

Part II Command Reference

Part II Command Reference

Part II is a conunand dictionary that describes each of the tools, scripts, and
built-in conunands of the Macintosh Programmer's Workshop 3.0. When you have
become sufficiently familiar with the material in Part I, you can move Part II to a
smaller separate binder for convenient desktop reference. (You may also want to
include frequently used appendixes or tables in the separate binder.) Please be
sure to read the next section, "Conunand Prototype," which explains the format
for all conunand deSCriptions and defines the basic behavior of all conunands .•

Contents

Conunand Prototype 6
AddMenu-add menu item 9
Adjust-adjust lines 13
Alert---display an alert box 14
Alias---define or write conunand aliases 15
Align-align text to left margin 17
Asm-MC68xxx Macro Assembler 18

Backup-folder file backup 25
Beep-generate tones 34
Begin ... End-group conunands 36
Break-break from For or Loop 38
BuildConunands-show Build commands 40
BuildMenu-create the Build menu 42
BuildProgram-build the specified program 43

C-C Compiler 45
Canon-canonical spelling tool 49
Catenate-concatenate files 52
CheckIn-check in files to a project 54
CheckOut-check out files from a project 57
CheckOutDir-set checkout directory 61
Choose-choose or list network volumes and printers 64
Clear-clear the selection 68
Close-close specified windows 69

1

Conunando-display dialog for a command 71
Compare-compare text files 73
CompareFiles-show file differences 79
CompareRevisions-compare revisions 81
Confirm-display confirmation dialog box 83
Continue-continue with next iteration of For or Loop 85
Copy-copy selection to Clipboard 87
Count-count lines and characters 89
CPlus-C++ compiling system 91
CreateMake-create a simple makefile 96
Cut-copy selection to Clipboard and delete it 99

Date-write the date and time 100
Delete-delete files and directories 102
DeleteMenu-delete user-defined menus and items 104
DeleteNames--delete symbolic names 105
DeleteRevisions--delete revisions and branches 107
DeRez-Resource decompiler 109
Directory-set or write the default directory 113
DirectoryMenu-create the Directory menu 115
Dolt-highlight and execute a series of conunands 117
DumpCode-write formatted resources 119
DumpFile-display contents of an arbitrary file 122
DumpObj-write formatted object file 125
Duplicate-duplicate files and directories 128

Echo-echo parameters 130
Eject-eject volumes 132
Entab-<:onvert runs of spaces to tabs 133
Equa1-compare files and directories 136
Erase-initialize volumes 139
Evaluate-evaluate an expression 140
Execute-execute a script in the current scope 145
Exists-<onfirm the existence of a file or directory 146
Exit-exit from a script 147
Export-make variables available to programs 148

FileDiv-divide a file into several smaller files 150
Files-list files and directories 152
Find-find and select a text pattern 155
Flush-<:lear the conunand cache 157
For ... -repeat conunands once per parameter 158

2 MPW 3.0 Reference

Format-set or view the window format 160

GetErrorText-display text for system error numbers 162
GetFileName--<iisplaya standard file dialog box 164
GetListItem-display items for selection in a dialog box 166

Help-display summary information 168

If ... -conditional command execution 171

Lib-combine object files into a library file 173
line-find a line number 177
Link-link an application, tool, or resource 179
Loop ... End-repeat command list until Break 189

Make-buifd up-to-date version of a program 191
MakeErrorFile-create error message file 195
Mark-assign a marker to a selection 197
Markers-list markers 199
MatchIt-match paired language delimiteIS 200
MergeBranch-merge a branch revision onto the trunk 205
ModifyReadOnly-allow editing of a read-only file 207
Mount-mount volumes 209
MountProject-mount an existing project 210
Move-move files and directories 212
MoveWindow-move window to h v location 214

'NameRevisions-name files and revisions 216
New-open a new window 220
Newer-compare modification dates between files 221
NewFolder-create a directory 223
NewProject-create a project 224

Open-open a window 226
OrphanFiles-remove projector info from files 228

Parameters-write parameters 229
Pascal-Pascal compiler 230
PasMat-Pascal program formatter 234
PasRef-Pascal cross-referencer 241
Paste-replace selection with Clipboard contents 250
PerformReport-generate a performance report 251

3

Position-list position of selection in window 253
Print-print text files 254
ProcNames--display Pascal procedure and function names 258
Project-set or write the current project 262
ProjectInfo-list project information 263

Quit-quit MPW 272
Quote-quote parameters 273

Rename-rename files and directories 275
Replace-replace the selection 277
Request-request text from a dialog box 279
ResEquai-compare resources in files 281
Revert-revert to saved files 283
Rez-Resource compiler 284
RezDet-detect inconsistencies in resources 288
RotateWindows-rotate between windows 291

Save-save windows 292
Search-search files for a pattern 293
Set-define or write Shell variable 295
SetDirectory-set the default directory 297
Setfile-set file attributes 298
SetPrivilege-set access privileges to folders on file server 300
SetVersion-maintain version and revision number 302
Shift-renumber script parameters 317
Shutdown-shutdown or software reboot 319
SizeWindow-set a window's size 321
Sort-sort or merge files 322
StackWmdows-arrange windows diagonally 326

Target-make a window the target window 328
TileWindows-arrange windows in tile pattern 329
TransferCkid-move projector information 331
Translate-convert selected characters 332

Unalias-remove aliases 334
Undo-undo last edit 335
Unexport-remove a variable definition from export 336
Unmark-remove a marker from a file 338
Uruoount-unmount volumes 339
UnmountProject-unmount mounted projects 340

4 MPW 3.0 Reference

Unset-remove Shell variables 341

Volumes-list mounted volumes 342

WhereIs-search for files in directory tree 343
Which--<ietermine which file the Shell will execute 345
Wmdows-list windows 347

ZoomWindow-enlarge or reduce a window 348

5

Command prototype

Syntax

Description

Type

The following command prototype illustrates the conventions that we've used to
describe MPW commands. Most commands behave roughly as specified at the
end of the introduction.

Command [option ... 1 [file ... 1

• Note: Filenames, command names, and options are not sensitive to case. The
syntax notation itself is described at the end of the introduction.

The first word of the command is the filename of the program to execute or the
name of a built-in command. The subsequent words are passed as additional
parameters to the command (or recognized by the Shell in the case of I/O
redirection) .

Most commands recognize two distinct types of parameters: options and
filenames. Options begin with a hyphen (-) to distinguish them from filenames.
Although the syntax descriptions list the options first, options and files may
appear in any order. All options apply to the processing of all the files, regardless
of the ordering of options and files.

For commands that read and write text files, you can specify a file, a window, or a
selection within a window, as follows:

name

§

name.§

Named window or file

The selection in the target window (the second window from the
top)

The selection in the named window

Commands may fall into one of three categories: Tool, Script, or Built-In. This
information is useful when you need to figure out why a command isn't working.
For example, if you know that the command is a tool or a script, you can deduce
that the file might be missing or that there might be a file of the same name in the
current directory.

6 MPW 3.0 Reference

Input

Output

Diagnostics

Status

Standard input is often processed if no filenames are specified.

• Note: If a program is reading from standard input, you can press
Command-Enter (or Command-Shift-Return) to indicate EOF and
terminate input. (See "Terminating a Command" in Chapter 4.)

Text processors usually write their output to standard output. The MPW
Assembler writes listings to standard output. link, the MPW linker writes location
maps to standard output.

Errors and warnings are written to diagnostic output. If no errors or warnings are
detected, most commands don't write anything to diagnostic output. Assembler
and Compiler error messages have the format

message
File "filename" ; Line linenumber

This format makes it possible to select and execute the text after "u#" because
the names "File" and "line" have been defined as Shell commands-"File" is
defined in the Startup file as an alias for the Target command, and "line" is a
short command file that finds a line number.

Several commands write progress and summary information to diagnostic output
if you specify the -p option.

Status codes are returned in the {Status} variable. A value of 0 indicates that no
errors occurred; anything else usually indicates an error. Typical values are

o Command succeeded.
1 Incorrect options or parameters.
2 Command failed; invalid input.

Positive numbers are returned by tools, scripts, and built-in commands. Negative
numbers are returned only by the Shell.

A Command Prototype 7

Options

limitations

See also

Options specify some variation from the default command behavior. Options
begin with a hyphen (-) to distinguish them from files and other parameters.

Options form single words in the command language. Some options require
additional parameters, which are separated from the option name with a blank.
(An option's parameters also form a single word in the command language.) If
more than one option parameter is required, the usual separators between them
are commas and equal signs. For example,

Asrn -define &debug='on' -pagesize 84,110

Note that spaces are not allowed between option parameters and their separating
commas. For those options that do have additional parameters, the option
parameters are never optional.

Options may appear in any order. All options are collected p~ior to processing
files.

A few commands may have special cases or warnings that you should know about.
Be sure to check for a Limitations heading at the end of the command's
reference.

"Structure of a Command" in Chapter 5.

8 MPW 3.0 Reference

AddMenu-add menu item

Syntax

Description

AddMenu [menuName [itemName [command ...]]]

Associates a list of commands with the menu item itemName in the menu
menuName. If the menu menuName already exists, the new item is appended to
the bottom of that menu. If the menu menuName doesn't already exis~ a new
menu is appended to the menu bar, and the new item is appended to that menu.
When the new menu item is selected, its associated command list is executed just
as though the command text had been selected and executed in the active
window.

• Note: The command text that you specify for an AddMenu item is
processed twice-once when you execute the AddMenu command
itself, and again whenever you subsequently select the new menu
item. This means that you must be careful to quote items so that
they are processed at the proper time. See the "Examples" section
below.

You can also use AddMenu to display information for existing user-defined menus
by omitting parameters:

• If command is not specified, the command list associated with itemName is
written to standard output.

• If itemName and command are both omitted, a list of all user-defined items
for menuName is written to standard output.

• If no parameters are specified, a list of all user-defined items is written to
standard output.

(This output is in the form of AddMenu commands.)

You can also use AddMenu to change the command list or markings associated
with a particular itemName. If both menuName and itemName already exist, the
command list associated with itemName will be changed to command. Also, any
marking or styles associated with itemName will be changed. The position of
itemName in menu Name will not be affected.

AddMenu-add menu item 9

Type

Input

Output

Diagnostics

Status

You can define keyboard equivalents, character styles, and other features for
your new menu commands-itemName can contain any of the metacharacters
that are used with the AppendMenu() procedure documented in the chapter
entitled "Menu Manager" of Inside Macintosh:

Ichar Assign the keyboard equivalent Command-char.
!char Place char to the left of the menu item.
An Item has an icon, where n is the icon number. See Inside Macintosh.
(Item is disabled (dimmed).
<style Item has a special character style; this style can be any of the

following capital letters:

B Bold
I Italic
U Underline
o Outline
S Shadow

Multiple styles may be specified by preceding each with "<". Be sure to quote
menu items containing these special characters. (See the "Examples" section
below.)

• Note: Semicolons (;) cannot be used within an itemName.

Menu items can't be appended to the Window, Mark, or Apple menus.

Built-in.

None.

If any of the optional parameters is omitted, a list of user-defined menu items
and their associated commands is written to standard output.

Errors and warnings are written to diagnostic output.

AddMenu may return the following status codes:

o No errors.
1 Syntax error.
2 An item can't be redefined.
3 System error.

Options None.

10 MPW 3.0 Reference

Examples AddMenu

Lists all user-defined menu items.

AddMenu Extras "TimeStamp/P" 'Echo 'Date"

Adds an "Extras" menu with a "TimeStamp" item, which writes the current time
and date to the active window. This item has the Command-key equivalent
Command-Po

AddMenu File 'Format<B' 'Erase l'

Adds a "Format" item to the File menu (as discussed under the Erase command)
and makes the item bold.

AddMenu Find Top 'Find· "{Active}'"

Adds the menu item "Top" to the Find menu, and defines it as the Find command
enclosed in single quotation marks. This command places the insertion point at
the beginning of the active window.

Note: The following attempt to do the same thing will not work:

AddMenu Find Top "Find· {Active}"

This command won't work because the {Active} variable will be expanded when
the menu is added. (It should be expanded when the menu item is executed.) In
the first (correct) example, the Single quotes defeat variable expansion when the
AddMenu command is executed; they are then stripped before the item is
actually added. The double quotation marks remain, in case the pathname of the
active window happens to contain any special characters.

You may want to add some or all of the following commands to your UserStartup
file:

AddMenu Find '(-'

AddMenu Find 'Top/6'

AddMenu Find 'Bottom/5'

, ,

'Find· "{Active}'"

'Find ~ "{Active}'"

These commands create several new items in the Find menu. The first is a disabled
separator that creates a new section at the bottom of the menu. The Top and
Bottom items position the insertion point at the top and bottom of the active
window. Both menu items have Command-key equivalents.

AddMenu-add menu item 11

------------- - -----~---

See also

AddMenu Directory 'Work' 'Directory HD:MPW:Work'

AddMenu Directory 'Work!·' 'Directory HD:MPW:Work'

The first command creates a command to move to the directory HD:MPW:Work.
The second command marks the Work item with a bullet without changing the
position of the item in the menu.

DeleteMenu command.

"Quoting Special Characters," "How Commands Are Interpreted," and "Defining
Your Own Menu Commands" in Chapter 5.

"Creating a Menu in Your Program" in chapter "Menu Manager" of Inside
Macintosh.

12 MPW 3.0 Reference

Adjust-adjust lines

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Adjust [-<: count 1 [-I spaces 1 selection [window 1

Finds and selects the given selection and shifts all lines within the selection to the
right by one tab, without changing the indentation.

If a count is specified, count instances of selection are affected. The -1 option
lets you move lines by any number of spaces to the left or right.

If you specify the window parameter, the command operates on window. It's an
error to specify a window that doesn't exist. If no window is specified, the
command operates on the target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Adjust may return the following status codes:

o At least one instance of the selection was found.
1 Syntax error.
2 Another error.

-c count Repeat the select-and-adjust operation count times.

-1 spaces Every line within the selection will be shifted spaces to the right. You
can shift a selection left by specifying a negative value for spaces.

Adjust -1 4 §

Shifts the lines containing the target selection to the right by four spaces.

Adjust -1 -8 /if/~:~/e1se/

Selects everything after the next "if' and before the following "else", and shifts all
lines within the selection to the left by eight spaces.

Align command.
"Selections" in Chapter 6.

Adjust-adjust lines 13

Alert-display an alert box

Syntax

Description

Type

Input

Output

DiagnosticS

Status

Options

Example

See also

Alert [-s 1 [message ... 1

Displays an alert box containing the prompt message. The alert is displayed until
its OK button is clicked. If the message contains any special characters, you'll
need to quote it, as explained in Chapter 5.

Built-in.

Reads standard input for the message if no parameters are specified.

None.

None.

Alert may return the following status codes:

o No errors.
1 Syntax error.

-s Run silently. Do not beep when the dialog box is displayed.

Alert Please insert next disk to be searched.

Displays the following alert box and waits for the user to click "OK" before
returning.

Please Insert neHt disk to be searched.

n OK))

Confirm and Request commands.

14 MPW 3.0 Reference

Alias--define or write command aliases

Syntax

Description

Type

Input

Output

Diagnostics

Status

Alias [name [word ...]]

Name becomes an alias for the list of words. Subsequently, when name is used as a
command name, word ... will be substituted in its place.

If only name is specified, any alias definition associated with name is written to
standard output. If name and word are both omitted, a list of all aliases and their
values is written to standard output. (This output is in the form of Alias commands.)

Aliases are local to the script in which they are defined. An initial list of aliases is
inherited from the enclOSing script. Inherited aliases may be overridden locally. You can
make an alias definition available to all scripts by placing the definition in the
UserStartup file.

You can remove aliases with the Una lias command.

Built-in.

None.

When parameters are omitted, the Alias command writes aliases and their values to
standard output.

Errors are written to diagnostic output.

Alias may return the following status codes:

o No errors.
1 The specified alias could not be found.

Options None.

Alias-define or write command aliases 15

Examples

See also

Alias Dir Directory

Creates an alias "Die" for the Directory command.

Alias TOp· 'Find .'

Creates an alias "Top" for the command "Find ." (which places the insertion point at
the beginning of a window). The command takes an optional window parameter and
by default acts on the target window. The Top command could now be used as follows:

TOp * find top of target window
Top Sample.a * find top of window Sample.a

* (equivalent to "Find· Sample. a")

Unalias command.

"Command Aliases" in Chapter 5.

16 MPW 3.0 Reference

Align-align text to left margin

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Align [-c count] selection [window 1

All lines within each instance of the selection are positioned to the same distance
from the left margin as the first line in the selection.

If you specify the window parameter, the Align command will act on window.
It's an error to specify a window that doesn't exist. If no window is specified, the
command operates on the target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Align may return the following status codes:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count Repeat the select-and-align operation count times.

Align §

Same as the Align menu item; that is, it aligns all lines in the default selection with
the first line of the selection.

Align /Begin/:/End/

Selects everything from the next "Begin" through the following "End", and aligns
all lines within the selection to the same margin position as the line that contains
the "Begin".

Adjust command.

"Selections" in Chapter 6.

Align-align text to left margin 17

Asm-MC6sxxx Macro Assembler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Asm [option ...] [file ...]

Assembles the specified assembly-language source files. One or more filenames
may be specified. If no filenames are specified, standard input is assembled and
the file "a.o" is created. By convention, assembly-language source filenames end
in the suffix ".a". Each file is assembled separately-assembling file name.a
creates object file name.a.o. The object filename can be changed with the -0

option.

See the MPW 3.0 Assembler Reference for more information about the assembly
language. The ftrst Commando dialog box for this command is reproduced here
for convenience.

Tool.

If no filenames are specified, standard input is assembled. (You can terminate
input by pressing Command-Enter, or you can enter an END directive, preceded
by a blank space.)

If either the -lor the -s option is specified, an assembler listing is generated. If
standard input is used for the source file, the listing is written to standard output.
If the input is taken from file name.a, the listing is written to name.a.1st. The
listing filename can be changed with the -10 option. The option -10 must be
preceded by the -1 option and must be immediately followed by the listing
filename.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to diagnostic
output.

Asm may return the following status codes:

o No errors detected in any of the files assembled.
1 Parameter or option errors.
2 Errors detected.

18 MPW 3.0 Reference

Options Except for the -case on option, options may appear in any order.

r-Rsm Options
,Options

(Files •••) r-Warnings
i@ Show all warnings
~O Suppress all warnings

Defines: i.9 Suppress on~y branch w~rnings

I Q ,Case-. rProgress-,
!@ orr I 0 SRDE !@Off i
:0 On ~ io Full !
10 Object! iO Time only!

<> (Listing Options •••)

rcommnnd Line
asm I rOI

' II) Cnncel
~68XXX Macro AsRmbl~r

(Rsm J

-addrsize size
Set address displays in the listing to size digits (values 4 through 8
are allowed). The default is 5 digits.

-bIksize blocks

-case on

Set the assembler's text file VO buffer size to blocks 512 bytes.
Values 6 through 62 are allowed. Odd values are made even by
reducing the value by 1. The default value is 16 (8192 bytes) if the
assembler determines it has the memory space for the VO buffers,
and 6 (3072 bytes) otherwise. This option permits optimization of
VO performance (transfer rate for text file input, load/dump files,
and listing output) as a function of the disk device being used.
Note that increasing the blocks value reduces the amount of
memory available for other Assembler structures (such as symbol
tables).

Distinguish between uppercase and lowercase letters in nonmacro
names (same as CASE ON). (Case is always ignored in macro
names.) If you intend to preserve the case of names declared by the
-define option, the -case on option must precede the -define
option(s) in the command line.

Asm-MC68xxx Macro Assembler 19

-case obj[ect]

-case off

<[heck]

Preserve the case of module, EXPORT, IMPORT, and ENfRY names
only in the generated object file. In all other respects, case is ignored
within the assembly, and the behavior is the same as the preset
CASE OFF situation.

Ignore the case of letters. All identifiers are case insensitive. This is
the preset mode of the assembler, but it may be used in the
command line to reverse the effect of one of the other -case
modes.

Syntax check only. No object file is generated.

-d[efine] name[=value] [,name[=value]]

20 MPW 3.0 Reference

DefIne the name as having the specilled value. The value is a
decimal integer. If value is omitted, a value of 1 is assumed. This
option is equivalent to placing the directive

name EQU value

at the beginning of your source me. To test whether the name is
defIned, use the function & Type. You can defIne more than one
name by specifying multiple -d options or multiple name[=value]
parameters separated by commas. For example,

Asm -d debugl, & debug= " 'on' " ...

-d(efme] &name(=[valuell [,&name[=[value]]] ...
Define the macro name as having the specified value. The value is a
decimal integer or a string constant. If the =value is omitted, the
decimal value 1 is assumed. If only the value is omitted, the null
string is assumed. -define is equivalent to declaring the name as a
global arithmetic symbol (GBLA for an integer value) or global
character macro symbol (GBLC for a string value) and placing one
of the following directives at the beginning of the source file:

& name

or

& name

GBLA &name
SETA value

GBLC &name
SETC value

To test whether the name is defined, use the function & Type.
You can define more than one macro name by specifying multiple
-d options or multiple & name [=value] parameters separated by
commas.

-e[rrlogl filename
Write all errors and warnings to the error log me with the specified
filename (same as ERRLOG 'filename ').

Note: If only warnings are generated, no error me is created.

-f Suppress page ejects (same as PRINT NOPAGE).

-font (fontname] [,jontsize]
Set the listing font to jontname (for example, Courier), and the size
to jontsize. This option is meaningful only if the -s or the -I option is
used; you cannot omit both. The default listing font is Monaco 7.
Note that listings are formatted correctly only if a monospaced
font is used.

-h Suppress page headers (same as PRINT NOHDR).

Asm--MC68xxx Macro Assembler 21

-I path name [,pathname] ...
Search for include and load files in the specified directories.
Multiple -I options may be specified. At most, 15 directories are
searched. The search order is:

1. The include or load fllename is used as specified. If a full
pathname is given, no other searching is applied.

If the file isn't found, and the pathname used to specify the file
is a partial path name (no colons in the name or a leading colon),
the following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -I options, in the order listed.

4. The directories specified in the Shell variable {AIncludesl.

-1 Generate full listing. If file name.a is assembled, the listing is
written to name.a.lst.

-10 /istingname
Pathname for the listing file and directory for the listing scratch
file. If listing name ends with a colon (:), it indicates a directory for
the listing file, whose name is then formed by the normal rules (that
is, inputFilename.a.lst). If listing name does not end with a colon,
the listing me is written to the file /istingname. In this case, listings
for multiple source files are appended to the listing file. In either
case, the directory implied by the listing name is used for the
assembler's listing scratch file. The -10 option is meaningful only if
the -s or the -1 option is used.

-oobjname Pathname for the generated object file. If objname ends with a
colon (:), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputFilename.o). If
objname does not end with a colon, the object file is written to the
file objname. (In this case, only one source file should be specified
to the Aassembler.)

-pagesJze [l] [,w]

22 MPW 3.0 Reference

Set the listing page size. (This option is meaningful only if the
-s or -1 option is specified; you cannot omit both.) The I and w
parameters are integers: I is the page length (default = 75) and w is
the page width (default = 126). (These settings assume that
Monaco 7 is being used with the MPW Print command to the
LaserWriter.)

-print mode [,mode]. ..
Set a print option mode. Mode may be anyone of the following
PRINT directive options:

[NO]GEN
[NO] PAGE
[NO] WARN
[NO] MCALL
[NO]OBJ
[NO] DATA
[NO]MDIR
[NO]HDR
[NO]LITS
[NO] STAT
[NO] SYM

Macro expansions
Page ejects
Warnings
Macro calls
Object code
Data
Macro directives
Page headings
Literals
Progress information
Symbol table display

See the MPW 3,0 Assembler Reference for a discussion of these
PRINT settings. You can specify more than one print option by
specifying multiple -print options or multiple mode parameters
separated by commas. For example,

Asm -print nowarn,noobj,nopage

Note that single-letter options are provided for some of the
settings: -f (NOPAGE), -h (NOHDR), -p (STAT), and -w
(NOWARN).

-p Write assembly progress information (module names, includes,
loads, and dumps) and summary information (number of errors,
warnings, and compilation time) to the diagnostic output file.
(This option is the same as PRINT STAT.)

-s Set PRINT NOOBl to generate a shortened form of the listing file.
If the -1 option is also specified, the rightmost option takes
precedence.

-sym off Do not write object file records containing information for SADE,
the MPW symbolic debugger. This is the default and will be in
effect if no -sym option is specified.

Asm-MC68xxx Macro Assembler 23

Example

See also

-sym [on I full]
Write complete object file records containing information for use
by SADE. The options on and full are equivalent. The symbolic
information generated by the assembler consists of Module Begin
(entry) OMF records for identifiers defined by the PROC, FUNC,

and MAIN directives; Local Identifier OMF records for all EQU and
SET identifiers except for those identifiers defined in the files
included from the {AIncludes } folder; and Local Label OMF records
for the local code labels.

-t Display the assembly time and the number of lines to the diagnostic
file even if progress information (-p) is not currently displayed.

-w Suppress warning messages (same as PRINT NOW ARN).

-wb Suppress branch warning messages only.

Asm -w -1 Samp1e.a Memory.a -d Debug

Assembles Sample.a and Memory.a, producing object files Sample.a.o and
Memory.a.o. Suppresses warnings and defines the name Debug as having the value
1. Two listing files are generated: Sample.a.lst and Memory.a.lst. (Sample.a and
Memory.a are located in the AExamples directory.)

MPW 3,0 Assembler Reference .

24 MPW 3.0 Reference

Backup-folder file backup

Syntax

Description

Type

Input

backup [option ...] -from/older-to /older[file ...]

Files in a source ("from") folder are copied to a destination (lito") folder based
on the modification date. By defaul~ only files that already exist in both the
source and destination folders are candidates for copying. (The -a option can
override this default.) Backup does not actually make the copies. Instead, it
generates a script of MPW Shell duplicate commands.

Backup's default operation is based on the premise that you already have an
existing folder on two sets of disks (generally a hard disk and a set of 3.5-inch
disks-drive numbers may be specified as folder "names") and that you want to
make sure that the files on one of the disks are the same as the files on the other
disk. Thus, it is the files on the destination ("to") disk that determine which files
can be copied from the source ("from") disk.

A Shell duplicate command is generated to the standard output file if

• a file on a source disk also exists on the destination disk, and

• the modification date of the source is newer than that of the destination.

In addition to the basic function of generating Shell duplicate commands,
Backup also provides these services:

• Folders can be recursively processed, allowing processing of all folders and
subfolders contained within folders (-r).

• Compare commands can be generated for out-of-date files of type TEXT to
discover why the files are different (-compare).

• Filenames that exist on one disk and not on the other can be displayed
(-check from,to).

• File folder names that don't exist on the destination can be displayed
(-check folders).

• Filenames in the destination that are newer than the source can be displayed
(-check newer).

Tool.

None.

Backup-folder file backup 25

Output

Diagnostics

Status

For each file to be copied, a Shell Duplicate command is generated to the
standard output file as follows:

Duplicate -y FromFile ToFile

Duplicate's -y option may be suppressed by using Backup's -yoption. If you are
using the -e option, then the Shell's Eject commands are generated at the end of
the list of Duplicates. These commands cause the source and/or destination disks
to eject if the -from and -to options specify as parameters either or both disks as
disk drive numbers 1 or 2.

If you use the -compare option, a Compare command is written to the standard
output file if the files are of type TEXT. Note that only the Compare is generated
if you specify -compare only. You can also specify all additional Compare
command options with the Backup -compare option.

Errors and warnings are written to the diagnostic output file. If you specify the
-p option, and the diagnostic file is not the same as the standard output file, then
a summary of all duplicate commands generated is written to the diagnostic
output file. The summary shows the modification dates of both the source and
destination files. If you use the -check option, a report is written to the
diagnostic output file that includes any files in one folder that don't exist on the
other folder, and any files in the destination folder that are newer than the source.
You can redirect this report to a file by using the -co option.

Backup may return the following status codes:

o No errors; Shell duplicate commands have been generated or filenames were
listed.

1 Parameter or option errors.
3 No errors and no flies to duplicate or list.

• Note: Backup returns a status code of 3 when no files need copying. If no
files are copied because none of the files in the source folder exists in the
destination folder, Backup also reports a warning to the diagnostic
output file. If there are no name matches, it is possible that your from/to
pathnames were specified incorrectly. Hence, Backup lets you know of
the possible error. Backup does not report this as an error if you use the
-1, -a, or -since option.

26 MPW 3.0 Reference

Options -a Normally, a file in the source ("from") is ignored if it does not
exist in the destination ("to"). Using the -a option forces Backup
to :~enerate a Shell Duplicate command for all files in the source that
don't exist in the destination.

-alt If you use this option with the -m ("multidisk") option, Backup
will alternate the drive numbers when it asks for additional disks.
This option has meaning only if either -from or -to, but not both,
specifies a disk drive (1 or 2).

Bockup Options
,..Source!Destinetion folders- ,..Sean:h Criteria o Recurslue Typec=] I Select "From" Directory ..•)

Since File I
(Select "To· Directo!] •••) Since Date I

,..Oriue Options- .-Check Report Optlons-

o Eject disks D Files not In "to" I Output Files ...
o Multi-disk o files not in • from"

o fIItematc dlil'e~ o "to·s newer thon ·from"s (More Options ... o 1:()lder~ not in 'to-

fcommand Line
Backup

I
I

J

J

I
FOO in a SOIII"C. ("from·) fo1cMr ar. copMd to a .stination C"to") folder ~HeIP (Concel)
bos.d on tM rnodir_tion dot •. Boclcup dHs no octuall11 do tM cop.s,

C Backup Inst.od a script of MP't(ShoD cluplic.t. COINNIIds is gtntrattd.

-c Create folders. When a folder name doesn't exist in the destination
disk and there are files in the source to copy, -c generates a Shell
Newfolder command to create the folder on the destination disk.
Note that this option makes sense only if you are using the -a
option.

Backup-folder file backup Z7

J

-check checkopt [, checkopt 1...
Produce reports on the source and destination based on the
checkopt parameters. Checkopt may be anyone of the following
parameter words:
from Report all Hles in the source ("from") folder that don't

exist in the destination ("to").

to Report all files in the destination ("to") folder that don't
exist in the source ("from").

allfroms

alltos

folders

newer

Same as from, but report all folders processed, even if
there are no files in that folder to report.

Same as to, but report all folders processed, even if
there are no files in that folder to report.

Report all source ("from") folders that don't exist as
destination ("to") folders when recursively (-r)
processing folders. Note that only the outermost folder
names are reported.

Report all files in the destination ("to") that are newer
than the source ("from").

Note: The -check option is ignored if the -since option is used.

-co filename Normally the -check report is written to the diagnostic output file.
The -co option allows you to redirect the report to the specified
filename.

-compare [only] [,'option ... '] I 'option .. .'
Generate Compare commands for all files of type TEXT that are to
be duplicated. If only is specified, then only the Compares are
generated, not the Duplicates. Additional Compare command
options and output redirection can be specified. Make sure that
the Compare options you include are correct, because Backup
does not check for you. A period (.) may be used to indicate that
there are no Compare options. Note that, in general, the Compare
options must be enclosed in quotation marks to ensure that they
are not used as Backup options.

-d Generate Delete commands for all files in the destination ("to")
folder that don't exist in the source ("from"). If this option is
specified, the options -check to, -check alltos, om, -1, and
-since cannot be used.

28 MPW 3.0 Reference

-do [onIy],'command ... ' I 'command ... '
Generate the command string specified by command ... for all files
that are to be duplicated. If only is specified then only the
command string is generated, not the duplicates. The -do only
option may not be specified when the -compare only option is
specified. When the command string is generated, the source
("from") and destination ("to") pathnames are added to the
command string as the last two (or only) parameters like this:

command ... fromFilename toFilename

If -sync is specified, the same command is generated but with one
additional parameter to indicate the direction. If the source has a
newer modification date than the destination (the standard mode
of copying the source to the destination), a command string like
this is generated:

command ... fromFilename toFilename '-->'

If the destination has a newer modification date than the source,
the following command string is generated:

command ... fromFilename toFilename '<--'

If -I is specified then -do only is implied, and the command string,
rather than a directory listing, is generated for each source ("from")
file, like this:

command ... fromFilename

-e Eject the disk from drive 1 and/or drive 2 if -from or -to specify
drive number 1 or 2. Disks are ejected when Backup terminates if
there are no files to duplicate. If Duplicate commands are
generated, then Shell eject commands are generated to eject the
specified disk(s).

Backup-folder file backup

-from folder I drive
Specify the folder or drive number (1 or 2) from which to get the
source list of files. If this option is omitted, the list may be
specified as a sequence of filename parameters to Backup (for
example, folder:=). If both -from and a list of files are omitted,
then drive 1 is assumed (that is, -from 1) if the -to parameter is
explicitly specified. The -from option must be specified if -to is
omitted or the -I option is used. You can use the Shell wildcard
character, "=", to do limited pattern matching when specifying a
-from folder. However, you must quote such folder specifications
to allow Backup (rather than the Shell) to process the pattern. The
difference between specifying -from and supplying a list of
filenames is that -from always implies that the files belong to the
specified folder, whereas a list of files explicitly specifies those
files. Using -from is more efficient than using the list, but the list
allows more complicated patterns.

-I Generate a list of all files in the source ("from") folder. The -to
option cannot be specified when -I is used. If the -do option is
specified, the -do command string, rather than a file listing, is
generated for each file.

-Iastcmd 'cmd'
Generate the specified command as the last command. For
example, a Beep command could be generated to signal that all the
duplicates have been completed.

-level nesting level
Used to qualify the -a option. -level restricts the copying of all files
in the source that don't exist in the destination to those contained
in folders nested at a level greater than or equal to the specified
nesting level. This minimum nesting level is relative to the folder
specified by the -from option. The -from folder is considered
levelO. Folders contained in it are levell, and so on. The preset-a
qualifying nesting level is 0; that is, all files in the source that don't
exist in the destination are copied as specified for -a. Because the
value of the nesting level is relative, it may take some
experimentation to produce the desired effects.

-m Multidisk operation. Backup will display a dialog box asking for
additional disks to be mounted in drive 1 or 2 (depending on
whether -from or -to specifies drive 1 or 2). This option is ignored
if both -from and -to specify disk drives.

30 MPW 3.0 Reference

-n

-p

-r

-revert

When recursion (-r) is specified, generate the Duplicate commands
for files nested in inner folders with leading spaces to show the
ne~ting structure.

Write Backup's version number and a report of all Duplicate
commands generated to the diagnostic output file. The report is
not produced if the diagnostic output file and the standard output
file are the same.

Recursively process subfolders encountered.

Revert all newer files in the destination ("to") folder to their state in
the source ("from") folder. The default mode for Backup is to copy
only those files in the source folder that are newer than files of the
same name in the destination folder. By specifying -revert, the
copy criteria are reversed. Only files in the destination that are
newer than those in the source are copied. This option is useful for
reverting a newer file to its previous state in an older backup copy.

-since datd,ti~ I ,[ti~ lfilename
Generate Duplicate commands to the destination ("to") folder for
all files in the source ("from") folderCs) that have a modification
date greater than or equal to the specified date and time, or a date
and time determined from the modification date of the specified
filename. This is a special option that unconditionally copies files
that satisfy the date/time requirements. Files and folders in the
destination folder are ignored. This option is useful, for example,
for copying to a single disk all files changed since a certain time.
The date is specified in the form mm/dd/yy. The day ("dd") and/or
year ("yy") may be omitted. The time is specified as hh:mm:ss. The
minutes ("mm") and/or seconds ("ss") may be omitted. An entire
date or the time may be omitted. If both are omitted, the comma is
still required. If the date is omitted, the current date is used. If the
time is omitted, time 00:00:00 is used.

As an alternative to specifying an explicit date and/or time, you
can supply a filename. The modification date and time of that file
will be used as the -since date and time.

Note: Because the structure of the destination folder is ignored
when you use the -since option, Duplicate commands may be
generated for the same filename from different source folders.
It is recommended that you use the -y option to suppress the
Duplicate -yoptions when using -since.

Backup-folder file backup 31

-sync Synchronize both source ("from") and destination ("to") folders.

-t type

Files are copied in both directions; source files newer than those in
the destination are copied to the destination, and destination files
newer than those in the source are copied to the source. The -sync
option may not be specified when any of the options -revert,
-since, or -a is specified.

Note: Use this option with caution, because it can cause copies
in the opposite direction from that specified as -from and -to.
An example of its safe use is with the -{:ompare only option.
This option will generate compare commands for all TEXT files
that differ in their modification dates in either direction.

Consider only files of the specified type as candidates for Backup.

-to folder I drive
Specify the folder or drive number (1 or 2) from which to get the
destination list of files. If the -to option is omitted and the -from
parameter is explicitly specified, then drive 1 is assumed (that is,
-to 1). You must specify the -to option if you omit the -from
option.

-y Suppress generation of the Shell Duplicate command's -yoption.

32 MPW 3.0 Reference

Examples

Limitations

backup -from :HDfolder: -e

Check that all files on the disk in drive 1 (-to is omitted, so "-to I" is implied) are
up to date with respect to the files in :HDfolder:. If they are, the disk in drive 1 is
ejected. If no~ the appropriate Duplicate commands are generated to update
the out-of-date files on the disk in drive 1. An Eject 1 command is generated to
eject the disk after the Duplicate commands are processed.

backup -r -from FServer:MPW: -to HD:MPW: -check folders

Recursively process (-r) all the files in all the folders on FServer:MPW: to make sure
that the files on HD:MPW: are up-to-date. Appropriate Duplicate commands are
generated to copy the out-of-date files from the folders in FServer:MPW: to the
folders in HD:MPW:. It is assumed that the folder names in HD:MPW: are the
same as the folder names in FServer:MPW:. Any folders in FServer:MPW: that don't
exist in HD:MPW are skipped. Because the -check option is specified, a list of all
the skipped folders is written to the diagnostic file.

Multi-disk operation (-m) is not supported with recursion (-r).

The -e option is ignored when -m is specified.

Only drive numbers 1 and 2 are supported, and they are assumed to be ejectable
3.5-inch disk drives.

Backup-folder file backup 33

Beep--generate tones

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Beep [note [,duration [,level]]] ...

For each parameter, Beep produces the given note for the specified duration and
sound level on the Macintosh speaker. If no parameters are given, a simple beep is
produced.

Note is one of the following:

• A number indicating the count field for the square wave generator, as
described in chapter "Summary of the Sound Driver" of Inside Macintosh.

• A string in the following format:

[n] letter[# I b]

n is an optional number between -3 and 3 indicating the octaves below or
above middle C, followed by a letter indicating the note (A-G) and an
optional sharp (#) or flat (b) sign. Note that any sharps (#) must be enclosed
in quotation mar~therwise they will be interpreted as comment
delimiters.

The optional duration is given in sixtieths of a second. The default duration is 15
(one-quarter second).

The optional sound level is given as a number from 0 to 255. The default level is
128.

Built-in.

None.

None.

None.

A status code of 0 is always returned.

None.

34 MPW 3.0 Reference

Examples Beep

Produce a simple beep on the speaker.

Beep 2C,20 '~C*,40' 2D,60

Play the three notes specified: C , C sharp, and D-all two octaves above middle
C-for one-third, two-thirds, and one full second, respectively. Notice that the
second parameter must be quoted; otherwise the sharp character (#) would
indicate a comment.

Beep-generate tones 35

Begin ... End-group commands

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Begin
command ...

End

Groups commands for pipe specifications, conditional execution, and
input/output specifications. Carriage returns must appear at the end of each line
as shown above, or be replaced with semicolons (;). If the pipe symbol (I),
conditional execution operators (&& and I I), or input/output specifications «,
>, », ~, ~~, L, LL) are used, the operator must appear after the End
command and applies to all of the enclosed commands.

• Note: Begin and End behave like left and right parentheses. Once the
Begin command has been executed, the Shell will not execute any of the
subsequent commands until it encounters the End command, so that
input/output specifications can be processed.

Built-in.

None.

None.

None.

The status code of the last command executed is returned. (If no commands
appear between Begin and End, 0 is returned.)

None.

36 MPW 3.0 Reference

Examples The following commands save the current variables, exports, aliases, and menus in
the file SavedState.

Begin
Set
Export
Alias
AddMenu

End > SavedState

Notice that the output specification following "End" applies to all of the
commands within the Begin ... End control command. This command is identical
to the following:

(Set; Export; Alias; AddMenu) > SavedState

The commands Set, Export, Alias, and AddMenu write their output in the form of
commands; these commands can be executed to redefine variables, exports,
aliases, and menus, respectively. Therefore, after executing the above
commands, the command

Execute SavedState

will restore all of these definitions. You must "execute" the script so that the
variables and aliases are applied to the current scope.

• Note: This technique is used in the Suspend script to save state
information. (You might want to take a look at Suspend, which also saves
the list of open windows and the current directory.) The Resume file runs
the file that Suspend creates, restoring the various definitiOns, reopening
the windows, and resetting the current directory.

Begin ... End-group commands 37

Break-break from For or Loop

Syntax

Description

Type

Input

Output

Diagnostics

Status

Break [If expression]

If expression is nonzero, Break terminates execution of the immediately enclosing
For or Loop command. (Null strings are considered zero.) If the "If expression' is
Omitted, the break is unconditional. (For a definition of expression, see the
Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

Break may return these status codes:

o No errors detected.
-3 Break is found outside a For ... End or Loop ... End, or the parameters

to Break are incorrect.
-5 Invalid expression.

Options None.

38 MPW 3.0 Reference

Examples

See also

Set Exit 0

For file in Startup UserStartup Suspend Resume Quit

EnTab "{file}" > temp

Break If {Status} != 0

Rename -y temp "{file}"

Print -h "{file}"

Echo "{file}"

End

This For loop entabs and prints each of the special MPW scripts; the Break
command terminates the loop if a nonzero status value is returned. (See the For
command for further explanation of this example.)

Set loopcount I
Loop

Break if {loopcount} > 10

Echo "Loop Number {loopcount}"

Evaluate loopcount +=1

End

This example loops until the variable UoopcountJ is greater than 10. Use of the
Evaluate command is also demonstrated.

For, Loop, and If commands.

Evaluate command (for a description of expressions).

"Structured Commands" in Chapter 5.

Break-break from For or Loop 39

BuildCommands-show build commands

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

BuildCommands program [options .. .]

BuildCommands writes to standard output the commands needed to build the
specified program

Make is used to generate the build commands. If file program. make exists, it is
used as the makefile. If not, file MakeFile is used.

The specified options control the generation of the build commands. The
options are passed directly to Make. BuildCommands is used to implement the
Show Build Commands and Show Full Build Commands menu items in the Build
Menu.

Script.

None.

The commands needed to build the specified program are written to standard
output.

Errors and warnings are written to diagnostic output. They may be written either
by BuildCommands or by Make.

Status code 0 is returned if the build commands are generated without error. If an
error occurs, the status code returned by Make is returned.

The options specified are passed directly to Make and control the generation of
the build commands. Although other Make options may be used, the most useful
is -e.

-e Generate complete build commands, regardless of file dates.
Ignore any up-to-date object files or other temporary files that may
already exist.

40 MPW 3.0 Reference

Example

See also

Open "{Worksheet}"

BuildCommands Count » "{ Worksheet}" » Dev: StdOut

Generates the build commands for Count. The Worksheet window is brought to
the front. The build commands, or any errors generated by Make are written at
the end of the Worksheet. The Show BuildConunands menu item is implemented
using similar commands.

"Building a Program: An Introduction" in Chapter 2.

BuildCommands-show build commands 41

BuildMenu-create the Build menu

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

BuildMenu

Creates the Build menu shown below. Each of the items in the menu is described
in Chapter 3.

Build ..• 38B
Full BUild ...
Show Build Commands ...
Show Full Build Commands ...

Script.

None.

None.

Errors are written to diagnostic output.

A status code of 0 is always returned.

None.

BuildMenu

Creates the Build menu. This command should appear in the UserStartup file to
create the Build menu.

"Building a Program: An Introduction" in Chapter 2.

42 MPW 3.0 Reference

BuildProgram-build the specified program

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

BuildProgram program [option ...]

Builds the specified program. A simple transcript of the build, including timing
information and commands used to do the build, is written to standard output.

Make is used to determine the commands needed to do the build. If file
program.make exists, it is used as the makefile. If not, the file MakeFile is used.

The options specified are passed directly to Make; they control the generation of
the build commands. BuildProgram is used to implement the Build and Full Build
menu items in the Build menu.

Script.

None.

A transcript of the build, including timing information and the commands used to
do the build, is written to standard output.

Errors that occur during the generation of the build commands or during the build
are written to diagnostic output.

Status code 0 is returned if the build is completed without error. If an error occurs
during the generation of the build commands, the status value returned by Make
is returned. If an error occurs during the build, the status value returned by the
build step that detected the error (such as Asm or Link) is returned.

The options specified are passed directly to Make, and control the generation of
the build commands. Although other Make options may be used, the most useful
is -e.

-e Rebuild everything, regardless of dates. The specified program is
completely rebuilt, ignoring any up-to-date object files or other
temporary files that may already exist.

BuildProgram-build the specified program 43

Example

See also

Open "{Worksheet}"

BuildProgram -e Count » "{Worksheet}" » Dev:StdOut

Completely rebuilds Count. The Worksheet window is brought to the front. The
transcript of the build and any errors are written at the end of the Worksheet. The
Full Build menu command is implemented using similiar commands.

"Building a Program: An Introduction" in Chapter 2.

