
S® Macintosh® The MacApp®
Interim Manual

Working Draft 4 (APDA)
June 14, 1988

©Apple Computer, Inc. 1988

S APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with
all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or in part, without written
consent of Apple, except in the
nonnal use of the software or to
make a backup copy of the
software. The same proprietary and
copyright notices must be affixed to
any permitted copies as were affixed
to the original. This exception does
not allow copies to be made for
others, whether or not sold, but all
of the material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes
translating into another language or
fonnat.

You may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.

©Apple Computer, Inc., 1988
20525 Mariani Avenue
Cupertino, CA 95014
(408) 996-1010

Apple, the Apple logo, LaserWriter,
Lisa, MacApp, and Macintosh are
registered trademarks of Apple
Computer, Inc.

APDA, MPW, Multi.Finder,
RESEDIT are trademarks of Apple
Computer, Inc.

ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf Dingbats
are registered trademarks of
International Typeface Corporation.

Microsoft is a registered trademark
of Microsoft Corporation.

POSTSCRIPT is a registered
trademark of Adobe Systems
Incorporated.

V arityper is a registered trademark,
and VT600 is a trademark, of AM
International, Inc.

Simultaneously published in the
United States and Canada.

6/14/88

Preface

(

Chapter 1

Chapter2

Table of
Contents

About This Manual ix

Prerequisites x
Hardware x
Software x
What you should already know xi

What this manual contains xii
How to use this manual xii
Notation xiii

Conventions in the MacApp code xiv
Other books you should have xiv

Why MacApp? l

What is MacApp? 2
Programming without MacApp 3
Programming with MacApp 4

The division of labor 5
The benefits of MacApp 7

An Introduction to Object-Oriented Programming 9

The big picture 10
Record types and record variables 12
Object classes and object instances 13
Flow of control in object-oriented programs 18

6/14/88

Chapter3:

ii Table of Contents

Working Draft 4 (APDA)

Object classes 30
Inheritance 31
Method definitions 35
Override methods 36

Object instances 39
An instance method 40
Override methods 43

MacApp 2.0 Tutorial

Override methods that don't call their inherited
method 43

Override methods that do call their inherited
method 44

Privacy between instances 47
Ramifications of object-oriented programming 47

Object Pascal 49

Object Pascal file organization 50
Object class definitions 55

Field declarations 56
Method declarations 56
Override method declarations 58

Object Instances 59
Record handles and record instantiations 59

Instantiation through record variables 59
Instantiation through record pointers 60
Instantiation through record handles 60

Object references and object instances 61
Method call syntax 62

Method definitions 63
The SELF keyword 63
Methods that call other methods of the calling

instance 65
Methods that call methods of other instances 66

Calling a method of a global object instance 66
Calling a method of a local object instance 67
Calling a method of an instance linked by an

object reference field 67
Override methods 72
Override methods that call the inherited method 72

More about Object Pascal 73
Creating and freeing instances 73
Initialization methods 74
Privacy between instances 76
Object reference variables 77

Summary of Object Pascal syntax 78

MacApp 2.0 Tutorial

(

Chapter4

Chapters

(

Working Draft 4 (APDA)

Introduction to MacApp: Organization 81

Source code: organization of the files 82
Ancestry: organization of the classes 85

Higher-level classes 88
Descendants of TView 90
Summary of the ancestry tree 91

Architecture: organization of the concepts 91
Storing data 91
Displaying information 93

Hierarchy of views 93
Windows 97
Scrollers 99
Main content 100
Palettes 100
Scroll bars 101
Other specialized views 101

Executingcommands 103
Summary 106

Introduction to MacApp: Flow of Control 107

Flowcharts and overview 109 ·
Assigning events to instances 116
The chains of responsibility 121

The command chain 121
How the chain is built 123
How the head of the chain is detennined 123
How the chain is traversed 124

The click chain 128
How the chain is built 128
How the head of the chain is determined 128
How the chain is traversed 128

The idle chain 130
How the chain is built 130
How the head of the chain is determined 131
How the chain is traversed 131

Summary 132

Table of Contents

6/14/88

iii

6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial

iv

Chapter 6 How to Install and Use MacApp 133

Installing MacApp 134

Chapter7

Table of Contents

File naming conventions 135
Building a MacApp program 136

Creating a make file 138
Using MABuild 139
MacApp Rez files 140

Include files 140
The cmnu resource type 141
MBAR resources 141

The structure of a MacApp program 143

TI'le Cookbook 145

Documents 148
Creating a document 148
Initializing a document 150
Saving and restoring data 151
Saving the display state 156

Windows and views 160
Creating a view 160

. Initializing a view 162
·Creating a window 163
Creating a palette window 166
Creating a window with two or more main

views 169
Creating a document with two or more windows

172
Creating view templates 173
Creating and initializing a view with templates 178
Drawing a view 180
Drawing an object in a view 182
Optimizing drawing 182

Handling mouse events 185
Selecting 186
Dragging 192
Drawing with the mouse 198
Tracking the mouse 201
Handling several types of mouse events 203
Tracking the mouse when the mouse button is

up 206

MacApp 2.0 Tutorial

(

Chapters

Working Draft 4 (APDA)

Standard editing commands 207
Undo 207
Cut and copy 208
Paste 209

Menus and commands 211
Creating menu commands 211
Changing menu appearance and function 214
Handling negative command numbers 217
Creating filtered commands 220

Using UPrinting 221
Using UTEView 222
Using UDialog 226

Creating a modeless dialog 227
Creating a modal dialog 228
Using dialog items 230

The Clipboard 231
Failure handling 237

MacApp Debugging Facilities 245

What controls debugging code 248
Compiler variables 248
The $D switches 248
Including debugging code 250

The Debug window 250
Application mode and debugger mode 251
Using WriteLn statements with the Debug

window 251
Reading debugging information in application

mode 251
The Debug menu 251

New Inspector window 252
Allow trace of menu setups 252
Allow trace during idle 252
Make Front Window Modal 252
Do first click for This Window 252
Scale pictures in Clipboard to window 253
Show Debug window 253
Show software version 253
Refresh front window 253
Show page breaks 253

Inspector windows 254
Using Inspector windows 254
The Fields method 255
The GetlnspectorName method 256

Table of Contents

6/14/88

v

6/14/88

Appendix A

vi Table of Contents

Working Draft 4 (APDA}

The Interactive Debugger 257
Entering debugger mode 257

MacApp 2.0 Tutorial

What the Interactive Debugger prints when
it starts 258

Using the Debug window in debugger mode 258
Interactive Debugger commands 259

The Help command 259
The Status command, ? 259
The Recent History command, R 260
The Parameters command, P 260
The Locals command, L 260
The Fields command, F 261
The Display Memory command, D 262
The Stack Crawl command, S 262
The Display More command, M 262
The Trace command, T 262
The Single Step command, space bar 263
The Go command, G 263
The Breakpoint command, B 263
The Clear Break command, C 264
The Scroll Up command, Delete 264
The Scroll Down command, Return 264
The Debug window commands, WF, WB, and

WR 264
The Output Redirect command, 0 265
The Quit command, Q 265
The Heap and Stack command, H 265
The Toggle Flag command, X 266
The Inspect Object command, I 268
The Enter Macsbug command, E 269

Using MacsBug with MacApp 269

Changes Since MacApp 1.1 271

Changes to the architecture 272
Views 273

The old display architecture 273
The new display architecture 273
The most important classes in the new

architecture 275
Large coordinates 276

Text 276
Dialogs 277
Grids 279
Inspector 280
AppleTalk 280
MultiFinder and network support 281

MacApp 2.0 Tutorial

Appendix B

Working Draft 4 (APDA)

How to Convert Your MacApp 1.1 Application 283

Global changes 285
Unit dependencies 285
Derbugging 285

Document changes 286
View changes 287

Windows 288
Your views 288
TViews and Dialog Boxes 288

Command objects 289
!Command 289
Tracking methods 289
Editing commands 289

Index 291

Table of Contents

6/14/88

vii

Preface

(

()

6/14/88

x

Working Draft 4 (APDA)

The MacApp® object-oriented application framework is a set of libraries you
can use to speed your software development process and to create more robust
applications for Macintosh® computers. This manual is a preliminary draft of
what will ultimately be a two-volume suite (Volume 1 will be a tutorial; Volume
2 will be a reference). Most of the reference material is missing from this draft,
as are the labs that will show you, step-by-step, how to build an application
with MacApp. However, this draft is a complete (if not comprehensive)
introduction to MacApp and object~oriented programming.

Prerequisites
To make any use of MacApp, you must have certain hardware and software; to
make good use of this manual, you must have had some experience
programming.

Hardware

You must have a Macintosh computer with a hard disk and at least one
megabyte of memory to develop an application with MacApp. However, most
applications will require you to h~ve at least two megabytes of memory while
you are developing them.

It is possible to create applications with MacApp that can run on any computer
in the Apple® Macintosh line, including the Macintosh, the Macintosh Plus, the
Macintosh XL, the Macintosh SE, and the Macintosh Il, so long as the
application doesn't exceed the memory limits of the computer and you are
careful to avoid using features that are not supported across the product line.
(MacApp itself is written to run on any Macintosh.)

Software

MacApp works under the MPW® development system. MPW is the Macintosh
Programmer's Workshop. The final version of MacApp 2.0 will work with
MPW 3.0, but this version works with MPW 2.0.2. MacApp comes with an
interface for MPW Pascal; final versions of the software will also come with an
interface for MPW C++.

Preface to Volume 1

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

What you should already know

If you are a competent Pascal or C programmer and you have played with a
Macintosh enough to have a feeling for what makes a good application, then
you know enough to use this manual. You don't have to know anything about
object-oriented programming and you don't have to have written a single line of
code for a Macintosh program.

However, if you have never programmed a Macintosh before, you can do some
reading to make learning MacApp much easier. The books listed here appear in
the order of how vital they are to your understanding:

•

•

•

•

•

•

Before you begin with this manual, read Chapters 1, 2, and 3 in
Programmer's Introduction to the Macintosh to get an overview of how
programming the Macintosh is different from programming other
computers. These chapters will also give you a good idea what it's like to
program the Macintosh without an aid like MacApp.

You should go on to read the rest of the book, especially Chapter 4
("Memory Management"), Chapter 5 ("Display and Graphics Routines"),
and Chapter 7 ("File Management") as they seem necessary. The
information in Chapter 6 ("The User Interface Toolbox") is interesting and
important, but it may seem confusing. Wait until you understand MacApp
fairly well before you read Chapter 6.

At your leisure, read the "User Interface" chapter of Inside Macintosh,
Volume I and browse through Apple's Human Interface Guidelines to get
an idea of the different elements you can include in your interface. These
works were the guidelines by which MacApp was created; you should use
them as your bible to create exciting and effective applications.

After you have finished t!ie Primer section of this book and before you start
programming, read the "QuickDraw" chapter of Inside Macintosh, Volume I
to learn how to create images on the Macintosh screen.

When you are ready to create programs that will write files to disk, read the
"File Manager'' chapter of Inside Macintosh, Volume I.

After you understand the basic concepts· of MacApp, read the "Resource
Manager" chapter of Inside Macintosh, Volume I.

·The more you know about MPW, the Macintosh Programmer's Workshop,
the more efficiently you will be able to develop applications with MacApp.
See the MPW Reference Manual.

Preface to Volume l

6/14/88

xi

6/14/88

xii

Working Draft 4 (APDA)

See "Other Books You Should Have," later in this preface, for bibliographic
information on these works. These books contain information about Macintosh
ROM routines. Remember that because you use MacApp, you will not need to
use many of these routines.

What this manual contains
The primer introduces the concepts behind MacApp, starting with an overview
of MacApp itself. It continues with an introduction to object-oriented languages
in general, and Pascal in particular. Next, it describes the physical,
hierarchical, and conceptual organization of MacApp and shows the flow of
control, as governed by MacApp. Finally, it tells you how to install MacApp.

The cookbook contains a number of segments, each of which answers a
question in the form of How do I ? For instance, one segment might
answer the question How do I create windows? Another one might resolve the
question How do I track the mouse?

The appendixes contain information for readers who may be familiar with
MacApp 1.1. Appendix A describes the differences between the old and new
versions of MacApp. Appendix B describes the method of converting
applications based on MacApp 1.1 to applications based on MacApp 2.0.

How to use this manual
The more you already know about object-oriented programming, programming
the Macintosh, or using MacApp, the more of this manual you can skip.

The only readers who may find it useful to read this whole manual are those
who already know how to program the Macintosh but are not yet familiar with
MacApp or object-oriented programming. Others may want to customize their
reading as follows:

If you have never programmed a Macintosh you should carefully
consider the suggestions in the section ''What You Should Already Know."

If you are familiar with object-oriented programming you can skip
chapters 2 and 3.

Preface to Volume 1

MacApp 2.0 Tutorial

MacApp 2.0 Tutorial Working Draft 4 (APDA)

If you are an impatient learner you should still read Chapter 1. Then, if
you are adventurous, skip to Chapter 6, "How to Install and Use MacApp." If
you feel confused, go back and read the rest of the information in the primer.

If you are well-acquainted with MacApp 1.1 you may choose to read
only Appendixes A and B, "Changes Since MacApp 1.1" and "How to Convert
Your MacApp 1.1 Application." Then you will probably have to rely heavily
on the cookbook for the first applications you write with MacApp 2.0.

Notation
This manual uses courier type to represent code fragments. Note that bold
type is sometimes also used to highlight important concepts, especially at the
beginning of paragraphs.

Like all technical manuals, this manual uses some words in special,
conventionalized ways. These words and other conventions are explained in
detail in the text, but here is a list for quick reference:

C • Routine means any procedure or function.

• Method means any routine belonging to a class of objects.

• Your indicates an identifier or part of an identifier that you are expected to
replace, as in TYourApplication. If your application were named
Corporate, you would replace the name as TCorporateApplication.

• Generic references to instances of a particular class are given the name
of the class minus the "T" - for example, in this manual a generic instance
of the class TWindow is just called a window.

• Pascal reserved words and predefined type names are written in all
capital letters.

• ROM routines are routines in the Macintosh ROM and system software.
They are documented in Inside Macintosh.

Preface to Volume 1

6/14/88

xiii

6/14/88 Working Draft 4 (APDA)

Conventions in the MacApp code

• All variable and constant identifiers begin with a lowercase letter.

• Global variable identifiers begin wi~ a lowercase g (for example, gTarget).

• Command constants begin with a lowercase c (for example, cUndo).

• Most other constants begin with a lowercase k (for example,
kWantHScrollBar).

• Fields of object classes begin with a lowercase f (for example, fDocument).

• All routine names, both object-oriented and otherwise, begin with an
uppercase letter (for example, Enable).

• Names of classes begin with an uppercase T (for example, TApplication).

• Compile-time variables begin with a lowercase q (for example, qDebug).

MacApp and Object Pascal do not add any special checking to enforce these
conventions. Uppercase and lowercase characters are equivalent in Pascal
identifiers because the Pascal compiler coverts all characters to uppercase.
When you use the MPW Assembler, all identifiers are also converted to
uppercase, unles_s you use the Assembler directive to make case significant.
You should not use that directive when using the Assembler with MacApp.

Other books you should have
Here is a list of books you should have within reach while programming with
MacApp.

• Human Interface Guidelines (Addison-Wesley, 1987). This book
describes how Macintosh applications should appear to their users. A
tremendous amount of research and experience have gone into this book,
and you may wish to consult it often to avoid inventing new solutions to
problems that have already been solved.

• Inside Macintosh. There are five volumes of Inside Macintosh and you
need all but the third one. Volumes I and II (Addison-Wesley, 1985)

xiv Preface to Volume l

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

describe the different managers in the ROM. Volume N (Addison-Wesley,
1986) discusses special capabilities of the so-called 128K ROM introduced
in the Macintosh 512K Enhanced and the Macintosh Plus computers.
Volume V (Addison-Wesley, 1988) discusses the Macintosh SE and the
Macintosh II (the color section may be of special interest).

One of the main advantages of using MacApp is that you don't need to
know in detail much of the information in Inside Macintosh. However, you
should pay attention to information on the User Interface, QuickDraw, and
the File Manager. You may also want to browse through chapters
concerning the Window Manager, the Resource Manager, the Menu
Manager, and the Control Manager as well as any information concerning
sound, color, and MultiFinder.

• MPW Assembler Reference (Apple Computer, 1986). If you intend to
include Assembler language routines in your applications, you will need this
manual.

• MPW Pascal Reference (Apple Computer, 1986). This manual documents
Apple's version of the Object Pascal language.

• MPW Reference and MPW Command Reference (Apple Computer, 1986).
These manuals describe the development system you need to use with
MacApp. The more familiar you are with MPW, the more efficiently you'll
be able to work.

• Programmer's Introduction to the Macintosh (Apple Computer, 1987).
This book explains the important concepts you need to know in order to
program the Macintosh.

Addison-Wesley books are available at commercial bookstores. Books and
manuals published by Apple are available through APDA™, the Apple
Programmer's and Developer's Association. In addition, technical notes and
other materials of interest to Macintosh application developers are available from
APDA.

Preface to Volume l

6/14/88

xv

Chapter 1

Why MacApp?

6/14/88

2

Working Draft 4 (APDA)

MacApp® is a tool that helps programmers create better applications in less
time. It helps programmers work faster by allowing them to program in a style
well suited to Macintosh® applications. It also facilitates the implementation of
the standard Macintosh interface, including everything from scrollable, resizable
windows to multipage printing and undoable commands. It makes programs
better because it provides code carefully written by expert Macintosh
programmers; as long as you exercise similar care, MacApp applications are
virtually guaranteed to be compatible across the whole Macintosh line and to
work with all other Apple® products, from AJUX® to MultiFinderTM.

What is MacApp?
In technical terms, MacApp is an object-oriented application framework. This
phrase-"object-oriented application framework"- contains a lot of
information and deserves further explanation. MacApp is object-oriented
because it uses a style of programming that is organized around objects instead
of procedures and functions. Chapter 2 explains object-oriented programming
and the definition of objects in detail. In MacApp, objects represent Macintosh
entities such as windows and dialog boxes as well as real-world entities such as
chess pieces, rectangles~ and automobiles.

MacApp is an application framework because it provides a general structure that
you can use to build almost any application. With MacApp and less than one
page of your own code, you can have a complete Macintosh application that
creates windows, handles mouse clicks, prints files, and supports almost every
standard feature Macintosh applications are likely to have. Of course, this
generic program will have no specific functionality; that much you will have to
do yourself. But with MacApp, when you wish to use the standard features,
you will find MacApp does most of the work for you. If you wish to stray a
little from these standards, you will have to do a little extra work. In general,
the more you want to stray, the more work you will have to do.

In more specific terms, MacApp is a large library of code written in Object
Pascal and MPW Assembler Language. The library includes global procedures,
functions, and methods that provide the standard Macintosh features, and
optional units that will provide printing, dialog boxes, and text editing. MacApp
also includes logic that will supervise when your own customized code is to be
called.

Chapter 1: Why MacApp?

MacApp 2.0 Tutorial

(

!'·,· i,,

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Finally, you should note that MacApp is a framework for applications only.
MacApp is not the appropriate tool for building other sorts of programs. It
cannot be used to create device drivers or desk accessories.

Programming without MacApp
Programming a Macintosh, whether or not you use MacApp, is different from
programming most other computers. While programs for other computers
constrain the user to one of a few actions, Macintosh applications put the user in
charge. Macintosh applications must be ready to handle anything at any time:
without warning, the user can move the mouse, type a number, click in the
menu bar, insert a disk, enter a command from the keyboard, or use the
network.

Because Macintosh applications give users so much flexibility, they require a
different structure than traditional programs. Macintosh application programs
are built around a loop, called the main event loop, which continually looks
out for any event that requires a response. When an event comes along, it
temporarily passes control to some other piece of the program responsible for
handling that particular type of event. The program handles the event and
returns control to the main event loop. The process continues until the user quits
the application.

While the main event loop itself does not require very much code, the code
required to handle all the events is extensive. For instance, each time the mouse
button is clicked, the application must determine whether the action requires a
response and, if so, what sort of response it merits. A click in the menu bar
may cause a menu to appear and will require that the mouse be tracked; if the
mouse button is released over a menu item, the application will have to execute
the appropriate command. A click in a window might activate the window. A
click in a scroll bar might cause the view to change. And a click in a title bar
might cause the window to move.

Moreover, applications require a fair amount of code to provide error checking
and standard features such as printing, saving, and posing queries through
dialog boxes. Much of this work is provided by code in the toolbox of the
Macintosh ROM, but not as much as you might think. The toolbox knows
nothing of windows with scroll bars, undoable commands, or clusters of radio
buttons. It takes a lot of code just to provide these standard features.

Chapter 1: Why MacApp?

6/14/88

3

6/14/88

4

Working Draft 4 (APDA)

Even someone who has no programming experience can tell that the features
don't come automatically. Most Macintosh users can tell you, in between swear
words, which programs have some crucial command that is not undoable. You
can probably think of a program that has windows without scroll bars or that
doesn't allow multiple windows to be open at once. ff these features were free
and easy, every program would have them.

That is the idea behind MacApp. MacApp makes it so easy to include standard
features that programmers find it less work to provide the features than not.

Programming with MacApp
ff you have programmed much at all, you have probably learned that you can
save a lot of time by stealing lines of code from other programs and changing a
few parameters here and there. Macintosh application programs have a great
amount in common with each other, so borrowing code is particularly effective.
However, plagiarizing code is a difficult, dangerous endeavor, even if it is your
own code you are stealing. It is easy to overlook a missing parameter or a line
of code that was meaningful only in some other program. MacApp puts the
very best of Macintosh programming at your disposal without these pitfalls.

The manner in which MacApp allows you to borrow and customize code is
clever and subtle, relying heavily on the use of object-oriented programming
techniques. The next two chapters are devoted to this subject. For now,
imagine that MacApp was not written in an object-oriented language, but rather
in the procedure-oriented style more familiar to most programmers. In this
hypothetical (and false) model, MacApp is a complete template application. It
has a main event loop that waits for events, and a number of routines that
handle them. You just fill in the blanks.

Chapter 1: Why MacApp?

MacApp 2.0 Tutorial

(

. MocApp 2.0 Tutoriol Working Droft 4 (APDA)

The division of labor

In general, you can assume that MacApp does as much as it can without being
able to read your mind. Thus, the portion of MacApp responsible for windows
will know how to respond if the user clicks in any of the window's controls,
because virtually every application handles these clicks in the same way. If
users want to change the size of the window, they always click the size and
zoom boxes; if they want to move the window, they always drag the title bar.
However, you could not expect MacApp to know what the content of any
particular window might be. It is MacApp's job to handle events involving the
controls of the window, since these are predictable; it is your job to handle
events involving the content of the window, since only you know what this
might be.

Commonsense logic of this sort will help you figure out what MacApp does for
you and what you must do for yourself. Sometimes MacApp knows when
something must be done, but not how. When this is the case, MacApp will call
a routine with a specific name which it expects you to have written. Much of
this manual will be devoted to teaching you which routines you have to write
and how they should be named. Here are some examples of how the division of
responsibility works in MacApp.

• Managing windows. Windows can have a variety of standard
components, pictured below.

closebox---------@~~~~~~~~~rnit~le~~~~~~~~~j!',..,.,~~ij';
Tille bar ____________ __,/ 7
Zoom box---------+-------------------~
Size box----------1------------------..

Figure 1-1
Components of a window

MacApp provides some of these components at your discretion. MacApp 's

Chopter 1: Why MocApp?

6/14/88

5

6/14/88

6

Working Draft 4 (APOA)

code draws the window and responds if the user manipulates the size box,
title bar, or zoom box. Your code is responsible for drawing the contents of
the window and responding if the user manipulates the contents. In
addition, if you want any of these components to work in an unconventional
manner, you will have to add some code of your owri.

• Managing menus. MacApp does most of the work involved in managing
most menus. You must inform MacApp of the items that are to be listed in
the menus, how they might be chosen from the keyboard, and their state
(enabled, checked, and so forth). MacApp will automatically display the
menus and highlight the commands in the usual way.

• Executing menu commands. Since MacApp cannot anticipate what
commands your application is likely to have, you must write the code for
each command yourself. If a command is undoable, you will have to write
at least three pieces of code: (1) how to execute the command; (2) how to
undo it; and (3) how to redo it MacApp knows when to call which piece of
code.

• Handling errors. MacApp provides a framework for error handling, as
well as a number of routines for detecting and handling errors that fit into
that framework. You supplement MacApp's error handling in a variety of
ways: by calling MacApp's error handling and detection routines, by
providing more specific error messages for those routines, and by providing
your own routines.

• Printing. MacApp provides standard multipage printing capabilities
which you can enable by linking in an extra module and writing three lines
of code. If you wish to add any extra functionality, like drawing borders
around the text or placing headings on every page, you must add them
yourself, though MacApp has provisions to make this work relatively easy.

• Editing text. MacApp provides a text editor which you can access by
linking in an extra module and adding another three lines of code. Again,
you can enhance this editor by adding your own custom code.

• Filing documents. MacApp provides a framework for saving files and
checking to make sure sufficient disk space is available. Since the format in
which you save the data is not predictable, you must provide the code to
read and write data. MacApp knows when to call this code.

This division of responsibility is one of the most difficult concepts in learning .
how to use MacApp. Even once you learn who does what, you may lose faith
that MacApp will do its part, since you are not providing the code yourself.

Chapter 1: Why MacApp?

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorlal Working Draft 4 (APDA)

This manual will make a special effort to make your responsibilities clear; you
can trust MacApp to do the rest.

The benefits of MacApp
If you develop applications with MacApp, you will benefit because MacApp
provides you with a superior development system and the users of your
application will benefit because the application will work the way they expect.
MacApp is written according to Apple's own specifications. As a result, your
application is likely to work on any computer in the Macintosh line. It can work
on the Macintosh XL as well as the Macintosh II, and it will work with
MultiFinder and NUX, provided you maintain MacApp' s standards of
compatibility. Moreover, because MacApp is supported by Apple, your
application is likely to continue working with any new Macintosh systems.

Besides adding more functionality to your application and making it easier to
maintain, MacApp makes the development cycle more productive. Since
MacApp provides the basic framework, programmers can focus on the more
interesting portions of an application. As a result, you can speed up
development or get more done in the same amount of time. In addition,
MacApp allows you to develop the application in an extremely modular fashion.
You can recompile after adding each small method and get a testable, working
version every time. You will always have a working application to show your
boss or your clients. And if there is a problem, MacApp provides you with a
high-level object-oriented debugger.

Perhaps the greatest benefit MacApp affords you is the pleasure your users will
get from running your new application. Because your application was written
with MacApp, the user interface-the window controls, menus, and so on
will be likely to work just as the user expects, and he or she will spend less time
learning the application, and more time enjoying it. Because your application
was written with MacApp, it's more likely that the user will find it works even
under MultiFinder and with future revisions of the Macintosh Operating
System. These are the criteria by which the user decides whether an application
is truly professional and worth the money.

In short, an application written with MacApp is likely to be a better application.

Chapter 1: Why MacApp?

6/14/88

7

6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial

8 Chapter 1: Why MacApp?

(

Chapter 2

An Introduction to
Object-Oriented
Programming

6/14/88

10

Working Draft 4 (APDA)

MacApp is a powetful programmer's tool. A great deal of this power stems
directly from the fact that MacApp is written in an object-oriented programming
language, and that this tool can easily be enhanced by you-the application
programmer. However, to take advantage of MacApp, you must be working in
an object-oriented language, such as Object Pascal or C++. This chapter is not
meant to be, and couldn't be, a complete guide to object-oriented programming.
However, if you have a solid programming background, you should be able to
learn the essentials of Object Pascal by reading this chapter-even if you have
no experience with object-oriented programming. Chapter 3 then fills in the
details by describing the exact syntax of Object Pascal.

The big picture
Before getting into the specifics of object-oriented programming, this section
describes the theory behind this new way of programming, to show exactly
how and why it differs from conventional algorithmic programming in
languages such as Pascal or C.

In more conventional programming environments, the organization of a
program is centered around the procedures and functions of that program.
Typically, a program solves a problem by dividing it into a list of simpler tasks,
each divided into simpler tasks still. This gives programs a treelike structure
organized around their routines.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Subroutine A

Subroutine B Subroutine D Subroutine E

Figure 2-1
Treelike structure based on routines

This conventional programming paradigm allows large programming problems
to be solved by dividing programs into routines. Therefore, problems that can
be broken up into tasks that execute in a fairly predictable, linear manner are
easily solved. Unfortunately, on a computer like the Macintosh, the user
interface presents a programming task that is typically not predictable or linear.

Object-oriented programming allows programmers to solve complex, nonlinear
problems in small, easily-managed functional units. This process requires
forgetting the old habit of breaking programs into linear algorithmic solutions.
Instead the idea is to break problems up into functional units called objects.

Theoretically, an object is a data structure in memory that provides some
functionality in addition to some data storage. In this way, objects are
equivalent to little computers in memory, storing data, doing calculations, and
sometimes communicating with other objects. Dividing the responsibilities
wisely among different objects can lead to well-organized programs that can
solve monumental tasks.

Although objects are most fairly thought of as a method for organizing
programs, it might be easier at first to think of them as records (in Pascal) or
structs (in C) with some new features. In fact, the way objects are declared and

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

11

6/14/88

12

Working Draft 4 (APDA)

the way they use data fields are strikingly similar to record and struct declaration
and data field use.

Record fypes and record variables

If you are familiar with the use of records, then you already have a beginning
understanding of objects since objects are analagous to records with extended
functionality. When you decide what types of records you want to use in a
program, you create record type definitions, which name the record types
and declare the data fields belonging to each record type. These definitions
don't actually create any records, however. In the same way that a cookie cutter
defines the shape of a cookie but not its contents, the record type definition
defines the shape of a record variable but contains no data itself.

Figure2-2
A record type

,----------------~ .," ./'!...- • _ _,,, ,,
.,., c.u""~/.;au-v~ /

f-----------------(.-------111"':---,
L~~----~-~-J .-------llJ":---,
L;~--~-~J
.-------llJP":---,
L:~~~~L-~_J
1-------11'----,
L.~~k==~=~=~_v,,/

Once a company record type like the one in Figure 2-2 has been defined, actual
records of that type can be created when the program is executing. To create
actual instantiations of a record type, you would typically declare variables of
that type. These variables will represent actual space in memory where data can
be stored.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

It is important to remember that the record type definition has no space allocated
in memory. Only after a record variable of that type is declared is a space in
memory reserved for storing values into the data fields. The distinction between
the type definition, and the actual record in memory, is a very important one.

Record type ------Record Jn.stant.iatio ns
,,,,.- ----------------,."'I

......... ~~~~
f ~======-----===~~
I Name ..0zV I

/ Com.JJaD}" fi nxo.nl

L------ ------J r------- ---,
Name Name r "Mark's!

FoobatCo.•

1 Numberof 1
I employees ..&?~ I

Number of
employees , 1001

Number of ,
501 employees L--------------J r------- ---,

I Yearlysales ~ I
L--------------J r------- ---,)

Yearly sales Yearly sales r 2000000.1

1 Yearly ..trt::U 1 /
I expenses I /

L========-=======..v'

Figure 2·3

Yearly
expenses

A record type and record instantiations

, 4000000.1

Object classes and object instances

Yearly r 1000000. j expenses

Objects, then, are simply records with some added features. An object is made
up of two parts: the object's data and the object's routines that operate on that
data. Like a Pascal record or a C struct, the data that belongs to an object is
stored in fields. The routines that manipulate the data in those fields are called
methods.

As with the Pascal records, objects must have type definitions to define their
"shape"-that is, the number and nature of their fields and methods. To help
distinguish record types from object types, object types are called object

Chapter 2: An lntroductton to Object-Oriented programming

6/14/88

/1

13

6/14/88

14

Working Draft 4 (APDA)

classes, or simply classes. Keep in mind that type and class mean
approximately the same thing.

The actual objects that exist in memory while a program is running are called
object instances, or simply instances. Object instances are like small
pseudocomputers. Each object instance has its own memory for data (the
fields), and its own functionality (the methods that work on those fields).

As a simple example of an object class, let's look a class with data fields but no
methods. In Figure 2-4, notice that object classes with no methods are
conceptually equivalent to record types.

Object class Object instances

... ------------------... .,,

MacApp 2.0 Tutorial

......... ~~~du- l company g 1/JS'W1ce
f-----------------(I

I I Name ·~' ~ I l I
I r------~---..., I "Andy's 'Mark's
l L______ _ _____ J l 1 Widgets, Inc.• Fooba1. Co.'

l f"N'u~-or-..-~~--11 ! l I employees ,..- ~ ~ 1 I 1 : employees
I Numberof r 100! : employees

I Numberof , 501
I L--------------..l I I
I r------ ---..., l I

I l Yearly sales .;f'.:::;/ l l l
I L--------------..J I I

I Yearly sales ,. 5000000.1 I Yearly sales r 2000000.,

I I Yearly .'' .;f'.:::,r/ I I /
I r-------~---1 I)

L ~~~~~===-======~l ... /
I Yearly

expenses
, 4000000., I Yearly

expenses r 1000 000.1

Figure 2-4
An object class and an object instance with no methods

You can only use this company object class to create instances that are very
limited pseudocomputers, because any instance of the company object class has
storage ability but no functionality. To give functionality to instances of the
company class, you must add a method to the company object class definition.

The way fields and methods relate to classes and instances is the single most
important concept in object-oriented programming. Here is an overview of this
relationship:

Chapter 2: An Introduction to Object-Orlented Programming

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

• Fields are defined to belong to an entire class of objects.

• The content of a field belongs to an individual object instance. When you
create an object instance, space in memory is reserved for that instance to
store values for each of the fields of its class. An instance can store values
in its own fields that are different from the values stored in other instances'
fields, as in Figure 2-4.

• Methods are defined to apply to an entire object class.

• When you call a method, you must specify which instance the method
should operate on. When the method executes, it uses the data from the
fields belonging to that specified instance.

Let's create an example method for the company object class. Since an instance
of the company object class represents an individual company, you might find it
useful to have a company instance be able to calculate its yearly profit by
subtracting its yearly expenses from its yearly sales.

This yearly profit method definition, which must belong to the entire company
object class, might look like Figure 2-5.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

15

6/14/88

16

Fields

Working Draft 4 (APDA)

Company object class
~------------------, i r--------r-------,
, , Name I ~ I I I .,.,,,,f!T I
L--------1.--------~ r--------r-------,
I Number of I Lt?r- I
I employees I ·~8- I
L--------1.--------~ r--------r-------,
i Yearly Sales l f~ I
L--------~-------~ r--------r-------,
I Yearly I~ I
I expenses I I

I r--------r---"":---~. I {~==================~ .
I I Yearly I~ 1·1.

Methods I I profit I ~hP"A!l!V' , ••••• •..
I L--------1.-·..:-..;:-;.-::.'Z.:..-~ I ·· L------------------\.J ···;-------------------,

\ I begin I

Figure 2-5
An object class with a method definition

\. I subtract iilli 's yearly expenses field l
\ l from£:;.2; 's yearly sales field l
\. l return result l

\I end I

~-------------------~

Because this method belongs to the entire class of company objects, you cannot
simply call it as you would a procedure or function. If you did, how would it
know which instance's yearly sales or yearly expenses field to use?
Remember, an object class cannot store values in fields-only object instances
can, and there can be many object instances of the same class. Therefore, you
must call a method to operate on a particular instance. To do this, you must
send a message to that instance, telling it to execute the method on itself.

When you send a message to a particular instance, the method that actually
executes is conceptually a specialized version of the method defined for the
entire class-a specialized version that operates on that particular instance's data
fields. For example, in Figure 2-6 you can see the differences between the

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

yearly profit method as it was defined for the the class, and as it actually
executes when you send the yearly profit message to the Company A object
instance.

Fields

Company object class r------------------1 r--------r-------,
:lName l~ I

I
I L--------'--------.J
I r--------r-------, I I Number of I I

I 1 1 employees I ~ I L--------'--------.J
l r--------r-------,
l l Yearly sales l .l'e;/ I

I
I L--------'--------.J
1 r--------r-------,
I I Yearly I ,,l'e;/ I

I

,

I I expenses I

Methods{rr;~:=====r=~
I L-------...,1--------.J L-------:7,;;,, ________ _

1 t< ,y
I

··~

.....

l~·~~·---------------~~
I begin I

'.

Company A object instance

r Name I "Andy's l
Widgets, Inc.•

: employees
I Numberof I 100 I
I Yearly sales j soooooo. I
I Yearly
: expenses 14000000. I

Methods of the
Company object class

begin

l subtract "': 's yearly expenses field l
l from<:<::: 's yearly sales field l ---~-

subtract compariyNs yearly expenses field
fromCarttpanyNs yearly sales field

return result l return result l
le~ I end
L-------------------.J

Figure2-6
A method as it is defined and as it executes

To summarize then, an object class definition defines the generic shape of one
class of objects-the number and size of the data fields, and the definition of the
methods. An object instance is an actual instantiation of an object class-it has
its own data in its fields, and you can send it a message telling it to call any of
the class's methods on itself.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

17

6/14/88

18

Working Draft 4 (APDA)

Flow of control in object-oriented programs

An object-oriented program is one based on objects instead of routines. When
an object-oriented program executes, many object instances are created. They
exist as space in memory where they store their data. Instead of following the
typical treelike path of one procedure calling another procedure and returning,
an object-oriented program follows a slightly different path. In the
environments you '11 be using with MacApp, there is still a conventional main
procedure to start things rolling, but then the object instances take over. One
instance's methcxls will send messages to other instances, as the flow of control
bounces around from one instance to another. To be sure, each method
eventually ends and returns to the method that sent the message calling it, as in
conventional programming-the difference, especially at first, is largely in the
way you think about the running program.

To give a clear picture of how control flows through an object-oriented
program, let's first expand the object class defined previously.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial

Figure 2-7

Working Draft 4 (APDA)

Company object class r------------------, I r-------..,--------1
I I C . 1.d'~b I
11 ompeutor 1~~ 1
I L-------..J.;..-------J l r-------..,--------,

I Name 1.0!MA" I
I 1--f!T I

L-------~--------J r-------,--------, I Number of I 1
I employees I~ I
L-------..J.;..-------J r-------..,--------, l Yearly sales I ..17~ I I
L-------..J.;..-------J l r-------..,--------, I I Yearly I~ I I
I expenditures 1 I I
L-------~--------J I ~------------------~ r-------,----~---, I
1 Yearly I~ 1 1

L~~~----j_~~J I
r-------..,--------1 I
1 Return 1~ 1 1

'name l~~I
L-------~-------~ I r-------..,--------, I
lPrint l~ I l
L-------..J.;..-------J l L------------------J

An expanded business object class

Notice that this object class has a new field-the competitor field. This field will
be used by one object instance to refer to the object instance that represents its
competitor. In other words, this field is like a pointer that allows one object
instance to reference another object instance.

For example, in your program you can instantiate this expanded company object
class by creating two object instances, and making them each other's
competitors.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

19

6/14/88

20

Working Draft 4 (APDA)

Company A object instance Company B object Instance

Competitor Competitor

I Name
•Andy's

Name I "Mark's
Widgets, Inc." FoobatCo."

I Numberof 100
Number of I 50 : employees employees

I Yearly Sales 5000000. Yearly Sales I 2000000.

I Yearly 4000000.
Yearly I 1000000. expenses expenses

Methods of the Methods of the
Company object class Company object class

Figure 2-8
Object instances referring to each other

You '11 soon see why it is important for one instance to be able to refer to
another.

Going back to the new class definition, you'll see that there are also two new
methods-a printing procedure method, and a name-returning function
method. The purpose of the printing method is to print all the information
about a particular instance. The name-returning function method will just return
the contents of the name field to whatever piece of code called it Figure 2-9
shows the generic method definition for all three company class methods.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Q>mpany object class
r-------------------., r---------,-:-------., ICo . 1~47 I

1 mpeutor ·~~ 1 L _______ _._ _______ .J

r--------.-------.,
I Name l~ l .1--:---------------------,
L--------'--------.J /I begm I
.---------.--------., I I I I Number of I 1 / I subtract ff::2 's yearly expenses field 1
I employees I~ I / l from2i:f 's yearly sales field I
L--------'--------.J / I I r---------r-------., i 1 return result 1
l YearlySales l.A!w' l i I end 1 L _______ _._ _______ .J ,/ ., .. ··.::::::::::::::::::::::::.Ji
r--------.-------., i 1 I Yearly l.d!w' 11/ , begin I
I expenditures I I r ././ l retum:±ti 's name field I

1-========='========:!.::i ·····:~/ 11 end 11 I r---------r---:----1· I /,/
I I Yearly I~ I I.···:.··· L-----------------------.J
I I profit t~A:::IY 1.1: •• ·• ...- .. r-----------------------., I 1... _______ _._ _______ ..J.:.J ... ··· .•.. ·· begin
I r---------r-------.,· I
1 1 Return 1~ 1 1 •• ···:./ print22 's name field
l 'Lname !~~..M"?~ ~ J~::: .. ··· print 2illi 's number of employees field I --------=--~-=:=E~'"'Jr..J. .. f
1 r--------1 -------,· 1 print11& 's yearly sales field
I I Print I~ l l printlliDl 's yearly expenses field 1 L--------'--------.J 1 all :::;:::::;::\•s yearly profit method
L------------------·::i............ print result

all ±ii 's competitors returnname method
....... print result

·····... end ····.i... _______________________ .J

Figure2-9
The completely defined company object class

You've seen the yearly profit method in Figure 2-5. The name-returning
method is just as simple. It merely returns the contents of the name field as its
result.

The printing method is also fairly straightforward. Let's examine it in detail, but
first let's introduce some terminology.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

21

6/14/88

22

Working Draft 4 (APDA)

When you call a method, the following steps occur:

• You must send a message to a particular instance, telling that instance to
execute one of its methods.

• That instance then calls the requested method, which was defined for the
entire object class, but which will execute specifically on this instance's
data.

The instance that you send the message to, which then calls the requested
method, is referred to as the calling instance.

The first four lines of the printing method print out the values of the calling
instance's fields. The next two lines call the yearly profit method of the calling
instance, and then print the result of that method call. The next two lines call the
return name method of the instance referred to by the competitor field and then
print the value returned by that method.

Now you might be able to see why it is important to have one object instance be
able to refer to another object instance: The last piece of information this
method prints is actually information about a different instance-the name of its
competitor. An object instance normally does not have access to other instance's
name fields, but only to its own name field. References between object
instances allows the methods of one instance to call methods of (or send
messages to) another instance.

When the printing method of Company A is called, the first four fields of
Company A will be printed. Then the printing method of Company A will call
the yearly profit method of itself, as shown in Figure 2-10.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

(

(,

MacApp 2.0 Tutorial Working Draft 4 (APDA)

C.ompanyA

[Competitor 1 1
J

--+-+-_;::~ Reference to Company B

Name
"Andy's
Widgets, Inc.•

Number of
100 employees

Yearly sales 5000000.

Yearly 4000000. expenses

Methods of the
Company object class

How the Com y print method executes on Com y A

begin

PrintCompanyA's name field
Print CompanyA's number of employees field
PrintCoiiipan'{A's yearly sales field
Print COOtp!nyA's yearly expenses field
Call:COinpanyA's yearly profit method ----r
Print result
CallCOiri@ritA's competitor's return name method
Print result

end

Figure2-10

calls yearly
profit method

returns
It 000000.1

How the yearly proflt method
executes on C.om y A

begin

subt13d:CO!i!panfA's yearly expenses
frorncompaify=A's yearly sales

return resuk

end

An object method sending a message to the colling instance

After Company A's print method prints the yearly profit, it calls the return name
method of whichever instance is referred to by Company A's competitor field,
which in this case happens to be Company B.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

23

6/14/88

24

Working Draft 4 (APDA) MacApp 2.0 Tutorial

Company A object instance Company B object instance

Competitor Competitor

I Name
"Andy's

Name I "Mark's
Widgets, Inc.• FoobatCo."

I Numberof 100
Number of I so : employees employees

I Yearly sales s 000000. Yearly sales ! 2000000.

I Yearly 4000000.
Yearly I 1000000. expenses expenses

Methods of the Methods of the
Company object class Company object class

How the Company print method executes on Company A

begin

PrintC6mp3rifA's name field
Print CottlpanyA's number of employees field
Print Company.A's yearly sales field
Print Com}?anyA's yearly expenses field calls How the return name method
Call Company A's yearly profit method return name executes on Company B
Print result j./method - •

begin CallCOiiipanyA's competitor's return name method(returns
Print result

H"Mark's ~
return compartyB's name field

end FoobatCo." end

Figure 2-11
An object method sending a message to a different object instance

Company B's return name method returns the contents of Company B's name
field (which is "Mark's Foobat Co.") to Company A's printing metho4 and
then A's printing method prints that result Company A's printing method is
then finished, and it ends and returns to the piece of code that called it. Each of

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Company A's fields has been printed, A's profit has been printed, and the name
of A's competitor has also been printed.

Notice that Company A knows Company B exists because Company A has a
reference to Company Bin the competitor field. ff Company A's competitor
field pointed to some other company object instance (for example, a Company
C), then A's printing method would have called the name-returning method of
company C.

In other words, the last two lines of Company A's printing method call the
name-returning method of whichever object instance is pointed to by Company
A's competitor field. In this example, it happens to be Company B.

To finish the big picture of object-oriented programming, let's look at the flow
of control in a complete, if arbitrarily simple, program written in an English-like
programming language for simplicity.

In the object-oriented environments that you'll be working with there's a main
procedure just like the ones found in standard Pascal or C. The purpose of this
main procedure is very simple. First, it must allocate space in memory for any
global object instances--instances that are created by the main program.
Then the main program must initialize those instances, typically by calling their
initialization method if they have one. Finally, the main procedure must call the
methods of those instances to get things rolling.

Usually, the main procedure will only create one global object instance, call its
initialization procedure, and then call its first method. The methods of this
instance then do the rest of the work. Other objects may be created, and lots of
methods will be executed, but the main procedure does nothing else itself.

In the current example, though, the main procedure will create two object
instances and call one method of each. Let's expand the company object class
so that it includes an initialization method. You'll see a lot of information on
initialization methods a little later, so for now just assume there's a working
initialization method.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

25

6/14/88

26

Working Draft 4 (APDA)

The main procedure will follow a structure like this:

main begin
create an instance of the company class called Company A
create an instance of the company class called Company B

call the initialization method of Company A
call the initialization method of Company B

call the printing method of Company A
call the printing method of Company B

main end

After the first two lines of this main procedure have been executed, the object
instances will exist in memory, as shown in Figure 2-12.

Company A object instance

Competitor I ·&·90!6#

Name I @$6'68Z

Number of

I !#11;4•&
employees

Yearly sales I <·a&·ss

I Yearly
expenses I @23@$%6&:

Methods of the
Company object class

Figure 2-12
Instances exist in memory

I
I
I
I
I

Company B object instance

Competitor 11%1\98&

Name ;)08%.S

Number of
!@'65'% employees

Yearly sales %$87%$

Yearly
@#$#11;& expenses

Methods of the
Company object class

After the initialization methods are called, the instances' fields should all have
values. This is true even of the competitor field that links the two instances.
Exactly how this initialization method works will be examined in later chapters.

Chapter 2: An lntroductton to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

C.Ompany A object 1nstao.ce f.ompany B object instance

Competitor Competitor

Name. "Andy's
Name Widgets, Inc.•

Number of
100 I Numberof ! so employees : employees

Yearly sales 5000000. I Yearly sales I 2000000.

Yearly 4000000. I Yearly I 1000000. expenses expenses

Methods of the Methods of the
Company object class Company object class

Figure2-13
Instances have been initialized

The next step is for the main procedure to call the printing method of
Company A. This leads to the flow of control shown in Figure 2-14.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

27

6/14/88

28

Working Draft 4 (APDA) MacApp 2.0 Tutorial

Q>mpanyA_ -- CompanyB

~ [Competitor I l J Competitor / l J

Name
"Andy's
Widgets, Inc.•

Number of
100 employees

Yearly sales 5000000.

Yearly 4000000. expenses

Methods of the
Company objea class

How the Company print method executes on Q>mpany A

begin

Print:company'Ns name field
Print~:A's number of employees field
PrintCOiilpiitt:A's yearly sales field
PrintCOriip!n''fA's yearly expenses field
Call Oii:ri@ri!A's yearly profit method
Print result
Call O>#lp3.lffA's competitor's return name method
Print result

end

Figure2-14
Company A's printing method Is called

Name I "Mark's
: FoobatCo."

Number of
150 employees

Yearly sales ! 2000000.

Yearly I 1000000. expenses

Methods of the
Company object class

How the yearly pro& method
executes on Company A

'"-"-~year! begin
\Alli) Y · subtract COffipilriy'Ats yearly expenses
profit method from tciiriQarifNs yearly sales

return result

1f:@.I end

How the return name method
executes on CA>mpany B

begin

rerum~:trs name field
end

Finally, the main procedure calls Company B's printing method. This flow of
control finishes the program:

Chapter 2: An Introduction to Object-Oriented Programming

\~ '

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Company A

Competitor

I Na~ I "Andy's
: Widgets, Inc."

: employees
I Numberof ! 100

I Yearly sales I soooooo.

I Yearly
expenses 14000000.

Methods of the
Company object class

How the Company print method executes on Company 8

begin

PrintCOtr!ParitB's name field
Print COrnpally B's number of employees field
PrintCompanyB's yearly sales field
PrintCOrnpanyR's yearly expenses field

ullsyearly
profit method

CompanyB

Competitor

Name I "Mark's
FoobatCo.•

Number of I so employees

Yearly sales I 2000000.

Yearly I 1000000. expenses

Methods of the
Company object class

How the yearly profit method
executes on Company B

begin
subtract CQ!'iij#riy B's yearly expenses

fromCOmpari\{Sis yearly sales
return result

end

Call Company B's yearly profit method _.___ calls return name How the return name method
executes on Company A Print result __ L __ method

Call COriif?anjB's competitor's return name ~thod
Print result -r--~=~

end

Figure2-15

begin

return COfuparifA's name field

end

Company B's printing method is called, and the program is finished

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

29

6/14/88

30

Working Draft 4 (APDA)

The output from this program (given a sophisticated printing routine) should
look something like this:

The name of this company is:
The number of employees is:
The yearly income is:
The yearly expenses are:
The yearly profit is:
The competitor is:

The name of this company is:
The number of employees is:
The yearly income is:
The yearly expenses are:
The yearly profit is:
The competitor is:

Andy's Widgets, Inc.
100
$ 5,000,000.00
$ 4,000,000.00
$ 1,000,000.00
Mark's Foobat Co.

Mark's Foobat Co.
so
$ 2,000,000.00
$ 1,000,000.00
$ 1,000,000.00
Andy's Widgets, Inc.

In summary, you've seen the difference between records and objects-that
objects have methods as well as data fields.

You've also seen that object classes, like record types, define the generic shape
of object instances by defining both the number and size of the data fields as
well as the generic structure of the object's methods.

Finally, you've seen three ways in which an object method can be called:

• The main procedme can call a method of a global object instance.

• A method of an object instance can call other methods of that instance.

• A method of an object instance can call methods of other instances, as long
as the first instance has an object reference field that refers to the second
instance.

Object classes
Object-oriented programs are organized at two levels. The first, which you've
already seen, is the organization that exists during runtime between object
instances. One instance creates a reference to another instance through object
reference fields, and can subsequently make calls to the other instance's
methods. This is the flow of control of an object program. The second level of
object organization involves object class definitions. Unlike record types, each
of which is wholly independent of every other type, object classes can be

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

(

... (-..

MacApp 2.0 Tutorial Working Draft 4 (APDA)

organized into hierarchies, where classes inherit characteristics from other
classes. You can put a great deal of structure in your program by creating well
organized hierarchies of object classes.

The hierarchical structure of object classes is the basis of an object-oriented
program's organization. Object classes are organized into hierarchies where
each object class can be the descendant of another object class, called its
ancestor class. Each object class can be an ancestor class to any number of
descendant classes. Object classes are therefore organized into tree structures.

+ Note: In some object-oriented programming environments an object class
can be the descendant of more than one other object class. Although
this can be a powerful tool, it can also lead to overly complex class
organizations. In the MacApp environment, you will be dealing with
classes that descend from only one other class, and all class
organizations will be tree hierarchies.

A descendant object class contains not only its own fields and methods, but also
those of its ancestor class. Of course, that ancestor class contains the fields and
methods of its ancestor class as well. This concept, whereby an object class
gains extra fields and methods from its ancestor class, is called inheritance.

Inheritance

Let's look at an exampl~ of an object class hierarchy by creating an employee
object class. An employee object class might have fields for the employee's
name and title, as well as a method for printing the information in these fields.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

31

6/14/88

32

Figure 2-16
An employee object class

Working Draft 4 (APDA)

Employee object CWs r-----------------, I r-------T-------1 I
I ', Name I oi..;.,,,. I I
I I ""'"'f!F I I I L-------...1.-------..J I
I r-------T-------1 I
I I Title I oi..;.,,,. I I I I I ..., f!F I I
I L-------...1.-------.J I
~-----------------~ I r-------T-------, I
I I Print I ~~ I I
II I I I I L-------...1.-------.J I L-----------------.J

This object class, because of its generality, might not include fields and
methods for all the important information about each kind of employee that a
company might have. There may be many different kinds of employees, and
each type of employee could have its own special object class. For example,
there could be both contractors and paid-weekly employees. You could make
both of these more specific employee classes a descendant class of the more
generic employee class. As in this example, descendant classes are
customizations of their ancestor class.

A contractor employee class might require two extra fields-a contract number
field and a contract dollar amount field, for instance.

