
..

" Macintosh~

MacsBug ,6.1 Reference

• APPLE COMPUTER, INC.
This manual and the software
described in it are copyrighted, with all
rights reserved Under the copyright
laws, this manual or the software may
not be copied, in whole or part,
without written consent of Apple,
except in the nonnal use of the
software or to make a backup copy of
the software. The same proprietary and
copyright notices must be aff'lXed to
any permitted copies as were aff'lXed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all baclru p
copies) may be sold, given, or loaned
to another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

@ Apple Computer, loc., 1989
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-10 10

Apple, the Apple logo, HyperCard,
lmageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, loc.

Apple Desktop Bus, Extended
DiSCipline, Finder, MPW, MuitiFinder,
RAMDump, ResEdit and SADE are
trademarks of Apple ·Computer, Inc.

ITe Garamond and ITC Zapf Dingbats
are registered trademarks of
International
Typeface Corporation.

,Microsoft is a registered trademark of
, Microsoft Corporation.

PostScript is a registered trademark of
Adobe Systems Incorporated.

Simultaneously published in the
United States and Canada.

..

(

(

Contents

Preface About ThIs Manual vii
Overview ix
Notation conventions x
Aids to understanding x

1 MacsBug OVerview 1
About MacsBug 3
Macintosh debugging 3
MacsBug fites 5

2 Debugging With MaesBug 7
Getting started 9
Specifying things 12
How did I get here? 13
Controlling program execution 14
Stopping at a particular place 15
Watching for memory to change 16
Displaying and setting memory 16
Checking the heap 17
Exercising your program 17
The dot address 17
MacsBug resources 19

Figure 2-1 MacsBug display 10

ill

•

..

3 MacsBug Commands 21 \..,

Command syntax 23
Values 23
Operators 24

Conunand descriptions 25
ATB-A Trap Break 26
ATC-A Trap Clear 27
ATD-A Trap Display 28
A1HC-A Trap Heap Check 29
ATP-A Trap Playback 30
ATR-A Trap Record 31
ATS5-A Trap Step Spy 32
AIT-A Trap Trace 33
BR-Breakpoint 34
BRC-Breakpoint Clear 36
BRD-Breakpoint Display 37
BRM-Multiple Breakpoints 38
C5-Checksum -39
D~Display Byte 40

. DH-Disassemble Hexadecimal 41
DL-Display Long 42
DM-Display Memory 43
DP-Display Page 44
DSC-Extended Discipline 45
DV-Display Version 46
DW-Display Word 47
DX-Debugger Exchange 48
EA-Exit to Application 49
ES-Exit to Shell 50
F-Find 51
G-Go 52
GT-Go Till 53
He-Heap Check 54
HD-Heap Display 55
HELP-Help 57
HOW-Display Break Message 58
H5-Heap Scramble 59
fIT-Heap Totals 60
HX-Heap Exchange 61

"

iv MacsBug 6.1 Reference

HZ-Heap Zones 62
ID-Disassemble One wne 63
IL-Disassemble From Address 64
IP-Disassemble Around Address 65
IR-Disassemble Until End of Procedure 66
LOG-Log to a printer or ftle 67
MC-Macro 68
MCC-Macro Clear 70
MCD-Macro Display 71
MR-Magic Return 72
RAD-Toggle Register Name Syntac 73
RB-Reboot 74
Registers 75
RN-Set Reference Number 77
RS-Reset 78
S-Step 79
SB-Set Byte 80
SC6-Stack"Crawl (A6) 81
SC7-5tack Crawl (A7) 82
SHOW-5how 83
SL-Set Long 84
SM-Set Memory 85
SO-Step Over 86
SS-Step Spy 87
sW-Set Word 88
SW AP-5wap Frequency 89
SX-Symbol Exchange 90
TD-Toral Display 91
TF-Total Floating-Point 92
TM-Toral MMU 93
TMP-Templates 94
WH-Where 96

CONTENTS v

A Coaunand Sununary 97
~.-, ,/

B Error Messages 101

C MacsBug Internals 105

D Debugger and DebugStr 107

E External Commands 111

F Did You Know? 115

G Procedure Definition 117 -

Index" 119

J{'

vi MacsBug 6.1 Reference

(
Preface About This Manual

Contents

Overview ix
Notation conventions x
Aids to understanding x

vii

•

(

(

Overview

Welcome to MacsBug 6.1, Apple's assembly-language debugger for Macintosh@
progranuners. If you have written, or are trying to write, a program for the Macintosh,
you'll fInd MacsBug a powerful debugger with many unique capabilities. If you aren't
actually writing a program, but have a good basic understanding of Inside Macintosh, you'll
find MacsBug a helpful tool for learning more about the Macintosh. (In fact, MacsBug was
used frequently in the writing of Inside Macintosh to determine how particular routines
actually worked.)

• Chapter 1 provides an overview of MacsBug. This includes a description of the
hardware and software conftgurations MacsBug works with, what kind of debugger
MacsBug is, and the files on the MacsBug disk.

• Chapter 2 introduces the MacsBug commands and describes how they fit into various
debugging strategies.

• Chapter 3 provides a complete specification of the MacsBug command language,
including command syntax, operation, and examples.

• Appendix A contains a summary of all MacsBug conunands.

• Appendix B lists the error ~sages returned by MacsBug.

• Appendix C describes MacsBug internals for advanced programmers.

• Appendix D details how you can call MacsBug from within your program.

• Appendix E explains how to write your own customized debugging commands.

• Appendix F provides tips, shortcuts, and interesting facts about MacsBug.

• Appendix G covers procedure name definition for advanced programmers.

PREFACE About This Manual ix

Notation conventions

The following notltion conventions are used to describe MacsBug commands:

literal

variable

[optional]

repeated ...

either I or

(grouping)

{Return }

Plain text indicates a word that must appear in the command exactly as shown.
Special symbols (-, §, &, and so on) must also be entered exactly as shown.

Items in itllics can be replaced by anything that matches their defInition.

Square brackets mean that the enclosed elements are optional.

An ellipsis C ...) indicates that the preceding item can be repeated one or more
times.

A vertical bar C I) indicates an either/or choice.

Parentheses indicate grouping and are used when both items of a choice can be
specified and repeatedj that is, (paraml I par.un2 ...).

Brackets are used in examples to indicate that the specified key should be
pressed. They. are also used to enclose comments.

Command names and fdenames are not sensitive to case.

Aids to understanding

Look for these visual cues throughout the manual:

.. Wamfng Warnings like this indicate potential problems. 4

6. lmportlllt Text set off in this manner presents important information. A

• Note: Text set off in this manner presents notes, reminders, and hints.

MacsBug 6.1 Reference

•

(

Chapter 1 MacsBug Overview

CD"tent&

About MacsBug 3
Macintosh debugging 3
MacsBug files 5

1

(
About MacsBug

MacsBug is a Motorola 68000-family assembly-language debugger customized 'for the
entire MacinroshQ!) family of computers. First introduced in 1981, MacsBug has continued
to evolve along with the Macintosh.

MacsBug 6.1 runs on the Macintosh Plus, Macintosh SE, and Macintosh II, and supports all
members of the 68000 family. It handles the MC68aa1 floating-point coprocessor and the
MC68851 Memory Management Unit (MMU). It also supports external displays on the
Macintosh Plus and Macintosh SE, as well as various screen sizes and bit depths on
Macintosh II displays. There's no need to customize MacsBug for particular
configurations since it determines the attributes of the machine at system startup.

MacsBug 6.1 works with all versions of Macintosh system software, and is compatible
with MultiFinder™.

MacsBug 6.1 does not work with the 64K ROMs, nor does it run on the Macintosh XL.

Macintosh debugging

MacsBug uses as little of the Macintosh system software as possible. This lets systems
programmers debug their software without having to worry about the debugger using the
code they're debugging. But MacsBug isn't only a systems-level debugger. The high degree
of interaction between a Macintosh application and the system also makes MacsBug a
powerful tool for debugging applications.

MacsBug is an assembly-language debugger. If you're writing prograrnsin a high-level
language like C or Pascal, you'll more often want to use the Symbolic Application
Debugging Environment (SADETM). SADE lets you debug your program at the source-code
level, which means you don't need to know assembly language or map object code back
to your program's source-level instructions. If you need to, SADE lets you monitor
program execution at the machine level as well.

CHAPTER 1 MacsBug Overview 3

SADE does have irs limitations, however, and high-level programmers will find that
MacsBug picks up where SADE leaves off. Specifically:

• SADE uses the Macintosh system software extensively, and in the case of a severe
crash may not be operable. MacsBug lets you examine the remains to try to determine
what went wrong.

• If RAM is severely limited, you may not be able to run SADE. MacsBug is lean and
mean.

MacsBug is loaded at system startup and sits quietly in RAM until it's invoked. Unlike
debuggerS that expect a target program" to work with, MacsBug lets you look at
practically anything running on the Macintosh-toolbox and operating-system routines,
applications, desk accessories, and so on.

You can suspend program execution at any point, either manually (by pressing the
interrupt switch or a key that you define) or programmatically (by calling special traps
from within your program). And since MacsBug needs so little of the system to operate, it
can be used even in the case of fatal system errors. Whenever the System Error Handler is
called, or when a 68000 exception occurs, MacsBug takes control and lets you look
around.

Once MacsBug has been invoked, you can enter commands to

• Display and set memory and registers.

• Disassemble memory.
• Set execution breakpoints.

• Step and trace through both RAM and ROM.

• Monitor system traps.
• Display and check the system and application heaps.

The next chapter introduces the MacsBug feabJres and how they fit into various
debugging strategies. Chapter 3 provides a complete specification of the MacsBug
command language, including command syntax, operation, and examples.

4 MacsBug 6.1 Reference

(
MacsBug files

The MacsBug 6.1 release disk contains the following flIes and folders:

• Read Me First

• MacsBug

• Debugger Prefs

• Resources

• dcmds

Read this file first; it contains information about the files on the
release disk.

Copy MacsBug into the System Folder on your boot disk.

This file contains macros, templates, and other resources used
by MacsBug. Copy this flIe into the System Folder as well. (If
your space is limited, you can omit this me.)

This folder contains additional resources that you can paste into
the Debugger Prefs file (using ResEditnl) to provide additional
functionality. It also contains another folder, MPW .r Files, that
provides the Macintosh Programmer's Workshop (MPWTM) text
files used to create the MacsBug resources. You can use these
files as models for creating your own resources and add them to
Debugger Prefs with the Rez tool.

This folder contains files that you can use to create your own
customized debugging c~mrnands, as well as samples of such
cormnands. See Appendix E for details.

CHAPTER 1 MacsBug Overview ;

(

Chapter 2 Debugging With MacsBug

.Co"teats

Getting started 9
Specifying things 12
How did I get here? 13
Controlling program execution 14
Stopping at a particular place 15
Watching for memory to change 16
Displaying and setting memory 16
Checking the heap 17
Exercising y-our program 17
The dot address 17
MacsBug resources 19

7

Getting started

MacsBug is installed at system startup and resides in RAM until shutdown. In order to be
recognized at boot time, the MacsBug me must be in the System Folder on the startup
disk. If you want the resources contained in the Debugger Prefs me to be loaded, this file
must also be in the System Folder. (See "MacsBug resources" later in this chapter for
details on editing and adding resources.)

To prevent MacsBug installation indefinitely, you can rename the MacsBug me, or move
the me from the System Folder. To override MacsBug installation for a single session only,
simply hold down the mouse button during startup.

After a successful installation, the message "MacsBug installed" is displayed below the
·Welcome to Macintosh" message. The startup appliCation (typically the Finder'lM) is then
launched.

The simplest way to invoke MacsBug is by pressing the interrupt switch; this generates an
NMI exception and suspends program execution. MacsBug takes control and displays a
screen like that shown in Figure 2-1.

• Figure 2-1 MacsBug display

·INCLUDE fig 1.mac2.

CHAPTER 2 Debugging With MacsBug 9

• Note: Another way to invoke MacsBug is to define an 'FKEY' resource containing the
two instructions needed-Debugger ($A9FF) and RTS (ME7S).

To see the application screen again, press the tilde (-) key or the Esc (Escape) key. To
return to the MacsBug display, press any character key.

If you have multiple screens, MacsBug uses the ·Welcome to Macintosh" screen by
default. You'll probably want your application on the larger screen and MacsBug on the
smaller screen. To select a different screen for the MacsBug display, press the Option key
while clicking on the Monitor icon from the Control Panel, drag the Macintosh icon to the
desired screen, and reboot

The MacsBug display is in black and white only by default. If you prefer to debug in color,
see the section "MacsBug resources" later In this chapter.

At the bottom of the MacsBug display is the command line, indicated by a flashing bar
cursor. MacsBug accepts the standard editing keys (Delete, Left Arrow, Right Arrow), as
well as several spedal functions:

Command-Left Arrow

Command-Right Arrow

Command-Delete

Command-V

Move CUlSor left one word.

Move cursor right one word.

Delete the word to the left of the cursor.

Restore previous command line(s) for editing.

Multiple commands, separated by semicolons, can be entered on the command line. To
execute the command(s) on the command line, press Rerum or Enter. Pressing Return
without entering a command repeats the last command.

You can use either the Rerum key or the Space bar as a toggle to pause and resume
execution of a command. To cancel the execution of a command, press any other key.
(Note, however, that execution cannot then be resumed.)

Thorough on-line help infonnation that includes the syntax of all commands can be
displayed with the HElP command

The largest area ci the screen is the output region. MacsBug output falls into three
categories, indicated by three levels of indentation:

• The reason for the break. MacsBug tells which 68000 exception, Macintosh system
error, or user-specified break caused MacsBug to be invoked.

• Messages. For each command you enter, MacsBug gives a message either confinnmg
execution or explaining a failure.

• Command output.

10 MacsBug 6.1 Reference

)

(

Output scrolls up (and eventually off) the screen as new commands are executed. You can
use the Up Arrow and Down Arrow keys to examine text that has scrolled off the top of the
display. 'Ibis feature is enabled by a buffer whose size-initially 2K--can be modified to
suit your needs. (See ·MacsBug resources" later in this chapter for details.) An 8K buffer
will hold about four pages of output

If you scroll back to examine some text and then enter another command, the new output
is displayed starting from where you are (rather than at the end of the buffer). The
rationale behind this behavior is that you'll more often want to see the new output along
with the output at which you were just looking.

The LOG command lets you save all MacsBug output to either a me or an ImageWriter~
printer.

Immediately above the command line is the PC (program counter) regionj it shows the
address of the next instruction to be executed, along with the disassembly of that
instruction. In the case of a fatal eITOr, it shows the last instruction executed (in other
words. the instruction that caused the crash). You can change the number of lines
displayed-it's two lines by default-in the PC region; see "MacsBug resources" later in
this chapter for details. -.

The area on the left side of the screen, known as the status region, displays information
about the system. At the top is the address contained in the stack pointer (register A7),
followed by the bytes at the top of the stack. The number of bytes displayed varies with
the screen size and the fonnat of the display. The SHOW command lets you specify the
display in word, long word, and ASCn fonnat; it also lets you specify other areas of
memory for display.

Below the stack data is the name of the current heap; by default it's the application heap.
You can change the current heap with the HX (Heap Exchange) command. The HZ (Heap
Zones) command tells you all known heap zones and works with MultiFinder.

The rest of the status region shows the contents of the CPU registers. Several commands
give additional register infonnation. The TF (Total Floating-Point) and TM (Total MMU)
commands show the contents of the floating-point register and MMU registers
respectively. The TO (Total Display) command displays the CPU registers in the output
region. SiDce the CPU registers are constantly updated and displayed in the status region,
the TO oommand is useful for remembering register values between commands.

There are several ways to leave MacsBug. The simplest way is with the G (Go) command;
program execution resumes at the current program counter. If MacsBug was invoked due

- to an unexpected eITOr condition, it may not be possible to resume program execution.
Depending on the severity of the eITOr condition, it may be necessary to relaunch the
application (EA command), relaunch the shell (ES command), restart the system (RS
command), or reboot the machine (RB command).

CHAPTER 2 Debugging With MacsBug 11

Specifying things

Most of the MacsBug operations-setting breakpoints, displaying memory,
disassembling code-need an acrual address to work with. To make life easier, MacsBug
provides a number of different alternatives to specifying hard addresses.

Whenever possible, MacsBug accepts and returns symbols in place of addresses.
Procedure names are the most common example of this. Most compilers for the
Macintosh have the option of embedding charaaer names after the code generated for
each procedure or function. (Compiler writers will want to see Appendix G for details on
procedure name definition.) If you've used this option, you can specify a procedure
name and offset whenever MacsBug wants an address. Conversely, MacsBug returns
addresses as offsets from procedures whenever it can. For instance, if the instruction
shown in the PC is part of a valid procedure, the PC window gives the name and offset of
that instruction.

You can disassemble any of your application's procedures with the IR command.

MacsBug provides a very handy feanire for displaying and selecting procedure names.
When you press Command-:, a menu sho~ng all procedure names is displayed. You can
qualify the names displayed by typing the fust few letters in the name. You can then use
the arrow keys to move up and down the list When the name you want is highlighted,
press Return and the selected name is inserted into the command line at the insertion
point.