44 MPW 3.0 Reference

C-C compiler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

C [option .. .J (file 1

Compiles the specified C source file. Compiling file Name.c creates object file
Name.c.o. (By convention, C source filenames end in a ".c" suffix.) If no
filenames are specified, standard input is compiled and the object file "c.o" is
created.

(Note that SADE object file information cannot be generated for standard input
sou(ce files.)

See the MPW 3.0 C Reference Manual for details of the C language defmition.

Tool.

If no filenames are specified, standard input is compiled. You can terminate
input by pressing Command-Enter.

If you specify the -e or -e2 options, preprocessor output is written to standard
outpu~ and no object file is produced.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to the diagnostic
output.

The following status codes may be returned:

o Successful completion.
1 Errors occurred.

-b Generate PC-relative references for functions in the same segment
and for string constants (which are kept at the end of the function
code module). Useful for writing DAs, WDEFs, and so on.

-b2 Same as the -b option, but also allows the code generator to reduce
code size by overlaying string constants where possible.

-b3 Allow the code generator to keep string constants in the code
segment and overlay them when possible (but always generate AS
relative references for function addresses).

-c Don't call the code generator.

C-C compiler 45

-d name Define name to the preprocessor with value one. This is the same
as writing

*define name 1

at the beginning of the source file. (The -d option does not
override *define statements in the source file.)

-d name=string
Define name to the preprocessor with value string. This is the same
as writing
*define name string

at the beginning of the source file.

-e Do not compile the program. Instead, write the output of the
preprocessor to standard output. This option is useful for
debugging preprocessor macros.

-e2 Same as the -e option, but also suppresses comments.

e1ems881 Use in-line MC68881 instructions for all transcendental functions
available on the MC68881 processor. See the MPW 3.0 C Reference
for a complete list of these functions. This option implies the
-mc68881 option.

-I pathname [,pathname 1...
Search for incl ude files in the specified directories. Multiple -I
options may be specified. A maximum of 15 directories can be
searched. This is the search order:

1. The include filename is used as specified. If a full pathname
is given, no other searching is applied. If the file wasn't found,
and the pathname used to specify the file is a partial pathname
(no colons in the name or a leading colon), the following
directories are searched:

2. The directory containing the current input file.

3. The directories specified in the -I options, in the order listed.

4. The directories specified in the Shell variable {Cincludes}.

-m Generate 32-bit data references. More than 32K of global data is
assumed. The object code is less efficient

-mbg off Don't include symbols for the MacsBug debugger.

-mbg full Include full (untruncated) symbols for MacsBug.

46 MPW 3.0 Reference

-mbg cbS Include MPW 2.0-compatible MacsBug symbols (eight characters
only, in a special format).

-mbg number
Include MacsBug symbols truncated to length number.

-mros020 Generate Mc68020 instructions whenever doing so would provide
faster and/or smaller object code.

-mc68881 Generate Mc68881 instructions for all basic floating-point
operations.

-n Change errors of pointer assignment incompatibility into warnings.

-0 objname Pathname for the generated object file. If objname ends with a
colon, it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputjilename.o). If
objname does not end with a colon, the object file is written to the
file objname.

-p Write progress information (include file names, function names,
and sizes) and summary information (number of errors and
warnings, code size, global data size, and compilation time) to
diagnostic output.

-r Emit a warning when calling a function that doesn't have a
definition.

-s name Name the object code segment. (The default segment name is
"Main".)

-sym off Do not emit SADE object file information.

-sym on I full

-t

-u name

Write complete object file records containing information for
SADE, the MPW symbolic debugger. This option can be limited by
also specifying one or more of nolines, notypes, and novars,
which causes omission of line, type, and variable information,
respectively, from the object file.

Write compilation time to diagnostic output.

Undefine the predefined preprocessor symbol name. This is the
same as writing

#undef name

at the beginning of the source file.

C-C compiler 47

Example

See Also

-w Suppress compiler warning messages. (By defaul~ warnings are
written to diagnostic output.)

-w2 Emit even more warnings about constructs that the compiler has
reason to suspect.

-y pathname
Put the compiler's temporary intermediate (" .oj") files in the
directory specified by path name.

C -p Sample.c

Compiles Sample.c, producing the object file Sample.c.o. Writes progress
information to diagnostic output. (Sample.c is found in Examples:CExamples.)

MPW3.OC Refererice.

48 MPW 3.0 Reference

Canon-canonical spelling tool

Syntax

Description

Canon [-s l [-a] k n] dictionary File [inputFile ...]

Canon copies the specified files to standard output, replacing identifiers with
the canonical spellings given in dictionary File. If no ftles are specified, standard
input is processed.

DictionaryFile is a text ftle that specifies the identifiers to be replaced and their
new (or canonical) spellings. Identifiers are defined as a letter followed by any
number of letters or digits. (The underscore character (_) is also considered a
letter.) Each line in the dictionary contains either a pair of identifiers or a Single
identifier:

• If two identifiers appear, the first is the identifier to replace, and the second
is its canonical spelling. For example, the dictionary entry
NIL NULL # change NIL to NULL

changes each occurrence of "NIL" to "NULL".

• A single identifier specifies both the identifier to match and its canonical
spelling. This feature is useful because the matching may not be case
sensitive or restricted to a fixed number of characters. (See the "Options"
section on the next page.) For example, the dictionary entry
true

changes all occurrences of "TRUE", "True", "tRUE", and so on to "true".

You can specify a left context for the first identifier on each line of the
dictionary by preceding it with a sequence of nonidentifier characters.
Replacement will then occur only if the left context in the input file exactly
matches the left context in the dictionary. For example, if C structure component
upperLeft should be replaced with topLef~ the dictionary might include the
following:

.upperLeft topLeft

->upperLeft topLeft

You can include comments in the dictionary ftle by using the # symbol: everything
from the # to the end of the line is ignored.

• Note: The file Canon.Dict is a sample dictionary file that's included with
MPW. (See the "Examples" section below.)

Canon-canonical spelling tool 49

Type

Input

Output

Diagnostics

Status

Options

Tool.

Standard input is read if no files are specified.

The specified files are written to standard output with the identifiers replaced.

Errors are written to diagnostic output.

The following status codes may be returned:

o All files processed successfully.
1 Error in command line.
2 Other errors.

,Canon Options

DictioneryFlle I I o Case sensitiue

(Flle~ to proce~s ...) o Rssembler Indentifiers

Number of sIgnificant characters 0
Output Error

I I I I
FmmandLine

I
~HeIP [) Cancel
CopiH u.. sp.clfi.cl fl1K to sUndord ouiput. r..,1.1cing icMntff"wrs 'With u.. I
canonicol Sf»lIings giv dIotlon".jFfle. I CBnon J

-s Use case-sensitive matching. (Pattern matching is normally not case
sensitive.

-a Causes the characters $, %, and @ to be considered letters (for
defining identifiers). This option is useful when processing an
assembly language source.

-c n Take only the first n characters as significant. (Normally all
characters in identifiers are significant.)

50 MPW 3.0 Reference

Examples

Limitations

The file Canon.Dic~ in the Tools folder, contains a list of all of the identifiers
used in the Standard C library and the Inside Macintosh C interfaces. This list was
made from the library Index in the MPW 2.0 C Reference. The entries in
Canon.Diet look like the following:

abbrevDate

ABCallType

abortErr

ABProtoType

abs

acos

activateEvt

The following command copies the file Source.c to the file Temp; identifiers
whose first eight characters match a dictionary entry are replaced with that entry.

Canon -c 8 "{MPW}"Tools:Canon.Dict Source.c > Temp

The -c 8 option is useful when porting source code from other systems where
only eight characters are significant.

• Note: The list of Pascal identifiers used in the Inside Macintosh interface
is almost identical to the list used in C. The dictionary Canon.Dict can
also be used to port Pascal programs from other systems, as long as you
use the canonical capitalizations for the various Standard C library
identifiers.

The maximum line length in the dictionary file is 256 characters. Longer lines are
considered an error. Identifiers and words in comment sections are replaced.

Canon---<:anonical spelling tool 51

Catenate--concatenate fues

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Catenate [file ...]

Catenate reads the data fork of each file in sequence and writes it to standard
output. If no input file is given, Catenate reads from standard input. None of the
input files may be the same as the output file.

Built-in.

Standard input is processed if no input files are specified.

All files are written to standard output.

Errors are written to diagnostic output.

The following status codes may be returned:

o All files were processed successfully.
1 One or more files were not found.
2 An error occurred in reading or writing.

None.

Catenate Makefile.a

Writes Makefile.a to the active window immediately following the command.

Catenate Filel File2 > CombinedFile

Concatenates the first two files and places the result in the third. If CombinedFile
doesn't exist, it will be created; if it exists, it will be overwritten.

Set selection "'Catenate S'n

Captures the selection from the target window in the Shell variable {selection}.

Catenate » {Worksheet}

Appends all subsequently entered text to the Worksheet window (until you
indicate end-of-file by pressing Command-Enter).

52 MPW 3.0 Reference

Warning

See also

Beware of commands such as

Catenate Filel File2 > Filel

The above command will cause the original data in Filel to be lost. To append
one file to another, use the form

Catenate File2 » Filel

Duplicate command.

"Redirecting Input and Output" in Chapter 5.

Catenate-concatenate files 53

CheckIn--check in rues to a project

Syntax

Description

Type

Input

Output

Diagnostics

CheckIn -w I -close I [-u user][-project project][-ttask][-p]
[-cs comment I -cf file] [-new I -b] [-m I -delete] [-touch]
[-y I -n I -c][-a]file ...

Return ownership of the specified files to Projector and save all changes as new
revisions. The default is to leave you with a read-only copy of the file.
File must be an HFS pathname. Projector determines the project each file
belongs to by inspecting the file's resource fork. Since Projector puts the name
of the project in the resource fork of checked-out files, files belonging to
different projects can be checked in with a single command.

If the -a (all) option is used instead of file ... , Projector examines all files in the
current directory and checks in all files in the current directory that have been
checked out for modification. The files are checked into their respective
projects.

To add a new file to the project, use the -new option.

When the file is checked in, Projector automatically increments the revision
number by one. For example, if revision 2.17 was checked out, the new revision
will be 2.18. To override this, use the ProjectInfo command to find the revision
number, increase it by the amount deSired, and then check the file in, using the
"filename,rev" notation. For example, if file.c revision 2.17 was checked out, you
could check it in as file.c,3.0 to jump to the next major revision level.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in. Option -u 'user' is required if the Shell variable {user} is null.

None.

Progress is written to standard output if the -p option is specified.

Errors and warnings are written to diagnostic output.

54 MPW 3.0 Reference

Status

Options

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-w

-close

-u user

Open the Check In window.

Close the Check In window.

Name of the current user. This option overrides the {User} shell
variable.

-project project
Name of the project that contains the files. This becomes the
current project for this command.

-new Add a new file to the project.

-t task A very short description of the task that was accomplished by the

-cs comment

changes made to the file(s). This task overrides the task found in
the t ckid t resource of each file specified.

A short description of what changes have been made to the file(s)
being checked in. This comment overrides the comment found in
the t ckid t resource of each file specified.

-cf filename The comment is contained in the file filename. This comment
overrides the comment found in the t ckid t resource of each file
specified.

-a

-b

-ffi

-delete

-p

-touch

-y

Check in all the files in the current directory.

Check in the file as a branch off the revision that was checked out.

Keep a write-privileged copy of the file(s) for further modification.
This basically does a check-in followed by a check-out for
modification of the new revision.

Delete the file after checking it in.

Write progress information to standard output.

Touch the modification date of the file before checking it in.

Answer "Yes" to all dialogs (doing so avoids the dialogs).

Checkln-Check in files to a project 55

Examples

See Also

-n Answer "No" to all dialogs (doing so avoids the dialogs).

-c Cancel the dialog if a conflict OCCU1S (doing so avoids the dialogs).

Checkln file.c -cs "added some comments"

Check in file.c to the current project. A new revision of file.c is created and the
user is left with a read-only copy of the file. The comment is saved with the new
revision. Because no revision number is specified, Projector simply increases the
revision number by one.

Checkln file.c interface.c,S -t "Added -x option" a
-cf commentFile

This command checks in two files reading the comment from the file
commentFile. The task is also saved with the new revisions. The user is left with
read-only copies of the files. The new revision for interface.c is revision 5.

Checkln hd:work:file.c hd:work:main.c -m

The files to be checked in are hd:work:file.c and :main.c. After the command
executes, the user still has modifiable copies of the files.

Checkln -new file.c

To check a new me into the project use the -new option. The above command
adds file.c to the current project.

CheckOut -project zoonUUtilitiesIMyProject file.c -m
... edit the/tie ...
Checkln -project zoonUUtilitiesIMyProject file.c -b

The preceding command sequence illustrates the usefulness of the -b option. In
this case, the user checked out a write-privileged copy of the latest revision of
file.c from the current projec~ edited the file, and then, using the branch option,
checked in the file on a branch.

CheckOut and CheckOutDir.

56 MPW 3.0 Reference

CheckOut--check out files from a project

Syntax

Description

Type

Input

Output

Diagnostics

CheckOut -w I -close I [-u user] [-project project] [-m I -b [-t task]] [-cs comment I
-cf file] [-d directory] [-r] [-open] [-y I -n I -c] [-p] [-noTouch]
[-cancel I-update I -a I -newer I file .. .]

Under Projector, CheckOut obtains copies of file revisions from a project. The
default is to check out read-only copies. Unless otherwise specified, copies are
placed in the checkout directory associated with the project.

If file is a leafname (that is, file. c), Projector checks out the latest revision of the
file from the current project. If file specifies a revision (for example, file.c,22),
that revision is checked out.

If file is a partial or full HFS pathname (that is, :work:file.c or HD:work:file.c),
the file does not go into the checkout directory. Instead, Projector checks out
the file (that is, file.c) in the current project and places the copy in the specified
HFS location (that is, in the :work: or HD:work: directory, respectively).

Finally, file may be a Name. See the NameRevisions command for more
information about Names. The Name is expanded and the corresponding
revisions are checked out.

To check out an old revision for modification, you must specify the -b (branch)
option.

If you are checking out revision 5 of file.c into hd:work and Projector
determines that you already have that revision in the work directory, Projector.
will not recopy the data of revision 5. This is especially nice when you are
checking out a revision for modification, and you already have a read-only copy
of that revision.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

Progress is written to standard output if the -p option is specified.

Errors and warnings are written to diagnostic output.

CheckOut-check out files from a project 57

Status

Options

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-w

-close

-u user

Open the Check Out window.

Close the Check Out window.

Name of the current user. This overrides the {User} shell variable.

-project project
Name of the project that contains the files. This becomes the
current project for this command.

-d directory The directory to which the checked-out files should go. This
overrides the checkout directory for the current project. See the
CheckOutDir command.

-t task A very short description of the task to be accomplished by
checking out files for modification.

-cs comment
A short description of what changes will be made to the file(s)
being checked out.

-cf filename The comment is contained in the file filename.

-a

-m

-open

-b

-update

Check out all the files in the Project.

Check out a write-privileged copy of the file for modification.
This locks the revision, preventing other users from inadvertently
changing the revision.

Open the files after checking them out. This only works on files of
type text.

Create a branch. A write-privileged copy of the file is checked out.
When the file is checked back in, it will become a branch of the
revision that was checked out.

Find all read-only copies of the project in the checkout directory
(or the -d directory) and update them to the latest revision if they
are older revisions. Files that have been checked out for
modification, or that are on branches, are not affected. This
option cannot be used when checking out files for modification.

58 MPW 3.0 Reference

Examples

-p Write progress information to standard output.

-r Recursively execute the CheckOut command on the current project
and all of its subprojects.

-newer Check out the latest copy of all mes in the project. Files that have
been checked out for modification, or that are on branches, are
not affected. This option cannot be used when checking out files
for modification.

-cancel Cancel the check out of the specified files.

-noTouch Don't touch the modification date of the checked out files.

-y Answer "Yes" to all dialogs (avoids the dialogs).

-n Answer "No" to all dialogs (avoids the dialogs).

-c Cancel the dialog if a conflict occurs (avoids the dialogs).

CheckOut -m -project zoomJUtilitiesfMyProject file.c

Checks out a write-privileged copy of the latest revision of file.c from the
zoomfUtilitiesIMyProject project. The file is placed in the checkout directory
for the project.

CheckOut -m file.c

The above command checks out the latest revision of file.c for modification.
The file is placed in the checkout directory for the project. If you already happen
to have the latest revision of file.c in the checkout directory, then Projector only
updates the • ckid' resource of me.c to indicate that it is now a modifiable file.

CheckOut -project ZoomJUtilitiesfKerfroodi file.c,22

The above command checks out a read-only copy of revision 22 of file.c from the
ZoomfUtilitiesiKerfroodi project. The file is placed in the checkout directory
for the project.

Project ZoomJUtilitiesfKerfroodi
CheckOut file.c -t "Fix Bug 7" -m -da
"{Zoom}UtilitiesSrc:Kerfroodi"

By setting the current project with the Project command you don't need to
specify a project on subsequent Projector commands. By setting the task other
users will be able to see why you have checked out me.c. The files are placed in
{ZoomlUtilitiesSrc:Kerfroodi.

CheckOut-check out files from a project 59

See Also

CheckOut -a -d HD:Work:Test

The above example checks out read-only copies of all of the files in the current
project and places the copies in the directory HD:work:Test.

CheckOut -a -project zoomI -r

Checks out read-only copies of all files in the Zoom project and all of its
subprojects. Its behavior is the same as if you had executed these conunands
individually:

CheckOut -a -project zoomI
CheckOut -a -project zoomIvoom
CheckOut -a -project ZoomIUtili ties
CheckOut -a -project zoomIUtilitiesJMyProject

You can conveniently update the read-only fIles (from the current project) in the
current directory without affecting any files checked out for modification. To
do this, use the -update option:

CheckOut -update -d :

CheckIn and CheckOutDir.

60 MPW 3.0 Reference

CheckOutDir-set checkout directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

CheckOutDir [-project project] [-m] [-r] [-x I directory]

Under Projector, CheckOutDir changes the checkout directory associated with
the current project to the HFS pathname directory. From this point on, ftles
checked out of the named project are placed, by default, into this directory. The
directory is created if it does not exist. When a project is mounted, the
checkout directory is initially set to ":"-that is, the current directory.

It is recommended that you put CheckOutDir commands immediately following
the corresponding MountProject commands you place in your UserStartup file,
script, or AddMenu for project initialization.

If directory is missing, the checkout directory of the current project is written to
standard output in the form of a CheckOutDir command.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

If directory is missing, the checkout directory of the current project is listed in
the form of a CheckOutDir command.

Errors and warnings are written to diagnostic output.

CheckOutDir may return these status codes:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-project project
Name of the project with which to associate the checkout
directory. This becomes the current project for this command.

-m Display or set the checkout directories for all "mounted" root
projects.

CheckOutDir-set checkout directory 61

Examples

-r Recursively display or set checkout directories.

-x Reset the checkout directory back to the default-that is, the
current directory a:".

CheckOutDir HD:work:Test

This command causes subsequent files in the current project to be checked out
to the HD:work:Test folder.

CheckOutDir
CheckOutDir -project ZoomJUtilitiesITest HD:work:Test

The above conunand outputs the checkout directory of the current project in the
form of a CheckOutDir conunand.

CheckOutDir -project zoomJ -r
CheckOutDir -project zoomJ :

CheckOutDir -project ZoomJvroom
CheckOutDir -project ZoomJUtilities
CheckOutDir -project zoomJUtili tiesJTest HD:work:Test

The -r option lets you display the checkout directory for the current project and
all subprojects. In this case, only the sort project has a checkout directory
setting that differs from the default.

The -r option can also be used to set the checkout directories of a complex
project to mirror the projects own hierarchical structure. For example:

CheckOutDir -project zoomJ -r HD:Work:

After executing the above conunand, listing the checkout directories for the
projects under Zoom yields

CheckOutDir -project zoomJ -r
CheckOutDir -project zoomJ HD:work:
CheckOutDir -project ZoomJVroom HD:Work:Vroom
CheckOutDir -project ZoomJUtilities HD:Work:Utilities
CheckOutDir -project ZoomJUtilitiesITest
HD:Work:Utilities:Test

Notice how the directory structure is similar to the project structure. The
directories are created if they do not exist.

62 MPW 3.0 Reference

See Also

The -m option lists the checkout directories of the root projects. For example

CheckOutDir -m

CheckOutDir -project zoo~ HD:Work:Zoom
CheckOutDir -project TestJ HD:Test

MountProject, CheckIn, and CheckOut.

CheckOutDir-set checkout directory 63

Choose-choose or list network volumes and printers

Syntax

Description

Choose [options .. .] name ...

Choose noninteractively mounts or lists the specified AppleShare volumes or
printers. Each name takes the form
[zone]: [server[:volume]]

("Server" means any file or printer server.) The zone name is always optional and
defaults to the current zone. A server name must be preceded by (at least) a
colon. Volume names are only applicable to file servers.

When mounting file server volumes, a server name is required. If a volume name is
specified, only that volume is mounted. If the volume name is Omitted, or if it is
the wildcard character "::::::", all volumes on the server are mounted:
[zone] : server: volume
[zone] :server[:=]

When -list is specified, the wildcard character "::::::" may be used in place of names
in all of the fields: "::::::" in the zone field expands to all zones; "::::::" in the server
field expands to all servers in the specified zones; "::::::" in the volume-name field
expands to volumes on the specified servers (listing volumes on a server requires a
server login-that is, as a user with a valid password or as a guest). If the wildcard
character "::::::" is used, it must be quoted so that the Shell will not expand it.

The -list option also expands the next unspecified item in a name. A zone name
followed by nothing else expands to a list of servers in that zone, and a server
name followed by nothing else expands to a list of volumes on the server.

If a"::::::", ":" or "a" character appears in a server, volume, or zone name, it may be
quoted with the character "a". This quoting mechanism supplements quoting
already performed by the Shell.

Any number of volumes may be mounted (though a system-dependent limit exists
on the number of active server connections). Only one printer may be chosen at a
time, since only one printer can be active.

Server and volume passwords are case sensitive. More than one server and volume
may be mounted with a single command, but the server and volume passwords
must be the same for each, since at most one password of each type may be
specified on the command line.

64 MPW 3.0 Reference

Input

Output

Diagnostics

Status

Options

None.

If -list is specified, the names of zones, servers, and volumes on file servers are
printed in a form suitable for reinput to Choose command lines. If -c is specified,
the name of the tool (plus appropriate options) appears on each output line.

If -v is specified, the names of volumes that were mounted are printed.

If -cp is specified, the name, type, and driver of the currently chosen printer are
printed.

Errors are written to diagnostic output.

Various confusing messages (such as "No AFPLogin call has been successfully
made for this session") are usually the result of a missing or mistyped password.

The following status codes may be returned:

o No errors.
1 Syntax error on command line.
3 Any other error.

-list Print information about the specified network entities.

-c Precede each line of -list output with the name of the Choose tool
(that is, output Choose commands).

-type typename
This option sets the type of the network object to choose or list
The type name is not case sensitive. For mounting or listing
volumes, the type name defaults to 'AFPServer'; for choosing or
listing printers, it defaults to the name of the current printer driver
(such as 'LaserWriter'). Use this option to choose or list network
entities of other types.

A type name of ""," or "=" matches all network entity types. You can
list or attempt to mount network entities that are not chooseable.
For instance, it is not possible to mount or list volumes on servers
of types other than 'AFPServer'.

-p Writes Choose'S version number and step-by-step progress
information to standard output. This is reassuring when you are
doing listings that can take several minutes (for example, every
server on the internet).

Choose-<:hoose or list network volumes and printers 65

Examples

The following options are applicable to file servers only and may not be specified
in conjunction with any printer options:

-u name

-guest

-pwpassword

-vp password

Specify the user name for the server log-in. This option has
precedence over the Shell variable "{User}", which in tum has
precedence over the user name string in the system resource file
('STR' -16096), If no valid user name is found in any of the above
locations, -guest is assumed.

Login as a guest instead of with a user name.

Specify the server log-in password. The server password defaults to
the value of the Shell variable "{ServerPassword}".

Specify the volume log-in password. The volume password defaults
to the value of the Shell variable "{VolumePassword}".

-v Print the volume names (only) of any volumes mounted. Colons are
appended to each volume name. This is useful in Shell scripts when
volume names are not known ahead of time.

The following options are applicable to printers only and may not be specified in
conjunction with any me server options:

-pr Specify that a printer is being chosen or listed.

-cp Print the name and type of the currently chosen printer to standard
output This occurs before any new printer is chosen.

-dr drivername
Specify the driver name of the printer to choose. This is the name
of a printer driver in the system folder (such as "!mageWriter").

Choose : Linker: Sources

Mount the volume Sources on the server Linker, located in the current zone, using
the default user name, server password, and volume password.

Choose -v -guest 'Systems:Sources:Doc' 'Systems:Games:='

Mount the volume Doc on the server Sources and every volume on the server
Games in the zone Systems as a guest. Print the names of the volumes that are
mounted by the command. List the names of all zones. Notice that the wildcard
character "=" is quoted.

66 MPW 3.0 Reference

See also

Choose -list 'Whale Zone:=' 'Whale Zone:Moby Dick:=' '=:'

list all file servers in the zone Whale Zone, all volumes on the file server Moby Dick
in that zone (after logging in with the default user name and server password) and
all zones (with their servers).

Choose -pr -list ':='

Choose -cp -pr "Zarf:Kitchen Sink"

list all printers of the current type in the current zone. Print.the name of the
currently selected printer, then select the printer called Kitchen Sink in the zone
Zarf.

Choose -list -type "Fortune Cookie Server" '=:='

list all network entities of type Fortune Cookie Server in all zones.

Unmount and Volumes commands.

Choose--choose or list network volumes and printers 67

Clear--clear the selection

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Clear [-c count] selection [window]

Finds selection and deletes its contents. The selection is not copied to the
Clipboard. (For a definition of selection, see Chapter 6.)

If window is specified, the Clear command acts on that window. It's an error to
specify a window that doesn't exist. If no window is specified, the command
operates on the target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Clear may return the following status codes:

o At least one instance of selection was found.
1 Syntax error.
2 Any other errors.

-c count Repeat the select-and-delete operation count times.

Clear §

Deletes the current selection. This is like the Clear command in the menu bar,
except that the action occurs in the target window rather than the active window.

Clear /BEGIN/:/END/

Selects everything from the next BEGIN through the following END, and deletes
the selection.

Cut and Replace commands.

"Selections" in Chapter 6 (see Appendix B for a summary).

68 MPW 3.0 Reference

Oose-close specified windows

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Close [-y I -n I -c] [-a I window ...]

Close the window or windows specified by window. If no window is specified,
the target window is closed. If changes to the window have not been saved, a
dialog box requests confirmation of the Close corrunand. In scripts you can use
the -y, en, or -c option to avoid this interaction. Use the -a option instead of
window to close all of the open windows (other than the Worksheet).

Built-in.

None.

None.

Errors are written to diagnostic output.

Close may return the following status codes:

o No errors.
1 Syntax error
2 Any other error, such as "Window not found."
4 Cancelled from dialog.

-a Close all open Shell windows (except for the Worksheet, which
cannot be closed). This option cannot be specified when any
windows are specified.

-n Answer "No" to any confirmation dialogs, causing all of the
specified windows to be closed without saving any changes.

-y Answer "Yes" to any confirmation dialogs, causing all of the
specified windows to be saved before closing them.

-c Answer "Cancel" to any confirmation dialogs, causing any modified
windows to be left open.

Close-close specified windows 69

Examples

See also

Close

Closes the target window, prompting the user with a confirmation dialog box if
needed.

Close -a -y

Saves and closes all open windows.

Close -n Test.a Test.r

Closes the windows Test.a and Test.r without saving any of the changes.

"File Menu" in Chapter 3.

70 MPW 3.0 Reference

Commando----display dialog for a command

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Commando [commandname 1 -modify

The Commando interface lets you operate any properly configured MPW tool or
sCript using specialized Macintosh dialog boxes instead of the ordinary
command line method. The dialogs make it easy to find options and build up
complex command lines.

Commands with many options and parameters may employ one or more nested
dialog boxes. See "Commando Dialogs" in Chapter 4 for more information on the
basics of using the Cominando dialogs. Chapter 13 describes the structure of the
Commando resource and shows how to create Commando dialogs for your own
tools and scripts.

The controls of a Commando dialog box, including text fields, buttons, titles,
and so on, can be sized and moved within the dialog box by using the mouse,
exactly as you would drag an object in the Finder. See "Editing Commando
Dialogs" in Chapter 13 for information on moving and Sizing controls.

Tool.

None.

If Commando is invoked by typing Commando [commandname 1, the command
line is simply written to standard output. However, the command line is
intercepted by the Shell and executed if Commando is invoked by typing
[commandnamel ... (the ellipsis generated by Command-semicolon), or if
Commando is invoked by typing [commandnamel Option-Enter.

Errors are written to diagnostic output.

Commando may return the following status codes:

o The Do It button was selected.
1 The Cancel button was selected.
2 Error occurred while parsing the cmdo resource.
3 I/O or program error.

-modify Enables Commando's built-in dialog editor.

Commando-display dialog for a command 71

Examples

See also

Commando Rez

Displays the frontmost Rez dialog box shown under "ReI" in Part II.

Rez ...

Displays the frontmost Rez dialog box shown under "ReI" in Part II, exactly as in
the previous example.

"Invoking Commando" in Chapter 4.
Chapter 13.

72 MPW 3.0 Reference

Compare-compare text flIes

Syntax

Description

Compare [option ... l filel [file2l

Compares the lines of two text files and writes their differences to standard
output. Options are provided to compare a specific column range in each file
(-c), to ignore blanks (-b), and to ignore case (-1).

Both files are read and compared line for line. As soon as a mismatch is found, the
two mismatched lines are stored in two stacks, one for each file. Lines are then
read alternately (starting from the next input line in jile2) until a match is found
to put the files back in synchronization. If such a match is found, Compare writes
the mismatched lines to standard output.

Files are considered resynchronized when a certain number of lines in the two
stacks exactly match. By default, the number of lines, called the grouping jactor,
is defined by the formula

G = Trunc((2.0 * LoglO(M)) + 2.0)

where G is the grouping factor and M is the number of lines saved in each stack so
far. This definition requires more lines to be the same after larger mismatches.
Using this formula, the following table shows the grouping factor G as a function
of the number of mismatched lines:

M: Number of G:Grouping

mismatched lines factor

1 to 3 2
4 to 9 3

10 to 31 4
32 to 99 5

100 to 315 6
316 to 999 7

1000 to 3161 8
3162 to 9999 9

With the default dynamic grouping, the -g option sets the lower limit for G (which
must be at least 2, because the formula is always applied). The -s option lets you
fix G as a static constant. A static G may be desirable under some circumstances,
but may also resynchronize the files at undesirable points, especially if G is too
small. It's recommended that you use the default (dynamic G) first; if the results
aren't satisfactory, try a higher minimum value of dynamic G (such as 3 or 4). If
that is still unsatisfactory, try the static G option.

Compare-compare text files 73

Type

Input

Output

With either option, there's a limit on the depth of the stacks- that is, on how far
out of synchronization the two files can get before they're no longer worth
comparing. For a dynamic G, the limit on the number of mismatched lines is 1000,
but you can choose a lower limit with the -d option. For the static G option,
typical values for G are 1 to 5, and the stack depth should be between about 10
and 50 (the default limit is 25).

Tool.

The filel andfile2 parameters specify the two files to be compared. If file2 is
omitted, filel is compared to standard input.

Mismatched lines, optionally shown with context (-e) or suppressed entirely
(-m), descriptive messages, and Shell editor commands to select the mismatches
are written to standard output. With the -h option, some of each file's output
lines are displayed side by side; otherwise, the first stack's lines are displayed
before the second stack's. In either case, lines are shown with their line numbers.

The following messages appear when showing mismatches:

Nonmatching lines (Shell editor commands)
... both stacks are dispfa;ed ...

Extra lines in 1st before <line> in 2nd (Shell editor commands)
... lines in filel ~ stack are displa;ed ...

Extra lines in 2nd before <line> in 1st (Shell editor commands)
... lines in file2~ stack are displayed ...

Extra lines in 1st file (Shell editor commands)
... lines in filel ~ stack are displayed ...

Extra lines in 2nd file (Shell editor commands)
... lines in fUe2's stack are displayed ...

The Shell editor commands consist of File and line (Line is provided in the MPW
Scripts folder) commands to select the mismatched lines. In the case of extra
lines in one file and not the other, the selection for the missing lines is generated
as an insert point.

The lines displayed may be suppressed with the -m option. If you use -m the
messages are formatted slightly differently:

*** Extra lines in 2nd file

Shell editor commands

74 MPW 3.0 Reference

Diagnostics

Status

When mismatched lines are shown, their context can also be displayed by the
using the -e option. Up to n equal lines (n is specified with the -e option) in both
files preceding and succeeding the mismatches will be displayed like this:

... preceding context lines ...

. .. mismatched or extra lines ...

+++++++++++++++++++++++

... succeeding context lines ...

If an end-of-file condition occurs or the maximum stack depth is reached during
resynchronization, one of the following messages will also appear:

*** Nothing seems to match ***

*** EOF on both files ***

*** EOF on file 1 ***

*** EOF on file 2 ***

If both files are in synchronization, and both reach their end-of-file at the same
time, the following message will appear if any mismatches occurred:

*** EOF on both files at the same time ***

If both files match, the following message is displayed:

*** Files match ***

Parameter errors are written to diagnostic output.

The following status codes may be returned to the Shell:

o Files match.
1 Parameter or option error.
2 Files don't match.

Compare~ompare text files 75

Options -b Treat several blanks (spaces or tabs) as a single space, and ignore
trailing blanks.

r-tomp81'"8 Options

I File 1 I .. I file 2 I
(I/O Redirection ... I

r-Optlons
Grouping [:=J o Ignol'"8 blanks o Ignol'"8 trailing blanks o I gnol'"8 case 181 Show mismatched lines

c=J OOulet tOlumnsl_ ,j I Depth
o Progress o FiRed grouping Width [:=J
ONo tabs tonteHt [:=J o No line numb en

F~BndLine

rHelP I (Cencel __ h lines of two TEXT fiRsntIS tIwir diff to tho>

Compare st d output m •.
C

-c col1-coI2[,col1-coI2]
Compare only the columns coil to col2 of each file. If the second
column range is omitted, then the first range applies to both files;
otherwise the first range applies to filel and the second range
applies to flle2. If coil is omitted, 1 is assumed. If col2 is omitted,
255 is assumed.

• Note: To use the -c option, the tabs must be expanded. The tab
setting is determined from the file's tab value. (See also the -x
option below.)

-d depth Sets the maximum stack depth (size) for resynchronization-that
is, how far out of synchronization the files can get before they're no
longer worth comparing. Depth is an integer value from 1 to 1000.
The default is 1000 if dynamic grouping is in use, and 25 for static
(-5) grouping.

-e context Up to the specified number of context lines are displayed before
and after the mismatched or extra lines. Values of 1 to 100 are
allowed. Context lines are shown only if they are equal in both files,
so fewer than the specified number of lines may be shown. Note
that this option is ignored if the -m option is specified.

76 MPW 3.0 Reference

I
l
J

-g groupingFactor

-h width

-1

-m

-n

-p

-s

-t

-v

-x

Specifies the grouping factor, G. For dynamic grouping, -g
specifies the minimum grouping factor, that is, the minimum
number of lines that must match for the two files to be considered
resynchronized. (This value must be at least 2, which is the default)
If the -s (static) option is used, -g specifies a fixed grouping
factor. (Values are from 1 through 1000; the default is 3.)

Display mismatches in the horizontal format Only a portion of
each mismatched line is displayed side by side. Width, the total
display line width, is a number from 70 to 255 that controls the total
number of characters displayed in each of the two columns, or
portions, of equal width.

Ignore case differences (convert all lines to lowercase before
comparing them). The default is case sensitive.

Suppress the display of mismatched and extra lines. Only the
mismatch messages and Shell editor commands to select the
mismatches are displayed. The default is to display the
mismatched and extra lines along with the messages. This option is
ignored if the -h option is specified.

Do not write any messages to standard output if both files match.

Write Compare's version information to diagnostic output.

Static (fixed) grouping factor. The grouping factor is set with the
-g option.

Ignore trailing blanks (spaces or tabs). This is a subset of the
-b option.

Display differences between two files in a format that allows
output lines to be cut and pasted into a source file.

Suppress tab expansion. Normally, tabs are expanded into spaces
except when the -b option is used. The tab value is determined
from the file's tab setting (a resource); if there is no setting, 4 is
used.

A Caution: This option can cause stacked lines to be displayed
incorrectly if the files contain tabs. Also, the -c option should
not be used with -x, because -c depends on the true columns as
displayed with tabs expanded. ...

Compare-compare text files 77

Examples

limitations

SeeaIso

• Note: All comparison criteria that affect the individual lines
before comparison-column range (-C), blanks compression
(-b), and case conversion (-l}-are applied to those lines
before they are stacked. Thus when the lines are displayed,
they'll be shown in their modified form.

Compare File File.bak > Mismatches

Compares File and File.bak, writing the results to the file Mismatches. No options
are specified, so dynamic grouping is used, blanks are retained, tabs are
expanded into spaces, and matching is case sensitive.

Compare File.old.§ File.new.§

Compares the selected portions of the two windows and writes out the results.

Compare can handle text files with a maximum line length of 255 characters.

The text files compared should be fewer than 9999 lines long, because the displays
are formatted based on four-digit line numbers.

Equal command (Equal is a quicker command that tells you whether files are
different, but stops at the first byte at which they differ).

78 MPW 3.0 Reference

CompareFiles--show file differences

Syntax

Description

CompareFiles [-9 I -13 I -b x y] oldFile newFile

CompareFiles compares two text files (using the tool Compare) and, if there are
any differences, displays the file in adjacent windows for interactively viewing
the differences. A menu will be appended to the menu bar to go through the
changes.

When all the changes have been shown, the windows will be closed (if they were
closed when CompareFiles started) and the menu will be deleted.

The Compare menu contains four items for viewing and editing the differences.
The items perform the following actions:

Find Next Change Finds the next difference and highlights the changes in each
window. (Notice that the differences are shown from
bottom to top. This is so editing changes will not affect
the file offsets recorded from the Compare tool.)

Copy Selection.. . Replaces the changed text in the new file with the old text.

Copy Selection cc Replaces the old text with the changed text from the new
file.

Done Closes the files (asking if you want to save changes) and
deletes the Compare menu. Use this item to close all the
windows and delete the menu. (If you close any of the
windows yourself, they will not be restored to their
previous size and position.)

The figure below shows the CompareFiles menu.

CoPy Selection)>»
(<« Copy Selection

Done

CompareFiles-show file differences 79

Type

Input

Output

Diagnostics

Status

Options

Examples

See Also

To increase the speed of CompareFiles, there are a few restrictions: the options
and parameters must be specified in the order indicated on the Syntax summary
above, and the size of the rectangle specified with the -b option is not checked
for accuracy. Remember, however, that since CompareFiles is a script, you may
easily modify the behavior to fit your working style.

Script.

None.

None.

Errors from the script itself are written to standard output. Errors from running
Compare are written to diagnostic output.

The following status codes may be returned:

o The files match.
1 Syntax error.
2 The files differ.

The options specify the screen size to use for the tiling of the windows. The
default screen size is 640 by 480.

-9

-13

-b xy

Tile the two open windows to fit on a 512 by 342 C9-inch) screen.

Tile the open windows to fit on a 640 by 480 C13-inch) screen. This
is the default screen size.

Tile the open windows to fit within the area specified by x and y.

CompareFiles Sample.old Sample.c

Compares the file Sample.c to Sample.old. If there are some differences, those
two files are opened side by side on the screen.

CompareFiles -b 1024 1024 Sample. old Sample.c

Compares the file Sample.c to Sample.old. If there are differences, the files are
opened and tiled into a 1024 by 1024 rectangle.

Compare Tool.

80 MPW 3.0 Reference

CompareRevisions-compare revisions

Syntax

Description

Type

Input

Output

Diagnostics

Status

CompareRevisions file

Compare the revision of the HFS file file with another revision of that same file.

CompareRevisions uses the ProjectInfo conunand to determine what project file
belongs to and what its revision is. CompareRevisions then displays a list of the
other revisions of the file for the user to choose. Compare Revisions checks this
other revision out and calls the CompareFiles script to display both revisions on
the screen and to highlight the differences between them. CompareFiles puts up
an AddMenu named Compare to help you step through the differences between
the two revisions.

The file must belong to a currently mounted project. If the project that the file
belongs to is not currently mounted, CompareRevisions displays an Alert.

CompareRevisions uses the CompareFiles script.

Script.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No Errors.
1 Syntax Error.
2 Error in ProceSSing.
3 System Error.

Options None.

CompareRevisions-compare revisions 81

Examples

See Also

CompareRevisions file.c

This example compares the revision in HFS me "file.c" in the working directory
with any other revisions of file.c in the project.

AddMenu Project 'Compare Revisions' 'CompareRevisions a
" { Active}" ~ "{ WorkSheet} '"

This example adds CompareRevisions to the Project menu and allows you to
compare revisions by opening the file you wish to compare and then selecting the
'Compare Revisions' menu item in the Project menu.

CompareFiles.

82 MPW 3.0 Reference

Confirm-display confirmation dialog box

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Confirm [-t] [message .. .]

Confirm displays a confmnation dialog box with OK and Cancel buttons and the
prompt message. There is no output to this command: the result of the dialog is
returned in the {Status} variable.

Note: Because Confirm returns a nonzero status value to indicate that No or
Cancel was selected, a script should set the Shell variable {Exit} to zero before
executing the Confirm command. (This step is necessary because the Shell
aborts script processing when a nonzero status value is returned and {Exit} is
nonzero.)

Built-in.

Reads standard input for the message if no parameters are specified.

None.

Errors are written to diagnostic output.

The Confirm command may return the following status codes:

o The OK button was selected.
1 Syntax error.
4 The Cancel button was ~elected or the No button was clicked in a three-way

dialog box.
5 The Cancel button was selected in a three-way dialog box; see the -t option.

• Note: In a two-button dialog box, "Cancel" means the same thing
as "No"; OK means "Yes."

-t Display a three-way confirmation dialog box, which includes Yes,
No, and Cancel buttons. In this case, 4 means "No" and 5 means
"Cancel."

Confirm-display confirmation dialog box 83

Examples

See also

Set Exit 0

Confirm "Replace files with the same name? "

If {Status} == 0

Duplicate -y Source:= Destination:

End

Set Exit 1

The following confinnation dialog box will be displayed:

Replace files with the same name?

• OK • Cancel

If you select the OK button, the Duplicate command will be executed.

The following script makes use of a three-way confinnation dialog box:

Set Exit 0

Set list ""

For file In 'files -t TEXT'

End

Confirm -t "Print file {file}?"

Set SaveStatus {Status}

Continue If {SaveStatus} == 4
Break If {SaveStatus} == 5
Set list "{list} '{file}'"

If "{list}" ! = ""
Print {PrintOptions} {list}

End

Set Exit 1

#- No

#- Cancel

#- Yes

This example prints selected TEXT files in the current directory. For each file, it
displays a dialog box with three choices (Yes, No, and Cancel). Selecting "Yes"
prints the file. If you select "No," the Continue command causes this file to be
skipped, but processing continues with the next file in the list. If you select
"Cancel," the Break command causes the For loop to be terminated, ending the
question-and-answer session. The filenames are saved in the variable {list} and
printed following the loop.

Alert and Request commands.

84 MPW 3.0 Reference

Continue--continue with next iteration of For or Loop

Syntax

Description

Type

Input

Output

Diagnostics

Status

Continue [If expression]

If expression is nonzero, Continue terminates this iteration of the immediately
enclosing For or Loop command and continues with the next iteration. (Null
strings evaluate to zero.) If the "If expressiort' clause is omitted, the Continue is
unconditional. If no further iterations are possible, the For or Loop is terminated.
(For a definition of expression, see the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

Continue may return the following status codes:

o No errors.
-3 Error in parameters, or Continue not within For ... End or Loop ... End.
-5 Invalid expression.

Options None.

Continue--<:ontinue with next iteration of For or Loop 85

Example

See also

Set Exit 0

Set list ""

For file In 'files -t TEXT'

End

Confirm -t "Print file {file}?"

Set SaveStatus {Status}

Continue If {SaveStatus} == 4 # No

Break If {SaveStatus} == 5 # Cancel

Set list "{list} '{file}'" # YesEnd

Print {PrintOptions} {list}

Set Exit 1

In this example, the Continue command is executed if the user selects No (status
value 4). The Continue causes the current file to be skipped, but processing
continues with the next file in the list.

(For a full explanation of this example, refer to the Confirm command.)

For, Loop, Break, and If commands.

Evaluate command, for a description of expressions.

"Structured Commands" in Chapter 5.

86 MPW 3.0 Reference

Copy---copy selection to Clipboard

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Copy [-c count] selection [window]

Finds selection in the specified window and copies it to the Clipboard, replacing
the previous contents of the Clipboard. If no window is specified, the command
operates on the target window (the second window from the front). It's an error
to specify a window that doesn't exist.

For a definition of selection, see "Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

• Note: To copy files, use the Duplicate command.

Built-in.

None.

None.

Errors are written to diagnostic output.

Copy may return the following status codes:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count For a count of n, find and copy the nth instance of selection.

Copy----<:opy selection to Clipboard 87

Examples

See also

Copy§

Copies the current selection to the Clipboard. This command is like the Copy
command in the Edit menu, except that the action takes place in the target
window.

