4

«.

Medusa
Programmer's Guide
Beta Draft

Apple Confidential

Medusa Programmer's Guide, Beta Draft Apple confidential

€ APPLE COMPUTER, INC.

This manual is copyrighted by Apple
or by Apple’s suppliers, with all rights
reserved. Under the copyright laws,
this manual may not be copied, in
whole or in part, without the
written consent of Apple Computer,
Inc. This exception does not allow
copies to be made for others,
whether or not sold, but all of the
material purchased may be sold,
given, or lent to another person.
Under the law, copying includes
translating into another language.

© Apple Computer, Inc., 1989

20525 Mariani Avenue

Cupertino, CA 95014

(408)996-1010

Apple, the Apple logo, and Macintosh
are registered trademarks of Apple
Computer, Inc.

TokenTalk, Macintosh Coprocessor
Platform, and MR-DOS are
trademarks of Apple Computer, Inc.

NuBus is a trademark of Texas
Instruments.

Simultaneously published in the
United States and Canada

Notice

The information in this
document reflects the current
state of the product. Every
effort has been made to verify
the accuracy of this information;
however, it is subject to change.
Beta Drafts are released in this
form to provide the
development community with
essential information in order
to work on compatible products.

321/8)

Apple Confidential

Contents

Preface

What this document contains /
Suggested reading /

Possible applications /
Conventions used in this manual /

Introduction 1

Token Ring Networks /

The network layers /

A token ring network /

Token communication /

The Macintosh II token ring interface /
SubNetwork Access Protocol (SNAP) /
The 802.2 Logical Link Control IPC interface /
Macintosh Operating System IPC services /
Download and initialization services /

Apple Confidential

2 Source Routing Support

What is source routing? /
Hierarchical networks /
Mesh networks /

How source routing works /
Routing information /

Source routing implementation /
SNAP use /

LLCuse /
Source route limits /

3 SubNetwork Access Protocol (SNAP) Interface

General information /

Typical SNAP use /

IPC requests to SNAP /
SNAPAttach /
SNAPGetConfig /
SNAPGetHdr /
SNAPTransmit /
SNAPDetach /
SNAPReceive /
SNAPCancel /
SNAPGetParms /

Functions supporting 802.2 /
SNAPSwapHdr /

Example program listing /

4 The 802.2 LLC / IPC Interface
General information /
Typical 802.2 LLC use /
IPC requests 10 802.2 LLC /
LLCCpenSAP /

LLCTioseSAP /

iv CONTENTS

Apple Confidential

LLCGetHdr /
LLCGetConfig /
LLCOpenStation /
LLCCloseStation /
LLCConnectStation /
LLCModifyParams /
LLCReceive /
LLCReceiveCancel /
LLCT1Transmit /
LLCT2Transmit /
LLCReset /
LLCReturnBuffer /
LLCGetStatistics /
LLCStatus /
LLCSetFunctionalAddr /
Functions Supporting 802.2 /
LLCSwapHdr /

5 Apple IPC Services
i General information /

Apple IPC driver /

Apple IPC library /
Apple IPC managers /

Using Apple IPC /

Apple IPC services /
CoseQueue /
CopyNuBus /
FreeMsg /

GetCard /
GetETick /
GetdCCTID /
GetPCg /
GetMsg /
CetNameTID /
GetTickPS /
Z21D -
Isiocai
iliRegerve /

CONENTS

A\

Apple Confidential

Lookup_Task /
OpenQueue /
Receive /
Register_Task /
Send /
SwapTID /

6 Download and Initialization

General information /
TokenTaik Prep services /
TTFindCards /
TTFindBootedCards /
TTFindUnbootedCards /
TTBootCards /
TTForceBoot /
TTGetStatusAddr /
TTGetLLCTID /
TTGetSNAPTID /
TTGetBoardID /
TTDynamicDL /
TokenTalk Prep file example /
LLC resource description /
TokenTalk NB card boot process summary /
Defining the LLC resource /

7 Avoiding Trouble

General information /

Common error causes /
Error codes /
Network connection failure /
Problems programming the listener function /
Global data structures and dynamic download /
DMA conflicts /

Appendix A Componeats 77

vi CONTENTS

Apple Confidential

Appendix B The TokenTalk NB Card 79

Hardware overview /
Communications engine /
Central processor unit (CPU) /
Read-only memory (ROM) /
Dynamic random access memory (DRAM) /
Communications engine/NuBus interface /
Communications engine/token ring interface /
Token ring interface /
TMS38010 communications processor /
TMS38020 protocol handler (PH) /
TMS38030 system interface (SIF) /
TMS38051 and TMS38052 ring interface /
Bumed-in unit ID /
Adapter interfaces /
TokenTalk NB memory map /
Control registers /
TokenTalk NB card options register /
TMS38030 direct 1/O interface registers /
DATA register /
DATA AUTO INCREMENT register /
ADDRESS register /
INTERRUPT register /
TMS38030 DMA /
NuBus addressing /
Adapter timer /
68000 reset /
TMS38030 reset /
Interrupts /
Software overview /
Power-on self-test /
Software interface /
System command block /
System status block /
TMS380 initialization /
TMS380 command execution /
Command completion /
TMS380 commands /

CONENTS

vii

Apple Confidential

Appendix C Echo Task Program Example
Proéram summary /
Programming checklist /
Dynamic downlcad /

DynDownLoadExamp.make /
DynDownlLoad.c /

Dynamic global data structure management /
ADT.h /

ADT.c /
ListenerGlue.a /

The echo task /
EchoTask.make /
Echoh /
Generalh /
EchoBlastTask.c /
EchoTask.c /
EchoTask.r /

Interface to MR-DOS and SNAP /
Externals.h /
SNAP-Interface.h /
Echo-Interface.h /
MREcho-Interface.c /
MRSNAP-Interface.c /

viii CONTENTS

e

CHAPTER

CHAPTER 2

CHAPTER 4

CHAPTER S

CHAPTER?7

APPENDIX B

Apple Confidential

Figures and Tables

Introduction / 1

Figure 1-1 ~ TokenTalk NB protocol model /

Figure 1-2 Token ring topology /

Figure1-3 Token ring components /

Figure 14. Frame formats: free token, busy token /
Figure1-5 Macintosh interface to the token ring network /

Source Routing Support /

Figure 2-1 Single bridge between networks /
Figure 2-2 Hierarchical network /
Figure2-3 Mesh network /

The 802.2 LLC / IPC Interface /
Figure4-1 SAPs and link stations /

Apple IPC Services /

Table 5-1 Apple IPC services /
Table 5-2 State tabie for the Receive call /
Table 5-3 Errors returned /

Avoiding Trouble /

Figure7-1 Dynamic task download /
Table 7-1 mStatus error code summary /

The TokenTalk NB Card /
Figure B-1 TokenTalk NB block diagram /

E — A:l-

Apple Confidential

Preface |

THIS DOCUMENT s to be used by Apple software developers who wish
to develop a protocol interface to the Apple® TokenTalk™ NB card in
conjunction with the Macintosh® Operating System (OS). To make use of
the information presented here, you should have a working knowledge of the
Macintosh OS and, depending on your application, a working knowledge of
token ring networks. The information presented in this manual describes
how to interface to the data link layer by way of calls to the SubNetwork
Access Protocol (SNAP) interface and the 802.2 logical link control (LLC)

interface.

You should be familiar with the following information:
Macintosh II computer and NuBus™

Macintosh Programmer’s Workshop (MPW®)

C programming

Multiprocessor programming techniques

Network programming techniques

Minimal Realtime Distributed Operating System (MR-DOS™)

What this document contains

This document provides a description of the programming interface to the
TokenTalk NB card and includes programming information on the
SubNetwork Access Protocol (SNAP) interface, the logical link control (LLC)
interface, and the interprocessor communication (IPC) interface provided in
the Macintosh OS. The Macintosh services that initialize the TokenTalk NB
card are also presented.

xi

xii

Preface

Apple confidential

The intent of this document is to supply information that allows
developers to develop other protocol interfaces (APPC, 3270, and so on) that
run under the Macintosh OS for the TokenTalk NB card.

The following table describes the contents of this manual and shows
where to find information that helps you accomplish a desired task. Not all
chapters are applicable to all tasks. A roadmap that illustrates the manual
organization follows the table.

What you need Location Content

Introductory Chapter 1 An introduction to token ring concepts

information and interface services running under the
Macintosh OS

Source routing support Chapter 2 A discussion of source routing support in

in a multi-network TokenTalk

environment

Developing Type 1 Chapter 3 The SubNetwork Access Protocol (SNAP)

“connectionless” token interface calls to the Macintosh OS

ring services

Deveioping Type 2 Chapter 4 The 802.2 logical link control (LLC) interface,

connection-oriented which is useful for applications based on a

token ring services specific protocol with an assigned Service
Access Point (SAP) identifier

Interprocess commun- Chapter 5 The interprocess communication (IPC)

ication between the services provided by the Macintosh OS for

Macintosh OS and the passing messages between the operating

TokenTalk NB card system and the TokenTalk NB card. All
developers need the information contained

' in this chapter.

Initialize the TokenTalk Chapter 6 The code and parameters in the TokenTaik

NB card Prep file used for initializing the TokenTalk
NB card and an example of how to use the
TokenTalk Prep file. All developers need
the information contained in this chapter.

General troubleshooting ~ Chapter 7 Troubleshooting tips and hints for

guidelines avoiding trouble with software and

hardware.

2

e

Type 1 application
(simple interface)

Chapter §
Macintosh OS
Interprocess
Communication
Services

Chapter 6
TokenTalk NB card
dounloading and
initializing

How to avoid

Apple confidential

Chapter 4
80221LIC

Type 2 application
(complex interface)

Preface

xiii

Xiv

Preface

Apple confidential

Suggested reading

Here is a list of reference materials that relate or apply directly to the
TokenTalk NB card:

8 Macintosh Coprocessor Platform Developer’s Guide (MR-DOS IPC
implementations)

Apple TokenTalk NB User’s Guide

Athena Programmer’s Reference and User's Guide

Texas Instruments TMS380 Adapter Chipset User’s Guide

Texas Instruments TMS380 Adapter Chipset User’s Guide Supplement
Texas Instruments Manual Update, Revision F

IBM Token Ring Network Architecture Reference

[EEE 802.2 Standard

IEEE 802.5 Standard

Possible applications

You may ish to develop any number of possible applications. For example,
you may want to create your own 3270 protocol emulator that accesses
mainframe computers by way of the token ring interface. Other applications
might be to implement TCP/IP under the Macintosh O for the TokenTalk
NB card or to provide X.25 dial-up services.

The information presented in this document assumes that the token ring
application you are developing runs under the Macintosh OS and is not
downloaded to reside in memory on the TokenTalk NB card itself. The
Macintosh Coprocessor Platform Developer’s Guide contains information you
aeed (o deveiop TckenTalk NB memory-resident applications.

Conventicas 1sed in this manual

-COK o7 wese conventions throughout the manual:

& Note: Notes like this contain supplementary information.

A special rypeface is used to indicate lines of code:

“rogram code _coxs lilke thls

a_—,

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 1 Introduction

THIS CHAPTERINTRODUCES the topics that support
programming access to the Apple TokenTalk NB card. The TokenTalk NB
card provides an interface to a token ring network. By using the services
provided in the Macintosh Operating System (OS), you can program a protocol
interface, such as 3270 data stream protocol or TCP/IP, that supports token

ring communication.

In this chapter you will find introductory information on token ring
networks, SubNetwork Access Protocol (SNAP), the 802.2 Logical Link Control
(LLC) interface, Macintosh OS Interprocess Communication (IPC), and the

download and initialization services for the TokenTalk NB card. =

Medusa Programmer's Guide, Beta Draft Apple Confidential

Token ring networks

A token ring network is a topology (ring) and 2 protocol (token-passing) defined by the IEEE 802
committee. The actual token ring access method, or how to interface with the physical media, is
defined in the [EEE 802.5 standard. However, you need not be concerned with the physical access to
the token ring network because the access is handled by the TokenTalk NB card itself, as are the
802.2 logical link control functions.

The network layers

The TokenTalk NB card provides an interface to the token ring network. The token ring network

. interface adheres to the International Standards Organization Open System Interconnection (I1SO
OSI) network model. The 802.2 LLC interface provided for the TokenTalk NB card corresponds to
the ISO OSI model as shown in Figure 1-1.

® Figure 1-1 TokenTalk NB protocol model

Application

Sessjon

Transport

Network

Data Hink

Physicai

2 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

A token ring network

The topology of a token ring network is shown in Figure 1-2, which shows the ring, the nodes, and
the free token that circulates around the ring. The physical components of a token ring network
consist of the TokenTalk NB cards, one or more muitistation access units (MAU), and the
connecting cables. The MAU and the connecting cables provide the physical “ring” for the network,
in fact, the MAU acts as a wiring concentrator for the connecting cables. Multistation access units
can be connected in a daisy chain to provide whatever size network is required. The TokenTalk NB
card and the Macintosh I system provide the network node on the ring (Figure I-3).

Token communication

In a token ring network, a data packet called a free token is passed from node to node. If a node has
no data to transmit, it passes the free token to the next node. On the other hand, if a node does
have data to transmit, it captures the free ioken, changes it to a busy token, and appends the

necessary destination address, source address, data, data checks, and control bytes to ensure reliable ‘

delivery to the destination node. This busy token is called a frame.

Each node between the source node and the destination node passes the frame, or data packet,
onward. When the cata is received ai the destination node, it marks the data packet as received and
sends the busy token around the ring to the source node. The source node then checks the token
and verifies that the destination node received the data. The originating node removes the busy
token from the ring and releases a new free token on the ring so another node can transmit (Figure
1-4). The originating node must wait for another free token before it can transmit again.

Any one node is allowed one transmission per free token, which limits each node’s access to the
network. In this manner, every node on the network is guaranteed equal access time to the
network.

1/ Introduction

3

Medusa Programmer's Guide, Beta Draft Apple Confidential
8 Figure 1-2 Token ring topology

] ? i
N
re—

Circulating token

® Figur= 1-3 Token ring components

Nodes
(up to 8 nodes per MAU)

Muion A Unit
MAD)

MAD

4 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidentiat 3/20/89
® Figure 14 Frame formats: free token, busy token
Free token format
Destination Source Frame i Pmilng Frame

address address

6 bytes 6 bytes

starus

i byte

Busy token format L

Inserted by node

The Macintosh II token ring interface

The actual formatting and transmission of the data packets, free tokens, and busy tokens is
handled by the hardware on the TokenTalk NB card and the 802.2 LLC interface software. Your task
as a developer or programmer is to use the programming support tools to pass the necessary
destination address and data information to the TokenTalk NB card and to deliver the data from
the card to appiications running under the Macintosh OS. .Source routing of packets through
bridges is described in Chapter 2.

Figure 1-5 shows the Macintosh Il and TokenTalk NB card interface = the token ring network.

1 7 Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential
® Figure 1-5 Macintosh interface to the token ring network

Macintosh I

Application running under
Macintosh [I operating system

IPC
communications

TokenTalk NB card

o0 e —

Network

e0e L X X

As shown in Figure 1-5, the primary communication interface between the TokenTalk NB card and
the Macintosh 11 is through the interprocess communication (IPC) services. These services are
provided by the Macintosh OS on the Macintosh 11 and by MR-DOS on the TokenTalk NB card. A
specific set of services for the 802.2 LLC and SNAP orovide the interface to the chip set that handles
the iow-ievei protocol processing and phvsical communication with the toKen ring Nerwork.

The TokenTaik NB cara is inuialized and downicaded by wav or the services provided in the
TokenTalk Prep file.

) 1 / Introduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

SubNetwork Access Protocol (SNAP)

The IEEE 802.2 committee has implemented a SubNetwork Access Protocol (SNAP) that allows
protocol multiplexing and demultiplexing among multiple users of a data link. When Ethernet was
first designed, it allowed for 64 different protocol identifiers. However, with the maturation of
local area network technology and the development of other network standards such as token ring
and token bus, 64 different protocols identifiers were too few. Different network companies
devised various schemes to expand the number of protocol identifiers so as to differentiate
between, say, AppleTalk, TCP/IP, XNS, and other protocols.

To accommodate the large number of network protocols, the IEEE 802 committee has imposed the
SNAP to standardize protocol access to the network and to ensure that protocol identifiers from
different vendors do not conflict. SNAP is analogous to the old Ethernet protocol ID except that
SNAP is a S-byte field and the old Ethernet protocol ID is a 2-byte field. The trend now is to
represent the old Ethernet protocol IDs in SNAP, which provides compliance with the current
standard.

SNAP allows Type 1 (datagram) communication services only; it does not support connection and
session-oriented Type 2 services. For those services you must bypass SNAP and use the 802.2 logical
link control (LLC) interface directly. ’ '

The SNAP interface described in this manuai is sufficient for a wide variety of network protocol
applications. Source routing is supported by the SNAP interface to allow transmission of packets
through bridges and multiple networks, but is not implemented in the LLC interface. The more
complex LLC interface should be used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication.

The 802.2 Logical Link Control IPC interface

The logical link control (LLC) sublayer is the part of the data link layer that supports the media-
independent data link functions, and which uses the services cf the medium access control (MAC)
sublayer to provide services 10 the network layer. The {PC interface to the 802.2 LLC communicates
with either the Texas Instruments token ring chip set (the TMS380 family) that implements the
802.2 LLC, or with a software-based 802.2 LLC wherein the tasks performed by the chip set are
implemented in software.

The 802.2 IPC interface functions described in this manual provide access to and communicate with
the 802.2 LLC. It is important to understand that for the TokenTalk NB card applications, the 802.2
LLC itself is implemented in the chip set on the TokenTalk NB card.

1 / Invoduction

Medusa Programmer's Guide, Beta Draft Apple Confidential

Macintosh Operating System IPC services

The Macintosh 11 operating system supports 2 multitasking, multiprocessor environmert.
Different intelligent cards residing on the NuBus, such as the TokenTalk NB card, depend on
interrupt-driven communications to transfer information and to coordinate task execution. The
interprocess communication (IPC) is the mechanism that provides this communication service.

Many IPC functions are provided for the Macintosh Operating System and for the MR-DOS.
MR-DOS is an operating system that resides on the smart cards in the Macintosh II and provides
the IPC services for these cards. For information on the MR-DOS IPC, refer to the Macintosh

Coprocessor Platform Developer’s Guide.

Download and initialization services

A TokenTalk NB card is initialized from the Macintosh Operating System by way of a special file
called TokenTalk Prep. This file contains resources that hold code images for downloading to the
TokenTalk NB card. The TokenTalk Prep file provides the services that initialize the TokenTalk NB
card and download MR-DOS, SNAP, 802.2 LLC/IPC interface, and defauit LLC parameters.

8 1/ Introduction

Sie,

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 2 Source Routing Support

THIS CHAPTER DESCRIBES network source routing support and
includes background information on network routing and bridges. This
chapter also discusses source routing implementation and source routing
limits. For the most part, source routing support is transparent because it is
included as part of the SubNetwork Access Protocol (SNAP) services in
TokenTalk. »

Medusa Programmer's Guide, Beta Draft Apple Confidential

What is source routing?

Chapter 1 presented the concepts associated with a single token ring network and briefly described
the frame formats associated with data transmission within a token ring network. In a single
token ring network, the information contained in the frame, or data packet, includes the address of
the source node and the address of the destination node. Source node and destination node
addresses are all that are required to send data packets in a token ring network.

The term source routing refers to the means by which frames between multiple networks are
correctly sent, or routed, between the source and destination nodes. Source routing occurs when a
bridge connects two or more token ring networks and frames pass through the bridge between the
two networks (Figure 2-1). In essence, a bridge forwards frames from one network to another
based on routing information that is inserted by the source node.

& Figure 2-1 Single bridge between networks

O -
Tokean‘_gl\‘C%—— % HHTokenRing 2

As defined by the IEEE 802 specification, a bridge is a functional unit that connects two networks
using a single logical link control (LLC) procedure, which in TokenTalk is the [EEE 802.2 LLC. Several
configurations are possible when more than two networks are connected by bridge, but the
resultant network is either a hierarchical network or a mesh network. These two concepts are
explained in the following paragraphs.

Hierarchical networxs

Simply defined, a hierarchical network is one that provides only one path between the source and
destination nodes, no matter the number of intermediate rings. For example, in Figure 2-2a frame
from ring 1 must pass through intermediate ring 2 in order to reach its destination on ring 3. No
other path exists.

Likewise, a frame from ring 4 destined for ring 1 must pass through intermediate rings 3 and 2.
The key to a tnerarchical nerwork is that only one path. or route, is provided between source and
sestination nodes. s the figure shows. there s 4 choice ©f briages petween rng 2 and 3 but no
noIce of intermediate nngs

10 2/ Source Routing Support

i

Medusa Programmer's Guide, Beta Draft Apple Confidential

u Figure 2-2 Hierarchical network

X

TokenRing 2

Mesh networks

A mesh network provides multiple paths between the source and destination rings and alternative
choices of bridges. Figure 2-3 shows four rings connected in a mesh configuration.

® Figure 2-3 Mesh network

Token%
W

2

j TokenRing 4
A

3ridge @ ' 3ricge

I
|

Pl

-0

TokenRing 2]

I
0

" TokenRing 3

)

-
ridge

Ld‘

'1 the mesh network shown in Figure 2-3, 3 frame has two possible naths from ring 1 '0 ring 2. The
TZme (20 Oe Ted IRrougn 1ing 4 Of (rougn nng 2.

2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

Note that a parallel connection exists between ring 2 and 3. Paralle! connections provide redundancy
in situations that require high reliability. Up to 16 parallel connections can exist between any two
rings. .

Variations on hierarchical and mesh networks can accommodate a wide variety of network
configurations. Configuration parameters and network layouts are determined during the planning
and installation phase and are dependent on specific limitations enforced by the bridge
manufacturer. The primary benefit of bridges is to allow more than 260 devices to be supported in
the network installation.

How source routing works

For any two nodes, or stations, to communicate in 3 hierarchical or mesh network, routing
information must exist that describes the path between the two stations. Route determination
can be the responsibility of the communicating stations, the bridges, or a central management
facility’ . Source routing applies to the first case, where the station that is the source of the frame
puts the routing information into the frame. Bridges, which operate at the data link layer of the
network, support source routing. (Refer to Chapter 1 for an illustration of the network layers.)

Source routing exhibits the following features:

8 Routing information is based on information about the path between two communicating
stations; station addresses are not used.

® Path information is leamed dynamically by a station that initiates communication with
another.

B Route discovery is a two-part process that involves broadcasting a message to all of the
interconnected networks.

& Bridge routing tables are not required; bridges decide whether to forward a frame by comparing
a fixed, identifying value with a small portion of the routing information field in the frame.

Routing information

Routing information is contained in its own field in the frame and is separate from the destination
address. The routing information is obtained in two stages. The first stage occurs when the
source station broadcasts a frame to all of the connected networks. The broadcast frame contains
the destination address of the target station plus information that tells the intervening bridges to
forward the frame.

"ian-Bon K. lv, Januei Avery Pif. ina Fobert A. Donnan. “Source Rouung [or Local Area Networks,” '3M Corporation

Cspe
Flob

12 2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential

The routing information is added to the frame during the broadcast phase. A bridge on the
first network adds the identifying numbers of the two networks that it joins. Additional bridges
add only the identifying number of the next network. (The network ID numbers are assigned by a
network administrator when the network is initially installed and configured.) Frames are
prevented from looping because no bridge will forward a frame to a network whose number
already appears in the frame.

The second phase of obtaining the routing information is performed by the station that received
the initial broadcast frames. Each frame is returned as soon as passible according to the route it
acquired from the bridges along the way, rather than being returned by broadcast message.
Because the initial broadcast frame is returned by any of several possible routes, the source station
acquires frames that contain valid routing information. The source station can choose any of the
valid routes returned by the destination, but the first response has usually traveled the fastest
route.

Up to this point, the destination station still has no idea which route will be used for
communication. The source station keeps its chosen routing information, which is leamed by the
destination station when nonbroadcast communication begins. Because the same route is used for
communication in both directions, failed links can be easily diagnosed.

The routing information can be associated solely with the destination address, or with the
combination of destination address and destination and source link service access points (SAPs).
The first case limits all communication to the same route, whereas the second case allows different
“conversations” to use different routes. Chapter 4 describes SAPs.

As previously mentioned, the SubNetwork Access Protocol (SNAP) interface automatically
provides source routing support in a connectionless environment. Because the source routing is
provided in a connectionless environment, an aging timer is used to eliminate source routing
information from the routing tables, thus preventing possible errors from table overflow. By
contrast, if connection-oriented source routing were supported, the routing information would be
maintained only for the duration of the link connection.

Source routing implementation

Source routing 15 impiemented in the SubNetwork Access Protocol (SNAP) interface. Suppiied with
the TokenTalk NB card, this protocol automatically handles the discovery and response phase for
source routing addresses.

2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

SNAP use

The SNAP interface allows Type 1 (datagram) communication services only; connection and
session-oriented Type 2 services are only supported by the 802.2 logical link control (LLC). For those
services you must bypass SNAP and use the LLC interface directly.

The SNAP interface described in this manual is sufficient for a wide variety of network
protocol applications.

1LC use

The more complex LLC interface is used primarily in Type 2 applications, such as connection-oriented
3270 data stream protocol communication. Source routing is not directly supported in the LLC
interface

Source route limits

Some limits on source routing are imposed when the networks and network bridges are installed. A
network administrator is responsible for properly configuring the network and supplying workable
values. The configuration parameters that can restrict frame forwarding and source routing
activity include the following:

8 Bridge ID number. To properly route frames, each bridge must have an ID number assigned.

8 Hop count limit. The hop count is the number of bridges that broadcast frames have already
crossed to reach the current bridge. Broadcast frames with a hop count equal to or higher than
the hop count limit imposed on the bridge are not allowed to cross the bridge. If the number
of hops between the source and destination station exceeds the hop count limit, the frame
transmission fails.

