
(

:{

(

MacApp 2.0b5 View Architecture
Release Notes

Curt Bianchi

Introduction

This document describes the architecture for MacApp 2.0' s view classes, and describes all methods and fields of the
view classes defmed in UMacApp. This represents the major change between MacApp 1.x and MacApp 2.0. The
motivations for introducing the new architecture are

To simplify the architecture
To provide a class that is suitable as the basis for all displayed objects, from windows to controls
To have a single nesting and layering mechanism for display objects
To support large coordinate systems
To simplify the implementation of display objects within views, including controls and fields

The MacApp l.x Display Achitecture

If you're already familiar with the MacApp 1.x display architecture, you should skip this section. If you're not, here
it is in a nutshell.

The old display architecture consists basically of three classes: TWindow, TFrarne, and TView.

TWindow

TFrarne

Tview

A TWindow object represents a Window Manager window. As such, it handles opening, closing,
moving, resizing, activating, and deactivating a window.

A TF r arne object is a rectangular area within a window, handling scrolling and coordinate
transformations. TF r arne objects are similar to QuickDraw grafports in that each has its own
coordinate system. Frames typically tile windows. In the simplest case, windows have a single
frame whose size is that of the window's content rectangle. However, windows can be subdivided
into sections by using multiple frames. Furthermore, frames can be nested inside one another.
Within fmmes are displayed Control Manager controls (for example, scroll bars) and a portion of a
view, or a collection of subframes, or both.

A Tview object renders the display image of a document's data and responds to mouse clicks and
keystrokes in the display image. It is a rectangular area of any size up to 30,000 pixels in each
dimension. A view is always displayed in a frame. The frame's scroll bars determine what part of
the view is actually visible, since large views cannot be displayed in their entirety.

Wed, Aug 3.1988 © 1988. Apple Computer 1

TWindow

TFrame

TView

Wed, Aug 3.1988

iD MDemoTeHt.p

PROGRAM DemoText;

USES
{$LOAD Macl ntf.LOAD}

MemTypes, QuickDra'vl, OSI ntf, Tooll ntf, Packl ntf,
{$LOAD UMacApp.LOAD}

UObject, UList, UMacApp,
{$lOAD}

UPrinting, ~
mrnw, ~

MDemoTeHt.

PROGRAM DemoText;

USES
{$lOAD Maclntf.lOAD}

MemTypes, QuickDra'vl, OSI ntf.. Tool I nU, Packl nU,
{$LOAD UMacApp.LOAD}

UObject, UList, UMacApp,
{ $lOAD}

UPri nting,
UTEVie'vl,
UDemoText;

VAR
gDemoTextApplication: TDemoTextApplication;

{$S Main}
BEGIN
I nitTool box(8) ;
1 nitPri nti ng;
Ne'vl(gDemoTextApplication) ;
gDemoTextApplication.l De moTextAp plication;
gDemoTextApplication.Run;

END.

Figure 1: Old MacApp Display Architecture

© 1988. Apple Computer 2

(

Figure 1 shows a typical text edit window and the MacApp objects used to build it. Here, the Twindow object
displays the grow icon (the rest of the window frame is drawn by the Window Manager) and handles mouse clicks
outside the window~s content region. The TFrame object draws the scroll bar, handles mouse clicks in the scroll
bar, and focuses the window so that the framed portion of the view is drawn. Focusing consists of setting the port,
its origin, and its clipping region. Setting the port origin determines what part of the view is visible in the frame.
The frame responds to clicks in the scroll bar by changing the port origin, thereby changing the visible part of the
view, and causing the view to be redrawn. The view draws the text, and handles keystrokes and mouse clicks in the
text

As part of MacApp' s dialog box support, the display architecture is augmented to incorporate nested views.
TCatView, a descendant of TView, is a type of view that contains a collection of subviews. Thus you can have
frames within frames, each of which can contain a single view, which in turn can contain vi~ws within views.

This brings us to the shortcomings of the old architecture. First, having two separate nesting models complicates
and duplicates much functionality. Neither nesting scheme is totally satisfactory, and it isn't clear to the user which
scheme to use. Second, given that each frame has its own set of controls, MacApp has three different ways of
layering the contents of a window (frames, views, and controls). Third, it is difficult to deal with Control Manager
'controls as separate entities (for example, buttons in a dialog box). Fourth, it is cumbersome to use views as the
basis for display objects such as icons or form fields, since each must be placed in its own frame or must be used
with cat views. Either way adds an unneeded layer of abstraction. Furthermore, Tea t Views have been regarded as
temporary citizens in the MacApp object library, and users are warned not to use them as they may be done away
with "any time now."

Another source of trouble with the old MacApp architecture is dialog boxes. They are implemented with a
descendant of the TWindow class, and with TCatViews. In many cases, it is more difficult to deal with MacApp's
dialog box support than to implement dialog boxes from scratch.

The MacApp 2.0 Display Architecture

So how does the new architecture differ from the old? Primarily by providing a robust display object class, called
TView, from which all other display classes descend. The fundamental difference between the new architecture and
the old is this: All display objects descend from the same class. (All subsequent references to TView are to the
new TView.) The role of the Tview class is to defme a set of properties common to all display objects. These
properties include nesting, focusing, drawing, and event handling. MacApp also defines a number of standard views
that are subclasses of Tview. These include TWindow, TControl, TCtlMgr, TScrollBar, TSScrollBar
and TScroller. These classes will be described in more detail later.

Nesting

A view is a rectangular display object of a given size and position with respect to its background view. Any view
can serve as the background for any other view. A set of views related in this way forms a tree, in which all but the
leaf views serve as backgrounds for other views. This relationship is called the superviewlsubview relationship.
Each view can be contained in another view, called its superview. Each view can contain any number of views,
called subviews. A view's subviews form an ordered list, allowing overlapping views to have a front-to-back order.

The benefit of this arrangement is that views can be tiled or layered. Tiling separates logically distinct portions of a
window or view into individual sections. Layering organizes groups of display objects in layers from "front" to
"back," much like the way the Window Manager layers windows.

Figure 2 at the end of this section shows the same window as Figure 1 did, but this time decomposed into MacApp
2.0 objects. The window consists of four views: the window itself, a standard "scroller" and scroll bar, and a
standard text editing view. There are three layers: the bottom layer consists of the window view; the middle layer
consists of the scroller and scroll bar; and the top layer consists of the text.

Wed, Aug 3,1988 © 1988. Apple Computer 3

Focusing

Focusing is the act of setting up the graphics environment to draw the visible part of a view. This entails setting the
QuickDraw grafport. setting the port's coordinate system, and clipping a view's drawing to the margins of its
superview. Each view has a local coordinate system whose top-left comer is coordinate (0, 0).

Drawing

The Tview class implements a simple algorithm for drawing a collection of views. Beginning with the view
representing the window, each view draws itself and then tells its subviews to draw themselves. Each subview in
tum draws itself and tells its subviews to draw themselves. This continues until there are no subviews to draw.
Effectively, views are drawn from the bottom to the top. Changing the drawing algorithm is a matter of overriding a
single TView method.

Event Handling

The TView class is a subclass of TEvtHandler, so it inherits the ability to handle keystrokes and menu
commands. In addition, TView has the ability to handle mouse clicks. A simple algorithm is used to determine
which view receives the mouse click. Basically, mouse clicks are handled from the top layer of views down. This is
done by finding the topmost view containing the mouse point, and then working back to the bottom until a view has
handled the click.

Wed,Aug3,1988 @ 1988_ Apple Computer 4

TWindow

TScroller.
TSc roll Bar

TTEView

'f

<:-

Wed. Aug 3.1988.

MDemoTeHt.

PROGRAM DemoText;

USES
{$LOAD Macl ntf.LOAD}

MemTypes, QuickDra'W, OSlntf, Toollntf, Packlntf,
{$LOAD UMacApp.LOAD}

UObject, UList, UMacApp,
{$LOAD}

UPrinti ng,
UTEView,

MDemoTeHt.

PROGRAM DemoText;

USES
{$LOAD Macl ntf.LOAD}

MemTypes, QuickDraw I OSlntf, To01l ntf, Packl ntf,
{$LOAD UMacApp.LOAD}

UObject, UList, UMacApp,
{$LOAD}

UPrinting,
UTEView,
UDemoText;

VAR
gDemoTextApplication: TDemoTextApplication;

{$S Main}
BEGIN
I nitTool box(8);
I nitPri nti ng;
New(gDemoTextApplication) ;
gDemoTextApplication.l DemoTextApplication;
gDemoTextApplication.Run;

END.

Figure 2: New MacApp Display Architecture

© 1988. Apple Computer 5

Large Coordinate Systems

One of the limitations of MacApp l.x is that the maximum size of a view is 30,000 pixels horizontally and
vertically, or about 408-1/2 by 11 pages. This makes it difficult to use MacApp for applications like word
processors and spreadsheets. For example, consider a spreadsheet with 8,000 rows. If each row is 16 pixels high,
then its view height is 8,000 * 16, or 128,000 pixels.

To overcome this, we've introduced a large coordinate system where coordinates are represented by 32 bits rather
than 16 bits. A large coordinate is defmed by the VCoordinate type. VPoint and VRect define large points
and rectangles:

VCoordinate = LONGINT;

VPoint =

VRect

RECORD
CASE INTEGER OF

0: (v, h: VCoordinate);
1: (vh: ARRAY [VHSelect] OF VC0.ordinate);

END;

RECORD
CASE INTEGER OF

END;

0: (top, left, bottom,
1: (topLeft, botRight:

right: VCoordinate);
VPoint) ;

(V stands for view. We would have used LPoint, LRect, and so on, had the List Manager not defmed LRect.)

Implementing a large coordinate system on top of QuickDraw requires mapping view coordinates to QuickDraw
coordinates. This is different from scaling, which condenses the entire view into QuickDraw's coordinate system,
transforming many view coordinates to one QuickDraw coordinate. Mapping as discussed here overlays
QuickDraw's coordinates space on some part of the view, transforming one view coordinate to one QuickDraw
coordinate.

Two possibilities exist for handling coordinate mapping. MacApp can either implicitly map views to QuickDraw
coordinates, or the programmer must explicitly map them. The former requires implementing an entire set of
drawing and calculation routines for large coordinates, as was done for the Lisa Toolkit. This approach has the
advantage of being clean and simple, but it has the disadvantages of slowing all drawing, forcing the developer to
adopt a new set of drawing routines, and, of course, forcing us to implement all of those routines.

Operating under the assumption that most views do not require a large coordinate system, we chose the latter
approach. Implementing views smaller than QuickDraw's coodinate system imposes little to no burden on the
programmer, since coordinate mapping is not necessary. For views larger than QuickDraw's coordinate system, the
burden is on the programmer to map between view and QuickDraw coordinates as necessary, using view methods
for this purpose.

MacApp provides a unit, UViewCoords, for manipulating VPoints and VRects. It includes routines to convert
between Points, Rects, VPoints and VRects and for performing various operations on VPoints and VRects
similar to those found in QuickDraw.

Wed, Aug 3,1988 @ 1988* Apple Computer 6

(,

The New Classes

Figure 3 shows a hierarchy of the primary MacApp 2.0 display object classes.

TVlew

I
I L I

TScrolier TControl lWindow

I

TCtIMgr

I
TScroliBar

I

TSScroliBar

Figure 3: Standard Display Classes of MacApp 2.0

Additional display classes are included in the building blocks UTEView. UDialog and UGridView. A brief
description of each class follows:

Tview = OBJECT(TEvtHandler)

As descnbed above. Tview is the basic display object class of MacApp. from which all other display
classes descend. As a descendant of TEvtHandler, it inherits the ability to handle keystroke events and
menu commands. In addition. it provides these general capabilities: nesting. drawing. focusing. and mouse
handling. This class forms the basis for all other MacApp display objects.

Wed. Aug 3.1988 © 1988. Apple Computer 7

TScroller = OBJECT(TView)

TScroller is a subclass of Tview that applies a coordinate translation to its contents. Changing the \", j
tmnslation effectively scrolls the scroller's contents. A scroller may refer to a vertical and/or horizontal
scroll bar, which the scroller keeps in sync. It is also possible to scroll without scroll bars.