Copy /BEGIN/:/END/

Selects everything from the next BEGIN through the following END and copies
this selection to the Clipboard.

Cut and Paste commands.

"Selections" in Chapter 6 and Appendix B.

88 MPW 3.0 Reference

Count--count lines and characters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Count [-1] [-<:] [file ...]

Counts the lines and characters in its input and writes the results to standard
output. If no files are specified, standard input is read. If more than one file is
specified, separate counts are printed for each file, one per line and preceded by
the filename. A total is printed following the list.

Tool.

Standard input is read if no files are specified on the command line.

Line and character counts are written to standard output.

Errors are written to diagnostic output.

Count may return the following status codes:

o No errors.
1 Error in parameters.
2 Unable to open input file.

-I Write only the line counts.

-c Write only the character counts.

Count MakeFile.c Count.c

Displays line counts and character counts in the form

MakeFile.c 43
Count.c 153 3327
Total 196 4303

981

Count-count lines and characters 89

Files I Count -1

Displays the total number of files and directories in the current directory.

Count -1 §

Displays the number of lines selected in the target window.

• Note: The source code for Count is included in the CExamples folder in
the file Count.c, as part of MPW C.

90 MPW 3.0 Reference

CPius-C++ compiling system

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

CPlus [option ...] [file]

CPlus compiles the specified C++ source file. Compiling file Name.cp creates
object fIle Name.cp.o. (By convention, C++ source fIlenames end in a ".cp"
suffix') If no fIlenames are specified, standard input is compiled and the object
fIle "c.o" is created.

(Note that SADE object me information cannot be generated for standard input
source files.)

The CPlus script activates, in tum, CFront, and the MPW C Compiler. (CFront
consists of two components: a C preprocessor and a C++ to C translator.)

See the MPW 3.0 C++ Reference Manual for details of the MPW C++ language
definition.

Script.

If no fIlenames are specified, standard input is compiled. You can terminate
input by pressing Command-Enter.

If you specify the -e or -e2 option, preprocessor output is written to standard
output, and no object fIle is produced. If you specify the -c option, the C code
produced by Cfront is written to standard output.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to the diagnostic
output.

The follOwing status codes may be returned:

o Successful completion.
1 Errors occurred.

-b Generate PC-relative references for functions in the same segment
and for string constants (which are kept at the end of the function
code module). The default is to place string constants in the global
data area, and to generate A5-relative (jump table) references for
function addresses. Useful for writing DAs, WDEFs, and so on.

Cplus-C++ compiling system 91

-b2

-b3

-c

-d name

Provide the actions of option -b, but also allow the code generator
to reduce code size by overlaying the storage constants where
possible.

Cause the code generator to keep string constants within the code
and overlay them when possible (but always generate AS-relative
references for function addresses).

Do not generate object code. Write the intermediate C code to
standard output. This option is useful for two purposes: to pipe
the output of Cfront to a different C compiler, and to produce the
C code for human inspection in order to clarify the semantics of a
C++ construct.

Define name to the preprocessor with value 1. This is the same as
writing
idefine name 1

at the beginning of the source file. (The -d option does not
override #define statements in the source file.)

-d name=string
Define name to the preprocessor with value string. This is the same
as writing
#define name string

at the beginning of the source file.

-e Do not compile the program. Instead, write the output of the
preprocessor to standard output. This option is useful for
debugging preprocessor macros.

-e2 Implies -e, but also suppresses comments.

-elems881 Use in-line MC68881 instructions for all transcendental functions
available on the MC68881 processor. See the MPW],O C Reference
for a complete list of these functions. This option implies the
-mc68881 option.

-f When CFront gets its source from standard input-for example,
when the source is sent to a stand-alone preprocessor whose output
is piped to Cfront--the option -f <filename> will cause correct line
number information to be sent to debuggers.

-12 Causes CFront to send a tokenized version of the intermediate
code to the C compiler. This option is required if SADE offsets are
needed.

92 MPW 3.0 Reference

-1 pathname [,pathna~ .,.
Search for include files in the specified directories. Multiple -i
options may be specified. A maximum of 15 directories can be
searched. The following is the search order:

1. The include filename is used as specified. If a full
pathname is given, no other searching is applied. If the file
wasn't found, and the pathname used to specify the file is a
partial path name (no colons in the name or a leading colon),
then the following directories are searched:

2. The directory containing the current input file.

3. The directories specified in the -1 options, in the order listed.

4. The directories specified in the Shell variable {Cincludes}.

-I Generate the #/ine pragma in the nonstandard form

<line_numbe~ "<file>".

-m Generate 32-bit references for data. Required when there is more
than 32K of global data.

-mgb off Do not include symbols for the MacsBug debugger.

-mbg full I on
Include full (untruncated) symbols for MacsBug.

-mbg cbS Include V2.O-compatible MacsBug symbols (eight characters only,
in a special format). This option is useful for generating symbols.
for the MacApp debugger.

-mbg number
Include MacsBug symbols truncated to length number.

-mdis020 Generate MC68020 instructions whenever doing so would provide
faster and/or smaller object code.

-mdi8881 Generate Mc68881 instructions for all basic floating-point
operations.

-mtblO Suppress output of method tables for each Object Pascal Class.

-mtbll Force output of method tables for each Object Pascal Class.

If neither -mtblO nor -mtbll is selected, the default is to emit
method tables only for classes for which one or more virtual
member functions are defined in the source file.

Cplus--C++ compiling system 93

-n Tum pointer assignment incompatibility errors into warnings.

-oobjname Pathname for the generated object file. If objname ends with a
colon, it indicates a directory for the output file, whose name is
then formed by the nonnal rules (that is, inputjiiename.o). If
objname does not end with a colon, the object file is written to the
file objname.

-p Write progress information (include filenames, function names, and
sizes) and summary infonnation (number of errors and warnings,
code size, global data size, and compilation time) to diagnostic
output.

-s name Name the object code segment. (The default segment name is
"Main".)

-sym on I full

-t

-u name

Write complete object file records containing information for
SADE, the MPW symbolic debugger. This option can be limited by
also specifying one or more of nolines, novars, notypes, which
cause omission of line, type, and variable information,
respectively, from the object file (such as -sym on, nolines,
novars). For more information, see the MPW 3.0 C Reference
Manual.

Write C compilation time to diagnostic output.

Undefine the predefined preprocessor symbol name. This is the
same as writing

fundef name

at the beginning of the source file.

-vtblO Suppress output of virtual tables for each ordinary class with virtual
functions.

-vtbll Force output of virtual tables for each ordinary class with virtual
functions. If neither -vtblO nor -vtbl is selected, the default is to
emit virtual tables only for classes for which one or more virtual
member functions are defined in the source file.

-w Suppress compiler warning messages. (By default, warnings are
written to diagnostic output.)

-wI Cause Cfront to generate additional warnings.

94 MPW 3.0 Reference

Example

See Also

-x filename

-y path name

This option names the file containing a cross-compilation table. It
is used when doing cross-development to a different processor.

Put the C compiler's temporary intermediate (".oj") files in the
directory specified by pathname.

-zO Force "inline" functions to be non-inline.

-z6 Do not optimize enumerations. ENUM variables become the same
as INT.

cplus -p Sarnple.c

Compiles Sample.c, producing the object file Sample.c.o. Writes progress
information to diagnostic output. (Sample.c is found in
Examples:CPlusExamples.)

MPW 3.0 C Reference, MPW C++ Reference.

CpJus-C++ compiling system 95

Create~ake--create a sinlple ~akeflle

Syntax

Description

Create Make [-Application [-c creator] I -Tool I -DA I -CR -m entry point
-rt resource type [-c creator -t file type]] [-sym on] program file ...

CreateMake creates a simple makefile for building the specified program. The
parameter program is the name of the program. Makefile program. make is
created. The list of files includes both source and library files. Source files may be
written in any combination of assembly language (suffix ".a"), C (".c"), C++
(".cp"), Pascal (".p"), and/or Rez e.!").

You can also specify library files (suffIx ".0"). link the program with these files.
CreateMake automatically links with the ·library files listed below. It is not
necessary to specify these files as parameters to CreateMake.

You can create Makefiles for building applications (the default), desk
accessories, and tools.

CreateMake generates commands that link the program with the following set of
MPW libraries:

• Inside Macintosh Interfaces
{LibrarieslInterface .0

• Runtime support-one of the following:
{Libraries}Stubs.o # a tool is to be built
{libraries}Runtime.o # no C object files
{CLibraries}CRuntime.o # any C object files

• C libraries-if any source is in C
{CLibraries}StdCLib.o
{CLibraries}CSANELib.o
{CLibraries}Math.o
{CLibraries}CInterface.o

• C Libraries-if any source is in C++
{CLibraries}CPiusStreams.o # a tool is to be built
{CLibraries}CPiusStubs.o # a DA is to be built
{CLibraries}CSANELib.o
{CLibraries}Math.o
{CLibraries}CInterface.o

96 MPW 3.0 Reference

Type

Input

Output

Diagnostics

Status

Options

• Pascal libraries-if any source is in Pascal
{PLibraries}PasLib.o
{PLibraries}SANELib.o

• For tools:
{Libraries} ToolLibs.o

• For desk accessories:
{libraries}DRVRRuntime.o

CreateMake does not include dependencies on incl ude files and USES ftles in
the makefile. Libraries other than those listed above are not included in the link
command generated by CreateMake, unless specified as parameters. CreateMake
is used to implement the' Create Build Commands item in the Build menu.

Script.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o Successful completion.
1 Parameter or option error.

-Application
Create build commands for building an application. This is the
default.

-c creator If a code resource or an application, optionally provide the creator.

-CR Create build commands for building a stand-alone code resource.

-DA Create build commands for building a desk accessory.

-m main entry point
If a code resource, provide the main entry point.

-rt resource type
If a code resource, provide the type and ID in the form type~ID.

-T file type If a code resource, optionally provide the file type.

-tool Create build commands for bUilding a tool.

CreateMake-<:reate a simple makefile 97

Example

See also

-sym on Create build conunands that construct an object containing
symbolic debugger information for SADE.

CreateMake -tool count count.c count.r

Creates the makefile Count.make containing conunands for building the tool
Count from the source files Count.c and Count.r. The makefile is similar to the
following:

f File: count.make

f Target: count

f Sources: count.c count.r

f Created: Thursday, June 2, 1988

count.c.o f count.make count.c

C count.c

count ff count.make count.r

Rez count.r -append -0 count

SOURCES

OBJECTS

count.c count.r

count.c.o

count ff count.make {OBJECTS}

Link -w -t MPST -c 'MPS I a
"{Libraries}"Stubs.o a
"{CLibraries}"CRuntime.o a
"{Libraries}"Interface.o a
"{CLibraries}"StdCLib.o a
"{CLibraries}"CSANELib.o a
"{CLibraries}"Math.o a
"{CLibraries}"Clnterface.o a
"{Libraries}"ToolLibs.o a
"{OBJECTS}" a
-0 count

BuildMenu and BuildProgram conunands.

"Building a Program: An Introduction" in Chapter 2.

5:33:38 PM

98 MPW 3.0 Reference

Cut-copy selection to Clipboard and delete it

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Cut [-c count] selection [window]

Finds selection in the specified window, copies its contents to the Clipboard, and
then deletes the selection. If no window is specified, the command operates on
the target window (the second window from the front). It's an error to specify a
window that doesn't exist.

For a definition of selection, see ·Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Built-in.

None.

None.

Errors are written to diagnostic output.

Cut may return the following status codes:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count Find and cut count instances of selection.

Examples Cut §

See also

Cuts the current selection in the target window. (This is the same as the Cut menu
item, except that it operates on the target window rather than the active
window.)

Cut /BEGIN/:/END/

Selects everything from the next BEGIN through the following END, copies the
contents of the selection to the Clipboard, and then deletes the selection.

Clear, Copy, and Paste commands.

"Selections" in Chapter 6 and in Appendix B.

Cut-copy selection to Clipboard and delete it 99

Date-write the date and time

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Date [[-a I -s][-d I -t][-c num]] I [-n]

Writes the current date and time to standard output in a variety of standard and
user-specified formats. Date arithmetic is supported with the -n and -c options
that work with the number of seconds since January 1, 1904. With no options the
Date output has this form: Thursday, August 30, 1988 10:45:51 A.M.

Built-in.

None.

The date is written to standard output.

Errors are written to diagnostic output.

Date may return the following status codes:

o No error.
1 Syntax error.

-a

-c num

-d

-n

-s

-t

Abbreviated date. Three-character abbreviations are used for the
month and day of the week. For example, Thu, Aug 29, 1988.

Write the date corresponding to num, which is interpreted as the
number of seconds since midnight, January 1, 1904. You can use the
other output format options with -c to specify the output format.

Write the date only.

Return a numeric value for the current date and time, in terms of the
number of seconds since midnight, January 1, 1904. This option is
useful for date and time arithmetic.

Short date form. Numeric values are used for the date. The day of
the week is not given. For example, 8/30/88 10 : 45 : 51

Write the time only.

100 MPW 3.0 Reference

Examples Date

returns the date in the form
Friday, February 14, 1988 10:34:25 PM

Date -a

returns
Fri, Feb 14, 1988 10:34:25 PM

Date -s -d

returns
2/14/86

Set starttime 'Date -n'

BuildMyProgram

Set endTime 'Date -n'

Echo Total time for BuildMyProgram a
'Evaluate {endTime} - {startTime},

This example demonstrates how date arithmetic may be used to show how long a
tool or script takes to execute.

Date-write the date and time 101

Delete-delete rtles and directories

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Delete [-y I -n I -c] [-i] [-p] name. ..

Deletes file or directory name. If name is a directory, name and its contents
(including all subdirectories) are deleted.

Before deleting directories, a dialog box will request confirmation for the
deletion. Use the -y, -n, or -c options in scripts to avoid this interaction. Be sure
to see the warning at the end of this section.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output. Progress and summary
information is also written to diagnostic output if the -p option is specified.

The following status codes may be returned:

0

1
2
4

-I

-n

-p

-y

-c

All specified objects were deleted (except for any directories skipped with
the -n option).
Syntax error.
An error occurred during the delete.
Cancel was selected or implied by the -c option.

Ignore errors (that is, do not print messages, and return a status
code of 0).

Answer "No" to any confirmation dialog that may occur, skipping
the delete for any directories encountered.

List progress information as the delete takes place.

Answer "Yes" to any confirmation dialog that may occur, causing
any directory encountered to be deleted.

Answer "Cancel" to any confirmation dialog that may occur, causing
the delete to stop when a directory is encountered.

102 MPW 3.0 Reference

Example

Warning

See also

Delete HD:MPW:=.c

Deletes all items in the MPW folder that end in ".c". (Recall that the Shell first
replaces the parameter "==.c" with a list of filenames matching the pattern-the
Delete command then deletes each of these files.)

Beware of potentially disastrous typographical mistakes such as the following:
Delete = .c

Note the space after "=="-this space causes "==" and ".c" to be treated as two
separate parameters. In this case, Delete deletes all files in the current directory
and also attempts to delete a file named ".c".

AIso note that the following command deletes everything:
Delete =:

That is, the filename pattern ==: expands to the names of all volumes online
(including the startup volumeO.

When deleting files en masse, irs a good practice to use the Echo command to
verify the action of the filename generation operators; for example,
Echo =.c

Clear command (for deleting selections).

"Filename Generation" in Chapter S.

Delete-delete files and directories 103

DeleteMenu-delete user-defined menus and items

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

DeleteMenu [menuName [itemName]]

Deletes the user-defined item itemName in the menu menuName. If itemName is
omitted, all user-defmed items for menuName are deleted.

... Caution If itemName and menuName are both omitted, all user-defined
items are deleted. Menu items that haven't been added with
AddMenu can't be deleted.with DeleteMenu .•

Built-in.

None.

None.

Errors are written to diagnostic output.

DeleteMenu may return the following status codes:

o No errors.
1 Syntax error.
2 Other errors.

None.

DeleteMenu File

Deletes all user-defmed items from the File menu.

AddMenu command.

104 MPW 3.0 Reference

DeleteNames--delete symbolic names

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DeleteNames [-u user H-project project H-public H-r] [names... I -a]

Delete symbolic names used to represent a set of revisions under Projector. You
can create symbolic names by using the NameRevisions command.

You can use the -log option of the Projectinfo command to see which names
have been deleted and what their values were.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

-u user Name of the current user. This overrides the {User} Shell variable.

-project project

-public

-a

-r

Name of the project which contains the files. This becomes the
current project for this command.

Delete public Names.

Delete all names in the project.

Recursively execute the DeleteNames command on the current
project and all its subprojects.

DeleteNames--delete symbolic names 105

Examples

See Also

Suppose you have created a Name "Work" that is expanded to the files file.c and
interactive.c using the command

NameRevisions Work file.c interactive.c

Then:

DeleteNames Work

removes "Work" from the list of symbolic names.

NameRevisions, ProjectInfo.

106 MPW 3.0 Reference

DeleteRevisions-delete revisions and branches

Syntax

Description

Type

Input

Output

Diagnostics

Status

DeleteRevisions [-u user] [-project project] [-me] [-y] revision ...

Delete old revisions by specifying the oldest revision that you want to keep. All
prior revisions are deleted. Delete all revisions on a branch by naming the branch
or branches in the named files under Projector. It is an error to try to delete a
revision that is currently checked out for modification.

Revision is either a filename, a filename followed by a comma and a revision
number, or a filename followed by a comma and a branch name (such as
foo.c,22a).

You can use the -IDe option to remove the file and all of its revisions from the
project.

... Warning DeleteRevisions permanently removes the revisions and branches
specified. They cannot be recovered. A

You can use the -log option of the ProjectInfo command to see which revisions
have been deleted and who deleted them.

See Chapter 7 for complete deflnitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

DeleteRevisions-delete revisions and branches 107

Options

Examples

See Also

-u user Name of the current user. This overrides the {User} Shell variable.

-project project
Name of the project that contains the files. This option becomes
the current project for this command.

-me Deletes the file and all its revisions.

-y Deletes the file/revision (avoids dialogs).

DeleteRevisions -project zoomJUtilitiesJMyProject file.c

This example deletes all revisions except the latest in file.c in the named project.

DeleteRevisions file.c,22a3

This example deletes all revisions on branch 22a before revision 3 of file.c.

DeleteRevisions file.c,22a

This command deletes all the revisions on branch 22a in file.c of the current
project.

DeleteRevisions -file file.c

This command deletes the file file.c and all of its revisions from the current
project.

NameRevisions, ProjectInfo.

108 MPW 3.0 Reference

DeRez-Resource decompiler

Syntax

Description

Type

Input

DeRez [option ...] resource File [resourceDescriptionFile ...]

Creates a text representation (resource description) of the resource fork of
resourceFile, according to the resource type declarations in the resource
description me(s). The resource description is written to standard output.

A resource description me is a me of type declarations in the format used by
the resource compiler, Rez. The type declarations for standard Macintosh
resources are contained in the mes Types.r and SysTypes.r, contained in the
{RIncludesl folder. If no resource description file is specified, the output consists
of da t a statements giving the resource data in hexadecimal fonn, without any
additional format information.

If the output of DeRez is used as input to Rez, with the same resource
deSCription files, it produces the same resource fork that was originally input to
DeRez. DeRez is not guaranteed to be able to run a declaration backwards; if it
can'~ it produces a data statement instead of the appropriate resource
statement.

DeRez ignores all include (but not Jinclude), read, data, change,
delete, and resource statements found in the resourceDescriptionFile. (It
still parses these statements for correct syntax.)

For the format of resource type declarations, see Chapter 11 and Appendix D.

Tool.

Standard input is never read. DeRez requires a resource me as input You may give
optional formatting information by specifying one or more resource description
files.

For all resource description files on the command line, the following search rules
are applied:

1. DeRez tries to open the me with the name specified "as is."

2. If rule 1 fails and the filename contains no colons or begins with a colon,
DeRez appends the filename to each of the pathnames specified by the
{RIncludes} variable and tries to open the me.

DeRez-Resource decompiler 109

Output

Diagnostics

Status

Options

A resource description is written to standard output. The resource description
consists of resource and data statements that can be understood by Rez. (See
Chapter 11.)

If no errors or warnings are detected, DeRez runs silently. Errors and warnings are
written to diagnostic output.

DeRez may return the following status codes:

o No errors.
1 Error in parameters.
2 Syntax error in file.
3 VO or program error.

-c[ompatible]
Generate output that is backward compatible with Rez 1.0.

-d[efine] macrd=data]
Define the macro variable macro to have the value data. If data is
omitted, macro is set to the null string-note that this still means
that macro is defined. Using the -d option is the same as writing

*define maau[da~]

at the beginning of the input. The -d option may be repeated any
number of times.

~De~zO~Pt~lo~n~s;=~===;==~----~--------------~
(File to decompile) frTypeS I

Decompile Skip I

[Types Flies...] [#INCLUDE Paths ...] "DOl
Width of decomplled strings ~ I I

I 0 No warnings for redeclared types I II I I
I
" 0 Progress information "I Preprocessor o Write Rez 1.0 compatible output rDefine Undeflne I
iDDon·tescapeCharDcters i !DOI I Output Error II I
II I I 'I II I I

110 MPW 3.0 Reference

-e[scape] When this option is specified, characters that are normally escaped
(such as \ Oxff) are no longer escaped. Instead they are printed as
extended Macintosh characters. (Note: Not all fonts have all the
characters defined.) Normally characters with values between $20
and $D8 are printed as Macintosh characters. With this option,
however, all characters (except null, newline, tab, backspace, form
feed, vertical tab, and rubout) are printed as characters, not as
esca pe sequences.

-i Lets you specify one or more pathnames to search for finclude

files. This option may be specified more than once. The paths will
be searched in the order they appear on the command line.

derez -i {rnpw}rnyStuff: -i hd: tools ...

-m[axstrlngsize] n
Set the maximum string size to n; n must be in the range 2-120. This
setting controls string width in the output.

-only typeExpr [(JD 1 [:ID2 D I resourceName]
Read only resources of resource type typeExpr. If an ID, range of
IDs, or resource name is given, read only those resources for the
given type. This option may be repeated.

• Note: typeBxpr is an expression, so literal quotation
marks (') might be needed. If an ID, range of IDs, or
name is given, the entire option parameter must be
quoted; for example,

DeRez -only "'MENU' (1:128)" ...

See also the "Examples" section below.

• Note: The -only option cannot be specified together with the
-skip option.

-only type A simpler version of the above option: no quotation marks are
needed to specify a literal type as long as it starts with a letter.
Items such as escape characters are not allowed. For example,

DeRez -only MENU ...

DeRez-Resource decompiler 111

Examples

See also

-p Display progress and version information.

-ro Suppress warning messages if a resource type is redeclared.

-s[kip] typeExpr [(IDI [: ID2]) I resourceName]
Skip resources of type typeExpr in the resource file. For example,
it's very useful to be able to skip 'CODE' resources. typeExpr is an
expression; see the note under -only. The -s option may be
repeated any number of times.

-s[ldp] type A simpler version of the -s option; no quotation marks are needed
to specify a literal as long as it starts with a letter.

-u[ndefJ macro
Undefme the macro variable macro. This is the same as writing

tundef macro

at the beginning of the input file. It is meaningful to undefine only
the preset macro variables. This option may be repeated.

DeRez "{SheIIDirectory}MPW Shell" -only MENU Types.r

Displays all of the 'MENU' resources used by the MPW Shell. The type defmition
for 'MENU' resources is found in the file Types.r.

DeRez HD:OS:System SysTypes.r a
-only "'DRVR' (o"\OxOOScrapbooko")"

Decompiles the Scrapbook desk accessory in the copy of the System file that's
located in directory HD:OS:. (The type definition for 'DRVR' resources is found
in the file SysTypes.r.)

Rez and RezDet commands.

Chapter 11.

Type declaration files in RIncIudes folder:

• Types.r
• SysTypes.r

• MPWfypes.r

• Pict.r

112 MPW 3.0 Reference

Directory-set or write the default directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Directory [-q I directory]

If specified, directory becomes the new default directory. Otherwise the
patbname of the current default directory is written to standard output

If directory is a leafname, the command searches for directory in the directories
listed in the Shell variable {DirectoryPathl. If the variable is undefmed, the
command looks in the current directory.

• Note: To display a directory's contents, use the Files command.

Built-in.

None.

If no directory is specified, the default directory pathname is written to standard
output.

Errors are written to diagnostic output.

Directory may return the following status codes:

o No error.
1 Directory not found, command aborted, or parameter error.

-q

Directory

Don't quote the pathname that is written to standard output.
Normally, a directory name is quoted if it contains spaces or other
special characters.

Writes the pathname of the current directory to standard output.

Directory HD:MPW:Exarnples:

Sets the default directory to the folder Examples in the folder MPW on the
volume HD. The final colon is optional.

Directory-set or write the default directory 113

See also

Directory Reports:

Sets the default directory to the volume Reports. Note that volume names must
end in a colon.

Directory : Include:Pascal:

Sets the default directory to the folder Pascal in the folder Include in the current
default directory.

Set DirectoryPath

Directory Tools

,. . . , {MPW} , {MPW}Projects:"

Sets the directory to the Tools directory. The current directory is searched first,
followed by the {MPW} directory, and finally by the {MPW} Projects directory. If
there is no Tools directory in your current directory, the directory is set to
{MPW}Tools.

"File and Window Names" in Chapter 4.

Files, NewFolder, and SetDirectory commands.

114 MPW 3.0 Reference

DirectoryMenu--create the Directory menu

Syntax

Description

Type

Input

Output

DiagnosticS

Status

Options

DirectoryMenu [directory ...]

Creates the Directory menu shown here. The optional directory ... parameter
specifies the initial list of directories that appears in the menu. The menu items
are described in Chapter 3.

Show Directory
Set Directory •••

HD2:MPW:EH8mples:REH8mples:
HD2:MPW:EHemples:CEHemples:
HD2:MPW:EH8mples:CPlusEHamples:
HD2:MPW:EH8mples:EH8mples:
HD2:MPW:EHamples:PEHamples:
HD2:MPW:EHamples:ProJector EHamples:
HD2:MPW:

The lower section of the Directory menu contains a list of directories. Initially
this list consists of the parameters to DirectoryMenu. As other directories
become the current directory (using the Set Directory menu item or the
SetDirectory command), they are added to the list.

Script.

None.

None.

Errors are written to diagnostic output.

Status code 0 (no problem) is always returned.

None.

DirectoryMenu-create the Directory menu 115

Example DirectoryMenu' (Files -d -i n{MPW}"Examples:=) ~ Dev:Null'o

, Directory'

Creates the Directory menu. Directories in directory "{MPW}" that match the
pattern Examples:= will be included in the Directory menu, along with the current
directory.

This DirectoryMenu command should be included in your UserStartup file to
install the Directory menu. You might replace the Examples directories and the
default directory with your favorite list of directories.

116 MPW 3.0 Reference

Dolt-highlight and execute a series of commands

Syntax

Desaiption

Type

Input

Output

Diagnostics

Status

Options

Dolt (CommandFile [-echo] [-dump]) I -selection

Dolt will execute a series of Shell commands, highlighting each command as it is
executed. The commands can be either in a file or in the current selection of the
active window. If a CommandFile is passed to DoI~ the file is opened (as the
active window) and each command is executed. The window is closed when all
commands have been processed.

This command will not work for a series of commands that contains structured
commands such as If statements or Loops.

Script.

None.

Errors produced by the Dolt script are sent to standard output. If the -echo
option is specified, the commands are echoed to the WorkSheet as they are
executed.

Errors and warnings generated by the commands being executed by the Dolt
script are written to diagnostic output.

Dolt may return these status codes:

o No errors.
1 Syntax error.
n Any status code returned by a command being executed by Dolt

-echo Each command is echoed to the WorkSheet before execution.

-dump If an error occurs in one of the commands being executed, all the
remaining commands (including the command that failed) are
written to the WorkSheet and marked with a marker called "ToDo."

-selection Execute the commands in the current selection of the active
window.

Dolt -highlight and execute a series of commands 117

Examples Backup -from "HD:Src:" -to "Backup:Src" -a -r -c > out

DoIt out

The above command will highlight and execute all the Duplicate commands
generated by the Backup command. In this way you can see progress as the files
are being duplicated.

AddMenu DoIt "DoIt Selection" "DoIt -selection"

The above AddMenu command will create a menu that can be used to highlight
and execute the current selection. This could be used on a series of commands
generated by Make or Backup that were written to the Active window. Simply
select the commands and select the "Dolt Selection" menu item.

Make> make.out

DoIt -dump make.out

This Dolt command will open the make. out file and highlight and execute each of
the commands generated by the previous make command. In this way you can
see progress as the files are being compiled and linked. If an error occurs (for
instance, in one of the compiles), that compile command along with the rest of
the commands in the make.out will be written to the WorkSheet At this point
you could fIx the error (in the source file), select the "roDo" marker (which would
select the remaining commands), and select the "Dolt Selection" menu item to
execute the remaining commands.

118 MPW 3.0 Reference

DumpCode-write formatted resources

Syntax

Description

Type

Input

Output

Diagnostics

Status

DumpCode [option ...] resourceFile

Disassembles object code that is stored in resources such as 'CODE', 'DRVR', and
'PDEF. DumpCode reads from the resource fork of the specified file and writes
the formatted assembly code to standard output. The default formatting
convention is to disassemble the code and to display the corresponding bytes in
hexadecimal and ASCII.

The default behavior of DumpCode is to dump all the 'CODE' resources from a
program me. The -rt option can be used to dump resources of other types, such
as drivers and desk accessories.

Some conventions about executable code resources are built into DumpCode and
affect the formatted output in special ways:

• 'CODE' resources with ID 0 are formatted as a jump table (unloaded format).

• Other 'CODE' resources have information about jump table entries in the ftrst
four bytes.

• 'DRVR' resources have a special format at the beginning of the resource.

In addition, you can direct DumpCode to give a symbolic dump of data
initialization descriptors and initial values.

Tool.

None.

DumpCode writes formatted resources to standard output.

Errors and warnings are written to diagnostic output. Progress information can
also be written to diagnostic output (with the -p option).

DumpCode may return the following status codes:

o No problem.
1 Syntax error.
2 Fatal error.

DumpCode-write formatted resources 119

Options Note: Numeric values for options can be specified as decimal constants, or as
hex constants preceded by a "$".

-d Suppress the disassembly and dumping of code. (The default is to
disassemble the code.)

This option is useful in producing a small output file and looking at
just the resource names, sizes, and resource header information. It
is also useful when just some specialized information is desired,
such as the jump table or data descriptors.

-di Suppress display of data initialization code.

-h Suppress the writing of header information, such as resource
relative locations, hexadecimal and ASCII equivalents, and so on.
The default is to produce this type of header information.

This option is useful in producing output that can be edited and
submitted to the assembler for reassembly.

-jt Suppress formatting of the jump table. Only summary information
for the jump table is given. (The default is to format the jump
table unless one of the options -s, -rt, -n, or -jt is specified.)

-n Write only the resource names associated with resources. This
option is useful for finding segments or desk accessories by name.

-p Write progress information (filenames, resource names, IDs, and
sizes) to diagnostic output.

-r byte1[,byteN'J

-rt t;pe[=/D]

Limit the disassembly of code to the range byte1 ... by teN. The
default is to disassemble all bytes in a segment. If by teN is Omitted,
the rest of the segment is disassembled. This does not affect
disassembly alignment; the disassembly still starts at the base of
the resource, but instructions are printed only for the specified
range.

Dump only the single resource with type type and ID number /D. If
ID is omitted, all resources of the specified type are dumped.

-s resourceName
Dump only the single resource named resourceName.

120 MPW 3.0 Reference

Example

See also

DumpCode Sample > SampleDump

Formats the 'CODE' resources in the me Sample, writing the output to the me
SampleDump. The output has this format:

File: sample, Resource 3, Type: CODE, Name: DataInit
Offset of first jump table entry: $00000018
Segment is $000000D2 bytes long, and uses 1 jump table entry
000000: 48E7 FFFO IH ... I MOVEM.L DO-D7/AO-A3,-(
000004: 4247 IBG I CLR.W D7
000006: 4EAD 0032 IN .. 21 JSR $0032 (AS)

OOOOOA: 2218 III I MOVE.L (AO) +,D1

etc.

DumpObj command.

"The Jump Table" in the chapter "Segment Loader" of Inside MaCintosh, for a
description of the jump table.

Appendix H, "Object File Format."

DumpCode-write formatted resources 121

DumpFile-display contents of an arbitrary rde

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DumpFile [option ...] filename

DumpFile lets you display the contents of the resource fork or data fork of a file
in a variety of formats.

Tool.

DumpFile does not read standard input.

DumpFile writes formatted object file records and disassembled code to
standard output.

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpFile may return the following status codes:

o No problem.
1 Syntax error.
2 Fatal error.

-rf

-bf

-a

-h

-0

-wmm

Display the resource fork of the file. (Default is data fork.)

Display both forks of file.

Suppress display of ASCII character values.

Suppress display of hexadecimal characters.

Suppress display of file offsets.

Display width of mm bytes on each line of output. (Default is 16.)

• Note: The mm value in option -w must be a multiple
of the nn value in -g.

-g"" Group nn bytes together without intelVening spaces. (The default
is 1.)

122 MPW 3.0 Reference

-p Write progress information (such as the name of the file being
dumped and the version of DumpFile) to diagnostic output.

-r bytel[, byteNl
Display only the byte range by tel to by teN.

Examples DumpFile -p ATestFile

Formats the data fork of the file ATestFile and writes its contents to standard
output. This output has the following format:

DumpFile -p ATestFile

MPW File Display Utility version 3.0B1 Release April 15,

1988 Start: 1:24:09 PM 4/19/88

Copyright Apple Computer, Inc. 1985-1988

All Rights Reserved.

File : ATestFile

Data Fork Length : 20

Resource Fork Length : 382

Dumping Data Fork from offset 0 to 20

0: 54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 66 This.is.a.test.file.

10: 69 6C 65 2E

DumpFile completed normally

Execution required 0 seconds.

DumpFile -w 12 -g 4 ATestFile

Formats the data fork of the me ATestFile. and writes its contents to standard output, grouping four
bytes at a time and displaying 12 bytes per line. This output has the following format:

File : ATestFile

Data Fork Length : 20

Resource Fork Length : 382

Dumping Data Fork from offset 0 to 20

0: 54686973 20697320 61207465 This.is.a.te

C: 73742066 696C652E st. file.

DumpfJ.le-display contents of an arbitrary file 123

DumpFile -rf -r 0,30 -g 4 ATestFile

Formats the resource fork of the file A TestFile and writes the contents of bytes 0 through 30 to
standard output in 4-byte groups. This output has the following format:

File : ATestFile
Data Fork Length : 20
Resource Fork Length : 382
Dumping Resource Fork from offset 0 to 30

0: 00000100 0000014C 0000004C 00000032 •...... L ... L ... 2
10: 696C652E 6F727920 2227227B 646972 ile.ory."'''{dir

124 MPW 3.0 Reference

DumpObj-write formatted object rue

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DumpObj [option ...] objectFile

Disassembles object code that is stored in the data fork of an object file. By
convention, object files end in the sufflx ".0". In addition, the object file must
have type 'OBJ'.

Tool.

DumpObj does not read standard input.

DumpObj writes formatted object file records and disassembled code to
standard output.

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpObj may return the following status codes:

o No problem.
1 Syntax error.
2 Fatal error.

-d Suppress disassembly of code and display of data. The default is to
disassemble code and to display data in hexadecimal and ASCII ..

-h Suppress printing of header information on code lines. Header
information includes the offset of the code and the code bytes in
hex and ASCII. The default is to print header information.

Use this option to produce code that can be edited and submitted
to the assembler for reassembly.

-jn Print just names for IDs, omitting the ID numbers. This option is
useful for comparing object files that have identical names but
different IDs.

DumpObj--write formatted object me 125

-i Suppress substitution of names for IDs. The default is to preread
the entire file, process the Dictionary records, and then show names
in place of ID numbers.

This option is useful in examining an object file up to the point
where an object file format error has been reported by Link or Lib;
that is, it suppresses the preread, which is also likely to fail.

r-DumpObj Options

(Object File) o Progress Info Module:
o No headers I I

Output o Use IDs

I I o File locations
o Names only

Error o Just names (no IDs)

I I o No disassembly
Byte Range:

I I
F~andllne

I
fHel

' I (Cancel I ~j Is us.d to dtsplalJ tM cont.nts ofMP obi"rt filK.

C DlImpObj J
-1 Print file locations of object records. The default is not to print

these locations.

This option is useful in debugging compilers and assemblers,
particularly when debugging code used to generate Pad records to
assure alignment. (See Appendix H.)

-m name Dump a particular module. If name is an entry point, the module
containing name is dumped. Other options that control format still
have an effect.

Note: name is case sensitive, as are all object file identifiers.

-n Print names only. When this option is specified, only the -p option
has an effect

126 MPW 3.0 Reference

This option is useful in detennining which names exist in an object
file, particularly when there appears to be a discrepancy in spelling,
capitalization, or length of identifiers.

Example

See also

-p Write progress information (such as the name of the file being
dumped and the version of DumpObj) to diagnostic output.

-r bytel[,byteN]
Limit the disassembly of code to the range bytel ... byteN. The
default is to disassemble all bytes in a module. If by teN is omitted,
the rest of the module is disassembled. This does not affect
disassembly alignmen~ the disassembly still starts at the base of
each contents record, but instructions are printed only for the
specified range.

-sym [on I off
Enable or disable writing symbolic records to support SADE. The
default is ON.

,nolines Omit line information.

,nolabels Omit label information.

,novars Omit variable information.

,notypes] Omit type information.

DumpObj Sample.p.o >SampleDump

Formats the file Sample.p.o and writes its contents to the file SampleDump. This
output has the following format:

Dump of file sample.p.o

First: Kind 0 Version 1

Dictionary: Firstld 2

2: Main
Pad

Module:
Content:

Flags $00 Moduleld 1 SegmentId Main
Flags $00

Contents offset 0000 size 006A
000000: 4E56 FFFE 'NV ••

,
000004: 2F07 '/. '
000006: 42A7 'B.

,
000008: 3F3C 0080 '?< .. '
etc.

For more information, see Appendix H.

DumpCode command.

Appendix H, "Object File Format."

LINK A6,#$FFFE

MOVE.L

CLR.L

MOVE.W

D7,-(A7)

-(A7)

#$0080,-(A7)

DumpObj-write formatted object file 127

Duplicate-duplicate files and directories

Syntax

Description

Type

Input

Output

Diagnostics

Status

Duplicate [-y I -n I -c] [-<1 I -r] [-p] name... targetName

Duplicates name to targetName. (Name and targetName are file or directory
names.) If targetName is a file or doesn't exis~ the me or directory name is
duplicated and named targetName. If targetName is a directory, the objects
named are duplicated into that directory. (If more than one name is present,
targetName must be a directory.) Created objects are given the same creation and
modification dates as their source.

If a directory is duplicated, its contents (including all subdirectories) are also
duplicated. No directory duplicated can he a parent of targetName.

Name can also be a volume; if targetName is a directory, name is copied into
targetName.

A dialog box requests a confIrmation if the duplication would overwrite an
existing file or folder. You can use the -y, on, or -c option in scripts to avoid this
interaction.

Built-in.

None.

None.

Errors are written to diagnostic output. Progress and summary information is
written to diagnostic output if the -p option is specified.

The following status codes may be returned:

o All objects were duplicated.
1 Syntax error.
2 An error occurred.
4 Cancel was selected or implied from the -c option.

128 MPW 3.0 Reference

Options

Examples

Limitation

See also

-y Answer "Yes" to any confirmation dialog that occurs, causing
conflicting files or folders to be overwritten.

-n Answer "No" to any confirmation dialog that occurs, skipping files
or folders that already exist.

-c Answer "Cancel" to any confirmation dialog that occurs, causing the
duplication to stop when a name conflict is encountered.

-d Duplicate the data fork only. If targetName is an existing file, its
data fork is overwritten and its resource fork remains untouched.

-r Duplicate the resource fork only. If targetName is an existing file,
its resource fork is overwritten and its data fork remains
untouched.

-p list progress information.

Duplicate Aug86 "Monthly Reports"

Assuming "Monthly Reports" is an existing directory, duplicates the file Aug86
into that directory.

Duplicate Filel Folderl "Backup Disk:"

Duplicates Filel and Folderl (including its contents) onto Backup Disk.

Duplicate -y Filel File2

Duplicates Filel to File2, overwriting File2 if it exists.

Duplicate Diskl:= HD:Files:

Duplicates all of the files on Diskl into the directory IID:Files.

Duplicate Diskl: HD:Files:

Duplicates all of Diskl (as a directory) into IID:Files.

Duplicate doesn't recognize folders on non-HFS disks.

Move and Rename commands.

"File and Window Names" in Chapter 4.

"Filename Generation" in Chapter 5.

Duplicate-duplicate files and directories 129

Echo--echo parameters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Echo [-n] [paramem ...]

Writes its parameters, separated by spaces and terminated by a return, to
standard output. If no parameters are specified, only a return is written.

Echo is especially useful for checking the results of variable substitution,
command substitution, and filename generation.

Built-in.

None.

Parameters are written to standard output.

None.

Status code 0 is always returned.

-n Don't write a return follOwing Echo's parameters (that is, the
insertion point remains at the end of the output line). The -n isn't
echoed.

Echo "Use Echo to write progress info from scripts."

Use Echo to write progress info from scripts.

The Echo command above writes the second line to standard output.

Echo {Status}

Writes the current value of the {Status} variable-that is, the status of the last
command executed.

130 MPW 3.0 Reference

See also

Echo =.a

Echoes the names of all files in the current directory that end with ".a". (This
might be useful as a precaution before executing another command with the
argument "=.a".)

Echo -n > EmptyFile

If EmptyFile exists, this command deletes its contents; if the file doesn't exist, it
is created.

Parameters and Quote commands.

Echo-echo parameters 131

-------- -----------

Eject--eject volumes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Eject [-m] volume ...

Flushes the volume, unmounts it, and then ejects i~ if it is a 3.5-inch disk. A
volume name must end with a colon (:). If volume is a number without a colon,
it's interpreted as a drive number.

• Note: If you unmount the current volume (the volume containing the
current directory), the boot volume becomes the current volume. You can
keep the volume mounted with the -m option. (See the chapter "File
Manager" of Inside Macintosh.)

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o The disk was successfully ejected.
1 Syntax error.
2 An error occurred.

-m Leave the volume mounted.

Eject Memos:

Ejects (and unmounts) the disk titled Memos.

Eject 1

Ejects and unmounts the disk in drive 1 (the internal drive).

Mount, Unmoun~ and Volumes commands.

132 MPW 3.0 Reference

Entab--convert runs of spaces to tabs

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Entab [option ...] [file ...]

Copies the specified text files to standard output, replacing runs of spaces with
tabs. The default behavior of Entab is to do the following:

1. Detab the input file, using the file's tab setting (a resource saved with the file
by the Shell editor), or 4 if there is none. You can override this "detab" value
with the -d option.

2. Entab the file, setting tab stops every 4 spaces. You can specify another tab
setting with the -t option. The entabbed output file looks the same as the
original file(s), but contains fewer characters.

Options are also provided for controlling the processing of blanks between
quoted strings.

Tool.

If no filenames are specified, standard input is processed.

All files are written to standard output.

Parameter errors and progress information (with the -p option) are written to
diagnostic output.

The follOwing status codes may be returned to the Shell:

o Normal termination.
1 Parameter or option error.

-a Minimum run of blanks that can be replaced with a tab. The default
is 1.

-d tabSetting Override the input file's default tab setting with tabSetting. This
option is useful for detabbing non-MPW files.

• Note: Entab always detabs the input file, using the file's
tab setting, or 4 if there is none. For MPW files, specifying
a -d option would override the file's own tab setting,
leading to incorrect results if a different value were used.

Enta!r-convert runs of spaces to tabs 133

-1 quote... Specify a list of left quoting characters. Quote ... is a string of one or
more nonblank characters. If -1 is specified, -r must also be
specified. Single quotation marks (') and double quotation marks
(n) are assumed as the default quoting characters.

-n Treat all quotes as "nonnal" characters-entab the file, replacing
runs of spaces embedded in quoted strings with tabs.

... Caution This option should not be used when entabbing
program source files. If this option is used, the -q,
-1, and -r options are ignored. .A.

-p Write version and progress information to diagnostic output.

-q quote... Specify a list of characters to be used as both left and right quoting
characters. Quote ... is a string of one or more nonblank characters.
This is the default option; single quotation marks (') and double
quotation marks (ft) are assumed as the quoting characters.

-r quote... Specify a list of right quote characters. Quote ... is a string of one or
more nonblank characters. If -r is specified, -1 must also be
specified.

-t tabSetting

• Note; Entab does not check that a particular left quoting
character mat~hes a particular right quoting character.

Set the output file's tab setting to tabSetting. If the -t option is
omitted, 4 is assumed for the tab setting. If you specify a tab
setting of 0, no tabs are placed in the output. Thus -t 0 may be used
to completely detab input files.

... caution If you specify the -q, -1, or -r option, you should quote the entire
string parameter to these options (otherwise, the Shell may
misinterpret special characters in the parameter string). .A.

134 MPW 3.0 Reference

Example

Warning

Limitations

See also

Entab -t 2 Exarnple.p > CleanExarnple.p

Detabs the file Example.p (using the file's default tab setting), re-entabs it with a
tab setting of 2, and writes the resulting output to CleanExample.p.

Beware of command formats such as

Entab Foo > Foo

Entab does not take into account embedded formatting characters other than
tab characters. Thus backspace characters may cause incorrect results.

