
•

, ,

For ResEdit 2.1

It.
ResEdit Reference

ti.
Beta Draft

1990 September 24
Developer Technical Publications
@ Apple Computer, Inc. 1990

• APPLE COMPUTER, INC.

This manual is copyrighted by Apple or
by Apple's suppliers, with all rights
reserved. Under the copyright laws, this
manual may not be copied, in whole or
in part, without the written consent of
Apple Computer, Inc. This exception
does not allow copies to be made for
others, whether or not sold, but all of
the material purchased may be sold,
given, or lent to another person. Under
the law, copying includes translating
into another language.

The Apple logo is a registered
trademark of Apple Computer, Inc. Use
of the "keyboard- Apple logo (Option
Shift -K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition in
violation of federal and state laws.

© Apple Computer, Inc., 199C~
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996-1010

Apple, the Apple logo, AIUX,
HyperCard, MacApp,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

APDA, MPW, MultiFinder, and Switcher
are trademarks of
Apple Computer, Inc.

ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

POsrscRIPT is a registefed trademark,
and Illustrator is a trademark, of Adobe
Systems Incorporated.

Simultaneously published in the United
States and Canada.

Umited Warranty on MedJa and
RepJacement

If you discover physical defects in the
manual or in the media on which a
software product is distributed,
APDA will replace the media or
manual at no charge to you provided
you return the item to be replaced
with proof of purchase to APDA.

AU IMPLIED WARBANTIES ON
TIm MANUAL, INCLUDING
IMPLIED WARBANTIES OF
MERCHANrABIUI'Y AND Ffl'NESS
FORA PAmctJLAR PURPOSE, ARE
LIM1l'ED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PUROIASE
OF TIm PRODUO.

Even though Apple has reviewed this
manual, APPLE MAKFS NO
WARRANTY OR
REPRESENTATION, EIl'HER
EXPRESS OR IMPLIED, wrm
RESPECT TO THIS MANUAL, rrs
QUAUI'Y, ACCURACY,
MERCHANrABIUI'Y, OR Ffl'NESS
FOR A PAmctJLAR PURPOSE. AS
A RESULT, TIm MANUAL IS SOlD
-AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUAUfY
AND ACCURACY.

IN NO EVENT WUl.APPLE BE
IlABLE FOR DIRECT, INDIREO,
SPEOAL, INaDENTAL, OR
CONSEQUEN11AL DAMAGES
RESULTING FROM ANY DEFEO
OR INACCURACY IN TIm
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FOIml ABOVE ARE
EXOllSlVE AND IN LIEU OF AU
OI'HERS, ORAL OR WRIlTEN,
EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental or
consequential damages, SO the above
limitation or exclusion may not apply
to you. This warranty gives you
specific legal rights, and you may also
have other rights which vary from
state to state.

•

J
I

(

Contents

Preface / xi

Prerequisites / xii
What this manual contains / xii
How to use this manual / xii
Conventions used in this book / xiii
Graphics / xiii
Where to get information / xiii

About APDA / xiv
About Developer Prograrm / xiv

lResEdit Overview / 1

2Gettfng Started / 7

Resouoces / 2
New and changed resource types supported by ResEdit 2.0 / 3

Resouoce categories in ResEdit / 3
Uses / 4
Extensibility / 4
The resoua:e development cycle / 5

Invoking ResEdit / 8
Working with mes / 9

Resoua:e checking / 10
Opening a me / 10

Menus in ResEdit / 13
The File menu / 13
The Edit menu / 17
The Resoua:e menu / 18
The Window menu / 22
The View menu / 23

Starting an editor / 25
Resource ID nurnbelS / 25

ill

3The BIt EdItors / 27

Overview of the bit editors / 28
Tools / 29
Menus / 30

The Transfonn rrenu / 30
The Color rrenu / 31

The 'FONT' editor / 32
Editing Cursors / 33
Editing Icons / 35

Editing 'den' resources / 35
Creating new color icons / 36

Finder icons / 36
The Icons menu / 37

ICON' resources / 38
leN#' resources / 39

List resources / 41
SIeN'resources I 41

Editing Patterns / 42
PAT'resources I 43
PAT#' resources / 43
ppat resources / 44
ppt#' resources I 44

FONT' resources / 46
Editing 'FONT' resources / 47

40ther Resources / 51

Using the hexadecimal editor / 52
WIND', 'ALRT', and'DLOG' resources / 53
Dm' resources I 60
BNDL' resources / 64
dur and 'pitr resources / 68
INTL', 'idO', and 'id1' resources / 70
KCHR' resources / 72

The main 'KCHR' editor / 72
The character chart / 73
The table chart / 73

Iv ResEdit 2.1 Reference

The virtual keycode chart / 74
The keyboaJd region / 74
The information region / 74

l
I

Editing dead keys / 75
The dead-key editor / 75

The character chart / 75
The nomatch character / 76
The completion and substitution character pair list / 76
The Trash / 76
The information region / 76

The menus / 76
The KCHR menu / 76
The Font menu / 78
The Size menu / 78

MENU' resources / 80
TEXT' and 'styl' resources / 85
vers' resources / 86

5ResEdlt TempJates / 87

6ResEdlt Tips / 95

Template characteristics / 88
Editing / 89

PIer editing / 89
Creating New Templates / 90

Template example / 90

Hints and kinks / 96
The'LAYO'resource / 100
KCHR' questions and answers / 104

me Programmatic Interface / 107

Pickers and editors / 108
Code-containing resources in the ResEdit release / 108

Samples / 109
Sample editor / 109
Sample picker / 109
Sample LDEF / 110

Building the examples / 110
Using ResEd / 110
Writing a ResEdit extension / 111

ResEdit 2.0 changes / 112
ResEd changes for the 2.0 release / 112

Contents v

Required routines / 114
EditBirth / 114
PickBirth / 114
DoEvent / 115
DoInfoUpdate / 115
DoMenu / 115

UsingcustomIDEFs / 116
The ResEd interface / 117

Data structures / 117
The parent record / 118
The picker record / 118

Other routines / 119
Launching routines / 119
Infonnation-passing routines / 120
Window management routines / 120
Resource utilities / 123
Miscellaneous utilities / 126
Internal routines / 134
Obsolete routines / 137

AThe 'KCHR' Resource / 139

Basic theory of keyboard operation / 140
Generating the virtual keycode / 140

Exceptions to the rule / 140
Generating the character code / 140
Dead keys / 141

The structure of a 'KCHR' resource / 142

BThe 'BNDL' Resource / 145

The structure of a 'BNDL' resource / 146
Defmitions of the 'BNDL' and 'FREF resources / 148

CResource Types Defined for Rez and ResEdit / 151

DThe Macintosh Character Set / 157

vi ResEdit 2.1 Reference

(

J
:\

Figures and tables

2GettJng Started / 7

Figure 2-1 Splash screen 8
Figure 2-2 ResEdit flle open dialog 9
Figure 2-3 Add resource fork alert 11
Figure 2-4 A ResEdit 2.0 flle window 11
Figure 2-5 File menu 13
Figure 2-6 Open Special dialog box 15
Figure 2-7 A File Info window 15
Figure 2-8 A Folder Info window 16
Figure 2-9 Preferences dialog box 16
Figure 2-10 Edit menu 17
Figure 2-11 The Resource menu for 'BNDL' 18
Figure 2-12 The Resource menu with a picker open 19
Figure 2-13 There is no template for 'CODE' resources 19
Figure 2-14 An 'ICN#' Get Info window 20
Figure 2-15· A resource type window (with custom picker)
Figure 2-16 The Wmdow menu 22
Figure 2-17 The View menu and a ResEdit 2.0 file window
Figure 2-18 The View Irenu and a resource type window
Figure 2-19 Showing type attributes 24

3The Bit EdItors / 27

Figure 3-1 Bit editing window layout 28
Figure 3-2 The Transform Irenu 30
Figure 3-3 The Color menu 31
Figure 3-4 'CURS' resource editor 33
Figure 3-5 Color cursor editing: mask examples 34
Figure 3-6 Color icon editor 35
Figure 3-7 Finder icon editor 37
Figure 3-8 Icons menu 38
Figure 3-9 'ICON' resource editor 38
Figure 3-10 'ICN#' resource editor 39
Figure 3-11 'SICN' resource editor 41
Figure 3-12 Pattern Size Dialog Box 42

21

23
24

Figures and tables vH

Figure 3-13 'PAT' resource editor 43
Figure 3-14 'PATI' resource editor 43
Figure 3-15 'ppat' resource editor 44
Figure 3-16 'ppt#' resource editor 45
Figure 3-17 'FONT resource editor 47

40ther Resources / 51
Figure 4-1 'WIND' resource editor 54
Figure 4-2 WINDrrenu 55
Figure 4-3 Setting 'WINO' characteristics 55
Figure 4-4 'ALRT' resource editor 56
Figure 4-5 ALRTmenu 56
Figure 4-6 'ALRT 'Stage Info dialog box 57
Figure 4-7 'OLOG ' resource editor 57
Figure 4-8 OLOGmenu 58
Figure 4-9 setting 'OLOG' characteristics 58
Figure 4-10 MiniScreen menu 59
Figure 4-11 Special parameter strings 59
Figure 4-12 'Om' resource editor 60
Figure 4-13 om item editor 61
Figure 4-14 om menu 61
Figure 4-15 om menu View As dialog box 62
Figure 4-16 Alignrrent menu 63
Figure 4-17 'BNDL' resource editor, simple view 64
Figure 4-18 The Icon chooser 65
Figure 4-19 'BNDL' resource editor, Extended view 67
Figure 4-20 'clut' resource editor 68
Figure 4-21 clut menu 68
Figure 4-22· Editing an 'itlO' resource 70
Figure 4-23 Editing an 'itll' resource 71
Figure 4-24 Editing a 'KCHR' resource 72
Figure 4-25 Editing a dead key 75
Figure 4-26 The KCHR menu 77
Figure 4-27 'MENU' resource editor 80
Figure 4-28 'MENU' line item edit 81
Figure 4-29 'MENU' mark pop-up 82
Figure 4-30 'MENU' Icon chooser 82
Figure 4-31 'cmnu' editing 83
Figure 4-32 'MENU' ID dialog 84
Figure 4-33 'TEXT' and 'styl' editor 85
Figure 4-34 Editing a 'vers' resource 86

vm ResEdit 2.1 Reference

5ResEdit Templates / 87

Figure 5-1 The template editor for 'PIer 90
Figure 5-2 'TMPL' defmition for type 'STR#' 91
Figure 5-3 'STR#' template in use 91

6ResEdit Tips / 95

Figure 6-1 'RMAP' resource 99
Figure 6-2 'LAYO' template, view 1 100
Figure 6-3 'LA YO' template, view 2 101
Figure 6-4 'LAYO' template, view 3 102
Figure 6-5 'LAYO' template, view 4 103
Figure 6-6 'LAYO' template, view 5 104

AThe 'KCHR' Resource / 139

Figure A-I Modifier flag high byte 143

BThe 'BNDL' Resource / 145

Figure B-1 Six resources and their relationships 147

CResource Types Defined for Rez and ResEdit / 151

Table C-1 Resource types defmed for Rez and ResEdit 152

DThe MacIntosh Character Set / 157
Figure D-1 Macintosh character set 159

Figures and tables Ix

(,

Preface

ResEdiell, an extensible standalone resource editor for the Macintoshl computer, is a
powerful tool you can use to speed your software development process and to
create icons, menus, and other resources for Macintosh programs and flies. This
manual is a complete reference to ResEdit that includes introductions to the various
resource type editors included in the program, and a discussion of the framework
that is provided so that you can extend the capabilities of the program by adding
your own resource pickers and editors.

xi

Prerequisites

To run ResEdit 2.0, the system you use must have at least 128 KB of ROM and at least 1
megabyte of memory.;

ResEdit 2.0 works with system software version 5.0 and later. ResEdit is compatible with (but
does not require) 32-bit QuickDraw™.

What this manual contains

Chapter 1 introduces the concepts behind ResEdi~ starting with an overview of Macintosh
resources. Chapter 2 tells you about the user interface. Chapter 3 discusses the editors in
ResEdit that handle various kinds of bitmap resources (CUlSOrs, icons, and so on), and Chapter
4 discusses the other built-in editors. Chapter 5 describes template editing and tells you how
to build your own templates. Chapter 6 is a "hints and kinks" area that contains useful
information that will help you make efficient use of ResEdit Chapter 7 describes the
programmatic interface to ResEdit and tells you what you need to know in order to write your
own picker and editor. Appendix A describes the inner workings of the 'KCHR' editor,
Appendix B describes the inner workings of the 'BNDL' resource, Appendix C lists a number
of extant resource types, and Appendix D is a chart of the regular Macintosh character set

How to use this manual

If you have used. previous versions of ResEdit, you will probably want to take a quick look at
Chapter 2, which describes the user interface in some detail, specifically because the interface
has been changed extensively in version 2.0.

If you have never used ResEdit, you should probably read Chapters 1 and 2 and look over the
rest of the book. Use the program for a while, and then look at the book again. It will
probably make a lot more sense after you've actually played with ResEdit.

xii ResEdit 2.1 Reference

Conventions used in this book

The following visual rues are used throughout this book to identify different types of
information:

• Note: A note like this contains information that is interesting but not essential for an
understanding of the main text

6 Important A note like this contains information that is essential. t::.

.. Warning Warnings like this indicate potential problems. .A.

This manual uses courier type to represent code fragments and the names of procedures.

Graphics

Most of the artwork in this book is taken directly from Macintosh screens. Some illustrations
show a condensed version of the screen with a sequence of windows or some particular
feature (such as a menu) evident Others show only an active window, or an alert or
dialog box.

Where to get information

Apple technical books published by Addison-Wesley, such as Inside Macintosh, are available
at commercial bookstores. Books and manuals published by Apple are available through
APOA, the Apple Programmers and Developers Association, at the address listed below.
Technical notes and other materials of interest to Macintosh application developers are also
available from APOA.

Preface xlli

AboutAPDA

APDA provides a wide range of technical products and documentation, from Apple and other
supplielS, for programmelS and developelS who work on Apple equipment You can contact
them as follows.

APDA
Apple Computer, Inc.
20525 Mariani Avenue, MIS 33-<1
Cupertino, CA 9501~299

Telephone: 1-800-282-APDA or 1-800-282-2732 if you are inside the United States;
in canada, 1-800-637-0029; elsewhere in the world, 01-408-562-3910.
Pax: 408-562-3971 Telex: 171-576 AppleLink: DEY.CHANNELS

About Developer Programs

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to them at the
following address:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, MIS 75-2C
Cupertino, CA 9501~299

xiv ResEdit 2.1 Reference

(." .,

Chapter 1 ResEdit Overview

This chapter introduces the concept of resources as they are handled on the
Macintosh8 computer, and introduces ResEdiell, an interactive, graphically
based application for manipulating resources in Macintosh fIles. Some
Macintosh flIes don't contain any resources, but all applications and roost of
the System Folder flIes do.

1

Resources

One of the ways in which the Macintosh is different from other computelS is its handling of
resoun;e; (typefaces, icons, dialog boxes, and so on). In the Macintosh, resources are distinct
from data (for example, the text in a word-processing ftle). The Macintosh does not insist on
keeping resources in a central pool; they may be placed in any me.

In IIX>St computelS, a me consists of a set of bytes, perhaps beginning with a header that
contains some information about the structure of the data contained in the me, and possibly
ending with some sort of trailer; in any case, the me is one set of bytes. The Macintosh has,
instead, a me structure that is designed to include two sets of bytes, a data fork and a resource
fork. Any fUe may contain only a data fork, only a resource fork, or both. While a plain
HypelCard stack, for example, has only data in it, people commonly add icons and sounds to
their stacks, creating resource fOlks for those stacks in the process.

Resources are classifted by type. Each type has its own name, which consists of exactly four
charactelS. Any charactelS in the Macintosh character set can occur in resource type names,
even unprintable ones, but typically they consist of lower- and uppercase lettelS, numerals,
punctuation marks, space, and Option-space. Resource type names are shown here with
single straight quotation marks around them (for example, 'idO'). If you see a name that
appealS to be shorter, the empty slots are probably filled with spaces (for example, 'snd ').
Sotre resource types are named and described in Appendix C. There are many different types
of resources, and you can create your own resource types with ResEdit if you don't ftnd the
type you need.

• Note: Apple Computer, Inc., reserves all names that don't contain any uppercase letters.
Any combination with at least one uppercase letter in it is youlS to use, though it is a good
idea to avoid using any type natre that someone else has already used that you know of.

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (very straightforwardly, 'CODE'). Any application, then, must have a
resource fork, which is where its code resides, along with various other resources, such as
menus.

2 ResEdit 2.1 Reference

(ResEdit lets you copy and paste all resource types, and lets you edit many of them ('NFNT' is
an exception, and is discussed briefly in the section on 'FONT' editing, in Chapter 3.) ResEdit
actually includes a number of different resource editors: There is a general resource editor
for editing any resource in hexadecimal and ASCII formats, and there are individual resource
editors for various specific resource types. There is also a template editor, which lets you
edit some kinds of resources in a dialog box forma~ with fields that you can fIll in as
appropriate. There are predefmed templates for quite a few resources already built into
ResEdit, and you can create others. For further information on template editing and on
generating your own templates, see Chapters 4 and 5.

New and changed resource types supported by ResEdlt 2.0

The 'den' color icon resource type is up to S bits deep and contains its own color lookup
information. It defaults to a size of 32 x 32 pixels, though both its height and its width can be
changed independently to be anything from S to 80 pixels. This icon resource includes a
monochrome version and rmsk. ResEdit 2.0 includes an editor for 'dcn' resources.

Finder icons for system software version 7.0 occur in 6 variants, including the old 'ICN#' and
the new'ies#' types, as well as the new 4- and 8-bit small and large color icons ('ics4', 'iesS',
'icl4', and 'iclS'). A comprehensive editor in ResEdit 2.0 lets you deal with each set of Finder
icons as a coherent group.

ResEdit 2.0 includes an editor for bundles, resource type 'BNDL' (bundles also involve other
resources, as described in Appendix B), and an editor for menus, resource types 'MENU',
'cmnu', 'CMNU', and 'mctb'. These editors are discussed in Chapter 3.

Resource categories in ResEdit

ResEdit behaves as if there were three kinds or categories of resources on the Macintosh.

Resources of the first kind are accessed with individual pickers and edited with individual
editors. These resources and their editors are described in some detail in Chapters 3 and 4.
Several of these resources ('CURS', 'FONT', 'ICON', 'PAT', and so on) are in some sense
pictorial. All of the pictorial resources are edited with bit editors, which are discussed in
Chapter 3.

Chapter 1 ResEdit Overview 3

Resources of the second kind are edited as templates. That is, if you open a resource of this
kind, you are presented with a dialog box in which there are various labeled fields. You can
change the contents of the frelds. Information on existing templates and on genetating your
own templates appears in Chapter 5, and an example of template editing appears in
Chapter 6.

Resources of the third kind are edited with the hexadecimal editor, unless you write your own
templates or editors for them.

Uses

ResEdit is especially useful for creating and changing gtaphic resources such as dialog boxes
and icons. For example, you can use ResEdit to try out different formats and presentations of
resources in the process of putting together a quick prototype of a user interface. Anyone can
quickly learn to use ResEdit for ttanslating resources into languages other than English
without having to recompile prograrm. You can use ResEdit to modify a program's resources
at any stage in the process of program development ResEdit is also useful for modifying the
'LA YO' (desktop layout controO resource in a copy of the Finder™ so that you can
reconfigure some aspects of the desktop display. See Chapter 6 for more details about the
'LA YO' resource.

Extensibillty

A key feature of ResEdit is its extensibility. Because it can't anticipate the formats of all the
different types of resources that you may use, ResEdit is designed so that you can teach it to
recognize and parse new resource types.

There are two ways that you can extend ResEdit to handle new types:

• You can create templates for your own resource types. ResEdit lets you edit most resource
types by filling in the fields of a dialog box; this is the way you edit the Finder's desktop
layout control resource, for example. The ordering of the items in these dialog boxes is
determined by a template in ResEdit's resource me, and you can add templates to ResEdit
or to the ResEdit preferences flle yourself to edit new resource types. Resource templates
are described in Chapters 4 and 5, and the desktop layout control resource is discussed in
some detail in Chapter 6.

4 ResEdit 2.1 Reference

v

• You can progIam your own special-purpose resource picker or editor (or both) and
add it to either ResEdit or to the ResEdit Preferences file. (The resource picker is the code
that displays all the resources of one type in the resource type window. The editor is the
code that displays and allows you to edit a particular resource. These pieces of code are
separate from the main code of ResEdit.) A set of Pascal or C routines, called ResEd, is
available for this purpose-see Chapter 7 for information. The advantage of adding your
code to the ResEdit Preferences fde rather than to ResEdit itself is that doing so facilitates
updating to new versions of ResEdit as they become available.

The resource development cycle

ResEdit is often used with Macintosh Programmer's Workshop (MP~ and other program
development systems. Once you have created or modified a resource with ResEdi~ you can
use the MPW resource decompiler, DeRez, to convert the resource to a textual representation
that can be processed by the resource compiler, Rez. You can then add comments to this text
fde or otherwise modify it with the MPW Shell or another text editor. Rez and DeRez are fully
described in the Macintosh Programmer's Workshop Reference (MPW Reference). It is not
necessary to use Rez or DeRez unless you have some specific need or desire to modify or
conurent the code that DeRez produces; the resources generated by ResEdit are, in general,
entirely acceptable.

Chapter 1 ResEdit Overview 5

{

Chapter 2 Getting Started

If you are new to ResEdi~ you will want to proceed with some caution, as
ResEdit is quite powerful and can easily damage or destroy your files. If you
are acrustomed to earlier versions of ResEdi~ you will notice that the user
interface has been extensively changed and now conforms rrore closely to
the guidelines established by Apple Computer, Inc.

7

Invoking ResEdit

ResEdit is a regular application, so if you are in the Finder or in HyperCard you can start it up
just as you would any other application. If you are using MPW, you can start ResEdit by
entering either of these conumnds in the MPW Shell:

ResEdit

ResEdit file! file2 .•.

The latter command causes ResEdit to open the named fIles automatically.

When ResEdit fIrst starts up, it displays an animlted ·splash screen. It Figure 2-1 shows one of
the stages of this animation.

• Flgure2-1 Splash screen

r
I -

8 ResEdit 2.1 Reference

ResEdit 2.1
2.185

CoPljriQllt 01984-1990,
Apple Computer, Inc.
All riQllts rved.

\,

/

The animation continues until you click the mouse anywhere or press any key. If you click
the mouse or press an unmodified key ResEclit puts up a dialog box, shown in Figure 2-2, that
lets you create a new flle or open an existing one. If you press a command-key combination,
the splash screen is dismissed and ResEdit perl'onns the action you have requested. This is
especially useful for conunand keys assigned to the Open Special menu, described in this
chapter. You can, if you wish, use the Preferences conunand on the rue menu to choose not
to have ResEdit put up the dialog box.

• Figure 2-2 ResEdit fde open dialog

10 utllsl
.... 111 t'I1"-..:rII;ti •

~ Rbout Time
o Rntlulral
~ Apple HD SC Setup
o Bostonll

. .

~ BOH 8 for Mac II
~ ChangeAppFont
o Clock Doc ; i

~ ~=;~!:t~!e;O~!d Sampler : I
~ Disk First Rid

r'-' Ntlabatlattl •••

Ele(t

Orlu~

New

I Open D
Cancel

You can select a fllename by clicking it or by typing one or more characters of the filename.

Working with rues
ResEdit proVides facilities to let you open flles, create new files, create resources, move and
edit them, and perl'orm two levels of verification on them.

Chapter 2 Getting Started 9

Resource checkJng

Sometimes a resource me gets corrupted. This is typically the result of a crash occurring while
the me is being updated. In the past, ResEdit would occasionally crash when you tried to
open a damaged file with it. Version 2.0 of ResEdit provides resource me checking facilities to
help avoid crashes and to minimize loss of data. The checking facility does not detect
corrupted individual resources; it bases its tests on the me's resource map.

When you open a file, ResEdit performs a partial resource check on it. This test verifies only
that the resource map is located after the end of the resource data area, and that the header,
data, and map do not extend beyond the EOF of the resource fork. If the file does not pass
these initial tests, a full test is automatically performed. If you choose "Verify mes when they
are opened" in the Preferences dialog, ResEdit performs a full test whenever you open a file.

If you want to invoke the full test yourself, choose Verify Resource File from the File menu.

In order to perform a full resource check, ResEdit walks through the entire resource map and
verifies that the type list, the reference lists, and the name list are consistent, that all resource
data areas can be located, and that they do not exceed the available me size. It also checks for
duplicate types, and for duplicate ID numbers within each type. ResEdit has several
techniques for locating the resource map, the existence and location of which is critical to the
process of recovering damaged resource meso

If damage is discovered, the user is offered a repair option. This procedure does not change
the damaged file. Instead, ResEdit creates a new me, extracts all the resources it can fInd in
the damaged file, and copies them to the new me. It then renames the old file (with an
extension of "(damaged)". ResEdit also presents the user with status information about the
resources that were extracted.

There is one exception to the rule that the damaged me is not "touched" minor damage
occurs whenever a resource me is not properly closed. ResEdit repairs this damage without
asking the user's permission. (The actual process involved is quite simple: ResEdit opens the
me using the Resource Manager, calls the UpdateResFile routine to rewrite the resource
map, and closes the me.) After performing the repair, it presents an alert to the user.

Open1ngaIDe

To list the resource types in a me, select and open the fIlename from the list in the me open
dialog. If you try to open a me that does not have a resource fork, ResEdit displays a dialog
box, shown in Figure 2-3, that asks you whether you want to open the me anyway. If you
permit it to open the me, ResEdit extends the me by creating a resource fork in it.

10 ResEdit 2.1 Reference

•

(Add resource fork alert

the file 'MHose Funny' has no
resource fort. Opening it will add one.
Do you wish to open It?

[Cancel I OK »

.. Warning You can edit any file shown in the window, including the System file and
ResEdit itself, though there are some restrictions (the Finder and the
Desktop File cannot be opened by ResEdit under MultiFinder™, for
example). It's dangerous, though, to edit a file that's currently in use. In
general, it is much wiser to edit a duplicate instead of the me itself. .A

When you open a me, a file window appears. This window displays a pictorial list of all the
resource types in that file (See Figure 2-4), unless you choose "by Name" from the View menu
(See Figure 2-18). If you do choose to view the resource list by name, you can also choose to
show the total size of each resource type .

• Figure2-4 A ResEdit 2.0 me window

~ ~ CJCJ f,:? ~
• m raIIr 1:-

!iJ ---- ~ ~ ~1i!:
Jan nil nlII

Chapter 2 Getting Started 11

When a file window is the active window, you can create new resource types, copy or delete
existing resources, and paste resources from other flies. Here, operations are performed on
sets of resources. For example, selecting the resource type 'ALRT' in a fde causes all resources
of type 'ALRT' in that file to be selected as a group. Any operation you then petfonn on that
group affects all 'ALRT' resources in the file. To select more than one resource type, hold
down the Command key while clicking the individual items or click an item at the beginning
of the range you want to select, hold down the Shift key, and click the item at the end of the
range. The Shift key allows you to select the items in a rectangular area. You can then
continue to select or deselect individual resource types with the Command key. (These
techniques will also work within an open resource type for selecting individual resources.)