TWindow c OBJECT(TView)

TWindow is a class that represents a Window Manager window. It responds to mouse clicks outside the
window's content region, draws the window's grow box, and overrides other view methods where
appropriate. Since Twindow objects represent windows, they never have superviews. They must have at
least one subview or nothing will be drawn in the window's content region.

TControl = OBJECT(TView)

TControl is an abstract class (one that must be subclassed to obtain useful instances) that represents a
MacApp control, of which Control Manager controls are a subset. Properties of MacApp controls are as
follows: they can be tracked with the mouse without explicitly creating a command object; they have an
optional adornment (frame); they are limited in size to QuiclcDraw's coordinate space; and they can pass
messages (known as choices) to their superviews.

TCtlMgr = OBJECT(TControl)

TCt lMgr is an abstract class that represents Control Manager controls.

TScrollBar = OBJECT(TCtlMgr)

TScrollBar is a class that represents generic scroll bars. It contains references to one or more scrollers.
which it sends messages to when the user clicks in the scroll bar.

TSScrollBar = OBJECT(TScrollBar)

TSScrollBar is a class that represents scroll bars used in conjunction with TScroller views. It
contains references to one or more scrollers, which it sends messages to when the user clicks in the scroll
bar.

The TView Class

The TView class is the ancestor of all other display classes. As mentioned above, the TView class is used to define
a set properties common to all display objects. These properties include nesting, focusing, drawing and event
handling.

Fields

fDocument

fSuperView

Wed, Aug 3,1988

The document whose data this view represents. or NIL if the view is not associated
with a document. Usually this is NIL if the view does not directly represent a
document's data. Thus, views such as scrollers and controls typically have a NIL
fDocument.

The view in which this view is contained. The f SuperView field of a window is

@ 1988. Apple Computer 8

(fSubViews

fLocation

fSize

fSizeDeterminer

I·

,f'
f-
I,',

'"

fHLDesired

fIdentifier

fShown

fViewEnabled

fPrintHandler

Wed. Aug 3.1988

NIL.

A list of views contained in this view, implemented as a TList. It is created on
demand and is NIL until the flfSt subview is added to the view. Thus the
fSubViews field of the frontmost views are NIL. Note that the list of subviews
has an implied ordering which determines which subview is in front of another
subview in cases where subviews overlap (that is, occupy the same space in their
superview). The last subview in the list is in front of all other subviews while the
f11'st subview is behind the other subviews. This has ramifications for cursor and
mouse handling in that the subview list is searched from last to flfSt to determine
which view contains the mouse.

The location of this view in its superview's coordinate space.

The horizontal and vertical size of the view.

Indicates the techniques used to compute the view's width and height (The
technique use to compute the width may be different than for the height) The
choices are

sizeFixed

sizevariable

sizePage

sizeFillPages

The view's width or height is constant.

The view determines its width or height by overriding the
CalcMinSize method.

The view's width or height is exactly one page. (The
page size is determined by the view's print handler.)

The view overrides CalcMinSize to determine its
minimum size, which is then rounded up to fill the last
page in the given direction.

sizeSuperView The view's width or height is the same as its superview.
When its superview changes size, the view's size changes
as well.

sizeRelSuperView The view's width or height changes relative to its
superview's size. When the superview's size changes, the
view's size changes an equal amount.

The type of highlighting used to draw the view's selection. This field is set to hlOn
when the view is activated, and to hlOff when the view is deactivated.

A four-characteridentifier oftype IDType (PACKED ARRAY [1.. 4] OF
CHAR). Given a view's identifier, you can obtain a reference to the view by using
the Tview . F indSubView method.

True indicates the view is shown, false indicates the view is hidden. This field is not
usually accessed directly. Instead use the Show and IsShown methods.

True indicates the view responds to mouse clicks, false indicates the view does not
respond to mouse clicks. This field is not usually accessed directly. Instead use the
ViewEnable and IsviewEnabled methods.

A reference to the print handler associated with this view.

@ 1988. Apple Computer 9

Coordinate Conversion Methods

These methods convert between QuickDraw and view coordinates. For views whose width and height is smaller
than kMaxCoord (30,000), this amounts to nothing more than converting coordinates between short and long data
suuctures. (Note: It would have been much more nablral and convenient for routines of this type to be functions.
Unfortunately, the code generated for function calls is less efficient than that generated for procedures with var
parameters. Therefore. we felt there the better choice was to use procedures and var parameters.)

PROCEDURE TView.QDToViewPt (qdPoint: Point; VAR viewPt: VPoint);

Returns in viewPt the view point corresponding to the given QuickDraw point. For views whose height
and width is less than kMaxCoord (30, 000), qdPoint and viewPt will have the same value. For
views whose height or width is greater than kMaxCoord, qdPoint and viewPt will have different
values. QDToViewPt assumes the view is focused.

FUNCTION TView.ViewToQDPt (viewPt: VPoint): Point;

Returns the QuickDraw point corresponding to the given view point. For views whose height or width is
greater than kMaxCoord, the point returned will have a different value than viewPt. ViewToQDPt
assumes the view is focused.

PROCEDURE TView.QDToViewRect (qdRect: Rect; VAR viewRect: VRect);

Returns in viewRect the view rectangle corresponding to the given QuickDraw rectangle. For views
whose height or width is greater than kMaxCoord, qdPoint and viewPt will have different values. and
QDToViewRect assumes the view is focused.

PROCEDURE TView.ViewToQDRect (viewRect: VRect; VAR qdRect: Rect);

Returns in qdRect the QuickDraw reet corresponding to the given view rectangle. For views whose
height or width is greater than kMaxCoord, qdPoint and viewpt will have different values, and
ViewToQDRect assumes the view is focused.

PROCEDURE TView.SuperToLocal (VAR thePoint: VPoint);

Analogous to the Toolbox routine Global ToLocal, SuperToLocal converts the given point from
superview coordinates to view coordinates, without changing the focused view.

PROCEDURE TView.LocalToSuper (VAR thePoint: VPoint);

Analogous to the Toolbox routine LocalToGlobal, LocalToSuper converts the given point from
local view coordinates to superview coordinates, without changing the focused view.

PROCEDURE TView.windowToLocal (VAR thePoint: VPoint);

WindowToLocal converts the given point from window coordinates to view coordinates, without
changing the focused view.

Wed, Aug 3,1988 @ 1988. Apple Computer 10

"'. /'

(
PROCEDURE TView.LocalToWindow (VAR thePoint: VPoint);

LocalToWindow converts the given point from local view coordinates to window coordinates, without
changing the focused view.

Subview Management Methods

Note that the subviews are maintained in an ordered list in which the order determines which subview is in front of
. another subview when they overlap (that is occupy the same space in their superview). The last subview in the list is

in front of all other subviews in the list while the fll'St subview is behind the other subviews. This has ramifications
for cursor and mouse handling in that the list is searched from last to first to determine which view contains the
mouse.

PROCEDURE Tview.AddSubView (theSubView: TView);

This method adds theSubView to the end of a view's list of subviews and sets theSubView's
fSuperView field to its new superview. If the subview list is NIL, then it is created. If the view is in a
grafport, then the subview's BeInGrafPort method is called to notify the subview that it too is in a
grafport. If theSubView's fNextHandler is NIL then it is set to its new superview.

PROCEDURE TView.RemoveSubView (theSubView: TView);

This method removes a subview from a view's list of subviews and sets theSubView's fSuperView
field to NIL. If theSubView's fNextHandler is the superview then it is set to NIL.

PROCEDURE Tview.EachSubView (PROCEDURE DoToSubView (aSubView: TView»i

This method calls the procedure DoToSubView for each subview, in order of their occurrence in
fSubViews. (Analogous to TList . Each.)

FUNCTION TView.FirstSubViewThat (FUNCTION TestSubView (theSubView: TView):
BOOLEAN): TView;

This method returns the fll'St subview for which TestSubView returns true, or NIL if TestSubView
never returns true. The subviews are tested in order of occurance in fSubViews, from fll'St to last.
(Analogous to TList . First That.)

FUNCTION TView.LastSubViewThat (FUNCTION TestSubView (theSubView: TView):
BOOLEAN): TViewi

This method returns the last subview for which TestSubView returns true, or NIL if TestSubView
never returns true. The subviews are tested in reverse order of occurrence in fSubViews, from last to
fll'SL

PROCEDURE TView.MakeFirstSubView (theSubView: TView);

This method makes the given subview the frrst subview in fSubViews, if it isn't already the first. For
debugging purposes, a ProqramBreak is generated if the given subview is not in fSubViews. The
purpose of this method is to allow ordering of overlapping views.

Wed, Aug 3,1988 © 1988. Apple Computer 11

PROCEDURE TView.MakeLastSubView (theSubView: TView);

This method makes the given subview the last subview in fSubViews, if it isn't already the last For
debugging purposes, a ProgramBreak is generated if the given subview is not in fSubViews. The
purpose of this method is to allow ordering of overlapping views.

FUNCTION Tview.CountSubViews: INTEGER;

This method returns the number of subviews for a view. Using this method avoids depending on the
implementation of the subview lists.

FUNCTION TView.FindSubView (itsIdentifier: IDType): TView;

This method returns the view whose fIdentifier field is equal to itsIdentifier, and that is
directly or indirectly a subview of SELF.

Open/Close/Activate Methods

PROCEDURE TView.Open;

This method is called when the window containing this view is opened. It simply calls the Open method
for each of its subviews. It is intended to be overridden by views that need special processing when they
are opened, in which case the override should call INHERITED Open.

PROCEDURE TView.Closei

This method is called when the window containing this view is closed. It simply calls the Close method
. for each of its subviews. It is intended to be overridden by views that need special processing when they
are closed, in which case the override should call INHERITED Close.

PROCEDURE TView.Activate (entering: BOOLEAN);

This method is called when the window containing this view is activated (entering is true) or
deactivated (entering is false). It focuses the view, calls the view's DoHighlightSelection
method to change the selection from inactive to active or vice versa, and sets fHLDesired to hlOn when
activating or to hlDim when deactivating. Finally, the Activate method is called for each subview.
This method is overridden by views that require special processing when their windows are activated or
deactivated, in which case the override normally calls INHERITED Activate.

PROCEDURE TView.ShowReverted;

This method is called when a document containing this view is reverted. It calls the view's Ad jus t Size
and ForceRedraw methods. It is overridden by views that need to take more action when a document is
reverted, in which case the override normally calls INHERITED ShowReverted.

PROCEDURE Tview.BeInPort (itsPort: GrafPtr);

This method is called when the view is placed into, or removed from a grafporl itsPort is either the
grafpon the view is being placed in (as a result of adding it as a subview of another view), or NIL if the , /

Wed. Aug 3,1988 © 1988_ Apple Computer 12

view is being removed from a grafport. BeInPort simply calls BeInPort for each of its subviews.
This method is intended to be overridden by views that must be notified when they are in a POrt. in which
case the override should call INHERITED BeInPort. (1be reason a view may require this notification is
that it may not be in a port when it is initialized.)

PROCEDURE TView.BeInScroller (itsScroller: TScroller);

This method is called when the view becomes a subview of a scroller, or when a view is no longer a
subview of a scroller (itsScroller is NIL). H itsScroller is not NIL then the scroller's
SetScrollLimits method is cal!ed, passing the view's fSize as the scroll limits. You may need to
override this if you have a scroller containing more than one view and you don't want the scroller's scroll
limits to be set by each view.

Size Management Methods

This section describes the methods related to setting or changing a view's size. In many cases the size of a view is
dictated by the data it represents. For example, the size of a text-editing view depends on the amount of text it
displays. In such a case the size determiners of the view are usually sizeVariable, and the CalcMinSize
method is overridden to compute the view's current size. On the other hand, many views are not dependent upon the
data they display, and in those cases overridding CalcMinSize is not required. An example is a scroller whose
size is usually sizeFixed or sizeRelSuperView, both of which are handled by MacApp.

For views that vary in size, you must notify the view when its size may have changed. This is done by calling the
view's AdjustSize method. This in tum calls ComputeSize, which calls CalcMinSize to fmd out what the
view's size should be. H that is different from the view's current size, then Adj ust Size calls Res i ze to set the
new size. Thus, for views whose size yaries, the key to using these methods is to override CalcMinSize and to
call AdjustSize whenever some action takes place that may change the view's size. (In the case of a text editing if view, AdjustSize would have to be called after every keystroke, for example.)