If you've qualified the list and want to move back to the previous level of qualification,
press the Delete key. To dismiss the menu without making a seleaion j press the Esc key.

The WH (Where) command provides mapping between symbols and addresses. When
given an address or a symbol name, MacsBug gives you the other ite~

To translate a symbol name into an address, MacsBug must search the current heap. Since
this search p'rocess can be slow, MacsBug provides the SX (Symbol Exchange) command
for disabling the use of symbol names .

• Note: Advanced programmers may fmd thermelves dealing with multiple fues (code
segments, for instance) having the same symbol names. The RN (Resource Number)
command lets you restrict symbol matching to a file with a given reference number.

MacsBug supports both 24-bit and full 32-bit addressing roodes.

12 MacsBug 6.1 Reference

(

(

MacsBug also allows the creation of macros. Macros are simple text string substitutions
and can be used to create command name aliases, reference global variables, and name
corruoon expressions. Macros are expanded before the command line is executed and can
thus contain anything you can type in a command line.

You can create macros on the fly with the MC command or include them in a resource me.
(See the MC command for details.) The MCD command lists the macros known to
MacsBug, and the MCC command dears one or all macros.

How did I get here?

When your program crashes unexpectedly, you'll start with several clues. MacsBug tells you
what 68000 exception or system error ID caused the crash. The PC region gives you the
instruction that caused the crash. The location of the instruction, whether in ROM or at an
offset from a procedure, is also given. You can examine the code immediately preceding
the crash by using the IP cominand.

One approach is to examine the stack for the procedure call history. If your procedures
use the UNK A6 procedure prolog, the SC6 command returns the calling history. If they
don't use UNK A6, or if you are in a part of the ROM that doesn't use A6 links, you'll need
to use the SC7 command. This command nnds possible return addresses on the stack. You
can use these addresses to examine the stack yourself. You can also use the addresses in
other MacsBug commands. Be aware, though, that the SO command will almost certainly
include old or invalid values (in other words, addresses not in the current calling chain),
since local stack variables can change the stack top without changing the contents.

Another way to nnd out where a program has ~n is by recording the A-trap calls it
makes, using the ATR (A-Trap Record) command. When recording has been turned on,
MacsBug records all trap "calls in a circular buffer. When the buffer is full, the oldest calls
will be overwritten by new calls. You can denne the size of the buffer and thereby the
number d traps recorded. (See the ATR command for details.) You may want to consider
always eD2bUng trap recording; the performance cost isn't very great. To see the
information recorded, use the ATP (A-Trap Playback) command.

In the same way that trap recording lets you build a trap history in a buffer, the ATT
command lets you direct that history to the screen or to a log file. Tracing to the screen is
useful if you have two screens. MacsBug can take over one screen and display the history
as your program executes on the other screen. In cases where the program crashes so badly
that MacsBug cannot be invoked, you'll still have a trap history available.

CHAPTER 2 Debugging With MacsBug 13

Enabling logging with the LOG command and tracing to a me is useful if you want to
record a large number of calls and can't afford to dedicate the memory for the trap
recording buffer. Another benefit of log ftles is that you can use your editor to help
examine the data.

If you tum on logging after entering MacsBug, the reason for the break is lost You can use
the HOW command to redisplay the reason.

Controlling program execution

MacsBug provides a set of commands that let you control and watch the execution of
your program. Two commands let you execute instructions one at a time. The S (Step)
command executes a single 68000 instruction, stops at the next instruction, and returns to
MacsBug. The contents of the program counter-in other words, the next instruction to
be executed-are disassembled and displayed You can also step through a specified
number of instructions, or until a coDdition is met (for instance, when a register contains a
particular value).

When the S command reaches a subroutine or an A-trap call, it steps right in. Particularly
with ROM routines, which are often very long and typically not of interest, you'll probably
want to use the SO (Step Over) command instead. The SO command works exactly like
the S command except that it treats A-tlap calls and subroutines as a single instruction,
stopping at the first instruction after the A-trap or subroutine returns. (With traps having
the auto-pop bit set, MacsBug returns to the address on the top of the stack at the time
of the trap call.)

While stepping through code, MacsBug decodes conditional statements (OBee, Bee, and
Sec instructions) to determine whether branches will be taken or will fall through. This
information is shown to the right of the PC information.

If you've stepped into a procedure with the S command and want to get out, you can use
the MR (Magic Return) command to move to the end of the procedure. The MR command
needs to know where the return address isi for this reason, irs a good idea to use the UNK
A6 prolog for your procedures.

If you're stepping through your program and find you want to move past some code, you
can use the GT (Go Till) command to resume execution until a specified address
is reached.

14 MacsBug 6.1 Reference

,/

Stopping at a particular place

Once you've narrowed down the location of a bug, you may want MacsBug to stop when a
particular point in your program is reached. There are several ways of doing this.

The ATB (A-Trap Break) corrunand lets you specify a break when A-traps are encountered.
You can specify individual traps or a range of traps, as well as conditions that must be
met. For instance, you couid specify a break when the HFSDispatch trap is encountered
and the value of register DO is 6 (which is the routine selector for the DirCreate routine).
You can also specify commands to be executed once MacsBug has been invoked, making
life a little easier.

Another way to stop program execution is to set a breakpoint at a specified address,
using the BR corrunand. The address can be given as an acruai address, or as an offset from
a procedure name. This information wiU have been found by disassembling or stepping
through your code. The BR command also lets you specify commands to be executed
when the breakpoint is reached. You can specify multiple breakpoints; MacsBug stores
this information in a table, whjc-h you can see at any time with the BRD corrunand
Breakpoints remain set until you clear them with the BRC corrunand.

You can also set breakpoints by using partial name matching with the BRM command.
You pass BRM a sequence of characters; it sets breakpoints on all names that contain
those characters. The BRM corrunand is especially useful with C++ debugging; you might,
for instance, wish to break on all methods of a given class.

The BR command can be useful in working with A-traps as well as with your own code.
With some ROM routines, the actual trap is often preceded by glue code that sets up the
parameters. Whereas the ATB command stops right before the trap is made, the BR
command can be used to stop at the poin~ where your program ca1Is the routine, letting
you examine what goes on with the glue code.

An advantage of using breakpoints is that they don't require changes to your source code
and can be used after the application has been built. However, breakpoints cannot be set
in a procedure until the segment containing that procedure is loaded and the address
determined. One way around this problem is to specify a break from within your
procedun: by using the traps Debugger ($A9FF) and DebugStr ($ABFF). Debugger is a
system tr2p that invokes MacsBug and displays the message "User break at <addr>. n

DebugStr additionally lets you supply a custom message for display, as weU as MacsBug
commands for execution. (For a description of how to declare and use these traps, see
Appendix D.)

The DX (Debugger Exchange) command lets you disable breaks from the Debugger and
DebugStr traps without having to go in and remove them from your progcam.

CHAPTER 2 Debugging With MacsBug 15

Watching for memory to change

Several commands let you determine when and where a particular area of memory is being
changed. One common problem is when a program inadvertendy changes the contents of
a memory location. You can detect when a range of memory changes by using the SS (Step
Spy) command. This command checksums a given range and then executes instructions
one at a time until the checksum changes. The. SS command can slow down a program
considerably, so MacsBug treats a long word as a special case and optimizes for speed. If
you suspect a certain range of memory is being altered, you usually don't need to check
the whole range but can check just a long word within the range. If you must check a long
range, you'll probably want to use a hardware emulator. (You can also use the SS command
as a way of slowing down certain routines-those that draw to the screen, for instance
so you can actually watch how they work.)

A variation on the SS command, the ATSS (A-Trap Step Spy) command lets you checksum
a memory range before specified A-traps are executed.

The CS (Checksum) command lets Y9U monitor whether a range of memory has changed.
The first time you exeOJte the CS command, you specify a range and MacsBug computes
a checksum. Subsequent CS commands compute the checksum and compare it with the
previous value.

Displaying and setting memory

The DB (Display Byte), DW (Display Word), DL (Display Long), and DP (Display Page)
commands display respectively a byte, word, long word, and page (128 bytes) of memory.
With the DM (Display Memory) command, you can specify a number of bytes to be
displayed. Often you'll want to look at the contents of a data structure consisting of
fields of various different sizes. The DM command lets you specify templates for
displaying meIOOry in a structured format.

The TMP (Tempbte) command lists the names of all templates known to MacsBug. See
the deSCription of this command for instructions on defining your own templates.

The SB (Set Byte), SW (Set Word), and SL (Set Long) commands let you set bytes, words,
and long words in memory. The SM (Set Memory) command lets you assign values of .
varying size; the size of the assignment is determined by the value.

16 MacsBug 6.1 Reference

Checking the heap

Several commands let you examine and monitor heap zones. The HD (Heap Dump)
command displays infonnation about all blocks in the current heap. To get a summary of
the heap allocation, use the lIT (Heap Totals) command.

One of the more common bugs is dereferencmg a handle to a block that has moved,
potentially corrupting the heap. Two commands are useful in detecting this problem The
HC (Heap Check) command checks the current heap and reports any errors. If the
problem is reproducible, the ATHC (A-Trap Heap Check) command can be used to check
the heap before trap calls.

Exercising your program

It's possible to simulate a worst-case memory situation to exercise your application. The
HS (Heap Scramble) command moves all relocatable blocks whenever they might be
moved; in other words, whenever the NewPtr, NewHandle, ReallocHandle, SetPtrSize, or
SetHandleSize trap is called. (With SetPtrSize and SetHandleSize, the heap is scrambled
only if the block size is being increased)

The DSC command tums on the Extended Disciplinel1l utility. This program examines
parameters before A-traps are called and checks results after the calls complete. If
Extended Discipline detects an error, MacsBug is invoked. (See the Extended Discipline
manual for details.)

The dot address

MacsBug provides a way of saving and specifying addresses between successive
commands; irs so useful that it deserves a separate section.

MacsBug maintains a variable, known as "dot," that contains the last address of interest
from certain commands. The period character (.) refers to this address and can be used in
any command that expects an address. The commands that set the "dot address" are ones
that are often followed by another command using the same address.

CHAPTER 2 Debugging With MacsBug 17

Dot is used primarily as a shorthand notation between one command and the next. For
instance, you might type WH name to fInd a particular procedure. The WH command sets
dot to the address returned, letting you then type I L • to disassemble code, or BR • to
set a breakpoint at the start of the procedure.

Dot can also be used as a placeholder. For instance, the OM (Display Meroory) command
displays meroory starting from a specified address and sets dot to that address. You can
resume execution, reenter MacsBug'later, and type DM • to display the same meroory. This
technique is useful for watching Jor an area of meroory to change.

The commands that set dot are as follows:

• The commands for displaying meroory-DM, DP, DB, OW, and DL-all set dot to the
address of the fIrst byte displayed.

• The commands for setting meroory-SM, SB, SW, and SL-set dot to the address of
the fIrst byte changed. These commands also set the last command to the OM
command. This means that after setting meroory, you can simply press Rerum to
display the meroory just set.

• The WH (Where) command sets ~ot to the address of the procedure or trap located.

• The F (Find) command sets dot to the fIrst byte of the string that was found.

• The IL (Disassemble From Address), IP (Disassemble Around Address), and ID
(Disassemble One Line) commands set dot to the address of the f11'St instruction
disassembled.

• The dot address is also used in connection with heap commands. Any command that
scans the heap-HD and He, for instance-an receive a heap error. If the error
concerns a particular block (as opposed to the entire heap), MacsBug setS dot to the
address of the block header. Typing DM • will display the block in question. MacsBug
also scans resource maps while examining resource blocks in the heap. Resource map
errors set dot to the address of the bad map.

18 MacsBug 6.1 Reference

•

(

(

MacsBug resources

The MacsBug release disk includes a variety of resources that configure MacsBug and
perform useful functions. The Debugger Prefs file contains the following standard
resources:

Type

'rnxbc'

'rnxbi'

'rnxbm'

'rnxwt'

ID

o
o

100,101

100

Contents

RGB specifications for foreground and background colors

Default configurations: number of traps to record with the
ATR command, number of lines to display in the PC area,
size of the history buffer.

Standard macros; see the MC command for details.

Standard templates; see the TMP command for details.

If you want these resources to be loaded, Debugger Prefs must be in the System Folder on
the startup disk. -

You can use ResEdit to edit these resources. Debugger Prefs contains a 'tmpl' resource
with templates for ail. of the MacsBug resources. If you have ResEdit version 1.2 or later,
these templates are automatically used when you edit a resource. If you have an earlier
version of ResEdit, just copy the 'tmpl' resource from Debugger Prefs and paste it into
ResEdit.

The Resources folder contains additional resources that you can paste into Debugger
Prefs (using Res Edit) to increase functionality:

Name Type ID Contents

C++ 'C++ ' 0 Code to properly interpret C++ names. (Do not edit
this resource.)

KCHR 'KCHR' 0 The key map to use for the MacsBug keyboard. This
resource is used to debug international software.
(Do not edit this resource.)

Floating Point 'rnxbm' 102 Macros to support A-Trap breaks at FP68K cails

HFSCalls 'rnxbm' 103 Macros to support A-Trap breaks at HFSDispatch calls

List Manager 'rnxbm' 104 Macros to support A-Trap breaks at PackO calls

The Resources folder also contains another folder, MPW .r files, that provides the text
files used to create all of the MacsBug resources. If you like, you can use these files as
models for creating your own resources and add them to Debugger Prefs with the Rez tool.

CHAPTER 2 Debugging With MacsBug 19

(

Chapter 3 MacsBug Commands

Contents

Command syntax 23
Values 23
Operators 24

Conunand descriptions 25

21

(

(

Command syntax

MacsBug conunands have the follOwing format:

COMMAND required parameters [optional parameters]

Parameters can be numbers, text literals, symbols, or expressions combining these
elements. MacsBug proVides full conunand line evaluation, so any parameter can be
entered as an expression. The general form of an expression is

value! [operator value2J

Parentheses can be used to control the order of evaluation. Expressions always evaluate
to a 32-bit value unless . w or . B follows the specified value (in which case the word or
byte is sign-extended to 32 bitS). Expressions can evaluate to either a numeric or a
Boolean value depending on the operators used. The operation of certain conunands
varies depending on the type of expression. For instance, the BR (Breakpoint) command
will break after n times if the given expression is numeric, or when a certain condition is
met if the expression is Boolean.

Values

Depending on the command, there are a variety of different ways to specify values:

registers

numbers

symbols

traps

Ail 68COO-family registers use their Motorola names. MMU 64-bit registers and
floating-point registers are not allowed in expressions.

Numbers are hexadecimal by defaul~ but can be preceded by the dollar sign
character ($) in the case of conflicts with registers An and Dn. Numbers are
decimal if preceded by the number sign character (N). The unary operat0fs "+"

and "-'II can precede any number, but must appear before the "tt" or "$" character.

Symbols are found by searching the heap, and evaluate to an address. (See
Appendix G for details on procedure name defInition.) Partial name matching is
supported. If you enter BR My, for instance, the fIrst symbol starting with My is
used as the breakpoint address.

A-traps are specified by trap number in the range AOOO to ABFF or by trap name.
Trap names can be preceded by the dagger character (t) in the case of conflicts
with symbol names.

CHAPTER 3 MacsBug Commands 23

strings Strings are sequences of characters surrounded by single C I) or double C")
quotation marks. There is no padding to word or long word boundaries; each
character in the string is 1 byte.

Operators

The period character C.) specifies the dot address; see Chapter 2 for details on
using this character.

The colon character (:) indicates the address of the start of the procedure shown
in the program counter window. This character is not valid if no procedure name
exists for PC.

The operators allowed in expressions, listed in order of precedence from highest to
lowest, are given below. Groupings within the table show operators of the same
precedence.

() Grouping

@ (prefix) "(postfix) Address indirection

NOT Bitwise or Boolean NOT

I

+

•
<>
<

>
>-

&
I I
XOR

MOD

-.
!-

AND
OR

Multiplication
Division

Addition
Subtraction

Equal
Not equal
Less than
Less than or equal
Greater than
Greater than or equal

Bitwise or Boolean AND
Bitwise or Boolean OR
Bitwise or Boolean XOR

• Note: @addr is the same as addr". Addr". B or addr". W fetch only a byte or word
from addr; the value is then sign-extended to 32 bits.

24 MacsBug 6.1 Reference

(
Command descriptions

This section contains descriptions of all MacsBug commands, arranged alphabetically.
For each command, the parameters are given and the operation of the conunand
discussed. Where appropriate, examples are provided. A list of the entire set of
commands can be found in Appendix A.

CHAPTER 3 MacsBug Commands 25

ATB - A-Trap Break

Syntax

Description

Examples

ATB(A] [trap [trap]] [n I eqJr] r;C7J'IlbI]

The ATB command sets a breakpoint at the specified A-trap(s). Traps can be
specified by either trap number or trap name. Appending the letter A to the ATB
command tells MacsBug to break only when the given trap is called from the
application heap. (Note that this ~ the current application heap at the time
the ATB command was entered.) Specifying two traps indicates a range of traps;
MacsBug breaks at every trap encountered within this range. If no traps are
specified, a default range of AOC'J) through ABFF is used.