Additional bridge configuration parameters controlled by the network administrator affect how
frames are passed throughout the network.

The number of source routing addresses that any one station can keep track of is limited by the
table size reserved for storing these addresses. Two tables are used: one keeps track of the address-
to-ring numbers; the other keeps track of the ring-number-to-route. The tables can hold
approximately 80 node addresses and 100 ring addresses.

Table overflow is prevented by a “least-used timeout” algorithm. A node address entry is
dropped when it is not heard from for 40 seconds. A ring number is dropped when it is not heard
from {or three minutes.

14 2/ Source Routing Support

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 3 SubNetwork Access Protocol (SNAP)
Interface

THIS CHAPTER DISCUSSES the programming interface for the
802.2 SubNetwork Access Protocol (SNAP) interface. SNAP is used to deliver
Type 1 messages in a network and is a less complex interface than the 802.2
LLC interface described in Chapter 4. =

15

Medusa Programmer's Guide, Beta Draft Apple Confidential.

General information

SubNetwork Access Protocol (SNAP)is defined by the IEEE 802 committee as the standard means
of identifying a large number of protocols in an 802.2 environment. SNAP uses a service access point
(SAP) identifier of 0XAA. By comparison, a ISO OSI SAP identifier is the hex value OxFE.

The first five bytes of the information field of each SNAP frame contain a protocol discriminator
that identifies a particular protocol. The first three bytes of the protocol discriminator are the
vendor ID assigned to the creator of the protocol, that is, the same vendor ID used in globally-
administered node addresses. The Ethernet bit ordering in these three bytes is retained, which
means that the bytes are transmitted most-significant-byte, least-significant-bit first. This
Ethernet bit ordering is the format for representing the vendor ID in SNAP on all media. The last
two bytes are assigned by the vendor to identify a particular protocol. By convention, if the vendor
ID is set to zero, the remaining two bytes represent an Ethernet protocol ID.

As you can see, the SNAP interface is not strictly limited to token ring applications. Because the
SNAP interface is at the data link level of the network model, it is insulated from the
implementation of the physical level.

In the TokenTalk NB card implementation, the SNAP interface registers itself under the type
“SNAP" with the MR-DOS name manager. A name that is associated with the type is passed as a
startup parameter. (Startup parameters are provided in the TokenTalk Prep file discussed in Chapter
6.) By convention, the name is “TokenTalkNB.”

Client processes should limit the number of requests that they queue to the SNAP. As a general
guideline, no more than ten SNAPReceive and ten SNAPTransmit requests should be queued by a
single client at once. With any more queued requests MR-DOS can run out of message buffers. One
method to impose this limit is to allocate a fixed number of transmit buffers, receive buffers, and
data buffers when the code is initialized and to keep the buffers in a linked list. Then, by removing
entries from the list and requeueing them when a request completes, there only await a limited
number of requests to the SNAP interface at any given time. Queueing several receive or transmit
requests improves both the throughput and reliability, but the aumber of queued requests must
never exceed the number of available MR-DOS message buffers.

16 3/ SubNetwork Access Protocol (Snap) Interface

A

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the SNAP interface. In each case,
mCode identifies the function and, in the reply, mStatus holds the result code for the function. As
is the convention with MR-DOS IPC, all requests have an even mCode value and all replies use the
corresponding mCode plus one.

mCode Meaning - See page
SNAPAttach Attach protocol discriminator 19

SNAPGetConfig Return SNAP configuration information pal

SNAPGetHdr Return media header template 2

SNAPTransmit Send a SNAP type 1 frame A

SNAPDetach Detach protocol discriminator ps)

SNAPReceive Receive a frame ¥

SNAPCancel Cancel all queued receives 3

SNAPGetParms Returns SNAP-associated parameters 9

In addition to the above messages, the SNAP interface supplies the following library of support
functions:

Name Description

SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

Typical SNAP use

IPC requests support both Type 1 and Type 2 logical link control (LLC). Type 1 is connectionless and
uses both the SNAP interface and, because the SNAP services are built on top of the LLC services,
the 802.2 LLC interface. Type 2 is connection-oriented and is not supported by the SNAP interface. A
typical application for Type 2 is 3270 terminal emulation.

Because the SNAP allows a Type 1 data link service only, it is discussed in terms of Type 1 LLC. Type
1 LLC provides a data link with 2 minimum protocol complexity and is used when the upper iayers of
e :5C moae! provide e error detection and recovery. Tvpe t LLC is 4iso used in an appiication in
which it is not necessary to guarantee all data link layer transmissions.

Once a SNAP is attached, the application or protocol stack associated with that protocol
discriminator can transmi and receive any of the following Type 1 frames through the SNAP:

8 TEST - Test Command causes the remote node to send a Test Response.

® U7 - Unnumbered Information is used to iransfer data in 2 Type ! environment.

3 / SubNetwork Access Protocol (SNAP) {nterface

17

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following series of actions illustrates a typical usage for a SNAP client using Type 1 services and
outlines the actions necessary to transmit data by way of a TokenTalk NB card:

L

Yo po N O

Use the TokenTalk Prep Utilities A('ITGelSNAP’!'ID) or the IPC name lookup to find the SNAP
service.

Issue a SNAPGetParms to obtain the Task ID of LLC and the RefNum of the SNAP's SAP. This
allows the SNAP client to be able to make requests directly of the 802.2 LLC IPC interface, such
as LLCT1Transmit, LLCGetHdr, and LLCGetConfig.

Issue a SNAPAtach, which includes a S-byte protocol discriminator.
Optionally obtain configuration information from LLC by way of SNAPGetConfig.

Obtain header template by way of SNAPGetHdr. The header can be copied after it has been
obtained, but it is important initially to use SNAPGetHdr to build the LAN header with values
supplied by the client (such as destination node). Different LLC implementations might assume
a different header setup, so by using SNAPGetHdr you insulate yourself from unnecessary
problems. In general, the offset values supplied in the header should be left alone.

Queue receive requests to SNAP to accept incoming frames by way of SNAPReceive.
Issue transmit requests to SNAP as required by way of SNAPTransmit
Reissue receive requests as the receive frames are retumed.

On completion, issue SNAPDetach. SNAPDetach automatically cancels outstanding receives.
Any outstanding receives are returned as “cancelled.”

IPC requests to SNAP

In all structure declarations in this chapter, the type “byte” refers to an unsigned 8-bit integer and
“word” refers 0 an unsigned 16-bit integer. All structures and symbols used in this document are
defined in the include file SNAP h.

18

3/ SubNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 32/89
SNAPAttach

The SNAPAttach message is used to hegin listening for packets on the specified SNAP protocol.
This request also specifies various options that are associated with the particular protocol.

Example 3-1 shows the type SNAP_PD, which is used to hold protocol discriminators. This type
may not be useful for representing the SNAP header in frames because the C compiler pads it to six
bytes.

mDataPtr points to the five-byte PD data structure. mDataSize is equal to the size of the PD data
structure.

Refer to Example 3-2 for the structure of mOData in the SNAPAttach request. Note that
mDataPtr points to the type SNAP.PD, which holds the protocol discriminator to attach to.

Result codes Value Description
SNAPNOEm Normal completion
SNAPInUse PD already attached
SNAPNoMore Insufficient resources

The “Listener” function pointer is a special hook that some clients find useful to handle incoming
frames more efficiently. Most clients should not use a listener function. Any listener that is
provided must be located on the same slot as the 802.2 interface. A listener function is called with
parameters that pass the media header, information pointer, information length, and frame type.
The listener must be completed with this buffer before returning. When a listener function is in use,
SNAPReceive requests are not used to receive frames.

An example declaration for the SNAP listener function might be coded as follows:

void Sample_Listener (nul, nu2, hp, bp, len, ft)

long nul, nu2; /*Not used, but do not alter*/
LANHdr ~hp; /*Pointer to LANHdr of received frame*/
ansigned char *bp; /*Pointer tc I-fleld, includes the protccel

discriminator=/

int len; /*Length of I-field*/
int £ /*Frame type, 3, 3, cr 9 only*/
LE (ftT = 35 /*If not JI frame, wgnore*/
return;
if (bp(5] !'= 0) /*1f byte following protocol discriminator is not 0%/
return; /*igncre frame */

/* Other code to manipulate frame data */

return;

3 / SubNetwork Access Protocol (SNAP) Interface 19

Medusa Programmer's Guide, Beta Draft Apple Confidential ¥2A/89

= Example 3-1 mOData structure for SNAP_PD request

typedef struct
{

union
{
long PD1; /* Fast access to first four bytes of PD */
char PDc(5] /* Access to each and every byte of PD */
)} PD:
)} SNAP_PD;

= Example 3-2 mOData structure for SNAPAttach request

typedef struct
{

word PDRefNum; /* Returns RefNum of this PD (used on SNAPReceive) =*/
word Options; /* Options :
/* Bit 15: Unused
* Bit 14: Use listener function
* Bits 13-0: Unused
*/
void (*Listener) (); /* Pointer to optional listening function */
} SNAPAttachOData;

20 2 / SybNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetConfig

The SNAPGetConfig message returns. configuration information about SNAP. Exampie 3-3 shows
the structure returned at the address passed in mDataPtr.

Result codes Value - Description
LLCNOEsr Normal completion
LLCTruncated Buffer too short to receive all information

8 Example 3-3 Structure mDataPtr points to following completion of SNAPGetConfig

zypedef struct

{

long LlCVersion: /* LLC Version ID ~*/

long FAddr; /* Functional address (token ring only) */
long GlTimerl; /* Does not apply to SNAP */

long G2Timerl; /* Does not apply to SNAP */

long GiTimer2; /* Does not apply to SNAP */

long G2Timer2:; /* Does not apply to SNAP */

long GlITimer: /* Does not apply to SNAP */

long G2ITimer; /* Does not apply to SNAP */

word MaxFramelen; /* Maximum frame length */

Wwcra ASAPs; /* Joes nct apply tc SNAP */

werd AStations; /* Does not apply to SNAP ~*/

word MaxHeader; /* Maximum header size for this media */
byte LLCClass; /* Class of LLC implementation:

* 1 - Implements typel only
* 2 - Implements typel and type 2

*/ .
pyte Media; /* Media indicator:
* 0 - Unknown 4 - 16 Mb Token Ring
* 1 - LocalTalk S5 - FDDI
- 2 - 1C Mb Ethernet 5 - Token 3us
= 3 - 4 Mb Token Ring
=/
oyze Routing; /* Source-rcuting indicator:

* 2 - No source-routing
* 1 - IBM source-routing

*/
byte Addrlen; /* Length of node address in bytes */
byte Addr (9] ; /* This node's address */
byte NumGAddrs; /* The number of group addresses that follow */

byte GAddrBuf(1l]; /* Start of group addresses (length, address pairs) =*/
» LLCGetConfigBuffer:

3 / SubNetwork Access Protocol (SNAP) Interface

Medusa Programmer’s Guide, Beta Draft Apple Confidential

SNAPGetHdr

The SNAPGetHdr message creates a LANHdr structure that is used to transmit to the specified
node. Options are also provided to return broadcast header templates.

Example 3-4 shows the structure of mOData in the IPC message and Example 3-5 shows the
structure of the LANHdr structure that is returned to the area pointed to by the Hdr field in
mOData.

mDataPtr points to the node address and mDataSize indicates the size of that address in bytes.

Not all media support all possible options. In cases when an unsupportable option is specified, the
SNAP interface builds the best header it can and returns the status LLCNotFullySupported to the
client. mDataSize must either be zero to get a broadcast template or be the exact size of a node
address for the underlying media.

Result codes Value Description
LLCNoErr Normal completion
LLCNotFullySupported Some option or type requested is not fully
supported by this media
LLCAddrError Invalid remote address—size must be 0 or equal to
the node address size for the media

® Example 34 mOData structure for SNAPGetHdr requests

typedef struct
{
word HdrType: /* Header types:
* 0 - Normal header
* 1 - Single-route b'cast, all-routes b'cast return
* 2 - Single-route b'cast, non-broadcast return
- 3 - All-routes broadcast header

*/
word Cptions; /* Header options (a.ways zero) */
cyte Reserved; /* Always zeroc */
cyte Reserveaq; /* Always zero */
_ANHdr THar; /* Pointer o LANHACr structure o be returned */

; LLCGetddrODlata;

22 3/ SubNetwork Access Protocoi (Snap) Interface

N

Medusa Programmer's Guide, Beta Draft
8 Example 3-§

typedef struct

{

}

byte

byte

byte
pyte
byte
byte
byte
byte
byte
byte
byte
byte
byte
LANHdr;

Media;

Routing;

DOff;
DLen;
SOff:
Slen;
ROff;
RLen;
HOfZf;
Hlen;
DSAP;
SSAP;
HBuf (407,

/*

/*

/*
/'
/*
/*
/*
/t
/*
/*
/*
/*
/*

Apple Confidential
LANHdr structure for SNAPGetHdr

Media indicator:

*

b4

*

*

*/
Source-routing indicator:

*/
Offset
Length

ffset
Length
Offset
Length
Offset
Length

to
of
to
of
to
of
to
of

0 - Unknown

10 Mb Ethernet

1
2
3 - 4 Mb Token Ring

0 - No source-routing

4 - 16 Mb Token Ring

- LocalTalk 5 - FDDI

6 - Token Bus

1 - IBM source-routing

destination address in header puffer

destination address in header buffer

source address in header buffer =»/

source address in header buffer =/

routing information in
routing information in
media header in header
media header in header

Destination SAP value */

Source SAP value =~/

Header buffer =*/

header
header
buffer
buffer

buffer
buffer
*/
*/

~/
=/

*/
*/

3 / SubNetwork Access Protocol (SNAP) Interface

2

-

3

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPTransmit

The SNAPTransmit message is used to send a Type 1 frame.

Refer to Example 3-6 for the structure of mOData in the IPC message and to Example 3-5 for the
description of the LANHdr structure that is pointed to by Hdr.

mDataPtr points to either a frame holding the buffer, or, if the “list-directed” bit of the Options
field is set, to an array of counts and pointers to buffers, as with receive.

If mDataPtr points to a frame holding user data, the first 5 bytes must be the protocol
discriminator (PD) and filled in by the user. It is possible to separate the 5 bytes of the PD from the
user data by using the list-directed option. In this case the mDataPtr points to an array of counts
and pointers: the first pointer points to the 5-byte PD and the second points to the user data.

Result codes

Value

LLCNoErr
LLCBadPri
LLCTxError

Description

Normal completion
Unauthorized access priority
Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame

LLCTxTooLong

Invalid transmit frame length

LLCBadRefNum Invalid RefNum
LLCRoutingError Invalid routing information length

LLCBadFrame
LLCCancelled

Invalid frame type
Transmit cancelled

® Example 3-6 mOData structure; SNAPTransmit requests

ypedef struct

word
werd
werd

byte

byte
LANHar
- SNAPTxOData:

Reserved,
Infolen;

Cpticns;

FrameType;

FS;

/* Reserved - always zero */
/* Length of informaticn placed in buffer =/
/* Cptlions:

b Bits 15-8: Jnused

- Bit 7: List-directed

* Bits 6-0: Cnused

*/

/* Frame type

* Specifies frame to send:

* 03 UI frame 0B Test cmd (p=1)
* /)

/* Returns frame status */

ddr /* Pointer to LANHdr (N/A to LLCT2Transmit) =/

24 3/ SubNetwork Access Protocol (Snap) Interface

Hg;gg"’*h >

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPDetach

The SNAPDetach message deactivates a SNAP protocol. All outstanding SNAPReceives are cancelled,
and if a listener was in use on the protocol being detached, it will no longer be called.

Refer to Example 3-7 for the structure of mOData in the IPC message.

Result codes Value Description

SNAPNoEr Normal completion
SNAPNotAttached Invalid RefNum

® Example 3-7 mOData structure for SNAPDetach and SNAPCancel requests

typedef struct
{
word PDRefNum; /* RefNum of SNAP protocol discriminator
*/
) SNAP_PD_RefNum;

3/ SubNetwork Access Protocol (SNAP) Interface

2

5

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPReceive

The SNAPReceive message is used to receive frames from an attached SNAP protocol.

Refer to Example 3-8 for the structure of mOData in the IPC message and to LLC interface
documentation for the description of the LANHdr structure that may be pointed to by Hdr.

mDataPtr points to either a buffer to

receive the frame or, if the “list-directed” bit of the Options

field is set, to an array of counts and pointers. See Example 3-9 for the structure of the array of

counts and lengths.

It is possible to separate the 5 bytes of the PD from the user data by using the list-directed option.

In this case the mDataPtr points (0 an array of counts and pointers: the first pointer points to the
5-byte PD and the second points to the user data.

When list-directed, the number of elements in the list is determined by its size in bytes, given by the

value of mDataSize. Note that multiple receives can be queued for any given RefNum.

* Result codes Value
SNAPNOEm

Description

Normal completion

SNAPNotAttached Invalid RefNum
SNAPTruncated Frame larger than provided buffer space

SNAPCancelled

Receive cancelled, either explicitly or by SNAPDetach

8 Example 3-8 mOData structure for SNAPReceive requests

typedef struct

{
word PDRefNum;
word Options;

word Infolen;
byte Framelype;

byte Filler;

/* RefNum of protocol discriminator =/
/* Options:

* Bits 15-8: Unused

* Bit 7: List-directed
- 3its 6-0: Cnused

=/

/* Numpber of bytes of data in the I-field */
/* Frame Iype ~eceived:

M 23 JI fZzame

hd [o}:} Test resp (f=1)
- 09 Test resp (£=0)
*/

/* Not used */

LANHdr *Hdr; /* Pointer to area to receive header */

} LLCTxRxOData;

26 3/ SubNetwork Access Protocol (Snap) Interface

| elapsiian

Medusa Programmer's Guide, Beta Draft Apple Confidential
® Example 3-9 Structure for list-directed SNAPReceive requests

struct
{
word Count; /* 3yte count for this transfer */

byte *Ptr; /* Pointer for this transfer */
} arrayl(]; N

3/ SubNetwork Access Protocol (SNAP) Interface

2

-

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPCancel

The SNAPCancel message is used to cancel SNAPReceive requests outstanding on an attached SNAP
protocol.

Refer to Example 3-7 for the structure of mOData in the IPC message.

Result codes Value Description

SNAPNOEmT Normal completion
SNAPNotAttached Invalid RefNum

28 3/ SubNetwork Access Protocol (Snap) Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

SNAPGetParms

The SNAPGetParms message is used to get the SNAP associated parameters. The message returns
the Task ID of the associated LLC process and the RefNum of the SNAP's SAP (0xAA). The LLC

process information is useful if the client process wishes to make calls directly to the LLC interface.

Example 3-10 shows the structure of the mOData in the IPC message.

Result code Value Description

SNAPNOE!T Normal completion

8 Example 3-10 Structure for SNAPGetParmsOData

typedef struct
{
tid_type LLCTID;
word SAPRefNum;
} SNAPGetParmsOData:

3 / SubNetwork Access Protocol (SNAP) Interface

29

Medusa Programmer's Guide, Beta Draft Apple Confidential

Functions supporting 802.2

In addition to the preceding SNAP messages, the interface supplies a library containing the
following support function. Note that you must link the LLCSupportLib.O file with your code
before using SNAPSwapHdr. ‘
Name Description

SNAPSwapHdr Swap node addresses in LANHdr structure for return to sender

SNAPSwapHdr

The SNAPSwapHdr function is called using Pascal calling conventions. The function swaps the
addresses in a LANHdr. This swapping would usually be done to respond to a Type 1 frame.

pascal void SNAPSwapHdr (LANHdr *Hdr);

Example program listing

The program listing presented below is a sample of how to invoke TokenTalk NB functions and
perform a SNAPAttach. Note the use of #define statements that simplify program maintenance
and insulate the code from extreme revisions in the TokenTalk interface code.

/* Useful defined functions. */

#define ODataAs (x,Y) ((x =) ((y)->mOData))

tdefine SDataAs (x,Y) ((x *) ((y)=->mSData))

#define CPAs (x,Y) ((x *) ((y)=->mDataPtr)

tdefine Reply (X, Y) \

{ tid_type T;\
Tt = (x)->mF:om,‘(x)->mF:om = (x)=->mTo, (x)=->mTo = t£;\
(x)=->mCode = 1, (x)=->mStatus = y;\

Send{x);\

static tid_type SNAP_TID; /* TID of SNAP process */
static short OurSNAPRefNum; /* Our SNAP RefNum */

/* This does a SNAPAttach */

#define VendorID 0x000000 /* Vendor ID */

#define ProtcollD 0x1234 /* Ethernet protocol 0x1234 */

30 3/ SubNetwork Access Protocol (Snap) Interface

s,

Medusa Programmer's Guide, Beta Draft

message
long Id:
SNAP_PD pd;
((cmp = GetMsg())
return;

cmp->mTo = SNAP_TID:
cmp->mCode = SNAPAttach;
Id = cmp->mlId;

*emp;

M = o]
if == 0

)

CDataAs (SNAPAttachReplyOData,

Apple Confidential

/* How to get the SNAP_TID */

/* SNAP_TID acquired from previous name lookup */

16) & Oxff;
8) & Oxff;
xff;

>> 8) & Oxff;

AN EE .
oF S84

ppay)

sod;

cmp) =>PDRefNum;

pd.PD.PDc(Q0] = (VendorlID >>
pd.PD.PDcil) = (VendorID >>
pd.PD.PDc(2) = VendorID & 0
pd.PD.PDc{3) = (ProtocollID
2d.PD.PCc{4] = ProtccollD ¢
(SNAP_?D =) cmp->mDataPtr =
cmp->mDataSize = sizeof (SNAP_?D);
Send (cmp)
cmp = Receive(Id, 0, 0, 0);
if (cmp=->mStatus)
{
FreeMsg (cmp) ;
return;
}
OurSNAPRefNum =

reeMsg (cmp)

3 / SubNetwork Access Protocol (SNAP) Interface

320/89

31

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

Chapter 4 The 802.2 LLC / IPC Interface

THIS CHAPTER DESCRIBES the programming function calls that
support the 802.2 LLC / IPC interface. The 802.2 LLC / IPC interface provides the
message-passing interface to the TMS380 chip set that implements the logical
link control (LLC) for the token ring network. The 802.2 IPC interface
described in this chapter works equally well with an LLC that is implemented
in software rather than the TMS380 chip set. =

s,

« ’

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The IPC services use a name table to identify various IPC clients. Every client must register its name
to use the name lookup functions provided by the IPC services. The TokenTalk NB implementation
of the 802.2 LLC / IPC interface registers itself under three different types with the MR-DOS Name
Manager. These types are

s LC
® Token Ring LLC
8 4 MB Token Ring LLC

By providing several types for the LLC interface, a client can look for a generic LLC or a specific type
of LLC by name. Associated with each of these types is the name that is passed in the LLCName field
of the startup parameters. (Startup parameters are provided in the TokenTalk Prep file discussed in
Chapter 6.) By convention, the name is “TokenTalkNB.”

Client processes should limit the number of requests that they queue to the LLC. As a general
guideline, no more than ten LLCReceive and ten LLCT1Transmit (or LLCTZTransmit) requests should
be queued by a single client at once. With any more queued requests MR-DOS can run out of
message buffers. One method to impose this limit is to allocate a fixed number of transmit buffers,
receive buffers, and data buffers when the code is initialized and to keep the buffers in a linked list.
Then, by removing entries from the list and returning them when a request finishes, only a limited
number of requests await the LLC interface at any given time. Queueing several receive or transmit
requests improves both the throughput and reliability, but the number of queued requests must
never exceed the number of available MR-DOS message buffers.

The majority of functions described in this chapter support IPC messages to the 802.2 LLC. An
additional function provides address swapping that swaps the source and destination addresses in
the frame header. :

34 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following list presents the requests that a client can issue to the 802.2 LLC. In the normal

fashion, replies from LLC to these requests increment by one the mCode in the IPC message to

indicate the reply.
mCode
LLCOpenSAP
LLCCloseSAP
LLCGetHdr
LLCGetConfig
LLCOpenStation

LLCCloseStation
LLCConnectStation
LLCModifyParams

LLCReceive
LLCReceiveCancel
LLCT1Transmit
LLCT2Transmit
LLCReset
LLCReturnBuffer

LLCGetStatistics

LLCSetFunctionalAddr

LLCStatus

The LLCStatus message is sent by the 802.2 LLC interface to a client. This message informs the client
of status changes reiated to Type 2 LLC. There is no specific reply to this message.

Meaning

Activate an individual or group SAP
Deactivate a SAP

Return media header template

Return LLC configuration information

Allocate resources to support a
Type 2 connection

Terminate activity on a station and
release the station

Atternpt to place local and remote stations
into data transfer state

Modify parameters associated with a SAP
or link station

Receive a frame from a SAP or link station
Cancel outstanding receives on stations or SAPs
Send a Type 1 frame

Send a Type 2 frame (1 frame)

Reset link stations and/or SAPs

Return interface-owned buffer to LLC

(no reply to this request)

Get link station statistics

Add/remove functional addresses

Notifies client of status changes

4/ The 802.2 LLC/ IPC Interface

See page
»

G & B

&

B B R WA

35

Medusa Programmer's Guide, Beta Draft Apple Confidential

Typical 802.2 LLC use

The IPC requests support both Type Land Type 2 logical link control (LLC). Type 1 is connectionless
and uses the SNAP interface described in Chapter 3. Type 2 is connection-oriented and is not
supported by the SNAP interface. A typical application for Type 2 is connection-oriented 3270 data
stream protocol. ’

Refer to the TMS380 Adapter Chipset User’s Guide Supplement for additional information.