PROCEDURE TView.Resize (width, height: VCoordinate; invalidate: BOOLEAN);

\

This method sets the view's size to width and height, only if the new size is different than the current
size. If invalidate is true, then the difference between the view's old and new size is invalidated.
(1bis strategy will not work for a view that needs to be entirely redrawn when its size changes. In this case
you should override Resize to call ForceRedraw to invalidate the old size, call INHERITED Resize
with invalidate false, then call ForceRedraw to invalidate the new size. Or you can override
Resize completely.) Hthe view has asuperview, the superview's SubViewChangeSize method is
called. Similarly, the SuperViewChangeSize method is called for each subview. Typically, you don't
call Resize directly. Instead, you call AdjustSize. (If you do call Resize directly, be aware that it
may change the focused view.)

PROCEDURE TView.AdjustSize;

You call this method whenever a change is made that may affect the size of the view, typically when the
data represented by the view changes. AdjustSize calls ComputeSize to find out what the view's
size should be. If this is different from the view's current size, then Resize is called with the
invalidate parameter set to true; and if the view has a print ~dler, then the view's
DoPaginiation method is called. Note that AdjustSize may change the focused view.

Wed, Aug 3,1988 @ 1988. Apple Computer 13

PROCEDURE TView.ComputeSize (VAR newSize: VPoint);

. This method computes the view's size by calling its CalcMinSize method and then applying the view's
size detenniners and returning that size in newSize. The action taken is detennined by the view's size
detenniners:
sizePage
sizeFillPages

sizeVariable
sizeFixed
sizeSuperView
sizeRelSuperView

The new size is set to the page size.
The view's "minimum" is computed by calling CalcMinSize. and then
rounded up to fill the last page.
The new size is the same as that returned by CalcMinSize.
The new size is the same as the view's existing size.
The new size is set to the superview's size.
The new size is the same as that passed to ComputeSize in the newSize
parameter ..

ComputeSize is called from AdjustSize and SuperViewChangedSize.· It is rarely overridden.

PROCEDURE TView.CalcMinSize (VAR minSize: VPoint);

This method returns in minSize the view's minimum size. This method is frequently overridden to
compute the view's size. Unless overridden, the view's current size is returned. CalcMinSize is called
from ComputeSize.

PROCEDURE TView.SuperViewChangedSize (delta: VPoint; invalidate: BOOLEAN);

This method infonns a view that its superview has changed size, where delta is the amount of change. If
either the horizontal or vertical size detenniner of the view is sizeSuperView or
sizeRelSuperview, then the view's size is adjusted accordingly by calling ComputeSize and
Resize. This method may be overridden to enhance or change this behavior. The invalidate
parameter indicates whether the view should be invalidated (and redrawn) if it needs resizing. Because this
method is called whenever the view's superview is resized, you don't ordinarily call it directly.

PROCEDURE TView.SubViewChangedSize (theSubView: Tview; delta: VPoint);

This method infonns a view that one of its subviews has changed size, where delta is the amount of
change. It does nothing, but may be overridden by views that need to take action when a subview changes
size. Because this method is called whenever one of the view's subviews is resized, you don't ordinarily
call this directly.

PROCEDURE TView.GetExtent (VAR itsExtent: VRect);

This method returns the view's current extent, which is a rectangle defming the view's coordinate system.
The top-left is (0, 0) and the bottom-right is the view's size. This method is rarely overridden.

PROCEDURE TView.GetQDExtent (VAR qdExtent: Rect);

This method returns the view's extent, converted to QuickDraw coordinates. For views whose extent is
larger than kMaxCoord (30,000) the rectangle returned will be smaller than the view's actual extent This
method is simply for convenience so that you don't have to call GetExtent and ViewToQDRect
every time you want to get a view's extent and convert it to QuickDraw coordinates. This method assumes
that the view is focused.

Wed. Aug 3.1988 @ 1988. Apple Computer 14

Location Management Methods

PROCEDURE TView.Locate (h, v: VCoordinate; invalidate: BOOLEAN);

This method changes the location of a view within its superview, where h and v are the view's new
horizontal and vertical location expressed in the superview's coordinate system. If invalidate is true,
then the view is invalidated in both its old and new locations. The superview's SubViewMoved method
is called. Similarly, SuperViewMoved is called for each of the view's subviews. If invalidate is
true, then the view is invalidated in both its old and new positions.

PROCEDURE TView.SuperViewMoved (invalidate: BOOLEAN);

This method informs a view that its superview has moved. It does nothing, but it may be overridden for
views that need to take action when their superview moves. invalidate indicates whether the view
should be invalidated if it moves. Because this method is called whenever the view's superview moves,
you don't ordinarily call this directly.

PROCEDURE Tview.SubViewMoved (theSubView: TView);

This method informs a view that one of its subviews has moved. It does nothing, but it may be overridden
by views that need to take action when a subview changes size. Because this method is called whenever
one of the view's subviews move, you don't ordinarily call this directly.

PROCEDURE TView.GetFrame (VAR itsFrame: VRect);

This method returns the view's frame, which is a rectangle defining the view's coordinate system in
superview coordinates. The top-left is the view's location and the bottom-right is the view's size added to
its location.

Focusing Methods

FUNCTION Tview.Focus: BOOLEAN:

This method establishes the drawing environment for the view. A view must be focused before any
graphical operations can be performed it. Because the location of a view is relative to its superview, the
method FocusOnSuperView is called to establish the superview's drawing environment. Then the
current grafport's origin and clipping is set SO that drawing can be done in the view's coordinate system. If
it is not possible to focus the view (e.g. because its fShown flag is false or it isn't visible in its grafport),
then Focus returns false and the current port's clipping region is set to an empty rectangle. The algorithm
for focusing is complicated by the fact that views may have a larger coordinate space than QuickDraw, and
this method takes that into account when setting the port's origin. Focus is rarely overridden.

FUNCTION TView.FocusOnSuperView: BOOLEAN;

This method focuses on the view's superview by calling the superview's Focus method and returning Lts
result If there is no superview, this method returns faIse.

(PROCEDURE TView.ClipFurtherTo (r: Rect: hDeltaOrg, vDeltaOrg: INTEGER);

Wed, Aug 3,1988 © 1988. Apple Computer 15

This is an internal utility method that sets the window clipping region when a view is being focused.

Drawing Methods

PROCEDURE TView.DrawContentsi

This method implements MacApp's drawing algorithm. If the view can be focused, and if any part of the
view is visible, then 1) the view's Draw method is called; 2) if the application is not printing (gP rinting
is false) and not writing to the desk scrap (gDrawingp ictScrap is false) then the view's
DoHighlightSelection and DoDrawPrintFeedback methods are called; and
3) DrawContents is called for each subview. Though it is rarely done. this method can be overridden to
change the drawing algorithm.

PROCEDURE TView.Draw (area: Rect)i

This method draws the view itself. It is nearly always overridden; otherwise the view is considered
transparent The parameter area indicates what part of the view needs to be drawn, in QuickDraw
coordinates. If the view is larger than kMaxCoord (30,000) pixels then the method QDToViewRect can
be used to convert area into view coordinates.

PROCEDURE TView.DoHighlightSelection (fromHL, toHL: HLState)i

This method is intended to be overridden to highlight the view's selection, if any. It does nothing unless
overridden. fromHL and toHL can be one of hlOff, hlDim, or hlOn. Your
DoHighlightSelection method should be prepared to handle any plausable combination of these
states. The common combinations are:

fromHL, toHL:

hlOff, hlOn:
hlOn, hlOff:
hlOn, hlDim:

hlDim, hlOn:

hlDim, hlOff:
hIOff, hlDim:

The selection is being turned on while the view is active.
The selection is being tmned off while the view is active.
The view's window has been made inactive so the highlighting should be changed to
inactive highlighting. If this view doesn't support dim (inactive) highlighting then it
can treate hlDim as hlOff.
The view's window has been made active so the highlighting should bemade active.
If this view doesn't support dim (inactive) highlighting then it can treate hlDim as
hlOff.
The selection is being tmned off while the view is inactive.
The selection is being tmned on while the view is inactive.

PROCEDURE TView.Updatei

This method redraws invalidated portions of a view (and its subviews) by calling the DrawContents
method sandwiched between the Window Manager routines BeginUpdate and EndUpdate. This
method is called for a window when responding to an update event You can call this method yourself if
you are careful: you should be aware that this method clears all pending updates in a window regardless of
whether the invalid areas of the window are drawn or not Therefore, only use this method when you know
the portion of the window to be updated is completely contained in the view in which it is being called.

PROCEDURE TView.Adorn (area: Recti itsPenSize: Pointi
itsAdornment: CntlAdornment)i

Wed. Aug 3.1988 @ 1988. Apple COmputeT

16

(
This method adorns the view according to the given parameters. Adornment essentially consists of drawing
a frame around a rectangle. area is the rectangle around which the frame is drawn. itsPenSize is the
size of the pen used to draw the adornment i tsAdornment indicates the type of adornment to be drawn.

Display ValidationlInvalidation Methods

PROCEDURE Tview.lnvalidVRect (viewRect: VRect);

This method invalidates the given rectangle in view coordinates.

PROCEDURE TView.ValidateVRect (viewRect: VRect);

This method validates the given rectangle in view coordinates.

PROCEDURE Tview.lnvalidRect (r: Rect);

This method invalidates the given rectangle in QuickDraw coordinates.

PROCEDURE TView.ValidateRect (r: Rect)i

This method validates the given rectangle in QuickDraw coordinates.

PROCEDURE TView.ForceRedraw;

This method invalidates the entire view by calling InvalidVRect(the view's extent).

PROCEDURE TView.RevealRect (rectToReveal: VRect; minToSee: Point; isVisible:
BOOLEAN) ;

This method is intended to ensure that a specific part of the view's extent is visible. (It may be invisible
because the view is clipped to its superview's margins.) rect ToReveal is the rectangle to be made
visible. in view coordinates. minToSee is the minimum amount of the rectangle to be made visible.
TView . RevealRect calls its superview's RevealRect. As you will see later. if the superview is a
scroller. then it scrolls the given rectangle into view. If isVisible is false. then the scroll is not
immediately made visible. You should set isvisible to false only in situations in which you know the
view will be redrawn and you want to avoid extraneous drawing.

PROCEDURE TView.RevealTop (isVisible: BOOLEAN);

This method attempts to reveal the top-left corner of the view's extent by calling RevealRect with a
rectangle of (0.0)/(0.0). If isVisible is false. then the scroll is not immediately made visible. You
should set isVisible to false only in situations in which you know the view will be redrawn and you
want to avoid extraneous drawing.

PROCEDURE TView.RevealBottom (isVisible: BOOLEAN);

This method attempts to reveal the bottom-right corner of the view's extent If isVisible is false. then

Wed. Aug 3. 1988 @ 1988_ Apple Computer 17

the scroll is not immediately made visible. You should set isVisible to false only in situations in which
you know the view will be redrawn and you want to avoid extraneous drawing.

Mouse-Handling Methods

FUNCTION TView.ContainsMouse (theMouse: VPoint): BOOLEAN;

This method returns true if the view is shown and the given point in view coordinates intersects the view's
extent. However, this method can be overridden for views that respond to mouse clicks only in part of the
extent. rather than anywhere in the extent. For example, if a view is circular, then it could override
ContainsMouse to return true when the point lies within the circle, rather than within its rectangular
extent.