A paid-weekly employee class might require one extra method-a method for
calculating a weekly paycheck.

Of course, both of these new employee classes will inherit the data fields and
method qf the ancestor employee class.

Once these two classes are added, the hierarchy starts to look like a tree.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Employee class r-----------------, I r-------T-------, I
I I Name I °"';,,,. I I I I I _...,_,. I I

I L-------~-------~ I
I r-------T-------, I

llnt1e I~ ll
I L-------~-------~ I
~-----------------~ I r-------T-------, I

llPrint I~ II
I L-------~-------~ I

is a descendant or_,,;:! L-----------------~~ a descendant of

r----~~-----, r-~--~~~~~~----,
1

1; • ... l.·•.••.• ... ·.•.1 ... M.·•.• .. ·.•.•.~.·.·.•.n··.·.•.:.~.:·.··········' .•.•. · ... •.tlcl&.·.'.•.•.'.·.·.·.•.•.• ...•. '.•.•.•·.·.•.'.N,•.·,' .•. ~.'.•.'.•.· ...•. ' .•. '.•.•.•.·.•.:.•.n.·.•.:.1a .•. :.·.····e.•.•.•.•.•.·.•.•.•.: .•. ·.•.•.•.· 111 .•.•.•.••,•· ... •.·.:,·,i.· .• ·.'.•',•,:,• ... •.·.:IM,,',',.·,·.···~al.l@~~**;)tJ~:'} 111 ·.·.·.·.·.· ··;···· ::::::::;:;:::::.:::;:;:;:::::::~:>::::::::::~:~:}:::;:;:::.;:·::::::::::-:·:·:-:·:· .·.

I r-------.,--------, ~------------------~ I I Contract I I I I Ii number 1~ 1 I I I L--------'--------~ I :
I r-------.,---.-----, I I
I I Conttaa I O-/ I I r-------.,-----:---, I
I I dollar amount I .HQ/V I I I Weekly I ~ I I
IL--------'--------~ I I paycheck I ~~I I
i;,;--------:::::.:-:;;,,----,:4 L========='========:! J
I > Mfi~~~i'i1~!I•t:• I
I ::::::::;::::::::::::::::·:::::::::::.::::::;::::::.::::;:::::::::;:;:::;:::::;:;:::::::::::;:::;:::;:::;::::::::::: I

L------------------~

Figure2-17
A simple hierarchy of object classes

In the body of the program, you will be able to declare object instances
belonging to any of these three object classes. An instance of the employee class
will have two data fields and one method. An instance of the contractor class
will have four data fields and one method. To be sure, two of these fields and
one of these methods are inherited from the employee class. Nevertheless,
object instances of the contractor class are not able to distinguish between fields
and methods that are inherited and those that are not. It's almost as if you
declared three se-patate oblect c\as~~. but -rem.em.be-red.~ \n.c\~ \\\.e t\.e~ ~\\.
methods of the employee class in its two descendant classes. Object-oriented
programming helps by remembering to include them for you.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

33

6/14/88

34

Working Draft 4 (APDA)

Of course, inheritance of fields and methods applies through more than one
level of ancestry. For example, you can now declare descendant classes of the
paid-weekly employee class. These classes will inherit all the fields and
methods of the paid-weekly class, including those that were already inherited
from the employee class.

Employee class ,-----------------, I r--------T-------, I
• 1 Name I~ 1 1 1 I I_,...,, I 1

I L-------•--------' I
I r--------T-------, I
11 Title I oi.m- 11 11 I.._..,... JI
I L-------•--------' I
~-----------------~ I r-------T-------, I
llPrint 1~ II
I L-------•--------' I L------------------'

r ____ !f!!'_".!!!J!!_~-----,f1 ~----~~----,

f~~ ~11111 r-------.,--------, I r--------.,----~---, I
I Contract I AW I I I Weekly I ~ I I
I dollaramount 1 I 1 I paycheck I ~A:llVI I

L========='=========~ L:::::::::'::::::::=J

MacApp 2.0 Tutorial

l~~~~~r.1~-.'::.'.·' ... 't, .• '-, •• 'i·:,.:i:, .. '·.'~,i·.·':·!'·.'i··'_,!·.''.!.:::!·:~,-,;,!"',.:::.'-:::.l·::_.!~,.:',.,-'.:!:.'!,.:-,::·l:':.!::-,:.::,:·-:::.:',:··J,.::·:,:::'·:~-~ .. 'l·:::::.'.'::·';l,:.:;:.:".""::··.:,:·,'·.':.::::-,:~·', .. Ho·~.:~:',.::"',.:·',.,··,,::'.,.,~'.:'';l::.':::'.'·:!1!.tr:·,',.,::·';;:.:,.-.' .. ,·',.:·:,.' .. :.·''.', .. ':N:·:: .. :': .. :::·'· .. '·',:~· .. ':',:·:,:~:.:·-·.':.·:',·:·.'::.:·:.'.~·.,·:.',:::':.':··:' .. '',:.·,:::·:--·.'::.·'', ,' .. '::'-.'·.'',:.•.;-... n'',.: .. ·.':·'·:·,·:~·:::'."'.:,:-,:·:',.,''.:•r,: .. ·· .. ::', .. '':-:.·''.·,.,:.·:.::::':,.:::.':.': .. :, .. '-.r,.:·:'·.':'.,,;.';.·''_ f,: \ Salaried

I r~=---=-1:~=~-~~~ I !~i~l
I I Hourly I Al:!:lf/ I I I I 5818 .. , I AW I I
I I wage I I I 1 I ..,.., I I I
I L-------...1...------- ..J I I L-------...1...------- .J I I 1-------.,--------, I ,-------------------,
lL:;:~--l~ ___ J i l~~j
l~J

Figure2-18
Multiple levels of Inheritance

Chapter 2: An lntroductton to Object-Oriented Programming

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Once again, while you are using object instances, you cannot in any way
distinguish between those fields and methods that are inherited and those that
are not.

In the above example, the employee class and the paid-weekly class are
ancestors of the hourly and salaried classes. The paid-weekly class is the
immediate ancestor of the hourly and salaried classes. The hourly class is a
descendant of the employee and paid-weekly classes, and is the immediate
descendant of the paid-weekly class.

Method definitions

An important part of the class definition is the method definition. Remember
that when a method is defined it belongs to an entire class of objects. Therefore
the definition must be in a general form. However, only methods belonging to
actual object instances are called. When a method of some instance is called, it
operates on the data of that particular instance.

The method definition defines the generic method that applies to an entire class
of objects. Therefore the method definition cannot refer to the fields or methods
of any particular instance. Instead, the method definition must refer to data
fields and methods by their generic class name. When you call a method, you
must specify which instance the method is to operate on. This instance is
referred to as the calling instance. As the method executes, references to the
generic field and method names in the method definition will be automatically
replaced by references to the specific fields and methods belonging to the calling
instance.

As an example, let's define the generic form of the print method for the
employee class. This method is supposed to print the values of the instance's
fields. Figure 2-19 shows the generic method definition:

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

35

6/14/88

36

Figure2-19

Working Draft 4 (APOA)

Company object clas.9 r-----------------, I r-------T-------1 I
I l Name I O!-mb I I I I _,,,f!T I I
I L-------..1.-------J I
I r-------T-------, I
llTide l~ ll
i-~===============:!.J ,,----------......
1 r-------T-------.,··r begin

l l Print l ~ l l print22 's name field
L:::::::::::::::::-J. print2± 's tide field

·····... end
·•. ..__ ________!

The generic method definition of the print method of the employee object
c~ass

Since this is a method definition, it applies generically to an entire class of
objects. Whenever this method is called, however, it is called to execute on the
specific data of some particular instance-the calling instance.

Notice that this method definition references both the name field and the title
field of the employee object class. Of course, neither of these fields has any
value until an employee object instance is created. Once an employee instance is
created, you can call its print methcxi, and the print methcxi for the employee
class will be executed specifically on the data of that instance. Part of the power
of object-oriented programming is that you don't have to create a specialized
version of each method for every employee instance that you create. The
"specialized" version will be executed for you automatically, based on your
generic method definition.

Override methods

The next section, "Object Instances," deals further with the distinction between
methcxis as they are defined and methods as they are executed. Before that,
however, there is another issue concerning methcxi definitions and the object
class hierarchy.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

A class inherits the methods of its ancestor class. Usually this is a good thing;
that's why you make one class a descendant of another class. Remember,
though, that a descendant class is a customization of an ancestor class.
Therefore it is sometimes desirable to have a descendant class that inherits the
methods of its ancestor, but somehow customizes those methods. Object
oriented programming allows that flexibility.

There are two ways a descendant class can change an inherited method. It can
either have its own completely rewritten version of the method, or it can add a
little to the inherited method. Either way, the new method is called an override
method. The ancestor's method definition is overridden, and this process is
called overriding a method.

Sometimes the override method needs to be so different that it cannot even use
the inherited method. In fact, it is quite common for a method to do absolutely
nothing, requiring that every class that inherits that method completely override
it.

The reasoning behind is very simple. Consider the paid-weekly class from the
earlier example. This class has a weekly paycheck method. However, it has no
fields that could possibly help in calculating the size of a weekly paycheck. But,
the descendant classes of the paid-weekly employee class (hourly employees
and salaried employees) do have fields that allow calculation of a weekly
paycheck.

The paid-weekly employee class was never meant to be instantiated: the
program will not have any instances of this class. It was created solely to help
organize the class hierarchy, and therefore it is called an abstract object
class. Abstract object classes are quite common in object-oriented
programming-they provide a common framework of fields and methods for
their descendants. Frequently, you will have to override the methods of abstract
object classes.

Notice that ancestor classes are not synonymous with abstract classes: the
employee class, at the very top of the class hierarchy, will be instantiated later.
Of course, the compiler will allow you to instantiate any class. It's your
decision which classes are to be instantiated and which are to be abstract.

In the case of the weekly paycheck method, you simply leave the definition of
the inherited version blank, and write the override methods from scratch.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

37

6/14/88

38

Working Draft 4 (APDA) MacApp 2.0 Tutorial

Hourly Salaried r------------------, r
l ! l ~~iiii~~~·~~i~~ l l lHoorly ____ T::.:----1 ! : r-------T-------1 1

" wage I Al:Z' I I II Salary I A"'.:::V° rl
I l.--------'--------.J I I L--------..1...-------.J I l ificii:rs----T-------1 l r.=========,=====~==:;1
l I per week I ~ I I I I Print I t?H!:?.?.:Z. I I
t.~========'========:!J l L _______ _t_~ __ J l
I r-------.,------:--, I I r-------.,--------, I
I I . I Cl~ I I I I Weekly I t?H!:??.Z. I I
I I Pnnt I ~ I I l ' paycheck I ~ I I I L_ _______ _._ _______ ..J I Ll.-------....1...-------.J I

I r-------.,--------, I -- : ":J

! L~~'h--l~--1. ! ------ \.,,-------- ··-·---·-,··-···,····· ...
L---------c~~~~~-::=~~~':::·~,

I begin ····.·.··· I ~--.--------------~~\
I multiply 22's hourly wage field I 1 begin 1

I by 22 's hours per week field l I divide 22 's salary field by 52 I
I return result I I return result I
lend I lend 1 L-------------------..J L_ __________________ ..J

Figure2-20
Override methods that do not call the inherited method

Sometimes the override method does not need to completely replace the
inherited method, but rather only augment it For example, take the print
method defined in Figure 2-19. This method prints only the values of the name
and title fields. This is fine for instances of the employee class; however, this
method is inherited by both the contractor and the paid-weekly classes. In the
case of the paid-weekly class, the inherited method will be fine because the
paid-weekly class doesn't have any new fields. However, the contractor class
has two fields that the employee class does not: the contract number and the
contract dollar amount. The contract employee class, then, needs a print method
that augments the print method of the employee class.

Chapter 2: An Introduction to Object-Oriented Programming

(

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

This override method ought to:

• call the inherited method, which will print the name and title fields

• print out the contract number and contract dollar amount fields itself

This is exactly what you can define the override method to do.

Contractor Class r------------------,

r--------,--------,
I Contract I ..&..-, I
I number I ·~8'-' I Print method of Contractor class
L-------~--------~ r----------------------, r--------,--------, /1 I
I Contract I ft::J'/ I / I begin I
1 dollar amount I I t' I ,,,,,,,,,,,,,,,,,

L':.=================..::i I ca~ , ,}, mhented version nnt
I r--------,-----:---,- I 1 pnnt = s contract number field 1 I I Print I CJ~ I I I print;:::::::;:::: 's contract dollar amount field I
1 1 I/~ 1 1 I I
LL-------~-------~ .. ~ I end I
------------------ ..J "····.1...----------------------~

Print method of Employee class -------------,
I begin I
I I
1 print~ 's name field 1
I I
I print 22 's title field I
I I
1 end 1 _____________ .J

Figure 2-21
An override method that calls the inherited method

Now that the class hierarchy is defined, it is possible to create object instances
and examine how inherited and overriden methods work during runtime.

Object instances
To create an object class, you declare the methods and fields of that class and
define the methods. When you create an instance of that class, the compiler will
allocate space in memory for the fields of that instance and set up a mechanism
for the instance to call its methods when it receives messages.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

39

6/14/88

40

Working Draft 4 (APDA)

An instance method

To begin, let's create an object instance of each employee class defined except
for the paid-weekly class, which i~ an abstract class used only for hierarchical
organization.

For example, you might want to create four employee instances:

• Employee A, a contractor (of class contractor)

• Employee B, an hourly employee (of class hourly)

• Employee C, a salaried employee (of class salaried)

• Employee D, an employee that doesn't fit any of the above categories (of the
most generic class-employee)

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial

Figure2-22

Working Draft 4 (APDA)

Employee A: Contractor

I Name I ·A. Anders•

I Title I ·consultant"

I Contract
number 130521

r Contract T
dollar amount 3•025·00

Methods of the
Contractor class

Employee C: Salaried

I Name I ·c. Connors•

I Title I ·Manager"

I Salary 160,000.00

Methods of the
Salaried class

I
I
I
J

I
I
I

Employee 81 Hourly

Name I ·s. Brown•

Title I ·Assistant"

Hourly j 12.00 wage

Hours
per week 140

Methods of the
Hourly class

Employee D: Employee

I Name I ·o. Douglas"

I Title I ·Actor"

Methods of the
Employee class

The four employee object instances

An object instance is said to be a member of its class and of all its ancestor
classes. Therefore Employee A is a member of both the contractor class and the
employee class. Employee B is a member of the hourly class, the paid-weekly
class, and the employee class. Employee C is a member of the salaried class,

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

41

6/14/88

42

Working Draft 4 (APDA)

the paid-weekly class, and the employee class. Employee D is a member of only
the employee class.

Perhaps you might think that because the contractor class is a descendant of the
. employee class that Employee A is a descendant of Employee D. In fact, the
Employee A instance has no relationship to Employee D, since these are object
instances and only object classes have that sort of hierarchy. Object instances
can only be related to each other through the use of object reference fields.

These instances can have three types of methods: methods specific to their
class, methods inherited from an ancestor class, and inherited methods that are
overridden.

Employee D, which is of the employee class, has a print method that is defined
by the employee class. When the print method of Employee D instance is called,
it's as if a version of the method that is specialized for Employee D is actually
executed.

Employee class Employee D: Employee r-----------------1 r-------T-------,
I I Name I °"";,A' I
I I I '"'"'.vf!T I
I L-------.J.-------.J I r-------T-------1

,
I
I
I
I

I Name j ·o. Douglas" I
I

I I T'tl I °"";,,, I I I 1 e I ,_,.,,f!T I

~~===============~
I
I
I

-l I r-------T-------1
11 Print l~I
I I I I

.L
I L-------..+-------.J
L--------~\-------

"!"-
·:l

\
\.. ..

······· ...

I Title

-
·· ...•••... \ _____________ .:::,

I "Actor"

Methods of the
Employee class

l begin l begin

I

I print 22 's name field I .., · print Eiiiptay¥ D's name field
l print 22 's title field l ----- printEmplOY#O's title field
I I
1 end 1 end
L-------------.J

Figure2-23
The print method definition and a specific instance

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

When the print methcxi of Employee D is called (by the main program, for
instance), it executes, referencing and printing the data fields of Employee D,
and then returns control to the main program.

· The case with methcxis that are inherited from an ancestor class is exactly the
same. When an inherited methcxi of an instance is called, the methcxi executes
specifically on that instance's data. For example, if you were to create an object
instance (let's say Employee E) of the paid-weekly employee class and call the
print methcxi (which is inherited from the employee object class and not
overridden), the method that would execute would look the same for Employee
E as the print methcxi above looks for Employee D.

Override methods
Override methods are not much trickier. Remember that there are two kinds of
override methods. The first kind are override methcxis that completely change
the inherited method. These methcxis do not call their inherited methcxl at all.
The second kind are override methods that add something to the inherited
methcxl. These methcxis call their inherited method, usually as their first or their
last action.

Override methods that don't call their inherited method

This category is the simpler of the two. If an override methcxi completely
overrides the inherited methcxl, then it acts just like an entirely new methcxi. For
example, hourly employees and salaried employees both have a weekly
paycheck methcxl that completely overrides the weekly paycheck methcxl of the
paid-weekly employee class, as shown in Figure 2-20.

Figure 2-24 shows how a call to Employee B's weekly paycheck methcxl is
quite a different thing from a call to Employee C's weekly paycheck methcxl.
First of all, the methods actually execute on the data of the calling instance.
Secondly, object-oriented programming makes sure that the correct version of
the methcxl is executed. For Employee B the correct version of the weekly
paycheck method is the Hourly class version. For Employee C the correct
version is the Salaried class ·version.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

43

6/14/88

44

Figure2-24

Working Draft 4 (APDA)

Employee 81 Hourly

Name I "B. Brown•

Title I . Assistant"

Hourly ! 12.00 wage

Hours
per week I 40

Methods of
the Hourly class

How the Weekly paycheck methcxi
(of ihe Hourly class)
executes on Em lo ee B

begin

I
I
I
I

multiply Employ& B's hourly wage
byEfuploV# B's hours per week

return result
end

Employee C: Salaried

I N~e 1 "C. Connors•

I Title I ·Manager"

I Salary 160.000.00

Methods of the
Salaried class

How the Weekly paycheck methcxi
(of the Salaried class)
executes on Em lo ee C

begin

divideErii?IO'j#C's ~
by52

return result
end

I
I
I

The weekly paycheck method of the hourly and salaried employee classes

As before, when either of these methcxis is called, it executes linearly and then
returns the real result to the calling line of ccxie.

Override methods that do call their inherited method

Override methcxis that call their inherited methcxi are only a little more complex.
When such an override methcxi is called, the method operates on the calling
instance's data Then, when the override method calls the inherited method, the
inherited methcxi also operates on the calling instance's data For example, the
print method of the contractor class overrides the print methcxi of the employee

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

class, but it also calls that method. When the print method of Employee A is
called, the code in Figure 2-24 is what executes.

Figure2-25

Employee A: Contractor

I Name I ·A. Anders•

I Title I "Consultant'"

I Contract
number 130521

l Contract l . dollar amount 3•025.00

Methods of the
Contractor class

How the Print method
(of the Contractor class)
executes on Employee A

begin

calllinherited version Print[~

I
I
I
l

__.. __..,, -.
print Employee A's contract number -...__

"""
print EmptoyeCA's contract dollar amount

end

How the inherited Print method
(from the Employee class)
executes on Employee A

begin

print l!rilplbyeeA's name
print:Empleyee:A's title

end

The specialized version of a method that calls an inherited method

Take notice of these three points:

• Employee A's print method is called; therefore the print method that
executes operates specifically on Employee A's fields.

• Employee A's print method makes a call to the print method inherited from
the ancestor object class-the employee class.

• This inherited print method also operates only on Employee A's fields.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

45

6/14/88

46

Working Draft 4 (APDA)

When the print method of Employee A is called, it first calls the inherited print
method, which prints the name and title fields of Employee A. Then the
override print method prints the contract number and contract dollar amount
fields of Employee A itself. Finally, the method returns control to its caller.

As another example, consider the print methods of the hourly and salaried
employee classes. These are both override methods, overriding the print method
of the paid-weekly employee class which is inherited from the employee class.

When the print methods of Employee B and Employee C are called, the
methods that execute might look like those in Figure 2-26.

Employee 8: Hourly

I Name I ·s. Brown•

I Title I •Assistant"

MacApp 2.0 Tutorial

I Hourly
wage I 1200

How the Print method
(of the Hourly class)
executes on Employee B

How the inherited Print method
(for the Employee class)

I Hours
per week I 40

Methods of the
Hourly class

Employee C: Salaried

I Name I ·c. Connors•

I Title I ·Manager"

I Salary 160.000.00

Methods of the
Salaried class

Figure2-26

I
I
I

begin

callfinherited version Print [
p~nt fu.ttPk>y~B's contract number ---.,
pnnt BnplOyee.B's contract dollar amount

end

How the Print method
(of the Salaried class)
executes on Employee C

begin
,_,.._,__,__,__,_~----

call inherited version rint
print Eritpicfyee:C's salary field

end

--,.

~

executes on Employee B

begin
print Employee B's name
print ErrlployeeB's title

end

How the inherited Print method
(for the Employee class)
executes on Employee C

begin

print Eiri(?loyeeC' s name
print Employee C's title

end

More examples of override methods called by specific instances

Chapter 2: An Introduction to Object-Oriented Programming

(

I. I'

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Privacy between instances

The employee object instances discussed in this section do not have object
reference fields like the company object instances did in the first section of this
chapter. This means that no employee object instance knows of the existence of
any other employee object instance. Because of this, no method of Employee A,
for example, can make reference to any field or call any method of Employee B.

In the company object example, however, instances did have object reference
fields. One instance, Company A, had a link to another instance, Company B,
and vice versa. In that example, the methods of one instance could reference the
fields or call the methods of another instance.

In Object Pascal, one instance can access any field or method of another
instance, as long as the first instance has a reference to the second instance.
Generally the data stored in an instance's fields is considered private, which
means that an instance can examine and manipulate its own data (in its methods)
but should not examine or manipulate the data in another object instance. This
means that in method definitions you should only directly examine or
manipulate the data fields of the calling instance.

If one instance needs some information from another instance, the first can call
a method of the other instance asking it to return the value of the desired field.
This is how the problem was handled in the company example. When Company
A wanted to print its competitor's name, it called the return name method of
Company B, which allowed Company B to access its own name field, and
return the value as a function result. This way, Company A didn't look into
Company B's name data field directly.

In C++, you are allowed to specify which fields and methods are accessible to
other instances and which should be kept private.

Ramifications of object-oriented
programming
Object-oriented programming has several advantages over conventional
programming. In conventional programming, you typically must meddle with
code all over your program to add functionality. In object-oriented
programming, you simply create a new object class and instantiate it. The
number of changes necessary to hook new objects into your existing program is
quite small.

Chapter 2: An Introduction to Object-Oriented programming

6/14/88

47

6/14/88

48

Working Draft 4 (APOA)

Most Macintosh programs are similar in many ways because they follow
Apple's user interface guidelines for the Macintosh. And of course these
guidelines are what make the Macintosh so easy to use. Since Macintosh
applications have an unusual number of similarities, the engineers at Apple have
used object-oriented programming techniques to put together an extremely
powerful but completely generic program for the Macintosh. That program is
MacApp. MacApp implements all the standard user interface features or creates
an framework for you to implement them yourself. It is your job as a Macintosh
programmer to create the objects not included in MacApp that do what you want
your program to do.

You might be thinking that MacApp will coerce you into doing things a way
you don't want to, but that's not true. Although MacApp does most things right
all by itself, sometimes you '11 want something better, or something done a
different way. In such cases, you only need override the methods of MacApp
you don't want. In general, the more standard your application's user interface
is, the more of MacApp you can use unaltered; and the more unusual your
application is, the more of MacApp you will have to override.

Object-oriented programming, then, allows you to organize your programs into
objects. Object-oriented programming also allows for easy expansion of
programs-often it's as simple as adding another object and changing a
constant or two. This ease of expansion allows MacApp to implement a lot of
your program for you, freeing you to create the specific objects that make your
program unique. Finally, this generic application framework doesn't box you
into anything, as object-oriented programming allows you to override any part
of the framework easily, without even deleting a line of code.

Chapter 2: An Introduction to Object-Oriented Programming

MacApp 2.0 Tutorial

(

Chapter 3

Object Pascal

6/14/88

so

Working Draft 4 (APDA)

Now that you've seen the wonders of object-oriented programming, you must
be eager to learn the syntax of a real object-oriented language so you can get to
work. This chapter specifies the syntax of Object Pascal, the language in which
MacApp is written.

Let's start with the overview of how to organize your Object Pascal program
into files.

Object Pascal file organization
The format of an Object Pascal program is similar to the format of a
conventional Pascal program. The program must have a header, followed by the
constant declarations, type definitions, and variable declarations. These are
followed by procedure and function definitions, and finally, the main
procedure.

Of course, there are new elements in an object-oriented program, namely class
definitions and method definitions. The standard format still applies, however.

PROGRAM ProgramName;

CONST <constant declarations>

TYPE <type and class decla~ations>

VAR <global variables>

<procedure, function, and method definitions>

BEGIN
<main program code>

END.

Since Macintosh programs are typically complex, this linear organization leads
to unmanageably large files. The solution is to break the organization into two
files, using Pascal units, which are discussed fully in the MPW Pascal ·
Reference Manual. As a quick reminder, a Pascal unit is a separate file that has
two parts: an interface and an implementation. The declarations and
definitions in the interface part are available to any file that uses the unit The
implementation part contains implementation information private to the unit, for
example, procedure and function definitions.

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

The convention for MacApp programs is to break them into two parts: a unit
that defines the object classes and methods, and a main program that uses the
unit.

The main file, which stores the global declarations and the main program, is
organized like any Pascal program. It makes reference to the unit where the
object-related code is stored, by means of the uses statement.

PROGRAM ProgramName;

USES ObjectUnitName;

CONST <constant declarations>

TYPE <type definitions>

VAR <global variables>

<procedure, function, and method definitions>

BEGIN
<main program code>

END.

The unit file defines the classes and methods that will be used by the program,
and is typically organized like this:

UNIT ObjectUnitName;

INTERFACE

CONST <public constant declarations>

TYPE <class definitions>

IMPLEMENTATION

CONST <private constant declarations>

VAR <private variables global to the unit>

<method definitions>

END.

Chapter 3: Object Pascal

6/14/88

51

6/14/88

52

Working Draft 4 (APDA)

As this unit becomes more unwieldy itself, it is typically divided into two files.
The implementation part is usually removed to another file, which is included
in the first one. When this is done, the interface file has the form:

UNIT ObjectUnitName;

INTERFACE

CONST <public constant declarations>

TYPE <class definitions>

IMPLEMENTATION

{$! ImplementationFileName}

END.

The implementation file, then, looks like this:

CONST <private constant declarations>

VAR <private variables global to the unit>

<method definitions>

These three files-the main file, the unit interface file, and the unit
implementation file-constitute the entire object program. You'll see this pattern
of files repeatedly when working with MacApp.

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

(

C'

MacApp 2.0 Tutorial

F"igure3-1

Working Draft 4 (APDA)

The Main File

PROGRAM PropnName;

us~ ObjectUnilName;

CONST <const dedatalions>

TIPE <type def'lllitions>

VAR <global variables>

<procedure md funaion def'lllitions>

BEGIN

<main i:rogram code>

END

The Interface File

UNIT ObjeaUnilName

INTERFACE

CONST <const declaratiom>

mE <dass def'lllitiom>

IMPLEMENTATION

(SI lmplementationFileNamel

ENO.

The Implementation File

CONST
<private cent declarations>

VAR
<private variable dedatalions>

<method def'lllitions>

Typical file orgoniZotion of on Object Pascal program

As mentioned earlier, you are not limited to three files for your code. You may
implement any number of units and-any number of implmentation files for each
unit. In this manner you can keep your files to a reasonable size-and
remember, units can be compiled separately. Figure 3-2 shows a possible
organization of a large Object Pascal program.

Chapter 3: Object Pascal

6fl4/88

53

6/14/88

Unit 1 ----------------1
I

D !
Interface file J

I
I

ODD!
Implementation files J

I _______________ .J

Figure3-2

Working Drott 4 (APDA)

Main program file

Unlt2 ,----------------1
I I

I D I I I
I I
I
I
I
I
I
I
I
I
I
I
I

Interface ftle

DD
I Implementation files
I
I l _______________ .J

MocApp 2.0 Tutorial

UnltN ,----------------1
I I

I D I I I
I I
I I
I I

i Interface file J

I I
I I

···! D D···8 !
I Implementation files I
I I
I I l _______________ .J

Possible file organization of a large Object Pascal program

54 Chapter 3: Object Pascal

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Object class definitions
Let's start to fill in some of the blanks in those file specifications. In the
interface part of the unit, there's a section called <class definitions>. Defining
an object class in Object Pascal is similar to defining a record type. First, you
need to name the object class, specify that it is an object class, and then declare
the fields and methods. The specific syntax looks like this:

TYPE
ObjectClassName = OBJECT

{field declarations}
{method declarations}

END;

OBJECT is a reserved word that acts almost exactly like the reserved word
RECORD. As you can see, the object class definition above has the same
structure as a record type definition.

It is the convention in MacApp to begin object class names with a T. (This
stands for Type-remember "object class" means "object type.") For example,
if you wanted to implement the company object class from chapter 2, you
might make the following declaration:

TCompany - OBJECT

END;

{TCompany's field declarations}
{TCompany's method declarations}

In this declaration, object class TCompany has no ancestor. By convention in
MacApp, if an object class has no ancestor, then it is made a descendant of class
TObject TObject is a class with no fields and only a few "utility" methods that
will come in handy later. For now, just remember that object classes with no
immediate ancestor should use TObject as their immediate ancestor.

In Object Pascal, the way to declare the ancestor of an object class is simple.
Since the TCompany class should descend from the TObject class, you can
simply rewrite the TCompany definition like this:

TCompany = OBJECT(TObject)

END;

{TCompany's field declarations}
{TCompany's method declarations}

Chapter 3: Object Pascal

6/14/88

55

6/14/88

56

Working· Draft 4 (APDA)

Notice the TObject class name appears in parentheses after the keyword
OBJECT. This defines the class TCompany as an immediate descendant of the
TObject class.

Field declarations

Now that the object class has a name and an ancestor, you need to declare the
object class's fields. As object classes are named with an uppercase T by
convention, object fields are named with a small f. There's actually a good
reason for this, as you will see in the next section. Object fields are declared in
precisely the same manner as record fields. For example,

TCompany • OBJECT(TObject)

END;

fMainCompetitor: TCompany;
fName: string;
fNumberOfEmployees: integer;
fYearlySales: real;
fYearlyExpenditures: real;

{TCompany's method declarations}

TCompany has five fields. The first field, tMainCompetitor, is a reference to
another company object. You'll see more on object references later in this
chapter, but for now, remember that an object reference is similar to a pointer to
an object instance. An object reference field, like tMainCompetitor, allows one
object instance to call the methods of another object instance. As you can see in
the example above, object reference fields are declared to be of the class that the
field refers to. In this case, tMainCompetitor is declared to be of class
TCompany, meaning that tMainCompetitor will be used to refer to instances of
class TCompany.

The other four fields are straightforward: they exactly mimic the declaration of
record fields.

Method declarations

The class definition includes field declarations and method declarations. Method
declarations should not be confused with method definitions. A method
declaration simply states the name of the method, its parameter list, whether it
is a procedure or function, and whether it is an override method. The method
definition actually defines the method--contains the code that describes the

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

MacApp 2.0 Tutorial Working Draft 4 (APDA)

method's behavior. Method declarations are a lot like forward declarations in
Pascal. They describe the method's nature, but do not define the method's
behavior.

The TCompany class has three methods. Let's look at the method declaration
line for each of them.

FUNCTION TCompany.YearlyProfit: real;

FUNCTION TCompany.ReturnNarne: string;

PROCEDURE TCompany.Print;

The first two of these methods are function methods. Therefore, their method
declaration line begins with the keyword FUNCTION, just as any Pascal
function would. The third method is a procedure method, and, similarly, it is
declared with the keyword PROCEDURE.

The next thing on the method declaration line is the name of the method. Since
methods belong to an entire object class, the complete name of the method is the
name of the class, followed by a period, followed by the name of the method.
Always writing the complete method name saves confusion when two or more
object classes have a method of the same name.

Finally, the function methods end the method declaration line with the
specification of the type that is returned by the function.
TCompany.YearlyProfit returns a real value and TCompany.ReturnName
returns a string value.

Methods, like any procedures and functions, can take parameters. Later in this
book you'll see many methods that take parameters. If a method takes
parameters, the parameter list comes after the method name, and looks like any
parameter definition list. For example, if the three methods above took
parameters, their declaration lines might look like this:

FUNCTION TCornpany.YearlyProfit(LessTaxes: real): real;

FUNCTION TCompany.ReturnNarne(Capitalized: boolean): string;

PROCEDURE TCornpany.Print(LongForrn: boolean; HowManyTirnes: integer);

Chapter 3: Object Pascal

6/14/88

57

6/14/88 Working Draft 4 (APDA)

Reverting to the earlier method declaration lines, you can now put together a
complete method definition:

TCompany - OBJECT(TObject)

END;

fMainCompetitor: TCompany;
fName: strinq;
fNumberOfErnployees: inteqer;
fYearlySales: real;
fYearlyExpenditures: real;

FUNCTION TCompany.YearlyProfit: real;
FUNCTION TCompany.ReturnName: strinq;
PROCEDURE TCompany.Print;

Override method declarations

The only aspect of defining object classes left to explore is that of declaring
certain methods to be override methods of ancestors' methods. For instance, if
you wanted to define the employee object class from Chapter 2, you might end
up with a definition like this one:

TEmployee - OBJECT(TObject)

END;

fName: strinq;
fTitle: string;

PROCEDURE TEmployee.Print;

Then you could define the contractor descendant class.

TContractor • OBJECT(TEmployee)

END;

fContractNumber: integer;
fContractDollarAmount: real;

PROCEDURE TContractor.Print; OVERRIDE;

You should notice three things about this class definition:

• The TContractor class has been declared to be a descendant of the
1Employee class.

58 Chapter 3: Object Pascal

MacApp 2.0 Tutorial

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

• Only the fields specific to the TContractor class are listed. To be sure, the
TContractor class has four fields: fName, ffitle, fContractNumber, and
fContractDollarAmount. Since the first two are inherited, however, only the
last two need be listed in this class definition.

• The Print method, which is an inherited method, is listed again. If you
wanted the Print method of TContractor to be exactly the same as the Print
method of TEmployee then you would not have to list TContractor.Print-it
would be automatically inherited. However, since TContractor.Print
overrides TEmployee.Print, it does need to be listed, and the keyword
OVERRIDE, followed by a semicolon, is written at the end of the method
declaration line.

Object Pascal makes one limitation on override methods: an override method
must have the same interface as its inherited method. Therefore an override
method must have the same parameter list as its inherited method. Since an
override method is supposed to be "equivalent" to the inherited method-only
customized for a descendant class-this rule makes sense. However, there are
times when it will pose a bit of a problem, especially with initialization
methods, which will be dealt with later in this chapter.

A class definition is hardly complete without defining the methods that belong
·to that class. However, it will be useful to examine Object Pascal instances
before exploring the syntax of method definitions.

Object Instances
Since object instances in Object Pascal are similar to records in standard Pascal,
let's first look at record instantiation.

Record handles and record instantiations

Standard Pascal allows records to be instantiated a number of different ways:
through record variables, through record pointers, and through record handles.

Instantiation through record variables

Records, of course, can simply be instantiated as variables, for example:

ThisRecord: RecordType;

Chapter 3: Object Pascal

6/14/88

59

6/14/88

60

Working Draft 4 (APOA)

These lines each declare an actual record instantiation, named ThisRecord, to be
created, which reserves space for ThisRecord in memory.

To reference the fields of this record, simply use a dot:

SomeVariable :• ThisRecord.AField;

Instantiation through record pointers ·

Another frequent means of instantiating a record is through the use of a pointer,
for example:

ThisRecord: ARecordType;

When you use pointers, you must first call Pascal's NEW routine to allocate
space in memory for the record. Then the fields of the record can be referenced
by the special up-arrow notation:

NEW(ThisRecord);
SomeVariable :• ThisRecordA.AField;

Instantiation through record handles

Finally, a third means of instantiating records, and one that is very popular with
Macintosh programmers, is through the use of a handle. A handle, as veteran
Macintosh programmers know, is a pointer to a pointer. Declaring handles
looks like this:

MacApp 2.0 Tutorial

ThisRecord: AARecordType; { "a pointer to a pointer to a RecordType"

Before the record actually exists, you must call the NewHandle routine. Then
you can access the fields of the record through the use of the double indirection
symbol:

NewHandle(ThisRecord);
ThisRecordAA.AField;

Using handles and double indirection may look like a lot of extra work, since it
does approximately the same job as using pointers. However, handles allow
more efficient memory management, and handles are frequently used in place of
pointers in Macintosh programming. Since object classes are instantiated solely
through the use of handles, the rest of the instantiation examples are shown
solely using handles.

Chapter 3: Object Pascal

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

It is important to remember that declaring a record handle does not allocate
space in memory for a record. Only after the NewHandle procedure is run is a
space in memory created for storing values into the data fields.

Object references and object instances

Object classes are instantiated in the almost the same manner as record handles.
If it were exactly the same, you would declare variables that would store the
handle like this:

EmployeeA: AATContractor; { But it's not really done this way.

Since this handle variable will "refer" to the object instantiation, it is usually
called an object reference variable, or just an object reference.

Since all object reference variables are handles, Object Pascal lets you take a
shortcut. In fact, it forces you to take the shortcut. The shortcut is this: all
double indirection is done for you automatically. You never see the double up
arrow when dealing with object reference variables. So, the above declaration
becomes:

EmployeeA: TContractor; {This is actually how it's done.

EmployeeA is still an object reference variable. In other words, EmployeeA is a
handle that points to an object of class TContractor. In order to create space in
memory for an actual object instance, you must call the Pascal NEW routine:

NEW (EmployeeA) ;

Notice that this is not the same NEW routine as in standard Pascal. This Object
Pascal NEW routine takes an object reference variable as a parameter, and creates
an object instance for it to refer to through a handle.

Finally, to reference a field of the object instance, you use a syntax exactly like
that for records:

SomeStringVariable :- EmployeeA.fName;

Note that once again, the double indirection is done for you. Otherwise the
above line would read:

SomeStringVariable :- EmployeeAAA.fName; {This is NOT how it's done.

Even though this is what is actually happening, you never see this in an Object
Pascal program-Object Pascal notices that EmployeeA is an object reference

Chapter 3: Object Pascal

6/14/88

61

6/14/88

62

Working Draft 4 (APDA)

variable and automatically does double indirection for you. While this may seem
confusing at first, it actually simplifies things greatly. Except for always
remembering to call the NEW procedure, you can usually just think of object
reference variables as plain variables instead of handles. This also makes code
much easier to read.

Method call syntax

The secret of calling methods in Object Pascal can be easily learned by
memorizing one sentence: In Object Pascal making a method call looks ju.st like
referencing afield. In other words, an object's methods are called the same way
an object's fields are referenced-the use of a dot.

For example, if you wanted to call the Print method of the EmployeeA object
instance, the call would look like this:

EmployeeA.Print;

This looks just like referencing a field of a record variable, but actually it is
calling the method of an object instance. Here again you can see why it is so
important to begin all field names with a lowercase f. You will find you get
used to any residual ambiguity quite quickly, especially when parameters are
involved For instance, if the Print method required parameters, the call might
look like this:

EmployeeA.Print(true, 7);

This line of code would call the Print method of the instance referred to by the
EmployeeA reference variable with true and 7 as the input values for the two
parameters.

If the method is a function method, as is the Yearly Profit method of the
TCompany object class, then it is used syntactically just like standard functions:

VAR CompanyA: TCompany;

NEW (Company A) ;
SomeintegerVariable := CompanyA.YearlyProfit;

Now that you've seen object reference variables and object instances in Object
Pascal, you're ready to see how methods are defined.

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

(

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Method definitions
Once your object classes have been defined, you must write the code for each of
the methods you have declared. The syntax for such method definitions is also
similar to standard Pascal, with a few exceptions.

Remember that method definitions define a method for an entire class of
objects. They describe the general behavior of a method. The actual methods
that are called in a program belong to specific object instances, and each object
instance of a class has its own specialized version of the generic method. Object
Pascal takes care of creating these specializ.ed versions for you, but when you
define the generic method, you must give the directions directing what you want
the specialized versions to do. You do this using Object Pascal's SELF
keyword.

The SELF keyword
Defining object meth~that is, writing the code for an object method-is
syntactically very simple. The opening line of the definition must exactly match
the opening line of the method declaration (the one found in the object class
definition). The opening line is then followed by the body of the method. In the.
body of the method, you will often need to refer to a field of the class that owns
this method. You can refer to the class's fields using the SELF keyword. For
example,

PROCEDURE TEmployee.Print;

BEGIN
writeln("My name is ", SELF.fName);
writeln("My title is", SELF.fTitle);

END;

This method definition is fairly simple. When you call a specific instance's
version of this Print method, it will print that instance's tN ame field, then it will
print that instance's ITitle field. In other words, the keyword SELF is kind of a
marker that means "the specific instance that this specialized method belongs
to". The instance that SELF refers to is called the calling instance.

Let's take an example. Suppose you have created an employee reference
variable:

VAR EmployeeD: TEmployee;

Chapter 3: Object Pascal

6/14/88

63

6/14/88

64

Working Draft 4 (APDA)

and then you have instantiated that variable, and initialized it:

NEW(EmployeeD);
EmployeeO.fName :- "0. Douglas";
EmployeeO.fTitle :• "actor";

Finally, you make a call to its Print method. The Print method that actually is
called is not the generic one defined above, but a specialized copy of it, where
every occurrence of the keyword "SELF" has been replaced by "EmployeeD".

TEmployee • OBJECT(Tobjea)

fname: string;

fI"ltle: string;

[PROCEDURE TEmQI01ee. Print;

END· I
.

PROCEDURE TEmployee.Print;
BEGIN
write in ("My name is", SELF ftiame);
write in ("My title is", SELF ffitle);

END;

Figure3-3

l_ . .,...-
· .

·.

Employeel>s ?Employee;

I ftianre j ·o. Douglas" I
I mtle I "actor" I

Methods of the
TEmployee object class

when EmployeeD. Print is called:
BEGIN

_....., write in ("My name is", EmployeeD. ftiame);
write in ("My title is", EmployeeD. ffitle);

END;

A generic method definition ond o specialized version of the method

When a call is made to the Print method of EmployeeD:

EmployeeD.l'rint;

EmployeeD is called the calling instance. The keyword SELF is always replaced
in the specialized versions of methods by a reference to the calling instance.

Chapter 3: Object Pascal

MacApp 2;0 Tutorial

(

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

So, you can see that the keyword SELF is· the trick that allows you to define a
method once, even though a specialized version is created for each different
object instance you create. ·

One more thing-the use of the word SELF in Object Pascal is optional, though
it often makes your code clearer. You can act as if the code part of every method
is surrounded by

WITH SELF DO BEGIN

END.

In other words, every variable or method name is checked to see if it belongs to
SELF. For example, the above Print method could be redefined like this:

PROCEDURE TEmployee.Print;

BEGIN
writeln("My name is ", fName);
writeln("My title is ", fTitle);

END;

The keyword SELF, then, rarely must used. The only situations that require the
use of SELF are when you need to pass a reference to the calling instance to
another routine or need to assign a reference to the calling instance to a variable.
However, always using SELF may help make your code c:learer.

Methods that call other methods of the calling
instance

You've seen how to refer to a field of the calling instance in the method
definition using SELF. Making a call to another method of the calling instance
works similarly. For instance, here is a possible definition of the Print method
of the TSalaried.Employee class:

PROCEDURE TSalariedEmployee.Print;

BEGIN
writeln ("My name is ", SELF .fName);
writeln("My title is", SELF.fTitle);
writeln("My salary is", SELF.fSalary);
writeln("My weekly paycheck is ", SELF.WeeklyPaycheck);

END.

As you can see, the fourth line of this definition looks strikingly similar to the
first three lines. The difference is that the first three lines access fields of the

Chapter 3: Object Pascal

6/14/88

65

6/14/88

66

Working Draft 4 (APDA)

calling instance, while the fourth line calls another method (a function method)
of the calling instance. In general, function method calls are indistinguishable
from field references, which explains the use of a lowercase f to begin field
names. Procedure method calls also look the same, but of course they return no
value and you can distinguish them in context.

Methods that call methods of other instances

As you just saw, calling methods of the same instance is as simple as referring
to fields of that instance. Calling methods of other instances is different.
(Remember, by convention in Object Pascal, one instance should not reference
fields of other instances-it should only call their methods.) In order to call
methods of another instance, the first instance must have access to the other
instance. There are only three ways this is possible.

Calling a method of a global object instance

Imagine you have declared a global object reference variable:

VAR globalObject: TSomeObjectClass;

Assuming that this global object reference variable has been instantiated and
initialized somewhere in the main program, you can effectively call its methods
in any method of any object. For instance,

PROCEDURE TSampleObject.SampleMethod;

BEGIN
{ Calls to other methods of the calling instance look like this.}
SELF.OtherMethod;

MacApp 2.0 Tutorial

{ Here's a call to a method of an object instance that is not the calling
instance.}

globalObject.SomeMethod;
END.

Chapter 3: Object Pascal

(_

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Calling a method of a local object instance

The second possibility for calling another object instance's methods is having
the object be a local variable to the method. Remember, methods are procedures
and functions, and as such can have their own local variables-including object
reference variables. Using this strategy, you could redefine the
TSalariedEmployee.Print method again.

PROCEDURE TSampleObject.SampleMethod;

VAR localObject: TSomeObjectClass;

BEGIN

END.

{ Calls to other methods of the calling instance look like this.}
SELF.OtherMethod;

{ Before calling any methods of the local object, you must instantiate it.}
NEW(localObject);

{Here's a call to a method of the local instance -- not the calling instance.}
localObject.SomeMethod;

Calling a method of an Instance linked by an object reference field

The final possibility for calling other object instance's methods is the most
common, and the one discussed in Chapter 2-having an object reference field
linked to the other instance. For example, remember the company object class:

TCompany • OBJECT(TObject)

END;

fMainCompetitor: TCompany;
fName: string;
fNumberOfEmployees: integer;
fYearlySales: real;
fYearlyExpenses: real;

FUNCTION TCompany.YearlyProfit: real;
FUNCTION TCompany.ReturnName: string;
PROCEDURE TCompany.Print;

Chapter 3: Object Pascal

6/14/88

67

6/14/88

68

Working Draft 4 (APDA)

The Print method of class TCompany prints not only the fields of the calling
instance, but also the name field of the calling instance's competitor. The Print
method does this by calling the name returning method of the instance referred
to by the fMainCompetitor field The syntax for this method definition is this:

PROCEDURE TCompany.Print

BEGIN

First, print the values of the calling instances fields. }
writeln("Our company's name is ", SELF.fName);

MacApp 2.0 Tutorial

writeln("The number of happy employee's here is:", SELF.fNumberOfEmployees);
writeln("Our yearly sales are: ", SELF.fYearlySales);

END.

writeln("while our yearly expenses are: ", SELF.fYearlyExpenses);

{ Then, print the value returned by another method of the calling instance. }
writeln("which means our yearly profit is: ", SELF.YearlyProfit);

{ Finally, print the value returned by a method of the instance }
{ that is referred to by the fMainCompetitor field. }
writeln("Our biggest competitor's name is", SELF.fMainCompetitor.ReturnName);

Notice the last line of code in the above example. It makes the following method
call:

SELF.fMainCompetitor.ReturnName

This syntax might seem a bit strange at first. What it means is actually quite
simple-it's like referencing a field of a record field of a record The SELF
keyword refers to the calling instance. Adding the". fMainCompetitor"
makes it refer to the instance linked by that field-the calling instance's main
competitor instance. Adding the". ReturnName" specifies that a call to the
RetumName function method of the main competitor instance is to be made.

In order to see this in action, let's create some object instances of class
TCompany.

Chapter 3: Object Pascal

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

VAR CompanyA, CompanyB: TCompany;

BEGIN
{instantiate the object reference variables }
NEW (CompanyA) ;
NEW (CompanyB);

{ initialize CompanyA's fields }
CompanyA.fMainCompetitor :• CompanyB;

established. }
CompanyA.fName :- "Andy's Widgets, Inc."
CompanyA.fNumberOfEmployees :• 100;
CompanyA.fYearlySales :• 5000000.00;
CompanyA.fYearlyExpenditures :• 4000000.00;

{ initialize CompanyB's fields }
CompanyB.fMainCompetitor :• CompanyB;

established. } ·

END.

CompanyB.fName :• "Mark's Foobat Co."
CompanyB.fNumberOfEmployees :• 50;
CompanyB.fYearlySales :• 2000000.00;
CompanyB.fYearlyExpenditures ·- 1000000.00;

{ This is how the one link is

{ This is how the other link is

After the first two lines of code have been executed, unitialized instances have
been created in memory.

Chapter 3: Object Pascal

6/14/88

69

6/14/88

70

Working Draft 4 (APDA)

Company A CompanyB

Object reference

unitialized

fCompetitor fCompetitor

fName 1~
I fNumber fNumber I !@'65'%

I fY early sales I c·a&·s5 fY early sales I %.$8~
I ~e:~tures I '23@$~ fY early l ~.t$#A;&

expenditures _

Methods of class TCompany Methods of class TCompany

Figure3-4
Unitialized instances in memory

The next ten lines of code initi.aliz.e these instance. Most of this initialization is
straightforward. The only unfamiliar initialization is the establishment of the
references between the two instances. If you remember that object reference
variables are actually handles, these two lines look like standard Pascal code.
Take the first of these as an example:

CompanyA.fMainCompetitor :• CompanyB;

This line specifies that the tMainCompetitor field should point to the instance
that the CompanyB object re(erence variable points to.

Once all of the code above has executed, the following situation will exist in
memory.

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

unitialized

(

c

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

Company A CompanyB

Object reference Object reference

fCompetitor fCompetitor

I Warne
I "Andy's
: Widgets, Inc." Warne I "Mark's

FoobatCo."

I Wumber I 100 Wumber 150

I ty early sales 15000000. !Yearly sales I 2000000.

I !Yearly 14000000.
!Yearly I 1000 000. : expenditures expenditures

Methods of class TCompany Methods of class TCompany

Figure3-5
Object references and instances in memory

Now, if you call the Print method of Company A at the end of the main program
above, like this:

CompanyA.Print;

the line that read

writeln("My competitor's name is", SELF.fMainCompetitor.ReturnName);

in the method definition will execute just as this line would during runtime:

writeln("My competitor's name is", CompanyA.fMainCompetitor.ReturnName);

Chapter 3: Object Pascal

6/14/88

71

6/14/88

72

Working Draft 4 (APDA)

When this line is executed, the ReturnName method of the object referenced by
the fMainCompetitor field of Company A is called, and the result is printed,
which is exactly what was wanted.

Override methods

An override method is defined just like any other method, except for the use of
the keyword OVERRIDE, just as in the method declaration line.

For example, remember that class TSalaried.Employee is a descendant of class
TPaidWeeklyEmployee, and therefore TSalariedEmployee inherits the
WeeklyPaycheck method of TPaidWeeklyEmployee. Of course,
TPaidWeeklyEmployee was an abstract object class, and its WeeklyPaycheck
method was never meant to do anything:

PROCEDURE TPaidWeeklyEmployee.WeeklyPaycheck;

BEGIN

This method does nothing. It is meant to be overridden. }

END.

Defining the override version of this method looks exactly like defining any
method, except for the keyword OVERRIDE.

PROCEDURE TSalariedEmployee.WeeklyPaycheck; OVERRIDE;

VAR amountOfCheck: real;

BEGIN

MacApp 2.0 Tutorial

{ Determine the amount of the paycheck, using the calling instance's fields. }
amountOfCheck :- SELF.fSalary I 52;

END.

{ Return the result, just as you would for any Pascal function. }
WeeklyPaycheck :• amountOfCheck;

Override methods that call the inherifed method

Sometimes it is desirable for an override method to make use of the inherited
method that it is overriding. Remember from Figure 2-21 that the Print method
of the Contractor class overrode the Print method of the Employee class, but
still made a call to that inherited method. In Object Pascal, the definition of the
override method would look like this:

Chapter 3: Object Pascal

("

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

PROCEDURE TContractor.Print

BEGIN

{ First, call the inherited version of Print tq print name and title.
INHERITED Print;

{ Then, print out the fields specific to this class. }
writeln("My contract number is ", SELF.fContractNumber);
writeln("My contract dollar amount is", SELF.fContractDollarAmount);

END.

You can see that the syntax in Object Pascal for making calls to inherited
methods is simple:

INHERITED Print;

If the method has any parameters, they are listed after the method name, as
usual. For example,

INHERITED Print(parameterl, parameter2);

More about Object Pascal
By now, you've seen all of the syntax of Object Pascal. You know how to
define object classes and their methods, and declare and instantiate object
reference variables. Syntactically, you 're ready to start creating Object Pascal
programs. However, there are a few use and convention issues that you should
be familiar with before diving into your first MacApp program.

