NI0A\ S, S2WUnIR0I] USOIT : pvd)y

v

1AL JUWC0[RANG GOS

2WM[O4 U

<

s Macintosh Progeammer’s
hop Development
onment, Volume 2

Part I Command Reference

Part I Command Reference

Part I is a command dictionary that describes each of the tools, scripts, and
built-in commands of the Macintosh Programmer's Workshop 3.0. When you have
become sufficiently familiar with the material in Part I, you can move Part I to a
smaller separate binder for convenient desktop reference. (You may also want to
include frequently used appendixes or tables in the separate binder.) Please be
sure to read the next section, “Command Prototype,” which explains the format
for all command descriptions and defines the basic behavior of all commands. =

Contents

Command Prototype 6

AddMenu—add menu item 9
Adjust—adjust lines 13

Alert—display an alert box 14
Alias—define or write command aliases 15
Align—align text to left margin 17
Asm—MC68xxx Macro Assembler 18

Backup—folder file backup 25
Beep—generate tones 34

Begin...End—group commands 36
Break—break from For or Loop 38
BuildCommands—show Build commands 40
BuildMenu—create the Build menu 42
BuildProgram—build the specified program 43

C—C Compiler 45

Canon—canonical spelling tool 49
Catenate—concatenate files 52

CheckIn—check in files to a project 54
CheckOut—check out files from a project 57
CheckOutDir—set checkout directory 61
Choose—choose or list network volumes and printers 64
Clear—clear the selection 68

Close—close specified windows 69

Commando—display dialog for a command 71
Compare—compare text files 73
CompareFiles—show file differences 79
CompareRevisions—compare revisions 81
Confirm—display confirmation dialog box 83
Continue—continue with next iteration of For or Loop 85
Copy—copy selection to Clipboard 87
Count—count lines and characters 89

CPlus—C++ compiling system 91
CreateMake—create a simple makefile 96
Cut—copy selection to Clipboard and delete it 99

Date—write the date and time 100 _
Delete—delete files and directories 102
DeleteMenu—delete user-defined menus and items 104
DeleteNames—delete symbolic names 105
DeleteRevisions—delete revisions and branches 107
DeRez—Resource decompiler 109

Directory—set or write the default directory 113
DirectoryMenu—create the Directory menu 115
Dolt—highlight and execute a series of commands 117
DumpCode—write formatted resources 119
DumpFile—display contents of an arbitrary file 122
DumpObj—write formatted object file 125
Duplicate—duplicate files and directories 128

Echo—echo parameters 130

Eject—eject volumes 132

Entab—convert runs of spaces to tabs 133
Equal—compare files and directories 136
Erase—initialize volumes 139

Evaluate—evaluate an expression 140
Execute—execute a script in the current scope 145
Exists—confirm the existence of a file or directory 146
Exit—exit from a script 147

Export—make variables available to programs 148

FileDiv—divide a file into several smaller files 150
Files—list files and directories 152

Find—find and select a text pattern 155
Flush—clear the command cache 157
For...—repeat commands once per parameter 158

2 MPW 3.0 Reference

Format—set or view the window format 160

GetErrorText—display text for system error numbers 162
GetFileName—display a standard file dialog box 164
GetListltem—display items for selection in a dialog box 166

Help—display summary information 168
If...—conditional command execution 171

Lib—combine object files into a library file 173
Line—find a line number 177

Link—link an application, tool, or resource 179
Loop...End—repeat command list until Break 189

Make—build up-to-date version of a program 191
MakeErrorFile—create error message file 195
Mark—assign a marker to a selection 197

Markers—list markers 199

MatchIt—match paired language delimiters 200
MergeBranch—merge a branch revision onto the trunk 205
ModifyReadOnly—allow editing of a read-only file 207
Mount—mount volumes 209

MountProject—mount an existing project 210
Move—move files and directories 212
MoveWindow—move window to h v location 214

"NameRevisions—name files and revisions 216
New—open a new window 220

Newer—compare modification dates between files 221
NewFolder—create a directory 223
NewProject—create a project 224

Open—open a window 226
OrphanFiles—remove projector info from files 228

Parameters—write parameters 229

Pascal—Pascal compiler 230

PasMat—Pascal program formatter 234
PasRef—Pascal cross-referencer 241

Paste—replace selection with Clipboard contents 250
PerformReport—generate a performance report 251

Position—list position of selection in window 253
Print—oprint text files 254

ProcNames—display Pascal procedure and function names 258
Project—set or write the current project 262

Projectinfo—Tlist project information 263

Quit—quit MPW 272
Quote—quote parameters 273

Rename—rename files and directories 275
Replace—replace the selection 277
Request—request text from a dialog box 279
ResEqual—compare resources in files 281
Revert—revert to saved files 283

Rez—Resource compiler 284

RezDet—detect inconsistencies in resources 288
RotateWindows—rotate between windows 291

Save—save windows 292

Search—search files for a pattern 293

Set—define or write Shell variable 295
SetDirectory—set the default directory 297
Setfile—set file attributes 298

SetPrivilege—set access privileges to folders on file server 300
SetVersion—maintain version and revision number 302
Shift—renumber script parameters 317
Shutdown—shutdown or software reboot 319
SizeWindow—set a window’s size 321

Sort—sort or merge files 322

StackWindows—arrange windows diagonally 326

Target—make a window the target window 328
TileWindows—arrange windows in tile pattern 329
TransferCkid—move projector information 331
Translate—convert selected characters 332

Unalias—remove aliases 334

Undo—undo last edit 335

Unexport—remove a variable definition from export 336
Unmark—remove a marker from a file 338
Unmount—unmount volumes 339
UnmountProject—unmount mounted projects 340

4 MPW 3.0 Reference

Unset—remove Shell variables 341

Volumes—Ilist mounted volumes 342

Wherels—search for files in directory tree 343
Which—determine which file the Shell will execute 345

Windows—list windows 347

ZoomWindow—enlarge or reduce a window 348

Command prototype

Syntax

Description

Type

The following command prototype illustrates the conventions that we've used to
describe MPW commands. Most commands behave roughly as specified at the
end of the introduction.