FUNCTION Tview.HandleMouseDown (theMouse: VPoint; VAR info: PEventInfo;
VAR hysteresis: Point; VAR theCommand: TCommand): BOOLEAN;

This method implements MacApp's mouse-handling logic. It returns true if this view or one of its
subviews handles the mouse click. The logic is such that each of the subviews is given the opportunity to
handle the click ftrst. If no subview handles the click, then the view itself may handle it and return true.
The following pseudo-code shows how this works:

FUNCTION TestMouse (theSubView: TNewView): BOOLEAN;
BEGIN

{Convert theMouse to view'S QuickDraw coords}i
TestMouse := theSubView.HandleMouseDown(theMouse, info,

hysteresis, theCommand);
END;

BEGIN
HandleMouseDown := FALSE;
theCommand :- qNoChanqes;
IF ContainsMouse(theMouse) THEN

BEGIN

END;

viewThatHandledMouse := LastSubViewThat(TestMouse)i
IF viewThatHandledMouse = NIL THEN

theCommand :- DoMouseCommand(theMouse)i
HandleMouseDown := TRUE;
END;

Wed, Aug 3.1988 @ 1988_ Apple Computer 18

FUNCTION TView.DoMouseCommand (VAR theMouse: Point; VAR info: EventInfo;
VAR hysteresis: Point): TCommand;

Once HandleMouseDown has detennined which view should handle the mouse click, it calls the view's
DoMouseCommand method. DoMouseCommand simply returns gNoChanges, so it must be overridden
by views that respond to mouse clicks. Note that theMouse is in QuickDraw coordinates. info is the
Event Info record for the mouse-down event

Mouse clicks are handled in one of two ways. For clicks that do not require tracking and are not undoable,
DoMouseCommand takes the appropriate action and returns gNoChanges. For clicks that require
tracking or are undoable, DoMouseCommand should create a command object and return the command
as its result In this case, hysteresis can be set to the number of pixels the mouse must move before
backing begins.

Cursor Handling Methods

FUNCTION TView.HandleCursor (theMouse: VPoint; cursorRgn: RgnHandle): TView;

This method implements the algorithm used to detennine which view sets the cursor and the cursor region.
It simply fmds the most deeply nested, enabled subview that contains the mouse and calls its
DoSetCursor method. IfDoSetCursor returns false, then the DoSetCursor method for the view's
superview is called, and so on, until DoSetCursor returns true. You can override HandleCursor for
a view that needs to force the cursor to a given shape regardless of its subviews.

FUNCTION Tview.DoSetCursor (localPoint: Point; cursorRgn: RgnHandle): BOOLEAN;

This method is used to set the cursor shape. localPoint is the cursor's current location in QuickDraw
coordinates. To set the cursor, call the Toolbox routine Set Cursor (or SetCCursor for a color cursor),
return true, and optionally set cursorRgn to a region in which the cursor shape will remain the same. If
this view does not set the cursor, then DoSetCursor should return false, in which case the view's
superview will be given a chance to set the cursor. Upon entry, cursorRgn is set to an empty region.

Clipboard-Handling Methods

FUNCTION TView.ContainsClipType (aType: ResType): BOOLEAN;

This method is used to detennine whether a view installed in the Oipboard represents a particular kind of
data. It simply returns true if the desk scrap contains data of the given type by calling the Scrap Manager
routine GetScrap. This method is intended to be overridden by views that can be installed in the
Oipboard and may maintain a local version of the Clipboard data rather than installing it in the desk scrap.

FUNCTION TView.GivePasteData (aDataHandle: Handle; dataType: ResType):
LONGINT;

This method returns a handle to data that is represented by a view installed in the Clipboard. data Type
indicates the type of data to be returned, and aDataHandle is a handle in which to store the data. Note
that aDataHandle is either NIL, in which case GivePasteData simply returns the size of the data, or
is already allocated. GivePasteData returns the length of the data in the handle, or a negative value
indicating an error. Tview. Gi vePasteData returns the data by calling the Scrap Manager routine

Wed, Aug 3,1988 @ 1988. Apple Computer 19

GetScrap. but it may be overridden by views that can be installed in the Clipboard and may maintain a
local version of the Clipboard data rather than installing it in the desk scrap.

PROCEDURE TView.WriteToDeskScrap;

This method is called on a view installed in the Clipboard. when the application is losing control to a desk
accessory or another application. Its purpose is to write the contents of the Clipboard to the desk scrap for
Clipboard views that maintain their data locally. TView. WriteToDeskScrap simply creates a
QuickDraw picture of the clipboard view and writes the picture to the desk scrap. This method is intended
to be overridden by views that can be installed in the Clipboard and that write data other than pictures to the
desk scrap.

Printing Methods

The view printing methods are descn"bed in the MacApp 2.0b5 Printing Release Notes.

Miscellaneous Methods

FUNCTION TView.GetGrafPort: GrafPtr;

This method returns a pointer to the grafport in which the view is contained, or NIL if the view is not in a
grafport.

FUNCTION Tview.GetWindow: TWindowi

This method returns a reference to the window object in which this view is contained, or NIL if the view is
not in a window.

FUNCTION TView.GetScroller (immediateSuperView: BOOLEAN): TScrolleri

This method returns a reference to the scroller object in which the view is contained, or NIL if the view is
not in a scroller. If immediateSuperView is true and the scroller is not the view's immediate
superview then GetScroller returns NIL.

FUNCTION TView.GetDialogView: TView;

This method returns a reference to the dialog view object in which the view is contained, or NIL if the view
is not in a dialog view. Note that the function result is of type TView, so you must cast the result in order
to use it as a dialog view (for example, aDialogView : = TDialogView (GetDialogview». The
reasOn for this is that the dialog views are not dermed in the main MacApp unit.

Wed. Aug 3. 1988 @ 1988. Apple Computer 20

/

(

(

PROCEDURE TView.GetVisibleRect (VAR visQDRect: Rect);

This method returns the part of the view's extent that is visible within its superview. This may not be the
entire extent since views are clipped to their superview's margins. The rectangle returned is in QuickDraw
coordinates. It can be converted to view coordinates with the QDToViewRect method.

PROCEDURE Tview.DoChoice (origView: TView; itsChoice: INTEGER);

The purpose of calling DoChoice is to propogate information up the view hierarchy. Consider the case of
clicking on a radio button. The radio button itself may take some action, such as toggling its value. But the
radio button may be contained in a view that is responsible for ensuring that other related radio buttons are
tmned off. If the radio button calls DoChoice, its superview can take additional action above and beyond
that taken by the radio button itself.

PROCEDURE TView.ViewEnable (state: BOOLEAN; redraw: BOOLEAN);

This method enables (state is true) or disables (state is false) the view's ability to handle mouse clicks
by setting its fViewEnable flag to the value of state. If redraw is true, then the view is redrawn by
calling its ForceRedraw method.

FUNCTION Tview.IsviewEnabled: BOOLEAN;

This method returns true if the view is able to handle mouse clicks, or false if the view is unable to handle
mouse clicks.

PROCEDURE TView.Show (state, redraw: BOOLEAN);

This method shows the view (state is true) or hides the view (state is false) and sets the view's
fShown flag to state. It is analagous to the Window Manager routine ShowHide. If the redraw
parameter is true then the view is redrawn to reflect its new state.

FUNCTION TView.IsShown: BOOLEAN;

This method returns true if the view is shown, and false if it is hidden. Note that the issue of whether a
view is hidden or shown is different from whether the view is invisible or visible. The view may be shown
but still not be visible, because it is clipped from view by its superview.

Resource Writing Methods

PROCEDURE Tview.WRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);

This method writes the Tview portion of the view's resource template. It is the inverse of TView . IRes
and is only used by programs that write 'view' resources.

PROCEDURE TView.WriteRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);

This method serves as a wrapper for WRes. If you want to write a view object as part of a 'view'
resource, then you would call this method, which calls the appropriate WRes methods.

Wed, Aug 3,1988 © 1988. Apple Computer 21

Creation/Destruction Methods

PROCEDURE TView.IView (itsDocument: TDocument;
itsSuperView: TView;
itsLocation, itsSize: VPoint;
itsHSizeDet, itsVSizeDet: SizeDeterminer);

This method initializes a view by calling IEvtHandler (itsSuperView), setting its document,
superview,location, size, and size determiners, setting fHLDesired to hlDim, and adding the view to its
superview by calling its superview's AddSubView method.

PROCEDURE Tview.IRes (itsDocument: TDocument; itsSuperView: TView;
VAR itsParams: Ptr);

This method initializes a view from a resource. itsDocument is the view's document,
itsSuperView is the view's superview, itsParams is a pointer to the TView section of a view's
resource. IRes initilizes the view and offsets itsParams by the length of the Tview parameters.

PROCEDURE TView.Freei OVERRIDE;

This method frees its subviews, removes itself from its superview (by calling
fSuperView. RemoveSubView), and calls INHERITED Free to free itself. It also frees the view's
print handler if it has one.

PROCEDURE TView.FreeFromClipboardi

Called when a view installed in the Clipboard is freed. If the view's document is not NIL then the
document's FreeFromClipboard method is called (which will free the view). Otherwise the view's
Free method is called.

The TScroller Class

The TScroller class implements a transparent view that performs coordinate translation. By changing the
translation values, the subviews of a scroller are "scrolled" through the scroller. For example, given a scroller whose
size is 100 pixels in both directions, and a subview located at (0, 0), whose size is 1000 pixels, then a translation
value of (300, 5(0) will display the part of the subview defined by the rectangle (300, 5(0)/(400, 600). A scroller
may refer to a vertical and horizontal scroll bar, whose values and are kept in sync with the scroBer's translation
values. Furthermore, it is possible to scroll without scroll bars by calling the appropriate scroller methods to change
the translation value.

Fields

fTranslation

fScrollLimit

fMaxTranslation

Wed, Aug 3.1988

The number of pixels by which all coordinates in the scroller are translated, in both
the horizontal and vertical direction.

The maximum point that can be displayed in the scroller.

The maximum values that fTranslation can take. This is computed by

© 1988. Apple Computer 22

(

subtracting the scroller's size from fScrollLimit.

fScrollBars A reference to the horizontal and vertical scroll bars, or NIL if they don't exisL

fScrollUnit The amount of change to be made in the translation values when the scroller receives a
"scroll-by-arrow" message, for both the horizontal and vertical directions.

fConstrain Indicates whether the translation values should be constrained to even multiples of
f Sc ro 11 Uni t s in either the horizontal and vertical direction.

fSBarOffsets When a scroller is resized, this field is used to determine how to resize the associated
scroll bars. fSBarOffsets. top and bottom are offsets indicating where the top
and bottom of the vertical scroll bar is in relation to the top and bottom of the scroller.
fSBarOffsets • left and right are offsets indicating where the left and right of
the horizontal scroll bar is in relation to the left and right of the scroller.

Coordinate Conversion Methods

PROCEDURE TScroller.LocalToSuper (VAR thePoint: VPoint); OVERRIDE;

This method converts the given point from local view coordinates to superview coordinates. It is
overridden to take into account the scroller's coordinate translation.

PROCEDURE TScroller.SuperToLocal (VAR thePoint: VPoint); OVERRIDE;

This method converts the given point from superview coordinates to local view coordinates. It is
overridden to take into account the scroller's coordinate translation.

Subview Management Methods

PROCEDURE TScroller.AddSubView (theSubView: TView); OVERRIDE;

This method calls INHERITED AddSubView, and then notifies the subview that it's in a scroller by
calling theSubView.BeInScroller (SELF).

PROCEDURE TScroller.RemoveSubView (theSubView: TView); OVERRIDE;

This method notifies the subview that it is no longer in a scroller by calling
theSubView .BeInScroller (NIL), and then calls INHERITED RemoveSubView.

J

Wed,Aug3.1988 @ 1988. Apple Computer 23

Size/Location Management Methods

PROCEDURE TScroller.Resize (width, height: VCoordinate; invaldate: BOOLEAN);
OVERRIDE;

This method calls INHERITED Resize, and then calls AdjustScrollBars to resize and move the
scroller's scroll bars. It can be overridden if you don't want automatic adjustment of the scroll bars when a
scroller is resized.

PROCEDURE TScroller.Locate (h, v: VCoordinate; invalidate: BOOLEAN); OVERRIDE;

This method calls INHERITED Locate, and then calls AdjustScrollBars to move the scroller's
scroll bars. It can be overridden if you don't want automatic adjustment of the scroll bars when a scroller is
moved

PROCEDURE TScroller.GetExtent (VAR itsExtent: VRect); OVERRIDE;

This method calls INHERITED GetExtent, and then offsets itsExtent by fTranslation. Thus,
itsExtent is the scroller's extent translated by the translation values.

PROCEDURE TScroller.AdjustScrollBars;

This method is called when a scroller moves or changes size. It erases the scroll bars, and then moves and
resizes them appropriately. This method can be overridden for scrollers whose scroll bars don't depend on
this scroller's location or size.

