert B. C+~ Strategies and Tactics. Reading, MA: Addison-Wesley, 1992.
Many useful tips and techniques for using C++. Gives more detailed examples
of some of the techniques discussed in this document.

Stroustrup, Bjarne. The C++ Programming Language. 2d ed. Reading, MA: Addison
Wesley, 1991. In addition to being the best introduction and reference to the
language (excepting the ANSI draft specification), it includes excellent
chapters on object-oriented design and management of object-oriented
projects. These chapters are full of experience from the man who has seen
more C++ projects than anyone else. However, this book is intimidating.

The 1987 Usenix C++ Conference Proceedings. USENIX Association, Berkeley CA.
The 1988 Usenix C++ Conference Proceedings. USENIX Association, Berkeley CA.
The 1990 Usenix C++ Conference Proceedings. USENIX Association, Berkeley CA.
The 1991 Usenix C++ Conference Proceedings. USENIX Association, Berkeley CA.
The 1992 Usenix C++ Conference Proceedings. USENIX Association, Berkeley CA.

Weinberg, Gerald. The Psychology of Computer Programming. New York, NY: Van
Nostrand Reinhold, 1971. Some choice bits about what drives programmers
to worry about efficiency.

Taligent is constantly looking for new books-please recommend your favorites.

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

BIBLIOGRAPHY 139

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

INDEX

*, [] instead 44
«=, definition required 11

=!, as inline 63

definition required 11

self-assignmen t, checking for 104
==, as an inline 63
»=, definition required 11

[] (array argument), using instead of * 44
... (argument) 45

A
abbreviations, in names 34
abstract base class

naming conventions 34
using 12

access control 107

acronym, naming conventions 33
alignment restrictions 110
allocation, See storage
ANSIC

See also C
header files 41
standard libraries 55

application, cleanup and finalization 103

architecture
goals 1

principles 1-4

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

argument
(...) 45
array 44
default, implications for 44
derived class 1 5
naming conventions 33

ARM 137

array
argument, passing as 44
as local variable or object field 53
hard-coded size 52
interface issues 9
variable length 98

assembly language
performance issues 19

AssertO 10

assertion, as opposed to exception 83
assignment operator (=:)

definition required 1 1

self-assignment, checking for 104
automatic objects 76

142 INDEX

B Carroll, Martin 8

base classes
abstract 12

designing 16
empty 25
in terfaces 14
multiple base, problems using 16
multiple occurrences, using 19

naming conventions 33
private or protected, using 26
public, using 13, 26
too busy 25
too complex 25
too little 25
virtual, making 18
virtual, problems using 18

binary compatibility 60
bit-vector class, like Boolean array 96
Boolean

array of 96
flag, setting and testing 53
types instead of flags 53

byte-order assumptions 110

c
C

headers, creating from classes 23
preprocessor 49
standard libraries 55
s td; 0 library functions 21

C++
automatic and static objects 47
cast operator 42
cast type 41
class type 43
const objects are compile-time constants 49
construction order 48
declarations are not classes 22

default arguments 44
derived class interface, cannot express 14
object-oriented design issues 10

pointer handling 46
cache object 21

calling convention implementations 110

casts
avoid types casts 41
coercion 41
conversion 41
downcasting problems 16
operator 42
silent coercion 42
that cause conversion 41

char*

casting to a longer type 11 1

difference from vo; d* III

for pointer arithmetic III
cha r, size of 109
chunky iteration 21

circular reference, See reference
circular

cl ass 43
class template 115

classes
2-byte boundaries, on 1 1 1

abstract base
naming conventions 34
using 12

access control 107

bad definition 23
bases

designing 16
empty 25
making private or protected 26
multiple occurrences, using 19

multiple, problems using 16
using 13
using public 26

C headers, created from 23
calling restrictions 107

Collection 98
Collection not multithread safe 99
compl ex 67
complex bases 25
copy restrictions 107
definition