Creating and freeing instances

Earlier in this chapter, the object class TObject was mentioned. The TObject
class has no fields and only a few utility methods. These utility methods are
helpful enough that it is desirable for all object classes to have them. This is
accomplished simply: just make your highest ancestor objects descend from
class TObject For example, in the employee class hierarchy, TEmployee is the
highest ancestor-it has no ancestor itself. In this case, all you need to do is
make TEmployee a descendant of TObject Since all other classes in that
example descend from the TEmployee class, all classes therefore descend from
TObject as well. As a result, all object classes inherit the methods of class
TObject

Chapter 3: Object Pascal

6/14/88

73

6/14/88

74

Working Draft 4 (APDA)

You already know how to allocate memory for an object instance-use the NEW
routine on an object reference variable. To deallocate the memory of an object
instance, you can use the Free method. The Free method is a method of
TObject and therefore can be called by any object instance., if you've declared
your hierarchy properly. You can ovenide the Free method so that objects of a
given type can petfonn cleanup tasks of their own when they are about to be
deallocated.

Initialization methods

Immediately after instantiating an object reference variable, it is a good idea to
initialize the object instance. Typically this is done with an initialization
method-a method that takes as many parameters as the class has fields, and
initializ.es each field to one of the parameters.

For example, the TEmployee object class might have the following initialization
method.

PROCEDURE TEmployee.Initialize(name, title: string);

BEGIN

END;

Initialize each field to the appropriate parameter.
SELF.fName :- name;
SELF.fTitle :- title;

If you have declared an object reference variable, for example EmployeeD, to be
of class TEmployee, then after you instantiate it you can call it's initialization
method:

EmployeeD.Initialize("D. Douglas", "actor");

Like the Print method example, you might think it would be nice to give each
employee object class an ovenide version of this method. The ovenide version
could call the inherited version to initialize the first two fields, and then initialize
the rest of the fields itself.

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

(

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

For instance,

PROCEDURE TContractor.Initialize(name, title: string;
number: integer;
amount: real); OVERRIDE;

BEGIN

Call the inherited method -- the method of TEmployee }
INHERITED Initialize(name, title);

END;

{ Initialize the remaining two parameters.
SELF.fContractNumber :- number;
SELF.fContractDollarAmount :• amount;

Unfortunately, Object Pascal requires that the method declaration line not be
changed for override procedures. As you can see in the above example, there
were two parameters added to the method declaration line. This is not legal and
the above override procedure would not compile.

Since initialization methods almost always require varying numbers of
parameters, the result of this restriction is that initialization methods are not
override methods. Each class has its own initialization method. For example,
the two classes above might have these two initialization methods:

PROCEDURE TEmployee.IEmployee(name, title: string);

BEGIN

END;

SELF.fName :- name;
SELF.fTitle :- title;

PROCEDURE TContractor.IContractor(name, title: string;
number: integer;
amount: real);

BEGIN

END;

SELF.fName :- name;
SELF.fTitle :- title;
SELF.fContractNumber :• number;
SELF.fContractDollarAmount := amount;

Chapter 3: Object Pascal

6/14/88

75

6/14/88

76

Working Draft 4 (APDA)

As you can see, the convention for naming initialization methods is to begin
them with an uppercase I, followed by the name of the class.

Even though you cannot have !Contractor call an inherited initialization method
(because there isn't one), you can do something almost as good. Since class
TContractor inherits all of the methods of class TEmployee, it must also inherit
IEmployee. Therefore, you can have !Contractor call !Employee directly
almost as if you were calling an inherited initialization method:

PROCEDURE TContractor.IContractor(name, title: string;
number: integer;
amount: real);

BEGIN

END;

SELF.IEmployee(name, title);
SELF.fContractNumber := number;
SELF.fContractDollarAmount :• amount;

In this manner, making separate initialization methods that are not override
methods for each class does not cause you to have to duplicate any code.

Privacy between instances

As you've seen a few times, the method of one instance can call the method of
another instance. Under the strict application of convention, this is the only way
one instance should communicate with another. However, there are times when
you will want a method of one instance to have access to information from
another instance and there will be no method of the second instance that returns
that data. In cases like this, it would be best to add a method to the second
instance's class that did return that data, but this is not always possible.

It is legal in Object Pascal syntax for the method of one object to reference a
field of another object. For example, the method definition for TCompany .Print
could include something like this:

PROCEDURE TCompany.Print

BEGIN

END.

Print the value of the fName field of the competitor instance.
writeln("My competitor's name is", SELF.fMainCompetitor.fName);

Chapter 3: Object Pascal

MacApp 2.0 Tutorial

MacApp 2.0 Tutorial Working Draft 4 {APDA)

Here, you can see that the method is accessing the fName field directly. This
ability exists in Object Pascal, but use it sparingly!

Object ref ere nee variables

Object reference variables must be declared to be of a specific object class. For
example,

VAR SomeEmployee: TEmployee;

SomeEmployee is an object reference variable, and is a member of class
TEmployee. Therefore, it must reference an instance of class TEmployee.
However, in Object Pascal, SomeEmployee is also allowed to reference an
instance of any class that is descended from TEmployee. For instance, imagine
you have also declared a variable EmployeeA:

VAR EmployeeA: TContractor;

In the main body of the program, after instantiating and initializing EmployeeA,
you can make the following assignment:

(SomeEmployee :"" EmployeeA;

Now, SomeEmployee is referencing an instance of class TContractor. Since
TContractor descends from TEmployee, this is legal. SomeEmployee now has
access to all of the fields methods of TContractor, as well as the fields and
methods of TEmployee. For example, it is now legal to reference
SomeEmployee.fContractNumber.

The real power of object-oriented programming comes from what happens
when you access a method of SomeEmployee. Regardless of what class the
instance that SomeEmployee references, the correct method will always be
called.

For example, if you now called SomeEmployee.Print, the override Print
method belonging to the TContractor class is the version that is called-not the
original Print method belonging to the TEmployee class. This means that as late
as runtime your object-oriented program is checking which instance is the
calling instance, and making sure the right version of the method is called.

Chapter 3: Object Pascal

6/14/88

77

6/14/88

78

Working Draft 4 (APOA)

Summary ot Object Pascal syntax
• Object classes are defmed in the TYPE declaration part of a Pascal program.

These definitions include the class name (beginning with an uppercase T by
convention), the type name OBJECT, the ancestor class name in
parentheses, and the field declarations and the method declarations
(including overriden methods followed by the keyword OVERRIDE.

TObjectClassName • OBJECT(TObjectClassAncestor)
{field declarations}
{method declarations}

END;

• Object fields (beginning with a lowercase f by convention) are declared just
as record fields.

fFieldName: fieldType;

• Methods are declared as normal Pascal procedures and functions. Their
names include the name of their object class. If it is an overridden method,
the keyword "OVERRIDE;" ends the declaration line.

PROCEDURE TObjectClass.TMethodName;
FUNCTION TObjectClass.TMethodName: ResultType;

PROCEDURE TObjectClass.TMethodName(parameter list);
FUNCTION TObjectClass.TMethodName(parameter list): ResultType;

PROCEDURE TObjectClass.TMethodName; OVERRIDE;
FUNCTION TObjectClass.TMethodName: ResultType; OVERRIDE;

PROCEDURE TObjectClass.TMethodName(parameter list); OVERRIDE;

MacApp 2.0 Tutorial

FUNCTION TObjectClass.TMethodName(parameter list): ResultType; OVERRIDE;

• Methods are generally considered "public'', that is, they can be accessed by
other objects' methods, while fields are generally considered "private", that
is, other objects should not access them directly. This is just convention and
is not enforced by Object Pascal.

• Object Pascal does all object-related double-indirection. Even when an
object reference variable is declared, no indirection is expressly used.

ObjectReferenceVariableName : ObjectClass;

Chapter 3: Object Pascal

(

(

MacApp 2.0 Tutorial Working Draft 4 (APDA)

The function New is still necessary, however, as object reference variables
are still handles.

NEW(ObjectReferenceVariableName);

• Fields and Methods are both accessed with a dot. No indirection is ever
needed.

ObjectReferenceVariableName.fFieldName
ObjectReferenceVariableName.MethodName

• Methods are defined (actually coded) much like standard Pascal procedures
and functions. The title line must match the method declaration line exactly
(including parameters and OVERRIDE;). The keyword SELF is used to
refer to the object instance that called this method. SELF is always optional.

• Inherited methods can be called in an overriden method by prefixing the line
of the call with the keyword INHERITED.

INHERITED InheritedMethodca+lName;

Chapter 3: Object Pascal

6/14/88

79

6/14/88

80 Chapter 3: Object Pascal

Working Draft 4 (APDA) MacApp 2.0 Tutorial

I
/

(

Chapter 4

Introduction to
MacApp: Organization

6/14/88

82

Working Draft 4 (APDA)

By now, you should have a good idea of what an object-oriented programming
is all about, and should be ready for an in-depth look at MacApp. MacApp is
nothing more than an extensive library of code. As with any large system, it
seems you have to know it all before any of it makes sense. This chapter and
the next present an overview of MacApp. This one renders a still-life portrait of
MacApp; the next one shows the engine in motion: how the user's actions are
interpreted and handled while the application is running.

The still-life in this chapter offers three different perspectives on how MacApp
is organized:

• the physical location of files on disks

• the hierarchy of inheritance among the objects

• the way MacApp's objects represent the concepts of the Macintosh user
interface

Knowing the physical layout of the files will help you to include all the
necessary code; it will also help you track down the location of any piece of
code you want to investigate more thoroughly. Knowing the ancestry of a
particular object tells you what fields and methods it has in common with other
objects. And knowing how the different objects in MacApp provide metaphors
for the concepts of the Macintosh world allows you to understand why MacApp
is put together the way it is, and gives you the power to manipulate the
Macintosh so you can create effective applications.

Source code: organization of the files
MacApp is written mostly in Object Pascal. Pascal code is organized into units.
Technically, a unit is a piece of code that is compiled separately from all the
rest; conceptually, all the code compiled into one unit should have something in
common. For instance, all the code related to printing might be compiled into a
single unit Once you compile all the units separately, you then have to link
them together-. a single unit by itself is not executable.

MacApp is divided into 18 units. Many of the units must be included in every
application; others are optional, for instance depending on whether you want to
use the debugger or take advantage of the printing or text-editing features of
MacApp. All ofMacApp's units have names that begin with an uppercase U.
Table 4-1 lists these units. The table gives a thumbnail description of each unit,

Chapter 4: Introduction to MacApp: Organization

MacApp 2.0 Tutorial

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88

(
mentions the circumstances under which it should be included. and indicates
how much of your attention it requires. Many of these units will be of no
concern to you, either because their use is optional or because their routines and
data are used only by the code in the MacApp library.

Table 4-1
MocApp units

Unit Responsible for When to include Needs
attention?

UAssociation associating one object with always rarely
another

UBusyCursor changing cursor shape when always rarely
the application is busy

UDialog dialog-style windows optional optional

UFailure handling failures always sometimes

(UGridView displaying arrays of always when debugging; optional
information otherwise optional

Ulnspector implementing the inspector only when debugging never

UList maintaining lists of always optional
object-oriented information

UMacApp the core of MacApp's functions always always

UMAUtil global routines and data always always

UMemory memory management always always

UMenuSetup menu maintenance always always

UObject defining the root ancestor of all always when
other objects creating

custom
objects

UPatch implementing patches to the always never
Macintosh ROM

('
Chapter 4: Introduction to MacApp: Organization 83

6/14/88

84

Working Draft 4 (APDA) MacApp 2.0 Tutorial

UPrinting printing when your application
requires printing

UTE View text editing optional

UTrace MacApp debugger debugging

UWrite- debugger window debugging
LnWindow

UViewCoords 32-bit coordinate support always

Each unit consists of at least two files: one interface file and one or more
implementation files. The interface files, which are always much shorter than
the implementation files, contain only declarations and type definitions. The
implementation files contain the code that implements these declarations. That
means that if you want to talce a quick look at what parameters a particular
method call requires, you only need to look at the short interface file, where it is
declared Each interface file also lists all the implementation files that are
associated with it, since they all need to be compiled together. The file names in
MacApp adhere to a rigid convention, as laid out in the table below.

Table4-2
Naming conventions for MacApp files

File Type Naming Convention

Assembly Ufilename.a

Interface Ufilename.p

Implementation Uinteiface.implementation.p

Example

UMacApp.a

UMacApp.p

UMacApp.incl.p or
UMacApp.TApplication.p

In most cases, the implementation of a unit is short enough to be put into a
single file. In that case, the implementation's name is traditionally just "incl,"
which stands for"include file #1." However, when the implementation is too
long to be managed easily in a single file, it is broken up across a number of
files; each is given a mnemonic name. The most notable example of a unit
broken into a large number of files is UMacApp, which is broken up into about
a dozen files, each named after the most important thing defined in the unit,
usually an object class. So, the file UMacApp.TApplication.p is the

Chapter 4: Introduction to MacApp: Organization

when
customizing

optional

never

never

rarely

(

MacApp 2.0 Tutorial Working Draft 4 CAPDA)

implementation portion of the UMacApp unit that defines the class named
T Application.

Each unit contains code related to a particular aspect of MacApp. A unit may
contain any proponion of Object Pascal and standard Pascal. Though MacApp
is an object-oriented application framework, much of the MacApp library
consists of routines written in standard Pascal to make your application run
more efficiently.

In sum, the 60 or so files in the MacApp library belong to 18 units, organized
according to function. The names of the files reflect the unit name and whether
the file contains the interface or the implementation.

Ancestry: organization of the classes
MacApp defines about 45 different classes of objects, an overwhelming number
to learn at once. Fortunately, you only have to understand about a dozen of
these to get a good overview of the library. The other three dozen or so classes
are less important to understand immediately, either because you will never use
them directly (though they are used by other pieces of the MacApp library) or
because their purpose is highly specialized. For instance, almost half of the
classes are· devoted to manipulating dialog boxes, and though you will probably
use some of these classes quite frequently, you don't need to know about them
all to get an overview of MacApp.

There are two ways of analyzing these classes: by inheritance and by functional
design. Inheritance tells you which methods and fields different classes may
share but it does not tell you how the objects were intended to work together.
This section discusses inheritance only; the next section discusses functional
design (which is also called architecture). Figure 4-1 is a picture of the ancestry
tree for the different classes. The object class TObject, from which all the
others descend, is all the way to the left. TObject has five immediate
descendants: TCommand, TEntry, T Association, TList and
TEvtHandler. The uppercase Tat the beginning of each of these names
indicates that it is an obj~t type (which is another way of saying class), not an
actual instantiation of an object. Remember, when you see a name beginning
with T it is a cookie cutter, not the cookie itself. In any case, the arrows in
Figure 4-1 point from the ancestors toward the descendants.

Chapter 4: Introduction to MacApp: Organization

6/14/88

85

6/14/88

86

TObject

Figure4-1

Working Draft 4 (APOA)

TCel!SelectCommand

TRowSelectCommand

TGridSeleclCommand TCo!SelectCommand

TControlTracker

MacApp 2.0 Tutorial

TEntry 'ITECommand---------------
T Association

E TEntriesList

Tiist-----....,. TSortedList -------... -+- TClassesByID

TClassesByName
TApplication

TDocument ~ Tinspector

TScroller

TGridView ----------

TControl-----------

TDialogView

TDeskScrapView

TI'EView-----------

TPrintHan&er-· ------------------------

The ancestry tree for the classes n MacApp

Chapter 4: Introduction to MacApp: Organization

(

c

MacApp 2.0 Tutorial Working Draft 4 (APDA)