• Note: Many appUcations put more than one resource type at a time into the scrap when
Copy is chosen. For example, when an object is copied in MacDra~, an 'MDPL' resource
and a 'PIer resource are put into the scrap. When you paste into the fde window in
ResEdi~ all resources that are present are pasted.

• Note: You can no longer use ResEdit to delete fdes; also, ResEdit does not manipulate or
read data forks (this means, for example, that it cannot copy them).

12 ResEdit 2.1 Reference

•

Menus in ResEdit

The structure of menus in ResEdit has been changed with the 2.0 release. There are five main
menus disrussed here (File, Edit, Resource, Window, View), and special menus for particular
resources that are discussed in the sections on editing those resources, in Chapter 3.

TheFnemenu

Figure 2-5 shows the File menu.

• Figure 2-5 File menu

Get Info for Finder
Get File/Folder Info •••
Derlty Resource File •••

Pege Setup •••
Print •••

Preference ••••

liN
110

The File menu commands act as follows:

New ... Brings up the new file dialog box.

Open ... Brings up the file open dialog box similar to the one shown in Figure 2-2, but
without a New button.

Open Special Allows you to open flIes quickly. The Modify This Menu command, which always
appears at the bottom of the submenu, brings up the dialog box shown in Figure 2-<1,
which allows you to add and remove files and command keys.

Chapter 2 Getting Started 13

Close

Save

Revert me

Closes the currently active window. (Using this command has the same effect as
clicking the close box.)

Saves the currently active me, if there is one.

Restores the currently active me, if there is one, to the last version you saved.

Get Info for This FUe
When no me is open this command is gray and cannot be used. When a me is open
the words -rhis FJ.le" are replaced by the mename, and this command is enabled. It
displays me information and allows you to change it. (See Figure 2-7.)

Get FUelFolder Info ...
Displays file or folder information and allows you to change it Figure 2-7 shows a
FUe Info window as it appears under system software version 6.0. Figure 2-8 is a
Folder Info window, also for system software version 6.0.

Verify Resource File ...

Page Setup ...

Print ...

Preferences ...

Quit

Allows you to check the resource map of a me you specify.

Brings up the page setup dialog box.

Allows you to print from almost any picker or editor. When no files are open, it is
gray and cannot be used.

Brings up the dialog box shown in Figure 2-9. This lets you specify whether you
want ResEdit to start up with a me open dialog, whether you want to be warned if
you attempt to open the System file or ResEdit itself, whether you want ResEdit to
perform a verify opel3tion on mes when you open them, and also allows you to set
the sizes of type picker and resource picker windows.

Quits ResEdit and returns to the Finder (or the MPW Shell, HyperCard, or whatever
program launched ResEdit).

14 ResEdit 2.1 Reference

(• Figure 2-6 Open Special dialog box

Files on Open Special menu

Fa~ade ~
Finder
finder Sounds
Flash-It

[Cancel)

Rdd File •••

Remoue File

Set cmd key •••

[Remoue cmd key)

I OK]

• Figure 2-7 A File Info window

File

Type L..-__ ...I

o System
DOn Desk
o Shared 0 No Inits
o Rlways switch launch

o Resource map Is read only 0 File Protect

o Printer drluer Is MultlFlnder compatible 0 File Busy

Created 3/10/86 3:19:20 PM 0 File Locked

Modified 8/12/86 2: 16:46 PM

Size 10855 bytes In resource fork
o bytes In data fork

Chapter 2 Getting Started 15

• Figure 2-8 A Folder Info window

Folder ~

o System 0 Inulsible color:1 Blact
o On Desk I8J Inlted

• Figure 2-9 Preferences dialog box

Preferences

Window at startup: (j) Open dialog 0 None

I8J Warning when System or ResEdlt Is opened

I8J Derlfy flies when they are opened

Default window size:
Type pldcen

Width In plHels: IfliMl
Height in piHe's: ~

(cance.)

16 ResEdit 2.1 Reference

Resource plcters

~
§D

n OK J

The Edit menu

Figure 2-10 shows the Edit menu. It has only one unusual feature, the Select Changed
command on the last line. This command allows you to select only those items that have been
changed since the last time you saved the fIle you are working on.

• Figure 2·10 Edit menu

.. File" Resoun:e Window Ulew
Undo :-:Z

101 The

1:;:1
Cut aH
Copy ac eEl Paste au
Clear

[7J Ouplfc<'Ife :-:0
Select All aA

CUI. Select Changed

~ [7J en ~' il
.IOG »UI. IOD

Chapter 2 Getting Started 17

The Resource menu

The Resource menu is configured to provide the commands appropriate for the frontmost
window. The same items are always present on the menu, but they have slightly different
meanings, depending on the context The wording of the iteIm on the menu always tells you
what they do when you choose them. Figure 2-11 shows the Resource menu with a resource
type picker open and the 'BNDL' type selected.

• Figure 2-11 The Resource menu for 'BNDL'

[1J
can »AD. am.

r:J.[1J ~
alDG aan -

The Create New Resoun:e command lets you create any resource type. The Open Picker
command invokes a picker for the particular kind of resource that is selected. This is reflected
in its name, which includes the name of the selected resource type. At this level, the only
other command you can use is the Revert Resources command, which takes the resources
back to the last saved version. If you have made changes in individual resources of the
selected type since the last time you saved the file, you can undo those changes here.

18 ResEdit 2.1 Reference

,r

(

Figure 2-12 shows the Resource menu again, this time with a resource picker open. Note that
it is now possible to open a resource with a resource editor or template (if one is available) or
with the hexadecimal editor.

• Figure 2-12 The Resource menu with a picker open

• rile Edit .:1' I Window Ulew
Create New Resource lICK

The Dwar Open Resource Editor
JlDI BNDls Open Using Template •••

~ Open using HeN Editor

Reuert This Resource

[Get Resource Info IICI

I
.1Ir ~

Figure 2-13 shows the result of attempting to use the Open Using Template command on a
'CODE' resource. There is, in fact, no template for resources of this type. It is generally not
useful to open a resource of one type with a template for a resource of a different type.

• Figure 2-13 There is no template for 'CODE' resources

• File Edit .. I Window Ulew

The Dwarf Banana I
CODEs from The Dwarf Be

~ 1M. -
1 1032
2 21120 Select Template

[3 16712
4 5388
5 4 CCut ~ 0 6 3436 clut
7 3246 cmnu

I
8 728

CNTL i I)1 CTY# OK
dctb

"- om (Cancel 1

Chapter 2 Getting Started 19

It is also possible to get information on the selected resource. Figure 2-14 shows the Get Info
window for a resource of type 'ICN". 11lis dialog lets you change the name and ID number of
the resoUlte, and select or deselect sorre of its attributes.

• System Heap: If this attribute is set, the resource is placed in the System heap unless it is
too large to fit In that ease, the resource is placed in the Application heap, as if the box
were not checked. 11lis attribute should not be set for an Application's resources.

• PurgeabJe: If this attribute is set, the resoUite can be purged from menx>ry if nx>re room
is needed. It is typically a good idea to set this attribute, but there are exceptions.

• Locked: If this attribute is set, the resource is locked in place in the heap, and cannot be
nx>ved. 11lis attribute overrides the "Purgeable" attribute.

• Protected: If this attribute is set, the Resource Manager cannot change the name or ID
number of the resource, trodify its contents, or remove the resource from the file that
contains it The Toolbox routine that sets these attributes can be called, however, to unset
this one.

• Preload: Setting this attribute causes the ResoUite Manager to load the resource into
rrenx>ry immediately after opening the resource file.

• Figure 2-14 An 'ICN" Get Info window

- t2M SllII
Neme:

~ ~
Owner type

& Owner 10: I 1== 1m :I0IO 33+f Sub 10:

~ C G~
Httributes:
DSystem Heep DLoc:ked DPreloed ,.,., .. 12 ... ImPurge.ble DProtected

Opening a resource type produces a window that lists each resource of that type in the me.
The list is generated by a resoUite picker, and will take different forms, depending on the
particular resource picker that is displaying it The general resource picker displays the
resources by type, name, ID number, or order in the file; pickers for specific resoUite types
generate displays that are appropriate for their type. Figure 2-15 shows a picker for the 'ICN"
resource type.

You can also write your own pickers. For nx>re information, see Chapter 7.

20 ResEdit 2.1 Reference

,*
l.

• Figure 2-15 A resource type window (with custom picker)

Fe~edelcons I
ICN#s from FelYed

< 4 l:] @
:»12 l29t 1.3111

& ~ ~
I'" - -
~ C G~

"""- :tI77 44112 - I-

When a resource type window is the active window, the Edit menu commands have the
following effects:

Undo

Cut

Copy

Paste

Not usable.

Removes the resources that are selected, placing them in the ResEdit scrap. If only
one resource is selected, it is placed in the clipboard.

Copies all the resources that are selected into the ResEdit scrap. If only one resource
is selected, it is copied to the clipboard.

Copies the resources from the ResEdit scrap (or from the clipboard) into the resource
type window.

• Note: Only resources of the currently open type are copied into the resource type window.

Clear

Duplicate

Removes the resources that are selected without placing them in the ResEdit scrap.

Creates a duplicate of the selected resources and assigns a unique resource ID
number to each new resource.

When you choose Open Using Template from the Resource menu, a list of templates is
displayed, and you can pick the one you want to use.

Chapter 2 Getting Started 21

The Window menu

The Wmdow menu, shown in Figure 2-16, gives you an overview of what windows are
currently open, and indicates the currently active window with a checkmark. It also lets you
select a new current window. Note that the Wmdow menu is sorted not by window depth,
but by me.

• Figure 2·16 The Wmdow menu

.. File Edit Resource I BNDL
lbe Dwarf Banana-Tree

Banana Blrus RM 1.6 BNDLa

r
aeurs from Birus .; BNOL ID. 128

aeu ~I ~
Dlrus RM 1.6

.-
I IImma-Tr.e

HUMber of aeurs
rotHt "".1oad b BNDL 10-1 oeur 10·0 IWM

~

Signature: Ilil!ImIl

U

Type Finder Icons

APPL •• _ ... ~
.... - -

- to H

22 ResEdit 2.1 Reference

.1
'~

The View menu

The View menu is configured to match the frontroost window. When a me window is the
currently active window, the View menu lets you show the resource types in a file by Icon or
type name, and if you show them by type, it lets you show the size of each type. O'hat is, the
sum of the sizes of aU resources within the type.) See Figure 2-17.

• Figure 2-17 The View menu and a ResEdit 2.0 file window

• ril. Edit R •• ourc. Window

;UDE 'j 5J; io
CRn .. 5'1
DATA 1 3120
Dm. 10 2*
DLOO 10 369
DREL 1 896
POND 2 186
PONT 9 16372
PRl!F 1 7
OOBB 1 163
icW 1 512
icB 1 102'1
ICN. I 256

by Icon
..... byTyp •

..... Show Siz. With T p.

When a resource type window is the currently active window, the View menu lets you choose
among several viewing styles (see Figure 2-18), and lets you show some attributes for each
resource when you are viewing by ID, Name, Size, or Order in File (See Figure 2-19).
Attributes cannot be edited in this view, only displayed.

For some resources, the "By Special" line that is grayed out in Figure 2-18 is changed to a
type-specific alternate (for example, "By cien") . Attributes cannot be displayed in the
special views.

When an individual resource is open, the View menu is not shown.

Chapter 2 Getting Started 23

• Figure 2·18 The View lrenu and a resource type window

• File Edit Resource Window .m·rn:.

The Dworf Bonone I
.,;'by 10

by Nome
.101 BNDls from The Dwert ac E by Size
1 by Order In File

b~ Spe('el

[
Show HUributes

I
..... ~

• FIgure 2·19 Showing type attributes

BNDls from The Dwort Benane-Tree aI2JI r • .. .,. s.._ ... __
.~~ -.......... ~

8001 3S...

24 ResEdit 2.1 Reference

Starting an editor

To open an editor for a particular resource in a file, fll'St open the picker for the resource type.
To do this, either double-click the resource type name or select it and choose Open Picker
from the Resource menu. (The command will actually name the resource type. For example,
Open ICON Picker.) Then doubleclick an individual resource, or select it and choose Open
Resource Editor from the Resource menu. When an editor is invoked, one or more auxiliary
menus may appear, depending on the type of resource you're editing. Some editors, such as
the 'Dm' editor, allow you to open additional editors for the elements within the resource.
The editors vary in their appearance and function, as explained in chapters 3 and 4.

If you choose Open Using Template from the Resource menu or hold down the Option and
Command keys while opening a resource, a list of templates is displayed. You may then
select the template that is appropriate for the resource you are opening. For more information
on editing with templates, see Chapter 5.

Resource ID numbers

Within a given resource type, resource ID numbers must be unique. Resources can, in
genera~ have any ID number between -32768 and +32767, but you should be aware of the
following restrictions which apply to most resources:

• ID numbers from -32768 to -16385 are reserved. Do not use them!

• ID numbers from -16384 to -1 are used for system resources that are owned by other
system resources. For example, a dialog box used by a desk accessory (the desk
accessory is, itself, a resource of type 'DRVR') would have a number in this range.

• ID numbers from 0 to 127 are used for system resources.

• ID numbers from 128 to 32767 are available to you for your uses.

Some system resources own others. The "owner" contains code that reads the "owned"
resource into memory. For example, desk accessories can have their own patterns, strings,
and so on. Please see Chapter 5 of Inside Macintosh, Volume I, for more information.

Fonts constitute a special case. For information about fonts, see the section on 'FONT'
resources in Chapter 3.

Chapter 2 Getting Started 25

(

Doc7il/e DraftNum

Chapter 3 The Bit Editors

Many important resources on the Macintosh are pictorial. These include
CUlSOrs, icons, patterns, and fonts. The ResEdit resource editors that handle
pictorial resources are discussed in this chapter. Other resource editors are
discussed in Chapter 4. For infonnation on editing template resources,
please see Chapter 5.

SY24190

27

Overview of the bit editors

Pictorial resource types are edited with a bit or pixel editor. The bit editors in ResEdit 2.1 are
all fundamentally alike except for the 'FONT' editor, which is a special case and is discussed
separately.

Figure 3-1 shows the layout of a typical bit editor window.

• Figure}.l Bit editing window layout

••• ... • ·11,
• P.d •• 1:-... .

The bit editor window contains these elements:

• A tool palette at the left edge of the window.

• A selector that brings up a tear-off palette of patterns, and (in color editors) another pair
of selectors, below the tool palette that allow you to select foreground and background
colors. These bring up tear~ff color palettes.

• A main editing window that shows an enlarged picture for "fat-bits" editing. The size of
this window varies from editor to editor.

• Full-size views of the resoun:e (in monochrome and, when appropriate, in color) and its
mask (if it has one), to the right of the main editing window.

• In addition, some of the bit editors have views of the resource against various
backgrounds, at the right edge of the window.

28 ResEdit 2.1 Reference

,I ,

-- ---------

When you open a resource that involves color, the editor window is placed on the display
with the largest number of colors or gray levels. If you have two monitors, one of which is set
to black and white and the other is set to sixteen gray levels, the editing window is opened on
the monitor that can display gray. When you use ResEdit on systems with 24-bit monitors, you
will probably need to increase the Application Memory size beyond the default 512 KB in
order to avoid out-of-memory warnings.

Tools

The tools in the palette behave as you would expect them to from familiar paint programs,
with the exception of the color-dropper and the pencil. The color-dropper lets you pick up
the color of any pixel in the main editing window.

When you are using other drawing tools (e.g., the paint bucket), you can get the color
dropper by holding down the Option key. This does no~ however, work with the eraser, the
marquee, or the lasso.

The middle square on the left side of the tool palette is special, and its content changes from
editor to editor; in Figure 3-1, which shows the 'erse' editor, it allows you to place the cursor's
hot spot This is discussed further in the section on cursor editing in this chapter. In some of
the editors this square is empty.

When you are editing a colored resource, the pencil tool behaves slightly differently from
what you might expect if you have only edited in Black & White previously. If you click on a
pixel in the editing window, that pixel changes to the currently selected color. If it is already
the currently selected color, it turns white instead. .

• Note: If you try to paste more bits than there is room for in a resource (for example, if you
try to paste a 4O-by-40-bit area from a paint program into, say, an 'ICON', which can only
hold a 32-bY-32-bit area), ResEdit pastes the selection centered into the active area, and
the boundary of the selection will be outside the active area of the editing window. You
can shift-<irag to reposition the selection. If a marquee selection is already present in the
active area when you perform a paste operation, the 'PICI" in the clipboard is scaled into
the selection. You cannot paste into a lasso selection.

Chapter 3 The Bit Editors 29

Menus

The bit editolS have two menus in common: Transform, and Color (except for strictly
monochrome resources, the ediwlS for which do not have a Color menu). Some of the editolS
also have individual menus, which are discussed in the sections on those resources.

The Transform menu

The Transfonn menu is shown in Figure 3-2. It allows you to transfonn selected regions in
several ways. The FUp Horizontal, FUp Vertical, and Rotate commands are familiar from paint
programs. The Nudge commands move the selected region by 1 pixel in the indicated
direction. (You can also nudge the selected region by using the Arrow keys.) FUp and Rotate
conunands require a rectangular (marquee) selection.

• Flgure3-2 The Transfonn menu

30 ResEdit 2.1 Reference

The Color menu

• Figure 3-3 The Color menu

po ; File Edit Resource Window Transform I I clcn

.... ,"' , ... """1. ~ t:. t:.

Rpple Icon Colon
Recent Colon

.... Standard 256 Colon
Standard 16 Colon
Standard 16 Grays
Standard 4 Grays
The Source ot RII Things
Heap 0' Grays
Heap 0' Reds
Strangebows
Heap 0' Greens
Heap 0' Blues
Heap 0' Cyans
Heap 0' Magentas
Heap 0' Yellows
Heap 0' Hues
Color Picker

Foreground <-> Background
&.OS 1-----------1
7.0_ Recolor Using Palette

The Color menu is shown in Figure 3-3. It lets you choose anx>ng any available 'clut' or 'pitt'
resources as well as from a standard set of options. If you have resources of your own that
you want to use, the ResEdit Preferences file is a good place for them.

The standard entries on the Color menu include the following:

Apple Icon Colors Gives you a palette of Apple's recommended colors for icons.

Recent Colors

Standard 256 Colors

Gives you the set of colors that are currently present in the resource. These may
come from several palettes. This set includes colors that you have chosen since the
last time you closed the resource but haven't used yet. (When you close a resource,
unused colors are automatically removed.)

Gives you the standard 8-bit color palette.

Standard 16 Colors Gives you the standard 4-bit color palette.

Standard 16 Grays Gives you 4 bits of gray levels.

Standard 4 Grays Gives you 2 bits of gray levels.

Chapter 3 The Bit Editors 31

Color Picker Lets you use the standard color picker, with which you can select any of more than
16 million colors.

Foreground <-> Background
Swaps foreground and background colors.

Recolor Using Palette
Recolors the resource using the new palette you've chosen. Merely selecting a palette
does not change any of the colors in the resource you're editing.

Palette choices are different for Finder Icons. The only color choices available in the
Finder icon editor are Apple's recommended icon colors, the standard 16<010r (4-bit) palette,
and the standard 256-color (8-bit) palette.

• Note: ResEdit automatically rerroves any unused colors from a resource when you close it

The 'FONT' editor

The 'FONT editor, discussed in detail later in this chapter, is also a bit editor, but it is older
and has not been changed; if you need to edit fonts, you should probably use one or more of
the excellent third-party utilities that are now available.

32 ResEdit 2.1 Reference

(
Editing Cursors

Cursors are pictorial resources of types 'CURS' and 'crse'. Figure 3-4 shows the 'CURS' editor;
the 'erse' editor is shown twice in Figure 3-3. In each of these editors, the top part of the
display has a large image for editing and two smaller full-scale images. The upper image
shows the cursor itself. The lower image is the mask for the cursor, which affects how the
cursor appears on various backgrounds. The pixel in the editing window that is marked with
an "X" is the cursor's "hot spot." (The hot spot is the pixel in the cursor that the Macintosh
recognizes as the cursor's location. The hot spot of the familiar arrow cursor, for example, is
its point.) There is a special "hot spot" tool on the palette. It is shaped like an "X", as you
would expect. Click this tool and then click anywhere in the main image in the editing
window, to place the hot spot.

In the right edge of the display, the cursor is drawn to scale on five different background
patterns. To draw the cursor, a hole is made in the background by turning off the pixels in the
area of the screen covered by the mask. Then the cursor is overlaid on the hole. (Figure 3-5
shows a pair of explanatory examples.) Ordinarily, the mask should be just a fIlled-in outline
of the cursor so that the cursor can be seen clearly. To edit the cursor's mask, click on the
small image labeled "Mask". It is then displayed in the editing window. Initially this image is
blank; you can drng an upper image to the Mask image to create a mask, or select the mask
and paste an image into it.

Notice that the 'CURS' editor does not need (or have) a color-dropper tool.

• Figure 3-4 'CURS' resource editor

•

. ::::~:~:::: ..

Chapter 3 The Bit Editors 33

Figure 3-5 shows two almost identical 'erst' edits. These illustrate the difference between
pasting the B&W image into the mask (left) and dragging the B&W image to the mask (right).
As you can see, the cursor on the right is entirely opaque: nowhere does the background
show through it

• FIgure 3-5 Color culSOr editing: mask examples

• • •• . +
·:·:·:il ••• : • .:::id

I.
•• • ••••

·1·.·····
L_.:::::~

The CURS and ersr menus contain the following command:

Try Pointer Lets you try out your handiwork by having it become the cursor in use
inside ResEdit, in place of the ordinary arrow cursor.

ResEdit 2.1 Reference

(
Editing Icons

ResEdit contains editors for all the coRllIX>n icon resource types.

Editing 'den' resources

Ordinary color icons are pictorial resources of type 'den'. Figure 3-6 shows the 'den' editor.
Please see the inside front cover for a color illustration of the 'den' editor.

It is possible to transfer images aIOOng the various fraIred images at the right edge of the 'den'
editor. If you drag across either the color image or the black-and-white image, an outline will
detach. You can then IOOve that outline to the other image or to the mask. The destination
highlights to indicate that releasing the mouse button will transfer the image. If you transfer
the image to the mask, interior bits in the image are set to black.

• Figure 3-6 Color icon editor

Chapter 3 The Bit Editors 35

CreatIng new color icons

When you create a new 'den' resource, you get the default set of 16 colors. The color menu,
shown in Figure 3-6, lets you select other color collections. The most corrunonly used
collection is Standard 256 Colors, which lets you pick colors from the 8-bit System color table.
Apple reconunends that you use colors in the standard 16- and 256-color collections and
specifteally the Apple Icon Colors, as these are typically present when a 'den' icon is drawn.

The "Icon size" command brin~ up a dialog box that allows you to choose the horizontal and
vertical sizes of the icon. These sizes are separatej that is, the icon does not have to be a
square. The minimum for both is 8 pixels, and the maximum is 64. The Delete B&W Icon
command is only active when the Black and White icon is selected.

It is possible to create a 'den' resource without a B&W image, but because the system uses the
B&W image to display the icon on roonitors that are set to black and white or to 4 grays or
colors, it is probably a good idea to include it. .

Finder icons

Finder icons, beginning with system software version 7.0, constitute a suite, or family, of
pictorial resources. These include srmll and large color icons in 16 and 256 colors (types 'ics4'
and'iesS' in the small size, 'icl4' and 'icl8' in the larger size) as well as srmll and large
monochrome icons, now types 'ics#' and the familiar 'ICN#', which is discussed later in this
chapter. The large icons are 32-by-32 pixels, and effectively share the mask of the 'ICN#' type.
The small icons are 16-by-16 pixels; they, too, share a corrunon mask, in an 'ics#' resouoce.

When you use the color~pper, remember that the color selection is tied to the depth of the
image. That is, if you use the color-dropper to pick up the color of a pixel in, say, the id4 or
ics4 irmge, this does not change the color selection in the id8 and iesS images (and vice
versa), nor does it change the ·color" selection (black or white) in the ICN# and iCS# images.

Opening any of these resoun:es automatically invokes the Finder icon editor and starts the
subeditor for the particular resource type, provided Color QuickDraw is present. The 'ICN#'
resource type still has its own individual editor, but is typically edited in the Finder icon editor
with the other m:rnbers of the suite. (Double-dicking a resouoce of type 'ICN#' opens the
'ICN#' editor rather than the Finder icon editor if Color QuickDraw is not presen~ or if you
have installed an 'RMAP' resouoce in the ResEdit Preferences flle to override the Finder Icon
editor. See Chapter 6 for details.)

ResEdit 2.1 Reference

(

. " ,

(

Figure 3-7 shows the Finder icon editor during an 'idS' edit The other editing windows are
quite similar, all of them sharing the tool palette; here, as with the 'den' editor, a monochrome
illustration cannot fully represent the appearance of a color screen, but should give you some
idea of the appearance of this editor. Please see the inside front cover for a color illustration
of the Finder icon editor.

• Figure 3-7 Finder icon editor

.. -...'" (~ . •

When you click one of the eight small pictures labeled with resource type names, that icon is
opened for editing. Clicking in the display bar on the far right does nothing. This area shows
the icon in the fonn of three groups of images against the selected background. The groups
are labeled 'Nonnal', 'Open', and 'Offline'. The display shows the way the icons are drawn by
the system software version 7.0 Finder. In each group, the icon is shown unselected on the
left, and selected on the right

The Icons menu

The Icons menu is shown in Figure 3-8. It allows you to choose a background for the display
section at the right edge of the window. The Delete command allows you to delete the icon
type currently being edited. If a mask is being edited, the Delete command allows you to
delete the monochrome icon ('ICN#' or 'ies#') that contains the mask.

Chapter 3 The Bit Editors 37

• Figure~ Icons menu

r ; FIle Edit Resource Window Transform Colors

o Raku· 10.134 from 0 Whlte Background

'ICON' resources

Gray Background
Black Background
Desktop Background

Icons that appear within a program (HypetCard is a good example), are typically resources of
type 'ICON'. The 'ICON' editor is shown in Figure 3-9.

• Figure 3-9 'ICON' resource editor

ResEdit 2.1 Reference

(If you cut or copy a marquee selection during editing, you can paste it into a type picker
window as a 'PIer resource. The 'PIer resource picker does not have to be open when you
cut, copy, or paste.

'1CN#' resources

The 'ICN#' resource is a common target for ResEdit The icons that you see on the desktop in
system software version 6.0 and earlier, representing applications and their docurrents, are all
'ICN#' icons, as are folder icons and even the tIashcan. The 'ICNI' resource type is edited
either in the Finder icon editor, or with its own editor. Both permit you to change any of the
pixels in the icon, which are in a 32-by-32-pixel square. If you cut or copy a marquee
selection, you can later paste it as a 'PIer resource: see the description of ' ICON' resource
editing earlier in this chapter. When you doubleclick a resource of type 'ICNI', the specific
'ICN#' editor is ordinarily activated only if Color QuickD1'3w is not present,. If you want to edit
a resource of type 'ICN#' alone and you have Color QuickD1'3w, you need to generate an
'RMAP' resource in your ResEdit Preferences file to override the normal operation of ResEdit.
See Chapter 6 for details.

In system software version 7.0 and later, this icon is part of the Finder icon suite, and is
typically edited with the Finder icon editor.

The 'ICN#' editor is shown in Figure 3-10.