PROCEDURE TScroller.SetScrollLimits (scrollLimit: VPoint;
drawScrollBars: BOOLEAN);

This method is called to change the scroller's maximum translation values. This entails setting the
fScrollLimit field to scrollLimit, recomputing the fMaxTranslation field, and setting the
scroll bar maximums by calling each scroll bar's SetMaximum method. The drawScrollBars
parameter is passed to SetMaximum to indicate whether the control should be immediately redrawn.
Ordinarily this is true. Furthermore, if the new maximum translation is less than the current translation,
then the scroller's ScrollTo method is called to scroll to the maximum translation.

Focusing Methods

FUNCTION TScroller.Focus: BOOLEAN;

This method calls INHERITED Focus and puts into effect the coordinate translation of
fTranslation. Thus, the scroller's coordinates and those of its subviews are translated by this amount

Wed, Aug 3,1988 © 19885 Apple Computer 24

Low-Level Scrolling Methods

(.. These methods are rarely overridden, and even more rarely called from application code.

PROCEDURE TScroller.ScrollDraw (delta: VPoint);

This method carries out the graphic activity associated with a scroll, where delta is the number of pixels
to scroll. The scroll is done by using QuickDraw's ScrollRect to scroll the contents of the scroller, and
then simulating an update event to draw the vacated area. This is done by calling the Window Manager
routine BeqinUpdate, erasing the vacated area, calling the scroller's DrawContents method, and then
calling the Window Manager's EndUpdate.

PROCEDURE TScroller.DoScroll (delta: VPoint; isVisible: BOOLEAN);

This method changes the scroller's translation by the delta amount. If isVisible is true, then
ScrollDraw is called to carry out the scroll graphically. Furthermore, when isVisible is true
DoScroll checks to see if there is a pending update event on the scroller's window. If so, the window is
updated before changing the scroller's translation values.

Intermediate-Level Scrolling Routines

These methods are usually called from scroll bar objects, though they may also be called from application code to
simulate the behavior of scroll bars. These methods are occasionally overridden as described below.

:(FUNCTION TScroller. ScrollStep (vhs: VHSelect; partCode: INTEGER): VCoordinate;

This method is called by one of the scroller's scroll bars, when the user clicks in an arrow or page area of
the scroll bar. It may be called in other contexts to effect the same action as clicking a scroll bar arrow or .
page ~ vhs indicates the scrolling direction (horizontal or vertical) and partCode indicates the part
of the scroll bar that was clicked (inUpBut ton, inDownButton, inpaqeUp, or inPaqeDown). .

This method determines how many pixels to scroll the view, calls DoScroll to carry out the scroll, and
returns the change in the scroll bar's value. For inUpBut ton and inDownBut ton, the amount of
scrolling is the same as the scroller's fScrollUnit [vhs] value. For inPaqeUp and inPaqeDown,
the amount of scrolling is equal to the scroller's size in the vhs direction, constrained to a multiple of
fScrollUnit if fConstrain [vhs] is true. This method may be overridden to change the scrolling
behavior, or if the scroll bar units are not the same as the scroller's translation units.

FUNCTION TScroller.ScrollRelative (vhs: VHSelect; sBarValue: VCoordinate):
VCoordinate;

i
This method is called 6y a scroll bar object when its thumb is released. (It may also be called from other
parts of the application in order to simulate thumb scrolling.) vhs indicates the scrolling direction and
sBarValue indicates the scroll bar's value when the thumb was released. This method determines the
scroller's new translation values, calls DoScroll to carry outthe scroll, and may return a nonzero value
which is added to the scroll bar's value as described below.

The new translation value is set to sBarValue, unless fConstrain [vhs] is true, in which case the
translation value is rounded to an even multiple of fScrollUnit [vhs], and the difference between this
value and sBarValue is retumedas ScrollRelative's result This method may be overridden to
change the scrolling behavior, or if the scroll bar units are not the same as the scroller's translation units.

Wed, Aug 3,1988 If,? 1988. Apple Computer 25

High Level Scrolling Methods

These methods are frequently called by application code. They are rarely overridden.

PROCEDURE TScroller.ScrollBy (deltaH, deltaV: VCoordinatei isVisble: BOOLEAN);

This method changes the scroller's translation and scroll bar values by deltaH and deltaV pixels. This
is done by calling each scroll bar's DeltaValue method and then calling the scroller's DoScroll
method. If isvisible is true then the contents of the scroller are redrawn to reflect the new translation.
Passing false for isVisible is useful in situations where you wish to avoid screen flashing (that is,
drawing the same view twice). This method must be overridden if the scroll bar units are not the same as
the scroller's translation units.

PROCEDURE TScroller.ScrollTo (h, v: VCoordinate; isVisible: BOOLEAN);

This method sets the scroller's translation and scroll bar values to the horizontal and vertical values in h
and v. This is done by calling each scroll bar's SetValue method and then calling the scroller's
DoScroll method. If isVisible is true then the contents of the scroller are redrawn to reflect the new
translation. Passing false for isVisible is useful in situations where you wish to avoid screen flashing
(that is, drawing the same view twice).

PROCEDURE TScroller.RevealRect (rectToReveal: VRect; minToSee: Point;
isVisible: BOOLEAN); OVERRIDE;

This method ensures at least minTo See pixels of the given rectangle are visible in the scroller. This is
done by calling ScrollBy if necessary to change the translation values such that the given rectangle is
made visible. This method is typically used to ensure that a selection is visible (for example, making the " /
caret visible in a text edit view when the user starts typing). If isVisible is false, then the scroll is not
immediately made visible. You should set isVisible to false only in situations in which you know the
view will be redrawn and you want to avoid extraneous drawing.

PROCEDURE TScroller.AutoScroll (viewPt: VPoint; VAR delta: VPoint);

This method is used to implement automatic scrolling when the mouse is being tracked and has strayed
outside a scroller. viewPt is the location of the mouse in view coordinates. delta returns the number of
pixels to scroll in the hOIZiontal and vertical directions. It is computed by determining where viewpt is in
relation to the scroller. If viewPt is "above" the scroller (that is, viewPt . v < extent . top), then
delta. v is set such that the contents of the scroller are scrolled down. If viewPt is "below" the
scroller, then delta. v is set such that the contents of the scroller are scrolled up. delta. h is set
similarly. The number of pixels to scroll is determined by the scroller's fScrollUnit values.
AutoScroll can be overridden to use a different method to determine the value of del tao

Miscellaneous Methods

PROCEDURE TScroller.SubViewChangedSize (theSubView: TView; delta: VPoint);
OVERRIDE;

This method calls SetScrollLimits to set the scroller's fMaxTranslation and fScrollLimit
to reflect the size of theSubView. This method should be overridden in cases where a scroller has
subviews of varying size.

Wed,Aug3,1988 @ 19886 Apple Computer 26

--- ~------

(

(

PROCEDURE TScroller.HaveScrollBar (theScrollBar: TSScrollBar; direction:
VHSelect) ;

This method attaches a scroll bar to a scroller. It is called from the scroll bar's initialization method. You
can also use it to detach a scroll bar by passing NIL in theScrollBar.

PROCEDURE TScroller.SetScrollParameters (horzUnits, vertUnits: VCoordinate;
horzConstraint, vertConstraint: BOOLEAN);

This method sets the scroller's fScrollUnits and fConstrain fields to the given parameters.

FUNCTION TScroller.GetScroller (immediateSuperView: BOOLEAN): TScroller;
OVERRIDE;

This method returns SELF.

PROCEDURE TScroller.CreateScrollBars (wantHorzSBar, wantVertSBar: BOOLEAN);

This method is an internal utility that creates the scroll bars as indicated by the parameters. It is called from
IScrollBar and IRes.

Resource-Writing Methods

PROCEDURE TScroller.WRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method writes the TScroller portion of the view's resource template. It is the inverse of
TScroller. IRes and is only used by programs that write 'view' resources.

PROCEDURE TScroller.WriteRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method serves as a WIapper for WRes. If you want to write a scroller object as part of a 'view'
resource you would call this method, which calls the appropriate WRes methods.

Wed. Aug 3.1988 @ 1988. Apple Computer 27

Creation/Destruction Methods

PROCEDURE TScroller.IScroller (itsSuperView: TView;
itsLocation, itsSize: VPoint;
itsHSizeDet, itsVSizeDet: SizeDeterminer;
itsHorzMax, itsVertMax: VCoordinate;
wantHorzSBar, wantVertSBar: BOOLEAN);

This method initializes a scroller object it calls IView to set the scroller's superview, location, size, and
size detenniners. ('The scroller's document is set to NIL.) It sets fTranslation and
fMaxTranslation to (0, 0), creates the scroll bars if necessary, sets fSBarOffsets to (0, 0, 0, 0),
sets the scroll units to kStdScrollUnit (16), sets fConstrain to false, and calls
SetScrollLimits with itsHorzMax and itsVertMax.

PROCEDURE TScroller.IRes (itsDocument: TDocument; itsSuperview: Tview;
VAR itsParams: Ptr)i

This method initializes a scroller from a resource. itsDocument is ignored: the scroller's document is
set to NIL. itsSuperView is the view's superview, while itsParams is a pointer to the Tview
section of a view's resource. IRes calls INHERITED IRes to initialize the inherited data (that of
TView), initilizes the TScroller data, and offsets itsParams by the length of the TScroller
parameters.

PROCEDURE TScroller.Freei OVERRIDE;

If the scroller has scroll bars. then the scroll bars are freed. Then INHERI TED Free is called.

The TWindow Class

The Twindow class implements windows. This section describes those fields and methods that are in addition to or
that override Tview.

Fields

fWMqrWindow

fIsActive

fIsResizable

fIsClosable

fFreeOnClosinq

fDisposeOnFree

fClosesDocument

Wed. Aug 3.1988

The Window Manager window pointer.

Indicates whether this window is active. This may differ from testing if
fWMqrWindow - FrontWindow because of a pending activate event that hasn't
been processed yet

True if the window has a grow box.

If true, the Oose menu item is enabled when this window is active. If the window has
a close box then this field is initially set to true.

If true, then this object is freed when the window is closed. The default setting is false.

If true, then DisposeWindow (fWMqrWindow) is called when this window is freed.

If true, then when this window is closed, it also calls fDocument . Close. The
default setting is true.

C 1988. Apple Computer 28

,'-. ,/

fOpenInitially

fMoveBounds

fResizeLimits

fTarget

fP reDocname

fConstTitle

fIsModal

fDoFirstClick

fTargetId

fAdapted

fHorzCentered

fVertCentered

fStaggered

fForcedOnScreen

fProcId

If true, then when the window's document is opened. this window is opened as well.
The default setting is true.

A rectangle defining this window's move bounds. It is passed to the Window Manager
routine Dragwindow and is initially set to gStdWMoveBounds.

A rectangle defining the minimum and maximum size of the window. It is passed to
the Window Manager routine GrowWindow and is initially set to gStdWSizeRect.

The event handler, usually a view, that becomes the application's target (gTarget)
when this window is active.

Used to parse the window tide into a constant part and a part replaced by the window's
document name.

Used to parse the window tide into a constant part and a part replaced by the window's
document name.

True indicates that the window is modal (that is, no other window can be activated
while this one is active, although the menu bar is available). False indicates that the
window is modeless.

True indicates that the window responds to mouse clicks even when it isn't the front
window. The default value is false.

The identifier of the view that will be the window's initial target when it is created
from a resource template.

Set to true if the window is "adapted to the screen" by calling
TWindow.AdaptToScreen.

Set to true if the window is horizontally centered by its Center method.

Set to true if the window is vertically centered by its Center method.

Set to true if the window is staggered by its Stagger method.

Set to true if the window is "forced onto the screen" by its ForceOnScreen method.

The proc ID of the Window Manager window that represents this window.

Open/Close! Activation Methods

PROCEDURE TWindow.Activate (entering: BOOLEAN); OVERRIDE;

This method is called to activate (entering is true) or deactivate (entering is false) a window. First,
if entering is different from the window's fIsActi ve field, then the window's DrawContents (TRUE)
method is called. Then INHERITED Activate is called to activate or deactivate the window's
subviews. What happens next depends on the value of entering.

If entering is true, then gFrontWindow is set to SELF, the application's target is set to the window's
fTarget, and gDocument is set to the window's fDocument.