[

mcutCopyCommand

TIEPasteCommand
~~~~~~~~--.~~ 

TIF.5tyleCommand 

TIETypingCommand 

TinspectWindow 

TiextGridView 

TStaticText 

TCluster 

TI con 

TCtlMgr 

TPopup 

TPicture 

IDialogTEView 

TStdPrintHandler 

c TiextLlstView 

. TObjectView 

TEditText 

TScrollBar 

TButton 

TRadio 

TCheckBox 

CTClassView 

~ TObjListView 

1NumberText 

TSScrollBar 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

87 



6/14/88 Working Draft 4 (APDA) 

. As you look at this chart and read these sections, remember that descendants are 
specialized versions of their ancestors. So when you see that TWindow is a 
descendant of TView, translate that into the words ''TWindow is a specialized 
version of TView." 

Each of these objects is described more completely in the next section on 
architecture. Here, each object is presented only in its sketchiest outline, so you 
can see how it fits into the hierarchy. Most of the objects described in this 
section are objects that you will use repeatedly. You can "use" objects in two 
ways: by instantiating them or by creating new descendants of them. Classes 
that are never instantiated are called abstract classes. Abstract classes are 
used only to create descendants who will then share all the methods and fields 
inherited from their parent. 

Higher-level classes 

There are four commonly used classes at the top of the ancestry tree: TObject, 
TList, TCommand, and 1EvtHandler. 

• TObject. TObjeet is an abstract class, the ultimate ancestor of every other 
class. The main purpose of TObject is to bestow upon all its descendants a 
very few abilities all objects should have in common, namely making clones 
of itself and deallocating any memory it might have required so you can 
delete it. You will never create instances of TObject itself. Rather, both you 
and MacApp will use it to create more useful descendant classes and then 
will make instantiations of tlwse classes. 

TObject has three important descendants: 1List, TCommand, and 1EvtHandler. 
Of these three, 1EvtHandler is by far the most important, both in terms of how 
often you will use it and in terms of understanding how MacApp works. Well 
over two-thirds of the classes defined in MacApp are descendants of 
1EvtHandler, and they are conceptually important classes, the ones that 
represent windows and documents and the application itself. 

• TList. (Ancestry: TObject -+ 1List ) An instance of the TList class 
implements a simple list of objects. It is used throughout the the MacApp 
library to store such lists; you can have each instance in the list perform 
some operation on itself. For example, in a chess program, you could keep 
a list of all the instances that represent chess pieces. Then, if you wanted to 
implement a command that would display the location of every chess piece, 

88 Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

you could simply go down the list and execute the Report method for every 
instance in the list. 

• TCommand. (Ancestry: TObject ~ TCommand) The TCommand class 
is one of the most important to understand, and also one of the most 
difficult to explain. While it is easy to picture a window or a scroll bar, it is 
hard to visualiz.e a command. But if you remember that an object is just 
some data and the methods that manipulate that data, the concept is not 
difficult at all. An instance of the command class has fields that keep track 
of the effects of a command and methods to perform. the command, to track 
the mouse, and perhaps to undo and redo the command. 

• TEvtHandler. (Ancestry: TObject ~ TEvtHandler) TEvtHandler is an 
abstract class, the ancestor of the many object instances that have to deal 
with events. The word event has a special meaning in the Macintosh world, 
including almost anything that might occasion a response from an 
application, ranging from user actions like pressing a key on the keyboard 
to ROM-generated requests to refresh a region on the screen. 

Much of the code that you write yourself will be written to implement event
handling classes. The most important descendants of TEvtHandler are 
TApplication, ~ument, and TView. The great majority of TEvtHandlers are 
descendants of TView. 

• TAj>plication. (Ancestry: TObject ~ TEvtHandler ~ TApplication) 
The TApplication class implements the main event loop and directs events to 
the objects responsible for handling them. The application class itself 
handles some events, if they affect the application as a whole. To get an 
idea of the sorts of things the application class is responsible for, imagine an 
application with no windows open. Any commands that can still be 
executed (including Open, New, About, or Quit) are handled by an instance 
of the application object. There is one, and only one, instance of a 
TApplication class in each application. 

• TDocunient. (Ancestry: TObject ~ TEvtHandler ~ TDocument) The 
TDocument class represents a collection of data (which is usually stored in a 
file). For example, a word processor uses documents consisting of 
formatting commands and text; a drawing program might use bitmapped 
documents; and other programs might use several different types of 
documents at once. Documents are generally responsible for commands 
that directly affect the data, such as the Save command. 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

89 



6/14/88. Working Draft 4 {APDA) 

• TView. {Ancestry: TObject -+ TEvtHandler -+ TView) The TView 
class is responsible for everything your application displays on the screen, 
except the menus. Views are used to render a document's data. For 
example, a spreadsheet application may have two views of the same data
tabular and graphic. Views are generally responsible for handling 
commands that a user might enter by clicking and dragging in the content 
region of a window. 

Descendants of TView 

Since the Macintosh provides a highly visual environment, the TView class 
includes a highly diverse group of classes among its descendants. 

• TWindow. {Ancestry: TObject -+ TEvtHandler -+ TView -+ 
TWindow) The TWindow class represents Macintosh windows. Since it is 
a descendant of TEvtHandler, it inherits many fields and methods for 
intercepting and handling events; and since it is a descendant of TView, it 
inherits fields and methods for drawing on the Macintosh screen. 
TWindow overrides some of these, and has extra attributes that allow it to 
store and display a title and the other parts of a window. 

• TScroller. {Ancestry: TObject -+ TEvtHandler -+ TView -+ 
TScroller) The TScroller class calculates coordinate translations to create 
the illusion of scrolling through a document. 

• TDialogView. {Ancestry: TObject -+ TEvtHandler-+ TView -+ 
1DialogView) The 1DialogView class duplicates some of the Dialog 
Manager's functions, creating the illusion {with the help of some other 
classes) that a MacApp window is a Dialog Manager dialog. 

• TTEView. {Ancestry: TObject -+ TEvtHandler -+ TView -+ 
TTEView) The letters TE stand for TextEdit, the set of Macintosh ROM 
utilities that make providing a rudimentary text editor relatively easy. 
TTEView is a class that displays and manipulates text. 

• TGridView. {Ancestry: TObject -+ TEvtHandler -+ TView -+ 
TGridView) TGridView is also a descendant of TView 

90 Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Summary of the ancestry tree 

TObject is the ancestor of all objects. It has three important descendants: TList, 
which manages lists of objects; TCommand, which provides a framework for 
doing and undoing commands; and TEvtHandler, whose descendants populate 
most of the rest of MacApp. TEvtHandler, in turn, has three important 
descendants: TApplication, 1Document, and TView. TView and its more 
specialized descendants make up a plurality of the classes in MacApp. 

Architecture: organization of the 
concepts 
Now that you have the pieces of MacApp in front of you, it's time to put the 
puzzle together. Every application has three major sorts of operations: storing · 
data, displaying information, and executing commands. How does MacApp 
accomplish these operations? 

Storing data 

Almost every application needs a metaphorical scratch pad where it can jot 
down information and perform calculations. In the MacApp world, this scratch 
pad is called the document. The English word document generally refers to a 
piece of paper with text on it. But in MacApp, a document is can store any sort 
of data. For instance, in a graphics program it could store shapes; in a word 
processor it could store text and formatting information; in a spreadsheet 
application it could store numeric information; or in a music program it could 
store data concerning pitch, timbre, and rhythm. 

A program could also have a document that stored both text and graphics; or a 
single program could have two (or more) different types of documents. Also, 
many Macintosh programs allow more than one document to be open at a time, 
and often allow documents of different types to be open at the same time. 

How does MacApp implement documents? MacApp provides a class called 
IDocument, which is an immediate descendant of TEvtHandler. In addition to 
the inherited event-handler fields, it has fields that record the title, creator, 
type, and date of the document. MacApp' s design requires each document 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

91 



6/14/88 

92 

Working Draft 4 (APDA) 

instance to take initiative for getting itself displayed. Thus, it has methods that 
create the views through which it will be displayed and fields that keep track of 
all the views associated with the document Since MacApp cannot anticipate 
how you want to display the data or what sorts of windows and views you 
might want, these methods are empty in the MacApp library. You must 
override them to provide your own custom definitions. 

Exactly how each sort of document stores information is up to you. It could be 
in memory or on disk. Applications often start by reading a document off the 
disk, keeping as much of it in memory as RAM allows, and then writing it back 
to the disk at the user's request. When you design your application, you must 
choose how you want to represent your data and where you want to store it. 
Since most applications require documents to be read from and written to the 
disk, the mocument class also has fields for storing information about the file 
associated with a particular document and methods for determining the 
necessary disk space, and reading a,nd writing them. Again, since MacApp 
cannot determine what sort of information you will be writing to the disk, many 
of these methods require you to override them and provide the actual code 
yourself. 

In addition to reading and writing the disk files and creating and maintaining the 
views and windows associated with them, a document's methods are 
responsible for handling any requests from the user that affect the document. 
Every event-handler class has a method called DoMenuCommand. The 
document's DoMenuCommand method will call the appropriate methods in 
response to the user's choice of commands such as Save, Save As, and Revert 
to Saved. By overriding this method, you can allow your documents to handle 
other commands you might care to implement. 

You never instantiate the mocument class directly. Instead you will create one 
descendant of mocument for each different sort of document you will have. 
You will customize each descendant class with fields for whatever data 
structures you need to keep the data in memory while the application is running 
and implement methods to maintain those fields. You might also add fields that 
reference related documents and views; and you might override and customize 
all the empty methods responsible for reading, writing, and so on. Then, 
whenever the user opens an old or creates a new document, the MacApp code 
you have customized will dynamically create new instances of these classes. 

Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



( 

(' 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Displaying information 

The Macintosh has a rich visual interface, which means the task of creating 
images on the screen is particularly important Everything your application 
displays on the screen (except the menu bar) is handled by an instance of the 
class TView or one of its descendants. Programmers who have written 
software for the Macintosh without MacApp know a system of displaying 
images via grafPorts, bit maps, and bit images. Fortunately, MacApp overlays 
a simpler architecture on top of this old, complex one. Eventually you will have 
to know quite a bit about QuickDraw, the set of ROM routines that actually put 
images on the screen. But this introduction assumes no such knowledge. (If 
you do know about QuickDraw, please put that knowledge aside for the next 
few pages.) 

TView is an abstract class. You seldom, if ever, instantiate it directly. 
Everything that appears on the Macintosh screen except for the menus is the 
responsibility of a descendant of TView. TView (Ancestry: TObject ~ 
TEvtHandler ~ TView ) is an event handler, so it of course inherits fields and 
methods that make handling user events relatively easy. It represents a 32-bit 
visual coordinate system. 

Hierarchy of views 

Before discussing the concept of a hierarchy of views, it is important to clarify 
the terminology. As discussed in Chapter 2, classes have an ancestral 
hierarchy, but instances do not. Since the views being discussed here are 
instances, not classes, what sense is there in the phrase "hierarchy of views?" 
Each view has object reference fields that record information about its 
relationship to other views. All of these relationships together form a hierarchy 
of views. In MacApp's terminology, each view instance may have one 
superview, and any number of subviews. Subviews may themselves have 
other subviews, resulting in a whole tree of views, as depicted abstractly in 
Figure 4-2. (See Figures 4-4 and 4-5 for less abstract depictions.) 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

93 



6/14/88 

94 

Al 
I 

Ala 

Figure4-2 
Tree of views 

Working Draft 4 (APDA) 

A 

A2 A3 

For now, don't try to picture how this tree of views would look on a Macintosh 
screen. It is enough if you realize that there can be a hierarchy of views. For 
instance, in the figure above, view A has no superviews, but it has three 
subviews, Al, A2, and A3. Note that the terms subview and superview are 
relative and not absolute. Just as you can be the child of one person and the 
parent of another, so one view can be a subview in one case and a superview in 
another. For example, Al is the subview of A, but it is the superview of Ala. 
Each view has its own coordinate system which you define when it is created. 

The TView class has fields that keep track of the superview and the subviews, 
the location and the size of the view, and a pointer to the object responsible for 
printing it It has methods that translate coordinates from one view to another 
and that maintain the lists of subviews and references to superviews, and that 
can perform actions on all the views, or one view that meets particular criteria. 
It also has methods for opening, closing, and activating views. (Activating 
takes place when the view's window is brought to the front.) It has other 
methods for managing the location and size of the view, for drawing and 
updating the contents of the view, for handling mouse clicks, and for exponing 
and importing data to and from the Oipboard. Though the TView class is itself 
never instantiated, these fields and methods are passed down to all its 
descendants. · 

In the MacApp world, everything on the screen except the menu bar appears in . 
a window. Thus, the natural place to begin a discussion about the architecture 
of views is with the window. A window is at the top of the tree of view 
instances; in other words, window instances are the only view instances in 
MacApp that have no superview. The contents of windows can be very simple, 
displaying only a static image in a fixed-size view with no scroll bars, or they 

Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorlal Working Draft 4 (APDA) 

can be very, very complex. Here is a blown-up diagram of a window with 
fairly complex contents. 

" ~ 

[> 

<J 
0 

Andrew 

There was an old woman 
who liued in a shoe. 
She had so many 
children she didn't 
know what to do. 

Figure4-3 
A fairly complex window with one scroll bar and a palette 

There are instances of five different classes represented in this particular 
window: a window, a scroll bar, a scroller, a content view, and a palette. Here 
is a blown-up version: 

Chapter 4: Introduction to MacApp: Organization 

0 
0 

6/14/88 

95 



6/14/88 

96 

Working Draft 4 (APDA) 

Window 

~O Rndrew E!l~ 

~, 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

MacApp 2.0 Tutorial 

~ 

~ 

l> 
<J r-II!"', \ ,,, 
0 
~ ~/ 

Palette 

Figure4-4 

Ir-~~~~--',_.~~~~~~~~~~~~~~~~--\~, 

\ Scroll er , 
\ \ 
\ \ 
\ \ 
\ \ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Main Content View 

Blown-up version of window in Figure 4-3 

Chapter 4: Introduction to MacApp: Organization 

"\1'. ,, 
\ ', 

\ ', 
\ 
\ 

\ Scroll 
\ bar 

\ 
\ 
\ 
\ 
\ 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The view tree for this window looks like this: 

Window 

t 
I I 

I .. I 
Palette Scroll er Scroll bar 

Main Content View 

Figure 4-5 View tree for window in Figure 4-3 

Each of these parts merits a separate discussion, beginning at the top of the tree. 

Windows 

At the top of the tree is an instance of1Window. 1Window implements 
standard Macintosh window behavior, and you will only need to create 
descendants of it when you want to change its behavior. The 1Window class is 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

97 



6/14/88 

98 

Working Draft 4 (APDA) 

an immediate descendant ofTView, customized to give it the special attributes 
of a window. It inherits all the fields and methods ofTView. The superview 
of every instance of 1Window is NIL, since windows are at the top of the tree 
of view instances. Additionally, it has fields that record the window's name 
and the attributes of the window (Can it be closed or resized? How big or small 
can the user make it? What should happen when the user closes the window?). 

TWindow has special methods for opening, closing, activating, and resizing; it 
also has methods for haridling commands a window is likely to receive via the 
mouse or the menu. If the user clicks the close box, the zoom box, or the size 
box, 1Window's methods can handle the command Because the appearance 
and behavior of windows (but not their contents) are pretty much standardized, 
MacApp's own code can handle almost anything a window has to do. You 
don't need to do much with windows, except tell MacApp initially what sort of 
attributes you want them to have. Note that MacApp does not know how to 
manipulate the contents of a window, just the window frame and its controls. 

* Note: If you are familiar with Inside Macintosh, you should note that 
1Window is MacApp's representation of a Window Manager window. In 
fact, a Window Manager window is created for every instance of 
1Window, and the visual representation of the window depends on the type 
of Window Manager window you've defined in your resource file. 

Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorlal Working Draft 4 (APDA) 

Name of element Appearance on screen How user manipulates control 

Close box ~ Oicks to close the window. 

Title bar Drags to move the window. 

Title Title Not a control; displays name of window. 

Size box _Jd Drags to adjust size of window. 

Zoom box 0~1 Oicks to make window as large as possible; 
clicks again to return window to its original size. 

Figure4-6 
Parts of the window 

The window instance in this example has three subviews: a scroller, a scroll 
bar, and a palette. 

Sc rollers 

The scroller is the most difficult of the three subviews to understand, perhaps 
because it is has no visible correlate on the screen. Once again, it is helpful to 
remember that objects in the object-oriented programming sense are not 
necessarily tangible, they are merely data and the methods that manipulate that 
data for some particular purpose. The purpose of the scroller class, called 
TScroller, is to calculate coordinate translations to create the illusion of scrolling 
through a view, either horizontally or vertically or both. The user typically 
accomplishes scrolling by manipulating scroll bars. In that case, the scroll bars 
and the scroller work in concert. But because MacApp provides a scroller 
separate from the scroll bars, you may implement any other scrolling 
mechanism that you care to. 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

99 



6/14/88 

100 

Working Draft 4 (APDA) 

Generally, you can create instances of TScroller directly, without having to 
override any of its methods, so for the most part you can treat TScroller as a 
black box. Just be aware that anything scrollable is probably implemented as a 
subview of an instance of the TScroller class. Your main job is initializing the 
scroller with the correct references to scroll bars (if you want to use scroll bars) 
and making a scroller the superview for anything you want scrolled. TScroller 
has a number of fields that record offsets, scaling factors, and the increments by 
which you want the subviews to be scrolled. It has methods that actually 
perform the translation and coordinate with the scroll bars to keep all objects 
concerned synchronized. 

Main content 

The main content of the window is a separate view, which is often a subview of 
a scroller, as it is in this example. The content of any window is hard to 
predict, so MacApp's library of code does not contain specific classes for every 
possible main content view. Chances are overwhelming that you will have to 
create your own descendant of TView that knows how to display whatever it is 
you need to display. You will probably want to add fields that keep track of 
what is being displayed, and methods that will do the drawing, probably by 
calling the Draw methods belonging to the instance of whatever is to be 
displayed. 

Like all other views, the main content view is an event handler. The main 
content view is usually responsible for a great many of the commands a user is 
likely to issue. For instance, in a graphics program, if the user is supposed to 
draw a box by holding down the the mouse button and dragging, it is the view 
instance that will be responsible for intercepting the mouse click and calling the 
appropriate methods and routines in response. Often the content view will have 
no subviews, but it could. 

Palettes 

In addition to the window, scroller, scroll bar, and main content views, the 
particular window in the example above also has a palette. Since every palette 
is different, the MacApp library has no special class for creating palettes, so you 
would probably create a palette class as a direct descendant of TView or perhaps 
TGridView. (Creating a palette is really not much different from creating the 
main content view.) Palettes are generally not scrollable (though they could 
be), so usually the palette will have the window instance as its superview. (If it 
were scrollable, it would have a scroller instance as its superview.) The most 
important methods you need to customiz.e in a palette view are the ones 

Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

responsible for responding to the user's click inside the palette, especially the 
methods that highlight and record the selection. 

Scroll bars 

Another object in the example above is the scroll bar. This particular window 
has only a vertical scroll bar. The scroll bar is an instantiation of the 
TSScrollBar class (Ancestry: TObject ~ TEvtHandler ~ TView ~ 
TControl ~ TCtlMgr ~ TScrollBar ~ TSScrollBar ). TSScrollBar is an 
indirect descendant of TControl, which in tum is a descendant of TView. 
Because scroll bars are highly conventionalized, you do not need to be too 
concerned with the inner workings of this class. It has fields that point to the 
scroller instance(s) it is associated with and that record the limits of the 
scrolling, and methods that respond to the user's mouse clicks and maintain the 
appearance of the scroll bars. Your scroller instance has methods to create 
instances of TSScrollBar. 

* Note: MacApp has two classes with similar names, both of which are 
responsible for displaying and manipulating scroll bars: TScrollBar and 
TSScrollBar. The latter-the one with two S 's--is a descendant of the 
former which has been customized to work with scroller instances. The 
extra S stands for "scroller". The former class, TScrollBar, is a simple 
control which you can use as an analog dial in dialogs. 

Other specialized views 

Though no one could anticipate every sort of view a programmer might want to 
offer, MacApp does provide several specialized descendants of TView that you 
can use to display text, columnar data, or dialog boxes. Text can be displayed 
and manipulated with an instance of the class TEView, which is part of the 
optional UTEView building block. Columnar data, such as you might see in a 
spreadsheet program, can be manipulated and displayed with an instance of the 
class TGridView. In fact, members of this class are used to display information 
as part of the Ulnspector unit for the debugger. And sophisticated dialog 
boxes, including static text, editable text, check boxes, radio buttons, and so on 
can be manipulated and displayed with a wide variety of classes found mostly in 
the UDialog unit These specialized views are pictured in Figure 4-7. 
(Appendix A, "Changes Since MacApp 1.1," lists all the view classes provided 
in MacApp 2.0.) 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

101 



6/14/88 

102 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Swartz 

The World -,According to 
Swar1zenlaube 

MecApp bu cha:nged my life. My di:lhes used la be lacklus1er, my 1eeth g:reen, my spleen llJ!il 
va.s full of bile. Then MecApp came alone and, somebov, everything bu changed. My !Hm 
di:lhes shine so blight my mother is envious, my 1eeth m lavender, and my spleen smell3 !!i!!i 
offine perfwne. Global climatic conditiom axe imp:roviJ:IC, and maybe ve vill be able la lmli 
avoid drought. A1I thanks la MacApp. I 11111! 

And Jook vhatMacApp's TextEdit can do!! Looks like thincs just keep getting betrer mm 
and better. Why, just yes1enlay, the Nobel@i!ii!lljdapproeched me. They liked my idea!!!!!! 
for vorld peace, and it loo~ like .by the end o_! next veek the van ~ '11'.>P and I '11 be ab ,.,.,. 

1 .. 1 2 .. 1 

Dramatic Dialog 

Radio ®Button R 
buttons: O Button B 

OButton C 

Smyth 

3 .. 1 4, 1 

3 .. 2 4 .. 2 

MacApf2.0 

Check D BOH H 
boHes: 181 BoH Y 

181 BOH Z 

s. 1 

5, 2 

~ OK ~ 
( Cancel ) 

Item 1 
,.11tem 2 

Item 3 
TeHt Cluster-----. 

Icons used 
as buttons: [/§. 
~ 

Figure4-7 
TEView, TGridView. and TDialogView 

I Thanks ... 

Chapter 4: Introduction to MacApp: Organization 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Executing commands 

In addition to storing and displaying data, applications must allow users to 
manipulate the data. In the Macintosh world, any input from the user, even 
typing simple text, is considered to be a command However, because MacApp 
reserves the word "command" for menu commands, the term user event is 
used to describe all sorts of commands. Users have two tools for creating user 
events: the mouse and the keyboard. With the mouse, the user can choose 
commands from menus or click the controls of a window or in its content. In 
the content of a window, users can click an object to select it, drag an object to 
move it, or click in a palette to choose a tool. With the keyboard, users can type 
text or can enter Command-key combinations. Command-key combinations are 
equivalent to menu items; for instance, there is no difference in most 
applications between choosing Save from the File menu or typing Command-S 
from the keyboard. 

When the user chooses a menu command using either the keyboard or the 
mouse, MacApp receives a report of the event from the Macintosh ROM. 
Methods in the MacApp library begin a search for the correct instance to handle 
each sort of event. The algorithm for this search is the topic of the next chapter. 
But there are rules of thumb for figuring out what instances are responsible for 
handling which commands. First of all, only event-handler instances respond 
to user events. The main players in the game are these instances: the 
application, the document(s), the window(s), and the specialized view(s). 
MacApp gives each of these objects a shot at resolving any incoming command, 
in a specific order. There is generally only one candidate for each class. For 
example, only one view, window, and document are active at any one time, and 
there can only be a single instance of the TApplication class. 

Each class is responsible for handling user events related to its own area. The 
application object is responsible for user events that could be executed even 
when no window is open, including Quit, About, New, and Show Clipboard. 
The document is responsible for reading and writing data to disk. The window 
is responsible for clicks in the size box, title bar, and zoom box. Scroll bar 
instances handle clicks in the scroll bars. The view is responsible for 
manipulating the images it shows; usually it has methods that actually take input 
from the mouse to draw a new object or manipulate an old one, and then report 
the object's existence to the document so it can be recorded 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

103 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

!Application TDocument TWlndow TVicw 

~ 
u:J Br=J . . 

. 

. \ .. ( ····· .· . 

~ Cut 38 H 
Clo.5e box Copy 38 c 

Pute ~u 

New ••• 

Open ••• 

Saue as ••• 

Saue 11 copy 

Revert M _______ .... •-----••••••n•••••••••-•• 

-- Rotate 
Title bar Select All 

Quit 38 Q 

~ 
Undo/Redo 38 Z Zoom box Selecting 

Show Clipboard 

~ Dragging 

Size box 

Figure4·8 
The main event handlers and their responsibilities for commands 

The most important methods for handling the user's commands are 
DoMenuCommand, DoMouseCommand, and DoKeyCommand, collectively 
called the DoWhtiteverCommands. Because these methods are declared in 
TEvtHandler, they are shared by all event handlers. 

• DoMenuCommand handles all menu commands, whether they come from a 
mouse click or from a Command-key combination. 

104 Chapter 4: Introduction to MacApp: Organization 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

• DoMouseCommand handles mouse clicks that occur outside the menus. 

• DoK.eyCommand handles all keystrokes not combined with the Command-
key. 

These three methods generally do not do the work of the command itself-they 
either call other methods of the same instance or methods of some other 
instance. The particular manner in which the DoWhateverCommand does its 
work depends on whether the user chooses a simple command or a complex 
one. The terms simple and complex have a specific meaning in this case. A 
command is complex if it is undoable or if it requires mouse tracking. Many 
Macintosh commands fall into this category. For one thing, most commands 
change the document in one way or another, and thus they should be undoable. 
Many others require the mouse to be tracked. If a command is not undoable 
and does not require the mouse to be tracked, it is a simple command. 

Table4-3 
Examples of simple and complex commands 

Command 

Simple commands 

Save (menu command) 

Select All (menu command) 

Complex commands 

Delete or aear 

Select item (with mouse) 

Move item (with mouse) 

Reason 

Cannot be undone and does not require the 
mouse to be tracked. 

Cannot be undone and does not require the 
mouse to be tracked. 

Must be undoable since it changes the document. 

Requires mouse to be tracked. 

Requires mouse to be tracked and must be 
undoable. 

The DoWhateverCommand method usually executes simple commands by 
calling other methods. For example, the Save command is handled by a 
document instance which calls the document's own Save method. The 

Chapter 4: Introduction to MacApp: Organization 

6/14/88 

105 



6/14/88 

106 

Working Draft 4 (APDA) 

DoWhateverCommand executes complex commands by creating an instance of 
some command class, methods of which will then be called by MacApp. You 
will need to design a command class for every complex command you wish to 
implement. Command classes should always be created as descendants of 
TCommand. 

The TCommand class is an abstract class. It has fields that record important 
information about the command, including a reference number of the command, 
the relevant view instance, the object instance that is the target of the command, 
and information about the status of the command, such as whether the 
command is undoable, requires tracking, and whether it caused a change. It has 
methods that track the mouse and that do and undo the command. 

In sum, simple commands are executed without instantiating new objects but 
complex commands-undoable commands or commands that require mouse 
tracking-require that a member of a command class be instantiated. 

Summary 
Now you should understand how MacApp is organized: how the files and units 
are related; the significance of the ancestry tree for the classes; and, most 
importantly, the conceptual design behind the MacApp library. The next 
chapter moves from this static view of organization to a dynamic picture of how 
a MacApp application works while it is running, focusing on how it handles 
events. 

Chapter 4: Introduction to MacApp: Organization 

MacApp 2.0 Tutorial 

'"- -~'/ 



( 

( 

Chapter 5 

Introduction to 
MacApp: Flow of 
Control 



6/14/88 

108 

Working Draft 4 (APDA) 

People learning MacApp may often ask themselves, ·~ust who is in charge here, 
my code, or MacApp's?" At any moment, the user might click the mouse 
button; some part of the MacApp library would handle the click by calling a 
piece of your code. Your code would probably then relinquish control back to 
MacApp, which in tlll'Il might call a ROM routine to draw something on the 
screen. Then the user might click something else, starting the process over 
again. Thus, control over the computer is constantly traded among the user, 
your code, MacApp, and the ROM routines. This perpetual shuffling is called 
flow of control and is the subject of this chapter. 

Any application might have to handle a great number of events while it is 
running; fortunately, they fall into a very few categories. Macintosh applications 
spend most of their time idling in an outer loop, called the main event loop, 
waiting for something to happen. When an event comes along that needs to be 
handled, the main event loop sorts it into one of these categories, opening a path 
down which the event will flow until it is taken care of. If you fmd it hard to 
picture this, imagine one of those coin banks that sorts your change into piles of 
pennies, nickels, dimes, and quarters. Every time a user creates an event, it is 
as if he or she has dropped a coin into the top. MacApp, like the coin bank, 
evaluates the event and sends it down the correct chute. 

In MacApp there are eight chutes or categories, each representing a different 
sort of event. Each event falls into one of these eight categories. After the event 
starts down its path, MacApp must decide which instance should handle it. The 
process of assigning events to instances is one of the more subtle aspects of 
flow of control in MacApp, and it is the purpose of this chapter to help you 
understand how those decisions are made. Some of these assignments will be 
intuitive to you, even from the beginning; others will not concern you, because 
some events can be handled without ever having to call your customized code; 
but still others use wily algorithms to do the assigning, algorithms you must 
understand to create the proper code to handle them. Chances are, once you 
understand these, you will understand MacApp. 

This chapter begins by explaining the main event loop and the mechanism by 
which events are assigned to instances, and at the same time introduces the 
diagramming method this manual uses to show flow of control. Then it will 
discuss which of the eight categories ought to concern you, and how you can 
get a feel for which events will be assigned to which instances. 

Chapter 5: lntroduc11on to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

( 

MacApp 2.0 Tutortal Working Draft 4 (APDA) 

Flowcharts and overview 
In the beginning. you may be curious about how MacApp works. and there is 
nothing to stop you from opening up MacApp's code and reading along. 
Reading the raw code can be frustrating-it is hard to tell what's a method, 
what's a global routine, and what comes from the ROM. Moreover, you can 
get lost in the detail of the code. The flowcharts allow you to see an overview, 
so if you do decide to read the source code, at least you '11 have a road map. 

Once the program is running. your application will spend all its time in the 
methods of your various instances. except for a few lines of startup code and 
some global routines here and there which you or MacApp will call. A simple 
mouse click in one of your application• s windows could generate messages 
among a handful of instances and several dozen of their methods. Rather than 
presenting you with every possible path along which the data could flow for a 
particular event, the flowcharts in this manual present the flow for some specific 
event, which will be explicitly defined. Each flowchart will be small enough to 
fit on one page, which means that many parts of it will be abstract and not 
detailed; those parts will be defined in further flowcharts. 

The first flowchart, in Figure 5-1, is an overview of an entire MacApp 
application, from the time the user double-clicks the icon to the time he or she 
quits. It is not very detailed or very interesting, and doesn't look much different 
from a traditional procedure-based program. (Also, it is a good example of a 
limited chart. There are two other paths an application could take when it starts 
up, and this one shows only the simplest path-it assumes the user opens the 
application from the Finder™ without requesting that any documents be opened 
or printed.) 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

109 



6/14/88 

110 

Working Draft 4 (APDA) 

CTntialize Toolbox) 

y 

(Intialize any optional building blocb) 

·········~®*J-~.~l~Jllll•••······ WW~#>Pl~ri:~:t > 
, .: : ~~:r : ,< 

gYourAppl:ation.Run ·········· .. ············r-------------------_1 
(Handle requests from che Finder; 1 (Preparation) 1 

enter MainEventloop) I 0 1 
I y I 

···.... l gYourApplication.MainEventl.oop l 
······· .......... ! v ! 

·· ... I (Cleanup) I 

·~--------------------~ 

Figure 5-1 
Biggest overview 

First, here are some conventions. As in a traditional flowchart, each box can be 
considered a single operation. Arrows indicate the direction of flow. All the 
flowcharts will start at the top, but almost none of the rest of the charts will be 
this simple. In this chart, the flow is entirely linear, starting at the top and 
dropping off the bottom, which is the end of the application. In all charts, each 
box will contain one of five items: the name of an object's method, the name of 
a global routine, the name of a ROM call, a Pascal statement, or a general 
description. If there is an asterisk in a box, it means that you can find more 
information about the indicated routine in the box in some other flowchart. If 
the box is shaded, it means that the MacApp version of that routine does almost 
nothing or does not exist, and you should write it or override it if you want it to 
work. In the first flowchart, the shading in the method IYourApplication 
indicate that you should create or override this method. These conventions are 
summarized in Figure 5-2. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

You may have noticed that most of the boxes in Figure 5-1 had asterisks in 
them. Some of these boxes are self-explanatory, even if you don't know the 
contents of the code. The routine Cleanup at the end of the program must take 
care of last-minute details. Other routines, though they require further 
explanation, are not very important for helping you to grasp the basic idea of 
MacApp. 

One of the methods, MainEventLoop, is the loop discussed previously. Your 
program will spend much its time in this loop. Much of the rest of this section 
will be spent investigating this method of the TApplication class; even so, only 
the first few layers of its complexity will be described. 

Figure 5-3 is the first nonlinear flowchart. The action both starts and ends at the 
method MainEventLoop. The first thing this flowchart tells you is that 
MainEventLoop calls PollEvent, which returns control to MainEventLoop after 
it's finished. MainEventLoop repeatedly calls PollEvent until the user chooses 
Quit. 

But the flowchart also tells you that if an event is ready to be handled (or, more 
accurately, if a non-null event has occurred), PollEvent calls HandleEvent. 
Furthermore, it tells you what happens inside HandleEvent: the record of the 
event, which comes from the ROM, is stored in a special configuration. 
Afterward, HandleEvent calls DispatchEvent and PostHandleEvent. 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

111 



6/14/88 

112 

Graphic C.onventions 

Operation 

Operation 1 

Operation Z 

Operation 1 

Operation Z 

Working Draft 4 (APOA) 

Box. Each box represents one conceptual operation. 

Arrows. Arrows indicate the direction of the flow. 

Linear flow. Straight arrows represent a linear flow. 
Here, Operation 1 finishes and Operation Z begins. 

Return flow. Curved arrows represent a return flow. 
Here, Operation l calls Operation Z. When Operation 
Z finishes, it returns control to Operation 1. 

.. ·r--------, 
... ·········:~I 

.--~~~~~~~~·· I \/ I 

I I , .. , I 
Exploded view. Dotted lines 
from corners of one box to 
comers of another indicate a 
blown-up version of the ftrst box. Operation A 

.___ ___ __. . .,,, I V1 I 

·· ........ ! Step3 l 
"·L.--------~ 

F"igure5·2 
Conventions in flowcharts 

Here, Operation A is seen in 
more detail Operation A 
actually consists of a linear 
flow of Steps 1, Z and 3. 

Chapter 5: Introduction to MocApp: Flow of Control 

MocApp 2.0 Tutorial 



MacApp 2.0 Tutorial 

Typographic Coventlons 

aComrnand.Doit 

FailNil 

NEWO 

(stores data) 

GetNewWindow 
(ROM) 

-

Working Draft 4 (APDA) 

Method call. The dot in the middle of the name indicates 
this is a method call Here, the Dolt method of the 
aComrnand instance is being called 

Global routine. The lowercase name with no dot indicates 
this is a global routine. Here, the FailNil routine is 
being called. 

Pascal reserved word. The name in all uppercase letters 
indicates this is a Pascal reserved word. 

c:omment. The parentheses indicate a comment, as 
opposed to actual code. Here, an operation that stores data 
is represented. 

ROM calL The ROM in parentheses after the name of the 
routine indicates a ROM call. 

lfighlighted grey. A grey box indicates that you will 
need to override this method. 

Asterisk. An asterisk after text indicates that the step 
in this box is expanded in another flow chart. 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

113 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

gYourAppHcation. MainEventI.oop 

gYourApplicalion. PollEvent 

gYourApplicalion. HandleEvent 

(Extracts information from event record) 

v .-----------------:;· . 1 gYourApplication. DlspatchEvent 1 .............. .. 
I I ........ L. ___ (lc:!_~~!:.!!!~~~----.J ..... , _____________________ -, 

-1'7 \ gYourApplication. HandleMouscUp 1 

V \ (Mouse button is released) i 
gYourApplicalion.PostllandleE'Ve -OR - : 

gYourApplication. HandleMouscDown i 
(Mouse button is pressed) : 

-OR- I 
I 

\,,, gYourApplication. HandleActivateEvcnt I 
(Window needs updating) i 

\ :~,=~::::J 
\ (User presses key) i 
\ -QR.. I 

\ illlti••:.11111111:11: ! 
\ -OR- I 

\ gYourApplication. HandleSystemEvcnt i 
\ (Multi~~~~ event) i 

\ gYourApplication. HandleDiskEvent I 

\I (Disk is inserted or ejected) i 
Figure s-3 'L--------------------- ...J 

Flow of control: MainEventLoop 

114 Chapter 5: Introduction to MacApp: Flow of Control 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Finally, the flowchart details how the DispatchEvent method works. The OR's 
between the boxes indicate that only one of these methods is called; the 
condition for choosing that particular method is indicated in parentheses in each 
box. In fact, as you might have guessed, this all comes in the form of a big 
CASE statement in the code: · 

CASE what OF 
mouseUp: 

Figure 5-4 

commandToPerform := HandleMouseUp(theEventinfo); 

mouseDown: 
commandToPerform := HandleMouseDown(theEventinfo); 

activateEvt: 
commandToPerform := 

HandleActivateEvent(theEventinfo); 

updateEvt: 
commandToPerform := 

HandleUpdateEvent(theEventinfo); 

keyDown, autoKey: 
commandToPerform := 

HandleKeyDownEvent(theEventinfo); 

diskEvt: 
commandToPerform := HandleDiskEvent(theEventinfo); 

app4Evt: 
commandToPerform := 

HandleSystemEvent(theEventinfo); 

OTHERWISE 
commandToPerform := 

HandleAlienEvent(theEventinfo); 

END; {case} 

The giant case statement in TApplication.DispatchEvent 

The overall picture should now be apparent. MainEventLoop repeatedly calls 
PollEvent. Whenever there is an event, PollEvent will call HandleEvent, which 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

115 



6/14/88 

116 

Working Draft 4 (APDA) 

will record it, dispatch it by calling one of nine methods, and then execute 
PostHandleEvent. When PostHandleEvent completes execution, HandleEvent 
also finishes and returns control to PollEvent, which in tum returns control to 
MainEventLoop. The process repeats until the user choo~es Quit. Keep in 
mind that you can override any of the methods listed in this chart if you want to 
change the way MacApp handles a specific type of event. However, MacApp is 
capable of handling most events the user can generate; but there are other 
(alien) events that it does not anticipate, most notably network events, such as 
AppleShare® packets. You must override HandleAlienEvent if you wish your 
application to respond to these events. 

Note that this flowchart, like all the others in this book, is incomplete in several 
ways. First, it does not tell you what happens in PollEvent if there is not an 
event waiting; that is shown in another flowchart. Second, it does not tell you 
everything that happens. For instance, it has left out all the error-checking code 
and the method call that actually checked for the event. This streamlines the 
flowchart, allowing you to focus on the main points. 

Assigning events to instances 
By now, you should have a mental picture depicting MacApp constantly on the 
lookout for events. If PollEvent sees an event, it will pass it on to 
DispatchEvent, which will send it down one of the eight possible paths. (If 
there is no event, PollEvent will open a ninth path so any work that should be 
done while the application is idling can have an opportunity to execute; there 
will be more about idling later in this chapter.) Now it is time to look at these 
eight paths in more detail. 

First, how does MacApp know which sort of event has taken place? This is 
perhaps the easiest question of all. Whenever there is an event, it is intercepted 
by toolbox routines that report exactly what sort of event took place. All 
DispatchEvent has to do is look in a certain field of the event record. What it 
will find there is one of the following eight sorts of events: 

MouseDown The user presses the mouse button. What action 
MacApp takes depends on where the cursor was when 
the button was pressed and where the mouse was 
dragged while the button remained down. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial 

Mouse Up 

Activate 

Update 

Key Down 

Disk 

System 

Alien 

Working Draft 4 (APDA) 

The user releases the mouse button. Generally this event 
is ignored, except when the user drags the mouse. 

A window is activated or deactivated. In general, an 
activate event occurs as an indirect result of a user action. 
For instance, a user may click on an inactive window, 
which in turn will cause a ROM routine to generate two 
activate events, one to deactivate the old window and 
another to activate the new one. 

A window needs refreshing. Usually an update event 
occurs as an indirect result of a user action. For 
instance, if a user had one window partially covered and 
then uncovered it, a ROM routine would generate an 
update event for the uncovered region to be redrawn. 

The user presses a key or a key combination on the 
keyboard. KeyDown events include both plain 
keystrokes and Command-key sequences (a key pressed 
while the Command key is held down). 

The user inserts or ejects a disk. 

The user enters or leaves the application with 
MultiFinder. 

Other events, such as network events or events which 
you define yourself, are called alien events. By default, 
MacApp ignores alien events. 

Which of these events do you need to be concerned about? Remember, as a 
rule, MacApp will do as much as it can without being clairvoyant That means 
that MacApp's ccxle can take care of many of these events for you, as long as 
you are happy with the default operation MacApp gives you. In fact, that's a 
crucial idea behind MacApp. The application instance catches events as they 
come in and assigns them to the instances responsible for handling them. You 
don't have to be concerned with events themselves. Instead, all you need to 
know is which methcxls and classes you have to be implement or override. But 
in order to give you some intuition about which methods and classes are of 
concern, here is an overview of how MacApp deals with events of various 
sorts. 

Three of the classes of events are dead ends that you can typically ignore: 
MouseUp events are generally discarded or handled automatically; Disk events 
require no action except error checking; and Alien events can be neglected, 
unless you are writing a networking or special-purpose program. 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

117 



6/14/88 

118 

... 

Working Draft 4 (APDA) 

Note: There are three typical cases when MouseUp events are not ignored: 
when the user drags the mouse; when the user double- or triple-clicks the 
mouse; and when the user releases the mouse button over a TControl 
instance. In each of these cases, MacApp's code intercepts the event and 
handles it appropriately. · 

Three more of the event classes require consistently predictable actions, which 
MacApp can take care of for you, so you can ignore them unless you want 
some special action: Activate, Update, and Switcher events require no special 
attention, except that update events will call the Draw methods of any views that 
need updating. Since MacApp cannot anticipate how you want views to be 
drawn, the default Draw methods are empty. You must override them if you 
want anything to be drawn. All these considerations aside, that leaves two sorts 
of events you need to pay special attention to: KeyDown and MouseDown 
events. These events can be further subdivided as shown below. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

~.· 

MacApp 2.0 Tutorial 

User action 

Where 
or how 

Method 
called 
oractJons 
taken 

FigureS-5 

Working Draft 4 (APDA) 

MouseDown Key Down 

I I 
----~-------f--------F--------'t------------1---------~-------

rn desk In contents In window In menus With a Without a 

__ :~~---~=in~o~--~~~~ts:~~:____ _ _______ :~~nd ~~---:~~1~~~----(Passes (MacApp 
control to handles it 
the system) automatically) 

(If in back 
window) 

I 
(If in front 
window) 

I 
DoMouscCommand 

of that view win~~::iive) I I .____ _ _ _____. 
(Optionally perfonns 
DoMouseComrnand) 

I gTarget.DoKeyCommand I 

gTargetMcnuEvent 

I gTargetDoMenuC.Ommand I 

The events most important to you 

As shown in Figure 5-5, there are a variety of ways mouse clicks can be 
handled, depending on the context of the click. If you are wondering how 
MacApp knows what the context was, it (again) comes from information 
provided by the ROM in the event record. By default, the MacApp code will 
handle many of the MouseDown clicks by itself, including clicks in the various 
window controls, such as the scroll bars and the zoom, size, and close boxes. 
MacApp will also handle clicks in any desk accessories by handing control over 
to the system. The two MouseDown events you should be concerned about are 
clicks in the content of a window and clicks in the menus. These may require 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

119 



6/14/88 

120 

Working Draft 4 (APDA) 

customized action from your application, action MacApp could not anticipate. 
Figure 5-5 also shows two sorts·ofKeyDown events: ordinary keystrokes and 
Command-key combinations, both of which may require your customized code. 

Because Command-key combinations are treated as equivalents of menu 
commands, there are only three sorts of MouseDown and KeyDown events that 
your code absolutely must handle: (1) clicks in the content of a window, (2) 
plain keystrokes, and (3) menu commands (or their keyboard equivalents). 
There is a fourth area that may be of concern to you: what happens if there is no 
event waiting? In that case, the program enters an Idle mode, treating the idling 
as if it too were an event (instead of a nonevent), optionally executing your 
customized code that may, for instance, maintain cursors or check for network 
activity. By default, when your application is in Idle mode, the application 
instance calls methods that can change the shape of the cursor depending on 
where the user has moved it, but even these methods are empty until you 
override them. 

So these are the four truly interesting sorts of events-these are the places, in 
addition to the Draw methods of the TView instances, where much of your 
customized code will come in. How do you write code that MacApp will call? 
MacApp calls methods with certain names in certain circumstances. When 
MacApp responds to a click inside a window, it calls a method called 
DoMouseCommand. When MacApp responds to a menu command (or 
Command-key equivalent) it calls a method named DoMenuCommand; and a 
plain keystroke is handled with a DoKeyCommand method. Finally, when 
MacApp is idling, it calls Doidle methods. You must override these methods to 
specify how these events will be handled. 

But methods belong to particular instances. How does MacApp's code 
determine which instance should handle each event? All the events are handled 
by some descendant of TEvtHandler, but that doesn't naITow it down much: 
should a command be handled by a view, a window, a document, or the 
application instance? MacApp follows a set of protocols that invoke one of 
several chains of responsibility to determine which object is responsible for 
handling a particular event There are three of these chains: the command chain 
takes care of plain keystrokes and menu commands (whether they are chosen by 
clicking menu items or typing Command-key combinations); the click chain, 
takes care of mouse clicks in the content region of a window; and the idle chain 
takes care of idle "events." 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 

r'\ 
~/ 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The chains of responsibility 
A chain is a linear connection of individual links. A chain of responsibility in 
MacApp is a linked list of instances, with a beginning and an end, which 
MacApp can traverse one link at a time, checking to see if each object along the 
way can handle the event Once an object handles the event, the search may be 
called off. The connection between one link and the next is formed by way of 
object reference fields. 

Because there is not necessarily a linear, chainlike relationship among the 
instances in a MacApp application, the method by which this chain is 
constructed from some underlying structure is a matter of importance, as are the 
method by which the head of the chain is chosen and the method by which the 
chain is traversed. 

The command chain 

The command chain is traversed whenever the user types at the keyboard or 
chooses an item from a menu, whether the item is chosen by pointing and 
clicking or by typing its keyboard equivalent The command chain is the most 
complicated and the most interesting of the three chains because commands can 
be handled by almost any descendant ofTEvtHandler, and it is not obvious 
where the search should start and how it should proceed. Certain commands 
should belong to a document, such as commands that save or print a particular 
document; others belong to a window, such as a zoom command; still others 
might belong to a particular view, such as the Cut and Paste commands. Still 
others might belong to the application as a whole, if they should be available all 
the time and do not concern a particular document, window, or view; for 
example, the New or About commands are always available even if no window 
is open. 

But these instances do not have a linear relationship at all; if anything, they form 
a complex web of relationships, with the single application object at the center, 
and view and subview objects around the periphery. · 

Chapter 5: introduction to MacApp: Flow of Control 

6/14/88 

121 



6/14/88 

122 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

View Ala 

~~-
'------Ill]<. 

Window Al 

r 
TiH 

WindowA2 
TI•o 

View AZa 

~-
View Bia 

Window Bl 

View Bib 

~-
View Blc 

Figure 5-6 
The command web 

The different instances keep track of each other by way of object reference 
fields, represented by the arrows in the figure. The application object is an 
exception, because instead of having any of its information in fields, it stores its 
data in global variables (because it makes the code run faster). So the 
application instance has a list of all the documents associated with it; the 
windows record which document, if any, they are primarily associated with; 
and views have reference fields that point to their superview (which can be a 
window) and to a list of subviews (if any). 

Chapter 5: Introduction to MacApp: Flow of Control 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

How the chain is built 

Every descendant of 1EvtHandler has a field called tNextHandler, which stores 
the next link in the chain. MacApp initializes each event-handling instance to 
have the correct tNextHandler. Subviews are initialized so that their 
tNextHandler points to their superview, which may or may not be a window. 
But since every subview is inside some window (which is itself a view object), 
this chain will eventually point to a window object. 

Window objects are initialized with their tNextHandler field pointing to the 
document they are primarily associated with. (When you create the window, 
you provide this information by passing the document's handle as a parameter.) 
Documents in turn are initialized so their tNextHandlers point to the application. 
Some windows, like palette windows, are not associated with any document, 
these windows point directly to the application. The application points to NIL, 
so it is the end of the chain.If you look at the four objects connected by the open 
arrows in Figure 5-6 you can see one target chain. 

The net result is a sensible chain of responsibility from specific to general. A 
subview gets first crack at any command or keystroke, followed by the 
window, the document, and finally the application. You may modify the chain 
by changing the tNextHandler field of any object. 

How the head of the chain is determined 

MacApp has a global variable named gTarget which always points to the head 
of the chain. The philosophy behind gTarget is that there is always some part 
of the application where the user fixes his or her interest, and that is where 
gTarget should point. There are only a few methods in MacApp that set 
gTarget, the most important of which is TWindow.Activate, a method 
belonging to window instances. This method is called whenever a window is 
activated or deactivated. When you, as the programmer, write the methods that 
create the window objects, you will specify which other instance should 
become the target when that window is activated. This will almost always be 
the most important or topmost view inside the window. That information is 
stored in a field of the window instance, a field that TWindow.Activate checks 
whenever the window becomes active. · 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

123 



6/14/88 

124 

The subview(s) 

( 

Responsible 
for this 5'mmand? 

l 
No 
I 

Wor1<1ng Draft 4 (APDA) 

The window 

Yes 

Responsible 
for this command? 

MacApp 2.0 Tutorial 

No 
I 

Yes 
I 

Execute r----------------, I Call the I 
I 

Execute r----------------, 
l DoWhater,.oerCorrunand l 1t 
1 method of 1 v-• 
l lNextHandler l ... 
l (lNextHandler = superview, 1 

• until superview is a window) l 
L----------------~ 

command 
I 

Return to 
MainEventLoop 

command 
I 

Return to 
MainEventLoop 

I Call the I 
I I 
I Do Whatever Command 1 
I I 
1 method of 1 

l fNextHandler l 
1 (fNextHandler = document) 1 
I I 

L----------------~ 

Figure5·7 
Diagram of fNextHandlers 

How the chain is traversed 

When the user types a plain keystroke or chooses a menu command, MacApp 
calls a method of whatever is currently gTarget In the case of keystrokes, it 
calls gTargetDoKeyCommand; in the case of menu commands (or Command
key equivalents) it calls gTarget.DoMenuCommand. These methods are often 
CASE statements that call the INHERITED DoMenuCommand or 
DoKeyCommand if none of the specified conditions is met. Eventually, this 
INHERITED method will go through the class hierarchy and reach 
TEvtHandler, which will call a DoMenuCommand or DoKeyCommand 
belonging to whatever the tNextHandler instance is. This process continues on 
down the chain until one of the links handles the event or has an tNextHandler 
equal to NIL. (The application instance always has an fNextHandler that equals 
NIL.) 

Chapter 5: Introduction to MacApp: Flow of Control 



( 

( 

MacApp 2.0 Tutorial 

The document 

Yes 
I 

Execute 
command 

I 
Retumto 

MainEventI.oop 

Working Draft 4 (APDA) 

Responsible 
for this command? 

No 
I r----------------, 

: Call the : 
I DoWhaleverCommand 1 

: method of : 
I tNextHandler I 
1 (tNextHandler • application) 1 
I I 

L----------------~ 

The application 

Yes 
I 

Execute 
conunand 

I 
Return to 

MainEventI.oop 

Responsible 
for this command? 

No 
I r----------------, 

l Call the : 
I DoWlzateverCommand 1 

I method of l 
l tNextHandler : 
1 (fNextHandler = NIL) 1 
I I 

L----------------~ 

For example, imagine that a user is in a program that was written with MacApp. 
Imagine that when the user chooses the Quit command, there are four instances: 
a main content view called yourView; a window called yourWindow; a 
document called yourDocument; and an application called yourApplication. If 
the user were inside a window, gTarget would probably point to the view 
instance. Then, if the user chose Quit, MacApp would first call 
gTarget.DoMenuCommand. Remember that gTarget points to the item most 
likely to be of interest. When a window is activated, that is usually one of its 
views. Since the user was inside a window when he or she issued the 
command, gTarget would point to the view and yourView.DoMenuCommand 
would be called. Since Quit belongs to the application object, the view's 
method would not handle the event 

Remember that view instances have an tNextHandler that points to the 
superview, in this case a window. Consequently, the next link in the chain 
would be yourWindow .DoMenuCommand, which also would not handle the 
event, and go to the method of the fNextHandler. Next in the chain would be 
yourDocumentDoMenuCommand, which would also fail, but which would 
call yourApplication.DoMenuCommand, which was preprogrammed to know 
about the Quit command (since all Macintosh applications are assumed to have 
Quit commands). 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

125 



6/16/88 Working Draft 4 (APDA) MacApp 2.0 Tutor1al 

TheVJew The Scroller 

gTargetDoMenuCommand 

(gTarget Points to view) 
aYourView 

DoMenuCommand 

1YourView 

• 
INHERITED DoMenuCommand fNextHandler.DoMenuCommand 

aScroller 

aYourView (view's fNextHandler=a YourScroller) 
aYourScroller 

DoMenuCommand DoMenuCommand 

TView TView (TScroller does not override) 

.. ~ 

INHERITED DoMenuCommand INHERITED DoMenuCommand 

aYourView a YourScroller 

DoMenuCommand DoMenuCommand 

TEvtHandler 1EvtHandler 

Figures-a 
Example: The command chain when the user chooses Quit 

126 Chapter 5: Introduction to MacApp: Flow of Control 



MacApp 2.0 Tutorlal Working Draft 4 (APDA) 6/14/88 

( 
The Window The Document The Application 

fNextHandler.DoMenuCommand fNextHandler.DoMenuCommanc;I fNextHandler.DoMenuCommand 

(scroller's fNextHandler- (window's fNextHandler • (document's fNextHandler '" 
a YourWindow) a YourDocument) aYourApplication) 
aYourWindow aYourDocument aYourApplication 

DoMenuComrnand DoMenuComrnand DoMenuCommand 

1Window 1Your0ocument · 1YourApplication 

, ~ 

INHERITED DoMenuCommand INHERITED DoMenuCommand INHERITED DoMenuCommand 

aYourWindow a YourDocument a YourApplication 

DoMenuCommand DoMenuComrnand DoMenuCommand 

1View TDocument TApplication 

' , • 
INHERITED DoMenuCommand INHERITED DoMenuCommand 

(Application instance recognizes 
command) 
aYourApplication.Close 

aYourWindow a YourDocument aYourApplication 

DoMenuComrnand DoMenuCommand Clo.5e 

TEvtHandler TEvtHandler TApplication 

...... 

Chapter 5: Introduction to MacApp: Flow of Control 127 



6/14/88 

128 

Working Draft 4 (APOA) 

The click chain 

The click chain is responsible for handling mouse clicks in the content region 
of the window. That means it handles all window clicks that aren't in the 
controls of the window, including palette clicks and clicks that select and drag 
objects. The click chain is much simpler than the command chain, partly 
because window clicks are always, by definition, handled by view objects, and 
the relationship of view objects to each other is much simpler than the 
relationship between all the possible command-handling objects. View objects 
form a simple tree, with the window as the root, and views and subviews as the 
branches and leaves. 

How the chain is built 

Every time you add a subview to a particular view object, MacApp places a 
reference to that subview in a list kept as a field of that object. 

How the head of the chain is determined 

Whenever a view is clicked, MacApp invokes a clever recursive routine, 
HandleMouseDown, that goes up each branch, looking until it finds the 
particular subview that contained the click. That view is treated as the head of 
the chain. · 

How the chain is traversed 

MacApp expects each subview to handle the clicks in its own boundaries, so the 
event dies after the very first link in the chain. However, if you want to, you 
can write custom code that causes the event to work its way back up the chain 
by calling the appropriate method from this view's superview. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial 

Figure 5-9 
The view tree 

Working Draft 4 (APDA) 

Window 

1 2 3 n n 
IA 18 3A 38 

Window lw 3 subviews .... _ 

1----2---1:·: 

Views 1 and 3 each have 2 subvicws. 
r----r----1 ............................ ~~~=:-~~~~~~ 

L_~A __ l_~~-J ........................... 1----2---1· 

Window and its subviews 
as the user sees them. 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

129 



6/14/88 

130 

Working Draft 4 (APDA) 

The idle chain 

While it is hard to imagine writing any useful application without using both the 
command chain and the click chain, you could easily write many marketable 
applications knowing nothing about the idle chain. The idle chain actually 
pulls double duty, providing a chain of responsibility for both idle-time events 
and alien events. This may seem like an odd combination, but it happens that 
many objects that handle alien events may also need to take advantage of idle 
time. In any case, if you will not be encountering any alien events and choose 
not to do anything fancy with the application's copious idle time, you can avoid 
the idle chain altogether. 

On the other hand, the idle chain is very simple, and not much extra trouble to 
understand. Idle objects, including those that handle alien events, bear no 
underlying relation to each other, so the order of the chain is arbitrary; MacApp 
links the idle objects together like a breakfast sausage. When MacApp traverses 
the idle chain because of an Idle event, it calls the Dold.le method; when it 
traverses the chain because of an alien event, it searches for a DoHandleEvent 
method. 

5 4 

RgureS-10 
The idle sausage 

How the chain is built 

You call the T Application.InstallCohandler method for each idle object instance 
you create. InstallCohandler simply links each piece of the chain to the 
previous piece. 

Each idle instance has a field called fldleFreq which you set to indicate how 
often its Doldle method should be executed. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

How the head of the chain is determined 

MacApp sets the most recent link to be the head of the chain and the oldest link 
to be the end of the chain. A reference to the head of the chain is kept in a 
global variable called gHeadCohandler. 

How the chain is traversed 

The chain will be traversed both when it is time to idle and when an alien event 