• Figure 3-10 'ICN#' resource editor

-_
I II - II II - -- -_._.-
- -••••••

Chapter 3 The Bit Editors 39

In recent versions of the Fmr, 'leN#' resources are displayed on the screen as follows: First
the mask is used to blank an area of the screen. Then an OR operation is performed in the
same screen area, using the icon as data. (When a highlighted icon is displayed, the
foreground and background ·colors- (in this case black and white) are swapped ~fore the
OR operation is performed on the data.) If the mask is not the same shape as the outline of
the icon, the results will in geneml be unaesthetic unless the background is black.

40 ResEdit 2.1 Reference

(
list resources

Sorre pictorial resoUrtes contain sets or lists of pictures. Together these pictures make up an
individual resource. Editors for list resources have two kinds of editing regions. The fIrst kind
is a bit editor, familiar from the editors that have already been described in this chapter. The
other kind is used to manipulate the elements in the list

The picture currently being edited is shown in a box as with the other bit editors. To edit a
different picture, click it in the list on the right You can drag elements to different positions in
the lis~ you can cu~ copy, and paste elements. If there are more elerrents in the list than will
fIt in the list display area, the scroll bar is enabled.

'SICN'resources

The small icon ('SICN') editor is shown in Figure 3-11.

You can add a new small-icon picture by chOOSing the Insert New SICN command from the
Resource menu. Commands on the Edit menu can be used to cu~ copy, paste, clear, or
duplicate pictures.

• Figure 3-11 'SICN' resourte editor

IDI SICN ID· 128 from Ono-Sendai a
nn •••••• IV

~iji ••• • ••• iEJ r-

,---~ ~
I--r-" •••• •••••• •••• c:;J =. = ~ lits : .:. ...:!:!!!l
aD Ii i 'eo ••.•. ~
'--'--_ K)

Chapter 3 The Bit Editors 41

Editing Patterns

ResEdit 2.1 includes editors for four kinds of pattern resources: 'PAT' (B&W patterns), 'PATI'
(B&W pattern lists), 'ppat' (color patterns), and 'ppt#' (color pattern lists).

Each pattern editor has a menUj the PAT and PAT# menus have only one command: Try
Pattern. This command lets you use your pattern as the desktop pattern on your screen.

The ppat and ppt# menus have two commands. The Pattern Size command brings up a
dialog box, shown in Figure 3-12, that lets you choose the size of the basic cell of your
pattern. Patterns are replicated or truncated, not scaled.

The Try Pattern command lets you use your pattern as the desktop pattern on your screen.
When you are in Try Pattern mode, you can shift back and forth between color and B&W
versions of the patterns by clicking on their respective pictures in the list area (see Figure 3-15
or 3-16).

• Figure 3-12 Pattern Size Dialog Box

Pattern Size

8 16 32 64

(Cence.) I R~sl2e I

42 ResEdit 2.1 Reference

('PAT' resources

The 'PAT' resource (B&W pattern) editor is shown in Figure 3-13. It displays two panels, with
the editing area on the left and the pattern shown on the right. The editing area is small, but it
is possible to make some use of the marquee tool.

• Figure 3-13 'PAT' resource editor

-
'PATI'resources

The 'PATI' resource (B&W pattern list) editor is much like the lSIeN' editor; it is shown in
Figure 3-14.

• Figure 3-14 'PATI' resource editor

-
Chapter 3 The Bit Editors 43

'ppat' resources

The 'ppat' resource (color pattern) editor is shown in Figure 3-15.

The B&W pattern is limited to 8-x-8 pixels, and cannot be resized, though it can be edited. It
is displayed on the right edge of the editor window, and is automatically sized to match the
color display above it. Unless your color pattern is also 8 pixels square, the B&W pattern
probably won't look quite like it, as is evident in Figure 3-15.

• FIgure 3-15 'ppat' resource editor

'pptl' resources

e!
~ ma

The 'ppt#' resource (color pattern list) editor is shown in Figure 3-16 There are three displays
in this editor. The display on the left is a color (or B&W) fat-bits version for editing. The
display in the middle shows the resulting pattern at full scale, both in color and in B&W. The
B&W pattern is sized to match the Color pattern. The display on the right is the list area.

44 ResEdit 2.1 Reference

(

, ,

(

• FIgure 3-16 'ppt#' resource editor

Chapter 3 The Bit Editors 45

FONT resources

The 'FONT' resource is one of two major ways of representing bitmap (screen) fonts for the
Macintosh. (The 'NFNr resource, desaibed briefly later in this section, is the other.) The
'FONT' resource contains a series of pictures that typically represent items in the Macintosh
character set, though they need not do so. A chart of the Macintosh character set is presented
in Appendix D.

Because the Macintosh displays a character of type on its screen as a bitmap, however, it is
possible for the pictures to be just that-pictures. 'FONT' resources on the Macintosh can
contain scanned images and other pictures just as easily as they can contain the alphabet,
numerals, and punctuation marks.

The Macintosh can modify elements of a font-for example, it can boldface them, or slant
them for an approximation of italics. Print quality on dot-matrix printers (and screen~isplay
accuracy as well) can be improved, however, by providing extra fonts that are constructed
with those styles built into them 'FONT' resources typically come in families, so that it is
possible to display text on the screen (and print it on dot-matrix printers) in several styles,
most commonly roman, bold, italic, and a bold-italic combination, without taking processor
time to calculate the way such styles should look. These families can also correspond to
downloadable PostScript fonts for laser printers and typesetters.

If you use ResEdit to examine a Fonts fde from a recent Macintosh system software version,
you will find that it contains three kinds of resources: 'FOND' 'FONT', and 'vers' (a record of
the version number of the release). The 'FOND' resource ·owns" one or rmre sizes of a
particular font and contains kerning tables and other important information about the 'FONT'
resources it owns. The 'FOND' resource has a unique ID number, from which the ID numbers
of its subsidiary 'FONT's are calculated. To find the ID number of a particular 'FONT'
resource, take the ID number of the parent 'FOND', multiply by 128, and add the point size of
the 'FONT'. For example, 'FONT' 10 268 corresponds to New York (family ID 2), in
12 point size.

The ID numbers of 'FOND' resources may be from 0 (Chicago, the default System fonO to 255,
inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there are a great
many bitmap fonts (vastly more, in fact, than 255 of them), so occasional ID number colUsions
are unavoidable. Version 3.8 and later versions of the FontlDA Mover attempt to resolve such
collisions, as do some third-party system-enhancer packages.

46 ResEdit 2.1 Reference

(There is also another, newer kind of font resource, type 'NFNT'. like 'FONT' resources,
'NFNT' resources are also owned by 'FOND' resources. ID numbering of 'NFNT' fonts is,
however, not keyed to the ID number of the parent 'FOND'. Arbitrary numbering of 'NFNT'
resources helps avoid font ID number collisions and facilitates resolution of conflicts when
they do occur. 'NFNT' fonts, moreover, can contain and display more than 1 bit per pixel and
can be assigned absolute colors with a corresponding 'fctb' resource, which is a Colotfable
record. (Font Colotfable records are discussed in Inside Macintosh, Volume V, in the section
on the Color Manager. The Font Manager is discussed in some detail in Inside MaCintosh,
Volumes IV and V.) ResEdit cannot edit 'NFNT' fonts, but it can copy and move them, as can
version 3.8 and later versions of the FontiDA Mover. A third-party editor for 'NFNT' fonts is
available.

Editing 'FONT' resources

Fonts are edited with a bit editor that is a superset of the bit editors for other pictorial
resources. This editor has several of the tools you are probably familiar with from program;
like MacPaint

The editing window for 'FONT' resources is divided into four panels: a character-editing
panel, a sample text panel, a character-selection panel, and a typical set of graphics tools.
These panels are shown in Figure 3-17.

• Figure 3-17 'FONT' resource editor

• •••
• 1· ·1 • . -_ .. -.

• L .I_

oUI:U OHM YIoIIl> Loutioa
65 0 12 174

Beauty Is momentary in the
mind - I The fitfUl tracing of a
portal I But in the flesh It Is
immortal.

- Wallace Stevens

Chapter 3 The Bit Editors 47

The character-edutng panel, on the left side of the window, shows an enlargement of the
selected character. You can edit it, as with the other bit editors for pictorial resources, by
clicking bi~ on and off. Drag the black triangles at the bottom of the character-editing panel
to set the left and right bounds of the character (that is, the character width). Two of the three
triangles at the left side of the panel control the ascent and descent of characters in the font. If
you want to increase the ascent or descent, move the appropriate triangle first If yo~ put
pixels outside the indicated area and then move the triangle, those pixels are wiped out.

Changing the ascent or descent of a character changes the ascent or
descent for the entire font •

The third triangle on the left shows the location of the baseline, which is fIXed and is
displayed only for reference. Below the panel are the character number (labeled" ASCll"), and
the character's offset, width, and location, all in decimal notation.

• Note: The correspondence between the Macintosh character set number and a real ASCII
number is limited. Strictly speaking, ASCII is a set of 128 characters, numbered from 00
($00, the NUll character) through 127 ($7F, the DEL character), and is intended to
represent a basic character set rather than any font or typeface, in a relatively universally
understood fonn. Because the Macintosh character set is oriented toward electronic
publishing, which has more (and different) requiremen~, it has twice as many possible
character numbers. (See the section on the 'KCHR' editor later in this chapter.) For
ordinary text fon~, characters 0 through 127 of a Macintosh font are the ASCII character
set For Symbo~ ITC Zapf Dingba~', and the various pictorial fon~, however, the
correspondence with the ASCII character set is minimal. The Macintosh character set is
shown in Appendix D.

The sample text pane~ at the upper right, displays a sample of text in the font currently being
edited. (You can change this text by clicking in the text panel and using normal Macintosh
editing techniques.)

The character-selection panel is below the text panel. You can select a character to edit by
typing it (using the Shift and Option keys if necessary), or by clicking it in the row of three
characters shown. To move upward through the character number range, click the right
character in the row; to move downward, dick the left character. The character you select is
boxed in the center of the row. (To scroll quickly, click the right or left character and drag the
pointer ou~ide the selection panel, to the right or left.)

48 ResEdit 2.1 Reference

(The graphics tools panel, directly below the character-selection panel, offers several familiar
graphi~-manipulation tools, including the pendl, eraser, docles, and rectangles. The 'FONT
editor, unlike the other bit editors, includes the marquee tool as a panel selection, and the
lasso is also available.

Any changes you make in the character-editing panel are reflected in the text panel and the
character-selection panel, except on roonitors displaying more than 2 colors or gray levels.

You can also change the name of a fonl The font name is stored in two places: as the name
of the 'FOND' resource of that font family, and as the name of the size 0 'FONT resource. To
change the font name, select the individual 'FOND' resouoce with the name you wish to
change, and choose Get Info from the File menu. To maintain consistency, you should also
change the name of the 0 point 'FONT resouoce. This resoun:e does not show up in the
nonnaI display of all fonts in a me. To display it, hold down the Option key while you open
the 'FONT type from the me window. You will see a generic list of fonts. Select the font with
the name you wish to change, and choose Get Info.

Chapter 3 The Bit Editors 49

! (

Doc7itle Draj'tNum

Chapter 4 Other Resources

Som: of the ResEdit resource editors are discussed in this chapter. The use
of the editors not discussed here should be apparent when you run them.
For information on editing template resoUItes, please see Chapter 5.

SY24190

51

Using the hexadecimal editor

The hexadecimal resource editor is invoked if you hold down the Option key while opening
a resource or choose Open Using Hex Editor from the Resource menu. This editor allows you
to edit the resource as hexadecimal or ASCII data. The hex editor can edit resources larger
than 255 KB. If a resource is between 256 KB and 511KB in size, each click in the up or down
scroll arrow scrolls two lines; if between 512 KB and 767 KB, each click scrolls three lines,
and so on. (The scroll bars keep tIack of position with an integer, which is a single byte, and
thus is limited to values between 0 and 255.)

If you enter hexadecimal text when you are using this editor, the editor maintains byte
alignment of the incoming data. Thus, if you type 2 into an empty byte, the editor displays
02. If you then type A, the editor displays 2A.

The hex editor has a Search menu. It allows you to search for the occurrence of a pattern in
the resource being displayed and allows you to enter the pattern in either hexadecimal or
Macintosh character set notation, the latter being loosely described as ASCII, though it is
actually considerably larger than the true ASQI set. See Appendix D for a chart of the
Macintosh character set The hex editor also allows you to move to a specified offset from the
beginning of the resource you're editing.

52 ResEdit 2.1 Reference

(
'WIND', 'ALRT',' and 'DLOG' resources

'WIND' resources display windows on the screen. Figure 4-1 shows the 'WIND' resource
editor. At the top of the editing window is a pictorial list of the different window styles, from
which you can choose. Below that is a MiniScreen in which is displayed a small picture of the
window. You can move and size the window in the MiniScreen. The MiniScreen menu,
shown in Figure 4-10, lets you choose the size of monitor you want the MiniScreen to
simulate. It defaults to Mac SE. At the bottom are numeric values (given in pixels) for the
positions of the edges of the window; these give you another way of changing the window's
size and position. On the right side are radio buttons that allow you to choose between
default and custom color, and checkboxes to let you declare the window to be visible when it
is first drawn, and for the presence of a closebox.

In Figure 4-1, Custom Color has been selected, and controls that allow you to choose colors
for various parts of the window are visible. When you choose custom color, ResEdit creates a
'wctb' resource that corresponds to the 'WIND', 'ALRT', or 'OLOG' you are editing. The first
tirre you do this in a particular fIle, ResEdit prompts you to rerrember that you are creating a
new resource, and that if you reIIX>ve the parent resource you should remember to remove
the extra 'wctb' that is left behind.

'ALRT' and 'OLOG' resoUltes display, respectively, alert and dialog boxes. Editing 'ALRT ' and
'OLOG' resources is much like editing 'WIND' resources, except that the corresponding 'om'
resource is automatically opened if you double-click on the picture of the alert or dialog box
after opening the resource. (See the next section.) You can choose a particular 'om' to go
with a given 'ALRT' or 'OLOG', but the default is one that has the same 10 number as the
parent resource. 'ALRT' resources have a fIXed fonna~ so you don't get to choose a window
type, nor do you have the options of selecting initial visibility or the presence of a closebox.
'OLOG' resources do allow you these options.

Figure 4-4 shows an 'ALRT' open for editing. Just as with the 'WIND' example, the editor
displays a MiniScreen view of the resource.

• Note: The first item in the 'om' associated with any 'ALRT' must be a button. The system
has no way of telling what is where, so it always regards the first item as a button. In the
alternate view of the 'ALRT', you can specify either item 1 or item 2 as the default. If item
1 is the defaul~ of course, item 2 need not be a button. There is an informal convention in
Macintosh programming that item 1 is the "OK- button, and item 2 is the cancel button if
there is a cancel button.

Chapter 4 Other Resources 53

When you display an individual 'WIND', 'ALRT', or'DLOG' resource, a corresponding menu
appealS. The WIND menu is shown in Figure 4-2, the ALRT menu in Figure 4-5, and the
DLOG menu in Figure 4-8. These menus are very sinillar.

·The have the following commands in common:

Preview at Full Size

Auto Position

Displays the resoun:e sized as it is in normal display, though not necessarily
positioned correctly.

Allows you to let ResEdit position the resoun:e.

Show Height & Width
Shows relative size/position information.

Show Bottom & Right

Use Color Picker

• Figure4-l

Shows absolute size/position infonnation.

Lets you use the Color Picker instead of the standald 256-color palette when you set
the cololS of the various parts of the resoun:e.

'WIND' resource editor

Content: D frame:.

Title teHt: • Highlight: D
Title bar: •

Top: lin I BoUom: ~

Left: ~ Right: ~

I8I1nltl811y ulslble

181 Close baH

54 ResEdit 2.1 Reference

(• FJgure4-2 WINDrrenu

I MlnlSereen
Set 'WINO' Ch.raeteriltle ••••
Preulew .t Full Size
Auto POlltlon •••

..... Neuer Use Custom 'WOEF' for Drawing

..... Show Height It Width
Show Bottom It Right

Use Color Pie leer

The WIND rrenu contains the fonowing commands:

Set 'WIND' Characteristics
Brings up a dialog box, shown in Figure 4-4, that allows you to title the window and
set its refCon and ProcID.

Never use custom 'WDEF for drawing
This command defaults to true. It causes the resource to be drawn with the standard
'WDEF from the System file .

• Flgure4-3 Setting 'WIND' characteristics

'WIND' Characteristics

Window title: I Night Scented StoCIe

ref Can: L,,;lo ___ --'

Prod 0: L,,;18;..... __ --'

Cancel I OK I

Chapter 4 Other Resources 55

• FJgure4-4 'ALRT ' resource editor

Top: _ Height: EJ
Left: EJ Width: ~

• Flgure4-S ALRTrrenu

.......-. MlnlScreen
Set 'BLRT Stage Info •••
Preulew at Full Size
Buto Posltlon __

.,.Show Height It Width
Show Bottom It Right

Use Color Pie leer

tolar: • Default
etustom

DIR 10: 13003

The ALRT rrenu contains the following conunand:

Set 'ALRT' Stage Info
Brings up a dialog box, shown in Figure 4-6, that allows you to set the display
conditions for the resource at different stages, You can choose the number of beeps
you wan~ up to threej whether the OK or Cancel button is the default; and whether
the Alert box is to be drawn for each stage. The stages correspond to successive
occurrences of the alert condition, though stage 4 is for 4 or more occurrences.
Please see Inside Macintosh, Volume I, page 409 for further information.

56 ResEdit 2.1 Reference

(

,I ,

(

• Figure 4-6 'ALRT 'Stage Info dialog box

'ALRT Sll1gel

Stllge Alert baH De'lIul1 button Soundl

I 181 Uilible 1Ci) OK OCllncel1 1002131
2 181 Ullible lei> OK o cllncell 1002131
:5 181 Uilible Ci) OK o Cllncel 1002131 .. 181 Uilible ei> OK o Cllncel 1002131

Cllncel I OK I

• Figure 4-7 'DLOG ' resource editor

Top: IF, I Height: §J
Left: ~ Width: ~

DIR ID: 11961

o Inlllally ulslble

DClose bOH

Chapter 4 Other Resources 57

• Figure4-8 DLOGmenu

MlnlScroen
Set 'OLOG' Characteristlcs_
Prouiew at full Size
Ruto Position •••

..... Neuer use custom 'WOfF' for drawing

..... Show Height It Width
Show Bottom It Right

Use Color Picker

The DLOG menu contains the following commands:

Set'DLOG' Characteristics
Brings up a dialog box, shown in Figure 4-9, that allows you to title the resource, and
to set its refCon and ProeID.

Never use custom 'WDEF for drawing

• FIgure 4--9

This command defaults to true. It causes the resource to be drawn with the standard
'WDEF from the System ftle.

setting 'DLOG' characteristics

'OL06' Chancteristlcs

Window title: 1 This Is the 88C •• ~

ref Con: 10 ___ __
ProtlD: 11 ___ __

(Concel I OK I

58 ResEdit 2.1 Reference

(

(

• Figure 4-10 MiniScreen menu

- Mac Portable

There are four special items that you can put into static text in a 'om' item or into a 'STR#'
resource. They are built of a caret (") followed by a number from 0 to 3. Each of these refers
to one of the items in a global array named OAStrings, maintained by the ~ialog Manager. An
occurrence of one of these causes the contents of the corresponding entry in that array to be
substituted via a ParamTe::d call when the resource is displayed. An example of a 'om' with
these items is shown in Figure 4-11, with one of the items open for editing to show the
special strings it contains. Please see Inside Macintosh, Volume 1, page 421 for further
information.

• Figure 4-11 Special parameter strings

Dill ID - 132 from Finder

re you sur. you wont to completely
ploce contents of

1'''')
: It ;;; . .;. .. om--------------9

~O~K:-m!Q (conueJ

Edit Olll Item #5 from Finder

TeHt:

Static TeHt .. ,

50
202

70
106
52

332
76

170
276
526

DEnabled Top: L..!44_---l

Left: L..!9 7_...J

Bottom:! L.. 8_0_...J

Right: !370

Chapter 4 Other Resources 59

'Dm' resources

The 'om' (dialog item list) resource editor can be invoked directly or from the 'WIND', ALRT
" and 'OLOG' editor. When you first invoke it, it displays an image of the items from the list
just as they would be displayed in a dialog or alert box. When you select an item, it is drawn
with an enclosing rectangle that has a size box appears in its lower-right corner so that you
can change its size. You can IOOve an item by dragging it with the mouse.

To create a new item, drag the type you want from the item palette.

If you open an item within the dialog box, the item editor, shown in Figure 4-12, is invoked. If
you hold down the Option key while opening a 'CNTL', 'ICON', or 'PIer, the hexadecimal
editor is invoked. If you hold down the Option and Command keys, the items are drawn with
solid borders, and their item numbers are displayed. Some dialog items are not editable and
are listed as User Items. These are defined in the application, rather than in the Oialog
Manager, and are actually built only when you run the application.

Because they are linked, the 'om' resource is usually given the same ID number as the
parent 'OLOG' or 'ALRT'. This is not necessary, however, and you can assign any 'om'
resource to any 'ALRT' or'OLOG'.

Figure 4-12 shows the 'om' corresponding to the 'ALRT' from Figure 4-4. Both items in the
'om' have been selected, and are shown surrounded by dashed borders,

• Figure 4-12 'om' resource editor

Top: ~ Height: EJ
Left: EJ Width: ~

60 ResEdit 2.1 Reference

ijii;'oiij"'j'hiiue's,iire'reii'uneiipecie1l]
Error. Now I must go away from i
!you. perhaps neuer to returnll i
\,: ... "

rs'o"iie'rjj'sorr~

(

(

The individual item editor, shown in Figure 4-13, has one popup menu, which allows you to
change the type of the item.

• Figure 4-13

Button
Checlc: BOH

Radio Button
Control

./Statlc Tellt r _
Edit TeHt
Icon
Picture
User Item
Help Item

om item editor

Dill Item #2 from Ono-Sendal

t: Oh, no! I haue suffered UneHpected
Error ~O. Now I must go away from,
qou. perhaps neuer to return!!

Top: 1 ... 1_0_ Boltom: ... 1'_1_
Left: 1 ... 1_'_ Right: 1251

• Figure 4-14 om menu

Top: ~ HeIght: EJ
Left: EJ Width: ~

Rlign To Grid
Grid Seltings •••

Show RII Items
Use l1err"~ np.I:1clllgJe

The om menu, shown in Figure 4-14, contains the following commands:

Renumber Items Allows you to renumber items in the 'om'. Remember that item number 1 must be a
button.

Chapter 4 Other Resources 61

Set Item Number Allows you to specify a new number for a selected item.

Select Item NumberAllows you to select an item by specifying its number.

Show Item Numbers Sets the display to show the number of each item in the 'om'.

Nign to Grid Aligns the item on an invisible grid, the size of which defaults to 1Ox10 pixels. If you
change the item location while Align to Grid is on, the location is adjusted such that
the upper-left comer lies on the nearest grid point to the location you gave it If you
change the item size, it is constrained to be a multiple of the current grid setting in
each dimension.

Grid Settings Allows you to set the horizontal and vertical grid quantizations. These both default to
10 pixels.

Show All Items Adjusts the window size so that all items in the item list are visible in the window.
The window size that your program will use when it displays the 'om' is actually
sto.red in the parent 'ALRT' or 'OLOG' resource; this command is present solely for
your convenience when you are editing the dialog items.

Use item's rectangle When enabled, this probably lets you use the rectangle specified by the 'DITL'
item itself, rather than some rectangle from space. I have not yet seen it enabled,
however, so I can't figure it out

View As Brings up a dialog box, shown in Figure 4-15, that allows you to set the typeface and
size in which textual items are displayed in the editor. As you can see from the
figure, it does not actually change the resource itself.

Balloon Help Connects you unambiguously with The Future of Apple Computer. Congratulations!
Now, when we get around to releasing The Future, it will be ... the future.

• Figure 4-15 om menu View As dialog box

·Uiew Rs· only changes the font
and size when uiewed. It does
not modify any resources.

Font:l Chicago

Size: I 12 "'1
(Cancel) , OK J

62 ResEdit 2.1 Reference

(Font and Size menus are also present These menus are provided to allow you to see how
your 'om' looks when displayed in various typestyles. The font and size you set by using
these menus are not saved, and must be reset each time you edit the 'om'.
Figure 4-16 shows the Alignment menu. In this illustration, both of the items in the 'om' have
been selected.

• Figure 4-16 Alignment menu

fii5 Align Top Edges
gg Align Bottom Edges

~ Align Uertlcal Centers

- Align Horizontal Centers

IJi Center Uertlcally In Window
[!:1 Center HoriZontally In

,-..
: $,
'--

The flfSt six items are only enabled when two or more items are selected. The last two items
may pertain to one or more items at a time. Use of all of these items is straightforward.

Chapter 4 Other Resources 63

'BNDL' resources

To date, 'BNDL' resources have been mysterious, opaque, and difficult to learn about

For historical reasons they have a fairly complex set of concepts behind them, but in fact, the
only thing they do is bring together an application's documents (including the application me
itself) and their icons for the Fmder. Any application that has a distinct icon on the desktop
also contains a 'BNDL' resource. For more details on the structure and concept of the 'BNDL'
resource itself, please refer to Appendix C, "The 'BNDL' Resource."

The 'BNDL' editor in ResEdit 2.0 helps you create a bundle consisting of the necessary 'BNDL',
'PREP and FInder icon resources, and saves you the burden of dealing with the internal
workings of the bundle concept The basic view you get when you flCSt bring up the 'BNDL'
editor is shown in Figure 4-17. The window appears in the display with the largest available
number of gray levels or colors. (This is also true of the extended view, shown
in Figure 4-19.)

• Figure 4-17 'BNDL' resource editor, simple view

TeochTeHt 1.2

The Finder bundles together documents, applications and their icons with a 4 character
signature, which must be unique for every application. All the necessary resources to do this
are stored in the so-called Desktop file (or in the desktop database in system software version
7.0). This signature is shown in the first line of the window. All characters in the Macintosh
character set (see Appendix D) are allowed in the signature. In order to register a unique
signature for your own application, please contact Macintosh Developer Technical Support
at Apple.

64 ResEdit 2.1 Reference

(This signature is used as the creator code for all flIes that are part of the bundle (the creator
code is a property of every flIe and can be set USing the Get FileIFolder Info command on the
File menu). Every file on the Madntosh also has a file type, which is another 4 character field
(several standard flIe types are defmed: APPL for application, TEXI' for plain text docurnen~
PIef for picture flIes, etc.). This flIe type is not only used to differentiate between different
kinds of flles but is also used to associate distinct icons with different flIes having the same
creator (i.e. belonging to the same application). This is what the list in the bottom part of the
'BNDL' editor window does. In order to create a new flIe type and its icon, select Create New
File Type from the Resource menu. Enter the flIe type in the left column and open the Finder
Icon field in the right column by selecting Choose Icon from the BNDL menu or by double
clicking on the field.

Figure 4-18 shows the Icon chooser. Here you can either choose an existing icon for your file
type, or you can create your own by pressing the KNew" button. Note that even though the
'BNDL' editor shows the entire Finder icon family, because of screen real estate considerations
you will only see a list of'ICNI' resources in this window.