Command [option...] [file...]

& Note: Filenames, command names, and options are not sensitive to case. The
syntax notation itself is described at the end of the introduction.

The first word of the command is the filename of the program to execute or the
name of a built-in command. The subsequent words are passed as additional
parameters to the command (or recognized by the Shell in the case of I/O
redirection).

Most commands recognize two distinct types of parameters: options and
filenames. Options begin with a hyphen (-) to distinguish them from filenames.
Although the syntax descriptions list the options first, options and files may
appear in any order. All options apply to the processing of all the files, regardless
of the ordering of options and files.

For commands that read and write text files, you can specify a file, a window, or a
selection within a window, as follows:

name Named window or file

§ The selection in the target window (the second window from the
top)

name.§ The selection in the named window

Commands may fall into one of three categories: Tool, Script, or Built-In. This
information is useful when you need to figure out why a command isn’t working.
For example, if you know that the command is a tool or a script, you can deduce
that the file might be missing or that there might be a file of the same name in the
current directory.

6 MPW 3.0 Reference

Input

Output

Diagnostics

Status

Standard input is often processed if no filenames are specified.

& Note: If a program is reading from standard input, you can press
Command-Enter (or Command-Shift-Return) to indicate EOF and
terminate input. (See “Terminating a Command” in Chapter 4.)

Text processors usually write their output to standard output. The MPW
Assembler writes listings to standard output. Link, the MPW linker writes location
maps to standard output.

Errors and warnings are written to diagnostic output. If no errors or warmnings are
detected, most commands don't write anything to diagnostic output. Assembler
and Compiler error messages have the format

message
File "filename" ; Line linenumber

This format makes it possible to select and execute the text after “###” because
the names “File” and “Line” have been defined as Shell commands—*“File” is
defined in the Startup file as an alias for the Target command, and “Line” is a
short command file that finds a line number.

Several commands write progress and summary information to diagnostic output
if you specify the -p option.
Status codes are returned in the {Status} vasiable. A value of 0 indicates that no

errors occurred; anything else usually indicates an error. Typical values are

0 Command succeeded.
1 Incorrect options or parameters.
2 Command failed; invalid input.

Positive numbers are returned by tools, scripts, and built-in commands. Negative
numbers are returned only by the Shell.

A Command Prototype 7

Options Options specify some variation from the default command behavior. Options
begin with a hyphen (-) to distinguish them from files and other parameters.

Options form single words in the command language. Some options require
additional parameters, which are separated from the option name with a blank.
(An option’s parameters also form a single word in the command language.) If
more than one option parameter is required, the usual separators between them
are commas and equal signs. For example,

Asm -define &debug='on' -pagesize 84,110
Note that spaces are not allowed between option parameters and their separating

commas. For those options that do have additional parameters, the option
parameters are never optional.

Options may appear in any order. All options are collected prior to processing

files.

Limitations A few commands may have special cases or warnings that you should know about.
Be sure to check for a Limitations heading at the end of the command’s
reference.

See also “Structure of a Command” in Chapter 5.

8 MPW 3.0 Reference

AddMenu—add menu item

Syntax

Description

AddMenu [menuName [itemName [command...]]]

Associates a list of commands with the menu item itemName in the menu
menuName, If the menu menuName already exists, the new item is appended to
the bottom of that menu. If the menu menuName doesn't already exist, a new
menu is appended to the menu bar, and the new item is appended to that menu.
When the new menu item is selected, its associated command list is executed just
as though the command text had been selected and executed in the active
window.

¢ Note: The command text that you specify for an AddMenu item is
processed twice—once when you execute the AddMenu command
itself, and again whenever you subsequently select the new menu
item. This means that you must be careful to quote items so that
they are processed at the proper time. See the “Examples” section
below.

You can also use AddMenu to display information for existing user-defined menus

by omitting parameters:

s If command is not specified, the command list associated with itemName is
written to standard output.

» If itemName and command are both omitted, a list of all user-defined uems
for menuName is written to standard output.

= If no parameters are specified, a list of all user-defined items is written to
standard output.

(This output is in the form of AddMenu commands.)

You can also use AddMenu to change the command list or markings associated
with a particular itemName. If both menuName and itemName already exist, the
command list associated with itemName will be changed to command. Also, any
marking or styles associated with itemName will be changed. The position of
itemName in menuName will not be affected.