SubNetwork Access Protocol (SNAP) is not supported for Type 2 connections; therefore, Type 2
connections depend on the 802.2 LLC interface described in this chapter. Token ring connections
used by IBM, such as 3270 data stream protocols, exclusively use Type 2 data link services.

Type 2 services are connection-oriented. That is, the attached client must open further
connections after opening the service access point (SAP). Type 2 services guarantee the delivery of
all data link transmissions with proper sequencing, acknowledgments, and automatic retries. With
Type 2 services, connections are established prior to any data transmissions between nodes wishing
to communicate. These connection points between nodes are referred to as “link stations."

For example, consider a link station 1 that wishes to communicate with link station 2. Station 1
allocates a link resource and sends a connection request frame to station 2. If station 2 has the
resources and is authorized to communicate with station 1, it returns a positive acknowledgment
to the station 1 connection request. Assuming a positive acknowledgment is returned, a link is
established and data transfer can occur in either direction. Once all data and all acknowledgments
transferred, either station can send a disconnect request to close the link, which frees resources in
both stations for other communications.

To establish communications for Type 2 operation, the attached client must first open a SAP, then
open a link station associated with that SAP, and finally perform a connection request with the
remote station. This sequence creates a link from the SAP in this node to another SAP in a different
node. One link station can be associated with only one local SAP and only one remote SAP on one
remote node. However, a single SAP may be associated with multiple link stations (Figure 4-1).

The following series of actions illustrates a typical usage for an LLC client using a Type 2

connection-oriented data link service:

1 Use the TokenTalkPrep Utilities (TTGetLLCTID) or the IPC name lookup to find the LLC
service.

2 Optionally obtain configuration information by way of LLCGetConfig, which provides the
maximum frame size and the physical limit for the maximum number of stations.

3 Issue LLCOpenSAP to begin LLC activity.

4 Obtain a header template by way of LLCGetHdr. The header can be copied after it is obtained,
but it is important initially to use LLCGetHdr to build the LAN header with values supplied by
the client (such as destination node). Different LLC implementations might assume a different
header setup, 50 Dy using LLCSetHdr you insulate yourse!f from unnecessary problems. in
generai, the offset vaiues suppiied in the header shouid be left aione.

36 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

(5

10.
11

12
13.
14
15.

Queue receive requests (o the SAP to accept incoming Type 1 frames by way of LLCReceive.
Remember that XID frames necessary to establish Type 2 communication are transmitted as
Type 1.

Obtain the address of the node that is to receive the Type 2 frame. The destination address can
be obtained from a broadcast name lookup function, or it can be provided by a hard-wired table
maintained on the network. A hardwired name table is site-dependent.

Issue LLCGetHdr with the destination node address.

Issue an LLCOpenStation request using a template.

Using a template, exchange XID frames as required with the destination node.

Using a template, issue LLCConnectStation to activate the Type 2 link station connection.

Issue LLCReceive requests to the link station to permit reception of information frames (1
frames).

Issue transmit requests as required by way of LLCTZTransmit.
Reissue receive requests as the receive frames are returned.
When done with the link station, issue LLCCloseStation.

On completion, close the SAP by way of LLCCLoseSAP.

Establishing a link station requires a significant amount of resource. As a result, only a limited
number of link stations can be open at any one time. The number of open link stations allowed is a
parameter to LLC when it is first started. The number of available stations can be determined with
LLCGetConfig.

{ .

Figure 4-1 SAPs and link stations

Station 1 resources Station 2 resources

~Noce 2

4/The 802.2 LLC/ IPC Interface 37

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

IPC Requests to 802.2 L1LC

In all structure dedlarations in this chapter, the “type” byte refers to an unsigned 8-bit integer, and
*word” refers to an unsigned 16-bit integer.

All the structures and symbols used in this document are defined in the indude file LLC.h. The
include file OS.h contains the structures for the IPC messages referred to in this chapter.

In each case, mCode identifies the function. In the reply, mStatus holds the result code for the
function. As is the convention with MR-DOS IPC, all requests have an even mCode value and all
replies use the corresponding mCode plus one.

38 4/ The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 3289

LLCOpenSAP

The LLCOpenSAP message activates ejther an individual or group SAP. This request also specifies
various options and defaults associated with the particular SAP.

Example 4-1 shows the structure of mOData in the IPC message. Example 4-2 shows the
structure of the optional statton parameters that can be pointed to by mDataPtr. Station
parameters can be set to default values by passing mDataPtr as zero.

The universal receive option on a SAP (Example 4-1) allows the SAP to receive all frames directed
to it whether the frames are for an associated link station or for the SAP itself. In this case, a single
posted receive will accept either a Type 1 or a Type 2 frame. When the universal receive option is
used for Type 2 frames (I frame), the RefNum in the completed receive is replaced by the RefNum
of the destination link station.

The universal receive option is provided as a convenience for some SAPs. When used, all receives
should be queued to the SAP, and none to the link stations.

The listener function pointer is a special hook that for certain clients find useful to handle
received frames more efficiently. Most clients should simply specify 0 for this particular bit. Any
listener that is provided must be located on the same slot as the 802.2 interface. A listener function
is called with parameters that pass the media header, information pointer, information length, and
frame type. The listener must be finished with this buffer and header before returning.

An example declaration for the 802.2 LLC listener function might be coded as follows:

veid Sample_Listener (hp, zp, len, f£2)

LANHdr +hp: /*Pointer o LANHdr of received frame*/
unsigned char ~*bp; /*Pointer to I-field*/
int len; /*Length cf I-field*/
int fr; /*Frame type, 3-9*/
(.
if (bp(0) > 3) /*1f first byte of the I-field is > 3 ignore frame */
return;

Result codes Value Description
LLCNOErr Normal completion
LLCBadSAPOpts Invalid SAP options
LLCBadPri Unauthorized access priority

LLCMaxExceeded Parameter exceeds maximum
LLCBadSAPVaiue [nvalid SAP value

4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft

Value
LLCNoGroup
LLCNoResources
LLCGroupLimit
LLCBadSize

Apple Confidential Y20/89

Description

Requested membership in nonexistent group
The maximum number of SAPs are already open
The group SAP already has maximum members
mDataSize has inappropriate length

s Example 41 mOData structure for LLCOpenSAP and LLCModifyParams

typedef struct

{
word RefNum;
word Cpticns;

function

byte SAPValue;

*/
byte StationCnt;
byte FailedGSAP;
byte Unused;
void (*Listener) ();
» LLCSAPOData:

/* Returns refnum assigned to SAP */
/* Holds SAP options

/* Bit 1S: "Universal” receive
* Bit 14: "Listener” is a Listening
* Bits 13-9:Unused
- Bit 8: Reserved
* Bits 7=-5: Access priority
* Bit 4: Unused
* Bit 3: Handle XIDs
® Bit 2: Individual SAP
* Biz 1: Group SAP
bl 3it 0: Unused
=/

/* Holds desired SAP number (individual or group)

/* Max. link stations for this SAP */
/* Returns failing GSAP */
/* Unused */
/* Pointer to optional listening function */

s Example 42 mODataPtr structure for LLCOpenSAP, LLCOpenStation, and LLCModifyParams

byte TimerTl: /*
byte TimerT2; /*
byte TimerTI; /*
byte MaxOut;

byte MaxIn; /*

byte MaxOutIncr; /*
byte MaxRetries; /*
cvte GSAPMaxMem; /*
sorc MaxIrieid; ;P *
oyte GCat; /*
svte T3AP(31 o
_.l3taticnParms:

40 4/ The 802.2 LLC/ IPC Interface

Response timer value (default = 5) =/
Receive Acknowledge timer value (default = 2) =/
Inactivity timer value (default = 3) */
/* Max. no. of outstanding Tx I frames */
Max. no. of outstanding Rx I frames =/
Dynamic windowing increment */
Max. no. of retransmissions */
Max. no. ¢f members of a 3SA? */
Max. .engtn of I-field */
Numper of GSAPs %o join =~/

’p =2 =2ignt group 3APs 7

Medusa Programmer's Guide, Beta Draft Apple Confidential

Note that the GCnt and GSAP fields are not used in LLCOpenStation requests and that
GSAPMaxMem and MaxiField are not used in LLCModifyParams requests.

The timers all range in value from-0 (for default) to 10. For TimerT1, values in the range 1-5 use
the corresponding group 1 timer interval which is 200 ms. Values in the range 610 use the group 2
timer interval which is 1 second.

For TimerT2, values in the range 1-5 use the corresponding group 1 timer interval which is 40
ms. Values in the range 6-10 use the group 2 interval which is 400 ms.

For TimerTI, values in the range 1-5 use the corresponding group 1 timer interval which is 1
second. Values in the range 6-10 use the group 2 interval which is 5 seconds.

4 / The 802.2 LLC / 1PC Interface

41

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCCloseSAP

The LLCCloseSAP message deactivates a SAP. An individual SAP should not be closed until all link
stations associated with the SAP are closed. Likewise, a group SAP should not be closed as long as
the group has any SAPs as members. A SAP can be removed from a group by LLCCloseSAP (for that
SAP), or by LLCModifyParams. Example 4-3 shows the structure of mQData in the IPC message.

Result codes Value Description
LLCNOErr Normal completion
LLCBadRefNum Invalid RefNum
LLCLinkOpen Unclosed link stations on SAP
LLCSAPOpen Group SAP cannot close—all member SAPs are not
closed
LLCSeqError Sequence error

s Example 43 mOData structure for LLCCloseSAP, LLCCloseStation, LLCReceiveCancel, and
LLCReset

typedef struct
{
word RefNum; /* RefNum of SAP o close */

+ LLCRefNumCData;

42 4/ The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCGetHdr

The LLCGetHdr message creates a LANHdr structure that is used to receive, transmit, open a
station, or connect a station to or from the specified node. Options are also provided to return
broadcast header templates.

Example 44 shows the struc{ure of mOData in the IPC message, and Exampie 4-5 shows the
structure of the LANHdr structure that is returned to the area pointed to by the Hdr field in
mOData. mDataPtr points to the node address and mDataSize indicates the size of that address in
bytes.

Not all media support all possible options. When an unsupportable option is specified, the IPC
interface builds the best header it can and returns the status LLCNotFullySupported to the client.
mDataSize must either be zero to get a broadcast template or be the exact size of a node address for
the underlying media.

Result codes Value Description
LLCNoErr Normal completion
LLCNotFullySupported Some option or type requested is not fully
supported by this media
LLCAddrEmor Invalid remote address—size must be 0 or node

address size for the media

s Example 44 mOData structure for LLCGetHdr requests

typedef struct
{

word HdrType; /* Header types:
* 0 - Normal header
* 1 - Single-route b'cast, all-routes b'cast return
- 2 - Single-route b'cast, ncn-brcadcast return
* 3 - All-routes oroadcast heacer
=/

werd Coticns; /* Header options: Always zero */

oyte S3AP; /* Source 3AP value */

byte OSAP; /* Destinat.on SAP value */

LANHdr *Hdr; /* Pointer to LANHdr structure to be returned =/

} LLCGetHdroODlata;

4/ The 802.2 LLC / IPC Interface

43

Medusa Programmer's Guide, Beta Draft Apple Confidential

s Example 45 LANHdr structure for LLCGetHdr used by LLCOpenStation, LLCConnectStation,
LLCReceive, and LLCTransmit

typedef struct
{

byte Media; /* Media indicator:
) * 0 - Unknown
* 1 - LocalTalk
* 2 - 10 Mb Ethernet
* 3 - 4 Mb Token Ring
* 4 - 16 Mb Token Ring
* 5 - FDDI
* 6 - Token Bus
*/
byte Routing; /* Source-routing indicator:
* 0 - No source-routing
* 1 - IBM source-routing
*/
byte DOff: /* Offset to destination address in header buffer =*/
byte DLen; /* Length of destination address in header buffer =*/
byte SOff; /* Offset to source address in header buffer =/
byte Silen; /* Length of source address in header buffer */
byte ROfE; /* Offset to routing informaticn in header buffer =~/
byte Rlen; /* Length of routing information in header buffer =/
byte HOfE; /* Offset to media header in header buffer */
byte Hlen; /* Length of media header in header buffer =/
byte DSAP; /* Destination SAP value */
byte SSAP; /* Source SAP value */
byte HBuf(40); /* Header buffer */
} LANHdr;

44 4/ The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCGetConfig

The LLCGetConfig message returns configuration information about LLC. Example 4-6 shows the
structure returned to the address passed in mDataPtr.

Result codes Value - Description
LLCNoErr Normal completion
LLCTruncated Buffer too short to receive all information

s Example 46 Structure mDataPtr points to following completion of LLCGetConfig

~ypedef struct

leong LlCVersion; /* LLC Version ID =/
long FAddr: /* Functional address (token ring only) */
long GlTimerl; /* Group 1 timer 1 (response timer) in milliseconds */
long G2Timerl:; /* Group 2 timer 1 (response timer) in milliseconds */
long GlTimer2; /* Group 1 timer 2 (receive ack) in milliseconds */
long G2Timer2; /* Group 2 timer 2 (receive ack) in milliseconds =*/
long GlITimer; /* Group 1 inactivity timer in milliseconds */
iong G2ITimer; /* Group 2 inactivity timer in milliseconds */
word MaxFramelen; /* Maximum frame length */
word ASAPs; /* Available SAPs */
word AStations; /* Available stations */
word MaxHeader; /* Maximum header size for this media =/
byte LLCClass; /* Class of LLC implementation:
* 1 - Implements typel only
b 2 - Implements typel and Type 2
=/
byte Media; /* Media indicator:
* 0 - Unknown
* 1 - LocalTalk
= 2 - .0 Mb Ethernet
- 3 - 4 Mb Tcken Ring
- 4 - 16 Mb Tcken Ring
* S - FDDI
= 6§ - Tcken Bus
~/
byte Routing; /* Source-routing indicator:
* 0 - No source-routing
* 1 - IBM source-roqting
*/

byte AddrLen; /* Length of node address in bytes */
byte Addr{9]; /* This node's address */
oyte NumGAddrs; /* The number cf group addresses that follow */

cyte GAadarBurf(l]; +* Start of Jroup addresses :.engtl, aadress gairsj */

LLCGetConfigluffer;

4 /The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCOpenStation

The LLCOpenStation message allocates resources to support a connection between two stations.

Refer to Example 4-7 for the structure of mOData in the IPC message. Refer back to Example 4-2
for the structure of the station parameters that can be pointed to by mDataPtr. The station
parameters can be set to default values by passing mDataPtr as zero. Example 4-5 shows the
LANHdr structure that is pointed to by the Hdr field in mOData.

The RefNum parameter (Example 4-3) holds the RefNum of the local SAP when the request is made
and returns the new station's RefNum on successful reply. The high byte of the RefNum is the
reference number for the SAP, and the low byte is the reference number of the link station.

Result codes Value Description
LLCNoErr Normal completion
LLCBadPri Unauthorized access priority

LLCBadRefNum Invalid RefNum

LLCMaxExceeded ~ Parameter exceeded maximum

LLCBadSAPValue Invalid SAP value or SAP value already in use
LLCNoResources Maximum number of link stations are already open
LLCAddrEmor Invalid remote address—group address invalid
LLCBadSize mbDataSize has inappropriate value

s Example 47 mOData structure for LLCOpenStation and LLCConnectStation requests

typedef struct
{

word RefNum; /* Returned station refnum */
word Stalpts: /* Station options:
v * Bits 15-8: Unused
- Bits 7-5: Priority
* Bits 4-0: Unused
~/
LANHGr <Hdr; /* 2cinter tc LANHdr holding

remote node address */

} LlLCStationCData;

46 4/The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential ¥20/89

LLCCloseStation
The LLCCloseStation message causes a link station to go to a closed state. Refer back to Example 4-3 for the
structure of mOData in the IPC message.

Result codes Value Description

LLCNoErr Normal completion

LLCBadRefNum Invalid RefNum

LLCClosedNoAck Station closed without remote acknowledgment
LLCSeqError Sequence error—have already issued a close to this link

4/ The 802.2 LLC/ IPC Interface

47

Medusa Programmer’s Guide, Beta Draft Apple Confidential

LLCConnectStation

The LLCConnectStation message places the local and remote link stations into the data transfer
state. Example 4-7 shows the structure of mOData in the IPC message. Refer back to Example 4-5
for the LANHdr structure pointed to by the contents of mOData.

Result codes - Vaiue Description
LLCNOErr Normal completion
LLCBadRefNum Invalid RefNum
LLCProtoError Protocol error—link in invalid state for command

LLCRoutingError Invalid routing information length

LLCConnSeqError ~ Connect sequence error

LLCConnFail The remote station did not accept the connection
request

48 4/ The 802.2 LLC/ IPC Interface

i,

Medusa Programmer's Guide, Beta Draft Apple Confidential 320/89
LLCModifyParams
The LLCModifyParams message is used to modify either open link station parameters or default
SAP parameters.
Refer back to Example 4-1 for the structure of mOData in the IPC message and to Example 4-2 for
the structure of the station parameters that can be pointed to by mDataPtr, Specification of the
station parameters can be set to default values by passing mDataPtr as zero. The only fields in the
LLCSAPOData structure used for this request are RefNum and the access priority in SAPOptions.
Any GSAP addition that failed is returned in FailedGSAP.
If the low-order bit of a specified GSAP is zero, the specified group SAP membership should be
added. If the low-order bit is one, the specified group SAP membership should be cancelled.
Result codes Value Description

LLCNoErr Normal completion

LLCBadPri Unauthorized access priority

LLCBadRefNum Invalid RefNum

LLCMaxExceeded ~ Parameter exceeded maximum

LLCNoGroup Requested group membership in nonexistent group SAP

LLCGroupLimit Group SAP has maximum members

LLCNotMember ~ Member not found in group SAP

LLCBadSize mDataSize has inappropriate value

4/ The 802.2 LLC/ IPC Interface 49

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

LLCReceive

The LLCReceive message is used to receive frames from a link station or a SAP. Example 4-8 shows
the structure of mOData in the IPC message,and Example 4-5 shows the description of the LANHdr
structure that can be pointed to by Hdr.

mDataPtr points either to a buffer that receives the frame or, if the “list-directed” bit of the
Options field is set, to an array of counts and pointers. See Example 4-9 for the structure of the
array of counts and lengths.

Do not use he “list-directed” option in conjunction with a SAP listener function (see LLCOpenSAP).
The number of elements in the list is determined by mDataSize, as usual. Multiple receives can be
queued for any given RefNum, which allows reception of Type 1 or Type 2 frames. Normally this
interface requires the receiver to provide the buffer space. If the “use interface buffer® bit of the
Options field is set, the interface fills in addresses for mDataPtr and Hdr. When the “use interface
buffer” feature is used, the client initially passes mDataPtr and Hdr as zero and passes back to LLC
any buffer that is present on completion of the receive. After completion the buffers are returned
* to the interface by reissuing the receive or by issuing LLCReturnBuffer.

Result codes Value Description
LLCNoErr Normal completion
LLCBadRefNum Invalid RefNum
LLCMsgReject Unusual interface error
LLCCancelled Receive cancelled, either explicitly or by dose operation

LLCBadPointer Bad pointer passed as *interface-owned"

50 4 /The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

LLCReceiveCancel
The LLCReceiveCancel message is used tc cancel all outstanding receives on either a link station or a SAP. Refer
back to Example 4-3 for the structure of mOData in the IPC message.

Result codes Value . Description

LLCNoErr Normal completion
LLCBadRefNum Invalid RefNum

» Example 48 mOData structure, LLCReceive, LLCT1Transmit, and LLCT2Transmit requests

Typecef struct

word RefNum; /* RefNum for link station or SAP */
word Optiocns; /* Options:
x Bits 15-8: Unused
* Bit 7: List-directed
* Bit 6: Use interface buffer
(LLCReceive only)
- Bits 5-0: Unused

=/
word infolen; /= Length of information placed in buffer */
byte Framelype; /* Returns recelved frame type {on _LCReceive) or
* Specifies frame to send (cn LLCTlTransmiz):
* 06 XID resp (£=1)
* 02 I frame 07 ID resp (£=0)
* 03 UI frame 08 Test resp (f=1)
* 04 XID cmd (p=1) 09 Test resp (£=0)
* 0Ss XID cmd (p=0) OB Test cmd (p=1)
*/
byte FS; /* Returns frame status (token-ring Type 1 only) =/
LANHdr *Hdr /* Pointer to LANHdr (N/A to LLCT2Transmit) =/

LCTxRxClaza;

s Example 49 Structure for list-directed receives and transmits

sTrict
word Count; /* Byte count for this transfer */
byte *Ptr; /* Pointer for this transfer */

} array(];

4/The 802.21LC/IPC Interface 51

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCT1Transmit

The LLCT1Transmit message is used to send a Type 1 frame. Refer to Example 4-8 for the structure
of mOData in the IPC message and to Example 4-5 for the description of the LANHdr structure that
can be pointed to by Hdr.

mDataPtr points either 10°a frame holding the buffer or, if the *list-directed” bit of the Options
field is set, to an array of counts and pointers, as with receive. See Example 4-9 for the structure of
the list-directed transmit array. Typically, FrameType 3 is used for Type 1 transmissions.

Result codes Value Description
LLCNOErT Normal completion
LLCBadPri Unauthorized access priority
LLCTxError Error in frame transmit or strip

LLCUnauthMAC Unauthorized MAC frame
LLCTxTooLong Invalid transmit frame length
LLCBadRefNum Invalid RefNum

LLCRoutingError Invalid routing information length
LLCBadFrame Invalid frame type

LLCCancelled Transmit cancelled

52 4/The 802.2 LLC/ IPC Interface

Medusa Programmer's Guide, Beta Draft

Apple Confidential

LLCT2Transmit

The LLCT2Transmit message is used to send a Type 2 frame (I frame) through a link station. Refer
to Example 4-8 for the structure of mOData in the IPC message and to Example 4-5 for the
description of the LANHdr structure that can be pointed to by Hdr.

mDataPtr points either to a frame holding the buffer or, if the “list-directed” bit of the Options
field is set, to an array of counts and pointers, as with receive. See Example 4-9 for the structure of
the list-directed transmit array. Typically, FrameType 2 is used for Type 2 transmissions.

Result codes

Value

LLCNoErr
LLCBadPri
LLCTxError
LLCUnauthMAC
LLCNolFrames
LLCTxTooLong
LLCBadRefNum
LLCProtoError
LLCCancelled

Description

Normal completion

Unauthorized access priority

Error in frame transmit or strip

Unauthorized MAC frame

Link not transmitting I frames

Invalid transmit frame length

Invalid RefNum

Protocol error—I frame issued before DMA ready
Transmit cancelled

4/ The 802.2 LLC/ IPC Interface

53

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReset

The LLCReset message reset san individual link station or a SAP and all of its link stations. Be certain
to use the correct RefNum so that a link station is not inadvertently reset. Refer to Example 4-3 for
the structure of mOData in the IPC message.

Result codes Value Description
LLCNoOEsrr Normal completion
LLCBadRefNum Invalid RefNum

54 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidential

LLCReturnBuffer

The LLCReturnBuffer request is used 1o return interface-owned receive buffers to the interface.
Normally this is not needed since requeuing the receive also returns the buffer. However, a race
condition can occur when closing a SAP that can result in the client receiving completed receive
requests and yet not being ablé to requeue the receives because an LLCCloseSAP request has already
been sent. When this rare event occurs, the LLCReturnBuffer request is used to return the buffers.

To return a buffer, set mDataPtr to the buffer address and place the address of the header in
mOData(0]. This message has no reply.

Result codes There are no result codes for this function because there is no reply.

4 /The 802.2 LLC / IPC Interface

55

Medusa Programmer's Guide, Beta Draft Apple Confidential » 32¥89

LLCGetStatistics

The LLCGetStatistics message is used-to get statistics for a link station. Refer to Example 4-10 for
the structure of mOData in the IPC message and to Example 4-11 for the description of the
structure returned to the area pointed o by mDataPtr. The type of statistics tracked include

= Number of | frames sent and received

s Number of | frame errors sent and received
s TI timer expirations

s last command/response sent or received

8 Primary and secondary link states

Result codes Value Description
LLCNoErr Normal completion
LLCTruncated Returned data incomplete due to inadequate buffer
space

LLCBadRefNum Invalid RefNum

s Example 4-10 mOData structure for LLCGetStatistics requests

typedef struct
{

word RefNum; /* RefNum of link station */
word Cptions; /* Options:
* Bit 15: Clear error counters
* after returning statistics
* Bits 14-0:" Unused
*/
word Actlen; /* Actual length of buffer returned */

} LLCGetStatisticsClata;

56 4/ The 802.2 LLC / IPC Interface

Medusa Programmer's Guide, Beta Draft Apple Confidentiat 32/89

- s Example 411 mbDataPtr pointer to LLCGetStatistics buffer
(typedef struct
{
word NumITx; /* Number of I frames sent */
word NumIRx; /* Number of I frames received */
byte NumIRXErr; /* Number of bad I frames received */
byte NumITxErr; /* Number of I frames sent ending in error =/
word NumTlExp: /* Number of times Tl expired when not =/
/* transferring data */
byte LastCmdRx; /* Last command/response rcvd (LLC byte 0) */
byte LastCmdTx; /* Last command/response sent */
byte PriState; /* Link primary state:
* 3it 7: Closed
- 8it 6: Disconnected
- 3it S: Disconnecting
* Bit 4: Opening
* Bit 3: Resetting
- Bit 2: FRMR Sent
* Bit 1: FRMR Received
* Bit 0: Opened
*/
byte SecState; /* Link secondary state:
* 8it 7: Checkpointing
b Bit 6: Local busy (user set)
b Bit 5: Local busy (system)
* Bit 4: Remote busy
> Bit 3: Rejection
4 - Bit 2: Clearing
i‘ b Bit 1: Dyn. win. running
: ' * Bit 0: reserved
*/
oyte TxState: /* Send state variable V(S) */
byTe RxState; /* Receive state variable V(R) =/
cyte _asINR; /* Last received N(R) */
byte Cnused; /* Jnused */
LANHdr Hdr; /* LANHdr used to send I frames =*/

» LlLCGet3tatlisticsBuffer;

(x 4/ The 802.2 LLC / IPC Interface 57

Medusa Programmer's Guide, Beta Draft

Apple Confidential

LLCStatus

The 802.2 LLC interface sends the LLCStatus message to the client of a particular link that has
changed status. There is no specific reply to this message. Refer to Example 4-12 for the structure
of mSData in the IPC message and to Example 4-13 for the structure of mOData in the [PC
message. .

ty
{

}

Example 4-12 mSData structure in LLCStatus messages

pedef struct
werd RefNum;
word Status;
byte FRMR(S]; /*
byte Priority; /*
LLCStatusSData;

/* RefNum of link station */

/* LLC status

* 3it
* Bit
* Bit
* Bit
* Bit
* Bit

* Bit
b Bit
- Bit

bits:

15:Link lost
14:Disconnected
13:FRMR rcv'd
12:FRMR sent
11:SABME rcv'd
10:0pened link
9:Remote busy
8:Remote not busy
7: TI expired

b Bit 6: Counter covfl.