• Figure 4-18 The Icon chooser

• File Edit Resource Window .II~"'-

TeachTeHt 1.2 I
II INOll from TeachTeHt 1. I

In ... '"'- I
INOllO

Signature: Q Choose an Icon for the type ttwo:

~ <J II 6 ~ ~
Type F

<.:
~, laO 12t 12.

RPPl

~ J(1fJ I
"- Uro I 10 --- [NewJ(Edit) I Cancel J (OK)

ttwo I
I

Once you have associated all your file types with distinct icons (remember to include the flIe
type APPL for your application itselO there are only a few more steps necessary in order to
make the Finder display your icons.

Chapter 4 Other Resources 65

Select the Get FUe/Folder Info command from the File menu and choose your application in
the upcoming list of files. Now set the file type to APPL and the creator to the signature you
have entered in the 'BNDL' resource. Then set the Bundle bit and dear the Inited bit This tells
the Finder that your application contains a 'BNDL' resource and that it hasn't already seen
your me. If the Ftnder doesn't immediately show your new iCOn, select your application and
use the Get Info command in the Finder.

• Note: Once the Finder has seen your 'BNDL' resource and loaded the icons into its
Desktop me, it will never again look at your 'BNDL', even if you clear the Inited bit.
In order to change the 'BNDL' resource or to change some icons, you will need to remove
your 'BNDL' resource from the Desktop ftle manually using ResEdit (this works, but is not
recommended), or to recreate the Desktop me. To do this, hold down the Option and
Command keys while restarting your Macintosh. The Finder will then ask you if you want
to rebuild the Desktop ftle. Remember that when you do this, you lose all comments. you
may have entered in the Get Info windows in the Finder in system software previous to
system software version 7.0.

If you want to move information contained in the 'BNDL' resource from one file to another
you can do so by using the commands on the Edit menu. For copying operations, all
necessary information (including the Finder Icons) is copied with the ftle type. If you clear or
cut a me type in the 'BNDL' resource, please note that for safety reasons the Finder Icons are
not removed (beautiful icons are so hard to design, it is generally considered better to waste a
few bytes than acddentally kill one).

Should you ever have need to tinker with the internal workings of the 'BNDL' resource, you
can edit all information stored in the 'BNDL' and assodated 'PREP resources by selecting
Extended View from the BNDL menu. See Figure 4-19.

66 ResEdit 2.1 Reference

• Figure 4-19 'BNDL' resource editor, Extended view

• File Edit Resource Window BNOL

TBachTeHt 1.2

BNOLs from TeachTeHt I.

• tI SNOL 10 • 12B from TeachTeHt 1.2

Signature: l"mMI
ID: 0 (should be OJ

o String: ITeachTeHt, Uenlon 1.2

129 TEHT 129

2 130 ttro 2 130

For historical reasons the third line of the extended view, which displays the contents of the
signature resouIte, is labeled -e string". This is because in the days before the introduction of
the Ivers' resource to keep track of version information, the signature resource was used to
store such information. Today the contents of the signature resouIte are ignored by the
Finder unless the Ivers' resoUItes are missing. In this case the Finder displays the contents in
its Get Info window. The Ivers' resource and its editor are described in detaU in this chapter.

Chapter 4 Other ResouItes 67

'elut' and 'pItt' resources

The 'clut' (color lookup table) and 'pitt' (palette) resources are used to store color and
gmyscale information. They are largely interchangeable, but the 'pItt' resource contains a
Usage command in addition to the information contained in a corresponding 'clut' resource.
Palettes are associated with windows. For more information, see the Palette Manager and
Color Manager chapters in Inside Macintosh, volume V. ResEdit 2.1 includes an editor for
'clut' and 'pItt' resources, shown in its 'clut' disguise in Figure 4-20.

• Figure 4-20 'clut' resource editor

• clut IIHeep o' Gre s· 10 - 1111 from ResEdlt Preferences

Red: 1203031ril by 1",mMI
Green: 1203031= by [5Oii"]

Blue: [iiiii]m by 1500 1

• FIgure 4-21 clut menu

Sor1 Bac
Bh~nd

Complement
Load Colors •••

IUil8 Mo(b~l
../CMY Model

HSB Model
HLS Model

68 ResEdit 2.1 Reference

-" \

The clut menu, shown in Figure 4-21, contains the following commands:

Blend

Complement

lDadColors

RGBModel

CMYModel

HSBModel

HIS Model

Generates a ramp or blend between the endpoints of a selected range of colors. If
only three color patches are selected, the middle color will be set to a value halfway
between the extremes. If fewer than three color patches are selected, this command
is gray and cannot be used.

Allows you to specify a new number for a selected item.

Brings up a dialog box that allows you to load colors and gray levels from the
available palettes and tables. These include the standard 8-bit (256-color) set, the
standard 4-bit set, B&W, Apple's recommended colors for icons, and any others that
are available in the ResEdit Preferences me or in any other flles you have open.

These commands allow you to select from one of four models for handling colors.
The models are:

RGB: RedlGreenIBlue
CMY: CyaniMagentalYellow
HSB: Hue/SaturationlBrightness
HIS: HuelLightnessiSaturation

RGB is the default model.

The sort menu (not shown) allows you to sort by any of the three criteria of the current
model. That is, if you are using the RGB model, it lets you sort by amount of red, green, or
blue.

The background menu (not shown) lets you choose white, gray, or black as the background
for the area of the editing window where there are no color patches.

Chapter 4 Other Resources 69

'INTL', 'idO', and 'idl' resources

The 'INTI.' resource combines the functionality of the 'idO' and'id1' resources. That is, 'INTL'
"US" ID - 0 is the same as 'idO' "US" ID - 0 and 'INTI' ·US" ID • 1 is the sarre as 'idl' "US" ID 1

- O. These resources are ~ in international localization. For further infonnation, see Inside
Macintosh, Volume V, Chapter 16. Each of these resources (whether you edit them as 'INTL'
or as 'ittO' and 'id1') is shown as a window with a set of boxes to be filled in and some buttons
that can be clicked Figures 4-22 and 4-23 show the windows for 'ittO' and 'itt1'.

• Figure 4-22 Editing an 'ittO' resource

Short Date:

1/16/39

nme: TIme separator: :
4:25:06 AM Morning trailer: aM
4:25:06 PM EueRing trllller: PM

24-hour trailer:

tountry Code:1 00 - US

70 ResEdit 2.1 Reference

181 Leading Currency Symbol

Cl Minus stgn for negatiue

181 Trailing decimal zeros

181 Leading Integer zero

Cl Leading 0 for day

Cl Leading 0 for month

o Include century

181 Leading 0 for secDnds

181 Leading 0 for minutes

Cl Leading 0 for hours

18112-hour time cycle

Cl metric Denion: I

(• Figure 4-23 Editing an 'idl' resource

. - - HII ·US· 10·0 from S stem
Names for months Names for da s

JanualY July Sunday

February Rugust Monday

March September

Rprll October

Tuesdey
Wednesday
Thursday

May Nauember Frldey
June December Seturdey

Day I. I Month I Dete I. I Yeer I
Use [Jcherecten to abbreulete nemes

Country cOde: ... 1 ..;;O;.;;;O_-..;;U;.;;;S_~=~
Mon, Jan 16, 19&9 uenlan:D
Monday, January 16, 19&9

o leading 0 In Date
o Suppress oete
o Suppress Dey
o Suppress Month
o Suppress Year

Chapter 4 Other Resources 71

'Kom' resources

The 'KCHR' resoutte controls keyboard mapping. The 'KOIR' editor can be used with any
Macintosh that runs system software version 5.0 or later. The main 'KCHR' editing saeen is
shown in Figure 4-24, with Conumnd-option-3 pressed; the dead key editor is shown in
Figure 4-25. Appendix A contains an in-depth discussion of the 'KCHR' resource itself, and a
short section of 'KCHR' questions and answers appears in Chapter 6.

• Figure 4-24 Editing a 'KCHR' resoutte

- - -- -- --=--=------- =---- =- - ~==------=-=-

The main 'KaIR' editor

The display for the main 'KCHR' editor (Figure 4-24) is divided into flVe parts, which are
described in the sections that follow.

72 ResEdit 2.1 Reference

(

('

The character chart

This chart shows the 256 charactelS that make up the currently selected font It displays the
chalacter generated by the currently pressed key, by highlighting it You can also display a
character by clicking with the mouse in either the keyboard region or the virtual keycode
chart These charactelS can be assigned to keys on the keyboard. To assign a character to a
key, drag the character either to a keycap in the keyboard region or to the virtual keycode
chart You cannot assign charactelS to the Command, Option, Shift, Caps Lock, Control,
Return, or Enter keys.

The table chart

The Shift, Caps Lock, Option, Command, and Control keys are considered to be 8modifielS"j
no combination of modifier keys generates a character code unless some other key is also
pressed. The table chart shows which table is used by the currently depressed modifier
key combination.

Please note that although there are 256 possible combinations of modifier keys, most versions
of the 'KCHR' resource use only 8 tables, and very few ever use IOOre than 16. This is because
similar modifier key combinations are frequently mapped to the same table. For example, in
the U.S. 'KCHR', all combinations involving the Control key point to Table 6. Also, the Caps
Lock and Shift combination points to Table 1 (which is pointed to by the Shift key) rather than
Table 2 (which is pointed to by the Caps Lock key on its own).

To change the table used by a modifier key combination, press that combination of modifier
keys and click on a different table. The mapping is changed by the editor. This feature is
probably of very little use, and the infonnation is included here for completeness. Here is a
listing of the tables as they are pointed to by various modifier key combinations in the U.S.
'KCHR', as supplied:

• Table 0 is shown with none of the modifier keys pressed, or with the Command key or
Command and Shift keys pressed.

• Table 1 is shown with the Shift key or Caps Lock and Shift keys pressed.

• Table 2 is shown with the Caps Lock key pressed.

• Table 3 is shown with the Option key pressed.

• Table 4 is shown with Shift and Option keys pressed.

• Table 5 is shown with Caps Lock and Option keys pressed.

• Table 6 is shown with Option and Command keys pressed.

• Table 7 is shown with the Control key (and any other keys) pressed.

Chapter 4 Other Resources 73

The virtual keycode chart

This chart shows aU 128 keycodes in the current table, and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard, and are virtual in the sense that further translation has to
take place before a Macintosh character set number results and a character can
be displayed.

The keyboard region

This area reflects a particular keyboard layout You can choose a different keyboard for
displaying the virtual keycodes by using the View As command on the KOIR menu. The
ApplelBl Extended Keyboard and Extended Keyboard n have two sets of modifier keys, and
you can use the Uncouple Modifier Keys command, also on the KOIR menu, to get access to
the alternate roodifler keys (the ones on the right side of the keyboard, which are usually
coupled with the ones on the left side). If you do not have the Apple Extended Keyboard or
Extended Keyboard II connected to your Macintosh, you cannot choose the Uncouple
Modifier Keys command.

Note that the modifier keys shown in the keyboard picture have a gray border. This border
has two purposes:

• It reminds you that you cannot drag a character from the character chart onto a
roodifler key.

• It helps you fmd the modifier keys in the virtual keycode chart (They have a gray border
there, too.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are "dead" keys. If you click a dead key, the special editor for dead keys
is invoked. For more information on editing dead keys, see "Editing Dead Keys," later in
this chapter.

Theuuonnatlonregion

This small chart shows you the character code and virtual keycode, both in hexadecimal fonn.

74 ResEdit 2.1 Reference

(Editing dead keys

Some combinations of keys do not immediately specify a character. Because nothing appears
on the screen and the cwsor does not move when these combinations are pressed, they are
called -dead" keys. Typically they act to modify the next key that is pressed after the dead key
is released. The special editor for dead keys is shown in Figure 4-25.

• Figure 4-25 Editing a dead key

The dead-key editor

The display for the dead-key editor is divided into five functional sections.

The character chart

This chart displays the character codes and is used to assign a different character code to
either a completion character, a substitution character, or the no match character; you assign a
code by dragging the character to its new location. If you drag a character to one of the empty
slots (displayed in gray) in the completion and substitution character pair list, you
automatically add a new pair.

Chapter 4 Other Resources 75

The nomatch cbatader

If the character typed after the dead key doesn't fit, a nomatch character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowe~ it doesn't make much sense to put an accent mark on a It The nomatch character for·
the current dead key is shown in the upper-right comer of the window.

The completion and substitution character pair list

This list shows the translation rules for the dead key that is currently selected. There are two
columns, allowing for a total of 32 dead keys. The left half of each column shows all
completion characters; the right half shows aU substitution characters. If the character typed
after the dead key is one of the completion chatacters, the matching substitution character is
actually produced. For example, pressing Option-e and then e produces the character e.

The Trash

To re1IX>ve a completion/substitution chatacter pair, just drag either character from that pair in
the completion/substitution pair list to the ttashcan in the lower-right comer of
the window.

The information region

This area contains the chatacter code in hexadecimal f01lIl whenever you click one of the
other parts of the editor. It is on the right edge of the window, and contains the word ·Char:".

The menus

The 'KCHR' editor has three menus: KCHR, Font, and Size.

The KOIR menu

This menu is shown in Figure 4-26.

76 ResEdit 2.1 Reference

(

(

• Figure 4-26 The KCRR menu

Remoue unused tables
Remoue duplitate tables

Edit dead key •••
Conuert to dead key
Rpmoup df.>od

The KCRR menu contains the following commands.

View As ... If you have the Key Layout me (which has been part of the system software since
version 4.2) in your System Folder, you'll be presented with a list of keyboards to be
used for displaying the virtual keycodes. Note that you are not changing the layout of
a particular keyboard, but the 'KCRR' resource that is used by all keyboards and is
based on the ISO (International Standards Organization) ADB keyboard.

Uncouple Modifier Keys
This command is enabled when you have an ADB extended keyboard connected to
your computer. It can be used to uncouple the right modifier keys (see note above)
and thus edit the tables used by them. Please note that the 'KCHR' editor
automatically recouples them whenever you bring another window to the front or
close the editor.

Chapter 4 Other Resources 77

• Note: When you select the Uncouple Modifier Keys command, you must also use the View
As command to set the current keyboard to a keyboard that supports uncoupled modifier
keys. To avoid confusion, and because not all keyboards support this decoupling, it is
recommended that you not make use of this command.

New Table Creates a new empty table.

Duplicate Table Creates an identical copy of the current table.

Remove Unused Tables
Looks for tables that are not used by any modifer key combination, and removes
them.

Remove Duplicate Tables
Checks for tables that are identical, reassigns modifier key combinations as necessary
to one table, and removes the duplicate(s).

Edit Dead Key... Displays a dialog box containing a list of all dead keys and lets you choose one to
edit Note that there is a shortcut to edit dead keys: You can either click a dead key
on the screen, or press the dead key on the keyboard. In either case the dead-key
editor will automatically pop up.

Convert To Dead Key
Whenever you hold down a key with any combination of modifier keys and choose
this menu command, the key will be converted to a dead key. You can then use the
Edit dead key command to define all valid completion and substitution characters for
the new dead key.

Remove Dead Key This command is enabled only when a dead-key window is open. It removes the
dead key currently being edited from the dead-key lis~ converting it into a live key in
the process.

The Font menu

This menu lets you choose a font for displaying the characters in the editors window.

The Size menu

This menu lets you choose a size for the characters displayed in the editors window. All
characters in the window are automatically resized.

78 ResEdit 2.1 Reference

• Note: If you are editing 'KCHR' resources on a Macintosh SE, Macintosh Plus, or Macintosh
512K enhanced, the 'KCHR' editor automatically sets the size to 9 points so that the editing
window fits on the screen.

Chapter 4 Other Resources 79

'MENU' resources

Menus are an important part of the Macintosh user interface and are found in all applications
and many desk accessories. They are stored in resoun:es of types 'MENU' (regular menus),
'annu' (MacAppGD temporary menusj these are converted into 'MENU' resoun:es by PostRez
during the MacApp build process, so you will never fmd one in an application), 'CMNU'
(MacApp pennanent menus; these will be supported in future versions of MacApp), and
'mctb' (menu color tables for any of the preceding types). The 'cnmu' and 'CMNU' types differ
from regular menus in that they have an additional conunand number field stored for each
item in the menu. ResEdit 2.0 supports editing of all these menu resoun:e types with a new
editor that automatically integrates the color information stored in the 'mctb' resoun:es and
thereby allows editing of menus in color. See the inside front cover for a color illustration of
menu editing.

The display of the menu editor, shown in Figure +27, is divided into two sections. The left
side shows the entire menu, and the right side displays detailed information about the item
selected on the left side. To accommodate menus with many items, the box on the left side
has a scroll bar.

• Figure 4-27 'MENU' resoun:e editor

.. File Edit Resource Window MENU Style

BaH 8 for Mac II
ResEdit 2.0, Marl6

MENUs from BaH 8 for M.

MENU "Knobs· ID • 132 from BaH 8 for Mac II

Longer Line.
More Open
More Packed
Faster
Slower

80 ResEdit 2.1 Reference

Entire Menu: ~En.bled

ntle: @) ~

o .. (Apple menu)

Color

llt1e: IiII
l1am TaHt Default: l1li
Menu Background: D

If the title of the rrenu is selected, the editor not only allows you to change the title but also
displays some infonnation about the entire menu. You can enable/disable the entire menu
and also select colors for the menu's tide, for the item text defaul~ and for the menu
background. On machines capable of displaying color the color patches pop up like menus
and let you select a color from a palette corresponding to the pixel-depths of the deepest
device intersecting the window. Should you, however, need to enter a color in RGB values,
you can double-click on the color patches and set the color using the standard color picker.
On monochrome machines the color picker is opened whenever you click the color patch,
because a palette caMOt be displayed adequately. Since the • Apple" character can't easily be
generated on sorre keyboards there is also a convenient radio buttonto make the menu tide
the • Apple" character instead of text entered in the box. If you do enter the • Apple" character,
the editor automatically chooses the radio button.

When you create a new rrenu, there are no iterm to select in order to start the editing process.
You can choose Create New Item from the Resource rrenu, or type Command-K.

When an individual menu item is selected the display changes to the one shown in
Figure 4-28. As in the tide's display you can either edit the text of the item directly or you can
use the radio button to make the item a separation line (which you can also do by entering ._"
in the text box). You can use the Style rrenu to select a different style (bold, italic, and so on)
for each item, and you can enable or disable the item with the checkbox in the upper right
comer. For each item you can assign a command key equivalent (the menu manager is not
case sensitive, so for esthetic reasons and consistency you should only use uppercase
characters) and an item mark, which you can choose from an extensible pop-up menu shown
in Figure 4-29. Both the command key equivalent and the mark character can be displayed in
color. If you want to do tha~ select a color from the corresponding color palette pop-up
menus.

• Figure 4-28 'MENU' line item edit

MENU "Knobs" ID • 132 from BaH 8 for MIIC II

Knobs
Shorter Lines acs

I •

More Open
More 'ecked
Fester
Slower

aco
ac,
acF
ac&

Selected Item: ~Enllbled

TeHt: @ I Longer lines

a - (separator line)

o hes Submenu

Color

TeHt: •

Cmd-Key:[J •

Mert:D.

Chapter 4 Other Resources 81

• Figure 4-29 'MENU' mark pop-up

!II MENU "Knob.· 10 • 132 from BOH 8 for Mac II

Knob. I Selected Item: 181 Enabled
Shorter line. X5 IQ

I I' .,. TeHt: <i> I Longer lines I .0 More Open
More Packed .P o - (separator line)
Faster .F
Slower .6 Color

o has Submenu T .. llt· IIiiiII
~

Cmd-Key: • I <)

10 mI None

Other •••

In order to make an important item look unique you can put an icon in front of the item's
text Select Choose Icon from the MENU menu to get the dialog shown in figure 4-30.

• Figure 4-30 'MENU' Icon chooser

• File Edit Resource Window .~':tI"". Style I iZotz I

The Dwarf Banana I
.J MENU. from The Dwarf 8 I

MENU "IZotz Te
Choose an icon for this menu Item:

IZoiil :Q • 6etFoobar ..
Put Foober
uon't lake me fO

3CI6

0
<i> Normal Icons (ICON) (New) (cancel)
o Reduced Icons (ICON)

I ~ o Small Icons (SltN) (Edit I OK

82 ResEdit 2.1 Reference

Because of menu manager restrictions, the icon's ID must be in the range of 257 to 511 in
order for it to be used in a menu. All other icons are displayed in gray. If a regular item seems
to be too large for your menu, you can select the "Reduced" radio button to shrink the icon to
a roore convenient 16x16 size or you can add a small icon (resource type 'SICN') instead of a
regular one. If you later want to remove the icon from an item, choose Remove Icon from the
MENU menu. In order to reduce clutter, the menu on the left side of the editing window does
not show icons.

If you want to see how your menu looks in real life you can try it out at the right edge of the
menu bar. To show you that this is not a regular menu but a sample of the menu you are
editing, its title is outlined with a black border.

Sometimes a menu may become overcrowded with iterm. Thars when you should start to
think about organizing the items in groups and turning the menu into a hierarchical menu.
The menu editor helps you create submenus by providing you with the option to turn any
item into a submenu just by clicking in a checkbox. In order to edit the items of the submenu,
either select Open Submenu from the Resource menu or double-click on the item's text.

If you happen to edit a 'crnnu' or 'CMNU' menu for inclusion in a MacApp program, you will
notice that there is an additional field shown in the item's display that lets you set the
command number for each item. This is shown in Figure 4-31, bottom center.

• Figure 4-31 'cmnu' editing

cmnu ID - 128 from The Dwarf Banana-Tree

L I Haue You Now I Selected Item: ~Enabled
I .

TeHt: <i> I You're My Father111 I
I o - (separator line)

I 0 has Submenu

Color

TeHt: •

cmd-Key:D • to Cmd-Num: @:J Mark: 0 •
The menu editor also lets you rearrange the items in your menu. You can either use the
standard commands on the edit menu, or you can put an item in a new position by dragging it
around in the menu on the left side of the window. As you move the item around, a black line
between items shows you where the item is currently located.

Chapter 4 Other Resources 83

Selecting colors from the various pop-up palettes actually modifies an 'mctb' resource (menu
color table) which is tmnsparently geneIated and changed for you. If you want to get rid of
the colors you have set, you can reset the 'm:tb' resource by selecting Use Default Colors
from the MENU menu.

The 'MENU' resource has two assigned ID numbers. One of these is the resource ID number;
it is set by getting information on the resource from the picker window, and is the ID number
that always shows up in the picker window. The other is the rrenu ID number; it is set inside
the editor and is the part of the 'MENU' resource that is returned by the menu manager of the
Macintosh Toolbox in response to MenuSelect and MenuKey calls. Keeping these two
numbers the same, while not required, avoids confusion, and in fact they default to the same
number. See Chapter 6 for rmre information.

The corresponding 'MDEF ID number is almost always O. This refers to the standard 'MDEF
in the System FUe, which is geneiaily appropriate. Some menus do, however, need to be
dIawn differently. (Palettes, for example.) These could use sepaIate 'MDEF resources, and
hence would not have 0 in this field. Figure 4-32 shows the 'MENU' and'MDEF ID number
dialog box.

• Figure 4-32 'MENU' ID dialog

Pfease enter the Menu 10 and
the ntsOURe 10 of the MO£F to
be used below.

Menu 10:

MOU 10: ,-10_--,
(Cencel) I OK I

84 ResEdit 2.1 Reference

------.

(
'TEXT ' and 'sty I' resources

When styled text is copied to the clipboard or stored in a resource me by the TextEdit
package, the style infonnation pertaining to the text and the text itself are stored in two
resources, one of type 'TEXT " and one of type 'styl'. Previous versions of ResEdit have
allowed template editing of the 'TEXT' resource, but have not allowed access to 'styl'
infonnation. The 'TEXT'tstyl' editor, shown in Figure 4-33, has menus for Font, Size, and
Style, and works much as you would expect a text editor to.

• Figure 4-33 'TEXT ' and 'styl' editor

• TEHT/styl"Patrlck's Rdmonitlon" 10 ·440 from Ono-Sendal

Some of the other programs on this disk ace similarly free;
some, however, ace shareware, which lOU wi~ of course
pay for if they're of use to you. (Don t be a china.
H a J?iece of shareware helps you detect and/or cure a virus,
you ve already gotten more value out of it than the
Shareware fee can possibly cover.)

I - Patrick Nielsen Hayden

K5
01 F,I!I!l;'i!.'!P.r.1;~Jil ... , .. ;!, , .. ;.lililililimililimmmi!ilml!!ilil!m~m!!mmmmmmlil!!im!!ml!lill1!F,1ii, ;" .. '.' ;,; : ... ,;:., .:i!!J!1it I'CJ

If you attempt to open a 'styl' resource, the editor is invoked. A 'styl' resource doesn't make
much sense without some text to which it can be applied.

Chapter 4 Other Resources 85

'vers' resources

The Ivers' resource is part of a Macintosh application. It is defmed as a general source of
version information, but currently displays its information in the Finders Get Info window.

The 'verst editor is shown in Figure 4-34. The Version number is displayed in three parI!, with
a fourth Non-release part below. The allowable ranges for these numbers are as follows: main
number: 0-99; second part: 0-9; thUd part: 0-9; Non-reIease: 0-255. The editor will reject
numbers outside the allowable ranges, even though it appears to accept and save them; if you
close and reopen the resource, they show up as zero. If your version number has letters in it,
you should put the letters only in the short and long version strings. The Release and Country
Code items are popup menus. Release allows you to select from Development, Alpha, Beta,
and Final; Country Code is a longer list, currently containing 54 countries. The short version
string should, in general, contain only the ordinary version number (e.g., -2.1a5"), and the
long version string can also include copyright notices, authors names, release dates, and other
relevant information. It is displayed in the open area at the bottom of the Fmders Get Info
window.

• Figure 4-34 Editing a Ivers' resource

Derslon number: [:J. [] . []

Release~ Deuelopment .. 1 Non-release: I!:J
Country Code:1 00 - USH .. I

Short uenion string: IThls is a stickup'

Long uenlon string (ulslble In Set Info):

Put an your bits In this bag, and lie down
behind the disk drlue'

86 ResEdit 2.1 Reference

/

(

(

Chapter 5 ResEdit Templates

One generic way of editing a resource is to fill in the fields of a dialog box.
The contents of the dialog box are specified by a template contained,
typically, in ResEdit's own resource file or in the Res Edit Preferences me.
This chapter discusses template editing and tells you how to create your
own templates.

87

Template characteristics

If you open an actual resource of any of the types listed in this chapter, you will find yourself
editing in a dialog box, the contents of which are specified by the template of the same name
as that resource type. (For example, the 'LA YO' resource, discussed further in Chapter 6, is
controlled by the 'TMPL' resource named LA YO in ResEdit.) The template specifies the format
of the resource and also specifies what labels should be put beside the ediffext item; in the
dialog box used for editing the resource.

• Note: Templates can contain a maximum of 2048 fields. For the purpose of enumerating, a
field is defined as any item that is drawn on the screen. That is, a label counts as a field, as
does a separator, and so on. This limiting number of 2048 is reached rather easily,
particularly in resources with repeating lists, as for example, 'pItt'.