AddMenu-add menuitem 9

Type
Input

Output

Diagnostics

Status

Options

You can define keyboard equivalents, character styles, and other features for
your new menu commands—itemName can contain any of the metacharacters
that are used with the AppendMenu() procedure documented in the chapter
entitled “Menu Manager” of Inside Macintosh:

/char Assign the keyboard equivalent Command-char.
Ichar Place char to the left of the menu item.
An Item has an icon, where n is the icon number. See Inside Macintosh.
(Item is disabled (dimmed).
<style Item has a special character style; this style can be any of the
following capital letters:
B Bold
I Italic
U Underline
O Outline
S Shadow

Multiple styles may be specified by preceding each with “<”. Be sure to quote
menu items containing these special characters. (See the “Examples” section
below.)

¢ Note: Semicolons (;) cannot be used within an itemName.

Menu items can’t be appended to the Window, Mark, or Apple menus.
Built-in.
None.

If any of the optional parameters is omitted, a list of user-defined menu items
and their associated commands is written to standard output.

Errors and warnings are written to diagnostic output.

AddMenu may return the following status codes:

0 No errors.

1 Syntax error.

2 Anitem can't be redefined.
3 System error.

None.

10 MPW 3.0 Reference

Examples

AddMenu

Lists all user-defined menu items.

AddMenu Extras "TimeStamp/P" ‘'Echo ‘Date''’

Adds an “Extras” menu with a “TimeStamp” item, which writes the current time
and date to the active window. This item has the Command-key equivalent
Command-P.

AddMenu File 'Format<B' 'Erase 1'

Adds a “Format” item to the File menu (as discussed under the Erase command)
and makes the item bold.

AddMenu Find Top 'Find ¢ "{Activel}"'

Adds the menu item “Top” to the Find menu, and defines it as the Find command
enclosed in single quotation marks. This command places the insertion point at
the beginning of the active window.

Note: The following attempt to do the same thing will not work:

AddMenu Find Top "Find °* {Active}"

This command won’t work because the {Active} variable will be expanded when
the menu is added. (It should be expanded when the menu item is executed.) In
the first (correct) example, the single quotes defeat variable expansion when the
AddMenu command is executed; they are then stripped before the item is
actually added. The double quotation marks remain, in case the pathname of the
active window happens to contain any special characters.

You may want to add some or all of the following commands to your UserStartup
file:

AddMenu Find ' (-' v
AddMenu Find 'Top/6' 'Find * "{Active}l"'
AddMenu Find ‘'Bottom/5' 'Find o« "{Active}"'

These commands create several new items in the Find menu. The first is a disabled
separator that creates a new section at the bottom of the menu. The Top and
Bottom items position the insertion point at the top and bottom of the active
window. Both menu items have Command-key equivalents.

AddMenu-add menu item 11

AddMenu Directory 'Work' 'Directory HD:MPW:Work'
AddMenu Directory 'Work!e' 'Directory HD:MPW:Work'

The first command creates a command to move to the directory HD:MPW:Work.
The second command marks the Work item with a bullet without changing the
position of the item in the menu.

See also DeleteMenu command.

“Quoting Special Characters,” “How Commands Are Interpreted,” and “Defining
Your Own Menu Commands” in Chapter 5.

“Creating a Menu in Your Program” in chapter “Menu Manager” of Inside
Macintosh.

12 MPW 3.0 Reference

Adjust—adjust lines

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Examples

See also

Adjust [< count] [-1 spaces] selection [window)
Finds and selects the given selection and shifts all lines within the selection to the
right by one tab, without changing the indentation.

If a count is specified, count instances of selection are affected. The -1 option
lets you move lines by any number of spaces to the left or right.

If you specify the window parameter, the command operates on window. It's an
error to specify a window that doesn’t exist. If no window is specified, the
command operates on the target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Adjust may return the following status codes:

0 At least one instance of the selection was found.
1 Syntax error.
2 Another error.

-Cc count Repeat the select-and-adjust operation count times.

-1 spaces Every line within the selection will be shifted spaces to the right. You
can shift a selection left by specifying a negative value for spaces.

Adjust -1 4 §

Shifts the lines containing the target selection to the right by four spaces.

Adjust -1 -8 /if/A:A/else/

Selects everything after the next “if” and before the following “else”, and shifts all
lines within the selection to the left by eight spaces.

Align command.
“Selections” in Chapter 6.

Adjust—adjust lines 13

Alert—display an alert box

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options'

Example

See also

Alert [-s] [message...]

Displays an alert box containing the prompt message. The alert is displayed until
its OK button is clicked. If the message contains any special characters, you'll
need to quote it, as explained in Chapter 5.

Built-in.

Reads standard input for the message if no parameters are specified.

None.

None.

Alert may return the following status codes:

0 No errors.
1 Syntax error.

-S Run silently. Do not beep when the dialog box is displayed.

Alert Please insert next disk to be searched.

Displays the following alert box and waits for the user to click “OK” before
returning.

Please insert next disk to be searched.

Confirm and Request commands.

14 MPW 3.0 Reference

Alias—define or write command aliases

Syntax

Description

Type
Input

Output

Diagnostics

Status

Options

Alias [name [word...]]

Name becomes an alias for the list of words. Subsequently, when name is used as a
command name, word... will be substituted in its place.

If only name is specified, any alias definition associated with name is written to
standard output. If name and word are both omitted, a list of all aliases and their
values is written to standard output. (This output is in the form of Alias commands.)

Aliases are local to the script in which they are defined. An initial list of aliases is
inherited from the enclosing script. Inherited aliases may be overridden locally. You can
make an alias definition available to all scripts by placing the definition in the
UserStartup file.