conventions 37
in one file 32
requirements 11

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

derived
arguments, as 15

designing 16

implementation protocol 15

dynamically instantiating 104

guidelines 7
helper 105

implementation classes 105

interfaces 14

invariants 10

layout in memory 1 10

multiple inheritance 17

naming conventions 33

non-public 61

non-Taligent 56
overriding 106

partitions (categories of) 17

primitives, using like 47
protected inherit behavior 13

section definition order 38
streams cannot use i nt 110

struct, created from 23

template implementation 115-134

virtual bases
making 18
problems using 18

without protocol 25

clean up 78
clients, designing for 7
close routines 104

code
reusing 3
strip, cannot 58

code names
avoid in interface 32

avoiding in filenames 31

coercion
of pointers and types 41

silent coercion 42

Collection classes
not multithread safe 99
using 98

comments 30

commonality 2

comparing objects 86

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

compatibility 60

compilation, speeding up 31

compiler
shortcutting 98
warning: "foo not used" 30

compl ex class 67
concurrency

issues 10

shared library issues, and 99
synchronization, avoiding 103

~canst, Seemutabl e
canst

casting 42

compile-time constants 49
globals with file scope 100

instead of ffdefi ne 49
interpretation 102

pointer, returning 45

problems in shared memory 102

sets, using enum instead of 50

symbolics, avoid using tfdefi ne 49
canst_cast 42

constants
compile-time cannot have class scope 50

in different name spaces 35

naming conventions 33
static object, using instead of temps ,20

constructor
copy requires definition 11

definition, required 1 1

order of execution 48
overloading 105

pri vate 105

static members, using 105

virtual function calls 68
conversion, resulting from cast 41

copy constructor requires definition 11

copy semantics 96
copying large objects 93
copyright notice 30

counted pointer
example of 97
surrogate 93

CPU
dependent code 113

mixed environments 112

CreateIterator 47

INDEX 143

144 INDEX

D E
dangling references, avoiding 94
data

portability 1 12

strip, cannot 58
data members

arranging, adding, and removing 61

importing and exporting with inlines 65
naming conventions 33

data structures, interface issues 9
data types

alignment restrictions 110
C types, using 40,41
declaration conventions 40-43
equality between different types 88
exact definitions 110
nonportable 113
safe assumptions 109
unsigned declarations 41

death, tracking 103
declarations in class scope 35
default argument implications 44
1Idefine

avoid symbolic constants 49
enum instead 49

derived classes 15
as arguments 15

designing
guidelines and procedures 7
invariants 10

destructor
definition, required 11

exception throwing 82
virtual, making 71

device configuration objects 72
dictionaries, interface issues 9
double

address assumptions 110
always IEEE double-precision 110

down casting 16

driver, installing 8
dynamic instantiation 104

Einstein, Albert 3
encapsulation issues 24
enum

appear in class name space 36
naming conventions 33
type names local to class 50
using 50

equality 86
error codes and conditions 74
exception handling 74-83

assertions instead 83
automatic objects, using 76
checklist 74
class design 8 1

destructors, throwing 82
interface specification 76
passing exceptions 78
recover, when to 83
resource recovery 76
syntax 75
throwing 75
when to signal 82

experimenting 20

F
file

conventions 30
float.h 110
limits.h 41, 110
PrimitiveTypes.h 41
stddef.h 41

filenames
case sensitivity 32
code names, avoiding 31

final release and beyond 60

flags, using 53
flatten operator 113
fl oat

address assumptions 110

always IEEE single-precision 110
float.h 110
frameworks 3
free 55

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

Fri end declarations 74
unction macros, avoiding 51

unctions

G

class members, as 9
collecting in objects 24

getter and setters should not be virtual 15

globals should be static members 36
group override 14

multithreads, called by 101

non-virtual at runtime 60
non-virtual, removing 61
prototypes 30

returning errors 74
returning pointers 45
returning pointers, values, or references 43

special member requirements 11

special members of abstract bases 37
static variables, defined with 100

virtual calls to bases, avoiding 66
virtual function issues 66
virtual, when to make 72

garbage collection storage issues 96
get functions

name convention 33
should not be virtual 15

global variables
in the interface 9
multithread access 100

synchronization concerns 100

goals, architecture 1

Goldsmith, David XXIV

gata, avoiding 52

H
handle surrogates 93
hash 84
header file

ANSI C 41

definitions to include 31

limits.h 41, 110

PrimitiveTypes.h 41

stddef.h 41

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

heap
avoiding 57
shared, using 102

storage 57
storage for large objects 58

helper classes 105

hidden master surrogates 94
hook functions 14

ID types 9
identifiers of multiple words 33
implemen tation

inheritance 12, 13

revealing 24

inheritance
implementation inheritance 13

issues 12

lightweight object performance 17
managing commonality 2

multiple base, problems using 16
type 13

virtual bases to handle problems 18
Ini tialize ()

exception to valid state rule 104

using 68,69
initializers illegal in class declaration 50

initializing static functions 100

inline functions
calling other functions 63

INDEX 145

data members, importing and exporting 65
declarations, in 64
empty special members 65
for efficiency 64
in .c files, nonportable 63
in abstract base classes 63
issues 62
non-inline, changing to 60
using 62-65
virtual 67