The 'TMPL' resource inside ResEdit is recursive, in the sense that the contents of each of these
named 'TMPL' resources is a template for a template. (There is even, of course, one for 'TMPL'
itself.) As of late 1990, Res Edit contains 'TMPL' resources for these resource types:

'actb' 'acur' 'ALRT' 'APPL' 'BNDL'
'clut' 'CMOK' 'CMNU' 'cmnu' 'CNTI.'
'detb' 'om' 'OLOG' 'ORVR' 'FBTN'

'FDIR' 'finP 'fie1#' 'FOND' 'FONT'
'FRSV' 'fval' 'FWIO' 'GNRL' 'icmt'

'indm' 'infa' 'infs' 'inpk' 'inra'
'itlb' 'itlc' 'itlk' 'LAYO' 'MBAR'

'mctb' 'MENU' 'nret' 'PAPA' 'PICK'
'pitt' 'posr 'ppat' 'PRCO' 'PRC3'
'qrsc' Iresi' 'RMAP' 'ROv#' 'RVEW
'SIGN' 'SIZE' 'STR' 'STR#' 'TEXT

'TOOL' Ivers' 'wctb' 'WIND' 'wstr'

88 ResEdit 2.1 Reference

'eetb'

'CTY#'

'fetb'

'FREF

'inbb'

'insc'

'mcky'

'PIer

'PSAP'

'scm'

'TMPL'

(

(

Editing

When you are editing a template, the Tab key moves you forward from field to field within
the template. Shift-Tab moves you backward. Here, however, the term field means an active
area with an editable value in it. Fields are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a separator, which is usually
a set of asterisks (...............), and choose Create New Field from the Resource menu.

Some templates control windows or resources that contain rectangles. Some of these
templates will have a Set button that lets you draw a rectangle on the screen to delimit the
resource. The pixel numbers for the rectangle are automatically copied to the appropriate
fields in the template. There is a Set button in the 'LA YO' template, which is discussed in
Chapter 6; another is shown in Figure 5-1.

Values can be entered into numeric fields in either decimal or hexadecimal notation. You can
enter a hexadecimal number into any numeric field by preceding it with a dollar sign ($).

'PIer' editing

There is no custom editor for 'PIer resources, though there is a custom picker. 'PIer
resources can, however, be sized with the template that exists for them, which is shown in
Figure 5-1. If you click the Set button, you can then draw a rectangle on the screen to defme
the shape and size of the picture. Otherwise, you can enter values in the fields as you would
in any template.

Chapter 5 ResEdit Templates 89

• Figure Soot The template editor for 'PIer

11 01 01 00
00 01 56 02
00 80 01 10
00 80 01 13
00110 01 13
00 00 OR 06
CO 3F FO FE
III 01 00 20
00 08 09 IF
21 9C 00 66
III 01 01 30

OR 00 00 00
00 98 00 OR
00 80 01 90
00 110 01 8R
00 liD 01 IIR
IF FO 01 FF
00 011 09 10
20 10 00 16
F8 01 01 30
00 06 09 10
2F 01 01 III

For other examples of template editing, see the description of the 'STR#' resource template in
this chapter and the description of the 'LA YO' resource in Chapter 6.

Creating New Templates

You can generate templates for your own resource types. These templates, which are resources
of type 'TMPL', need not reside within ResEdit. The ResEdit Preferences file in the System folder
is a good place to keep them.

Template example

The 'TMPL' resource inside ResEdit with name STR# is shown in Figure 5-2. It is shown here as a
ready example of what 'TMPL' innards look like on the screen.

90 . ResEdit 2.1 Reference

• Figure 5-2 'TMPLI defmition for type ISTR#'

TMPl "STR#" ID • 256 from RetEdlt 2.0JJ2

•••••
Label

Type

•••••
Label I·····
Type ILSTC

•••••
Label \The string
Type PSTR I
•••••
Label 1**··· Type LSTE

•••••

Figure 5-3 shows the same template being used to edit an actual ISTR#' resouoce. You can see
the correspondence between the items in the 'TMPL' resouoce and the resulting display.

• Figure 5-3 ISTR#' template in use

• File Edit Resource Window Font

TellchTeat 1.2

5TH#' ID • 2DD from TellchTeHt 1.2

Hu.Slring' 20

•• ***
Th •• lrlng

Th. string I ... T_eo_c_h_T._x_l ________

•••••
The string It 1986-1988 Rpple Co.puler, Inc. I
•••••
Th. string IBryan St.arns

•••••

Chapter 5 ResEdit Templates 91

You can look through the other templates and compare them with the structures of their
corresponding resoua:es to get a feel for how you might define your own resoua:e template.
(If you use MPW, note that these templates are equivalent to the resource type declarations
contained in the {RIncludes} directory-refer also to the DeRez command in the MPW
Reference, and the appropriate chapte1S of Inside Macintosh.)

These are the types you may choose from for your editable data fields:

DBIT, DWRD, DLNG Decimal byte, decimal word, decimal long word.

HBIT, HWRD, m.NG Hex byte, hex word, hex long word.

A WRD, ALNG Word align, long align.

FBIT, FWRD, FLNG Byte fill, word fill, long fill (with 0).

HEXD Hex dump of remaining bytes in resource. (This can only be the last type
in a resource.)

PSTR Pascal string (length byte followed by the characters),

LSTR long string (length long followed by the characters).

WSfR Same as ISTR, but a word rather than a long word.

ESTR, OsfR Pascal string padded to even or odd length (needed for Dm resources).

CSIR C string (characters followed by a null).

ECST, OCST Even-padded C string, or odd-padded C string (padded with nulls).

BOOL Boolean (two bytes).

BBIT Binary bit. (There must be 8 or an even multiple of 8 of these; if fewer than 8
bits are defined, you must include placeholder bits.)

TNAM Type name (four characters, like OSType and ResType).

CHAR A single character.

REef An 8-byte rectangle.

Hnnn A 3-digit hex number; displays nnn bytes in hex fonnat.

Cnnn A C string that is nnn bytes long. The last byte is always a 0, so the string itself
occupies the first nnn-l bytes.

92 ResEdit 2.1 Reference

(

(

POnn A Pascal string that is nn bytes long. The length byte is not included in nn, so
the string occupies the entire specified length.

• Note: Scrolling can become extremely slow if a template contains many BBIT
or BooL items.

ResEdit does the appropriate type checking for you when you put the editing dialog window away.

The template mechanism is flexible enough to describe a repeating sequence of items within
a resource, as in 'STRI', 'Om', and 'MENU' resources. You can also have repeating sequences
within repeating sequences, as in 'BNDL' resources. To tenninate a repeating sequence, put
the appropriate code in the template as follows.

LSTZ

I.STE

ZOO

I.STC

I.STE

OCNf

LSTC

I.STE

I.STB

I.STE

List Zero-List End. Tenrunated by a 0 byte (as in 'MENU' resources).

Zero CountIList Counl-List End. Terminated by a zero-based word count that starts
the sequence (as in 'om' resoun::es).

One CountlList Counl-List End. Terminated by a one-based word count that starts
the sequence (as in 'STRI' resoun::es).

Ends at the end of the resoun::e. (As in 'acue' and 'APPL' resources.)

The "list-begin" code begins the repeating sequence of items, and the LSTE code is the end.
labels for these codes are usually set to the string ""'''''''''''''". Both of these codes are required.
It is generally advisable to keep the beginning and ending labels identical to each other, and
to have them be no more than five characteIS long.

Chapter 5 ResEdit Templates 93

Your template does not have to be inside ResEdit; it can be in any open file. (The preferred
location is the ResEdit Preferences me in your System Folder.) Note that if roore than one
currently open me contains a template for your resource type, the one in the most recently
opened me is used when you edit resources of your type. To create a template, follow
these steps:

1. Open the me that you want to put your template into.

2. Open the 'TMPL' type window. Use the Create New Resource command to create the
'TMPL' type if it doesn't already exist in the me.

3. Choose Create New Resource from the Resource menu.

4. Select the list separator (*****) by clicking it

5. Choose Insert New Field(s) from the Resource menu. You may now begin entering the
Iabel,t}Pe pairs that define the template. Before closing the template editing window, choose
Get Info from the Resource menu and set the name of the template to the four-character
name of your resource type.

6. Close the me window and save changes.

The next time you try to edit or create a resource of the new type, you'll get the dialog box in
the format you have specified.

94 ResEdit 2.1 Reference

(

(

Chapter 6 ResEdit Tips

As with any other utility, ResEdit takes some getting used to. This chapter
presents a few handy tips and a few "hints and kinks" to help you become
more comfortable with the capabilities of the program.

95

Hints and kinks

• At the risk of being slighdy repetitive, and because these things can be important, it is
once again suggested that you edit resources in a copy of your target me, rather than
the original.

• If you choose Get Info for ResEdit (from the Finder), you will fmd that Application
MeIIX>ry Size is set to 500 KB. If you are editing large resources 500 KB is not sufficient,
and you should give ResEdit more memory.

• The following sequence of steps can be used to copy a 'PIer resource from most drawing
or painting programs into another me:

1. Open the file that contains the graphic that you want to tum into a 'PIer.

2. Select and copy the part of the graphic that you want

3. Start ResEdit and open the me that you want to contain the 'pier resource.

4. Open the 'PIer picker for that file.

5. Choose Paste.

If you paste with the me window open instead of the 'PIer picker window, you will get both
the 'PIer and the application's private resource type (for example, 'MDPL' if your 'PIer is
from MacDraw). .

• To add a picture to a 'DLOG':
1. Get a picture. Add it to the 'PIer resources in your me. (See the previous tip.)

2. Choose the Get Resource Info corrumnd from the Resource menu.

3. Use Copy to put the ID number of the new 'PIer in the scrap.

(Instead of steps 2, 3, and 7 here, you can always just read the ID number when you copy the
'PIer and type it into the 'Dm' item by hand. ResEdit 2.0 displays the ID number of each
'PIef" resource.)

4. Go to the 'Dm' that belongs to the 'DLOG' you are adding the picture to.

5. Choose New Item.

6. Click the PICf button.

7. Paste the ID number from the scrap.

8. Close the Dialog Item Editor.

9. Choose Use RSRC Rectfrom the menu.
10. Position the picture.

96 ResEdit 2.1 Reference

(

(

• If you are using the any of the icon editors, and you make a selection with the rmrquee
and then cut or copy it, you can paste it as a 'PIer resource. First make the type picker of
your target (this can, of course, be the 'PIer picker) be the active window. If you then
paste, ResEdit makes the contents of its SCClp into a new 'PIer. The 'PIer resource
picker does not have to be open when you attempt to perform the
paste operation.

• There are keyboard equivalents for rmny operations you would ordinarily perform with
the muse. Try selecting a me in the me open dialog by typing the fIrst letter or two, then
opening it with the Return key; you can do the same with resource types, and then with
individual resources. (With individual resources, you can type the ID number or the
name.) The arrow keys also work-for example, in a me list, you can go down the list
with the down-arrow key.

• There is a hidden Change Color comrmnd in the bit editors. If you hold down the
Comrmnd key and pick a new color, all pixels of the current foreground (or background)
color are changed to the new color.

• In general, it is a good idea to use the sam: ID for an 'ALRT' or'DLOG' and its associated
'Dm', though this PClctice is not required.

• Other shortcuts and handy items:

a In the resource picker: Option-double-click for Open Using Hex.

a In the resource picker: Option-Cornmanci-double-click for
Open Using Template.

a In the resource picker: Option-Cornmand-Shift-double-click (or Shift-Open Using
Template) displays the template-type dialog box without the list of templates. (You
can enter the template type you want.) If you are operating from a floppy disk, this
can be a fast method.

a Option-Cut and Option-Copy append the cut or copied item to the scrap. At the
individual item editor level, holding down the Option key does not change the action
of Cut or Copy.

a In the 'Dm' editor: Option-Cornmand-double-click on a 'CNTL', 'ICON', or 'PIer to
open it as a dialog item.

a Comrmnd-click in a picker for disjoint selection.

a Shift-click in a picker to extend a selection. (In a pictorial display such as the one for
'ICON' resources, the selection will extend as a rectangle.)

a Using Shift-Create New Resource to create a new resource type gives you the "new
type" dialog box without the list of resources. You must, of course, enter the resource
type you want rather than selecting it from the list If you are operating from a floppy
disk, this can be a fast method.

Chapter 6 ResEdit TIps 97

[J In the bit editors ('CURS' and 'leN", for example), Shift-drag creates a selection
rectangle (marquee). Using Shift-drag inside the marquee moves it Releasing the
Shift key and clicking inside the editing area turns off the marquee, but also inverts a
bit in the picture. The marquee is also available in the 'FONT' editor.

• If you hold down the Command, Option, and Shift keys while choosing About ResEdit
from the Apple menu, you can toggle a special stress-testing mode ("Pig mode"). In this
roode, ResEdit perforrm a compact-memory operation and a purge-memory operation
each time it receives an event from the queue, excepting null events. This feature was
designed as an aid to debugging ResEdit itself, and is clearly something most people will
never have any use for. It is suggested that you avoid invoking this mode unless you are
writing an editor and feel a need to stress-test it

• If the 'om' for a 'OLOG' that is being displayed contains a reference to a 'eNTI' that
doesn't exist, the editor will hang (in NewDialog) when it tries to draw the dialog box.
Please be careful!

• Because 'om' and 'ALRT' resources are ordinarily displayed where you put them in the
window, there is some chance that they may be mispositioned. That is, if you don't have
your code display these resources exactly where you want them, they could show up
where you don 'twant them. To be sure that a dialog box shows up where you want it,
mark it as invisible and reposition it exactly in your code. Have your code mark it visible
right after displaying it (This avoids various embarrassments.)

• If you have Color QuickDraw, but you want to be able to open the 'leN#' editor. by
doubleclicking a resource of type 'ICN" regardless, you can make a resource of type

'RMAP' in the ResEdit Preferences file. This resource should look like the one shown in
Figure 6-1. Notice that the name of the 'RMAP' resource is the name of the resource you
will be opening, and the Map To field contains the name of the editor you want to invoke.
Set the name of the 'RMAP' as usual, with the Get Info command.

98 ResEdit 2.1 Reference

(
• F1gure6-1 'RMAP' resource

1Qa. HMHP -ICN#" 10·128 from He.Edit Preferences ...

napTo ~ Q

Editor only? ~
Exception 0
count

• If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program
Under MultiFinder, hold down the Option and Command keys, pull down any menu
other than the Apple menu, and then move over to the Apple menu. Choose About
ResEdit

• Although under ordinary conditions the menu ID number and the 'MENU' resource ID'
are kept identical to one another, there is one situation in which you may want to make
them different If you are using an ordinary debugger to disassemble and walk through
the main event loop of your program, it is convenient to have the menu manager return
numbers like 1, 2, 3, 4, and 5 for the menus in your program You would therefore set the
!renu ID fields of your !renus to consecutive integers. Then you might create a 'MBAR'
resource with ID 128 and list the 'MENU' resource IDs of your menus in it You need only
call GetNewMBar (128) in your program to install all of the menus. When you are
debugging, a call to MenuSe lect (for example) returns a value of $00030004 if the 4th
item in the 3rd menu has been chosen. This is rather more convenient than seeing
$00820004 and having to translate $82 to 130 decirml, and then remembering that 130
was your third menu. If you use a high-level debugger this approach is unnecessary.

Chapter 6 ResEdit Tips 99

The 'LAYO' resource

One of the resources inside the Ymder ~ of particular interest, beca~ it controls a number of
defaults, most of which are part of the layout of your desktop. It is the 'LA YO' resource. To
open the Finder with ResEdit, you must be running under the Finder itself (rather than under
MuitiFinder), or you must edit a copy of the Finder. It ~, of cowse, suggested that you edit a
copy. If MuitiFinder is running and you try to open the currently active Finder, you get an
error message telling you that the Finder ~ already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already and
have become inured to it), boot without MultiF'mder, open the Finder, and choose the 'LA YO'
resource type. There ~ only one 'LA YO' resource, ID number 128. Open it.

The fust part of the template is shown in Figure 6-2.

• FJgure6-2 'LA YO' template, view 1

'. -- - -~ ~-- LAVO 10. 128 from Finder - -- --- =~-- - - =-=-

Font 10 § Font Size
i·O j

ii:

Screen Hdr
: j

Mgt III
Top line 1-21 . !

break il!
:=

Datto. line 117 I'

break :!!
Printing hdr li2
hgt !

132
!.

Printing :i!

The fust two items control the display font-that is, the font that prints out under the icons on
your desktop. The default is 9-point Geneva, as shown. If you dislike sans-serif fonts, you can
easily change the fust two items to 2 and 9, for New York at 9 points, or to 20 and 10 (or even
12), for Times at 10 or 12 points; the 9-point version of Tunes is very small.

The line of numbers labeled Window Rect in Figure 6-3 allows you to specify the default
folder (and disk) window size and location.

100 ResEdit 2.1 Reference

(

(

• Figure6-3 'LA YO' template, view 2

LAya 10 - 128 from FInder ~--
-~~-----

footer hgt

Ulndo. Reet ~II" 1~~C!ill
Line ,pacing 16

1===-===1
Tab stop I 20

1=====1
Tab stop 2 II
Tab atop 3 FII=8 .. ===I

Tab slop" 1280

Tab slop 5 ,:=37===6===1

Tab ,lop 6 1 .. 2 ..
1=====1

Tab alop 7 1 .. 56

ill
H!

,II

If you like, you can specify these defaults by clicking the Set button and then drawing a
rectangle on the screen. Please note that if MultiFinder is running when you edit the 'LA YO'
resource in a copy of the Finder, and you try to start your rectangle in an area of the screen
that has something other than a ResEdit window in it, you will find youlSelf summarily ejected
from ResEdit into whatever you have clicked. The cure is straightforward: Move a ResEdit
window to the area where you want to start drawing your rectangle before you click the Set
button, or use the number fields instead of the Set button. You can also explicitly set the
locations of the seven tab stops the Finder uses for displaying information about rues when
you choose to view by Name, Date, Size, or Kind.

A bit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 6-4.

Chapter 6 ResEdit Tips 101

• FIgure 6-4 'LA YO' template, view 3

UIYO ID • 128 from Finder

Reserued

1::0
Icon Harz.
spacing

Icon Ue .. t. \60 ii
spacing

Icon Uert. \15 " ,
phale ,'!
s •. Icon \101 '!i

Harz. , !
':i

S •. Icon 118 ,
Ue .. t. .n

Sotre people dislike having icons with long names overlapping and obscuring the names of
other icons. One solution to this problem is to change the Icon Vertical phase. Figure 6-3
shows SOtre modified numbers, rather than the defaults supplied with the system release.

... Warning Do not set the Icon Vertical phase to exactly half the Icon Vertical
spacing unless you like system crashes. •

Figure 6-5 shows some unused bits and three commands, the fhst of which eUse zoom
Rects") is on by default If you set it to False, the Finder will open and close windows slightly
faster, because it won't use its 'zoom' visual effect.

102 ResEdit 2.1 Reference

J

(• FIgure6-S 'LA YO' template, view 4

lAYO ID - 128 from finder
date

Use zoo. OD (il =1

Recls :11
Skip lrash (i0 01 ~ ,
earnings :;1

.j.

Aleays grid 00 (il Ii:
drags .d

~: Unus.d 1 (1)0 01
.::

Unus.d :3 (i0 01 001

Unused 2 .0 01 ~!'
mil Unused 1 (i0 01 ~ .. ~ '""-

Skip trash warnings prevents the system from asking whether you really want to throwaway
applications or System flles. Since you can avoid the warning by holding down the Option
key when you throw things into the trashcan, this seems a bit extrerre. Moreover, it can be
quite dangerous, depending on what you tend to throw out and how attentive you are about
it.

If you don't like having to clean up your windows, try turning on Always grid drags. This
option makes the icons stick in place at the grid spacing specified in the part of the template
shown in Figure 6-4. Sorre people prefer to be able to put them anywhere and therefore
eschew this option.

The Watch Thresh setting (not visible in any of the figures) allows you to adjust how long the
Finder will wait during lengthy operations such as flle copying before it displays a wristwatch
cursor with animated hands. The time is expressed in 60ths of a second. If you make it too
short, the cursor will jitter and change shape too often. Sorre older Finders do not make use
of this option.

Figure 6-6 shows a few more unused bits and the end of the template.

Chapter 6 ResEdit Tips 103

• FJgute 6-6 'LA YO' template, view 5

'. -

LOYO 18 - 128 from Finder
Unu.ed 5 @) 0 0 I

Unu.ed 1 8 0 0 1

U.e Phy. 0 0 81
Icon

Title Click 00 @)1

Copy Inherit @)O 01

H •• Fold 80 01
Inherit

Color Style

nax • of
.Indo ••

Use Phys Icon is handy if you have a Macintosh IT or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your machine
indicates which drive the floppy disk is in. The disk location is certainly easy enough to recall
just after you put the disk in, but you may forget it later. Knowing which drive a floppy disk is
in may not be a major issue, but is certainly a pleasant convenience. This option also includes
distinctive icons for an external hard disk and a CD-ROM drive.

TItle Click lets you double-click the title bar of a folder'S window to bring the parent folders
window to the front (or to open it if it is not already open). This feature can be quite handy.

When you create folders on an AppleShare' server, New Folder Inherit causes them to get
their privileges from the parent folder, and when you duplicate existing folders on an
AppleTalk server, Copy Inherit causes the copies to inherit their privileges from the Originals.

The Max , of windows field allows you to set the maxinrum number of windows the Finder
can have open at anyone time. Increasing this number causes the Finder to need more
memory. Under MultiFinder, you may have to increase the memory allocation for the Finder if
you make this number nruch larger than the default

Some of the items in the 'LA YO' template have not been discussed here. Of these, some are
not yet in use. Others are either arcane or self-evident.

'KOIR' questions and answers

• How do I change the character generated by Shift-e?

104 ResEdit 2.1 Reference

..

(Shift-e normally generates a capital E character. To make this key combination generate a
different character, simply hold down the Shift key and use the mouse to drag a character
from the character chart to the e key on the keyboard.

You will notice that when you press the Shift key, the table that is highlighted in the table list
changes. (For IOOSt key layouts, the highlight switches from Table 0 to Table 1.) This change
shows you that any character changes you make will be made in the highlighted table. When
you make Shift-e generate a different character, you are changing every nxxiifier key
combination that uses the highlighted table. For example, if Option-Shift used the same table
as Shift, you would also have changed the character generated by Option-Shift-e.

• How do I change the behavior of a modifier key combination?

For example, suppose you wanted Option-Shift-a to generate a different character from that
generated by Option-Command-Shift-a. If you hold down the Option and Shift keys and then
press and release the Command key, you will notice that (for most key layouts) the
highlighted table does not change. If you want these two modifier key combinations to be
different, you need to create a new table for one of them. To do this, you can use either the
New Table command or the Duplicate Table command from the KCHR menu. If you want to
create only a few differences, you should use the Duplicate Table command In our example,
we only want Option-Command-Shift-a to be different, so we would do the following:

1. Press and hold down the Option, Command, and Shift keys.

2. Choose Duplicate Table from the KCRR menu.

3. Select the new table that was added to the end of the list (while still holding down
the modifier keys).

4. Choose OK in the alert box that appears.
5. Drag the character from the character chart to the key that you want to change

(while still holding down all of the modifier keys).

• How do I remove a table that is no longer being used?

If you have reassigned a modifier key combination so that a table is no longer used, you can
rermve the table by choosing "Rermve unused tables" from the KCHR menu. If there are
unused or duplicate tables present when you close the editor, you will be asked whether they
should be removed.

• How do I create a dead key?

You can create a dead key (such as Option-e in rmst key layouts) by choosing "Convert to
dead key" from the KCHR menu while holding down the key. For example, follow these steps
to make Option-k into a dead key:

1. Press and hold down the Option and k keys.

2. Choose "Convert to dead key" from the KCRR menu.

3. Release the keys.

Chapter 6 ResEdit Tips 105

4. Once again, press Option and k to activate the dead-key editor.
• How do I remove a dead key?

Follow these steps:

1. Select the dead key to display the dead-key editor.
2. Choose -Remove dead key" from the KCHR menu.

• How do I create a new completion/substitution pair in the dead-key editor?

When the dead-key editor is active, you can drag characters from the character chart to the
completion/substitution pair list The character on the left in the list is the completion
character, and the character on the right is the substitution character. For example, Option-E
produces the E character.

n How do I delete a completion/substitution pair in the dead-key editor?

To delete a completion/substitution pair, drag either character from that pair in the
completion/substitution pair list to the tclshcan in the lower-right comer of the window.

106 ResEdit 2.1 Reference

(

(~ ..

Doc7ltle DraflNum

Chapter 7 The Programmatic Interface

You may want to create and edit your own types of resources. You can
write pickers and editors as extensions to ResEdit in Pascal or C, and put
them in the ResEdit Preferences fIle in your System Folder. This chapter
describes this process and discusses necessary and optional functions
and procedures.

S¥24190

107

Pickers and editors

Pickers and editors are separate from ResEdit's main code and hence may be supplied by
user-written software.

The picker is the part that displays aU the resources of yoUr type in the resource type window.
It is given the resource type and should display aU resources of that type in the current
resource me, using a suitable display format If the picker is given an open call and there is a
suitable editor, it should launch that editor. You need not supply your own picker; if a custom
picker is not available, the standard picker is used to show a list of your resources with their
names and IDs.

The editoris the code that displays and lets you edit a particular resource. The editor is given
a handle to the resource object and should open an edit window for you.

Note that pickers and editors can be opened from anywhere in ResEdit or in your code. For
instance, a dialog editor may open an icon picker so that you can choose an appropriate icon.

Code-containing resources in the ResEdit release

ResEdit includes three different types of resources that contain code. Much of the code is in
the'normal'COOE' resources. The editors and pickers are found in the 'RSSC' resources, and
the IDEF (or list defmition) procedures are found in the 'LDEF resources. The resource
names of the pickers and editors are very important. The resource name of the 'RSSC'
resource for a picker should be the resource type that the picker will pick. The resource name
for an editor should be the resource type that the editor will edit, with a commercial "at" sign
(@) in front of it Subeditors (described in the section "Launching routines" later in this
chapter) should have a dollar sign ($) in front of the resource type name. For example, the
'om' picker can be found in an 'RSSC' resource with the name om. The 'om' editor can be
found in an 'RSSC' resource with the name @om, and the 'om' subeditor in an 'RSSC'
resource with the name $Om.

108 ResEdit 2.1 Reference

\". ,/

(Samples

A sample resource editor, picker, and LOEF are included with ResEdit The samples are
provided in both C and Pascal and use the MPW 3.1 environment, the MPW C or Pascal
Compiler, and the MPW Assembler. The appropriate build files and makefiles are
also provided.

Sample editor

A sample ResEdit editor is provided in the file XXXXEdit In this sample, XXXX represents
your resource type. The sample editor will simply display a window and invert its contents.
Since the details of editing your resource are known only to you, it is up to you to fill in the
code necessary to make this sample into a real editor.

The sample editor is initialized by means of the Edi tBirth procedure when a resource of
type XXXX must be edited. EditBirth is passed two handles: a handle to the resource to
be edited (the same handle that would be received by using a GetResource call) and a
handle back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate. Because
it may be loaded in and out of memory during any given session and because it doesn't have
access to global variables, it creates a handle to a data structure to hold all data that needs to
be preserved between calls. It stores the handle in the edit data structure rXXXXRec. Note
that the handle to the edit data structure is stored in the window's ref Con parameter.
ResEdit uses this data structure to identify which editor or picker is to receive a given event.

ResEdit detennines which editor should receive which events, so you need to worry only
about events that affect your editor. During an update event, the BeqinUpdate and
EndUpdate calls are done by ResEdit, not by the extension program.