If n is specified, MacsBug breaks only after a given trap has been encountered
n times. If expr is specified, MacsBug breaks only when a given trap has been
encountered and expris TRUE. If neither n nor eqJris given, MacsBug breaks
each time the trap is encountered. You can also supply one or more commands to
be executed once the break conditions are satisfied; each command must be
preceded by a ~colon and enclosed in quotation marks.

You can set multiple trap breaks with different break conditions or commands.
MacsBug checks the table until an entry satisfies the break conditions. The break
commands for this entry are executed. Later entries in the table (that also satisfy
the break conditions) are ignored.

Be aware that MacsBug stores the infonnation for breakpoints, step commands,
and A-trap commands in a single table. New entries are entered at the end of the
table. It's possible to receive the error message "Entry will not fit in the table"
while entering an ATB command if step commands, BR commands, and other
A-trap commands have already filled this table. .

ATB {break on all traps}
ATB Get Next Event {break on GetNextEvent trap}
ATB AOOO A010 {break on traps Open through Allocate}
ATB HFSDispatch DO.W - 6 {break on HFSDispatch when register·DO-6 (Direreate)}
ATB SizeWindow ';DM (SP+6)A WindowRecord' {break on SizeWindow, then display}

{ from the contents of the long word }
{ 6 bytes above the stack pointer }
{ using the WindowRecord template}

For a display of the trap table after having set these actions, see the AID command.

See also ATC,AID

MacsBug 6.1 Reference

r" \,

(

(

ATC - A-Trap Clear

Syntax

Description

Example

ATC [trap [trap 11

The ATC conunand clears all actions on the specified traps; in other words, it
cancels the ATB, ATI, ATHC, and ATSS commands. Traps can be specified by
either trap number or trap name. Specifying two traps indicates a range of traps;
MacsBug cancels actions for all traps within this range. If no traps are specified,
all trap actions for all traps are cleared

The ATC conunand comes in handy when you want to set an action for most, but
not alL of the traps in a particular range. For instance, you may think you want to
break at all toolbox craps, but soon fmd that you can do without a break aE every
call to GetNextEvent One way around this is to set two ranges around
GetNextEvent with the ATB conunand. An easier way is to set the action on the
whole range and use the ATC command to exclude the GetNextEvent trap. Be
aware, however, that MacsBug accomplishes this by doing the dirty work for you,
itself setting two new ranges around GetNextEvent This means that, even though
you are ostensibly clearing a trap action, you are actually creating an additional
entry in the A-trap table and could conceivably receive the error message "Entry
will not fit in the table."

Assume the trap table (displayed by using the AID command) looks like this:

A-Trap actions from System or Application
Trap Range Action Cur/Max or Expression Commands
AOOO ABFF Break 00000000 / 00000001

After you enter the conunand

ATC Get Next Event

the trap table looks like this:

A-Trap actions from System or Application
Trap Ranqe Action Cur/Max or Expression Commands
AOOO A96F Break 00000000 / 00000001
A971 ABFF Break 00000000 / 00000001

See also ATB, ATD,ATHC, ATSS,ATT

CHAPTER 3 MacsBug Commands 27

ATD - A-Trap Display

Syntax

Description

Example

AID

The AID command displays the A-trap table(s), which list all actions set with the
ATB, AlT, ATHC, and ATSS commands. Two A-trap tables may be displayed,
depending on which actions have been set One table lists all actions restricted to
the application heap (using the A parameter), and another lists actions that apply
to either the system heap or the application heap.

Both tables have the same format The trap r.mge for the action is shown in the
fIrst column, and the type of action is shown in the second column. If a number
of iterations (n) was specified with the action, it's shown in the third column,
preceded by the acrual number of iterations so far. If a logical expression was
entered instead, it's shown in the third column. The fourth column shows any
commands that were specified for execution upon breaking into MacsBug.

In this example, the following trap breaks were set previously with the ATB command:

ATB
ATB GetNextEvent
ATB MOO A010
ATB HFSDispatch DO.W - 6
ATB SizeWindow ';OM (SP+6)~ WindowRecord'

The trap table displayed by the AID command is given below. Note that traps are represented by
trap number; you can determine the corresponding trap name by using the WH command.

ATO
A-Trap actions from System or Application

Trap Ranqe Action Cur/Max or Expression Commands
AOOO ABFF Break 00000000 / 00000001

A970 Break 00000000 / 00000001
AOOO A010 Break 00000000 / 00000001

A060 Break DO.W - 6
A91D Break 00000000 / 00000001 ;OM (SP+6)~ WindowRecord

See also ATB,ATC,ATHC,ATSS,AlT, WH

28 MacsBug 6.1 Reference

(
Arne - A-Trap Heap Check

Syato

Desaipdon

See also

ATIlQA1 [trap [trap l][n I .1

The ATIIC command checks the consistency of the heap before executing the
specified A-trap(s). If the heap is found to have been corrupted, MacsBug is
invoked and an error is displayed; see the HC command for a list of possible
errors.

Traps can be specified by either trap number or trap name. .. Appending the letter
A to the ArnC command tells MacsBug to check only when the given trap is called
from the application heap. (Note that this means the current application heap at
the time the Arnc command was entered.) Specifying two traps indicates a .
range of traps; MacsBug checks for every trap encountered within this range. If
no traps are specified, a default range of AOOO through ABFF is used.

6. Important If you don't specify a trap range, be aware that the Memory
Manager makes trap calls-StripAddress, for instance-while
rooving heap blocks around. In such cases, Arnc will report an
error because the heap is inconsistent, albeit temporarily. You
can avoid these unnecessary breaks by clearing the action on
the offending traP-ATC StripAddress, for example. 6

If n is specified, MacsBug checks only after a given trap has been encountered
n times. If expr is specified, MacsBug checks only when a given trap has been
encountered and expr is TRUE. If neither n nor expr is given, MacsBug checks
each time the trap is encQuntered.

ATC,ATD,HC

CHAPTER 3 MacsBug Commands 19

ATP - A· Trap Playback

ATP Syntax

Description The ATP command plays back the information saved while trap recording is on.
(For details on trap recording, see the ATR conunand.) This information includes
the trap name and the contents of the program counter (PC). For operating
system traps, the values of registers AO and DO are shown, as well as the 8 bytes
pointed to by register AO. For toolbox traps, ATP shows the value of register A7
and the 12 bytes to which it points.

Example

In the example below, SetPort is the most-recently executed trap.

ATP
Trap calls. in the order in which they occurred

A030 OSEventAvail
PC ,. 004C7346
AO ,. 004871F8 003A 1F34 2900 0048 DO,. OOOOFFFF

A970 GetNextEvent
PC - 004C2BCA
A7 - 0048724C 0048 7290 FFFF 0020 156A 3447

A03.0 OSEventAvail'
PC - 004C7346
AO - 0048710C 004C 1684 0040 013C DO - 00000000

A031 GetOSEvent
PC '" 004C7334
AO - 00487290 0000 0000 0000 OOOA DO - 00000000

A9B4 SystemTask
PC ,. 004C2800
A7 '" 00487lFO 0000 0000 0000 FFFF 0048 7290

A874 GetPort
PC ,. 40815150
A7 ,. 00487lC4 0048 7lC8 0048 7290 4598 3427

A924 FrontWindow .
PC ,. 40815154
A7 '" 004871C4 0000 0000 0000 0000 003A 1040

A873 Setilort
PC ,. 408151AE
A7 ,. 004871C8 003A 1040 0040 013C 1003 3F6A

See also ATR

30 MacsBug 6.1 Reference

ATR - A-Trap Record

Syntax

Desaipdon

SeeaJso

ATR[A] [ON I OFF)

The ATR command turns trap recording on and off; if no parameter is passed, the
command toggles between modes. Trap recording saves information about the
n most recently executed traps. By default, MacsBug records the last 16 tra ps.
You can, however, specify any number by modifying the 'mxbi' resource in the
Debugger Prefs file. Since the traps are saved in a circular buffer, space is the only
penalty for recording more traps; time is not a factor.

Appending the letter A to the ATR command tells MacsBug to record information
only for traps called from the application heap. (Note that this means the current
application heap at the time the ATR command was entered.)

The information saved, which can be displayed with the ATP command, includes
the trap name and the contents of the program counter (PC). For operating
system traps, the values of registers AO and DO are saved, as well as the 8 bytes
pointed to by register AO. For toolbox traps, ATR saves the value of register A7
andothe 12 bytes to which it points.

ATP

CHAPTER 3 MacsBug Commands 31

ATSS - A-Trap Step Spy

Syntax

Desaiption

See also

ATSS[A][trap[trap1Hn 1.1, addrl[addr2)

The ATSS command calculates the checksum for the given memory range before
executing the specified A-trap(s). If the checksum value changes, MacsBug is
invoked. If addr2 is omitted, ATSS waits for the long word at addrl to change.
The ATSS command is optimized for speed with a long word; longer checksum
ranges can be slow.

Traps can be specified by either trap number or trap name. Appending the letter
A to the ATSS command tells MacsBug to check only when the given trap is called
from the application heap. (Note that this means the current application heap at
the time the ATSS command was entered.) Specifying two traps indicates a range
of traps; MacsBug checks for every trap encountered within this range. If no
traps are specified, a default range of AOOO through ABFF is used.

If n is specified, MacsBug checks only after a given trap has been encountered
n times. If e..1j)r is specified, MacsBug checks only when a given trap has been
encountered and e..1j)r is TRUE. If neither n nor e:xpr is given, MacsBug checks
each time the trap is encountered.

ATC,AID,SS

32 MacsBug 6.1 Reference

AIT - A-Trap Trace

Syntax

Description

Example

ATT HideCursor

ATIlAJ[trap[trap]][n I ~]

The ATI command displays information about the execution of the specified
A-trap(s). Traps can be specified by either trap number or trap name.
Appending the letter A to the ATI command tells MacsBug to display information
only when the given trap is called from the application heap. (Note that this
means the current application heap at the time the ATI command was entered.)
Specifying two traps indicates a range of traps; MacsBug displays information
for every trap encountered within this range. If no traps are specified, a default
range of A<XX> through ABFF is used.

If n is specified, MacsBug displays information only after a given trap has been
encountered n times. If expr is specified, MacsBug displays information only
when a given trap has been encountered and e:xpr is TRUE. If neither n nor expr is
given, MacsBug displays information each time the- trap is encountered.

HideCursor PC s 0000A6F8 DO - 00570070 A7 s"004A6EOO

See also ATC,ATD

CHAPTER 3 MacsBug Commands 33

BR - Breakpoint

Syntax

Description

BR addr[n I e:cpr][1; cmds I 1

The BR command sets a breakpoint at the specified address. If n is specified,
MacsBug breaks only after addr has been reached n times. If expr is specified,
MacsBug breaks only when addr has been reached and e:cpr is TRUE. If neither
n nor expr is given, MacsBug breaks each time addr is reached. You can also
supply one or more commands to be executed once the break conditions are
satisfied; each command must be preceded by a semicolon.

Entering BR without any parameters displays the breakpoint table, a list of all
breakpoints in the order in which they were set; see the description of the BRD .
command for details.

.. Warning You should be sure that the given address contains an
_ instruction. MacsBug implements breakpoints by placing a

TRAP IF instruction in the word at addr. If addr points to the
middle of an instruction, the substituted TRAP IF instruction
will be treated as part of the instruction, possibly causing an
error. ~

Be aware that MacsBug stores the infonnation for breakpoints, step commands,
and A-trap commands in a single table. New entries are entered at the end of the
table. Ifs possible to receive the error message "Entry will not fit in the tablen

while entering a BR command if step commands, A-trap commands, and other BR
commands have already filled this table.

If you set a breakpoint in a relocatable block, MacsBug stores the breakpoint as
a handle to the breakpoint address. This means that if the block moves, the
breakpoint is updated automatically.

6. Important Setting a breakpoint at a ROM address will cause execution to
be slow, because MacsBug must trace through each instruction
until the breakpoint address is reached. ll.

34 MacsBug 6.1 Reference

(
Examples

BR TestProc+10 {break when TestProc+10 is reached}
BR TestProc+20 3 {break when TestProc+20 is reached 3 times}
BR TestProc+30 DO - 1 {break when TestProc+30 is reached and reqister DO-l}
BR TestProc+40 AO <> 0 ';DM AO 40' {break when TestProc+40 is reached and}

{ reqister AO is not equal to 0; then display
{ memory at address in AO for 40 bytes}

For a display of the breakpoint table with these breakpoints set, see the BRD corrunand.

See also BRC, BRD, BRM

CHAPTER 3 MacsBug Commands 35

HRC - Breakpoint Clear

Syntax

Description

See also

BRC [addr}

The BRC command clears the specified breakpoint; if no parameters are
specified, all breakpoints are cleared.

BR, BRD, BRM

36 MacsBug 6.1 Reference

DRD - Breakpoint Display

Syntax

Desaiption

Example

BRD

BRD

The BRD command displays the breakpoint rabIe, a list of all breakpoints in the
order in which they were set

If the BR command that set a breakpoint specified a break only after reaching
the address n times, n is shown in the third column, preceded by the number of
times the address has been reached so far. If an expression was entered instead,
it's shown in the third column. The fourth column shows any commands that were
specified for execution upon breaking into MacsBug.

• Note: MacsBug implements the GT command by setting a
temporary breakpoint. If you enter MacsBug by some other
means and execute the BRD command, this breakpoint remains
set and .you'll see an entry for it in the breakpoint table.

In the example below, the following breakpoints were set with the BR command:

BR TestProc+10
BR TestProc+20 3
BR TestProc+30 DO - 1
BR TestProc+40 AO <> 0 ';DM AO 40'

Breakpoint table
Address Module name
004635EO TestProc+10
004635FO TestProc+20
00463600 TestProc+30
00463610 TestProc+40

Cur/Max or Expression Commands
00000000 / 00000001
00000000 / 00000003
DO - 1
AO <> 0 ;DM AO 40

See also BR, BRC, BRM

CHAmR 3 MacsBug Commands 37

BRM - Multiple Breakpoints

Syntax

Description

Examples

BRM name

The BRM command lets you set breakpoints using partial name matching. You
pass BRM a sequence of charactelS; it sets breakpoints on all names that contain
those charactelS. C++ programmelS, for instance, can set breaks on all classes
with a given method name or on all methods with a given class name.

BRM 'TParseNode::'

This example will break on a11 methods in the class TParseNode.

BRM ': :Draw'

This example will break on all classes that contain a Draw method.

In both examples, the double colons 'qualify the names using the C++ syntax. (If the double colons
were omitted-for instance, BRM ora_BRM would set breaks on all names containing the characters
"Draw.") When the double colon syntax is used, the entire string must be enclosed in quotation marks'
(since the colon has its own predefined meaning in MacsBug) ..

See also BR, BRC, BRD

38 MacsBug 6.1 Reference.

" .. /1.

(.' _ ..

cs - Checksum

Syntu:

Description

CS[~![~r211

The CS command computes a checksum for the memory range from addr!
through addr2 and saves the result. If addr2 is omitted, CS checksums the long
word at addr!.

Subsequent CS commands without parameters recompute the checksum and
compare it with the previous value. If no address range has been previously
specified, entering CS without parameters will return the error message "Address
range must be entered before comparisons."

CHAPTER 3 MacsBug Commands 39

DB - Display Byte

DB [addr] Syntax

Description The DB command displays the byte at the specified address. If addr is omitted,
DB displays the byte at the dot address. Pressing Return displays the next byte.
The dot address is always set to the address of the byte displayed.

Example

DB 0
(Return}

Byte at 00000000 = S40
Byte at 00000001 - Sal

64 64 '@'

129 -127 '.'

See also DL, DM, DP, DW

40 MacsBug 6.1 Reference

(

(

DH - Disassemble Hexadecimal

Syntax

Desaiption

Example

DR 4E56 0000

DH expr ...

The DH command disassembles the given expressions as a sequence of 16-bit
apcodes. This command is useful in converting hexadecimal values to assembler
mnemonics.

Disassembling hex value
00308AB6 LINK 1.6.1$0000 I 4E56 0000

CHAPTER 3 MacsBug Commands 41

DL - Display Long

DL[addr] Syntax

Description The DL command displays the long word at the specified address. If addr is
omitted, DL displays the long word at the dot address. Pressing Return displays
the next long word. The dot address is always set to the address of the long word
displayed.

Example

DL 0
(Return}

Long at 00000000 a $40810000
Long at 00000004 a $40802A14

See also DB, DM, DP, DW

42 MacsBug 6.1 Reference

1082195968
1082141204

1082195968 '@ ••• '
1082141204 '@.*.'

(

(

DM - Display Memory

Syntax

Description

Examples

DM 0

DM [addr[n I template I basic type 11

The DM conunand displays memry starting from the specified address and
continuing for n bytes. If n is omitted, 16 bytes are displayed. If both addr and
n are omitted, DM displays 16 bytes beginning at the dot address. Pressing
Return displays the next 16 bytes. The dot address is always set to the address of
the first byte displayed.

Instead of specifying a number of bytes, you can specify the name of a template
or one of the basic types used in creating a template. See the TMP command for
details.

Displaying memory from 0_ -
00000000 4081 0000 4080 2A14 004F 6306 4080 20FC @"'@'*"Oc'@' •

Note that the centered dot character (.) represents nonprintable characters. In the next example,
windowList is a macro defining a low memory global variable, and WindowRecord is a template.