- Bit S: Priority reduced
* Bits 4-0: Reserved

*/

Holds FRMR response
Holds access priority

(if bit 12 or 13 set) */
(L{f bit S set) */

Example 413 mOData structure in LLCStatus messages

[]

~yveaef sIiruct
oyze Addrlen: /*
oyte Addri9!: Al
byte RSAP; /*

} LLCStatusOData;

58 4/The 802.2 LLC/ IPC Interface

Length cf remote node address in bytes */

dolds
Holids

remote
remcte

ncde address
SAP value

(Lf bit 10 set) */
A

(if bit 10 set) =/

Py

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
LLCSetFunctionalAddr
The LLCSetFunctionalAddr message is used to add or remove bits to the functional address. Refer to
Example 4-14 for the structure of mOData in the IPC message.
Result code Value Description
LLCNoErr Normal completion
s Example 414 mOData structure for LLCSetFunctionalAddr
typedef struct
word Opticn; /* If zero, add otherwise remove =/
long Addr; /* Mask of bits to add or remove */
} LLCSetFunctionalAddrOData:
4/ The 802.2 LLC/ IPC Interface 59

Medusa Programmer's Guide, Beta Draft Apple Confidential

Functions supporting 802.2

In addition to the previous IPC messages, the 802.2 interface supplies a library containing the
following support function:

Name Descriptioa

LLCSwapHdr Swap addresses in LANHdr structure for return to sender

LLCSwapHdr

The LLCSwapHdr function swaps the addresses in a LANHdr. This swapping usually be done to
respond to a Type 1 frame. Normally the caller provides its own SAP value for the SSAP. The SSAP
for the swapped header cannot be taken from the DSAP in the header because the DSAP might be a
group SAP, and group SAPs cannot be SSAPs.

Call the LLCSwapHdr function by using Pascal calling conventions:

pascal void LLCSwapHdr (LANHdr *Hdr, byte SSAP):;

60 4/ The 802.2 LLC/ IPC Interface

S,

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 5 Apple IPC Services

THIS CHAPTER PRESENTS the Apple interprocess communication
(IPC) services provided by the Macintosh Operating System on the Macintosh
1. IPC services provide a means of passing messages between processors

that reside on the NuBus. An Apple smart card, such as the TokenTalk NB
card, has its own on-card operating system called Minimal Realtime
Distributed Operating System (MR-DOS). The MR-DOS IPC interface is fully
described in the Macintosh Coprocessor Platform Developer’s Guide. This
chapter summarizes the applicable Apple IPC services , which are fully
described in the Developer's Guide. =

61

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The code for MR-DOS and Apple IPC-includes a collection of traps, interrupt handlers, and tasks that
provide support for process naming, timing services, and intercard and intracard communications
using messages. These routines enable a smart card to support a multitasking distributed operating
environment for communications and other real-time services on the same card or on other smart
cards installed in the Macintosh II computer.

Interprocess communication is accomplished through communication messages that are fixed-
size but flexibly formatted. MR-DOS allows dynamic name-binding of tasks to support interprocess
communication.

Apple IPC (InterProcess Communication) is a combination of a driver and support software
found in the Apple IPC file in the Apple IPC folder on the distribution disk. Apple IPC provides
message-passing and naming services for communications from the Macintosh 11 to tasks on
smart cards such as the TokenTalk NB card. Apple IPC is similar to the InterCard Communications
Manager on MR-DOS.

Apple IPC is a driver and associated interface code in the form of a library that runs under the
Macintosh Operating System. The Apple IPC driver handles all message passing (interprocess
communication) between processes on the Macintosh 11 Operating System and Macintosh
Coprocessor (MCP) card tasks on the NuBus.

Periodically, Apple IPC scans for and processes incoming messages, receives calls that have
timed out, activates slots that have timed out, and processes outgoing messages. The driver
receives messages from and delivers messages to Macintosh II processes using calls to Apple IPC
driver.

An application that uses Apple IPC must have an initial call to OpenQueue to establish its use of
Apple IPC. Messages are sent and received by way of the Send and Receive calls, much like tasks
under MR-DOS. Several source-language examples of applications are provided in the Apple IPC
folder on the distribution disk.

Apple IPC driver

Apple [PC services are handled by the Apple IPC driver, which handles all message passing between
processes on the Macintosh II operating system and smart card processes on the NuBus. The
Macintosh II process sends to and receives from smart card processes by way of calls to the Apple
IPC driver.

The Apple IPC file is placed in the System Folder; routines contained in the file are installed by
the INIT 31 mechanism during system startup.

During initialization, the driver sets up a communication area. It then searches NuBus slots for
the InterCard Communication Manager (ICCM) communxation areas of smart cards installed in the
Macintosh I, much as the MR-DOS (1CCM does. For eacn valid communication area found, the driver
stores the address of the Apple IPC communication area in a vector in the smart card's
ZCmmunication srea.

62 5/ Apple IPC Services

/f‘aini_et;i.w

Medusa Programmer's Guide, Beta Draft Apple Confidential

Periodically, Apple IPC scans for and processes Receive operations that have timed out,
incoming messages, active slots that have timed out, and outgoing messages. The driver receives
messages from and delivers messages to the Macintosh 11 processes.

Apple IPC library

The object routines, or glue code, in the Apple IPC library provide the interface between a Macintosh
application and the Apple IPC driver. These routines provide for opening and closing the message
queue to the driver, getting and freeing message buffers, and sending and receiving messages.

In addition, the Apple IPC library provides access to many of the same utilities that MR-DOS
provides, such as moving data, obtaining the operating environment, and registering and looking up
task names through the Apple IPC Name Manager. These routines are located in the Apple
IPC:IPCGlue.o file on the distribution disk. The C language calling sequence is used in all of these
routines.

Apple IPC managers

The managers for Apple IPC are the Echo Manager and the Name Manager. These Apple IPC
managers perform functions identical to and have the same message interface as those of their MR-
DOS counterparts; minor differences are due to the slightly different interface with Apple IPC.

The Apple IPC managers are tasks that carry out higher level services on behalf of applications
on the Macintosh I computer. These managers are often referred to as slot 0 managers, and the
Macintosh itself is sometimes referred to as the siot 0 card.

¢ Note The slot 0 card is not to be confused with the Slot Manager in the Macintosh II (part
of the Macintosh Operating System).

5 / Apple IPC Services

63

Medusa Programmer's Guide, Beta Draft Apple Confidential 320/89

Using Apple IPC

To establish its use of Apple IPC, an application must have an initial call to OpenQueue to establish
its use of IPC. Each process that uses Apple IPC requests that a queue be opened for messages
addressed to that process.

Much like tasks under MR-DOS, messages are sent and received in Apple [PC by way of the Send call
and the Receive call.

s When the driver gets a Receive request and no completion routine is specified, it searches the
queue for a message matching the criteria specified. If it finds a matching message, the driver
returns to the process. If it finds no matching message, the driver either returns immediately
or, depending on the timeout specified, lets the process wait for a matching message
(indefinitely if the timeout is 0, or until the timeout is reached). Waiting is handled by placing
the process in an internal timeout queue.

» The Receive request behaves differently when a completion routine is specified. Additional
information on the Receive call follows in this chapter.

= |f a Send request is destined for a process on the Macintosh I, the destination process is
unblocked, if waiting, or the message is placed in its queue. If the message is destined for a task
- on a smart card, the message is transferred to the ICCM on that siot for delivery to the task.

Apple IPC services

This section describes the Apple IPC services and provides examples of how to call primitives from
both C and assembly language. These services are provided to support features similar to those of
MR-DOS for applications running on the Macintosh I computer. The MCP Developer’s Guide
contains additional information on both MR-DOS and Apple IPC.

® Note As with MR-DOS, Apple [PC uses C calling conventions, and all registers are preserved
except DO, D1, A0, and Al. Calls in both C and assembly language take arguments and use
similar data structures. Any macros referred o in this chapter are for examples only and do
not exist on the distribution disk at this time.

Table 5-1 briefly describes the services provided by Apple [PC.

64 5/ Apple IPC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential Y2/89

s Table 51 Apple IPC services

Name Description

QoseQueue Closes an Apple IPC queue

CopyNuBus Copies a block of data from the source address to the destination
address

FreeMsg Frees a message buffer

GetCard Returns the NuBus slot number on which the calling process is running

GetETick Returns the number of major ticks since the operating system started

GetICCTID Returns the task identifier of the InterCard Communication Manager

GetIPCg Returns the address of the global data area within the Apple IPC driver

GetMsg Gets message buffer

GetNameTID Retumns the task identifier of the Name Manager

. GetTickPS Returns the number of major ticks in one second

GetTID Returns the task identifier of the calling task

IsLocal Returns an indication of the locality of an address

KillReceive Cancels an outstanding receive request

Lookup_Task Returns the task identifier of the task that matches the object and
type names specified

OpenQueue Opens an Apple IPC queue

Receive Receives a message

Register_Task Allows a task to register itself with the object and type names
specified

Send Sends a message

SwapTID Swaps the mFrom and mTo fields in a message buffer

CloseQueue

CloseQueue closes the queue that was previously opened. Make this IPC call last prior to

terminating an entitiy.

The C declaration for JoseQueue is

void CloseQueue() ;

The following example provides an equivalent of CloseQueue in assembly language.

<3R CloseQueue

5/ Apple IPC Services 65

Medusa Programmer's Guide, Beta Draft Apple Confidential

CopyNuBus

CopyNuBus copies a block of data and does a simple move of bytes from the source to the
destination, without checking for overlapping source and destination addresses. The number of
bytes is specified in the count parameter. The source address and destination address may be either
Macintosh main memory or memory on a smart card. This routine deals with the complexity of
potential 32-bit NuBus addresses for the source and the destination, but it does not deal with the
possibility of overlapping buffers.

A Warning Don't overlap the source and destination blocks. Doing so could cause
partial overwriting of the destination block. a

The C declaration for CopyNuBus is

veid CopyNuBus (scurce, destination, count);
char *source; /* Address of source buffer */
char *destination; /* Address of destination buffer */
unsigned short count; /* Byte count */

The following example provides an equivalent of CopyNuBus in assembly language.

MOVE.L #Count, - (A7)

PEA Destination

PEA Source

JSR CopyNuBus

ADD.L $12,A7
FreeMsg

FreeMsg frees a message buffer that was acquired earlier by a call to GetMsg.
The number of messages initially available depends on the number requested in the named
resource Apple [PC entries of type aipn in the Apple IPC driver file.

The C declaration of FreeMsg is

void FreeMsg(mptr);
message *mptr; /* pointer to message buffer to free */

The form for the PreeMsg macro is as follows, where P1 is the address of the message buffer to be
freed:

{Label] FreeMsg 1

To indicate the location containing the desired address, P1 can be specified as a register (A0-A6, DO-
D7), or by using anv 68000 addressing mode valid in an LEA instruction.

66 5/ Apple IPC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
GetCard
GetCard returns the NuBus slot number on which the calling process is running. For the Macintosh
II computer, the number returned is always zero.
The C declaration for GetCard is

char GetCard ();
The following example provides an equivalent of GetCard in assembly language. On return, DO
contains the NuBus slot number on which the calling process is running.

JSR GetCard
GetETick
GetETick returns the number of major ticks—that is, the elapsed time in ticks—since the
operating system started.
The C declaration for GetETick is

unsigned long GetETick ()
The following example shows how to call GetETick using assembly language. To return the
number of major ticks, get the value of location gMajorTick inthe gCommon data
area
JSR GetETick

& Note Atick on the Macintosh 11 is of a different duration than that on an MCP card.
GetdCCTID
GetICCTID returns the task identifier of the InterCard Communication Manager.
The C declaration for GetICCTID is

tid_type GetICCTID ();
An equivalent of GetICCTID in assembly language is given in the following example. On return, DO
contains the task identifier of the ICCM.

SSR GerICTTID

5/ Apple IPC Services 67

Medusa Programmer's Guide, Beta Draft Apple Confidentiat

GetIPCg

GetgIPCg returns the address of the data area of the Apple IPC driver. This routine is an aid for
advanced developers. Refer to the include files on your distribution disk for the structure of IPCg.

The C declaration for GetgIPCg is

struct IPCg *GetIPCg();

The following example provides an equivalent of GetIPCg in assembly language. On retum, DO
contains the address of the data area of the Apple IPC driver.

JSR GetI?Cg

A Warning Use this call at your own risk. Subject to change with no notice. a

GetMsg

GetMsg requests a message buffer from the free-message pool. GetMsg returns either a pointer to
the allocated message or zero. A FreeMsg call releases the message.

All fields in the message, except message ID (mID) and the From address (mFrom), are cleared
before the pointer to the message is returned. Message ID is a message field set to a number that is
statistically unique; the From address is a message field set to the current task identifier.

The C declaration of GetMsg is

message *GetMsg ()

The form for the GetMsg macro is

‘label] SetMsg

The address of the allocated message buffer is returned in DO unless no buffer was available. In that
case, 0 is returmed in DO.

68 5/ Apple 1PC Services

,(f

Medusa Programmer's Guide, Beta Draft Apple Confidential

GetNameTID

GetNameTID retums the task identiffer of the Name Manager. The C declaration for GetNameTID
is

tid_type GaetNameTID ()

The following example gives an equivalent of GetNameTID in assembly language. On return, DO is
the task identifier of the Name Manager.

JSR GetNameTID

GetTickPS

GetTickP$ returns the number of major ticks in one second.
The C dedaration for GetTickPS is

unsigned short GetTickPS ()

The following example provides an equivalent of GetTickPS in assembly language. On return, DO is
the number of major ticks in one second.

JSR GetTickPS

GetTID

GetTID returns the task identifier of the calling task.
The C declaration for GetTID is

tid_type GetTID ()

The following example provides an equivalent of GetTID in assembly language. On return, DO is the
task identifier of the calling task.

JSR GetTID

5/ Apple IPC Services

69

Medusa Programmer's Guide, Beta Draft Apple Confidential

IsLocal

IsLocal returns true or false to indicate whether an address is local.
The C declaration for IsLocal is

short Islocal (address)

char raddress; /* address to test. */

IsLocal returns true (nonzero) if the address passed is local, false (zero) if it is a remote NuBus
address.

The form for the IsLocal macro is as follows, where P1 is the address to examine.

{Label] Islocal Pl

To indicate the location of a longword containing the desired value, you can specify P1 as a register
(A0-A6, D0-D7), an immediate (#<abs-expr>), O use any 68000 addressing mode valid in an LEA
instruction.

KillReceive

KillReceive cancels any outstanding Receive request for this process. Messages destined for this
process are not discarded.
The C declaration for KillReceive is

void KillReceive();

The following example shows how to call KillReceive using assembly language:

J3R KillRecelive

Lookup_Task

Lookup_Task returns the task identifier of the process or task that matches the Object Name and
Type Name specified, or 0 if no matching process or task is found. The wildcard character *=" is
allowed. Initially, set the index to 0. Subsequent calls might modify the index, which should be left
unchanged. .

Lookup_Task modifies the variable index. The variable index allows Lookup_Task to find any
additional entries that might match the criteria in subsequent calls.

The € declaration for Lookup_Task is

lic_type Locokup_Task (opject, type, am_TID, inaex)
cnar cpject (;; /* Object Name ~*/
char type ' /* Type Name */
Tla_type m TID: ‘* ame Manager Task .dent.zier v/
insigned sh;:t *lncex: 7 lnzex T/

70 5/ Apple IPC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential

The task identifier of the Name Manager is nm_TID, and it can be obtained by using GetNameTID
for name managers on the Macintosh I, or by sending an ICC_GetCards message to the ICCM for
name managers on NuBus cards. Lookup_Task returns the task identifier of the first process or
task that matches the criteria.

The following code shows haw.to look up all processes on the main logic board of the Macintosh
I computer:
short index;

tid_type tid;

index = 0;
while ((tid = Lookup_Task ("=", "=", GetNameTID (), &index)) > 0)

printf ("TID %x Found \n", =id):

The following example shows how to call Lookup_Task from assembly language:

MOVE.W #0, INDEX ; initialize index

PEA INDEX ; address of index
MOVE.L TID,DO ; value of tid on stack

MOVE.L DO, - (A7) ; place on stack

PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME ; address of object name
JSR Lookup_Task .

ACDQ.W $#16,A7 ; pop the stack

TST.W co ; check if found

BNE.S DO, XXX ; jump if found

5 / Apple IPC Services

71

Medusa Programmer’s Guide, Beta Draft Apple Confidential

OpenQueue

OpenQueue assigns an IPC queue and returns the TID of the process that called OpenQueue. If if
no queue could be assigned, it returns zero. This method allows you to set up your own procedure
to determine what to do while waiting on a blocking Receive; if you do not want to use this
mechanism, use a parameter of zero. This procedure also lets you decide whether to cancel the
outstanding Receive request or discontinue communication with Apple IPC; that is, it lets you
check for operator termination.

This function must be called before any other call to IPC can be made. You can issue either
s an ApplelPC CloseQueue request, or
8 aKillReceive request

If the procedure issues an ApplelPC CloseQueue request and returns to the Apple IPC driver, then
the driver returns to the outstanding Receive request with a value of 0. Issuing a KillReceive
request returns 0 to the Receive request (no message).

The C dedaration for OpenQueue is

tid_type OperQueue (procedure)
void (*procedure) () /* Procedure to execute while waiting*/
/* for blocking receive to complete. */

@ Note This parameter is required; use 0 if you do not want to call the procedure.

The form for the OpenQueue macro is as follows, where P1 is the address of the procedure to
execute while waiting for a blocking receive to complete.

[Label} CpenQueue Pl

To indicate the location of a longword containing the desired value, you can specify P1 as a register
(A0-A6, D0-D7), an immediate (#<abs-expr>), Of use any 68000 addressing mode valid in an LEA
instruction.

72 5/ Apple IPC Services

St

Medusa Programmer's Guide, Beta Draft Apple Confidential

Receive

Receive returns the highest priority message from the message queue of the process that matches

the specified criteria.
The C declaration of Receive is

message *Receive (mID, mFrom, mCode, timeout, compl)
unsigned long mID; /* Unique message ID to wait on */
tid_type mFrom; /* Sender address to wait on */

unsigned short mCode; /* Message code to wait on

long timeout; /* Time to wait in major ticks
/* pefore giving up

*/
*/
*/

void compl () ; /* Address of a completion routine =/

The first three parameters (mID, mFrom, and mCode) are selection criteria used to receive a specific
kind of message. These parameters can be set to match either a specific value, any value (by

specifying OS_MATCH _ALL), or no value (by specifying OS_MATCH_NONE).

The fourth parameter is the timeout value. A timeout value of 0 waits forever for a satisfying
message. A negative value returns either a satisfying message or 0 immediately, and a positive value

waits that many ticks for a satisfying message to arrive.

+ Note If a completion routine is not specified, the IPC Receive performs in exactly the same

way as the MR-DOS Receive primitive.

The fifth parameter is the address of a C completion routine. Required for Apple IPC, compl
changes the way the Receive request performs. The compl parameter must be either the address
of a completion routine or zero, if no completion routine is desired. When this completion routine
parameter is nonzero, the call to Receive always returns immediately with a result of 0.

The completion routine is called with a parameter of type 'message ='. If the completion routine

is passed a pointer of zero, a timeout occurred.

¢ Note It is possible to call the completion routine before the Receive actually returns. The
purpose of the completion routine is to provide a mechanism by which the Macintosh 11
application can continue to execute without having to wait for a message. This is necessary
because the current version of the Macintosh II operating system is not 2 multitasking
operating system; therefore, the application cannot cease to process events. Under MR-
DOS, a process can do a blocking Receive and permit other processes to execute.

Table 5-2 describes the resuils from various settings of the timeout parameter in major ticks for
the Receive call. The resuits column describes what is retumed to the Receive request and

compietion rouune, as weil as when the compietion routine s caiied.

5/ Apple IPC Services

73

Medusa Programmer's Guide, Beta Draft Apple Confidential
® Table 5-2 State table for the Receive call

Name Description
Time- Comple- Message Immediate Subsequent
out tion available results results
value routine
Q No (0) No Returns 0 to the Receive None
request
No (0) Yes Returns message to None
Receive request
Yes No Apple IPC driver returns None
0 to the Receive request;
completion routine is
not aalled
Yes Yes Apple IPC driver calls None
the completion routine with
the message; driver then
returns 0 to the Receive request
=) No (0) No Waits until it gets 2 message, Waits for a
then returns a message to the message;
Receive request OpenQueue
routine is
called
continuously.
No (0) Yes When 2 message arives, None
retums a message (o the
Receive request
Yes No Retumns 0 to the Receive None
request; when a message
arrives, the driver calls the
completion routine with
the message
Yes Yes Returns a message to the None

completion routine and
returns 0 to the Receive
request

74 5/ Apple IPC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential

(, Table 5-2 (continued)

Time- Comple- Message Immediate
out tion available results
value routine

Subsequent
results

) No (0) No Waits for a message

If the time interval that

you specify expires, then
it returns 0 to the Receive
request

No (0) Yes Message returns to the
Receive request

Yes No Immediately returns 0 to
the Receive request and the
task continues executing
When a message comes in,
the driver calls the completion
routine with the message

If the timeout expires, the
driver calls the completion
routine with 0

Yes Yes Returns a message to the
completion routine; returns
0 to the Receive request

e

When using completion routine, you should observe the following guidelines:

a Never use a blocking Receive in a completion routine.

Message does
not arrive

None

None

None

s Be cautious about starting the next asynchronous Receive within a completion routine, as

recursion can be deadly.

s Remember that completion routines are sometimes called as the result of an interrupt;

anticipate the unexpected!

Only one Receive may be outstanding on a given queue at a time; atempted additional Receive

routines return errors. Receive returns a 0 in the event of one of the following:
s no message is available (either timeout or nonblocking)

s 2 negative error code is received in the case of an error

m or 2 positive pointer 1o the received message buffer is retumed

® Vote Zxercise caution when testing the pointer returned by Receive for a negative value to

2nsure that the test s valid.

5 / Apple IPC Services

75

Medusa Programmer's Guide, Beta Draft Apple Confidential
The form for the Receive macro is:

[Label] Receive P1, P2, P3, P4, PS

where #1 is the message ID match code, as follows:

p2 = sender address match code
P3 = message code match code
P4 = timeout code

ps = completion routine address

To indicate the location of a longword containing the desired value, you can specify P1 through PS5
as a register (A0-A6, D0-D7), an immediate (#<abs-expr>), Or you can use any 63000 addressing
mode valid in an LEA instruction.

Resulks returned

Whenever you call the Receive request on Apple IPC, you get one of three results returned from the
IPC driver:

s 0
s message
s negative number (indicating an error)

Table 5-3 lists the only two errors that can be returned when a Receive request is made to Apple IPC.

8 Table 5-3 Errors returned

Error Number Description
NoQueueErr 4 No more queues or bad queue
QueueBusy 65 Receive is already outstanding on queue

Error -64 (NoQueueErr) is retumed if the queue number (TID) of the task doing the Receive request
is bad. A queue number is bad if it is not within the range of legal queue numbers or is not open
(either OpenQueue was not done or CloseQueue was done).

Error -65 (QueueBusy) is returned if an attempt is made to do a Receive request for a particular
queue number (TID) when a request is already outstanding. For more information, refer to the
section earlier in this chapter on OpenQueue.

A Warning To check for an error in the message pointer returned by a Receive request
in C language, you must cast the message pointer to long before checking
to see if the pointer is negative. Failure to do so will result in a system
cash. a

76 5/ Apple IPC Services

R

Medusa Programmer's Guide, Beta Draft Apple Confidential

The following code checks the message pointer to see if an error code was returned:
message *msgptr;

msgptr = Receive (0, 0, 0, 0, 0);

if ((long) msgptr < 0).

{

/* Process error code */

/* No error, process message */

Register_Task

Register_Task allows a process to register itself with the Object Name and Type Name specified,
using the Name Manager. To make the process visible only to other processes on the Macintosh II
main logic board, set local_only to nonzero. To make the process visible to tasks on other cards,
then set local_only to 0. Register_Task returns a nonzero value if the process was registered; if not,
0 is returned.