Sample picker

A sample ResEdit picker is provided in the file ICON. Pick. The sample picker is the actual
'ICON' picker from ResEdit. The 'ICON' LOEF (in the file ICON.IDEF) is included with this
example so that you can see the interaction between a picker and its IDEF.

Chapter 7 The Programmatic Intetface 109

SampleLDEF

A sample ResEdit LDEF is provided in the file ICON.LDEF. An LDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For rmre
information, see Inside Macintosh, Volume IV, Chapter 30, and Technical Introduction to the
Macintosh Family, Chapter 3. In ResEdit, LDEFs are used to customize the look of the picker
windows. LDEFs are generally vesy simple procedures that draw or highlight a single cell of a
list The sample LDEF is the 'ICON' LDEF from ResEdit 11lis LDEF is used to display a
ftle's Icons.

Building the examples

You can bulld the examples by using the build scripts provided in the folder appropriate to
the language that you are using. The build scripts assume that ResEdit and the Examples
folder will be found in the directosy {boodResEdit:. If these ftles are located elsewhere, the
bOOd script ftles should be modified accordingly.

If ResEdit is successfully located, the MakeFile instructions will install the editor, picker, and
LDEFs directly into ResEdit When you experiment with changing any of these ftles, you may
want to build into a copy of ResEdit If anything goes wrong, you can then get a fresh copy of
ResEdit to continue your experiments.

Using ResEd

The program you write must be a Pascal unit or C header ftle and library. Its interface with
ResEdit is established by the MPW unit ResEd, contained in the ftle ResEd.p or ResEd.h. If
your unit is written in PASCAL, it nrust begin with a USES declaration for this unit.

The assembly-language code that "opens up" ResEdit and activates your program is contained
in the file RSSC.a. It nrust be linked with your Pascal or C module. When you open a resource
of your type, ResEdit will call this code.

If your bulld script does not automatically install your editor or picker, place it in ResEdit's file
by using ResEdit itself, with the type 'RSSC' and a unique ID number. Please use an ID
number greater than 10,000 to avoid future conflicts. Your editor's name in the ResEditftle
must be of the form @ABCD, where ABCD is the name you have assigned to the new type it
edits. Install your picker (also of type 'RSSC') with the name ABeD (without the commercial
"at" sign).

110 ResEdit 2.1 Reference

(

f ,

(' .. "

. "

Writing a ResEdit extension

Here are two things to remember when writing a ResEdit extension:

• Always know which resource you are requesting and where it will come from. Many
resource files may be open at any given time. Whenever a resource is needed, make sure
which resource file you are accessing by using UseResFile or similar operations.

• Your editor may be called with an empty handle in oroer to create an entirely new
instance of the type you edit

In all of these procedures, remember to lock any handle that is going to be dereferenced (for
example, in a Pascal with statement). For example, in Pascal, the fust instructions in the
DoEvent procedure should be

BubbleUp(Handle(object»;
HLock(Handle(object»;

It is important to caU the BubbleUp procedure to avoid heap fragmentation. Remember to
unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially Edi tBirth,
DoEvent, and DoMenu, caU

SetPort (objectAA.wind)

if you are writing in Pascal, or
SetPort «*object)->wind)

if you are writing in C.

Chapter 7 The Programmatic Interrace 111

ResEdit 2.0 changes

Here's what you have to do to upgrade an editor to ResEdit 2.0:

• Change the name field c:i your parent record from STR64 to STR255.

• Add AbleMenu for the Resource menu on activate:

AbleMenu (rsrcMenu, rsrcEditor);

• Change AbleMenu for the File menu to
AbleMenu (fileMenu, fileAll);

• Add Print Item to the DoMenu procedure:

print Item:
PrintWindow (NIL);

• In DoMenu, change Revert Item to rsrcRevertItemand GetInfoItem to
rsrcGetInfoItem. Move them from the File menu to the Resource menu.

• Add the IsThisYours function and be sure to make it public. See the example code
for details.

• EditorWindSetup now requires a windowKind parameter and a dloqID
parameter; windowKind should be the resource ID of the editor or picker (returned by
ResEdID), and dloqID should be NoDialog or the resource ID of a dialog to be used for
the window.

• WindOr iqin now takes a P arentHandle parameter and requires that the
windowKind field of the argument window be set to the resource ID of the editor.

ResEd changes for the 2.0 release

• P ickRec was changed to remove some unused fields and add other fields for the
View menu.

• P arentRec was changed to include an SfR255 instead of STR64.

• Menu and string constants were changed.

Several procedures have Interface changesj these are the new interfaces:

FUNCTION EditorWindSetup (dloqID: INTEGER; color: BOOLEAN; width,
height: INTEGER; VAR windowTitle, windowName: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; father: ParentHandle): WindowPtr;

PROCEDURE WindOrigin (w: WindowPtr; dad: ParentHandle);

112 ResEdit 2.1 Reference

PROCEDURE PickMenu (tossOnClose: BOOLEAN; menu, item: INTEGER;

pick: PickHandle);

Chapter 7 The Programmatic Interrace 113

The following routines are no longer available:
CWindSetup
WindSetup
RevertResource
pickStdRows
CallEBirth
CallEvent
CallMenu
CallPBirth
CopyRes
DOKeyScan
DoListEvt

Required routines

Each picker and editor must contain a set of required procedures. Some of these procedures
are appropriate only for editors, and others are appropriate only for pickers, but all of them
must appear in all editors and pickers.

EditBirth
PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle):

This procedure should initialize the editor data structure and create an editor window for the
given resource type. In a picker, this procedure will do nothing and should be
defined as

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle):
BEGIN
END;

PlckBitth
PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

This procedure should initialize the picker data structure and create a picker window for the
given type. PickBirth is very similar to EditBirth except that it takes a resource type as
a parameter instead of a resource handle. The DoPickBirth procedure can usually be used
to take care of most initialization for a picker. In an editor, this procedure will do nothing and
should be dermed as

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);
BEGIN
END;

114 ResEdit 2.1 Reference

DoEvent

PROCEDURE DoEvent(VAR evt: EventRecord; object: ParentHandle);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

Editors will normally handle all of the events (except those described in the next paragraph)
themselves, whereas pickers should simply call P ickEvent.

Many events are handled by the min part of the ResEdit code before the DoEvent
procedure is called. For mouse-down events, ResEdit handles the following events: pulling
down menus, dragging windows, Switching between windows, and converting doubleclicks
to open commands. Update events call BeqinUpdate and EndUpdate around the call to
DoEvent. For key-down events, the DoMenu procedure is called if the Command key was
down (unless the key was Return, Enter, or an arrow), DoEvent is called otherwise.
MultiFinder suspend and resume events are converted into the appropriate activate or
deactivate events.

DoInfoUpdate

PROCEDURE DolnfoUpdate(oldID, newID: INTEGER; object: ParentHandle);

This procedure is called when inforrmtion about a resouoce-for example, its ID number-is
changed in a Get Info window. (See the Show Info procedure, discussed later in this chapter
in the section KMiscellaneous utilities.") For editors, the DoInfoUpdate procedure should
recalculate the window title and the name stored in the ParentHandle and pass the update
on to its father by using the CallInfoUpdate procedure as follows:

CallInfoUpdate(oldID, newID, objectAA.fatherAA.windA.refCon,
objectAA.fatherAA.windA.windowKind);

Pickers should simply call
PickInfoUp (oldID, newID, object);

DoMenu

PROCEDURE DoMenu(menu, item: INTEGER; object: ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

Chapter 7 The Programmatic Interrace 115

The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need to
know anything about desk accessories. All commands in the Ftle menu are also handled for
you. The Quit command displays the Save Changes dialog box and may pass a Close
command to all editors and pickers. If your editor needs to do some cleaning up before the
Quit command completes, it should do so when it receives a Close or deactivate command. If
ano• is chosen in the Save File dialog box, the frontmost window receives a deactivate event
No events are passed to any other window. When your editor receives a Close command, it
can call CloseNoSave to see whether edit checking should be perfonned. If the current fIle
is being closed but the changes are not being saved, CloseNoSave will return TRUE, and
edit checking should not be performed.

Pickers can simply call
PickMenu (tossOnClose, menu, item, object);

If your picker has loaded all of the resources, it should call P ickMenu with tossOnClose
set to TRUE so the resources are released when a Close command is received.

Using custom IDEFs

You will typically want to write your own picker Simply to display the resource list in a more
meaningful way (such as dJawing the icons thermelves in the 'ICON' picker, instead of listing
their names). You can easily accomplish this task by providing a simple picker and a custom
IDEF that is used for dJawing the picker list When you call OoP ickBirth in your
PickBirth procedure, pass the resource 10 of your picker as the PickerResIO parameter.
You can get the resource 10 by calling ResEdIO. The resource ID is passed on to the LNew
procedure. You should then provide a custom IDEF with the same resource 10. The LDEF will
be called whenever the list needs to be updated. Please refer to the chapter on the List
Manager in Inside Macintosh, Volume IV, for details of the workings of the
drawProc mechanism.

In roost cases, the DrawLDEF procedure takes care of most of the tasks required of an LDEF.
All you have to do is provide a procedure to dJaw your resource type.

116 ResEdit 2.1 Reference

(The ResEd interface

The ResEd unit contains data structures, procedures, and functions that you can access from
your extension program They are described in the remainder of this chapter.

Data structures

The ResEd unit declares the data structures described in this section, which provide
colIlJIllnication between extension programs and ResEdit. Each editor or picker has its own
object handle. The data structure has to start with a handle to its parent's objec~ followed by
the naIre distinguishing the father. This name will be part of the son's window tide. The next
field should be the window of the object that may be used by the son to get back to the father
through the ref Con in the windowRec record. The next field is the rebuild flag, which is
used to indicate that a window's data (for example, a picker's list) must be recalculated at the
next opportunity. For editors, the rest of the handle can have any format; pickers have
additional data, as described in this chapter. Editors and pickers typically declare additional
fields following the rebuild field, and can store in these additional fields global data that they
need to access from the DoEvent, DolnfoUpdate, and DoMenu procedures.

The naIre (in the parentRecord) for a picker should be the naIre of the file, folder, or
disk. For editors, the name should be the complete naIre (not the window's tide), preceded
by an editorNameChr character. An example of a complete name would be"ALRT 10· -
1234 from AFilelt• This name is used to uniquely identify a window. The window's tide is
created by GetWindowTitle or EditorWindSetup, described later in this chapter.

• Note: It is important for editors and pickers to follow these conventions for name and
window tide. For pickers, it is more important that the window's tide be unique, and for
editors, that the name be unique. The AlreadyOpen procedure uses the window's
name and tide to determine whether the window is open. Please refer to the description
of AlreadyOpen later in this chapter in the section "Wmdow manageIrent routineslt for
complete information about how the name and tide are used.

Chapter 7 The Programmatic Interrace 117

The parent record
ParentPtr - AParentRec;
ParentHandle - AParentPtr;
ParentRec - RECORD

father: ParentHandle;
name: Str255;

{ Back ptr to dad }

wind: WindowPeek;
rebuild: BOOLEAN; Flaq set by son to indicate that }

world has chanqed so father should
rebuild list }

END;

The picker record

The record for pickers is slightly different from the standard parent record. The first four fields
are the same as those in the parent record The rest of the fields are specific to pickers.

PickPtr - APickRec;
PickHandle - APickPtr;
ViewTypes - (viewByld, viewByName, viewBySize,

viewByOrder, viewBySpecial);
PickRec - RECORD

father:
fName:
wind:
rebuild:

pickID:
rType:
rNum:
rSize:
nlnsts:
instances:
drawProc:
scroll:
viewBy:
ldefType:
theViewMenu:
showAttributes:
viewMenuMask:
cellSize:

END;

118 ResEdit 2.1 Reference

ParentHandle;
STR255;
WindowPtr;
BOOLEAN;

INTEGER;
ResType;
INTEGER;
LONGINT;
INTEGER;
ListHandlei
Ptr;
ControlHandle;
ViewTypes;
ResTypei
MenuHandle;
BOOLEAN;
LONGINT;
Cell;

Back ptr to dad }

Directory window }
Flaq set by son to
indicate that father
should rebuild list
ID of this picker

{ Type for picker }
{ Resfile number }
{ Size of a null resource
{ Number of instances }

List of instances
List draw proc }
Scroll bar }
Current view type
Which LDEF to use
The picker view menu
Show attrs in window? }
Which items are enabled?
Cell size for special view.

(

Other routines

The required routines are called by ResEdit itself. Here are otheIS you can use. These are
called by the editor or picker.

launching routines

PROCEDURE GiveEBirth (resHandle: Handle; pick: PickHandle);

GiveEBirth starts an editor. This routine is used when a picker wants to start an editor or
when an editor wants to start another editor (as when the 'OLOG' editor starts the 'om'
editor). If Open Using Template was chosen or an editor is not found, the 'GNRL' (template)
editor is started. If Open Using Hex Editor is chosen or neither an editor nor a template is
found, the hexadecimal editor is started. A call to the appropriate editor's EditBirth
procedure is then generated, as follows:

EditBirth (resHandle, pick)

In this call, ResHandle is the handle of the resource that is to be edited, and pick is the
caller's ParentHandle.

• Note: When an editor is starting another editor, it is important to remember that
pick"'''' • rType and pick"'''' • rNum must be set before this routine is called. The
editor's ParentRecord will need to be equivalent to a PickRec, at least down to the
rNum field. The Gi veEBirth procedure looks into the P ickHandle parameter for
information (for example, the resource type) that it needs to start up an editor.

PROCEDURE GiveThisEBirth (resHandle: Handle; pick: PickHandle;
openThisType:ResType);

Gi veThisEBirth is similar to Gi veEBirth, except that it lets the caller specify the type
of editor to open. The specified editor is opened even if Open Using Template or Open Using
Hex Editor is chosen. If an editor of the specified type is not found, a template of the specified
type is opened. If a template is not found, the hexadecimal editor is opened.

Chapter 7 The Programmatic Interrace 119

PROCEDURE GiveSubEBirth (resHandle: Handle; pick: PickHandle):

Gi veSubEBirth starts an editor that edits a part of another type of resoun::e. For example,
the 'om' editor uses Gi veSubEBirth to start the Oialog Item Editor. Gi veSubEBirth
behaves exactly Uke Gi veEBirth except that the name of the resource that it looks for
begins with a dollar sign ($) instead of a conunen::ial-at" sign (@). For example, the name of
the 'om' editor resource is @om and the name of the 'om' subeditor resoun::e is $OITL.
This distinction allows an editor to use the standard method for editing multiple occurrences
of a subtype within the resoun::e. For example, a dialog item list ('om') typically contains
several dialog items. Calling Gi veSubEBirth lets the user open multiple dialog items and
treat them in the same way as any other windows.

information-passing routines

PROCEDURE CallInfoUpdate (oldID, newID: INTEGER:
refcon: LONGINT: id: INTEGER);

CallInfoUpdate passes an information update command to the specified window. After
updating its own window and data structures, each editor's DoInfoUpdate procedure
should call this routine to pass the information update along to its parent window. This call is
necessary since the parent may be displaying data (such as the ID or name in a picker
window) that has been changed. An editor could pass this information along by making the
following call:

CallInfoUpdate (oldid, newid, fatherAA.windA.refcon,
fatherAA.windA.windowkind);

PROCEDURE PassMenu (menu, item: INTEGER; father:
ParentHandle) ;

PassMenu passes menu commands on to any son pickers or editors that you have started.
For example, when your editor receives a Close command, it should pass that command
along to any subeditors or information windows that it has opened by making the following
call:

PassMenu (fileMenu, closeItem, myObj)

WIndow management routines

FUNCTION AlreadyOpen (VAR windowTitle, windowName: STR255;
dad: ParentHandle): BOOLEAN; .

AlreadyOpen looks to see if the window is already open. If the window is open,
AlreadyOpen activates it and returns TRUE. windowT it Ie and windowName are as
defmed in the note immediately below. You don't need to call this function if you are using
the PickerWindSetup or EditorWindSetup procedure.

120 ResEdit 2.1 Reference

• Note: You should call AlreadyOpen, to avoid opening the same resource twice.
AlreadyOpen depends on your setting windowTitle and windowName correctly.
For pickers, the window's title must uniquely identify the window. For editors, the name
stored in the parentRec data structure must uniquely identify the window. The name is
used for editors so that the window title can be simple and short. For example, the
window title fora dialog item might be Edit DITL item #3, whereas its name would
beEdit DITL item #3 • DITL "<resource name>" id - <num> from
<file name>.

PROCEDURE GrowMyWindow (minWidth, minHeight: INTEGER:
windPtr: Windowptr: Ih: ListHandle);

This procedure is used by pickers to grow their windows. The minWidth and minHeight
parameters detennine the minimum size of the window; windPtr is the window to be
grown; Ih is the list that is in the window.

The GrowMyWindow procedure takes care of everything that is necessary to grow a picker's
window. If necessary, the list is resized and redrawn. Two-dimensional lists (such as those
used by the icon picker) are updated to fit as many cells as possible in the window without
requiring horizontal scrolling.

PROCEDURE GetWindowTitle (VAR windowTitle, windowName: STR2SS;
addFrom: BOOLEAN; dad: ParentHandle);

Get WindowT i t Ie constructs the window title and name for an editor. This routine should
always be called in the DolnfoUpdate procedure, and should be called in the EditBirth
procedure if Edi torWindSet up is not called. windowT i tIe should be used for the
window's title. AddF rom determines whether or not the name of the file is added to the title.
WindowName should be saved in the name field of the editor's data structure. This name is
used later to identify the window uniquely. On input, windowTitle should contain only
the title or the resource (for example, 'ALRT'), and windowName should contain the resource
type (for example, 'ALRT'). If Edi torWindSet up is not used, the following code fragment
can. be used to assure that the name and title are correct:

GetResInfo(myResource, theID, theType, windowTitle);
TypeToString (theType, windowTitle);
SetETitle(myResource, windowTitle);
windowName :- windowTitle;
GetWindowtitle (windowTitle, windowName, TRUE, parent);

PROCEDURE SetETitle (resHandle: Handle; VAR title: STR2SS);
Extended Resource Manager

SetETitle concatenates the resource's ID with its name and places the result into title.
The res Handle paraxreter is the handle to the resource. You can use this routine when you
are constructing a window's name or title.

Chapter 7 The Programmatic Intetface 121

FUNCTION WindAlloc: WindowPtr;

WindAlloc returns a pointer to a window recoro to be used by your editor or picker. Using
this routine instead of allocating your own window pointer can help reduce heap
fragmentation. Because windows are pointers and must be nonrelocatable objects in the
heap, ResEdit uses this procedure to try to allocate windowPt r pointers as low in the heap
as possible. When this procedure is called, it usually returns a WindowPtr that it has
previously allocated low in the heap.

PROCEDURE WindReturn (w: WindowPtr);

WindReturn returns a window pointer that W3S allocated by WindAlloc. Use this
procedure when you terminate your editor or picker and you are fInished with its window.
WindRet urn makes the memory used by the window available to another picker or editor
for use as a new window. This helps keep the nonrelocatable window pointers as low in the
heap as possible.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER;
cSize: Point; drawProc:INTEGER): ListHandle;

WindList creates a new empty list and returns a handle to that list This procedure should
be used by pickers to allocate their lists. W:lndList calls the LNew procedure to allocate a
list w is the window in which the list will be created. nAcross specifIes the number of cells
across that the list should contain. The list is allocated with 0 rows. cSize is the cSize
parameter to LNew. drawProc is the P roc parameter to LNew. For more infonnation on
lists and a description of the LNew pararreters, see the chapter on the Ust Manager in Inside
Macintosh, Volume IV. Please refer to the section ·Using custom IDEFs," earlier in this
chapter, for infonnation on specifying custom draw procedures.

PROCEDURE WindOrigin (w: WindowPtr; dad:ParentHandle);

WindOrigin moves the window pointed to by w to the flfSt available position in the set of
offset poSitions; this is usually a position immediately below and to the right of the front
window. If w is a color window, the window is positioned on the deepest available display
device. This routine guarantees tha~ if possible, the entire window will be visible.
WindOrigin requires the windowkind fIeld of w be set to a ResEdit value (for example by a
call to ResEdId), and that the window size be set If you are USing the P ickerWindSet up
or EditorWindSetup procedure, you don't need to call this procedure.

FUNCTION PickerWindSetup(color: BOOLEAN; width,
height: INTEGER; VAR windowTitle: STR255;
windowKind: INTEGER; dad: ParentHandle): WindowPtr;

PickerWindSetup should be called by pickers from the PickBirth procedure. It is similar to the
EditorWindSetup procedure.

122 ResEdit 2.1 Reference

FUNCTION EditorWindSetup (dlogID: INTEGER; col9r: Boolean;
width, height: INTEGER; VAR windowTitle,
windowName: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; dad: ParentHandle): WindowPtr;

EditorWindSetup should be called by editors from the EditBirth procedure to set up
their windows. If the color pmmeter is TRUE, a color window is returned. C~lor windows
are positioned on the deepest available display. WindowTitle, windowName, and
addFromare passed directly to GetWindowTitle. Refer to the description of
GetWindowTitle for details about these parameters. WindowName is returned with the
string that should be used for the name in the ParentRecord. This routine also takes care
of constructing the windowTitle and windowName correctly so that the window can be
uniquely identified If dlogID is not set to noDialog, the width and height parameters should
be set to 0 if you want to use the size stored in the DLOG resource. Use the dlogID
parameter if you want your window to be a dialog; for nonnal windows, pass the constant
noDialog. The windowkind parameter is used to initialize the window. Pass the result of
a ResEdIdcall here.

• Note: NIL is retumed if the window can't be allocated for some reason or the window is
already allocated (that is, an editor is already open). If NIL is returned, the EditBirth
routine should be aborted.

Resource utDities

FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER;
s: str255): BOOLEAN;

AddNewRes has the same parameters and peIforms the same actions as the Madntosh
procedure AddResource. The only difference is that if an error is detected, an alert is
displayed and FAlSE is returned; TRUE is retumed otherwise.

FUNCTION BeautifulUniquelID (t: ResType): INTEGER;

This routine should be used instead of the toolbox procedure Unique1ID. It will return the
fll'St unused resource ID starting with ID 128.

FUNCTION CurrentRes: INTEGER;

CurrentRes returns the ID number of the current resource me. This routine is the same as
the CurResFile trap except that if CurResFile returns SysMap, this routine returns 0
(for the System me).

Chapter 7 The Programmatic Interface 123

A typical use of this routine is to save the current resource file so that it can be restored later.
For example:

savedResFile :- CurrentRes:
UseResFile(someOtherRes);

UseResFile{savedResFile);

FUNCTION Get 1 Index (t: ResType: index: INTEGER): Handle:

Get 1 Index is similar to the Get 1 IndResource trap. The only difference is that if the
resource is not found, this routine will set ResError to the resourceNotFound error and
return NIL.

FUNCTION GetlRes (t: ResType: id: INTEGER): Handle:

GetlRes is similar to the GetlResource trap. The only difference is that if the resource is
not found, this routine will set ResError to the resNotFound error and return NIL.

PROCEDURE GetlMapEntry (VAR theEntry: ResMapEntry;
t: ResType: id: INTEGER):

Get IMapEntry accesses the current resource map for a resource of type t and ID number
id, placing the result in theEntry. For a desCription of resource maps, see "Format of a
Resource File" in Inside Macintosh, Volume I, Chapter 5.

PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEntry;
t: ResType: index: INTEGER);

GetlIMapEntry is similar to GetlMapEntry, except that it refers to its resource by index
instead of by ID number.

FUNCTION NeedToRevert (my Window: windowPtr; theRes: Handle):
Boolean:

The NeedToRevert function should be called by all editors before they revert their
resource. If the editor'S window is the frontmost window and the resource has been changed,
an alert is displayed asking the user to verify that he or she really wants to revert the resource.
If the user does want to revert the resource, the function returns a value of TRUE. Otherwise it
returns a value of FALSE. The my Window parameter is a pointer to the editor'S window. The
theRes parameter is the handle of the resource that is to be reverted.

124 ResEdit 2.1 Reference

.(

(

FUNCTION NewRes (s: LONGINT; t: ResType; 1: ListHandle;
VAR n: INTEGER): Handle;

Given a size, s, NewRes allocates a new handle, dears it, adds it to the current resource me
as a resource of type t with a unique ID, adds it to the list 1 (unless 1 is NIL), and returns a
handle to the new resource. The parameter n is the item number in the list 1. If this function
fails, it returns a NIL handle.

FUNCTION ResEditGetlResource (theType: ResType; ID: INTEGER;
VAR wasLoaded: BOOLEAN; VAR error: INTEGER): Handle;

ResEditGetlResource should be used in place of the toolbox routine GetlResource.
It's equivalent to Get lResource except for the fact that it returns a was Loaded variable to
indicate whether the resource is already in use. If wasLoaded is returned TRUE, the caller
should NEVER free the resource with the ReleaseResource procedure.

PROCEDURE ResourceIDHasChanged (theObj: ParentHandle;
theType: ResType; theOldId, theNewId: INTEGER);

Call this procedure if you have changed the ID of a resource. If you change a resource ID and
don't call this routine, revert won't work properly.

FUNCTION RevertThisResource (theObj: ParentHandle;
res: Handle): BOOLEAN;

RevertThisResource restores a resource being edited to the state it was in before editing
started. The parameter res is a handle to the resource. The parameter theObj is the
ParentHandle from the current window. It is needed to determine whether the resource
was newly added. The RevertThisResource function returns a value of FALSE if the
resource was newly added by Res&iit (and, therefore, no longer exists after the reversion),
and TRUE otherwise. If the resource has not been changed (its resChanged flag is not set),
nothing is done.

PROCEDURE RemoveResource (theRes: Handle);

This procedure should always be used in place of the toolbox call RmveResource. It
correctly handles resources that have the protected attribute set, by unprotecting them before
rerooving them. The function of this routine is otherwise the same as that of the
RmveResource toolbox procedure.

FUNCTION SysResFile: INTEGER;

This function returns the resource me ID of the System me. It is often necessary to take special
precautions when accessing the System me. This function allows you to take these
precautions without hard-coding a value for the system resource me ID, which may change in
the future.

Chapter 7 The Programmatic Interface 125

MJsce11aneous utilities

PROCEDURE Abort:

Abort sets the abort flag, which will stop any command that is in progress. The most
comroon use of this command is in stopping the Quit command. For example, if an error is
detected in a template when its window is being closed, the template editor calls Abort SO
that processing of the Quit command will stop and the error can be corrected.

FUNCTION WasAborted: BOOLEAN:

WasAborted returns the state of the aborted flag (set by the Abort procedure just
described). This function is usefu~ for example, if you have just called PassMenu with a
Close command and you want to know if any of the windows that were closed encountered
a problem

PROCEDURE AbleMenu (menu: INTEGER: enable: LONGINT):

AbleMenu enables or disables menu items. Ablemenu differs from the Resource Manager
routines Enable Item and Disable Item in that it acts on the entire menu. The parameter
menu is a menu IDj enable is a mask. Values used for the mask can be found in the
ResEdfile.

PROCEDURE BubbleUp (h: Handle);

BubbleUp sets up the correct heap zone and then performs the Memory Manager routine
MoveHHI. For information about MoveHHi, see Inside Macintosh, Volume II, Chapter 1.
This routine should always be called, to avoid heap fragmentation, before the Madntosh
procedure HLock is called for any handle. Remember to unlock any handle that you lock!