The maximum width for an input line is 255 characters.

Format command.

Entab-convert runs of spaces to tabs 135

Equal--compare rues and directories

Syntax

Description

Type

Input

Output

Diagnostics

Equal [-d I -r] [-i][-p][-q] name ... targetName

Compares name to targetName. By default, Equal makes no comment if files are
the same; if they differ, it announces the byte at which the difference occurred.
When comparing directories, the default condition is to report all differences,
including files not found-the ·i option ignores files in targetName that are not
present in name.

If targetName is a file, every name must also be a file. The specified files are
compared with targetName.

If targetName is a directory and name is a file, Equal checks in targetName for the
file name and compares the two files. That is, the command

Equal Filel Oirl

compares Filel with :Dirl:Filel.

If more than one name is specified, Equal compares each name with the
corresponding file or directory in targetName. All subdirectories are also
compared. For example,

Equal Filel oirl Dir2

If targetName is a directory, name is a directory, and only one name is specified,
the Equal command directly compares the two directories. That is, the command

Equal Dirl Dir2

compares Dirt (and all subdirectories) with Dir2.

Built-in.

None.

Differences are written to standard output.

Errors are written to diagnostic output.

136 MPW 3.0 Reference

Status

Options

The following status codes may be returned:

o Identical files.
1 Syntax error.
2 Inaccessible or missing parameter.
3 Files not equal.

-i Ignore flles missing from directory name; that is, if flles in
targetName are not present in name, Equal won't report the missing
files as differences.

-d Compare the data forks only.

-r Compare the resource forks only.

-p List progress information as flles are compared.

-q Remain quiet about differences; return status codes only.

rEqual Options

(Flies to complln! •..) 10 Ignon! missing Oles I
() 10 Progn!SS Informetlon I ,

Terget ... i 0 Quiet mode I
r,FOrkS to compen!---,
. @) Both forks . I 0 Detll fork only I Output Error
o Resource fork only I I I I

r,mmand Line

fHelP I (Cencel

EqUD'
~ m.s MId dhctorios for ~1HII.

I

Equal-compare files and directories 137

I
)

J

Examples

See also

Equal Filel FilelBackup

Reports if the files are different and at what point they differ, in a message
such as

Filel FilelBackup differ in data fork, at byte 5

Equal -i HD:Dirl Diskl:Dirl

Compares all fIles and directories in HD:Dirl with files and directories with the
same names found in Diskl:Dirl, and reports any differences. This command
does not report files in Diskl :Dirl that aren't found in HD:Dirl.

Equal -i -d Backup: HD:Source

Compares the data forks of all files on the volume Backup: with all those of the
same name in the directory HD:Source.

Equal -p 01d:=.c HD:Source

Compares all fIles on Old: ending in ".c" with their counterparts in HD:Source.
Prints progress information as the comparison proceeds.

Compare command.

138 MPW 3.0 Reference

Erase-initialize volumes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Ernse [-y] [-s] oolume ...

Initializes the specified volumes- the previous contents are destroyed. A
volume name must end with a colon (:). If volume is a number without a colon,
it's interpreted as a disk drive number.

A dialog box requests conflllIlation before proceeding with the command, unless
the .y option is specified. The -y option can be used in scripts to avoid this
interaction.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o Successful initialization.
1 Syntax error.
2 No such volume, or boot volume.
3 Errors during the initialization procedure.

-y Answer "Yes" to the confirmation dialog, causing initialization to
begin immediately.

-s Format the disk for single-sided use (that is, as a 400K, non-HFS
disk).

Erase Reports:

Initializes the volume entitled Reports.

Erase 1

Initializes the volume in drive 1 (the internal drive). The disk will be formatted as
a 400K disk if drive 1 is a 400K drive, or as an BOOK disk if drive 1 is an BOOK drive.

Erase-initialize volumes 139

Evaluate--evaluate an expression

Syntax

Description

Evaluate [-h I -0 I -b) [word ...]
Evaluate name [binary operator] = [word ...]

The list of words is taken as an expression. After evaluation, the result is written
to standard output. Missing or null parameters are taken as zero. You should
quote string operands that contain blanks or any of the characters listed in the
table that follows.

The operators and precedence are mostly those of the C language; descriptions
follow.

The second form of the Evaluate command evaluates the list of words and assigns
the result to the variable name. The result of the expression is not written to
standard output in this case. C style operations of the form "+=", "-=", and so on,
are supported. If name is undefined at the time of execution, it is interpreted as
zero.

Different radices can be used in the input expression, and the result can be output
in a different radix by USing the -h, -0, or -b option. The default radix is decimal.

140 MPW 3.0 Reference

Expressions: An expression can include any of the following operators. (In some
cases, two or three different symbols can be used for the same operation.) The
operators are listed in order of precedence; within each group, operators have the
same precedence.

Operator Operation

1. (expr) Parentheses are used to group expressions
2. Unary negation

Bitwise negation
NOT -, Logical NOT

3. * Multiplication
+ DIV Division
% MOD Modulus division

4. + Addition
Subtraction

5. « Shift left
» Shift right

6. < Less than
<= S Less than or equal to
> Greater than
>= ~ Greater than or equal to

7. Equal
!= <> Not equal
=- Equal-regular expression
!- Not equal-regular expression

8. & Bitwise AND
9. II Bitwise XOR
10. Bitwise OR
11. && AND Logical AND
12. " OR Logical OR

All operators group from left to right. Parentheses can be used to override the
operator precedence. Null or missing operands are interpreted as zero. The result
of an expression is always a string representing a number in the specified radix
(the default is decimal).

The logical operators !, NOT, .." &&, AND, I I, and OR interpret null and zero
operands as false, and nonzero operands as true. Relational operators return the
value 1 when the relation is true, and the value 0 when the relation is false.

Evaluate-evaluate an expression 141

Type

Input

Output

The string operators ==, !=, =-, and !- compare their operands as strings. All
others operate on numbers. Numbers may be decimal, hexadecimal, octal, or
binary integers representable by a 32-bit signed value. Hexadecimal numbers
begin with either $ or Ox. Octal numbers begin with a 0 (zero). Binary numbers
begin with Ob. Every expression is computed as a 32-bit signed value. Overflows
are ignored.

Input Radices

Decimal number [0-9]
Hexadecimal number Ox[0-9A-F]
Octal number 0[0-7]
Binary number Ob[Ol]

The pattern-matching operators =- and !- are like == and != except that the right
side is a regular expression that is matched against the left operand. Regular
expressions must be enclosed within the regular expression delimiters I .. J.
Regular expressions are summarized in Appendix B.

• Note: There is one difference between using regular expressions
after =- and !- and USing them in editing commands. When
evaluating an expression that contains the tagging operator, ®,
the Shell creates variables of the form {®n}, containing the
matched substrings for each ® operator. (See the examples that
follow.)

Filename generation, conditional execution, pipe specifications, and
input/output specifications are disabled within expressions, to allow the use of
many special characters that would otherwise have to be quoted.

Expressions are also used in the If, Else, Break, Continue, and Exit commands.

Built-in.

None.

The result of the expression is written to standard output. Logical operators
return the values 0 (false) and 1 (true).

142 MPW 3,0 Reference

Diagnostics

Status

Options

Examples

• Note: To redirect Evaluate's output (or diagnostic output), enclose the
Evaluate command in parentheses; otherwise, the > and ~ symbols are
interpreted as expression operators, and an error occurs. (See the fifth
example that follows.)

Errors are written to diagnostic output.

These status codes may be returned:

o Valid expression.
1 Invalid expression.

-h Output the result in hexadecimal. The number will be prefIxed with
a Ox.

-0 Output the result in octal. The number will be prefIxed with a O.

-b Output the result in binary. The number will be prefIxed with a Ob.

Evaluate (1+2) * (3+4)

Does the computation and writes the result to standard output.

Evaluate -h 8 + 8

Does the computation and writes the result to standard output in hexadecimal
(OxlO).

Evaluate OxA + 6

Writes the result 16 to standard output. (The default output radix is decimal. Use
-h for hexadedmal.) .

Evaluate lines += 1

The Evaluate command increments the value of the Shell variable {lines} by 1. If
{lines} was undefIned before executing the command, {lines} would be 1 after
execution.

Evaluate-evaluate an expression 143

See also

(Evaluate n{aPathname}n =- /«[-,:]+:)*)®1==/) > Dev:Null

Echo {®1}

These commands examine a pathname contained in the variable {aPathname} and
return the directory preftx portion of the name. In this case, Evaluate is used for
its side effect of enabling regular expression processing of a filename pattern.
The right side of the expression (/ (([-,:] + :) *) ®1 == /) is a regular expression
that matches everything in a pathname up to the last colon and remembers it as
the Shell variable {®1}. Evaluate's actual output is not of interest, so it's redirected
to the bit bucke~ Dev:Null. (See "Pseudo-Filenames" in Chapter 5.) Note that the
use of I/O redirection means that the Evaluate command must be enclosed in
parentheses so that the output redirection symbol, >, is not taken as an
expression operator.

This is a complex but useful example of implementing a "substring" function. For
a similar example, see the Rename command.

"Structured Commands" in Chapter 5.

"Pattern Matching (Using Regular Expressions)" in Chapter 6, and Appendix B.

144 MPW 3.0 Reference

Execute~xecute a script in the current scope

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Execute sCript

Executes the script as if its contents appeared in place of the Execute command.
This means that variable definitions, exports, and aliases in the script will
continue to exist after it has finished executing. (Normally these definitions,
exports, and aliases would be local to the script.) Any parameters following sCript
are ignored. Any parameters to the enclosing script are available within sCript.

• Note: If sCript is not a command file (that is, if it's a built-in command,
toal, or application), the command is run as if the word Execute did not
appear. Parameters are passed to the command as usual.

Built-in.

None.

None.

None.

Execute returns the status returned by sCript.

None.

Execute "{ShellDirectory}"Startup

Executes the Startup (and UserStartup) scripts. This command is useful for
testing any changes you've made to the Startup-UserStartup script Variable
definitions, exports, and aliases set in Startup and UserStartup will be available
after Startup is done executing.

"Defining and Redefining Variables" in Chapter 5.

"The Startup and UserStartup Files" in Chapter 5.

Execute-execute a sCript in the current scope 145

Exists-confum the existence of a fl1e or directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Exists [-<1 I -f I -w][-q] name ...

Determines the existence of the file or directory name. The options help you to
distinguish between directories and files and different access permissiOns. The
nonexistence of name is not considered an error (status remains zero).

Built-in.

None.

Files that exist and match the specifications have their names written to standard
output.

Errors are written to diagnostic output.

The follOwing status codes may be returned:

0
1
2

-d

-f

-w

-q

No error.
Syntax error.
Other error.

Check if name is a directory.

Check if name is a file (as opposed to a directory).

Check if the user has write access to the file name. You cannot
write to a file if it is open or locked.

Do not quote pathnames that are written to standard output.

If Not "'Exists -d HD:dir'"

NewFolder HD:dir
End

Duplicate =.c HD:dir

This example creates a new directory and copies all files ending with • .c" in the
current directory to this new directory.

Newer conunand.

146 MPW 3.0 Reference

Exit--exit from a script

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Exit [status] [If ~ssion]

If the expression is nonzero (that is, true), Exit terminates execution of the script
in which it appears. When used interactively, Exit terminates execution of
previously entered commands. Status is a number; if presen~ it is returned as the
status value of the script. Otherwise, the status of the previous command is
returned. If the "If expression' is omitted, the Exit is unconditional. (For a
defmition of expression, refer to the description of the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

If status is presen~ it is returned as the status value of the script. If the expression
is invalid, -5 is returned. Otherwise, the status of the last command executed is
returned.

None.

Exit {ExitStatus}

As the last line of a scrip~ this Exit conunand would return as a status value
whatever value had previously been assigned to {ExitStatus}.

Evaluate command (for information on expressions).

"Structured Commands" in Chapter 5.

{Exit} and {Status} variables, in aVariables," Chapter 5.

Exit-exit from a script 147

Export-make variables available to programs

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Export [-r I -s I name ...]

Make the specified variables available to scripts and tools. The list of variables
exported within a script is local to that script. An enclosed script or tool inherits a
list of exported variables from the enclosing script. (See Figure 5-1 in Chapter 5
for clarification.)

• Note: You can make a variable available to all scripts and tools by setting
and exporting it in the Startup or UserStartup files. (Startup acts as the
enclosing script for all Shell operations.)

If no names are specified, a list of exported variables is written to standard
output. (Note that the default output of Export is in the form of Export
commands.)

Built-in.

None.

If no names are given, Export writes a list of exported variables to standard
output.

None.

Export may return the following status codes:

o No errors.
1 Syntax error.

-r Reverse the sense of the outpu~ causing Export to generate
Unexport commands for all exported variables.

-s Suppress the printing of "Export" before the exported variables.

148 MPW 3.0 Reference

Example

See also

Set AIncludes "{MPW}Interfaces:AIncludes:"

Export AIncludes

Defines the variable {AIncludes} as the pathname "{MPW}Interfaces:AIncludes:"
and makes it available to scripts and programs.

Unexport, Set, and Execute commands.

"The Startup and UserStartup Files" in Chapter 5.

"Exporting Variables" in Chapter 5.

Export-make variables available to programs 149

FileDiv-divide a file into several smaller ftIes

Syntax

Description

Type

Input

Output

Diagnostics

Status

FileDiv [-f] [-n splitpoint] [-p] file [prefix]

FileDiv is the inverse of the Catenate command. It is used to break a large file
into several smaller pieces. The input me is divided into smaller files, each
containing an equal number of lines determined by the splitpoint (defauit=2000).
The last me contains whatever is left over. - -

There is also an option (-f) for splitting a file only when a form feed character
(ASCII $OC) occurs as the first character of a line that is beyond the splitpoint.
This option lets you split a file at points that are known to be the tops of pages.

Each group of splitpoint lines is written to a file with the name prefixNN, where NN
is a number starting at 01. If the preftx is Omitted, the input file name is used as
the prefix.

Tool.

An input file must be specified in the command line. Standard input is not used.

FileDiv creates files with names of the form prefixNN, where NN is a number. (If
prefix is omitted, the input filename is used as a prefIx.) Standard output is not
used.

Parameter errors and progress information are written to diagnostic output.

FileDiv may return the following status codes:

o Normal termination.
1 Parameter or option error.

150 MPW 3.0 Reference

Options

Example

Limitation

-f

-n splitpoint

Split the input file only when at least splitpoint lines have been
written to the current output file and there is a form feed character
(ASCII SOC) as the ftrst character of aline. The line containing the
form feed becomes the ftrst line in the next output fIle.

Split the input fIle into groups of splitpoint lines (or, if the -f option
was specified, splitpoint or more lines). If the -n option is omitted,
2000 is assumed.

-p Write version information and progress information to diagnostic
output.

FileDiv -f -n 2500' Bigfile

Splits BigfIle into files of at least 2500 lines; splits the file at points where there
are fonn feed characters. The output fIles have the names BigftleNN, where NN is
01, 02, and so on.

The maximum length of an input line is 255 characters.

FileDiv-divide a me into several smaller fIles 151

Files-list flIes and directories

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Files [option ...] [name ...]

For each disk or directory named, Files lists its contents; for each file named, Files
writes its name and any other information requested. Information is written to
standard output. When a directory is listed, all subdirectories are listed first in
alphabetical order, followed by all files in alphabetical order. If no name is given,
the current directory is listed.

Built-in.

None.

File information is written to standard output.

Errors are written to diagnostic output.

Files may return the following status codes:

o All names were processed successfully.
1 Syntax error.
2 An error occurred.

-c creator list only those files with the given file creator.

-d list subdirectories only.

-f Give full pathnames for all files listed.

-i Treat directories on the command line as files (ignore differences).
That is, don't list the 'contents of directories; instead, just list the
directory and any other information requested.

-1 list files in long format. This format is: name, type, creator, size,
flags, last modification date, and creation date.

-m count Multicolumn output. This option is not valid if specified with
-lor -x.

-n No header in the long or extended format. Without the -1 or-x
option, this option has no meaning.

152 MPW 3.0 Reference

-0 List only the contents of the directories; do not print the directory
titles themselves. Useful when combined with the -r option (or if
multiple directories are given in the command line) to list only the
contents of the directories.

-q Don't quote names in the output. Normally, the Files command
quotes names that contain spaces or special characters.

-r Recursively list the subfolders encountered; that is, list every file in
every directory.

-5 Suppress the printing of directory names. Useful when combined
with the -r option to get listing of all files (excluding directories).

-t type List only those files with the given file type.

-x format Extended format. This option generates a listing similar to that
produced by the -1 option, except that the fields to be printed are
determined by format. Format is a string composed of the
following letters (in any order) where the order determines the
fields position in the output:
a Flag attributes
b Logical size in bytes of the data fork
c Creator of file CFldr' for folders)
d Creation date
g Group (applies only to folders on AppleShare)
k Physical siz~ in kilobytes of both forks
m Modification date
o Owner (applies only to folders on AppleShare)
p Privileges (applies only to folders on AppleShare)
t Type of file
r Logical size in bytes of the resource fork

Files-list files and directories 153

Examples files -r -s -f

HD:source:defs.h

HD:source:main.c

HD:source:backup:main.c

HD:source:backup:defs.h

HD:source:junk:tmpfile

Recursively lists the contents of the current directory, giving full pathnames and
suppressing the printing of directory names.

files -d

:backup:

: junk:

Lists only the directories in the current directory.

Files -i -x kd "{AIncludes}"

Name

HD:MPW:Interfaces:AIncludes:

Size Creation-Date

365K 8/25/87 5:32 AM

Lists the size and creation date of the "{AIncludes}" directory. Notice how the -f
option is used to avoid printing the contents of the directory.

files -m 2

:backup: deFs.h

: junk: main.c

This is the two-colurnn format. Notice the order of the files.

154 MPW 3.0 Reference

Find-find and select a text pattern

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Find [-c count 1 selection [window 1

Creates a selection in window. If no window is specified, the target window (the
second window from the front) is assumed. It's an error to specify a window that
doesn't exist.

Selection is a selection as defined in Chapter 6 and in Appendix B.

• Note: Searches do not necessarily start at the beginning of a window. A
forward search begins at the end of the current selection and continues
to the end of the document. A backward search begins at the start of
the current selection and continues to the beginning of the document

All searches are not case sensitive by default. You can specify case-sensitive
searches by first setting the Shell variable {CaseSensitive} to a nonzero value. (Or,
you can automatically set {Case Sensitive} by checking Case Sensitive in the dialog
boxes displayed by the Find and Replace menu items.)

Built-in.

None.

None.

Errors are written to diagnostic output.

The follOwing status codes may be returned:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count For a count of n, fmd the nth occurrence of the selection.

Find-fmd and select a text pattern 155

Examples

See also

Find •

Positions the insertion point at the beginning of the target window.

Find -c 5 Iprocedurel Sample.p

Selects the fIfth occurrence of "procedure" in the window Sample.p.

Find 332

Selects line 332 in the target window.

"Selections" and "Pattern Matching" in Chapter 6, and Appendix B.

"Find Menu" in Chapter 3.

156 MPW 3.0 Reference

Flush~lear the command cache

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

Flush

Flush clears the MPW Shell's tool cache.

The MPW Shell keeps the most recently used tools in memory so that execution
can be faster. However, there are times when you don't want the tools to be in
the cache. For example, you cannot run a tool, and then switch to the Finder and
delete the me. The Finder will report that the tool is busy. You might also want to
flush the cache is when you are running benchmarks or timing tool performance.

Built-in.

None.

None.

None.

Flush may return the following status code:

o No errors.

None.

Flush

Flush the current cache. This will free all tools in the cache.

Flush-dear the command cache 157

For ... -repeat commands once per param~ter

Syntax

Desaiption

Type

Input

Output

Diagnostics

Status

For name In word .. '.
command ...

End

Executes the list of commands once for each word from the "In word ... " list. The
current word is assigned to variable name, and you can therefore reference it in
the list of commands by using the notation {name}. You must end each line with
either a return character (as shown above) or with a semicolon (;).

The Break command can be used to terminate the loop. The Continue command
can be used to terminate the current iteration of the loop.

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specifications «, >, », ~, », I, and II) may appear following
the End; they apply to all of the commands in the list.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o The list of words or list of commands was empty.
-3 There was an error in the parameters to For.

Otherwise, the status of the last command executed is returned.

Options None.

158 MPW 3.0 Reference

Examples

See also

For i In 1 2 3

Echo i {i}
End

Returns the following:

i = 1

i = 2

i = 3

For File In ==.c
C "{File}" ; Echo "{File}" compiled.

End

This example compiles every file in the current directory whose name ends with
the suffIx ".c". The Shell fIrst expands the filename pattern == • c, creating a list of
the filenames after the "In" word. The enclosed commands are then executed
once for each name in the list. Each time the loop is executed, the variable {File}
represents the current word in the list. {File} is quoted because a filename could
contain spaces or other special characters.

For file in Startup UserStartup Suspend Resume Quit
Entab "{file}" > temp
Rename -y temp "{file}"
Print -h "{file}"
Echo "{file}"

End

This example entabs (replaces multiple spaces with tabs) the fIve files listed,
prints them with headings, and echoes the name of each file after printing is
complete. You might want to use this set of commands before making copies of
the fLIes to give to a friend. Entabbing the files saves considerable disk space,
and printing them gives you some quick documentation to go with the fLIes.

Loop, Break, and Continue commands.

"Structured Commands" in Chapter 5.

For ... -repeat commands once per parameter 159

Format-set or view the window format

Syntax

Description

Input

Output

Diagnostics

Status

Options

Format [[-f fontname 1 [-s fontsize 1 [-t tabsize] [-a attributes] 11 [-x formatting]
[window .. .]

This is a scriptable form of the Format menu command in the Edit menu. Use it to
set the format of a specified list of windows. If no window is specified, the
command operates on the target window. If no options are specified (other than
-x), the current format settings are written to standard output.

• Note: The Format command (and the Format menu command) modify the
format of an existing window. The format related variables such as {Tab} and
{Font} are used to initialize the format of a new window.

None.

If the optional parameters are omitted, or the -x option is specified, the current
format settings are written to standard output.

Errors are written to diagnostic output.

Format may return the follOwing status codes:

o No errors.
1 Syntax error (error in parameters).
2 All other errors.

-f fontname Change the font in the specified windows to fontname.

-s fontsize Change the font size in the specified windows to fontsize.

-t tabsize Change the tab size in the specified windows to tabsize.

-a attributes Set or clear the invisible and auto-indent states. Attributes is a
string composed of the characters in the following list. Attributes
that aren't listed remain unchanged.
A auto-indent
I show invisibles

Uppercase letters turn on the attribute; lowercase letters turn off
the attribute.

160 MPW 3.0 Reference

Examples

See also

-x formatting
Use this option to specify the output format when the current
settings are displayed. An error message occurs if any other option
is specified. The parameter formatting is a string composed of the
following letters (in any order), where the order determines the
field's position in the output. The specified values will be
separated by spaces when they are output.
f Font name
s Font size
t Tab size
a Auto-indent and show invisibles state

Format -f Monaco -t 8 -a A "{target}"

Sets the font, tab size, and auto-indent in the target window. The font size and
invisible settings are not changed.

Format -5 12 MyWindow

Changes the font size in MyWindow to 12 point.

Format "{Target}"

A format statement with no options displays the current format of the window,
such as the follOwing:

Format -f Monaco -5 9 -t '8 -a Ai

You can then select and execute this output format.

Format -x t5f
4 9 Monaco

Displays only the values of the specified options. Use this option for easily
retrieving one or two values and assigning them to Shell variables for later use.

The "Edit Menu," in Chapter 3.

"Variables" in Chapter 5.

Format-set or view the window format 161

GetErrorText-display text for system error numbers

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

GetErrotfext [of fIlename 1 [os filename 1 [on 1 [-p 1 errnbr [,insert, . ..] ...
GetErrotfext -i idnbr ...

Displays the error messages corresponding to a set of specified error numbers or
ID numbers. By defaul~ GetErrotfext assumes that the error numbers correspond
to Macintosh Operating System error numbers. The file SysErrs.Err is a special me
used by MPW tools to determine the error messages corresponding to system
error numbers. Other system error message files may be specified by using the -s
option.

In addition to system errors, some tools have their own error message files. For
example, the assembler's error message file is in the data resource fork of Asm
itself. For such tools, you can display the error messages corresponding to tool
error numbers by specifying the -f option. In this case, you can specify sample
inserts, along with the error numbers, for error messages that take inserts, as
shown above.

GetErrotfext can also display the meanings of the ID numbers reported by the
System Error Handler in alert dialog boxes. The -i option is used for this purpose.

Tool.

All input is specified through the parameters.

The error messages are written to standard output.

Errors are written to diagnostic file.

GetErrorText may return the following status codes:

o Normal termination.
1 Parameter or option error.

-f filename A tool's error message filename. Either -f or os, but not both, may be
specified.

-ifdnbr Report the meaning of the specified System Error Handler ID
number.

-s filename The error message filename for a system error. Either -f or os, but not
both, may be specified. The default is -s SysErrs.Err.

162 MPW 3.0 Reference

Examples

-n Do not generate error numbers as part of the error messages. This
option is ignored if system errors are displayed.

-p Writes GetErrorText's version information to the diagnostic file.

GetErrorText -43 -44 -45

Displays the error messages corresponding to system errors -43, -44, and -45.

GetErrorText -i 28 2

Displays the error messages corresponding to system ID numbers 28 and 2.

GetErrorText-display text for system error numbers 163

GetFlleName-display a standard file dialog box

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

GetFileName [-q] [-s] [[-t mE]... I -p I -d] [-m message] [-b buttontitle]
fpathname]] I k]

GetFileName displays a standard file dialog box. Either SFPutFile or SFGetFile is
called, and the returned filename or pathname is written to standard output. The
standard file starting directory is set to pathname if specified. If pathname
includes a local filename and if SFPutFile is called, the local fIlename is used as the
default filename. See the examples.

Tool.

None.

The filename or pathname you select is written to standard output. The pathname
is always a full pathname starting at the selected volume's root.

Parameter errors are written to diagnostic output.

The follOwing status codes may be returned:

o User specified a file and no errors occurred.
1 Parameter or option error.
2 System error.
4 User canceled the standard file dialog box.

-c Write the current Standard File pathname to standard output.

-p Display an SFPutFile dialog box.

-d Display an SFGetFile dialog for selecting a directory.

-m msg Specify a prompt message.

-b buttontitle
Specify the title for the default button in the various dialog boxes.
If this option is not specified, Open is used in the standard
SFGetFile dialog box, Save is used in the standard SFPutFile dialog
box, and Directory is used in the directory SFGetFile dialog box.

-q Suppress quoting the filename written to standard output.

164 MPW 3.0 Reference

Examples

Limitation

See also

-s Return a status of zero even if Cancel is clicked.

-t type Specify a type to use in fIltering the SFGetFile. Up to four types
may be specified. This option is case sensitive.

open 'GetFileName -t TEXT {pinterfaces},

Opens the text fIle in directory {pinterfacesl chosen in SFGetFile by the user.

GetFileName -p HD:MPW:StartUp

An SFPutFile dialog box is displayed with the directory set to HD:MPW: and
StartUp is displayed in the textedit field of the dialog box.

The resulting fIlename cannot be longer than 255 characters.

"The Standard File Package," Inside Macintosh, Volume I.

GetFileName--display a standard fIle dialog box 165

Getllstltem--display items for selection in a dialog box

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

GetListItem [option ...] [items ...]

Takes the items on the conunand line (or, if no items are present on the conunand
line, items from standard input) and lists them in a dialog box. Items in the list
can be selected with the mouse and modifier keys. Selected items are written to
standard output when the OK button is clicked.

Tool.

Reads standard input for the items if none are specified on the conunand line.

Selected items are written to standard output if the OK button is clicked.

Errors are written to diagnostic output.

GetListItem may return thee following status codes:

o No errors (or Cancel button was clicked if -c option is used).
1 Syntax error (bad option).
2 Cancel button was clicked.

-c

-d item

Return a status code of 0 when Cancel is clicked.

Item is entered as an element in the list and comes up selected. This
option may be specified more than once.

-m message Display message above the list of items.

-q

-r rows

-s

Don't quote items in the output.

Make the list with this many rows.

Allow only a single item to be selected from the displayed list. In
single-selection mode, GetListItem behaves very much like the list
in the Standard File dialogs-the cursor keys move the selection,
and keystroke matching is performed.

166 MPW 3.0 Reference

Examples

Limitation

-w width Make the list this many pixels wide.

• Note: GetIistItem uses the -r and -w values only as a guideline. For
example, if the value given for rows is larger than the number of rows on
the screen, GetIistItem will use a smaller number of rows than requested.
GetIistItem does not give error messages when the -r or -w arguments are
out of range. Rather, it makes a reasonable guess at a value.

print 'files -t TEXT I GetListltem -m "Select files to print:

lists all text ftIes in the current directory and prints those selected by the user, as
shown below.

Select files to print:
characters.h
mekefile
select.c
select.r

I OK I (cancel)

Gej:Listltem red blue -d green -m "Pick your favorite
color:"

Display a list of three colors with green preselected, as shown below.

Pick your fauorite color:

~:e
I OK I (cancel)

GetIistItem cannot handle a list greater than 32K characters.

GetIistItem-display items for selection in a dialog box 167

Help--display summary information

Syntax

Description

Help [-f helpFile] [command ...]

Help writes information about the specified commands to standard output. If
no command is specified, information about Help is written to standard output.
Command can include any of the following:

commandName
commands
expressions
patterns
selections
characters
shortcuts
variables
projector

Information about commandName
A list of all MPW commands
A summary of expressions
A summary of pattern specifications (regular expressions)
A summary of selection operators
A summary of MPW Shell special characters
A summary of MPW shortcuts
A summary of MPW Shell variables
A summary of Projector commands

By defaul~ the Help command looks for information in the file MPW.Help. It
looks for this file first in {ShellDirectory}; if the file isn't found, Help looks in
{SystemFolder} .

The following syntax notation is used to describe Macintosh Programmer's
Workshop commands:

[optional] Square brackets mean that the enclosed elements are optional.

repeated... Ellipses indicate that the preceding item can be repeated one or
more times.

a I b A vertical bar indicates-an either/or choice.

(grouping) Parentheses indicate grouping (useful with "I" and" ... ").

< input If input is not specified, the command reads from standard input.

> output The command writes to standard output.

~ progress Progress information is written to diagnostic output (with the -p
option).

168 MPW 3.0 Reference

Type

Input

Output

A Help file is a set of entries, each separated by a blank line beginning with one
hyphen. Each entry may contain one or more lines. The nrst word of the nrst line
in each entry is the keyword that is looked up by the Help command. When the
word is located, the line in which it occurs, and all following lines until a separator
is encountered, are written to standard output. If no parameters are given to the
Help command, the first entry is written to standard output. Here is an example
from the MPW.Help file:

New [name ...]

Newer [-c) [-e) [-q] file ... target> newer

-c * compare creation dates
-e * report. names that have the same (equal)

* date as target
-q * don't quote filenames with special characters

NewFolder name ...

Built-in.

None.

Command information is written to standard output.

Diagnostics Errors are written to diagnostic output.

Status

Option

The following status codes may be returned: .

o Information was found for the given command.
1 Syntax error~
2 A command could not be found.
3 The help fIle could not be opened.

-f helpFi/e Specify help fIle to be searched. (A help fIle is an ordinary MPW
text fIle.) The default fIle is MPW.Help.

Help-display summary information 169

Examples Help Rez

Writes information such as

Rez [option ...] [file ...]
-a [ppend]

< file ~ progress
f merge resource into output resource file

align resource to word or longword boundaries
set output file creator

-align word I longword f
-c Creator] creator
-d[efine] name [=value]
-i[nclude] pathname
-0 file
-ov
-p
-rd
-ro
-s[earch] pathname
-t[ype] type
-u[ndef] name

f
f
f
f
f
f
f
f
f
f
f

equivalent to: fdefine macro [value]
path to search when looking for finclude files
write output to file (default Rez.Out)
ok to overwrite protected resources when appending
write progress information to diagnostics
suppress warnings for redeclared types
set the mapReadOnly flag in output
path to search when looking for INCLUDE resources
set output file type
equivalent to fundef name

Help -f myHelpFile myCommand

Uses a custom help me to display information about myCommand.

170 MPW 3.0 Reference

If ... --<:onditional command execution

Syntax

Description

Type

Input

Output

Diagnostics

Status

If expression
command ...

[Else If expression
command ...] ...

[Else
command ...]

End

Executes the list of commands following the first expression whose value is
nonzero. (Null strings are considered zero.) At most one list of commands is
executed. You may specify any number of "Else Ir' clauses. The final Else clause is
optional. The return characters (as shown above) or semicolons must appear at
the end of each line.

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specillcations «, >, », ~, ~~, L, LL) may appear following the
End and apply to all of the commands in the list.

For a definition of expression, see the description of the Evaluate command.

Built-in.

None.

None.

Errors are written to diagnostic output.

The follOwing status codes may be returned.

o None of the lists of commands were executed.
-1 Invalid expression.

Otherwise, Status returns the value returned by the last command executed.

Options None.

If ... -<:onditional command execution 171

Examples

See also

If {Status} == 0

Beep ia,25,200

Else

Beep -3a,25,200

End

Produces an audible indication of the success or failure of the preceding
command.

For window in 'Windows'

If "{window}" != "{Worksheet}" AND "{window}" != "{Active}"

Close "{window}"

End

End

Closes all of the open windows except the active window and the Worksheet
window. (Refer also to the Windows command.)

The following commands, as a scrip~ would implement a trivial case of a general
"compile" command:

If "{l}" =- /=.c/

C {COptions} "{l}"

Else If "{i}" =- /=.p/

Pascal {POptions} "{i}"

End

If the above commands were saved in a file (say, as "Compile"), both C and
Pascal programs could be compiled with the command

Compile filename

Evaluate command (for a desCription of expressions).

"Structured Commands" in Chapter 5.

172 MPW 3.0 Reference

Lib-combine object mes into a Hbrary me

Syntax

Description

Type

Input

lib [option ...] objectFile ...

Combines the specified object files into a single file. Input files must have type
'OBJ' .

lib is used for the following:

• Combining object code from different languages into a single file.

• Combining several object files into a larger object file (a library).

• Combining several libraries into a single library, for use in building a particular
application or desk accessory. This can greatly improve the performance of
the linker.

• Deleting unneeded modules (with the -dm option), changing segmentation
(the -sg and -sn options), or changing the scope of a symbol from external to
local (the -dn option). (These options are useful when you construct a
specialized library for linking a particular program.)

Object files that have been processed with lib result in significantly faster links
when compared with the "raw" object files produced by the assembler or
compilers.

The output of lib is logically equivalent to the concatenation -of the input files,
except for the optional renaming, resegmentation, and deletion operations, and
the possibility of overriding an external name. The resolution of external names in
lib is identical to link-in fac~ the two programs share the same code for
reading object files. Although multiple symbols are reduced to a single symbol, no
combining of modules into larger modules is performed, and no cross-module
references are resolved. This behavior guarantees that the Linker's output will be
the same size whether or not the output of lib was used.

See "Library Construction" in Chapter 10 for a detailed discussion of the behavior
and use of lib.

Tool.

lib does not read standard input.

lil>-combine object files into a library file 173

Output

Diagnostics

Status

Options

Lib does not write to standard output. The combined library output is placed in
the data fork of the output library file. The default output file is Lib.Out.<ryou
can specify another name with the -0 option. The output file is given type 'OBJ'

and creator 'MP S '. Symbolic information is retained by default; use the -sym
option to eliminate it.

Errors and warnings are written to diagnostic output. Progress information is also
written to the diagnostic file if you specify the -p option.

Lib may return the following status codes:

o No problem.
1 Syntax error.
2 Fatal error.

-d

-elf deleteFile

Suppress warnings for duplicate symbol definitions (data
and code).

Delete the list of external modules found in deleteFile.
DeleteFile is a text file generated by the linker option -ufo See the
Link command and "library Construction" in Chapter 10 for
information.

-tim name [, name .. .1
"Delete Module" -delete the specified external modules from the
output file. The variable name may be either an external module or
an entry-point name. When an entry point is deleted, only that entry
point is deleted, not the module or any other entry point in that
module. If a module is deleted, all of its associated entry points are
also deleted. The contents of the module and all entry points are
removed from the output file.

Note: References to names deleted in this way persist as references
"by name." That is, if the references are from active code, they
must be resolved by external modules or entry points in another file.

The primary use of this operation is to make the library file smaller,
so that subsequent links are faster. You can use the Linker option
-uf, which lists unreferenced ("dead") modules or entry points, to
generate a list of names that can be deleted in this way.

174 MPW 3.0 Reference

-dn name [, name .. .]
"Delete Name"~elete the list of external names from the output
file by reducing their scope to local. The option -dn is a "gentle"
deletion in that it affects only the list of external module or entry
point names. The contents of the module, other entry points,
references, and so on are still present in the output file. References
to names "deleted" in this way will continue to refer to the same
code, but with local scope. This is a useful operation when a global
name conflict occurs between two pieces of code, one of which is
library code from which you don't need to call the name directly.

-0 name.o Place the output in file name.o. (The default name is lib.Out.o).

-p Write progfess and summary information to diagnostic output.

-sg newSeg=oldSegl [,oidSeg2]...
Change segmentation. All code in the old segments named
oldSegl,oidSeg2, ... is placed in the segment named newSeg.

-sn oldSeg=newSeg
Change a segment name. All code in the segment named oidSeg is
placed in the segment named newSeg.

• Note: The -sn and -sg options behave exactly as in Link,
except that -sg is limited to identifiers on both sides of
the equal sign. The arbitrary string for a desk accessory
name can be introduced only with link, not with lib. The
major difference between -sn and -sg is that the order of
the option parameters oldSeg and newSeg is reversed. (This
is done for consistency with Link.)

-sym [on I full I off
Enable or disable writing symbolic data to support SADE. The
default is to retain symbolic information.

,nolines
,nolabels
,novars
,notypes]

Omit line information.
Omit label information.
Omit variable information.
Omit type information.

lib-combine object files into a library file 175

Example

See also

-w Suppress warning messages.

-ver number
Set the version of the OMF file to version (not checked). This is
useful when you are distributing a library for older versions of MPW
(version 1 for MPW 2.0.2, version 0 for MPW 1.0).

Lib {CLibraries}= -0 {CLibraries}CLibrary.o

Combines all of the library object files from the {Clibraries} directory into a single
library named CLibrary.o. For applications that require most or all of the C library
files, using the new CLibrary file will reduce link time.

Link, DumpObj, and DumpCode commands.

"Optimizing Your Links" and "Library Construction" in Chapter 10.

AppendixH.

176 MPW 3.0 Reference

Line-find a line number

Syntax

Description

Type

Input

Output

DiagnosticS

Status

Line n

line finds line n in the target window. The parameter n is usually an integer, but
may be any selection expression. The target window becomes the active
(frontmost) window.

Line is a script containing these two commands:

Find "{l}" "{target}" # Find line n in the target window

Open "{target}" # Bring the target window to the top

Script.

None.

None.

Errors are written to diagnostic output.

Status codes can be returned by either the Find or the Open commands that make
up the line script: .

o No errors.
1 Syntax error.
2 No target window; other error.
3 System error.

Options None.

Line-find a line number 177

Examples

See also

Line 123

Finds line 123 in the target window and makes the target window the new active
window.

fff Undefined symbol: length
File "Count.e"; Line 75

The File and line commands above are part of an error message produced by the
MPW C compiler. The MPW Assembler and MPW Pascal compilers produce errors
when using similar formats. You can execute such error messages to find the line
that contains the error.

The command File is defined as an alias for Target in the Startup file. Thus File
opens the specified file as the target window. Line then selects the offending line
in the window and brings the window to the front. Notice that the remainder of
the error message is a comment.

Find command.

178 MPW 3.0 Reference

Link-link an application, tool, or resource

Syntax

Description

Type

Input

Link [option ...] ubjectFiie ...

Links the specified object mes into an application, tool, desk accessory, or
driver. The input object files must have type 'OBJ'. Linked segments from the
input object files are placed in code resources in the resource fork of the output
me. The default output filename is Link.Ou~ but you can specify other names
with the -0 option.

For detailed information about the linker, and instructions for linking
applications, MPW tools, ~nd desk accessories, see Chapters 8 and 10. The first
dialog box of Link's Commando dialog is reprinted here for convenience.

The linker's default action is to link an application, placing the output segments
into 'CODE' resources. When you link an application, all old 'CODE' resources are
deleted before the new 'CODE' resources are written. By default, resources
created by the linker are given resource names that are the same as the
corresponding segment names. You can change a resource (segment) name with
the -sn or -sg options, and you can create unnamed resources with the -ro option.

The linker executes in four phases:

• Input phase: The linker reads all input mes, finds all symbolic references and
their corresponding definitions, and constructs a reference graph. Duplicate
references are found and warnings are issued.

• Analysis phase: The linker allocates and relocates code and data, detects
missing references, and builds the jump table. If the -lor -x option is given,
Link produces a linker map or cross-reference listing. The linker also
eliminates unused code and data.

• Output phase: The linker copies linked code segments into code resources
in the resource fork of the output file. By defaul~ these resources are given
the same names as the corresponding segment names. (The cursor spins
backward during this phase.)

• Symbolic output phase: Optionally, Link may be used to create the .SYM
file for use with SADE.

Tool.

Link does not read standard input.

Link-link an application, tool, or resource 179

Output

Diagnostics

Status

Options

By defaul~ linked segments are placed in 'CODE' resources in the resource fork of
the output me. The default output mename is Link.Ou~ but you can specify
other names with the -0 option. If the output file already exists, the linker adds or
replaces code segments in the resource fork. If the output file doesn't exis~ it is
created with file type APPL and creator '????' . The -t and -c options can be
used to set the output file type and output file creator to other values.

• Note: If a linker error or user interrupt causes the output file to be invalid,
the linker sets the modification date on the file to "zero" (that is, January
1, 1904, 12:00 A.M.). This guarantees that Make will recognize that the me
needs to be relinked.

If you specify -sym, Link creates a symbolics me for the debugger.

If you specify the -I option, Link writes a location map to standard output. The
map is produced in location ordering-that is, it is sorted by segNum, segOffset.
The fonnat is divided into several fields:

name segName segNum, segOffset [@fIOffset] [I] [E] [C] [fileNum, de/Offset]

There is also another location map option, -map, which is more readable and
includes more infonnation. See Chapter 10 for further infonnation.

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output if the -p option is specified.

These status codes may be returned:

o No problem.
1 Syntax error.
2 Fatal error.

Note: Numeric values for options can be specified as decimal constants or as
hexadecimal constants preceded by the dollar sign character ($).

-ac boundary
Align code to n byte boundaries. The boundary must be a power of
2. The default alignment is 2.

-ad boundary
Align data to n byte boundaries. The boundary must be a power of
2. The default alignment is 2.

-c creator Set the output me creator to creator. The default creator is '???? I •

180 MPW 3.0 Reference

-d Suppress warnings for duplicate symbol definitions (for data and
code).

-da Convert segment names to desk accessory names at output time.
Desk accessory names begin with a leading null character ($00). This
option is used when linking assembly-language code into a final
desk accessory (resource type 'DRVR').

-f Treat duplicate data definitions as FORTRAN "common" regions
(multiple data modules with the same name); the size of the largest
module is used. There may be at most one initialization of the
data.

-1 Write a location-ordered map to standard output. The
performance-measurement tools and other scripts may rely on this
option. Usually, this option is used with output redirection in
effect. For example,

Link ObjFi1e -1 > MyMapFi1e

-Ia List anonymous symbols in the location map. The default is to omit
anonymous symbols from the map.

-If Write a location map to standard output and include the symbol
definition location in the input file-that is, the file number and
byte offset of the module or entry-point record. (These records are
discussed in detail in Appendix H.) The default is to omit the
symbol definition location.

-map Write a location map to standard outpu~ but print a more readable
map, so that the AS world has the correct offsets. Also provides
sizes of all modules. This is the preferred location map.

-m mainEntry
Set (or override) the main entry point specified in the object files.
MainEntry is a module or entry-point name.

• Note: For an application or MPW tool, the main entry point
is assigned the first jump-table entry, as required by the
Segment Loader. If a main entry point is specified for a
desk accessory, driver, or other type of link for purposes
of using Link's active-code analysis feature, the main entry
point should be the first byte of code in the first Link
input file. (A desk accessory has no jump table.)

Link-link an application, tool, or resource 181

-ma name =alias
"Module alias"-give the module or entry-point name the alternate
name alias. This option lets you resolve undefIned external symbols
at link time, when the problem is caused by differences in spelling
or capitalization. Note that you can't use an alias specification to
override an existing module or entry point because the original
name is retained.

-mf Let the linker use MultiFinder's temporary memory allocation
routines, if they are available. If MultiFinder is not available, this
option has no effect and is completely silent. If link is in danger of
running out of space in the MPW Shell's heap, and if the extra
memory is available, link will spill over into the MultiFinder
temporary allocation region.

... caution link's use of this region excludes other
applications, even the Finder

If link aborts abnormally (that is, a crash or NMI, followed by a
MacsBug "G sysrecover" or ES command), much of the MultiFinder
temporary memory region might be left permanently allocated, thus
crippling launches and Finder copy operations. The only way to
recover from this situation is to restart the Macintosh.

-msg keyword (,keyword ...]

[no]dup

Enable or suppress certain warning and error messages:

Enable [suppress] warning messages about duplicate symbols.
The default is nodup.