The C declaration for Register_Task is

cypedef boolean short;
char Register_Task (object, type, local_only);

char object (] . /* Object Name */
char type (i /* Type Name */
boolean local_only; /* If Local Visibility Only */

The following code provides an example of how to register a process:

Zf ('Register_Task ("my_name", "“my_type", 0))
orintf("Could not Register Process");

The following example shows how to call Register_Task from assembly language:

MOVE.L #LOCAL, -(A7) ; value of local on stack
PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME : address of object name
JSR Register_Task

ADDQ.W #12,A7 ; pop the stack
TST.B DO ; check if register ok
3NE.3 oK ; lump if OK

5 / Apple [PC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential

Send

Send allows you to send a message to, the destination address specified in the message. Send places
a message in the queue of the process specified by the message field, mTo. The message is placed in
the queue in priority order (from highest to lowest). This call assumes that all fields have been filled
in (mFrom, mTo, mCode, andso forth).

The C declaration of Send is

void Send(mptr)
message *mptr; /* pointer to message buffer */

If a message is undeliverable, it is returned to the sender with the message status, mStatus, set to
08000 and the message code, mCode, having bit 1 << 15 set.

The assembly-language form for the Send macro is as follows, where P1 is the address of the
message buffer to be sent

{Label] Send Pl

To indicate the location containing the address of the message buffer to be sent, you can specify P1
as a register (AO-A6, D0-D7), or you can use any 68000 addressing mode valid in an LEA instruction.

SwapTID
SwapTID swaps the mFrom and mTo fields of a message buffer.
The C declaration of SwapTID is

void SwapTID(mptr)
message *mptr; /* pointer to message buffer */

The assembly-language form for the SwapTID macro is as follows, where P1 is the address of the
message buffer

(Label] SwapTID 21

To indicate the location containing the desired address, you can specify P1 as a register (A0-A6, DO-
D7), or you can use any 68000 addressing mode valid in an LEA instruction.

P1 can be specified as a register (A0~A6, DO-D7), or can use any 68000 addressing mode valid in an LEA
instruction to specify the location containing the desired address.

78 5/ Apple IPC Services

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 6 Download and Initialization

THIS CHAPTER DESCRIBES the interface to and the operation of
the TokenTalk Prep file. The TokenTalk Prep file provides code and
parameters for initializing the TokenTalk NB card. This chapter conains an
example of how to use the TokenTalk Prep file to download and initialize the
TokenTalk NB card, and it describes the resources and services in the
TokenTalk Prep file. =

79

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The TokenTalk Prep file contains resources. These resources consist of code images for
downloading to the TokenTalk NB card and routines that participate in the boot process and
initialization of the card.)

The TokenTalk Prep file is a specific type, 'ttpp', and the file's creator is also of the type
‘ttpp". Specifically, the TokenTalk Prep file contains the following resources:

ResType ID Description

'STR' —403%0 The TokenTalk Prefs file

'ttbl! O-n resources containing MR-DOS, LLC, and SNAP; these boot the
card

‘llcp! -1 Resource that contains default LLC parameters

‘ttut' 0 Resource that contains the utility routine to support the

TokenTalk NB card initialization

The TokenTalk Prefs file (whose name is contained in ' STR*) can containan 'llcp' resource
that overrides the default logical link control LLC parameters. See the section “LLC Resource
Description” later in this chapter for information on creating your own 'llcp' resource.

The 'ttbl' resource contains the software that boots the cardand 'llcp' contains
the default LLC parameters.

The *ttut' resource contains a utility routine that supports the TokenTalk NB card
initialization.

TokenTalk Prep services

The 'ttut' resource in the TokenTalk Prep file provides the following services. Definitions
relating to these operations are located in the include file TTUtil.h.

Code Meaning See page
TTFindCards Find all cards and return mask)
TTFindBootedCards Find booted cards and return mask &
TTFindUnbootedCards Find unbooted cards and return mask 2]
TTBootCards Boot cards B
TTForceBoot Force boot of cards B
TTGetStatusAddr Return TT status address B
TTGetLLCTID Return TID of LLC for given slot &
TTGetSNAPTID Return TID of SNAP for given slot #
TTGetBoardID Return board ID for given siot #
TTDvnamicDL Perform dynamic download 85

80 6 / Download and Initialization

ity

Medusa Programmer's Guide, Beta Draft Apple Confidential

To call on the TokenTalk Prep file to perform these services, perform the following steps:
1. Open the resource fork of the TokenTalk Prep file in the System Folder.

2 Loadthe ‘ttut' resource.

3 Obtain the pointer to the resource and strip it using StripAddress.

4 Use the stripped pointer to call the function inthe *ttut' resource.

See the section “TokenTalk Prep File Example” later in this chapter for a sample program listing that
performs these steps.

Call the TokenTalk Prep services using Pascal calling conventions. The function accepts two long
integer parameters and returns a long integer result. The first parameter is always one of the service
names listed above; it specifies which operation to perform. The second parameter and the returned
result vary depending on the operation specified. In addition, the TokenTalk Prep file should be on
the top of the resource file list for all operations except TTDynamicDL. When dynamically
downloading a running TokenTalk NB card, the file that contains the resources to download should
be at the top of the resource file list.

6 / Download and Initialization

81

Medusa Programmer's Guide, Beta Draft Apple Confidential

TTFindCards

The TTFindCards function finds all or.some TokenTalk NB cards. The second parameter is a 16-bit
mask of the NuBus slots to check in the low-order 16 bits. In the bit mask, bit 2R denotes NuBus
slot n. The result retumed is a similar mask of the TokenTalk NB cards found.

Assume that the pointer UtilPtr is declared as follows and that it has been initialized with the
stripped address of the 'ttut' resource:

typedef pascal long (*TTUtilPtr) (long op, long data);
TTUtilPetr Jtilper;

A TTFindCards request to find all TokenTalk NB cards would be similar to the following:
result = (*UtilPtr) (TTFindCards, -1):;

To verify that slot 1 (NuBus slot 9—the one nearest the Macintosh I power supply) contains a
TokenTalk NB card, use the following call:

result = (*UtilPtr) (TTFindCards, 0x0200);

This operation uses the Slot Manager to identify TokenTalk NB cards. It makes no use of any MR-
DOS IPC services.

TTFindBootedCards

The TTFindBootedCards function is similar to TTFindCards except that it only locates TokenTalk
NB cards that already have MR-DOS and LLC running. Logically, this function uses TTFindCards to
identify TokenTalk NB cards then checks that the card is running by using MR-DOS IPC services.

The following call finds all TokenTalk NB cards that are running:

result = (*UtilPtr) (TTFindBootedCards, -1);

TTFindUnbootedCards

The TTFindUnbootedCards operation is similar to TTFindBootedCards except that it only locates
TokenTalk NB cards that do not already have MR-DOS and LLC running. Logically, this request uses
TTFindCards to identify TokenTalk NB cards then checks to see whether the card is running by
using MR-DOS IPC services.

The following call finds all TokenTalk NB cards that are not running:

result = (*JtilPtr) (TTFindUnbootedCards, -1):

82 6 / Download and Initialization

Medusa Programmer's Guide, Beta Draft Apple Confidential

TTBootCards

The TTBootCards function boots the TokenTalk NB card. This request only boots TokenTalk NB
cards that have not yet been booted. Logically, this request uses TTFindUnbootedCards then boots
those cards found. The result of this operation is a mask of the cards that were actually booted.

See the section “TokenTalk NB Card Boot Process Summary” later in this chapter for more
information on the boot process.

The following call starts all TokenTalk NB cards that are not running;

result = (*UtilPtr) (TTBootCards, -1);

TTForceBoot

The TTForceBoot function is similar to the TTBootCards operation except that it forcibly restarts
cards that are already running. In normal use, this function should never be used since a TokenTalk
NB card may be supporting multiple concurrent applications. The result of this operation is a mask
of the cards that were actually started.

See the section “TokenTalk NB Card Boot Process Summary” later in this chapter for more
information on the boot process.

The following call starts the TokenTalk NB card in slot 2 (NuBus slot A):

result = (*UtilPtr) (TTForceBdcot, 0x0400);

TTGetStatusAddr

The TTGetStatusAddr function retumns the address of the LLC status structure for the given slot.
The second parameter to this request is a mask of the slot to operate on. Unlike previous requests,
this mask should have only a single bit set since only a single status address can be returned. The
result of this operation is a 32-bit NuBus address. This address will be returned even if the card is
not running. By inspecting the structure at this address, ring status can be monitored. Refer to the
TMS380 Adapter Chipset Users Guide Suppiement for additional information on ring status
messages.

The following call returns the status address for the TokenTalk NB card in slot 3 (NuBus slot B):

result = (*UtilPtr) (TTGetStatusAddr, 0xC800);

6 / Download and Initialization

83

Medusa Programmer's Guide, Beta Draft Apple Confidential

TTGetLLCTID

The TTGetLLCTID function returns the task ID of the LLC task running on the given slot. The
second parameter is a mask of the slot to operate on. This mask should only have a single bit set
since only a single task ID can be returned. This task ID may be used to issue LLC requests as
described in Chapter 4, "The 802.2 LLC / IPC Interface.” A zero is returned if the card is missing or not
running.

The following call returns the LLC task ID for the TokenTalk NB card in slot 4 (NuBus slot C):

result = (*UtilPtr) (TTGetLLCTID, 0x1000);

TTGetSNAPTID

The TTGetSNAPTID function is much like the TTGetLLCTID function except that it returns the
task [D of the SNAP task running on the given slot The second parameter is a mask of the slot to
operate on. This mask should only have a single bit set since only a single task ID can be returned.
This task ID may be used to issue SNAP requests as described in Chapter 3, “SubNetwork Access
Protocol (SNAP) Interface.” A zero is returned if the card is missing or not running.

The following call returns the SNAP task ID for the TokenTalk NB card in slot 5 (NuBus slot D):

result = (*UtilPtr) (TTGetSNAPTID, 0x2000);

TTGetBoardID

The TTGetBoardID function returns the BoardID for the TokenTalk NB card in the given slot.
This is the board ID returned by the Slot Manager. The second parameter is a mask of the slot to
operate on. This mask should only have a single bit set since only a single board ID can be returned.
The result of this operation is board ID stored in the declaration ROM on the card. The board D is
refurned even if the card is not running.

The following call returns the board ID for the TokenTalk NB card in slot 6 (NuBus slot E):

result = (*UtilPtr) (TTGetBoardID, 0x4000);

84 6 / Download and Initialization

Medusa Programmer's Guide, Beta Draft Apple Confidential ¥/89
TIDynamicDL

The TTDynamicDL function downloads and starts a task onto a running TokenTalk NB card.
Dynamic download requires considerable familiarity with the MR-DOS environment and is beyond
the scope of this document The second parameter is the address of the structure shown in
Example 6-1. The result of this operation is the task ID of the started task, or zero if the task could
not be started.

The following call attempts to start a task on the TokenTalk NB card in siot 3 (NuBus slot B):

TTDDLP ttdl;

memset ((char *)&tcdl, O, sizeof (TTDDLP)): /* clearing memory */
ctdl.type = ‘abcd'; /* the type of your task code file */
ttdl.SlotNo = 3; /* the slot number to download to */
ttdl.STPB.stack = 2048; /* the size of the task's stack */
ttdl.STPB.priocrity = 25; /* the task's priority */

result = (*UtilPtr) (TTDynamicDL, (long)s&ttdl);

s Example 6-1 TTDynamicDL request structure

cypedef struct

{

long Type: /* Rescurce type holding code to downlicad =/
long SlotNo: /= Slot number to download to
{not a mask - 9 - 14) */
struct st_PB xxx; /= StartTask parameter structure defined in MR-DOS
* include file os.h.
*/
} TTDDLP;

6 / Download and Initialization =~ 85

Medusa Programmer's Guide, Beta Draft Apple Confidential

TokenTalk Prep file example

The following routine returns a pointer to the TTULtil routine and a RefNum to the resource file, so
that the file can be dlosed on completion. The pointer is returned as zero if any errors occur. See

Appendix C for a complete programming example.

/t
* GetTTUtilPtr - Return pointer to TTUtil routine.
-
hd Inputs:
- resno Resource number of string resource holding prep file name.
- refptr Address of a short to receive the resource file refnum.
*
= Qutputs:
- Returns pointer to TTUtil routine, or zero if unavailable.
-
- Note that no refnum is returned if the pointer returned is zero. This
* routine will automatically close any resource file it may have opened
- in that case.
=/
TTUtilpPrr GetTTUtilPtr(resno, refptr)

Handle strhdl, utlhdl;

short trefnum;

SysEnvRec sysrec;

if ((strhdl = GetRescurce('STR ', resno)) == 0 || SysEnvirons(l, &sysrec))
return 0; /* Fail if resource missing or

SysEnvirons fails =*/
tzrefaum = OpenRFPerm(*strhdl, sysrec.sysVRefNum, fsRdPerm);
Re'easeRescurce(strndl); /* Flle rame no longer needed */
if (ttrefnum == -1) /* 1f open failed, return 0 */

return 0;

Lf ((utlhdl = GetlResource('szut', 09)) == 0) /* Error loading

resource? */

CloseResFile(ttrefnum);
return 0; /* Close file and return 0 if didn't
get resource */
}
*refptr = ttrefnum:;

return (TTOtilPtr)StripAddress(*uclhdl); /* Return stripped pointer */

86 6 / Download and Initialization

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
.]
LLC resource description
The following information summarizes the boot process and describes the LLC resource.
TokenTalk NB card boot process summary
The boot process checks for the presence of a TokenTalk Prefs file whose name comes from the
"STR' resource. In the TokenTalk Prefs file, the boot process checks foran '1lcp' resource
with an ID that matches the slot being booted. If the matching siot ID is present, the LLC
parameters in that resource are used when starting LLC on that slot. Otherwise, the default
contents of the '1lcp' resource in the TokenTalk Prep file is used. This approach allows a
Macintosh II system with multiple TokenTalk NB cards to have each card initialized with different
parameters based on its intended use.
Defining the LLC resource
If the TokenTalk Prefs file does not exist and you want to define special LLC parameters, you must
create the TokenTalk Prefs file in the System Folder with a type of 'ttpf' and creator
"ttpp'. The description of the '1llcp' resource follows:
/ »
- TTInit.r - Define format of LLC parameter resource.
*
* Mark D. Rustad. 8/10/88.
- Copyright © Apple Compuﬁer, Inc. 1988.
*/
“ype '.lcp!
longinz; /* Inizial functicral address ~*/
longint; /* Initial group address */
Longint; /* Opticns (not used - should be zero) =~/
longint; /* Address of listener, always zero
in resource */
unsigned integer:; /* Maximum frame size */
unsigned integer; /* Maximum number of link stations */
unsigned integer; /* Buffer size within tms380 */
unsigned byte; /* Maximum number of SAPs */
unsigned byte; /* Maximum number of group SAPs */
unsigned byte: /* Maximum number of group SAP members */
unsigned byte; /* Number of %“ransmit buffer in list */
unsigned dyte; /* Number of receive buffers in list =/
unsigned byte; . /* Number of interrupt messages to reserve ./
insigned zyte; ‘* Sroup . response period (40 ms zicks) */
insignea svte: ‘* Zrsup . -eceive acxnowieage periosd
6 / Download and Initialization 87

Medusa Programmer's Guide, Beta Draft Apple Confidential

unsigned byte; /* Group 1 inactivity period */
unsigned byte; /* Group 2 response period */
unsigned byte; 3 /* Group 2 receive acknowledge period */
unsigned byte; /* Group 2 inactivity period =*/
unsigned byte; /* Minimum transmit buffers =~/
unsigned byte; . /* Maximum transmit buffers */
hex string[6]; /* Node address, 0 uses burned-in address */
hex string(l8]; /* Product ID string (in EBCDIC?) */
cstring(32]); /* IPC name of this LLC */

}i

/* End of llcp.r */

88 4 / Download and Initialization

Medusa Programmer's Guide, Beta Draft Apple Confidential

Chapter 7 Avoiding Trouble

THIS CHAPTER DISCUSSES some common situations that might
prevent your development code from operating comrectly. The object of this
chapter is to provide a first-line troubleshooting guide that helps identify
common but subte errors. The troubleshooting information includes

software tips and hardware tips. m

89

Medusa Programmer's Guide, Beta Draft Apple Confidential

General information

The overall complexity of programmiﬁg and developing applications for a network environment
provides ample opportunity for problems. Good programming technique and design can prevent
some problems; other problems arise from implementing good practices in an environment that
lacks full support for those tried-and-true practices.

The SNAP and LLC interfaces provide error messages. Problems with the interface itself can
usually be resolved by investigating the causes of the error messages. Other problems can be more
subtle, such as having the token ring chipset shut down for no apparent reason or having code that
worked in a standalone environment fail when ported to a dynamic download environment. The
remainder of this chapter presents guidelines for those less obvious error conditions.

Refer to the echo task program in Appendix C for a comprehensive example of a functional,
dynamically downloaded TokenTalk task.

Common error causes

Potential causes of errors not easily detected include the following:
s Unchecked error codes

u Failure in the physical network connection

s Errors in programming the listener function

s Global data structures referred to incorrectly

s DMA activity that conflicts

Each of these causes is discussed in the following paragraphs.

Error codes

The mStatus message returns 0 on successful completion of an interface call. Your program shouid
always check the mStatus message for an error condition and provide a suitable recovery routine.

By checking the error codes, you obtain a diagnostic indication of the cause of the error, which is an
important program development tool. A summary of error codes is presented in Tabie 7-1.

90 7 / Avoiding Trouble

Medusa Programmer's Guide, Beta Draft

Apple Confidential

s Table 7-1. mStatus error code summary

SNAP Result
codes

LLC Result codes

Value

SNAPCancelled
SNAPInUse
SNAPNOErr
SNAPNoOErr
SNAPNOEr
SNAPNoMore

SNAPNotAttached
SNAPNotAttached

SNAPTruncated

Value
LLCAddrErmror

LLCBadFrame
LLCBadPointer
LLCBadPri

LLCBadRefNum -

LLCBadSAPOpts
LLCBadSAPValue
LLCBadSize
LLCCancelled
LLCClosedNoAck
LLCConnFail

LLCConnSeqErmror
LLCGroupLimit
LLCLinkOpen
LLCMaxExceeded
LLCMsgReject
LLCNoEsr
LLCNoGroup
LLCNoiFrames

Description

Receive cancelled, either explicitly or by SNAPDetach
PD already attached

Normal completion

Normal completion

Normal compietion

Insufficient resources

Invalid RefNum

Invalid RefNum

Frame larger than provided buffer space

Description
Invalid remote address—group address invalid.
Also,size must be 0 or node address size for the
media

Invalid frame type

Bad pointer passed as “interface-owned"

Unauthorized access priority

Invalid RefNum

Invalid SAP options

Invalid SAP value or SAP value already in use

mDataSize has inappropriate value

Receive cancelled, either explicitly or by close operation

Station closed without remote acknowledgment

The remote station did not accept the connection

request

Connect sequence error

The group SAP already has maximum members

Unclosed link stations on SAP

Parameter exceeds maximum

Unusual interface error

Normai completion

Requested group membership in nonexistent group SAP

Link not transmilting { (rames

7/ Avoiding Trouble

91

Medusa Programmer's Guide, Beta Draft Apple Confidential
LLCNoResources Maximum number of link stations or SAPs are already
open
LLCNotFullySupported Sotme option or type requested is not fully
supported by this media

LLCNowember Member not found in group SAP

LLCProtoError Protocol error—I frame issued before DMA ready or link
in invalid state for command

LLCRoutingError Invalid routing information length

LLCSAPOpen Group SAP cannot close—all member SAPs are not
closed

LLCSeqError Sequence error—have already issued a close to this link

LLCTruncated Buffer too short to receive all information

LLCTxError Error in frame transmit or strip

LLCTxTooLong Invalid transmit frame length
LLCUnauthMAC Unauthorized MAC frame

Network connection failure

If a cable is disconnected on the TokenTalk NB card or the Multistation Access Unit (MAU) while
the TokenTalk software is running, the error “LLC not open” occurs. The adapter card's chipset will
waits for approximately 2 seconds and then shuts itself down, which closes the LLC interface. All
queued messages are returned to the client and any future messages are also returned to the client
with the “LLC not open” error code.

Recovery for this condition depends on the application on the TokenTalk NB card. The choices
are either to downlcad and initialize the card again, or to require a complete system reboot.

A similar condition occurs if the card is downloaded and initialized without being plugged in to
the MAL.

Problems programming the listener function

Treat the listener function like an interrupt service routine, which is to say keep it simple and
efficient. Avoid allocating large amounts of stack to the listener function and avoid atempting to
perform a large amount of processing. All *good programming” techniques for dealing with
interrupt service routines apply equally well to dealing with the listener function.

92 7 / Avoiding Trouble

Medusa Programmer's Guide, Beta Draft Apple Confidential

Global data structures and dynamic download

For each task, the AS register contains the starting address of the global data structure associated
with that task when i is created and linked with MR-DOS. It is normally useful to assign the
common global data structure in this manner, because all tasks created and linked with MR-DOS will
have the same value for AS, for example,

AS = GetgCommon () ->gInitAS

In a dynamic download situation, however, this assumption is wrong, A task spawned from the
dynamically downloaded task has a different A5, which differs from that of the task created and
linked with MR-DOS. Therefore, to spawn another task from the dynamic download task, you
must set up your own A5 to ensure that the correct data structure is used.

This type of error is difficult to trace because a task developed as a standalone under MR-DOS
will execute. But when the same task is dynamically downloaded it will fail, and all because the
wrong data structure address is used. This is a situation in which a useful and acceptable
programming practice backfires.

Figure 7-1 shows a situation in which the adapter card is loaded and initialized from the Macintosh
0S. Atask is linked with MR-DQS, the 802.2 interface is downloaded to he card along with MR-DOS,
and all tasks begin execution. At this point, the A5 register contains the address of the common
global data structure, which is set when the the tasks are linked with MR-DCS. Sometime later, a
new task is dynamically downloaded to the card. As the figure shows, the new task must have its
own value for A5, which is created by the dynamic download process. The echo task program in
Appendix C contains an example of the code that captures and manages the dynamic download
value for AS.

7/ Avoiding Troubie

93

Medusa Programmer‘s Guide, Beta Draft
s Figure 7-1 Dynamic task download

Apple Confidential

Macintosh Operating System

Load and initialize card
Tasks linked 1o MR-DCOS

Dynamic download
newTask

A5-> global data and jump tble

MR-DOS 802.2 task

-

Available memory

LTI

A$ points to common global structure

Task.AS = gCommon

AS-> glabal data and jump tble

MR-DOS 802.2 task

AS5-> global data and jump able
for newTask

New Task

newTask A5 3 gCommon

Direct Memory Access (DMA) conflicts

An error condition can occur when the TMS380 chipsets on two cards in the same system attempt a
DMA transfer to one another at the same time. The chipset attempts to retry on error; but if it
fails repeatedly, it shuts itself down. The simplest way to avoid this condition is to have the CPU
perform the DMA transfer and have the chipset copy the data from the CPU.

This DMA conflict is possible because the token ring chipset has no connector to the CPU halt
signal. It is by means of asserting the hait and bus error signals at the same time that a bus retry
occurs. A bus retry occurs when the DMA request cannot complete. Because the chipset only sees
the bus error signal, & acts as though a bus error has occurred in fact, rather than merely a bus retry.
The retry-on-error count is set to its maximum limit of 255, meaning that 255 consecuuve bus errors
must be seen by the chipset before it shuts itself down.

Avoud this potentiai error condition 1 one of two ways:

%4

7/ Avoiding Trouble

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/2/89

s As mentioned, have the adapter card CPU perform the DMA transfer rather than the token ring
chipset

s Split the DMA transmit buffers into small enough sizes that the buffer will exhaust before the
bus retry count does

7 / Avoiding Trouble 95

Medusa Programmer's Guide, Beta Draft Apple Confidential

Appendix A Components

The release diskette for software development on the TokenTalk NB card

includes the following files:
s [LCSupporlib.o

s [ICh

s SNAPh

s TRInith

= TTUtiLh

s TTInitr

Medusa Programmer's Guide, Beta Draft Apple Confidential

Appendix B The TokenTalk NB Card

The TokenTalk NB card is a single-board communications controller that
occupies one 1/0 slot on the system board of the Macintosh II system. The
card provides high-speed (4M bps) token ring network communications and is
compatible with the IBM token ring adapter at the physical transmission
level.

Designed to the Draft 2.0 NuBus specifications, the TokenTalk NB card can
function as either a NuBus master or slave device. When acting as bus master,
TokenTalk NB has full access to all other NuBus devices installed in the host
system. As a NuBus slave, TokenTalk NB relinquishes control of all its

internal resources to the designated bus master.

Throughout this appendfx, all address reference and data values are given as
hexadecimal values and refer to the 24-bit address range of the Motorola 68000
microprocessor. The high-order 8 bits that indicate the NuBus slot address are
not contained in the addresses listed in this appendix.

The term “TMS380” as used in this appendix refers to the complete Texas
Instruments TMS380 Token Ring Adapter Chipset as a whole rather than to a
specific member of the chipset. =

99

Medusa Programmer's Guide, Beta Draft Apple Confidential

Hardware overview

The overall design of the TokenTalk NB card can be divided into two main functional blocks: the
communications engine and the token ring interface. Figure B-1 shows a functional block diagram
of the TokenTalk NB card.

s Figure B-1 TokenTalk NB Block Diagram

Communications engine
68000-10
NuBus Token Ring interface
UnidD PROM 16 KB SRAM
TMS38010
64 KB ROM Communications
processor
a— R
incerface ™S00 L
512 KB RAM Protocol
handler
Ring interface
Control
) TMS38051
=
e T™S38030 |
System
interface

Communications engine

The communications engine consists of five major components:
s The Motorola 68000 CPU

a PROM

s RAM

s Communications engine/NuBus interface

s Communications engine/token ring interface

These components are described in the foilowing sections.

100 B / The TokenTalk NB Card

4

Medusa Programmer's Guide, Beta Draft Apple Confidential

Central processor unit (CPU)

The processor employed on the TokenTalk NB card is a Motorola 68000 CPU with a clock speed of
10 Mhz. The 10-Mhz dock is derived from the 10-Mhz NuBus clock. Because TokenTalk NB can
function as a NuBus Master device, the 68000 processor is capable of acquiring full access and
control of all NuBus devices and resources.