is received. In both cases, the system of traversing the chain is similar to the 
method for traversing the command chain. In fact, unless you override 
MacApp's code, every time MacApp traverses the idle chain, it first traverses 
the command chain looking for Doldle or DoHandleEvent methods. So the 
only time you need to install an object in the idle chain is when you want its 
Doldle methcxi to be executed even when it is not in the command chain. For 
instance, imagine you had a view with a flashing border around it If you 
wanted the border to flash only when the view (or one of its subviews) was 
active, you would not have to place it in the idle chain. If you wanted it to flash 
no matter what, you would have to place it in the chain. 

How often your application idles is determined by the fldleFreq field of each 
instance in the idle and command chains. When there are no events pending, 
MacApp will check the fldleFreq field of each instance in the idle chain. If 
enough time (measures in ticks) has elapsed since the object was last idled, 
then its Doldle method is called. Doldle is overridden for each type of object 
that requires processing at idle time. (For example, TIEView overrides Doldle 
to make the cursor bar flash at the insertion point.) Unless you choose to 
program the idle chain otherwise, unlike the command chain, the whole idle 
chain is traversed, even after one object's Doldle method executes successfully. 

When MacApp encounters an alien event, it first traverses the command chain 
then calls gHeadCohandler.DoHandleEvent, which attempts to handle the 
event. Then, just like the command chain, it calls fNextHandler.HandleEvent 
until one of the methods handles the event or until the chain is over. 

Chapter 5: Introduction to MacApp: Flow of Control 

6/14/88 

131 



6/14/88 

132 

Working Draft 4 (APDA) 

Summary 
MacApp continually handles events as the user creates them, assigning 
instances to do the necessary work. Much of this work is accomplished behind 
the scenes, in such a way that you need not even know the event occurred. 
Other events will cause the MacApp code to execute methods that you should 
have overridden. By now, you should have some idea of what events will 
cause certain methods to be called, and to which instances those methods will 
belong. 

As a practical matter, you can often tell when you should override a method by 
its name. The MacApp programmers christened the most important methods to 
override with names that start with ''Do"-DoMouseCommand, 
DoKeyCommand, DoMenuCommand, and so on. 

You should be aware that these event-handling methods are not the only 
methods you should be concerned about. There are also a great many methods 
that you will need to write to set up menus, draw the contents of views, create 
documents and windows, and handle the logic of your application. But this 
outline should give you a start. 

Chapter 5: Introduction to MacApp: Flow of Control 

MacApp 2.0 Tutorial 



( 

Chapter 6 

How to Install and Use 
MacApp 



6/14/88 

134 

Working Draft 4 (APDA) 

The MacApp package consists of: 

• The source code library, including a variety of standard MacApp units and 
optional building blocks 

• several MPW scripts and Make files to help you automate the compiling and 
linking of applications created with MacApp 

• a number of sample programs 

Before using MacApp, you must install it on your hard disk. Most people then 
build one or more of the sample programs into working applications. Finally, 
you can start working on your own application, either by starting from scratch 
or by modifying one of the samples. 

Installing MacApp 
This section describes how to install MacApp on your hard disk. It assumes that 
you have already installed MPW. See the Macintosh Programmer's Workshop 
Reference for details on installing MPW. 

Follow these steps to install MacApp: 

1 . Create a folder named MacApp in your MPW folder. (If you prefer to place 
it elsewhere or name it something else, you should modify the UserStartup 
file, below, to accommodate this.) 

2. Copy the contents of all the MacApp disks into your MacApp folder, and 
put the disks in a safe place. 

3. For every folder with a name in the form Mo re xxx copy its contents 
into the folder XXX. Then discard the empty folder More XXX. 

For example, you should take the contents of the folder More MacApp 
Source Files andputitintothefolder MacApp Source Files 
Then discard the folder More MacApp Source Files. 

Chapter 6: Installation 

MacApp 2.0 Tutorial 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

4. Mcxlify your U serStartup file in the MPW folder to contain the following 
lines: 

set MacApp "{Ml?W}MacApp:" 
export MacApp 
execute "{MacApp}MacAppStartup" 

If you've placed the MacApp folder in a different directory, be sure to 
modify the first line above. 

If you are low on disk space, you can save space with these techniques: 

• Delete any fonts, desk accessories, print drivers, utilities, or other elements 
you don't need. 

• Don't copy all the MacApp sample programs onto your disk. 

• Change the SeparateObjects flag to FALSE. See "Building a MacApp 
Program" later in this chapter. 

When the installation is done, you should be able to build one of the sample 
programs or one of your own MacApp programs. ·Refer to the section 
"Building a MacApp Program," below, for details on how to build a program. 

File naming conventions 
MacApp filenames follow several conventions. Where AppName stands for the 
application name and UnitName stands for the name of a particular unit, the 
constituent files are named according to the following rules: 

• UUnitName.p contains the Pascal interface for the unit UUnitName. 

• UUnitName.xxx.p contains the implementation of the unit UUnitName. In 
most cases, the implementation of a unit is short enough to be put into a 
single file. In that case, 'xxx' is traditionally replaced with "incl," which 
stands for "include file #1." However, when the implementation is too long 
to be managed easily in a single file, it is broken up across a number of 
files; each is given a mnemonic name. The most notable example of a unit 
broken into a large number of files is UMacApp, which is broken up into 
about a dozen files, each named after the most important thing defined in the 
unit, usually an object class. 

6/14/88 

Chapter 6: Installation 135 



6/14/88 Working Draft 4 (APDA) 

• UUnitName.a contains supporting assembly source for the unit 
UUnitName, if any is needed. 

• MAppName.p contains the main program for the application. 

• AppName.r contains the Rez input for the application. 

• AppName.make contains the make rules for the application. 

If additional units are required, they are usually named in the form UUnitName, 
and the files containing the interface and implementation of the unit follow the 
conventions given above. 

All the make files and USES statements conform to these conventions. The 
documentation refers to particular files in several ways: 

• by filename; for example: UPrinting.p, UMacApp.TApplication.p, and 
DrawShapes.r 

• by the unit name defined within the file; for example: UPrinting, UMacApp, 
UDrawShapes 

• by what the file is; for example: the printing unit, the MacApp unit, and the 
DrawShapes program 

Therefore, the printing unit is defined as UPrinting and can be found in the files 
UPrinting.p and UPrinting.incl.p. If you use this unit, your USES list would 
contain the line 

UPrinting, 

reflecting both the name of the file and the name of the unit defined in the file. 

Building a MacApp program 
The MacApp build process uses the MPW tool Make along with a MacApp 
command file MABuild, which together help automate the sometimes 
complicated process of compiling and linking MacApp programs. 

* Note: You need to be familiar with the use of the MPW Shell to use these 
files. If there are any terms in this section that are not familiar, refer to the 
Macintosh Programmer's Workshop Reference. 

136 Chapter 6: Installation 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

In addition to automating the process of building debugging and nondebugging 
versions of any application that uses MacApp, MABuild allows you to use the 
method optimization feature of the MPW linker. It performs optimizations on 
methcxl tables, making object-oriented code smaller and faster. 

MABuild only compiles files when necessary. For example, if you specify 
ncxlebug and MacApp has already been compiled without debugging, it is not 
recompiled; if MacApp has been compiled with debugging on, it is 
automatically recompiled. 

By default, MacApp automatically keeps two versions ofMacApp's compiled 
code, each in its own directory: one with debugging ccxle and the other without. 
If you are tight on disk space, you may want to keep only one version of the 
compiled code, which you can accomplish by modifying the MacAppStartup 
file to set the { SeparateObjects} flag to be FALSE. But while it is true, the 
MABuild program willmaintain four directories: 

• "{MacApp} MacApp Object Files:Non-Debug Files" for non-debug object 
files 

• " { MacApp} MacApp LOAD Files:Non-Debug Files" for non-debug LOAD 
files 

• "{MacApp} MacApp Object Files:Debug Files" for files with debugging 
code 

• "{MacApp }MacApp LOAD Files:Debug Files" for LOAD files with 
debugging ccxle 

You must create a Make file for any application you want to build. Make files 
are provided for the sample applications. See "Creating a Make File," below, 
for instructions on writing one. If you want to build a sample program or you 
already have a make file, see "Using MABuild." 

The file MacApp.make is used when you want to build just the MacApp library. 
The form of this command is 

MABuild MacApp 

This compiles and assembles all the MacApp units and places them in the file 
MacAppLib.o. You may specify debug or nodebug when you build MacApp; 
in this case the opt keyword would be synonymous with the nodebug keyword, 
since no application is being linked. 

6/14/88 

Chapter 6: Installation 137 



6/14/88 

138 

Working Draft 4 (APDA) 

Creating a make file 

Every program built with MABuild must have a make file with a name of the 
form AppName.make, where AppName is the name of the application. In this 
file you specify the application name, the signature, and what files your 
application depends on. 

The file Application.make is included in the MacApp release and is a template 
for your program's make file. Most of the file is simply a set of assignments to 
Make variables. (Make is the MPW tool that is used to automate the build 
process.) The variables are as follows: 

AppName = the name of the application 

Creator = the application signature 

NeededSysLibs = a list of required system libraries 

BuildingBlockintf = a list of the building block interface files the 
application uses 

MacApp 2.0 Tutorial 

BuildBlockObjs = a list of the building block object files the application 
links with 

Otherinterfaces = a list of other Pascal interfaces the application uses 

OtherLinkFiles = a list of other object files the application links with 

OtherSegMappings = a list of -sn commands for the linker 

OtherRezFiles = a list of .r files that must be included in the Rez 
command, other than AppName.r 

OtherRsrcFiles = a list of resource files that are included by one of 
your Rez files, other than the Debug.rsrc and 
MacApp.rsrc files 

See the make files for the sample programs if you need additional guidance. In 
the simplest case, all you will have to do is perform a global search-and-replace 
on a valid make file, replacing the old application's name with the new one's 
name. 

Chapter 6: Installation 

r- ._,""""--,.,. 

i ' 

•,_ 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

If you want to specify any additional files (such as assembly language files) that 
need to be linked with your application, you must provide dependency rules for 
them in your make file. For example, 

OtherLinkFiles = MyApp.a.o 
MyApp.a.o f MyApp.a Fooinclude.a 

You do not need to specify build rules for Pascal compiles or MPW assemblies 
because they are covered by the default rules specified in MacApp.make 1. In 
this case you could leave out the filename My App.a on the second line, since 
the default rules say that MyApp.a.o must depend on a file My App.a if one 
exists. In fact, if the object file MyApp.a.o did not also depend upon the file 
Foolnclude.a, you would not need the second line at all. (Note that the f 
character is produced by typing option-f on the keyboard.) 

The MABuild command file calls Make with your make file concatenated with 
the MacApp make files. The ordering is your file, MacApp.makel, 
AppName.make, MacApp.make2, and MacApp.make3. When running 
MABuild with optimiz.ation on, MacApp.make2 is replaced by 
MacApp.opt.make2. 

Using MABuild 

For program AppName, the command line for executing a build when the 
current directory contains the program's files is 

MABuild AppName 

Debugging is turned on by default (that is, debugging code is compiled in), 
although you can give the keyword debug after AppName, if you want. To 
build program AppName without debugging, you can use the command line 

MABuild AppName nodebug 

but generally you will also want to build an optimized version of program 
AppName, with the command line 

MABuild AppName opt 

The opt keyword invokes the method optimization feature of the MPW linker. 
This keyword also implies nodebug. 

6/14/88 

Chapter 6: Installation 139 



6/14/88 

140 

Working Draft 4 (APDA) 

MacApp Rez files 

To build a MacApp application, you must have these resources in your Rez (the 
MPW resource compiler) input file: 

• MacApp Include files. See "Include Files," below. 

• An Include line for your code. See the sample programs' resource files for 
examples. 

• A cmnu resource for your menus. See "The cmnu Resource Type" below. 

• An MBAR resource. See "MBAR Resources," below. 

• An "About application" dialog. See the sample programs' resource files for 
examples. 

There are three other resources not required for compilation, but they are 
strongly suggested nevertheless. 

• A SIZE resource to tell Multi.Finder how much space your application will 
need. 

• The seg! and mem! resources to provide information for efficient memory 
management. 

For complete examples of any of these elements, look at the Rez files· of the 
sample programs. 

Include files 

Most of the standard MacApp resources are supplied as Rez input files which 
are compiled by MABuild. You include the compiled versions with lines like 

include MacAppRFiles"FileName"; 

where FileN ame is the name of a MacApp file. If you don't need all the 
standard resources, you copy the files and remove the resources you don't 
want. 

Some resources required by MacApp must be in your Rez input file. These 
include any view resources you may have created as well as any cmnu or 
°MENU resources your application will require. (You would only use °MENU 

Chapter 6: Installation 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorlal Working Draft 4 (APDA) 

resources in rare cases, if you want to bypass MacApp's menu handling.) 
Look at the sample programs for guidance. 

The cmnu resource type 

The cmnu resource type is provided so that menu items can be identified by a 
unique command number, independent of the item's placement within the 
menus. 

You define resources as type cmnu instead of type MENU. These have the 
same syntax as resources of type MENU, except that menu items have one 
additional component, a command number (or the symbol nocommand). After 
running Rez, the make file runs the tool PostRez, which will generate the usual 
MENU resources, plus a single resource of type mntb and ID 128 which maps 
all command numbers for all cmnu resources encountered in the file into their 
corresponding menu and item numbers. 

* Important: Because the PostRez tool changes cmnu resources to MENU 
resources and other information Mac App needs to handle menus properly, 
you cannot use DeRez to decompile cmnu resources for MacApp programs. 
In addition, you should not use the resource editor to change MENU 
resources, because that will not provide all the information MacApp needs. 
If you need to change your menus, you must edit the original resource file 
and allow MABuild to run Rez and PostRez again. 

MBAR resources 

MacApp requires one or two MBAR resources that tell it what to do with your 
menus. 

You must have an MBAR resource with ID 128. This resource gives the ID's of 
all menus that should be read in and displayed initially. MacApp looks for this 
resource when it starts up and loads all menus whose ID's are listed here. 

You can also have an MBAR resource with ID 129. This resource gives the 
ID' s of menus that can be added to or removed from the menu bar by your 
application. The menus listed here are read in by MacApp but are not initially 
displayed. 

You can also have menus that are not listed in either MBAR resource. Examples 
of these are 

• Buzzword menus, which contain strings meant to be placed in other menus 
under·certain conditions. 

Chapter 6: Installation 

6/14/88 

141 



6/14/88 

142 

Working Draft 4 (APDA) 

• The Debug menu, which has ID 900 and is treated as a special case by 
MacApp so that it is only read in if debugging code is included in the 
application. 

• Nonstandard menus such as graphical menus. These must have ID's greater 
than mLastMenu (which is 63). You need to handle these menus by calling 
the Menu Manager directly. 

Menus handled by MacApp must have ID's from 1 to mLastMenu, regardless 
of which MBAR resource refers to them. 

Important 

You should not use programmatically created menus; that is. your resource 
file should contain at least the menu title of every menu. 

Chapter 6: Installation 

MacApp 2.0 Tutorial 



( 

( 

c: ' 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The structure of a MacApp program 
MacApp programs are written with a certain structure. Some elements are 
mandated by the syntax and are so identified here, and others are simply 
conventions that make it easier to maintain the programs. 

The elements of a MacApp program are the main program, the unit's public 
interface, and the unit's implementation. Each element is generally kept in a 
separate file, although you can combine them if you wish. See the sample 
programs for further detail on these files. (In particular, MacApp includes 
debugging features that require the use of some compiler switches.) 

The main program, usually named MAppName.p where AppName is the name 
of the application, is generally very simple and small. A MacApp main program 
follows this structure: 

PROGRAM YourName; 
USES 

{Units used by this program} 
VAR 

6/14/88 

gYourApplication: TYourApplication; {The application object} 
BEGIN 

InitToolBox({Nu.mber ·of master pointer blocks to allocate}); 
InitPrinting; {Only if you are using UPrinting} 
InitUTEView; {Only if you are using UTEView} 
InitUDialog; {Only if you are using UDialog} 
InitUGridView; {Only if you are using UGridView} 
SetResidentSegment(GetSegNu.mber(@AResDummy), TRUE); 
New(gYourApplication); {Allocate the application object} 
gYourApplication.IYourApplication; {Initialize the application} 
gYourApplication.Run; {Run the application; hand control to MacApp} 

END. 

* Note: If you use the UDialog unit, you must also include the UTEView 
unit Make sure you place UDialog after UTEView in the USES statement 
and that you place InitUDialog after InitUlEView. 

The rest of the application is generally run from the application's Run method. 
The basic type TApplication is defined for you by MacApp, and you customize 
it in one of the units to create your application type, called TY our Application 
here. That unit is listed in the USES declaration along with any other units 
needed to compile its interface. 

Chapter 6: lnstallatlon 143 



6/14/88 

144 

Working Draft 4 (APOA) 

The unit's public interface file, usually called UAppName.p, defines the object 
types used by the program. The methods of object classes must be declared in 
the style of a FORWARD declaration (although you never use the reserved 
word FORWARD). Where you want to reimplement an inherited method, you 
write the full interface for the method and follow it with the OVERRIDE ' 
reserved word. A unit interface file usually follows this structure: 

UNIT UnitName; 
INTERFACE 

USES 

CONST 

TYPE 

{Any units used by the unit} 

{Any constants for the application} 

{Ordinary type declarations} 
{Object-type declarations} 

IMPLEMENTATION . 
{$I UName.inc.p} {Name(s) of implementation file(s)) 
END. 

The unit implementation file, usually named UAppName.incl.p, can begin with 
a VAR part that declares any global variables for the unit followed by the 
implementations of the methods. You have the option of repeating the full 
interface declaration with the implementation of each method. There is nothing 
special about the design of this file; it consists simply of the global variable 
declarations, private constructs and type declarations, and the method 
implementations, which look like procedure and function declarations. 

If an application is large, it can be broken up into a number of units. 

Chapter 6: lnstallatlon 

MocApp 2.0 Tutorial 



Chapter 7 

The Cookbook 

( 



6/14/88 

146 

Working Draft 4 (APDA) MacApp 2.0 Tutor1al 

This chapter features instructions for producing a MacApp program. 

It is divided into ten sections covering documents, views and windows, 
handling mouse events, standard editing commands, menus and commands, 
using UPrinting, using UTEView, using UDialog, supporting the Clipboard, 
and failure handling. Each section begins with recipes every program needs and 
goes on to show how to implement more specialized and sophisticated 
behavior. 

Any typical Macintosh program needs to implement the parts discussed in these 
recipes: 

• "Creating a Document" 

• "Initializing a Document" 

• "Creating a View" 

• "Initializing a View" 

• ''Drawing a View" 

• "Creating a Window" 

In addition, for most applications you need to implement the parts discussed in 
these recipes: 

• "Saving and Restoring Data" 

• "The Clipboard" 

• All recipes under "Standard Editing Commands" 

• Some recipes under "Menus and Commands" 

• Some or all recipes under ''Handling Mouse Events" 

When you implement an application with these recipes, the application displays 
a standard window that may or may not have horizontal and vertical scroll bars, 
a size box, a zoom box, a close box, and the standard menus. The application 
can cut, copy, paste, undo, and save, and can open old and new documents. 
The application can handle any number of documents at a time, and its windows 
are refreshed correctly when necessary. The application can track the mouse 
when the mouse button is down. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Each recipe includes the following elements: 

• Purpose: an explanation of why you use this feature. 

• How to do it: step-by-step instructions for implementing this feature. 
These instructions often include object type or interface declaration samples 
and references to other recipes. 

• Template: listings of sample implementations or implementation 
frameworks for the major methods needed to implement the feature 
described in the recipe. 

The word item is used in this chapter to indicate any basic data element of your 
program. For example, EachitemDo is a method that you usually name 
according to the object type most basic to your data set If your data set consists 
of different types of fruit, that method might be called EachFruitDo. Similarly, 
when an object is to be of some object type unique to your program, the type is 
called Titem in this chapter. 

As in the rest of this manual, the word Your is included in variable and type 
names that your application declares. Replace the name with some appropriate 
word. 

You can use the Nothing program, included in the Nothing Sample folder, as a 
base for your application. Nothing is an application that has the standard 
Macintosh interface and nothing else. It can display windows with scroll bars, a 
size box, a close box, and a title bar; has the standard menus; refreshes the 
window correctly; can show the Clipboard; and allows the use of desk 
accessories. It can even save and restore documents, but the documents and the 
windows have nothing significant in them. (The window actually shows a fixed 
text string.) The Nothing program's source code consists of the following files: 

• MNothing.p, the main program 

• UNothing.p, the interface file 

• UNothing.incl.p, the implementation file 

• Nothing.r, the resource compiler input file 

• Nothing.make, the make file for building the program 

The last two files are used only in the Macintosh Programmer's Workshop. If 
you are using a different development system you may have to create your own 
files to perform the equivalent functions. 

6/14/88 

Chapter 7: The Cookbook 147 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

If you begin with the Nothing program and modify it to create your application, 
you will make most changes either to the implementation file or to the interface 
file. In addition, some changes are made to the resource compiler input file. The 
main program is rarely changed. Many of the methods described in the basic 
recipes in this chapter are included in the Nothing program, because they must 
exist so that the Nothing application can run; you must modify those methods to 
do tasks specific to your application. 

If you have a large program, you may want to break the implementation unit. 
into two or more files or add additional units. You may want to break your 
program into segments. See the "Segment Loader" chapter of Inside Macintosh 
for information on segmenting your program. 

This chapter includes many references to Inside Macintosh. The chapter's title 
or its relevant section is given in quotation marks in these references. 

Documents 

Creating a document 

Purpose 

A document controls the data set of your application independently of how it is 
displayed or printed. 

Unless you override TApplication.HandleFinderRequest, MacApp asks your 
application to create a new document when the user double-clicks on the 
application's icon. 

Howtodoil 

1. Declare the file type for your document, typically in the interface part of 
your object unit. The file type is generally stored as a constant 
yourFileType, and is always a four-character string, for example you might 
define kYourFileType to be 'TEXT. 

If you use an existing file format, use the predefined file type. A file made 
up of strings of characters, where each line or paragraph is terminated by a 

148 Chapter 7: The Cookbook 



( 

(. 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

return, is of type TEXT. A file consisting of QuickDraw pictures is of type 
PICT. 

If you have your own file format, the file type is an arbitrary four-character 
string. File types should be registered with Developer Technical Support to 
ensure that they are and remain unique. 

2. Implement TY ourApplication.DoMakeDocument. MacApp calls this method 
when a new document needs to be created. You need the following 
declaration as part of the definition of TY ourApplication: 

FUNCTION TYourApplication.DoMakeDocument(itsCmdNumber: INTEGER): TDocument; 
OVERRIDE; 

A sample implementation is given in the template for this recipe. 

The command number is used primarily for applications with more than one 
document type. If your application provides more than one document type 
that the user can choose from a menu, use the command number to 
determine which type of document to create. 

3. For each document type, implement IY ourDocument as described in the 
"Initializing a Document" recipe. TY ourApplicationDoMakeDocument 
should call IY ourDocument after instantiating a Y ourDocument. 

4. For each document type, if you have menu commands other than the 
standard File menu commands (New, Open, Save, Save As, Save Copy, or 
Revert) that apply to the document or its contents (regardless of which 
window is active or which view is selected), override 
TDocument.DoMenuCommand and TDocument.DoSetUpMenus. See the 
"Creating Menu Commands" recipe for details on DoMenuCommand. 

Template 

FUNCTION TYourApplication.DoMakeDocument(itsCmdNumber: INTEGER) :TDocument; 
VAR 

BEGIN 

END; 

aYourDocument: TXourDocument; 

New(aYourDocument); 
FailNIL(aYourDocument); 
aYourDocument.IYourDocument(yourFileType); 
DoMakeDocument := aYourDocument; 

6/14/88 

Chapter 7: The Cookbook 149 



6/14/88 

150 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Initializing a document 

Purpose 

After you create a new document you must initialize it, which you generally do 
by calling IY ourDocument (The call is made from your DoMakeDocument 
methcxl, described in the "Creating a Document" recipe.) 

Howtodoit 

Implement TY ourDocument. An example is shown in the template for this 
recipe. That template assumes you have a field fltemList, which is a TList-type 
object that stores your data. If your data is organized in another way, you 
should change the implementation of IY ourDocument as appropriate. 

Note that all fields that may be referenced by your document's (or any object's) 
Free methcxl should be initialized to an appropriate value before the first point at 
which your initialization methcxl can fail. 

See the sample programs for more examples of this methcxl. In particular, you 
may want to look at Puzzle and DrawShapes. 

Template 

PROCEDURE TYourDocument.IYourDocument(itsFileType); 
BEGIN 

END; 

fitemList := NIL; { In case !Document fails. 
IDocument(itsFileType, itsCreator, kUsesDataFork, NOT kUsesRsrcFork, 

NOT kDataOpen, NOT kRsrcOpen); 
You may give different constant values in the above line. 
The values given are the most common commands and indicate a document 
that uses only the data fork of the file and is not disk-based 
(that is, the entire file is copied into memory) . 
See the Cards sample program for how to create a disk-based document. 

fitemList := NewList; 
fSavePrintinfo :=,TRUE; {Used when saving the document. 

Set to FALSE if you don't want to save this. } 

If you have fields for the views, which you generally do, } 
set them to NIL here. } 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorldl Working Draft 4 (APDA) 

Saving and restoring data 

Purpose 

You save and restore data so the user can save documents, open document 
icons, and open documents using the Open command and the directory dialog 
box. In addition, you save the print state and the display state so the user does 
not have to reestablish them each time the document is opened. 

Howtodott 

Objects contain data and also have pointers to methods. You save only the data, 
not the method pointers, in your document file. The way you do this depends 
on how your application's data is organized. 

This recipe assumes your data consists of a list of objects of a single type. In 
such a case, you generally create records that are equivalent to the data parts of 
the objects you want to save, and you save those records in the file. In the 
templates, the record type is called TFiledltem. When you want to restore that 
document file (that is, when the user opens that document), you create a new set 
of objects, reading data from the file and transferring it from the filed records to 
the objects. 

Important 

Although. for slmpllclty. this recipe assumes that all the application's objects are 
of one class. that is relatively unlikely. If your flle contains several classes of 
objects, you need to create a record type for each object class you want to 
save. In the file, each record should be preceded by a ·1dentlfler· value that 
Indicates what type of record follows. You first read the Identifier value and then 
read a record of the type Indicated by the identifier value. You may read the 
record Into a varlable of the record type and then copy fields into the object or, 
If the field structure of the record and the object are identical, you can read 
directly into the object. from the file. 

For this recipe, assume the following interface declarations: 

Titem = OBJECT(TObject); 
fidentifier: INTEGER; 
fDatal: DataTypel; 
fData2: DataType2; 
{Any other fields ..• } 

6/14/88 

Chapter 7: The Cookbook 151 



6/14/88 

152 

END; 

Working Draft 4 (APDA) 

FUNCTION Titem.WriteTo(aRefNum: INTEGER): OsErr; 
FUNCTION Titem.ReadFrom(aRefNum: INTEGER): OsErr; 
{ Other methods would normally be included. } 

MacApp 2.0 Tutorial 

1. Override IDocumentDoNeed.DiskSpace. That method is called just before a 
document is saved. It should return the total amount of disk space, in bytes, 
needed to store the data and resources for the document. Don't worry about 
file overhead; MacApp adds that on. 

MacApp uses the value returned by DoNeedDiskSpace to check whether 
there is room on the disk to save the new file without first deleting the old. 
What happens if there isn't enough room depends on the value of the 
document's fSavelnPlace field. The possible values are 

• sipNever, to indicate that the original file should never be overwritten 

• sipAlways, to indicate that the original file should always be overwritten 
when there is not enough space for a copy 

• sipAskUser, to indicate that the user should be asked whether the 
original file should be overwritten when there is not enough space for a 
copy. 

!Document sets the value of fSavelnPlace in this way: 

IF keepSDataOpen OR keepSRsrcOpen THEN 

fSaveinPlace := sipNever 

ELSE 

fSaveinPlace := sipAskUser; 

You can change the value of fSavelnPlace in your IY ourDocument method. 

Take care that your DoNeedDiskSpace method returns the correct value or 
overestimates slightly; if DoNeedDiskSpace returns too large a value, the 
old file may be deleted unnecessarily, or DoNeed.DiskSpace may 
erroneously inform the user that the file cannot be saved; if 
DoNeedDiskSpace returns too small a value, you may get an I/O error when 
the application tries to save the document, which could be particularly 
serious if MacApp has deleted the old file. 

Chapter 7: The Cookbook 



(' 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The interface for this method is 

PROCEDURE TYourDocument.DoNeedDiskSpace(VAR dataForkBytes, 
rsrcForkBytes: LONGINT); 

OVERRIDE; 

A sample implementation is given in the templates for this section. It begins 
with a call to INHERITED DoNeedDisk:Space so that MacApp can calculate 
the space needed to save the print state, the overhead for the file, and if you 
are using the resource fork, the overhead for the resource fork. (Set 
document.fSavePrintlnfo to TRUE in IY ourDocument if you want 
TDocument.DoNeedDisk:Space to incorporate the print state in its 
calculations.) Notice that this method adds to the initial values of 
dataForkBytes and rsrcForkBytes. MacApp sets the initial values of these 
parameters, and you should not reset them to 0. The rest of the 
implementation is very general, because the amount of space needed 
depends entirely on your application. See the sample programs for more 
specific examples. 

2. Override TDocumentDoWrite, called to write the document to a file. The 
intetface for this method is 

PROCEDURE TYourDocument.DoWrite(aRefNum: INTEGER; makingCopy: BOOLEAN); 

OVERRIDE; 

A sample implementation is given in the templates for this section. 

The sample begins by saving the print state. MacApp does that for you 
when you call INHERITED DoWrite. (You need to set 
document.fSavePrintlnfo to TRUE in IY ourDocument or 
TDocument.DoWrite won't save the print state.) Finally, the data is saved. 

The makingCopy parameter is primarily for disk-based documents. It 
indicates that Do Write is being called to make a new copy of the file. 

3. Override TDocument.DoRead, called when an existing document is opened. 
The intetface for this method is 

PROCEDURE TYourDocument.DoRead(aRefNum: INTEGER; 

rsrcExists, forPrinting: BOOLEAN); 

OVERRIDE; 

The implementation is given in the templates for this section. The sample 
begins by calling INHERITED DoRead to restore the print state if 
fSavePrintlnfo is TRUE. Notice that the display state is not restored at this 

6/14/88 

Chapter 7: lhe Cookbook 153 



6/14/88 

154 

Working Draft 4 (APDA) MocApp 2.0 Tutorial 

time. That is done when the window is created, with DoMakeWindows, or 
DoMakeViews. 

4. Assuming you have several different types of items, each a descendant of 
Titem and differentiated by a value that indicates the kind of item, add the 
following method to your document 

FUNCTION TYourDocument.Makeitem(kind: ItemKind): Titem; 

The implementation is given in the templates. 

You also need to define a set of constants for the different kinds of items. 

5. Give each object type in your document's data set a Write To method for the 
TY ourDocument WriteTo method and a Read.From method for the 
TYourDocument.Read.From method. The interfaces forTitem.WriteTo and 
Titem.Read.From could be as follows: 

FUNCTION Titem.WriteTo(aRefNum: INTEGER): OsErr; 

FUNCTION Titem.ReadFrom(aRefNum: INTEGER): OsErr; 

The implementations are given in the templates for this section. 

If you have several different classes of items, each a descendant of Titem, 
assign an identifier value to each of them, and create a method for each item 
class that returns the identifier value for the item. Before you write each 
item's data, write its identifier value into the file. 

If your different item classes have different sizes, you may also want to add 
a method to your item classes that calculates the size of the item. You '11 need 
to call this method when you are calculating the amount of disk space you 
need to save a document to disk. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

Templates 

PROCEDURE TYourDocument.DoNeedDiskSpace(VAR dataForkBytes, rsrcForkBytes: LONGINT); 
PROCEDURE AddSize(item: Titem); 

BEGIN 

END; 

BEGIN 

END; 

dataForkBytes := dataForkBytes + { The nuritber of bytes needed to store the 
data in this item. Don't forget the kind 
value, if there is one. }; 

{ get space needed to save print state } 
INHERITED DoNeedDiskSpace(dataForkBytes, rsrcForkBytes); 

fitemList.Each(AddSize); {This assumes your data is stored in a TList-type object 
in the field TYourDocument.fitemList } 

Add a value to rsrcForkBytes when you want to store some resources 
for the document. } 

PROCEDURE TYourDocument.DoWrite(aRefNum: INTEGER; makingCopy: BOOLEAN); 
PROCEDURE Writeitem(item: TYourObject); 

BEGIN 

END; 

BEGIN 
err:= item.WriteTo(aRefNum); 

END; 

INHERITED DoWrite(aRefNum, makingCopy); { Save print info record. } 
fitemList.Each(Writeitem); 

PROCEDURE TYourDocument.DoRead(aRefNum: INTEGER; rsrcExists, forPrinting: BOOLEAN); 
{ This method assumes you have a number of data object types, each a descendant of Titem. 

The types are differentiated by a kind value. } 
VAR 

BEGIN 

END; 

newitem: Titem; 
kind, i, nitems: INTEGER; 
size: LONGINT; 

FailOsErr(GetEOF(aRefNum, eof)); {See the ~Failure Handling" recipe. 

INHERITED DoRead(aRefNum, fRsrcExists, forPrinting); {Read print info record. 

FailOSErr(GetFilePos(aRefNum, fPos)); 
nitems :• (eof - fPos) DIV Sizeof(TFileditem); 
FOR i :• 1 TO nitems DO BEGIN 

END; 

size := 2; 
FailOSErr(FSRead(aRefNum, size, @kind)); 
newitem := Makeitem(kind); 
FailNIL(newitem); 
FailOSErr(newitem.ReadFrom(aRefNum)); 
fitemList.InsertLast(newitem); 

Chapter 7: The Cookbook 155 



6/14/88 

156 

Working Draft 4 (APDA) 

FUNCTION TYourDocument.Makeitem(kind: TitemKind): Titem; 

VAR firstTypeitem: TFirstitem; 
secondTypeitem: TSeconditem; 

BEGIN 

END; 

CASE kind OF 

END; 

kFirstType: BEGIN 
New(firstTypeitem); 
Makeitem := firstTypeitem; 

END; 
kSecondType: BEGIN 

New(secondTypeitem); 
Makeitem := secondTypeitem; 

END; 

FUNCTION Titem.WriteTo(aRefNum: INTEGER): OSErr; 
BEGIN 

MacApp 2.0 Tutorial 

Here write the item's kind and then the item's data to the file. 
Return 0 or any nonzero error code in WriteTo. 
See the "Failure Handling" recipe. } 

END; 

FUNCTION Titem.ReadFrom(aRefNum: INTEGER): OSErr; 
{ This method assumes your object has an IItem method that initializes the object. 

Item loads the data fields with the data given in the parameter list. 
Note that fNextitem and fPreviousitem should be initialized to NIL so that 
TYourDocument.Additem can work correctly. } 

VAR saveditem: TFileditem; 
lengthOfFileditem: LONGINT; 

BEGIN 

END; 

lengthOfFileditem := Sizeof(TFileditem); 
IItem({parameters}); 
ReadFrom := FSRead(aRefNum, {length of this kind's data}, @fDatal); 

Saving the display state 

Purpose 

When opening an old document, the user usually likes to find the window and 
view the way they were left when the document was saved; that is, with the 
window in the same position and at the same size and displaying the view in the 
same scroll position. This recipe shows how to implement that capability for a 
single window with one view. 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

How to do it 

Each step in this recipe has some ccxle in the template section. This recipe 
assumes that you only have one window per document S~ the Puzzle sample 
program for an example of saving the states of more than one window per 
document. 

1. You need a data type to save the state infonnation. In the template, it is a 
record called DisplayState. Define this as a global data type, so you can 
refer to it in different methcxls. 

2. You need a place to save display-state data read from a document file and a 
Boolean variable that indicates whether or not the display state has been read 
from a document file. In the template, both are fields of the document. The 
Boolean field, fUseDisplayState is set to FALSE for a new document It is 
set to TRUE when a document is read from a file. When the document is 
read from a file, the saved display state is read and stored in tDisplayState. 
Otherwise, that field has no meaning. (Both fields are only used 
immediately after a document object is created.) 

3. In TYourDocument.IYourDocument, set fUseDisplayState to FALSE. (This 
value is reset to TRUE in DoRead.) You also may need to initialize 
tDisplayState to the default arrangement. (That is not done in the template, 
because the items stored in the display state already have default values.) 

4. In DoWrite, load the display state into a display-state record, and then write 
the record to the document file. 

5. In TY ourDocument.DoRead, read the display state (if there is one) into a 
display state record, transfer the data to tDisplayState, and set 
fU seDisplayState to TRUE if there was a display state. 

6. In TY ourDocument.DoMakeWindows, if fUseDisplayState is set, use 
tDisplayState to position the scroll bars and size and position the window. 

7. In TY ourDocument.DoNeedDiskSpace, add in the amount of space needed 
to save the display state. 

6/14/88 

Chapter 7: The Cookbook 157 



6/14/88 

158 

Working Draft 4 (APDA) 

Templates 

{Add as a global type definition:} 
DisplayState = RECORD 

theWindowRect: Rect; 
theScrollPosition: VPoint; 

MacApp 2.0 Tutorial 

{ If you want to save the print record for each view add a field here. } 
{ (Normally, you save one for the entire document.) } 

END; 

{Add as fields of your document:} 
fDisplayState: DisplayState; 
fUseDisplayState: BOOLEAN; 

{Add to TYourDocument.IYourDocument:} 
fUseDisplayState := FALSE; { Always set to FALSE here. If you are now restoring a saved 

document, set this to TRUE in DoRead 

(Add to TYourDocument.DoWrite:} 
VAR 

aDisplayState: DisplayState; 
theWindow: TYourWindow; 
theScroller: TScroller; 

{To save the state of the first window created for a document, add this to the block, 
between saving the print state (the call to INHERITED DoWrite) and saving the data: } 
theWindow := TWindow(fWindowList.First); 
theScroller := fMainView.Getscroller(FALSE); 
WITH aDisplayState DO BEGIN 

END; 

theWindow.GetGlobalBounds(theWindowRect); 
IF theScroller <> NIL THEN 

theScrollPosition := theScroller.fTranslation; 

count := Sizeof(DisplayState); 
FailOSErr(FSWrite(aRefNum, count, @aDisplayState)); 

( Add 
VAR 

to TYourDocument.DoRead: } 
count: LONGINT; 
aDisplayState: DisplayState; 
aScroller: TScroller; 

{ In the block after calling INHERITED DoRead: } 
count := Sizeof(DisplayState); 
FailOSErr(FSRead(aRefNum, count, @aDisplayState)); 
fDisplayState := aDisplayState; 
fUseDisplayState := TRUE; 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Add to TYourDocument.DoMakeWindows: 
VAR vhs: VHSelect; 

aDisplayState: Displaystate; 

{ In the block, after you've created the window: ) 
IF fUseDisplayState THEN BEGIN 

END; 

aDisplayState := fDisplayState; 
WITH aDisplayState.theWindowRect DO BEGIN 

aWindow.Resize(right-left, bottom-top, FALSE) 
aWindow.Locate(left, top, FALSE); 

END; 
aWindow.ForceOnScreen; 

aScroller := fMainView.GetScroller(FALSE); 
IF aScroller <> NIL THEN 

aScroller.ScrollTo(aDisplaystate.theScrollPosition, FALSE); 

{ Add to TYourDocument.DoNeedDiskSpace: ) 
dataForkBytes := dataForkBytes + Sizeof(DisplayState); 

6/14/88 

Chapter 7: The Cookbook 159 



6/14/88 

160 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Windows and views 
MacApp allows you to create and initialize views (and therefore windows) in 
two different ways: with procedures and with templates. Because creating a 
view template is quite a bit of work in itself, it is occasionally more convenient 
to create your views procedurally. However, you gain many benefits by 
creating view templates, and that is the recommended method for creating 
views. The first six entries in this section examine procedural view creation. 
These sections are "Creating a View", "Initializing a View", "Creating a 
Window", "Creating a Palette Window", "Creating a Window with Two or 
More Main Views", and "Creating a Document with Two or More Windows." 

The final two entries of this section, "Creating View Templates" and "Creating 
and Initializing Views with Templates", explain the template method for creating 
views and windows. 

Creating a view 

Purpose 

Views are usually used to display data associated with documents, although it is 
possible to have a view that has no associated document. However, everything 
displayed by a document must displayed in a view. MacApp translates between 
the view and the screen or a printer. All you have to do is create the view and 
provide it with certain methods. Applications can offer one or more views of 
each document. 

How to do it 

1. Define a view type that is a descendant of TView. Your view type must 
have the following methods: 

PROCEDURE TYourView.Draw(area: Rect); OVERRIDE; 
{ Called by MacApp to draw the view. See the "Drawing a View" recipe. 

PROCEDURE TYourView.IYourView; 
{ Usually called from DoMakeViews or DoMakeWindows after creating a view" 

See the "Initializing a View" recipe. } 

If you have more than one view type, create equivalent methods for each 
type. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

If a mouse click, press, or drag in the view can do something, you must 
also implement the following method: 

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; 
VAR Info: Eventinfo; 
VAR hysteresis: Point): TCommand; 

OVERRIDE; 
{ See wHandling Mouse Events." } 

If parts of the view can be selected by the user, you usually also override 
TView.DoHighlightSelection. See the "Selecting" recipe. 

If there are menu commands that apply to the view (such as the "Reduce to 
Fit" command in MacDraw®), override TView.DoMenuCommand and 
TView.DoSetUpMenus. See "Menus and Commands" in this chapter. 

If the view can be a Clipboard view, you need additional methods. See ''The 
Clipboard" in this chapter. 

2. Declare a field for each view in your subclass of TDocument For example: 

fYourView: TYourView; 

The fields referencing your views will be used by your methods, not by 
MacApp, so you are free to organize them as you wish. If it makes sense in 
your document, you may want to use a list instead of individual fields. The 
object type 1List provides a convenient list type (actually, it implements a 
dynamic array). 

3. Override IDocument.DoMake Views to create your views. The interface is 

PROCEDURE TYourDocument.DoMakeViews(forPrinting: BOOLEAN); OVERRIDE; 

The parameter forPrinting is TRUE when the user is printing the document 
from the Finder™. In that case, you may not need to create all your 
document's views. 

The template in this recipe shows a sample implementation of 
DoMakeViews. 

6/14/88 

Chapter 7: The Cookbook 161 



6/14/88 

162 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Template 

FUNCTION TYourDocument.DoMakeViews(forPrinting: BOOLEAN); 

VAR yourView: TYourView; 

BEGIN 

END; 

The forPrinting parameter is TRUE only when printing from the Finder. 
You can use this value to optimize performance by creating only views 
that need to be printed. } 

New(yourView); 
FailNIL(yourView); {See the uFailure Handling" recipe. } 
{ Send SELF to IYourView so that the view can reference the document. } 
yourView.IYourView(FALSE {means not for Clipboard}, SELF); 
fYourView := yourView; 

If you have more views, create, initialize, and install them 
into fields of your document here. } 

Initializing a view 

Purpose 

After you create a view, you call IYourView to initialize it The initialization 
routine sets the initial size for the view and, if the view is printable, creates a 
print handler for the view. 

How to do it 

Implement TY ourView.IY our View, as shown in the template for this section. 
Call IY our View from TY ourDocumentDoMake Views after you create your 
view. 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

Template 

PROCEDURE TYourView.IYourView(forClipboard: BOOLEAN; itsYourDocument: TYourDocument); 
{ In this case, you don't need the forClipboard parameter. It is used so that a print 

handler object is not created for a Clipboard view. l 

VAR viewsize: VPoint; 

BEGIN 

END; 

SetVPt(viewSize, 1000, 1000); 
{ The size of the view. Set to values appropriate for your view. 

These values can be changed later. ) 

fYourDocument := itsYourDocument; 
{ Most views have documents, but some may not. 

IView(itsYourDocument, NIL, gZeroVPt, viewSize, sizeFixed, sizeFixed); 
{ The enumerated constant value sizeFixed is from the predefined SizeDeterminer 

enumerated type. The significance of these parameters can be found in the 
•creation/Destruction Methods" under •The TView Class" section of the 
•Display Architecture ERS." ) 

If the view can be printed, more is included. 
See •using UPrinting" in this chapter for more information. l 

Creating a window 

Purpose 

This and the next few entries of this section explain how to create windows 
with procedures instead of templates. To create windows from view resource 
templates, see the "Creating View Templates" and "Creating and Initializing 
Views with Templates" entries in the previous section. 

The 1Window class, a descendant of TView, represents a Window Manager 
window. It responds to mouse clicks outside the window's content region, 
draws the window's size box, and overrides other view methods where 
appropriate. Since 1Window objects represent windows, they never have 
superviews, but.they must have subviews or nothing will be drawn in the 
window's content region. 

Windows allow a portion of their subviews to be seen-the portion that lies 
within the content region of the window. If any of these subviews is scrollable, 
that subview must have a scroller object as its superview. Scrollers (not 
windows) are scrollable, but windows can be resized, opened, closed, and 
moved around the screen. 

Chapter 7: The Cookbook 163 



6/14/88 

164 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

This recipe deals with creating a simple resizable window that contains a single 
view, which may or may not be scrollable. If you want a window with more 
views, read this recipe and then proceed to the "Creating a Palette Window" and 
"Creating a Window With Two or More Main Views" recipes. 

How to do it 

1. In your resource file, you define a resource for your window. The way you 
define it depends entirely on the resource compiler you use. Here is an 
example of one for the MPW Resource Compiler, Rez: 

resource 'WIND' (1005) { 
{50, 40, 250, 450}, 
zoornDocProc, 
invisible, 
goAway, 
OxO, 

"<<<Untitled>>>" 
} ; 

The first line has the required resource type WIND and an arbitrary resource 
number (1005 in this case). 

The second line defines the default initial size of the window, in screen 
coordinates. (Note that you often modify these values before displaying the 
window.) 

The third line indicates that this window should have a zoom icon. (If you 
don't want a zoom icon, use documentProc here. The constant 
documentProc is defined in the standard MPW Rez types file.) 

The fourth line tells the Window Manager that this window should be 
initially invisible. You always tell the Window Manager not to display 
MacApp windows, even if you want them to be initially visible, because 
they are displayed (if appropriate) by TApplication.ShowWindows. 

The fifth line indicates that the window is to have a close box. The 
alternative is noGoA way. 

The sixth line is the window refCon. It doesn't matter what you put here, 
because MacApp always replaces it 

Finally, the last line defines the initial window title. Note that the triple 
brackets shown here are not displayed. When an existing document is 
opened, the text enclosed in brackets is replaced by the document name. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

When a new document is opened, the text is replaced by the word Untitled, 
followed by a number. If you want the window to have a fixed title, don't 
use the brackets. You can also give text outside the brackets, and that text is 
concatenated to the document name. 

See the sample programs' resource files for more examples. See the 
"Window Manager'' chapter of Inside Macintosh for complete information. 

2. In your unit interface file, define a constant for the resource number of your 
window resource. For example: 

kIDYourWindow = 1005; 

3. Implement DoMake Views, as described in the "Creating a View" recipe. 
MacApp calls DoMakeViews immediately before DoMakeWindows, and 
DoMakeWindows needs to have the view object available. This recipe 
assumes that the view is stored: in yourDocument.fView. 

4. Override IDocument.DoMake Windows for your document type. The 
interface of this method is 

PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE; 

The implementation is discussed in the rest of this recipe. 

5. The window object, along with the required Window Manager structure, is 
created by the MacApp global function NewSimpleWindow. The interface 
of that method is 

FUNCTION NewSimpleWindow(itsRsrcID: INTEGER; 
wantHScrollBar, wantVScrollBar: BOOLEAN; 
itsDocument: TDocument; itsView: TView): TWindow; 

The itsRsrcID parameter gives the ID of the window resource. 

The next two parameters, wantHScrollBar and wantVScrollBar indicate 
whether or not you want scroll bars for the frame in this window. Use the 
kWantHScrollBar and kWantVScrollBar predefined constants here, 
preceded by NOT if you don't want the scroll bars. 

The itsDocument parameter is the document whose data is displayed in this 
window. 

The its View parameter is the view shown in the window. 

6/14/88 

Chapter 7: The Cookbook 165 



6/14/88 

166 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

The template shows NewSimpleWindow called with parameter values that 
result in a scrollable window. 

Template 

PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE; 

VAR aWindow: TWindow; 

BEGIN 

END; 

aWindow := NewSimpleWindow(kIDYourWindow, kWantHScrollBar); 
{ If you want a nonscrollable window, precede kWantHScrollBar and kWantVScrollBar 

with NOT. You can keep one scroll bar and not the other, if you want to. l 

aWindow.AdaptToScreen; 
{ This adapts the window size to a different screen size if necessary. ) 

aWindow.SimpleStagger(kHStagger, kVStagger, gStaggerCount); 
{ SimpleStagger is a TWindow method that staggers the application's windows 

so they do not completely cover each other. If you use this, you must define 
constants such as kHStagger and kVStagger, which are the number of pixels the 
window should be staggered in the horizontal and vertical dimensions, and 
gStagger, which is an INTEGER global variable used by SimpleStagger to keep 
track of how many windows have been staggered. Initialize gStagger to 0 in 
IYourApplication. If you have multiple windows per document, you may want to 
have multiple global variables like gStagger so the windows can be staggered 
in groups. ) 

Creating a palette window 

Purpose 

Some applications require a window that contains two views. The DrawShapes 
sample program is an example; the palette is one view and the drawing area is 
another. Other applications require windows with two equal areas or with three 
or more areas. 

The areas within windows that allow subviews to be scrolled are called scrollers 
and are objects of type TScroller. In general, a simple palette window will have 
two subviews not counting scroll bars: the palette view and a scroller view. 
The scroller view will have one subview-the view that contains the picture that 
the scroller will scroll. However, you can have as many subviews as you wish 
within a window, of class scroller or not, and these may each have their own 
subviews. Typically, all the views in a window share the same document 
object. 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

If you want a simple window with a palette (or any nonscrollable and 
nonresizable area) and a display area, follow the directions in this recipe. 

The characteristics of a window created using the NewPaletteWindow global 
function used in this recipe are as follows: 

• The window contains two subviews: a main view and a palette view. 

• The main view may be scrollable, depending on the values passed. (In the 
template version, the main frame is scrollable.) It is resized along with the 
window. 

• The palette view is not scrollable and is of a fixed size in one direction, 
while it takes up the width or height of the window in the other direction. 

• The palette can be vertically or horizontally oriented, depending on the value 
of the last parameter of NewPaletteWindow. If you need to create a window 
of a different form, see the "Creating a Window With Two or More Main 
Views" recipe. 

+ Note: You need to have a window resource in your resource file. See the 
sample program's resource files for examples of window resources. 

How to do it 

1. Create a view object type for the main view and the palette view as 
described in the "Creating a View" recipe. You do not have to worry about 
creating the scroller superview of your main view or the scroll bar views if 
your main view is to be scrollable-MacApp does that for you. 

2. Add two fields to your document object type to store references to the view 
objects for the document The template for this recipe assumes the fields are 
tMain View and tPalette View. (If you have additional views, you may want 
to store them in a list object instead of individual fields.) 

3. Define a constant for the fixed dimension of the palette. In the template, it is 
called kPalette Width. 

4. Override TY ourDocumentDoMake Views to create your views. In that 
method, create and initialize the views, and then store them in the fields 
you've added to your document. (See the "Creating a View" recipe.) This 
method is called by MacApp just before it calls DoMakeWindows. 

6/14/88 

Chapter 7: The Cookbook 167 



6/14/88 

168 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

5. Override Do Make Windows for your document The interface of this method 
is 

TYourDocument.DoMakeWindows; OVERRIDE; 

In your implementation, you first call NewPaletteWindow, the MacApp 
global function that is the key part of this method. NewPaletteWindow 
creates a Window Manager window with the requested characteristics, 
creates two frames, installs your views in the frames, and installs the 
window object in the document. 

The interface ofNewPaletteWindow is 

FUNCTION NewPaletteWindow(itsRsrcID: INTEGER; 
wantHScrollBar, wantVScrollBar: BOOLEAN; 
itsDocument: TDocument 
itsMainView: TView; itsPaletteView: TView; 
sizePalette: INTEGER; 
whichWay: VHSelect): TWindow; 

The itsRsrcID parameter gives the resource ID used to determine the 
window template for the window. (The window template defines the 
window's general appearance, including whether or not the window has a 
size icon, a close box, and a zoom box, and the appearance of the title bar.) 

The next two parameters, wantHScrolIBar and wantVScrolIBar, tell 
whether or not you want scroll bars for the main part of the window. The 
palette portion never gets scroll bars. Use the kWantHScrollBar and 
kWantVScrollBarpredefined constants here, preceded by NOT if you don't 
want the scroll bars. 

The itsDocument, itsMain View and itsPalette View parameters are self
explanatory. 

The sizePalette parameter gives the size of the palette view (not counting 
borders) in the direction specified by the which Way parameter (see the next 
paragraph). In other words, if the palette is at the left of the window, this is 
the width of the view; if the palette is at the top of the window, this is the 
height of the view. This size is fixed. (If the window is made smaller or 
larger in the specified direction, only the main view gets larger.) The size of 
the palette in the other direction is the full size of the window and can vary. 

The which Way parameter tells where in the window the palette frame is 
located. There are two choices: kLeftPalette and kTopPalette. 

Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Template 

PROCEDURE TShapeDocument.DoMakeWindows; OVERRIDE; 

VAR aWindow: TWindow; 

BEGIN 
aWindow :a NewPaletteWindow(kIDStdWindow, 

END; 

kWantHScrollBar, kWantVScrollBar, 
SELF, fMainView. fPaletteView, 
kPaletteWidth, kLeftPalette); 

Creating a window with two or more main views 

Purpose 

Some applications require a window that contains two main views. The 
DrawShapes sample program is an example; the palette is one view and the 
drawing area is another. Other applications require windows with two equal 
areas or with three or more areas. 

If you want a simple window with a palette (or, more precisely, with any 
nonscrollable and nonresizable area) and a display area (which may or may not 
be scrollable and resizable), you can probably use the NewPaletteWindow 
global function provided by MacApp. See the "Creating a Palette Window" 
recipe for details on creating a window using that function. This recipe 
describes how to create a window with two views in a more general way that 
can be adapted to any number of views, any of which may be scrollable and 
re sizable. 

+ Note: You need to have a window resource in your resource file. See the 
sample program's resource files for examples of window resources. 

How to do it 

You know how to create a simple window that contains a single main view 
before you use this recipe. See the "Creating a Window" recipe. 

1. To create more than one view, you usually have a view object type for each 
kind of view. See the "Creating a View" recipe. 

2. Create a field or a number of fields in your document to store references to 
the view objects for the document The templates for this recipe assume that 

6/14/88 

Chapter 7: The Cookbook 169 



6/14/88 

170 

Working Draft 4 (APDA) 

there are two views, stored in the document fields fFirstView and 
fSecondView. 

MacApp 2.0 Tutorial 

3. Implement the TY ourDocumentDoMa.ke Views method to create your 
views. In that method, create and initialize the views, and then store them in 
the fields you've added to your document See the "Creating a View" 
recipe. This method is called by MacApp immediately before it calls 
DoMakeWindows. 

4. Implement DoMakeWindows for your document The interface of this 
method is 

TYourDocument.DoMakeWindows; OVERRIDE; 

In this method, you will need to create scroller views to be superviews of 
any scrollable views, but subviews of the window. The scroll bars will be 
created by MacApp when you create the scrollers. The example in the 
template shows how to implement this method. 

5. To implement this method, you must create the window you need. For 
every scrollable view in a window, you need to create a scroller and 
associate each view with its scroller. (You can also associate different views 
with a single scroller at different times.) When you initialize each scroller, 
you give a point that defines the initial size of the scroller. Depending on the 
size determiners passed to IScroller, the scroller may automatically change 
size when the window changes size. (You can have views that do not have 
associated scrollers, but they cannot be scrolled.) 

The example in the template shows how to implement this method. 

Your resource file must contain a window template for use by this method. 
See the "Creating a Window" recipe for a discussion of window resources. 

6. Though MacApp may change the size of scrollers automatically (when one 
of its size determiners is sizeSuperView or sizeRelSuperView), MacApp 
never changes the location of a view automatically. If you want the top-left 
corner of a scroller to move when the window is resized, you must override 
the scroller's SuperViewChangedSize method. There you would compute 
the scroller' s new location and size and call its Locate and Resize methods 
to move the scroller and set its size. See the MacApp source code and the 
Display Architecture ERS for further details. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

Templates 

FUNCTION TYourDocument.DoMakeWindows; 

VAR aWmgrWindow: WindowPtr; 
aWindow: TWindow; 
firstScroller, 
secondScroller: TScroller; 
canResize: BOOLEAN; 
canClose: BOOLEAN; 
tempLocation: VPoint; 
tempSize: VPoint; 

BEGIN 

END; 

aWmgrWindow := gApplication.GetRsrcWindow(NIL, kYourWindowRsrcID, 
canResize, canClose); 

FailNIL(aWmgrWindow); 
{ The NIL is in place of a pointer to a space to hold the Window Manager 

window definition. When a NIL is passed, MacApp uses a pointer to 
a heap block it has allocated. canResize and canClose are returned by 
GetRsrcWindow according to the specifications of the window resource.} 

New ( aWindow) ; 
FailNIL(aWindow); 
aWindow.IWindow(SELF, aWmgrWindow, canResize, canClose, TRUE); 
{Among other actions, installs window in the document.} 

{ Create the first scroller. } 
SetVPt(tempLocation, left, top); {upper left corner of first view} 
SetVPt(tempSize, width, height); {dimensions of first view} 

{you should supply width and hieght} 
New(firstScroller); 
FailNIL(firstScroller); 
firstScroller.IScroller(aWindow, tempLocation, tempSize, 

sizeFixed, sizeFixed, 0, 0, 
kWantHScrollBar, kWantVScrollBar); 

(If you don't want scrolling or resizing, precede the constants with NOTs.} 
firstScroller.AddSubView(fFirstView); 

{ Create the second scroller. } 
SetVPt(tempLocation, left, top); {upper left corner.of second view} 
SetVPt(tempSize width, height); {dimensions of second view} 

{you should supply width and hieght} 
New(secondScroller); 
FailNIL(secondScroller); 
secondScroller.IScroller(aWindow, tempLocation, tempSize, 

sizeFixed, sizeFixed, 0, 0, 
kWantHScrollBar, kWantVScrollBar); 

{If you don't want scrolling or resizing, precede the constants with NOTs.} 
secondScroller.AddSubView(fSecondView); 
{Follow the same pattern for each view.} 
aWindow.SetTarget(fFirstView); {The target might be a different view.} 
{ You may have additional code here to restore a saved window state. See the 

•creating a Window" recipe. } 

Chapter 7: The Cookbook 171 



6/14/88 Working Draft 4 (APOA) MacApp 2.0 Tutorial 

Creating a document with two or more windows 

Purpose 

Some applications display two or more views of a document's data at one time. 
When you want to display two separate views, whether of a single ·set of data or 
of separate data sets, you can display them in two subviews of a single window 
or in two separate windows. This recipe describes how to display two different 
views of the same data in separate windows. (If you want to display two or 
more main subviews in a single window, see the "Creating a Window With 
Two or More Main Views" recipe.) 

Howtodoit 

You should be familiar with the "Creating a Window" recipe, which describes 
how to create the simplest kind of window. 

1. You must have at least one view for each window. The views are normally 
of different types, although they can be of the same type. See the "Creating 
a View" recipe. 

2. Create a field or a number of fields in your document to store references to 
the view objects for the document You may want to use individual fields 
for each view, or use a list object to hold all the views. The template for this 
recipe assumes that there are two views stored in the document, named 
fFirstView and fSecondView. 

3. Implement a TY ourDocumentDoMake Views method to create your views. 
In that method, create and initialize the views, and then store them in the 
fields you've added to your document. See the "Creating a View" recipe. 

4. If you want the windows to be spread evenly around the screen, create a 
window resource for each of your windows and define a constant for each 
resource. In the template, the constants are kWindowlKind and 
kWindow2Kind. Part of the window resource definition defines the four 
comers of the window in screen coordinates. After you create the window. 
you can move it around the screen using the Window Manager procedure 
Move Window; similarly, you can resize the window using the 
TWindow .Resize method. You may also want to use SimpleStagger and 
AdaptToScreen. See the template for the "Creating a Window" recipe for 
