
(
MacApp 2.0 Object

and Method Reference

This chapter describes the object classes that existed in MacApp 1.1. If you need infonnation on classes and methods
not described here, refer to other release notes and to the source code. .

Each object description in this chapter contains the following elements:

• whether you customize the object type. instantiate it, or call its methods

• notes about the Object type

• the chain of ancestors leading to the object type

• field declarations and explanations

• descriptions of the methods for each object type

Important

Complete Information about the Implementation of each method Is not given In this chapter. It you _
need further details ab6ut any method, refer to the MocApp source code.

TObject
Customize: usually
Instantiate: never
Call methods: usually

TObject is the ultimate ancestor for all objects in MacApp.

TObject is documented here primarily for background information. It is an abstract object type that exists so that
other object types can inherit characteristics from it, and thus share them.

The only TObject methods you might override are Free and Clone.

Ancestors: none

Fields

none

MocApp 2.0 Globels 10/3/88 Page 1

Clone
FUNCTION TOb ject. Clone: TOb ject;

The return value

Purpose

The default version

Override

Call

Free
PROCEDURE TObject.Free;

Purpose

The default version

Override

Call

ShallowClone

An exact copy of the calling object

To clone dependent objects referred to by the fields of an object as well as cloning
the object itself. An object is dependent on another object when the second object
has the only (or the only important) reference to the fU'St object Dependency is a
relatively vague condition; when you override this method. you need to determine
what objects are dependent on SELF.

Calls ShallowClone. and thus clones only the object itself

Sometimes

Sometimes

To free the calling object and any dependent objects referred to by its fields. An'
object is dependent on another object when the second object has the only (or the
only important) reference to the fU'St object Dependency is a relatively vague
condition; when you override this method. you need to determine what objects are
dependent on SELF.

Calls ShallowFree

Often. Your version should free any dependent objects you have added for your
customization and then call INHERITED Free so that any ancestor methods can free
other dependent objects. The chain of INHERlTED calls leads to TObjectFree.
which calls TObject.ShallowFree. which frees SELF.

Often

FUNCTION TObject.ShallowClone: TObject;

The return value

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

This is the lowest-level method for copying an object

TObjectOone

Calls HandToHand. an Inside Macintosh routine, to copy the object data

Never

Rarely

10/3/88 Page 2

(

Shallow Free
PROCEDURE TObject.ShallowFree;

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

This is lhe lowest-level method for freeing an object

TObjecLFree

Frees the calling object by calling DisposHandle

Never

Rarely

10/3/88 Page 3

TEvtHandler

Customize: rarely
InstanHate: never
Call methods: sometimes

1EvtHandler is documented here primarily for background information. It is an abstract object type that exists so that
other object types can inherit characteristics from it. and thus share them.

The primary importance of TEvtHandler is that it allows the different objects that handle events to be stored in a
single list

Aneestors: TObject

Field.

fIdlePr iority: INTEGER; A priority value for the DoldIe method of this object If fIdlePriority is not
greater than zero, the default Idle method never calls this object's Doldle method. The
default Idle method calls the Doldle methods of any handlers with fIdlePriority values
greater than zero. (The default value is 0.)

fNextHandler: TEvtHandler; The next handler in the chain of event handlers. or Nn..

fIdleFreq: LONGINT;

fLastIdle: LONGINT;

MacApp 2.0 GJobols

Dermes the minimum number of ticks (each tick = l/6Oth of a second) that must
elapse before this object's Doldle gets called. A value of zero means that Doldle gets
called as often as possible (assuming that the object instance is in the target chain or
cohandler chain), A value of kMaxIdleTune means the object's Doldle never gets
called. The default value is kMaxIdleTime

The tick at which this object's DOldIe method was last called.

10/3/88 Page 4

(

(

DoHandleEvent
FUNCTION TEvtHandler. DoHandleEvent (next Event: PEventRecord; VAR commandToPerform:
TCommand): BOOLEAN;

nextEvent

commandToPerform

The return value

Purpose

Called by

The default version

Override

Call

Doldle

A pointer to the new event

A command object that will perfonn the action indicated by the event or
gNoChanges, if the action has already been done or the event resulted in no
command

Indicates whether or not the event has been handled

To handle an alien event

TApplication.HandleAlienEvenL T Application.HandleAlienEvent implements the
cohandler chain.

Returns FALSE

You always override this method when you create a cohandler. A cohandler is an
event handler that is not in the target chain and is not a view, window, document,
application, print handler, or command ObjecL You create cohandlers to handle alien
events, which are generally asynchronous events like network events. Your
implementation of DoHandleEvent should return TRUE if it handles the event and,
otherwise, return FALSE.

Never

PROCEDURE TEvtHandler.DoIdle(phase: IdlePhase);

phase

Purpose

Called by

The default version

Override

Call

MocApp 2.0 Globols

Whether idle is just beginning, is continuing, or is ending. The declaration of
IdlePhase is
IdlePhase - (idleBegin, idleContinue, idleEnd);

To do idle-time tasks. This method is called for event handlers only when
fIdleFreq ticks have elapsed-but only when the handler is in the target or
cohandler chain.

TApplication.Idle

Does nothing

When an object requires idle-time processing.

Never

10/3/88 PageS

DoKeyCommand

FUNCTION TEvtHandler.DoKeyCommand(ch: CHAR; VAR info: EventInfol: TCommand;

c:h

Info

The return value

Purpose

Called by

The default version

Override

Call

DoMenuCommand

Adwacter typed at the keyboard

The event infonnation record that contains the key event You can modify this parameter if you
want

A command object

To handle '"key commands," which are simply events resulting &om keyboard typing

TApplication.ObeyEvent

Calls DoKeyCommand for the next handler in the list of event handlers. If there is 110 next
handler, the de&uJt method returns gNoChanges.

Sometimes. 1f you override this method, generally for your descendant oflVleW or
TDocument, you should retum a command object that can respond appropriately 10 the
character. (See '"TCommand" in this chapter for more infonnationJ fur simple editing, this
method is implemented in the TEVIeW unit (See the "Using TEVIeW" recipe in the CookbOok
chapter or the mTypingCommand section of this chapter for more infonnation.)

Sometimes. You caI1 this method if you override it, by calling INHl!RCI'ED DoKeyCommand.
Otherwise, you never caI1 it

FUNCTION TEvtHandler. DoMenuCommand (aCmdNumber: CmdNumber l: TCommand;

aCmdNumber

The return value

Called by

The default version

Override

Call

MacApp 2.0 Globals

The command number for the menu command chosen by the user

A command object or, if there are no changes, gNoChanges

TApplication.MenuEvent when a menu command is chosen by the user. (A
Command-key combination is usually equivalent to a menu command.)

Calls tNextHandler.DoMenuCommand if there is a next handler. H there is no next
handler. the default returns gNoChanges and, if the code was compiled with
debugging on. prints an error message.

Often. You override this method to handle menu commands you have defmed. In
general. you return a command object to carry out the action of the command; if the
command is simple and does not change the document, you can return gNoChanges.

Often. You call this method if you override it, by calling INHERITED
DoMenuCommand. Otherwise. you never call it.

10/3/88 Page 6

DoMuHiClick
FUNCTION TEvtHandler.DoMultiClick(lastDownPt, newDownPt: Point): BOOLEAN;

lastDownPt

newDownPt

The return value

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

The next-to-last point where the mouse button was pressed

The most recent point where the mouse button was pressed

1RUE if IastDownPt and newDownPt are close enough to be considered a double
click

To test whether a new mouse click should be counted as an additional click in
gClickCounl It should return TRUE if newDownPt is close enough to lastDownPt
to be considered the same point

T Application.CountClicks

Calls tNextHandler.DoMultiClick if there is a next handler. If there is no next
handler, it tests whether the difference between the two points is less than or equal to
five pixels.

Rarely. If you want to change the standard for what is considered a new multiple
click, you can override TApplication.DoMultiClick. The default version always calls"
tNextHandler.DoMultiClick unless tNextHandler is NIL, which is true only for the
application object

Never

10/3/88 Page 7

DosetupMenus
PROCEDURE TEvtHandler • DoSet upMen us;

Purpose

Called by

The default version

Override

CoIl

IEvtHandler

To adom and enable (or disable) all menu commands handled by this event handler.
This method is called before menus are displayed when the menus may have changed
since the last time it was called. It is also called after every event is processed.

TApplication.SetupTheMenus and when an immediate descendant's method calls
INHERI1ED DoSetupMenus .

Calls DoSetupMenus for the next event handler in the list of event handlers.
(TEvtHandler is not responsible for any menu commands.)

Sometimes. You must override this method if you defme any menu commands. In
general. you override this method for any object types for which you override
DoMenuCommand, and you handle the same menu commands in DoMenuCommand
and DoSetupMenus for a given object type.