You can remove aliases with the Unalias command.
Built-in.
None.

When parameters are omitted, the Alias command writes aliases and their values to
standard output.

Errors are written to diagnostic output.

Alias may return the following status codes:

0 No errors.
1 The specified alias could not be found.

None.

Alias—define or write command aliases 15

Examples Alias Dir Directory
Creates an alias “Dir” for the Directory command.
Alias Top 'Find o

Creates an alias “Top” for the command “Find " (which places the insertion point at
the beginning of a window). The command takes an optional window parameter and
by default acts on the target window. The Top command could now be used as follows:

Top # find top of target window
Top Sample.a # find top of window Sample.a
(equivalent to "Find ¢ Sample.a")

See also Unalias command.

“Command Aliases” in Chapter 5.

16 MPW 3.0 Reference

Align—align text to left margin

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Examples

See also

Align [-c count] selection [window)

All lines within each instance of the selection are positioned to the same distance
from the left margin as the first line in the selection.

If you specify the window parameter, the Align command will act on window.
It's an error to specify a window that doesn’t exist. If no window is specified, the
command operates on the target window (the second window from the front).

Built-in.

None.

None.

Errors are written to diagnostic output.

Align may return the following status codes:

0 At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-C count Repeat the select-and-align operation count times.

Align §

Same as the Align menu item; that is, it aligns all lines in the default selection with
the first line of the selection.

Align /Begin/:/End/

Selects everything from the next “Begin” through the following “End”, and aligns
all lines within the selection to the same margin position as the line that contains
the “Begin”.

Adjust command.

“Selections” in Chapter 6.

Align—align text to left margin 17

Asm—MC68xxx Macro Assembler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Asm[option...][file...]

Assembles the specified assembly-language source files. One or more filenames
may be specified. If no filenames are specified, standard input is assembled and
the file “a.0” is created. By convention, assembly-language source filenames end
in the suffix “.a”. Each file is assembled separately—assembling file name.a
creates object file name.a.o. The object filename can be changed with the -0
option.

See the MPW 3.0 Assembler Reference for more information about the assembly
language. The first Commando dialog box for this command is reproduced here
for convenience.

Tool.

If no filenames are specified, standard input is assembled. (You can terminate
input by pressing Command-Enter, or you can enter an END directive, preceded
by a blank space.)

If either the -1 or the -s option is specified, an assembler listing is generated. If
standard input is used for the source file, the listing is written to standard output.
If the input is taken from file name.a, the listing is written to name.a.lst. The
listing filename can be changed with the -lo option. The option -lo must be
preceded by the -1 option and must be immediately followed by the listing
filename.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to diagnostic
output. :

Asm may return the following status codes:

0 No errors detected in any of the files assembled.
1 Parameter or option errors.
2 Errors detected.

18 MPW 3.0 Reference

Options

Except for the -case on option, options may appear in any order.

—Asm Options

—Options

L

. -Warnings
Files... @® Show all warnings

Defines:

QO Suppress all warnings
O Suppress only branch warnings

~Case —— ~Progress —
@off ; (JSRDE @ Off
Oon O Full
Qobject; {OTime only;

(Listing Options...

asm

—Command Line

—Help

MC6E8xxx Macro Assembler Cancel

-addrsize size

Set address displays in the listing to size digits (values 4 through 8
are allowed). The default is 5 digits.

-blksize blocks

-Casc on

Set the assembler's text file /O buffer size to blocks 512 bytes.
Values 6 through 62 are allowed. Odd values are made evenby
reducing the value by 1. The default value is 16 (8192 bytes) if the
assembler determines it has the memory space for the I/O buffers,
and 6 (3072 bytes) otherwise. This option permits optimization of
I/0O performance (transfer rate for text file input, load/dump files,
and listing output) as a function of the disk device being used.
Note that increasing the blocks value reduces the amount of
memory available for other Assembler structures (such as symbol
tables).

Distinguish between uppercase and lowercase letters in nonmacro
names (same as CASE ON). (Case is always ignored in macro
names.) If you intend to preserve the case of names declared by the
-define option, the -case on option must precede the -define
option(s) in the command line.

Asm—MC68xxx Macro Assembler 19

-case objlect]

-case off

-ctheck]

Preserve the case of module, EXPORT, IMPORT, and ENTRY names
only in the generated object file. In all other respects, case is ignored
within the assembly, and the behavior is the same as the preset
CASE OFF situation.

Ignore the case of letters. All identifiers are case insensitive. This is
the preset mode of the assembler, but it may be used in the
command line to reverse the effect of one of the other -case
modes.

Syntax check only. No object file is generated.

-dlefine] namel=valuel [,namel=valuel]

20 MPW 3.0 Reference

Define the name as having the specified value. The value is a
decimal integer. If value is omitted, a value of 1 is assumed. This
option is equivalent to placing the directive

name EQU value
at the beginning of your source file. To test whether the name is
defined, use the function sType. You can define more than one

name by specifying multiple -d options or multiple name(=value)
parameters separated by commas. For example,

Asm -d debugl, &debug="‘on'"™ ...