[no]multlple Enable [suppress] multiple error messages on undefmed
references to a label. This lets you catch all references to an
undefIned symbol with one link. The default is nomultlple.

[no]wam Enable [suppress] warnings. The default is warn.

-0 outputFile

182 MPW 3.0 Reference

Place the linker output in outputFile. If no -0 option is specifIed,
the default output filename is link.Out.

-opt keyword [,keyword ...]
Optimize Object Pascal. This option is followed by one or more
keywords, separated by commas or Shell-quoted spaces. Use this
option instead of the Optimize tool distributed with MacApp,
because Optimize does not work with MPW 3.0 files.

off Disable Object Pascal optimization (do nothing).

on Optimize Object Pascal method tables.

nobypass Always go through the jump table (do not optimize
monomorphic method-calls to PC-relative]MP instructions).

-p Write progcess and summary information to diagnostic output.

link-link an application, tool, or resource 183

-ra [segl=nn Set the resource attributes of a segment or segments. If seg is
specified, the single segment named seg is given the attribute value
nn. If seg is omitted, all segments except 0 and 1 are given the
attribute value nn. (If you intend to set the attributes of all
segments, you must specify this option before any other options
that name segments, such as -sn and -sg.) The segment containing
the main entry point (the 'CODE' resource with ID=l) must be set
individually to override the default resource attributes (described
in Chapter 8).

Segment attributes may be specified as a decimal or hexadecimal
number, or with a list of comma-separated resource attributes (the
initial 'res' may be omitted):

resSysHeap 64 $40
resPurgeable 32 $20
resLocked 16 $10
resProtected 8 $08
resPreload 4 $04
resChanged 2 $02

The linker essentially ignores the resChanged bit, and does not
check or enforce settings for the other resource attribute bits. Bits
o and 7 ($01 and $80) are currently reserved and should not be set.

The default resource attributes for an application are:

'CODE' rsrc Attributes
o (jump table) 32 $20
1 ("Main") 52 $34

others 32 $20

Description
resPurgeable
resPurgeable,resLocked,
resPreload
resPurgeable

When linking MPW tObls (type 'MP S T' and creator 'MP S ,) all
segments default to resPurgeable. Do not set the resLocked
bit for a tool.

-ro Suppress the setting of resource names. (The default is to name
each resource with the name of the segment.) Desk accessories
must always be named.

184 MPW 3.0 Reference

-rt type= ID Set the output resource type to type and the ID to /D. This option
indicates the link of a desk accessory or driver-that is, only one
resource is modified. (The default is type 'CODE' and resource IDs
numbered from 0.)

• Assembly-language note: When you link a desk accessory or
driver, Link uses PC-relative offsets, and attempts to edit JSR,
JMP, LEA, or PEA instructions from AS-relative to PC-relative
addressing mode. Other instructions, specifying the AS-relative
addressing, generate an error message.

-sg newSeg=[o/dSegl [,o/dSeg2J... J...
Change segmentation. All ccxie in the segments o/dSegl, o/dSeg2,,,.
is placed in the segment newSeg. If no o/dSeg (and no =) is
specified, Link will map all segments to newSeg.

-sn o/dSeg=newString
Change a segment name. All code in the segment named o/dSeg is
placed in the segment named newString.

There are three major differences between -sn and -sg:

• The option -sn allows an arbitrary string for the new name,
whereas -sg is intended only for identifiers separated by
commas.

• The term newSeg is not just a name, but a segment.

• The order of the o/dSeg and newSeg parameters is reversed.

For example,

Link ... a
-sg Main=SAConsol,StdIO,%A5Init a
-sn Main="MyDA" a

The first option combines the three specified segments into one
segment named Main; the second option renames Main to "MyDA".

-srt Sort AS-relative data into 32-bit and 16-bit groups. All 16-bit
referenced data is placed as close as possible to AS.

Link-link an application, tool, or resource 185

-55 size Change the maximum segment size to size. The default value is
32,760 (32K minus a few overhead bytes). The value size can be any
value greater than 32,760.

• 64K ROM note: Caution! Applications with segments
greater than 32K in size might not load correctly on
Macintoshes with 64K ROMs.

-sym [on I full I off
Enable or disable writing symbolic data to support SADE.

,nolines
,nolabels
,novars
,notypes]

Omit line information.
Omit label information.
Omit variable information.
Omit type information.

-t type Set the output file type to type. The default type is APPL.

-uf deleteFile
list unreferenced modules in the text file deleteFile. (This option is
useful in identifying dead source code.) This file can be used as
input to Lib in building a specialized library that optimizes
subsequent links. See the Ilb command's -df option and "Library
Construction" in Chapter 10 for more details.

-w Suppress warning messages.

186 MPW 3.0 Reference

• Note: Warnings generally indicate potential errors at
run time.

Examples

-x crossRejFile
Generate a cross-reference listing of active modules and entry
points. The listing is ordered by module within each segment. For
each module, the following information is listed: each active entry
point in the module, other modules and entry points that are
referenced by the module, and other modules that reference this
module. For each entry point in a module, the modules that
reference the entry point are listed.

rlink Options

link output file
ILink.out I o Remoue RSRC names

DMake DR (Object Files •.• J
Type lili1~. o Optimize Classes

CreBtor 1111
o Common (Fortran) Data

RSRC Type CODE
o Use MultiFinder memory
o Sort neer/far date (Symbolic options •••)

Rlign Code

Rlign Date (se9mentlstion Control ••. 1 (

link
fcommond line

rHelp
Link creates executable code se9ments from OM or more object modules

Link Sample.p.o a
"{PLibraries}"Plnterface.o a
"{PLibraries}"PasLib.o a
"{Libraries}"Runtime.o a
-0 Sample a
-la >Sample.map

listing options •.•)

(Cancel ,
Unk

I
)

J

Links the main program file Sample.p.o with the libraries Plnterface.o, PasLib.o,
and Runtime.o, placing the output in Sample and placing the Linker map in the
file Sample.map. Sample is an application that can be launched from the Finder or
executed from MPW.

Link-link an application, tool, or resource 187

See also

Link -rt MROM=8 -c 'MPS I -t ZROM -ss 140000 a
-1 > ROMLocListing -0 MyROMlmage {LinkList}

Links the files defined in the Shell variable {LinkList} into a ROM image file,
placing the output in the file MyROMImage. The segment size is set to 140,000
bytes, and the ROM is created as a resource IMROMI with ID=8. The file is typed
as being created by MPW (creator IMPS I), with file type ZROM. Link's location
ordered listing is placed in the file ROMLocListing.

For additional examples, see "Link" in Chapter 10 and the makefiles in the
Examples folders for the languages you are using.

Lib command and Appendix H, "Object File Format."

Chapter 8, "The Build Process," and Chapter 10, "Link."

The Segment Loader and the Resource Manager chapters in Inside Macintosh.

Inside MaCintosh, Volume IV, for information on the 128K ROM, the System
Folder, and the Finder.

188 MPW 3.0 Reference

Loop ... End-repeat command list until Break

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Loop
command ...

End

Executes the enclosed commands repeatedly. The Break command is used to
terminate the loop. The Continue command can be used to terminate the current
iteration of the loop.

The pipe specification (I), conditional command terminators (&& and I I), and
input/output specifications «, >, », ~, », I, and II) may appear following
the End, and apply to all of the commands in the list.

Built-in.

None.

None.

Errors are written to diagnostic output.

Loop returns the status of the last command executed.

None.

Loop ... End-repeat command list until Break 189

Example

See also

The following script runs a command several times, once for each parameter:

U# Repeat - Repeat a command for several parameters U#

Syntax:

Repeat command parameter ...

Execute command once for each parameter in the parameter

list. Options can be specified by including them with

the command name in quotes.

Set cmd n{l}n

Loop

End

Shift
Break If n{l}n

{cmd} n{l}"

""

Notice that Shift is used to step through the parameters, and that Break ends the
loop when all parameters have been used.

Break, For, and Continue commands.

"Structured Commands" in Chapter 5.

190 MPW 3.0 Reference

Make-build up-to-date version of a program

. Syntax

Description

Type

Input

Output

Make [option ...] l targetFile ...]

Generates a set of Shell commands that you can execute to build up-to-date
versions of the specified target files. (If no target is specified, the target on the
left side of the first dependency rule in the makefile is built.) Make allows you to

rebuild only those components of a program that require rebuilding. Make
determines which components need rebuilding by reading a makeffie. This is a
text file that describes dependencies between the components of a program,
along with the Shell commands needed to rebuild each component. You can
specify makefiles with the -f option. After processing the makefiles, Make writes
to standard output the appropriate set(s) of commands needed to rebuild the
target(s).

See "Format of a Makefile" in Chapter 9 for a description of the format of a
makefile. The first dialog box of Make's Commando dialog is reproduced here for
convenience.

Make executes in two phases:

• In the first phase, Make reads the makefile(s) and creates a file (target)
dependency graph. (The "beachball" cursor spins counterclockwise during
this phase.)

• In the second phase, Make generates the build commands for the target to be
built (the cursor spins clockwise). If a target file doesn't exist or if it depends
on files that are out-of-date or newer than the targe~ Make writes out the
appropriate command lines for updating the target file. This process is
recursive and "bottom up" so that commands are issued first for those lower
level dependencies that need to be rebuilt.

You can execute the generated build commands after Make is done executing.

Tool.

Standard input is not read. If you don't specify a makefile with the -f option,
Make tries to open a file called MakeFile. If no target file is specified on the
command line, Make uses the first target encountered in the makefile.

If any files need to be updated, Make writes the appropriate Shell commands to
standard output.

Make-build up-to-date version of a program 191

Diagnostics

Status

Options

Errors, warnings, and diagnostic information (if requested) are written to
diagnostic output. If you specify the -p option, progress and summary
information is also written to diagnostic output.

The follOwing status codes may be returned:

o Successful completion.
1 Parameter or option error.
2 Execution error.

-d name[=val~
Define a variable name with the given value. Variables defined from
the command line take precedence over definitions of the same
variable in the makefile. Thus definitions in the makefiles act as
defaults that may be overridden from the command line.

,...Make Dptlons------------------,
,...Make Functlon

@Bulld
o Show structure
a Find roots
a Touch dates

II M ••• T U.):

r!.'!mmand Line

D Make euerything
D Display progress information
D Display uerbose output
D Display unreachable targets
o Ignore warnings

Q [r---:-M-a,-ke~F~iI-es-•• -. ----]

(Redirection...)

(Defines...)

.... F-_e_I~ ____ (t_._9'_t) ~ __ t._b_Y r_tbu_ild_ing_rt_"'Y_th_in9_tM_t is_---'I ~ Cancel

Make

-e Rebuild everything that is a part of the specified or default target,
regardless of whether targets are out-of-date. This option causes
Make to unconditionally generate all of the commands to rebuild
the specified targets.

Note: This option causes all components of the specified target to
be rebuilt. However, it does not necessarily rebuild all targets if
there are more than one top-level targets (roots) in the makefile.

-f makefile Read dependency information from makefile. You can specify
more than one -f option-all dependency information is treated as
if it were in a single file. (If no -f option is specified, the default file
is a file named MakeFile in the current directory.)

192 MPW 3.0 Reference

-p

-r [targerl

Write progress information to diagnostic output. (Normally, Make
runs silently unless errors are detected.)

If no target is specified, the -r option finds all the roots (that is,
the top-level targets) of the dependency graph. (See the -s option.)
If a target is specified, -r finds the root (or roots) for which it is a
prerequisite.

Note: This option overrides normal Make output.

-s Show structure of target dependencies. This option writes a
dependency graph for the specified targets to standard output,
using indentation to indicate levels in the dependency tree. Circular
dependencies are noted, if present.

Note: This option overrides the normal Make output. It's useful in
debugging or verifying complicated makefiles.

-t "Touch" dates of targets and their prerequisites; that is, bring files
up-to-date by adjusting their modification dates, without
generating build commands. This option is used to bring a set of
files u{rto-date when they appear not to be, such as when you've
only made changes to comments. The -t option does the minimal
adjustment needed to satisfy the dependency relationships; files
are touched only if required and are given the date of their newest
dependency, to minimize any repercussions of the date
adjustments. This minimal adjustment of dates is especially useful
if the touched file is also a prerequisite for other programs.

Note: This option overrides normal Make output.

-u Write a list of unreachable targets to diagnostic output (for
debugging). Unreachable targets are those mentioned in the
makefile that are not prerequisites (or prerequisites of
prerequisites) of the specified target to be rebuilt.

-v Write verbose output to the diagnostic output file. This option is
useful if you want to figure out what Make is doing and why. The
diagnostic output indicates if targets do not exist, whether they
need to be rebuilt, and why they need to be rebuilt. It also
indicates targets in the makefile that were not reached in the build.

-w Suppress warning messages. Warning messages are issued for things
such as files with dates in the future and circular dependency
relationships.

Make-build u{rto-date version of a program 193

Example

See also

Make -p -f MakeFile Sample

Makes the target file Sample, and prints progress information. Sample's
dependency relations are described in the makefile :AExamples:MakeFile.

Sample if Sample.r

Rez Sample.r -0 Sample -a

Set File -a B Sample -c ASMP -t APPL #set bundle bit

Sample ff Sample.r Sample.a.o

Link Sample.a.o -0 Sample

Sample.a.o f Sample. a

Asm Sample.a

The f (Option-F) character means "is a function or'-that is, the file on the left
side depends on the files on the right side. If the files on the right are newer, the
subsequent Shell commands are written to standard output. (See Chapter 9 for
details.)

"Format of a Makefile" in Chapter 9 for the format of a makefile, examples, and
other information about using Make.

Makefiles for building sample programs are contained in the Examples folders:

• Examples:AExamples:Makefile

• Examples:PExamples:Makefile.

• Examples:CExamples:Makefile

194 MPW 3.0 Reference

MakeErrorFlle-create error message rue

Syntax

Description

Type

Input

Output

Diagnostics

Status

MakeErrorFile [option ...] [fIle ...]

MakeErrorFile creates specially formatted error message fIles used to retrieve the
error messages associated with error numbers. The ErrMgr unit in the TooILibs.o
library is used by programs to access the error files created by MakeErrorFile.
SysErrs.Err is one such error file; it is used by various MPW tools to get the textual
messages associated with Macintosh system error codes. See the documentation
on the ErrMgr unit for more information on how error files are accessed.

Tool.

Standard input is processed if no filenames are specified. Otherwise each file in
the MakeErrorFile invocation is processed separately, with an error file created
for each input. MakeErrorFile input files follow a very simple format, consisting
of lines associating error messages with error numbers. Each line begins with an
error number (in the range of 2-byte signed integers), followed by a space,
followed by the corresponding error message text on the same line.

If the -1 listing option is specified, an ordered list of error numbers and messages
is written to standard output. The error file output is usually written to a file with
the same name as the input file but with an ".Err" extension (unless the -0 option
was used to specify the output name). By default, if no input fIle was specified,
the input comes from standard input and the default error output filename is
"Out.Err".

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

MakeErrorFile-create error message file 195

Options

Example

-I Write an ordered list of error numbers and messages to standard
output.

-0 objname Pathname for the generated error file if objname is a full pathname.
If objname is a directory, it specifies where to put the error output
file.

-p Write progress information to diagnostic output.

MakeErrorFi1e SysErrs -1 >SysErrsList

Writes an ordered list of system error numbers and messages to the file
SysErrsList.

196 MPW 3.0 Reference

Mark-assign a marker to a selection

Syntax

Description

Type

Input

Output

Diagnostics

Status

Mark [-y I -n 1 selection name [window 1

Mark assigns the marker name to the range of text specified by the selection in
window. If no window is specified, the command operates on the target window
(the second window from the front). The new marker name is included in the
Mark menu when window is the current active window. A marker is associated
with a logical, as opposed to absolute, range of text. The ranges of markers may
overlap, but each marker must have a unique name. Marker names are case
sensitive.

A dialog box requests confirmation if the marker name conflicts with an existing
marker name. The -y or -n option can be used in scripts to avoid this interaction.

Deletion and insertion operations affect markers according to these rules:

• Any editing outside the range of a marker will not affect the logical range of
the marker, where "outside" means that the range of editing changes does not
intersect the range of the marker.

• Any editing inside the range of a marker will change the logical range of the
marker by the amount of the editing change. For example, adding ten
characters to the inside of a marker's range will increase the range of the
marker by ten characters. Another way to say this is that a marker has
responsibility for all the characters added to (or deleted from) its range.

• Any deletion that totally encloses a marker will delete the marker.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

Mark-assign a marker to a selection 197

Options

Example

Limitation

See also

-y Answer "Yes" to any confmnation dialog that occurs, causing the
old marker to be replaced with the new marker.

-n Answer "No" to any confIrmation dialog that occurs, so that the old
marker is left intact.

Mark § 'Procedure I'

Assigns a marker with the name "Procedure 1" to the current selection in the target
window.

It is currently not possible to "Undo" the effects of any editing operations on
markers.

Unmark and Markers commands.

"Mark Menu" in Chapter 3.

"Markers" in Chapter 6.

198 MPW 3.0 Reference

Markers-list markers

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Markers [-q] [window]

Markers prints the names of all markers associated with window. The names are
written one per line, and they are ordered from the beginning to the end of the
window.

Tool.

None.

The list of marker names is written to standard output.

Errors are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-q Do not quote marker names that contain special characters. (The
default is to quote names with spaces or other special characters)

Markers "{Target}"

Lists all markers associated with the target window.

"Mark Menu" in Chapter 3-

"Markers" in Chapter 6.

Markers-list markers 199

MatchIt-match paired language delimiters

Syntax

Description

MatchIt [-h] [-1] [-n] [-v][[.c] I [-P[ascal]] I [-a[sm]]] [window]

Matches C, Pascal, and assembly-language delimiters with their mates in the
specified window. The default window is the target window (second from
front). The characters highlighted as the current selectionl in the window are
used as the left delimiter. MatchIt attempts to find the corresponding right mate
for the selected delimiter.

MatchIt is syntax sensitive, so that it is semi-intelligent about how it finds the
matching delimiter. For example, if a Pascal BEGIN is the specified selection,
MatchIt finds the proper END that matches it. All commenting conventions,
strings, nesting, and so on are taken into account when searching for the end
delimiter.

The functionality of MatchIt is similar to the Shell editor's ability to find mates
for the characters ([(" and I when you double-click any of these characters.
However, MatchIt differs from the Shell editor by supporting even more
delimiters and using the knowledge of the target language syntax to find the
proper match. The following table summarizes all the delimiters supported and
for which languages:

Left delimiter Ri ht delimiter Lan a e(s)

{ } Pascal, C, Asm
[] Pascal, C, Asm
() Pascal, C, Asm

Pascal, C, Asm
" " C,Asm

1* *1 C
II cr C
do while C
Hf fendif C

Hfdef fendif C
Hfndef fendif C
felif fendif C
felse fendif C

(* *) Pascal
BEGIN END Pascal

1 Leading and trailing blanks are ignored in the selection.

200 MPW 3.0 Reference

Type

Input

Output

Diagnostics

Status

(Matchlt delimiters continued)

Left delimiter Ri ht delimiter

REPEAT
CASE

RECORD
$IFC2

$ELSEC2

RECORD

UNTIL
END
END

$ENDC
$ENDC
ENDR

lan a e(s)

Pascal
Pascal
Pascal
Pascal
Pascal
Asm

The language can be explicitly specified by option (-p, -c, or -a), in which case
only the left delimiters in the above table appropriate to that language are
accepted. The normal situation is for MatchIt to determine the language from
the window name suffix; ".p " for Pascal, ".a " for Asrn, and ".c", ".h", or ".r" (Rez)
for C. If there is no suffix and no explicit language option, MatchIt attempts to
determine the language on the basis of the selected left delimiter. For the
ambiguous cases, C is assumed.

Tool.

None.

None. If the matching delimiter is found, only the current selection in the
specified window is changed. Normally only the matched right delimiter
becomes the new current selection. However, there is some additional control
over the resulting selection with the -h and -1 options. If a match cannot be
found, the original selection is not changed.

Errors are written to diagnostic output.

MatchIt may return the following status codes:

o Normal termination.
1 Parameter or option error.
3 Matching delimiter not found (only if -n option specified).

2 These delimiters are unique in that they occur in Pascal comments. MatchIt treats them specially by allowing you to
optionally select the leading "{" or "e". If you don't, MatchIt will include them as part of the selection itself. If you
select the entire comment, MatchIt will highlight the entire matching (SENDC) comment.

MatchIt-match paired language delimiters 201

Options -a[sml

-c

-h

-1

-n

-p[ascall

-v

202 MPW 3.0 Reference

The target language is assumed to be assembler. Only left
delimiters defined in the above table for the assembler are allowed
as the selection.

The target language is assumed to be C. Only left delimiters
defined in the above table for C are allowed as the selection.

If the match is found, all characters starting from the original
selection up to the matching delimiter are highlighted and made the
current selection.

If a match is found, the entire line containing the matching
delimiter is made the new current selection. If this option is used
together with the -h option, all lines-starting with the line
containing the left delimiter up to the line containing its mate-are
highlighted and made the new current selection.

Generate an error message to diagnostic output when a match
cannot be found. Normally, no message is generated and the
returned status code is O. This is usually sufficient because the
current selection is not changed. However, this option can be
useful in Shell scripts and AddMenu commands.

The target language is assumed to be Pascal. Only left delimiters
defined in the above table for Pascal are allowed as the selection.

Write MatchIt's version number to diagnostic output.

Examples matchit mysource.p

For the current selected delimiter in the open window mysource.p, find the
delimiters mate. The language is assumed to be Pascal (because of the .p
suffix.). No message is reported and the selection is not changed if the mate
cannot be found. Of course, errors are still reported to diagnostic output if the
input selection is not a valid Pascal delimiter (according to the table in
"Options"). If MatchIt is to be used explicitly, a more general form for its use is
shown in this example:

matchit -n "{target}"

For the current selected delimiter in the open target window, find the delimiter's
mate. The "{targed" specification could have been omitted, as it is Matchlt's
default. If explicitly specified, as shown here, it is best to quote it. The language
is determined by the window's name suffix (if present), or by the the selection, if
the suffix is not acceptable to Matchlt. An error is reported if the mate cannot
be found (-n).

While the second example is more general than the firs~ and either might be useful
for Shell scripts (particularly when the -n option is used), the real use for MatchIt
is as a generalization of the the Shell editor'S own double-clicking delimiter
matching mechanism. The following example illustrates this purpose:

addmenu Edit 'Match It/~' 'matchit -n -h a
{active}" ~ "{MPW}"Errors II a
alert <" {MPW} "Errors'

This example places a Matchlt call into the Edit menu as the command Match it
with a command key Option-m (the ~). A selection is made in the current (that
is, the {active}) window and the menu command invoked (by pressing Command
Option-m). If the match is found, all characters from the initially selected
delimiter to its mate are highlighted (-h). If a match is not found, or if any other
errors occur, an alert dialog box appears containing the error message. An
auxiliary file, "{MPW}"Errors, is used for this purpose.

Matchlt-match paired language delimiters 203

Limitations

Of course, you might not be interested in displaying the dialog box because you
can see that the selection doesn't change if there are any errors. Furthermore, you
might not want superfluous files laying around ("{MPW}"Errors-although you
could create a more elaborate AddMenu command to always delete this file).
Thus, you could make the following simplification:

addmenu Edit 'Match It/Il' 'rnatchit -h "{active}" 2: dev:null'

This example places a MatchIt call into the Edit menu but with all errors ignored
when the MatchIt command is executed.

Matchlt does not process conditionals (that is, Pascal $ifc, C * if, and so on)
during its scan except to find matching pairs. This might confuse MatchIt's
scanning process. Similarily, C macros and "\" continuations may also confuse
MatchIt.

MatchIt only finds a right delimiter to the specified left delimiter. Right-to-Ieft
matching is not supported.

204 MPW 3.0 Reference

MergeBranch-merge a branch revision onto the trunk

Syntax

Description

Type

Input

Output

Diagnostics

Status

MergeBranch file

Merge the branch revision of the HFS file file onto the trunk. The file must belong
to a currently mounted project and must be a branch revision (that is, the revision
number contains one or more letters).

MergeBranch uses the ProjectInfo command to determine what project file
belongs to and whether file is in fact a branch revision. If all of the file's revisions
are older than the branch, the branch will be checked in as the latest trunk
revision. Otherwise MergeBranch checks out the latest revision on the trunk and
calls CompareFiles to allow the user to manually cut and paste changes from the
branch into the trunk revision. When done, the user can check the modified trunk
revision back into the project.

MergeBranch uses the CompareFiles script.

Script.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No Errors.
1 Syntax Error.
2 Error in Processing.
3 System Error.

Options None.

MergeBranch-merge a branch revision onto the trunk 205

Examples

See Also

MergeBranch file.c

This example merges the branch revision in the me "me.e" onto the trunk.

AddMenu Project 'Merge Branch' 'Merge Branch " { Active}" II a
"{WorkSheet}'"

This example adds MergeBranch to the Project menu and allows you to merge
branch revisions onto the trunk.

CompareFiles.

206 MPW 3.0 Reference

ModifyReadOnly-allow editing of a read-only fue

Syntax

Description

Type

Input

Output

Diagnostics

Status

ModifyReadOnly filename

Write-enable a file that has been checked out as read-only. After executing this
command on a fIle, the modified read-only icon is displayed in the window.

This command is most useful on those rare occasions when you need to modify a
read-only file. For example, suppose you have taken a number of modifiable fIles
home. You may have also brought along certain read-only copies of flies that you
did not expect to modify 1 but once you get into your work at home you discover
that you do, after all, need to make changes in these fIles.

Note that this command takes only a single fIle for a parameter. This "feature"
was intentional so that this command would not be overused.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

Options None.

ModifyReadOnly-allow editing of a read-only flie 207

Examples

See Also

Suppose ftIe.c is checked out as read-only. You can write-enable it by using the
ModifyReadOnly conunand:

ModifyReadOnly file.c
Projectlnfo :file.c -s

The ProjectInfo command writes the following to standard output:

file.c,5*

Notice that an asterisk appears after the revision number when you get
information about modified read-only files.

Checkln, CheckOut, CheckOutDir.

208 MPW 3.0 Reference

Mount-mount volumes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Mount drive ...

Mounts the disks in the specified drives, making them accessible to the file
system. Drive is the drive number.

Mounting is normally automatic when a disk is inserted. The Mount command is
needed for mounting multiple hard disks, which cannot be "inserted," or for
volumes that have been unmounted via the Unmount command.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o The disk was mounted.
1 Syntax error.
2 An error occurred.

None.

Mount 1

Mounts the disk in drive 1 (the internal drive).

Unmount and Volumes commands.

Mount-mount volumes 209

MountProject-mount an existing project

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

MountProject [-s] [-pp] [-q] [-r] [project]

MountProject mounts (establishes a connection to) the specified project.
Project is the HFS path of the project directory for the project. Once a project is
mounted, that project and all its subprojects can be accessed.

MountProject commands typically appear in the UserStartup file, a script, or an
AddMenu to automatically mount the projects you typically access.

If project is omitted, a list of all root projects is written to standard output in the
form of MountProject commands.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

If no parameters are given, MountProject generates a list of root projects.

Errors and warnings are written to diagnostic output.

These status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-pp List mounted projects using project paths.

-q Don't quote names with special characters.

-r List projects recursively.

-s Print names only, not commands.

210 MPW 3.0 Reference

Examples

See Also

MountProject FS:Zoom

MountProject HD:localProjects:Test

These commands mount the projects Zoom and Test.

MountProject

MountProject FS:MPW

MountProject HD:localProjects:sort

To obtain a list of the current root projects, execute the MountProject command
without parameters.

UnmountProject, Project, CheckOutDir.

MountProject-mount an existing project 211

Move-move fues and directories

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Move [-y I -n I -c] [-p] name... targetName

Moves name to targetName. (Name and targetName are me or directory names.)
If targetName is a directory, one or more objects (files and/or directories) are
moved into that directory. If targetName is a me or doesn't exis~ me or directory
name replaces targetName. In either case, the old objects are deleted. Moved
objects retain their current creation and modification dates.

If a directory is moved, its contents, including all subdirectories, are also moved.
No directory moved can be a parent of targetName.

A dialog box requests a confirmation if the move would overwrite an existing file
or folder. The -y, en, or -c option can be used to avoid this interaction.

Built-in.

None.

None.

Errors are written to diagnostic output. Progress and summary information is also
written to diagnostic output if the -p option is specified.

Move may return the following status codes:

o All objects were moved.
1 Syntax error.
2 An error occurred during the move.
4 Cancel was selected or implied with the -c option.

-y Answer "Yes" to any confmnation dialog that may occur, causing
conflicting files or folders to be overwritten.

-n Answer "No" to any confmnation dialog that may occur, skipping
the move for files or folders that already exist.

-c Answer "Cancel" to any confmnation dialog that may appear,
causing the move to stop when a name conflict is encountered.

-p List progress information as the move takes place.

212 MPW 3.0 Reference

Examples

See also

Move Startup Suspend Resume Quit "{SystemFolder}"

Moves the four files from the current directory to the System Folder.

Move File::

Moves File from the current directory to the enclosing (parent) directory.

Move -y Filel File2

Moves Filel to File2, overwriting File2 if it exists. (This is the same as renaming
the file.)

Duplicate and Rename commands.

"File and Window Names" in Chapter 4.

"Filename Generation" in Chapter 5.

Move-move files and directories 213

MoveWindow-move window to h v location

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

MoveWindow [-i) [h v] [window]

Moves the upper-left comer of the specified window to the location (h v), where
h and v are horizontal and vertical integers, respectively. Use a space to separate
the numbers h and v on the command line.

The coordinates (0,0) are located at the left side of the screen at the bottom of
the menu bar. If the location specified would place the window's title bar entirely
off the visible screen, an error is returned. (The -i option overrides the error.) If no
window is specified, the target window (the second window from the front) is
assumed. If no location is specified, the specified window's location is returned
without any effect on the window.

Built-in.

None.

None.

Errors are written to diagnostic output.

MoveWindow may return the following status codes:

o No errors.
1 Syntax error (error in parameters).
2 The specified window does not exist.
3 The h v location specified is invalid.

-i Ignore any errors relating to the window's position. This option
allows a window to be completely off-screen. However, the
position must still be within the range of -32,768 to 32,767.

214 MPW 3.0 Reference

Examples

See also

Movewindow 72 72

Moves the target window's upper-left comer to a point q.pproximately one inch in
from the upper-left comer of the screen, and one inch below the bottom of the
menu bar. (There are about 72 pixels per inch on the ~acintosh display screen.)

MoveWindow

Returns MoveWindow 72 72 when executed after the above example.

Movewindow 0 0 "{Worksheet}"

Moves the Worksheet window to the upper-left comer of the screen (below the
menu bar).

SizeWindow, StackWindows, RotateWindows, TileWindows, and ZoomWindow
commands.

MoveWindow-move window to h v location 215

NameRevisions-name files and revisions

Syntax

Description

Type

Input

OUtput

NameRevisions [-u User] [-project Project] [-public I -b] [-r]
[[-only] I name [[-expand] [-s] [-replace] I [(names ... [-dynamic D I [-a]]]]

Create a symbolic name to represent a set of revisions under Projector.
Subsequently, when name is used in Projector commands, its value, names, is
substituted in its place. Symbolic names are kept on a per-project basis and can
be composed of filenames, revisions, branches, and other defined symbolic
names. A symbolic name can include only one revision per file. The first character
of a Name cannot be a digit (0-9). Also, commas, greater-than or less-than signs,
«, S > ~, or hyphens (-) are not allowed anywhere in a Name. Names are not
case sensitive.

If names is missing, the definition for name is listed. If name is missing, then
NameRevisions lists all symbolic names in the project. In either case, the output
is in the form of NameRevisions commands.

By default, if names currently refers to a file listed in name, the revision for the
file in name is modified to be the revision associated with the file in names. If
there is a file in names which is not currently referred to by name, that file and
revision is appended to name. To replace the definition of name, include the
-replace option.

The default is to create a private symbolic name. Include the -public option to
make the symbolic name available to all users. You can add definitions for
private symbolic names to UserStartup. Public symbolic name are stored with the
project so they need to be defined only once. Do not put public symbolic name
definitions in UserStartup.

Projector checks for various errors both when a symbolic name is defined and
when it is used. Errors include referring to a nonexistent file or referring to more
than one revision in a me.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

When name or names are missing, the command writes symbolic names and their
values to standard output.

216 MPW 3.0 Reference

Diagnostics

Status

Options

Examples

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-u user Name of the current user. This overrides the {User} Shell variable.

-project project

-public

-b

-r

-only

-expand

-s

-replace

-dynamic

-a

Name of the project in which to create this name. This becomes
the current project for this command.

Create a public symbolic name. This lets all users in the project
have access to the name. Without this option a private symbolic
name is defined.

Print both public and private names.

Recursively execute the NameRevisions command on the current
project and all its subprojects.

list every name defined in the current projec~ but not their
associated names.

Evaluate and expand Names and flles to the revision level when
listing values if name or names is missing.

Print a single name per line.

Replace the current definition of name with a new definition.

Evaluate and expand symbolic names and files to the revision level
when Name is used-not when it is defined.

All files in the project. The symbolic name expands to all the flles in
the project.

Assuming the latest revisions of the files file.c and interactive.c are 9 and 13
respectively, the first example defines a symbolic name "Work" that always
expands to the files file.c,9 and interactive.c,13.

NameRevisions Work file.c interactive.c

NameRevisions-name files and revisions 217

The following command:

CheckOut Work

Is equivalent to:

CheckOut file.c,9 interactive.c,l3

By omitting the Names parameter, the next NameRevisions command generates
the current definition of Work.

NameRevisions Work
NameRevisions Work file.c,9 interactive.c,13

The -dynamic is an important option. The following two commands illustrate its
function:

NameRevisions fred file.c
NameRevisions -dynamic fred file.c

The first command defines a symbolic name "fred" that always expands to the
latest revision of file.c when fred was defined. The second example expands to
the latest revision at the time of use. If the latest revision of file.c at the time
fred was defined was 7 and the current latest revision is 9, the second
NameRevisions command is equivalent to

NameRevisions fred file.c,9

The next command creates the symbolic name "file.c" that expands to the second
revision off the first branch off the 1.1 revision of file.c.

NameRevisions file.c file.c,1.la2

The command

CheckOut file.c

checks out revision l.la2 of file.c. The next example creates a Name "file.c" that
expands to the latest version of the first branch off the 1.1 revision of file.c.

NameRevisions -dynamic file.c file.c,l.la

218 MPW 3.0 Reference

See Also

So the checkout corrunand

CheckOut file.c

will check out the latest revision on the first branch off revision 1.1 of file.c.

The next example defines all the latest revisions in the project Kerfroodi to be
part of "v1.0 Bl". Because this a global name, all users accessing the Kerfroodi
project will be able to use the name "vl.0 Bl".

NameRevisions -public "vBl 1.0" -project Kerfroodi -a

The name "BetaRelease" is defined recursively for all projects within the Zoom
project:

NameRevisions -project zoomf -r "BetaRelease" -a

Its behavior is the same as executing the following corrunands individually:

NameRevisions -project Zoom "BetaRelease" -a
NameRevisions -project zoomfvroom "BetaRelease" -a
NameRevisions -project zoomfUtilities "BetaRelease" -a
NameRevisions -project zoomfUtilitiesfPort "BetaRelease" -a

ProjectInfo, DeleteNames.

NameRevisions-name files and revisions 219

New-open a new window

Syntax

Description

Type

Input

Output

Diagnostics

Status

New [name ...]

Opens a new window as the active (frontmost) window. If name is not specified,
the Shell generates a unique name for the new window, of the form "Untitled-n",
where n is a decimal number. If name already exists, an error results.

You can use New to open several new windows by specifying a list of names
separated by spaces. Note that New differs from Open -n by returning an error if
the me already exists, whereas Open -n either opens an existing file or creates a
new file.

If the Shell variable {NewWindowRect} is defined, the windows are opened to
that size and location.

Built-in.

None.

None.

Errors are written to diagnostic output.

New may return the following status codes:

o No errors.
1 Syntax error (error in parameters).
2 Unable to complete operation; a file with the specified name already exists.
3 System error.

Options None.

Examples New

Opens a new window with a Shell-generated name.

New Test.a Test.p Test.c

Creates three windows called Test.a, Test.p, and Test.c.

See also Open command.

220 MPW 3.0 Reference

Newer-compare modification dates between files

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Newer[-e] k][-q] name ... target

Compares the modification dates of name and target. Files that have a more
recent modification date than target have their names written to standard
output. If the target is a nonexistent file or directory, all names that exist are
considered newer than the target.

Built-in.

None.

Newer files are written to standard output The names are written out one per line
as they appear on the command line.

Errors are written to diagnostic output.

The follOwing status codes may be returned:

0
1
2

-c

-e

-q

No error.
Syntax error.
File not found.

Compare creation dates instead of modification dates.

Look for files with equal modification dates (or creation dates
when used with the -c option).

Do not· quote pathnames that are written to standard output.

Newer~ompare modification dates between files 221

Examples

See also

Newer main.c main.c.bak

Writes out main.c if its modification date is more recent than its backup.

Newer HD:Source:=.c HD:TimeStamp

Writes to the screen all the source files in the Source directory that have been
modified since the modification date of TimeStamp.

If 'Newer main.c main.c.bak'

Duplicate main.c main.c.bak

End

Makes a backup copy of main.c only if it has been modified since the last
backup was made.

If "'Newer File.c File.h File.c.o'"

C File.c -0 file.c.o

End

Rebuilds the source file file.c if either file.c or file.h has been modified since
file.c.o was last built.

Exists command.

222 MPW 3.0 Reference

NewFolder--create a directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

NewFolder name ...

Creates new directories with the names specified. Any parent directories included
in the name specification must already exist.

• Note: This command can be used only on hierarchical file system (HFS)
disks.

Built-in.

None.

None.

Errors are written to diagnostic output.

The follOwing status codes may be returned:

o Folders were created for each name listed.
1 Syntax error.
2 An error occurred.
3 Attempt to use NewFolder on a non-HFS volume.

None.

NewFolder Memos

Creates Memos as a subdirectory of the current directory.

NewFolder Parent :Parent:Kid

Creates Parent as a subdirectory of the current directory, and Kid as a
subdirectory of Parent.

NewFolder-create a directory 223

NewProject-create a project

Syntax

Description

Type

Input

Output

Diagnostics

NewProject -w I -close I ([-u user] [-cs comment I -cf file] project)

NewProject creates a project under control of Projector. A project directory is
created to store the files, subprojects, and other information related to the
project. The name of the directory is the name of the project.

If project is a project pathname (such as MPwfToolsfEnterprise), Projector
creates Enterprise as a subproject of the existing MPwfTools project. In this case
MPwfTools must be a mounted project (see the MountProject command).

If project is a leafname (such as Enterprise), project directory Enterprise is
created in the current directory.

Finally, if project is a partial or full HFS pathname (such as :Work:Enterprise or
FS:Projects:Enterprise), the project Enterprise is created in the HFS location
specified.

Add a MountProject command to the UserStartup file, a script, or AddMenu to
easily mount the new project.

The checkout directory is initially set to the current directory (:). To change the
checkout directory, refer to the CheckOutDir command.

To add files to the new project, use the CheckIn command (with the -new
option) or the Check In window.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output.

224 MPW 3.0 Reference

Status

Options

Examples

See Also

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-w

-close

Open the New Project window.

Close the New Project window.

-u user Name of the current user. This overrides the {User} Shell variable.

-cs comment
A short description of the project.

-cf filename The comment is contained in the file filename.

The following command creates a project Enterprise in the current directory. No
comment is saved with the projec~ but you can add one later by selecting the
project in the Check Out window's IInfo view.

NewProject Enterprise

The next example creates a project Zoom in the FS:work:Zoom. The -d option
indicates that the comment for the new project is contained in the file Info.

NewProject FS:work:Zoom -cf Info

Finally, given that the project EnterprisefUtilities exists and has been mounted'
using the MountProject command, the next command creates a Zoom project in
the EnterprisefUtilities project. In this case you don't need to add a
MountProject command to UserStartup, but you may want to add a CheckOutDir
command to set the checkout directory.

NewProject Enterpriselutilitieslzoom -cs d
"Upgrade Zoom utility"

CheckOutDir, MountProject, Project.

NewProject~reate a project 225

Open--open a window

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Open [-n I -r H-tH name ...]

Opens a file as the active (frontrnost) window. If name is not specifed, StdFile's
GetFile routine is called, allowing you to use a dialog box to choose a file. If name
is already open as a window, that window becomes the active (frontmost)
window.

Built-in.

None.

None.

Errors are written to diagnostic output.

Open may return the following status codes:

o No errors.
1 Error in parameters.
2 Unable to complete operation; specified file not found.
3 System error.

-n Open a new window with the title name. If file name already
exists, that file is opened.

-r Open a read-only window associated with the file name. If the file
name doesn't exist, an error occurs.

-t Open the window as the target window rather than as the active
window (that is, make it the second window from the front). This
option is identical to the Target command.

226 MPW 3.0 Reference

Examples Open

Displays StdFile from which to choose a file to open.

Open -r -t Test.a

Opens the file Test.a as the target window, read-only.

Open ==.a

Opens all the files that end with ".a".

See also Target, New, and Close commands.

Open-open a window 227

OrphanFiles-remove projector info from flIes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See Also

OrphanFiles filename ...

Remove the 'CKID' resource from file(s). This removes the identification
information fr9m the file that Projector uses to uniquely identify it.

A Warning Once the projector information is removed from a file, you
cannot check the file back into the Project as a checked-out
file

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Script.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

None.

Suppose file.c and interactive.c belong to a project that has been deleted. We
can remove the Projector information from them (so that they can be used for
other purposes) with the command

OrphanFiles file.c interactive.c

TransferCkid.

228 MPW 3.0 Reference

Parameters-write parameters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Parameters [parameter ...]

The Parameters command writes its parameters, including its name, to standard
output. The parameters are written one per line, and each is preceded by its
parameter number (in braces) and a blank. This command is useful for checking
the results of variable substitution, command substitution, quoting, blank
interpretation, and filename generation.

Built-in.

None.

Parameters are written to standard output.

None.

A status code of 0 (no problem) is always returned.

None.

Parameters One Two "and Three"

Writes the following four lines to standard output:

{OJ Parameters

{l} One

{2} Two

{3} and Three

Recall that" ... " and t ••• t quotation marks are removed before parameters are
passed to commands.

Echo and Quote commands.

"Parameters to Scripts" in Chapter 5.

Parameters-write parameters 229

Pascal-Pascal compiler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Pascal [option ...][file ...]

Compiles the specified Pascal source files (programs or units). You can specify
zero or more filenames. Each file is compiled separately-compiling file Name.p
creates object file Name .p.o. By convention, Pascal source filenames end in a
".p" suffix.

See the MPW 3,0 Pascal Reference for details of the language definition.

Tool.

If no filenames are specified, standard input is compiled, with output directed
to the file p. o. You can terminate input by pressing Command-Enter.

Nothing is written to standard output. For each input file name, object code is
sent to the file name .0.

Errors are written to diagnostic output. Progress and summary information is also
written to diagnostic output if the -p option is selected.

The following status codes may be returned:

o Successful completion.
1 Error in parameters.
2 Compilation halted.

-b Generate AS-relative references whenever the address of a
procedure or function is taken. (By default, PC-relative references
are generated for routines in the same segment.)

-c Syntax check only; no object file is generated.

-clean Erase all symbol table references.

-d name =TRUE I FALSE

-e errLogFile

Set the compile time variable name to TRUE or FALSE.

Write all errors to the error log me errLogFile. A copy of the error
report is still sent to diagnostic output.

-h Suppress error messages regarding the use of unsafe handles.

230 MPW 3.0 Reference

-m Allow greater than 32K globals by using 32-bit references.

-i pathname [,pathname] ...
Search for incl ude or USES files in the specified directories.
Multiple -i options may be specified. At most, 15 directories are
searched. The search order is

1. In the case of a USES filename, if no prior $U filename was
specified, the filename is assumed to be the same as the unit
name (with a ".p" appended).

2. The filename is used as specified. If a full path name is given, no
other searching is applied.

If the file isn't found, and the pathname used to specify the file
is a partial pathname (no colons in the name or a leading colon),
the following directories are searched:

3. The directory containing the current input file.

4. The directories specified in -i options, in the order listed.

5. The directories specified in the Shell variable {PInterraces}.

The source filenames specified on the command line must include
any relevant preftxes.

-mbg cbS Include V2.O-compatible MacsBug symbols (eight characters only,
in a special format).

-mbg full Include full (untruncated) symbols for MacsBug.

-mbg off Don't include symbols for MacsBug.

-mbg number
Include MacsBug symbols truncated to length number.

-mc68020 Generate code to take advantage of the MC68020 processor.

-mc68881 Generate code to take advantage of the Mc68881 coprocessor.

-n Generate separate global data modules for better allocation.

-noload Don't use or create any symbol table resources.

Pascal-Pascal compiler 231

-0 objName
Specify the pathname for the generated object file. If objName
ends with a colon (:), it indicates a directory for the output file,
whose name is then formed by the normal rules (that is,
inputFilename .0). If the source filename contains a pathname, it is
stripped off before objName: is used as a prefix. If objName does
not end with a colon, the object file is written to the file objName.
(In this case, only one source file should be specified.)

-ov Tum on ovetflow checking.

-p

-t

-rebuild

-sym off

A Warning Doing so may Significantly increase code size. ...

Supply progress and sununary information to diagnostic output,
including Compiler header information (copyright notice and
version number), module names and code sizes in bytes, and
number of errors and compilation time.