If entering is false, then the window's fTarget is set to the application's current target, the

Wed, Aug 3,1988 @ 1988. Apple Computer 29

application's target is set to gApplication. gFrontWindow and gDocument are set to NIL. and the
cursor is set to the arrow. /"

Fmally. the window's grow box is redrawn and fIsActi ve is set to the value of entering. This
method can be overridden for windows that require additional activation or deactivation logic, in which
case you usually call INHERITED Activate.

PROCEDURE TWindow.Open; OVERRIDE;

This method calls the window's Resize method, resizing the window to its portRect, calls its
Show (TRUE, kRedraw) method to show the window, and calls INHERITED Open to inform all of its
subviews that they are now in an open window. This method can be overridden for windows that need
extra processing when they're opened. in which case INHERITED Open is usually called.

PROCEDURE TWindow.Close; OVERRIDE;

This method calls its Show (FALSE, kRedraw) method to hide the window and then deactivates the
window by calling its Activate (FALSE) method. Next it calls INHERITED Close to inform its
subviews that their window is being closed. And fmally it calls its Free method if fFreeOnClosing is
true. This method can be overridden for windows that need extra processing when they're opened, in
which case INHERITED Close is usually called.

PROCEDURE TWindow.CloseByUser;

This method is called when the user clicks the window's go-away box or chooses the Close menu
command while this window is active. Before calling Close, CloseByUser determines whether it
should also close the window's documenL It closes the document if the window's fClosesDocument
field is true, or if this is the document's only window.

Size Management Methods

PROCEDURE TWindow.Resize (width, height: VCoordinate; invalidate: BOOLEAN);
OVERRIDE;

This method calls the Toolbox routine SizeWindow to change the window size, invalidates the old and
new positions of the window's grow box, and then calls INHERITED Resize.

PROCEDURE TWindow.ResizeByUser (globalMouse: Point);

This method calls the Window Manager routine GrowWindow and, if the result is non-zero calls Resi ze
to resize the window. J

PROCEDURE Twindow.Zoom (partCode: INTEGER);

This method zooms a window from it existing size to fill the screen, or from screen size back to its previous
size. partCode is either inZoomIn or inzoomOut, indicating which way to zoom. The window is
zoomed by focusing itself and erasing its portRect, calling the Window Manager routine ZoomWindow,
and then calling its Resize method to set the window's size.

Wed,Aug3,1988 © 1988. Apple Computer 30

Location Management Methods

PROCEDURE TWindow.MoveByUser (globa1Mouse: Point);

This method calls the Window Manager routine DragWindow. MacApp calls this method when the user
clicks in the window's title bar.

PROCEDURE TWindow.Locate (h, v: VCoordinate; invalidate: BOOLEAN); OVERRIDE;

This method moves the window to the horizontal and vertical global coordinates specified by h and v, by
calling the Window Manager routine Movewindow.

Focusing Methods

FUNCTION Twindow.Focus: BOOLEAN; OVERRIDE;

H the window's fWMgrWindow is not NIL, this method focuses the window by setting the port to the
window's port, setting the port's origin to (0, 0), setting gLongOff set to (0,0), and setting the port's
clipping region to the entire portRect. It returns true if the window could be focused and the window is
visible. Returns false if the window's fWMgrWindow is NIL or the window is invisible.

FUNCTION Twindow.FocusOnSuperView: BOOLEAN; OVERRIDE;

This method simply calls Focus.

Drawing Methods

PROCEDURE TWindow.DrawContents; OVERRIDE;

This method calls INHERITED DrawContents and then draws the grow box (if the window has one) by
calling DrawResizelcon.

PROCEDURE TWindow.Draw (area: Rect); OVERRIDE;

This method calls the QuickDraw routine EraseRect on the window's portRect.

PROCEDURE TWindow.DrawResizeIcon;

TJtis method draws the window's grow box.

Wed, Aug 3,1988 @ 1988. Apple Computer 31

--~---------

Mouse-Handling Methods

FUNCTION TWindow.HandleMouseDown (theMouse: VPoint; VAR info: EventInfo;
VAR hysteresis: Point; VAR theCommand: TCommand): BOOLEAN; OVERRIDE;

If the window is currently the front window, then INHERITED HandleMouseDown is called. Otherwise
the window is brought to the front by calling its Select method and if fDoFirstClick is true, the
window is updated and INHERITED HandleMouseDown is ~led.

Menu Handling Methods

FUNCTION TWindow.AllowsMenuAcces: BOOLEAN;

Indicates whether the menus are accessable when this window is the front window. The standard behavior
is to always return true, regardless of whether the window is modal or modeless.

PROCEDURE TWindow.DoSetupMenus; OVERRIDE;

Calls INHERITED DoSetupMenus only if the window is not modal (i.e. fIsModal is false). For
modal windows this prevents enabling menus whose scope is beyond that of the window itself.

Miscellaneous Methods

FUNCTION TWindow.GetGrafPort: GrafPtr; OVERRIDE;

This method returns the window's fWMgrWindow field.

FUNCTION TWindow.GetWindow: TWindow; OVERRIDE;

This method returns a reference to itself.

FUNCTION TWindow.IsShown: BOOLEAN; OVERRIDE;

This method returns true if the window is currently shown on the screen. This is detennined by checking
the fWMgrwindow" . visible flag.

i
PROCEDURE TWindow.Show (state, redraw: BOOLEAN); OVERRIDE;

This method shows (or hides if state is false) the window ODthe screen by calling the Window Manager
routine ShowWindow (or Hidewindow) and sets the window's fShown flag to state. The redraw
parameter is ignored.

PROCEDURE Twindow.GetGlobalBounds (VAR globalBounds: Rect);

This method returns the window's bounding rectangle in global coordinates.

Wed, Aug 3,1988 @ 1988_ Apple Computer 32

'..., .'

(
PROCEDURE TWindow.SetTarget (newTarget: TEvtHandler);

This method sets the event handler object that is to be the target when this window is activated by setting
the window's fTarget field to newTarget. Furthermore, if the window is already the front window,
then the application's Set Target method is called to make newTarget the application's target.

PROCEDURE TWindow.SetTitleForDoc (newDocTitle: Str255);

This method sets the window's title to reflect the name of its document.

PROCEDURE TWindow.SimpleStagger (dh, dv: INTEGER; VAR counter: INTEGER);

This method is used to produce a "stagger effect" when creating windows. It basically offsets the location
of the window by dh and dv pixels multiplied by counter.

PROCEDURE TWindow.Center (horizontally, vertically: BOOLEAN);

This method horizontally and/or vertically centers the window on the main screeno

PROCEDURE TWindow.AdaptToScreen;

This method adjusts the size of the window to the primary screen of the computer on which the application
is being run. This is done by adding to the window size the difference between the primary screen and the
standard screen size (512x342 pixels). This method is intended to be called before the window is opened,
so it does not change the window's fSize field. Rather, it calls the Toolbox routine SizeWindow and
adjusts fSize during Open.

PROCEDURE TWindow.ForceOnScreen;

This method ensures that at least some part of the window is visible on the primary screen. This is useful
for applications that save window locations and attempt to reopen windows in the last saved location.
Problems can occur when the application is run on a system with a large screen, and then run on a system
with a small screen. In such cases, it is possible for a window to be visible on the large screen, but not
visible on the small screen. ForceOnScreen prevents this problem. This method is intended to be
called before the window is opened, so it does not change the window's fSize field. Rather, it calls the
Toolbox routine Sizewindow and adjusts fSize during Open.

PROCEDURE TWindow.SetResizeLimits (minSize, maxSize: Point);

This methods sets the minimum and maximum sizes for the window so that the user cannot grow the
window larger than maxSize nor shrink it smaller than minSize. maxSize also determines what the
window's size will be if it is zoomed.

PROCEDURE TWindow.Select;

This method selects this window (brings it to the front) by calling the application's SelectWMgrWindow
method.

(PROCEDURE TWindow.InstallDocument (itsDocument: TDocument);

Wed. Aug 3,1988 © 1988. Apple Computer 33

Associates the given document with the window. This is called from IWindowand IRes. If
itsDocument is not nil then the window is added to the document's window list. Otherwise the window
is added to the application's free window list

Resource-Writing Methods

PROCEDURE Twindow.WRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method writes the Twindow portion of the view's resource template. It is the inverse of
TWindow. IRes and is only used by programs that write 'view' resources.

PROCEDURE TWindow.WriteRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method serves as a wrapper for WRes. If you want to write a window object as part of a 'view i
resource you would call this method, which calls the appropriate WRe s methods.

CreationlDestruction

PROCEDURE Twindow.IWindow (itsDocument: TDocument; itsWMgrWindow: WindowPtr;
canResize, canClose, disposeOnFree: BOOLEAN);

This method calls IView, sets its fields to their default values, and either adds the window to its
document's window list, or adds the window to the application's free window list if itsDocument is
NIL. Note that the window's fSize is set to (0.0): TWindow.Open resizes the window to the size of its
fWMgrWindowA.portrect.

PROCEDURE TWindow.IRes (itsDocument: TDocument; itsSuperView: TViewi
VAR itsParams: Ptr);

This method initializes a window from a resource. i tsDocument is the window's document.
itsSuperView should be NIL. and itsParams is a pointer to the TView section of a view's resource.
INHERITED IRes is called to initialize the inherited data (in this case the Tview data). then the
Twindow data is initialized. and finally itsParams is offset by the length of the Twindow data.

PROCEDURE TWindow.Free; OVERRIDE;

This method removes the window from either its document's window list, or the application' s free window
list (if fDocument is NIL). then calls INHERITED Free and calls the global routine
FreeWMgrWindow.

The TControl Class

The TControl class represents the MacApp notion of a control. MacApp controls include Control Manager
controls (Le. radio buttons. push buttons, check boxes. and scroll bars) as well as non-Control Manager controls
(either of your own creation or as defined in the UDialog unit). .

Wed. Aug 3,1988 © 1988* Apple Computer 34

Controls have the following properties:

• They are limited to QuickDraw's coordinate space.
• The can be tracked with the mouse without you having to create a command object. TControl methods

can be overridden to implement behavior while tracking the mouse rather than implementing the behavior
in a separate command objecL

• They can be adorned with one of a set of standard adornments, such as a rectangular frame.
• They have a text style used to draw the control's label if it has one.
• They have insets or margins in which mouse clicks are ignored.

This section descnbes those fields and methods that are in addition to or that override Tview.

Fields

fDefChoice

fInset

fHilite

fDimrned

fSizeable

fDisrnissesDialog

fAdornrnent

fPenSize

fTextStyle

The code that is passed to DoChoice. The default value is the constant rnOKHi t.

Used to define which part of the view is considered to be the active control area. The
active control area is determined by insetting the view's extent by fInset.
Generally, controls respond to mouse clicks only in the active area, and adornments
are drawn in the inactive area. The default inset is (0, 0, 0, 0).

Whether the control is highlighted or nOL The default setting is false.

Whether the control is dimmed or noL The default setting is false.

False indicates that the active control area is of a fixed size, regardless of whether the
view's size changes. (In this case, changing the view size simply changes the bottom
and right insets from the view's size to the control's size.) True indicates that the
active control area changes in proportion to the view's size. The default setting is
true.

Whether clicking on this control dismisses a dialog. The default setting is false.

The type of adornment for this control. The default setting is no adornmenL

The pen size used to draw the control's adornment The default setting is (1,1).

The font style used to draw the control's label, if any. The default setting is the
system style.

Open/Close! Activate Methods

PROCEDURE TControl.Activate (entering: BOOLEAN); OVERRIDE;

This method is overridden to do nothing since controls have no subviews.

Size Management Methods

PROCEDURE TControl.ComputeSize (VAR newSize: VPoint); OVERRIDE;

This method is overridden to adjust the control insets appropriately.

Wed, Aug 3, 1988 @ 1988. Apple Computer 35

PROCEDURE TControl.Resize (width, height: VCoordinate; invalidate: BOOLEAN);
OVERRIDE;

Overridden to force the entire view to be redrawn if invalidate is true.

Drawing Methods

PROCEDURE TControl.Draw (area: Rect); OVERRIDE;

This method draws the conttol's adornment, calls its Dim method the conttol if fDimmed is true, and calls
its Hilite method if fHilite is true.