When you override this method. you must begin yoUr method by calling
INHERITED DoSetupMenus. so that MacApp can set up the menus flfSt Then, you
use the glob81 procedures Enable and EnableCheck to enable any menu commands
that can cmrently be used or to disable any that cannot be used. (EnableCheck, like .
Enable, can enable or disable menu commands. EnableCheck also can add or remove
a check mark next to a menu item.) You can also adorn menus in other ways. See
the "Changing Menu Appearance and Function" recipe in the Cookbook for more
detailed information.

Sometimes. You always call this method when you override it

PROCEDURE TEvtHandler.IEvtHandler(itsNextHandler: TEvtHandler);

ItsNextHandler

Called by

The default version

Override

CoIl

MacApp 2.0 Globols

The next handler in the list of event handlers, or NIL

TApplication.IApplication. TDocumenLlDocument, TView lView. and
TPrintHandler.IPrintHandler to initialize an event-handler object

Sets the value of fIdleFreq to kMaxIdleTlme, sets fLastIdle to zero, and sets
fNextHandler to itsNextHandler

Neva:

You call this method only if you declare immediate descendants ofTEvtHandler.

10/3/88 Page 8

(

(

Terminate
PROCEDURE TEvtHandler.Terminate;

Purpose

The default version

Override

Call

MacApp 2.0 Globals

To handle termination tasks for an event handler

Does nothing

Sometimes

Never. The TApplication and TPrintHandler implementations of this method are
called by MacApp.

10/3/88 Page 9

TApplication

Customlz.: always
InstanHat.: never
Con rMthods: always

The application object controls the overall application. In other words. it implements methods that apply to the
application as a whole rather than to an individual document or window.

You always customize TApplication to implement your application.

Anc.aors: TObject. TEvtHandier. TApplication

FI.lds

fIdleFreq: LONGINT; Defmes the minimum number of ticks (each tick = 1/6Oth of a second) that must
elapse before this object's Doldle gets called. A value of zero means that Doldle gets
called as often as possible (assuming that the object instance is in the target chain or
cohandler chain). A value of kMaxIdleTime means the object's Doldle never gets
called. The default value is kMaxIdleTime

fNextHandler: TEvtHandler; The next handler in the chain of event handlers, or Nll.. Inherited from
TEvtHandler • .

Note: Other fIelds are inherited but are never used. TApplication declares no new fields. Many global
variables are used like fields of the application object.

AboutToLoseControl
PROCEDURE TApplication.AboutToLoseControl;

Call.d by

Th. d.fault v.rsJon

Ov.rrld.

Call

MacApp 2.0 Globals

TApplication.HandleSystemEvent. TApplication.PostHandleEvent (when the user
clicks in a nonapplication window), and TApplication.Run (just before the end)

Commits the last command and writes the contents of the Clipboard to the desk
scrap (tf necessary)

Sometimes. You can ovenide this method to do other tasks necessary before the
application loses control.

Neva'

10/3/88 Page 10

(
AddFreeWlndow
PROCEDURE TApplication.AddFreeWindow(aWindow: TWindow);

aWlndow

Purpose

Called by

The default version

Override

Call

ClairnClipboard

A window object

To add a window to the free window lisL A free window is one that belongs to the
application instead of to a documenL (An example is the palette window in
MacPainL)

lWindow.InstallDocument

Calls gFreeWindowWsLAddLast(aWindow)

Never

Rarely

PROCEDURE TApplicat.1;on .ClaimClipboard (clipView: TView);

cllpVlew

Called by

Override

Call

MacApp 2.0 Glebals

The Clipboard view created to show the Clipboard contents

The application to insert the given view in the Clipboard

Rarely

You always call this method for a Cut or Copy command, unless you don't
implement cutting and pasting in your application.

See "The Clipboard" in the Cookbook for more infonnation.

10/3/88 Page 11

CloseWmgrWindow
PROCEDURE TApplication.CloseWmgrWindow(aWmgrWindow: WindowPtr);

aWmgrWlndow

Caned by

The default version

Override

Call

CommltLastCommand

The Window Manager pointer for a window that is being closed

TApplication.DoMenuCommand (if the user choose the Close command) and
TApplication.HandleMouseDown (if the mouse press was in the close box) and
TApplication.Close (when the application is terminated).

Checks whether the window is a desk accessory window and, if it is, calls
CloseDeskAcc (an Inside Macintosh procedure) to close it. If it is not a desk
accessory window, this method checks whether there is a window object for this
window and, if there is, cal1s its CloseByUser method. Otherwise, it cal1s
HideWindow (an Inside Macintosh procedure). It signals failure with err = 0 if the
user cancels for some reason.

Rarely

Never

PROCEDURE TApplication.CommitLastCommand;

Called by

The default version

Override

can

MacApp 2.0 Globals

TApplication.AboutToLoseConttol, TApplication.CheckDeskScrap,
TApplication.PerformCommand, TDocumenLClose, TDocumenLRevert, and
TDocumenLSave.

Commits and frees the last command (gLastComrnand) and changes the text for the
Undo command to show these there is no current undoable command

Rarely

Never

10/3/88 Page 12

(

CountCncks
FUNCTION TApplication.CountClicks(aPDownEvent: PEventRecord): INTEGER;

aPOownEvent

The return value

Called by

The default version

Override

Call

OeleteFreeWindow

A pointer to the event record for a mouse-down event

The current number of multiple clicks

T Application.HandleMouseDown

Calls. gTargetDoMultiClick to see whether the new mouse press should be
considered an additional multiclick. If so, it increments gClickCount. Otherwise, it
resets gClickCount to 1.

Rarely

Never

•

PROCEDURE TApplication.DeleteFreeWindow(windowToDelete: TWindpw);

wlndowToOelete

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

A member of the free window list

To remove a window from the free window list A free window is one that belongs
to the application instead of to a document (An example is the palette window in
MacPaint)

1Window.Free and 1Window.InstallDocument

Calls gFreeWindOwListDelete(windowToDelete)

Never

Rarely

10/3/88 Page 13

DoCommandKey
FUNCTION TApplication. DoCommandKey (ch: CHAR; VAR info: EventInfo): TCommand; OVERRIDE;

ch

Info

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globois

The character of the key that was held down along with the Command key

The event record

To handle events in which a key is pressed along with the Command key as a
Command-leey equivalent of a menu command

TApplication.HandleKeyDownEvent

Calls SerupTheMenus and MenuEvent unless this is a repeated command-key
combination or if gRepeatcmd is FALSE

Rarely. You can override this method to implement your own Command-key
commands or to implement key commands in your own way. Note that you need do
nothing with this method for Command-key combirultions that correspond to menu
commands and are given in the resource me. MacApp does not implement auto-key
events (automatic repeating of keys held down) with Command-key combinations. If
you want to implement auto-key Command-key combinations, you must override
this method.

Never

10/3/88 Page 14

(

(,

DoMakeDocument
FUNCTION TApplication.DoMakeDocument(itsCmdNumber: CmdNumber): TDocument;

ItsCmdNumber

The return value

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

Indicates the type of document that should be created. In applications with different
document types, the command number indicates which menu command the user
picked or, if the user opened an existing document, the command number is the one
returned by TApplication.KindOfDocumenL

A document object

To create a document for the application. It is called when the user stans up the
application, opens a document with'the New or Open command, and in other cases
when the application needs ro create a documenL

T Application.OpenNew, TApplication.OpenOld, and TApplication.PrintDocwnent

Calls ProgramBreak ro halt the program. (You must override this method.)

Always. YOlD' implementation of this method creates and initializes a document of
your application's type. If your application has multiple document types, your
implementation Qf this method creates different document types depending on die
value if itsCmdNumber. See the "Creating a Document" recipe in the Cookbook for
details on this method.

Sometimes. You may call this method to create a document, but most commonly,
this method is called by MacApp •

...

10/3/88 Page 15

DoMenuCommand
FUNCTION TApplication.DoMenUCOmmand(aCmdNumber: CmdNumber): TCommand; OVERRIDE;

aCmdNumber

The retum value

Purpose

Called by

The default version

Originally declared by

Override

Call

DoSetupMenus

The command number of the menu command chosen by the user

A command object that will carry out the command (and possibly undo and redo the
command) or gNoChanges

To handle menu commands that apply to the application as a whole

TApplication.MenuEvent when there is a menu command and gTarget is a reference
to the application object, or by another object's DoMenuCommand method when no
other object has handled the menu command

Handles the MacApp defmed standard menu commands Quit, New, Open, Cose,
Undo, Redo, ShowOipboard, About <Appname>, and the Debug menu commands

TEvtHandler

Often. You override this method to handle commands you define for your appli~tion
object In general, TYourApplication.DoMenuCommand handles the commands that.
apply to the application as a whole. When your implementation does not handle the
command, you should end your override method by calling INHERITED
DoMenuCommand, so that the MacApp method can handle its commands.