Suppress range checking.

Rebuild all symbol table reference.

Don't generate SADE object file information.

-sym on I full
Generate complete SADE object information. You can limit this
option by also specifying one or more nolines, novars,and
notypes. These cause omission of line, variable, and type
information, respectively, from the object file.

-t Report compilation time to diagnostic output. The -p option also
reports the compilation time.

-u Initialize local and global data to the value $7267 (for debugging
use).

-w Tum off peephole optimizer.

-y pathname

232 MPW 3.0 Reference

Put the compiler's temporary intermediate (" .oj") files in the
directory specified by path name.

Examples

Availability

See also

Pascal Sample.p

Compiles the Sample program provided in the PExamples folder.

Pascal Filel.p File2.p -r

Compiles Filel.p and File2.p, producing object files Filel.p.o and File2.p.o but
performing no range checking.

• Note: listing files are not produced directly by the compiler.
Refer to the PasMat and Pas Ref tools.

The MPW Pascal compiler is available as a separate Apple product.

PasMat and PasRef commands.
MPW 3.0 Pascal Reference.

Pascal-Pascal compiler 233

PasMat-Pascal program formatter

Syntax

Description

Type

Input

Output

PasMat [option ...] [inputfile [outputfile]]

Reformats Pascal source code into a standard format, suitable for printouts or
compilation. PasMat accepts full programs, external procedures, blocks, and
groups of statements.

• Note: A syntactically incorrect program causes Pas Mat to abort. If this
happens, the generated output will contain the formatted source up to
the point of the error.

PasMat options let you do the following:

• Convert a program to uniform case conventions.

• Indent a program to show its logical structure, and adjust lines to fit into a
specified line length.

• Change the comment delimiters (* *) to { }.

• Remove the underscore character (_) from identifiers, rename identifiers,
or change their case.

• Format include ftles named in MPW Pascal include directives.

PasMat specifications can be made through PasMat options or through special
formatter directives, which resemble Pascal compiler directives, and are inserted
into the source file as Pascal comments. PasMat's default formatting is
straightforward and does not require you to use any options. The best way to
find out how PasMat formats something is to try out a small example.

See Appendix K of the MPW 3.0 Pascal Reference for details of PasMat directives
and their functions. The first dialog box of the Pascal Commando dialog is
reproduced here for your convenience.

Tool.

If no input files are specified, standard input is formatted.

If no output file is specified, the formatted output is written to standard output.
Refer to "Limitations" below for more information about PasMat's treatment of
errors in the source.

234 MPW 3.0 Reference

Diagnostics

Status

Options

The following errors are detected and written to diagnostic output:

• In general, premature end-of-file conditions in the input are not reported as
errors, in order to accommodate formatting of individual incl ude files,
which may be only program segments. There are cases, however, where the
include file is a partial program, which PasMat interprets and reports as a
syntax error.

• There is a limit on the number of indentation levels that PasMat can handle. If
this limit is exceeded, processing will abort. This problem should be
exceedingly rare.

• If a comment would require more than the maximum output length (150) to
meet the rules given, processing will abort. This problem should be even rarer
than indentation level problems.

If a syntax error in the input code causes formatting to abort, an error message
gives the input line number on which the error was detected. The error checking is
not perfect-successful formatting is no guarantee that the program will compile.

PasMat may return the following status codes:

o Normal termination.
1 Parameter or option error.

Most of the following options modify the initial default settings of the directives
described in Appendix K of the MPW 3.0 Pascal Reference.

-a

-b

Set a- to disable CASE label bunching.

Set b+ to enable IF bunching.

,..Pas.mat Options
,..Spacing

[I/O Specifications ... J 0 None around ops

(Identifier Handling •••) o None around :-
o None after commas

,..Bunching
o IF's ,..Indentlng
t8I FOR/WHILE/WITH's [gJ Procedure bodies
t8I CRSE label's o Between BEGIN/END o ELSE/IF on new line o Fields under id
o BEGIN on same line

Tabbing ualue I_I DTHEN on new line

PosMIt
fcommand Line

Miscellaneous -
o No formatting
o (* *) changed to { }
o Rlign URR colons
o Progress

,Grouping
o Rssignment/Cells o Formal parameters
o "Smort" grouping
o Separote CASE togs

~HeIP [Cancel
R.f~ts Pose_l s,. into _ stonkd f~t, SlJit.blo for printouts or
compmtion. ""' .. pts fun prognms/units, procs, bloclcs, ond sbt......,ts. II Pasmat Host options should tJ. .omtJ.d~. in SO\r.,...,d HOT spocif"wd ho ... !

PasMat-Pascal program formatter 235

I
)

J

-body Set body+ to align procedure bodies with their enclosing
BEGIN/END pair.

-c Set c+ for placement of BEGIN on same line as previous word.

d Set d+ to enable the replacement of (* *) with { } comment
delimiters.

-e

-entab

-f

Set e+ to capitalize identifiers.

Replace runs of blanks with tabs. The tab value is determined by
the -t option or current t= n directive (not by the file's tab
setting).

Set f- to disable formatting.

-g Set g+ to group assignment and call statements.

-h Set h- to disable FOR, WHILE, and WITH bunching.

-i pathname [,pathname 1. ..
Search for incl ude files in the specified directories. Multiple
-i options may be specified. At most 15 directories will be
searched. The search order for include files is specified under the
description of the -i option for the Pascal command. (Note,
however, that USES are not processed by PasMat.)

-in Set in+ to process Pascal compiler include files. This option is
implied if the -i option is used. (Be sure to read the "Limitations"
at the end of this command section.)

-k Set k+ to indent statements between BEGIN!END pairs.

-1 Set 1+ for literal copy of reserved words and identifiers.

-list listingFiIe
Generate a listing of the formatted source. The listing is written to
the specified file.

-n Set n+ to group formal parameters.

-0 width Set the output line width. The maximum value allowed is 150. The
default is 80.

-p Display version information and progress information to
diagnostic output.

'236 MPW 3.0 Reference

-pattern = pattern = replacement =
Process include files (-in) and generate a set of output files with
exactly the same include structure as the input, but with new
names.The new output filenames and incl ude directives are
generated by editing the input (or include) filenames according
to the pattern and replacement strings. Pattern is a pathname to be
looked for in the input file and in each include file (the entire
pathname is used, and case is ignored). If the pattern is found, it is
replaced by the replacement string. The result is a new pathname,
which becomes the name for an output file. For example,

PasMat -pattern =OldFile=NewFile=

replaces each name containing the string "OldFile" with the string
"NewFile".

Note: Any character not contained in the pattern or replacement
strings can be used in place of an equal sign. Special characters must
be quoted. (See "Example" below.)

-q Set q+ not to treat the ELSE IF sequence specially.

-r Set r+ to make reserved words uppercase.

-ree Indent a RECORD's field list under the record identifier.

-5 renameFile
Rename identifiers. RenameFile is a file containing a list of
identifiers and their new names. Each line in this me contains twp
identifiers of up to 63 characters each: The first name is the
identifier to be renamed; the second name will replace all
occurrences of the first identifier in the output. There must be at
least one space or tab between the two identifiers. Leading and
trailing spaces and tabs are optional. The case of the first identifier
doesn't matter, but the second identifier must be specified exactly
as it is to appear in the output. The case of all identifiers not
specified in the renameFile is subject to the other case options
(-e, -I, -u, and -w) or their corresponding directives. Reserved
words cannot be renamed.

-t tab Set the tab amount for each indentation level. If the -entab option
is also specified, tab characters will actually be generated. The
default tab value is 2.

PasMat-Pascal program formatter 237

-u Rename all identifiers based on their first occurrence in the source.
Specifications in the rename (-s) file always have precedence over
this option-that is, the identifier's translation is based on the
rename file rather than on the first occurrence.

-v Set v+ to put THEN on a separate line.

-w Set w+ to make identifiers uppercase.

-x Set x+ to suppress space around operators.

-y Set y+ to suppress space around : = .

-z Set z+ to suppress space after commas.

-: Set :+ to align colons in VAR declarations (only if a j PasMat
directive in the source specifies a width).

-@ Set @+ to force multiple CASE tags onto separate lines.

"-#" Set # + for "smart" grouping of assignment and call statements.
Grouped assignment and call statements on an input line will appear
grouped on output.

• Note: Because # is the Shell's comment character, this
option must be quoted on the command line.

- Set _ + for "portability" mode (underscores are deleted from
identifiers).

All options except for -list, -pattern, -s, and -entab have directive
counterparts. It's recommended that you specify the options as directives in the
input source so that you won't have to specify them each time you call PasMat.

{PasMatOpts} variable: You can also specify a set of default options in the
exported Shell variable {PasMatOpts}-PasMat processes these options before it
processes the command line options. {PasMatOpts} should contain a string
(maximum length 255) specifying the options exactly as you would specify them
on the command line. The exception is command-line quoting, which should be
omitted. Also note that the options -pattern, -list, -s, and -i, which require a
string parameter, can be specified only on the command line. For example, you
can define {PasMatOpts} to the Shell (perhaps in the UserStartup file) as follows:

Set PasMatOpts "-n -u -r -d -entab -# -0 82 -t 2"

Export PasMatOpts

The entire definition string must be quoted to preserve the spaces.

238 MPW 3.0 Reference

Example

As an alternative to specifying the options directly, you can indicate that the
options are stored in a file by specifying the file's full pathname prefixed with the
character "':

Set PasMatOpts "'" pathname "

Export PasMatOpts

PasMat will now look for the default options in the specified file. The lines in this
file can contain any sequence of command-line options (except for -pattern,
-list, -s, and -i), grouped together on the same or separate lines. You can
comment the lines by placing the comment in braces ({ ... }). A typical options file
might appear like this:

-n

-u

-r

-d

-entab

-#

-0 82

-t 2

{group formal params on same line}

{auto translation of id's based on 1st

occurrence}

{uppercase reserved words}

{leave comment braces alone}

{place real tabs in the output}

{smart grouping}

{output line width}

{indent tab value}

(Except for the tab value, this example shows the recommended set of options.)

If PasMat does find a default set of options, those options will be echoed as part
of the status information given with the -p option.

Pasmat -n -u -r -d -pattern "==formatted/=" Sample.p a
"formatted/Sample.p"

Formats the file Sample.p with the on, -u, or, and -d options and writes the
output to the file "formatted/Sample.p". Include files are processed
(-pattern), and each Pascal compiler $ I incl ude file causes additional output
files to be generated. Each of these files is created with the name "formatted/
filename", where filename is the filename specified in the corresponding
incl ude. (The -pattern parameter contains a null pattern (==) with
"[ormatted!" as a replacement string-a null pattern always matches the start of a
string.)

Care must be taken when a command line contains quotes, slashes, or other
special characters that are processed by the Shell itself. In this example, we used
the slash character, so the strings containing it had to be quoted.

PasMat-Pascal program formatter 239

limitations

Avallabllity

See also

Pas Mat has these limitations:

• The maximum length of an input line is 255 characters.

• The maximum output Hne length is 150 characters.

• The input files and output files must be different.

• Only syntactically correct programs, units, blocks, procedures, and
statements are formatted. This limitation must be taken into consideration
when separate MPW 3.0 incl ude files and conditional compiler directives
are to be formatted.

• The Pascal include directive should be the last thing on the input line if
include files are to be processed. Include flIes are processed to a
maximum nesting depth of five. All include files not processed are
summarized at the end of formatting. (This assumes, of course, that the in
directive/option is in effect.)

• The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by
PasMat. They are treated as two loop control statements by Pascal unless
explicitly declared.

• While Pasmat supports Pascal's $ $ Shell facility in incl ude files, the
processing of MPWs {PInterfaces} files is not fully supported because these
files conditionally include files (remember, conditionals are not
processed). For this reason, do not use the -in or -e option to process files
that include MPW {PInterfaces} files.

Pas Mat is available as part of a separate Apple product, MPW 3.0 Pascal.

Pascal and PasRef commands.
Appendix K of the MPW 3.0 Pascal Reference.

240 MPW 3.0 Reference

PasRef-Pascal cross-referencer

Syntax

Description

Type

Input

PasRef [option ... 1 [sourceFile ... 1

Reads Pascal source files and writes a listing of the source followed by a cross
reference listing of all identifiers. Each identifier is listed in alphabetical order,
followed by the number of the line on which it appears. line numbers can refer to
the entire source file, or can be relative to individual include files and units.
Each reference indicates whether the identifier is defined, assigned, or simply
named (for example, used in an expression).

See the MPW 3.0 Pascal Reference for more information about the Pascal
language. The first dialog box of PasRePs Commando dialog is reproduced here
for your convenience.

Identifiers may be up to 63 characters long and are displayed in their entirety
unless overridden with the -x directive. Identifiers can remain as they appear in
the inpu~ or they can be converted to all lowercase (-1) or all uppercase (-u).

For incl ude files, line numbers are relative to the start of the incl ude file; an
additional key number indicates which incl ude file is referred to. A list of each
include file processed and its associated key number is displayed prior to the
cross-reference listing.

USES declarations can also be processed by PasRef (their associated $U filename
compiler directives are processed as in the Pascal compiler). These declarations
are treated exactly like includes, and, as with the compiler, only the outermost
USES declaration is processed (that is, a used unit's USES declaration is not
processed).

As an alternative to processing USES declarations, PasRef accepts multiple
source files. Thus you cross-reference a set of main programs together with the
units they use. All the sources are treated like incl ude files for display purposes.
In addition, PasRef checks to see whether it has already processed a file (for
example, if it appeared twice on the input lis~ or if one of the files already used
or included it). The file is skipped it has already been processed.

Tool.

If no filenames are specified, standard input is processed. Unless the -d option is
specified, multiple source files are cross-referenced as a whole, producing a single
source listing and a single cross-reference listing. Specifying the -d option is the
same as executing PasRef individually for each file.

PasRef-Pascal cross-referencer 241

Output

Diagnostics

Status

Options

All listings are written to standard output. Form feed characters are placed in the
fIle before each new source listing and its associated cross-reference. Pascal $ P

(page eject) compiler directives are also processed by PasRef, which may
generate additional form feeds in the standard output listing.

Parameter errors and progress information are written to diagnostic output.

PasRef may return the following status codes:

o Normal termination.
1 Parameter or option error.

-a Process all fIles, even if they are duplicates of those already
processed. The default is to process each (incl ude) file or used

unit
only once.

-c Do not process a unit if the unit's filename is specified in the list of
fIles to be processed on the command line, or if the unit has already
been processed .

.... Pasref Options
i i

@ Flies to Href ... o Redirect Standard Input
(Cllct for list ...) r----·---·----·i

Output

I I
other Inputs- Processing- Miscellaneous- Error

181 Includes ORII o Object Pascal I I
181 Uses o Distinct
(search pathS •••) o Unique USES

o Progress
(Displal;l Options •••)

PasRe~
pcommand Line

pHelP I (Cancel
RtICls Pasc.tl SOIr~ tilts InC! ... ntH Iistin9 of SOIr~ fono d by ~
crou-nt..--.listing of ~n id's to st~ndrd output. I f'aup,'

-d Treat each file specified on the command line as distinct. The
default is to treat the entire list of files as a whole, producing a
single source listing and a single cross-reference listing. This option
is the same as executing PasRef individually for each specified file.

I
)
)

242 MPW 3.0 Reference

-i path name [,pathname]. ..
Search for incl ude or USES files in the specified directories.
Multiple -i options may be specified. At mos~ 15 directories will be
searched. The search order is specified under the description of the
-i option for the Pascal command.

-I Display all identifiers in the cross-reference table in lowercase. This
option should not be used if -u is specified, but if it is, the -u is
ignored.

-ni I -noincludes
Do not process include files. (The default is to process the
incl ude files.)

-nl I -nolisting

-nolex

Do not display the input source as it is being processed. (The
default is to list the input.)

Do not display the lexical information on the source listing.

-nt I -nototal
Do not display the total line count in the source listing. This option
is ignored if no listing is generated (-nl).

-n[ul I -nouses
Do not process USES declarations. (The default is to process USES

declarations.) If -nu is specified, the -c option is ignored. (Be sure
to read "Limitations" at the end of this PasRef section.)

-0 The source file is an Object Pascal program. The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
can be processed. The default is to assume that the source is not an
Object. Pascal program.

-p Write version and progress information to diagnostic output.

-s Do not display include and USES information in the listing or
cross reference, and cross-reference by total source line-number
count rather than by include-file line number.

-t Cross-reference by total source line-number count rather than by
incl ude-file line number. This option can be used if you are not
interested in knowing the positions in included files. However, the
incl ude information is still displayed (unless -s, -ni, or -nu is
specified). This option is implied by the -s option.

PasRef-Pascal cross-referencer 243

-u Display all identifiers in the cross-reference table in uppercase. This
option should not be used if -1 is specified.

-w width Set the maximum output width of the cross-reference listing. This
setting determines how many line numbers are displayed on one line
of the cross-reference listing. It does not affect the source listing.
Width can be a value from 40 to 255; the default is 110.

-x width Set the maximum display width for identifiers in the cross
reference listing. (The default is to set the width to the size of the
largest identifier cross-referenced.) If an identifier is too long to fit
in the specified width, it is indicated by preceding the last four
characters with an ellipsis (. ..). Width can be a value from 8 to 63.

Normally, both include files and USES declarations are processed. The
-no includes option suppresses processing of includeS. The -nouses option
suppresses processing of USES.

Omitting the -nouses option causes PasRef to process a USES declaration
exactly as does the Pascal compiler. However, you may want to cross-reference
an entire system, including all of the units of that system. Processing the units
through the USES declaration would cause only the Interface section of each unit
to be processed. If you use the -nouses option, then USES will not be processed
and each unit from the parameter list can be cross-referenced, treating the entire
list as a single source.

PasRef can also cross-reference all the units of a program while still expanding
other units not directly part of that program, such as the Toolbox units. If you
wish to do this, use the -c option. With the -c option, if the ($U interface)
filename is the same as one of the filenames specified on the parameter list, then
the unit will not be processed from the USES declaration, because its full source
will be (or has been) processed.

To summarize, you have the following choices:

• Don't process the USES declarations, and specify a list of all files you want to
process by using the -nouses option.

• Process only the Interfaces through the USES declarations (like the compiler)
by omitting the -nouses option.

• Process some of the units through the USES declarations and other units as
full sources by specifying the -c option.

In all cases where a list of files is specified, no unit will ever be processed more
than once (unless the -a option is given).

244 MPW 3.0 Reference

Example PasRef -nu -w 80 Memory.p > Memory.p.Xref

Cross-references the sample desk accessory Memory.p and writes the output to
the me Memory.p.Xref. No USES declarations are processed C-nu). The following
source and cross-reference listings are generated:

PasRef-Pascal cross-referencer 245

1 1 1

2 1 2 File Memory.p

3 1 3

4 1 4 Copyright Apple Computer, Inc. 1985-1987

5 1 5 All rights reserved.

6 1 6

7 1 7

8 1 8 {$D+} MacsBug symbols on

9 1 9 {$R-} No range checking

10 1 10

11 1 11 UNIT Memory;

12 1 12

13 1 l3 INTERFACE

14 1 14

15 1 15 USES

16 1 16 MemTypes, QuickDraw, OSIntf, ToolIntf, PackIntf;

17 1 17

18 1 18

19 1 19 FUNCTION DRVROpen (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr;

20 1 20 FUNCTION DRVRControl (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr;

21 1 21 FUNCTION DRVRStatus (ctlPB: ParmBlkPtr; dCtl: .DCtlPtr) : OSErr;

22 1 22 FUNCTION DRVRPrime (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr;

23 1 23 FUNCTION DRVRClose (ctlPB: ParmBlkPtr; dCtl: DCtlPtr) : OSErr;

24 1 24

25 1 25

26 1 26 IMPLEMENTATION

etc.

63 1 63 --A FUNCTION DRVRClose (ctlPB: ParmBlkPtr; dCtl: DCtlPtr): OSErr;

64 1 64 O-A BEGIN

65 1 65 IF dCtl A .dCtlwindow <> NIL THEN

66 1 66 1- BEGIN

67 1 67 DisposeWindow (WindowPtr(dCtlA.dCtlWindow»;

68 1 68 dCtlA.dCtlWindow := NIL;

69 1 69 -1 END;

70 1 70 DRVRClose := NOErr;

71 1 71 -OA END;

etc.

178 1 178

179 1 179 END. {of memory UNIT}

180 1 180

246 MPW 3.0 Reference

1. Memory.p

-A-

accEvent

accRun

ApplicZone

Away

-B-

BeginUpdate

BNOT

Bold

Boolean

BOR

BSL

-C-

csCode

CSParam

ctlPB

Each line of the source listing is preceded by five columns of information:

1. The total line count.

2. The include key assigned by PasRef for an incl ude or USES me. (See
below.)

3. The line number within the include or main me.

4. Two indicators Cleft and right) that reflect the static block nesting level. The
left indicator is incremented (mod 10) and displayed whenever a BEGIN,

REPEAT, or CASE is encountered. On termination of these structures with an
END or UNTIL, the right indicator is displayed, then decremented. It is thus
easy to match BEGIN, REPEAT, and CASE statements with their matching
terminations.

5. A letter that reflects the static level of procedures. The character is updated
for each procedure nest level ("A" for levell, "B" for level 2, and so on), and
displayed on the line containing the heading, and on the BEGIN and END

associated with the procedure body. Using this column you can easily find
the procedure body for a procedure heading when there are nested
procedures declared between the heading and its body.

The cross-reference listing follows:

144 (1)

158 1)

121 1)

33* (1) 146 (1)

151 (1)

39 (1)

(1) 117 (1)

31* 1)

39 (1)

39 (1)

143 (1)

146 (1)

19* (1) 20* (1) 21*(1) 22* (1) .• 23* (1) 43* (1)

63* (1) 74* (1) 143 (1) 146 (1) 168* (1) 173*(1)

PasRef-Pascal cross-referencer 247

-D-

dCtl

DCtlPtr

dCtlRefNum

dCtlWindow

etc.

-v-

VolName

-W-

·what

WindowKind

windowpeek

WindowPtr

wRect

19*

39

63*

142

19

43

39

50

149

54=

54

48

47*

79*

(1) 20*(1) 21* (1) 22* (

1) 43* (1) 50 (1) 53 (1) 54

(1) 65 (1) 67 (1) 68 (

1) 168*(1) 173* (1)

1) 20 1) 21 1) 22 1) 23

1) 63 (1) 74 1) 168 1) 173

1) 54 (1)

1) 55=(1) 67 1) 68=(1) 142

(1) 100 (1) 135 (1)

1)

(1)

1)

1) 67 (1) 151 (1) 153 (1)

1)

1) 23*(1) 37*(1)

(1) 55 (1)

1) 74*(1) 115 1)

1) 37 (1)

1)

1)

*** End PasRef: 105 id's 249 references

The numbers in parentheses following the line numbers are the include keys of
the associated incl ude files (shown in column 2 of the source listing). The
include filenames are shown following the source listing. You can thus see what
line number was in which incl ude file. An asterisk (*) following a line number
indicates a definition of the variable. An equal sign (=) indicates an assignment. A
line number with nothing following it indicates a reference to the identifier.

248 MPW 3.0 Reference

Limitations

Availability

See also

PasRef has these limitations:

• PasRef does not process conditional compilation directives! Thus, given the
"right" combination of $IFCS and $ELSECS, PasRefs lexical (nesting)
information can be thrown off. If this happens, or if you don't want the
lexical information, you can specify the -nolex option.

• PasRef stores all its information on the Pascal heap. Up to 5000 identifiers
can be handled, but more identifiers will mean less cross-reference space. A
message appears if Pas Ref runs out of heap space.

• Note: Although PasRef never misses a reference, it can infrequently be
fooled into thinking that a variable is defined when it actually isn't.
One case where this happens is in record structure variants. The record
variant's case tag is always flagged as a defmition (even when there is
no tag type) and the variant's case label constants (if they are
identifiers) are also sometimes incorrectly flagged, depending on the
context. (This occurs only in the declaration parts of the program.)

• While PasRef supports Pascal's $$Shell facility in include files and USES

declarations, the processing of MPW's {Plnterfaces} files is not fully
supported because these files conditionally include files (remember,
conditionals are not processed). For this reason, always use the -nu option to
suppress processing of USES declarations.

• The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords
by PasRef. These are treated as two loop control statements by Pascal unless
explicitly declared.

PasRef is available as part of a separate Apple product, MPW 3.0 Pascal.

Pascal command.

MPW 3.0 Pascal Reference.

PasRef-Pascal cross-referencer 249

Paste-replace selection with Clipboard contents

Syntax

Description

Type

In.,ut

Output

Diagnostics

Status

Option

Examples

See also

Paste [-c count 1 selection [window 1

Finds selection in the specified window and replaces its contents with the
contents of the Clipboard. If no window is specified, the command operates on
the target window (the second window from the front). It's an error to specify a
window that doesn't exist.

For a definition of selection, see "Selections" in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Built-in.

None.

None.

Errors are written to diagnostic output.

The follOwing status codes may be returned:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count

Paste §

For a count of n, replace the next n instances of the selection with
the contents of the Clipboard.

Replaces the current selection with the contents of the Clipboard. This command
is like the Paste item in the Edit menu, except that the action occurs in the target
window.

Paste /BEGIN/:/END/

Selects everything from the next BEGIN to the following END and replaces the
selection with the contents of the Clipboard.

Copy, Cut, and Replace commands.
"Edit Menu" in Chapter 3.
"Selections" in Chapter 6.

250 MPW 3.0 Reference

PerformReport-generate a performance report

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

PerformReport [option .. .]

PerformReport reads a link map file and a performance data file and produces a
report that relates the performance data to procedure names. The input files are
both text files and are distinguished as separate options. For a full discussion of
MPW's performance measurement tools, see Chapter 14.

Tool.

Standard input is not processed.

The report file is written to standard output.

If no errors are detected, PerformReport runs silently. Errors and warnings are
written to the diagnostic output file. Progress and summary information is also
written to the diagnostic output if the -p option is specified.

The follOwing status codes may be returned:

o No errors.
1 Warning issued.
2 Error encountered.
3 Heap errorjusually insufficient memory.

-a Produce a listing of all procedures (in segment order). (The default
is to produce only a partial listing sorted by the number of possible
hits.)

-1 fileName Read the link map of the file named fileName.

-m fileName

-n NN

-p

Read the performance data file named fileName. The default name
is Perform.out.

Show the top NN procedures. The default is SO.

Write progress and summary information to the diagnostic output
file.

PerformReport-generate a performance report 251

Example

See also

Catenate "{MPW}ROM.Maps:MacIIROM.map » myMapFileName

Perfor.mReport -1 myMapFileName > myReport

Adds the ROM map ftle to the end of the link map file, myMapFileName. Reads
the ftles myMapFileName and Perform. out and writes the output to myReport.

Chapter 14, "Performance-Measurement Tools."

MPW 3.0 Pascal Reference.

MPW 3,0 C Reference .

252 MPW 3.0 Reference

Position-list position of selection in window

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Position [-c I -1] [window .. .]

Position displays the position of the selection in each of the windows specified.
If no window is specified, the position of the selection in the Target window is
given. By default, the position is displayed as both the line number of the start of
the selection and the character positions of the start and end of the selection.
The -c option can be used to display only the character pOSitions of the selection.
Similarly, the -I option can be used to display only the line number.

Built-in.

None.

The position information is written to standard output.

Errors are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Any other error.

-I Display just the line number of the start of the selection.

c Display just the character positions of the start and end of the
selection.

Position "{Target}" file2

Displays the position of the selection in both the Target and file2 in the following
form:
578 23129,23140
211 8440,8440

Find command.

Position-list poSition of selection in window 253

Print-print text rues

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Print [option ...] file ...

Prints text HIes on the currently selected printer. (Printers are selected with the
Chooser desk accessory.) One or more files may be printed.

• Note: Print does not substitute fonts unless the "Font Substitution" box is
checked in the "LaserWriter Page Setup" dialog. To print in a font other than
that indicated in the resource fork of the file where the MPW editor stores
font information, use the -font option.

6. Important Print requires the printer drivers available on version 1.0 (or
later) of the Printer Installation disk. c,

Tool.

Prints the file names on the command line.

All output goes to the currently selected printer. Print sends no output to
standard output.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to diagnostic
output.

The follOwing £t3tus codes may be returned:

o Successful completion.
1 Parameter or option error.
2 Execution error.

Note: You can also apply the Print options to the Print Window/Print
Selection menu item by including them in the exported Shell variable
{PrintOptions}. {PrintOptions} is originally set to -h in the Startup HIe.

-b Print a round-rect border around the printable area of the page.
Headers, if specified with the -h option, are separated from the
body text by an extra line.

-b2 Print an alternate form of the above border in which the header
appears above and outside the border.

254 MPW 3.0 Reference

·c[opies] n Print n copies of the file or selection.

·[(ont] name
Print using the font identified by name (for example, Courier). The
default is the font indicated in information in the resource fork of
the file, if presen~ and otherwise Monaco 9. (See also the -size
option.)

• Note: Printing with a font that is not directly supported
by the printer is significantly slower than printing with a
built-in font.

Print Options-------------------,
rHeeder I' Format r Border·- . i 0 Print Header ,I Tab Setting § II @) None 0 Single 0 Double I
1,.0 Use Mod. Date 1,'1.' L1nes/Pege !I' [] Flies to Print ...
i lit Ie I .---.J II Line Spacing i Input

I Font I '·1 Font I I! :1 :=======:1

·ff string

-from n

·h

I Font Slzp. []!j!i Font Si2e Cltl! ,Erro_r ___ •
1 1 o Show Progress PostScript •••

o Reuerse Pages I
ftommand Line
Print

[More Options...)

II
tencel

Print C

Specifies a string that will be treated like a form-feed character if it
is encountered at the beginning of a line. If the string is the only
item on the line, that line will be omitted. If the string is followed
by additional characters on the line, the additional characters will
be printed on the first line of the new page.

Print pages starting from page number n. The default is to start
with the first page of the file.

Print page headers at the top of each page. The header indicates
the time of printing, the name of the me, and the page number.

·hf[ont] name
Specify the font to be used in headers (-h option). The default is
the font used in the file.

Print-print text files 255

I
)

I

-hs[ize] n Specify the font size to be used in headers. The default is 10.

-l[ines] n Print (at most) n lines per page. Line spacing is adjusted so that the
full page is used. If both -1 and -Is are specified, the -1 option takes
precedence.

-Is n Set line spacing. A value of 1 indicates normal (single) spacing (the
default), 2 indicates double-spacing, and so on. Fractional values
are permitted.

-md Print the file's last modified date, rather than the date and time of
printing, in the header (if headers are specified).

-n Tum on line numbering; numbers appear to the left of the printed
text.

-nw n Specify the width of the line number (-n) field in characters. (The
default value is 5.) Negative values for n cause the field to be zero
padded. The valid range of values is -10 through 10.

-p Write progress information to diagnostic output, indicating which
files are printing and the number of lines and pages printed.

-ps file Send PostScript commands in the file to the laserWriter prior to
printing each page.

-page n Number the pages of the file, beginning with n. (By default, page
numbers start with 1.)

-q quality Set print quality on the lmageWriter@. The value of quality can be
any of the following strings:

-r

-s[ize] n

256 MPW 3.0 Reference

high standard draft

• Note: This option is ignored when printing on the
LaserWriter.

Output pages to the printer in reverse order. This option eliminates
the need to reorder pages on the LaserWriter and LaserWriter Plus
(although not for the LaserWriter II printers).

Print using the font size identified by n. The default is to use the
font size indicated in the resource fork of the file, if present;
otherwise, the default size is 9.

Examples

See also

-t[absl n Expand tabs, using the indicated tab setting. If this option isn't
specified, the tab setting is taken from the resource fork of the
file, if present; otherwise, the tab setting is taken from the {Tab}
variable.

-title name If printing page headers (with -h), use name as the title. (The
default is to use the filename.)

-to n Print pages up to page n. (The default is to print to the last page of
the file.)

The following options control the page margins. n is the margin width in inches.

-tm n Top margin (default = 0 inches).

-bm n Bottom margin (default = 0 inches).

-1m n Left margin (default = 0.2778 inch, for three-hole punched pages).

-nn n Right margin (default = 0 inches).

Print -h -size 8 -Is 0.85 Startup UserStartup

Prints the files Startup and UserStartup with page headers, using Monaco 8 and
compressing the line spacing.

Print -b -hf helvetica -hs 12 -r print.p

Prints the "print.p" source file with borders, with headers in Helvetica 12, and
with pages in reverse order.

Print menu item in "File Menu," Chapter 3.

Print-print text files 257

ProcNames---display Pascal procedure and function names

Syntax

Description

Type

Input

Output

Diagnostics

Status

ProcNames [option ... 1 [file ... 1

ProcNames is a Pascal utility that accepts a Pascal program or unit as input and
produces a listing of all its procedure and function names. The names are shown
indented as a function of their nesting level. The nesting level and line-number
information is also displayed.

ProcNames can be used in conjunction with the Pascal ·pretty-printer" PasMat
when that utility is used to format separate include files. For that case, PasMat
requires that the initial indenting level be specified. This level is exactly the
information provided by ProcNames.

The line-number information displayed by ProcNames exactly matches that
produced by the Pascal cross-reference utility PasRef (with or without USES

declarations being processed), so ProcNames can be used in conjunction with the
listing produced by PasRef to show just the line numbers of every procedure or
function header.

Another possible use for the ProcNames output is to use the line-number and file
information to find procedures and functions quickly with Shell editing
commands.

Tool.

The file parameters specify a list of Pascal source file names to be processed.
Standard input is processed if no fllenames are specified. Unless the -d option is
specified, the entire list of files is treated as a single group of flles to be
processed as a whole, producing a single procedure/function summary.
Specifying the -d option is equivalent to executing ProcNames individually for
each specified file.

The procedure/function name listing is written to the standard output file. Form
feed characters are placed in the flle before each new list (unless the -e option is
specified).

Errors are written to diagnostic output.

ProcNames may return the following status codes:

o Normal termination.
1 Parameter or option error.

258 MPW 3.0 Reference

Options -c Do not process a used unit if the unit's $U interface filename is
specified in the list of files to be processed. This option has the
same effect on the line numbering as does the -c option in the
PasRef utility.

-d Reset total line-number count to 1 on each new file. If a list of files
is specified, the total line-number count may either start at 1 or
continue from where it left off in the previous file. The default is to
agree with the listing produced by PasRef when it processes a list of
files-that is, to continue the count. However, if you want
ProcNames to treat each file independently, you can specify the -d
option so that the total line-number count is reset to 1 before each
file is processed.

-e Suppress page eject (form feed) between each procedure/function
listing.

-f PasMat format compatibility mode. The default lists the procedure
and function names as a function of their Pascal Compiler indenting
level. However, for indenting purposes only, a special case is made
of level 1 procedures in the Implementation section of a unit.
PasMat formats these procedures indented under the word
Implementation. Thus they are indented as if they were level 2
procedures. If you intend to use the level information for PasMat,
you should specify the -f option.

-i pathname [,pathname] ...
Search for include or USES files in the specified directories.
Multiple -i options may be specified. At most 15 directories will be
searched. The search order is specified under the description of the
-i option for the Pascal command.

-n Suppress all line-number and level information in the output display.
Only the procedure and function names will be shown appropriately
indented.

-0 The source file is an Object Pascal program. The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
may be processed. The default assumes that the source is not an
Object Pascal program.

-p Display version information and progress information in the
diagnostic file.

ProcNames ~splay Pascal procedure 259

Examples

-u Process USES declarations. The only reason you would need to
process USES declarations with ProcNames would be to make the
line-number information agree with a PasRef listing that also
contains processed USES declarations. The default does not
process the USES declarations because they have no effect on the
procedure name listing, only on the associated line numbers. Thus,
if you specify the -n option to suppress the line-number
information, it makes no sense to process USES declarations; thus,
the -u option will be ignored when the -n option is specified. (See
the notes in "limitations.")

procnames Memory.p >names

lists all the procedures and functions for the Pascal program Memory.p and writes
the output to the file "names". The listing below is the output generated in the
"names" file.

Procedure/Function names for Memory.p
11 11 0 Memory [Main] Memory.p
37 37 1 RsrcID
43 43 1 DRVROpen
63 63 1 DRVRCloseaa
74 74 1 DRVRControla
76 76 2 Drawwindow
83 83 3 PrintNurn
93 93 3 GetVolStuff
108 108 3 PrtRsrcStr
168 168 1 DRVRPrime
173 173 1 DRVRStatus

*** End ProcNames: 11 Procedures and Functions

The first two columns on each line are line-number information. The third column
is the level number. The first column shows the line number of a routine within the
total source. The second column shows the line number within an include file
(include files are always processed). As each include me changes, the name
of the file from which input is being processed is showrt along with the routine
name on the first line after the change in source. Segment names (from Pascal
compiler $S directives) are similarly processed. These are shown enclosed in
square brackets (the blank segment name is shown as "[Main]").

260 MPW 3.0 Reference

Limitations Only syntactically correct programs are accepted by ProcNames. Conditional
compilation compiler directives are not processed.

Although ProcNames supports $$Shell facility in includes and USES, the
processing of MPWs {Plnterfaces} files is not fully supported because these files
conditionally include files. Therefore, do not use the -u option.

ProcNames -display Pascal procedure 261

Project-set or write the current project

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See Also

Project [-q I projectname]

Set the current project to projectname or list the current project if projectname is
omitted. Projectname must be a mounted project. Refer to the MountProject
command for information on how to mount projects.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

If no project name is given, the current project name is written to standard
output.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

-q Do not quote the project name.

The command

Project

causes the current project name to be written to standard output. To change the
current project to OurProject, use

Project OurProject

NewProject, MountProject.

262 MPW 3.0 Reference

Projectlnfo-list project information

Syntax

Description

ProjectInfo [-project project] [-comments] [-latest] [-f] [-r] [-s] [-only I -m]
[oaf author] [-a author] [-dE dates] [-d dates]
[-cf pattern][-c pattern][-tpattern][-n name H-Iog H-update I -newer][object ...]

By default (with no options specified), ProjectInfo lists information about each
revision in every revision tree (file) in the current project. This behavior can be
changed using the various options. For example, using the -latest option will
display only information about the latest revision on the main trunk of each
revision tree. Using the -f option will display information about the revision tree,
rather than the particular revisions within that tree. Various other options exist
that filter the output such that only the information (typically revisions) that
passes through the filter is listed.

If object is a project pathname such as EnterprisefPhaserffile.c or
EnterprisefPhaser, Projector lists information about every revision of file.c in the
Phaser project, or information about every revision tree in the project
EnterpriseJPhaser, respectively.

If object is a leaf name such as file.c, Projector looks in the current project for a
revision tree with that name. If found, information about every revision in that
revision tree (file.c) is listed. If the file is not a member of the current project,
Projector looks for the file in the current directory. If the file exists and is part of
a project, then the current state of that file is listed. Projector can determine
whether a file belongs to a project because that information is maintained in the
resource fork of all checked-out files.

Finally, if object is a valid partial or full HFS pathname of a me, and the file is part
of a project, then the current state of that file is listed.

To list the contents of a specific revision of a file, append a comma followed by
the revision number to the filename specified. For example, revision 22 of file.c
is specified as file.c,22.

You can use the oaf, -a, -df, -d, on, -cf, -c, and -t options to filter (constrain) the
information listed to specific authors, dates, names, specific comments, or
tasks.

Use the -log option to display a log of all changes to the project. These
commands are logged: NameRevisions, DeleteRevisions, and DeleteNames.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

ProjectInfo--list project information 263

Type

Input

Output

Diagnostics

Status

Built-in.

None.

Information is written to standard output.

The following template shows how ProjectInfo displays project information:

Project Name
filename,revision
Author: author of current revision
Status: Date
Task:
Comment:

The ftrst line lists the project name to which the file or revision belongs. The
project name is listed only at the beginning of the me or revision list
corresponding to that project. The filename is something like me.c. By defaul~
every revision of every revision tree is listed. If you use the -latest option, only
the latest revision on the main trunk is listed. A plus sign C +) by the revision name
indicates that the revision is currently checked out. An asterisk C') by the revision
name indicates that it is a modified read-only me. The status is either "Checked
in" or "Checked out." The date is the date and time corresponding to the check
in or check-out of that revision. The task is the task associated with that me or
revision. The comment is an optional fteld included with the
-comments option.

Errors and warnings are written to the diagnostic output me.

The follOwing status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

264 MPW 3.0 Reference

Options -a author List only revisions created by the author.

Oaf author List only files created by the author.

-c pattern List only those revisions whose comments contain pattern.

-d pattern List only those files whose comments contain pattern. A pattern
can be a literal string or a regular expression enclosed in slashes (f).

-comments Include comments associated with each project, file, and revision
listed. They are normally omitted.

-d dates

-df dates

List only those revisions whose creation date is within dates.

List only those files whose creation date is within dates. A date is
specifed as mmlddlyy [[hh:rrun [:ss] AM I PM].

Dates can take the following forms:

Format

date
<date
-5.date
>date
~date

datel-date2

Meaning

On date.
Before but not including date.
Before and including date.
After but not including date.
After and including date.
Between and including datel and date2.

• Note: Be sure to quote dates so that the MPW Shell
does not interpret any of the special characters.

-f list file information.

-log Print the log information for the current or named project. The log
contains information about the creation and deletion of public
names, and the deletion of revisions.

-m List only modifiable files or revisions.

ProjectInfo-list project information 265

-n name

-newer

-only

List only those revisions in name.

Names can take the following forms:

Format

name
<name
~name

>name
~name

Revisions

With Name name.
Before but not including name.
Before and including name.
After but not including name.
After and including name.

• Note: If any of the name relations are used «, ~, >, ~),
quote name so that the MPW Shell does not interpret
the special characters.

Get information on the latest revision of all flles in the current
project that have more recent revisions than the file currently in the
checkout directory for the project. Information is given for files
that do not exist in the checkout directory. This option is similar
to the -newer option to the CheckOut command, except that
information is listed instead of checking out the file.

List only information about projects and subprojects in the current
or named project-that is, do not list information about files.

-project project
Name of the project that contains the files. This becomes the
current project for this command.

-r Recursively list all subprojects encountered-that is, list every file
in every subproject.

-latest List only the latest revision on the main trunk.

-s Short listing (names and revision names only).

-t pattern list only those revisions whose task contains pattern.

-update Similar to the -newer option except that information is not given

266 MPW 3.0 Reference

for files that do not exist in the checkout directory. This option
parallels the -update option to the CheckOut command, except
that information is listed instead of checking the file out.

Examples In the example below, the current project has three files. The -latest option is
used so that only information about the latest revision on the main trunk is listed.
The presence of the plus sign (+) indicates that Bob currently has revision 22 of
file.c checked out for modification, and that Peter has revision 33 of hdr.c
checked out for modification. The date field of these two files reflects the date
and time they were checked out. Because no plus sign appears on the line for
file.h, it can be checked out for modification. The latest revision of file.h is 17,
and the author of the revision is Bob.

Projectlnfo -latest

sampleJ

file.c,22+

Owner: Bob

Checked out: Fri, Apr 8, 1988, 3:45 PM

Task: Fixing bug 1223

file.h,17

Author: Bob

Checked in: Mon, Apr 4, 1988, 10:10 AM

Task:

hdr.c,33+

Owner: Peter

Checked out: Tue, Apr 12, 1988, 5:58 PM

Task: Fixing bug 1333

Using the -only option causes Projectlnfo to list only information about the
project itself.

Projectlnfo -only

SampleJ

Author: Bob

Create date: Mon, Apr 4, 1988 8:20 AM

Mod date: Thu, Apr 14, 1988, 6:00 PM

Projectlnfo-list project information 267

Use the -f option to list filenames. Note that revision numbers are absent and
that the file's author and last-mod-date are listed. In the example below, file.c
and hdr.c are currently checked out.

Projectlnfo -f

Sample!

file.c

Author: Bob

Create date: Man, Apr 4, 1988, 10:00 AM

Mod date: Tue, Apr 5, 1988, 2:15 PM

Free: No

file.h

hdr.c

Author: Bob

Create date: Man, Apr 4, 1988, 10:00 AM

Mod date: Man, Apr 4, 1988, 10:00 AM

Free: Yes

Author: Peter

Create date: Man, Apr 4, 1988, 3:30 PM

Mod date: Man, Apr 4, 1988, 6:00 PM

Free: No

Use the -f and -s options together to output the list of files in the project:

Projectlnfo -f -5

Sample!

268 MPW 3.0 Reference

file.c

file.h

hdr.c

The following command will display the entire revision history of file.c. Note that
the comment option has been included here as well.

Projectlnfo -comments file.c

file.c,2+

Owner: Bob

Checked out: Fri, Apr 8, 1988, 3:45 PM

Task: Fixing bug 1223

Comment: COMMENT ...

file.c,2

Author: Bob

Checked in: Thu, Apr 7, 1988, 1:10 PM

Task: Fixing bug 1222

Comment: COMMENT ...

file.c,l

Author: Bob

Checked in: Mon, Apr 4, 1988, 9:25 PM

Task: Updating procedure comments

Comment: COMMENT ...

Information about HFS files may be displayed by specifying a partial or full HFS
pathname. This displays the information in the I ckid I resource of the me.

Projectlnfo :file.c

:file.c,22*

Owner: Bob

Project: sampleI

Checked out: Fri, Apr 8, 1988, 3:45 PM

Task: Fixing bug 1223

The asterisk (*) following the name indicates that the file is a modified
read-only file.

ProjectInfo-list project information 269

In the example below, only revisions created by Bob and created on or after
April 4, 1988, are displayed.