-dlefine] &namel=[valuel] [,&namel=[valud]]...
Define the macro name as having the specified value. The value is a
decimal integer or a string constant. If the =value is omitted, the
decimal value 1 is assumed. If only the value is omitted, the null
string is assumed. -define is equivalent to declaring the name as a
global arithmetic symbol (GBLA for an integer value) or global
character macro symbol (GBLC for a string value) and placing one
of the following directives at the beginning of the source file:

GBLA &name
& name SETA value
or
GBLC &name
&name SETC value

To test whether the name is defined, use the function sType.
You can define more than one macro name by specifying multiple
-d options or multiple &name [=value] parameters separated by
commas,

-elrrlog] filename
Write all errors and warnings to the error log file with the specified
filename (same as ERRLOG 'filename").

Note: If only warnings are generated, no error file is created.

£ Suppress page ejects (same as PRINT NOPAGE).

-font [fontname) [, fontsize
Set the listing font to fontname (for example, Courier), and the size
to fontsize. This option is meaningful only if the -s or the -1 option is
used; you cannot omit both. The default listing font is Monaco 7.
Note that listings are formatted correctly only if a monospaced
font is used.

-h Suppress page headers (same as PRINT NOHDR).

Asm—MC68xxx Macro Assembler 21

- pathname|,pathnamel...

Search for include and load files in the specified directories.
Multiple -1 options may be specified. At most, 15 directories are
searched. The search order is:

1. The include or load filename is used as specified. If a _full
pathname is given, no other searching is applied.

If the file isn’t found, and the pathname used to specify the file
is a partial pathname (no colons in the name or a leading colon),
the following directories are searched.

2. The directory containing the current input file.
3. The directories specified in -1 options, in the order listed.
4. The directories specified in the Shell variable {Alncludes}.

Generate full listing. If file name.a is assembled, the listing is
written to name.a.lst.

-lo listingname

Pathname for the listing file and directory for the listing scratch
file. If listingname ends with a colon (:), it indicates a directory for
the listing file, whose name is then formed by the normal rules (that
is, inputFilename.a.lst). If listingname does not end with a colon,
the listing file is written to the file /istingname. In this case, listings
for multiple source files are appended to the listing file. In either
case, the directory implied by the listing name is used for the
assembler’s listing scratch file. The -lo option is meaningful only if
the -s or the -1 option is used.

-0 objname Pathname for the generated object file. If objname ends with a

colon (), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputFilename.o). If
objname does not end with a colon, the object file is written to the
file objname. (In this case, only one source file should be specified
to the Aassembler.)

-pagesize [/][,w)

22 MPW 3.0 Reference

Set the listing page size. (This option is meaningful only if the

-s or -1 option is specified; you cannot omit both.) The /and w
parameters are integers: /is the page length (default = 75) and wis
the page width (default = 126). (These settings assume that
Monaco 7 is being used with the MPW Print command to the
LaserWriter.)

-print mode[,model...

-sym off

Set a print option mode. Mode may be any one of the following
PRINT directive options:

[NO]GEN Macro expansions
[NO] PAGE Page ejects
[NO]WARN Warnings
[NO]MCALL Macro calls
[NO]OBJ Object code
[NO]DATA Data

[NO]MDIR Macro directives
[NO] HDR Page headings
[NO]JLITS Literals

[NO] STAT Progress information
[NO] SYM Symbol table display

See the MPW 3.0 Assembler Reference for a discussion of these
PRINT settings. You can specify more than one print option by
specifying multiple -print options or multiple mode parameters
separated by commas. For example,

Asm -print nowarn,noobj,nopage

Note that single-letter options are provided for some of the
settings: -f (NOPAGE), -h (NOHDR), -p (STAT), and -w
(NOWARN).

Write assembly progress information (module names, includes,
loads, and dumps) and summary information (number of errors,
warnings, and compilation time) to the diagnostic output file.
(This option is the same as PRINT STAT.)

Set PRINT NOOB]J to generate a shortened form of the listing file.
If the -1 option is also specified, the rightmost option takes
precedence.

Do not write object file records containing information for SADE,
the MPW symbolic debugger. This is the default and will be in
effect if no -sym option is specified.

Asm—MC68xxx Macro Assembler 23

-sym [on | full]

Write complete object file records containing information for use
by SADE. The options on and full are equivalent. The symbolic
information generated by the assembler consists of Module Begin
(entry) OMF records for identifiers defined by the proc, FUNC,
and MAIN directives; Local Identifier OMF records for all EQu and
seT identifiers except for those identifiers defined in the files
included from the {Alncludes } folder; and Local Label OMF records
for the local code labels.

-t Display the assembly time and the number of lines to the diagnostic
file even if progress information (-p) is not currently displayed.
-w Suppress waming messages (same as PRINT NOWARN).
-wb Suppress branch warning messages only.
Example Asm -w -1 Sample.a Memory.a -d Debug

Assembles Sample.a and Memory.a, producing object files Sample.a.o and
Memory.a.o. Suppresses warnings and defines the name Debug as having the value
1. Two listing files are generated: Sample.a.lst and Memory.a.Ist. (Sample.a and
Memory.a are located in the AExamples directory.)

See also MPW 3.0 Assembler Reference .

24 MPW 3.0 Reference

Backup—folder file backup

Syntax backup [option ...] -from folder -to folder| file ...]

Description Files in a source (“from”) folder are copied to a destination (“to”) folder based
on the modification date. By default, only files that already exist in both the
source and destination folders are candidates for copying. (The -a option can
override this default.) Backup does not actually make the copies. Instead, it
generates a script of MPW Shell duplicate commands.