146 INDEX

int
always cast to short 110

cannot use in stream classes 110

difference from long 110

instead of short 110

nonportable 113

sizes 110

interface
between base and derived classes 14

design issues 10

express through objects 9
global variables 9
implementation 24

objects, must go through 2

specification 76
internal code names 32

invariants 10

IsEqual () 16
iterators, chunky iteration 21

K
kDeepFreeze I 13

kMas k32 84

L
language assumptions 110

library
routines 55
shared issues 99
shared, advantages of 58
subsystem cleanup 103

limits.h 41, 110

literal, define as identifier 52
little red warning lights 23

local variable
arrays, avoiding 53
naming conventions 33

long
address assumptions 110

difference from i n t I 10

sizes 110

long double
address assumptions 110

non portable 113

not portable III

lookup tables, using virtual functions instead 72

M
macros, avoiding 5 I
magic number 52
mall oc 55
managers are not objects 24

manipulating storage 98
MCollectible

as multiple ancestors 19
avoiding in collections 18
IsEqual () 16
may force equality definition 87

member function
empty and inline 65
naming conventions 33

requirements II

returning a reference or pointer 24

specials of abstract bases 37
using 26

memcpy() 55
memory

access synchronization problems 100

const problems 102

layout assumptions 110

sharing between tasks 101

sharing with heaps 102

simultaneous read and write 100

mixin class name conventions 33

modulitis 23

monitor lock 76
monitors for synchronizing data structures 99
MReferenceCounted

for reference counting 96
synchronize locating code 102

use for synchronization II 2

MRemoteCaller 13

MRemoteDispatcher 13

multiple inheritance 17
multiple word names 33

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

nultiprocessor synchronization issues 100, 112
nultitasking, preemptive 99
nultithread

concurrency issues 10
functions, accessing 101
global and static variables, accessing 100

nutabl e 103

N
Name Server 56
name space

constants 35
enum 36

names
abbreviations 34
acronyms 33
avoiding collision 36
conventions 32
internal code names 32

multiple words 33
preprocessor symbols 31
underscores, avoid 33

namespace 36, 50
new

exceptions during, 77
heap storage, allocating 102
throws an exception 80

nil pointers for default values 46
nonportable

code, procedures for 113
comment form 113
data types 1 13
inline functions 63
i nt 113
long double 113
ptrdiff_t 113
size_t 113
TThreadhandle 1 13

non-virtual functions
removing 61
runtime limitations 60

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

o
object field, avoid using array 53
Object Pascal pointer differences 46
object-oriented design objectives 2

objects
as in terfaces 9
automatic 76
caching 21
controlling access 107
copy restrictions 107
copying 93
deletion restrictions 107
forcing on the heap 105
heap, keeping off 107
in multithread access functions 101
lightweight considerations 17
multiple threads, behavior in 10
naming instances, See Name Server 56
opening and closing 104
reference counting 97
resource allocation 104
resurrecting 104
shared heap, accessing on a 102
stack restricting 107
static, creating 60
testing for initialized 101
threads, safe for concurrent 99
unflattening 104

open routines 104
operator

«= definition required 11
=! as inline 63
=, when to make virtual 72

=:definition required 11
== as an inline 63
»= definition required 11
balancing 105
casts, performing 42

order of static constructors 59, 60
overloaded member functions 106
overriding

InitializeO 68
overloaded classes 106

INDEX 147

p
parameter

caller should decide type 44
name conventions 33

performance
analysis 20

canonical formats, accessing 112

chunky iteration 21

designing 19

experiments 20

inline functions, using 64
issues 19

static objects 20

tracking time wasters 20

using i nt not short 110

pointer
arithmetic, avoiding 98
arithmetic, how to III
avoid returning 45
base class, casting 42
counted 93

counted, example of 97
from a member function 24
handling in C++ 46
instead of references 46
nil, deleting 106

returning canst 45
treatment of 46
untyped III
volatile, casting 42
when to use 46