DM windowList~ WindowRecord

Displaying WindowRecord at 003AOB14
003AOB24 portRect 0000 0000 01B3 027A
003AOB2C visRgn 003A3E88
003AOB30 clipRgn 003A4570
003AOB80 windowKind 0045
003AOB82 visible TRUE
003AOB83 hilited TRUE
003AOB84 goAwayFlag TRUE
003AOB85 spareFl'ag TRUE
003AOB86 strucRgn 003A4584
003AOB8A contRgn 003A4598
003AOB8E updateRgn 003A45AC
003A0892 windowDefProc 20832A5C
003A0896 dataHandle 003A6154
003A089A title Handle HD:Examples
003AOB9& titleWidth 0052
003AOBAO controlList 003A4610
003AOBA4 nextWindow 003A05E8
003AOBA8 windowPic NIL
003AOBAC ref Con 003A07EO

See also DB, Dr., DP, DW

CHAmR 3 MacsBug Commands· 43

DP - Display Page

Syntax

Description

Example

DP 0

OP [addr]

The OP command displays a page, or 128 bytes, of memory, starting from the
specified address. If addr is omitted, OP displays bytes beginning at the dot
address. Pressing Return displays the next 128 bytes. The dot address is always
set to the address of the first byte displayed.

Displaying memory from 0
00000000 4081 0000 4080 2A14 004F 6306 4080 20FC @···@····Oc·@· .
00000010 4080 20FE 4080 2100 4080 2102 4080 2104 I!' _@e!e@_!_@_!_

00000020 4080 2106 4080 2108 4080 64BA 4080 2l0C I!'! 'I!'! 'l!'d'I!'!'
00000030 4080 2l0E 4080 2l0E 4080 nOE 4080 2l0E ".!.@.!.@.!.@.!-

00000040 4080 2l0E 4080 210E 4080 210E 4080 2l0E @.!.@.!.@.!.(!.!.
00000050 4080 2l0E 4080 2l0E- 4080 2l0E 4080 2l0E @.!e@.!.@.'.@.!.

00000060 4080 210E 0000 BOLO 4080 622E 4080 622E @·!·····@·b.@·b.
00000070 4080 60DO 4080 612C 0040 0456 0040 0456 I!" 'I!'a, 'M'Y'M'Y

See also OB, Dr., OM, OW

44 MacsBug 6.1 Reference

(

DSC - Extended Discipline

Syntax

Desaiptfol1

DSC [ON I OFF]

The DSC command turns the Extended Discipline utility on and off; if no
parameter is passed, the command acts as a toggle. This utility examines
parameters before traps are called and checks results after the calls complete. If
Extended Discipline detects an error, MacsBug is invoked. See the Extended
Discipline manual for more details.

CHAPTER 3 MacsBug Conunands 45

DV - Display Version

Syntax

Description

Example

DV

DV

The DV command dispJays the version number of MacsBug currently in use.

MacsBuq version 6.1
Copyriqht Apple Computer, Inc. 1981-1989

46 MacsBug 6.1 Reference

(
DW - Display Word

Syntax

Desaiption

Example

DW 0
(Return)

DW[addr]

The DW command displays the word at the specified address. If addr is
omitted, DW displays the word at the dot address. Pressing Return displays the
next word. The dot address is always set to the address of the word displayed.

Word at 00000000 - $4081
Word at 00000002 - $0000

16513
o

16513 't!0'
a I •• ,

See also DB, DL, DM, DP

CHAPTER 3 MacsBug Commands 47

DX - Debugger Exchange

Syntax

Description

OX[ON I OFF]

By default, two traps, Debugger ($A9FF) and DebugStr ($ABFF), let you enter
MacsBug from within your program. The OX command lets you tum these "user
breaks" on and off; without parameters, it acts as a toggle.

• Note: Even when user breaks are disabled, messages specified by
DebugStr will still be displayed; commands associated with
DebugStr, however, are ignored. Also, the OX command does not
affect breakpoints, exceptions, or other A-traps.

MacsBug 6.1 Reference

(

EA - Exit to Application

Syntu

Desaipdoll

See also

EA

The EA conunand attemptS to launch the current application again. The current
application heap is freed and reallocated.

ES

CHAPTER 3 MacsBug Commands 49

ES - Exit to Shell

Syntax

Description

ES

The ES command allows you to exit from the current application. It executes the
ExitToShell trap, which launches the current shell (typically the Finder).

• Note: The ES command may not work with applications that
override system traps. ExitToShell initializes the application heap,
usually destroying any system patches located there.

See also EA

50 MacsBug 6.1 Reference

(

(

F-Find

Syntax

Description

Example

F 0 200 'Finder'
{Return}

F addr n expr I 'string'

The F command searches the range addrtD addr+n-1 for the specified pattern.
When passing a string, be aware that case is significant If expr is given, the width
of the pattern is the smallest unit (byte, word, or long word) that will contain the
value. Pressing Return repeats the search for the next n bytes. The F command
sets the dot address tD· the first byte of the pattern found.

In the example below, the string isn't found the fU"St time. Pressing Return repeats
the command and finds it. The dot address is set to 2EI.

Searching for 'Finder' frQm 00000000 to OOOOOlFF
Not found

Searching for 'Finder' from 00000200 to 000003FF
000002El 4669 6E64 6572 2020 2020 2020 2020 2000 Finder

CHAPTER 3 MacsBug Commands 51

G-Go

Syntax

Description

G [addr]

The G command is used to leave MacsBug and resume program execution. This
conunand is most frequently used without an address to resume execution where
you left off; in other words, at the current program counter. If addr is given,
execution resumes at that address.

Conunand-G is provided as a shortcut. Note that any commands sitting in the
conunand line are ignored.

See also GT, MR

52 MacsBug 6.1 Reference

(

GT - Go Till

Syntax

Description

GT addr

The GT command sets a breakpoint at addr and resumes execution until the
program counter reaches that address .

. .6. Important Setting a breakpoint at a ROM address will cause execution to
be slow, because MacsBug must trace through each instruction
until the breakpoint address is reached. ~

. • Note: MacsBug implements the GT command by setting a
temporary breakpoint. If you enter MacsBug by some other
means, this breakpoint remains set. (In fact, you can see an entry
for it in.the breakpoint table if you enter the BRD command.)
Executing the G command will resume execution until the
breakpoint is reached or another exception occurs.

MacsBug 6.1 comes with a predefmed macro • GTO' that expands to 'GT : + 1 •

This macro is useful for executing code until an offset in the current procedure.
For instance, typing GTO 22 expands to GT :+22, with the colon expanding to
the current procedure name.

See also G, MR

CHAPTER 3 MacsBug Commands 53

He - Heap Check

Syntax

Description

ijC

The He command checks the consistency of the current heap and reports any
errors. Heap integrity cannot be checked rigorously, but is examined for certain
telltale signs of corruption. The possible error conditions are given below.

Note that all the heap corrunands check the heap as they execute; if a heap error
is detected, they cancel the operation and return the same error message that the
HC .corrunand would return.

"Zone pointer is bad": The zone pointer for the current heap (SysZone,
ApplZone, or user address) must be even and in RAM. In addition, the bkLim
field of the header must be even and in RAM, and must point after the header.

"Free master pointer list is bad": Free master pointers in the heap are chained
together, starting.with the hFstFree field in the zone header and tenninated by a
NIL pointer.

"BkUm does not agree with heap length": Walking through the heap block by
block must terminate at the start of the trailer block, as defined by the bkUm
field of the zone header.

"Block length is bad": The block header address plus the block length must be
less than or equal to the trailer block address. Also, the trailer block must be a
fixed length.

"Nonrelocatable block: Pointer to zone is bad": Block headers of nonrelocatable
blocks must contain a pointer to the zone header.

"Relative handle is bad": The relative handle in the header of a relocatable block
must point to a master pointer.

·Master pointer does not point at a block": The master pointer for a relocatable
block must point at a block in the heap.

"Free bytes in heap do not match zone header": The zcbFree field in the zone
header must match the total size of all the free blocks in the heap.

See also AlliC, HD

54 MacsBug 6.1 Reference

(

(

- - ----~-~~~~~-

lID - Heap Display

Syntax

Desaiption

HD [qualifier]

The HD command displays information about blocks in the current heap. The
following qualifiers can be specified:

F: Free blocks
N: Nonrelocatable blocks
R: Relocatable blocks
L: Locked blocks
P: Purgeable blocks
RS: Resource blocks
TYPE: Resource blocks of this type only

If no qualifier is specified, information about all blocks is displayed. If you
specify F, N, or R, MacsBug checks the tag byte of the block headers for blocks
with the appropriate bit set If you specify 1, P, or RS, MacsBug checks the
master pointers for blocks with the lock, purge, or resource bits set (For more
details, see the Memory Manager chapter of Inside Macintosh.)

You can also request information about resource blocks of a particular resource
type only (for instance, 'CODE', 'CRSR', and so on) simply by specifying the type.
It's not necessary to quote the resource type, unless you want MacsBug to
distinguish between uppercase and lowercase characters.

If no blocks of a specified type are found, the HD command returns the message
"No blocks of this type found."

An example of the heap display is provided at the end of this corrunand
description.

CHAPTER 3 MacsBug Corrunands ;;

Example

HD

For each block, the first column (Start) of the display gives the start of the data
in the block, and the second column (Length) gives the length of the block, not
including the header. Blocks that cannot be moved (nonrelocatable or locked)
are indicated by a centered dot character (.) before the start address.

The third column (Tag) indicates the status of the block as free (F),
nonrelocatable (N), or relocatable (R). For relocatable blocks, the fourth column
contains the master pointer, while the flfth and sixth columns indicate whether
the block is locked (L) or purgeable (P).

For resource blocks, the resource type, resource ID, me reference number and
resource name (if specified) are shown.

Displaying the Application heap
Start Length Tag Mstr E'tr Lock E'urge Type ID File Name

-0046321C 00000100 N
-00463324 00000004 R 00463318 L
-00463330 00000070 R 0046330C L CODE 0001 0294 Main
004633A8 00000008 F
00463388 00000058 R 00463310
00463418 00000078 R 00463314
00463498 00000018 R 00463308 E' CODE 0000 0294
00463488 00000004 R 00463304
004634C4 00001518 F

See also He

56 MacsBug 6.1 Reference

(

(

HELP-Help

Syntax

Desaiption

Examples

HELP

HELP [cmd I section 1

The HELP command displays information about the given command or section.
If no parameter is passed, a list of section headings is displayed. Pressing Rerum
displays each section in tum.

• Note: The HELP information is contained in an 'rnxbh' resource
that's approximately 10K in size. If space is especially tigh~ you
can use ResEdit to remove this resource from the MacsBug file,
thereby disabling the HELP command. Do not ever modify this
resource, however, because the HELP command expects the
information in a particular format.

Return shows sections sequentially. "HELP name" shows that section.
Editing
Selecting procedure names
Expressions
Values
Operators
Flow control
Breakpoints
A-traps
Disassembly
Heaps
Symbols
Stack
Memory
Registers
Macros
Miscellaneous
dcmds

HELP Staclc

Stack
SC6 [addr]

Show the calling chain based on A6 links. If no addr then the
chain starts with with A6. If addr then the chain starts at addr.

SC7
Show possible return addresses on the stack. A return address is
an even address that points after a JSR, BSR or A-trap.

CHAPTER 3 MacsBug Commands ;7

HOW - Display Break Message

Syntax

Description

HOW

The HOW command redisplays the break message for the current enay into
MacsBug. The HOW command is useful if you're logging to a me and want to
record the reason for the break. You might include HOW in a macro of the fonn

'LOG filename;HOW;TD;TF;DM SP 100'

See also LOG

58 MacsBug 6.1 Reference

/

/~. ,

(

(

HS - Heap Scramble

Syntax

Desaiption

HS [addr]

The HS command toggles heap scrambling on or off. When heap scrambling is on,
aU relocatable blocks in the heap will be moved (if possible) whenever one of the
following traps is encountered: NewPtr, NewHandle, ReallocHandle, SetPtrSize,
or SetHandleSize. With SetPtrSize and SetHandleSize, the heap is scrambled only
if the block size is being increased.

The only blocks not moved are single blocks between two stationary blocks. The
heap is checked before scrambling; if it has been corrupted, MacsBug breaks and
reporTS the error. (See the HC command for a list of possible errors.) Heap
scrambling is automatically turned off when a bad heap is detected.

You can specify the address of the heap to be scrambled; if you don't, the
address contained in the global variable AppiZone (the beginning of the
application heap) is used.

See also HC

CHAPTER 3 MacsBug Commands 59·

HT - Heap Totals

HT Syntax

Description For the current heap, the lIT conunand displays the total number of each type of
block, the heap size, and the free space in the heap.

Example

HT

Totaling the Application heap

Free
Nonrelocatable
Relocatable

Locked
Purgeable and not locked

Heap size

See also HI>

60 MacsBug 6.1 Reference

Total
0038
0009
0022
0004
0003
0063

Blocks Total of Block Sizes
56 00007472 29910

9 00046236 297296
34 0000E650 59960

4 0000257E 9599
3 000001CA 459

99 0005BCF8 376056

(
HX - Heap Exchange

Syntax

Desaiption

See also

HX[addr]

The HX command sets the current heap for the other heap commands. The
address of a heap zone can be specified by addr. If no parameter is specified,
the HX command cycles between the application heap, the system heap, and any
other heap specified by a previous .HX command.

• Note: The narre (or address) of the current heap is shown in the
status region of the MacsBug display.

HC,HD,HT,HZ

CHAPTER 3 MacsBug Commands 61

HZ - Heap Zones

Syntax

Description

See also

HZ

In a system nlMing MultiFinder, there will be an application heap for each
application. The HZ command displays the addresses of all known heap zones.
It identifies heaps by doing a heap check on each block in the MultiFinder heap;
if the block passes, it's assumed to be a heap. The HZ command will not display
heap zones stored on the stack or in the system heap, nor will it fInd heap zones
that don't start at the beginning of a heap block.

HC,HD,HT,HX

62 MacsBug 6.1 Reference

'~./

(

(

ID - Disassemble One Line

Syntax

Description

See also

ID (addr]

The ID command disassembles one line, starting at the specified address. If addr
is omitted, the program counter is used. Pressing Rerum disassembles the next
line. The dot address is set to the address specified.

IL, IP, IR

CHAPTER 3 MacsBug Commands 63

IL - Disassemble From Address

Syntax

Description

Example

IL

IL [addr(n 1]

The IL conunand disassembles n lines, starting at the specified address. If addr
is omitted, the program counter is used. If n is omitted, half a screen of code is
displayed. Pressing Return disassembles the next n lines (if n was specified
initially) or the next half-screen Cif nwas omitted). The dot address is always set
to the address specified.

The procedure name and offsets are given in the first column, followed by the
actual addresses. A centered dot character (.) after the address indicates that a
breakpoint is set at that instruction. The next two fields contain the opcode and
operand; an asterisk character C') before the opcode indicates the current Pc.

The comment field C;) gives the target of a]MP,]SR, or BSR instruction, the trap
number of a trap, or the ASCII value of a DC statement The last field shows the
actual hexadecimal words of the instruction; if there are too many words, an
ellipsis C ...) is sfiown. Note that this last field is shown only on larger displays, but
can be always be seen by sending the output to a file or printer with the LOG
conunand. .

Disassembling from 00308A96
Main

+OOOC 00308A96 *JSR PROCATLEVEL1+0000 00308A6A 4EBA FFD2
+0010 00308A9A JSR *+S0312 003080AC 4EBA 0310
+0014 00308A9E • JSR *+S0314 003080B2 I 4EBA 0312
+0018 00308AA2 RT5 4E75
+OOlA 00308AA4 UNLK A6 4E5E
+OOlC 00308AA6 RTS 4E75

00308AB4 OC.W SOOOO I •• I 0000
RTlnit· -

+0000 00308AB6 LINK A6,tSOOOO I 4E56 0000
+0004 00308ABA MOVEM.L D3/D6/D7/A3/A4,-(A7) 48E7 1318
+0008 00308ABE MOVE.L SOO18(A6),D6 2C2E 0018
+OOOC 00308AC2 JSR S002A(AS) I 4EAO 002A
+0010 00308AC6 MOVEA.L -SOOAA(AS),AO 2060 FF56
+0014 00308ACA MOVE.L S0008 (A6) , (AO) 20AE 0008
+0018 00308ACE MOVEQ tSOl,OO I 7001
"OOlA 00308AOO MOVEA.L tSOOOO0316,AO 207C 0000
+0020 00308A06 T5T.L (AO) 4A90
+0022 00308AD8 BEQ.S RTlnit+OOSA 00308B10 I 6736
+0024 00308ADA MOVEA.L IIS00000316,AO 207C 0000
+002A 00308AEO MOVEQ 'SOl,Ol 7201

See also ID, IP, IR

64 MacsBug 6.1 Reference

0316

Jj16

(

{

IP - Disassemble Around Address

Syntax

Description

Example

IP

IP [addr]

The IP command displays half a screen of disassembled code, centered around
the instruction specified by addr. Pressing Return disassembles the next half
screen. If addr is omitted, the program counter is used. The dot address is set to
the first address displayed.