Read-only memory (ROM)

TokenTalk NB provides space for 64KB of adapter ROM. This ROM contains the NuBus
configuration information required to interface the card to the Macintosh II environment, the
power on self-test code, the power on reset vectors, the burned-in unit ID, the version number, the
copyright notice, and any additional firmware provided by Apple Computer, Inc.

The adapter ROM is mapped at adapter addresses FF0000 to FFFFFF. The on-board ROM appears as
a 16-bit device to the 68000 and as a 32-bit device to the NuBus. When accessed by NuBus, circuitry

on the communications engine performs two 16-bit accesses to provide a full 32 bits of data in one
NuBus access. When this action is performed, the low-address word occupies the low-order bits (0-
15) and the high-address word occupies the high-order bits (16-31) of a 32-bit longword.

Dynamic random access memory (DRAM)

A total of 512KB of DRAM on the TokenTalk NB is mapped at adapter addresses (000000 to 07FFFF.
The CPU, TMS38030 Token Ring System Interface, and NuBus all have access to this memory. The
on-board DRAM s used for TokenTalk NB system code and data space.

When it functions as a bus slave, all on-board RAM is accessible to the current system bus master.
While the current NuBus master has access, both the 68000 and the TMS38030 are denied access to
the on-board RAM. This RAM, like the ROM, appears as a 16-bit device to the 68000 and TMS380, and
as a 32-bit device to NuBus.

When accessed by NuBus, circuitry on the communications engine performs two 16-bit accesses to
provide a full 32 bits of data in one NuBus access. When this action is performed, the low-address
word occupies the low-order bits (0~15) and the high-address word occupies the high-order bits (16—
31) of 2 32-bit longword.

B / The TokenTalk NB Card

101

Medusa Programmer's Guide, Beta Draft Apple Confidential

Communications engine/NuBus interface

The communications engine/NuBus interface provides an 8/16/32-bit interface between the
TokenTalk NB 68000 and NuBus. Because the 68000 is a 16-bit device and the NuBus allows 32-bit
accesses, special circuitry is provided to transform a 32-bit NuBus access into two 16-bit 68000
accesses. If any problem occurs with the NuBus access, 2 bus error is reported to the 68000. Access
to the communications engine/NuBus interface is accomplished through a set of control registers
located at addresses CO0000-C00040.

NuBus pinouts as viewed from the front edge of the card are as follows:

¥
NO QO N ON W e W N

Pin Row A Row B Row C
-12 -12 /RESET
GND GND GND
/SPV GND +5
/SP +5 +5
/TM1 +5 /TMO
/AD1 +5 /ADO
/AD3 +5 /AD2
/ADS * /AD4
/AD7 . /ADS
10 /AD9 * /AD8
1 /AD11 : /AD10
2 /AD13 GND /AD12
3 /AD15 GND /AD14
14 /AD17 GND /AD16
15 /AD19 GND . /AD18
16 /AD21 GND /AD20
17 /AD23 GND /AD22
18 /AD25 GND /AD24
19 /ADZ7 GND /AD26
4] /AD29 GND /AD28
2 /AD31 GND /AD30
2 GND GND GND
3 GND GND /PFW
A /ARB1 g /ARBQ
5 /ARB3 * /ARB2
% /D1 ‘ /1D0
Z /1D3 ¢ /D2
3 /ACK +5 /START
2 +5 +5 +5
b /RQST GND -5
3 /NMRQ GND GND
2 +12 =12 ‘CK

These pins are connected but not suppiled wish the-3.2 V ignal specified in ‘he NMuBus specificanon.

102 B/ The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential

Communications engine/token ring interface

The communications engine/token ring interface consists of the 68000, the token ring interface
logic, and the direct /O control registers and DMA controller located in the TMS38030. This interface
logic provides a 16-bit interface between the 68000 and the TMS38030. Access to this interface is
accomplished through the use of the TMS38030 direct I/O control registers that are mapped to the
68000 memory addresses from 800000-800006.

Token ring interface

The token ring interface section of TokenTalk NB is implemented using the TI TMS380 token ring
interface controller chipset. The TMS380 configuration consists of the five TMS380 chips, 16KB of
buffer RAM, and the interface logic.

The TMS380 chips are briefly described in the following sections.

TMS38010 communications processor

The TMS38010 executes the protocol firmware residing in the TMS38030 and provides intermediate
buffering of ring traffic. There are 2816 bytes of internal buffer RAM that are supplemented with
16KB of external static RAM (19,200 bytes total) to provide a larger and more efficient buffer space.

TMS38020 protocol handler (PH)

The token ring Media Access Control (MAC) sublayer protocol firmware normally resident within
the TMS38020 can be replaced with enhanced protocol firmware residing in external PROM. Addition
of this enhanced PROM provides features required in a bridge environment. An application that
needs to verify the installation of the optional protocol firmware can read the TokenTalk NB
options register (address 800008) and check whether bit 0 is set to zero.

Texas [nstruments has a set of two PROMs that contains an enhanced version of the TM538020
protocol handler internal ROM. This enhanced PROM set is used in bridge applications. The
TokenTalk NB card can incorporate these PROMs through the use of a piggy-back board, which is
plugged into a connector located on the TokenTalk NB card.

The maximum number of TokenTalk NB cards that can be installed in a single Macintosh 11
system is limited by the power supply and by the number of available slots. Software access to
each card is accomplished through the NuBus slot addressing conventions.

B / The TokenTalk NB Card

103

Medusa Programmer's Guide, Beta Draft Apple Confidential

TMS38030 system interface (SIF)

The TMS38030 system interface chip controls all interface functions between the 68000 and the
remainder of the token ring chipset. The TMS38030 provides a 16-bit bus between the 68000 and the
TMS380 token ring interface. The TMS38030 provides a set of direct /O registers and a direct
memory access (DMA) channel for data transfers.

TMS38051 and TMS38052 ring interface

The TMS38051 and TMS38052 ring interface chips perform the actual data encoding and decoding
using the differential Manchester code. The ring interface chips also perform the ring insertion and
de-insertion tasks. Physical connection to the ring is by way of an IBM Token Ring Adapter DB9
nine-pin connector. The DB9 connector provides correct signal connection to the IBM Type 1
Cabling System. Pinouts for the DB9 connector are as follows:

Pin Wire Signal
Shield 1 Ground
1 4 Receive
2 Not Used
3 , Not Used
4 Not Used
5 3 Transmit
6 5 Receive
7 Not Used
8 Not Used
9 2 Transmit

Burned-in unit ID

The unit ID/serial number is stored in a reserved location in the 68000 Declaration PROM. The unit
ID is the network node address of a TokenTalk NB card and its host. Each token ring adapter card,
whether a TokenTalk NB card or otherwise, has a unique 6-byte (48-bit) burned-in unit ID. The unit
ID contained in this ROM is used as the default node ID when the adapter card is first opened. By
supplying a locally administered node ID as a parameter to the TMS380 Open command, you can
override the default unit ID. If no unit ID override is provided by the application software, the
low-level protocol software must retrieve the burned-in unit D from the Declaration PROM and
pass it to the TMS380 chipset as the node ID used when opening the TokenTalk NB card (or other
adapter card).

The iEEE 802 committes administers and assigns blocks of unit [D aumbers to respective
manufacturers.

104 B / The TokenTalk NB Card

ey

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
Adapter interfaces
The following sections describe the adapter interfaces and include descriptions of the adapter
memory map, control registers, options register, direct I/O interface registers, DMA, timers, resets,
and interrupts.
TokenTalk NB memory map
The following list provides an address map of all resources on the TokenTalk NB card:
Address Function
FFOOOO-FFFFFF ROM (64KB)
EOOOOQ-FEFFFF Reserved
Q00040 68000 Reset
C0000A Set Interrupt TokenTalk NB Request
Q00008 Clear Interrupt TokenTalk NB Request
00006 Set Interrupt Host Request
Q00004 Clear Interrupt Host Request
CD0002 Clear Timer Interrupt
Q00000 NuBus Extension Register / Clear Reset
A00Q00-BFFFFF NuBus
800012-9FFFFF Reserved (I/O Interface Decode)
800010 TMS380 NuBus Extension Register
800008 TokenTalk NB Options Register
800006 TMS38030 DIO Interrupt Register
800004 TMS38030 DIO Address Register
800002 TMS38030 DIO Data Auto Increment Register
800000 TMS38030 DIO Data Register
400000-7FFFFF Reserved (/0 Interface-No Decode)
080000-3FFFFF Reserved
000000-07FFFF RAM 512KB
B / The TokenTalk NB Card 105

Medusa Programmer's Guide, Beta Draft Apple Confidential

Control registers

The communications engine provides eight control registers that assist the 68000/TMS380 software
interface. The control registers are memory-mapped at addresses CO0000—C00040. The eight control
registers and functions are as follow:

Address Function R/'W
Q00040 68000 Reset w
Q0000A Set Interrupt TokenTalk NB Request R
Q00008 Clear Interrupt TokenTalk NB Request R
Q00006 Set Interrupt Host Request R
Q00004 Clear Interrupt Host Request R
(00002 Clear Timer Interrupt R
Q00000 NuBus Extension Register / Clear Reset R

TokenTalk NB card options register

The options register at address 800008 is provided to determine what options, if any, are currently
installed on the TokenTalk NB card. The only option currently planned for the card is the optional
Enhanced TMS38020 PROM set. By reading the options register and testing bit 0, you can determine
whether the bridge PROM set is installed when 0 = installed and 1 = not installed.

TMS38030 direct I/O interface registers

The TMS38030 provides both a direct I/0 (DIO) interface and a DMA interface. The DIO is used for
initializing the TokenTalk NB card, command initiation, and status reporting. The DMA interface is
used for transferring commands, parameter lists, and frames between the TMS380 RAM and the
68000 RAM.

The DIO interface consists of four 16-bit registers, located in the 68000 memory space starting at
address 800000. The registers are as follows:

Address Function

800006 TMS38030 DIO Interrupt Register

800004 TMS38030 DIO Address Register

800002 TMS38030 DIO Data Auto Increment Register
800000 TMS38030 DIO Data Register

DATA register

The DATA register is the primary means of reading from or writing to the buffer RAM of the
TMS38010. The data being read or written is pointed to by the address contained in the ADDRESS
register.

106 B/ The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential
DATA AUTO INCREMENT register

The DATA AUTO INCREMENT register functions similarly to the DATA register, except that the
address contained in the ADDRESS register is automatically incremented in preparation for the next
data access.

ADDRESS register

The ADDRESS register points to the address of the TMS38010 buffer memory at which the next
data access will occur.

INTERRUPT register

The INTERRUPT register interrupts and reads status information from the TMS380 chipset. Bits 0-
7 of the INTERRUPT register can be set to 1 only by the 68000. Only the communications processor
(TMS38010) can reset these bits. Bit 8 can be set only by the TMS38010, and only the 68000 can reset
this bit.

Bits 3-15 of the INTERRUPT register are read-only to the 68000. The bit definitions for the
INTERRUPT register change depending on whether a read or a write operation is being performed.

In read mode, the register bits have the following definitions, where bit 0 is the most significant
bit:

Bit Deflnition

0 Interrupt adapter (TMS380)
1 Adapter reset (TMS380)

2 System status block clear

3 Execute

4 System control block request
5 Receive continue

6 Receive valid

7 Transmit valid

8 Interrupt host system

9 Initialize

10 Test

1 Error

12 Interrupt code 0 / Error 0

13 Interrupt code 1 / Error 1

14 Interrupt code 2 / Error 2

15 Error 3

B/ The TokenTalk NB Card

107

Medusa Programmer's Guide, Beta Draft Apple Confidential
In write mode, the register bits have the following definitions:

Bit Definition)

0 Interrupt adapter (TMS380)
1 Adapter reset (TMS380)

2 System status block clear

3 Execute

4 System control block request
5 Receive continue

6 Receive valid

7 Transmit valid

8 Reset system interrupt

9 Don't care

10 Don't care

1 Don't care

2 Don't care

13 Don't care

4 Don't care

15 Don't care

TMS38030 DMA

The TMS38030 DMA channel provides 24 address bits, enabling access to a full 16 MB of memory.
Since the DMA only has 16 hardware address lines, the 8 most significant address bits are separately
latched onto the 68000 bus before the least significant 16 bits are latched. This action and any
updating of the most significant address bits are accomplished automatically by the TMS38030.
DMA access to the Macintosh II system board or any other NuBus cards installed in the system is
accomplished by the communications engine through the NuBus extension register. The contents
of this 12-bit register are used as the NuBus slot address (bits 20-31) to create a full 32-bit NuBus
address. The DMA channel can be programmed for either burst-mode or cycle-steal modes of
operation.

NuBus addressing

A special 12-bit address extension register located at address C00000 provides access to the 32-bit
NuBus address space from the 68000. Access to this address space from the TMS38030 is through
the TMS380 NuBus extension register at address 800010. To access the NuBus, the 12 most
significant bits of the NuBus address should be written to this register prior to the NuBus access.
Additionally, setting bit A20 in the address field - a bit not normally used - performs a hardware
read/modify/write cycle. This bit must be set whenever executing an 68000 software test-and-reset
(BSET) instruction. Address bit A20 should be faise (0) for ail other operations.

108 B / The TokenTalk NB Card

e,

Medusa Programmer's Guide, Beta Draft Apple Confidential

The contents of the NuBus extension register are appended by the communications engine as
the high-order 12 bits of all addresses used by the TMS38030 to transfer DMA data across the
system interface. By using this extension register, it is possible for the communications engine to
route a data packet from the TMS38010 buffer to the Macintosh II or other NuBus card.

If you change the NuBus extension register to route data packets from the TMS380 to a
location other than the TokenTalk NB card on-board RAM, you must restore the extension register
contents to the appropriate value.

When you route packets from the TMS380 to another destination, remember that you are
transferring IEEE 802.5 packets including all header information, which must be processed.

Adapter timer

An on-board timer circuit provides a Level 1 interrupt every 6.5536 milliseconds. The timer interrupt
can be cleared by reading address C00002. The timer interrupt must be cleared within 3 milliseconds
or the next timer tick will be lost

68000 reset

The 68000 processor can be reset by reading address CO0004. The RESET line is cleared when address
C00000 is read or whenever NuBus is reset. On a power-on RESET (NuBus reset), the 68000 supervisor
stack pointer and program counter are read from the on-board ROM locations FF0000 and FF0004,
respectively. The power on reset vectors will point to the diagnostic and power-up code located in
the ROM.

In the event of a software initiated reset (address CO0004 is read), the 68000 supervisor stack
pointer is loaded from address 000000 in the TokenTalk NB card RAM, and the program counter is
loaded from RAM address 000004. You must make certain that valid programmed reset vectors are
lcaded in these locations.

TMS38030 reset

The TMS38030 can be reset in software by writing an FF to the DIO INTERRUPT register of the
TMS38030, located at address 800006. From the host side, the TMS380 is reset when the 68000 is reset
by reading address Q00004 and it is removed from reset when the 68000 reads address C00000. When
the 68000 is reset from NuBus, the TMS38030 is also reset.

B / The TokenTalk NB Card

109

Medusa Programmer's Guide, Beta Draft Apple Confidential

Interrupts

The TokenTalk NB card provides three levels of interrupts and priorities as follows:

Interrupt Level Priority
Timer _ 1 Lowest
NuBus 2 Low
Token ring interface 3 Highest

Software overview

The following sections provide overviews of the power-on self-test, the software interface, and
the TMS380 command set.

Power-on self-test

A series of power-on self-test (POST) routines are executed when the adapter is first powered up.
All tests are initiated and controlled by the on-board 68000 processor. The following functions are
performed:

s Write then read test of 512KB RAM
s CRC check of declaration ROM
= Initialization of the 68000 exception vector table

s TMS380 diagnostic and lobe media tests. These tests are performed under the control of the
TMS380, with status and error information passed back to the 68000.

s Read/write test across NuBus between 68020 and 68000
® 68000 hardware reset test across NuBus

s Timer, NuBus, token ring interrupt test

The TMS380 diagnostic and lobe media tests indude internal CRC circuitry checkout, an internal
loop-back test from the TMS38010 to the TMS38020 and ring interface chips and back to the
TMS38010. After successful completion of the internal loop-back and CRC tests, the TMS380
performs a lobe media test. This is the same as the internal loop-back test, except that instead of
looping back to the TMS38010 from the ring interface, the test continues through the connecting
cable to the multistation access unit (wiring concentrator) before looping back. For additional
information on these operational tests, refer 1o the Texas Instruments TMS380 Adapter Chipset
User’s Guide.

110 B / The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential

Software interface

The following sections present a basic overview of the software mechanisms that control and
operate the TMS380 from the 68000. In addition to direct manipulation of the DIO registers, two
software constructs—the system command block (SCB) and the system status block (SSB) that
reside in the TokenTalk NB card's 68000 memory—are used to pass commands to and get status
from the TMS380.

System command block (SCB)

The system command block is a six-byte buffer that is used to issue commands to the TMS380.
From low memory to high memory, the format of the SCB is as follows:

COMMAND 2 bytes

ADDRESS high 2 bytes

ADDRESS low 2 bytes

The COMMAND field contains the 16-bit command code of the command to be issued. The two
address fields contain a 32-bit pointer to a command parameter table. (The upper 8 bits are ignored,

resulting in a 24-bit address.) The format of the command parameter table varies for each command
and contains parameter and address informaticn needed to execute the command.

System status block (SSB)

The system status block is an eight-byte buffer that the TMS380 uses to return status information
and completion codes on completion of an adapter chipset command. From low memory to high
memory, the format of the SSB is as follows:

COMMAND 2 bytes

STATUS 0 2 bytes

STATUS 1 2 bytes

STATUS 2 2 bytes

The COMMAND field is updated by the TMS380 and identifies either RING STATUS, COMMAND
REJECT STATUS, or the status of a general command. The three status fields contain actual status

information for the COMMAND field. The format and meaning of the status fields vary depending
on the command.

TMS380 initialization

TMS30 initialization is accomplished by allocating in the 68000 memory an SCB and an SSB. The
particular application running on the TokenTalk NB card also creates a 22-byte initialization block.
This block, similar to a command parameter table, contains various intialization options, interrupt
vectors for the TMS380, TMS380 DMA parameters, and 24-bit pointers to the SCB and SSB.

B / The TokenTalk NB Card

111

Medusa Programmer's Guide, Beta Draft Apple Confidential

To transfer the intialization block to the TM5380, the direct I/O registers are used. The basic
procedure is as follows:

1 Software reset the TokenTalk NB card.

2 Verify that the power-up diagnostics are successfully completed.

3. Write the value 0200 to the TMS38030 address register.

4 Transfer the intialization block to the TMS38030 by writing each byte or 16-bit word to the

DATA AUTO INCREMENT register. This action causes the initialization block to be written to
successive TMS380 RAM locations beginning at address 0A00.

5. After transferring the entire initialization block, write the hex value 9080 to the INTERRUPT
register. This value causes an adapter interrupt, instructs the adapter to execute the intialization
block, and prevents resetting the system interrupt bit.

6. Loop on reading the INTERRUPT register until either the error bit is set (initialization failed), the
INITIALIZE, TEST and ERROR bits are all zero (successful initialization), or 10 seconds have
passed (hardware failure).

7. Verify that the SSB and SCB contents are correct, which verifies TMS38030 DMA.

TMS380 command execution

After successful initialization of the TMS380, commands can be issued to the adapter. The process
of issuing a command involves the SCB and an associated command parameter table. The basic
procedure is as follows:

» Allocate an appropriate command parameter table and initialize its values as required.
= Fill the SCB with the command code and pointers to the command parameter table as required.
" & Set the INTERRUPT ADAPTER (bit 0), SSB CLEAR (bit 2), and EXECUTES bits to 1.

This process interrupts the TMS380 and causes it to transfer by way of the DMA the SCB and any
required parameters into the TMS380 RAM, and then begins execution of the command. Once the
SCB and parameters are copied into the TM3380 RAM, the TMS380 writes a zero into the COMMAND
field of the SCB, indicating that another command may now be issued.

Command completion

On completion of a command or on discovering an error while executing a command, the TMS380
transfers by way of the DMA 8 bytes of status information into the SSB. The DMA result is always
8 bytes, regardless of the actual number of bytes of information supplied. After a DMA transfer of
the command status information, the 68000 is interrupted by the TMS 380. At this point an
application can check the SSB for successful completion. The actual status values that indicate
success or failure vary depending on the command.

112 B / The TokenTalk NB Card

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
TMS380 commands

All TMS380 SCB commands and their associated hex codes are as follows:
Command
Open

Transmit

Transmit Halt

Receive

Close

Set Group Address

Set Functional Address
Read Error Log

Read Adapter Buffer

S558885888¢

B / The TokenTalk NB Card 113

Medusa Programmer's Guide, Beta Draft Apple Confidential

Appendix C Echo Task Program Example

The echo task program presented in this appendix shows all major software
components needed to successfully program a downloadable task for the
TokenTalk NB card.

Additionally, this echo task program is fully functional and exercises the
transmit and receive functions on a single TokenTalk NB card. As such, it
provides not only a good programming example but also a functional exercise
of the token ring hardware.

Throughout this appendix, all address reference and data values are given as
hexadecimal values and refer to the 24-bit address range of the Motorola 68000
microprocessor. The high-order 8 bits that indicate the NuBus slot address are
not contained in the addresses listed in this appendix. »

115

Medusa Programmer's Guide, Beta Draft Apple Confidential

Program summary

The majority of this appendix is a C program listing that demonstrates a fully-functional echo task
that is dynamically downloaded to the TokenTalk NB card in Slot A. The echo task exercises the
transmit and receive functions of the SNAP interface, causing a single card to send frames to itself,
effectively flooding the network with SNAP frams. This exercise is useful because it verifies overall
operation of the card and also provides a template for implementing the listener function and for
managing global data structures under a dynamically downloaded task. (Chapter 7 discussed some
of the problems associated with managing giobal data structures under a dynamically downloaded
task.) The program was developed using the Macintosh Programmer's Workshop (MPW),

The program does not produce any displayed output. By using a network packet analyzing
tool, such as a Sniffer from Data General, you can examine the traffic created by this program.

The echo task program contains several modules:

u Header files. The C language include file giving constants that can be added together to set the
options field in many of the LLC and SNAP calls.

s Make files. The make files for building the program exampie that show how to make the
program from its various modules.

s Source files. The source files for DynDownLoadExamp.

The program listing consists of modules that support the echo task. It demonstrates many
features and techniques for working with the LLC and SNAP interface:

s How to conditionally compile and use a listener function

s How to write a protocol (shown in Echo.c)

s How to start tasks from other tasks (shown in Download.c)
s How to find and use SNAP from MR-DOS.

116 C / Echo Task Program Example

P

Medusa Programmer's Guide, Beta Draft Apple Confidential YA/89
Programming checklist
The following procedure describes stép-by-step how to create the example program using MPW
Version 3.0 (or later). Copies of the files are provided on the distribution diskettes supplied with
TokenTalk NB development tools.
1. Copy the Apple IPC and Token Talk Prep files into your System Folder.
2 Copy the MR-DOS Includes folder into your MPW folder.
3 Copy the UserStartupe TokenRingExamp file into your MPW folder.
4 Copy the TokenRingExamp folder into the MPW folder.
5. Create a new folder in MPW and name it TokenTalk Includes. Copy the following files into this
folder:
s lCh
s SNAPh
s TRInith
s TTUtLh
s TTInit.r
6 Creat a new folder in MPW and name it TokenTalk Libraries. Copy the following file into this
folder:
s LLCSupportlib.o
These folders and files are required to build the example program. If Apple IPC did not already exist
in the System Folder prior to copying these files, you must reboot before you can execute the
example program. .
The next steps are accomplished using MPW 3.0 or later. If you are not using MPW 3.0 or later, you
can copy UserStartupe TokenRingExamp to your UserStartup file.
1. launch MPW.
2 Build the Echo Task program.
3 Build the DynDownLoadExamp program.
4 Quit MPW.
5. Copy Echo Task to your System Folder.
6 launch DynDownLoadExamp.
At this point, DynDownLoadExamp downloads the Echo Task program to the TokenTalk NB card
in Slot A of your Macintosh II. The Echo Task program floods the token ring with frames.
C/ Echo Task Program Example 117

Medusa Programmer's Guide, Beta Draft Apple Confidential

Program listing

The remainder of this appendix is a listing of the make files, header files, and source files that create
the dymamic download task and the echo task. The modules are presented as follow:

» Dynamic download
DynDownLoadExamp.make
DynDownlLoad.c

s Dynamic global data structure management
ADT.h
ADT.c
ListenerGlue.a

s Echo task
EchoTask. make
Echo.h
Generalh
EchoBlastTask.c
EchoTask.c
EchoTask.r

s MR-DOS and SNAP interface
Externals.h
SNAP-Interface.h
Echo-Interface.h
MREcho-Interface.c
MRSNAP-Interface.c

118 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential 32A/89
Dynamic download

The following program files show the make file for the dynamic download process and the source
code that launches the download process.