Focusing Methods

FUNCTION TControl.Focus: BOOLEAN; OVERRIDE;

This method is overridden to set the current port's text style when the conttol is focused.

Mouse-Handling Methods

FUNCTION TControl.ContainsMouse (theMouse: VPoint): BOOLEAN; OVERRIDE;

This method is overridden to return true only if theMouse is in the conttol's active area (that is, the
view's extent is inset by fInsets).

FUNCTION TControl.DoMouseCommand (VAR theMouse: point; VAR info: EventInfoi
VAR hysteresis: Point): TCommand); OVERRIDEi

This method tracks the conttol using a TControlTracker objecL It in tum calls the TControl
methods TrackConstrain, TrackFeedback, and TrackMouse. Returns the tracker object.

The following methods are used to implement custom-conttol mouse ttacking.

PROCEDURE TControl.TrackConstrain (anchorPoint, previousPoint: VPointi
VAR nextPoint: VPoint)i

As with TCommand. TrackConstrain, overriding this method allows a conttol to constrain the mouse
while it is being ttacked. anchorPoint is the location of the mouse when it was clicked in the conttol.
previousPoint is the location of the mouse when it was last tracked. nextPoint is the current
location of the mouse. Constraint of the mouse is accomplished by changing nextPoint appropriately.
The standard behavior of TrackConstrain is to not constrain the mouse.

Wed, Aug 3,1988 @ 1988. Apple Computer 36

(

{
'~""

/

PROCEDURE TControl.TrackFeedback (anchorPoint, nextPoint: VPoint;
turnItOn, mouseDidMove: BOOLEAN);

This method may be overridden to provide mouse-backing feedback. This method is called twice for every
call to TrackConstrain and TrackMouse. The fJrSt time it is called with turnItOn false, the
second time with turnItOn true. This technique makes it easy to implement feedback such as a drawing
the outline of a box from the anchor point to the current mouse location. (Note that not all feedback is done
this way. For example, b'aCking a push button calls for highlighting the button when the mouse enters the
button, and unhighlighting the button when the mouse leaves iL Sometimes it is more convenient to
implement feedback in the TrackMouse method.) The standard behavior of this method is to provide no
feedback.

PROCEDURE TControl.TrackMouse (aTrackPhase: TrackPhase; VAR anchorPoint,
previousPoint, nextPoint: VPoint; mouseDidMove: BOOLEAN);

This method is intended to be overridden to carry out any mouse-tracking activity required by the control,
other than that implemented in TrackConstrain and TrackFeedback. aTrackPhase has one of
three values: TrackP ress, which indicates that mouse b'aCking has just begun; TrackMove, which
indiates that mouse b'aCking is in progress; and TrackRelease, which indicates that the mouse button
has been released. anchorPoint is the location of the mouse when it was clicked. previousPoint is
the location of the mouse the last time TrackMouse was called. nextPoint is the current location of
the mouse. mouseDidMove is true if the mouse has moved since the last time TrackMouse was called.
The standard behavior of TrackMouse is to do nothing. Therefore you must override this method to
implement mouse backing behavior specific to this control.

Dimming Methods

PROCEDURE TControl.DimState (state, redraw: BOOLEAN);

This method dims (state is true) or undims (state is false) the control. It sets fDimmed to state and, if
redraw is true the control is redrawn.

PROCEDURE TControl.Dim;

This method draws the control's dim effect by painting a gray pattern over the control. It is called only
when the control is dimmed. This method can be overridden to change the way the dim effect is drawn for
a control.

FUNCTION TControl.IsDimmed: BOOLEAN;

This method returns true if the control is currently dimmed; otherwise it returns false.

Highlighting Methods

PROCEDURE TControl.HiliteState (state, redraw: BOOLEAN);

This method highlights (state is true) or unhighlights (state is false) the control. It sets fHilite to
state and, if redraw is true the control is focused and calls its Hilite method is called.

Wed. Aug 3,1988 © 1988S Apple Computer 37

PROCEDURE TControl.Hilite;

This method draws the control's highlighting effect. It is called from HiliteState to highlight or
unhighlight the control, and from Draw when the control's fHilite is true. Since this method is
responsible for both highlighting and unhighlighting it can examine the fHili te field to see whether it
should highlight or unhighlight The standard behavior is to simply invert the control, but you can override
this method to change the way highlighting is drawn.

Miscellaneous Methods

PROCEDURE TControl.ControlArea (VAR theArea: Rect);

This method returns the active control' area of the view as a QuickDraw rectangle. This is computed by
taking the view's extent and insetting it by fInset.

PROCEDURE TControl.InstallColor (theColor: RGBColor; redraw: BOOLEAN);

This method sets the color of the control's text to theColor. If redraw if true, then the control will be 0

redrawn to reflect its new color. If redraw is false, then the control will not be redrawn even though the
new color affects its appearance. Set redraw to false only in situations in which you know the control
will eventually be redrawn and you want to avoid flickering or flashing.

PROCEDURE TControl.InstallTextStyle (theTextStyle: TextStyle: redraw:
BOOLEAN) ;

This method sets the text style of the control to theTextStyle. If redraw if true, then the control will
be redrawn to reflect its new text style. If redraw is false, then the control will not be redrawn even
though the new style affects its appearance. Set redraw to false only in situations in which you know the
control will eventually be redrawn and you want to avoid flickering or flashing.

PROCEDURE TControl.Inset (dh, dv: INTEGER: redraw: BOOLEAN);

This method insets the active control area of the control by dh and dv pixels. If redraw if true, then the
control will be redrawn to reflect its new text style. If redraw is false, then the control will not be
redrawn even though the new insets may affect its appearance. Set redraw to false only in situations in
which you know the control will eventually be redrawn and you want to avoid flickering or flashing.

PROCEDURE TControl.SetInset (newInset: Rect; redraw: BOOLEAN);

This method sets the control's insets to those defiined in newInset. If redraw if true, then the control
will be redrawn to reflect its new text style. If redraw is false, then the control will not be redrawn even
though the new insets may affect its appearance. Set redraw to false only m situations in which you know
the control will eventually be redrawn and you want to avoid flickering or flashing.

FUNCTION TControl.Validate: BOOLEAN;

This method returns true if the control's contents are valid. Validation generally applies to controls that
accept keyboard entry, but it is not necessarily restricted as such. The default behavior is to return true.

Wed, Aug 3,1988 @ 1988_ Apple Computer 38

(Resource-Writing Methods

PROCEDURE TControl.WRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method writes the TControl portion of the view's resource template. It is the inv~ of
TControl. IRes and is only used by programs that write • view' resources.

PROCEDURE TControl.WriteRes (theResource: ViewRsrcHndl; VAR itsParams: Ptr);
OVERRIDE;

This method serves as a wmpper for WRes. If you want to write a window object as part of a • view'
resource you would call this method, which calls the appropriate WRes methods.

CreationlDestruction Methods

PROCEDURE TControl.IControl (itsSuperView: TView; itsLocation,
itsSize: VPoint; itsHSizeDet, itsVSizeDet: SizeDeterminer);

This method initializes a TControl object It calls IView to initialize the fields inherited from TView,
and then sets the control fields to their default values as described in the section on TControl fields
above.

PROCEDURE TControl.IRes (itsDocument: TDocument; itsSuperView: TView;
VAR itsParams: Ptr); OVERRIDE;

This method initializes a control from a • view' resource. i tsDocument is the document for which this
control is being created. itsSuperView is the control's superview, and itsParams is a pointer to the
TView section of the control's resource. INHERITED IRes is called to initialize the inherited data (in
this case the TView data), then the TControl data is initialized, and finally itsParams is offset by the
length of the TControl data.

The TCtlMgr Class

This class is an abstract class used to represent Control Manager controls (push buttons, radio buttons, check boxes,
and scroll bars). It is a subclass of TControl.

Fields

fCMgrControl The Control Manager control represented by this view.

Wed, Aug 3,1988 © 1988. Apple Computer 39

Drawing Methods

PROCEDURE TCtLMgr.Draw (area: Rect); OVERRIDE;

If the control is visible, this method draws the control by setting the control's contrlVis to 0, and calling
the Control Manager routine ShowControl to draw it. (It would be easier to use DrawlControl but it
isn', supported on 64K ROMs.) Furthennore, the fCMgrControl's contrlOwner is temporarily set to
the current port in case the control is being printed.

Mouse Handling Methods

FUNCTION TCtLMgr.DoMouseCommand (VAR theMouse: Point; VAR info: EventInfo;
VAR hysteresis: point): TCommand; OVERRIDE;

This method calls the Control Manager routine TrackControl to back the control. If TrackControl
returns a nonzero result, then DoChoice (SELF, fDefChoice) is called so that any of the control's
superviews can respond to the choice code. You may also override this method to implement specific
behavior for specific Control Manager controls.

Size Management Methods

PROCEDURE TCtLMgr.Resize (width, height: VCoordinate; invalidate: BOOLEAN);
OVERRIDE;

If fSizeable is ttue then fCMgrControl is resized by calling the Control Manager routine
SizeControl. This is done after setting the clipping rectangle to (0,0,0,0) to prevent the Control
Manager from drawing when SizeControl is called. If invalidate is ttue, then the ForceRedraw
method is called to ensure that the entire control is redraw. Then INHERITED Resize is called.

Dimming Methods

PROCEDURE TCtLMgr.DimState (state, redraw: BOOLEAN); OVERRIDE;

This method is overridden to dim the control using the Control Manager routine HiliteControl.

Highlighting Methods

PROCEDURE TCtLMgr.HiliteState (state, redraw: BOOLEAN); OVERRIDE;

This method hilites the control by calling the Control Manager routine HiliteControl and passing either 0 if
state if false or 10 if state is ttue. This has the effect of hiliting the control as though the mouse is
clicked in the control.

Wed, Aug 3,1988 @ 1988. Apple Computer 40

(
Current, Minimum, and Maximum Value Methods

FUNCTION TCt1Mqr.GetVal: INTEGER;

This method returns the control's current value.

PROCEDURE TCtlMqr.SetVal (newVal: INTEGER; redraw: BOOLEAN);

This method sets the control's current value. If redraw is true, then the control will be redrawn to reflect
its new value. If redraw is false, then the control will not be redrawn even though the new value may
affect its appearance. Set redraw to false only in situations where you know the control will eventually
be redrawn and you want to avoid flickering or flashing.

FUNCTION TCt1Mqr.GetMin: INTEGER;

This method returns the control's minimum value.

PROCEDURE TCtlMqr.SetMin (itsMin: INTEGER; redraw: BOOLEAN);

This method sets the control's minimum value. If redraw is true, then the control will be redrawn to
reflect its new minimum. If redraw is false, then the control will not be redrawn even though the new
minimum may affect its appearance. Set redraw to false only in situations where you know the control
will eventually be redrawn and you want to avoid flickering or flashing.

FUNCTION TCt1Mqr.GetMax: INTEGER;

This method returns the control's maximum value.

PROCEDURE TCt1Mgr.SetMax (itsMax: INTEGER; redraw: BOOLEAN);

This method sets the control's maximum value. If redraw is true, then the control may be redrawn to
reflect its new maximum. If redra w is false, then the control will not be redrawn even though the new
maximum may affect its appearance. Set redraw to false only in situations where you know the control
will eventually be redrawn and you want to avoid flickering or flashing.

PROCEDURE TCtlMgr.SetValues (itsVal, itsMin, itsMax: INTEGER; redraw:
BOOLEAN) ;

This method sets the control's current, minimum, and maximum values. If redraw if true then the control
will be redrawn to reflect its new values. If redraw is false then the control will not be redrawn even
though the new values may affect its appearance. Set redraw to false only in situations where you know
the control will eventually be redrawn and you want to avoid flickering or flashing.

Wed, Aug 3, 1988 @ 1988. Apple Computer 41

Miscellaneous Methods

PROCEDURE TCtlMgr.SetText (itsText: Str255; redraw: BOOLEAN);

This method sets the control's title. If redraw if true, then the control will be redrawn to reflect its new
title. If redraw is false, then the control will not be redrawn even though the new title will affect its
appearance. Set redraw to false only in situations where you know the control will eventually be redrawn
and you want to avoid flickering or flashing.

PROCEDURE TCtlMgr.GetText (VAR theText: Str255);

This method returns the control's title in theText.