You always call this method if you override it Otherwise, you never call it

PROCEDURE TApplication. DoSetupMenus; OVERRIDE;

Purpose

The default version

Originally declared by

Override

Call

MacApp 2.0 Globols

To set up the menu commands handled by the corresponding DoMenuCommand
method. It is called before the menus are displayed when they may have changed
since the last time DoSetupMenus was called.

Sets up menu commands handled by TApplication.DoMenuCommand

TEvtHandler

Often. You must override this method if you override
TApplication.DoMenuCommand. Your override method must set up the menu
commands handled by TYourApplication.DoMenuCommand Begin your method by
calling INHERITED DoMenuCommand so the MacApp methods can set up their
menu commands fU'St See the "Changing Menu Appearance and Function" recipe in
the Cookbook for more details.

You always call this method if you override it Otherwise, you never call it

10/3/88 Page 16

(
EachFreeWlndow
PROCEDURE TApplication.EachFreeWindow(PROCEDURE DoToWindow(aWindow: TWindow»;

DoToWlndow

Purpose

Called by

Override

Cell

ForAIiDocumentsDo

A procedure that will be passed each free window in turn

To apply DoToWindow to all windows in the free window list A free window is
one that belongs to the application instead of toa document (An example is the
palette window in MacPaint.)

Your code and TApplication.ForAllWindowsDo

Never

You might call this method if you have free windows.

PROCEDURE TApplication.ForAllDocumentsDo(PROCEDURE DoToDoc(aDocument: TDocument»;

DoToDoc

Purpose

The default version

Called by

Override

Call

MacApp 2.0 Globals

A procedure, usually local to the caller, that ForA11DocumentsDo calls repeatedly,
passing each of the documents in tum

To perform an operation on all documents of an application

Automatically scans through the list of documents and calls DoToDoc once for each
document

TApplication.AlreadyOpen, TApplication.Close, and
TApplication.ForAllWindowsDo

Never

Sometimes

10/3/88 Page 17

ForAIiWindowsDo
PROCEDURE TApplication.ForAllWindowsDo(PROCEDURE DoToWind(aWindow: TWindow»;

DoToWlnd

Purpose

The default version

Override

Call

GetDataToPaste

A procedure, usually local to the caller, that ForAlIWindowsDo calls repeatedly,
passing each window in tum

To perform an operation on all windows of an application

Calls DoToWind once for each window of all documents of the application and for
any documentless windows

Never

Sometimes

FUNCTION TApplication.GetDataToPaste(aDataHandle: Handle; VAR dataType: ResType): ,
LONGINT;

aDataHandle

dataType

The return value

Purpose

Called by

Override

Call

MacApp 2.0 Glebals

A handle for Clipboard data

A data type that is passed back to you

If nonzero. indicates an error

To get data for pasting from the Clipboard

Your methods

Rarely

You can call this method if you implement the Paste command. You allocate an
empty handle, and then pass it to this method. The dataType is not set here; it is one
of the resource types you tell MacApp you can handle when you call CanPaste (a
MacApp global routine). The data may come from data cut or copied from your
application or it may come from the desk scrap.

See the ''Paste" recipe in the Cookbook for more information.

10/3/88 Page 18

(

GetEvent

PROCEDURE TApplication.GetEvent(eventMask: INTEGER; sleep: LONGINT; cursorRqn:
RgnHandle; VAR anEvent: EventRecord): BOOLEAN;

eventMask

sleep

cursorRgn

anEvent

The return value

Called by

The default version

Override

Call

IApplication

A mask indicating the kind of events wanted

The minimum number of ticks that cam elapse before returining from
WaitNextEvenL

A region, in global screen coordinates, in which the cursor will not change.

The event obrained

Indicates whether or not an event was obrained

TApplication.PoUEvent and TApplication.UpdateAlIWindows

Calls the Inside Macintosh routine GetNextEvent or WaitNextEvent

Sometimes. You override this method so that you can get events from another
source. See Inside Macintosh for information on posting events.

Never

PROCEDURE TApplication. IApplication (itsMainFileType: OSType);

ItsMalnFlleType

Called by

The default version

Override

Call

MacApp 2.0 Globals

The unique four-letter type code fIX' the main docwnent files used by the application

IYourApplication

Initializes a number of global variables and otherwise initializes the application

Never. Instead of overriding this method, you generally write a new method with a
name of the form IY ourApplication.

Always. You always cal1 this method from IYourApplication.

10/3/88 Page 19

Idle
PROCEDURE TApplication. Idle (phase: IdlePhase);

phase

Purpose

Called by

The default version

Ovenlde

Call

InstallCohandier

The current pan of the idle sequence: idleBegin. idleContinue. or idleEnd

This method is called when all events have been handled and there are no pending
events.

TApplication.PollEvent and TApplication.GetEvent

Begins by setting up the menus. if they need to be set up. and then gives each event
handler that needs idling a chance to run its Doldle method

Rarely

Never

PROCEDURE TApplication. InstallCohandler (aCohandler: TEvtHandler; addIt: BOOLEAN);

aCohandler

addlt

Purpose

The default version

Override

Call

MacApp 2.0 Globals

The handler you want to add to or remove from the cohandler list

Indicates whether aCohandler should be added to (TRUE) or deleted from (FALSE)
the cohandler list .

To add or remove cohandlers from the cohandler list

Adds aCohandler to the cohandler list if addIt is lRUE and deletes it if addIt is
FALSE. If aCohandIer is deleted from the list, it is not freed.

Never

You always call this method if you have cohandlers.

10/3/88 Page 20

(

KindOfDocument
FUNCTION TApplication.KindOfDocument(itsCmdNumber: CmdNumber; itsPAppFile: PAppFile):
CmdNumber;

ItsCmdNumber

ItsPAppFlle

The return value

Purpose

Called by

The default version

Override

Call

LaunchClipboard

Either the command number from DoMenuCommand or cFmderNew, cFinderPrint,
or cFinderOpen

A pointer to an AppFile record or Nll... If not Nll.., itsPAppFileA.fileType gives the
four-character file type, which is usually all you need to decide what type of
document is needed. If Nll.., this is a new document, so there is no existing
document from which to get information.

A command number to pass to DoMakeDocument

To fix the command number whenever DoMakeDocument is called if the application
has more than one kind of document type. It is called by MacApp.

TApplication.OpenNew, T Application.OpenOld, and TApplication.PrintDocument

Returns itsCmdNumber

You always override this method if your application has more than one kind of
document When the user opens an existing document, your implementation of this
method uses itsP AppFile to determine what kind of document object should be
created. The command number you return is normally the same as the command
number for the New menu command the user would choose to create a new
document (In applications with multiple document types, you usually have different
New menu commands for different document types.)

Never

PROCEDURE TApplication.LaunchClipboard;

Called by

The default version

Override

Call

MacApp 2.0 Globals

TApplication.Run

Starts up the Clipboard by creating a view and a window for it

Rarely

Never

10/3/88 Page 21

Main EventLoop
PROCEDURE TApplication.MainEventLoop;

Called by

The default version

Override

Call

TApplication.Run

Loops until the application begins to terminate. Events are dispatched from this
method and the Idle method is called from this method.

Rarely. You might override this method to change the progress of the event loop. If
you do, examine the implementation of T Application.MainEventLoop in
UMacApp.TApplication.p.

Never

MakeViewForAlienClipboard
FUNCTION TApplication.MakeViewForAlienClipboard: TView;

The retum value

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

A Clipboard view

To make a view to show the public scrap when the application has just started or has
retmned from a desk accessory or another application and the desk scrap contains data
from another application or from another instance of this application

T Application.ReadFromDeskScrap

Creates a view that can show PIer or TEXT data

Usually. In your implementation, you check the desk scrap to see if it has data in
one of the forms your application can handle (presumably because the data came
originally from this application or another application that creates compatible data).
If data is there in that form, you create a view of one of your application's types to
show the data and return that view. Otherwise, you call INHERITED
MakeViewForAlienClipboard so that that method can show the PIer or TEXT data.
See 'The Clipboard" in the Cookbook for more information.

You always call this method if you override it, in which case you call it by using
INHERITED.

10/3/88 Page 22

OpenNew
PROCEDURE TApplication.OpenNew(itsCmdNumber: CmdNumber);

ItsCmdNumber

Purpose

Called by

The default version

Override

Call

OpenOld

The command number that resulted in this call

To create a new document, including the views and windows for the document It is
called whenever a new document is needed, either when the application starts up or
when the user chooses the New command.