DynDownLoadExamp.make

File: DynDewnlLoadExamp.make

% Targer: ZynCcwnloadExamp

& Sources: CynZownlcad.c

% Created: Mcnday, January 3C, 1989 8:48:13 AM

OynDownload.c.o f DynDownlocadixamp.make JynDownload.c
C DynDownLoad.c

SOURCES = DynDownload.c
OBJECTS = DynDownload.c.o

DyrCownlLoadExamp ff DynDownloadExamp.make (CBJECTS)

Link -w -t APPL -c '?222' 49
{CBCECTS} 9
"{CLibraries}"CRuntime.o 9
"{Libraries)"Interface.o d
"{ClLibraries}"StdCLib.o 9
"{CLibraries)"CSANELib.c 9
"{CLibraries)"Math.o 4
"(ClLibraries}"CInterface.o 9
-0 DynDownlLoadExamp

C/ Echo Task Program Example 119

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

DynDownlLoad.c

/tt'ttttvtt'tt"i't'tt'r'vgtitttt't't'!"t't't'-'t*':t"tttrtttit't'I?ttttt:'v'tt'tttttt\

*

*

* File: DynDownload.c -
* Written by Eric M. Trehus x
- Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved *

-

x

T T T T T A N A N T R N T T T T N N N N N N A T N A A A N T A AN A A AN A NN NN TIXN I XTIN T XXX N T ™ [

#include
#include
#include
#include

/t

<Files.h>
<Resources.h>
<TTULil.h>

<Memory.h>

This is the tiny Application that downloads our EchoTask program onto a Token Talk NB
Card in slot A, It makes assumptions about the location and name of the file. It also
downloads LLC onto the card 1if it hasn't been loaded.

~/

static TTUtilPtr GloballtiliPtr:

static snort TTRefNum;

TTUtilPtr GetTTUtilPtr(char *PrepfFile,short VRefNum,short *refptr)

{

Handle utlhdl;

snort ttrefnum; .

ttrefnum = OpenRFPerm(PrepFile, VRefNum, fsRdPerm) ;
if(ctrefnum == -1)

{

v

/* Zrror in Opening the file */
return(0);

1f((utlhdl = GetlResource('tzut',C)) == 0)

{

}

/* Error in getting the resource */
CloseResFile(ttrefnum);
return(0);

*refptr = ttrefnum;
return{ (TTUtilPtr)StripAddress (*utlhdl));

long TindCards(long mask)

{

return((*GlobalUtilPtr) (TTFindCards, mask));

120 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential 320/89

long FindBootedCards (long mask)
{
return((*GlobalUtilPtr) (TTFindBootedCards, mask));
long FindUnbootedCards (long mask)
return((*GlobalUtilPtr) (TTFindUnbootedCards, mask));
long BootCards (long mask)
return((*GlobalUtilPtr) (TTBootCards,mask));
ng ForceBcot (long mask)
return((*GlicbalUtilPtr) (TTForceBoot,mask));
long DynamicDL(TTDDLP *Parameters
return((*GlobalUtilPtr) (TTDynamicDL, (long)Parameters));
}
Bootit (long How, long MyMask) /* Assumes that a PREP file has been opened ~*/

{
long BoctedMask;

long Mask;

long type = -1;

long Cards;

Cards = FindCards(-1); /* Find all the cards */
i1f((How == TTForceBoot) || FindUnbootedCards (MyMask))

(
BootedMask = ('GiobalUtilPt:)(How,MyMask); /* Perform Downlcad here */

Mask = FindBootedCards(Cards); /* Look through all cards to f£ind booted ones =~/

veid InitllC({vecid) /* Call <his cnce cefore executing any tests */

SysEavRec sysrec;

if (SysEnvirons (1, &sysrec))
{
/* Error in SysEnvirons call =/
return;
}
GlobalUtilPtr = GetTTUtilPtr ("\pTokenTalk Prep", sysrec.sysVRefNum, §TTRefNum) ;
Bootit (TTBootCards, -1);

C/ Echo Task Program Example 121

Medusa Programmer's Guide, Beta Draft Apple Confidential Y2/89

void DoDynamicDownload (void)
{
long type = -1;
short ResRefNum;
SysEnvRec sysrec;
TTDDLP *DynamicDownLoadParms;
long DownLoadTID;
Handle DynamicDPHandle:;
long DynDownlLoadSlot;

DynDownlLoadSlot = OxO0A;

/t
In this example, we expect a file in the system folder named "Echo Task",
contains the 'PARM' resource that indicates how to Downlocad the code onto
Token Talk NB Card. We are also assuming that the Token Talk NB Card is
in slot A for simplicity.

*/

if (SysEnvirons(l,&sysrec))

{
/* Error in SysEnvirons call */
return;

)
ResRefNum = OpenRfPerm("\pEcho Task",sysrec.sysVRefNum, £sRdPerm) ;

DynamicDPHandle = GetlResource ('PARM',0);

if (DynamicDPHandle)

{
HLock (DynamicDPHandle) ;
DynamicDownLoadParms = (TTDDLP *) (*DynamicDPHandle):
DynamicDownLoadParms->SlotNc = DynDownlLoadSlot:

DownlLoadTID = DynamicDL((TTDDLP *)StripAddress((char *)DynamicDownLoadParms));

HUnlcck (DynamicDPHandle)

ClcseResFile(ResRefNum);

main ()

InitLLC(); /* Make sure the card is initialized =*/
DoDynamicDownLoad(); /* Now put my task there */

12 C / Echo Task Program Example

=N

Medusa Programmer's Guide, Beta Draft Apple Confidential 32089

Dynamic global data structure management

The following program files show how to set up and manage the global data structure in a dynamic
download environment. Chapier 7 discusses the problems that can occur when the task's pointers
are managed incorreatly. An assembly language routine shows how to capture and restore the
dynamic download task's AS register so that it points to the correct global data structure.

ADT.h

R R R R R R A N R A A X A X A A X A A AT AT AT X T A A A AT A T N I N A T T AT N X T R T TN T T TN INIT NI TN X TN

* File: ADT.h =
* Written by Eric M. Trehus *
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved *
* *

\:wnttr::it'ttsv!tttv-r:::t.t":t':rt-11-*'1-:'71'11':tt'ttttttﬂtitittttt-tv't:tg:t*:y:'/
ifndef ADT
4 B .
tdefine ADT

#include <Types.h>

typedef struct ELEMENT
{

struct ELEMENT *Next;
}ELEMENT;

long Size;

Boolean InUse; /* Cptional Fiag */
1 QUEUE;
void InitQueue (QUEUE *Queue);
void EnQueue(void *Element,QUEUE ~*Queue);

void *ServeQueue (QUEUE *Queue);

4endif

C/ Echo Task Program Example 123

Medusa Programmer's Guide, Beta Draft

Apple Confidential

ADT.c

/tt'titttttiit"tt!'ttttif:iitﬁt!tt't*tt*ttttttt'tttttttfr"tit'i'tttvttttttttt:-v*tttt-\

*

»

*

*

-

File: ADT.c

Written by Eric M. Trehus
Copyright Apple Computer, Inc.
All rights reserved

1988-1989

x

x

*

*

]

*

o X X X X T T N N N N N N T A N A A N AT AX TN AN NTN Y [

#:nclude <ADT.h>
#include <STDIO.h>
#include <strings.h>
#include <os.h>

It ensures mutual exclusion during

v

¥

Adds an element to the end cof the queue

/* Link in the new Element =/
/* Update Tail */

/* The Queue is empty =/

Head and Tail is the same Element =/

/* Show that the Queue has grown =/

/t
This file provides Queue Manipulation routines.
critical code regions through the use of Rescheduling.
*/
void InitQueue (QUEUE *Queue) /* Initializes a queue as empty */
- Queue->Head = NULL;
Queue->Tail = NULL;
Queue->Size = 0;
Queue->InUse = false;
}
void EnQueue(void *Element,QUEUE *Queue) /=
=/
shert oldSchedMede;
ciaSchedMode = Reschedule (OS_BLOCK_IMMED);
i£(Queue->Size)
{
Queue->Tail->Next = (ELEMENT *)Element;
Queue->Taill = (ELEMENT *)Element;
}
else
{
Queue->Head = (ELEMENT *)Element; /*
Queue->Tail = (ELEMENT *)Element;
b
Queue->Size+~+;
124 C / Echo Task Program Example

PN

Joc Sy

Medusa Programmer's Guide, Beta Draft Apple Confidential YAv89

if(oldSchedMcde == OS_SLICE_MODE)
Reschedule (OS_SLICE_MCDE);

void *ServeQueue (QUEUE *Queue) /* Removes the first element from the queue,
and returns a pointer to it */

ELEMENT =*ptr;
short oldSchedMode;

oldSchedMode = Reschedule (OS_BLOCK_IMMED)

Lf(Queue->Size)

DLr = Cueue->Head; /* FIFO =/
Queue~>Head = ptr->Next; /* Update Head to point to Next Zlement =,
Queue->Size--; /* show that the Queue has shrunken */
}
else
ptr = NULL; /* No Elements in the Queue */

if (oldSchedMode == OS_SLICE_MODE)
Reschedule (OS_SLICE_MC3IE) ;

return(ptr);

C/ Echo Task Program Example 125

Medusa Programmer's Guide, Beta Draft Apple Confidential
ListenerGlue.a
= Written by Eric M. Trehus
> Copyright (C) Apple Computer Inc.,
** All Rights Reserved.
x
*w Glue code so that A5 is set up when our Echolistener funcrtion is called.
* SaveA5 - Save AS in code space.
CASE ON ; Case 1s important to C.
Proc
Zxpor<s SaveA>
SaveAS LEA EchoAS, A0 ; Get location to keep AS
Move.L AS, (AQ) ; Put A5 in that location
RtS ; Return
EchoAS DC. 0 ; Keep AS Here.
> Zcheolisten - Set up To call ZIcho listener.
Export EcholListen
Import Echolistener
Echolisten
Move.L AS, -(A7) ; Save A5 on stack
MoveA.L EchoAS, AS ; Set AS
JSR Echolistener ; Call listener
MoveA.L (A7) +, AS ; Restore AS
RtS ; Return
Zndp
End

126 C / Echo Task Program Examole

e

Medusa Programmer's Guide, Beta Draft Apple Confidential

The echo task

The following program are the major components of the echo task that is dynamically downloaded
to the TokenTalk NB card. The make file, header files, and source files for the echo task are

included.

EchoTask.make

ZchoBlastTask.c.o f 'Echo Task'.make EchoBlastTask.c
C iCompilerOpticns) EchcBlastTask.c
EchoTask.c.o f 'Echo Task'.make EchoTask.c

ADT.c.o

MRSNAP-

MREcho-

C {(CompilerOptions} EchoTask.c

f 'Echo Task'.make ADT.c -
C {CompilerOptions} ADT.c

Interface.c.o f 'Echc Task'.make MRSNAP-Interface.c
C i{CompilerCpticns; MRSNAP-Interface.c

Interface.c.oc { 'Echo Task'.maxe MREcho-Interface.c
C (CompilerCpticns} MREchc-Interface.c

‘Echo Task' ff 'Echo Task'.make EchoTask.r

Rez EchoTask.r -append -o 'Echo Task'

‘Listener Glue.a.o' f 'Echo Task'.make 'Listener Glue.a'

~ea

SCCRCES

asm 'Listener Glue.a'

= <ZchcTask.r MRSNAP-Interface.c ZchcTask.c ADT.c MREcheo-Interface.c ZchoBlastTasxk.c

‘_Listener Glue.a'

CBJECTS

= MRSNAP~-Interface.c.c ZchoTask.c.o ADT.c.o MREcho-Interface.c.o

‘Llstener Glue.a.o'

‘Echo Task' f

f 'Echo Task'.make {(OBJECTS}
Link {LinkOptions} -t Card -c mash d
{OBJECTS} 9
"{IPCLibraries}"osglue.o
"{LLCLibraries}"LLCSupportLib.o 4
-0 "{(SystemFolder}"'Echo Task'

-
~
|3

noBlastTask.c.o

C/ Echo Task Program Example 127

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
Echo.h

/!wttt'rt*titt'i'ttrtttwttttvtt'trtt*tttitt'atttr'aﬁt*tttt:*tttiititﬁ'tt*:t'tt:t'ttﬂr:tt\

. x
= File: Echo.h *
* Written by Eric M. Trehus *
hd Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved *
L 4 *

\'i"'1'fitt't'!'*"ti'i"t'tittt'fit'ti't’tttt**"l"l'!I‘"71*1*’**#'1!"71***'tt't*t:t"/
#ifndef _ Echo__

tdefine _ EZcho__

$include <LLC.h>

/* mCodes for Echo 2Protocecl */

#define EchoOpen O0x0ECO
¢define EchoClose 0x0EC2
#define EchoReceive 0xQ0ECH4

#define EchoTransmit OxOECS

#define EchoNoErr 0x0000 /* No Errors, good result */
#define EchoBadRefNum 0xC101 /* Bad refnum passed in */
#define EZchoClosed 0x0102 /* Echo was closed */

tdefine EZchoTocMany CxCl03 /= No resouces .eft =/
4define EcheTruncated 0x0104 /> Buffer not large enough */

/* mOData of IPC will contain the following structure for EchoOpen, EchoClose */

typedef struct EchoRefNumOData
(.
unsigned short RefNum; /* Given from EchoOpen */
}EchoRefNumOData;
/* mCData c¢f IPC will contain the follcwing structure for an EchoTransmiz =*/
/* mCataPtr will pecint o tne pbuifer to be transmitted =/
/* mDataSize is the size of the information tc be transmitted */
typedef struct IchoTransmitlData
i
<nsigned short RefNum; /* Given from EchoOpen */
LANHdr =*Hdr; /* Hdr to use on Echo Frame */
}EchoTransmitOData;
/* mOData of IPC will contain the following structure for an EchoReceive */
/* mDataPtr will point to the buffer for information to be placed */
/= mDataSize is the size of the buffer =/
typedef struct EchoReceiveOData
{
unsigned short RefNum;
insigneda snort Infolen; /* Amount of information placed in the puffer </
LANHdr =Hdr:;
}EchoReceiveOData:

senc.’

128 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/2/89

General.h

R S S A A R AR A N T T T A N R R T K T A T T X R T R A N R AR A T T A A A AN A N AN A TN TN TN XTI TN XX w x|

* File: General.h *
* Written by Eric M. Trehus *
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved x
* *

\if"'tti!'t'ti""’!"’7I""t't"'*'"""""'tiit"'*""“l!*'*t't*t"tttit"t't'It'/
tdefine Sync 0
#define Async 1

#define CannotGetMessageBuffertirr CxFE

#define byte unsigned char

#define word unsigned short

#define ODataAs(x,y) ((x *) ((y)=->mOData))

#define SDataAs(x,y) ((x *) ((y)=->mSData))

#define DPAs(x,y) ((x *) ((y)=->mDataPtr))

C/ Echo Task Program Example 129

Medusa Programmer's Guide, Beta Draft Apple Confidential ¥20/89

EchoBlastTask.c

R R AR K K X R N K A XX R AT X T T A A AN A A A AN A A A R A A AN A RA XA XXX T AT T W www

*

-

*

*

*

-

x

File: EchoBlastTask.c *
Written by Eric M. Trehus -
Copyright Apple Computer, Inc. 1988-1989 *
All rights reserved x

x

T T T o N T X T T N T T N T T A T N T N N T T A N T T A R A T R I A A N T A A A AR AN AN T AT XX TXNA TN TN T AONT [

#include <os.h>

$#include <managers.h>

#include <mrdos.h>

#include <siop.h>

#include <LLC.h>

#include <types.h>

#include <Echo.h>

#include <Echo-Interface.h>
#include <Externals.h>

/'

ZchoBlastTask continueously broadcasts frames using our Echo Protocol.

static void EchoBlastTask ()

{

130

word Result;

LANHdAr Hdr;

message . *Message;
char *TransmitData;
word BrodcastAddr{3};
word RefNum;

/* Get a Har for transmitiing */

3recdcastAddr (0] = CxCOCC;
BrodcastAadr(l] = OxFFFF;
3rodcastAddr (2] = OxFFFF;

TransmitData = "Sending Echo Frames to everyone as fast as I can";
Result = Echo_Open (Sync, ¢éRefNum);

Result = SNAP_GetHdr (Sync,3,0,0,0,&Hdr, 6, BrodcastAddr) ;

Result = Echo_Transmit (Async,RefNum, ¢Hdr, 80, TransmitData);

C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft

i

for(;;)
{
Message = Receive(0,0,0,0);

SwapTID (Message)
Message->mCode &= Ox7FFE;

Send (Message) ;

Result = Echo_Close(Sync, RefNum);

veid StartEchcBlastTask () /* Create the
struct ST_28B stpb, *ob;
pb = &stpb;

pb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

pb =-> StartParmSegment = NULL;

pb -> stack = 12C00;

pb -> heap = 0;

pb -> priority = 31;

pp -> InitRegs.PC = EZchoBlastTask:

/*
/i
/t

Apple Confidential

Prepare to reissue the transmit request */

Fix the mCode */
Re-Queue the transmit */

EchoBlastTask */

ob => InitRegs.A _Registers (5] = GetMyAS5S();

Pb -> ParentTID = GetTID():
if (StartTask (pb) == 0)
illegal ();

C/ Echo Task Program Example

131

Medusa Programmer's Guide, Beta Draft

Apple Confidential

EchoTask.c

132 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

o /att'tt'-t:::t"tv-"t:wt---v-wr:v:"t!tt:r:-"-p:'ittt'v'vt-rrtttt:::tt*tttttvt:vra':-yv\
(: '
* File: EchoTask.c . *
* Written by Eric M. Trehus =
* Copyright Apple Computer, Inc. 1988 *
* All rights reserved -
» *

X o o o A N N A T R T N N T N R N N N N R A N R T A N AR AT A AT AR AN XXX XN TTA AN AT N /

/t
The Echo protocol consists of 4 commands:
ZchoCpen: Allccates resources for the client, and assigns a refrnum so zha:
the cllient can accumulate the responses v.a ZcnhoRecelve.
EchoReceive: When an EchcReply is received a search is made for a matching
EchoReceive request.
EchoTransmit: Transmits a SNAP frame with cur Echo Protocol Descriminator, and
the clients refnum, and data.
EcheClose: Deallocates resources allocated from ZchoOpen, and cancels all
pending EchoReceive requests.
The pre-processor symboli UseZcholistener can be used to create 2 different versicns
of the EchoTask. If UseEcholistener i1s defined, then SNAP's listener functiocn is
used. This is more efficient than using SNAPReceive, however it is slightly more
complicated to use. Otherwise SNAPReceive's are posted, and reposted as they
complete.
The ZchoTask that is started here responds to EchoRequests when received.
~/

tdefine MCP

$incl.de <os.h>

#include <managers.h>
#include <mrdes.h>

#include <siop.h>

#include <SNAP.h>

#include <types.h>

#include <ADT.h>

#include <Externals.h>
#include <SNAP-~Interface.h>
#include <Echo.h>

#define UseEcholListener /* Use SNAPs listener function vrs SNAPReceive */

tdefine MaxOven .73 /* Maximum numper >f ZchoQueue's %o be spened */

icerfine UsezZchclL.stener

(C/ Echo Task Program Example - 133

Medusa Programmer's Guide, Beta Draft Apple Confidential /89

typedef struct

{
char PD(5];
short RefNum;

} EchoHeaderStruct; /* SNAP PD and Clients RefNum goes here */

tid_type GlobalSNAPTID; /* Task Identifier of SNAP on this card */

tid_type GlobalEchoTID; /* Task Identifier of Echo Protocol on this card */
long GloballLlCMessagePriority:; /* Priority of messages used in this system */
static QUEUE EchoQueue [MaxOreni:

word ZchoPDRefNum;

int NCpen;
static char *EchoBufferl, *EchoBuffer2, *EchoBuffer3;
static LANHdr EchoHeaderl,EchoHeader2, EchoHeader3;

word EchoPDRefNum;

LCGetConfigBuffer ConfigBuffer;

[

R S S A T I T T T T T I T I T I T T N N T T T T T T T AT I N TN T T PN T T T I AT AN AN TN TN XIXNT X\

- -
- We will use the Protocol Descriminator as the indicator for both Echo Regquests, -
- and Echo Repy's as follows: -
- =
= Echo Request PD is EE EE EE EE EE. >
- Echo Reply ?D is EE EE EE EE EF. *
- -

| T T T T T T T N T T T T T N T N N T T N T N T R T T I T N AN T A AN T A N I T T I AT TN XTI XNXXIXXTIXTIXXINTRE XY

Tarting 2 additicnali tasks, the first one is ¢
n tne token ring network. The second cne s To stars
Zche Protocol services. Finally we fall into a locp and

c
Protoccl send thelr messages nere.
=~/

1% C / Echo Task Program Example

Medusa Programmer’s Guide, Beta Draft

0

. main
(<

#:fdef

#endif

#ifndef

¥endif

Apple Confidential

message *Message;

lobalSNAPTID = FindMySNAP();

GlobalEcheTID = GetTID(); /*Alternatly we could register a name,
clients find us using the name manager.
be used by tasks everywhere.
you advertise! */

GloballlLCMessagePriority = 0;

SNAP_GetConfig(false,sizeof (LLCGetConfigBuffer), sConfigBuffer);

and let our
Then our protocol could
You get more bussiness if

UseEchclListener
SaveAS () ; /* Use Glue, EZcholisten will access a variable not based on A3 o get Al
StartEchoTask () /* Sets up the Echo Protocol */
StartEchoBlastTask () ; /* Client of the Echo Protocol */
for(;;)
{
Message = Receive(0,0,0,0);
switch (Message->mCcde)
1
case EchoCren:
StartEchcOpen (Message) ;
break;
case EchoClose:
StartEchoClcose (Message);
break;
case EchoRecelive:
StartEchoReceive (Message) ;
break;
case EchoIransmit:
StartEchoTransmit (Message);
break;
UseEcholistener
case SNAPReceive | 1: /* If it completes */
EchoComplete (Message) ;
break:
}
}
C/ Echo Task Program Example 135

Medusa Programmer's Guide, Beta Draft Apple Conﬁdenﬁal. 3/20/89

static tid_type FindMySNAP()
{
short index = 0;
return (Lookup_Task (“=",6 "SNAP", GetNameTID (), &éindex));

#ifdef UseEcholListener
extern veid Echolisten();

nitEchoProtccol() /* Initializes the Echo Protocol */

char ZchoReplylPescriminater(3);
long BufferSize;

word Result;

void Echolisten();

BufferSize = ConfigBuffer.MaxFramelen - ConfigBuffer .MaxHeader:
EchoReplyDescriminator (0} OxEE;
EchoReplyDescriminator (1] = OxEE;
EchoReplyDescriminator(2) = OxEE;

ZchoReplyDescriminater{3] = OxEE;
ZchoReplylescriminator{4! = JOxEF;

/* Allccate 3 puffers */

EchoBufferl = GetMem(BufferSize);
EchoBuffer2 = GetMem(BufferSize);
ZchcBuffer3 = GetMem(BufferSize);

#ifndef UseZcholistener
Result = SNAP_Attach(Sync, §EchcPDRefNum, 0,NULL,EchoReplyDescriminator);
Result = SNAP_Receive (Async, EchoPDRefNum, 0, éEchoHeaderl,BufferSize, EchoBufferl
Result = SNAP_Receive(Async, EchoPDRefNum, 0, éEchoHeader2, BufferSize, EchoBuffer2
Resulz = SNAP_Recelve(Async,ZchoPCRefNum, 0, éEchcHeader3,BufferSize, ZchoBuifers

) ;
)
)i
te_.se

Result =
SNAP_Attach(Sync, §ZchcPDRefNum, Listenerfunction, Echolisten,EchoReplyDescrimirator)

tendif
}

1% C / Echo Task Program Example

{

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
static void EchoTask () /* Turns arocund any Echo Request into an Echo Reply */

word Result;

word PDRefNum;

LANHdAr Hdr (3]

char *Bufferl;

char *Buffer2;

char *Buffer3;

message *Message;

char ErrorCount;

char EchoRequestlescriminator(5];

long ReceiveBufferSize;

long IDs

ErrorCount = O;

EchoRequestDescriminator(C] = OxEE;

EchoRequestDescriminator{l] = CxEE;
EchoRequestDescriminator (2] = OxEE;

EchcRequestDescriminator (3] = OxEE;

EchoRequestDescriminator (4] = COxEE;

ReceiveBufferSize = ConfigBuffer.MaxFramelen - ConfigBuffer.MaxHeader;

Bufferl
SBuffer?
Buffer3
if(Buff

= GetMem(ReceiveBufferSize);

= GetMem(ReceiveBufferSize);

= GetMem(ReceiveBufferSize);

erl && Buffer2 && Bufferld) /* 1f we got memory in all requests */

/* Queue up 3 Receive requests */

Result

Result

Resul:

Result

for(;:)

{

SNAP_Attach(Sync, §éPDRefNum, 0,NULL, EchoRequestDescriminator) ;

SNAP_Receive (Async,PCRefNum,C, §Hdr (0], ReceiveBufferSize,Buiferl);

‘

SNAP Receive (Async, PCRefNum,C, §icr{l],ReceiveBuffersSize,Buifer2);

SNAP_Receive(Async, PDRefNum, 0, &Hdr (2], ReceivedufierSize,Bufs

/* Do this until told otherwise */

Message = Receive(0,0,0,0);
if (Message->mStatus)

{

FreeMsg (Message) ; /* After 3 errors,

we will no longer echo */
rrorCount++;
if{(ErrorCount == 3J)

break: /* Thats it, 3 strikes =~/

C/ Echo Task Program Example

eriy;

137

Medusa Programmer's Guide, Beta Draft Apple Confidential ' 32/89

else

{
SwapTID (Message) ; /* Prepare to echo reply */
LCSwapHdr (ODataAs (LLCTxRxOData, Message) ->Hdr, 0xAA) ;
Message->mCode = SNAPTransmit;
ID = Message->mld;

Message->mDataPtr (4] = OxEF:; /* Make it an Echo Reply */
Send (Message) ; /* The packet is on its way */
Message = Receive(ID,0,0,0); /* Wait for transmit

to complete */

SwapTID (Message) ; /* Prepare to reissue SNAPReceive =~/

Message->mCode = SNAPReceive;

CDataAs (SNAPReceiveOData,Message) ->PDRefNum = PDRefNum; /=
Transmit Messed me up */