The procedure name and offsets are given in the first column, foUowed by the
actual addresses. A centered dot character (.) after the address indicates that a
breakpoint is set at that instruction. The nexUwo fields contain the opcode and
operand; an asterisk character (') before theopcode indicates the current Pc.

The comment field (;) gives the target of a]MP,]SR, or BSR instruction, the trap
number of a trap, or the ASCII value of a DC statement The last field shows the
actual hexadecimal words of the instruction; if there are too many words, an
ellipsis (...)_is shown. Note that this last field is shown only on larger displays, but
can be always be seen by sending the output to a me or printer with the LOG
command.

Disassembling from 00308A7C
No procedure name

00308A7C ADOQ.1i t52. A4 I 544C
00308A7E DC.1i 54556 ???? I 4556
00308A80 DC.1i S454C ??'?? 454C
003081.82 MOVE.1i DO.-(AO) 3100
003081.84 DC.1i SOOOO.S4EBA I 0000 4E:3A
003081.88 DC.1i S02FE ???? I 02FS

Main
+0000 003081.81. LINK A6.tSOOOO 4E56 ceca
+0004 00308A8E MOVE1..L (A7)+.A6 2C5F
+0006 003081.90 JSR -+S02F8 00308088 I 4EBA 02F6
+OOOA 003081.94 _Debugger A9FF I A9FF
+OOOC 003081.96 *JSR PROCATLEVEL1+0000 00308A6A I 4EBA 22D2
+0010 003081.9A JSR *+S0312 00308DAC I 4EBA 0] :~

+0014 003081.9£ • JSR -+50314 003080B2 4£BA 0312
+0018 00308AA2 RTS 4£75
+001A 00308AA4 UNLK A6 4£5£
+OOlC 00308AA6 RTS I 4E75

00308AB4 DC.1i SOOOO I •• , I 0000
RTInit -

+0000 00308AB6 LINK A6,ItSOOOO I 4E56 8C::::;
+0004 00308ABA MOVEM.L D3/D6/D7/A3/A4.-(A7) I 48£7 1318

See also ID, II., IR

CHAPTER 3 MacsBug Commands 6;

IR - Disassemble Until End of Procedure

Syntax

Description

IR [addr]

The IR command disassembles code beginning from the instruction specified by
addr; if no address is given, the program counter is used. This conunand assumes
that the specified instruction is part of a procedure. Code is disassembled until
the end of the procedure. The dot address is set to the address specified.

The procedure name and offsets are given in the rust column, followed by the
actual addresses. A centered dot character (.) after the address indicates that a
breakpoint is set at that instruction. The next two fields contain the opcode and
operand; an asterisk charaaer (e) before the opcode indicates the current PC. .

The comment field (;) gives the target of a]MP,]SR, or BSR instruction, the trap
number of a trap, or the ASen value of a DC statement The last field shows the
actual heXadecimal words of the instruction; if there are too many words, an
ellipsis (. ..) is s~awn. Note that this last field is shown only on larger displays, but
can be always be seen by sending the output to a ftle or printer with the LOG
command.

Example

IR :

Disassembling from :
Main

+0000 00308A8A LINK
+0004 00308A8E MOVEA.L
+0006 00308A90 JSR
+OOOA 00308A94 _Debugger
+OOOC 00308A96 *JSR
+0010 00308A9A JSR
+0014 00308A9E· JSR
+0018 00308AA2 RTS
+OOlA 00308AA4 UNLK
+OOlC 00308AA6 RTS

See also 10, 11, IP

66 MacsBug 6.1 Reference

A6,t$OOOO
(A7)+,A6
*+$02F8

PROCATLEVELf+OOOO
*+$0312
*+$0314

A6

4E56 0000
2C5F

00308088 4EBA 02F6
A9FF A9FF
00308A6A 4EBA FFD2
00308DAC 4EBA 0310
00308DB2 4EBA 0312

I 4E75
4E5E
4E75

(
LOG - Log to a printer or fue

Syntax

Description

LOG rpathname I printer]

The LOG conunand sends MacsBug output to a text me specified by path name
or to an IrnageWnler printer via the serial port. MacsBug follows the hierarchical
me system conventions; if you don't specify a pathname, it assumes the current
directory. If the specified file doesn't already exist, it's created as an MPW text
file, which can be opened from word processing applications as well as from
MPW. If the specified me already exists and is of type Text, LOG appends
MacsBug output to what's already there. To tum logging off, simply type LOG

without parameters.

The LOG command does not work with the LaserWriter8 driver, so you can't send
MacsBug output directly to a LaserWriter. You can, of course, send the output to
a me and then print it on a LaserWriter.

... waming MacsBug, by design, uses as little of the system as possible; .
the LOG command violates this design criterion. Logging may
not work, depending on the state of the me system during
your debugging session. You should not log to me server
volumes. Also, logging enables interrupts briefly while
executing its low-level calls. If your program depends on
interrupts being completely disabled, you should not use the
LOG command. •

6 Important If you log to a me while MPW Pascal is running, or while an
application is running under MuJtiFinder, be aware that the log
me will be closed when you leave MPWor quit the
application. A

CHAPTER 3 MacsBug Commands 67

Me -Macro

Syntax

Description

Me name' expr' I expr

The Me command creates a macro with the given name that expands to I expr or
to the current value of expr. If expr is not quoted, it is evaluated and converted
to a string before being entered.

Macros are expanded before the command line is exeCuted; thus they can contain
anything you can type in a command line. You can use macros to create
command name aliases, reference global variables, and name common
expressions.

6. Important MacsBug expands all macros on the command line before
interpreting any commands. You cannot define a macro and
then reference it on the same line, because the reference will be

.. undefined at the time the macro is expanded. e:.

Macros created with the Me command are lost when you restart or shut down your
machine. If you have macros you want to keep, you can define them in a resource
of type 'rnxbm'.

The Debugger Prefs file contains two 'rnxbm' resources, with IDs of 100 and 101,
that define standard MacsBug macros (including macros for several hundred
common global variables). There are two ways to create your own 'rnxbm'
resources. First, you can use the file Macros.r (included on the MacsBug disk) as a
model for building your own resource. Be sure to give your resource a unique ID,
and then use the Rez tool to add it to the Debugger Prefs fIle. Or, you can use
ResEdit; Debugger Prefs contains templates for creating and editing 'rnxbm'
resources.

Two macro names have been predefined by MacsBug for customizing the
debugging environment If you want to execute certain commands to configure
MacsBug to your preferred settings (for example, SHOW, SWAP, LOG, SX, HX,
and DX), defme them as a macro called FirsrTune in an 'rnxbm' resource.
(Remember that multiple commands must be separated by semicolons.)

68 MacsBug 6.1 Reference

(

(

Examples

MC Frame 'A6+10'

When a FirsrTime macro is present, a break is forced immediately after MacsBug
is loaded and the specified commands are executed. If you want the boot
process to continue automatically, end the FirsrTime macro with the
G command.

6. Important On a Macintosh Plus, the G command is required. Since the
keyboard is initialized after MacsBug, you won't be able to
type G to continue.~

A second macro, called EveryTime, can be deflned in a resource file or on the fly
with the MC command. The commands specified by this macro will be executed
each time, except the first time, MacsBug is invoked.

MacsBug treats commands defined by macros just like commands that you enter
explicitly. If you create an EveryTime macro, be aware that the last command
executed by that macro is set as the default command; this command will be
repeated ~ you press Return.

This example gets the current value of register A6 each time the Frame macro is expanded, and adds
10 to it.

MC Save CurrentAS

This example remembers the current value of this global variable. You could change it and then
restore it by typing

SL CurrentAS Save

See also MCC,MCD

CHAPTER 3 MacsBug Commands

MCC - Macro Clear

Syntax

Description

See also

MCC[name]

The MCC command clears the macro with the given name. If no name is specified,
all macros are cleared.

MC,MCD

70 MacsBug 6.1 Reference

rr '\

(

l'

MCD - Macro Display

Syntax

DesaipdoQ

Example

MCD Cur

Macro Table
Name
CurActivate
CurApName
CurApRefNum
CurDeactive
CurOirStore
CurJTOffset
CurMap
CurPageOption
CurPitch
CurrentA5
CurStackBase

See also

MCD[name]

The MCn conunand lists those macros that match the given name. If no name is
~pecified, aU macros are listed, including both predefined macros loaded from
resource files and macros defmed during the current debugging session. MacsBug
provides partial name matching, returning all macros that begin with the specified
name. If you enter MCD Cur, for instance, all names that start with Curare shown.

Expansion
A64
910
900
A68
398-
934
A5A
936
280
904
908

MC, MCC

CHAPTER 3 MacsBug Commands 71

MR - Magic Return

Syntax

Description

Examples

MR [offset I addr]

If you've stepped into a procedure and want to get out, you can use the MR
command. It sets a temporary breakpoint at the fU'St instruction after the call to
the current procedure, by replacing the rerum address on the stack with a
MacsBug address. When the procedure rerums, MacsBug gets control. It then
peIfonns an RTS in trace rrxxfe, breaking at the instruction after the call.

If no parameter is specifIed, the rerum address is assumed to be on the top of the
stack. If specified, the parameter is interpreted relative to either register A7 or
A6. If the parameter is less than the contents of A6, MacsBug assumes that it's an
offset from register A7. If the parameter is equal to register A6, it's assumed to
be a frame pointer for the current procedure. If the parameter is greater than
register A6, it's interpreted as an offset for a procedure higher on the stack.

If the specified address is not in the range between A7 and CurStackBase, the
error message "This address is not a stack address" is rerumed. Also, MacsBug
checks that the specifIed address is in fact a valid return address, in other words,
that it immediately follows a]SR, BSR, or A-trap instruction. If this is not the
case, the error message "The address on the stack is not a rerum address" is
returned. c, "

If you are at the first instruction in a procedure, simply typing MR will break when the procedure is
done.

If you are past the UNK A6 instruction, MR A 6 • will break when the procedure is done. With nested
procedures, MR A6 A will break when the procedure that called the procedure you are in is done.

See also G, GT

MacsBug 6.1 Reference

RAD - Toggle Register Name Syntax

Syntax

Description

See also

RAD

MacsBug lets you specify the address and data registers in two different ways.
By defaul~ MacsBug expects the actual Motorola names for these registers. Early
versions of MacsBug, however, used narres of the form ROO through RD7 and RAO
through RA7. The RAD command toggles between these two formats, letting you
use the syntax you prefer.

• Note: If you use the default fonnat, you'll need to precede
hexadecima~ numbers AO through A7 with the ~$. character, to
distinguish them from the Motorola address register names.

Registers

CHAPTER 3 MacsBug Corrunands 73

RB - Reboot

Syntax

Description

See also

RB

The RB command unmounts the boot volume and reboots the system

EA,ES,RS

74 MacsBug 6.1 Reference

(
Registers

Syntax

Desaiptioll

registerName [- I :- expr 1

Entering a register name displays the register's value. Values can be assigned to
registers by using either the --It or the M:_" operator.

By default, MacsBug uses the Motorola names for all registers; a list of these
names is given below. (If you're a long-tiIre MacsBug user, you may prefer the
syntax used in earlier versions for the address and data registers. The RAD
command lets you toggle between the two formats.)

68000 Registers

On Data Register n
An Address Register n
PC Program Counter
SR Status Register
SP _ .. Stack Pointer
SSP Supervisor Stack Pointer

68020 Registers

ISP Interrupt Stack Pointer
MSP Master Stack Pointer
VBR Vector Base Register
SFC Source Function Code Register
DFC Destination Function Code Register
CACR Cache Control Register
CAAR Cache Address Register

68030/68851 Registers

CRP CPU Root Pointer
SRP Supervisor Root Pointer
TC Translation Control Register
PSR PMMU Starus Register

CHAPTER 3 MacsBug Commands is

68881 Registers

FPn Floating-Point Data Register n
FPCR Floating-Point Control Register
FPSR Floating-Point Status Register
FPIAR Floating-Point Instruction Address Register

See also RAD

76 MacsBug 6.1 Reference

(
RN - Set Reference Number

Syntax

Desaiptlon

RN[~l

The RN command lets you restrict symbol references to the file whose reference
number is specified by e:xpr. The reference number can be found with the HD
command. If no expression is specified, the reference number of the current
resource file, contained in the global variable CurMap, is used.

The RN conunand is useful when you're dealing with multiple flles with the same
symbol names. When you're working with MPW tools, for instance, there may be
multiple code segments with the same name. Once you've specified a reference
number with the RN command, subsequent symbol references are restricted to
the file with a matching reference number.

Specifying 0 for expr restores the default situation where all symbols match.

See also SX

CHAmR 3 MacsBug Commands i7

RS - Restart

Syntax

Description

See also

RS

The RS command restarts the system as if the Restart menu item had been chosen
from the Finder.

EA, ES, RB

78 MacsBug 6.1 Reference

(

(,

S - Step

Syntax

Description

S[n I e"lprl

The S command steps through the next n instructions or until the specified
expression is TRUE. If neither parameter is specified, the S command simply
steps through the next instruction. In contr3St to the SO command, the S
conunand will acrually trace into subroutine calls, or into the ROM when a trap is
encountered.

• Note: If you fmd you've entered a number or expression that will
never be reached or satisfied, you'll need to use the ES command
to terminate the stepping. .

An S command entered with a specified range or number of instructions (for
instance, S 10) might encounter a breakpoint while executing. If this happens,
the break i.nto MacsBug terminates the S command.

Conunand-S is provided as a shortcut Note that any conunands sitting in the
conunand line are ignored.

6. Important Stepping through certain MMU instructions can cause MacsBug
to hang. If you're doing MMU programming, be aware that
MacsBug executes many instructions while executing an S
conunand and expecTS a valid memory map. t::.

See also SO

CHAPTER 3 MacsBug Commands 79

SB - Set Byte

Syntax

Description

Example

S8 0 1 222 33333
{Ret.urn}

SB addr(expr I 'str' ...)

The SB command assigns values to bytes, starting at addr. Expressions are
evaluated to 32-bit values, and the low-order byte is used. Strings of any length
(limited only by the length of the command line) can also be specified; the
characters are placed in successive bytes. The dot address is set to the address of
the ftrst byte set.

In addition to setting the dot address, the SB command sets DM as the default
command; pressing Return after having executed an SB command will display the
memory just set.

Memory set. st.arting at OOOOOOQG
00000000 0122 3300 0000 0000 0000 0000 0000 0000 ·"3·············

See also S1, SW

MacsBug 6.1 Reference

----_ ... -

sc6 - Stack Crawl (A6)

Syntax

Desaiptfon

Example

SC6[addr]

The SC6 command displays the stack frame and address of the current procedure
and all procedures above it in the calling order.

The SC6 and SC7 commands mUst have a range of memory to constrain the search
for frames or rerum addresses. They assume that register A7 is even and points to
the top of the stack, and that the global variable CurStackBase points to the
bottom of the stack. If any of these conditions is not met, the following error
message is rerurned: "Damaged stack: A7 must be even and <- CurStackBase."

The SC6 command also assumes that register A6 or the parameter is the address of
a frame on the stack and that it points within the range between register A7 and
CurStackBase. If these conditions aren't met, the error message • A6 does not
point to a stack framen is returned.

• Note: For historical reasons, SC is provided as an alias for the SC6
command.

In this example, 4CEDE4 was the value of A6 at the time ProcAtI.evell called ProcAtI.evel2. 4CEDDC

was the value of A6 at the time ProcAtLeve12 called ProcAtLevel3. The current value of A6 defmes the
stack frame for ProcAtLeve13.

SC6

Calling chain using A6 links
A6 Frame Caller

<m.ain> 00041FAA MAINPROC+OOOC
004CEDE4 00041F82 PROCATLEVEL1+0004
004CEDDC 00041F66 PROCATLEVEL2+0004

See also SC7

CHAPTER 3 MacsBug Commands 81

SC7 - Stack Crawl (A 7)

Syntax

Description

Example

SC7

SC7

The SCI command displays a possible calling chain with the stack addresses that
contain each caller's retum address. A rerum address must be even and a valid
RAM or ROM address, and it must point immediately after a]SR, BSR, or A-trap
instruction.

The SCI command will almost certainly include old or invalid values (in other
words, addresses not in the current calling chain), since local stack variables can
change the stack top without changing the contents. You can use the frame and
rerum addresses to examine the stack yourself; you can also use the addresses in "
other MacsBug commands.

The SC6 and SC7 commands must have a range of memory to constrain the search
for frames or rerum addresses. They assume that register A7 is even and points to
the top of the stad<, and that the global variable CurStackBase points to the
bottom of the stack. If any of these conditions is not met, the follOwing error
message is rerumed:"Damaged stack: A7 must be even and <- CurStackBase."

The ftrst column shows possible return addresses. The second column shows the
addresses of possible A6 frame values.

When debugging routines that don't use the standard A6 frame conventions, a
frame address can be used as a parameter to sc6 to tell it where the A6 links start.
For instance, typing SC6 4CEDD4 will show the same calling chain as in the SC6
example.

SCI shows a superset of the 'calling chain. SC6 can then be used to show the true
calling chain at the point where SC7 finds the flCSt valid frame.