Projectlnfo -a Bob -d "~4/4/88"

SampleI

file.c,22+

Owner: Bob

Checked out: Fri, Apr 8, 1988, 3:45 PM

Task: Fixing bug #223

file.c,22

Author: Bob

Checked in: Thu, Apr 7, 1988, 1:10 PM

Task: Fixing bug #222

file.c,21

Author: Bob

Checked in: Mon, Apr 4, 1988, 9:25 PM

Task: Updating procedure comments

file.h,17

Author: Bob

Checked in: Mon, Apr 4, 1988, 10:10 AM

Task:

In the example below, only revisions that have a task dealing with
Bug #222 are listed.

Projectlnfo -t /bug=222/

SampleI

270 MPW 3.0 Reference

file.c,22

Author: Bob

Checked in: Thu, Apr 7, 1988, 1:10 PM

Task: Fixing bug #222

hdr.c,31

Author: Peter

Checked in: Fri, Apr 1, 1988, 3:50 PM

Task: Bug222 - Adding check procedure

See Also

The final example demonstrates the ·log option.

Projectlnfo -log

TheShellIProjector
7/5/88 4:07 PM

Peter J. Potrebic
DeleteNames Work

7/2/88 1:37 PM

Peter J. Potrebic
NameRevisions Work bitmaps.a,2 ckid.c,3a2

The log shows that Peter created a public name on July 2 and then deleted it on
July 5.

MountProject and UnmountProject.

ProjectInfo-list project information 271

Quit-quit MPW

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Quit [-y I -n I -c]

This command is equivalent to the menu command Quit. Quit executes the standard
quit procedures, asking confinnation to save modified files, close all windows, and so
on.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

1 Syntax error.
2 Command aborted.

• Note: Quit cannot return a status of 0, because if there are no errors the
command never returns.

-y Answer "Yes" to any confinnation dialog that occurs, causing all
modified windows to be saved before closing them.

-n Answer "No" to any confirmation dialog that occurs, causing all modified
windows to be closed without saving any changes.

-c Answer "Cancel" to any confirmation dialog that occurs. This effectively
aborts the command if any windows need to be saved.

Quit -y

Quits MPWanswering "Yes" to any dialogs such as those prompting to save files.

Quit -c

Quits MPW, unless any confinnation dialogs occur and dialog boxes are displayed.

Shutdown command.

272 MPW 3.0 Reference

Quote-quote parameters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Quote [-n] [paIaIIleters ...]

Quote writes its parameters, separated by spaces and terminated by a return, to
standard output. Parameters containing characters that have special meaning to
the Shell's command interpreter are quoted with single quotation marks. If no
parameters are specified, only a return is written.

Quote is identical to Echo except that Quote quotes parameters that contain
special characters. Quote is especially useful when using Shell commands to write
a script.

The following special characters are quoted:

Space Tab Return Null

#j& I()al"/\{}'?=[]+ ••• ®<>~ ...

Built-in.

None.

Parameters are written to standard output and are enclosed in single quotation
marks if they contain special characters.

None.

Status code 0 (no problem) is always returned.

-n Don't write a return following the last parameter. The insertion
point remains at the end of the output. The -n isn't written to
standard output.

Quote -quote· parameters 273

Examples

See also

Echo =.a

Quote =.a

Sample.a Count.a My Program.a
Sample.a Count.a 'My Program.a'

Echo and Quote behave slightly differently for parameters that contain special
characters. The first line above was produced by Echo; the second by Quote.

Quote Notice what happens to single quotes: "--'--"
Notice what happens to single quotes: '--'d"--'

Because single quotes can't appear within single quotes, they are replaced with
'a' , which closes the original single quote, adds a literal quote, and reopens the

single quotes.

For file In =.a
Quote Print "{file}"

End

Print Sample.a
Print Count.a
Print 'My Program.a'

The For loop shown above writes a Print command for each fIle that matches the
pattern =.a. These commands can then be selected and executed. Notice the
quotation marks in the last Print command.

Echo and Parameters commands.

274 MPW 3.0 Reference

Rename-rename fues and directories

Syntax

Description

Type

Input

Output

Diagnostics

Status

Rename [-y I -n I -c] name newName

The file, folder or disk specified by name is renamed newName. A dialog box
requests a confmnation if the rename would overwrite an existing file or folder.
The -y, on, or -c options can be used to avoid this interaction.

• Note: You can't use the Rename command to change the directory a file is
in. To do this, use the Move command.

• Note also: Wildcard renames in the following form will not work:

Rename =.text =.p

This is because the Shell expands the filename patterns ""'.text" and
" p" before invoking the Rename command. In order to gain the
desired effec~ you would need to execute a command such as the
one shown in the fifth example below.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o Successful rename.
1 Syntax error.
2 Name does not exist.
3 An error occurred.
4 Cancel was selected or implied by the -c option.

Rename-rename files and directories 275

Options

Examples

See also

-y Answer "Yes" to any confirmation dialog that may occur, causing
the conflicting file or folder to be deleted.

-n Answer "No" to any confirmation dialog that may occur, stopping
the rename if newName already exists.

-c Answer "Cancel" to any confirmation dialogs, aborting the rename
if newName already exists.

Rename Filel File2

Changes the name of Filel to File2.

Rename HD:Programs:Prog.c Prog.Backup.c

Changes the name of Prog.c in the directory HD:Programs to Prog.Backup.c in
the same directory.

Rename Untitled: Backup:

Changes the name of the disk Untitled to Backup.

Rename -c Filel File2

Changes the name of Filel to that of File2; if a conflict occurs, it cancels the
operation and returns a status of 4.

To perform a wildcard rename, you could execute the following set of commands:

For Name In z.text

End

(Evaluate "{Name}" =- /(z)®l.text/) > Dev:Null

Rename "{Name}" "{®l}.p"

The Evaluate command is executed only for its side effect of permitting regular
expression processing. (The expression operator =- indicates that the right side
of the expression is a regular expression.) Thus, you can use the regular expression
capture mechanism, (regu!arExpr)® n. Evaluate'S output is tossed in the bit
bucket (Dev:Null).

Move command.

276 MPW 3.0 Reference

Replace-replace the selection

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Replace [-c count] selection replacement [window]

Replace finds selection in the specified window and replaces it with replacement.
If no window is specified, the command operates on the target window (the
second window from the front). It's an error to specify a window that doesn't
exist. If a count is specified, the Replace command is repeated count times.

For a definition of selection, see "Selections" in Chapter 6. A summary of the
selection syntax is contained in Appendix B.

You can include references to parts of the selection in the replacement by using
the ® operator. The expression ®n, where n is a digit, is replaced with the string
of characters that matches the regular expression tagged by ®n in the selection.
(See "Tagging Regular Expressions With the ® Operator" in Chapter 6.)

The selection is a selection expression while replacement is a string (that could
contain the ® operator). If replacement contains spaces or special characters,
enclose it in quotation marks.

All searches are by default not case sensitive. To specify case-sensitive matching,
set the {CaseSensitive} variable before executing the command.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-c count Repeat the command count times. As a convenience, 00 (Option-5)
can be specified in place of a number. -c 00 replaces all instances
of the selection from the current selection to the end of the
document (or to the start of the document, for a backward
search).

Replace-replace the selection 277

Examples

See also

Replace -c ~ /myVar/ 'myVariable' Prog.p

Replaces every subsequent instance of the selection with the string in single
quotation marks.

Replace -c 5 /e[at]+/ , ,

Strips off all the spaces and tabs at the front of the next five lines in the file (and
replaces them with the null string). This action takes place in the target window.

Set HexNum "[O-9A-F]+"

Set Spaces "[at]+"

Replace -c ~ / ({HexNum}) ®l {Spaces} ({ HexNum}) ®2 / ®lan®2

Defines two variables for use in the subsequent Replace command, and converts a
file that contains two columns of hex digits (such as the icon list from ResEdit)
into a single column of hex digits.

Find and Clear commands.

Chapter 6.

AppendixB.

278 MPW 3.0 Reference

Request-request text from a dialog box

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Request [-<J.] [-d default] [mezage . ..J

Request displays an editable text dialog box with OK and Cancel buttons and the
prompt message. If you select the OK button, any text you type into the dialog
box is written to standard output. The -d option lets you set a default response
to the request.

Built-in.

Reads standard input for the message if no parameters are specified.

Text from the dialog box is written to standard output.

None.

Request may return the following status codes:

o The OK button was selected.
1 Syntax errors.
4 The Cancel button was selected.

-d default The editable text field of the dialog box is initialized to default.
The default text appears in the dialog box; if the OK button is
selected without changing the response, the default is written to
standard output.

-q Makes Request quiet-that is, Request always returns a status of
either zero or one. This is useful in sCripts.

Request-request text from a dialog box 279

Examples

See also

Set Exit 0

Set FileName "'Request 'File to compile' -d "{Active}"'"

If {FileName} :1= ""

Pascal "{FileName}" » "{WorkSheet}"

End

Set Exit 1

Displays a dialog box that lets the user enter the name of a me to be compiled.
Sets the default to be the name of the active window, as follows:

File to compile

n;uQ'ijiljillitl*,i1t4

((OK JI Cancel

Alert and Confirm commands.

280 MPW 3.0 Reference

ResEqual-<ompare resources in files

Syntax

Description

Type

Input

Output

ResEqual [option] filel file2

ResEqual compares the resources in two files and writes their differences to
standard output.

ResEqual checks that each file contains resources of the same type and identifier
as the other file; that the size of the resources with the same type and identifier
are the same; and that their contents are the same.

Tool.

The filel and file2 parameters specify the two files whose resources are to be
compared.

Descriptions of the differences in the resources of the two files are written to
standard output.

The following messages appear when reporting differences:

• In 1 but not in 2
-the resource type and ID are displayed-

• In 2 but not in 1
-the resource type and ID are displayed-

• Resources are different sizes
-the resource type and ID are displayed-

-the size of the resource in each file is displayed-

• Resources have different contents
-the resource type and ID are displayed

Contents of resource in file 1 at offset

-offset to the differing bytes from the start of the resource is displayed-

-16 bytes at the offset are displayed-

Contents of resource in file 2 at offset

-offset to the differing bytes from the start of the resource is displayed-

-16 bytes at the offset are displayed-

ResEqual-compare resources in files 281

Diagnostics

Status

Option

Example

Limitations

See also

Parameter errors are written to diagnostic output.

The following status codes may be returned:

o Resources match.
1 Parameter or option error.
2 Files don't match.

-p Write progress information to diagnostic output.

r-ResEqu810ptlons

rrFlies to compare~ r.RedlreCtiOn -"l
. (Resource File 1 li . Output !
I . II II ~e~OUfce ril~ 2 J!

!irror II o Progress -
fcommand Line
~.aqua'

fHelP I (Cancel

Re~l'Quftl

~~' ~os it.. r __ in t o flits Mel ,..pons it.. cHfforoncos.

I

Resequal Sample Sample.rsrc

Compares the resources in Sample and Sample.rsrc, writing the results to standard
output.

When the contents of resources are compared and a mismatch is found, the
mismatch and the subsequent 15 bytes are written. ResEqual then continues the
comparison, starting with the byte following the last displayed.

If more than ten differences are detected in the same resource, the rest of the
resource is skipped and processing continues with the next resource.

Equal command. (The -r option of Equal compares the resource forks of files on a
byte-by-byte basis, including the resource map.)

282 MPW 3.0 Reference

I
)

J

Revert-revert to saved flIes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See also

Revert [-y] [window .. J

Reverts the specified windows to their previously saved states. If no window is
specified, Revert works on the target window. Revert displays a confirmation
dialog box, but you can avoid this dialog box by using the -y option to revert
unconditionally to the last saved version of the document.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Parameter or option error.
2 The specified window does not exist.
3 A system error occurred.
4 The Cancel button was selected.

-y Unconditionally revert all named windows to their previously saved
states.

Revert

Displays a confirmation dialog box for reverting the target window to its last
saved state.

Revert -y "{Worksheet}"

Reverts unconditionally to last saved worksheet.

Close and Save commands.

Revert-revert to saved files 283

Rez-resource compiler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Rez [option ...] [resourceDescriptionFile ...]

Rez compiles the resource fork of a file according to a textual description. The
resource description file is a text file that has the same format as the output produced
by DeRez, the resource decompiler. The data used to build the resource file can come
directly from the resource description file(s) as well as from other text files (via
*include and read directives in the resource description file) and from other
resource files (via the include directive).

Rez includes macro processing, full expression evaluation, and built-in functions and
system variables. For information about Rez and the format of a resource description
file, see Chapter 11. For a summary of the format of a resource description file, see
AppendixD.

Tool.

Standard input is processed if no filenames are specified.

For all input files on the command line, the following search rules are applied:

1. Try to open the file with the name specified "as is."

2. If the preceding rule fails, and the filename contains no colons or begins with a
colon, append the filename to each of the pathnames specified by the {Rlnc1udes}
variable and try to open the file.

No output is sent to the standard output file. By defaul~ the resource fork is written to
the file Rez.out. You can specify an output file with the -0 option.

If no errors or warnings are detected, Rez runs silently. Errors and warnings are written
to diagnostic output. If an error is detected, Rez sets the output file's modification
date to zero.

Rez may return the following status codes:

o No errors.
1 Error in parameters.
2 Syntax error in file.
3 I/O or program error.

284 MPW 3.0 Reference

Options -align word [/ongword]
Align resources along word or longword boundaries. This may allow the
Resource Manager to load these resources faster. The -align option is
ignored when the -a option is in effect.

-a[ppend] Append Rez's output to the output file rather than replacing the output
file.

... Warning Rez overwrites any existing resource of the same type and ID without
any warning message. Rez cannot append resources to a resource file
that has its Read Only bit set. Also, Rez cannot replace a resource
that has its protected bit set unless the -ov option is specified.
Although it is possible to append a resource directly to a running
system file, this is not recommended. See also the -ov option that
follows

-c[reator] creatorExpr
Set the output file creator. (The default value is '????'.) Note that
creatorExpr is a Rez expression, such as
-c "3*200+5"

If the creator begins with a letter and contains no fancy characters, you
can simply enter it. For example,
-c APPL

Otherwise, you can enter the creator as a numeric expression or as a literal
expression, such as
-c " '§§§' "

-d[efme] macro[=data]
Define the macro variable macro to have the value data. If data is
omitted, macro is set to the null string-note that this still means that
macro is defined. USing the -d option is the same as writing

.define macro [data]

at the beginning of the input.

-i pathname(s)
Search the follOwing pathnames for .include files. This option can be
specified more than once. The paths are searched in the order they
appear on the command line.

rez -i {mpw}myStuff: -i hd:tools ...

Rez-resource compiler 285

-m[odification]

-0 outputFile

Don't change the output me's modification date. If an error occurs, the
output file's modification date is set to zero, even if you use this option.

Place the output in outputFile. The default output me is Rez.out.

-ov Override the protected bit when replacing resources with the -a option.

-p[rogress) Write version and progress information to diagnostic output.

-rd Suppress warning messages if a resource type is redeclared.

-ro Set the mapReadOnly flag in the resource map.

-s pathname(s)
Search the follOwing pathnames for resource incl ude meso

-t[ype] typeExpr
Set the type of the output file. The default value is 'APPL'. Note that
tyjJeExpr is a Rez expression, such as
-t "3*200+5"

If the type begins with a letter and contains no fancy characters, you can
simply enter it For example,
-t MPST

Otherwise, you can enter the type as a numeric expression or literal
expression, such as
-t " '§§§' "

-u[ndef] macro

286 MPW 3.0 Reference

Undefme the macro variable macro. This is the same as writing

tundef macro

at the beginning of the input It is meaningful to undefine only the preset
macro variables.

Example

See also

Rez Types.r Sample.r -0 Sample

Generates a resource fork for the file Sample, based on the descriptions in Types.r and
Sample.r.

DeRez and RezDet commands.

Chapter 11 and Appendix D.

Standard resource type declarations in the directory {RIncludes}:

• Types.r
• SysTypes.r

• MPWfypes.r

• Pictr

Rez-resource compiler 287

RezDet-detect inconsistencies in resources

Syntax

Description

RezDet [-b] [-q I -s I -<i I -r I -1] resourceFiie ...

If no options are specified, RezDet investigates the resource fork of each file for
damage or inconsistencies. The specified files are read and checked one by one.
Output is generated according to the options specified.

RezDet checks for the following conditions:

• The resource fork is at least the minimum size. (There must be enough bytes
to read a resource header.)

• There is no overlap or space between the header, the resource data list, and
the resource map. There should be no bytes between the EOF and the end of
the resource map.

• Each record in the resource data list is used once and only once. The last data
item ends exactly where the data list ends.

• Each item in the resource type list contains at least one reference; each
sequence of referenced items starts where the previous resource type item's
reference list ended; and each item in the reference list is pointed to by one
and only one resource type list item.

• There are no duplicates in the resource type list.

• Each name in the name list has one and only one reference, and the last name
doesn't point outside the name list.

• There are no duplicate names in the name list. Duplicate names cause an
advisory warning rather than a true error. This warning is given only if the os,
-d, or -r option is selected.

• Each reference list item points toa valid data item and either has a name list
offset of -lor points to a valid name list offset.

• Bits 7 (Unused), 1 (Changed), or 0 (Unused) should not be set in the resource
attributes.

• All names have a nonzero length.

Fields are displayed as hexadecimal or decimal for numeric values, or as a hex
dump with associated printable Macintosh characters. The characters newline
($OD), tab ($09) and null ($00) are displayed as "..,", "~", and ".", respectively.

• Note: RezDet does not use the Resource Manager and should not
crash, no matter how corrupt the resource fork of the file.

288 MPW 3.0 Reference

Type

Input

Output

Diagnostics

Status

Options

Tool.

RezDet does not lead from standard input.

Information describing the resource fork is written to standard output (together
with any other information generated by the -s, -tI, -1, or -r options).

Error messages go to diagnostic output.

The following status codes may be returned:

o No errors detected.
1 Invalid options or no files specified.
2 Resource format error detected.
3 Fatal error-an I/O or program error was detected.

Only one of the following options can be used at one time:

-q[uiet]

-s[how]

-d[ump]

Don't write any information to standard output. This option
suppresses all resource file format errors normally generated.

Write information about each resource to standard output.

Same as -show but also generates detailed information about
headers, name lists, data lists, and so forth.

-r[awdump] Same as -dump but also dumps contents of data blocks, and so
forth.

• Note: This option can generate huge amounts of output.

-l[ist] List resource types, IDs, names, attributes, and resource sizes to
standard output in the following format:

'type (ID, name, attributes) [size]

The follOwing option can be used by itself or with other options:

-b[ig] Read the data for each resource into memory one resource at a
time, instead of all at once (used for huge resource files). If RezDet
tells you that it ran out of memory, try using this option.

RezDet-detect inconsistencies in resources 289

Examples

Limitations

RezDet "{SystemFolder}System"

Checks the System me for damage.

RezDet -q Foo I I Delete Foo

Removes the me Foo if the resource fork is damaged.

Duplicate resource name warnings are generated even if the names belong to
resources of different types.

The file attributes field in the resource map header is not validated.

The Finder-specific fields in the header and resource map header are ignored.

290 MPW 3.0 Reference

RotateWindows-rotate between windows

Syntax

Description

Input

Output

Diagnostics

Status

Options

Example

See also

Rotate Windows

RotateWindows places the front MPW window in the back and brings the second
window to the front. Multiple calls to RotateWindows rotate through all open
MPW windows. RotateWindows brings only MPW windows to the front (desk
accessory windows are not rotated). You might want to add this command to a
menu, along with a command key equivalent. For example:

AddMenu 'Extras' 'RotateWindows/@' 'RotateWindows'

None.

None.

Errors are written to diagnostic output.

RotateWindows may return the following status codes:

o No errors.
1 Syntax error (error in parameters).

None.

RotateWindows

Puts the front MPW window in back, and brings the target MPW window to the
front.

StackWindows, SizeWindow, MoveWindow, and ZoomWmdow commands.

RotateWindows-rotate between windows 291

Save-save windows

Syntax

Description

Type

Input

Output

Di,agnostics

Status

Option

Examples

See also

Save [-a I window ...]

Saves the contents of window or a list of windows to disk without closing them.
The -a option saves all open windows. Save without any parameters saves the
target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Save may return the following status codes:

o No errors.
1 Syntax error.
2 Specified window does not exist.

-a

Save -a

Save all open windows. This option cannot be used when any
windows are specified.

Saves all open windows.

Save "{Active}" "{Worksheet}"

Saves the Worksheet window and the contents of the active window.

Close and Revert commands.

292 MPW 3.0 Reference

Search-search flIes for a pattern

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Search [-s I -i][-r][-<:I][-fjUe] lpatternllftle .. ']

Searches the input files for lines that contain a pattern and writes those lines to
standard output. If no file is given, standard input is searched. When reading
from files, the filenames and line numbers of matching lines are prepended to
each line of output.

Pattern (defined in "Pattern Matching" in Chapter 6 and in Appendix B) is a
regular expression, optionally enclosed in forward slashes (/).

Tool.

Standard input is read if no files are specified.

Each matching line is written to standard output.

Error messages are written to diagnostic output.

The following status codes may be returned:

o No error.
1 Syntax error.
2 Pattern not found.

-r Write the lines not matching the pattern to standard output.

-q Write only the matching lines to standard output. Do not prepend
filename and line number.

-s Case-sensitive search, overriding {Case Sensitive} variable.

-i Case-insensitive search, overriding {CaseSensitive} variable.

-f file All lines that do not get written to standard output are written into
this file.

Search-search files for a pattern 293

Examples

See also

Search /procedure/ Sarnple.p

Searches the file Sample.p for the pattern "procedure". Ail lines containing this
pattern are written to standard output.

Search /Export/ "{MPW}"StartUp "{MPW}"UserStartUp

Lists the Export commands in the StartUp and UserStartup files.

Search /PROCEDURE [a-zA-ZO-9_]*;/ "{Plnterfaces}":::

Searches for the procedures with no parameters in the Pascal interface files
supplied with MPW Pascal. Because more than one input file is specified, a
filename will precede each line in the output.

Search -f file.nonrnatch /pattern/ file

Ail lines of "file" that contain "pattern" are written to standard output. All other
lines will be placed in file.nonmatch. This, in effect, splits the file in two pieces,
using "pattern" as the key.

Search -r -f file.nonrnatch /pattern/ file

This does the opposite of the preceding example. Ail lines that do not contain
"pattern" are echoed to standard output, and all other lines (that is, those
containing "pattern") are written to file.nonmatch.

Find command.

"Pattern Matching (Using Regular Expressions)" in Chapter 6.

294 MPW 3.0 Reference

Set-define or write Shell variable

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Set [name [value]]

Set assigns the string value to the variable name. If value is omitted, Set writes
the name and its current value to standard output. If both name and value are
omitted, Set writes a list of all variables and their values to standard output. (This
output is in the form of Set conunands.)

• Note: To make variable definitions available to enclosed scripts and
programs, you must use the Export conunand.

Built-in.

None.

If value or both name and value are omitted, variable names and their values are
written to standard output

Error messages are written to diagnostic output.

These status codes may be returned:

o No error.
1 Syntax error.
2 Variable "name" does not exist.

None.

Set Clncludes "{MPW}CFiles:Clncludes:"

Redefines the variable CIncludes.

Set Clncludes

Displays the new definition of CIncludes.

Set-defme or write Shell variable 295

See also

Set Commands a
":,{MPW}Tools:, {MPW}Applications:, {MPW}ShellScripts:"

Redefines the variable {Conunands} to include the directory "{MPW}ShellScripts:".
(See Chapter 5 for a complete list of predefined variables.)

Set > SavedVariables
* ... other commands

Execute SavedVariables

Writes the values of all variables to file SavedVariables. Because the output of Set
is actually Set commands, the file can be executed later to restore the saved
variable definitions. This technique is used in the Suspend and Resume scripts to
save and restore variable definitions, as well as exports, aliases, and menus.

Export, Unexport, and Unset conunands.

"Defining and Redefining Variables" in Chapter 5.

"The Startup and UserStartup Files" in Chapter 5.

296 MPW 3.0 Reference

SetDirectory-set the default directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

SetDirectory directory

SetDirectory sets the default directory and adds the new default directory to the
Directory menu if it is not already present. The directory parameter must be
specified.

• Note: Directory names should not contain any of the special characters
shown below. These characters all have special meaning when they appear
in menu items:

-;A!</(

The SetDirectory script is used to implement the Set Directory menu item in the
Directory menu.

Script.

None.

None.

Errors are written to diagnostic output.

These status codes may be returned:

o Successful completion.
1 Parameter error or unable to set directory.

None.

SetDirectory "{MPW} "Scripts:

Sets the default directory to the Scripts folder in the {MPW} directory and adds
"{MPW}"Scripts: to the Directory menu if it's not already there.

SetDirectory ...

Uses the Commando dialog box to select the default directory interactively.

Directory, DirectoryMenu, and Files commands.

SetDirectory-set the default directory 297

SetFile-set fue attributes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

SetFile [option ...] file ...

Sets attributes for one or more files. The options apply to all files listed.

Built-in.

None.

None.

Error messages are written to diagnostic output

These status codes may be returned:

o The attributes for all files were set.
1 Syntax error.
2 An error occurred.

-c creator Set the file creator. Creator must be four characters; for example,

-c 'MPS '

-t type Set the file type. Type must be four characters; for example,

-d date

-m date

-1 h,v

-t 'TEXT'

Set the creation date. Date is a string in the form

"mmlddlyy [hh:mm[:~ [AM I PM]]"

representing month, day, year (0-99), hour (0-23), minute, and
second. The string must be quoted if it contains a space. A period
(.) indicates the current date and time.

Set the modification date: same format as above. A period (.)
indicates the current date and time.

Set the icon location. h and v are positive integer values and
represent the horizontal and vertical pixel offsets from the upper
left corner of the enclosing window.

298 MPW 3.0 Reference

Examples

See also

-a attributes Set the file attributes. The string attributes is composed of the
characters listed below. Attributes that aren't listed remain
unchanged.

L Locked
V Invisible
B Bundle
S System
I Inited
D On Desktop
M Shared (can run multiple times)
A Always switch launch (if possible)

Uppercase letters set the attribute to 1; lowercase letters set it to O.
For example,

Set file -a vB Filename

clears the invisible bit and sets the bundle bit.

• Note: These attributes are described in the chapter "File
Manager" of Inside Macintosh.

SetFile -c trMPS n -t MPST ResEqual

Sets the creator and type for the MPW Pascal tool ResEqual.

SetFile Foo -m "2/15/86 2:25"

Sets the modification date of file Foo.

SetFile Foo Bar -m .

Sets the modification date to the current date and time (the period is a
parameter to -m, indicating current date and time). Setting the date is useful, for
instance, before running Make.

Files command. (The -1 and -x options display file information.)

SetFile-set file attributes 299

SetPrivilege-setaccess privileges for folders on fue server

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

SetPrivilege [-f priv] [-d priv] [-c priv] [-0 oumer] [-g group] [-r] [-i] folder ...

USing SetPrivilege is equivalent to using the access privileges desk accessory. Priv
is a character string (one, two or three characters long) that specifies privileges
for the owner, the group, and everyone (0, g, and e, respectively). An uppercase
letter enables the privilege; a lowercase letter disables the privilege. If a specific
character is not in the string, the respective privilege is not changed.

Tool.

None.

When the -I option is used, folder information is written to standard output.

Errors are written to diagnostic output.

These status codes may be returned:

o No error.
1 Syntax error.
2 Folder not found, or folder not an AppleShare folder.
3 User is not owner; could not modify privileges.

-0 new owner

-g new group

-r

-fpriv

-d priv

Change owner of the folder to new owner.

Change group of the folder to new group.

Recursively apply changes to enclosed folders.

See files. Set the privileges with respect to seeing files within
folders (equivalent to read access).

See folders. Set the privileges with respect to seeing folders and
directories and listing their contents.

300 MPW 3.0 Reference

Examples

·mpriv

·i

Modify. Set privileges allowing users to make changes to files and
directories.

Write folder information (owner, group, and access privileges) to
standard output. The output is in the form of a SetPrivilege
command. The ·r option is the only option that may be used in
conjunction with the ·i option.

SetPrivilege -r -f OGe -d OGe -m Oge d

"Server:personal:peter"

This gives everyone in your group the ability to see files within
Server:personal:peter without being able to change them. Anyone outside the
group cannot see the files or folders or make changes. The owner can do
everything.

Here is the easiest way to use the SetPrivilege command: Use the ·i option to get
information on folders and edit the privileges as desired. Then execute the
resulting command. For example, to change the privileges for Server:Private,
follow these steps:

1. Execute this command to obtain the current privileges:

SetPrivilege -i Server:Private

SetPrivilege Server:Private -0 Joe -g Team -d OGE -f OGE -m OGE

• Note: These privileges show thatJoe, the group Team, and everyone else has
all privileges to the folder Private.

2. Now edit the output, adjusting the privileges as desired. For example,

SetPrivilege Server:Private -0 Joe -g Team -d Oge -f Oge -m O~

• Note: Now only Joe, the owner, can see directories and files. Only Joe can
make changes; all other users have no privileges.

3. Execute the resulting command.

SetPrivilege-set access privileges for folders 301

SetVersion-maintain version and revision number

Syntax

Description

SetVersion [option ...] file

SetVersion generates and maintains (sets or increments) the individual
components making up a version number for a me. There are two forms of version
numbering supported by SetVersion:

ver.rev The first version numbering form is "ver. reV', where ver is a version
number and rev a revision number. The component values are kept in a private
resource generated and maintained by SetVersion itself. The resource is generally
used only by applications (for example, in their About box) and MPW tools (for
example, when an MPW tool's -p option is used) that contain code to read the
resource. It is also recognized by Commando to be displayed just below the Do It
button of a Commando dialog boxl.

In this form of version numbering, the resource is maintained as a Pascal string
with the resource type 'MP S T' and a resource ID of ° (you can use the -t and ·i
options to specify another resource type and ID number if deSired). The resource
has the following layout (described as Rez input):
type 'MPST' as 'STR ';
resource 'MPST' (0)

"Version ver.rev" /* a Pascal string */
} ;

The resource is created by SetVersion if it is not already there. The string always
contains the characters "Version ver. rev', where ver and rev are digits. The version
can optionally be prefixed with an arbitrary string (-prefix), and the revision can
be similarly suffixed with an arbitrary string (-SuffIX) for more complex version
numbering (such as "Version xl.23B2").
ver.revbugfix.reUetr.nonrel The second version numbering form is
"VeT. rev. bugfix. relletr. nonref', where bugftx is a bug ftx level, reiietr is a release
letter (d for a development release, a for alpha, b for beta, omitted for final), and
nonrei is an additional nonrelease development level. For a final release, nonrei is
suppressed. For a bugfJX level of 0, it is suppressed along with its leading period.
The following table shows a few examples:

1 Commando only uses the SetVersion string resource if a "VersionDialog" is specified as part of the Commando
resources. If Omitted, Commando will look for a 'vers' resource(s).

302 MPW 3.0 Reference

Event Version
first versions of the product l.Od1, l.Od2 .. .
product features are defined-being tested l.0a1, l.Oa2 .. .
product is st2ble-begin final testing l.Ob1, l.Ob2 .. .
first released version 1.0
first revision l.ldl ...
first bug fix to first revision l.l.ldl ...
first major revision 2.0d1 ...

development
alpha
beta
release

As with the first form, the component values are kept in a resource generated and
maintained by SetVersion. Thus the values may be displayed by applications and
MPW tools that read the resource. The resource is also recognized by
Commando.2 However, the resource generated for the second form is also
recognized by the Finder (version 6.1 and beyond) and used to generate the
version information for the Finders Get Info display. Therefore, this form of
version resource may be added to arbitrary files (such as text or data files) to
allow version number displays from their Get Info windows.

The resource for this form of version numbering always has the resource type
'vers' and a resource ID of 1 or 2 (why there are two values will be explained
shortly). The resource format is predefined in SysTypes.r for Rez which contains
the following template:

#include "SysTypes.r" /* for country codes and 'vers' template */
type 'vers'
{

hex byte;

hex byte;

hex byte development Ox20,

alpha Ox40,

beta Ox60,

final Ox80,

hex byte;

integer Country;

pstring;

pstring;

/* Major revision in BCD */

/* Minor/bug-fix revision in BCD*/

/* Release stage */

/* or */ release = Ox80;

/* Non-final release # */

/* Country code */

/* Short version number string */

/* Long version number string */
} ;

2 When Commando uses a 'ver s' resource, it fl!St will look for a 'vers' ,1 resource, and if not present, a 'vers'

,2 resource. The short version string is displayed below the Do It button. Clicking this version number causes the long
version string to be displayed in the "help" box. The two 've r s ' resources as well as the strings they contain are
described when the 'ver s' resource format is described.

SetVersion-maintain version and revision number 303

In the preceding resource description, the short version number message string
contains just the version number, such as 1.0. The long version message can also
include a copyright notice, release data, or other infonnation, but should not
include the program name. The following example illustrates the proper use of the
Rez template:
resource Ivers' (1) {

} ;

Ox01, Ox23, beta, Ox45, verUS,
"1.2.3b45",
"1.2.3b45, @Apple Computer, Inc. 1988"

These conventions have been imposed on the long version message because of
the way the Finder uses this resource. Actually, each fIle can contain one, two, or
no 'vers' resources. A 'vers',l resource, if present, identifies the version of
the file itself. A 'vers' ,2 resource, if present, identifies the version and name
of a set of files with which the file is shipped, linking files that make up the set
The Finder displays the long message from' vers' ,1 and 'vers ' ,2, if they are
present, in the Get Info window for a file. The Finder ignores the rest of the
'vers' resource. Here is an example of the 'vers' resources for the beta
release of SetVersion itself, and the Finder's Get Info window for the SetVersion
file:

resource 'vers' (1)

} ;

Ox03, Ox50, beta, OxOO, verUS,
"3.5",
"3.5, ©Apple Computer, Inc. 1984-1988, by Ira L. Ruben"

resource Ivers' (2)

} ;

Ox03, OxOO, beta, Ox01, verUS,
"3.0b1",
"MPW 3.0b1" /* SetVersion "belongs" to MPW */

304 MPW 3.0 Reference

SetVersion
MP'vI 3.0

Locked D
from "ven(.2 .--------11-- resource

Kind: MP'vI She 11 document
Size: 48,334 by tes used, 48K on disk

Yhere: SC20, SCS I 1

Created: Fri, May 27, 1988, 12 :27 AM
Modified: Fri, May 27, 1988, 12:27 AM
Version: 3.5, @App1e Computer, Inc. from "vers", 1

1984-1 988, by Ira L. Ruben "'--i-- res 0 urc e

The other fields of a 'vers' resource (besides the long message) are often useful
to applications other than the Finder. Use the short version number to display the
version of a particular file, as the Finder does for the System and Finder in the
"About the Macintosh™ Finder" window. (SetVersion also uses the short message
string to determine the version number components). The BCD version number is
well suited for checking for a desired version number, or for comparing two
versions. Note that this BCD numbering scheme represents a newer version with a
greater number than the older version, so a numeric comparison between 4-byte
values is all that is needed to find out which is newer.3

3 The comparison of the BCD field is only valid if the version number components don't exceed the limilations
imposed by the resource. Specifically, the version and nonrelease values are limited to two BCD digits, while the
revision and bug fix values are limited to one digit. Because of these limilations, SetVersion does not use the BCD
value. SetVersion does, however, place the low-order digits of the actual version components (maintained in the
short message) into the BCD fIelds. The BCD fIeld is thus valid until the version counts exceed the corresponding
BCD limitations.

SetVersion-maintain version and revision number 305

SetVersion can increment (-v, -r-, -b, -x) or set (-sv, -sr, -sb, -sx) the various
components of the version number. In the case of the 'vers' resources it can
set the country code (-country) and long version message string (-verstring) as
well. The' MPST' resource (fIrst SetVersion form) or the 'vers' resource(s)
(second Finder form) attached to the file is considered the location of the
version number. If you attach the resource to the actual file, it will "go" wherever
the file goes! Thus a filename is a required parameter to SetVersion. However, the
values contained in the 'MP S T' resource or the short message of the 've r s '

resource can be used to set a corresponding string constant in a source file used
to generate an application or tool (-csource, -[p]source, -rezsource). This
feature is optional, but it should be used for two reasons: first, it explicitly allows
the source to reflect the version numbers in the resource; second, if for any reason
the resource cannot be accessed, the constant can be used. This is illustrated in
the examples in the following paragraphs.

The following code fragments illustrate how each version resource and its
corresponding source string constant can be used to access the version of an MPW tool:

To access the 'MPST' resource ...

CONST

version = '1.2'; {ver.rev string const.}

PROCEDURE GetVersion(VAR VerStr: Str255);
VAR

H: StringHandle;

i: Integer;

BEGIN {GetVersion - return version string in VerStr}

H := StringHandle(GetlResource('MPST', O»;{Get 'MPST' resource}

IF H = NIL THEN {Use string const. }

VerStr := version {if not found

ELSE

BEGIN

i := Pos('Version', HAA) + 8; {Start of ver.rev

VerStr := Copy(HAA , i, Length(HAA)-i+1);{Extract from resource}
END;

END; {GetVersion}

306 MPW 3.0 Reference

To access the 'vers' resource ...

USES Files.p; {Defines 'vers' layout}

CaNST

version = 'l.2.3b4'; {v.r.bsx string const.}

PROCEDURE GetVersion(Id: Integer; Short: Boolean; VAR VerRev: Str255);

Type

VAR

H: VersRecHndl;

p: Stringptr;

BEGIN {GetVersion - return long or short version string in VerStr}

VerRev := Version; {assume failure!!

IF (Id = 1) I (Id = 2) THEN {if valid id specified

BEGIN

H := VersRecHndl(GetlResource('vers',Id));{Get 'vers',id resource}

IF H <> NIL THEN {if we got resource ... }

BEGIN

P := StringPtr(@HAA.shortVersion[O]);{ ... point at short msg

IF NOT Short THEN {if we want long msg ... }

p := StringPtr(Ord(p)+Length(pA)+l);{ ... point at long msg

VerStr := Copy(pA, 1, Length(pA));{Copy short or long msg}

END;

END;

END; {GetVersion}

Normally, SetVersion is used as part of a makefile to automatically increment a
specific version number component (or components) each time an application or
tool is rebuil~ or in the 'vers' case, possibly when some kind of associated file
is generated. Note that when SetVersion modifies a file or updates a source file,
the modification date is not changed. Therefore, makefiles will not be affected
by the use of SetVersion.

Tool.

Input The file parameter specifies the filename of a file containing the 'MP S T' string
resource or 'vers' resource(s).

SetVersion-maintain version and revision number 307

Output

Diagnostics

Status

Options4

None.

Errors are written to the diagnostic file.

SetVersion may return these status codes:

o Normal termination.
1 Parameter or option error.

-b Increment the bug fix level component by one. This option is
allowed only when -t 'vers' is specified to manipulate a Finder
'vers' resource.

-country name
A Finder' vers' resource contains the International Utility's
country code. The default is to use the code for the current
country. The country option specifies the appropriate country.
The following countries' names are allowed:5

Arabia FrSwiss Malta

Australia Germany Netherlands

Belgiumlux Greece Norway

Britain GrSwiss Portugal

China Iceland Spain

Cyprus Ireland Sweden

Denmark Israel Taiwan

Finland Italy Thailand

France Japan Turkey

FrCanada Korea US

Yugoslavia

4 See the -t option for a sununary of which options are valid as a function of which resource (SetVersion's string or
Finder's 've r s' resource) is being manipulated.

5 The country names are spelled exactly as specified in Inside Macintosh for the International Utilities.

308 MPW 3.0 Reference

-csource file
Update the string constant in the C source specified by the file. The
constant is set to be the same as that specified by SetVersion's
string resource or the short string from a 'vers' resource. It is
assumed that the constant is defined as a string constant in a
*define, somewhere in the first 12,800 characters (twenty-five
512-byte blocks) of the file, as follows:

*define~Version "ver. rev . .. "At\t\t\At\{\r\AA/ * some comment II

The As indicate required spaces. There may be any number of
spaces before the required comment. However, because
SetVersion edits the line in-place, there must be enough room to
allow for changes in the size of the version component values-
otherwise an error will be reported to the diagnostic file. Case is
ignored, and C comments are skipped when searching for the
characters "#define~ Version" in the source. The -verld option may
be used to search for a different *define identifier if desired.

-d Write the (updated) version component values contained in the
resource string to the standard output file. For' vers' resources,
the display indicates which values go with which resource (that is,
'vers',l and/or' vers' ,2).

-fmt n/.mJ
For the SetVersion string resource only, format the version and
revision values according to the specified format. The format of
the resource is changed only if the version and/or revision is actually
changed (-sv, -v, -sr, or). The format is specified as n/.mJ, where J
is either of the letters D or Z, and nand m are integer values from 1
to 10, which specify the field widths of the version and revision
numbers, respectively. If the version or revision value is larger than
the specified field width, the width is enlarged to contain the
entire value. Each field is independently padded up to the
specified width with leading zeros or blanks according to the
setting of f. D indicates leading blanks, and Z indicates leading
zeros. For example, a format of 12,3Z for a version/revision value
of 10.2 would be formatted as d10.002. The default format is
1Z.1Z. Only the version format (n!) or revision format (.mf-the
period is required) need be specified, allowing the other value to
format according to the default.

SetVersion-maintain version and revision number 309

-I resid

-p

The resource ID is the specified resid. The default is to use a
resource ID of 0 if the -t option does not specify that a 've r s '
resource is to be processed. If the -t option does specify' vers ' ,
then -I must specify 1 or 2. With -t 'vers ' , omitting -I implies that
both' vers ' ,1 and' vers ' ,2 are to be updated. Indeed, this
option must be omitted when the -sync option is specified.

Write SetVersion's version number to the diagnostic output file.
You can use the -d option just to output the resource information
to the standard output file. The -p option also displays this
information, but to the diagnostic output file.

-prefix prefix
Set the preftx string on the version. The preftx can be any sequence
of characters that does not contain a "." or "I" and that does not
end with a digit (0-9), a blank., "%", or "/)." (a blank could be
inserted by chOOSing an appropriate -fmt format with leading
blanks for the version number). Once the preftx is set, you can
change it only by specifying another -prefix string. Alternatively,
you can remove the prefIX by specifying the prefix as a period (".").
Note that the -prefix option is allowed only for SetVersion's string
resource.

-[p]source file
Update the string constant in the Pascal source specified by the
file. The constant is set to be the same as that specified by
SetVersion's string resource or the short string from a 'vers'
resource. It is assumed that the constant is defined in a CONS T

section somewhere in the ftrst 12,800 characters (twenty-ftve 512-
byte blocks) of the file as follows:

version = 'ver.rev ... ';AAAAAAAAAAAAAAAAA{some comment}

The & indicate required spaces (spaces or tabs may surround the
"="). There may be any number of spaces before the required
comment. However, because SetVersion edits the line in-place,
there must be enough room to allow for changes in the size of the
version component values-otherWise an error will be reported to
the diagnostic file. Case is ignored and Pascal comments are
skipped when searching for the "Version" identifier in the source.
The -verld option can be used to search for a different identifter if
desired.

-r Increment the revision component by 1.

310 MPW 3.0 Reference

-rezsource file
Update the resource definition in the resource compiler source
specified by the file. The definition is set to be the same as that
specified by SetVersion's resource string or 'vers' resource
definition. It is assumed that the definition is somewhere in the
first 12,800 characters (25 512-byte blocks) of the file and is
specified as described in the follOwing general format:

For a SetVersion string resource,

type 'MPST' as 'STRA';
resource~'MPST' (0) {

"version ver.rev ... """""""""""""""""/*some comment*
} ;

For a Finder' vers' resource (see the Description section above
for the meaning of these fields),

resource~'vers'~(i) {

} ;

oxVV,~oxRB,~S,~oxxx, countryCode,~/*some comment~

"ver.rev ... ","""""""""""""""""""""/*some comment*/
" long versi on message" """""tv\"""""t\l\/ * some comment * I

The As indicate required spaces. There may be any number of
spaces before the required comment(s). Because SetVersion edits
the line in-place, there must be enough room to allow for changes in
the size of the fields-otherwise an error will be reported to the
diagnostic file. Case is ignored and Rez comments are skipped,
when searching for the characters "resourceA'MPST'" or
"resourceAvers'ACt)" in the source. Note that because this is a
resource definition destined to be placed in a file's resource fork,
this option defines the actual resource that SetVersion will seek in
the file. The "Version" in the 'MPST' resource here is fixed and not
controlled by the -verid option.

-sb bugfix Set the bug fix component to the specified bugftx integer value.
This option is only allowed when -t 'vers' is specified to
manipulate a Finder' vers' resource. The bug fix component is
suppressed if its value is O.

-sr revision Set the revision component to the specified revision integer value.

SetVersion-maintain version and revision number 311

-stage stage Set the release stage for a t vers t resource. The stage can be
specified as devIelopmentl, alpha, beta, or relieasel. This is used
to set the release letter in the version number as d, a, b, or null,
respectively. For the release stage, the nonrelease level component
(as modified by the -x or -sx options) is suppressed.

-SUff1X sUffix
Set the sufftx string on the revision. The suffix can be any sequence
of characters that does not contain a "." or a/" and does not begin
with a digit (0-9), a blank., "%", or "~". Once the sufftx is se~ it can
be changed only by specifying another -suffix string, and it can be
removed by specifying the suffix as a period ("."). Note that the
-suffix option is allowed only for SetVersion's string resource.