T Application.DoMenuCommand and T Application.HandleFinderRequest

Calls DoMakeDocument, DoInitialState, DoMakeViews, DoMakeWindows, and
ShowWindows

Rarely. Yau may override this method if you don't want a new document to be
automatically created when the application starts without the user opening an
existing document. To do that, you can test the value of itsCmdNumber. If
itsCmdNumber = cFinderNew, you should not create the new document See the
UMacApp source text for other details of the implementation to be certain you do
everything necessary.

Never

PROCEDURE TApplication. OpenOld (i tsOpenCmd: CmdNumber; anAppFile: AppFile);

ItsOpenCmd

anAppFUe

Purpose

The default version

Called by

Override

Call

MacApp 2.0 Globals

The command number that resulted in this call

An AppFile record

This method is called whenever an existing document is opened, either when the
application starts up or after the user chooses the Open command.

Calls DoMa1ceDocument, DoReadFromFile, DoMa1ceViews, DoMakeWindows, and
ShowWindows

TApplication.DoMenuCommand and TApplication.HandleFmderRequest

Rarely

Never

10/3/88 Page 23

PerformCommand
PROCEDURE TApplication.PerformCommand(command: TCommand);

c:ommand

Purpose

Called by

The default version

Override

Call

PrintDoeument

A command object to carry out the most recent command

To carry out a command that is not gNoChanges

TApplication.HandleEvent

If either the fCanUndo or the fChangesDocument flag is TRUE,
T Application.CommitLastCommand sets gLastCommand to the new command. sets
the command's ITarget field to gTarget, sets the command's fCmdDone field to
TRUE, and calls command.Dolt. If the command is undoable, the default version
puts the command's name in the Undo command. If fChangedDocument <> Nil.. and
fChangesDocument = TRUE, the default version increments the document's change
counL

Rarely

Nev1:2'

FUNCTION TApplication. PrintDocument (anAppFile: AppFile): BOOLEAN;

anAppFlle

The return value

Called by

The default version

Override

Call

MacApp 2.0 Globels

An AppFtle record

Whether or not the document was printed

TApplication.HandleFmderRequest to handle a Print command from the Finder

Calls DoMakeDocument, ReadFromFile. and DoMake Views, telling each that this
is being done just for printing, and then calls document.Print for the new document

Rarely

Nev1:2'

10/3/88 Page 24

Run
PROCEDURE TApplication.Run;

Called by

The default version

Override

Call

SetUndoText

Your main program after you create and initialize your application object

Does some initialization, calls T Application.HandleFinderRequest, and then calls
MainEventLoop. When MainEventLoop returns, Run calls AboutToLoseControl
and OeanUpMacApp.

Rarely. H you want to do something different before calling MainEventLoop,
examine the implementation of that method in the UMacApp source to see the
details of its implementation. In general, though, it is better to create a different
method, and call that before calling Run.

Always

PROCEDURE TApplication. SetUndoText (cmdDone: BOOLEAN; aCmdNumber: CmdNumber);

cmdDone

aCmdNumber

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

Indicates whether this command is in do or redo phase (TRUE) or in undo phase
(FALSE)

The command number for the Undo menu command

To set the text for the Undo menu command

TApplication.SetupTheMenus

Changes the text to Redo if cmdDone = FALSE and back to Undo if cmdDone =
TRUE

Rarely

Never

10/3/88 Page 25

ShowError
PROCEDURE TApplication. ShowError (error: OSErr; message: LONGINT);

error

message

Purpose

Called by

The default version

OverrIde

Call

MacApp 2.0 Globals

An enor nwnber

A failure message. See the "Failure Handling" recipe in the Cookbook for more
information.

To display an error message

Failure handlers

Calls the global procedure ErrorAlert

Sometimes. You override this method if you want a different error message to be
displayed.

Sometimes

10/3/88 Page 26

(

(

SFGetParms

PROCEDURE TApplication.SFGetParms(itsCmdNumber: CmdNumber; VAR dlgID: INTEGER; VAR
where: Point;

HTypeList);

ItsCmdNumber

dlglD

where

flleFliter

dlgHook

fliterProc

typeList

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

VAR fileFilter, dlgHook, filterProc: ProcPtr; typeList:

The command number that resulted in this method call

The resource ID for the dialog box that should be displayed

The position of the upper left corner of the dialog box in global coordinates

A pointer to a mter function that detennines which files appear in the dialog box, or
Nil.. If Nil., no mter function is executed.

A pointer to a function that handles dialog items, or Nil.. If Nil., no function is
executed.

A pointer to a function that filters events, or Nil.. If NIL, no standard ftltering is
done.

A valid handle to a zero-length block

To get parameters that should be passed to SFGetFile, which is an Inside Macintosh
procedure that displays a dialog box listing ftles that can be opened by the
application

T Application.CanOpenDocument and T Application.ChooseDocument

Returns these values:

dlgID = getDIglD

where = (100, 100)

ftleFilter = Nil.

dlgHook = NIL

ftlterProc = Nil.

The typeList parameter returns the main me type supported by the application.

Sometimes. You can override this method to return different parameter values. If the
application supports all me types, you should make typeList empty. See Inside
Macintosh for more infonnation on the parameters of this method.

Rarely. If you do call this method, you must set typeList to a valid handle and free
the handle afterwards.

10/3/88 Page 27

SFPutParms
PROCEDURE TApplication .SFPutParms (itsCmdNumber: CmdNumber; VAR dlgID: INTEGER; VAR
where: Point;

ProcPtr);

ItsCmdNumber

dlglD

where

prompt

defaultName

dIg Hook

fllterProc

Purpose

The default versIon

dlglD

Override

Call

MacApp 2.0 Globols

VAR prompt, defaultName: Str255; VAR dlgHook, filterProc:

The command number that resulted in this method call

The dialog box that should be displayed

The position of the upper left comer of the dialog box

The prompt string that should be added to the dialog box

The default name used in the dialog; it must be initialized to a valid string when this
method is called.

A pointer to a function that handles dialog items, or NIL. If NIL, no function is
executed.

A pointer to a function that filters events, or NIL. If NIL, no standard fIltering is
done.

To return all the parameters that should be passed to SFPutFile

Returns these values:

= putDlgID
where =
prompt =
dlgHook =
fIlrerProc =

(100,100)
prompt from resource fIle
NIL
NIL

The defaultName parameter is left alone.

Sometimes. You can override this method to change the default values.

Rarely

10/3/88 Page 28

(

TrackCursor
FUNCTION TApplication.TrackCursor: BOOLEAN;

The return value

Purpose

Called by

The default version

Override

Call

MocApp 2.0 Globols

Whether a view set the cursor shape.

To track the mouse pointer while the mouse button is up

T Application.Idle

Checks the location of the mouse and calls HandleCursor for the window in which
the mouse is located

Sometimes. You can override this method to do something else while the mouse
button is up. If you do that. you generally call INHERITED TrackCursor.

Never (except by calling INHERITED TrackCursor when you override it)

10/3/88 Pog~ 29

TDocument

Customize: always
Instantiate: never
Call methods: rarely

The document object controls the data of the document.

Almost every application must defme at least one descendant ofTDocument for its own document type. The only
exception is for "documentless" applications. in which the application icon is always opened.

You generally add fields to your document type to store the views of the document.

If your application has more than one kind of document. you usually create more than one descendant of TDocument,
one for each kind of document. For example. an integrated application might have a'ITextDocument. a
TSpreadSheetDocument. and a TGraphicsDocument type.

Most MacApp applications can have several document objects at a time. which may all be of a single type or may
be of different types. The document objects are stored in a TList object stored in gDocList.

Each document object can have one document me. You can use the data and resource forks of the file or use either
fork alone. Normally. the entire contents of the file is read into memory when the file is opened. but support is
provided for disk-based documents. If the resource fork is used. the document's resource me is on top of the resource
me list when DoRead and DoWrite are called. Otherwise. you need to call UseResFile to make sure that the right
resource me is on top.

When a document is saved. MacApp normally saves the altered version of the document to a new me and then. when
the save operation has been successfully completed. renames the new version of the file. erasing the old version.

A number of the fields of TDocument determine whether the data and resource forks of the me are both opened and
how the file is treated when it is saved:

• fDataOpen and fRsrcOpen determine whether or not the data and resource forks of the file
should be kept open at all times. Most applications set both to FALSE. An application can
have either or both TRUE if the application uses disk-based documents.

Note: Keeping resource mes open at all times is usually a bad idea because of the space
required for multiple resource maps and the slow searching of multiple mes (especially
with the 64K ROM). We recommend that keepsRsrcOpen always be FALSE.