polymorphism
cannot return a value 43
definition 13

design requirements 15
instead of dynamic class instantiation 104

multiple references, and 46
requires

base class 25
public base classes 13

virtual functions 67
requiring pointers 47
should accept references 44
switches, instead of 72

portability
bitwise operations 53
designing for 109

functions 67
of data 112

portable hash 84
preemptive

multitasking 99

scheduling 99

preprocessor naming conventions 31

PrimitiveTypes.h 41
private

base classes
inherit behavior 13

to avoid implementing exports 15
functions, removing 61

virtual functions 68
private

always include 38
state explicitly 38

processor
dependent code 113

mixed environments 112

PROSE 103

protected
classes inherit behavior 13

definitions, access to 14
protected, always state between publ i c and pri vate 38
protocol 15
ptrdiff _t

nonportable 113

useful for representing pointer differences 41
pub 1 i c, always state first in definition 38
pure virtual functions 67

Q

Quicksort 58

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

lW storage manipulation 98
eall oc 55
~ference

caller decides type 44
circular, See circular reference
dangling, avoiding 94
from a member function 24
instead of pointers 46
semantics 46
use for single occurrence 46

eference counting
correct method 97
implementing 96
order of actions 104

eferenced-based implementations 96
efNums 9
ei nterpret_cast 42
elease compatibility 60
esource

allocation and deallocation issues 77
finding 4
naming 56
recovery 76,78
registering 4, 8
theory 4

'esurrecting 104
'eturn in the middle of procedures 52
'euse of code 3
'ules for storage manipulation 98
'untime

assumptions 110
compatibility 60

fALIGENT'S GUIDE TO DESIGNING PROGRAMS

s
scheduling, preemptive issues 99
scope resolution 106
SCSI devices 8
section order in class definitions 38
self-assignment test 104
semaphore 99
server objects 9
set functions

naming convention 33
should not be virtual 15

shared heaps, using 102
shared library

advantages 58
issues 99
subsystem cleanup 103

shared memory
between tasks 101
canst problems 102
sharing with heaps 102

short
consider i nt 110
sizes 109

signed char, size of 109
silent coercion 42
sixty four thousand byte question, the 53
size_t

nonportable 113
useful for representing sizes 41

slicing
exceptions, avoiding with 75
virtual operators, avoiding with 44

Smalltalk pointer differences 46
source file conventions 30
special member function

empty and inline 65
requirements 11
with no implementation or storage 37

specialized class 1 1 5
stacks

allocation for small memory items 57
avoiding 57
s tack size 57

INDEX 149

150 INDEX

static data
allocate on demand 58
avoiding shared libraries 58
member naming conventions 33

static members as constructor 105
static objects

avoiding 58
constants, using instead of 20
construction order 48
constructors and shared libraries 58
creating 60
exporting from a library 59
initializing for shared 58

static variables
multithread access 100
naming conventions 33
synchronization concerns 100

stat; c_cast 42
stddef.h 41
s td; a library functions 21
storage

allocation, avoiding 47
block issues 98
heap assumptions 57
implications 57
management

issues 96
naming conventions 96
philosophy 57

manipulation 98
rules 98
simultaneous read and write 100
use classes 57

stream classes cannot use; nt 110
streaming operators require definition 1 1
struct

2-byte boundaries 1 11
classes, creating 23
declaring a typedef of 43
initializing for shared 58
interface issues 9
layout in memory 1 10

structification 23

structure
alignment assumptions III
safe for concurrent threads 99

subsystem cleanup 103
sub typing, See type inheritance
surrogates

handles 93
hidden masters 94
instead of canst 103
multithread considerations 95
synchronizing with 99
targets pointing to masters 104

switches, using virtual functions instead 72
synchronization

avoiding with accessors 103
data structures, of 99
global variables 100
high-level constructs only 99
in supported constructs only 1 12
memory access problems 100
static variables 100
techniques 99
using surrogates 99

system goals 1

T
Taligen t goals 1
TAreaGeometryHandle 94
TArrayOf96
TArrayOfElementReference 96
tasks, sharing memory 101
TCollection, for caller collection flexibility 44
TCollectionOf 47
TDe 1 eteFar<> 80
TDel eteFarArrayOf<> 80
TDiskDictionaryOf 84
TDiskSetOf 84
template

better than overriding 16
for specialized functions and classes 51
implementations 115-134
naming conventions 33

term; nate() 82
TGArea94

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

GPoint 67
1i s

as non-canst 103
error when same as assignment 104
inline functions, and 65
non-canst to change internal state 42

lreads, concurrency issues for multiple 10
IteratorOver 47
KitchenSink 22
MemHeap 55
MemorySurrogate 55
'PrimitiveArray 77
'ap calls or patches 66
'SetIteratorOver 74
'SetOf 74
'StandardException

how to throw an instance of 75
root of all exceptions 81
slicing, using to avoid 75
what to subclass 82
when to catch 83
when to subclass 82