-sv version Set the version component to the specified version integer value.

-sx nonrel Set the nonrelease component to the specified nonrel integer
value. This option is allowed only when -t t vers t is specified to
manipulate a Finder t vers t resource.

-sync 1 I 2 Synchronize the t vers t,1 resources with t vers t,2 resource or
vice versa. Specify 1 or 2 to indicate which t vers t resource is to
be used as the master copy. The short version string and BCD values
are copied from the master. The country code is not changed. If
there is a version number in the long string, it too is modified to be
the same as that of the master copy. Other options can also be
specified to modify the master copy prior to copying it to the
other resource. Because both t vers t,1 and t vers t,2 are
modified using this option, the -i option must be omitted,
implying that both resources are to be changed.

-t type Use the specified resource type instead of t MPST t for SetVersion's
string resource or t vers t to indicate that a Finder t vers t
resource is to be manipulated. You can use the -i option to specify
the resource ID. For t vers t , -i must specify 1 or 2 or be omitted
entirely if a Finder t vers t resource is to be manipulated. Since
the -t option controls which resource type is to be processed, it
also controls which options are valid. Because SetVersion has so
many options, the following chart summarizes which options are
accepted for which resource type:

312 MPW 3.0 Reference

SetVers/on's Option Summary as a Function of the -t option

-p Display SetVersion's verion and rsrc info
-d Display only the rsrc info
-caource file File containing #define Version constant
-[pJaource file File containing CONST Version constant
-rezaource file File containing rsrc definition(s)
-verld identifier The #define of CONST identifier

I I
-I type Use SetVersion's string rsrc I -I 'vera' Use Finder 'vers' rsrc I -I resid Rsrc 10 of the string rsrc -11 12 Rsrc 10 of which rsrc

I I
-v Incr. version by 1 -v Incr. version by 1
-av version Set version -av version Set version
-r Incr. revision by 1 -r Incr. revision by 1
-ar revision Set revision -ar revision Set revision
-prefix prefix Set prefix -b Incr. bug fix level by 1
-aufflx suffix Set suffix -ab bugfix Set bug fix level
-Iml nl.m! Set v.r format -alage stage Set release stage

-x Incr. non-release level by 1

-veralon [prefix] v.r[suffix] -ax nonreI Set non-release level
-counlry IIBtn8 Set country name

Used in place of above options. The -veralrlng /ongstring Long string version message
version number components may be ·aync 1 12 Sync. 1 to 2 or vice versa
specifNld as integers to set, "4" to

Used in place of the setting increment, or "%" to leave alone. -veralon v.r.bsx
and incrementing options.

-v Increment the version component by 1.

-verid identifier
Use the specified constant identifier when searching for the
-[p]source caNST identifier or -csource fdefine identifier.

SetVersian-rnaintain version and revision number 313

-version fmtstring
This option can be used in place of the individual version number
component specification options (-sv, -v, -sr, or, -sb, -b, -stage,
-sx, -x, -prefix, and -suffix). Its use is mainly intended for
explicit use of the SetVersion tool, while the individual component
options are more useful in scripts and makefiles where macros can
be used to define individual component parameters (see examples
below). The format string fmtstring specifies the format of the
version number and whether the individual components are to be
set, incremented, or left alone. The format string has the general
format "v.rbsx", where v is the version component, rthe revision
component, b the bug fix level component, s the release stage letter
(d,a,b, or omitted for release stage), and x the nonrelease level
component (omitted for release stage). For SetVersion's string
resource, the format string may include a prefix and/or suffix as
well, but only a version and revision component are allowed. Each
of the component fields (except a prefix and suffix) can be any of
the following:

• An integer (or appropriate letter for the stage component).
This corresponds to using the -sv, -sr, -sb, -stage, and -sx
options.

• The character "%" to indicate that the corresponding
component is to be left alone.

• The character "~" to indicate that the corresponding
component is to be incremented. This corresponds to using the
-v, or, -b, and -x options.

-verstring longstring
Set the long version string of a Finder I vers I resource to the string
specified by the longstring. A"A" character placed in this string
indicates where to place the version number each time SetVersion
updates it. The short message string is used as the string to insert
into the position specified by the "N.

-x Increment the nonrelease level by 1. This option is only allowed
when -t I ve r s I is specified to manipulate a Finder I ve r s '
resource. The nonrelease component is suppressed for the release
stage (-stage release).

314 MPW 3.0 Reference

Examples setversion -d -sv 1 -r Example -psource Globals -rezsource Example.r

The MPW tool Example contains a SetVersion 'MPST' string resource. The above
command line increments the revision for the tool (-r) in the resource fork of the
file Example. The version is fixed at 1 (-sv), so that Example displays the version
and revision as "l.w'. The Pascal include file, Globals, contains the tool's
global declarations, including the Version string. This include fIle is updated to
match the 'MPST' resource (-psource). The resource definitions for the tools, in
Example.r, will be similarly updated (-relSource). Finally, this command displays
the new version of the standard output file (-d).

setversion -d -version 1.~ Example -psource Globals -rezsource Example.I

Same as previous example, but here we illustrate how the -version option serves
the same purpose as the -sv and -r options. Here the "ll." indicates that the
revision is to be incremented.

setversion -d -version 1.2.%b~ Example -psource Globals a
-rezsource Example.r

Again an 'MP ST' SetVersion string resource is to be generated. But here we use a
more complex version number. The version is set to 1, the revision to 2, the bug
fix level is left alone ("%"), this is a beta (b) release, and fmally the nonrelease level
is to be incremented.

SetVersion SetVersion -psource SetVersion.p -version 3.~ -t vers -i 1 -d
-verstring '''', ©Apple Computer, Inc. 1984-1988, by Ira L. Rubel

SetVersion SetVersion -version 3.0b1 -t vers -i 2 -verst ring "MPW 3.0b1"

This pair of SetVersion commands generates both Finder' vers ' ,1 and
, vers ' ,2 resources. The Finder Get Info display shown earlier illustrates the
result of using these commands. The MPW tool, SetVersion, has its own version
number, 3.11. (the revision is incremented for version 3) set as a 'vers',l
resource (-t 'vers' , -i 1). A long version message is specified by the -verstring
option. The version number from the short message string is inserted into the
long string at the position indicated by the "A" character. The generated version
number is displayed to the standard output (-d) fIle. It is also used to update the
Pascal source file constant (-psource).

The second SetVersion command set the 'vers',2 resource (-t 'vers', -i 2).
The version is set unconditionally to lObl and the long message string to "MPW
3.0bl". MPW lObl is the MPW release, and SetVersion is just one of the files that
belong to this release.

SetVersion-maintain version and revision number 315

MPWversion
Copyright
ver2
ver1

The last example illustrates how both' vers' resources should be used. The
'vers ' ,1 resource is the individual file version while the 'vers',2 is the version
release of a product that "owns" the file. The last example also should give some
idea of how to arrange makefiles, specifically makefile macro definitions, to
make the version numbering automatic and general. The following example
illustrates this. It is the actual macro definitions and the SetVersion calls used to
build SetVersion itself. They are taken as is from SetVersion's makefile.

= 3.0b1 * product release version
= ©Apple Computer, Inc. * copyright notice
= MPW {MPWversion} * long msg string for 'ver' ,2

,.. {Copyright} * long msg string for 'ver',l ,

SetVersionver -sv 3 -r * SetVersion's component controls
* Stage used by tools in makefile Stage -stage reI -sb 0

SetVersion {LinkedTools}SetVersion -psource {ToolsDir}SetVersion.p a
{SetVersionVer} -t vers -i 1 {stage} -d a
-verst ring "{ver1} 1984-1988, by Ira L. Ruben"

SetVersion {LinkedTools}SetVersion -version {MPWversion} -t vers -i 2 a
-verstring "{ver2}"

The macro defmitions specify the common aspects of the build; that is,

• {MPWVersion}-the MPW release (which can be changed by a Make -d option
when Make is called).

• {Copyright}-the copyright string (which is concatenated into the 'vers',1
long message string).

• {verl}-the long string for the 'vers',2 resource (note it uses the MPW
release string-we could have used a "N here), which is to be displayed at the
top of the Finder's Get Info window.

• {ver2}-the long string for the 'vers',1 resource (here we do use the "1\"),
which is to be displayed as the tools' individual version number (we use only
version and revision numbers).

• {SetVersionVer}-a macro that defines the numbering control for the
individual tool (the makefile is used to make other tools so there is one of
these for each individual tool made).

• {Stage}-Used just to insure that only ver.rel is generated in the 'vers',1
resource.

The two SetVersion calls are similar to the previous example, but here they are
part of a makefile, and we use the macros.

316 MPW 3.0 Reference

Shift-renumber script parameters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Shift [number]

Shift renames the command script positional parameters {number+-l},
{number+-2} ... to {l}, {2}, and so on. If number is not specified, the default value
is 1. Parameter 0 (the command name) is not affected. The variables
{Parameters}, {"Parameters"}, and {I} variables are also modified to reflect the
new parameters.

Built-in.

None.

None.

Errors are written to diagnostic output.

These status codes may be returned:

o Success.
1 Syntax error.

None.

The following script repeats a command once for each parameter:

fff Repeat - Repeat a command for several parameters ff.
f
f

• • •
f

Repeat command parameter ...
Execute command once for each parameter in the
parameter list. You can specify options by
including them in quotes with the command name.

Set cmd n{l}"

Loop

End

Shift
Break If "{l}n

{cmd} "{l}n

nIl

Shift-renumber script parameters 317

See also

In the preceding example, the Shift command is used to step through the
parameters. The Break command tells the loop when all the parameters have been
used. You might, for example, use the following Repeat script to compile several
C programs with progress information:

Repeat 'C -p' Sample.c Count.c Memory.c

"Parameters" in Chapter 5.

318 MPW 3.0 Reference

Shutdown---shutdown or software reboot

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Shutdown [-y I -n I -<:][-r]

Shutdown quits MPW and then either shuts down or reboots the Macintosh. The
default is shutdown. Before rebooting the computer, the system executes
standard quit procedures, asking for confirmation to save modified files, close
all windows, and so on.

• Note: Under MultiFinder, Shutdown does not give other active
applications the chance to save their documents.

Built-in.

None.

None.

Errors are written to diagnostic output.

These status codes may be returned:

1 Syntax error.
2 Command aborted.

• Note: Shutdown cannot return a status of 0 because if there are no errors
the command never returns.

-y Answer "Yes" to any confIrmation dialog that occurs.

-n Answer "No" to any confIrmation dialog that occurs.

-c Answer "Cancel" to any confIrmation dialog that occurs.

-t Restart the machine.

Shutdown-shutdown or software reboot 319

Example

SeeaIso

Shutdown -y

Shuts down the machine, answering "Yes" to any dialogs such as those prompting
to save files.

Quit command.

320 MPW 3.0 Reference

SizeWindow-set a window's size

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

SizeWindow [h v] [window]

Sets the size of the specified window to be h by v pixels, where h and v are
nonnegative integers referring to the horizontal and vertical dimensions, in that
order. (Use a blank space to separate the numbers h and v on the command line.)
The default window is the target (second from the front) window; a specific
window can optionally be specified. If the size specified would cause the
window to be too big for the screen, an error is returned.

Built-in.

None.

None.

Errors are written to diagnostic output.

SizeWindow may return the following status codes:

o No errors.
1 Syntax error (error in parameters).
2 The specified window does not exist.
3 The h v size specified is too big.

None.

SizeWindow 200 200

Makes the target window 200 pixels square in size.

SizeWindow {Active}

A SizeWindow command with no parameters displays the size of the specified
window:

SizeWindow 500 100 "{Worksheet}"

Makes the Worksheet window 500 x 100 pixels in size.

MoveWindow, RotateWindows, StackWindows, TileWindows, and
ZoomWindow commands.

SizeWindow-set a windows size 321

Sort-sort or merge rdes

Syntax

Description

Sort [options ...] !jiles ...]

Sort sorts or merges the specified files and prints the result on the standard
output. If no input files are specified, standard input is assumed.

Fields and Field Specifications

The -f option (see "Options") precedes a comma-separated list of field
specifications. lines are sorted by extracting and comparing the fields in the
order specified until a comparison yields inequality. If a field exists in one line
but not the other, the line that possesses the field wins. If neither line has a field,
the lines are considered equal. Fields not sorted are output randomly (Sort is not
a stable sort).

Each of the field specifications takes one of the forms:

[F] [. C] [-K] [modifiers]

[F] [.C] [+N] [modifiers]

F is a field number, C and -K are column numbers, and +N is a character count.
Any of the items may be omitted, provided that at least one item appears. The
numbers -K and +N are mutually exclusive. Spaces can appear anywhere in the
specification (except within numbers), but they must be Shell-quoted.

Fields are numbered from 1. A field is a string of characters surrounded by
newlines or field separator characters (usually whitespace; see the -fs option).
Typically field 1 would be the first word on the line, field 2 the second word, and
so on. Field 0 represents the entire line and is the default if a field number is not
specified. Field separator characters are treated as normal text (not separators)
in field O.

Columns are numbered from 1. If . C is specified, it represents a starting offset
into the field, taking into account the (fIle-dependent) varying width of tab
characters, if necessary .. C defaults to 1 if it is not specified.

If - K is specified it represents the last column to be included in the field. It
defaults to infinity (the maximum K possible) if not specified. Except for field
0, fields are always terminated by field-separator characters, so a large K does not
mean "the rest of the line."

If +N is specified, it represents the number of characters to be included in the
field (this differs from -K in that tabs are always counted as single characters). It
defaults to infinity (the maximum N possible) if not specified.

322 MPW 3.0 Reference

Type

Input

Output

Diagnostics

Here is a short description of all possible field specifications:

F
F.C
F.C-K
F.C+N
F-K
F+N
. C
• C-K
• C+N
-K
+N

The entirety of field F.
Columns C ... OO in field F.
Columns C ... K in field F.
N characters starting at column C in field F.
Columns 1...K in field F.
The first N characters in field F.
Columns C ... OO in the whole line .
Columns C ... K in the whole line .
N characters starting at column C in the whole line .
Columns t ... K in the whole line.
The first N characters of the whole line.

A field specification may be followed by one or more modifier characters:

r Reverse order of comparison (reverses -r).
b Ignore leading blanks (reverses -b).
q Interpret quotes when extracting field (reverses -quote).
d x t 1 u Treat field as decimal (d), hexadecimal (x), normal text

(t), lowercase text (I) or uppercase text (u). These
modifiers are mutually exclusive.

These modifiers override the corresponding command line options on a field-by
field basis (r, q, and b flip the meaning of -r, -quote, and -b).

When sorting multiple files, each flle can have its own tab setting. When
comparing column-aligned fields, Sort correctly handles tabs of varying width,
even when comparing records from different files.

Tool.

The specified files, or standard input if no files are specified.

If sorting or merging, the concatentation of all specified input files is performed,
sorted by the specified fields.

If -check is specified, no output is generated; the exit code of the tool indicates
whether the input was presorted.

Errors are written to diagnostic output.

Sort-sort or merge flles 323

Status These status codes may be returned:

Options

o No errors.
1 Syntax error on command line.
2 Any other error.
4 Out of memory.
5 Input is not sorted.

-b

-check

-d

Skip leading blanks in each field.

Do not sort, but check if the input is already sorted. Exit with
status 0 if the input is sortedj exit with status 5 if the input is not
sorted. No output is generated.

Sort fields as decimal numbers. The numbers can be of arbitrary
length.

-f fwldJ[/w/d2 .. .]

-fs string

-1

-merge

-0 file

-p

-quote

Specify fields to sort by. The default field specification is to sort
entire lines as text. (See the discussion on field specifications
above.)

Specify the field-separator characters. The default field separators
are space, tab, backspace, and form feed. Fields may not cross
newlines. This switch completely replaces the default set of
separators with the specified set.

Convert characters to lowercase before comparing them.

Assume each input flIe is already sorted and merge the input flIes
into the output file. If one or more of the input files is not sorted,
the output will not be sorted.

Specify the output file (default is standard output). With this
option it is possible to sort (though not to merge) a file "in placej"
the output file can be one of the input files.

Print version and progress information.

Modify field extraction by ignoring field separators enclosed in
single and double quotation marks. Characters preceded by the
Shell quoting character (d) are properly escaped. Quotation marks
themselves are ignored in comparisons, and sets of alternating
quotes (such as' " ' ... stuff ... ' " ,) can be nested to any
depth. If a quote "dangles" (there is no matching quote before the
end of the line), the field extends to the end of the line.

324 MPW 3.0 Reference

Examples

-stdin

-r

-t

-u

-unique

-x

This option serves as a place holder for the standard inpu~ making
it possible to sort or merge standard input with other files.

Reverse order of comparison.

Sort fields as text (default).

Convert characters to uppercase before comparing them.

Output lines that are identical (with respect to the fields specified
with the -f option) are printed only once.

Sort fields as hexadecimal numbers (upper- or lowercase). The
numbers can be of arbitrary length. A leading dollar sign ($) or 'ox'
is ignored as whitespace.

Sort Able -stdin Baker -0 Output

Sort the files Able, Baker, and the standard input, with output to file Output.

Sort -x -f '2.2+8, ltr' Frog

Sort the file Frog. The first key to sort on consists of eight characters starting at
the second column of the second field, treated as a hexadecimal number. The
second key to sort on is merely the text of the first field, in reverse order.

Sort -p -merge -u one two three infinity

Merge the specified files, treating lowercase characters as uppercase. Print
version and progress information.

Sort-sort or merge files 325

Stack Windows-arrange windows diagonally

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

StackWindows [-h num] [-r ~ I, b, r] [-v num] [-i I window .. .J

Automatically sizes and moves all of the open Shell windows (except the
Worksheet) so that they are staggered diagonally across the screen. Use
StackWindows when selecting windows from the Window menu; this makes
dealing with many open windows easier.

If no windows are specified, all open Shell windows (except the Worksheet) are
stacked up. Additionally you can specify the horizontal and vertical staggering
constants; otherwise staggering defaults to five pixels horizontally and 20 pixels
vertically. You can also include the Worksheet by using the -i option.

Built-in.

None.

None.

Errors are written to diagnostic output.

These status codes may be returned:

a No errors.
1 Syntax error (in parameters).

-i

-hnum

-r t,/,b,r

Include the Worksheet window when stacking if there is no list of
windows specified.

Stack the specified windows with a horizontal spacing of num
pixels. The default horizontal spacing is five pixels wide. Negative
values are not allowed; they return a syntax error.

Stack the specified windows within the specified rectangle. The
rectangle is specified by the coordinates for top, left, bottom, and
right. The default rectangle is the entire screen, minus the menu bar.
The coordinates of the rectangle are separated by commas. If
spaces are included, the rectangle must be enclosed in quotation
marks, such as "10, 10, 300, 500". The coordinates (0,0) are located
at the left side of the screen below the menu bar.

326 MPW 3.0 Reference

Example

See also

-vnum Stack the specified windows with a vertical spacing of num pixels.
The default vertical spacing is 20 pixels high-the height of a
window's title bar. Negative values are not allowed; they return a
syntax error.

StackWindows

Stacks all of the Shell windows, excluding the Workshee~ in a neat and orderly
fashion.

StackWindows -i -v 20 -h 10 "{active}" "{target}"

Stacks the top two windows, including the Worksheet, with a vertical spacing of
20 pixels and a horizontal spacing of 10 pixels.

MoveWindow, RotateWindow, SizeWindow, TileWindows, and ZoomWindow
commands.

StackWindows--arrange windows diagonally 327

Target-make a window the target window

Syntax

Desaiption

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Target name

Makes window name the target window for editing commands (that is, the
second window from the front). If window name isn't already open, then file
name is opened as the target window. If name doesn't exist, an error is returned.

Built-in.

None.

None.

Error messages are written to diagnostic output.

These status codes may be returned:

o No errors.
1 Error in parameters.
2 The specified file does not exist.
3 System error.

None.

Target Sample.a

Makes the window Sampie.a the target window.

Open command.

"Editing With the Command Language" in Chapter 5.

328 MPW 3.0 Reference

TileWindows-arrange windows in tile pattern

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

TileWindows [-h I -v H-r t,l,b,r][-i I window .. .]

TileWindows automatically sizes and moves the specified Shell windows so that
they are all visible on the screen at once. If no windows are specified, all open
windows are tiled (except the Worksheet). Arranging your open windows like
tiles and then zooming a selected window to full size makes dealing with many
open windows much easier.

Built-in.

None.

None.

Errors are written to diagnostic output.

TileWindows may return these status codes:

a No errors.
1 Syntax error (error in parameters).

-i

-b

-t t,l,b,r

-v

Include the Worksheet window when tiling if you have not
specified a list of windows.

Tile the specified windows in a horizontal fashion, allowing the full
width of the screen to be used by each window. The result is a stack
of short, wide windows.

Tile the specified windows within the specified rectangle. The
rectangle is specified by the coordinates for top, left, bottom, and
right. The default rectangle is the entire screen, minus the menu bar.
The coordinates of the rectangle are separated by commas. If
spaces are included, the rectangle must be enclosed in quotation
marks, such as "10, 10, 300, SOO". The coordinates (0,0) are located
on the left side of the screen below the menu bar.

Tile the specified windows in a vertical fashion to see more lines of
a document. The result is a row of tall, thin windows.

TileWindows-arrange windows in tile pattern 329

Examples

See also

TileWindows

Arranges all of the Shell windows in a tile pattern, so that all are visible.

Tilewindows -h hd:new:main.c hd:new:foo.c

Arranges the specified windows as two long horizontal strips.

TileWindows -v "{active}" "{target}"

Arranges the top two windows vertically.

MoveWindow, RotateWindow, SizeWindow, StackWindows, and ZoornWindow
commands.

330 MPW 3.0 Reference

TransferCkid-move projector information

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

See Also

TransferCkid sourcefile destinationfile

Move the Projector 'CKID' resource from sourcefile to destinationfile.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Script.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.

None.

OrphanFiles.

TransferCkid-move projector information 331

Translate-convert selected characters

Syntax

Description

Type

Input

Output

Diagnostics

Status

Translate [option ...] src [cZt]

Standard input is copied to standard output, with input characters specified in
the src (source) parameter string mapped into the corresponding characters
specified by the dst (destination) parameter string; all other characters are copied
as is. If dst is omitted, all characters represented by the src are deleted. If the dst
string is shorter than the src, all characters in the src that would map to or beyond
the last character in the dst are mapped into the last character in dst, and adjacent
instances of such characters in the input are represented by a single instance of
the last character in dst.

Both src and dst are specified as a standard Shell character list but not enclosed in
square brackets. Thus the src and dst are sequences of one or more characters
(that is, an abcde) or a range of characters separated by a minus sign (that is, a-z,
0-9). Standard escape characters (such as at, an, at) are processed by the Shell
command interpreter. In order to specify a minus sign, place it last in the
character list. Finally, the src character list may be preceded by a' to negate the
list; that is, all characters except those in the src are taken as the src string. Thus
they are all deleted if dst is absent, or collapsed if the last character in dst is
present.

• Note: Case sensitivity of letters specified in the src list are governed by
the {CaseSensitive} Shell variable. If CaseSensitive is set to 1, then only
letters specified in the src are mapped or deleted. If Case Sensitive is 0,
then uppercase and lowercase letters not explicitly mapped into dst
characters are mapped identically.

Tool.

All input is read from the standard input me.

The translated input file is written to standard output.

Errors are written to diagnostic output.

Translate may return these status codes:

o Normal termination.
1 Parameter or option error.

332 MPW 3.0 Reference

Options

Examples

-p

-s

Write Translate's version information to the diagnostic file.

Set the output file's tab, font, and font size to the same as those of
the input file.

,...Translate Optlons------------------.

Input characters to translate C(Jrre~ponding output charm tPfS

I I !

Input

fcommand LIne
Tr_bq

o Progress o Set output font/tab

Output Error

~st..wd ir1>ut to st..wd output with 11>0 Mstitut .. of sp9Cff"lI'd I (Cancel)

L lCttrS• .1 Translate I

translate a-z A-Z <origFile >ucFile

Converts all lowercase letters in origFile to uppercase and writes the translated file
to ucFile.

translate 0-9 9 <origFile >outFile

Converts each string of digits in origFile to the single digit 9 in outFile.

translate " atan" an <origFile >outFile

Converts each run of blanks, tabs, or newline (return) characters in origFile to a
single newline character in outFile. This effectively produces an output with just
one word on each line. Note that the src string had to be quoted to specify the
blank.

translate -.a-zA-Zan " " <origFile >outFile

Removes all punctuation and isolates words by spaces on each line. Here we
negated the src character list. Thus all characters except letters and newline
characters are replaced with spaces.

Translate-convert selected characters 333

unalias--remove aliases

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Unalias [name...]

Removes any alias defmition associated with the alias name. (It is not an error if
no defmition exists for name.)

• Caution If no names are specified, all aliases are removed. A.

The scope of the Unalias command is limited to the current scrip~ that is, aliases
in enclosing scripts are not affected. If you are writing a script that is to be
completely portable across various users' configurations of MPW, you should
place the command

Unalias

at the beginning of your script to make sure no unwanted substitutions occur.

Built-in.

None.

None.

None.

A status code of 0 (no problem) is always returned.

None.

Unalias File

Remove the alias "File". (This alias is defined in the Startup file.)

Alias command.

"Command Aliases" in Chapter 5.

334 MPW 3.0 Reference

Undo-undo last edit

Syntax

Description

Type

Input

Output

Diagnostics

Status

Undo [window]

Undo is the scriptable equivalent of choosing Undo from the Edit menu to reverse
the last editing operation. Undo without any parameters acts on the target (that
is, the second from the front) window. Optionally a named window can be
specified.

• Note: Remember that Undo is maintained on a window-by-window basis.
Therefore using this command will undo the last edit operation that was
performed in the specified window, which mayor may not be the last
operation actually performed.

Built-in.

None.

None.

Errors are written to diagnostic output.

Undo may return these status codes:

o No errors.
1 Syntax error (error in parameters).
2 Any other error.

Options None.

Examples Undo

Reverses the last edit operation in the target window.

Undo "{Worksheet}"

Reverses the last edit operation in the Worksheet window.

See also Cut, Copy, and Paste commands.

Undo-undo last edit 335

Unexpon-remove a variable definition from export

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Unexport [-r I -s I name ...]

Removes the specified variables from the list of exported variables. The list of
exported variables is local to a scrip~ so unexported variables are removed only
from the local list.

If no names are specified, a list of unexported variables is written to standard
output. The default output of Unexport is in the form of Unexport commands.
(A variable that is not exported is considered unexported.)

Built-in.

None.

If no names are given, Unexport writes a list of unexported variables to standard
output.

Errors are written to diagnostic output.

Unexport may return these status codes:

o No error.
t Syntax error.

-r Reverse the sense of the outpu~ causing Unexport to generate
Export commands for all unexported variables.

-s Suppress the printing of "Unexport" before the unexported
variables.

336 MPW 3.0 Reference

Examples

See also

Set SrcDir "HD:source:"

Export SrcDir i SrcDir is available to scripts and tools

Unexport SrcDir

Now the variable SrcDir is no longer available to scripts and tools.

Unexport -r
Export varl
Export var2

This example lists all the variables that are not exported. To export them, simply
select and execute all the export commands.

To get a list of all the variables that have not been exported, execute this
command:

Unexport -s
varl
var2

varx

Set and Export commands.

Unexport-remove a variable definition from export 337

Unmark-remove a marker from a ftle

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Limitation

See also

Unmark name... window

Unmark removes the marker(s) name ... ,from the list of markers available for
window. When a window is the current active window, the Mark menu item(s) will
be adjusted.

Built-in.

None.

None.

Errors are written to the diagnostic output.

These status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

None.

Unmark 'Markers' "{Target}"

Removes all markers associated with the target window.

Unmark Frocl "{Active}"

Removes the "Proc1" marker from the active window's marker list. Because
{Active} is by definition the current active window, the Mark menu is also
adjusted to reflect the deletion of the "Proc1" marker.

Unmark does not support Undo.

"Markers" in Chapter 6.

338 MPW 3.0 Reference

Unmount-unmount volumes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

See also

Unmount volume ...

Unmounts the specified volumes. A volume name must end with a colon (:). If
volume is a number without a colon, it's interpreted as a disk drive number. The
unmounted volumes cannot be referenced again until remounted. If you unmount
the current volume (the volume containing the current directory), the boot
volume becomes the current volume.

Built-in.

None.

None.

Error messages are written to diagnostic output.

These status codes may be returned:

o The volume was successfully unmounted.
1 Syntax error.
2 An error occurred.

None.

Unmount Memos:

Unmounts the volume titled Memos.

Unmount 1 2

Unmounts the volumes in drives 1 (the internal drive) and 2 (the external drive).
(The command Eject 1 2 would unmount and eject the volumes.)

Eject and Mount commands.

Unmount-unmount volumes 339

UnmountProject-unmount mounted projects

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

See Also

UnmountProject projects ...

Unmount projects mounted under Projector.

See Chapter 7 for complete deflnitions of the terms and symbols used in
Projector commands.

Built-in

None.

None.

Errors and warnings are written to diagnostic output

The follOwing status codes may be returned:

o No errors.
1 Syntax error.
2 Error in processing.
3 System error.

-a Unmount all mounted projects.

To unmount all mounted projects use:

UnrnountProject -a

To unmount the projects MyProject and YourProject use:

UnrnountProject MyProject YourProject

MountProject.

340 MPW 3.0 Reference

Unset-remove Shell variables

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Unset [name ... 1

Removes any variable deftnition associated with name. (It's not an error if no
defmition exists for name.)

... Caution If no names are specified, all variable defmitions are removed.
This can have serious consequences. For example, the Shell uses
the variable {Commands} to locate utilities and applications
and uses several other variables to set defaults. The assembler
and compilers use variables to help locate include HIes.
(For details, see "Variables Defmed in the Startup File"
in Chapter 5.) A

The scope of the Unset command is limited to the current scrip~ that is, variables
in enclosing scripts are not affected.

Built-in.

None.

None.

None.

A status code of 0 is always returned.

None.

Unset CaseSensitive

Removes the variable deftnition for {CaseSensitive}. This turns off case-sensitive
searching for the editing commands.

Set, Export, and Unexport commands.

"Defming and Redefining Variables" in Chapter 5.

Unset-remove Shell variables 341

Volumes-list mounted volumes

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Examples

Volumes [-lJ [-q] [volume ...]

For each volume named, Volumes writes its name and any other information
requested to standard output. The output is sorted alphabetically. A volume
name must end with a colon (:}-if volume is a number without a colon, it's
interpreted as a disk drive number. If volume is not given, all mounted volumes
are listed.

Built-in.

None.

Information about the specified volumes is written to standard output.

Errors are written to diagnostic output.

These status codes may be returned:

o No errors.
1 Syntax error.
2 No such volume.

-I list volumes in long format, giving volume name, drive ('-' if
offline), capacity, free space, number of files, and number of
directories.

-q Don't quote volume names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

Volumes -1

will write information such as

Name Drive Size Free Files

HD: 3 19171K 14242K 290

Files 'Volumes l'

lists the files on the disk in drive 1 (the built-in 3.5-inch disk drive).

342 MPW 3.0 Reference

Dirs

33

WhereIs--search for flIes in directory tree

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

WhereIs [<] [-<1] [-v] [Os dir]... pattern

Use WhereIs to fmd the location of all flies that contain pattern as part of their
filename. You can use WhereIs to find flies hidden in the directory tree. Pattern
is a full or partial filename. For example, a pattern of "test" will match TestProg.c,
test.c, and Work:OutputTest. WhereIs starts searching in the root directory of
the default volume and searches the entire disk. To constrain the search to a
portion of a disk, or to specify different disks or multiple disks, use the -s
option. To list any directories that contain pattern, use the -d option. To
constrain the search to files that completely match pattern, use the -c option. The
-v option prints the number of items matched with pattern. Matching is not case
sensitive, and regular expressions are not supported.

WhereIs lists the full pathname of all files and directories found. Files that
contain special characters are quoted.

Tool.

None.

The full pathname of any file that contains pattern is written to standard output.
Also, the total number of files and directories found is written to standard
output.

Error messages are written to diagnostic output.

These status codes may be returned:

o No errors.
1 Syntax error.
2 File system error during processing.
3 No matches were found.

-c Ust only files that match pattern completely. (In other words, treat
pattern as a filename.)

-d Match directories also.

Where Is-search for files in directory tree 343

Examples

-v Print a summary line that counts the number of items matched.

-s dir Normally, Wherels starts searching in the root directory of the
default volume. This option constrains the search to start in dir.
Multiple starting directories can be specified. (Each directory
must be preceded by -s.) Since searching a large hard disk may take
several minutes, this option can speed up the search when you
know the general location of a file.

WhereIs test

Find all files that have "test" in their filename. The output would be something
like

HD:MPW:test.c
HD:MPW:test.c.o
HD:MPW:TestMenu.c
HD:MPW:TestProg.p

WhereIs -c test.c

Find files named test.c. The output (with the same files as the example above)
would be

HD:MPW:test.c

WhereIs -d test

Find all files or directories that have "test" in their leafname. The output would be

HD:MPW:TestDir:
HD:MPW:test.c
HD:MPW:test.c.o
HD:MPW:TestMenu.c
HD:MPW:TestProg.p

WhereIs -s HD:MPW -s Disk2:Work test

Find all files that have "test" in their pathname. Search for the files starting in
HD:MPW and also in Disk2:Work.

344 MPW 3.0 Reference

Which-determine which file the Shell will execute

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Which [-a] [-p] [command]

Determines which command the Shell will execute when command is entered.
Which looks for commands defIned by aliases, Shell built-in commands, and
commands accessible through the Shell variable {Commands} (the same order the
Shell uses). If command is not specified, all paths in the {Commands} variable will
be written to standard outpu~ one directory per line. The directories are listed in
the order in which the Shell would search for commands. In this case the -a and -p
options have no meaning.

Built-in.

None.

In the case of a tool, application, or script, the full path of the command is
written to standard output. If command is an alias its defmition is written to
standard output. If command is a built-in command, it is simply echoed back to
standard output.

Errors are written to diagnostic output.

These status codes may be returned:

o No error.
1 Syntax error.
2 Command not found.
3 Other error.

-a All paths to command are written to standard output. This option
allows the user to determine if there are multiple commands with
the same name.

-p Prints progress information as each directory in the variable
commands is searched.

Which-determine which me the Shell will execute 345

Examples Which asm

This command outputs something like - HD :MPW: Tools: asm. The Shell then
executes hd:MPW:Tools:asm when given asm.

Which -a makeit
Alias makeit 'make> tmpi tmp'
HD:MPW:Tools:makeit
HD:MPW:Scripts:makeit

In this case, there are three different "rnakeit" commands that the Shell could
execute, as determined by current aliases and the {Commands} variable. The Shell
executes the first one found (the alias).

Which newfolder
newfolder

In this case, newfolder is a Shell built-in command.

346 MPW 3.0 Reference

Windows-list windows

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

Examples

Windows [-q]

Writes the full pathname of each file currently in a window. The names are written
to standard output, one per line, from backmost to frontmost.

Built-in.

None.

The list of open windows is written to standard output.

Errors are written to diagnostic output.

Windows may return these status codes:

o No error.
1 Syntax error.

-q Don't quote window names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

Windows

lists the pathnames of all open windows.

Print {PrintOptions} 'windows'

Prints the pathnames of the open windows, using the options specified by the
{PrintOptions} variable. This example uses command substitution: Because the
Windows command appears in backquotes C ... '), its output supplies the
parameters to the Print command.

Echo "Open 'Windows' I I Set Status 0" > SavedWindows

Writes a script in the file SavedWindows that will reopen the current set of open
windows. Notice how Echo is used to create the script. The conditional I I
execution operator restores the status to zero should an error occur while opening
the remembered windows. This technique is used in the script Suspend to save
the list of open windows.

Windows-list windows 347

ZoomWindow-enlarge or reduce a window

Syntax

Description

Type

Output

Diagnostics

Status

Options

ZoomWindow [-s I -b] [window]

Zooms the specified window according to the option specified. The default
window is the target (second from the front) window; a specific window can
optionally be specified. The -s option forces the window to zoom back to its
small size. The -b option forces the window to zoom to its full size. If no option
is specified, the window toggles to the other size. ZoomWindow without any
options mimics the operation of clicking in the window's zoom box. This
command is especially valuable when used in conjunction with StackWindows or
Tile Windows.

The "full size" window is normally the entire screen. You can change it (for
example, prevent it from covering the disk and trash icons) by specifying a
rectangle in the Shell variable {ZoomWindowRect}.

Built-in.

None.

Errors are written to diagnostic output.

ZoomWindow may return these status codes:

o No errors.
1 Syntax error (error in parameters).
2 The specified window does not exist.

-s Zoom the specified window back to its original, smaller size.

-b Zoom the specified wiIidow to full screen size.

348 MPW 3.0 Reference

Examples

See also

Zoomwindow

Zooms the target window to full screen size if the window was originally in the
small size.

Zoomwindow -s "{Worksheet}"

Zooms the Worksheet window back to its small size.

MoveWindow, RotateWindows, SizeWindow, StackWindows, and TileWindows
commands.

{ZoomWindowRect} variable in Chapter 5.

ZoomWindow-eniarge or reduce a window 349

TIIE APPLE PUBLISHING SYSTEM

This Apple$ manual was written,
edited, and composed on a
desktop publishing system using
Apple$ Macintosh® computers and
Microsoft$ Word software. Proof and
fInal pages were created on the
Apple LaserWrite~ IINTX printer.
POSTSCRIPrGP, the LaserWriter$ page
description language was developed
by Adobe Systems Incorporated. The
illustrations were created using
Adobe illustrator and some were
output to a Unotronic 300.

The illustration on the cover was
generated using Adobe illustrator 88
on a Macintosh® II computer. Some
of the images were scanned using an
Apple® Scanner and then
manipulated in ImageStudio. Initial
proofing was done using a QMS color
printer. Color separations were done
using Adobe separator and output to
a Unotronic 300 at standard
resolution.

Text type is Apple's corporate font, a
condensed version of Garamond.
Bullets are rrc Zapf Dingbats$. Some
elements, such as programs listings,
are set in Apple Courier, a fIXed-
width font.

APPLE COMPUl'ER, INC. SOFfWARE IlCENSE

PLEASE BEAD THIS LICENSE CAREFUIl.Y BEFORE USING THE
SOFfWARE. BY USING THE SOFfWARE, YOU ARE AGREEING
TO BE BOUND BY THE TERMS OF THIS LICENSE. IF YOU 00
NOT AGREE TO THE TERMS OF THIS LICENSE, PROMPTLY
RETURN THE UNUSED SOFfWARE TO THE PlACE WHERE YOU
OBTAINED IT AND YOUR MONEY WILL BE REFUNDED.

1. License. The application, demonstration, system and other software
accompanying this License, whether on disk, in read only memory, or on
any other media (the" Apple Software") and related documentation are
licensed to you by Apple. You own the disk on which the Apple Software
is recorded but Apple andlor Apple's Licensor(s) retain title to the Apple
Software and related documentation. This License allows you to use the
Apple Software on a single Apple computer and make one copy of the
Apple Software in machine-readable form for bad-up purposes only. You
must reproduce on such copy the Apple copyright notice and any other
proprietary legends that were on the original copy of the Apple Software.
You may also transfer all your license rights in the Apple Software, the
bad-up copy of the Apple Software, the related documentation and a copy
of this License to another party, provided the other party reads and agrees
to accept the terms and conditions of this License.

2. Restrictions. The Apple Software contains copyrighted material,
trade secrets and other proprietary material and in order to protect them
you may not decompile, reverse engineer, disassemble or otherwise
reduce the Apple Software to a human-perceivable form. You may not
modify, network, rent, lease, loan, distribute or create derivative works
based upon the Apple Software in whole or in part You may not
electronically trmsmit the Apple Software from one computer to another
or over a network.

3. Support. You acknowledge and agree that Apple may not offer
any technical support in the use of the Software.

4. Termination. This License is effective until terminated. You may
terminate this License at any time by destroying the Apple Software and
related documentation and all copies thereof. This License will terminate
immediately without notice from Apple if you fail to comply with any
provision of this License. Upon termination you must destroy the Apple
Software and related documentation and all copies thereof.

5. Export Law Assurances. You agree and certify that neither the
Apple Software nor any other technical data received from Apple, nor the
direct product thereof, will be exported outside the United States except as
authorized and as permitted by the laws and regulations of the United
States.

6. Government End Users. If you are acquiring the Apple Software
on behalf of any unit or agency of the United States Government, the
following provisions apply. The Government agrees:

(i) if the Apple Software is supplied to the Department of Defense
(DoD), the Apple Software is classified as 'Commercial Computer
Software" and the Government is acquiring only "restricted rights" in the
Apple Software and its documentation as that term is defmed in Clause
2;2.227-7013(cXl) of the DFARS; and

(ii) if the Apple Software is supplied to any unit or agency of the
United States Government other than DoD, the Government's rights in the
Apple Software and its documentation will be as defined in Clause ;2.227-
19(cX2) of the FAR or, in the case of NASA, in Clause 18-;2.2..'7-s6(d) of
the NASA Supplement to the FAR.

7. Limited Warranty on Media. Apple warrants the disks on which the
Apple Software is recorded to be free from defects in materials and
workmanship under normal use for a period of ninety (90) days from the
date of purchase as evidenced by a copy of the receipt. Apple's entire
liability and your exclusive remedy will be replacement of the disk not

meeting Apple's limited warranty and which is returned to Apple or an
Apple authorized representative with a copy of the receipt. Apple will
have no responsibility to replace a disk damaged by accident, abuse or
misapplication. ANY IMPUED WARRANTIES ON THE DISKS, INCLUDING
TIfE IMPUED WARRANTIES OF MERCHANTABILI1Y AND FI1NESS FOR
A PARTICULAR PURPOSE, ARE UMITED IN DURATION TO NINElY (90)
DAYS FROM THE DATE OF DEUVERY. TIfIS WARRANTI GIVES YOU
SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTIfER RIGHTS
WHICH VARY FROM STATE TO STATE.

S. Disclaimer of Warranty on Apple Software. You expressly
acknowledge and agree that use of the Apple Software is at your sole risk.
The Apple Software and related documentation are provided "AS IS" and
without warranty of any kind and Apple and Apple's Licensor(s) (for the
purposes of provisions 8 and 9, Apple and Apple's Licensor(s) shall be
collectively referred to as "Apple") EXPRESSLY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPUED, INCLUDING, BUT NOT LIMITED TO,
THE L\iPUED WARRANTIES OF MERCHANTABILI1Y AND FITNESS FOR
A PARTICULAR PURPOSE. APPLE DOES NOT WARRANT THAT TIfE
FUNCTIONS CONTAINED IN TIfE APPLE SOFTWARE WILL MEET YOUR
REQUIR.E.\iENTS, OR THAT THE OPERATION OF THE APPLE SOFTWARE
WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFEcrs IN THE
APPLE SOFTWARE WILL BE CORRECTED. FURTHERMORE, APPLE
DOES NOT WARRANT OR MAKE ANY REPRESENTATIONS REGARDING
THE USE OR THE RESULTS OF THE USE OF TIfE APPLE SOFIWARE OR
REIATED DOCUMENTATION IN TER..\1S OF THEIR CORRECTNESS,
ACCURACY, RELIABILI1Y, OR OTHERWISE. NO ORAL OR WRITIEN
INFOR..\1ATION OR ADVICE GIVEN BY APPLE OR AN APPLE
AUlHORIZED REPRESENTATIVE SHALL CREATE A WARRANTI OR IN
ANY WAY INCREASE TIfE SCOPE OF THIS WARRANTI. SHOULD THE
APPLE SOFTWARE PROVE DEFECTIVE, YOU (AND NOT APPLE OR AN
APPLE AUlHORIZED REPRESENTATIVE) ASSUME THE ENTIRE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION. SOME STATES
DO NOT AllOW THE EXCLUSION OF IMPUED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU.

9. Limitation of Liability. UNDER NO CIRCUMSTANCES INCLUDING
NEGUGENCE, SHALL APPLE BE LIABLE FOR ANY INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES THAT RESULT FROM THE USE
OR INABILI1Y TO USE THE APPLE SOFTWARE OR REIATED
DOCUMENTATION, EVEN IF APPLE OR AN APPLE AUlHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILI1Y OF SUCH
DAMAGES. SOME STATES DO NOT AllOW TIfE LIMITATION OR
EXCLUSION OF UABILI1Y FOR INCIDENTAL OR CONSEQUENTIAL
DA..\1AGES SO THE ABOVE LL\1ITATION OR EXCLUSION MAY NOT
APPLY TO YOU.
In no event shall Apple's total liability to you for all damages, losses, and
causes of action (whether in contract, tort (including negligence) or
otherwise) exceed the amount paid by you for the Apple Software.

10. Controlling Law and Severability. This License shall be governed
by and construed in accordance with the laws of the United States and the
State of CalifOrnia, as applied to agreements entered into and to be
performed entirely within California between California residents. If for
any reason a court of competent jurisdiction finds any provision of this
License, or portion thereof, to be unenforceable, that provision of the
License shall be enforced to the maximum extent permissible so as to effect
the intent of the parties, and the remainder of this License shall continue in
full force and effect.

11. Complete Agreement. This License constitutes the entire
agreement between the parties with respect to the use of the Apple
Software and related documentation, and supersedes all prior or
contemporaneous understandings or agreements, written or oral,
regarding such subject matter. No amendment to or modification of this
License will be binding unless in writing and signed by a duly authorized
representative of Apple.

711;/91
00I-OI;s.A