Backup’s default operation is based on the premise that you already have an
existing folder on two sets of disks (generally a hard disk and a set of 3.5-inch
disks—drive numbers may be specified as folder “names”) and that you want to
make sure that the files on one of the disks are the same as the files on the other
disk. Thus, it is the files on the destination (“to”) disk that determine which files
can be copied from the source (“from”) disk.

A Shell duplicate command is generated to the standard output file if

= 2 file on a source disk also exists on the destination disk, and

= the modification date of the source is newer than that of the destination.
In addition to the basic function of generating Shell duplicate commands,
Backup also provides these services:

= Folders can be recursively processed, allowing processing of all folders and
subfolders contained within folders (-r).

» Compare commands can be generated for out-of-date files of type TEXT to
discover why the files are different (-compare).

= Filenames that exist on one disk and not on the other can be displayed
(-check from,to).

= File folder names that don't exist on the destination can be displayed

(-check folders).
= Filenames in the destination that are newer than the source can be displayed
(-check newer).
Type Tool.
Input None.

Backup—folder file backup 25

Output

Diagnostics

Status

For each file to be copied, a Shell Duplicate command is generated to the
standard output file as follows:

Duplicate -y FromFile ToFile

Duplicate’s -y option may be suppressed by using Backup'’s -y option. If you are
using the -e option, then the Shell’s Eject commands are generated at the end of
the list of Duplicates. These commands cause the source and/or destination disks
to eject if the -from and -to options specify as parameters either or both disks as
disk drive numbers 1 or 2.

If you use the -compare option, a Compare command is written to the standard
output file if the files are of type TEXT. Note that only the Compare is generated
if you specify -compare only. You can also specify all additional Compare
command options with the Backup -compare option.

Errors and warnings are written to the diagnostic output file. If you specify the
-p option, and the diagnostic file is not the same as the standard output file, then
a summary of all duplicate commands generated is written to the diagnostic
output file. The summary shows the modification dates of both the source and
destination files. If you use the -check option, a report is written to the
diagnostic output file that includes any files in one folder that don’t exist on the
other folder, and any files in the destination folder that are newer than the source.
You can redirect this report to a file by using the -co option.

Backup may return the following status codes:

0 No errors; Shell duplicate commands have been generated or filenames were
listed.

1 Parameter or option errors.
No errors and no files to duplicate or list.

& Note: Backup returns a status code of 3 when no files need copying. If no
files are copied because none of the files in the source folder exists in the
destination folder, Backup also reports a warning to the diagnostic
output file. If there are no name matches, it is possible that your from/to
pathnames were specified incorrectly. Hence, Backup lets you know of
the possible error. Backup does not report this as an error if you use the
-1, -a, or -since option.

26 MPW 3.0 Reference

Options

-alt

Normally, a file in the source (“from”) is ignored if it does not

exist in the destination (“t0”). Using the -a option forces Backup
to :1enerate a Shell Duplicate command for all files in the source that
don’t exist in the destination.

If you use this option with the -m (“multidisk”) option, Backup
will alternate the drive numbers when it asks for additional disks.
This option has meaning only if either -from or -to, but not both,
specifies a disk drive (1 or 2).

r—Backup Options
~Source/Destination Folders

Search Criteria

(‘select "From" Directory...) [l Recursive Type| |
Since File |]
(_select "To* Directory...] flo oo I i
Drive Options—— ~Check Report Options)
K CIFiles not in "to” (" output Files...)

823&}_‘2;‘? [JFiles not in "from"

. ["to"s newer than “from"s
O fiternate diives O talders aot in 1o~

(More options...]

~Command Line

Backup

Files in a source ("from") folder are copied to a destination (“to") folder Cancel

based on the modification date. Backup does no actually do the copies. ,‘ Backu 1
Instead a script of MPY Shell duplicate commands is generated. ! [)

Create folders. When a folder name doesn'’t exist in the destination
disk and there are files in the source to copy, -¢ generates a Shell
Newfolder command to create the folder on the destination disk.
Note that this option makes sense only if you are using the -a
option.

Backup—folder file backup 27

28

-check checkopt [,checkopt 1...

Produce reports on the source and destination based on the
checkopt patameters. Checkopt may be any one of the following
parameter words:

from Report all files in the source (“from”) folder that don't
exist in the destination (“to”).

to Report all files in the destination (“to”) folder that don't
exist in the source (“from™).

allfroms Same as from, but report all folders processed, even if
there are no files in that folder to report.

alltos Same as to, but report all folders processed, even if
there are no files in that folder to report.

folders Report all source (“from”) folders that don't exist as

destination (“t0”) folders when recursively (-r)
processing folders. Note that only the outermost folder
names are reported.

newer Report all files in the destination (“to”) that are newer
than the source (“from”).

Note: The -check option is ignored if the -since option is used.

-co filename Normally the -check report is written to the diagnostic output file.

The -co option allows you to redirect the report to the specified
Sfilename.

-compare [only] ['option ...'] | 'option...!

MPW 3.0 Reference

Generate Compare commands for all files of type TEXT that are to
be duplicated. If only is specified, then only the Compares are
generated, not the Duplicates. Additional Compare command
options and output redirection can be specified. Make sure that
the Compare options you include are correct, because Backup
does not check for you. A period (.) may be used to indicate that
there are no Compare options. Note that, in general, the Compare
options must be enclosed in quotation marks to ensure that they
are not used as Backup options.