• tDataPerm and tRsrcPerm determine what permission is used to open each fork of the rue.
Each of those can have the values

• fsRdPerm. for read-only pennission

• fsWrPerm, for write-onIy pennission

• fsRdWrPenn, for read and write permission

• fsRdWrShPerm, for sbared permission

• fSaveInPlace determines what happens when there isn't enough disk space to save a copy of
the rue instead of writing over the original. Its values can be

• sipNever. to jndicate that the original rue should never be overwritten

• sipAlways. to indicate that the original me should always be overwritten when there is
not enough space for a copy

• sipAskUser. to indicate that the user should be asked whether or not the original rue
should be overwritten when there is not enough space for a copy

See the description of IDocument for information on how these fields are initialized.

MacApp 2.0 Glebals 10/3/88 Page 30

(

(/

Programmers who want to implement work files such as MacWrite uses should open them in
TY ourDocumenLIY ourDocument and close them in TY ourDocument.Free. TY ourDocumenLFreeDara should reset
the work file to the same state set by IYourDocument. TYourDocumenLDolnitialState 5hould set up the work me
for an empty document (if necessary) and TY ourDocumenLDoRead should set up the work file for an existing
document (if necessary). fSaveExists is a reliable indicator of whether a main document me exists or not (and. if
fDataOpen or fRsrcOpen is TRUE, whether the corresponding refNwn is valid).

Ancestors: TObject, TEvtHandler

Field.

fChangeCount: LONGINT; The number of changes since the last time the document was saved

fCommitOnSave: BOOLEAN; Whether to commit the last command when saving this document. ifti~at

fCreator: OSType;

fDataOpen: BOOLEAN;

fDataPerm: INTEGER;

command affects the documenL The default is TRUE.

A four-characrer code giving the docwnent's creator.

Whether or not the data fork of the document file should be kept open at all times.
This is FALSE except for disk-based documents

The permission used to open the data fork of the file: fsRdPerm, fsWrPerm,
fsRdWrPerm, or fsRdWrShPerm

fDataRefNum: INTEGER; The reference number for the data fork of the document me, if that fork is open'

fDocP r int Handler: The object that enables and executes the Print, Print One, and Page Setup commands
TPrintHandler;

fFileType: OSType; A four-characrercodegiving the type of the document file

fModDate: LONGINT;

fPrintInfo: Handle;

File modif'lcation date representing when the me was last read or saved.

Either NIL or a handle to a 120-byte print information record

fReopenAlert: BOOLEAN; Whether to give an alert if the user attempts to reopen a documenL The default is
TRUE.

fRsrcOpen: BOOLEAN;

fRsrcPerm: INTEGER;

Whether or not the resource fork of the document me should be kept open at all
times

The permission used to open the resource fork of the file: fsRdPerm, fsWrPerm,
fsRdWrPerm, or fsRdWrShPerrn

fRsrcRefNum: INTEGER; The reference number of document file's resource fork, if it is open.

fSaveExists: BOOLEAN; Whether or nota disk file representing this document exists; in other words, whether
or not this document has ever been saved

fSaveInPlace: SIPChoice; The value that determines what happens when there isn't room on the disk to
save the document in a new me, rather than writing over the old versionof the
document (when the old version is overwritten, the file is "saved inp1acej: sipNever.
sipAlways, or sipAskUser

fSavePrintInfo: BOOLEAN; When this is set to TRUE and the document is saved, TDocumenLDoWrite
writes the print information record of the fDocPrintHandler to the data fork of the
document file. If this is TRUE, when the document is read, the print information
record is read by TDocumenLDoRead.

i

fSharePr intInfo: BOOLEAN; When this is set to TRUE, all print handlers associated with views belonging to

MacApp 2.0 Globols

this document will share the same print information record. (This value determines
whether or not they will share that record.)

10/3/88 Page 31

fTitle: STRING[63];

fUsesRsrcFork: BOOLEAN;

fUsesDataFork: BOOLEAN;

fViewList: TList;

fVolRefNum: INTEGER;

fWindowList: TList;

Close

The name of the document file

Whether or not the document uses the resource fork of the me

Whether or not the document uses the data fork of the file

The list of views that render this document's data

The volume reference number of the document me

The list of windows belonging to this document

PROCEDURE TDocument.Close;

Purpose To close and free a document This method must never be called for a document
related to a view in the Clipboard.

Called by

The default version

Override

Call

DolnHialState

T Application.Close and 1Window.CloseByUser

If the document's data has changed, a dialog is posed asking the user to save changes.
If the user cancels nothing further happens. If the user chooses yes the document's
Save method is called and, if necessary, the last command is committed, all of the
document's windows are closed, and the document is freed.

Sometimes

Sometimes

PROCEDURE TDocument.DoInitialState;

Called by

The default version

Override

Call

MacApp 2.0 Globals

MacApp methods when the user chooses the New command, when the user chooses
the Revert command and there is no saved me, and when the user opens the
application icon. It does any additional initialization of the document that is not done
when an existing document is opened.

Does nothing

Often. You should override this method when new documents need initialization not
done when existing documents are opened.

Neva-

10/3/88 Page 32

(DoMekeWlndows

f~
'f
\~

PROCEDURE TDocument.DoMakeWindows;

Purpose

Called by

The default version

Override

Call

DoMekeVlews

Primarily, to maintain compatibility with MacApp l.x by providing the ability to
create window objec~ for a documenL This method is called after a document is
opened, initialized, and has i~ views created. This method should·creat.e the windows
and frames to show the views.

TApplication.OpenNew and T Application.OpenOld

Does nothing.

Sometimes. In your implementation, you may wish to distinguish between views
that represent windows and views that represent data.

Neva'

PROCEDURE TDocument. DoMakeViews (forPr intinq: BOOLEAN);

forPrlntlng

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

Tells you whether or not MacApp called this in response to the user requesting
printing of a document from the Fmder. If your application creates views that are not
printed (such as palette views), you do not need to create them when forPrinting is
TRUE.

To create the windows and views for a document. both the views that interpret the
documerit's data and those, like palettes, that are independent of the data. It is called
after a document is created and initialized and before the windows are created.

TApplication.OpenNew, TApplication.OpenOld, and TApplication.PrintDocument

Calls ProgramBreak to halt the program

Always. Your implementation creates all views for the document and stores the
views in a field of the document ObjecL See the "Creating a View" recipe in the
Cookbook for details on how to implement this method.

Never

10/3/88 Page 33

DoMenuCommand
FUNCTION TDocument • DoMenuCommand (aCmdNumber: CmdNumber): TCommand; OVERRIDE;

aCmdNumber

The retum value

Purpose

Originally declared by

The default version

Override

Call

MacApp 2.0 Globois

The command number of the menu command chosen by the user

A command object that will carry out the command (and possibly undo and redo the
command) or gNoChanges

To handle menu commands defined for this particular object type

TEvtHandler

Handles the MacApp-defined standard menu commands Save As, Save a Copy In,
Save, and Revert

Often. You override this method when your application has its own menu commands
that apply to the document as a whole. In that case, you end your method by calling
INHERITED DoMenuCommand so that the MacApp method can handle its
commands.

You call this method when you override it Otherwise, you never call it

10/3/88 Page 34

(

(.

OoNeedOiskSpace
PROCEDURE TDocument. DoNeedDiskSpace (VAR dataForkBytes, rsrcForkBytes: LONGINT);

data Fork Byte.

rsre Fork Byte.

Purpose

The default version

Override

Call

MacApp 2.0 Globais

Indicates the amount of disk space the document needs to save itself. This is set by
this method.

Indicates the amount of disk space the document needs to save itself. This is set by
this method.

To return the amount of disk space needed to save the document

Returns 0 for dataForkBytes unless fSavePrintInfo is TRUE, in which case it returns
the size of the print information record, and sets rsrcForkBytes to 0 unless
rusesRsrcFork is TRUE, in which case it sets it to the standard fixed overhead value
for the resource fIle. (See the Resource Manager chapter of Inside Macintosh for
more information.)

Almost always. Documents that do not override DoNeedDiskSpace generally cannot
save any data except the print information record.

Your override method should accurately predict how much disk space will be needed .
to store the data and resources for the documents. (Most documents have no
resources, so the resource fork value is usually 0.) When you calculate your values,
you do not have to calculate how many blocks are actually needed. just the number
of bytes since MacApp automatically accounts for an integral number of blocks.
Also, you should add your needs to the initial values of these variables, as MacApp
may have already set them to some value before calling this method. If you use the
resource forle. you can use the constants kRsrcTypeOverhead and kRsrcOverhead to
account for the resource file overhead ftX' each resource type and individual resource,
respectively.

If there isn't enough space in the target volume, MacApp tests whether deleting the
old file would make enough room. If it would, what happens next depends on the
value of fSaveInPlace. See the notes at the beginning of "TDocument" in this
chapter for more information. If deleting the fIle would not make enough space (or
is precluded by the value of fSaveInPlace or the user's actions), MacApp issues a
disk full error and the user is shown an alert to that effecL

Never

10/3/88 Page 35

DoRead
PROCEDURE TDocument.DoRead(aRefNum: INTEGER; rsrcExists, forPrinting: BOOLEAN);

aRefNum

rsrcExlsts

forPrlntlng

Purpose

The default version

Override

Call

MacApp 2.0 Globals

A me-system reference number for the document me. It is obtained from the
Operating System by MacApp. If the document doesn't use the data fork (that is, it
uses only the me's resource fork), aRefNum is O.