more information. 

172 Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

5. Override TDocument.DoMakeWindows for your document. The interface is 

PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE; 

In your implementation, begin-by creating a window for each view. In the 
template code for this method, this is done with calls to -
NewSimpleWindow. 

Template 

PROCEDURE TYourDocument.DoMakeWindows; OVERRIDE; 

VAR windowl, window2: TWindow; 

BEGIN 

END; 

windowl := NewSimpleWindow(kWindowlKind, 
kWantHScrollBar, kWantVScrollBar, 
fFirstView); 

{ See the •creating a Window" recipe for details on this call.} 

window2 := NewSimpleWindow(kWindow2Kind, 
kWantHScrollBar, kWantVScrollBar, 
fSecondView) ; 

You may have additional code here to restore a saved window state. 
See the •creating a Window" recipe.} 

Creating view templates 

Purpose 

Since your application may require windows and views in complex hierarchies, 
you may want to design and correct your view hierarchies many times. View 
templates allow you to design your views and their hierarchical relationship in a 
file separate from the rest of your code. The resource compiler will make your 
view templates become resources that your program can access during runtime 
to create actual view instances. This gives MacApp's views the same.flexibility 
that other Macintosh resources have. 

Howtodoit 

1. Design your view hierarchy. Decide what types of views you want to 
define, and what the hierarchy should be. Remember that a window view 
will typically be at the top of your view hierarchies. 

6/14/88 

Chapter 7: The Cookbook 173 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

If your view hierarchy is going to include scroller views and scroll bar 
views, and if you are not overriding MacApp's scroll bar methods, you do 
not need to include scroll bar views in your view templates. MacApp will 
create those for you automatically. 

2. Add a view resource for each view hierarchy (usually one per window) to 
your .r file. The view resource format is defined in the file MacAppTypes.r, 
and you might want to examine that definition for details later. For now, 
this recipe will give you the necessary details to create simple view resource 
templates. 

View resources are formatted like this: 

resource •view• (1001, purgeable) 
( 

} ; 

/* Each view of the hierarchy has an entry here */ 
} 

Let's take an example view resource: 

resource •view• (1001, purgeable) ( 
( 

} ; 

root, 'WIND', (50, 20}, (260, 430}, 
sizeVariable, sizeVariable, shown, enabled, 
Window ( •class name", <fields specific to window views go here> }; 

'WIND', 'MAIN', {0, 0}, (140, 240}, 
sizeFixed, sizeFixed, shown, enabled, 
View { •class name", <fields specific to views go here> 
/*Note there is no ';' after the right brace above. */ 
} 

As you can see in this example, each view entry has a format like this: 

ParentViewsID, ThisViewsID, LocationinParentView, SizeOfView, 
VerticalSizeDeterminer, HorizontalSizeDeterminer, ShownDeterminer, EnabledDeterminer, 
TypeOfView { •class name", <more fields depending on type of view> } 

Let's look at each of these fields. 

• ParentViewsID. This field contains the ID of the parent view. You 
can use the word root (with no quotes) to specify that this view has no 
parent view. You will always want to specify root for your window 
views; otherwise you must use a four character string that is the ID of 
the parent view .. 

174 Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

• ThisViewsID. The identifier of this view. Identifiers are four
character strings, such as 'WIND', 'MAIN', 'SCRL',or 'MYVW. You 
create this identifier to use in theParentViewsID field of any view that is 
a subview of this view. You can also use this identifier in your program 
to obtain a reference to a subview in a view hierearchy. See the 
"Creating and Initialization Views with Templates" section. View 
identifiers do not have to be unique, and not all views need an identifier. 
For example, if you have a view that has no subviews, and that you 
won't need a reference to in your program,you can use the constant 
noID (with no quotes) for its identifier. 

• LocationlnParentView. This specifies the offset of the upper left
hand comer of this view from its parent view, in pixels. 

• SizeOfView. This field specifies the initial size of the view. 

• VerticalSizeDeterminer and HorizontalSizeDeterminer. 
These fields detCrmine how the view is to be sized. The possible values 
are: sizeSuperView, sizeRelSuperView, sizePage, sizeFillPages, 
size Variable, sizeFixed. 

• ShownDeterminer. This determines whether the view is displayed 
initially. The value choices are: shown and notShown. 

• EnabledDeterminer. This determines whether the view is enabled 
(whether it responds to mouse clicks). The possible values are: disabled 
and enabled. 

• TypeOfView. This determines the format of the rest of the view's 
data. You can think of this as indicating the type of view to create, 
though it doesn't actually indicate a view's class. (See the "Class Name" 
entry below.) This field is followed by the view's class name and a list 
of fields specific to the class of the view instance. The predefined 
choices for this field are: View, Window, Scroller, DialogView, 
Control, Button, CheckBox, Radio, ScrollBar, Cluster, Icon, Picture, 
Popup, StaticText, EditText, NumberText, TEView, GridView, 
TextGridView, TextListView. You can define your own view types to 
have resource entries, if you like, by either changing the ViewTypes.r 
Rez file or creating your own view types Rez file. However, because 
yom views will probably be descendants of one of these classes of 
views, you will most likely be able to use the ancestor class for your 
template, and do any extra initialization in your own code. 

6/14/88 

Chapter 7: The Cookbook 175 



6/14/88 

176 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

• Class Name. This determines what class the view instance belongs 
to. It is the name of the class, in double quotes, as defined the program. 
For instance, if the view is an instance of a standard MacApp window 
then the class name would be "1Window". However, if the view is an 
instance of a subclass of 1Window, for example TY ourWindow, then 
the class name would be ''TYourWindow." 

Each of these view class entries has its own list of fields. You can see 
examples of these in the samples below and in the sample programs. If you 
want a complete enumeration of these fields, see the ViewTypes.r rez file. 

Here is an example of a complete view resource: 

resource •view• (1001, purgeable) { 
{ 

} ; 

root, 'WIND', {SO, 20}, (260, 430}, 
sizeVariable, sizeVariable, shown, enabled, 
Window { "TWindow", zoomDocProc, goAwayBox, resizeable, modeless, 

ignoreFirstClick, freeOnClosing, disposeOnFree, closesDocument, 
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen, 
dontCenter, 'NOTH', "" }; 

'WIND', 'SCLR', {0, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl}, 
sizeRelSuperView, sizeRelSuperView, shown, enabled, 

· .Scroller { "TScroller", vertScrollBar, horzScrollBar, O, O, 16, 16, 
vertConstrain, horzConstrain, (0, 0, O, 0} } ; 

'SCLR', 'NOTH', {0, 0}, (140, 240}, 
sizeFixed, sizeFixed, shown, enabled, 
View { "TNothingView" } 
} 

This view template defines a window view with one immediate subview, a 
scroller, which, in turn, has its own subview. The size of the scroller is 
relative to the sire of the window-it leaves space for the horimntal and 
vertical scroll bars. The 'NOTH' view is of a fixed size, and is not offset 
from the scroller. 

As you can see, the fields in the view class template entries basically mirror 
the fields of the the view classes. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

3. It is possible to divide a view hierarchy into several view resources. For 
example, 

resource •view• (1001, purgeable) { 

l; 

root, 'WIND', {50, 20}, (260, 430}, 
sizeVariable, sizevariable, shown, enabled, 
Window { "TWindow", zoomDocProc, goAwayBox, resizeable, modeless, 

openWithDocument, freeOnClosing, disposeOnFree, closesDocument, 
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen, 
dontCenter, 'NOTH', "" }; 

WIND, 'SCLR', {0, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl), 
sizeRelSuperView, sizeRelSuperView, shown, enabled, 
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16, 

vertConstrain, horzConstrain, {0, 0, 0, 0) ); 

'SCLR', IncludeViews {1002} 
} 

resource 'view• (1002, purgeable) { 

l; 

root, 'NOTH', {0, 0}, (140, 240}, 
sizeFixed, sizeFixed, shown, enabled, 
View { "TNothingView" } 
} 

Template 

/* A complete view hierarchy in one resource. */ 
resource 'view• (1001, purgeable) 

} ; 

root, 'WIND', {50, 20), (260, 430}, 
sizeVariable, sizeVariable, shown, enabled, 
Window { "TWindow", zoomDocProc, goAwayBox, resizeable, modeless, 

openWithDocument, freeOnClosing, disposeOnFree, closesDocument, 
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen, 
dontCenter, 'MAIN', "" }; 

'WIND', 'SCLR', {0, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl}, 
sizeRelSuperView, sizeRelSuperView, shown, enabled, 
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16, 

vertConstrain, horzConstrain, {0, O, O, 0} }; 

'SCLR', 'MAIN', {0, 0}, (140, 240), 
sizeFixed, sizeFixed, shown, enabled, 
View { "TYourView" } 

Chapter 7: 1he Cookbook 

6/14/88 

177 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

/* A view hierarchy spread out over two resources. */ 
resource •view• (1001, purgeable) { 

{ 

}; 

root, 'WIND', {50, 20}, (260, 430}, 
sizeVariable, sizeVariable, shown, enabled, 
Window { "TWindow", zoomDocProc, goAwayBox, resiz.eable, modeless, 

openWithDocument, freeOnClosing, disposeOnFree, closesDocument, 
openWithDocument, dontAdaptToScreen, stagger, forceOnScreen, 
dontCenter, 'MAIN• , "" } ; 

WIND, 'SCLR', {0, 0}, {260-kSBarSizeMinusl, 430-kSBarSizeMinusl}, 
sizeRelSuperView, sizeRelSuperView, shown, enabled, 
Scroller { "TScroller", vertScrollBar, horzScrollBar, 0, 0, 16, 16, 

vertConstrain, horzConstrain, {0, 0, 0, 0} } ; 

'SCLR', IncludeViews {1002} 
} 

resource 'view• (1002, purgeable) { 

} ; 

root, 'MAIN' , { O, O} , ( 14 0, 2 4 O} , 
sizeFixed, sizeFixed, shown, enabled, 
View { "TYourView" } 
} 

. Creating and initializing a view with templates 

178 

Purpose 

Once you've created your view resources, you must still call the correct routines 
to create the actual view instances. 

How to do it 

1. Register your view classes. MacApp creates views from resources by 
cloning prototype views which you must create when your program begins. 
For that reason, you must "register'' each of your view classes that will be 
read from view resources, Typically you register your view classes in 
IY ourApplication. Registering a view class looks like this: 

NEW(aYourView); 
FailNil(aYourView); 
RegisterType('TYourView•, aYourView); 

Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

( 
where aYourView is an instance ofTYourView local to IYourApplication. 
The view classes defined by MacApp are already registered: you only need 
to register view classes that you define. 

2. In the DoMake Views method of your document class, you can create your 
view hierarchy using the global function NewTemplateWindow. For 
example: 

aWindow := NewTemplateWindow(kYourWindowID, SELF); 

In this example, kYourWindowID should be defined to be 1001 to match 
the resource definition given in the last section. 

To get a reference to yourTYourView instance in the view hierarchy, you 
can use the FindSubView method. FindSubView will return a reference to 
a particular view type in a view hierarchy, given that subview' s four-
character identifier. For instance, 

aYourView := TYourView(aWindow.FindSubView('MAIN')); 

will put a reference to the 'N01H' subview instance of a Window into 
a Your View. If more than one subview of a Window was given 'N01H' as 

( 
an identifier in the resource file, then a reference to the first 'NOnI' 
subview found will be returned-so be careful if you don't use unique 
identifiers in your view templates. 

Since FindSubView returns a reference to the generic TView class, you will 
need to cast the result to the class of your view. 

If you want to create a view hierarchy that does not have a window as the 
root, you can call the TEvtHandler method DoCreate Views. For example, 

aYourView := TYourView(DoCreateViews(SELF, NIL, kYourViewID)); 

IfkYourView has been defined to be 1002 (to correspond to our resource 
template in the previous section), then a Your View will now reference the 
view at the top of the view hierarchy defined in view resource 1002. 

3. Initialize your views. MacApp calls the IRes initialization methcxl of view 
objects created from resources. If you have created a descendant class of a 
MacApp-defined view class, you may want to do some specialized 
initialization of your own. To do this, you must override IRes to initialize 
your descendant class's fields. However, remember that you cannot add 
any parameters to an override method, so you may still wish to create your 
own initialization method, and ensure that it is called. 

('' 
Chapter 7: The Cookbook 179 



6/14/88 

180 

Working Draft 4 (APDA) 

Template 

PROCEDURE TYourApplication.IYourApplication(itsMainFileType: OSType); 

VAR aYourView: TYourView; 

BEGIN 
IApplicaiton(itsMainFileType); 

NEW(aYourView); 
FailNil(aYourView); 
RegisterType('TYourView•, aYourView); 

END; 

PROCEDURE TYourDocument.DoMakeViews(forPrinting: BOOLEAN); 

VAR 
aView: TView; 
aWindow: TWindow; 

BEGIN 

MacApp 2.0 Tutorial 

{ The forPrinting parameter is set to TRUE when the user has requested 
{ printing from the Finder. In this case, you only need to create the 
{ view that is actually being printed. } 
IF forPrinting THEN BEGIN ( You don't need the whole window. 

END 

aYourView := TYourView(DoCreateViews(SELF, NIL, kYourViewID)); 
fYourView := aYourView; 

ELSE BEGIN ( You do need the whole window. 
aWindow := NewTemplateWindow(kYourWindowID, SELF); 
fYourView := TYourView(aWindow.FindSubView('MAIN')); 

END; 

Drawing a view 

Purpose 

When one of your application's windows needs to be updated, MacApp calls 
the DrawContents method for the view representing the window. 
DrawContents sends a DrawContents message to each subview, and then calls 
the window's Draw method. (Draw is defined for TView; the default method, 
TView.Draw, does nothing.) TYourView.Draw translates between the data 
stored in the document and the screen (or printed page). 

How to do it 

This recipe assumes your data is organized into a list of instances that draw 
themselves. In other words, your data consists of objects organized into a list 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

(generally stored in an object of class 1List), and each object type has a 
Tltem.Draw method. Tltem.Draw actually draws the object If your application 
cannot be organized like that, have TY our View.Draw do the drawing itself. 
Note that you rarely, if ever, call any Draw method yourself; you call 
TView.InvalidRect to invalidate the part of your view that has changed or call 
TView.DrawContents if you need to redraw the view and its subviews 
immediately. When there is nothing else for the application to do, MacApp calls 
the Draw methods for all views that have invalidated areas that are actually 
displayed in the window. 

See the sample programs for other examples of Draw. 

Implement TYourView.Draw. The interface of that method is 

PROCEDURE TYourView.Draw(area: Rect); 

A sample method is given in the template for this recipe. That sample assumes 
your objects draw themselves and their Draw methods take no parameters. The 
sample also makes no use of the area parameter, which is a rectangle containing 
all invalid areas. You can use the area parameter to optimize your drawing. See 
the "Optimizing Drawing" recipe. 

If you use filtered commands, this method is often coded so it draws items that 
are not in the document or skips some items that are in the document. See the 
"Creating Filtered Commands" recipe for more information. 

Template 

PROCEDURE TYourView.Draw(area: Rect); 
{ See the "Optimizing Drawing" recipe for a discussion of the area parameter. ) 

BEGIN 

END; 

PROCEDURE Drawitem(item: Titem); 
BEGIN 

item.Draw(area); { See the "Drawing an Object in a View" recipe. 
END; 

fitemList.Each(Drawitem); 

6/14/88 

Chapter 7: The Cookbook 181 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Drawing an object in a view 

Purpose 

MacApp calls TY our View .Draw when drawing is required. You often pass the 
actual drawing on to the objects that make up your view. You generally do that 
so that the view has no need to know the form of the objects. 

Howtoc:toit 

1. Implement TYourView.Draw as described in the "Drawing a View" recipe. 

2. Draw the object in your view's coordinate system. MacApp has already set 
up the drawing environment so that drawing takes place in your view. 

3. If you want to optimize drawing by only drawing what has changed and is 
visible, see the "Optimizing Drawing" recipe. 

Because drawing is so application-specific, no template is given for this recipe, 
but it might be helpful to look at the Draw methods in the Nothing, DrawShapes 
and Cale sample programs. 

Optimizing drawing 

Purpose 

When MacApp calls TYourView.Draw, it passes a rectangle (the area 
parameter) that gives the invalid area of the view, which is the only part that 
needs to be redrawn. Whenever you call one of the invalidating routines, the 
rectangle you give is added to the invalid area. In addition, whenever the user 
scrolls the frame, the strip that appears is added to the invalid area. MacApp 
automatically adjusts the invalid area so that only parts actually displayed in the 
frame are included. Therefore, the maximum invalid area is the size of the 
content rectangle of the frame, even if you have invalidated other areas. 

Note that moving a window does not invalidate its contents, unless it was partly 
off the screen, because the system automatically moves the window's contents 
along with its borders. Also, covering a window does not invalidate the 
contents of the covered window. Uncovering a window invalidates the newly 
revealed parts. Similarly, when a view is scrolled, only the part that newly 

182 Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

appears in the frame is invalidated. The part that was already displayed in the 
view but has now been moved is not invalidated. 

The area parameter is always the smallest displayed rectangle that encloses all 
invalidated areas. 

This recipe describes how to use the invalid area so that you only draw the part 
of the view that needs to be drawn. 

How to do it 

If your data set consists of separate objects that are not spatially ordered, you 
must check each object to see if it is in the invalid area. There are two places in 
which you can check: in TYourView.Draw, before calling item.Draw, or in 
Titem.Draw. The templates section of this recipe shows examples of both. 

You need a way of identifying the rectangle containing a particular item. In the 
template methods, there is a field of Titem called fExtentRect that is a Rect with 
the bounds of the item. You could replace fExtentRect with a functional method 
that returns the same value. Note that using a rect for t'ExtentRect works only 
for views no larger than 30,000 pixels. For larger views, or views located in a 
larger space, you would use a VRect for :fExtentRect. 

(The methods in the template call Rectls Visible. If you look at the MacApp 
source code, you'll find that RectlsVisible tests whether the given Rect is in the 
window's visRgn. The Window Manager sets the visRgn to the intersection of 
the visRgn and the update region before the update cycle begins.) 

If your data set is organized spatially (for example, in rows and columns or in 
paragraphs) you can avoid examining parts that are definitely not in the invalid 
area. You can do this in an application displaying rows and columns, for 
example, by finding the first and last row and the first and last column that 
intersect the invalid area. Then, only the rows and columns between those limits 
need to be drawn. The templates contain an example. 

6/14/88 

Chapter 7: The Cookbook 183 



6/14/88 

184 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Templates 

{ The following procedure shows how you can optimize TYourView.Draw. } 
PROCEDURE TYourView.Draw(area: Rect); 

PROCEDURE Drawitem(item: Titem); 
BEGIN 

IF RectisVisible(item.fExtentRect) THEN 
item.Draw; (See ~he ~Drawing an Object in a View" recipe.} 

END; 
BEGIN 

fitemList.Each(Drawitem); 
END; 

{ The following procedure shows how you can optimize Titem.Draw. } 
PROCEDURE Titem.Draw(area: RectJ; 
BEGIN 

END; 

IF RectisVisible(fExtentRect) THEN 
{Draw the object} 

{ The following procedure shows how you can optimize drawing in spatially organized views. 
PROCEDURE TYourView.Draw(area: Rect); 

VAR firstRow, firstCol, lastRow, lastCol: INTEGER; 
rowindex, colindex: INTEGER; 

BEGIN 

END; 

GetDrawLimits(area, firstRow, firstCol, lastRow, lastColJ; 
FOR rowindex := firstRow TO lastRow DO 

FOR colindex := firstCol TO lastCol DO 
DrawitemAt(rowindex, colindex); 
( The method DrawitemAt is not specified here. Its implementation 

depends on how you structure your data. } 

PROCEDURE TYourView.GetDrawLimits(area: Rect; 

BEGIN 

END; 

VAR firstRow, firstCol, lastRow, lastCol: INTEGER); 

PROCEDURE PtToRowCol(aPoint: Point; VAR row, column: INTEGER); 
BEGIN 

END; 

row := aPoint.v DIV cRowHeight; 
column := aPoint.h DIV cColWidth; 

You define cRowHeight. 
You define cColWidth. 

PtToRowCol(area.topLeft, firstRow, firstCol); 
PtToRowCol(area.botRight, lastRow, lastCol); 
lastRow := Min(lastRow, fNumRows); 
lastCol := Min(lastCol, fNumColsJ; 
( The preceding two statements assume that you maintain the current number of rows 

and columns in fields of the view. } 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Handling mouse events 
You often need to track the pointer after the mouse button goes down and take 
some action while the mouse moves or when the mouse button comes up. (You 
also occasionally need to track the mouse when the button is up and take action 
when the button goes down.) Mouse actions normally fall into four groups: 

• selecting 

• manipulating buttons and other controls 

• dragging 

• drawing 

When MacApp detects a mouse-down event, it first checks the location of the 
mouse when the button was pressed. If the mouse button was pressed when the 
pointer was not in one of the window's subviews, the event is handled by 
MacApp, which may call your code. For example, the user may choose a menu 
item, which results in a call to yourView.DoMenuCommand. If the pointer was 
in a scroll bar, it causes scrolling to take place, which results in a call to 
your View.Draw. 

However, if the pointer was in one of your views when the mouse button was 
pressed, TY ourView.DoMouseCommand is called. 

The DoMouseCommand method is a function that returns either a handle to a 
command object or the global variable gNoChanges. If the mouse event 
requires tracking or indicates that the user is beginning an undoable command, 
DoMouseCommand will create a command object; otherwise, if there is a 
command, it will execute the command and return gNoChanges. 

This section includes a recipe for handling each of the four general types of 
mouse actions. Each recipe assumes that only that type of action can occur. 
These four recipes are followed by a recipe for tracking the mouse, which 
contains detailed information about the mouse trackers used for the preceding 
four recipes. Then there is a recipe that shows how to differentiate among 
several possible mouse actions. 

The last recipe in this section covers the relatively rare need to track the mouse 
after the mouse button comes up. (The most common situation in which this is 
necessary is when drawing a polygon, as in MacDraw.) 

6/14/88 

Chapter 7: The Cookbook 185 



6/14/88 

186 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Selecting 

Purpose 

The user can select all or part of an object displayed in your view in preparation 
for performing some action. You need to detect when the user is attempting to 
select s0mething, figure out what was selected, and mark it as selected in your 
data set and also in the view by highlighting it in some way. 

For simplicity, this recipe assumes that a mouse-down event indicates either a 
selection or nothing. In general, a mouse-down event indicates the beginning of 
one of a number of possible actions, and your program uses a number of 
criteria to figure out which action the user wants. See the "Handling Several 
Types of Mouse Events" recipe for an example of integrating different types of 
mouse actions. 

Howtodoit 

1. Write TYourView.DoMouseCommand so that it detects selections. The user 
should be able to select a single item and should be able to make multiple 
selections. 

There are several ways to handle multiple selections, generally depending 
on the kind of data being selected. 

Applications generally handle selections in one of two ways: 

• If your application, like the sample program DrawShapes, has discrete 
independent objects scattered around the view, the user should be able to 
select individual objects by clicking them. The user should also be able to 
make multiple selections by drawing a selection rectangle around several 
objects, and add objects to the group of selected objects by holding down 
the Shift key and clicking a new object. (Similarly, the user should be able 
to remove selections from the group by holding the Shift key and clicking a 
selected object) Selections don't have to be contiguous-selecting two 
objects using Shift-click does not automatically select everything between 
the two objects. 

• If your application, as text or spreadsheet applications do, has data 
organized in a contiguous list, selections should be contiguous arbitrary 
portions of the data. If the application deals with text, the amount selected 
usually depends on the number of clicks (that is, a single click places an 
insertion point, a double click selects a word, and a triple click selects a 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

paragraph). In addition, the user should be able to select blocks of text by 
holding the mouse button down and dragging the pointer across the text, as 
well as by holding the Shift key down and clicking to extend the selection. 
Extending the selection generally selects everything up to the new selection. 
Selection in cell-based applications, such as spreadsheet programs, are 
similar. 

Some applications (such as MacDraw) fall partially into both categories, 
depending on the mode chosen by the user. 

Text selections are usually handled by UTEView (see the "Using 
UTEView" recipe). If you need to handle text selections yourself, see the 
UTEView source code. 

If you have discrete objects displayed in your view, DoMouseCommand can 
follow this plan: 

• Scan through your set of objects and check each to see whether the mouse 
pointer was within its area. If you find the mouse pointer was over an 
object, check whether the Shift key was down. If it wasn't, mark the 
identified object as selected and deselect the previous selection. If the Shift 
key was down, toggle the selection status of the identified object. See step 2 
of this recipe for a discussion of how the selection status of objects may be 
stored. 

• If the pointer was not over any object, the user may have been trying to 
select or deselect a group of objects. Create a selector object, which is a type 
of mouse tracker. (See the "Tracking the Mouse" recipe for a description of 
mouse trackers and their methods.) MacApp calls the methods 
command.TrackMouse, command.TrackFeedback, and 
command. TrackConstrain while the button is down. You can find all the 
selected objects and mark them in TrackMouse when the trackPhase is 
trackRelease. (See step 2 of this recipe for a discussion of marking 
selections.) 

A sample of a TrackMouse method for a selector object is given in the 
templates for this recipe. 

A template for DoMouseCommand is also given in the templates for this 
recipe. 

6/14/88 

Chapter 7: The Cookbook 187 



6/14/88 

188 

Working Draft 4 (APDA) MocApp 2.0 Tutorial 

2. Create a DoHighlightSelection methcxl for your view. MacApp calls 
yourView.DoHighlightSelection after it calls yourView.Draw. The interface 
for DoHighlightSelection is 

PROCEDURE TYourView.DoHighlightSelection(fromHL, toHL: HLState); 
OVERRIDE; 

HLState is an enumerated type with values hlOff, hlDim, and hlOn. The 
value hlOff indicates that no highlighting should take place; hlOn indicates 
that the selection should be highlighted when the window is active; hlDim 
indicates that the selection should be also highlighted when the window is 
inactive. Dim highlighting (which is not part of the user interface standard 
and is an optional enhancement) can be used instead of no highlighting 
when the window is not active. If your application doesn't do highlighting 
you can treat hlDim and hlOff as the same thing. 

DoHighlightSelection finds all selections and turns highlighting on, off, or 
to dim. MacApp calls it when the window showing the view is activated or 
deactivated or when the view is updated. The values of the parameters are as 
follows: 

• Updating the active window: hlFrom is hlOff and hlTo is hlOn. 

• Updating an inactive window: hlFrom is hlOff and hlTo is hlDim. 

• Activating a window: hlFrom is hlDim and hlTo is hlOn. 

• Inactivating a window: hlFrom is hlOn and hlTo is hlDim. 

You call DoHighlightSelection yourself when the selection changes. A 
sample implementation is given in the templates for this section. The 
template allows multiple selections, with each object marked as selected or 
not selected. 

Unlike most methods that draw in the view, DoHighlightSelection can be 
called from other methods. When the selection changes, you can remove 
highlighting from the old selection by calling DoHighlightSelection(hlOn, 
hlOft) and then calling DoHighlightSelection(hlOff, hlOn) to highlight the 
new selection. Note that your view must be focused before calling 
DoHighlightSelection. If you're not sure if it's focused you can insert code 
to say 

IF yourView.Focus THEN ..•• 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 CAPDA) 

When MacApp calls your Draw, DoHilightSelection, or 
DoMouseCommand methods, your view has been focused. 

3. Record what objects (or parts of objects) are selected. There are many ways 
you could record this information. Some common ways are listed here: 

• If there is always only one selection, the selection is somehow indicated 
separately from the list of objects (probably stored in a field of the 
document, or if that is not meaningful, of the view), and 
DoHighlightSelection simply highlights the cUITCnt selection. 

• The document (or view, if necessary) has a list of selected objects 
separate from the list of all objects. DoHighlightSelection scans through 
that list and highlights all of them. 

• Each object is marked as selected or not selected. One way to mark them 
is to have a Boolean field, flsSelected, in each object. When the object 
is initialized, you set that field to FALSE. DoHighlightSelection scans 
through the list of objects and highlights any that have flsSelected 
TRUE. 

• There is a Boolean function that decides whether or not an object is 
selected. DoHighlightSelection can scan through the list of all objects 
and highlight those for which this function returns 1RUE. 

4. Define and implement a command object to handle selection. 

Templates 

TYourSelector = OBJECT(TCommand); 

fYourDocument: TYourDocument; 
fYourView: TYourView; 
fDeltaH: INTEGER; 
fDeltaV: INTEGER; 

PROCEDURE TYourSelector.IDragger(view: TYourView); 

FUNCTION TYourSelector.TrackMouse(aTrackPhase: TrackPhase; 

6/14/88 

VAR anchorPoint, previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; OVERRIDE; 

PROCEDURE TYourSelector.Doit; OVERRIDE; 

PROCEDURE TYourSelector.Undoit; OVERRIDE; 

PROCEDURE TYourSelector.Redoit; OVERRIDE; 

Chapter 7: The Cookbook 189 



6/14/88 

190 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

PROCEDURE TYourSelector.TrackFeedback(anchorPoint, nextPoint: VPoint; 
turnitOn, mouseDidMove: BOOLEAN); OVERRIDE; 

PROCEDURE TYourSelector.FixSelection; 

PROCEDURE TYourSelector.MoveBy(moveit: BOOLEAN); 

END; 

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; 

VAR hititem: Titem; 
aSelector: TYourSelector; 

BEGIN 

END; 

PROCEDURE CheckHit(item: Titem); 
BEGIN 

END; 

IF {for example} PtinRect(theMouse, item.fBoundsRect) THEN 
hititem := item; 

hititem := NIL; 
IF NOT info.theShiftKey THEN 

Deselect; 
{ This is a method you must design and add to your view to remove marking 

from the current selection or selections. } 

fitemList.Each(CheckHit); 
{ This TList-type field of the view holds all the application's items. The code 

here assumes that the list is ordered back-to-front and the frontmost object 
is the one the user selects. } 

IF hititem = NIL THEN BEGIN { begin a selection rectangle } 
New(aSelector); 

END 

FailNIL(aSelector); 
aSelector.ISelector(fYourDocument, SELF, info.theShiftKeyJ; 
DoMouseCommand := aSelector; 

ELSE BEGIN { one object selected or toggled } 
DoMouseCommand := gNoChanges; 
hititem.fisSelected := NOT hititem.fisSelected; 

END; 

Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

PROCEDURE TYourSelector.ISelector(ItsDocument: TYourDocument; 

BEGIN 

END; 

itsView: TYourView; shiftKey: BOOLEAN); 

Call !Command to set the command's fView to the view in which tracking 
takes place and to set the scroller used for automatic scrolling during 
selection. cSelect is command number constant for this command that can 
be used to distinguish one kind of selection from another. After calling 
!Command it is necessary to set fCausesChange and fCanUndo to false, as 
a selection neither changes a document or is undoable. } 

ICommand(cSelect, itsView, itsView.GetScroller(TRUE)); 
fCausesChange := FALSE; 
fCanUndo :• FALSE; 
fYourDocument := itsDocument; 

FUNCTION TYourSelector.TrackMouse(aTrackPhase: TrackPhase; 

BEGIN 

END; 

VAR anchorPoint, previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; 

PROCEDURE CheckHit(item: Titem); 
BEGIN 
{ Here check if the item is in the rectangle marked by the mouse between 

anchorPoint and nextPoint. If it is, mark it selected or deselected or 
add it to the list or remove it from the list of selected items, depending 
on the state of the Shift key stored in the selector object. } 

END; 

TrackMouse := SELF; 
IF aTrackPhase := trackRelease THEN 
BEGIN 

END; 

fView.DoHighlightSelection(hlOn, hlOff); 
fYourDocument.Each(CheckHit); {assumes items are in a TList list} 
fView.DoHighlightSelection(hlOff, hlOn); 
TrackMouse := gNoChanges; 

PROCEDURE TYourView.DoHighlightSelection(fromHL, toHL: HLState); 

BEGIN 

END; 

PROCEDURE Highlightitem(item:Titem); 
BEGIN 

END; 

IF item.fisSelected THEN 
item.Highlight(fromHL, toHL); 

fitemList·. Each (Highlight Item); 

Chapter 7: The Cookbook 191 



6/14/88 

192 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Dragging 

Purpose 

Many applications have discrete objects that can be moved around the view. 
They are often moved by the user who can drag such objects with the mouse. 

For simplicity, this recipe assumes that a mouse press indicates that the user 
wants to drag an object or has no meaning. In general, a mouse press may 
indicate a number of possible actions, and your program uses a number of 
criteria to figure out which action the user wants. See the "Handling Several 
Types of Mouse Events" recipe for an example of integrating different types of 
mouse actions. 

How to dolt 

1. Implement DoMouseCommand so that it creates a dragger object if the 
mouse has been clicked on an object. (If the mouse has not been clicked on 
an object, nothing should be done and DoMouseCommand should return 
gNoChanges to indicate that no valid action has occmred.) The next step 
discusses dragger objects. 

The DoMouseCommand in the templates assumes that the object located 
under the mouse pointer need not be marked as selected and any previous 
selection should not be deselected, a choice of action that is rarely 
appropriate but is used here for simplicity because this recipe ignores all 
selection issues. See the "Selecting" recipe for a full discussion of selection. 

2. Implement a dragger object. Here is a sample interface of a dragger type: 

TYourDragger = OBJECT(TCommand); 

fYourDocument: TYourDocument; 
fYourView: TYourView; 
fDeltaH: INTEGER; 
fDeltaV: INTEGER; 

PROCEDURE TYourDragger.IDragger(view: TYourView); 

FUNCTION TYourDragger.TrackMouse(aTrackPhase: TrackPhase; 
VAR anchorPoint, 

previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; OVERRIDE; 

PROCEDURE TYourDragger.Doit; OVERRIDE; 

PROCEDURE TYourDragger.Undoit;. OVERRIDE; 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

PROCEDURE TYourDraqqer.Redoit; OVERRIDE; 

PROCEDURE TYourDraqqer.TrackFeedback(anchorPoint, nextPoint: VPoint; 
turnitOn, mouseDidMove: BOOLEAN); OVERRIDE; 

PROCEDURE TYourDraqqer.FixSelection; 

PROCEDURE TYourDraqqer.MoveBy(moveit: BOOLEAN); 

END; 

You need to override Track.Feedback because you generally need to give 
feedback other than the standard flickering rectangle, which is only 
appropriate for making certain kinds of selections If you want to constrain 
the mouse (for example, to conform to a grid), also override 
TrackConstrain. Track.Feedback and TrackMouse are discussed later in this 
recipe. TrackConstrain is discussed in the ''Tracking the Mouse" recipe. 

A dragger object is a type of mouse tracker. See the "Tracking the Mouse" 
recipe for details on mouse trackers. 

3. Add the following field to your view: 

fDraqqinq: BOOLEAN; 

This field is used to determine if the mouse is actually moving. It is used for 
a number of optimizations, but is primarily necessary so that TrackMouse 
can determine when the mouse has first moved. See the discussion of 
TrackMouse later in this recipe for an explanation. 

In your IYourView method, initialize tDragging to FALSE. 

4. Define a command constant for the dragging command. Although dragging 
is not a menu command, it must have its own unique constant, such as 

cDraqCommand s { Use numbers above 1000 for your application's commands. 
Building blocks can use numbers above 500. }; 

5. In your TY our View .Draw method, before drawing each item, you may 
want to test whether !Dragging is TRUE and the item is currently selected. 
If both conditions are TRUE, you might not draw the item in Draw. 
Instead, you may draw it in its current position in TrackFeedback. (Whether 
or not you do this depends on what you want the user to see during a 
dragging operation.) Similarly, you may want to prevent highlighting in 
your DoHighlightSelection method if the item is being dragged. 

6. Implement !Dragger. Note that fView.tDragging should be set to FALSE 
here because at the time the dragger object is created, you cannot assume 

Chapter 7: The Cookbook 193 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

that dragging will actually occur, only that it is possible. Also, you 
ordinarily call !Command to initialize the command (In some cases, you 
may call another method which itself calls !Command.) No template is 
given for this method; see the previous section or the sample program 
PatView for an example. 

7. Implement TrackFeedback so that it shows the dragged item or items as they 
move. The feedback should, of course, be chosen as appropriate for your 
application, but to prevent unnecessary drawing you should gate your 
feedback by checking whether fView.fDragging is 1RUE and whether 
mouseDidMove is 1RUE. (The parameter mouseDidMove is passed to your 
TrackFeedback method by MacApp. It indicates whether or not the mouse 
moved since the last time TrackFeedback was called.) 

8. Add the following method to the interface of your view type: 

PROCEDURE TYourView.PrepareToTrack; 

This method prepares the view for dragging. To do so, it should erase any 
selected items (unless you don't want your application to do that) and set 
fView.tDragging to 1RUE. If your view contains items that might 
overlap-in which case, when you erase the selected items, you might also 
erase unselected items that overlap the selected items-call DrawContents. 
A sample of this method is shown in the templates for this recipe. 

9. Implement TrackMouse. When aTrackPhase is trackMove, check the value 
offYourView.fDragging. IffYourView.fDragging is FALSE, this is the 
first time that TrackMouse has been called in the trackMove phase, and it is 
time to prepare for tracking. First, call the view's 
DoHighlightSelection(hlOn, hlOft) to remove highlighting from the 
selection. Then, call the view's Prepare To Track method. (See the previous 
step of this recipe.) Finally, focus on your view, because PrepareToTrack 
may have changed the focus. If fY ourView.fDragging is 1RUE, you don't 
have to do anything, unless your application has actions that should be 
perfonned at this time. 

When aTrack:Phase is trackRelease, if fY our View .£Dragging is still FALSE, 
you should return gNoChanges, because the user has done nothing. If 
fYourView.tDragging is TRUE, it is time to set up for moving the items 
that were dragged. (If this drag doesn't change the document, you can carry 
out the action of the command here, and then return gNoChanges. This 
recipe assumes that a dragging action changes the document.)-To set up for 
moving, calculate the change in position and store those values in tDeltaH 
and tDeltaV. Finally, reset fYourView.tDragging to FALSE. 

194 Chapter 7: The Cookbook 

(,----'<, 

~-j 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

A sample TrackMouse method is shown in the template. 

10. If a dragger changes the document, the action of the dragger is not 
performed in TrackMouse (although TrackFeedback may make it appear to 
the user that the action of the dragger has been carried out); instead, the 
action is performed by the Dolt method. MacApp calls Dolt after the mouse 
button comes up. A sample Dolt method is given in the templates. The 
sample assumes that you have a MoveBy method, which actually moves the 
object. A sample MoveBy method is shown in the templates. 

You should also implement U ndolt and Redolt for your dragger type. 
Using MoveBy rather than actually moving the object in Dolt makes 
implementing Undolt and Redo It easier. Samples of Undolt and Redolt are 
given in the templates. The next step of this recipe includes further 
discussion of what is necessary to ·properly undo and redo this command. 

Notice that MoveBy checks all objects and moves any that are selected. The 
sample assumes that the objects are marked as selected or not selected. Your 
application may maintain its selections differently or may allow only a single 
selection. See the "Selecting" recipe for details on marking selections. 

MoveBy as shown in the templates invalidates the original position of the 
object The DrawShapes sample program handles that invalidation 
differently, and also generally handles dragging items differently. You may 
want to examine DrawShapes to get a different perspective on this 
operation. 

11. When you undo and redo this command, you must be sure that the 
selections are set correctly. Because selections do not change the document, 
the dragger command is not committed just because the user changes the 
selection. Thus the user might change the selection before choosing Undo. 
You must therefore have a record of what was selected when the dragger 
command was executed, and you must restore the selection when Undo and 
Redo are chosen. 

Implement TY ourDragger.FixSelection so that it restores the selections in 
effect when the command was first executed. You can record the old 
selections in any of the ways that you can record current selections. The 
sample in the templates gives a field fW asSelected to every object, as well 
as a field flsSelected. The current selection is indicated in flsSelected; the 
selection at the time of the command is in fWasSelected. When the 
command is undone or redone, flsSelected has its value replaced by 
fW asSelected. 

6/14/88 

Chapter 7: The Cookbook 195 



6/14/88 

196 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Have Undo and Redo call FixSelection before calling MoveBy. 

Templates 

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; 

VAR hititem: Titem; 
dragger: TYourDragger; 

BEGIN 

END; 

FUNCTION CheckHit(item: Titem): BOOLEAN; 

BEGIN 
CheckHit := (test location for hit}; 

END; 

hititem := fYourDocument.fitemList.FirstThat(CheckHit); 
IF hititem <> NIL THEN BEGIN 

END 
ELSE 

{ You should mark the item as selected 

Create a dragger command·object } 
New(dragger); 
FailNIL(dragger); 
dragger.IDragger(fYourDocument, SELF); 
DoMouseCommand := dragger; 

DoMouseCommand := gNoChanges; 

PROCEDURE TYourView.PrepareToTrack; 

BEGIN 

END; 

PROCEDURE Prepareitem(item: Titem); 

VAR r: Rect; 

BEGIN 

END; 

IF item.fisSelected THEN BEGIN 

END; 

r := item.fExtentRect; 
InsetRect(r, -2, -2); 
fYourView.InvalidRect(r); 

WITH item DO 
fWasSelected := fisSelected; 

fYourDocument.fitemList.Each(Prepareitem); 
fDragging := TRUE; 
fYourView.Update; 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorla~ Working Draft 4 (APDA). 6/14/88 

PROCEDURE TYourDragger.IDragger(ItsDocument: TYourDocument; 

BEGIN 

END; 

itsView: TYourView; shiftKey: BOOLEAN); 

Call !Command to set the command's fView to the view in which tracking 
takes place and to set the scroller used for automatic scrolling during 
selection. cMoveitem is the command number constant for this command. 
After calling !Command it is necessary to set fCausesChange and fCanUndo 
to true, as dragging an object both changes a document and is undoable. } 

ICommand(cMoveitem, itsView, itsView.GetScroller(TRUE)); 
fCausesChange := TRUE; 
fCanUndo := TRUE; 
fYourDocument := itsDocument; 

FUNCTION TYourDragger.TrackMouse(aTrackPhase: TrackPhase; 

BEGIN 

VAR anchorPoint, previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; 

TrackMouse := SELF; 
IF aTrackPhase = trackMove THEN BEGIN 

END 

IF NOT fYourView.fDragging THEN BEGIN { This is the first move. } 
fYourView.DoHighlightSelection(hlOn, hlOff); 
fYourView.PrepareToTrack; 
IF fYourView.Focus THEN ; { PrepareToTrack changes the Focus } 

END; 

ELSE IF aTrackPhase = trackRelease THEN BEGIN { Set up for moving the items(s). } 

END 
END; 

IF fYourView.fDragging THEN BEGIN { Actually did move. } 
fDeltaH := previousPoint.h - anchorPoint.h; 
fDeltaV := previousPoint.v - anchorPoint.v; 
fYourView.fDragging := FALSE; 

END 
ELSE 

TrackMouse := gNoChanges; 

PROCEDURE TYourDragger.Doit; 
BEGIN 

MoveBy(TRUE); 
END; 

PROCEDURE TYourDragger.Undolt; 
BEGIN 

END; 

FixSelection; 
MoveBy(FALSE); 

Chapter 7: The Cookbook 197 



6/14/88 

198 

Working Draft 4 (APDA) 

PROCEDURE TYourDragger.Redoit; 
BEGIN 

END; 

FixSelection; 
MoveBy(TRUE); 

PROCEDURE TYourDragger.MoveBy(moveit: BOOLEAN); 

BEGIN 

END; 

PROCEDURE Moveitem(item: Titem); 
BEGIN 

IF item.fisSelected THEN BEGIN 
{ Invalidate the item's old image. } 
{ Move the item's definition. } 
{ Invalidate the item's new position. 

fYourDocument.fitemList.Each(Moveitem); 

PROCEDURE TYourDragger.FixSelection; 

BEGIN 

PROCEDURE Fixitem(item: Titem); 
BEGIN 

END; 

item.fisSelected := item.fWasSelected; 
IF item.fisSelected THEN 

{ Invalidate the item in the view. 

MacApp 2.0 Tutorial 

fYourDocument.Deselect; ( This method removes the selection. You should implement 
it so that it removes all selections and updates the 
view, either by calling DoHighlightSelection(hlOn,hlOff) 
or by invalidating the selected areas of the view. } 

fYourDocument.fitemList.Each(Fixitem); 
END; 

Drawing with the mouse 

Purpose 

Many applications allow the user to draw using the mouse. This recipe shows 
how to implement that operation. 

For simplicity, this recipe assumes that a mouse press indicates the user wants 
to draw or the mouse press has no meaning. In general, a mouse press may 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

indicate a number of possible actions, and your program uses a number of 
criteria to figure out which action the user wants. See the "Handling Several 
Types of Mouse Events" recipe for an example of integrating different types of 
mouse actions. 

How to do ii 

1. When DoMouseCommand detects that a drawing operation has started, it 
should create a sketcher object instance, because drawing changes the 
document You should create command object instances in two situations: 
when the command is undoable and when the command requires abilities of 
command objects, such as mouse tracking. The templates give the structure 
of DoMouseCommand. 

2. Use a sketcher command object to track the mouse, to provide appropriate 
feedback as the mouse moves, and when the mouse button comes up and a 
valid item has been drawn, to add the new item to the document Here is a 
sample interface for a sketcher type: 

TYourSketcher = OBJECT(TCommand); 

fYourView: TYourView; 
fitem: Titem; { The new item. 

PROCEDURE TYourSketcher.IYourSketcher(document: TYourDocument; 
view: TYourView); 

FUNCTION TYourSketcher.TrackMouse(aTrackPhase: TrackPhase; 
VAR anchorPoint, 

6/14/88 

previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; OVERRIDE; 

PROCEDURE TYourSketcher.Doit; OVERRIDE; 

PROCEDURE TYourSketcher.Undoit; OVERRIDE; 

PROCEDURE TYourSketcher.Redoit; OVERRIDE; 

END; 

If you want to give feedback other than the standard flickering rectangle 
(which you will usually want to do), also override TrackFeedback. If you 
want to constrain the mouse-to stay in the bounds of the view, to draw a 
circle or a square, or to conform. to a grid, for example-also override 
TrackConstrain. TrackFeedback and TrackConstrain are discussed in the 
"Tracking the Mouse" recipe. 

The templates give the structure of TrackMouse, Dolt, Undolt, and Redolt 

Chapter 7: The Cookbook 199 



6/14/88 

200 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

3. If you want to, you can continue drawing when the mouse button comes 
up. This is done, for example, when a polygon is drawn in MacDraw or 
MacPaint See the recipe, "Tracking the Mouse When the Mouse Button Is 
Up." 

Template 

FUNCTION TYourView.DoMouseCommand (VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; 

VAR sketcher: TYourSketcher; 

BEGIN 

END; 

New (sketcher) ; 
FailNil(sketcher); 
sketcher.ISketcher(fYourDocument, SELF); 
DoMouseCommand := sketcher; 

PROCEDURE TYourSketcher.ISketcher(ItsDocument: TYourDocument; 
itsView: TYourView); 

BEGIN 

END; 

Call !Command to set the command's fView to the view in which tracking 
takes place and to set the scroller used for automatic scrolling during 
sketching. cNewitem is the command number constant for this command. After 
calling !Command it is necessary to set fCausesChange and fCanUndo to true, 
as dragging an object both changes a document and is undoable. l 

ICommand(cNewitem, itsView, itsView.GetScroller(TRUE)); 
fCausesChange := TRUE; 
fCanOndo := TROE; 
fYourDocument := itsDocument; 

Chapter 7: 1he Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

FUNCTION TYourSketcher.TrackMouse(aTrackPhase: TrackPhase; 
VAR anchorPoint, previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; 

VAR anitem: Titem; 

BEGIN 
TrackMouse :• SELF; 
IF aTrackPhase • trackRelease THEN 

IF {not a legal item) THEN 
TrackMouse := gNoChanges 

ELSE BEGIN 
New(anitem); 
fitem := anitem; 
{ You can't use fitem in New because the heap might compact. 

Extract the information you need from the anchorPoint 
and nextPoint and initialize the new item. } 

END; 
END; 

PROCEDURE TYourSketcher.Doit 
BEGIN 

fYourDocument.fitemList.InsertFirst(fitem); 
END; 

PROCEDURE TYourSketcher.Undoit; 
BEGIN 

fYourDocument.fitemList.Delete(fitemList.First); 
END; 

PROCEDURE TYourSketcher.Redoit; 
BEGIN 

fYourDocument.fitemList.InsertFirst(fitem); 
END; 

Tracking the mouse 

Purpose 

After you've created a command object called yourMouseCommand and 
returned it through DoMouseCommand (see the discussion at the beginning of 
this section), MacApp tracks the mouse, calling 
yourMouseCommand Track:Mouse repeatedly. 

Chapter 7: The Cookbook 201 



6/14/88 

202 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

TrackMouse has a parameter aTrackPhase. MacApp calls TrackMouse once 
with a track phase of trackPress, then calls repeatedly with a track phase of 
trackMove, and then calls once with a track phase of trackRelease. 

If you do not want to take any action depending on the track phase and the 
action of the mouse command changes the document, you do not have to 
override TrackMouse. 

You generally do have to override TrackMouse. If you want to take some other 
action depending on the trackPhase or the mouse location, override 
Track:Mouse. In addition, if the command may not change the document, 
override TrackMouse. The default version of TrackMouse returns the command 
object itself as the function return value, which results in always marking the 
document as changed after the mouse button is released. 

If you want to give nonstandard feedback as the mouse moves, override 
Track:Feedback, as described below. If you want to constrain mouse movement 
in some way, override TrackConstrain, also described below. 

How to cloit 

1. Add the following to your mouse command object type definition: 

FUNCTION TYourMouseCommand.TrackMouse(aTrackPhase: TrackPhase; 
VAR anchorPoint, previousPoint, nextPoint: VPoint; 
mouseDidMove: BOOLEAN): TCommand; OVERRIDE; 

In your implementation of TrackMouse, you should return SELF so that 
MacApp continues to call yourMouseCommand.TrackMouse. You can also 
return another command object, in which case that command object takes 
over tracking the object. (MacApp frees the old command object for you.) 
On trackRelease, if no changes have been made to the document, you can 
return gNoChanges, which tells MacApp to free the command object. It also 
tells MacApp to not commit and free the last command object. (If 
gNoChanges is not returned, MacApp automatically calls Commit for the 
last command and frees that command. The result is that .the last command 
can no longer be undone, which may not be appropriate.) 

No template is given for TrackMouse because its form varies greatly. See 
the other recipes of this section and the sample programs for samples. 

2. If you return a command object, MacApp calls yourMouseCommand.Dolt 
when the mouse is released. If the command can be undone, or if it changes 
the document, you normally perform the action of the mouse command in 
Dolt If the command cannot be undone, and if it does not change the 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

document, you can perform the action in TrackMouse when the track phase 
is trackRelease. In that case, return gNoChanges instead of your own 
command object No template is given for TY ourMouseCommand.Dolt. 

3. MacApp calls the method yourMouseCommand.TrackFeedback as the 
mouse moves. TCommand. TrackFeedback produces a shadowy (black pen, 
XOR mode) box between the point where the mouse button was pressed 
and the current mouse position. If you want different feedback, add the 
following to your definition of TY ourMouseCommand: 

PROCEDURE TYourMouseCommand.TrackFeedback(anchorPoint, nextPoint: VPoint; 
turnitOn, mouseDidMove: BOOLEAN); 
OVERRIDE; 

You can, for example, change the pen state or mode and then call 
INHERITED TrackFeedback, or you can provide completely different 
feedback. 

No template is given for this method. 

4. If you want to constrain mouse movement in some way, as is done when 
the grid is on in MacPaint: 

• Set yourMouseCommand.fConstrainsMouse to TRUE. (You can do that in 
IY ourMouseCommand.) fConstrainsMouse is a field of TCommand. 
fConstrainsMouse defaults to FALSE. When that field is TRUE, MacApp 
calls yourMouseCommand.TrackConstrain. 

• Override TCommand. TrackConstrain. Here is the interface for that method: 

6/14/88 

PROCEDURE TYourMouseCommand.TrackConstrain(anchorPoint, previousPoint: VPoint; 
VAR nextPoint: VPoint); OVERRIDE; 

This is called only if fConstrainsMouse is TRUE. In your implementation, 
change the value of nextPoint according to your program's requirements. 
No template is given for this method. See the sample programs for 
examples. 

Handling several fypes of mouse events 

Purpose 

The preceding recipes in this section assume that only one type of mouse event 
is possible. Few applications are so limited. In general, your 

Chapter 7: The Cookbook 203 



6/14/88 

204 

Working Draft 4 (APDA} MacApp 2.0 Tutorial 

a View .DoMouseCommand method must differentiate between possible types of 
events and take appropriate action. 

There are two basic ways to differentiate between possible mouse events: based 
on mode and based on location. Programs generally use a combination of these 
methods. For example, the DrawShapes sample program has two modes: when 
the mow pointer is displayed and when a drawing pointer is displayed. In the 
arrow pointer mode you can select individual shapes, select an area, and drag 
shapes, and the program determines which you want to do basically by where 
the mouse button went down. 

When one of your application's view.DoMouseCommand methods is called, 
indicating a mouse-down event in one of your application's views, the 
application must determine what kind of action is beginning and (generally) it 
must create an appropriate type of command object, which then tracks the 
mouse and cani.es out the action of the command. This recipe generally covers 
the needed steps up to the point of creating a command object for the mouse 
command. See the individual recipes in this section for details on implementing 
those command objects. 

How to do it 

1. Implement DoMouseCommand for each view type that needs to respond to 
a mouse-down event. DoMouseCommand is a function that returns a 
TCommand-type object. The interface for doMouseCommand is 

FUNCTION TYourView.OoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; OVERRIDE; 

A sample skeleton for DoMouseCommand is given in the template for this 
recipe. That sample is very sketchy because the form of DoMouseCommand 
depends on what your particular application does. 

2. Your DoMouseCommand method must first detennine if the user made a 
selection or is indicating some other action. 

The sample in the template then checks for certain conditions and creates an 
appropriate command object depending on the conditions. 

3. The details of what happens once you have detennined the type of action 
needed are not given in this recipe. See the first five recipes of this section 
for details. 

YourView.DoMouseCommand often creates a mouse command object. 
There may be several types of mouse command objects. If the event is 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

handled entirely by DoMouseCommand (which should be the case only for 
mouse events that do not change the document), or if the event does not 
produce an action, your view's DoMouseCommand methcxl should return 
gNoChanges, a global variable of type TCommand that indicates no 
changes to the document have occurred. (You can also return gNoChanges 
later, if it turns out that no changes have been made. See the discussion of 
TrackMouse in the "Tracking the Mouse" recipe.) 

Command objects returned through DoMouseCommand are expected to 
have different methods than other command objects. The "Tracking the 
Mouse" recipe explains what is required of those methcxls. 

Template 

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; 

VAR firstMouseCommand: TFirstMouseCommand; 
secondMouseCommand: TSecondMouseCommand; 

BEGIN 

6/14/88 

DoMouseCommand := gNoChanges;. { in case no action found that changes the document 

END; 

{ Check for selections here. See "Selections" in this chapter. 

IF ( the action indicates a firstMouseCommand } THEN BEGIN 
New(firstMouseCommand); 

END 

FailNIL(firstMouseCommand); 
firstMouseCommand.IFirstMouseCommand(SELF, theMouse); 
{ Those parameters are only an example. } 
DoMouseCommand := firstMouseCommand; 

ELSE IF { the action indicates a secondMouseCommand } THEN BEGIN 
New(secondMouseCommand); 

END; 

FailNIL(secondMouseCommand); 
secondMouseCommand.ISecondMouseCommand(SELF, theMouse); 
{ parameters only examples } 
DoMouseCommand := secondMouseCommand; 

Chapter 7: The Cookbook 205 



6/14/88 

206 

Working Draft 4 (APDA) MacApp 2.0 Tutortal 

Tracking the mouse when the mouse button is up 

Purpose 

Some applications must occasionally track the mouse and possibly provide 
feedback when the mouse button is up. An example of this occurs in MacDraw, 
when you draw a polygon: you mark the end of the first side of the polygon by 
letting the mouse button up and draw the second side with the button up. The 
second side is marked when the mouse button goes down again. 

You track the mouse when the mouse button is down with DoMouseCommand 
and TrackMouse, as described in the ''Tracking the Mouse" recipe. MacApp 
does not call either of these methods when the mouse button is up. This recipe 
describes what you have to do to track the mouse with the button up. 

Howtocloit 

1. Override DoSetCursor. The interface to DoSetCursor is 

FUNCTION TYourView.DoSetCursor(localPoint: Point; 
cursorRqn: RqnHandle): BOOLEAN; OVERRIDE; 

DoSetCursor for the view that contains the mouse is called repeatedly 
during idle time, that is, when the user is doing nothing but moving the 
mouse. The default version of DoSetCursor contains only one line of code: 

DoSetCursor :- FALSE; 

This line simply informs MacApp that the pointer should be the arrow 
pointer. To track the mouse, you need to add your tracking and feedback 
functions to this method. 

2. Implement DoMouseCommand so it recognizes that you were tracking the 
mouse while the mouse button was up and takes appropriate action. You 
can add a field to your view that keeps track of this. The interface of 
DoMouseCommand is 

FUNCTION TYourView.DoMouseCommand(VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point): TCommand; OVERRIDE; 

Chapter 7: The Cookbook 

\, ./ 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Standard editing commands 

Undo 

Purpose 

The Undo menu command should be implemented for any user action that 
changes the document. In other words, it is not usually desirable to implement 
Undo for actions like scrolling or selections that do not actually change the data, 
but you should implement Undo for actions like adding or deleting objects from 
the document's data set. 

The Undo menu command is automatically enabled by MacApp when there is a 
command object that has had its Dolt method executed and has its fCanUndo 
field set to TRUE and has not been superceded by another command object. 
(Note that MacApp cannot tell if the command object actually has an 
implemented Undolt or Redolt method.) As long as you return gNoChanges 
from DoMenuCommand and from TrackMouse when the track phase is 
trackRelease, the Undo command remains enabled for the last undoable 
command. When a different type of command object is returned, MacApp calls 
command.Commit for the previous command object (unless that command was 
undone and not redone) and enables or disables Undo depending on whether 
the new command object can be undone. If, however, the new command object 
has both fCanUndo and fChangesDocument equal to FALSE, MacApp does not 
commit the previous command. Instead, it simply calls the Dolt method of the 
new command. 

Howtodoil 

The Undo command is handled by the current command object. Whenever a 
user action (a mouse action, a menu choice, or typing) will change the 
document, a command object should be created. (See ''Handling Mouse Events" 
and "Menus and Commands" in this chapter.) When the command is initially 
executed, MacApp calls the command object's Dolt method. When the user 
chooses Undo the first time (or any odd number of times), MacApp calls the 
command object's Undolt method. When Undo is chosen a second time (or any 
even number of times), MacApp calls the command object's Redolt method. 

If the command is simple, you normally change the document's data with Dolt, 
Undolt, and Redolt, and these methods invalidate any affected portions of the 
view or views. 

6/14/88 

Chapter 7: lhe Cookbook 207 



6/14/88 

208 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

If the command has results that are too complicated to undo directly, Dolt and 
Redolt apply a filter that makes the view appear as if the data had actually been 
changed, but do not actually change the data. Undolt simply removes the filter. 
(All three methods must still invalidate the changed parts of the view. When a 
filter is applied, it is usually implemented with a flag that indicates a filtering 
method should be called from the drawing methods, which are themselves 
called during the update cycle.) To change the document's data, override 
TCommancl.Commit so that Commit changes the data. Commit is called before 
the command is freed, usually just before another command object is created or 
when the document is saved. (Note that Commit is not called if the command 
was in undo phase.) 

The default TCommand methods Commit, Dolt, Redolt, and Undolt do 
nothing. 

See the "Creating Filtered Commands" recipe for more information about 
filtering. 

Cut and Copy 

Purpose 

The Cut, Copy, and Paste commands should be implemented in all Macintosh 
applications to allow transfer of data among and within applications and desk 
accessories. In order for this recipe to work, you must also implement the 
recipe under "The Clipboard," below. 

This recipe deals with the Cut and Copy commands, which are generally 
handled by a single type of command object The next recipe deals with the 
Paste command. 

The Cut command removes the selected information from the view (and 
generally also from the document) and places the information in the Clipboard. 
The Copy command copies the selected information to the Clipboard but does 
not remove the original. 

Howtodoit 

1. In the appropriate DoMenuCommand method (usually belonging to the view 
but possibly to the document), create a cut/copy command object of a type 
that is a descendant of TCommand. (Some programs may need separate 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

command objects for cut and copy, although generally a copy is identical to 
a cut except that the information is not removed from the document.) 

2. In the IY ourCommand method of your cut/copy command object, set the 
fChangesClipboard field to TRUE after calling !Command. 

3. In the Dolt method of your cut/copy command object, create a view for the 
cut or copied data. The view is typically of the same type as the one holding 
the selection and, again typically (but not universally), you must create a 
document object to go with the view object 

4. After you initialize this view, call TApplication.ClaimClipboard to install the 
view in the Clipboard. The interface for that method is 

PROCEDURE TApplication.ClaimClipboard(clipView: TView); 

ClaimClipboard automatically preserves a reference to the old Oipboard 
view, in case this command is undone. 

If this is a Cut command, cut the data from your document and invalidate 
the representation of the data in the view. 

You must not call ClaimClipboard in your Undolt or Redolt methods. 
MacApp automatically replaces the old Clipboard contents when Undo is 
picked and automatically replaces the new Oipboard when Redo is picked. 

In the case of a Copy command, U ndolt need do nothing except, if you 
wish, restore the selection state at the time the command was originally 
executed (MacApp restores the old Clipboard view for you). Redolt needs 
to do everything Dolt does, except create the Clipboard view and call 
ClaimClipboard. It may also restore the last selection. 

No template is given for this recipe and the next, because the methods 
depend too much on application-specific conditions. 

Paste 

Purpose 

The Cut, Copy, and Paste commands should be implemented in all Macintosh 
applications to allow transfer of data among and within applications and desk 
accessories. 

6/14/88 

Chapter 7: The Cookbook 209 



6/14/8a Working Draft 4 (APDA) MacApp 2.0 Tutonal 

The Paste command pastes data from the Clipboard into the application's 
document. The Clipboard may contain data cut or copied from your application 
or from another application. In the second case, the data is usually available as 
TEXT data (a string of ASCII characters) and/or PICT data (PICT is a 
QuickDraw picture). · 

How to dolt 

1. In the DoSetupMenus method for the object whose DoMenuCommand 
method handles Paste (usually the view but possibly the document), tell 
MacApp what kind of data you can paste. You do this by calling the global 
procedure CanPaste. The interface of that routine is 

PROCEDURE CanPaste(aDataType: ResType); 

Call this procedure once for each Clipboard data type you can handle. (See 
the "The Clipboard" recipe for more about Clipboard data types.) If you 
can paste more than one kind of data (you should, ideally, be able to handle 
PICT and TEXT data as well as your own types), make the calls in inverse 
order of preference: from the least preferred to the most prefeITed. 

Note that you never call Enable or EnableCheck for the Paste command 
MacApp tests the contents of the Oipboard for the Oipboard data types you 
specify in your CanPaste calls (by calling 
clipboardView.ContainsClipType) and enables or disables the command 
accordingly. 

2. Create a paste command object (discussed in the next step) when your 
DoMenuCommand method finds the command number cPaste. Given the 