FUNCTION BuildType (t: ResType; 1: ListHandle): INTEGER:

Given a list that has been initialized with no rows, BuildType builds a list of all resources of
type t from the current resource file. (See the WindList routine described earlier in this
chapter.) If SetResLoad (FALSE) has not been called, all of the resources will be loaded
into memory. BuildType returns a count of the number of instances that it adds to the list.

A picker that doesn't use P ickerWindSetup can set up its window with this sequence:
myList := WindList(myWindow, myListWidth, myCellSize, ResEdid);
LDoDraw(FALSE, myList): {draw it later}
Nlnsts := BuildType(myType, myList);
LSetSelect(TRUE, Cell(O), myList); {automatically select first cell}
LDoDraw(TRUE, myList); {ok to draw it next time}

126 ResEdit 2.1 Reference

(

(

PROCEDURE CenterDialog (theType: ResType; dialog: INTEGER);

This procedure centefS dialogs or alerts on the same screen as the current port, which is
assumed to be a window. If the dialog is in color, it is centered on the screen with the most
colofS on which any portion of the current port appealS. Res Type can be 'DLOG' or 'ALRT;
dialog is the resource ID of the dialog or alert. The 'DLOG' or 'ALRT' resource is loaded
into meroory and its boundsRect is centered. When you use the dialog or alert (for example,
in GetNewDialog) the resource will be found in memory with the correct boundsRect.

FUNCTION CheckError (err, msgID: INTEGER): BOOLEAN;

CheckError displays an error alert if err is nonzero. This routine has built-in alert
messages for several errofS (such as disk write-protected, out of meroory, and so on). If
msgId is negative, a fatal error message is retrieved from the 'STR#' resource with ID of 128.
This resource is preloaded into meroory, and may be accessible even if a serious error has
occurred. If msgID is nonnegative, an error message from the 'STR#' resource with ID of 129
is displayed. If the error is not one that is built in, the string with an ID of msgID is displayed
in the alert. TRUE is returned if err was zero, FALSE otherwise. When adding a new string
for use by CheckError, be sure to add it to the end of the existing list in the
'sm#' resource.

FUNCTION CloseNoSave: BOOLEAN;

CloseNoSa ve returns a Boolean value that indicates whether data checking should be
performed before closing. A return value of TRUE indicates that checking should not be
performed. For example, if the user is editing a template and there are errors in the template
when the Quit command is chosen, the template editor should not perform edit checking if
"no" was clicked in the Save Changes dialog box.

FUNCTION ColorAvailable (needColorQD: BOOLEAN): BOOLEAN;

ColorAvailable returns TRUE if color QuickDraw is available. If the needColorQD
parameter is TRUE, an alert is displayed if color QuickDraw is not available.

PROCEDURE ConcatStr (VAR strl: STR255; str2: STR255);

ConcatStr concatenates str2 to strl,leaving the result in strl.

~ Warning This routine does not check for aggregate string lengths in excess of 255
characters. Please be carefull ..

Chapter 7 The Programmatic Interface 127

FUNCTION OefaultListCellSize:INTEGER:

Oefaul tListCellSize returns the height of a list cell with the application font (ascent +
descent + leading). This function should be used by picketS that display resources as text
strin~ when setting up their window.

FUNCTION OisplayAlert (which: AlertType; id: INTEGER):
INTEGER;

OisplayAlert displays an alert with the given id. This routine assures that the alert
resource is loaded from ResEdit and that the culSOr is reset to an arrow. The which
parameter determines the kind of alert that is displayed.

AlertType - (displayTheAlert, displayStopAlert, displayNoteAlert,
displayCautionAlert);

FUNCTION OisplaySTRAlert(which: AlertType; STRName: STR255:
STRIndex: INTEGER): BOOLEAN:

This procedure is similar to OisplayAlert except that a standard alert box is used and the
text is retrieved from a 'STR#' resource. If you want to display an alert, just create a 'STR#'
resource in ResEdit and call this routine with the 'STR#' resource name and the index in the
string list of the string to be used. Whenever possible, this routine should be used instead of
OisplayAlert.

FUNCTION OoPickBirth(color: BOOLEAN: buildList: BOOLEAN;
wWidth, wHeiqht, columns: INTEGER; pickerResId: INTEGER:
pick: pickHandle): BOOLEAN:

OoPickBirth takes care of just about everything needed to initialize a picker. If
buildList is TRUE, the list of all of the resources will be created. Pick is the handle to a
partially initialized P ickHandle. The fields that should be initialized before this procedure
is called are: father, rType, viewBy, cellSize, and ldefType. The example picker
shows how these fields should be initialized.

PROCEOURE OrawLOEF (messaqe: INTEGER; lSelect: BOOLEAN:
lRect: Rect; theRes: Handle: id: INTEGER:
title: STR255: maxH, maxV: INTEGER:
OrawResource: ProcPtr: lh: ListHandle):

OrawLOEF is a general purpose drawing routine for graphical LDEFs like 'ICON', 'den', and
so on. It should be called from an LDEF that is used by a picker. If title is an empty string,
id is converted to a string and used as the tide. The dra wP roc is of the fonn: PROCEOURE
OrawResource (lRect: Re¢t: theRes: Handle).
Use of this procedure is shown in the example picker LDEF.

128 ResEdit 2.1 Reference

(PROCEDURE DrawMBarLater (forceItNow: BOOLEAN);

DrawMBarLater should be used instead of the toolbox DrawMenuBar procedure. It will
collect updates to the menubar but actually draw the menubar only when no other events are
pending. Using this procedure avoids flashing the menubar as menus are added and
rermved. If forceItNow is TRUE, the menubar is drawn immediately and any pending
updates are cleared

FUNCTION FindOwnerWindow (theRes: Handle): WindowPeek;

FindOwnerWindow checks aU of ResEdit's windows to see if an editor is open for the
specifIed resource. If you're writing an editor that uses a resource that may be in use by
another editor (for example, two 'OLOG' resources may share the saine 'Om'), call
FindOwnerWindow to detennine whether the resource should be released.

PROCEDURE FixHand (s: LONGINT; h: Handle);

FixHand makes sure that the object to which h is a handle is s bytes long. If it is longer,
F ixHand shrinks it; if it's shorter, F ixHand expands it and fills the extension with zeros.

PROCEDURE GetNamedStr(index: INTEGER; name: STR255;
VAR str: STR255);

GetNamedStr returns in str the indexth string in the 'STR#' resource named name. All
strin~ should be stored in either 'STR#' or 'STR ' resources to maintain the international
localizability of ResEdil

PROCEDURE GetStr (num, list: INTEGER; VAR str: STR255);

GetStr returns, in str, string number num from ResEdit's 'SI'R#' resource with 10 of list.
All strings should be stored in either 'SI'R#' or 'STR ' resources to maintain the international
localizability of ResEdil

PROCEDURE FlashDialoqItem (dp: DialoqPtr; item: inteqer);

FlashDialoqItemflashes (inverts) a dialog button for 8 ticks to indicate that the button
was selected This procedure should be called from a dialog's fdter procedure.

PROCEDURE FrameDialoqItem (dp: DialoqPtr; item: inteqer);

FrameD ia log-Item draws a frame around a dialog button to indicate that it is the default
button (the button that will be selected when either the Return or the Enter key is pressed).
This procedure should be called when an update event is received by a dialog's
fdter procedure.

Chapter 7 The Programmatic Interface 129

FUNCTION GetQuickDrawVars: pQuickDrawVars;

This function returns a pointer to the QuickDraw variables that are normally available to
Macintosh progranuners. Because of the way that pickers and editors are implemented, they
do not normally have access to these variables. The following types are used with
this function:

pQuickDrawVars - AQuickDrawVars;
QuickDrawVArs - RECORD

randSeed: LONGINT;
screenBits: BitMap;
arrow: Cursor;
dkGray: Pattern;
ltGray: Pattern;
qray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END: { QuickDrawVars

FUNCTION HandleCheck (h: Handle; msqID: INTEGER): BOOLEAN;

HandleCheck checks to see if the handle h is NIL or empty. If it is either, HandleCheck
returns FAlSE and displays an error alert, using string msqIO from ResEdit's 'STR#' resource
ID 129. If the handle id is OK, HandleCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN):

MetaKeys returns the values of the modifier keys from the last event. Some menu
commands that have shortcut key combinations simulate the shortcut modifier keys when the
menu command is selected. For example, when Open Using Template is selected,
MetaKeys indicates that the Command and Option modifier keys were pressed. Because of
these transfonnations, MetaKeys should always be used to get the modifier values.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: PickHandle):

P ickEvent handles an event contained in evt for a standard picker referenced by pick.
P ickEvent should be called from your picker's DoEvent procedure. It is usually sufficient
to call only this routine from DoEvent, with no other special processing at all.

PROCEDURE PickInfoUp (oldID, newID: INTEGER:
pick: PickHandle);

P icklnfoUp handles the update necessary when a resource's ID is changed in the Get Info
window. PickInfoUp should be called from your picker's DoInfoUpdate procedure. It is
usually sufficient to call only this routine from DoInfoUpdate, with no other special
processing at all.

130 Res Edit 2.1 Reference

PROCEDURE PickMenu (tossOnClose: Boolean; menu, item: INTEGER;
pick: PickHandle);

P ickMenu handles menu commands for a standard picker referenced by pick. P ickMenu
should be called from your picker's DoMenu procedure. This routine handles all of the
standard menu commands. If tossOnClose is TRUE, all of the resources displayed by the
picker are released when it receives a Close command. It is usually sufficient to call only this
routine from DoMenu.

FUNCTION pickStdWidth: INTEGER;

This function returns the width in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified width is
guaranteed to fit on the screen.

FUNCTION PickStdHeiqht: INTEGER;

This function returns the height in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified height is
guaranteed to fit on the screen. P ickStdHeiqht replaces the old
PickStdRowsprocedure.

FUNCTION PrintSetup: Handle;

Use PrintSetup if you are doing your own printing instead of using PrintWindow.
Return type is actually TIIPrint. The following code can be used to set up your own
printing loop:

myPrintHandle :- PrintSetup;
IF myPrintHandle <> NIL THEN

BEGIN
PrOpen;
IF PrError - noErr THEN

BEGIN
IF PrJobDialoq(myPrintHandle) THEN

BEGIN
printinqPort :- PrOpenDoc(myPrintHandle, NIL, NIL);
IF PrError - noErr THEN

BEGIN
{do the usual printing loop here (see TechNote *161)
{Warning: be careful NOT to chanqe the current resfile
{ or the printing manager will fail

PrCloseDoc(printingPort);
END;

Chapter 7 The Programmatic Interface 131

END;
PrClose;
END;

END;

PROCEDURE PrintWindow (toPrint: ·PicHandle);

PrintWindow does just that. If you pass it NIL, it will print an image of the current window.
If you pass it a PicHand1e, it will print the picture.

FUNCTION ResEdID: INTEGER;

ResEdID returns the resource ID of the calling picker or editor. For editors, this value should
be saved in the windowKind field of the editor's window. For pickers, this value should be
saved in the P ickId field of the picker's P ickRec as well as in the windowKind field of
the window.

PROCEDURE SetResChanqed (h: Handle);

SetResChanqed sets the resChanqed attribute for the specified resource and also sets
the mapChanqed attribute for the resource fIle that contains the resource. SetResChanqed
should be called whenever a resource is changed

PROCEDURE SendRebuildTopickerAndFile (theType: ResType;
parent: ParentHandle);

This procedure sends a rebuild (sets the rebuild flag in the window's parentRecord) to all
open picker windows of the specified type. A rebuild is also sent to the me picker in case a
new resource type is being added This routine is useful if an editor creates a resource of
another type. This routine should be called to make sure that the resource picker and the me
picker are updated to reflect the addition of the new resource. For example, this routine is
called from the 'ALRT', 'OLOG', and 'om' editors.

132 ResEdit 2.1 Reference

(
PROCEDURE SendRebuildToPicker (theType: ResType;

parent: ParentHandle);

This procedure is similar to SendRebuildToP icke rAndF i le except that it doesn't send
the rebuild on to the file (what a surpriseO.

PROCEDURE SetTheCursor (whichCursor: INTEGER);

Set TheCursor changes the cuoor to the specified cuoor resource. The constant
arrowCursor defined in the ResEd me should be used to set the cursor to the arrow. This
routine makes sure that the resource me is set to ResEdit before loading the cursor, so that the
cuoor will be loaded from either ResEdit or the System me. The most common use of this
routine is to set the cursor to a watch (watchCursor) while something is being done that
may take a while.

PROCEDURE ShowInfo (h:Handle; dad: ParentHandle);

ShowInfo puts up a Get Info window for the resource referenced by h that belongs to the
father object referenced by dad Show Info should be called by your editor when Get Info is
selected from the File menu.

PROCEDURE TypeToString (t: ResType; VAR s: Str255);

TypeToString returns a string consisting of the four chatacters that make up
the ResType t.

PROCEDURE UseAppRes;

The UseAppRes procedure sets the current resource file to be the ResEdit Preferences file.
This is necessary if you need to get a resource from ResEdi~ such as a menu, string, alert, or
dialog box. Be sure to restore the original resource me when you are done with ResEdit's
resource me. For example:

SavedResFile :- CurrentRes;
UseAppRes;

UseResFile(SavedResFile);

Chapter 7 The Progtammatic Interface 133

FUNCTION Was ItLoaded: BOOLEAN;

WasItLoadedShouJd be calJed by evety editor in the EditBirth procedure. The return
value should be saved in the ParentRec data structure. When a Close command is received,
the resource being edited should be released only if Was ItLoaded returned FALSE. A return
value of TRUE means the teSOwte may already be in use by ResEdit or the System and
therefore shouldn't be released.

PROCEDURE WritePreferences (prefType: ResType;
prefId: INTEGER; prefName: STR255; prefHandle: Handle);

You can use WritePreferences to add your own preference resource to the ResEdit
preferences me. P ref Type is the resource type that you have chosen for your preference
resource. PrefId and prefName are the ID and name for the resource. PrefHandle is a
handle to the preference data itself. To read your preferences you can use this code:

myPrefs:- GetlNamedResource(prefType, prefName);

Internal routines

The following routines are used internally within ResEdit and may be useful in
other circumstances.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle):
Handle;

DupP ick is called from P ickMenu and should nonnally not need to be called from any
other procedures.

PROCEDURE GetErrorText (error: INTEGER; VAR errorText:
STR255);

GetErrorText will return an error string for the given error. If no specific error text is
found, an VO error is returned.

FUNCTION Get Type (templatesOnly: BOOLEAN; VAR s: STR255):
BOOLEAN;

Get Type displays a dialog box containing a list of the types of resources that can be edited.
The list contains all types for which there are templates. If templatesOnly is FALSE, the
list also contains all the types for which there are editors. The selected type is returned in s.

- TRUE is returned if a type was selected; FAlSE is returned otherwise.

PROCEDURE KillCache;

KillCache flushes all caches for all volumes (bitmap, control, and so on).

134 ResEdit 2.1 Reference

(

FUNCTION MapResourceType (editor: BOOLEAN; theRes: Handle;
origResType: ResType): ResType;

This function checks the 'RMAP' resources in ResEdit and the ResEdit preferences file to see if
the specified resource type should be treated as if it were a different type.

PROCEDURE MyCalcMask (srcPtr,dstPtr: Ptr; srcRow, dstRow,
height, words: INTEGER);

MyCalcMask calculates a mask for the given source bit image and puts it into the destination
bit image. The pararreters srcPtr and dstPtr reference the source and destination bit
images; srcRow, dstRow, height, and words define the area on which
MyCalcMask operates.

PROCEDURE NoDoubleClickHere;

Call this procedure in your mouse-down processing code if you don't want ResEdit to convert
a doubleclick at this location to an Open command. This should be used if a double-dick
makes sense only in part of your window.

FUNCTION PlaySyncSound(which: INTEGER; sndHandle: Handle):
BOOLEAN;

P la ySyncSound is used by the 'snd ' picker to play sounds.

FUNCTION ResEditRes: INTEGER;

The ResEditRes procedure returns the resource file ID of ResEdit This routine will rarely
be needed You can use this routine if you don't want to release a resource that you have
been editing, if the resource came from ResEdit

FUNCTION RestoreRemovedResources (pick: PickHandle): BOOLEAN;

This function reverts all resources of the type handled by the picker (Pick"" . rType). It
returns true if the list needs to be rebuilt

PROCEDURE ScrapCopy (VAR h: Handle);

ScrapCopy copies the handle h into the ResEdit scrap. A different handle will be returned.

PROCEDURE ScrapErnpty;

ScrapEmpty empties the ResEdit and desktop scrap.

Chapter 7 The Programmatic Interface 135

PROCEDURE ScrapPaste (pasteAll: BOOLEAN; typeToPaste: ResType;
resFile: INTEGER);

ScrapPaste pastes the resources from the ResEditscrap to the file identified by the ID
number resFile. If pasteAll is TRUE, all resources found in the scrnp are pasted. If
pasteAll is FAlSE, only resources oftype typeToPaste are pasted.

The next four routines implement the color palette pop-up menu used by
the 'MENU' editor.

PROCEDURE InstallColorPalettePopup(whichWindow: WindowPtr;
CQDishere, isActive: Boolean);

InstallColorPalettePopup sets up a palette for the window containing the system
colors for the deepest available device. Call this procedure immediately after opening your
window and whenever you receive an update event. whichWindow is the window
containing the pop-up menu, CQDishere is TRUE when Color QuickDrnw is available, and
isActi ve is TRUE when the window is the frontroost one.

PROCEDURE DrawColorPopup(whichWindow: Windowptr;
itemBox: Rect; whichColor: RGBColor;
CQDishere: Boolean);

DrnwColorPopup draws the color patch and a drop shadow indicating that this is actually a
pop-up menu. Call this procedure for every pop-up palette whenever you need to update the
window contents. whichWindow is the window containing the pop-up palette, i temBox is
the Rect to be used to drnw the color patch, whichColor is the RGBColor to be drnwn
and CQDishere is TRUE when Color QuickDrnw is available.

FUNCTION ColorPalettePopupSelect(whichWindow: windowPtri
itemBox: Rect; VAR whichColor: RGBColor;
CQDishere: Boolean): Boolean;

ColorPalettePopupSelect handles mouse-down events in the color palette pop-up
menu. Call this procedure whenever you receive a mouse-down event in one of your color
patches. whichWindow is the window containing the pop-up, i temBox is the Rect to be
used to drnw the color patch, whichColor is the RGBCoior to be used as default and
CQDishere is TRUE when Color QuickDraw is available. On exi~ whichColor contains
the RGBCoior selected by the user.

PROCEDURE DeinstallColorPalettePopup(whichWindow: WindowPtr;
CQDishere: Boolean);

DeinstallColorPalet tePopup removes the palette from the window. Call this
procedure before closing the window.

136 ResEdit 2.1 Reference

(Obsolete routines

The following routines are obsolete and should no longer be used. They are no longer
available in the current version of ResEdit

FUNCTION CWindSetup (width, height: INTEGER; t, s: STR255):
WindowPtr;

Use P ickerWindSetup or EditorWindSetup instead.

FUNCTION WindSetup (width, height: INTEGER; myType, name:
STR255): WindowPtr

Use PickerWindSetup or EditorWindSetup instead

FUNCTION PickStdRows: INTEGER;

No longer supported. Use PickStdHeight instead.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandle;
id: INTEGER);

PROCEDURE CallEBirth (resHandle: Handle; parent: ParentHandle;
id: INTEGER);

PROCEDURE CallEvent(VAR evt: EventRecord; refcon: LONGINT;
id: INTEGER);

PROCEDURE CallMenu (menu, item: INTEGER; refcon: LONGINT;
id: INTEGER):

FUNCTION CopyRes (VAR h: Handle: makeID: BOOLEAN:
resNew: INTEGER): Handle;

PROCEDURE DOKeyScan (var evt: EventRecord; offset: integer;
Ih: ListHandle):

PROCEDURE DoListEvt (e: EventRecord; 1: ListHandle);

Chapter 7 The Programmatic Interface 137

(

DocTUJe DraftNum

Appendix A The 'KCHR' Resource

This appendix contains more infonnation about the 'KCRR' resowte, its
structure, and its function. The 'KCHR' resource controls mapping from the
keyboaro to the resulting characters. This mapping process involves several
areas of the Macintosh architecture.

9124190

139

Basic theory of keyboard operation

In order to appreciate fully the workings of the 'KCHR' editor, you really should be aware of
the process that it controls. Here is a summary.

Generat1ng the virtual keycode

Whenever a key on any type of keyboard is pressed, the operating system polls the key
infonnation from the device. It then translates each raw keycode generated by the keyboard
into a virtual keycode and a combination of modifier keys by means of the 'KMAP' resource.
The resulting virtual keycode is infonnation about the key being depressed that is
independent of the keyboard type.

Exceptions to the rule

Some countries have different layouts for different keyboards, lOOStiy for historical reasons.
To deal with those exceptions, the 'itlk' resource contains a table of translation rules from a
virtual keycode generated by the actually connected keyboard to a virtual keycode on the ISO
ADB keyboard or to whatever keyboard is supported by the 'KCHR' resource for that country.

Generat1ng the character code

When the operating system has generated a virtual keycode, the KeyTrans () procedure
then translates the virtual keycode and the concurrently pressed modifier keys into a
Macintosh character set number based on the tables in the 'KCHR' resource. That character
number and the virtual keycode infonnation are then stored in the event queue and can be
accessed by calling GetNextEvent () .

140 ResEdit 2.1 Reference

(~

Dead keys

When you press a dead key, the first thing you'll notice is that nothing happens immediately
(that is, no event is fed into the queue). When you then press another key, the Event Manager
uses the character number generated by this new key and the previously pressed dead key to
determine which character number should be put in the event queue. This process is used,
for example, to generate the Gennan characters with umlauts A,b,U,a,o, and U. You have to
press the dead key for a diaeresis (which is Option-u in the u.s. 'KCHR') and then press one
of the keys that generate the characters A,O,U,a,o, oru. (You can also generate i, and e,
which do not exist in Gennan, but, depending on the font, possibly not their uppercase
equivalents.) If you press a key that generates none of the dermed character numbers for this
dead key, the Event Manager generates the nomatch character (which is, in the case discussed
here, the umlaut alone).

The Dead Array contains a list of dead keys. For each dead key it dermes the virtual keycode
and the table that is used to trigger the deaD-key mechanism. It then lists pairs of completion
characters and substitution characters and, ftnally, the nomatch characters. The whole
deaD-key mechanism can be described as follows:

1. Press a dead key on the keyboard.

2. Press any key that generates a character number that corresponds to a valid
completion character.

You get the corresponding substitution character in the event queue. (If you didn't press a
valid completion character in step 2, you get the nomatch character.)

Appendix A The 'KCRR' Resource 141

The structure of a 'KaIR' resource

Here is the defmition of a 'KCHR' for the resource compiler Rez. (This information can also be
found in the fUe SysTypes.r in the folder {RIncludes) in MPW.)

type 'KCHR' {

} ;

integer;
wide array [$100]

byte;

1* Version
1* Indexes

} ;

integer - $$CountOf(TableArray);
array TableArray {

wide array [$80] { 1* ASCII characters

} ;

char;
} ;

integer - $$CountOf(DeadArray);
array DeadArray (

byte; 1* Table number
byte; 1* Virtual keycode

*/
*/

integer - $$CountOf(CompletorArray);
wide array CompletorArray {

char; /* Completing char
char; 1* Substituting char

} ;

char;
char;

} ;

1* No match char1
1* No match char2

*/
*/

*/
*/

*1

*1

Each table in the Table Array describes the virtual keycode-to-character number translation
for one complete layer of the keyboard (that is, for all 128 possible keys). The Index Array
defmes the mapping of modifier key combinations to tables. The high byte of the modifier
flag (described in Inside Macintosh, Volume V, Chapter 10) is used as an index to detennine
the number of the table to be used for translation. The information in Inside Macintosh is,
however, not complete, because the alternate modifier keys (the Shift, Option, and Control
keys on the right side of the ADB extended keyboard) are not mentioned. Those keys are
normally coupled with the corresponding keys on the left side. It is possible to uncouple
them by sending a command to the keyboard. (See "Reassigning Right Key Code" in Inside
Macintosh, Volume V, Chapter 10.) The correct bit layout of the high byte is shown in
Figure A-I.

142 ResEdit 2.1 Reference

*1

(

(

• Figure A-I Modifier flag high byte

1 if alternate Command key down
1 if alternate Option key down

1 if alternate Shift key down

1 if Control key down

1 if Option key down

1 if Caps Lock down

1 if Shift key down

1 if Command key down

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is set)
in the high byte of the modifier flag. Thus the Toolbox Event Manager takes the value stored
in IndexArray [8] , which is 3 in the current U.S. 'KCRR', and therefore uses Table 3 to
translate the keycodes to character numbers.

Appendix A The 'KCRR' Resource 143

Appendix B The 'BNDL' Resource

The 'BNDL' resource bundles together icons (resource types 'ICN#, 'ics#',
'icI4', 'idS', 'ics4', 'ics8'), me type references (resource type 'FREP), and the
·signature" resource (whose resource type is identical to the creator field of
the application me) for the Finder. This enables the Finder to display distinct
icons for an application and its documents, and also enables it to launch the
appropriate application when the user double-clicks a document.

145

The structure of a 'BNDL' resource

The 'BNDL' resource contains a reference to the signature resource type and ID (for historical
reasons the ID must be 0) as well as a list of resource types (almost always only 'FREP and
'ICN", although other things are theoretically possible) and localID to resourceID mapping
tables. The term "local" ID is used, because this ID is used within the 'BNDL' resource itself to
tie together the flle reference and its icons. When the Finder copies the 'BNDL' resource and
all its bundled resources to the Desktop file (or the desktop database in System 7.0), it
actually has to change the resource ID numbers to avoid ID conflicts within the Desktop. The
local ID numbers remain unchanged.

The signature resource can contain anything you want, although, for historical reasons, it
typically contains some version and copyright infonnation. The resource ID of the signature
resource needs to be O. If you use the 'BNDL' editor in ResEdit 2.0 this resource is
transparently created and maintained for you.

For every file type that should be displayed with a distinct icon in the Finder there need to be
two entries in the 'BNDL' resource, which in tum refer to one 'FREF resource, and one 'ICN#'
resource (or an entire Finder icon family for system software version 7.0). The 'FREP resource
contains the 4 character flle type and a reference to a local ID for an icon to be used for this
flle type. Even if you plan to include an entire Icon Family, you only need to list the 'ICN#'
resource in the 'BNDL' resource. The System 7.0 Finder automatically recognizes and loads all
the other parts of the Finder Icon Family. The relationship of local ID numbers and resource
ID numbers is shown in Figure B-1.

146 ResEdit 2.1 Reference

• FigureJ.l

Fie type

Six resources and their relationships

mer
o

FREF

Local ID Resource ID

Resource ID

Icon's Local ID '--________ -' '--__ --===-____ Aka Local ID 1

In order for the Finder to recognize a 'BNDL' resource these conditions must be met:

1) The bundle must be complete; that is, aU the resources listed here must exist and their
relationships must be defined. If you use the 'BNDL' resource editor built into ResEdit 2.0
you can be sure that this condition is mel

Appendix B The 'BNDL' Resource 147

2) The me's aeator must be identical to the signature specifted in the 'BNDL' resource and
the fUe's fUe type must be one listed in the 'BNDL' (i.e., it must have its own 'PREP and
corresponding 'ICNI'). Typically the fue type will be 'APPL' for application, although any
fUe can contain 'BNDL' resources. Speciftc examples other than 'APPL' are 'INl'r and
'CDBV'. Use the Get FilelFolder Info cornrmnd in the File menu to change the me's ft1e
type or aeator.