Indicates whether or not the resource fork of the me exists. If it is FALSE, and the
document uses the resource fork, it means that the resource fork could not be opened
(presumably because it does not yet exist).

TRUE if the document is being opened just to print it (for printing from the Finder)

To read an existing document file so its data can be used in the document object

Reads the print information record if fSavePrintInfo is TRUE for this document
object. Otherwise, it does nothing.

Almost always. Documents that do not override this method cannot save or restore
anything except their print information record.

If your document uses the resource fork and the resource fork exists. then MacApp
will ensure that the topmost resource file is that of the document when this method
is called. You may want to get the reference number of the resource me at the start
of this method if you think that some other method might change the top resource
file.

Your implementation generally begins with a call to INHERITED DoRead so that
the print information record is read, if necessary. It then reads the data of the
document and stores it in fields or objects available to the document object. You
should check the rsrcExists parameter before trying to read the resource fork. (It is
possible that the user opened a document with no resource fork. MacApp does not
consider this an error.)

See the "Saving and Restoring Data" recipe in the Cookbook for details about
implementing this method.

You call this method if you override it. When you override this method, you usually
call it (by calling INHERITED DoRead). Otherwise, you never call it.

10/3/88 Page 36

(..

DoSefupMenus
PROCEDURE TDocument.DoSetupMenus; OVERRIDE;

Purpose

Originally declared by

The default version

Override

Call

MacApp 2.0 Globals

To set up menu commands handled by TDocumenl.DoMenuCommand This method
is called before any menu is displayed when the menus may have changed since the
last time it was called or from the idle loop, again when the menus may have
changed since the last time this was called. It is responsible for adorning and
enabling or disabling all menu commands handled by the document

TEvtHandler

Begins by calling INHERITED DoSetupMenus. It then sets up the menu commands
handled by TDocumentDoMenuCommand: Save As, Save a Copy In. Save. and
Revert

Often. You override this method if you define any menu commands that apply to
your document In general, you override this method whenever you override
TDocument.DoMenuCommand. Your implementation must begin by calling
INHERITED DoSetupMenus so that MacApp can set up the menus fll'St Then, you
use the global procedures Enable and EnableCheck to enable any menu commands
that can currently be used. (EnableCheck,like Enable, can enable or disable mqlu
commands. EnableCheck also can add or remove a check mark next to a menu item.)
You can also adorn menus in other ways. See the "Changing Menu Appearance and
Function" recipe in the Cookbook for more detailed information.

You usually call this method when you override it Otherwise, you never call it

10/3/88 Page 37

DoWrite
PROCEDURE TDocument .DoWrite (aRefNum: INTEGER; makinqCopy: BOOLEAN);

aRefNurn

rnaklngCopy

Purpose

The default version

Override

Call

ForAllVlewsDo

A me-system reference number for the document me. It is obtained from the
Operating System by MacApp.

Indicates whether DoWrite is being called to save a copy of the document (Generally
used only for disk-based documents.).

To save a document's data to a disk me

Saves the print information record to the disk rtIe if fSavePrintlnfo is TRUE.
Otherwise, it does nothing.

Almost always. Documents that do not override this method cannot save or restore
anything except their print information record.

Your implementation generally begins with a call toINHERTIED DoWrite so that
the print information record is saved, if necessary. It then saves the document's data.

If your document uses the resource fort and the resource fork exists, then MacApp
will ensure that the topmost resource file is that of the document when this method .
is called. You may want to get the reference number of the resource me at the start
of this method if you think that some other method might change the top resource
file.

See the "Saving and Restoring Data:" recipe in the Cookbook for details of this
method.

You call this method when you override it (by calling INHERITED DoWrite).
Otherwise, you never call it .

PROCEDURE TDocument • ForAllViewsDo (PROCEDURE DoToView (aView: TView)};

DoToVlew

Purpose

The default version

Override

Call

MacApp 2.0 Globals

A procedure, usually local to the caller, thai is called repeatedly by ForAlIViewsDo
and passed each of the views in tum

To perform an operation on all views of a document

Calls DoToView once for each view in the document's view list

NCM2'

Sometimes

10/3/88 Page 38

(ForAIiWindowsOo
PROCEDURE TDocument.ForAllWindowsDo(PROCEDURE DoToWind(aWindow: TWindow));

DoToWlnd

Purpose

The default version

Override

Call

FreeOata

A procedme, usually local to the caller, that is called repeatedly by
ForAllWmdowsDo and passed each window of this document in tum

To perfonn anoperation on all windows of a document

Automatically scans through the document's list of windows and calls DoToWind
once for each window

Never

Sometimes

PROCEDURE TDocument.FreeData;

Purpose To free the document's data objects during a revert operation

Called by TDocument.Revert

The default version

Override

Call

Free File

Does nothing

Always. You override this method to free data objects that should be freed when the
user chooses the Revert command.

Sometimes. You may want to call this method from your implementation of
TDocumenLFree, if convenienL

PROCEDURE TDocument.FreeFile;

Purpose

Called by

The default version

Override

Call

MocApp 2.0 Globals

To free resources associated with the connection between a TDocument object and a
disk tile

TDocumenLFree, TDocumentSave ViaTemp, and TDocumentSaveInPJace

Closes the appropriate forks of the file if fDataOpen or tRsrcOpen and fSaveExists
are TRUE

Sometimes

Rarely

10/3/88 Page 39

FreeFromClipboard
PROCEDURE TDocument.FreeFromClipboard;

Purpose

Called by

The default version

Override

Call

GetTempName

To free a Oipboard document

TView.FreeFromOipboard

Removes gOipWindow from fWindowList and calls Free

Sometimes. You can override this method to do something other than Free.

Never

PROCEDURE TDocument • GetTempName (VAR fileName: Str2SS);

fileName

Purpose

The default version

Override

Call

MacApp 2.0 Globals

A name for a temporary document file

To generate a random temporary filename

Appends a mutated fonn of the time of day to the name of the document or. if the
document is untitled. to the name of the application

. Rarely

Sometimes

10/3/88 Page 40

(

if

IDocument
PROCEDURE TDocument.IDocument(itsFileType, itsCreator: OSType;

usesDataFork, usesRsrcFork, keepsDataOpen, keepsRsrcOpen: BOOLEAN);

ItsFlleType

ItsCreator

usesDataFork

uses Rsrc Fork

keepsDataOpen

keepsRsrcOpen

Purpose

The default version

Override

Call

MacApp 2.0 Globals

The fIle type for the document file

The signature of the application that created the document me

Indicates whether (kUsesDataForle) or not (NOT kUsesDataForle) the document uses
the data forle of the fIle

Indicates whether (kUsesRsrcFork) or not (NOT kUsesRsrcFork:) the document uses
the resource fork of the fIle

Indicates whether (kDataOpen) or not (NOT kDataOpen) the data fork: of the file
should be kept open at all times

Indicates whether (kRsrcOpen) or not (NOT lcRsrcOpen) the resource fork of the me
should be kept open at all times

To initialize a TDocument ObjecL It is usually called from the initialization m~thod
of customizations of TDocumenL

Gives these values to the fields of TDocument:

fWindowList : - NewList;

fViewList : = NewList;

fDocP r in tHandle r : - NI L;

fChangeCount : = 0;

fSavePrintlnfo :- FALSE;

fSharePrintlnfo :- TRUE;
fPrintlnfo :- NIL;

fTitle :- ";

fFileType : - itsFileType;
fVolRefNum : = 0;

fReopenAlert : - TRUE;

fSaveExists : - FALSE;

fCommitOnSave :- TRUE;

fCreator : .. it sCreator;

fDataPerm :- fsRdPerm;

fRsrcPerm :- fsRdPerm; {Has no meaning with 64K ROM}

fDataOpen :- keepsDataOpen;

fRsrcOpen := keepsRsrcOpen;

IF keepsDataOpen OR keepsRsrcOpen THEN

fSaveInPlace :- sipNever

ELSE
fSavelnPlace := sipAskUser;

Never

You call this method at the beginning of the IYourDocument method that you write
for your document type to change any values you need to change' and do any
additional initialization you require.