CanPaste calls made in DoSetupMenus, you can be certain that information 
of some type you can handle is present in the Clipboard any ti.me you get a 
cPaste command number. 

3. Define a paste command object type that is a descendant of TCommand. The 
object should be created and initialized in DoMenuCommand when a cPaste 
command number is received. The action of the command is carried out in 
the pasteCommand.Dolt and Redoit methods . 

• 
To get the data to be pasted, allocate an empty handle and pass the handle to 
the application's GetDataToPaste method. The interface of this method is 

FUNCTION TApplication.GetDataToPaste(aDataHandle: Handle; 
. VAR dataType: ResType) : LONGINT; 

21 O Chapter 7: 1he Cookbook 

\ ... / 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

If you only want to find out the size of the data (probably to determine 
whether there is enough memory to carry out the requested paste operation), 
pass NIL as aDataHandle. When the data is in the public scrap (also called 
the desk scrap), this call is equivalent to the Scrap Manager routine 
GetScrap. Do not call GetScrap directly, because the data may be in the 
private (application) scrap. 

You do not choose the data type here; that is determined by your CanPaste 
calls in DoSetupMenus. The data type passed to you is the most preferred 
type available. If you can paste more than one type, you probably need to 
use IF statements to branch according to the type; note that MPW Pascal 
does not allow CASE statement branches on four-byte quantities. 

The data referred to by the handle is a copy of the data in the Clipboard. 
You can do anything you want with that data or the handle. 

GetDataToPaste (which you rarely need to override) calls the method 
gOipView.GivePasteData. See "The Clipboard" in this chapter for details 
on implementing that method. 

Paste operations should almost always be undoable (see the "Undo" recipe, 
above). See "Menus and Commands," below, for more information on 
commands. 

Menus and commands 

Creating menu commands 

Purpose 

In general, all commands that are not mouse actions or typing are menu 
commands. 

This section also applies to commands given using Command-key 
combinations, which are equivalent to menu commands, as defined in the 
resource file for the application. 

6/14/88 

Chapter 7: The Cookbook 211 



6/14/88 

212 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Howtodoit 

1. Add a cmnu resource to your application's resource compiler input file to 
add the menu command. When you put the command in the resource file, 
you give the command a command number. See the sample programs' 
resource files for examples of menu commands. 

Important 

Menu commands are defined differently for MacApp resource flies than for the 
resource flies of standard Macintosh applications. MacApp menu resources are 
defined as cmnu resources In the resource Input file. The Build command file that 
builds MacApp programs runs the PostRez tool to convert the cmnu resources to 
MENU resources plus the additional Information MacApp needs. Therefore. you 
cannot use a resource editor to add menus or menu Items and you cannot use 
DeRez to decompile your menus. 

2. In the implementation of your unit, define a constant for the command 
number you gave for the menu command in the resource file. 

3. Override the appropriate DoMenuCommand method. If the command has 
the same effect regardless of which view of the document is active or which 
view contains the selection, then override 1Document.DoMenuCommand 
for your document. If the command is view-specific, override 
TView.DoMenuCommand for your view. Similarly, if the command applies 
to a particular window or the application as a whole, override the 
DoMenuCommand for your descendants of 1Window or TApplication. 

MacApp defines a global variable, gTarget, that refers to the event handler 
that initially receives menu commands and keystrokes. (Views, windows, 
documents, and applications are all event handlers.) MacApp also defines a 
field of 1Window calledITarget MacApp automatically sets gTarget to 
window.ffarget whenever the window is activated. The window's ffarget 
is set to itself in !Window. NewSimpleWindow andNewTemplateWindow 
set ffarget to the window's main view. 

In addition, MacApp defines a field TEvtHandler.fNextHandler, which puts 
the event handlers in an application in a linked list 

When MacApp receives a menu event, it passes it to 
· gTargetDoMenuCommand. If the target cannot handle the command, it 
calls INHERITED DoMenuCommand. That method, usually part of 

Chapter 7: The Cookbook 



( 

( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

MacApp, first checks whether the command is one it can handle, and then 
again calls INHERITED DoMenuCommand. This chain eventually leads to 
1EvtHandler.DoMenuCommand. That method calls 
fNextHandler.DoMenuCommand. The chain continues through the list until 
the application object is reached. At that point, there is no next event 
handler, and 1EvtHandler.DoMenuCommand reports an error. 

See "The Command Chain" in Chapter 5 for a more complete description of 
how the command chain works. 

Here is the interface for TY ourType.DoMenuCommand: 

FUNCTION TYourType.DoMenuCommand(aCmdNumber: CmdNumber): TCommand; OVERRIDE; 

The form for the implementation is given in the template part of this recipe. 

The template is for the simplest DoMenuCommand method. In this case, an 
IF statement could have been used in place of a CASE statement to create 
the proper type of command object. Whatever structure you use, though, if 
the command number is not one of yours, you must call INHERI1ED 
DoMenuCommand so MacApp can handle its commands. 

If the command changes the document, create a command object and pass 
the command object to MacApp as the return value of DoMenuCommand. If 
the command does not change the document, perform the command 
immediately and return gNoChanges. 

4. If you return a command object, MacApp calls command.Dolt using the 
command object you return. You should override TCommand.Dolt to 
execute your command. If the command can be undone, you should also 
override TCommand.Undolt and TCommand.Redolt (see the "Undo" 
recipe). · 

6/14/88 

Chapter 7: lhe Cookbook 213 



6/14/88 

214 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Template 

FUNCTION TYourType.DoMenuCommand(aCmdNumber: CmdNumber): TCommand; 

BEGIN 
CASE aCmdNumber OF 

{ Here give one of your command numbers. } :. BEGIN 
{ Here create and initialize an appropriate command object or, 

if there are no changes to the document, do the command. } 
DoMenuCommand := { your command object or gNoChanges }; 

END; 
END; 

END; 
OTHERWISE 

DoMenuCommand := INHERITED DoMenuCommand(aCmdNumber) 

Changing menu appearance and function 

Purpose 

You need to change menu appearance and function to 

• disable a menu command (draw the text in gray) 

• enable a menu command (draw the text in black) 

• add or remove a check mark (usually for a toggle command) 

• change the text of a command (either for a toggle command such as 
Undo/Redo, or for a more variable command) 

• add or remove a menu 

• add or remove a menu command 

• change the font style of a menu command 

Howtodoit 

1. Every application that defines its own menu commands must override 
DoSetupMenus. Whenever a mouse-down event is detected in the menu 
bar, DoSetupMenus is called for the application, document, window, and 
view before the menus are displayed. You can override the DoSetupMenus 
methods for any of these to change the text for any menu item or to enable, 
disable, or check menu items. You must override DoSetupMenus for any 
object type for which you override DoMenuCommand. 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

+ Note: MacApp actually calls DoSetupMenus only when some change has 
occurred. MacApp calls it after processing all available events, so it is usually 
not called when the user clicks in the menu bar. Therefore, the user usually 
does not have to wait for DoSetupMenus to execute before seeing a menu. 

Begin your override method with INHERITED DoSetupMenus. You then 
call the MacApp and Menu Manager routines described in the rest of this 
recipe to change the appearance of the menus. 

Although MacApp has global procedures for the most common menu 
operations, you must use Menu Manager routines for much of what is 
described in this recipe. Menu Manager routines use menu handles, menu 
ID's, and item ID's to refer to menus and commands. Convert the command 
number to a menu handle and item number using the following MacApp 
global procedure: 

PROCEDURE CmdToMenuitem(aCmd: CmdNumber; VAR menu, item: INTEGER); 

This procedure returns the Menu Manager menu and item ID associated with 
the given command number. If you need a menu handle (which you 
generally need for Menu Manager routines) use the following MacApp 
global function: 

FUNCTION GetResMenu(menuID: INTEGER): MenuHandle; 

The Menu Manager contains routines that are not discussed here because 
they are rai:ely used in MacApp programs. See the "Menu Manager" chapter 
of Inside Macintosh for complete information. 

2. For each command number you handle in DoMenuCommand, call either 
Enable or EnableCheck in a version of DoSetupMenus defined for the same 
object type. You must enable all commands that you want the user to be able 
to choose, even if the status of the command hasn't changed since the last 
time DoSetupMenus was called, because all menu items start out unchecked 
and disabled. 

Enabling a command draws the command name in black; disabling it draws . 
the name in gray. You enable and disable commands that never have check 
marks with this procedure: 

PROCEDURE Enable(aCmd: CmdNumber; canDo: BOOLEAN) 

This procedure enables or disables the given command depending on the 
value of the parameter canDo. If canDo is FALSE, the command is disabled 
and is displayed in gray. Since commands are always disabled before 
calling DoSetUpMenus, it is only necessary to enable commands. 

6/14/88 

Chapter 7: lhe Cookbook 215 



6/14/88 

216 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Ha command may have a check mark, use this procedure: 

PROCEDURE EnableCheck(aCmd: CmdNumber; canDo: BOOLEAN; checkit: BOOLEAN) 

EnableCheck places or removes a check mark next to the menu item, 
depending on the value of checklt. It also draws the text in gray or black, 
depending on the value of canDo. 

You do not use Enable or EnableCheck to enable the Paste command. 
Instead, use 

PROCEDURE CanPaste(aDataType: ResType) 

This procedure tells MacApp what data types you can paste at this point. 
Call it once for each data type you can handle, in inverse order of 
preference. MacApp checks the contents of the Clipboard and enables the 
Paste command if pasting is possible. See the "Paste" recipe for more 
information. 

3. H you want to change the text of a menu item, you should use the following 
routine: 

PROCEDURE SetCmdName(aCmd: CmdNumber; menuText: Str255); 

This routine changes the text of the menu item with command number aCmd 
tomenuText 

Important 

You must never use Menu Manager routines directly In DoSetupMenus to take 
the actions performed In steps 3. 4. and 5 of this recipe. 

4. H you want to change the font style of a menu command, printing it in bold, 
italic, subscript, superscript, condensed, or expanded, or returning it to 
plain text, use the following MacApp global procedure: 

PROCEDURE SetStyle(aCmd: CmdNumber; aStyle: Style) 

This is typically used only for the menu items that change font style. 

5. Some menus have icons displayed to the left of the item text. H you want to 
set such an icon, use the following MacApp global procedure: 

PROCEDURE SetCmdicon(aCmd: CmdNumber; menuicon: Byte); 

Chapter 7: The Cookbook 

/ .. 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

This procedure changes the icon shown in the menu for the menu item with 
command number aCmd to the icon represented by menulcon. 

Handling negative command numbers 

Purpose 

When you have a menu command that cannot be assigned a command number 
when you write your application or that does not fit into the normal menu 
structure, your DoMenuCommand method receives a negative command 
number. This happens if you have a custom menu with commands depicted as 
icons, if you add menu items using Menu Manager routines, or if menu items 
cannot be determined until runtime. It happens most commonly with the Font 
menu, which always returns negative command numbers because the number of 
fonts cannot be predetermined. 

Howtodoit 

1. Implement DoMenuCommand for the appropriate target, which depends on 
whether you want the command to affect one view, one window, one 
document, or the entire application. When you have a negative command 
number, you have two choices: · 

• Make a case statement directly on the negative values. The values are 
equal to -(256 * menu + item). 

• Call CmdToMenultem to convert the number to the menu ID and item 
ID for the item the user picked Then take action depending on those 
values. 

A sample DoMenuCommand is shown in the templates for this recipe. Note 
that the sample handles only negative command numbers. See the "Creating 
Menu Commands" recipe for more general information about 
DoMenuCommand 

2. Implement DoSetupMenus for the same target so that it handles the menus 
and menu items that return negative command numbers. As with ordinary 
menu items, you must explicitly enable all enabled items and check items 
that have checks. (All items start out disabled and unchecked.) There are 
several possibilities, depending on your application. You can use Menu 
Manager routines to enable or check these custom menu items. However, to 
change the text, style, or icon of a custom menu item you must call the 

6/14/88 

Chapter 7: The Cookbook 217 



6/14/88 

218 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

routines discussed in the previous section, passing the appropriate negative 
command number. 

If you have menus (such as the Font menu) in which all items return 
negative numbers, use code that follows the pattern shown in the templates. 

If you have menus that may include negative command numbers because 
menu items are added by calls to Menu Manager routines while the 
application is running, use the Menu Manager function Countltems (used in 
the template for DoSetupMenus in this recipe) to find out how many items 
are actually in the menu. Then, if there are menu items that return negative 
numbers, set up those items in DoSetupMenus and handle those items in 
DoMenuCommand the same way as shown in the template. 

3. If you are implementing a Font menu, you need to use the menu ID and item 
ID in DoMenuCommand to get the font number. The font number is used in 
calls to SetFont, a QuickDraw procedure. To find the font number, use the 
following code sequence: 

CrndToMenuitem(aCmdNumber, menu, item); { MacApp global procedure } 
IF menu = mFont THEN BEGIN 

END; 

Getitem(GetResMenu(menu), item, aNarne); {Menu Manager procedure } 
GetFNum(aName, theFontNurnber); { Font Manager procedure } 

The value of mFont (a constant you should define) depends on the order of 
your menus. The variable aName, returned by Getltem, is a value of type 
Str255. The font number is an INTEGER. You should store the number 
somewhere and use it to set the font whenever you draw text in that font 
Also store the menu item corresponding to the currently selected font, for 
use in DoSetUpMenus. Note that your drawing methods should never 
assume that the font (or any other characteristic, for that matter) has been 
set. If you care what the font is, always set it yourself. 

Chapter 7: The Cookbook 



( ' 

,' 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

Templates 

FUNCTION TTarget.DoMenuCommand(aCmdNumber: INTEGER) :TCommand; 

VAR menu, item: INTEGER; 

BEGIN 

END; 

IF aCmdNumber < 0 THEN BEGIN 
CmdToMenuitem(aCmdNumber, menu, item); 

END 
ELSE 

{ Take action depending on the menu and item values. 
DoMenuCommand := {a command object or gNoChanges } 

DoMenuCommand :=INHERITED DoMenuCommand(aCmdNumber); 

PROCEDURE TTarget.DoSetupMenus; 

VAR item: INTEGER; 

BEGIN 

END; 

aMenuHandle: MenuHandle; { a Menu Manager type } 

{ All procedure and function calls are to Menu Manager routines. } 
INHERITED DoSetupMenus; 
aMenuHandle := GetMHandle(mNumberl); 
{ mNumberl is a constant you define. It is the menu ID for a menu that 

only returns negative command numbers. } 

IF aMenuHandle <> NIL THEN 
FOR item := 1 TO CountMitems(aMenuHandle) DO BEGIN 

Enableitem(aMenuHandle, item); {or use Disableitem 

END; 

{ If this is a font menu, and the menu item corresponding 
to the currently selected font is stored in fCurrFontitem, add: } 

Checkitem(aMenuHandle, item, item= fCurrFontitem); 

aMenuHandle := GetMHandle(mNumber2); 
{ mNumber2 is a constant you define. It is the menu ID for a menu that may have 

menu items added. The constant cRegularitems, used below, is another constant 
you define which defines the number of permanent items in this menu. It is 
assumed here that those menu items are handled by ordinary command numbers. 
Handle the setup for the ordinary menu items in the menu here or elsewhere in 
this method. See the •changing Menu Appearance and Function# recipe for more 
inform~tion. } 

IF CountMitems(aMenuHandle) > cRegularitems THEN 
FOR item := (cRegularitems + 1) TO CountMitems(aMenuHandle) DO BEGIN 

Enableitem(aMenuHandle, item); {or use Disableitem} 
END; 

Chapter 7: lhe Cookbook 219 



6/14/88 Working Draft 4 CAPDA) MacApp 2.0 Tutorial 

Creating filtered commands 

Purpose 

With commands that make large or complex changes to a document, it may be 
inefficient to actually make the changes when you may have to undo them later. 
Instead, you may apply a filter to the view. Conceptually, a filter makes the 
view appear as if the data has actually changed, when in reality the data set 
remains as it was. That way, if the user chooses Undo you simply remove the 
filter, and if the user chooses Redo you apply the filter again. You don't 
actually change the data (commit the command) until the command can no 
longer be undone. 

Howtodoit 

1. You must somehow record which items in the document's data set were 
changed by the command If the items are separate objects, this is usually 
done with a Boolean flag in each object, although some applications 
maintain a separate list of changed items, probably as part of the view or in 
the command object In addition, you need a flag that tells whether or not 
the command is currently in effect 

2. In Dolt, mark the changed items and set the flag indicating that the changes 
are in effect. Then invalidate the images of the changed items in the view. In 
the Undolt and Redolt methods, set the flag that indicates whether or not the 
command is in effect and invalidate the items' images. 

3. In the Draw and DoHighlightSelection methods, check the flags (or list of 
changed items) and appropriately alter the way the data is displayed It is 
easiest to see how this is done if the command deletes selected items. In that 
case, you can simply not draw any items that were selected when the 
command was initially executed In more complex cases, you may call a 
separate drawing method, possibly part of the command object, that draws 
the changed items. 

4. In Commit, make the actual changes to your document's data set In the 
example of deleting selected items, you can actually delete the 
corresponding objects. 

Because the actual implementation of filtered commands varies significantly 
between applications, no recipe is given here. However, the DrawShapes 
sample program uses filtered commands for its Cut, Copy and Paste 
commands. 

220 Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Using UPrinting 

Purpose 

The printing unit, UPrinting, provides standard printing capability that is 
sufficient for most applications. This recipe shows how you can use the unit in 
the simplest possible way. See the sample programs for examples of more 
extensive use of the capabilities of UPrinting, and the Printing ERS for further 
discussion of MacApp printing. 

How to do it 

1. You need to include UPrinting in the USES statement at the beginning of 
your unit. 

2. Define a new local variable, aStdHandler, of the type TStdPrintHandler, for 
your TYourDocumentDoMakeViews method. (Alternatively, you can 
define this variable in TYourView.IYourView.) 

3. Insert the lines shown in the template at the end of 
TY ourDocumentDoMak:e Views. (You can also do this in 
TY our View .IY our View.) 

4. Insert the following line in your main program before calling 
application.Run: 

InitPrinting; 

That initializes UPrinting. 

Template 

{ The next two lines make the view printable. } 
New(aStdHandler); 
FailNIL(aStdHandler); 
aStdHandler.IStdPrintHandler(SELF, aView, FALSE, TRUE, TRUE); 

6/14/88 

Chapter 7: The Cookbook 221 



6/14/88 

222 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Using UTEView 

Purpose 
The text-editing unit, UTEView, implements more than the text-editing features 
of the toolbox TextEdit package. Using this unit, you can have simple text 
editing of series as long as 32,767 characters. TextEdit capabilities include the 
following: 

• inserting new text 

• deleting characters that are erased with backspacing 

• translating mouse activity into text selection 

• implementing the Cut, Copy, Clear and Paste commands and Clipboard 
support 

• ability to undo typing and the Cut, Copy, Clear and Paste commands 

See the "TextEdit "chapter of Inside Macintosh fotdetails ofTextEdit's actions. 

This recipe shows essentially how to implement a limited version of the 
DemoText sample program. You may want to build and run that program to get 
a better idea of what UTEView can do for you. Also, you can find more 
information about the UTEView unit in the "MacApp 2.0 TTEView ERS." 

How to do it 

1. Include UTEView in the USES statement at the beginning of your unit. 

2. As with any application, you must create your own descendant of 
TApplication and override DoMakeDocument for that type. Here is a sample 
interface: 

TYourApplication = OBJECT(TApplication) 

FUNCTION TYourApp.DoMakeDocument(itsCmdNumber: CmdNumber): TDocument; OVERRIDE; 
END; 

The implementation of DoMakeDocument is similar to any 
DoMakeDocument method. A sample is in the template for this recipe. 

Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

3. Create your own document type. It must have certain fields to hook into 
TextEdit. Here is a sample interface: 

TTextDocument = OBJECT(TDocument) 

fText: Handle; {handle to the actual text belonqlnq to the document} 
fTEView: TTEView; {the TEView object that manages the text} 

PROCEDURE TTextDocument.ITextDocument; 

PROCEDURE TTextDocument.Free; OVERRIDE; 

PROCEDURE TTextDocument.FreeData; OVERRIDE; 

PROCEDURE TTextDocument.DoNeedDiskSpace(VAR dataForkBytes, 

6/14/88 

rsrcForkBytes: LONGINT); OVERRIDE; 

PROCEDURE TTextDocument.DoRead(aRefNum: INTEGER; 
rsrcExists, forPrintinq: BOOLEAN); OVERRIDE; 

PROCEDURE TTextDocument.DoWrite(aRefNum: INTEGER; makinqCopy: BOOLEAN); OVERRIDE; 

PROCEDURE TTextDocument.DoMakeViews(forPrintinq: BOOLEAN); OVERRIDE; 

PROCEDURE TTextDocument.DoMakeWindows; OVERRIDE; 

END; 

The implementation of these methods is discussed in the rest of this recipe. 

4. Create a new handle for the text with the !Document method. You do that 
with the MPW Pascal function NewHandle. At this time, ITEView, which 
will later hold a reference to the TfEView object that handles the text, is set 
to NIL. 

5. Provide a FreeData method to get rid of the document's data when the 
document is reinitialized. You can do that by just setting the handle size 
toO. 

6. Provide a Free method. Call DisposHandle(IText) and then call 
INHERITED Free. 

7. Implement DoMake Views so that it makes a TfEView object. 

The view object is central to a UTEView application, because the text-edit 
view is what handles the text by communicating with the toolbox TextEdit 
package. The method's implementation in the templates is self-explanatory. 

Chapter 7: The Cookbook 223 



6/14/88 

224 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Notice that DoMake Views creates a print handler and thus can be printed. 
(UPrinting must also be in a USES statement for printing to work. See the 
"Using UPrinting" recipe in this chapter.) 

8. lmplementDoMakeWindows. The implementation is shown in the template. 

9. Implement DoNeedDiskSpace, DoRead, and Do Write so that you can save 
and restore documents. See the sample implementations in the template. 
Notice the failure handler used, HdlDoRead. See the "Failure Handling" 
recipe for more infonnation. 

Templates 

FUNCTION TYourApplication.DoMakeDocument(itsCmdNumber: CmdNumber): TDocument; 

VAR aTextDocument: TTextDocument; 

BEGIN 

END; 

New(aTextDocument); 
FailNIL(aTextDocumentl; 
aTextDocument.ITextDocument; 
DoMakeDocument := aTextDocument; 

PROCEDURE TTextDocument.ITextDocument; 

BEGIN 

END; 

fText := NIL; 
IDocument(kFileType, kSignature, kUsesDataFork, NOT kUsesRsrcFork, 

NOT kDataOpen, NOT kRsrcOpen); 
fText := NewPermHandle(O); 
FailNIL(fText); 
fTEView := NIL; 

PROCEDURE TTextDocument.Free; OVERRIDE; 

BEGIN 

END; 

IF fText <> NIL THEN 
DisposHandle(fText); 

INHERITED Free; 

PROCEDURE TTextDocument.FreeData; OVERRIDE; 

BEGIN 
SetHandleSize(fText, 0); 

END; 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

PROCEDURE TTextDocument.DoMakeViews(forPrinting: BOOLEAN); OVERRIDE; 

VAR aWindow: TWindow; 
aHandler: TStdPrintHandler; 
aTEView; TTEView; 

BEGIN 

END; 

aWindow := NewTemplateWindow(kWindowRsrcID, SELF); 

aTEView := TTEView(aWindow.FindSubView('TEVW'); 
fTEView := aTEView; 

New(aStdHandler); 
FailNIL(aStdHandler); 
aStdHandler.IStdPrintHandler(SELF, aTEView, FALSE, TRUE, TRUE); 

fTEView.StuffText(fText); { Put in the text. } 

PROCEDURE TTextDocument.DoNeedDiskSpace(VAR dataForkBytes, rsrcForkBytes: LONGINT); 

BEGIN 

END; 

INHERITED DoNeedDiskSpace(dataForkBytes, rsrcForkBytes); 
dataForkBytes := dataForkBytes + GetHandleSize(fText); 

PROCEDURE TTextDocument.DoRead(aRefNum: INTEGER; rsrcExists, forPrirtting: BOOLEAN); 

VAR numChars: LONGINT; 
fi: Failinfo; 

BEGIN 

END; 

PROCEDURE HdlDoRead(error: INTEGER; message: LONGINT); 
BEGIN 

END; 

SetHandleSize(fText, 0); 
Failure(error, message); 

CatchFailures(fi, HdlDoRead); 
FailOSErr(GetEOF(aRefNum, numChars)); 
SetHandleSize(fText, numChars); 
FailMemError; 
FailOSErr(FSRead(aRefNum, numChars, fTextA)); 
Success(fi); 

Chapter 7: The Cookbook 225 



6/14/88 

226 

Working Draft 4 (APOA) MacApp 2.0 Tutorial 

PROCEDURE TTextDocument.DoWrite(aRefNum: INTEGER; makingCopy: BOOLEAN); 

VAR numChars: LONGINT; 

BEGIN 

END; 

nurnChars := GetHandleSize(fText); 
FailOSErr(FSWrite(aRefNurn, nurnChars, fTextA)); 

Using UDialog 
The dialog unit, UDialog, provides an extensive group of capabilities for 
creating dialog boxes and other windows made up of groups of controls (such 
as radio buttons) and other items that can request information from the user. To 
do this, the dialog unit makes extensive use of nested views. 

The dialog unit provides support for these features: 

• views that can take in text and validate the text 

• views that can take in numbers and validate the numbers, called number 
text items 

• views that represent Control manager controls: radio buttons, push buttons, 
and check boxes 

• views that represent pictures, icons, and static text-all of which can behave 
like buttons, if desired 

• groups of radio buttons, called radio clusters 

• modal dialog boxes 

• mcxleless dialog boxes 

The recipes in this section show how to create simple dialog boxes. See the 
sample programs, the "MacApp 2.0 UDialog ERS'', and the source ccxle for 
further information. In particular, you may find the DemoDialogs sample 
program helpful. 

Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

(/ 

Creating a modeless dialog 

Purpose 

A modeless dialog is similar to an ordinary window, except that the dialog's 
main view object is an instance of TDialogView and its view is an instance of a 
TDialogView. Modeless dialog boxes usually exist to request some sort of 
information from the user, and any information they convey to the user is 
generally simple. Modeless dialog boxes can be deactivated just like ordinary 
windows, so the user does not have to respond to them before continuing work 
with the application. 

Howtodoit 

1. Include UDialog in the USES statement at the beginning of your unit 

2. Def'me a method that will display the dialog. This method should be for the 
object type that will issue the command. If the dialog has to do with the 
operation of the application as a whole, the method should belong to 
TY ourApplication, and similarly with your document or view. (Because 
you rarely customize TWindow, this is rarely a window method.) 

The interface of this method can be something like 

PROCEDURE TYourType.PoseModelessDialog; 

The details of the method's interface depend entirely on the use your 
application makes of the dialog. 

Some applications (those that use the dialog more like an ordinary window) 
do not have a PoseModelessDialog method. Instead, the dialog view and 
window are created in DoMakeViews and DoMakeWindows along with the 
document's other windows. 

3. In the PoseModelessDialog method, create the dialog view and the dialog 
window, install the controls, set the window title, and launch the window. 
See the template for details. For a discussion of dialog items see the "Using 
Dialog Items" recipe. 

Notice that the PoseModelessDialog method opens the dialog window and 
then returns, without waiting for a response from the user. 

4. For some types of modeless dialogs, you may need to create your own 
descendant ofTDialogView. You need to do this if you want to override 

6/14/88 

Chapter 7: The CookboOk 227 



6/14/88 

228 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

one of the standard dialog methods. For example, if you want to save some 
information pertaining to your dialog after it is closed, you can override 
TDialogView.DismissDialog. The interface of your new object type might 
be 

TYourModelessDialogView = OBJECT(TDialogView) 
FUNCTION TYourModelessDialogView.DismissDialog(dismisser: IDType); OVERRIDE; 

END; 

The dismisser parameter contains the four-character identifier of the item 
that actually dismissed the dialog. 

Notice that you do not have to override any other methods of TDialogView. 

5. If you have overridden any TDialogView methods, implement the override 
version so it takes an appropriate action or returns a command object that 
will take the action. No template is given for this method because it depends 
so much on your application. 

Template 

PROCEDURE TYourType.PoseModelessDialog; 

VAR aDialogView: TDialogView; 
aWindow: TWindow; 

BEGIN 

END. 

{ Use this approach when using view resources. See the 
UDialog ERS for example of such resources. } 

aWindow := NewTemplateWindow(aRsrcID, NIL); 
( 'DLOG' is an arbitrary identifier you define in your resource file. l 
aDialoqView := TDialogView(aWindow.FindSubView('DLOG')); 
awindow.Open; 

Creating a modal dialog 

Purpose 

A modal dialog requires a response before the user can continue with the 
application. As with modeless dialogs, a modal dialog view is an instance of a 
TDialogView. Modal dialogs usually exist to alert the user to some condition 
and force the user to make some sort of response. Modal dialogs cannot be 
deactivated, but can only be dismissed. 

Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

How to do it 

1. You need to include UDialog in the USES statement of your unit 

2. Define a method that will display the dialog. This method should be for the 
object type that will issue the command If the dialog has to do with the 
operation of the application as a whole, the method should belong to 
TY ourApplication, and similarly with your document or view. (Because 
you rarely customize 1Window, this is rarely a window method.) 

The interface of this method can be something like 

PROCEDURE TYourType.PoseModalDialog; 

The details of the method's interface depend entirely on the use your 
application makes of the dialog. 

3. Implement PoseModalDialog as shown in the template. After you set up the 
dialog, you call its PoseModally method. That method requires a response 
from the user before continuing. IDialogView.PoseModally processes 
events until selecting one of the dialogs items causes the dialog to be 
dismissed When one of the items returns the value TRUE for the done 
parameter, PoseModally returns, returning a message from the item that 
returned TRUE. You should then interpret the value of this return value and 
take appropriate action (which might, if the user chose Cancel, mean taking 
no action). 

Template 

PROCEDURE TYourApplication.PoseModalDialog(aCmdNumber: INTEGER); 

VAR aWindow: TWindow; 
dismisser: IDType; 

BEGIN 

END; 

aWindow := NewTemplateWindow(someRsrcNumber, NIL); 
dismisser := TDialogView(aWindow.FindSubView('DLOG'll .PoseModally; 

{ In this case, •yes• is the identifier of the yes button. 
if dismisser = •yes • then 

{ react to this response } 
else ( next possible response } 

{ react to next possible response 
{ continue for all possible responses } 

6/14/88 

Chapter 7: The Cookbook 229 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Using dialog items 

Purpose 

Every dialog view is made up of a list of dialog items. Dialog items are objects 
of type TControl or its descendants TStaticText, TCtlMgr, TOuster, Tlcon, 
TPopup, and TPicture. Descendants of TCtlMgr include TScrollBar, TButton, 
TCheckBox, TRadio, TEditText, and 1NumberText. You may also define your 
own descendants of any of these types or of TControl itself. 

Here are the predefined dialog item types from UDialog, and what they are used 
for: 

• TButton implements a simple Control Manager button. 

• TCheckBox implements a simple Control Manager check box control. 

• TRadio implements a simple Control Manager radio button control. 

• TCluster implements a "holding" view for radio buttons or other objects. It 
has two intrinsic functions-it understands an mRadioHit message from a 
subview, and can be used to contain other controls with a graphic label. 

• Tlcon implements an icon item that can serve as a basic form of button if 
enabled. 

• TPicture implements a picture item that can also serve as a basic form of 
button if enabled. 

• TPopup implements a simple pop-up menu selector, following the 
guidelines for pop-up menus established by the Apple Human Interface 
Group. 

• TScrollBar implements scroll bars as simple dials not associated with any 
scroller object 

• TStaticText implements a static text item that can serve as a basic form of 
button if enabled. The text cannot be edited. 

• TEditText implements a simple editable text item. It is implemented as a 
subclass of TStaticText When the item needs to be edited, the parent 
DialogView places a floating TEView over the view. 

230 Chapter 7: The Cookbook 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

• TNumberText can take in numbers. (Any characters other than 0 through 9 
are ignored.) It can validate the numbers to make certain they are within a 
given range, after the tab key is pressed or another control is selected. 

The number and position of dialog items in the dialog view is defined in the 
dialog's template in the resource file. The distinction between ordinary 
windows and dialog boxes is virtually gone in MacApp 2.0. Controls are now 
views which can be subviews of any views, not just dialog views. However, 
using dialog views does ensure that tabbing and editing of editable text items 
works properly. 

See the "MacApp 2.0 UDialog ERS" for more infonnation, and the 
DemoDialogs sample program for examples. 

The Clipboard 

Purpose 

The Clipboard and the desk scrap are the Macintosh computer's standard 
mechanisms for copying and pasting selections within or between applications 
and desk accessories. 

MacApp maintains a private scrap for the running application, so when you cut 
or copy information from a document, the information is placed in the 
Clipboard in a form particular to the application. The Oipboard window is 
represented by the TWindow object referred to by gClipWindow. 

When the user cuts or copies data from your application, your application 
creates a view to display and possibly otherwise handle the data. Normally, that 
view is of the same view type as the one that originally displayed the data. The 
data local to your application (and typically stored in objects) is in your 
application's private scrap. 

When your application begins running, the desk scrap contains data from the 
last cut or copy operation. (The desk scrap will be empty if there has been no 
cut or copy operation since the Macintosh started up.) This is the public scrap, 
and the data it contains is in one or both of two forms common to most 
Macintosh applications: TEXT (ASCil strings) or PICT (a QuickDraw picture). 
It may also contain data in the form preferred by your application, if that data 
was cut or copied from a previous instance of your application or another 
application that uses compatible data types. When it is time to display the 

6/14/88 

Chapter 7: The Cookbook 231 



6/14/88 

232 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Clipboard and the desk scrap contains no private scrap yet, you can create a 
view of one of your application's types (typically because there is data in a form 
used by your application}, or you can allow MacApp to create a view that will 
display the common data typeS. 

When you leave the application, it gets a chance to convert the infonnation in 
your private scrap to the two common forms. (Leavirig the application can mean 
quitting, switching to another application with MultiFinder™ using the 
Switcher™, or starting a desk accessory.) 

See the Scrap Manager chapter of Inside Macintosh for more information on the 
desk scrap and the Clipboard. 

Howtodoit 

Clipboard support implies support of the Cut, Copy, and Paste commands. The 
implementations of those commands are described under "Standard Editing 
Commands" in this chapter. This recipe implements only the Clipboard support 
necessary for those commands. 

In particular, this recipe deals largely with what is required of a Clipboard view. 
The view is the main controlling object. The Clipboard view is created in one of 
two ways. First, when the application starts up, a view is created to handle the 
initial contents of the Clipboard, as taken from the public scrap. Second, when 
data is cut or copied from your application, a view of some type originating in 
your application must be created. In either case, the view must be able to handle 
certain calls from other methods. This recipe deals with those calls. 

Clipboard views commonly have documents to handle the data they show. 
However, that is not required. A view showing the desk scrap, for example, 
may simply read and display the desk scrap directly. In implementing Cut and 
Copy, however, the most common situation is that the data the user has cut or 
copied is handled by instances of the same objects that handled them in the 
application itself: document, view, and data objects. The methods described 
here are typically implemented for any view types that can have data cut or 
copied, because instances of these view types may be Clipboard views. 

1. Define a handle type for your Clipboard data type by declaring two pointers. 
For example: 

YourTypeOnClipboard = APYourTypeOnClipboard; 
PYourTypeOnClipboard • AYourClipType; 

You must create a handle type because the desk scrap cannot use object
oriented data structures. Instead, it uses handles to ordinary Pascal data 

Chapter 7: The Cookbook 

/ 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 CAPDA) 

structures. Also, a single handle thus refers to all the data of a particular 
type in the Clipboard. 

As with the data structure created to save your data in a file, the details of 
your Clipboard structure depend entirely on your application. (You can use 
a common structure to save data in a file and to write to the desk scrap, 
although you'll probably want to add fields when saving to a file so you can 
save state information.) 

2. Define a resource type for your Clipboard data type. The value is an 
arbitrary four-letter string, usually stored in a constant (kOipDataType in 
the template). Unless your information is of the same type used by other 
applications, you should make this string unique, as it is used to identify 
data in the public scrap as data your application can understand If the 
Oipboard information is simply a sequence of ASCII characters, 
kClipDataType should be 'TEXT; if the Clipboard information is a 
QuickDraw picture (a saved sequence of drawing commands), 
kClipDataType should be 'PICT. If you have a number of different 
possible Oipboard data types, define several constants. You should register 
the type identifiers you've chosen with Developer Technical Support to 
prevent duplication. 

3. You don't have to do anything to display PICT or TEXT data from the 
public scrap. MacApp automatically creates an object of type 
1DeskScrap View when necessary. If you want to be able to display the 
public scrap data in your own type of view (usually because the data is of 
some type preferred by your application), override 
Make ViewForAlienClipboard for your application type. The interface for 
that method is 

FUNCTION TYourApplication.MakeViewForAlienClipboard: TView; OVERRIDE; 

In the implementation of this method, call GetScrap (a Scrap Manager 
routine) once for each Clipboard data type you can handle. (GetScrap takes 
a handle for the data. Pass Nil.. in this case, because you don't need to 
acmally read the data now.) If you find data of one of your types, create an 
appropriate view object, and return it. If you don't find one of your types, 
you should call INHERITED Make ViewForAlienOipboard so that the 
MacApp method can create and remm a 1DeskScrap View object. 

You need to override this method to create views for your application's 
scrap types. 

A sample implementation is given in the templates for this recipe. The 
sample begins with a call to GetScrap. The first parameter of GetScrap is 

6/14/88 

Chapter 7: The Cookbook 233 



6/14/88 Working Draft 4 (APDA) , MacApp 2.0 Tutorial 

ordinarily a handle used as the destination of the scrap data. In the 
templates, the destination is NIL, so nothing is passed to the application. 

4. Override the necessary methods for your Clipboard view type as shown: 

FUNCTION TYourView.ContainsClipType(aType: ResType): BOOLEAN; OVERRIDE; 
FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType): LONGINT; 

OVERRIDE; 
PROCEDURE TYourView.WriteToDeskScrap; OVERRIDE; 

The implementations are discussed in the following steps. 

5. ContainsClipType is called by other methods to find out whether the 
Clipboard contains a particular type of data. The default implementation (as 
defined in TView) calls GetScrap to find out if the requested type is in the 
public scrap. You should override this method for a view that can display a 
private scrap. (Note that this is always the case when the data in the 
Clipboard got there through a cut or copy in this instance of your 
application.) 

The interface of this method is 

TYourView.ContainsClipType(dataType: ResType): BOOLEAN; OVERRIDE; 

A sample is given in the templates. 

6. GivePasteData is called to get data from the Clipboard. If you want to get 
data from the public scrap, you don't have to override this (it is declared and 
implemented for TView). If the data to be pasted is in your application's 
private scrap, you need to override this method. Its interface is 

TYourView.GivePasteData(aDataHandle: Handle; dataType: ResTypeJ: LONGINT; 

GivePasteData has two purposes. First, it returns the length of the data of 
the given resource type in bytes (or, if there is some problem, returns a 
negative number, which is an error code). Second, if aDataHandle is not 
NIL, the method places the data in the space referred to by the handle. 

Your version of GivePasteData should follow this logic: · 

• Check whether the data type requested matches the data types your program 
can handle. This should always be TRUE (because the request comes from 
one of your paste methods). ff it is not TRUE, return noTypeErr, a 
predefined constant. 

234 Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

• If the data has been written to the desk scrap, call INHERITED 
GivePasteData. TView.GivePasteData uses GetScrap to put the information 
in the handle. 

• Otherwise, the data in the Clipboard originated from your application, and 
you must extract the required information. 

A sample of this method is given in the templates. 

7. To enable other programs to receive Clipboard data from your application, 
override TView.WriteToDeskScrap (which has no parameters) for your 
Clipboard view. (Generally, the Clipboard view is of the same type as your 
ordinary application view; it becomes a Clipboard view when an instance is 
created to display the Clipboard. Therefore, you usually need to override 
WriteToDeskScrap for every customization of TView in your application 
that allows a cut or copy operation.) 

When your application terminates or the user uses MultiFinder'™ or starts a 
desk accessory, WriteToDeskScrap is called to convert the Clipboard's 
contents to the desk scrap. 

See the "Scrap Manager" chapter of Inside Macintosh for details of writing 
data to the scrap. 

After you write the data in your application's preferred type, you should, if 
possible, write it as PICT or TEXT data or both. 

8. If you want to have a Clipboard document, create it before making the 
Clipboard view. When you call TY ourDocumentIY ourDocument, you can 
pass in 1RUE to indicate to IY ourDocument that you are creating a 
Clipboard document, although that may not matter to IY ourDocument (You 
do not have to have a Clipboard document, although applications usually 
do.) 

9. You need to have one item for the Clipboard in the resource file: the Show 
Clipboard menu item. 

See the sample programs' resource files for guidance. 

6/14/88 

Chapter 7: The Cookbook 235 



6/14/88 

236 

Working Draft 4 (APDA) 

Templates 

FUNCTION TYourApplication.MakeViewForAlienClipboard: TView; 

VAR offset: LONGINT; 
clipYourView: TYourView; 
aHandle: Handle; 
clipDoc: TYourDocument; 

BEGIN 

the scrap. 
them here. 
> 0 THEN BEGIN 

MacApp 2.0 Tutorial 

Test whether your preferred data type is in 
If you can understand other types, test for 

IF GetScrap(NIL, kClipDocType, offset) 
New(clipDoc); 
clipDoc.IYourDocument(TRUE); The TRUE is only needed if IYourDocument 

cares if this is a Clipboard document. J 

END; 

END 
ELSE 

New(clipYourView); 
clipYourView.IYourView(clipDoc); 
WITH clipYourView DO BEGIN 

END; 

finformBeforeDraw := TRUE; 
fWrittenToDeskScrap := TRUE; { Tells MacApp it is not necessary to 

write this view to the desk scrap if the 
application quits because the Clipboard 
view was derived from data in the 
desk scrap. l 

MakeViewForAlienClipboard := clipYourView; 

MakeViewForAlienClipboard := INHERITED MakeViewForAlienClipboard; 

FUNCTION TYourView.ContainsClipType(aType: ResType): BOOLEAN; 
BEGIN 

ContainsClipType := (aType = kYourClipType); 
END; 

Chapter 7: The Cookbook 



( 

( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

FUNCTION TYourView.GivePasteData(aDataHandle: Handle; dataType: ResType): LONGINT; 

VAR aSize: LONGINT; 
err: OSErr; 

BEGIN 

END; 

{ The following test checks whether the requested data type is your program's 
type. You may have several types, in which case this would be a multiple test. 

IF dataType <> kYourClipDataType THEN 
GivePasteData :• noTypeErr 

ELSE 
IF fWrittenToDeskScrap THEN 

GivePasteData :• INHERITED GivePasteData(aDataHandle, dataType) 
ELSE BEGIN 

END; 

{ Copy the data in the Clipboard and accumulate the size in aSize. 
If aDataHandle is not NIL, then by exit time its size must be 
equal to the ultimate value of aSize, and the Clipboard data must 
be in the data area referred to by aDataHandle. } 

GivePasteData := aSize; 

Failure handling 

Purpose 

Any time you access devices, failures may occur. In addition, unanticipated 
ccxle problems may cause failures. MacApp includes a failure-handling 
mechanism that is intended to allow applications to clean up debris left by the 
failure and continue running from the point before the failure. You can also use 
it to display alert boxes for the user. 

This recipe, unlike the others, is more descriptive than prescriptive. The failure
handling mechanism is really a set of routines that you can call, along with 
routines that you write, to provide minimally disruptive handling of failures. 
This recipe describes the architecture of the mechanism and tells how each 
routine can be used. See the sample programs for specific examples of failure 
handling. 

Howtodoit 

The failure-handling mechanism is built around exception handlers. An 
exception handler is a routine, generally local to some method, that is called 

Chapter 7: lhe Cookbook 237 



6/14/88 

238 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

when a failure occurs and takes action to handle the failure. See the sample 
programs for examples of exception handlers. 

References to exception handlers are kept on a stack. When an error is likely to 
occur (generally because of 1/0 or memory allocation) and cleanup needs to be 
done, MacApp posts exception handlers to the stack; application routines should 
post exception handlers when an error the application should handle might 
occur. (Applications post exception handlers sometimes because an error 
MacApp can't anticipate may occur. Other times exception handlers are used to 
supplement the MacApp exception handler with application-specific action.) 

Whenever a failure occurs, the Failure global procedure is called. Failure is 
never called automatically. You must check for a failure, and call Failure when 
you find that it is needed. That check is most often done by calling the MacApp 
global procedures FailNIL, FailOSErr, FailMemError, or FailResError, which 
check for specific kinds of errors. Here is the intexf ace to Failure: 

PROCEDURE Failure(error: INTEGER; message: LONGINT); 

Failure pops the handler at the top of the stack and calls it That handler 
generally does any cleaning up it can do (such as freeing temporary objects or 
handles), possibly sets up the error alert box, and sometimes calls Failure again 
to invoke the next handler on the stack with a new error. Returning from the 
han<l:ler automatically passes the same error to the next handler on the stack. 

1. The exception handlers that MacApp posts handle errors in a generalized 
way, usually by displaying an alert box telling the user what happened (to 
the best of MacApp 's ability to tell) and then branching around the code that 
caused the error. (That generally means abandoning the command that 
resulted in the error.) When an error that MacApp can anticipate may occur, 
you may want to post your own exception handler to set up your own alert 
box or to handle the failure in your own way. The mechanism allows you to 
take the action you want, set up certain values to produce a useful message, 
and then invoke MacApp's exception handler. You should always post your 
own exception handler when a failure that MacApp can't anticipate is 
possible. 

An important part of the failure-handling mechanism is the ability to give the 
user a useful alert message. MacApp provides several ways to do that, all 
working through the same routines. When a failure occurs, the exception 
handler that is initially called (which may be a MacApp or an application 
handler) usually calls Failure (directly or by returning) to invoke another 
failure handler. Failure's error and message parameters are used to build the 
alert box that informs the user of the error. Handlers usually set those 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

values only ifthe method that called Failure hasn't set them. (In other 
words, handlers should assume that the routine that called Failure has more 
specific knowledge about the error, and thus, if it gave values for error and 
message, those are the most appropriate values.) Typically, there is a chain 
of Failure calls that leads to an exception handler (defined by MacApp) that 
calls TApplication.ShowErrors. (If you want to change what happens next, 
you can override ShowErrors.) ShowErrors calls the global routine 
ErrorAlert. ErrorAlert builds the alert message in different ways depending 
on the message value that you passed. The standard alert strings defined in 
the standard resource files are 

phGenError could not A2, because Ao. Al. 

phCmdErr could not complete the •A2• command because AO. Al. 

phUnknownErr could not complete your request because AO. Al. 

The alert string is chosen and the placeholders "O, "1, and "2 are filled by 
ErrorAlert based on the error and message values that are passed to Failure. 
MacApp uses the error parameter to Failure to find a string to replace "O. 
That string identifies the kind of error that occurred. It also uses the error 
value to find a string to replace "1, if appropriate. "1 is used for a string that 
gives the user advice on what to do, and is only given if that isn't clear from 
the error identifier. 

The message parameter of Failure determines what replaces "2 and what 
alert message is used. The message parameter is a LONGINT that is treated 
as a pair of numbers. The first integer, or high word, of a message 
determines how the second integer, or low word, is interpreted. There are 
five possibilities: 

• If the high word is equal to msgCmdErr, the low word is a command 
number. ErrorAlert translates that command number into a command name, 
and substitutes it for "2. The phCmdErr alert is used. 

• If the high word is equal to msgAlert, the low word is an alert number (that 
is, a resource number). This generally is an alert that you have defined. That 
alert message is then displayed. 

• If the high word is equal to msgLookup, the low word is a positive integer 
that is an index into an operation table in the resource file. This is rarely 
used. 

6/14/88 

Chapter 7: The Cookbook 239 



6/14/88 

240 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

• If the high word is not any of those values, it is a resource ID for a string 
list and the low word is an index into that list. This string is then substituted 
for "2. The phGenErr alert is used. 

• If message is equal to zero, the phUnknownErr alert is used. 

2. There are two global routines provided to post exception handlers to the 
stack and remove them when the chance for failure is past: CatchFailures 
and Success. The interface to CatchFailures is 

PROCEDURE CatchFailures(VAR fi: Failinfo; PROCEDURE Handler(e: INTEGER; m: LONGINT)); 

The fi parameter is a variable of type Faillnfo that you must provide. You 
don't have to set it to anything. 

Call CatchFailures to set up an exception handler. This pushes your handler 
onto a stack of exception handlers. If MacApp has already pushed a handler 
on the stack, yours is above it, so a call to Failure results in a call to your 
handler. 

The interface to Success is 

PROCEDURE Success(VAR fi: Failinfo); 

The fi parameter is a variable of type Faillnfo that you must provide. You 
don't have to set it to anything. 

Success removes your handler from the stack. 

Any calls to Failure within the limits of the CatchFailures and subsequent 
Success calls result in the execution of your exception handler. If a routine 
calls CatchFailures, it must call Success (unless there was an error). Also, 
you must not call Success unless you called CatchFailures earlier in the 
same routine. 

3. You usually don't call Failure directly. Instead, you use one of the four 
global routines that are provided to test for different kinds of errors: 
FailNIL, FailOSErr, FailMemErr, or FailResErr. In each case, they call 
Failure with appropriate error and message values if a failure occurred. If a 
failure did not occur, they simply return. 

The interface to FailNIL is 

PROCEDURE FailNIL(p: UNIV Ptr); 

The p parameter is any pointer or handle (including object references). 

Chapter 7: The Cookbook 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

This procedure tests whether the given pointer (or handle) is NIL and calls 
Failure(memFullErr, 0) if it is. 

The interface to FailOSErr is 

PROCEDURE FailOSErr(error: INTEGER); 

The error parameter is an OS error code, presumably returned by an Inside 
Macintosh or language routine. 

This procedure checks whether the given OS error code signals an error 
and, if it does, calls Failure. This is most often used with functions whose 
return value is an error code, and you use it with a statement such as 

FailOSErr(functionCall(parameters)); 

The interface to FailMemError is 

PROCEDURE FailMemError; 

This procedure checks whether there was a memory error and, if there was, 
calls Failure. You generally call this after you attempt to allocate a new 
pointer or handle. It tests the value of MemError. If MemError <> noErr, it 
calls Failure(MemError, 0). 

4. In your exception handler, you usually want to set the message parameter 
only if it has not already been set. To do that, you can use the global 
procedure FailNewMessage in place of Failure. 

PROCEDURE FailNewMessaqe(error: INTEGER; oldMessaqe, newMessaqe: LONGINT); 

This procedure calls Failure and passes the error and new Message or 
oldMessage parameters. FailNewMessage passes the oldMessage parameter 
to Failure unless it is 0, in which case newMessage is passed. This is used 
in an error handler so that the error handler can provide a message 
(newMessage) only if a message was not provided already. You would use 
this routine instead of calling Failure when you want to set the message 
value but do not want to override a message value established by a lower
level handler. 

5. You must take special care to handle failures carefully during creation and 
initialization of objects. You should always call FailNIL after calling New. 
However, it is also possible to encounter failures when calling the 
initialization method of an object that you have just successfully created. 
This case occurs frequently, so all MacApp code follows a helpful 
convention: if the initialization method for an object fails, the method frees 

6/14/88 

Chapter 7: The Cookbook 241 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

the partially initialized object. This convention, which relieves you from 
freeing the object, makes it easier to write code that creates new objects. 

Although convenient, this scheme has a potentially damaging side effect: 
when you call the initialization method of an object and it fails, your 
reference to the object may become invalid. If the code cal.ling the 
initialization method has a failure handler, the handler must be prepared for 
this situation. Because most MacApp objects (such as views and windows) 
will be freed automatically if they are successfully initialized, you normally 
don't need to have a failure handler. 

Initialization methods that can signal failure (or that call ancestral methods 
that do so) must be written carefully. Because its Free method may be 
cal.led, the object must be put into a state that allows Free to succeed before 
any action that can fail is taken. Thus, the sequence of actions in your 
initialization method should be: 

• Initialize any variables that your Free method needs to operate 
successfully. No action that can fail may be taken in this step. 

• Call the immediate ancestor's initialization method (if any). This may 
fail, in which case your Free method will be cal.led. 

• If you do any initialization that can fail, set up a failure handler, do the 
initialization, and then remove the failure handler. The failure handler 
should do any specific cleaning up you need done, and then call Free. 

242 Chapter 7: The Cookbook 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

Your notes 

Chapter 7: The Cookbook 243 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

244 Chapter 7: The Cookbook 



Chapter 8 

MacApp Debugging 
Facilities 



6/14/88 

246 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

MacApp provides four debugging tools: 

• The Debug window. This window is available when the MacApp code 
used with the application was compiled with debugging on. Output from 
Write or WriteLn statements are directed to this window. In addition, this 
window allows you to use the Debug menu and the Interactive Debugger. 

• The Debug menu. This menu appears in the menu bar of any MacApp 
application (that was compiled with debugging on) that has the Debug menu 
in its resource file. Using this menu, you can control certain features of 
your application and cause certain information to be printed instantly or 
periodically in the Debug window. 

• Inspector windows. These windows provide an easy way to display the 
fields of any object instance. An Inspector window contains a list of every 
object class that has at least one instance. When you choose one of these 
classes, a list of every instance of that class appears. You can then choose to 
see the fields of any of these instances. Since you can have multiple 
Inspector windows, you can examine the fields of more than one instance at 
a time. 

• The Interactive Debugger. This is a high-level debugger that runs in 
the Debug window. It takes control whenever there is an error as well as the 
beginning and end of most MacApp methods and routines. Unless you 
specify otherwise, it also takes control at the beginning and end of methods 
and routines in your application. 

To use the MacApp debugging facilities, the version of MacApp and your 
application that you use must have been compiled with debugging on. See 
"How to Install and Use MacApp" for information on how to tum off 
debugging. (The easiest way to tell whether or not a version has been compiled 
with debugging on is by its size: debugging code typically doubles the size of 
the MacApp object file. Note, though, that additional building block units such 
as UTEView, UPrinting, and UDialog also make the object file significantly 
larger, so you can only compare files with the same units.) 

None of the debugging facilities are available when MacApp is compiled 
without debugging code. (Optimized code never includes debugging code.) 
However, you can always use the low-level MPW debugger, MacsBug, with 
your MacApp application-even if it's compiled with debugging off. Some 
information about using MacsBug with a MacApp application is included under 
"Using MacsBug With MacApp," later in this chapter. See the Macintosh 
Programmer's Workshop Reference for complete information on MacsBug. 

Chapter 8: MacApp Debugging Facllltles 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

You should always recompile MacApp and your application without debugging 
when you want to produce a production version of your application. For 
information, see "What Controls Debugging Code" in this chapter. 

* Note: To have the full set of debugging facilities, you must link your 
application with UTrace.p.o, UTrace.a.o, UWriteLn.p.o, UGridView.p.o, 
Ulnspector.p.o, and WWDriver.c.o. These units are normally linked if you 
use the default build files. To have the Debug menu appear, you must have 
that menu in the resource file. It is included in the MacApp debugging 
resource file. Applications don't need to have USES UTrace, 
UWriteLnWindow, UGridView, or Ulnspector themselves unless they call 
the routines in these units directly. (Note that you can call WriteLn without 
USES UWriteLnWindow.) 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 247 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

What controls debugging code 
Several factors control what you can do with the debugging facilities. They are 
described in this section. 

Compiler variables 

There are a number of conditional compilation variables defined in MacApp that 
are always TRUE when the code is compiled with debugging on and always 
FALSE when the code is compiled with debugging off. (You can also set their 
values individually from the Compiler command line, although that is rarely 
done.) The variables are 

qinspector 

qTrace 

qDebug 

qNames 
qWritelnWin 
qRangeCheck 

To insert code that will be compiled only when one of these switches is TRUE, 
precede the code with a line such as 

{ $IFC variable} 

where variable is replaced by the identifier of one of the Compiler variables. 
Follow the code with 

{$ENDC} 

Everything between these switches will be compiled only when the variable is 
TRUE. In general, you will use the qDebug_switch to delimit your debugging 
code. 

The $0 switches 

The $D compiler switches { $D++} and { $D+} cause the Compiler to insert 
additional debugging information in the compiled code. 

248 Chapter 8: MacApp Debugging Facllltles 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

(. 

( 

( ·. 

/ 

When you use { $0+} or { $0++}, the Compiler inserts an 8- or 16-character 
identifier after the return instruction of every method or other procedure. (16 
characters are used for a method; 8 are used for an ordinary routine). 

In addition, when you use { $0++}, the Compiler generates a call to the 
Interactive Debugger at the entry and retmn of every routine and at every EXIT 
statement. When the Debugger is called in this way, you can stop the program 
with the attention keys (see "Entering Debugger Mode") or the Interactive 
Debugger can stop the program because of a breakpoint or because you had run 
the program with the Single Step command (see "Entering Debugger Mode," 
below). 

When you use { $0+}, the Compiler inserts the identifier but does not generate 
any calls to the Interactive Debugger. 

In either case, the identifier allows the Interactive Debugger to display the name 
of the routine when it displays the stack. 

Each switch affects every routine until the other switch or { $0-} is 
encountered. 

When you are debugging, you generally want every routine in your code to be 
covered by { $0++}. UObject includes the following switch: 

($IFC qTrace}($D++}($ENDC} 

Because of this switch, every routine in a unit that names UObject in its USES 
clause (including all of MacApp) is automatically covered by { D++} unless you 
use {$0--} or {$0+}. (See the Macintosh Programmer's Workshop Pascal 
Reference for an explanation of these switches.) 

If you want a particular routine to be excluded, embed it as follows: 

($IFC qTRACE}($D+}($ENDC} 

PROCEDURE Example; 

BEGIN 

END; 

($IFC qTRACE}($D++}($ENDC} 

Chapter 8: MacApp Debugging Facilities 249 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

250 

You can similarly embed a group of routines in the same switches. 

·Note that the use of {$D-} alone is not recommended. Even with thoroughly 
debugged routines, it is better to have the routine's name available. (In 
production code, the names are not included because the qNames compiler 
variable is set to FALSE.) 

Important 

Assembled routines (such as those described In Inside Macintosh) or routines from 
units that do not use UObject (such as Pasllb) are never governed by the SD 
switches. 

Including debugging code 

An application often includes code that is used only for debugging. MacApp 
uses the compiler variable qDebug to control compilation of debugging code. 
To insert code that will be compiled only when debugging is desired, surround 
the code with 

($IFC qDebug} 

and 

{$ENDC} 

All code within these markers is compiled only when qDebug is TRUE. 

Note: You can also write code so you can, when debugging, enable or 
disable features. See "The Experimenting Flag," in '"The Toggle Command 
Flag" subsection of" The Interactive Debugger" section below. 

The Debug window 
The Debug window appears when you start up any application that is linked 
with a version of MacApp compiled with debugging on. It is a scrollable, 
movable, resizable window. It is initially inactive. If you intend to use it often, 
you may want to position it and your other windows so the Debug window is 
always visible. 

Chapter 8: MacApp Debugging Facllltles 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The Debug window can hold, by default, 52 lines of 80 characters each. (This 
value is set in UMacApp.inc2.p, in a call to WWinit You can change it if you 
want to.) 

Application mode and debugger mode 

When debugging code is included in a MacApp program, the program has two 
distinct modes: application mode and debugger mode. In application 
mode, the application runs nonnally (except for any special behavior you insert 
with debugging code), and the Debug window can be activated, resized, 
moved, and scrolled like any window. The application may use WriteLn to 
write information in the Debug window, and information may be written there 
in response to Debug menu commands or Interactive Debugger commands. 

Using Writeln statements with the Debug window 

There is no special trick to using WriteLn statements and Write statements to 
print in the Debug window. MacApp uses UWriteLnWindow, a unit provided 
with MacApp, to set up the debugging window so that all WriteLn text goes to 
that window. (Note that, except in debugging, a WriteLn is never used to print 
text in a MacApp program. Instead, you use UTEView or the QuickDraw text 
calls.) 

You always enclose WriteLn statements with conditional compilation switches 
so that they are not included in production code. See "Including Debugging 
Code," above. 

Reading debugging information in application mode 

If you want to type in debugging information, you can use Read and ReadLn. 