'Stream
kDeepFreeze 1 13
to preserve class invarian ts 10

'TaskHandle
has no master 94

'ThreadHandle
has no master 94
nonportable 113

'Token 67
'Update Region 92
'UpdateRequest 92
VideoDevice 25
ype inheritance 12, 13
ype narrowing 42
ypedef

declaring a class type 43
ypedefs 110
ypes

C types, using 40,41
declaration conventions 40-43
enum appear in class namespace 36
IDs 9
naming conventions 33
objects, that aren't 9
unsigned declarations 41

~ALIGENT'S GUIDE TO DESIGNING PROGRAMS

u
underscores 33
unflattening 104
UniCode 55
unian 43
unsigned char, size of 109
unspecified argument (...) 45
utility classes 56

v
variable length arrays 98
variables

globals should be static members 36
large, storing 57
naming conventions 33
pass in by reference 44

virtual base class naming conventions 33
virtual functions

assignment, when to make virtual 72
binary compatibility 67
calls to base 68
calls to base classes, avoiding 66
defining 66
destructors 71
group override 14
initializing 68
inline functions 67
issues 66
lookup tables, instead of 72
overriding 66,67
portability 67
private 68
pure 67
runtime limitations 60
switches, instead of 72
usage 66

visibility control 107
vaid*

casting to a longer type III
casting to longer type 1 1 1
casts to and from are dangerous 42
difference from cha r* III
for untyped pointers III

volatile pointer casting 42

INDEX 151

152 INDEX

w
wait-free synchronization 100

warning: "foo not used" 30

TALIGENT'S GUIDE TO DESIGNING PROGRAMS

OBJECT-ORIENTED PROGRAMMING

TALIGENT'S GUIDE

TO DE'S I G N I N G PROGRAMS

WELL-MANNERED OBJECT-ORIENTED DESIGN IN C++

Taligent's Guide 10 Designing Programs reflects years of experience building

large, object-oriented C++ systems that incorporate advanced programming

techniques and industry innovations. It is based on an internal programming

style guide used by Taligent engineers, by early Taligent application developers,

and in Taligent training courses. T~ese guidelines help programmers design

and implement a consistent style across the many Taligent systems.

Many of the rules and guidelines are applicable to any C++ system. Based

partly on principles and partly on practical experience, Taligml 's Guide 10

Designing Programs helps you understand the philosophy behind Taligenfs

system designs and suggests ways of working with object-oriented design issues

and C++.

HIGHLIGHTS

• Provides guidelines for designing classes: handling inheritance, designing

and tuning for performance, and addressing common design problems

• Covers C++ programming conventions: source file , name, class definition,

type declaration , reference, and value semantics

• Includes Taligent programming conventions: use of libraries, storage

management, binary compatibility, inline and virtual functions, and

exception handling

• Discusses tips and techniques: surrogate classes, storage management,

concurrency, and shared classes

• Explores portability issues: language and hardware assumptions ,

synchronization, portable data, and non portable code

Taligent's Guide 10 Designing Programs assumes a working knowledge of C++

and object-oriented design.

Cover ,"'sign try Ta/igenl Technical Communications Group, GW)' Ashcavai

ADDISON-WESLEY PUBLISHING COMPANY

~ The Taligent Reference

~ Library is the official

~A~I;ESN~ documentation for

developers working in the Taligent

Application Envirol)ment.

Founded in March 1992 , Taligent

is an independent system software

company, owned by Apple , IBM, and

Hewlett-Packard. The company is

developing system software

environments based completely on

object-oriented technology, which

will be open for extension at all levels

by software developers , hardware

OEMs, and systems vendors. Taligent,

along with its investors will license ,

market, and support its software

products worldwide.

90000

9 780201 408881

ISBN 0-201-40888-0