10/3/88 Page 41

SavedOn
PROCEDURE TDocument .SavedOn (fileName: Str255; volRefNum: INTEGER);

fileName

volRefNum

Purpose

Called by

The default version

Override

Call

SavelnPlace

The name of the document file

The volume reference number for the file

To allow the programmer to clean up any data sbl!ctures or work files to note that a
clean save has been made

TDocumenlSave when a new copy of the file is being made (the normal situation)

Resets fChangeCount to 0, sets fSaveExists to TRUE, replaces ITitle and
fVolRetNum with the values passed in, and if fDataOpen or fRsrcOpen is TRUE,
opens the appropriate fork

Sometimes

Never

PROCEDURE TDocument.SaveInPlace(itsCmdNumber: CmdNumber; makingCopy: BOOLEAN; VAR
fileName: Str255;

ItsCmdNumber

maklngCopy

fileName

volRefNum

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globals

volRefNum: INTEGER);

The command number for this save operation

Whether or not a copy of the original file is being saved

The name of the document file

The volume reference number for the file

To save the document, replacing the old version on disk

TDocumenLSave when makingCopy is FALSE and askForFileName is FALSE, and
the document cannot or should not be saved via a temporary file

If fDataOpen and tRsrcOpen are both FALSE, deletes the target fIle, calls
SELF.FreeFile, calls SELF.MakeNewCopy, and then calls SELF.SavedOn.1f either
fDataOpen or tRsrcOpen is TRUE, the default version does nothing.

Sometime. You can override this method to save a disk-based document in place by
modifying the file. If you do, you must set the fIle's access permission to a
modifIable mode before doing so.

Never

10/3/88 Page 42

(
SaveVlaTemp
PROCEDURE TDocument.SaveViaTemp(itsCmdNumber: CmdNumber, makingCopy: BOOLEAN, VAR
fileName:

ItsCmdNumber

maklngCopy

fileName

volRetNum

Purpose

Called by

The default version

Override

Call

SetTitle

Str255; volRefNum: INTEGER);

The command number for this save operation

Whether or not a copy of the original me is being saved

The name of the document file

The volume reference number for the file

To save the document into a new, temporary me

IDocumentSave when a new copy of the file is being made (the normal situation)

Calls SELF.MakeNewCopy and then calls SELF .FreeFile if makingCopy is
FALSE. It then deletes the target (if it exists), renames the file, and calls
TDocument.SavedOn if makingCopy is FALSE.

Rarely

Never

PROCEDURE TDocument.SetTitle(aTitle: Str255),

aTltle

The default version

Override

Call

MacApp 2.0 Globals

The new title for the window

Sets SELF.ITitle to aTitle and calls SetTitleForDoc for each window of the
docwnent

Sometimes

Sometimes

10/3/88 Page 43

ShowReverted
PROCEDURE TDocument.ShowReverted;

Called by

The default version

Override

Call

ShowWindows

TDocumentDoMenuCommand when the user chooses the Revert command and
clicks the OK button in the dialog box that is displayed

Calls Show Reverted for each view of the document

Rarely

Rarely

PROCEDURE TDocument.ShowWindows;

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Globols

To display a document's windows on the screen. It is called when the document is
initially opened

TApplication.OpenNew and TApplication.OpenOld

Calls OpenWindow for all windows for which fOpenInitially = TRUE

Sometimes. You can override this method to determine in some other way what
windows are initially shown.

Never

10/3/88 Page 44

TCommand

Customize: usually
Instantiate: never
Call methods: rarely

TCommand objects fall into two general categories: command objects and mouse trackers. The Cookbook includes a
number of recipes dealing with different types of command objects and mouse trackers. In general, you override Dolt,
UndoIt, RedoIt, and possibly Commit for command objects and trackers that change the document, while you
override TrackConstrain, TrackFeedback, and TrackMouse only for mouse trackers.

Command objects and mouse trackers that do not change the document do not ~ UndoIt, RedoIt, or Commit In
fact, you may never create a command object for many commands that do not change the document; in those cases,
you can carry out the action of the command from DoMenuCommand, DoMouseCommand, DoKeyCommand,
DoCommandKey, or another method that returns a command ObjecL (In that case, return gNoChanges.)

Ancestors: TObject

Fields

fCanOndo: BOOLEAN; Whether or not this command can be undone. The default is TRUE.

fCau sesChanqe: BOOLEAN; Whether or not this command changes the document referred to by the
command's fChangedDocument field. This defaults to TRUE. When this is TRUE,
the document is automatically marked as changed when this command is done. (If the
command is undone, the document's change count is automatically decremented, and
if the command is redone, the change count is incremented again.)

fChanqedDocument: The document that may be changed by the command. This defaults to gDocument
TDocument;

fChanqesClipboard: BOOLEAN; Whether or not this command changes the Oipboard. This defaults to
FALSE and should be set to TRUE for cut or copy commands that change the
Clipboard.

fCmdNumber: CmdNumber; The command number associated with the command

fConstrainsMouse: BOOLEAN; When this is set to TRUE. this command's TrackConstrain method is called as
the mouse moves. This defaults to FALSE.

fScroller: TScroller; Either a handle to the scroller used for auto-scrolling or Nil.

fTarget: TEvtHandler; The target to set before calling UndoIt or RedoIt In other words, the value of
gTarget when this command was initially given.

fTrackNonMovement: BOOLEAN; Whether to call TrackMouse even if the mouse hasn't moved since the
last call to TrackMouse. The default is FALSE.

fView: TView; The view in which mouse tracking takes place or Nil to track in screen coordinates.

fViewConstrain: BOOLEAN; Whether the mouse is constrained to the view. The default is TRUE.

MocApp 2.0 Globals 10/3/88 Page 45

Commit
PROCEDURE TCommand.Commit;

Purpose To do anything necessary to make the effects of a command pennanent

Called by T Application.CommitLastCommand. which is called when the command can no
longer be undone or redone (usually when a new undoable command is chosen, when
the document is closed, or when the application is tenninated). It is not called if the
command was left undone.

The default version

OverrIde

Call

Dolt, Redolt, Undolt

Does nothing

Often. This method is most commonly used to implement filtered commands or
with commands that delete items from the document's data set, in which the deleted
items are not freed until the command can no longer be undone.

Rarely

PROCEDURE TCommand. D<>It;
PROCEDURE TCommand.Redolt;
PROCEDURE TCommand.Undolt;

Purpose To do, undo, and redo a command. Dolt is called when the command is initially
done; Undolt is called when the user picks the Undo command an odd number of
times; RedoIt is called when the user picks the Undo command an even number of
times. Dolt and RedoIt carry out the action of the command (generally, they both
call the same methods to do the command, although Redolt may have to change the
selection or otherwise act to restore the state of the document at the time the
command was originally done). Undolt reverses the action of the command.

Called by TApplication.PerformCommand (Dolt) and TApplication.DoMenuCommand (Undo!t
and Re<k>lt)

The default version

Override

Call

MacApp 2.0 Globals

Does nothing

Usually. These are the methods that generally carry out (and undo) the action of the
command. The only command objects that may not override these methods are
mouse trackers and commands that do not change the document or those that cannot
be Wldone.

Almost never. The only likely exception is that your Redo!t method might call
Doll

10/3/88 Page 46

(

ICommand
PROCEDURE TCommand. ICommand (i tsCmdNumber: CmdNumber, itsDocument: TDocument; itsView:
TView;

ItsCmdNumber

ItsDocument

ItsVlew

ItsScrolJer

Purpose

Called

The default version

Override

Call

MacApp 2.0 Globals

itsScroller: TScroller);

The command number associated with this command

The document affected by this command

The view in which mouse tracking takes place or Nil to track in screen coordinates.

Either a handle to the scroller used for auto-scrolling or Nil.

To initialize fields of TCommand

Usually from the initialization methods for the immediate descendants of TCommand

Makes these assignments:
fCmdNumber := itsCmdNumber;

fCanUndo : = TRUE;

fCausesChange := TRUE;

fChangedDocument : = gDocument;

fConstrainsMouse :- FALSE;

fViewConstrain := TRUE;

fChangesClipboard : = FALSE;

fTrackNonMovement := FALSE;

fView := itsView;

fScroller : = itsScroller;

fTarget := NIL;

Never. You usually supplement its action with an IY ourCommand method.

Always. You call this method as part of command initialization.

10/3/88 Page 47

TrackConstrain
PROCEDURE TCornrnand. TrackConstrain (anchorPoint, previous Point : VPoint; VAR nextPoint:
VPoint);

anchorPolnt

prevlousPolnt

nextPolnt

Purpose

CalJed by

The default version

Override

Call

TrackFeedback

The position of the mouse pointer, in view coordinates, when the mouse button
went down

The position of the mouse pointer the last time this method was called, in view
coordinates

The current position of the mouse pointer, in view coordinates

To constrain the mouse movement in any way your application requires. It is used
only in mouse trackers.

TApplication.TrackMouse (a method you never deal with directly) when
command.fConstrainsMouse is TRUE

Does nothing

Sometimes override this method to change the value of nextPoint See "Handlil'lg
Mouse Events" in the Cookbook for further discussion of mouse trackers.