Generate Delete commands for all files in the destination (“to”)
folder that don’t exist in the source (“from”). If this option is
specified, the options -check to, -check alltos, -m, -1, and
-since cannot be used.

-do [only]'command...! |'command...'

Generate the command string specified by command... for all files
that are to be duplicated. If only is specified then only the
command string is generated, not the duplicates. The -do only
option may not be specified when the -compare only option is
specified. When the command string is generated, the source
(“from”) and destination (“to”) pathnames are added to the
command string as the last two (or only) parameters like this:

command... fromFilename toFilename

If -sync is specified, the same command is generated but with one
additional parameter to indicate the direction. If the source has a
newer modification date than the destination (the standard mode
of copying the source to the destination), a command string like
this is generated:

command... fromFilename toFilename "-->'

If the destination has a newer modification date than the source,
the following command string is generated:

command... fromFilename toFilename '<--'

If -1 is specified then -do only is implied, and the command string,
rather than a directory listing, is generated for each source (“from”)
file, like this:

command... fromFilename

Eject the disk from drive 1 and/or drive 2 if -from or -to specify
drive number 1 or 2. Disks are ejected when Backup terminates if
there are no files to duplicate. If Duplicate commands are
generated, then Shell eject commands are generated to eject the
specified disk(s).

Backup—folder file backup 29

-from folder | drive

Specify the folder or drive number (1 or 2) from which to get the
source list of files. If this option is omitted, the list may be
specified as a sequence of filename parameters to Backup (for
example, folder:=). If both -from and a list of files are omitted,
then drive 1 is assumed (that is, -from 1) if the -to parameter is
explicitly specified. The -from option must be specified if -to is
omitted or the -1 option is used. You can use the Shell wildcard
character, “=”, to do limited pattern matching when specifying a
-from folder. However, you must quote such folder specifications
to allow Backup (rather than the Shell) to process the pattern. The
difference between specifying -from and supplying a list of
filenames is that -from always implies that the files belong to the
specified folder, whereas a list of files explicitly specifies those
files. Using -from is more efficient than using the list, but the list
allows more complicated patterns.

-1 Generate a list of all files in the source (“from”) folder. The -to
option cannot be specified when -1 is used. If the -do option is
specified, the -do command string, rather than a file listing, is
generated for each file.

-lastcmd 'cmd

Generate the specified command as the last command. For
example, a Beep command could be generated to signal that all the
duplicates have been completed.

-level nestinglevel

30 MPW 3.0 Reference

Used to qualify the -a option. -level restricts the copying of all files
in the source that don't exist in the destination to those contained
in folders nested at a level greater than or equal to the specified
nesting level. This minimum nesting level is relative to the folder
specified by the -from option. The -from folder is considered
level 0. Folders contained in it are level 1, and so on. The preset -a
qualifying nesting level is 0; that is, all files in the source that don't
exist in the destination are copied as specified for -a. Because the
value of the nesting level is relative, it may take some
experimentation to produce the desired effects.

Multidisk operation. Backup will display a dialog box asking for
additional disks to be mounted in drive 1 or 2 (depending on
whether -from or -to specifies drive 1 or 2). This option is ignored
if both -from and -to specify disk drives.

-revert

When recursion (-r) is specified, generate the Duplicate commands
for files nested in inner folders with leading spaces to show the
nesting structure.

Write Backup’s version number and a report of all Duplicate
commands generated to the diagnostic output file. The report is
not produced if the diagnostic output file and the standard output
file are the same.

Recursively process subfolders encountered.

Revert all newer files in the destination (“to”) folder to their state in
the source (“from”) folder. The default mode for Backup is to copy
only those files in the source folder that are newer than files of the
same name in the destination folder. By specifying -revert, the
copy criteria are reversed. Only files in the destination that are
newer than those in the source are copied. This option is useful for
reverting a newer file to its previous state in an older backup copy.

-since datd,timd | |[timé] | filename

Generate Duplicate commands to the destination (“to”) folder for
all files in the source (“from”) folder(s) that have a modification
date greater than or equal to the specified date and time, or a date
and time determined from the modification date of the specified
filename. This is a special option that unconditionally copies files
that satisfy the date/time requirements. Files and folders in the
destination folder are ignored. This option is useful, for example,
for copying to a single disk all files changed since a certain time.
The date is specified in the form mm/dd/yy. The day (“dd”) and/or
year (“yy”) may be omitted. The time is specified as hh:mm:ss. The
minutes (“mm”) and/or seconds (“ss”) may be omitted. An entire
date or the time may be omitted. If both are omitted, the comma is
still required. If the date is omitted, the current date is used. If the

~ time is omitted, time 00:00:00 is used.

As an alternative to specifying an explicit date and/or time, you
can supply a filename. The modification date and time of that file
will be used as the -since date and time.

Note: Because the structure of the destination folder is ignored
when you use the -since option, Duplicate commands may be
generated for the same filename from different source folders.
It is recommended that you use the -y option to suppress the
Duplicate -y options when using -since.

Backup—folder file backup 31

-sync

-t type

Synchronize both source (“from”) and destination (“to”) folders.
Files are copied in both directions; source files newer than those in
the destination are copied to the destination, and destination files
newer than those in the source are copied to the source. The -sync
option may not be specified when any of the options -revert,
-since, or-a is specified.