3) The fUe's Bundle bit must be set and the Inired bit must be cleared. The Finder always sets
the Inired bit whenever it fmds a new me and reads in som: infonmtion about it By
clearing this bit you tell the Finder to reread that infonmtion. Use the Get FileIFolder Info
command in the rUe menu to change the Bundle and Inired bits.

4) There must not already be a 'BNDL' resource with the same signature in the Desktop me
(or desktop database in System 7.0). If you want to change an existing bundle (to roodify
the icons, for example) you will need to recreate the Desktop fUe by rebooting while
holding down the Option and Command keys. Note that by doing so you will lose all
comments you may have entered in the Get Info windows in the rtnder in system
software before version 7.0.

Definitions of the 'BNDL' and 'F'REF resources

Here are the definitions of the 'BNDL' and 'PREP resources from the MPW Types.R me:

I*-------------------------BNDL • Bundle------------------------------*/
type 'SNDL'

literal longint;
1* Signature

integer;
1* Version IO

integer - $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint;

*1

1* Type *1

*1

integer - $$CountOf(IOArray) - 1;

} ;

148 ResEdit 2.1 Reference

wide array IOArray {
integer;

1* Local IO
integer;

1* Actual IO
} ;

*1

*1

) i

/*-------------------FREF • File Reference----------------------------*/
type 'FREF' (

) ;

literal longinti
/* File Type

integer;
/* Icon IO

pstringi
/* Filename

*/

*/

*/

Appendix B The 'BNDL' Resource ' 149

./

(

Appendix C Resource Types Defmed for
Rez and ResEdit

This appendix contains a list of some resource types in use at Apple
Computer, Inc., current as of miD-l990. An attempt has been made to give
pertinent information about what each type is, how it is handled by the
resource compiler, Rez, and how it is handled by ResEdit This list is neither
formal nor exhaustive!

151

• TableCl Resource types deftned for Rez and ResEdit

Type

actb
acur
ADBS
ALRT

APPL

atpl
bmap
BNDL
CACH

cctb
CDEF
cicn
clut
CMDO

cmnu
CNTL
CODE 0
CODE
crsr
ctab

CTY'
CURS

dctb
DICL
DITL
DLOG
DRVR
DSAT

FBTN
fctb

Deftoitfoa Rez

Alert Color Lookup Table Types.r
Animated cursor resource Types.r
ADB driver loaded before INIT 31 -----
Alert Template Types.r
Application list (Desktop)
AppleTalk Resource
BitMap
Bundle
RAM Cache Control Code
Control Color Lookup Table
Code for drawinq controls
Color Icon
Generic Color Lookup Table
For MPW commando interface
MacApp temporary menu resource
Control Template
Jump Table
Application Code

Types.r

Types.r

Types.r
Types.r
Cmdo.r

Types.r

Color Cursor Types.r
Cache Tab <list of possible cache sizes>

City list from MAP CDEV
Cursor
Dialoq Color Lookup Table
<for MacWorkstation>
Dialoq Item List
Dialoq Template
Driver
Startup alerts & code to

MiniFinder button
Font Color Lookup Table

Types.r
Types.r

Types.r
Types.r
SysTypes.r

display them

Types.r

152 ResEdit 2.1 Reference

Template
Template

Template, Editor
Template

Template, Editor

Template

-----, Editor
Template

-----, Editor
Template

Template
-----, Editor
Template

Template, Editor
Template, Editor
Template

Template
Template

(Continued)

•

•

(• TableCl Resource types defmed for Rez and ResEdit (continued)

Type

FCMT

FDIR
finf
FKEY
fldt

FMTR
FOBJ
FOND
FONT
FREF
FRSV
FWID
gama

GNRL

ICON
ICNt
ictb
INIT

insc

l)efJokfoa

Getlnfo comments from Desktop file

MiniFinder button directory ID
Font information
Function Key Code

SysTypes.r

List of folder names for folder msg

Format Record
Information about Folders
Font Family Description
Font Description
File Reference
ROM Font resources
Font Width Table

SysTypes.r

SysTypes.r
SysTypes.r
Types.r

SysTypes.r
Gamma Table (color correction for screen)

NBP Timeout and retry info for AppleTalk

Icon

item list

Types.r
Types.r Icon List

Color dialog
Code that is run at system startup time

Installer Script SysTypes.r
INTL 0 International Formatting Information

SysTypes.r
(-- itlO; no longer used)

itlO International Formatting Information
SysTypes.r

INTL 1 International Date/Time Information
SysTypes.r

(-= itll; no longer used)

ResEd1t

Template
Template
Template

Template

Template
Template, Editor
Template
Template
Template

, Editor
, Editor

Template

-----, Editor

Editor

Editor

(Continued)

Appendix C Resourte Types Dermed for Rez and ResEdit 153

• Tab1eC-l Resource types defined for Rez and ResEdit (condnued)

itl1

J)effaftloa

International Date/Time Information
SysTypes.r

itl2 Intl Str Comparison package Hooks

itl4
itlb
itlc
itlk

KCAP
KCHR
KEYC

KMAP

kscn
KSWP
LAYO

LDEF
mach
MACS
MBAR
MBDF

mcky
mctb
meod
mcict
MDEF
mem!
MENU

minf
mitq

International Tokenize
International Script Bundle

SysTypes.r
SysTypes.r
SysTypes.r

International Configuration SysTypes • r
Intl exception dictionary for kchar

SysTypes.r
Physical Layout of Keyboard SysTypes.r
ASCII Mapping (software) SysTypes.r
old keyboard layout <used by old INIT 0+1>

Keyboard Mapping (hardware)
Keyboard/Script icon
Keyboard Swapping
Finder layout resource
Code for drawing lists
cdev filtering
version t in system file

SysTypes.r
Types.r
SysTypes.r

SysTypes.r

Menu Bar Types.r
Menu bar definition procedure <Code>

Mouse Tracking
Menu Color Lookup Table
MacroMaker information
MacroMaker information
Code for drawing menus
MacApp memory utilization
Menu
Macro info (MacroMaker)

SysTypes.r
Types.r

Types.r

Default queue sizes for MakeITable
SysTypes.r

lS4 ResEdit 2.1 Reference

BtsEdJt

-----, Editor

Template
Template
-----, Editor

Template

Template
Template

Template
Template

Template
-----, Editor

Template, Editor
Template

(Continued)

•

(

.... ,

• TableCl Resource types defmed for Rez and ResEdit (continued)

Type

mntb

mppc
NBPC

))e6nftfno

MacApp menu table(relate command' to menu)

MPP Configuration Resource
NBP configuration <AppleTalk>

SysTypes.r

ncts List of constants
NFNT

nrct
PACK

PAPA

PAT
PAT'
PDEF
PlCT
pltt
POST

ppat
ppt'
PREC

PRCO

PRC3
PSAP
PTCH
qrsc
ROv'
scrn
seg!
SERD
SlCN
SIGN

Font Description SysTypes.r
Rectangle position list SysTypes.r
Packages of code used as ROM extensions

Printer Access Protocol Address (AppleTalk)

Quickdraw Pattern
Quickdraw Pattern List
Code to drive printers
Quickdraw Picture
Color Palette
Postscript - found in Laser

Pixel Pattern
Array of ppats

Types.r
Types.r

Types.r
Types.r

Prep file

Types.r

Printer driver's private data storage

Default page setup info for printer
(PRED id - 0)

Print record (PREC id - 3)
Just a string
ROM Patch
System 7.0 query resource
ROM Resource Override
Screen Configuration
MacApp
RAM serial driver
Small Icon

SysTypes.r
SysTypes.r

Types.r

ResEdit

Template

Template
, Editor

-----, Editor

Template
Template

Template
Template

Template
Template
Template

Template
Template
Template

, Editor
Template

(Continued)

Appendix C Resource Types Defined for Rez and ResEdit 155

• TableC·l Resource types defmed for Rez and ResEdit (continued)

Type

SIZE
snd
STR
STRt
styl
TEXT

tlst
TMPL

vers
wctb
WDEF
WIND
wstr

Definition

MultiFinder Size Information
Sound
PascalStyle String
PascalStyle String List
Style information for TextEdit
Unlabeled string. (Same as minf)

Title list

ResEdit template

Types.r
SysTypes.r
Types.r
Types.r

Version SysTypes.r
Window Color Lookup Table Types.r
Code for drawing windows
Window Template Types.r
Query str used by qrsc resource

156 ResEdit 2.1 Reference

ResEdit

Template

----- (player)
Template
Template

-----, Editor

Template

Template
Template
Template

Template, Editor
Template

•

(

Appendix D The Macintosh Character Set

This appendix contains a chart that displays the regular character set for
Macintosh fonts. The fU'St 128 characters correspond to the standard ASCII
character set. Please remember that not all fonts for the Macintosh have
these standard characters in them. Specific examples are Symbol and ITC
Zapf Dingbats; there are also many pictorial fonts avai1able as bitmaps for
dot-matrix printing.

157

•

(

(

• FigureD-l Macintosh character set

o
1

o 1 234 5
sp 0 @ P

! 1 A Q

6 7 8 9 ABC D E F
A

'pAe t l - *-
aqAe O ± j- 0

2 .:.::j • 2 B R b r ~ 1 ¢ ~ ., • • D
~~~---+-~~---+-~~---r-~-+~r-~-+--I 

3 cu I:'::::::::::::: # 3 esc s E i £ ~ v·. fJ 

4::,:::::::.: $ 4 0 T d t N i S Y f • %0 {) 

5 :\ /., % 5 E U 

6 i:::I:iJWii\ &: 6 F v 

71::'1';' i'~":.1 I 7 G W 

8 bI!I::I< 8 H X 

:iI ~ : ; ~ 
B Ii::::!::::. esc + i K [ 

D~, gs - .. M 1 
Ell > N 1\ 

F us/?O_ 

sp space 
dd delete -

e u ° 
f v U 

g w 

h x a 

• 11 = 
Ii « a ~ ... 

r« 0 A 
d ; n» y 

i yao@1t ..• YE 

j zao™JAbIp/ i 
k {ao" AD i 0 

A < i 

nb!p non-breaking space (option-space on US keyboard) 
1be key labeled Delete on the US keyboard actually 
generates bs (OB) character. 

1be shaded characters cannot normally be generated 
from the Macintosh keyboard or keypad 

Appendix D The Macintosh Character Set 159 



.. 



• 

( characters Display using old method 52 
Option-space 2 DisplayAlert function 117 
unprintable 2 DisplaySTRAlert function 117 

Index CheckErra function 116 Dmmenu37 
'cicn' resource editor 29, 42-45 'Dm' resource editor 28, 35-37, 87 
'cicn' resource type 3, 42 'Dm' resource type 32, 35,86, 87 
Clear 21 associated with 'ALRT' or'DLOG' 
Oose 14 32 

-83 CloseNoSave functioo 116 'DLOG' resource editor 32-34 
'annu'resource editor 69-73 'DLOG' resource type 32, 35, 86, ffl 24-bit mooitors, using ResEdl with 29 
'annu' resource type 3, 69 DoEvent procedure 101,104 @ABCD101 
'CN'It' resource editor 35 DoInfoUpdate procedure 104 

A 'CN'It' resource type 35, ffl DoMenu procedure 101, 104 
code, as resource 2 DoPickBirth function 117 

AbleMenu procedure 115 'CODE' resource type 2, 19, 98 DrawColorPopup procedure 125 
Abort procedure 115 color icon editor 29 DrawIDEF procedure 117 
AddNewRes function 112 color-dropper tool 42, 48 DrawMBarLater procedure 118 
Align to Grid 37 Color Available functioo. 116 'DRVR' resource type 25 
AlreadyOpen function 109 CoIorPalettePopupSelect function 125 Duplicate 21 
'ALRT' resource editor 32-34 CoIorTable record 55 Duplicate Table 68 
'ALRT' resource type 32, 35,87 commands, menu See individual DupPick function 123 
APDAxili command name 
Apple Developer Programs xiv ConcatStr procedure 116 E 
Applk:ation Memory size 29, 86 Convert to dead key 68 Edit dead key ••• 68 ascent 56 Q)py21 Edit menu 17 

I ASCII character set 56 corrupted resource 9 EditBirth procedure 101, 103 '- B 
CurrentRes function 113 editors 
CURS menu 46 'ALRT' 32-34 

BeautifulUnique lID function 112 'CURS' resource editor 46 bil29,87 
bit editor 3, 28, 29, ffl 'CURS' resource type 46 'B~L'38-41, 135 
bit editor tools See tools CUl21 'cicn29 
black-and-white resource 28 'cicn' 42-45 
'B~L' resource editor 38-41, 135 D 'annu' 69-73 
'BNDL' resource type 3, 38, 134-137 damaged resource 9 'CN1t' 35 
Bring to Front 37 Data -> Mask 46, 52 color icon 29 
BubbleUp procedure 115 data fork 2, 12 'CURS'46 
BuUdType function 115 default System foot 54 'Dm' 28,35-37, 87 
Bundle bit 40 DefaultListCellSize function 117 'DLOG' 32-34 
bundle resource editor 29 DeinstallColorPalettePopup procedure 'FONT' 29,54-57,87 

125 hexadecima13 
C DeRez5 'ICN" 51-52,87 
CallInfoUpdate procedure 109 descent 56 'ICON' 50, 87 
'CDRV' resource type 136 Desktop P"tie 11 'IN11! 6().61 
CenterDialog procedure 116 rebuilding 40 'illO' 6().61 
character set Developer Programs, Apple xiv 'illl' 6().61 

ASCII 56 dialog box 4 'KCHR' 62-69 
MacintQ;h 2, 56 User Items in 35 'KOIR' dead key 62 

character-editing panel 56 dialog item list 35 'MENU' 69-73 
character-selection panel 56 Dialog Manager 35 monochrome 28 

('" 
Index 161 



'PAT'58 BuildType 115 GetQuickDrawVatS procedure 119 
'PAT" 59 CheckEmx' 116 GetStr procedure 118 
'SIeN' 53 CIoseNoSave 116 GetType function 123 
template 3 ColorAvaiiabie 116 GetWmOOwT1lle procedure 110 
'WIND' 30-31 ColorPa1ettePopupSelect 125 GiveEBirth procedure 108 
bundle 29 CurrenlRes 113 GiveSubEBirth procedure 100 
P'mder icon family 29,47-49,51 De&ultListCel1Size 117 GiveThisEBirth procedure 108 
menu 29 DisplayAlett 117 graphic resource 4 

EditorWindSetup function 112 DispJaySTRAlert 117 graphical resource editor 28 
eraser too142 DoPickBirth 117 graphk:s tools panel 57 
extensibilky ofResEdil4 DupPick 123 GrowMyWIOdow procedure 110 

EditorW~tup 112 HandleCheck procedure 119 
F P'wK>wnerWIOdow 118 hardware requirements xii 

'fctb' resource type 55 Getllndex 113 hexadecimal editor 4, 30 

P'J1e menu 13-}6 GetlRes 113 

file type 39,136 GetQuickDrawVatS 119 J,J 
file window 12 GetTypel23 'icl4' resource type 3, 47 
mes HandleCheck 119 'icl8' resource type 3, 47 

Desktop 11 Is'IhisYours 102 ICN#menu52 
ICON.IDEP 99, 100 MapResourceType 124 'ICN" resource editor 51-52, ff1 
ICON.Pick 99 NeedToRevert 113 'ICN" resource picker 20 
ResEdil Preferences 83 NewRes 114 'ICN" resource type 3, 39,47, 51, 134 
Types.Rl36 PkketWmdSetup 112 icon 4 
XXXXEdit99 PickStdHeigh1120 'ICON' resource editor 50, 87 

Finder 11, 89 PkkStdWidth 120 'ICON' resource type 29, 35, 50,87 
Finder icon family 47 PlaySync50und 124 Icon Vertical phase 91 
Finder icon family resource editor 29, PrinlSetup 120 ICON.IDEP me 99, 100 / 

47-49,51 ResEdID 121 ICON.Pick f.de 99 
P'mdOwnerW'1Odow function 118 ResEdilGetlResource 114 icons 
P'lXHand prcx:edure 118 ResEdilRes 124 folder 51 
FlashDiaIogItem procedure 118 RestoreRemovedResoues 124 monochrome 48 
folder kon 51 Reverl1bisResou 114 trasbcan 51 
Font Manager 55 SysResFUe 114 'ies#' resource type 3, 47 
FONT menu 68 WasAborted 115 'k:s4' resource type 3, 47 
FontIDA Mover 54, 55 WasitLoaded 123 'ics8' resource type 3, 47 
'FOND' resource type 54 WIIldAI10c 111 IDnumber 
'FONT' editor: ascent of character 56 WIl1dList 111 loc:all34 
'FONT' editor: descent of character 56 

G 
resource 134 

'FONT'resource editor 29, 54-57, ff1 ID number restriction 25 
'FONT' resource type 25, 54 general editor See hexadecimal editor 'JNrr resource type 136 
fork Get FUeIFoider Info ... 14 Inited bil40 

data 2 Get Info for This FRe 14 InstallColorPalettePopup procedure 
resource 2 Get Info window 20 125 

FrameDialogItem procedure 118 Get1IMapEnUy procedure 113 'INTL' resource editor 60-61 
'PREP' resource type 38, 134 Get1Index functial113 'IN11.' resource type 60 
functions GetlMapEnUy procedure 113 IsThisYours functk>n 102 

AddNewRes 112 GetlRes function 113 'illO' resource editor 60-61 
AlreadyOpen 109 GetEmxTeXl procedure 123 'itlO' resource type 60 
BeautifulUniqueUD 112 GetNamedStr procedure 118 'itl1' resource editor 60-61 

162 ResEdit 2.1 Reference 



(~ -

. 'ill1' resoulCe type 60 W"mdow22 PickInfoUp procedure 119 
menus: ICN# 52 PickMenu procedure 105, 120 

IC MeraKeys procedure 119 PickStdHeight function 120 

KCHR menu 66, 94, 95 monochrome editor 28 PickStdWtdth function 120 

'KCIR' dead key edita 62 monochrome icon 48 pictaial resource 3 

'KCIR' resource edita 62.09 MPW DeRez command 81 pictaial resource editor 28 

'KCIR' resource type 62, 94·95, 128- MPW resource compiler and Pictorial resoulCe type 28 

131 decompiler 5 'PIer resource type 12, 35, 50, 77, 86, 
'KCIR' with MacintOOl SE, Macintosh MultiFinder 11, 89 87 

Plus, a Macinlosh 512K MyCalcMask procedure 124 Pig mode 88 

enIw1ced68 pixel editor 28 

KillCache procedure 123 N PlaySyrx:Soundfunction 124 

'KMAP' resource type 128 NeedToRevert function 113 pastRez69 

New 53 Preferences ..• 14 

L New Table 68 PrintSetup function 120 

'LA YO' resource type 4, 76, 89-93 NewOialog 88 PrintW"mdow procedure 121 

NewRes function 114 Print ... 14 
'IDEF' resource type 98 

New ... 13 procedures 
list separator 83 

'NJIN'r resource type 3, 54 AbleMenu 115 
local ID number 134 

NoDoubleClickHere procedure 124 Abort 115 

M nonexistent 'CNTL' 88 BubbleUp 115 
QlllInfoUpdate 109 

MacApp 0 CenterDialog 116 
permanent menu 69 

obsolete routine 126 
Qxx:atStr 116 

tempcnry menu 69 DeinstallColorPalettePopup 125 
,( Madntash character set 2, 56 Open Special 13 DoEvent 101, 104 
'~ MacintOOl Programmer's Workshop 5 Open Using Template 21 DoInfoUpdate 104 

MapResoUtCeType function 124 Open ... 13 DoMenu 101, 104 
marquee too128, 29 Option key 30, 35 DrawColorPopup 125 
mask 42, 48, 52 Option-space character 2 OrawlDEF 117 
'MBAR' resource type 88 oval-drawing tool 48 OrawMBarlater 118 
'mctb' resoUtCe type 3, 69 

P 
EditBirth 101,103 

'MDEF' resource type 72 P'1XHarui 118 
'MOPL' resource type 12, 86 Page Setup ... 14 FlashDialogItem 118 
memory requiremenrs xii paint bucket tool 42 PrarneOialogJtem 118 
'MENU' resource editor 29, 69-73 ParamText 32 Get1IMapEntry 113 
'MENU' resource ID 88 parent record definition 106 Get1MapEntry 113 
'MENU' resource type 3, 69 PassMenu procedure 109 GetErrorText 123 
menus Paste 21 GetNamedStr 118 

CURS 46 'PAT' resource editor 58 GetStr 118 
om 37 'PAT' resource type 58 GetWmdowTttle 110 
Edit 17 'PAT" resource editor 59 GiveEBirth lOB 
P'ue 13-16 'PAT" resource type 59 GiveSubEBirth 109 
FONT 68 pencil too128, 48 GiveThisEBirth lOB 
KCHR 66,94, 95 PickBirth procedure 103 GrowMyW"mdow 110 
Resource 17·21 picker record definition 107 InstallColorPalettePopup 125 
SIZE 68 picketS 98 KillCache 123 
Style 70 picketS: 'leN" 20 MeraKeys 119 
Transform 43, 48 PickerW"mdSetup function 112 MyCalcMask 124 
V'lew22-24 PickEvent procedure 104, 119 NoDoubleCllckHere 124 

f~ 
Index 163 



PassMenu 109 'ALRI" 32, 35, ~ ResourceIDHasChanged procedure 
PickBhth 103 'BNDL' 3, 38,134-137 114 ~J 

PickEvent 104, 119 'CDEV'I36 resources 2 
PickInfoUp 119 'den'3,42 COlTUpted9 
PickMenu 105, 120 'cmnu'3,69 damaged 9 
PrlntW'mdow 121 'CNTI.' 35, ~ pictoria13 
RemoveResource 114 'CODE' 2, 19, 98 signature 41 
ResourceIDlbsChanged 114 

'CURS'46 
RestCl'eRemovedResources function 

SaapCopy 124 124 
SaapEmpty 124 'om' 32, 35, 86, ~ Revert file 14 
SaapPaste 125 'DLCX3'32,35,86,87 Revert'IhisResource function 114 
SendRebuildl'oPicker 122 'ORVR'25 Rez5 
SendRebuildfoPickerAndFde 121 'fctb'55 ROM requirements xii 
SetETJde 111 'FOND'54 'RSSC' resource type 98, 101 
SetResChanged 121 'FONT 25, 54 
SeaheCursa 122 'FREF' 38, 134 S 
ShowInfo 122 'icl4' 3, 47 sample text panel 56 
TypeToString 122 'ielS' 3, 47 Save 14 
UseAppRes 122 'ICN#' 3, 39, 47, 51, 134 SaapCopy procedure 124 
W'mdOrigin 111 'ICON' 29, 35, SO, ~ SaapEmpty procedure 124 
W'mdRetum111 
Wri1ePreferences 123 'iCs#' 3, 47 SaapPaste procedure 125 

'ics4' 3,47 Selea Item Number 37 

Q 'ics8' 3, 47 Send to Back 37 

'INrr 136 SendRebuildfoPicker procedure 122 
Qul14 

'INl1.'60 
SendRebuildfoPickerAndPi1e 

/"'" 

R 'itlO' 60 
procedure 121 

Set Item Number 37 

RAM requirements xii 
'itJl' 60 SetETllle procedure 111 

rebuilding a Desktop file 40 1CCJiR'62,~95, 1~131 SetResChanged procedure 121 

Remove dead key 68 'KMAP'I28 SetTheCursor procedure 122 

Remove duplicate tables 68 'LA~()'4, 76,~93 Shift key 29 

Remove unused tables 68 'LDEF98 ShowInfo procedure 122 

RemoveResource procedure 114 'MBAR'88 'SIeN' resource editor 53 

ResEd5,100 'mctb' 3,69 'SIeN' resource type 53, 71 

ResEdID function 121 'MDEF72 signature resource 41 

ResEdit Preferences fde 83 'MDPL'1286 SIZE menu 68 , 
software requirements xii ResEditGetlResource function 114 'MENU' 3,69 

ResEditRes function 124 'NFNr 3, 54 
'STRI' resource type 32, 81 

resource 4 'PAT'58 
straight quotation mark 2 

resource category 3 'PAT#' 59 
Style menu 70 

resource editors 27 'PIer 12, 35, SO, 77, 86, ~ 
SysResFUe function 114 

resource fde checking 9 
resource fork 2 'RSSC 98,101 T 
resource ID number 25, 134 'SICN' 53, 71 template 4, 21 
Resource menu 17-21 'sm#' 32, 81 template editor 3 
resource picker 20 'TMPL'76,BO 'TMPL' resource type 76, 80 
resource type 20 'vers' 41, 54 tool palette 29 
resource type name 2 'WIND' 30 tools 
resource types color~pper 42, 48 

164 ResEdit 2.1 Reference 



( eraser 42 
marquee 28, 29 
oval-drawing 48 
paintbucket 42 
penci128,48 

Transform menu 43, 48 
tr2Shcan icon 51 
Try Cursor 46 
24-bil monitors, using ResEdit with 29 
type checking 82 
Types.R file 136 
TypeToString procedure 122 

U 

Uncouple modif1el' keys 67 
Undo 21 
unpriJUble character 2 
Use Pull Window 37 
Use RSRe Rectangle 37 
UseAppRes procedure 122 
UseResPUe 101 
USES declar2tk>n 100 

V 

,4 Verify Resource PUe 10 , Verify Resource PUe .•. 14 
'vers' resource type 41, 54 
Vrewas ••• 67 
Vrew menu 22-24 

W 

WasAbortedfunction 115 
WasltLoaded function 123 
WIND 30 
WindAlloc function 111 
WmdList function 111 
WindOrigin procedure 111 
Window menu 22 
windows 

file 12 
Get Info 20 

'WIND' resource editor 30-31 
'WIND' resource type 30 
W"mdRetum procedure 111 
WritePreferences procedure 123 

X, Y,Z 
XXXXEdit file 99 

(, 
Index 165 



~ --

1lIE APPLE pUBIJSHJNG SYSTEM 

This Apple manual was written. edired, and 
composed on a ~ publishing system using 
Apple Macintosh- computers and Microsoft- Wad 
software. Proof and final pages were created on Apple 
1aserWmerGD printers. Line art was created using 
Adobe DlustJata .... ~. the page
description language for thel:.lserWrker, was 
developed by Adobe Systems Incorporated. Saeen 
shors were taken with FIashIt. 

Text type and display type are Apple's corpaate font, 
a condensed ~ion of Garamond. BuI1ets are rrc 
Zapf Dingbats-. Some elemetts, such as progmm 
listings, are set in Apple Courier. 

Writer:Jon Singer 

166 ResEdit 2.1 Reference 

Developmental Editor: SUvio Orsino and Steve Hiatt 
WUSIl3lor: Deb Dennis and Sandee Kart 
Production SuperWor: Renee Eldeberry 

Special thanks to: 

Nobu Tage for PlashIl 

Mikel Evins for DreadEdit. 

The ResEdit engineering team, particularly Peter, Craig, and 
Alexander, who helped the author more than he can say. 

Developer Technica1 Support at Apple for assistance above 
and beyond the call of nature, and for CIarus the DogCow. 
Moof!'lI' 

" 