PROCEDURE TCtlMgr.BeInPort (itsPort: GrafPtr); OVERRIDE;

This method keeps the Control Manager control in sync with the port in which the control is being placed.
It sets fCMgrControl "" . contrlOwner to itsPort, or to gWorkPort if itsPort is NIL.
contrlOwner is the Control Manager field that indicates in which port the control is to be drawn.

PROCEDURE TCtlMgr.WhileFocused (PROCEDURE DoToControl; redraw: BOOLEAN);

IF beVisible is true, then WhileFocused attempts to focus the control, and then calls
DoToControl. If redraw is false, then DoToControl is called with clipping temporarily set to an
empty rectangle so that any drawing done by DoToControl will not be visible.

PROCEDURE TCtlMgr.CreateCMgrControl (itsBounds: Recti itsTitle: Str255:
itsValue, itsMin, itsMax, itsProcID: INTEGER):

This is an internal method used to create the Control Manager control associated with this view. The given
parameters are passed to the Control Manager routine NewControl, the result of which is assigned to
fCMgrControl.

Resource-Writing Methods

PROCEDURE TCtlMgr.WRes (theResource: ViewRsrcHndli VAR itsParams: Ptr)i
OVERRIDE;

This method writes the TCtlMgr portion of the view's resource template. It is the inverse of
TCtlMgr. IRes and is only used by programs that write 'view' resources.

PROCEDURE TCtlMgr.WriteRes (theResource: ViewRsrcHndli VAR itsParams: Ptr)i
OVERRIDE;

This method serves as a wrapper for WRes. If you want to write a window object as part of a 'view I
resource you would call this method, which calls the appropriate WRes methods.

Wed. Aug 3,1988 © 1988. Apple Computer 42

(
CreationIDestruction Methods

PROCEDURE TCtlMgr.ICt1Mgr (itsSuperView: TView; itsLocation, itsSize: VPoint;
itsHSizeDet, itsVSizeDet: SizeDeterminer; itsTitle: Str255;
itsVal, itsMin, itsMax: INTEGER; itsProcId: INTEGER);

This method initializes a TCtlMgr object. It calls IControl to initialize its inherited data, and then calls
CreateCMgrControl to create the Control Manager control.

PROCEDURE TCtlMgr.IRes (itsDocument: TDocument; itsSuperView: TView;
VAR itsParams: Ptr); OVERRIDE;

This method initializes a TCt1Mgr object from a 'view' resource. itsDocument is the document for
which the control is being created. itsSuperView is the control's superview, and itsParams is a
pointer to the Tview section of the object's resource. INHERITED IRes is called to initialize the
inherited data (in this case the Tview and TControl data), then the TCtlMgr data is initialized, and
fmally itsParams is offset by the length of the TCtlMgr data.

PROCEDURE TCt1Mgr.Free; OVERRIDE;

This method frees fCMgrControl, and then calls INHERITED Free.

The TScrollBar Class

f The TScrollBar class represents standard Macintosh scroll bars, but whose values are expressed as
VCoordinates mtlter than integers.

Fields

fDirection

fLongVal

fLongMin

fLongMax

fBitsToShift

Wed, Aug 3.1988

The scroll bar's direction (horizontal or vertical).

The scroll bar's current value in VCoordinate units.

The scroll bar's minimum value in VCoordinate units. The default value is zero.

The scroll bar's maximum value in VCoordinate units.

The number of bits to shift to convert the scroll bar's long values into Control Manager
control values.

e 1988. Apple Computer 43

Mouse-Handling Methods

PROCEDURE TScrollBar.DoMouseCommand (VAR theMouse: Point; VAR info: EventInfoi
VAR hysteresis: Point): TCommand; OVERRIDE;

This method differentiates between tracking the thumb and tracking any other part of the scroll bar. For the
thumb, the Control Manager routine TrackControl is called to track the mouse, and the scroll bar's new
value is set to reflect the final position of the thumb. For the arrows and page areas, TrackControl is
called with an action procedure that calls the scroll bar's TrackScrollBar method.

PROCEDURE TScrollBar.TrackScrollBar (partCode: INTEGER);

This method is intended to be overridden so that action can be taken while tracking the scroll bar's arrows
or page areas. Typically the action taken is to change the scroll bar's value appropriately. The standard
behavior is to do nothing.

CurrentlMinimumlMaximum Methods

PROCEDURE TScrollBar.SetLongVal (itsVal: VCoordinatei redraw: BOOLEAN)i

This method sets the scroll bar's value to newValue. It sets fLongVal to itsVal and calls
SetValue with itsVal scaled to an integer. If redraw if true, then the scroll bar will be redrawn to
reflect its new value. If redraw is false, then the scroll bar will not be redrawn even though the new value
may affect its appearance. Set redraw to false only in situations in which you know the scroll bar will
eventually be redrawn and you want to avoid flickering or flashing.

FUNCTION TScrollBar.GetLongVal: VCoordinatei

This method returns the scroll bar's long value.

PROCEDURE TScrollBar.SetLongMin (itsMin: VCoordinate; redraw: BOOLEAN);

This method sets the scroll bar's long minimum. It sets fLongMin to itsMin and calls SetMin with
itsMin scaled to an integer. If redraw if true, then the scroll bar will be redrawn to reflect its new
minimum. If redraw is false, then the scroll bar will not be redrawn even though the new minimum may
affect its appearance. Set redraw to false only in situations in which you know the scroll bar will
eventually be redrawn and you want to avoid flickering or flashing.

FUNCTION TScrollBar.GetLongMin: VCoordinate;

This method returns the scroll bar's long minimum.

PROCEDURE TScrollBar.SetLongMax (itsMax: VCoordinatei redraw: BOOLEAN)i

This method sets the scroll bar's long maximum. It sets fLongMax to it sMax and calls SetMax with
itsMax scaled to an integer. If redraw if true, then the scroll bar will be redrawn to reflect its new
maximum. If redraw is false, then the scroll bar will not be redrawn even though the new maximum may
affect its appearance. Set redraw to false only in situations in which you know the scroll bar will

Wed. Aug 3,1988 @ 1988_ Apple Computer 44

eventually be redrawn and you want to avoid flickering or flashing.

4[FUNCTION TScrollBar.GetLongMax: VCoordinate;

This method returns the scroll bar's long maximum.

PROCEDURE TScrollBar.SetLongValues (itsVal, itsMin, itsMax: VCoordinatei
redraw: BOOLEAN)i

This method sets the scroll bar's current, minimum, and maximum long values. If redraw if true, then the
scroll bar will be redrawn to reflect its new values. If redraw is false, then the scroll bar will not be
redrawn even though the new values may affect its appearance. Set redraw to false only in situations in
which you know the scroll bar will eventually be redrawn and you want to avoid flickering or flashing.

PROCEDURE TScrollBar.DeltaValue (delta: VCoordinate)i

This method offsets the current value of the scroll bar by delta, by ensuring that delta is within the
scroll bar's minimum and maximum and calling SetVal.

Resource-Writing Methods

PROCEDURE TScrollBar.WRes (theResource: ViewRsrcHndli VAR itsParams: Ptr)i
OVERRIDEi

This method writes the TScrollBar portion of the view's resource template. It is the inverse of
TScrollBar. IRes and is only used by programs that write 'view' resources.

PROCEDURE TScrollBar. WriteRes (theResource :ViewRsrcHndl i VAR itsParams: Ptr),;
OVERRIDEi

This method serves as a wrapper for WRes. !fyou want to write a window object as part of a 'view'
resource you would call this method, which calls the appropriate WRes methods.

CreationIDestruction Methods

PROCEDURE TScrollBar.IScrollBar (itsSuperView: TViewi itsLocation, itsSize:
VPointi itsHSizeDet, itsVSizeDet: SizeDeter.mineri itsDirection:
VHSelecti itsVal, itsMin, itsMax: VCoordinate)i

This method initializes a scroll bar by calling ICtlMgr to initialize the inherited data, and then sets its
fields to the given parameters.

PROCEDURE TScrollBar.IRes (itsDocument: TDocumenti itsSuperView: TViewi
VAR itsParams: Ptr)i OVERRIDE;

This method initializes a TScrollBar object from a 'view f resource. i tsDocument is the document
for which the scroll bar is being created. itsSuperView is the scroll bar's superview, and itsParams
is a pointer to the TView section of the object's resource. INHERITED IRes is called to initialize the

Wed, Aug 3,1988 ©1988. Apple Computer 45

inherited data (in this case the TView, TControl. and TCtlMgr data), then the TScrollBar data is
initialized, and finally itsParams is offset by the length of the TScrollBar data.

The TSScrollBar Class

The TSScrollBar class represents scroll bars used in conjunction with TScroller objects. A single scroll bar
can be associated with any number of scrollers. Each scroller is responsible for scrolling itself based upon messages
sent to it from its scroll bars.

Fields

fScrollers A list of the scroller views associated with this scroll bar.

Activation Methods

PROCEDURE TSScrollBar.Activate (entering: BOOLEAN); OVERRIDE;

Mter focusing the scroll bar, this method either draws the scroll bar (entering is true) by calling the Control
Manager routine ShowControl (fCMgrControl) or hides the scroll bar (entering is false) by
calling the Control Manager routine HideControl and the Draw method to frame its rectangle. In both
cases, the scroll bar's rectangle is validated to avoid unnecessary window updates.

Drawing Methods

PROCEDURE TSScrollBar.Draw (area: Rect); OVERRIDE;

This method is overridden so that if the scroll bar is invisible (and assumed to be inactive), its rectangle is
framed. Otherwise, INHERITED Draw is called.

Mouse-Handling Methods

FUNCTION TSScrollBar.DoMouseCommand (VAR theMouse: Point; VAR info: EventInfo;
VAR hysteresis: Point): TCommand; OVERRIDE;

This method is overridden to handle the thumb. If the thumb is tracked, then when the thumb is released,
the scroll bar's value is passed to each controlled view's ScrollRelati ve method. The values returned
by each ScrollRelative method is added to the scroll bar's value. ICa part other than the thumb is
clicked, then INHERITED DoMouseCommand is called.

PROCEDURE TSScrollBar.TrackScrollBar (partCode: INTEGER);

This method is used to track the cursor while it's in an arrow or page area of a scroll bar. It simply calls
each scroller's ScrollStep method and adds the values returned by each ScrollStep to the scroll
bar's value.

Wed. Aug 3.1988 © 1988. Apple Computer 46

(: Resource-Writing Methods

PROCEDURE TSScrollBar.WRes (theResource: ViewRsrcHndli VAR itsParams: Ptr)i
OVERRIDEi

This method writes the TSScrollBar portion of the view's resource template. It is the inverse of
TSScrollBar. IRes and is only used by programs that write 'view' resources.

PROCEDURE TSScrollBar.WriteRes (theResource: ViewRsrcHndli VAR itsParams:
Ptr)i OVERRIDEi

This method serves as a wrapper for WRes. If you want to write a window object as part of a 'view'
resource you would call this method, which caUs the appropriate WRes methods.

CreationlDestruction Methods

PROCEDURE TSScrollBar.ISScrollBar (itsSuperView: TViewi itsLocation, itsSize:
VPointi itsHSizeDet, itsVSizeDet: SizeDetermineri itsDirection:
VHSelecti itsMax: LONGINTi itsScroller: TScroller)i

This method initializes a scroll bar. It calls IControl, and then sets its fields to the given parameters.
fLongMin is set to zero.

PROCEDURE TSScrollBar.IRes (itsDocument: TDocument; itsSuperView: TView; VAR
itsParams: p·tr) i OVERRIDE;

This method initializes a TSScrollBar object from a 'view' resource. itsDocument is the
document for which the scroll bar is being created. itsSuperView is the SCIOU bar's superview, and
itsParams is a pointer to the Tview section of the object's resource. INHERITED IRes is called to
initialize the inherited data (in this case, the TView, TControl, and TCtlMgr data), then the
TScrollBar data is initialized, and finally itsParams is offset by the length of the TScrollBar data.

PROCEDURE TSScrollBar.Free; OVERRIDE;

This method frees the fScrollers list, and then calls INHERITED Free.

Wed. Aug 3.1988 ~ 1988. Apple Computer 47

---------- --------- ---------------

"
./