Send (Message) ; /* Requeue SNAP_Receive =/

}

Result = SNAP_Detach(Sync,PDRefNum);
FreeMem(Bufferl);

FreeMem(Buffer2);

FreeMem(Buffer3);

StartEchoTask () /* Create the new task ZchecTask */
{

struct ST_PB stpb, *pb;

Pb = &stpb;
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;

op -> StartParmSegment = NULL;
ob =-> stack = 12000;
©b -> heap = 0;
ob -> priorizy = 31;
pb -> InitRegs.PC = EchoTask;
pb -> InitRegs.A_Registers (5] = GetMyAS();
pb -> ParentTID = GetTID():
InitEchoQueue();
InitEchoProtocol();
if (StartTask (pb) == 0)
illegal ():

StartEchoTransmit (message *Message)
1
LLCList LBuffer(2];
ZchoHeaaerStruct IchoHeader:

~or2 ZerfNum;

138 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89

RefNum = QODataAs(EchoRefNumOData, Message)->RefNum;
if ('EchoQueue (RefNum].InUse |! RefNum >= MaxOpen || !'RefNum)
/* Check for invalid refnum =/
Message->mStatus = EchoBadRefNum;
else

EchoHeader.?D (0] = OxEE:;
EchoHeader .PD(1l] = OxEE;
EchoHeader.PD (2] = OxEE;
EchoHeader.PD(3] = OxEE;
EchoHeader.PD[4] = OxEE;
EchoHeader.RefNum = RefNum;

L3uffer’0).Count = sizecf(ZchoHeader);
LBuffer [0].Ptr = (char *)&EchoHeader;
LBuffer{l..Count = Message->mDataSize;
LBuffer(l).Ptr = Message->mDataPtr;

Message->mStatus = SNAP_Transmit(Sync, sizeof (EchoHeader) +Message->mDataSize,

ListDirected, 3,0PataAs (EchoTransmitCData,Message) ->Hdr,
sizeof (LBuffer), (char *)LBuffer);
SwapTID (Message)

Message->mCcde (= 1; /* Mark that it is a reply, Transmiz complete */

Send (Message) ;

N

InitEch

int i;

for(Li=C

ZchcCue

NCpen =

Getfree

int i;

oQueue ()

;i<MaxCpen; i

ue{lj.InUse

o

choQueuelIndex ()

for(i=1;1i<MaxOpen;i++)

{

/= Waste 1 queue so refnums are never 0 */

if(!EchoQueue(i].InUse)

break:

C/ Echo Task Program Example

139

Medusa Programmer's Guide, Beta Draft Apple Confidential

StartEchoOpen (message *Message)

{

word RefNum;

Message->mStatus = EchoNoErr;
if (NOpen >= MaxOpen)
{
Message->mStatus = EchoTooMany;

else

NOpen++:; /* We are going to allocate the resources */

RefNum = GetFreeEZchoQueuelndex();

EchoQueueRefNum].InUse = true; /* Mark the gqueue busy */
ODataAs (EchoRefNumCData, Message) ->RefNum = RefNum;

}

SwapTID (Message) ;
Message->mCode i= 1;
Send (Message) ;

/* This will cancel all of the Echo Receive Reguests */

StartZchoClose (message *Message)

i

140

message *mp;
word RefNum;

Message->mStatus = EchoNoErr;
RefNum = ODataAs (EchoRefNumOData, Message)->RefNum;
if(!EchoQueue(RefNum].InUse || RefNum >= MaxOpen ||
/* Check
Message->mStatus = EchoBadRefNum;

else
while(mp = ServeQueue (§EZchoQueue{RefNum}))

mp->mStatus = EchoClosed;
SwapTID (mp) ;
mp->mCode |= 1;
Send (mp) ;
)
EchoQueue (RefNum] .InUse = false;

NOpen--:

SwapTID (Message) ;
Message->mCode != l;
Send (Message) ;

C / Echo Task Program Example

'RefNum)
for invalid

refnum */

N

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/20/89
StartEchoReceive (message *Message)
{

word RefNum;

Message->mStatus = EchoNoErr;
RefNum = ODataAs (EchcRefNumQData,Message)->RefNum;
if (!EchoQueue (RefNum].InUse || RefNum >= MaxOpen || !RefNum)
/* Check for invalid refnum =*/

Message->mStatus = EchoBadRefNum;
SwapTID (Message);

Message->mCode = 1;

Send (Message) ;

EnQueue (Message, §EchoQueue [RefNumj) ;

#ifndef UseEchoListener
EchoComplete (message *Message)

/* Handle SNAPReceive for EE EE EE EE EF Protocol Descriminator */

message *mp; /* A polinter to the users EchoReceive Message structure =/
word Infolen; /* Length cf information placed into user's buffer */
word RefNum;

int EchoHeaderSize;

EchoHeaderSize = sizeof (EchoHeaderStruct);
if(!Message->mStatus) /* If there was an error */
{

/* Get Refnum from frame received */
RefNum = ((EchoHeaderStruct *) (Message->mDataPtr))->RefNum;
1f(mp = ServeQueue (§EchoQueue(RefNum]))
{
mp->mStatus = EchoNcEr:c:

/* Assume no0 error untlil proven otherwise */

Infolen = ODataAs (SNAPReceiveOData,Message)->Infoclen - ZIchoHeaderSize;
if(Infolen > mp->mDataSize)
/* Error, got more than we were asking for =/

mp->mStatus = EchoTruncated;
Infolen = mp->mDataSize;
}
ODataAs (EchoReceiveOData,mp)->Infolen = Infolen:

/* Copy the data intc the user's buffer =/
CopyNuBus (Message->mDataPtr+~cchodeaderSize, mp->mDataPtr, Infolen)

/* Copy the header into the user‘s header */

JopyNuBus (CDataAs (SNAPReceiveQCata, Message)

->Hcr, CDataAs (EchcRecerveCData. mp) ->Hdr, sizeor {LANHED)

C/ Echo Task Program Example 141

Medusa Programmer's Guide, Beta Dralt ~ Apple Confidenuial 32089

/* Send the message to the user */
SwapTID(mp)
mp->mCode (= 1;
Send (mp) ;
}
/* Re-issue the receive */
SwapTID (Message):
Message->mCode = SNAPReceive;
Send (Message) ;

}

felise

/* Handle SNAPReceive for EE EE EE ET

veid Zchelistener(long nul, long nu2, LANHdAr *Hdr,char *Buffer,int len,int FrameType)

{

(S

EF Protocol Descriminator */

message *mp; /* A pointer to the users EchoReceive Message structure */
word Infolen; /* Length of information placed into user's buffer =/

word RefNum:

int EchoHeaderSize:

#pragma unused(nul)
#pragma unused(nu2)
#pragma unused(FrameType)

EchoHeaderSize = sizeof (EchoHeaderStruct);

/* Ger Refnum from frame received */

RefNum = ((EchoHeaderStruct *) (Buffer))->RefNum;

i1f(mp = ServeQueue (&EchoQueue{RefNum]))

{
mp->mStatus = EchoNoErr; /* Assume no error until proven otherwise */
Infolen = len - EchoHeaderSize:

(41
"
X}
o
31
-
~

or, got more than we were asking

Al

if(InfoLen > mp->mPataSize) /* E
{
mp->mStatus = Echelruncated;

Infolen = mp->mfatasize;

CDataAs (EchoReceiveOData,mp)->Infolen = Infolen;

/* Copy the data into the uJuser's buffer */

CopyNuBus (Buffer+EchoHeaderSize, mp->mDataPtr, Infolen);

/* Copy the header into the user's header */

CopyNuBus (Hdr,ODataAs (EchoReceiveOData, mp) ->Hdr, sizeof (LANHdAr)) ;
/* Send the message to the user */ '

SwapTID (mp) ;
mp=->mCode != 1;
Send (mp) ;

tendif

142 C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidenual ¥20/89
EchoTask.r

T R N N N T A R T T N N N T T T T T N T T T I ET T A E TT TP RANTI A NTATNNCT T

- File: EchoTask.r -
* Written by Eric M. Trehus *
. Copyright Apple Computer, Inc. 1988-1989 -
. All rights reserved *

T T S N S N T T Y T T T T T T T N T P T N I N T N T T I N T T T A T R T T R T AT A N R NPT P T TN RT T TR TCRANTRITINTY

type 'mash' {
pstring;

resource 'mash' (0) {
$SFormat ("Echo Task &s", $SDate)

type 'PARM' /* Created resource type for dynamic download */
{
longint; /*-Resource type holding code to downlocad */
iongint; /* SlotNo */
longint; /* ParamSize </
longint; /* CodeSegment: memory region on card for code */
longint: /* DataSegment: memory region on card for global data~r/
longint; /* StartParmSegment: memory region on card fcr start parameters */
longint; /* DO */
longint; /* D1 */
longint; /* D2 */
longint: /* D3 */
.cagintg; /* 04 */
longint; ©/* DS */
longint; /* 06 =/
longint; /% D7 =/
.oengint: /= AQ */
longint; /* AL */
lorgint; /" A2 */
longint; /* A3 */
longint; /* A4 */
longint; /* AS =/
longint; /* A6 */
longint; /* A7 */
longint: /* PC; Program Counter */
longint; /* stack; initial stack size (in bytes) */
longint; /* heap; initial heap size (in bytes) */
integer; /* return_code: error code 1f task not started (Tid = Q) */
unsigned byte; /* priority; pricrity of task {in bytes) */
longint; /* ParentTID:; TID of Parent on Network/Host */

C/ Echo Task Program Example 143

Medusa Programmer's Guide, Beta Draft Apple Confidential) 3/20/89

resource 'PARM' (0)

{

144

'CODE"', /*
10, /*
/f
/=
/’
/'
12
/*
/=
/*
/=

o
S s s s s SO S

s
V2
/x
/o
/*
/'
/=
/x
/=
/o
/o
768, /*
/o
/*
/=
/*

~

~

- N O~ s~ s s s s

[

O N O O W O O O O O O O O 0 O O Ou O 0o 0o o oo o o o
~

Resource type holding ccde to download */
SlotNo A, Assume this is the only place it will go */
ParamSize */

CodeSegment: memory region on card for code */
DataSegment: memory region on card for global data */
StartParmSegment: memory region on card for start parameters =/

DO =/
D1 */
D2 */
D3 =/
D4 */
25 */
o6 */
D7 =/
AQ =/
Al =/
A2 */
A3 =/
A4 */
AS =/
A6 */

A7 =/

PC; Program Ccounter */
stack; initial stack size (in bytes) */
heap; initial heap size (in bytes) */
return_code; error code if task not started (Tid = 0) */
priority; priority of task (in bytes) */
ParentTID; TID of Parent on Network/Host */

C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential /89

Interface to MR-DOS and SNAP

The final set of program files show how to set up the interface to MR-DOS and SNAP by means of
header files that declare the necessary parameters.

Externals.h

A R X R AR R A K N A K X T A R A N A N A N A T A T AN R A A A AT AT AT AT A IR ATT AT XXX XXX T X\

* x

- File: Externals.n -
* Written by Eric M. Trehus *
- Copyright Apple Computer, Inc. 1.988-1989 -
* All rights reserved x

* *

T T o o T X A T R T X X T T T TN R RN N N T A A A N T AN R A A T T AN AN KA NI AT T RN TN TN I AT CN T TR [

extern tid type GlobalSNAPTID; /* Task Identifier of SNAP on this card */
extern tid_type GlobalEchoTID;
extern long GloballlLCMessagePriority; /* Priority of messages used in this system */

pascal void illegal ()
extern Ox4afc;

unsigned long GetMyAS() = (0x200D});

C/ Echo Task Program Example = 145

Medusa Programmer’s Guide, Beta Draft Apple Confidentiat Y20/%
SNAP-Interface.h

/*it!t'tf't"i"’.t’tt"tttt'tttt*"""t*ttt"'tf!*'**t""'i""""**’t*"'itlti'itt!\

- : 4
* File: SNAP-Interface.h *
* Written by Eric M. Trehus *
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved *
» *

\.'att"ttiittfivrt!t!tt't*ttt"t’t'tttt':ta'-:att'tttttttatittttttttattvr!tttttttv':ttt/

#ifndef _ SNAPINTERFACE
#define _ SNAPINTERFACE__

#include <General.h>
#include <LLC.h>

word SNAP_Attach(int SyncFlag,

word *PDRefNum,

word Options,

void (*Listener) (),

void *ProtocolDescriptor);
word SNAP_Detach(int Syncflag,

word RefNum) ;
word SNAP_GetConfig(int SyncFlag,

long ConfigBufferSize,

LLCGetConfigBuffer *ConfigBuffer);

word SNAP_GetHdr (int SyncFlag,
word HdrType,
word Opticns,
oyte SSAP,
byte CSAP,
LANHGr *Hdr,
long AddressSize,
char *Address) ;

146 C / Echo Task Program Example

Y

Medusa Programmer's Guide, Beta Draft

word SNAP_Transmit(int
word
word
byte
LANHdr
long
char

word SNAP_Receive(int
word
word
LANHdr
long
char
tendif

Apple Confidential

SyncFlag,
Infolen,
Options,
FrameType,
*Hdr,
BufferSize,
*Buffer);

SyncFlag,
PDRefNum,
Options,
*Hdr,
BuffersSize,
*Buffer);

C/ Echo Task Program Example

147

Medusa Programmer's Guide, Beta Draft Apple Confidential 32/89

Echo-Interface.h

R R O A A T T T A N N T S N T N T A T T A N AN AN R A AT TR AN T I A A XXX TN CX TN NI T

- -
* File: Echo-Interface.h o
= Written by Eric M. Trehus -
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved =
= *

\t'?!!'ttt't*!'t'l""tt‘tttl"t'l’ttiititiilv'tttt"!t'f‘ltf!"tf’**f"*'t'*'t'*'t*t*tt’ttr/
#.indef _ EZcholnterface_

#define _ Zchcinterface_
#include <LLC.h>

#include <General.h>

word Echo_Open(int SyncFlag,
word *RefNum) ;
word Echo_Close(int SyncFlag,
word RefNum) ;
word Icno_Receive(int SyncFlag,
word Re fNum,
LANHdr *Hdr,
long BuffersSize,
veid *Buffer)
word EZcho_Transmit(int SyncFlag,
word RefNum,
LANHdr *Hdr,
lcng 3uffersSize,
void *Buffer);

148 C / Echo Task Program Example

=

Medusa Programmer's Guide, Beta Draft Apple Confidential 3/2/89

MREcho-Interface.c

R R S R R N R N R T R N A A T R T T T T N N X A N T A T I A N T N A AT A A XA I N XXX TNXT XXX T T x|

* -
* File: MREcho-Interface.c *
* Written by Eric M. Trehus *
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved *
- .

T T N N A T T T A R T AN T A N N T T N A A N A N A I N N T A T I A T AT R AN TN IR NIRRT IXITN NN/

#include <STDIO.h>

#include <Types.h>

#inciude <os.h>

#include <LLC.h>

#include <SNAP.h>

#include <Echo.h>

#include <Echo-Interface.h>
#include <Externals.h>

/’
MREcho-Interface.c provides a procedure interface to the ECHO protocol. This hicdes
many of the details of MR-DOS.

*/

word Echo_Open(int SyncfFlag,

word *RefNum)

/* Local Variables */
message *Message;
word Result = 0O;

long ID;

1f (Message = GetMsg())
{
ID = Message->mlId;
Message->mCode = ZchoCpen;
Message->mPriority = GloballllMessagePriority;
Message->mTo = GlobalEchoTID;
if (SyncFlag) /* 1f Async */
{
Send (Message) ;

else /* Sync */

Send (Message) ;
Message = Receive(ID,3,3,0);

C/ Echo Task Program Example 149

Medusa Programmer's Guide, Beta Draft Apple Confidential

}

else

Result = Message->mStatus;
*RefNum = OlataAs (EchoRefNumOData,Message) ->RefNum;
FreeMsg (Message) ;

Result = CannotGetMessageBufferErrz;

return (Result) ;

word Echo_Close(int SyncFlag,

150

word Re fNum)

/* Local Variaples */

message *Message;

word Result = O;
long ID;

if (Message = GetMsg())

{

else

ID = Message->mId;

Message->mCode = EchoClose;

Message->mPriority = GloballlLCMessagePriority;
Message->mTo = GlobalZchoTID;

ClataAs (EchoRefNumOlata, Message) ->RefNum = RefNum;

if(SyncFlag) /* 1f Async */
{
Send (Message) ;

else /* Sync */
Send (Message) ;
Message = Receive(ID,0,C,0);

Resu.z = Message->mStatus;
FreeMsg (Message) ;

Result = CannotGetMessageBufferErr;

return (Result);

C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidentiat
/* '

Y89

In our example this procedure is not needed, however it is provided for completeness.

*/

word Echo_Receive(int SyncFlag,
word RefNum,
LANHdAr *Hdr,
long BufferSize,
void *Buffer)

/* Local Variables =*/
message *Message;
word Result = G

leng ID;

if(Message = GetMsg())

(
ID = Message->mlId;
Message->mCode = EchoReceive;
Message->mPriority = GloballlCMessagePriority;
Message->mTo = GlobalEchoTID;
ODataAs (EchoReceiveCData, Message) ->RefNum = RefNum;
ODataAs (EchoReceiveOData, Message) ->Hdr = Hdr;
Message->mlbataSize = BufferSize;
Message->mDataPtr = Buffer;

if(Syncflag) /* If Async */
{
Send (Message) ;

else /* Sync */

Send (Message) ;

Message = Receive(ID,0,0,0);
Result = Message->mStatus;
freeMsg (Message) ;

o

lse
Result = CannotGetMessageBufferErr;
return (Result);

word Echo_Transmit (int SyncFlag,
word RefNum,
LANHdr *Hdr,
long BufferSize,
void *Buffer)

/* Local Variables */
message *Message;
~“ord Resulit = J;

_zng II:

C/ Echo Task Program Example

151

Medusa Programmer's Guide, Beta Draft Apple Confidential

152

if (Message = GetMsg())

{

else

ID = Message->mId;

Message->mCode = EchoTransmit;

Message->mPriority = GloballlCMessagePriority;
Message->mTo = GlobalEchoTID;

ODataAs (EchoTransmitOData,Message) ->RefNum = RefNum;
ODataAs (EchoTransmitOData, Message) ->Hdr = Hdr;
Message->mDataSize = BufferSize;

Message->mDataPtr = Buffer;

i€ (SyncFlag) /* If Async
{
Send (Message) ;

else /* Sync */
Send (Message) ;
Message = Receive(I1D,0,0,0);

Result = Message->mStatus;
FreeMsg (Message) ;

Result = CannotGetMessageBufferErr;

return(Result);

C / Echo Task Program Example

*/

Medusa Programmer's Guide, Beta Draft Apple Confidential YAv89
MRSNAP-Interface.c

VAAAASASS AL SALLAL SRS ittt ittt l ittt it iiss sttt At it il ittt lE s AN

x x

* File: MRSNAP-Interface.c >
* Written by Eric M. Trehus *
* Copyright Apple Computer, Inc. 1988-1989 *
* All rights reserved x

T T T T T T N T AN T N A N A N T T AT R T N N T T N T A T N AN R AN TN AN AN AR AT AXNTXN TN TAT NS/

/'
MRSNAP-Interface.c provides a procedure interface to SNAP. 7This hides many of zhe
details of MR-DOS.

*/

#include <os.h> /* IPC-MRDOS interface */

#include <LLC.h>
#include <STDIO.h>
#include <Types.h>
#include <SNAP.h>
#include <General.h>
#include <Externals.h>

word SNAP_Attach(int SyncFlag,
word *PDRefNum,
word Options,
void (*Listener) (),
void . *ProtocolDescriptor)

/* Local Variables =/
message *Message;
word Result = 07

long ID:

1f(Message = GetMsg())

{
ID = Message->mId;
Message->mCode = SNAPAttach;
Message->mPriority = GlobalLlLCMessagePriority;
Message->mTo = GlobalSNAPTID;

Message->mDataPtr = ProtocolDescriptor:
Message->mDataSize = 5;

ODataAs (SNAPAttachOData,Message) ->Options = Options:
CDataAs (SNAPAttachOData,Message)->Listener = Listener;

C/Echo Task Program Example 153

Medusa Programmer's Guide, Beta Draft Apple Confidential

else

1£(SyncFlag) /* If Async */
{
Send (Message) ;

else /* Sync */
Send (Message) ;
Message = Receive(I1D,0,0,0);
Result = Message->mStatus;

*PDRefNum = ODataAs (SNAPAttachOData,Message) ->PDRefNum;

FreeMsg (Message) ;

Result = CannotGetMessageBufferErr;

return (Result);

word SNAP_Detach(int SyncFlag,

154

i

woerd RefNum)

Lccal Variables =/

message *Message;

werd Resulz = O

iong ID:

if (Message = GetMsg())

{

ID = Message->mlId;
Message->mCcde = SNAPDetach;
Message->mPricrizy = GlcpbailllMessagerrioriczy;

mmre

lcbalSNAPTIC,

3]

Message->mToc =
CCataAs (SNAP_?D_RefNum, Message) ->PCRefNum = ({snorz)RefNum;

if(Syncflaq) /* If Async */
{
Send (Message) ;

else /* Sync */

Send (Message) ;

Message = Receive(ID,0,0,0);
Result = Message->mStatus;
FreeMsg (Message) :

C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft

else

Apple Confidential

Result = CannotGetMessageBufferErr;

return (Result);
}

word SNAP_GetConfig(int

SyncFlag,
long ConfigBufferSize,
LLCGetConfigBuffer *ConfigBuffer
)
{

message *Message;

word Result = 0;

long ID:

if (Message = GetMsg())
{
‘ID = Message->mId;
Message->mCode = SNAPGetConfig;
Message->mPriority = GloballLLCMessagePriority;
Message->mTo = GlobalSNAPTID;
Message->mDataSize = ConfigBufferSize;
Message->mDataPtr = (char *)ConfigBuffer;
if(SyncfFlag) /=
(.

Send (Message) ;

If Async */

else /* Sync */
{
Send(Messége):
Message = Receive(ID,0,0,0);
Result = Message->mStatus;
FreeMsg (Message) ;
)
else
Result = CannotGetMessageBufferirr;
return(Resulc);
I
word SNAP_GetHdr (int SyncFlag,
word HdrType,
word Options,
byte SSAP,
byte DSAP,
LANHdr *ddr,
long AddressSize,
char *Address

C/ Echo Task Program Example

155

Medusa Programmer's Guide, Beta Draft Apple Confidential YA/89

message *Message;
word Result = 0;
long ID; ..

if (Message = GetMsg())

{
ID = Message->mId;
Message->mCode = SNAPGetHdr;
Message->mPriority = GloballlCMessagePriority;
Message->mTo = GlobalSNAPTID;
CDataAs (LLCGetHdrOData, Message) ->HdrType = HdrType:;
ODataAs (LLCGetHdrOData, Message) ->Cptions = Options;
OlataAs (LLCGetHdrCData, Message) ->SSAP = SSAP;
ODataAs (LLCGetHdrOData, Message) ->DSAP = TSAP;
CDataAs (LLCGetHdrCData, Message) ->Hdr = Hdr;

Message->mDataSize = AddressSize;
Message->mDataPtr = Address;

if (SyncFlag) /* If Async */
{
Send (Message) ;

else /* Sync */

Send (Message) ;

Message = Receive(ID,0,0,0);

if (Message)

{
Result = Message->mStatus;
FreeMsg (Message);

eilse
Result = CannotGetMessage3ufferZirr;
return(Resuli);

word SNAP_Transmit(int SyncFlag,
word Infolen,
word Options,
byte FrameType,
LANHdr *Hdr,
long BufferSize,
char *Buffer

1%

)}

’

message *Message;
word Result = C;

-cng ID:

C / Echo Task Program Example

Medusa Programmer's Guide, Beta Draft Apple Confidential

if (Message = GetMsg())

(

}
else

return (

word SNAP_Rece

message
word Re
long ID

if (Mess
{

ID = Message->mId;

Message->mCode = SNAPTransmit;
Message->mPriority = GloballLlCMessagePriority;
Message->mTo = GlobalSNAPTID;

ODataAs (SNAPTxOData,Message)->Infolen = Infolen;

ODataAs (SNAPTxOData,Message)->Options = Options;
ODataAs (SNAPTxOData,Message) ->FrameType = FrameType.

ODataAs (SNAPTxOData, Message) ->Hdr = Hdr;

Message->mDataSize = BufferSize;
Message=->mDataPtr = 3Buffer;

if(SyncFlag) /*
(
Send (Message) ;

else /*

Send (Message) ;

Message = Receive(ID,0,0,0);
Result = Message->mStatus;
FreeMsg (Message) ;

Result = CannotGetMessageBufferErr;
Result) ;

ive (int SyncFlag,
word PDRefNum,
word Ceoticns,
LANHdr =Hdr,

long 3uffersSize,
char *3yffer)
*Message;

sult = 0;

age = GetMsg())

ID = Message->mId;

Message->mCode = SNAPReceive;
Message->mPricrity = GloballlCMessagePriority;
Message->mTo = GlobalSNAPTID:

If Async */

Sync */

ODataAs (SNAPReceiveOData,Message) ->PDRefNum = PDRefNum;
ODataAs (SNAPReceiveOData, Message) ->Options = Options:

CDataAs {SNAPReceivelData, Message) ->Hdr = Hdr;

C/ Echo Task Program Example

/* This is ignored */

157

Medusa Programmer's Guide, Beta Draft Apple Confidential

Message->mDataSize = BufferSize;
Message->mDataPtr = Buffer;

if(SyncFlag) /* If Async */

(.
Send (Message) ;

else

Result = CannotGetMessageBufferErr;

return (Result);

158 C / Echo Task Program Example