"Return addr ••••• on the stack
Stack Addr Fram. Addr Caller

004CEDEC 40aOD5CC Chain+014E
004CEDEa
004CEDEO
004CEDDa

00041FAA MAINPROC+OOOC
004CEDDC 00041F82 PROCATLEVEL1+0004
004CEDD4 00041F66 PROCATLEVEL2+0004

See also sc6

82 MacsBug 6.1 Reference

(

SHOW -Show

Syntax

Desaiption

Examples

SHOW 'A6+8'

SHOW[addr I 'addr'][L I W I A I LAl

By default, MacsBug displays the stack pointer at the top of the status region, as
well as the bytes starting at that address. The address is evaluated each time the
display is updated. The number of bytes displayed varies with the screen size and
the fonnat of the display. The SHOW command lets you specify the display in
word, long word, and ASCII fonnat, by passing W, L, or A respectively. You can
also specify a combined long! ASCII fonnat by passing LA.

Entering SHOW without parameters cycles between the four display formats so
that you don't need to ente.r the address expression to change the format.

The SHOW command also lets you specify another area of memory for display.
If addr is quoted, the specified address is evaluated each time the display is
updated. If addr is not quoted, the address is evaluated once and the resulting
address is always sh_own.

To restore the default display, enter SHOW' SP' L.

This example shows the stack above the previous A6 value and return address; for routines using LINK
A6, this will be the routine parameters.

SHOW curApName A

This example will always show the data at the address deftned by the macro curApName.

CHAPTER 3 MacsBug Commands 83

---- -- - - -------

SL - Set Long

Syntax

Description

Examples

SL 0 1 222 33333
{Return}

SL addr(expr I 'Sir' ...)

The SL command assigns values to long words, starting at addr. Expressions are
evaluated to 32-bit values. Strings of any length (limited only by the length of the
command line) can aJso be specified; the characters are placed in successive
bytes. The dot address is set to the address of the fust long word set.

In addition to setting the dot address, the SL command sets OM as the default
command; pressing Re~m after having executed the SL command will display the
memory just set.

Memory set starting at 00000000
00000000 0000 0001 0000 0222 0003 3333 0000 0000 ·······-··33····

SL 0 12 'Test'
{Return}

Memory set starting at 00000000
00000000 0000 0012 5465 7374 0000 0000 0000 0000 ····Test········

See also SB, SW

84 MacsBug 6.1 Reference

SM - Set Memory

Syntax

DcsaiptioQ

Examples

SM 0 1 222 33333
{Return}

SM addr(expr I 'SIT' ...)

The SM conunand assigns values to memory starting at addr. The size of each
assignment is detennined by the value. Specific assignment sizes can be set by
using the SB, SW, and SL conunands.

In addition to setting the dot address, the SM command sets OM as the default
command; pressing Return after having executed the SM command will display
the memory just set

Memory set startinq at 00000000
00000000 0102 2200 0333 3300 0000 0000 0000 0000 ··-··33·······.·

SM 0 4 'Test'
{Return}

Memory set startinq at 00000000
00000000 0454 6573 7400 0000 0000 0000 0000 0000 ·Test·········.·

See also SB, S1, SW

CHAPTER 3 MacsBug Commands 85

so - Step Over

Syntu

Oescripdon

SO[n I exprl

The SO command steps through the next n instructions or until the specified
expression is TRUE. If neither parameter is specified, the SO conunand simply
steps through the next instruction. In contrast to the S conunand, SO steps over
traps,]SRs, and BSRs, treating them as a single instruction.

• Note: If you fInd you've entered a number or expression that will
never be reached or satisfied, you'n need to use the ES conunand
to terminate the stepping.

When stepping over a toolbox trap with the auto-pop bit set, MacsBug correctly
rerurns to the address on the top of the stack at the time of the trap call (instead
of to the address immediately after the trap). If you step over a LoadSeg trap,
MacsBug will stop at the first instruction of the loaded segment.

6. Important Stepping through certain MMU instructions can cause MacsBug
to hang. If you're doing MMU programming, be aware that
MacsBug executes many instructions while executing an SO
command, and expects a valid memory mapping. ~

• Note: For historical reasons, T (for Trace) is provided as an alias
for the SO conunand. In addition, Command-Tis provided as a
shortcut; note that any conunands sitting in the conunand line are
ignored.

SeeaJso S

MacsBug 6.1 Reference I~,.--,/

(

SS - Step Spy

Syntax

Description

Example

SS addrl [addr2]

The SS command is a variation on the S command that lets you keep track of a
patticular area of meroory. For the range between addrl and addr2, the 5S
command calculates a checksum before executing the next instruction. If the
checksum value changes, MacsBug is invoked. If addr2 is omitted, SS waits for
the long word at addrl to change.

The 5S command is terminated on the next entry into MacsBug.

The SS command is optimized for speed with a long word; with longer checksum
ranges, it can be slow. Programmers needing to watch large ranges may wane to
use a hardware emulator.

You can also use the SS command as a way of slowing down certain routines
those that draw to the screen, for instance-so you can actually watch how they
work.

This example specifies a range that will not change and can be used to watch drawing to the screen.

See also CS

CHAPTER 3 MacsBug Commands

SW - Set Word

Syntax

Description

Examples

SW 0 1 222 33333
(Return)

SW addr(e:xpr I 'Sir' ...)

The SW command assigns values to words starting at addr. Expressions are
evaluated to 32-bit values, and the low-order word is used. Strings of any length
(limited only by the length of the command line) can also be specified; the
characters are placed in successive byres. The dot address is set to the address of
the fIrst word set

In addition to setting the dot address, the SW command sets OM as the default
command; pressing Return after having executed the SW command will display
the memory just set

Memory set startinq at 00000060
00000000 0001 0222 3333 0000 0000 0000 0000 0000 ••• .. 33··········

SW 0 12 'Test'
(Return) " /

Memory set startinq at 00000000
00000000 0012 5465 7374 0000 0000 0000 0000 0000 ··Test··········

See also SB, SL

88 MacsBug 6.1 Reference

SWAP - Swap Frequency

Syntax

Desafption

SWAP

The SWAP conunand controls the frequency of display swapping between
MacsBug and the application, depending on whether the system is configured for
a single screen or for nrultiple screens.

For single screens, the SWAP conunand toggles between drawing step and A-trap
\l'3ce information to the MacsBug display without swapping the screen, and
drawing the information and swapping each time.

For multiple screens, the SWAP command toggles between having the MacsBug
screen always visible, and having the MacsBug screen visible only at break. .

With multiple screens, MacsBug uses the "Welcome to Macintosh" screen by
default. You'll probably want your application on the larger screen and MacsBug
on the smal1er screen. To select a different screen for the MacsBug display, press
the Option key while clicking on the Monitor icon from the Control Panel, drag
the Macintosh icon to the desired screen, and reboot.

CHAPTER 3 MacsBug Commands 89

SX - Symbol Exchange

Syntax

Descripdon

See also

SX [ON I OFF)

The SX command toggles between allowing and not allowing symbol names in
place of addresses. By default, symbol names can be used anywhere an address is
used as a command line parameter. MacsBug translates this name into an address
by searthing the current heap for a matching procedure name. MacsBug also
displays disassembled code as offsets relative to a procedure. Since this search
process can be slow, MacsBug provides a way to disable it.

IL,RN

90 MacsBug 6.1 Reference

",

(

TD - Total Display

Syntax

Desaiption

Examples

TD

The TD command displays all CPU registers in the command region. Since most
68000 registers are constantly displayed in the status region, this command is
useful for remembering the register values between commands.

To display the,68030 MMU registers, use the TM command.

TO (on a Macintosh Plus)

68000 Registers
00 '" 00000000 AO
01 '" 00000006 A1
02 ,. f'f'FF0040 A2
03 '" 00000000 A3
04 .. 00000000 A4
05 '" 00000000 AS
06 .. 00000000 A6
07 '" 00000000 A7

TO (on a Macintosh III

68020 Registers
00 .. 00000000 AO
01 .. 00000006 A1
02 '" f'f'Ff'280C A2
03 ,. 00000000 A3
04 ,. 0048FFf'F A4
05 ,. 00000000 AS
06 ,. 0040013C A6
07 ,. 00000000 A7

See also TF, TM

,. E002s470
,. 000CC7B2
'" 000CC7B2
'" 000CC7B2
= 000213B2
'" aoOCOs94
,. 000CC6E4
'" 000CC6CA

,. EOO17EA8
,. 00487290
,. 00487290
'" 00487290
.. 00487202
,. 0040013C
- 00487106
.. 004871C6

asp - FFFFFFFF
ssp '" 000CC6CA

PC .. E002s47E
SR ,. Smxnzvc

asp ,. 072B5FFA
MSP '" 234B30CO
ISP ,. 004871C6
VBR '" 00000000
CACR '" 00000001
CAAR '" 08281E55
PC - EOO17EB6
SR '" SmXnzvc

Int - 0

SFC ,. 7
OFC .. 7

Int .. 0

CHAmR 3 MacsBug Commands 91

TF - Total Floating-Point

TF Syntax

Description The TF conunand displays all 68881 registers. (These registers are not shown in the
status region.)

Example

TF {on a machine with a 68881}

68881 Registers
FPO ~ 7FFF FFFFFFFF FFFFFFFF
FP1 ~ 7FFF FFFFFFFF FFFFFFFF
FP2 ~ 7FFF FFFFFFFF FFFFFFFF
fP3 = 7FFF FFFFFFFF FFFFFFFF
fP4 = 7FFF FFFFFFFF FFFFFFFF
FP5 = 7FFF FFFFFFFF FFFFFFFF
FP6 - 7FFF FFFFFFFF FFFFFFFF
fP7 - 7FFF FFFFFFFF FFFFFFFF

EE MC
FPCR - 00 00

CC OT ES AE
FPSR ~ 00 oo_au 00

See also TD,TM

92 MacsBug 6.1 Reference

NAN (255)
NAN(255}
NAN (255)
NAN (255)
NAN (255)
NAN (255)
NAN (255)
NAN(255}

FPIAR - 00000000

TM - Total MMU

TM Syntax

Description The TM command displays the MMU registers conunon to the 68851 and 68030.
(These registers are not shown in the starus region.)

Example

TM {on a machine with a 688S1}

MMU Registers
eRP 2 7FFF0202408000S0
SRP - 7F55D27300000100

See also TD,TF

Te - 80F84S00
PSR ,. 2216

CHAPTER 3 MacsBug Commands 93

TMP - Templates

Syntax

Description

TMP[namel

The TMP conunand lists every template whose name matches the specified name.
If no name is specified, all loaded templates are displayed by name. MacsBug
provides partial name matching, returning all templates that begin with the
specified name. If you enter TMP My, for instance, aU names that start with My
are shown.

The Debugger Preis fIle contains an 'mxwt' resource with an ID of 100; this
resource defmes standard MacsBug templates. There are two ways to create your
own 'mxwt' resources. rtrSt, you can use the me Templates.r (included on the
MacsBug disk) as a model for building your own resource. Be sure to give your
resource a unique 10, and then use the Rez tool to add it to the Debugger Prefs
fIle. Or, you can use ResEdit; Debugger Preis contains templates for creating and
editing 'mxwt' resources.

-
Templates are composed of fields. Each field consists of a name, a type, and a
count The basic types are as follows:

Byte Display in hexadecimal.
Word Display in hexadecimal.
Long Display in hexadecimal.
SignedByte Display in decimal.
SignedWord Display in decimal.
SignedLong Display in decimal.
U nsignedByte Display in decimal.
UnsignedWord Display in qecimal.
UnsignedLong Display in decimal.
Boolean Display byte as TRUE (nonzero) or FALSE (0).
pString Display a Pascal string.
cString Display a C string (zero-tenninated).

For all of the basic types except pString, the count indicates the number of items
of that type to display. For instance, a type of Word with a count of 4 can be
-used to display a Rectangle on one line. With pStrings, the count indicates the
maximum string size and is used to compute the next field address. If the string
is only as long as the actual number of characters, specify 0 for count, and
MacsBug will use the length byte to determine the end of the string.

MacsBug 6.1 Reference

,i
1,\

The basic types listed above can also be used individually with the DM command.
Several additional field types are used only in templates:

Text

Skip

Align

Handle

AType

MType

Displays a text string for count bytes. (Resource types, for
instance, can be shown with the Text type and a count of 4.)

Skips over the next count bytes without displaying.

Aligns to a word boundary (used after C or Pascal strings).

Dereferences and displays in hex. This type is used to show the
address of a data structure, rather than its contents.

Dereferences a pointer and displays using the specified basic type
or template. The display is indented 2 spaces.

Dereferences a handle and displays using the specified basic type
or template. The display is indented 2 spaces.

If a template named Temp contains a field type of "Temp or ""Temp, MacsBug
assumes the field is a link to another data structure of the same type. For
instance, the WmdowRecord template (provided in Templates.r) uses a field
type of "windowRecord to dereference the pointer contained in the
nextWtndow field of the windowRecord. Pressing Return displays the next
window in the window list.

Linked lists are zero-terminated If a template contains more than one field
specifying a link, MacsBug uses the last field found.

CHAPTER 3 MacsBug Commands 95

WH-Where

Syntax

Description

Example

WH

WH [addr I trap] ..

The WH command returns information about the location of a given trap,
symbol, or address. If no parameter is specified, the program counter is used.
Given an address that's in ROM, WH looks for the trap nearest to and before that
address, and rerurns the trap name as well as an offset from the start of the trap.
If the address is in the system heap or application heap, WH returns the symbol
(name and offset).

MacsBug will also attempt to map a given address to low memory global names.
It does this by trying to convert macro values into numbers. If the value is a legal
number and matches the given address, the macro name is rerumed.

If a trap name or number is specified, the WH command returns the trap name,
the trap number, and the address of the trap. If a symbol name is specified, WH
returns the address.

The WH command sets the dot address; thus WH name followed by I L. will
disassemble the code at name.

In the example below, typing WH gets information about the PC. It is in the
procedure MainProc at offset OOOC. The heap block where this procedure was
found is also shown. (See the HI) command for details.)

Address OOOE7D36 is in the Application heap at MainProc~OOOC
It is in this heap block:

Start Length Tag Mstr Ptr Lock Purge Type ID File
'000E7CCa 00000300 R 000E7CAC L CODE 0001 0236

96 MacsBug 6.1 Reference

(

Appendix A Command Summary

Flow control

G-Go

GT-GoTill

S - Step

SO - Step Over

SS - Step Spy

MR - Magi~ Return

Breakpoints

1
BR - Breakpoint

" BRC - Breakpoint Clear

BRD - Breakpoint Display

BRM - Multiple Breakpoints

A-Traps

ATB - A-Trap Break

ATT - A-Trap Trace

ArnC - A-Trap Heap Check

ATSS - A-Trap Step Spy

ATC - A-Trap Clear

AID - A-Trap Display

ATR - A-Trap Record

ATP - A-Trap Playback

DSC - Extended Discipline.

(
97

Disassembly commands

IL - Disassemble From Address

IP - Disassemble Around Address

ID - Disassemble One Line

IR - Disassemble Until End of Procedure

DH - Disassemble Hexadecimal

Heap commands

HX - Heap Exchange

HZ - Heap Zone

HD - Heap Display

HT - Heap Totals

HC - Heap Check

HS - Heap Scramble

Symbol commands

RN - Resource Number

SX - Symbol Exchange

Stack commands

SC6 - Stack Crawl (A6)

SO - Stack Crawl (A7)

MacsBug 6.1 Reference

(
Memory commands

DM - Display Memory

TMP - Display all loaded templates

DP - Display Page

DB - Display Byte

DW - Display Word

DL- Display Long

SM - Set Memory

SB - Set Byte

sW-SetWord

SL - Set Long

Register commands

TO - Total Display

TF - Total Floating-Point

TM - Total MMU

(
Maao commands

MC - Macro Create

MCC - Macro Clear

MCD - Macro Display

APPENDIX A Command Summary 99

Miscellaneous commands

RB - Reboot

RS - Resrart

ES - Exit to Shell

EA - Exit to Application

WH-Where

F-Find

CS - Checksum

LOG - LOG (output to file or printer)

HOW - Display Break Message
SHOW - Show (memory in the sidetr.lr)

DV - Display Version

DX - Debugger Exchange

HELP - Display list of MacsBug co~ds

SWAP - Swap (screen display)

RAD - Toggle Register Name Syntax

100 MacsBug 6.1 Reference

Appendix B Error Messages

This appendix lists most of the error messages MacsBug can return.

"Unable to access that address"

• Addresses must be even"

Any command that takes an address parameter can get one of these errors.
The first is a 68000 bus error exception, and the second is an address error
exception.

·Value expected"

Some commands will supply default parameters when no parameter is
specified. This error can be returned by commands that require certain
parameters.

"Unrecognized symbol"

Any command that takes a symbol as parameter can receive this error if a valid
symbol name could not be found in the heap and the name is not a valid trap
name.

·Divide by zero error'

This error is returned when an expression attempts to divide a number by zero.

·Count must be greater than zero"

Any command that takes a count (BR, ATB) requires it to be greater than O.