Rarely

PROCEDURE TCornrnand. TrackFeedbacl< (anchorPoint, nextPoint: VPoint; turnItOn,
mouseDidMove: BOOLEAN);

anchorPolnt

nextPolnt

turnltOn

mouseDldMove

Purpose

Called by

The default version

Override

Call

MacApp 2.0 Global$

The position, in view coordinates, of the mouse pointer when the mouse button
went down

The current position, in view coordinates, of the mouse pointer

Indicates whether the feedback is to be turned on (TRUE) or turned off (FALSE)

TRUE if the mouse moved since the last time TrackFeedback was called

To provide on-screen feedback for the user while the mouse is being tracked (that is,
while the mouse button is down and a mouse tracker object exists)

TApplication. TrackMouse

Provides "rubberband" feedback: a shadowy box between anchorPoint and nextPoint

Often. You override this method to provide more appropriate feedback while the
mouse is tracked. See "Handling Mouse Events" in the Cookbook for further
discussion of mouse trackers.

Rarely

10/3/88 Page 48

TrackMouse
FUNCTION TCommand. Track:Mouse (aTrack:Phase: Track:Phase; VAR anchorPoint. previousPoint.

nextPoint: VPoint; mouseDidMove: BOOLEAN): TCommand;

aTraekPhase

anehorPolnt

prevlousPolnf

nextPolnt

mouseDldMove

The return value

Purpose

Called by

The default version

Override

Cell

MacApp 2.0 Globals

The current phase of the mouse-ttacking process: ttackPress when the mouse button
fllSt goes down, ttackMove while the mouse moves, and ttackRelease when the
mouse button comes up

The position of the mouse pointer, in view coordinates, when the mouse button
went down. If you change this value, the new value is passed to you the next time
this method is called. .

The position of the mouse pointer the last time this method was called, in view
coordinates

The current position of the mouse pointer, in view coordinates. Although you can
change this value, it is better to use TrackConsttain to control mouse movement

TRUE if the mouse moved since the last time TrackFeedback was called. (See "Track
Feedback," below.)

The mouse tracker that will be used in succeeding calls. You generally return SELF,
although applications may sometimes return a different mouse tracker object

To allow you to carry out any actions (other than feedback or mouse constraint) that
depend on the movement of the mouse or on the ttack phase

TApplication.TrackM)Use when the mouse button first goes down, as the mouse
moves, and when the mouse button comes up

Returns SELF, in effect doing nothing

Often. You override this method to take application-speciflC action. You should not
assume that the mouse should be considered to have moved the fllSt time this is
called with an aTrackPhase of trackMove. The ttack phase is set to trackMove when
the mouse moves more than the hysteresis value. SELF.TrackConsuain may set the
mouse position back so that no movement should be considered to have occurred.
The value of mouseDidMove should be tested to determine whether the mouse
should be considered to have moved. See "Handling Mouse Events" in the Cookbook
for further discussion of mouse trackers.

Never

10/3/88 Page 49

lUst
Customize: rarely
Instantiate: often
Call methods: often

TI.ist is defined in UList.

This object type is used in MacApp 10 SlOre objects and is otherwise provided for your convenience. You do not have
to use TI.ist objects.

In general, you store objects of a single type in a TI.ist object, and when you retrieve an object, you coerce the result
into a variable of the type you need. '

Ancestor: TObject

Fields

fDeletions: INTEGER;

fEachLevel: INTEGER;

The number of deleted elements in the list. These have the value kDeletedElement.
The fSize field always reflects the number of real elements (that is, without counting
these deleted elements). Other objects must not write directly 10 this field. (y oq can
read its value, though.)

The number of Each calls in progress. Other objects must not write directly to this
field.

fFirstOffset: LONGINT; Contains the number of bytes of named fields before the fU'StelemenL Equal 10

Sizeof(SELF). Other objects should neither read nor write 10 this field.

fSize: INTEGER; Holds the number of elements in the list

At
FUNCTION TList .At (index: INTEGER): TObject;

Index

Purpose

The default version

Override

Call

MacApp 2.0 Globals

The index number of the element you want to retrieve (counting from one)

To return a specific element from a list

Retmns the requested elemenL Range checking is done only when the compile flag
qRangeCheck is TRUE.

Rarely

Often

10/3/88 Page 50

(

Delete
PROCEDURE TList .Delete (item: TObject);

Item

Purpose

The default version

Override

Call

DeleteAIi

A reference to an object

To delete a specific element from the list

Searches the list for the fllSt reference to the object referred to by item and deletes it
The item is not freed. If there are additional references to the same item in the list,
they are not deleted. If the item is found, this method reduces fSize by one.

Rarely. You might override this method to delete all references to the object referred
to by item or to free the deleted objecL

Often

PROCEDURE TList.Dele~eAll;

Purpose

The default version

Override

Call

Each

To delete all elements in a list

Sets fSize to O. This deletes all elements from the list but does not free the objects.

Rarely

Often

PROCEDURE TList. Each (PROCEDURE DoToItem (item: TObject»;

DoToltem

Purpose

The default version

Override

Call

MacApp 2.0 Globals

A procedure (usually local) that is passed each element of the list in tum

To apply the procedure DoToItem to every element in a list

Calls the procedure DoToItem repeatedly. passing each element of the list to that
procedure in tmn. The actual parameter is typically a procedure whose argument is a
descendant of TObjecL If DoToItem calls InsenLast, the newly added element will
not be passed to DoToItem. If DoToItem calls InsertFirst or DeleteAll, the result is
unpredictable.

Rarely

Often

10/3/88 Page 51

First
FUNCTION TList. First: TOb ject;

The return value

Purpose

The default version

Override

Call

FirstThot

The fIrst element in the list

To return the fIrst element in a list

Returns the fIrst element in the list, or Nil. if there is no fIrst element

Rarely

Often

FUNCTION TList.FirstThat (FUNCTION TestItem(item: TObject): BOOLEAN): TObject;

Tesmem

Purpose

The default version

Override

Call

lUst
PROCEDURE TList.IList;

Purpose

The default version

Override

Call

MacApp 2.0 Globals

A function, usually local to the caller, which returns TRUE when some condition is
met

To return the fIrst element that fulfIlls some condition as determined by the function
TestItem

Calls TestItem once for each element of the list, in order, until TestItem returns
TRUE. It then completes and returns the element that satisfIed the test If none
satisfIed the test, the method returns Nil.. The actual parameter is typically a
function whose argument is a descendant of TObject If TestItem calls InsertLast, the
newly added element will not be enumerated. If TestItem calls InsertFirst, Delete, or
DeleteAll, the results are unpredictable.

Rarely

Often

To initialize a new list

Initializes the list, setting fSize to 0

Never. If you customize TList, you might supplement its action with an IYourList
method.

Usually. Sometimes, though, you call the global procedure NewList (documented
with this object type, not in Chapter 9), which calls this method; for you. You
should never call this method twice for the same list

10/3/88 Page 52

(

(

InsertFirst

PROCEDURE TList.InsertFirst(item: TObject);

Item

Purpose

The default version

Override

Call

InsertLast

An object reference

To insert a new element as the first in a list

Inserts a reference to the item as the new first element of the list. The index of the
new item is 1. All other elements are moved over one. (The old first element is not
deleted; it is now the second element) The value of fSize is increased by one. If the
compile flag qDebug is TRUE and SetEltType was called, the item's type is checked
to make sure it is of the list's dermed element type. (That is only possible if the
application and MacApp were compiled with debugging on. See Chapter 11 for
more information.)

Rarely

Often

PROCEDURE TList.InsertLast(item: TObject);

Item

Purpose

The default version

Override

Call

NewList

An object reference

To insert a new element as the last element in a list

Inserts a reference to the item as the new last element of the list. The index of the
new item is fSize. (The old last element is not deleted; it is now the next-to-last
element) The value of fSize is increased by one. If the compile flag qDebug is
TRUE and SetEltType was called, the item's type is checked to make sure it is of
the list's defined element type. (That is only possible if the application and MacApp
were compiled with debugging on. See Chapter 11 for more information.)

Rarely

Often

FUNCTION NewList: TList;

Purpose To create a linked list

The default version Creates an object of type !List, calls IList to initialize it, and returns the object

* Nole: This is a global procedure. It is documented here because it is important only for
!List objects.

MacApp 2.0 Globals 10/3/88 Page 53

RemoveDeJetlons
PROCEDURE TList.RemoveDeletions;

Purpose

Override

Call

MacApp 2.0 Globals

To remove deleted items from a Jist Items deleted by Delete while an Each operation is in
progress are replaced by the value kDdetedEIement They cannot be accessed and are not
counted in the value offiize. This method actually removes those eJements.

NeYer

Rarely

10/3/88 Page 54