As with WriteLn, you normally surround Read and ReadLn statements with 
conditional compilation switches so they will not be included in production 
code. See "What Controls Debugging Code," above. 

The Debug menu 
Any MacApp application that was compiled with debugging on and includes the 
MacApp debugging resources the Debug menu displayed in its menu bar. The 

6/14/88 

Chapter 8: MacApp Debugging FacUltles 251 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Debug menu lets you control certain features of your application and print 
certain information in the Debug window. This section describes the commands 
in that menu. 

The rest of_ this section details the standard Debug menu commands. You can 
add additional commands by editing Debug.rand adding support for your 
commands. You may want to add your own commands in an additional Debug 
menu, rather than adding them to the MacApp Debug menu. See the sample 
programs for examples. 

New Inspector window 

This command creates a new Inspector window titled "Inspector Window N." 
You will want one Inspector window whenever you want to examine the fields 
of object instances. You might want multiple Inspector windows to examine 
fields of more than one instance simultaneously. 

Allow trace of menu setups 

This is a toggle command. When it is checked and the Interactive Debugger is in 
trace mode (see ''The Trace Command, T," below), {$0++} program points are 
printed in the Debug window even during the menu setup cycle. 

Allow trace during idle 

This is a toggle command When it is checked and the Interactive Debugger is in 
trace mode (see ''The Trace Command, T," below), {$D++} program points are 
printed in the Debug window even during the idle cycle. 

Make Front Window Modal 

This is a toggle command. It controls the setting of the front window's 
flsModal flag. If the front window is already modal, this command reads 
"Make Front Window Modeless". 

Do firSf click for This Window 

This is a toggle command. Choosing it toggles the front window's 
tDoFirstClick field. If tDoFirstClick is true, this reads "Don't Do First Click for 

252 Chapter 8: MacApp Debugging Facilltles 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

This Window" and the mouse click that activates the window is also (assuming 
it is in the content area of the window) passed to gTargetDoMouseCommand 
for action. When IDoFirstClick is false, the first mouse click activates the 
window but is not passed to DoMouseCommand. 

Scale pictures in Clipboard to window 

This is a toggle command. When it is checked and the Clipboard window is 
displayed, any PICT data (pictures) in the Clipboard is scaled to the size of the 
window before being displayed. 

Show Debug window 

When you choose this command and the Debug window is closed, it is opened 
and made the active window. 

Show soffWare version 

Choosing this command results in a call to the method 
gTargetldentifySoftware. That method normally prints the compilation data and 
time in the Debug window. 

RefreSh front window 

Choosing this command invalidates the entire front window, resulting in an 
update of the contents (as well as the borders) of the window. 

Show page breaks 

This is a toggle command. When it is checked, lines are drawn to show page 
breaks of your views. When it is not checked, page breaks of your views are 
invisible. The page breaks shown by this command are for debugging purposes 
only. 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 253 



6/14/88 

254 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Inspector windows 
Inspector windows provide an easy way to display fields of your program's 
instances, as well as a few other types of information. Inspector windows are 
created by choosing the New Inspector Window command of the Debug menu. 
You can create multiple Inspector windows, which allows you to examine the 
fields of more than one instance at once. 

Using Inspector windows 

The upper-left pane of a Inspector window is a list of classes that have at least 
one instance. Clicking one of the class names fills the upper-right pane with a 
list of instances of that class. Clicking one of the objects causes the lower pane 
to display the fields of that object Once an object is displayed in the lower 
pane, it is also possible to click a field that is one of the following types: an 
object reference field, a GrafPtr, a WindowPtr, a ControlHandle, a TEHandle, 
or a RgnHandle. After you click one of these fields, it will be displayed in the 
lower pane. 

The lower pane is not automatically updated when the data being displayed 
changes. The new data is displayed whenever the Inspector window is 
redrawn. (Remember that redrawing occurs only when the displayed data has 
been covered and is uncovered. Therefore, you may have to do some window 
resizing to update the displayed data.) 

Figure 8-1 shows a sample session with a Inspector window. 

Figure 8-1 is currently located in the MacApp 2.0 ERS. 

Figure 8-1 
A sample session with a Inspector window 

There are two methods that you will need to override for each of your object 
classes if you wish to fully employ the Inspector window: the Fields method 
and the GetlnspectorN ame method. Both of these methods have been added to 
the TObject class. 

Chapter 8: MacApp Debugging Facilities 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

( 

( '.' .. , 

" 

The Fields method 
The Fields method returns information about each field of an object. It has 
already been implemented for all of the classes defined by MacApp, so you will 
only need to implement it for those classes you define. You should replace any 
Inspect methods you may have defined by Fields methods. 

The declaration line of Fields looks like this: 

PROCEDURE TObject.Fields (PROCEDURE DoToField(fieldName: Str255; 
fieldAddr: Ptr; 
fieldType: integer)); 

In general, a Fields method should call the DoToField procedure on each field 
defined by its class. Typically, a Fields method will first call DoToField to 
report the class name, then call DoToField for each field in the class, and finally 
call the inherited Fields method (which will report the inherited data). 

For example, imagine that you've defined a TShape class like this: 

TShape = OBJECTITObject) 
fRect: rect; 
fColor: RGBColor; 

END; 

{$IFC qDebug} 
TShape.Fields(PROCEDURE DoToField(fieldName: Str255; 

fieldAddr: Ptr; 
fieldType: integer); OVERRIDE; 

{$ENDC} 

You should implement its Fields method like this: 

PROCEDURE TShape.Fields {PROCEDURE DoToField(fieldName: Str255; 
fieldAddr: Ptr; 
fieldType: integer); 

BEGIN 
DoToField('TShape•, NIL, bClass); First report the class name 
DoToField('fRect•, @fRect, bRect); Then report the fields } 
DoToField('fColor•, @fColor, bRGBColor); 
INHERITED Fields(DoToField); {Finally report the inherited fields. 

END; 

As you can see, DoToField has three parameters: fieldName, field.Addr, and 
fieldType. 

Chapter 8: MacApp Debugging Facllltles 255 



6/14/88 

256 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

• The fieldName parameter is a string containing the name of the field (or 
class) that you want reported. 

• The field.Addr parameter is a Ptr containing the address of the field that you 
want reported. When you are reporting a class name, this parameter should 
be NIL. 

• The fieldType parameter is an integer containing the value corresponding to 
the type of the field that you are reporting. MacApp has defined a number 
of constants to make filling in this parameter easy. These are: blnteger, 
bHexinteger, bLonglnt, bHexLonglnt, bString, bBoolean, bChar, 
bPointer, bHandle, bPoint, bRect, bObject, bByte, bCmdNumber, bClass, 
bOSType, bWindowPtr, bControlHandle, bTEHandle, bLowByte, 
bHighByte, bPattern, bFixed, bRgnHandle, bRGBColor, bTitle, bGratPtr, 
bSTyle, bVCoordinate, bVPoint, bVRect, bFontName. 

The GeflnspecforName method 

Hex addresses of object instances are displayed in the upper-right pane of the 
·Inspector window. If you want your objects to display more than their 
instances names, you need to override the GetlnspectorN ame method. 

The GetlnspectorName method returns a string in its VAR parameter. This 
string will be displayed after the hex address in the upper-right pane of the 
Inspector window. Getlnspector name is declared as: 

PROCEDURE TObject.GetinspectorName (VAR inspectorName: Str255); 

As an example, the class TWindow uses GetlnspectorName to return the 
window instance's title: 

{$IFC qinspector} 
{$IFC MAinspector} 
PROCEDURE TWindow.GetinspectorName (VAR inspectorName: Str255); OVERRIDE; 

BEGIN 

END; 

{ Make sure that a window exists } 
IF fWMgrWindow <> NIL THEN 

{ If it does, return its name. } 
GetWTitle(fMgrWindow, inspectorName) 

Chapter 8: MacApp Debugging Facilities 



( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The Interactive Debugger 
The MacApp Interactive Debugger is a high-level command-line-operated 
debugger available to MacApp applications compiled with debugging on. It 
operates in the Debug window. The Interactive Debugger is displayed when 
your application is in debugger mode. 

When you are in debugger mode, the Interactive Debugger prompts you with 
a ~- In addition, the Interactive Debugger displays a square block cursor. You 
cannot use the mouse when in the interactive debugger (with a few exceptions) 
and the mouse pointer is hidden. 

Entering debugger mode 

You can enter debugger mode by pressing and holding the attention keys, Shift
Option-Command. You then enter debugger mode at the next { $D++} program 
point. The Debugger prints "Stopped at" followed by the name of the routine 
containing the program point. 

In addition, debugger mode is automatically entered at the next {$D++} 
program point when · 

• a breakpoint has been set at program points with this point's identifier (see 
"The Breakpoint Command, B," below), or 

• the Interactive Debugger's Single Step command is in effect (see ''The 
Single Step Command, Space Bar," below) 

Also, debugger mode is entered automatically when 

• the procedure ProgramBreak is called in the program, 

• SysError (the operating system trap that usually displays a "bomb" alert 
box) has been called. In this case, the program will not be able to continue, 
but you may be able to use the Debugger to examine the circumstances of 
the error. (Some 68000 excep~ons are included in this group.) 

For this last group, the Debugger can be entered at any point, and not just at 
{ $D++} program points. 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 257 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

What the Interactive Debugger prints when it Starts 

When you enter debugger mode, the Interactive Debugger prints a line of text 
that identifies what routine was executing and some information about the 
circumstances under which debugger mode was entered. These messages are 
explained below. 

* Note: When the Debugger prints the messages described below, the 
placeholders RoutineName and SegmentNumber shown here will be 
replaced by the appropriate information. In each case, if the routine is a 
method, RoutineName has the form ObjectType.Method. 

BEGIN RoutineName ltSegmentNumber 

The routine RoutineName has just been entered. This could be in response to 
the attention keys, a breakpoint, or the Single Step command. 

END RoutineName tSegmentNumber 

The routine RoutineName is about to return. This could be in response to the 
attention keys, a breakpoint, or the Single Step command 

EXIT RoutineName ltSegmentNumber 

An EXIT statement in routine RoutineName is about to execute. This could be 
in response to the attention keys, a breakpoint, or the Single Step command. 

BREAK RoutineName ltSegmentNumber 

The MacApp global debugging procedure was called from routine 
ROUTINENAME. 

SYSER RoutineName ltSegmentNumber 

A 68000 exception (such as divide-by-zero) or a SysError error has occurred. 

Using the Debug window in debugger mode 

In debugger mode, the MacApp Interactive Debugger is in control, and the, 
Debug window cannot be activated, resized, moved, or scrolled in the normal 
manner (with the mouse). However, you can use the following commands to 
control the window: 

• WF brings the Debug window in front of any other windows. 

258 Chapter 8: MacApp Debugging Facilities 



( 

( 

MacApp 2.0 Tutorlal Working Draft 4 (APDA) 

• WB moves the Debug window behind any other windows. 

• WR allows you to resize the Debug window with the mouse. After you've 
given the WR command, the mouse pointer becomes a small upper-left 
comer symbol. You should click at the point where you'd like the upper-left 
comer of the Debug window to be, and then drag to where you'd like the 
lower-right comer to be. The window will be resized and the pointer will 
disappear. You won't be able to use the mouse for anything else. 

• The Backspace key scrolls the window up. 

• The Return key scrolls the window down. 

There is no way to scroll horizontally in debugger mode. 

Interactive Debugger commands 

You can enter Interactive Debugger commands only when in debugger mode 
and when the ~ prompt is displayed. Each command is a single character, 
generally the first letter of the command name. Some of the commands require 
parameters. In those cases, a message and a ? prompt are printed after the 
command is entered. In entering parameters in response to the ? prompt, 
terminate your input with Return. 

When the ~ prompt is display~ an incorrect or inappropriate response is the 
same as the Help command. When the ? prompt is displayed, an inappropriate 
or incorrect response is ignored. 

The rest of this section describes the action of each command. The character 
you type for each command is given after its command name. 

The Help command 

The Help command displays a list of the Interactive Debugger commands. This 
list is printed whenever you type a character that is not a command. 

The Status command, ? 

The Status command, ? , prints the list of Debugger commands and also 
includes some status information. The status information includes: 

• the value of AS and thePon 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 259 



6/14/88 

260 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

• whether trace mode is on (see "The Trace Command, T," below) 

• whether a breakpoint is set and, if so, where 

• the identifier and segment for the current { $D++} program point 

The Recent History command, R 

The Interactive Debugger logs the 63 most recent { $D++} program points 
encountered, whether or not the program stopped at them. 

The Recent History command lists all the saved { $D++} program points using 
a three-column formal The current { $D++} program point is at the bottom of 
the left column, the preceding point is above that, and so on. The oldest 
recorded ( $D++} program point is at the top of the rightmost column. 

Important 

This command may not work properly (that Is, you may get an Incorrect name) If 
automatic segment unloading Is on (the default). Segments are generally 
unloaded In the main event loop, so. the results of the Recent History command 
are generally accurate If you have not entered that loop. You can turn off 
automatic segment unloading by giving the Toggle Flag command (X) foUowed 
bya U. 

The Parameters command, P 

The Parameters command displays the parameters of a procedure frame. Its 
output is in hexadecimal form. 

When you give this command, you are prompted for a stack frame number. 
(See ''The Stack Crawl Command, S," below.) You give the stack frame 
number as a decimal number and press Return. (Pressing Return alone is 
equivalent to typing 0.) Level 0 is the routine where the program stopped. 

The Locals command, L 

The Locals command displays the local variables of a procedure frame. Its 
output is in hexadecimal. 

When you give this command, you are prompted for a stack frame number. 
(See "The Stack Crawl Command, S," below.) You give the stack frame 

Chapter 8: MacApp Debugging Facllltles . 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

number as a decimal number and press Return. (Pressing Return alone is 
equivalent to.typing 0.) Level 0 is the routine where the program stopped. 

The Fields command, F 

The Fields command displays the fields of an object in hexadecimal form, and 
shows the object's type and all ancestor types (except TObject, as explained 
below). 

When you give this command, you are prompted for the object you want to 
know about. You can give an object identifier, a hexadecimal handle , or you 
can give a decimal stack frame number, and then press Return. The stack frame 
number is interpreted as referring to SELF for the method in that frame. If the 
routine in that stack frame is not a method, you are told there is no object at that 
level. (See "The Stack Crawl Command, S," below.) 

For certain objects that are referred to by global variables, you can give the 
global variable identifier. Those global variables are 

gTarget 

gLastCommand 

gDocument 

gApplication 

gDocList 

gFreeWindowList 

gClipView 

gClipUndoView 

gPrintHandler 

gFocusedView 

In the output of the Fields command, the fields of the object are divided into 
groups determined by the object type that declared the field. That is, inherited 
fields are listed separately from fields declared for the object's type. The name 
of each type is printed before the field. Here is an example: 

TE VT HAND 

10456: 0001 5643 0001 

TDOCUMEN 

1045C: 0645 8987 1087 9876 7575 9876 7563 7565 

1046C: 9876 7565 0645 8987 1087 9876 

TYOURDOC 

10478: 7865 4387 FEA6 BCA4 

6/14/88 

Chapter 8: MacApp Debugging Facilities 261 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

In this example, the object occupies locations 10456-1047F. Its type is 

TYourDocument m OBJECT(TDocument) 

The field declarations define four words (8 bytes or 16 nibbles) of data, which 
here occupy locations 10478-1047F. The immediate ancestor, TDocument, 
declares fields accounting for 14 words of data, shown here in locations 
1045C-10466. The next ancestor, TEvtHandler, declares fields accounting for 
three words of storage from 10456-1045B. The ultimate ancestor, TObject, 
declares no fields and is always omitted from the Fields command output. 

The Display Memory command, D 

The Display Memory command displays the contents of any part of memory. 

It prompts for a hexadecimal address and then displays 16 bytes beginning at 
the specified address. The memory contents are displayed in both hexadecimal 
and ASCIT form. 

If you want to see the next 16 bytes, type the Display More command (M) at the 
next ~ prompt. 

The Stack Crawl command, S 

The Stack Crawl command displays a list of the current stack frames. For each 
stack frame, the command displays the frame number (which can be used in the 
F, P, L, and I commands), the pointer to the frame in hexadecimal, the name of 
the procedure or function, and the number of the segment. If the frame belongs 
to a method, the value and type of SELF are also displayed. 

The Display More command, M 

This command can be given only immediately after the Display Memory 
command or the Stack Crawl command. It displays the next 16 bytes of 
memory or the next group of stacked procedure calls. See "The Display 
Memory Command, D," and "The Stack Crawl Command, S," above. 

The Trace command, T 

The Trace command turns trace mode on and off. When trace is on and you 
give the Go command (to restart your application), the identifier for every 
{ $D++} program point is printed. 

262 Chapter 8: MacApp Debugging Faclllttes 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

The program will slow greatly. Perfonnance is especially slow if the Debug 
window is partially hidden by other windows. 

Once you restart the program, you are in application mode, and you can stop the 
program with the attention keys (see ''Entering Debugger Mode," above). Any 
errors or breakpoints will also stop the program. 

Note that you may be able to use the Recent History command to print a trace of 
the last 63 { $0++} program points even if trace mode was not on. 

The Single Step command, Space bar 

The Single Step command, given by pressing the Space bar, restarts the 
program until the next { $0++} program point. The program point is identified. 

The Go Command, G 

The Go command ends debugger mode and starts the application again. The 
application continues until the user quits or the Debugger is given some reason 
to take control again. 

The Breakpoint command, B 

The Breakpoint command allows you to set a breakpoint at a { $0++} program 
point. When you next give the Go command, the program continues until the 
breakpoint is encountered. 

Only one breakpoint can be set at a time. Setting a new breakpoint cancels the 
old one. 

When you give the Breakpoint command, you are prompted for a routine name. 
Only the first eight characters are significant in a routine name. If you also give 
an object type, only the first eight characters are significant (If the first eight 
characters of the name are not unique, a breakpoint is set for all appropriate 
routines.) Case is insignificant 

If you want to set the breakpoint at a method, you have two choices: 

• Give the name of the object type for the method. This will have the form 
ObjectType.Method, where ObjectType is the name of the object type that 
implemented the method. (Note that you cannot give an object-reference 
variable identifier.) The break will occur only when that particular method is 
invoked. (That method is invoked either from an object of the type named or 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 263 



6/14/88 

264 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

from an object of a descendant type, if the method named is not overriden 
by that particular descendant type or any intervening descendant types.) 

• Give the method name without a qualifying object type. The break will then 
occur on any method (or ordinary routine) with that name, regardless of 
what object type implemented it 

The name you give is not checked to verify that it actually exists. 

You can set a breakpoint at any routine, regardless of whether it is currently in 
memory, but note that the break will not occur unless the named routine 
contains a { $D++} program point. 

The Clear Break command, C 

The Clear Break command clears any breakpoint set with the Breakpoint 
command. 

The Scroll Up command, Delete (or Backspace) 

Pressing Delete when the ;;:;: prompt is displayed scrolls the Debug window up 
one line. 

The Scroll Down command, Return 

Pressing a Return when the ;;:;: prompt is displayed scrolls the Debug window 
down one line. 

The Debug window commands, WF, WB, and WR 

These commands are used to manipulate the Debug window: 

• WF places the Debug window in front of any other windows and, if it is 
inactive, activates it. 

• WB places the Debug window behind other windows. 

• WR activates the mouse so you can resize the Debug window. The mouse 
cannot be used for anything else in debugger mode. 

* Note: Application windows cannot be updated in debugger mode, so if 
you use the WB command to move the Debug window behind other 
windows or resize the Debug window so that new parts of other windows 

Chapter 8: MacApp Debugging Facilities 



( 

( 

(_ 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

are revealed, those windows will not be properly drawn until you reenter 
application mode and the windows are updated. 

The output Redirect command, O 

The Output Redirect command redirects all Debug window output into a file. 

When you enter this command. you are prompted for a filename. Enter any 
filename. (H the file aJready exists, it must be of type TEXT.) If you do not 
specify a volume or folder, the output will be written to the default volume in 
the default folder (that is, the folder containing the application). 

H you precede the filename with >>, the Debug window output is appended to 
the file. (Spaces between>> and the filename are ignored.) 

H the file exists and you do not include >>, the contents of the file are erased. 

H the file does not exist, it is created. Its type is TEXT and its creator is MPS. 

To cancel this command. give the command again, and press a Return in 
response to the ? prompt. The file will be closed. 

The Quit command, Q 

The Quit command executes an ExitToShell. 

The Heap and Stack command, H 

The Heap and Stack command is actually the entry into a group of 
subcommands. After you give this command, you are prompted with a ? for a 
subcommand. 

All the subcommands print information about the heap and the stack. 

Th• Help command, ?: Typing ? gives you a list of the subcommands. 

Th• Procedure Stack Usage Breakpoint command, +: This command allows you 
to set a breakpoint on stack usage by a single routine. 

The stack usage of the routine is computed to be the difference between 
registers A 7 and A6. This value will take into account the local variables 
declared in the procedure, other local variables used internally by compiler
generated code, and registers that are saved on the stack. It does not take into 
account any stack usage for passing parameters to routines, stack usage by 

6/14/88 

Chapter 8: MacApp Debugging Facilities 265 



6/14/88 

266 

Worl<ing Draft 4 (APDA) MacApp 2.0 Tutorial 

Inside Macintosh routines (including QuickDraw), and stack usage for routines 
that do not contain a { $D++} program point. 

Setting breakpoints on total stack depth and individual procedure usage will 
help you to gauge how much stack space your application requires and to 
identify routines that have excessively high stack usage. (These may have 
several string parameters that are passed by value rather than by reference.) 

The Stack Usage Breakpoint command, B: This command allows you to set a 
breakpoint on total stack usage. Total stack usage is the difference between 
register A 7 and the bottom of the heap. 

Setting breakpoints on total stack depth and individual procedure usage will 
help you to gauge how much stack space your application requires and to 
identify routines that have excessively high stack usage. (These may have 
several string parameters that are passed by value rather than by reference.) 

The Reset Stack Usage command, D: This command allows you to reset the 
maximum stack usage value maintained by MacApp to determine if a stack 
usage breakpoint has been reached. Typing D resets that value. 

Th• Show Heap/Stack Information command, I: This command displays 
information about the heap and the stack. 

The Print MaxMem command, M: This command prints the value of MaxMem. 
See Inside Macintosh for information. 

Th• Ust Loaded Segments command, S: This command lists all segments 
currently loaded. An asterisk (*) next to the segment number that indicates that 
the segment is resident 

The Toggle Flag command, X 

The Toggle Flag command allows you to toggle a number of flags that govern 
the behavior of the Interactive Debugger. 

After you give this command, you are prompted for more information. Typing ? 
gives you a list of the flags. Typing the letter for one of the flags toggles the 
flag's value. 

You can add new items to the list of flags by calling the MacApp global 
debugging procedure TRCFlag, found in UTrace. The interface is 

PROCEDURE TRCFlag(flagAddr: Ptr; flagChar: CHAR; flagDesc: 

TRCFDescription); 

Chapter 8: MacApp Debugging Facilitles 



( 

MacApp 2.0 Tutorial Working Draft 4 CAPDA) 

You pass this procedure a pointer to a Boolean, a character (used to toggle the 
flag), and a short description. Only twenty flags are allowed. If you do add 
flags, be careful not to assign the same letter to two different flags. 

The current flags are listed below. 

Th• Report Memory Management Information flag, M: When this flag is on and 
the number of master pointers changes, the old and new numbers are printed in 
the Debug window. When the Break flag is also on, the program is stopped, 
and you enter debugger mode. 

The Report Segments flag, S: When this flag is on, a routine name is printed in 
the Debug window when a segment is loaded. Usually this is the routine that 
caused the segment to be loaded (unless that routine has no ($D++} program 
point). When the Break flag is also on, the program is stopped, and you enter 
debugger mode. 

The Break flag, B: When this flag is on and the Report Segment flag, S, or the 
Report Memory Management flag, M, is also on, a break is generated whenever 
Mor S causes something to be printed in the Debug window. 

The Automatic Segment Unloading flag, U: This flag, when on, turns off · 
automatic segment loading by the UnloadAllSegments routine. You might want 
to try this flag if you find that your program is mysteriously jumping off into an 
unexpected routine; you may have saved a pointer to a routine in a segment that 
MacApp unloaded. 

The Ask About AllocaHon flag, A: When this flag is on and an object is created, 
the name of the routine and the type of object are printed in the Debug window. 
Debugger mode is entered, and you are given a chance to replace the object 
reference with Nll... This is used to check handling of memory management. 

The Ask About Fallwes flag, F: When this flag is on, every call to FailOSErr, 
FailResError, and FailMemEITor will give you a chance to enter an error code 
and make your application fail. This allows you to check that you recover 
properly from these kinds of errors. 

The Report Menu Commands flag, C: When this flag is on and the user chooses a 
menu command, the command number is printed in the Debug window. 

The Report Events flag, E: When this flag is on, details of any events (except 
Debug window events) are printed in the Debug window. 

6/14/88 

Chapter 8: MacApp Debugging Facilities 267 



6/14/88 

268 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

TtHt Intense Debugging flag, I: The Intense Debugging flag toggles the value of 
the global variable glntenseDebugging. By enclosing code in an IF structure 
beginning with the statement 

IF gintenseDebugging THEN 

you can make code have effect only when glntenseDebugging is TRUE. 

TtHt Debug Printing flag, P: When this flag is on and the user does any UPrinting 
operation, information about printing is printed in the Debug window. 

TtHt Experimenting flag, X: The Experimenting flag toggles the value of the global 
variable gExperimenting. By enclosing experimental code in an IF structure 
beginning with the statement 

IF gExperimenting THEN 

you can make features work only when gExperimenting is TRUE. 

The Inspect Object command, I 

This command allows you to inspect an object. 

When you give this command, you are prompted for the identifier of the object 
you want to inspect You can identify it with a hexadecimal handle, an object 
name, or a decimal stack frame number. If you give a stack frame number, the 
request is interpreted as being for the object used to call the method at that level. 
(If it is not a method, you are told there is no object at that level.) 

For certain objects that are ref erred to by global variables, you can give the 
global variable identifier. Those global variables are 

gTarget 

gLastCommand 

gDocument 

gApplication 

gDocList 

gFreeWindowList 

gFocusedView 
gClipView 

gClipUndoView 

gPrintHandler 
gFocusedView 

Chapter 8: MacApp Debugging Facilities 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

This command then calls the Inspect method for the given object. Since the 
INHERITED Inspect method will call the object's Fields method, you do not 
need to override the Inspect method for your objects if you have created a Fields 
method for them 

The Enter MacsBug command, E 

When you give this command, MacApp enters MacsBug. You can return to the 
MacApp debugger by giving MacsBug the Go command, G. 

This command is equivalent to pressing the interrupt button on the Macintosh 
programmer's switch. 

Using MacsBug with MacApp 
Although the MacApp debugging facilities are powerful, you may sometimes 
need to use MacsBug, the lower-level debugger shipped with the MPW Shell. 
See the Macintosh Programmer's Workshop Reference for details on using 
MacsBug; this section has some additioruu information you may find useful for 
using MacsBug with MacApp programs. 

You can set breakpoints on methods as you do with any routine. If you want to 
set a break.point on all method calls, you need to know something about how 
method calls are implemented. 

Method calls are implemented in different ways, depending on whether or not 
the code has been optimized using the optimization option of the MPW Linker. 
When the code is not optimized (as is nonnally the case until the code has been 
debugged and finaliz.ed), method calls are routed through the method dispatch 
routine, %_METHOD. If you want to set a breakpoint on all methods, you can 
do so by setting a breakpoint on %_METHOD. 

To find %_METHOD, look at the linker map produced when you built your 
application; it's named YourApp.map. The map shows all routines and their 
locations as an offset from register AS. Find %_MEnIOD in that map and in 
MacsBug give the command 

dm raS+offset 

where offset is the value shown for %_MEnIOD in the map. The second and 
third word of the line produced by this command give the location of the 

6/14/88 

Chapter 8: MacApp Debugging Facllltles 269 



6/14/88 

270 

Working Draft 4 (APDA) 

method display routine. You can use this value to set a breakpoint on 
%_METIIOD. 

MacApp 2.0 Tutorial 

When the code has been optimized %_METIIOD is not used and it is not 
possible to make a general statement about how methods are called under those 
circumstances, although many will be called by a direct JSR. 

If you've stopped at a {$D++} program point, you can use a different method 
to invoke MacsBug in the routine containing the program point: 

1. While stopped at the {$D++} program point (which you can reach by 
setting a MacApp breakpoint or in any other way), invoke MacsBug from 
the MacApp Interactive Debugger. 

2. Give the MacsBug SC (Stack Crawl) command. A line of this form is 
displayed: 

SF @address FR fromAddress Method.Object +offset 

where address andfromAddress are two addresses, Method is the routine 
containing the { $D++} program point, Object is the type that defined that 
method, and offset is the offset into the routine. 

3. Add 4 to thefromAddress, and using that number type 

GT address 

where address is fromAddress plus 4. This sets a temporary breakpoint just 
beyond the { $D++} program point. 

4. Return to the MacApp Debugger and type G. You will enter MacsBug in the 
routine with the { $D++} program point 

Chapter 8: MacApp Debugging Facillttes 



( 

Appendix A 

Changes Since 
MacApp 1.1 



6/14/88 

272 

Working Draft 4 (APDA) 

MacApp 2.0 differs from MacApp 1.1 in many ways. This appendix explains 
the architectural differences and details how the implementation has changed. 
Despite all these changes, you should still find that you will be able to convert 
your old MacApp applications into MacApp 2.0 very quickly. Once you know 
how MacApp 2.0 works, you should be able to convert even rather large 
applications in less than a day. Appendix B describes the method for 
converting applications. 

Changes to the architecture 
The architecture, or overall design, of MacApp has changed in a great many 
ways. 

• Views. The view architecture has been completely overhauled. All classes 
responsible for displaying images on the screen are now descendants of 
TView. The 1Frame class no longer exists. 

Views now offer a larger coordinate system: 2 billion pixels both 
horizontally and vertically. 

• TextEdit. The new TextEdit supports views that allow multiple fonts, 
styles, and sizes. 

• Dialogs. MacApp 2.0 has a whole new design for implementing dialogs, 
allowing you to create dynamic, sophisticated dialogs with smart controls 
that you can customize. 

• Grids. MacApp 2.0 has a new unit containing code that will allow you to 
manipulate data grids, as in spreadsheet applications. 

• Inspector. The debugging capabilities now include an inspector, which 
you can use to examine the fields of any instance while the application is 
running. 

i 

• AppleTalk. MacApp no longer contains a special AppleTalk® support 
unit. 

• MultiFinder. New support for MultiFinder features .. 

These changes are described more fully below. 

Appendix A: Changes since MacApp 1.1 

MacApp 2.0 Tutorial 



( 

r( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Views 

MacApp 2.0 offers two major improvements over MacApp 1.1 in the display 
architecture: it greatly simplifies the architecture and it provides a larger 
coordinate system. 

The old display architecture 

MacApp 1.1 provided three basic classes for displaying information on the 
screen: 1Window, TFrame, and TView. 1Window provided a Window 
Manager window, TFrame managed the scroll bars and the coordinate 
translation for scrolling, and TView was responsible for drawing the contents 
of the window and for handling mouse commands inside the view. This 
architecture made it difficult to nest views and frustrating to provide dialogs. 

Figure A-1 is currently located in the MacApp 2.0 ERS. 

FigureA-1 
The display architecture from MacApp 1. l 

The new display architecture 

Whereas the old architecture had two separate lineages (TFrame and TView) 
that used different schemes for nesting views, the new 2.0 architecture has only 
one: TView. All display classes descend from TView and they share the 
following abilities: 

• nesting 

• focusing 

• drawing 

• handling events 

6/14/88 

Appendix A: Changes since MacApp 1.1 273 



6/14/88 

274 

Working Draft 4 (APDA) 

A view is still an imaginary construct that displays information. On the screen, 
views are rectangular. One view may be inside another view; also, views may 
overlap. 

Nesting. Each instance of the TView class (or its descendants) may be inside 
another view, called the superview; and it may have any number of other views, 
called subviews, inside it. This relationship between superviews and subviews 
forms a tree. Note that these terms are relative: a single view may be both a 
superview in relation to one view and a subview in relation to another. 

On the screen, nesting is a matter of layering the views. Superviews are at the 
bottom. A subview always covers the superview: you cannot usually see the 
superview through one of its subviews. However, superviews do clip 
subviews. Only that portion of the subview that intersects with the superview 
is visible. 

If a superview has more than one subview, the subviews are also arranged in 
layers. If two subviews overlap, one of them will be on the top and the other 
will be on the bottom. 

In Figure A-2, there are eight views arranged into a tree. View A has no 
superview, but it does have three subviews. Note how the layering appears on 
the screen, and how superviews clip their subviews. 

Figure A-2 not available for this draft. 

FigureA-2 
Tree of views 

Focusing. The concept of focusing has not changed. Each view has its own 
local coordinate system. Focusing translates between the different coordinate 
systems, and prepares the view so that your drawing will appear in the correct 
place on the screen. 

Appendix A: Changes since MacApp 1.1 

MacApp 2.0 Tutorial 



( 

MacApp 2.0 Tutorial Working Draft 4 (APOA) 

Drawing. Each instance of the view class has a Draw method, which you are 
expected to override. Whenever the view draws itself, it tells its subviews to 
draw themselves. The process continues iteratively until all the subviews are 
drawn. 

Handling events. TView is still a descendant of TEvtHandler, and thus it 
inherits the ability to handle events including keystrokes, menu commands, and 
other mouse clicks from the user. Because views can be nested, MacApp needs 
an algorithm to determine which particular view instance will handle a particular 
mouse command. Based on the metaphor of subviews layered on top of 
superviews (and on top of their sibling views), the algorithm is simple: the 
command is handled by the topmost view at the location of the mouse click. 
Mouse clicks are handled by the method HandleMouseDown. 

The most important classes in the new architecture 

The major players in the new MacApp 2.0 display architecture are TWindow, 
TSScrollBar, TScroller, and specialized content views. These are all 
descendants of TView. 

• TWindow displays the window frame and size box and handles clicks in the 
title bar, zoom box, and size box .. 

• TSScrollBar displays the scroll bars and communicates with TScroller to 
carry out the user's commands. 

• TScroller does the actual calculations for scrolling. 

• Specialized content views display whatever you want them to. MacApp 
provides several of these classes: TEView for displaying text; TGridView 
for displaying spreadsheets and other information that fits well into grids; 
and a number of others defined in the UDialog unit. To display other sorts 
of information you must create your own descendants of TView. 

Everything that appears on the screen (except menus) appears inside a window. 
The window then becomes the root of the view tree-it has no superview. If 
some portion of the contents can be scrolled, the window instance will have a 
subview that is a scroller instance and perhaps o~e or two instances of 
TSScrollBar (vertical or horizontal or both). Anything that can be scrolled 
should be a subview of the scroller. For an example, see Figure A-3. 

Appendix A: Changes since MacApp 1.1 

6/14/88 

275 



6/14/88 

276 

Working Draft 4 (APDA) 

Figure A-3 not available for this draft. 

FigureA-3 
View tree for a MacApp window 

Large coordinates 

MacApp 2.0 provides a large coordinate system so you can implement bigger 
views. The old MacApp was limited to QuickDraw's 30,000 by 30,000 pixels. 
QuickDraw hasn't changed that limitation, but MacApp 2.0 provides types to 
store these large 32-bit coordinates: VCoordinate, VPoint, and VRect With 
these types, you can store views up to 2 billion pixels by 2 billion pixels. 

All drawing is still done using QuickDraw, in 16-bit coordinates. If you want 
to use 32-bit coordinates, the burden is on you to convert between 32-bit and 
16-bit coordinates, using routines and methods provided by MacApp's 
UViewCoords unit and the TView class. 

Text 

The TIEView optional building block (in the UTEView unit) has been 
enhanced to support the new display architecture and to allow your TEViews to 
have multiple fonts, styles, and sizes. The building block defines the same 
classes that it used to, but it has additional methods to deal with the different 
commands; and the old methods have been changed to record and deal with 
information related to font, style, and size. 

TIEView is still based on TextEdit in ROM, so it has the same limitations as 
TextEdit, namely a maximum of 32,000 characters per view and a maximum 
height and width of 30,767 pixels each. 

Appendix A: Changes since MacApp 1.1 

MacApp 2.0 Tutorial 

/ 



~ 

<~ 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Dialogs 

MacApp no longer makes use of the ROM's Dialog Manager. Instead, dialogs 
are now constructed the same way as any other MacApp window-by 
constructing a hierarchy of views. The new UDialog unit simply provides a set 
of predefined view classes that can be used in any window. One class, · 
TDialogView, can provide modal dialog behavior such as tabbing between text 
fields and implementing default and cancel buttons. Here are some of the 
elements defined by MacApp which were traditionally found in dialog boxes: 

• static text 

• editable text 

• icons 

• pictures 

• check boxes 

• radio buttons 

• plain buttons 

• pop-up menus 

• scrollable lists 

• clusters, which define dependencies among the controls 

The two major advantages this new scheme gives you are: (1) you can use any 
of the classes of UDialog in any window; and (2) there is no need to distinguish 
between "windows" and "dialogs" as there was in MacApp 1.1 and as there 
continues to be when using the Toolbox directly. 

Note that the new display architecture blurs the distinction between windows 
and dialog boxes. Any window can be modal or modeless. To create the 
illusion of a dialog box, you will use the UDialog unit to create either a modal 
or a modeless <li,alog with a variety of controls. 

MacApp defines a large number of classes associated with dialogs, most of 
which can be found in the UDialog unit: 

Appendix A: Changes since MacApp 1.1 

6/14/88 

277 



6/14/88 

278 

Working Draft 4 (APDA) 

Figure A-4 not available for this draft. 

Figure A-4 
The Classes defined in UDialog 

TEntry. Instances are metaphorical text items, to be used as entries in a 
dictionary, managed by an instance ofTAssociation. Instances ofTEntry are 
used mainly for substituting text in dialog windows. 

TAssociation. Instances manage lists of instances of TEntry. 

TDialogView. Instances duplicate the function of a dialog window. An 
instance ofTDialogView acts as the topmost view in a template-driven dialog 
and in some ways replicates the function of the ROM Dialog Manager. 

TButton. Instances implement a Control Manager button. 

TCheckBox. Instances implement a Control Manager check-box. 

TRadio. Instances implement a Control Manager radio button. 

TScrollBar. Instances implement a scroll bar, which is one of the more 
popular types of dials available in Macintosh dialogs. 

TCiuster. Instances implement a container for a cluster of radio buttons or 
other objects. The cluster can have a label. Clusters are used to group radio 
buttons and to localize parts of a window. 

Tlcon. Instances implement an icon which can serve as a static image, or 
work as a button. 

Appendix A: Changes since MacApp 1 . 1 

MacApp 2.0 Tutorial 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

TPicture. Instances implement a picture, which can serve as a static image or 
work as a button. 

TPopup. Instances implement a pop-up menu. 

TStaticText. Instances implement a text item, which can serve as a static 
image, or work as a button. 

TEditText. Instances implement a simple editable text item. When the item 
needs to be edited, the parent Dialog View places a floating TEView over the top 
of the view. 

TNumberView. A specialized version of TEditText which accepts only 
integer numbers. 

TDialogTEView. This class is intended for use with TDialogView and not 
intended to be used for your views. 

Grids 

MacApp 2.0 offers a new optional building block, UGridViews, which 
implements several classes that make it easier to display and manipulate grid.like 
information, such as spreadsheets. The widths and heights of the individual 
cells can be adjusted dynamically in response to the user's input. GridViews do 
not dictate how the data is displayed; the representation of that data is 
completely up to you. 

The TGridView unit includes definitions for the following classes: 

TGridView. Instances display a one- or two-dimensional grid of cells. The 
cells can contain anything you wish to draw: text, PICTs, other views, etc. 

TCellSelectCommand. A command class that implements the command that 
selects a cell. 

TRowSelectCommand. A command class that implements the command 
that selects a row divider. 

TColumnSelectCommand. A command class that implements the 
command that selects a column divider. 

TVertexSelectCommand. A command class that implements the command 
that selects a row divider and a column divider. 

Appendix A: Changes since MacApp 1.1 

6/14/88 

279 



6/14/88 

280 

Working Draft 4 (APDA) 

TTextGridView. Instances display a one- or two-dimensional grid of cells 
that can display only text. 

TTextListView. Instances display a one-dimensional list of cells that can 
display only text. 

Inspector 

MacApp 2.0 features an Inspector for examining the contents of any instantiated 
object's fields. When you are running a debug version of your application, you 
can select the New Inspector Window command in the Debug menu. See 
Figure A-5 for an example of a inspector window. 

Figure A-5 not available for this draft. 

FigureA-5 
An inspector window 

Using the Inspector, you can select any instantiation of any class and then 
examine the contents ofits fields, as described in Chapter 5, "MacApp 
Debugging Facilities." 

Apple Talk 

MacApp 2.0 contains no UAppleTalk: unit. Though some Macintosh 
application programs have some AppleTalk: functionality in their applications, it 
remains to be seen whether there is enough in common among all these 
programs to warrant an optional AppleTalk: building block. 

Appendix A: Changes since MacApp 1.1 

MacApp 2.0 Tutorial 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Multifinder and network support 

While programs built with MacApp 1.1 work under MultiFinder, they don't 
really take advantage of it. MacApp 2.0 makes use of the WaitNextEvent trap 
and provides a mechanism for identifying the cursor region and length of time 
before MultiFinder needs to wake up the application. 

Documents will be changed to work better in a shared environment (which aids 
your application not only by making it more compatible with MultiFinder, but 
by making it more suitable for use on a network). Files are no longer opened 
only when reading them into memory or writing them back to disk, but are kept 
open for as long as their document object exists. Also, MacApp 2.0 allows for 
read-only files. 

Appendix A: Changes since MacApp 1. 1 

6/14/88 

281 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

282 Appendix A: Changes since MacApp 1 .1 



( 

Appendix B 

How to Convert Your 
MacApp 1. 1 Application 



6/14/88 

284 

Working Draft 4 (APOA) 

MacApp 2.0 has changed significantly since MacApp 1.1. The display 
architecture has been reorganiz.ed The implementation of dialogs has been 
completely rewritten. Debugging facilities have been greatly enhanced The text 
edit views have been modified for the new display architecture and to support 
styled TextEdit. New building blocks (like UGridView) have been added. 
New enhancements (like large views, view resource templates, and MultiFinder 
support) have been added. 

With all of these changes, from enhancements to underlying architecture 
changes, you might think that converting your MacApp 1.1 application would 
be laborious. Certainly, recoding a substantial MacApp 1.1 application to take 
full advantage of MacApp 2.0 is quite a task. However, making only the 
changes to a MacApp 1.1 application necessary for it to run correctly with 
MacApp 2.0 is not so bad. In fact, you should be able to convert even 
relatively large applications in only a day or so. 

The reason for this ease of conversion is that most of the commonly used 
procedures and methods have not changed their interface or function, and some 
of those that have changed have done so only slightly. Of course, some have 
changed significantly-those relating to dialogs, for example. These you are 
better off reimplementing entirely. This chapter steps through each of necessary 
changes, detailing them where appropriate, and pointing to sources for more 
information for the others. 

Appendix B: How to convert your MacApp 1.1 application 

MacApp 2.0 Tutorial 



MacApp. 2.0 Tutorial Working Draft 4 (APDA) 

Global changes 
Much of the global level of your application will stay the same. For example, 
you probably needn't touch your application object, or any of its methods. 
There are, however, two changes that affect your program globally. 

Unit dependencies 

MacApp 2.0 brings with it a whole new set of units. In your main program, as 
well as in your interface file, you will need a USES statement similar to the 
following: 

USES {$LOAD Macintf.LOAD} 
MemTypes, QuickDraw, OSintf, Toolintf, Packintf, 

{$LOAD UMacApp. LOAD} 
UMAUtil, UViewCoords, UFailure, UMemory, UMenuSetup, UObject, UList, 
UAssociation, UMacApp, 

{$LOAD} 
UPrinting, 
UYourUnit; 

Debugging 

The debugging facilities of MacApp have also changed. The Inspect method 
used to be the way that your code communicated with the Interactive Debugger. 
This has been replaced by the Fields method and the Inspector window. For a 
more complete discussion of the new debugging facilities, see Chapter 8, 
"MacApp Debugging Facilities." 

You should override the Fields method for every object class that you might 
want information about while debugging, or in other words for all your object 
classes. You should replace all of your Inspect methods with Fields methods. 

6/14/88 

Appendix B: How to convert you MacApp 1.1 application 285 



6/14/88 

286 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

As an example, imagine that you've defined a TShape class like this: 

TShape = OBJECT ( TOb ject) 
fRect: rect; 
fColor: RGBColor; 

{ $IFC qDebug} 
TShape.Fields(PROCEDURE DoToField(fieldName: Str255; 

fieldAddr: Ptr; 
fieldType: integer); OVERRIDE; 

{$ENDC} 
END; 

You should implement the conesponding Fields method like this: 

PROCEDURE TShape.Fields (PROCEDURE DoToField(fieldName: Str255; 

BEGIN 

fieldAddr: Ptr; 
fieldType: integer); 

DoToField( 'TShape', NIL, bClass); { First report the class name. } 
DoToField( • fRect •, @fRect, bRect); { Then report the fields. } 
DoToField ( 'fColor •, @fColor, bRGBColor) ; 
INHERITED Fields (DoToField); { Finally report the inherited fields. 

END; .. ·" 

Document changes 
For most applications, the document instances and their methods will remain 
largely unchanged. The most significant exceptions to this are the 
DoMakeWmdows and DoMake Views methods. If you are not using a simple 
or a palette window, then your DoMakeWindows will probably have to be 
rewritten to include Scroller views. See the "Creating a Window" section of 
Chapter 7. If you want to use the new view templates, you can use 
DoMake Views to create a hierarchy of views. See the "Creating Views with 
Templates" section of Chapter 7. 

For simple wfodows and palette windows, the code in DoMake Views will 
. remain the same. DoMakeWindows will change slightly, as windows are now 
considered more like real object classes than in MacApp 1.1. For example, 
some routines that used to be global procedures are now methods belonging to 
window objects, such as ForceOnScreen, AdaptToScreen, SetResizeLimits, 
and SimpleStagger. 

Appendix B: How to convert your MacApp 1.1 application 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

You can now use the function NewTemplateWindow to create your windows 
from resource templates. See the sample programs and the view and dialog 
ERS documentation for examples. 

View changes 
The view architecture has changed radically. Yet you can get by with only a 
minimum number of changes to your old code if you were using fairly standard 
views before. 

One significant change to TView is that it no longer has an fCanSelect field, 
which you might have used in TY ourApplication.Make ViewForAlienOipboard, 
TYourView.DoMouseCommand, or TY ourCutCopyCommand.Dolt. 
References to TYourView.fCanSelect can usually be replaced by 

CTYourView <> gClipView) 

depending on the circumstances. 

You will have to replace globally the Focus method Focus used to be a 
procedure method of the TFrame class, which is now gone. Focus is now a 
function method of theTView class. You can usually replace calls to focus by 

IF yourView.Focus THEN ; 

if nothing else seems appropriate. Focus returns FALSE if it is not possible to 
focus the view. See the sample programs for examples. 

Finally, the call to Niew has changed significantly. The new Niew interface 
is: 

PROCEDURE TView.IView(itsDocument: TDocument; 
itsSuperView: TView; 
itsLocation, itsSize: VPoint; 
itsHSizeDet, itsVSizeDet: sizeDeterminer); 

This procedure initializes the view by calling IEvtHandle(itsSuperView), setting 
its fSuperView, fLocation, fSize, fSizeDeterminer fields, initializing its 
fHLDesired fields to hlOff, and adding the view to its superview by calling its 
superview's AddSubView method. 

For further discussion of the new view implementation or a description of the 
new VPoint type, see the "MacApp 2.0 Display Architecture ERS." 

Appendix B: How to convert you MacApp 1.1 application 

6/14/88 

287 



6/14/88 

288 

Working Draft 4 (APDA) 

Windows 

As before, window methods are rarely overridden. If you used simple or 
palette windows, you will probably not have to make any window-related 
changes other than calling the routines listed earlier as methods instead of as 
global procedures. 

Your views 

How you should change views specific to your application depends strongly on 
how you used them. If you had multiple scrolling views per window, you will 
have to rewrite a bit of your code using the new Scroller architecture. See 
Chapter 7, "The Cookbook" and the display architecture ERS for details. 

If you used fairly standard views and windows, your job will be much easier. 
Among the things to look out for are: 

• The CalcMinExtent has been replaced by CalcMinSiz.e. CalcMinExtent dealt 
with rect types. CalcMinSize uses the new VPoint type. You will need to 
do the proper translation before you change the call. 

PROCEDURE TView. CalcMinSize (VAR minSize: VPoint) ; 

• The interface to DoMouseCommand has changed slightly. (Of course, this 
will apply to all event handlers-so check your application's and 
document's DoMouseCommand methods if you have them.) The only 
difference is the first parameter. Here is the new declaration: 

MacApp 2.0 Tutorial 

PROCEDURE TView.DoMouseCommand (VAR theMouse: Point; VAR info: Eventinfo; 
VAR hysteresis: Point) : TCommand; 

TEViews and Dialog Boxes 

Both TIEView and 1DialogView have been substantially rewritten. You will 
probably have to rewrite any code using 1DialogView. If you do not want to 
add support for style TextEdit, you can probably leave your TIEView code 
alone. For examples of how to use them now, see Chapter 7, "The 
Cookbook", the sample programs, and the ERS documentation. 

Appendix B: How to convert your MacApp 1.1 application 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 

Command objects 
You will probably not have to alter your command objects much, as this part of 
MacApp was not extensively rewritten. · 

I Command 

The parameters of I Command have changed. !Command used to be declared: 

PROCEDURE TCommand.ICommand(itsCmdNumber: CmdNumber); 

but now a !Command sets the command's fView to the view in which the 
command is taking place, and also sets the scroller used for automatic scrolling 
during the command: 

PROCEDURE TCommand.ICommand(itsCmdNumber: CmdNumber; 
itsView: TView; 
itsScroller: TScroller); 

~·. Tracking methods 

The point parameters of the tracking methods TrackMouse, TrackConstrain, 
and TrackFeedback are now VPoints. You will have to do the necessary 
conversions before storing these points in rects, and so forth. 

Also, now that frames are gone, you may have to replace calls to UpdateEvent 
with something like this: 

fYourView.GetWindow.Drawcontents; 

Editing commands 

Editing commands also stay the same for the most part. The only differences 
will occur as they reference views. For example, your Cut/Copy command 
might have referenced the fCanSelect field of gClipView. For a list of possible 
problems, see the "View Changes" section, above. 

Appendix B: How to convert you MacApp 1.1 application 

6/14/88 

289 



6/14/88 Working Draft 4 (APDA) MacApp 2.0 Tutorial 

290 Appendix B: How to convert your MacApp 1.1 appllcatlon 



( 

( 

A 
A/UX 2, 7 
About command 103 140 
Activate event 94, 117 118 
Activate method 123 ' 
Alien event 117, 130 
Ancestor classes 31 
Ancestors 85, 35 
Application 89, 121, 123, 138 

Make file 138 
Application framework viii, 2 
AppName 138 
Assembler Language 2 

B 
Build.BlockObjs 138 
Building blocks 134 138 
Building MacApp p~grams 136 
BuildingBlocklntf 138 
Buttons 230 

c 
Calling instance 22, 35 
Calling methods 30 
CatchFailures 240 
Chains of responsibility 120 
Checkbox controls 230 

Index 

OaimClipboard method 209 
Classes 14 

Defining in Object Pascal 55 
Click chain 120, 128 
Clipboard 231 
Clipboard views 161 
Cloning 88 
Close box 98, 119 
cmnu resource 140, 141, 212 
Command chain 120, 124, 212 
Commands 89, 105, 103, 123 

About 89, 103 
Complex 105 
Copy 208 
Cut208 
Executing 103, 121 
Filtered 220 
Handling 121 
Hard-to-undo 220 
Menu 6, 120, 124, 211 
New 89, 103 
Open89 
Paste 209 
Quit 89, 103 
Show Clipboard 103 
Simple 105 
Undo 207 
Undoable 105, 220 



6/14/88 

292 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Command-key combinations 103, 
117, 120, 124 

Commit method 220 
Company object class, example in 

Object Pascal 58 
Content views 100, 120, 275 
Conventional programming 10 
Converting MacApp 1.1 

applications 
Command objects 289 
Debugging 285dialogs 288 
Documents 286 
TEViews 288 
Unit dependencies 285 
Views 287 

Coordinate system 100, 27 4, 27 6 
Copy208 
Creating instances in Object Pascal 

73 
Creator 138 
Cursor 120 
Custom menus 217 
Customizations 32 
Cut208 

D 

Data 
Displaying 90, 93 
Storing 89, 91 

Inmemory92 
On disk92 

Debug menu 246, 251 
Debugging 

Commands 251, 259 
Breakpoint 263 
Clear Break 264 
Debug window commands 
264 
Display Memory 262 
Display More 262 
Enter MacsBug 269 
Fields 261 
Go263 
Heap and Stack 265 
Help 259 
Inspect Object 268 

Index 

Locals 260 
Output Redirect 265 
Parameters 260 
Quit265 
Recent History 260 
Scroll Down 264 
Scroll Up 264 
Single Step 263 
Stack Crawl 262 
Status 259 
Toggle Flag 266 
Trace 262 

Modes 251 
Tools 

Browser windows 246, 254 
Debug menu 246, 251 
Debug window 246, 250 
Interactive Debugger 246, 
256 

Debug window 246, 250, 258 
Compiler switches 248 
Compiler variables 248 
Compiling with debugging on 

246 
Including debugging code 250, 

255 
Modes257 

DeRez 141 
Descendants 31, 85, 88 

Classes 31 
Immediate 35 

Desk accessories 3, 119 
Device drivers 3 
Dialog item clusters 230 
Dialogs 85, 277 

Items 230 
Modal228 
Modeless 227 

Disk event 117 
Disks 117 

Storing 4ata on 92 
DispatchEvent method 111, 115, 

116 
Display state 156 



( 

( 

MacApp 2.0 Tutorial Working Draft 4 (APOA) 6/14/88 

Documents 6, 91, 103, 148 
Changes from MacApp 1.1 286 
Commands92 
Creating 148 
File types 148 
Initializing 150 
Restoring data 151 
Saving data 151 
Saving the display state 156 
With two or more windows 172 

DoHandleEvent method 130 
DoHighlightSelection method 161, 

188 
Doldle method 120, 130 
DoKeyCommand method 104, 120 

124 ' 
DoMake Views method 161, 162, 

165, 167, 170, 172 
DoMakeWindows method 154, 

157, 165, 168, 170 
DoMenuCommand method 104, 

120, 124, 185,208,212,217 
· DoMouseCommand method 104 

161185, 186, 192, 199,204, 
206 

DoNeedDiskSpace method 152 
157 ' 

DoRead method 153, 157 
DoSetCursor method 206 
DoSetupMenus method 210, 217 
Double indirection 61 
DoWhateverCommand method 104 

132 ' 
Do Write method 153, 157 
Dragger objects 192 
Dragging 192 
Dragging 128 
Draw method 100, 118, 120 
Draw method 181, 182, 193 
Drawing 180, 275 

Optimizing 182 

E 
Editable text dialog items 230 
Editing text 6, 90, 222 

Commands 

Copy 208 
Cut208 
Paste 209 
Undo207 

Employee object class 32 
Error handling 6 
Event89 

Handler 93, 100 
Handling 3, 103, 104, 108, 

116, 117' 119, 120, 185, 
275 

Record 119 
Exception handlers 238 

F 
FailMemError 241 
FailNewMessage 241 
FailNII..240 
FailOSErr 241 
Failure handling 237 
field declarations, in Object Pascal 

56 
Fields method 255 
Fields 13, 15 

Object reference fields 42 
Referencing in Object Pascal 61 

File organization, Pascal 50, 52 
File types 148 
File-naming conventions 84, 135 
Ftltered commands 220 
Flowcharts 109 

Conventions 110 
fNextHandler 123, 131 
Focusing 27 4 
Font menus 218 
Freeing instances, in Object Pascal 

73 
Function methods 20 

G 
GetinspectorName method 256 
gHeadCohandler 131 
Global object instances 25 
gTarget 123 

Index 293 



6/14/88 

294 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

H 

HandleEvent method 111 

Idle chain 120, 130 
Idling 120, 130 
Immediate ancestors 35 
Immediate descendants 35 
Implementation 50 
Implementation unit 148 
Include files 84, 135, 140 
Inheritance 31, 85 
Initialization 

Of documents 150 
Ofviews 162 

Initialization methods, in Object 
Pascal 74 

Inspector windows 246, 254 
InstallCohandler method 130 
Instances 14, 26, 39 

As members of a class 41 
Calling instance 22 
Creating in Object Pascal 73 
Global 25 
Privacy between 47, 76 
Referring to other instances 22 

Instantiations 12 
Instantiations of record types 12 
Interactive Debugger 246, 256 
Interface 50 

K 
Keyboard commands 103, 117 
KeyDown events 117, 118, 119, 

120 
Keystrokes 120, 123, 124 

L 
Lisa computer viii, 7 

M 
MABuild 136, 137, 140 
MacApp viii, 2 

Index 

Installing 134 
Overview flowchart 109 
Structure 143 

Macintosh Programmer's 
Workshop (MPW) viii 

MacsBug269 
Main event loop 3, 108 
MainEventLoop method 111 
Make file 138 
MBAR resource 140, 141 
mem! resource 140 
Member41 
Memory viii 

Management 140 
Menu bar 6, 93 

Changing menus 214 
Clicks in 119 

Menu commands 211 
Creating 211 
Custom menus 217 
Dynamic menu items 217 
Font menus 218 
Negative command numbers 

217 
Messages, sending to an instance 

16 
Method declarations, in Object 

Pascal 56 
Method definitions 15, 36 

In Object Pascal 63 
Method implementations 

In Object Pascal 63 
Method names 120 
Methods 13, 15 

As executed 17 
Calling 30 
Calling in Object Pascal 62 
Calling other methods 65, 66, 

67 
Declaring in Object Pascal 56 
Definitions 36 
Function 20 
Initialization 7 4 
Override 36, 43, 72 
Override declaration in Object 

Pascal 58 
Procedure 20 



MacApp 2.0 Tutorial Working Draft 4 (APDA) 6/14/88 

( 
Modal dialogs 228 SELF keyword 63 
Modeless dialogs 227 Object reference variables 77 
Mouse Object classes 13, 30, 86 

Clicks 3, 94, 116, 119, 120, Defining in Object Pascal 55 
128 Object field declarations in Object 

Commands 103 Pascal 56 
Events Object fields 13 

Dragging 192 Object instances 14, 26, 39 
Handling 185 Calling instance 22 
Handling several types 203 Global 25 
Selecting 186 In Object Pascal 56 
Types of mouse actions 185 Referring to other instances 22 

Tracking 89 Object methods 13 
MouseDown events 116, 118, 119, Calling 30 

128 Object Pascal, class definitions 55 
MouseUp events 117 Object reference 61 
MultiFinder 2, 7, 117, 140 Object reference fields 19, 22, 42, 

70 
N Represented by the arrows in 

NeededSysLibs 138 
the figure 122 

Object reference variable 61 
Nesting274 Object type 85 
Network event 117, 120 Object-oriented programming, 

( New command 103 advantages 47 
NewPaletteWindow 167 Objects, differences from records 
NewSimpleWindow 165, 166 30 
Notation xi Optimizedcompiling246 
Nothing program 147 Optimizing code 137 

0 
Otherlnterfaces 138 
OtherLinkFiles 138 

Object class 85 OtherRezFiles 138 
Abstract 88, 89, 106 OtherRsrcFiles 138 
Creating 88 OtherSegMappings 138 
Instantiating 88 Override methods 36, 43, 58, 72 
TView93 

Object Pascal p 
Calling a method 62 Palette views 100, 123, 128, 166 
Creating instances 73 Pascal viii, x, 2 
Double indirection 61 Paste 209 
Field declarations 56 Pictures 230 
File organization 50, 52 PollEvent method 111, 116 
Freeing instances 73 Popup menus 230 
Initialization methods 7 4 PoseModalDialog method 229 
Method definitions 63 PoseModelessDialog method 227 
Override method declarations 58 PostHandleEvent method 111 
Override methods 72 PostRez 141 
Referencing a field 61 

(-~ 

index 295 



6/14/88 

296 

Printing 6, 221 
Privacy between instances 47, 76 
Procedure methods 20 
Pseudocomputers 14 

Q 

qDebug248 
QuickDraw 93 
Quit command 103, 125 

R 
Radio button controls 230 
Record handles in Pascal 60 
Record pointers in Pascal 60 
Record type definitions 12 
Records in Pascal 59 
Redo command 89 
Reference a field 61 
Reference variable 61 
Restoring data from files 151 
Revert to Saved command 92 
Rez 138, 140 

s -
Save As command 92 
Save command 92 
Saving data to files 151 
Saving display states 156 
Scroll bars 100, 101 
Scrollers 99, 100 
seg! resource 140 
Selecting 128, 185, 186 
SELF63 
Sending a message 16 
Show Clipboard commands 103 
ShowWindows method 164 
Simple windows 164 
SIZE resource 140 
Size box 98, 119 
Sketcher objects 199 
Source code library 134 
Static text dialog items 230 
Subviews 93, 121, 122, 128, 274 
Success method 240 
Superviews 93, 122, 128, 274 

Index 

Working Draft 4 (APDA) MacApp 2.0 Tutorial 

Switcher events 117, 118 

T 
TApplication 89, 91, 103, 111, 122 

commands 103 
T Association, 85 
TCommand 85, 89, 91, 106 
1DialogView 90 
1Document89,91, 103, 122 
TEntry 85 
TEView 101 
TEvtHandler 88, 89, 91, 120, 121, 

123 
Text6,276 
TextEdit90,222 
1Frame273 
TGridView 90 
1List 88, 91 
TObject 85, 88, 91 
Toolbox 3 
TrackConstrain method 203 
Trac.kFeedback method 194, 203 
Tracking the mouse 201 

when the mouse button is up 
206 

TrackMouse method 187, 194, 202 
TScrollBar 101 
TScroller 90, 99, 275 
TSScrolIBar 275 
TTEView 90, 276 
TView 90, 91, 93, 100, 273 

subclasses 90 
TWindow 90, 97, 122, 273, 275 

commands 103 

u 
UDialog226 
Ulnspector 101 
Undo command 89, 207 
Unit dependencies 285 
Unit 50, 82, 83, 84, 135, 136 

Implementation 50, 148 
Interface 50 
Private 84 
Public 84 

Update event 117, 118 



( 

( 
~··'! 

MacApp 2.0 Tutorial Working Draft 4 (APDA) 

...... ' 

UPrinting 221 
U serStartup file 135 
UTEView 101, 222, 276 

v 
Views 92, 103, 121, 128, 273 

Changes from MacApp 1.1 287 
Creating 178 

w 

Drawing 180 
Drawing objects in 182 
Hierarchy 93 
Initializing 162 
Large coordinate 93 
Optimizing drawing 182 

Windows 5, 90, 94, 103, 117, 
123, 128 

z 

Attributes 98 
Clicks in 119 
Controls 98 
Creating 163 
Initially displayed 164 
Palette 166 
Resources 164 
Simple 164 

Zoom box 98, 119 

6/14/88 

Index 297 