"Entry will not fit in the table"

MacsBug stores information about breakpoints, step commands, and A-trap
commands in a single table. Note that it's possible to receive this message
while entering one type of action for the first time (a breakpoint for
instance), since other types of actions may have already filled this table .•

101

"Damaged stack: A7 must be even and <- CurStackBase"

The stack commands (SC6, SC7) must have a memory range to constrain the search for
!frames or retum addresses. They assume that register A7 is even and points to the top
of the stack, and that the global variable CurStackBase points to the bottom of the
stack.

"A6 does not point to a stack frame"

The SC6 command assumes that register A6, or the parameter if specified, is the
address of the flJ'St frame on the ~tack. It must point within the range specified by
register A7 and CurStackBase.

"This address is not a stack address"

The MR command can optionally take a parameter specifying where on the stack the
return address for the current procedure is located. This address must be even and
within the range specified by register A7 and CurStackBase.

"The address on. the stack is not a return address"

The MR command must know where the return address for the current procedure is
located on the stack, since it replaces this address with an internal MacsBug address.
MacsBug checks that the address it replaces is in fact a rerum address. A rerum address
is defmed as an address immediately following a]SR, BSR, or A-trap instruction. (All
forms of]SR and BSR are recognized.)

"Floating-point not allowed in expressions"

. "6+bit registers not allowed in expressions"

. All expressions are evaluated as unsigned 32-bit values; floating-point registers and
some MMU registers cannot be evaluated in this context

"No blocks of this type found"

The HD command was instructed to display only blocks of a speciftc kind and none
were found.

"Address range must be entered before comparisons"

The CS comnrmd remembers a range of memory to checksum; subsequent CS
commands compute the checksum and compare it against the previous value. If no
address range has been previously specified, entering CS without parameters will rerum
this message.

"Low address must be less than or equal to high address·

The CS command requires an ordered address range.

102 MacsBug 6.1 Reference

(
"MMU not installed"

The TM conunand functions only if the system has a 68851 or 68030 installed. This error
also occurs if you try to display or set an individual MMU register.

"68881 not installed"

The TF conunand functions only if the system has a 68881 installed. This error also
occurs if you try to display or set an individual floating-point register.

"Macro expansion exceeds maximum conunand line length"

Macros are expanded in the command line buffer. This is a fIXed-length buffer
determined by the width of the conunand line on the current display.

"The template contains an unrecog~ized basic type"

The field of the template currently being displayed is not a valid basic type; see the
description of the TMP command for a list of all possible types.

"Templates cannot expand more than 8 levels"

Template definitions can themselves contain template deftnitions, and so on.
Expansion is limited to eight levels. Since it's unlikely that a structure would contain
this many levels, this message may indicate a template definition that contains a
recursive path.

"PC is not inside a procedure"

The ":" character can be used to represent the address of the start of the procedure
displayed in the program counter window. If you enter ":" and no symbol information
can be found for the program counter, this error message will be displayed.

"Zone pointer is bad"

The zone pointer for the current heap (SysZone, ApplZone, or user address) must be
even and in RAM. In addition, the bklim field of the header must be even and in RAM,
and must point after the header.

"Free master pointer list is bad"

Free master pointers in the heap are chained together, starting with the hFstFree field in
the zone header and terminated by a NIL pointer.

"Blklim does not agree with heap length"

Walking through the heap block by block must terminate at the start of the trailer
block, as defined by the blkUm field of the zone header.

APPENDIX B Error Messages 103

"Block length is bad"

The block header address plus the block length must be less than or equal to the trailer
block address. Also, the trailer block must be a fIXed length.

"Nonrelocatable block: Pointer to zone is bad"

Block headers of nonrelocatable blocks must contain a pointer to the zone header.

"Relative handle is bad"

The relative handle in the header of a relocatable block must point to a master pointer.

"Master pointer does not point at a block"

The master pointer for a relocatable block must point at a block in the heap.

"Free byteS in heap do not match zone header"

The zcbFree field in the zone header must match the total size of all the free blocks in
the heap.

"Syntax error"

This is a -catch-aU" error rressage; it's used in cases where the error is obvious given the
context of the command. Possibilities include:

• An expression contains a value, an operator, but no second value.

• A nested expression does not have matching parentheses.

• An address qualifier other than .B, . W, or .L has been given.

• An illegal character is in the command line.

• The ATSS command does not include an address range.

• The format parameter for the SHOW command is other than L, W, A, or LA.

• The F command does not have the correct number of parameters.

• The value being assigned to a floating-point register is illegal.

• A toggle command has been passed a parameter other than ON and OFF.

• The HD command qualifier is not valid.

104 MacsBug 6.1 Reference

(

Appendix C MacsBug Internals

MACsBUG USES AS I.lTI1.E OF THI! SYSTEM AS POssmLE. In addition, when MacsBug
gets control, it effectively halts the processor by disabling interrupts. This
appendix gives details on the MacsBug implementation.

Beginning with the 128K ROM, support for de buggers is provided. When a system
error or 68000 exception occurs, the ROM code examines the global variable
Mac]mp to see if a debugger is installed. The high-order byte of Mac]mp is used
to contain the foilowing information.

Bit Meaning

7 Set if c1ebugger is running.

6 Set if debugger can handle system errors.

5 Set if debugger is installed.

4 Set if debugger can support the Extended Discipline utility.

If a debugger is installed, the register set is saved in the global variable SEVars,
and a call is made to the address in the low-order 3 bytes of Mac]mp. When the
debugger returns, the register set is restored and execution returns at the address
in the program counter.

. While active, MacsBug installs a bus error handler to catch any illegal memory
references. MacsBug does not install an address error handler since it can check
whether addresses are even before accessing them.

MacsBug itself forces two kinds of exceptions. The fIrst is used in setting
breakpoints. MacsBug replaces the first word in an instruction with a TRAP IF
instruction; when the program reaches this point, an exception is generated. The
second is used in tracing instruction execution while single-stepping. MacsBug
forces an exception by setting the Trace bit of the status register before
executing an instruction. •

105

MacsBug installs its own trace exception handler whenever

• At least one ROM breakpoint is set.

• A breakpoint was set at the PC when execution resumed. The instruction must be
executed before the breakpoint can be reinstalled.

• A step command is in progress.

• A step spy command is in progress.

The SO command steps over]SR and BSR instructions by'executing the call with the Trace
bit set, replacing the return address with an address inside MacsBug, and then proceeding
nonnally. Stepping over a trap call is done by copying the trap instruction into MacsBug
and proceeding from that point.

MacsBug installs its own A-trap exception handler whenever

• An A-trap command is active.

• The Extended Discipline utility is enabled.

• Heap scrambling is enabled.

• It steps into a trap call.

The Debug and DebugStc traps do not preserve the status register (SR). These traps are
directed to MacsBug by the dispatcher, which tosses the contents of the SR immediately
upon entry.

Since interrupts are turned off, MacsBug gets keys by polling for a keyboard interrupt and
then calling the interrupt routine at LvllDT +8. MacsBug fields the event by temporarily
installing its own PostEvent handler.

MacsBug assumes the display on a Macintosh Plus or Macintosh SE is at address $3FA700,
accommodating external monitors that change ScmBase. MacsBug always appears on the
internal display.

On a Macintosh II, MacsBug uses the first item in the gDevList as its display. The device
must support I-bit mode, and the display is limited to 640 by 480 to conserve memory.

While swapping the user and MacsBug displays on multi-bit displays, MacsBug calls
SetMode and SetEntries (using the Control trap) to set a bit depth of 1, and a black-and
white color table.

106 MacsBug 6.1 Reference

•

(

Appendix D Debugger and DebugStr

THIs APPENDIX SHOWS HOW TO DECIJ.RE AND USE TIlE DEBUGGER and DebugStr
macros on a per language basis. •

107

Assembly language

Declaration

. _Debugger OPWORD $A9FF
_DebugStr OPWORD $ABFF

Example caDs
_Debuqger

STRING PASCAL

PEA i'Entered main loop'
_DebugStr

Pascal

Declaration

predefined in the file ToolTraps.a
not predefined - define yourself

enters MacsBug and displays user break message

Asm directive to make sure to push a
Pascal string

push address of strinq on stack
enters MacsBug and displays message

{Defined in OSIntf.p (MPW version 2.0) or Types.p (MPW 3.0)}
PROCEDORE Debugger; IN LINE $A9FF;
PROCEDORE DebugStr(str: str255); INLINE $ABFF;

Example caDs
Debuqqer; {enters MacsBuq and displays user break message}

DebuqStr('Entered main loop'); {Enters MacsBuq and displays messaqe}

1~ MacsBug 6.1 Reference

..

(

(

MPWC

Declaration
/*Defined in Strings.h (MPW version 2.0) or Types.h (MPW 3.0)*/
'include <strings.h> /* Required for c2pstr() */
pascal void Debugger() extern OxA9FF;
pascal void DebugStr(aString) char *aString; extern OxABFF;

Example calls
Debugger () ; /*enters MacsBug and displays user break message-/

DebugStr("\pEntered main loop");
/*enters MacsBug and displays message-/

APPENDIX D Debugger and DebugStr 109

\"""

•

(

Appendix E External Commands

ExTERNAL COMMANDS ARE EXECurABLE CODE RESOURCES of type 'dcmd' (similar to
'XCMD' resources in HyperCard') that augment the built-in MacsBug command
set. As in HyperCard, 'demd' resources are termed by their type: "dee
commands" (written dcmds).

The RAMDumplTtl utility is an example of a program suited for a dcmd. This tool
dumps the contents of RAM to several floppy disks for later examination. It
requires only a minimal user interface and is typically run from MacsBug to save
and examine the state of the machine.

Dcmds are added to the MacsBug command list and can be used just like built-in
comman~~ In fact, dcmds can override built-in commands if you wish; It's
recommended, however, that you don't override flow-contol commands like G, 5,
ATB, and so on.

Sample dcmds, written in both C and Pascal, are provided in the dcmds folder on
the MacsBug disk. Source code, interfaces, and a "glue" file to be linked with the
dcmd are also supplied.

A 'dcmd' resource begins with a 4-byte segment header, followed immediately by
the program code. Since dcmds are limited to a single segment, the segment
header is used to specify a dcmd version number and the amount of space
MacsBug needs to allocate for the dcmd's global variables (in other words, the
size of its "AS world") .•

111

All calls to a dcnx:l are made through the entry point defmed as the fIfth byte of the
resource. MacsBug calls a dcmd as a Pascal procedure taking a single parameter-a
pointer to a parameter block:

TYPE dcmdBlockPtr ~ AdcmdBlock;
dcmdBlock ~ RECORD

regi~terFile: RegFilePtr;
reque~t: INTEGER;
aborted: BOOLEAN:

END:

The RegisterFile field of dcmdBlock is a pointer to an array containing the contents
of the registers:

TYPE RegFilePtr ~ ARegFile;
RegFile .. ARRAY (0 .. 17] OF LONGINT;

RegFile contains the contents of registers DO through D7, AD through A7, PC, and SR.
The SR is oniy 16 bits and is stored in the high-order word of the last long word in the array.

-
Reque~t contains a request number that MacsBug sends to the dcmi; it can contain one
of the foilowing values:

caNST dcmdlnit - 0;
dcmdDolt .. 1;
dcmdHelp .. 2;

The first call MacsBug makes to a demd is an initialize request (dcmdlni tkthis request
is made aniy once. After the demd is initialized, MacsBug can call it to request a brief
summary about itself (dcmdHelp) or to peIform its normal action (dcmdDoIt).

The dcmd can change registers by changing the register me values in the RegFile array.
These values get restored when MacsBug resumes program execution.

The aborted field is used to inform the dcmd when the user has terminated the
command; it's set to TRUE when the user presses a key (other than the Return key or the
Space bar) while scrolling.

A dcmd can mate calls back to MacsBug to request actions, like displaying a message or
getting a parametI:t. All calls to MacsBug are routed through a single entry point with the
request number added to the stack immediately before the return address. The address of
the entry point is stored at (AS)+4 for each demd. The memory above AS-normally used
for the jump table entries-<an be used as an easy way to get the caU-back address.

The data structures, constants, and call-back routines are all defmed and explained in the
provided sample commands.

112 MacsBug 6.1 Reference

..

Dcmds use the MacsBug stack; MacsBug supplies lK of stack space. Since pascal calling
conventions are used, the dcmd is responsible for popping the parameters off the stack
In addition, the dcmd must preserve registers D3 through D7 and A2 through A6.

Dcmds can call whatever traps they wish. Be aware, however, that the dcmd can be
invoked when the system has crashed; it's obviously safest not to use any traps at this
point It's up to the programmer to decide how much of the system to use.
Documentation for dcmds would do well to note the trap calls that are made.

The dcmd folder also includes an MPW tool, BuildDcffid. This tool translates an
application into a demd, and copies it into the Debugger Prefs me. Since the dcmds are in
a separate file, there's no complicated installation process to be performed when
MacsBug is updated. And since they're not tied to MacsBug, dcmds can potentially be
shared with other debuggers.

The dcmds folder also contains an application, Test dcmd, that simulates the MacsBug
environment for testing your dcmds. This application allows you to use MacsBug while
debugging a dcmd.

Finally, this folder contains actual dcmds that perform useful functions. Information
about each of these dcmds is available in MacsBug by typing HELP name. You can get a
list of all installed dcmds by typing HELP dcmd.

APPENDIX E External Corrunands 113

•

•

(

Appendix F Did You Know ... ?

This appendix contains tips, shortcuts, and interesting facts about MacsBug. Did you
know that ...

• Holding down the Control key forces a break into MacsBug immediately after it's
loaded. This feature works only on Macintosh computers equipped with the Apple
Desktop Bus11l (ADB) interface; the Control key was chosen because it's found only
on ADB machines. On machines without ADB, the keyboard is loaded after MacsBug,

. so it makes no sense to break into MacsBug.

• The DebugStr routine with an argument of I ; HC; G I is a useful way to detennine
where in your program the heap may become corrupted. The HC command performs a
heap check; if the heap is corrupted, MacsBug stops and reports the error. If the heap
is in oroer, the G command is executed and program execution resumes. Sprinkling
such cal~ to DebugStr throughout your program lets you hone in on memory culprits.

• A related technique is to use the AlliC command, which checks the h~p prior to each
trap call. Using this technique means that you don't need to modify your program, but
it does have the disadvantage that you can't choose the frequency and location of the
checks.

• In the same way that passing • ; HC; G' with DebugStr checks the heap, passing
I ; CS; G I checksums a block of memory. If the block has cbanged, MacsBug takes
over; otherwise program execution continues. Remember that the range must be set
up with an initial CS command before subsequent CS commands can compare the
checksum.

• You can create a custom A-trap trace by executing the ATB command with an
associated action. For instance, you can specify the commands '; TO ; G' for
execution upon break. Whereas the ATT command shows only select registers, this
action displays all registers. You could further customize the trace by displaying
meJDlry based on the content of particular registers.

• You can display the result of a function every time it's called by entering the
commands BR FuncName I ; MR; ow SI?; G'. Whenever the breakpoint is reached,
MacsBug executes the MR (Magic Return) command and displays the top word on the
stack (the function result). (Functions that return long words would use I OL SI? I

instead.) Functions that return pointers could dereference the pointer and display the
structure (possibly using a template).

115

• Macros are a quick way to save values. For instance, you could enter MC save PC to
save the contents of the program counter, and PC - save to restore the contents.
(Note that this technique does not work with floating-point registers.)

116 MacsBug 6.1 Reference

•

('

(

Appendix G Procedure Defmition

WHENEVER possmLE, MACSBUG ACCEPTS AND RE'I1JRNS ADDRESS AS PROCEDURE
NAMES and offsets. Names are found by scanning relocatable heap blocks for
valid procedure definitions. A procedure defInition in the simplest case consists
of a rerum instruction followed by the procedure's name.

A procedure is defIned as follows:
[UNKA6]

Procedure code

RTS or JMP(AO) or RID

proced~ name

procedure constants

The UNK A6 instruction is optional; if it is missing, the start of the procedure is
assumed to be immediately after the preceding procedure, or at the start of the
heap block.

The procedure name can be a fIXed length of 8 or 16 byres, or of variable length.
Valid characters for procedure names are a-z, A-Z, 0-9, underscore U, percent
(%), period (.), and space. The space character is allowed only to pad ftxed
length names to the maxi.mlm length.

With fIXed-length forma~ the fll'St byte is in the range $20 through S7F. The high
order bit mayor may not be set. The high-order bit of the second byte is set for
16-character names, clear for 8-character names. Fixed-length 16-character names
are used in object Pascal to show class.method names instead of procedure
names. The method name is contained in the fll'St 8 bytes and the class name is in
the second 8 bytes. MacsBug swaps the order and inserts the period before
displaying the name. •

117

With variable-length format, the first byte is in the range $80 to $9F. Stripping the high
order bit produces a length in the range $00 through SIF. If the length is 0, the next byte
contains the actua1length, in the range $01· through SFF. Data after the name starts on a
word boundary. Compilers can place a procedure's constant dara immediately after the
procedure in memory. The fU'St word after the name specifies how many byres of
constant dara are present. If there are no constants, a length of 0 must be given.

Examples of valid assembly-language procedure defmitions are given below.

j Variable-length name with no constant data.

Procl PROC
LINK A6, to
UNLK A6
RTS
DC.B $8C, 'VariableName'
DC.W $0000
ENDP

Fixed 8-character name.

Proc2 PROC
LINK A6, to
UNLK A6
RTS
DC.B $80 + 'F' , fixed
ENDP

j Fixed 16-character name.

Proc3 PROC
LINK A6, to
UNLK A6
RTS
DC.B $80 + 'M' , $80 + tel , 'thod Class
ENDP

118 MacsBug 6.1 Reference

•

•

(

Index

A
A-Trap Break (ATB) corrunand

15,26,28
A-Trap Clear (ATC) corrunand

27
A-Trap Display (AID)

corrunand 26, 28
A-Trap Heap Check (ATHC)

corrunand 17, 28, 29
A-Trap Playback (ATP)

corrunand 13, 30
A-Trap Record (ATR) command

13,30,31
A-Trap Step Spy (ATSS)

command 16,28,32
A-Trap Trace (Am command

28, 33
A-trap

call 13, 14
commands 26, 34
command summary 97
exception handler 106
instruction 72

A6 frame conventions 82
addition operators 24
address
indirection operators 24

register 75
location 96

Align field type 95
An register 75
Apple Desktop Bus (ADB) 115
application heap 11, 33, 96

check with commands 4
applications 4
ApplZone global variable 54, 59
ASCII format 11, 83
assemble mnemonics 41

assembly language, with
Debugger and DebugStr
108

assembly-language debugger 3
asterisk (') character 65
ATB (A-Trap Break) command

15,26,28
ATC (A-Trap Clear) command

27
AID (A-Trap Display)

corrunand 26, 28
ATHC (A-Trap Heap Check)

corrunand 17, 28, 29
ATP (A-Trap Playback)

corrunand 13, 30
ATR(A-Trap Record) command

13,30,31
ATSS (A-Trap Step Spy)

command 16, 28, 32
ATI (A-Trap Trace) command

28, 33
auto-pop bit set 14, 86

B
Bcc conditional statement 14
bitwise operators 24
block header 18
block, relocatable 34
Boolean

AND operators 24
NOT operators 24
OR operators 24
type 94
value 23
XOR operators 24

BR (Breakpoint) command 15,
23,34

brackets ({}) x

BRC (Breakpoint Clear)
command 15, 36

BRD (Breakpoint Display)
corrunand 15, 34, 37

break
conditions 34
message 58
reason for 10

Breakpoint CBR) command 15,
23, 34

Breakpoint Clear CBRC)
command 15,36

Breakpoint Display CBRD)
command 15, 34, 37

breakpoint 26, 34
command summary 97
ROM address 34
set with commands 4
setting 53
specified address 15
table 34, 37
temporary 37, 53

BRM (Multiple Breakpoints)
command 15, 38

BSR instruction 72
buffer 11
BuildDcmd tool 113
byte type 51, 94

C
C3,94,111
C++ 38

debugging 15
'C++'type 19
CAAR register 75
cache

address register 75
control register 75

CACR register 75

call-back routines 112
calling chain 82
centered dot (.) character 43,

56,64,65,66
Checksum (C5) command 16,

39
checksum 32, 87
colon (:) character, as

command values 24
color, debug in 10
command

language i.x
name aliases 68
in output region 10
region 91

Command-: 12
Command-Delete 10
Command-G 52
Command-Left Arrow 10
command-line evaluation 23
Command-Right AIrow 10
Command-S 79
Command-T 86
Command-V 10
commands 21-96. See also

individual commands.
case-sensitive x
check heaps 4
disassemble memory 4
display and set memory and

registers 4
HELP 10
monitor system traps 4
pressing Return without

entering 10
set breakpoints 4
step and trace 4
summary 97-100
syntax 23-25
values 23-24

comment field 64, 65, 66
common expressions 68
conditional statements 14
configurations, default 19
constants 112
Control key 115

120 MAC5BUG 6.1 Reference

Control Panel 10, 89
Control trap 106
CPU registers 91
CPU root pointer register 75
crash of program 13
CRP register 75
C5 (Checksum) command 16,

39
cString type 94
CurMap global variable 77
current application heap 49
current heap 11, 61

consistency 54
cursor, flashing bar 10
CurStackBase global variable

72,81,82

o
dagger ct) character 23
data register 75
data structures 112
DB (Display Byte) command

16,18,40
DBcc conditional statement 14
'dcmd' type 111
dcmds me 5
DebuggerExchange(DXJ

command 15, 48
Debugger macro 107-110
Debugger Prefs me 5, 9, 31, 68,

94
Debugger trap 15, 48
debugger

assembly-language 3
systems level 3

debugging commands,
customized i.x

debugging strategies ix
DebugStr macro 15, 48, 107-

110, 115
decimal 94
default configurations 19
Delete key 10, 12
desk accessories 4
destination function code

register 75

DFC register 75
DH (Disassemble

Hexadecimal) command
41

DirCreate routine 15
Disassemble Around Address

(IP) command 18, 65
Disassemble From Address (IL)

command 18, 64
Disassemble Hexadecimal

(DH) command 41
Disassemble One Line (ID)

command 18, 63
Disassemble Until End of

Procedure (rR) command
12,66

disassembly commands,
. summary 98

Display Byte (DB) command
16, 18, 40

Display Long (DL) command
16,18,42

Display Memory (DM)
conunand 16, 18, 43

Display Message (HOW)
command 14, 58

Display Page (DP) command
16,18,44

Display Version (DV) command
46

Display Word (DW) command
16, 18,47

divide number by zero error 101
division operators 24
DL (Display Long) command

16, 18, 42
DM (Display Memory)

command 16, 18, 43
Dn register 75
dollar sign ($) character 23, 73
dollar sign ($) character 73
dot address 17-18, 24, 40
dot variable 17
double colon (::) characters 38
double quotation mark (") 24
Down Arrow key 11

•

•

(
DP (Display Page) command flow control commands, Heap Totals (lIT) command

16,18,44 summary 97 17,60
DSC (Extended Discipline) FP68K calls 19 Heap Zones (HZ) command 11,

command 45 FPCR register 76 62
DV (Display Version) command FPIAR register 76 heap

46 FPn register 76 application 11
DW (Display Word) command FPSR register 76 commands, summary 98

16,18,47 free blocks 55 consistency 29
DX (Debugger Exchange) G current 11

error 18 command 15, 48
G (Go) conunand 11, 52 integrity 54 E gDevList instruction 106 scrambling 106

EA (Exit to Application) GetNextEvent trap 27 heap zone 17
command 11, 49 global variables 68, 111 address of 61

ellipsis Coo) characters x, 64, 65,. glue code 15 HELP (Help) command 10, 57
66 glue file 111 Help (HELP) command 10, 57

equal operators 24 Go (G) command 11, 52 hexadecimal 23, 41, 94
error messages ix, 101-104 Go Till (GT) conunand 14, 37, HFSDispatch calls 19
ES (Exit to Shell) command 11, 53 HFSDispatch trap- 15

50, 79 greater-than operators 24 hFstFree field 54
Esc key 10 greater-than or equal to hierarchical file system 67
EveryTime macro 69 operators 24 HOW (Display Break Message)
Exit to Application (EA) grouping operators 24 command 14, 58

l command 49 GT (Go Till) command 14, 37, HS (Heap Scramble) comand ,
Exit to Shell (ES) command 11, 53 17, 59

50,79 'GTO' macro 53 lIT (Heap Totals) command
ExitToShell trap 50 H 17,60
expressions, as parameters 23

Handle field type 95 HX (Heap Exchange) command
Extended Discipline (DSC)

hard address 12 11,61
command 45

hardware configurations ix HyperCard 111
Extended Discipline utility 17,

hardware emulator 16, 87 HZ (Heap Zones) command 11,
45, 106

HC (Heap Check) command 62
external commands 111-114

17,54 I
F HD (Heap Display) command ID (Disassemble One Line)
F (Find) command 18, 51 55,77 command 18, 63
F: qualifier 55 HD (Heap Dump) command 17 IL (Disassemble From Address)
fields, in templates 94 Heap Check (HC) command command 18, 64
Find (F) command 18,51 17,54 ImageWriter printer 11
Finder 9, SO, 78 Heap Display (HD) command internals ix
FirstTime macro 68, 69 55,77 interrupt
fixed-length format 117 Heap Dump (HD) command 17 stack pointer register 75
FKEY resource 10 Heap Exchange (HX) command switch 4,9
flashing bar cursor 10 11,61 IP (Disassemble Around
floating-point registers, 76, 116 Heap Scramble (HS) command Address) command 18, 65

17, 59

('-

INDEX 121

•

IR (Disassemble Until End of M set with commands 4
Procedure) command 12,

Madntosh debugging 3-4
setting 16

66 Memory Manager 29
ISP register 75 Madntosh icon 10, 89 messages, in output region 10

Macintosh II 3, 106
J Macintosh Plus 3

minus sign (-) character 23

]SR instruction 72 Macintosh Programmer's
miscellaneous commands,

summary 100
K

Workshop (MPW) 5 MMU registers 93
Macintosh SE 3

'KCHR' type 19 Madntosh XL 3
Monitor icon 89

key map 19 Mac]mp instruction 105
Motorola 23

keys. See also individual keys. macro 13
mouse button 9

Control 115 Macro Clear (MCC) command
MPW C, with Debugger and

Delete 10, 12 70
DebugStr 109

Down Arrow 11 macro commands, summary 99
MPW Pascal 67

Esc 10 MPW text file 67
Left Arrow 10

Macro Create (MC) command MPW.r files folder 19
Option 10, 89

13,68 MR (Magic Return) command
Right Arrow 10

Macro Display (MeD) 14,72
command 13, 71

Space bar 10 macros 116
MSP register 75

tilde (-) 10 - -standard 19
MultiFinder 3, 11, 62, 67

Up Arrow 11 Macros.r file 68
Multiple Breakpoints (BRM)

L "MacsBug installed" message 9
conunand 15, 38

multiple screen configuration
L: qualifier 55 MacsBug internaJs 105-106 89
LaserWriter 67 Macsbug file 5 multiplication operators 24
Left AIrow key 10 Magic Return (MR) command 'mxbc' type 19
less-than operators 24 14,72 'mxbh' type 57
less-than-or-equal-to operators master stack pointer register 75 'mxbi' type 19, 31

24 MC (Macro Create) command 'mxbm' type 19, 68
UNKA6 13,68

instruction 117 MC68851 Memory Management
'ffiXWt' type 19, 94

procedure prolog 13 Unit (MMU)' 3 N

LoadSeg trap 86 Mc68881 floating-point N: qualifier 55
local stack variables 82 coprocessor 3 NewHandle trap 17, 59
locked blocks 55 MCC (Macro Clear) command NewPtr trap 17, 59
LOG (Log to a printer or me) 70 nextWindow field 95

command 11, 14,64,65, MCD (Macro Display) NIL pointer 54
66, 67 command 13, 71 nonrelocatable blocks 55

Log to a printer or f1le (LOG) memory not-equal operators 24
command 11, 14,64,65, commands, summary 99 number sign (#) character 23
66, 67 changing 16 numbers

long type 94 disassemble with commands as command values 23
long word type 32, 42, 51,83,87 4 as parameters 23
long! ASCII format 83 displaying 16 0 map 79 .

mapping 86 operating-system routines 4

122 MACSBUG 6.1 Reference

•

•

(~ Option key 10, 89 ReallocHandle trap 17, 59 Set Byte (SB) command 16, 18,
output region of screen 10 Reboot (RB) command 11, 74 80, 85

Reference Number (RN) Set Long (SL) command 16, 18, P
command n 84,85

P:qualifier55 reference number 56 Set Memory (SM) command 16,
PackO calls 19 register commands, summary 99 18,85
parameters 23 registers 75-76. See also Set Word (SW) command 16,
parentheses x, 23 individual registers. 18,85,88
PascaJ3,94, 111, 112 as conunand values 23 SetHandleSize trap 17, 59

calling conventions 113 set with commands 4 SetPtrSize trap 17, 59
with Debugger and DebugStr . relocatable block 34, 55 SEVars global variable 105

108 ResEdit 5, 68,94 SFC register 75
PC (program counter) 11, 30, resource shorthand notation 18

52,53,63 blocks 18, 55 SHOW (Show) command II, 83
region of screen 11 ID 56. Show (SHOW) command 11, 83
register 75 map errors 18 SignedByte type 94
window 12 name 56 SignedLong type 94

percent sign (%) character 117 type 56 SignedWord type 94
period (.) character 17, 117 Resource Number (RN) single quotation mark (') 24

as cormnand values 24 command 12 single screen configuration 89
plus sign (+) character 23 Resources file 5 16-bit opcodes 41
PMMU status register 75 Resources folder 19 68000 bus error 101
PostEvent handler 106 Restart (RS) command 11, 78 .68000 exception 105
procedure definition 117-118 Rez tool 19, 68, 94 68000 exception error 13
procedure name 12, 117 RGB specifications 19 68000 family of coprocessors 3
program counter (PC) 11, 30, Right Arrow key 10 68000 family registers 23, 75,

52,53,63 RN (Reference Number) 91. See also individual.
program counter register 75 command n registers.
program crash 13 RN (Resource Number) 68020 registers 75. See also
program execution, controlling command 12 individual registers

14 RS (Restart) command 11, 78 68030/68851 registers 75. See
PSR register 75 RS: qualifier 55 also individual registers.
pString type 94 RT5 instruction 72 68030 MMU registers 91
purgeable blocks 55

S 68030 processor 93
Q S (Step) cormnand 14, 79

68851 processor 93
quotation mark 68881 registers 76. See also

SB (Set Byte) cormnand 16, 18, individual registers. double (I) 38 80,85 68881 registers 92 single (l) 24 SC, as alias for SC6 81 Skip field type 95
R sc6 (Stack Crawl A6) command SL (Set Long) command 16, 18,
R: qualifier 55 13,81 84, 85
RAD (Toggle Register Name SC7 (Stack Crawl A7) command SM (Set Memory) command 16,

Syntax) command 73 13,81,82 18,85
RAMDump utility 111 Scc conditional statement 14 50 (Step Over) command 14,
RB (Reboot) command 11, 74 ScmBase global variable 106 79,86
Read Me First file 5 semicolon (;) 10,68 software configurations ix

.(.
INDEX 123

source function code register
75

SP register 75
Space bar 10
special symbols x
square brackets ([]) x
SR register 75
SRP register 75
S5 (Step Spy) command 16, 87,

106
SSP register 75
Stack Crawl A6 (SC6) command

13,81
Stack Crawl A7 (SC7) command

13,81,82
stack commands, summary 98
stack pointer 83

register 75
standard macros 19
standard templates 19
starus region 11, 83, 92, 93
status register 75, 105
Step (5) command 14, 79
Step Over (SO) command 14,

79, 86
Step Spy (55) command 16, 87,

106
step and trace, with commands

4
step command 26, 34, 106
stopping, program at particular

place 15
strings 88

as command values 24
subtraction operators 24
supervisor root pointer register

75
supervisor stack pointer

register 75
SW (Set Word) command 16,

18,85,88
SWAP (Swap Frequency)

command 89
Swap Frequency (SWAP)

command 89

124 MACSBUG 6.1 Reference

SX (Symbol Exchange)
command 12, 90

Symbol Exchange (SX)
command 12, 90

Symbolic Application
Debugging Environment
(SADE) 3, 4

symbols
command summary 98
as command values 23
location 96
as parameters 23
in place of addresses 12

System Error Handler 4
System folder 5, 9
system error ID 13
system heap 96

check with commands 4
system traps, monitor with
_ - commands 4

systems-level debugger 3
SysZone pointer 54
T
Te register 75
TD (Total Display) command

11,91
Template (TMP) command 16,

43,94-95
template 43
templates, standard 19
Templates.r rile 94, 95
Test dcmd application 113
Text field type 95
text literals, as parameters 23
TF (Total Floating-Point)

command 11, 92
32-bit value address 23
36-bit addressing mode 12
tilde (-) key 10
tips and shortcuts 115-118
TM (Total MMU) command 11,

91,93
TMP (Template) command 16,

43,94-95

Toggle Register Name Syntax
(RAD) command 73

toolbox routines 4
toolbox trap 86
Total Display(TD) command

11,91
Total Floating-Point (TF)

command 11, 92
Total MMU (TM) command 11,

91, 93
trace exception handler 106
trace mode 72
trailer block 54
translation control register 75
TRAP IF instruction 34, 105
trap

breaks, multiple 26
as command value 23
history 13
location 96
name 27, 29, 96, 101
number 27, 29, 96
operating system 30, 31
range of 27, 32 .
recording 31
toolbox 27, 30

24-bit addressing mode 12
MType field type 95
"Type field type 95
mE: qualifier 55

U
unary operators 23
U nsignedByte type 94
UnsignedLong type 94
UnsignedWord type 94
UpArrow key 11
user address pointer 54

V
valid characters, in procedure

name 117
variable-length format 118
VBR register 75
vector base pointer register 75
vertical bar (I) x

•

•

(

·.f r~

(

W
warnings x
WH (Where) command 12, 18,

28, 96
Where (WH) command 12, 18,

28, 96
WindowRecord template 95
word type 51, 83, 94
X
'XCMD' type 111

Z
zcbFree field 54
zone header 54

INDEX 125