Note: Use this option with caution, because it can cause copies
in the opposite direction from that specified as -from and -to.
An example of its safe use is with the -compare only option.
This option will generate compare commands for all TEXT files
that differ in their modification dates in either direction.

Consider only files of the specified #ype as candidates for Backup.

-to folder | drive

32 MPW 3.0 Reference

Specify the folder or drive number (1 or 2) from which to get the
destination list of files. If the -to option is omitted and the -from
parameter is explicitly specified, then drive 1 is assumed (that s,
-to 1). You must specify the -to option if you omit the -from
option.

Suppress generation of the Shell Duplicate command’s -y option.

Examples

Limitations

backup -from :HDfolder: -e

Check that all files on the disk in drive 1 (-to is omitted, so “-to 1" is implied) are
up to date with respect to the files in :HDfolder:. If they are, the disk in drive 1 is
ejected. If not, the appropriate Duplicate commands are generated to update
the out-of-date files on the disk in drive 1. An Eject 1 command is generated to
eject the disk after the Duplicate commands are processed.

backup =-r -from FServer:MPW: -to HD:MPW: -check folders

Recursively process (-r) all the files in all the folders on FServer:MPW’: to make sure
that the files on HD:MPW:: are up-to-date. Appropriate Duplicate commands are
generated to copy the out-of-date files from the folders in FServer:MPW: to the
folders in HD:MPW:. It is assumed that the folder names in HD:MPW: are the
same as the folder names in FServer:MPW:. Any folders in FServer:MPW: that don't
exist in HD:MPW are skipped. Because the -check option is specified, a list of all
the skipped folders is written to the diagnostic file.

Multi-disk operation (-m) is not supported with recursion (-r).
The -e option is ignored when -m is specified.

Only drive numbers 1 and 2 are supported, and they are assumed to be ejectable
3.5-inch disk drives.

Backup—folder file backap 33

Beep—generate tones

Syntax

Description

Type

Input
Output
Diagnostics
Status

Options

Beep [notel,duration| level]]]...

For each parameter, Beep produces the given note for the specified duration and
sound level on the Macintosh speaker. If no parameters are given, a simple beep is
produced.

Note is one of the following:

= A number indicating the count field for the square wave generator, as
described in chapter “Summary of the Sound Driver” of Inside Macintosh.

s Astring in the following format:
[n]letter(# | b]

n is an optional number between -3 and 3 indicating the octaves below or
above middle C, followed by a letter indicating the note (A-G) and an
optional sharp (#) or flat (b) sign. Note that any sharps (#) must be enclosed
in quotation marks—otherwise they will be interpreted as comment
delimiters.

The optional duration is given in sixtieths of a second. The default duration is 15
(one-quarter second).

The optional sound level is given as a number from 0 to 255. The default level is
128.

Built-in.

None.

None.

None.

A status code of 0 is always returned.

None.

34 MPW 3.0 Reference

Examples Beep
Produce a simple beep on the speaker.

Beep 2C,20 'ZC#,40' 2D,60

Play the three notes specified: C , C sharp, and D—all two octaves above middle
C—for one-third, two-thirds, and one full second, respectively. Notice that the
second parameter must be quoted; otherwise the sharp character (#) would
indicate a comment.

Beep—generate tones 35

Begin...End—group commands

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Begin
command...
End

Groups commands for pipe specifications, conditional execution, and
input/output specifications. Carriage returns must appear at the end of each line
as shown above, or be replaced with semicolons (;). If the pipe symbol (1),
conditional execution operators (&& and |1), or input/output specifications (<,
>, >> 2 22 3 33 are used, the operator must appear after the End
command and applies to all of the enclosed commands.

¢ Note: Begin and End behave like left and right parentheses. Once the
Begin command has been executed, the Shell will not execute any of the
subsequent commands until it encounters the End command, so that
input/output specifications can be processed.

Built-in.

None.

None.

None.

The status code of the last command executed is returned. (If no commands
appear between Begin and End, 0 is returned.)

None.

36 MPW 3.0 Reference

Examples

The following commands save the current variables, exports, aliases, and menus in
the file SavedState.

Begin
Set
Export
Alias
AddMenu
End > SavedState

Notice that the output specification following “End” applies to all of the
commands within the Begin...End control command. This command is identical
to the following:

(Set; Export; Alias; AddMenu) > SavedState

The commands Set, Export, Alias, and AddMenu write their output in the form of
commands; these commands can be executed to redefine variables, exports,
aliases, and menus, respectively. Therefore, after executing the above
commands, the command

Execute SavedState

will restore all of these definitions. You must “execute” the script so that the
variables and aliases are applied to the current scope.

¢ Note: This technique is used in the Suspend script to save state
information. (You might want to take a look at Suspend, which also saves
the list of open windows and the current directory.) The Resume file runs
the file that Suspend creates, restoring the various definitions, reopening
the windows, and resetting the current directory.

Begin...End—group commands 37

Break—break from For or Loop

Syntax Break [If expression]

Description If expression is nonzero, Break terminates execution of the immediately enclosing
For or Loop command. (Null strings are considered zero.) If the “If expression” is
omitted, the break is unconditional. (For a definition of expression, see the
Evaluate command.)

Type Built-in.

Input None.

Output None.

Diégnostics Errors are written to diagnostic output.
Status Break may return these status codes:

0 No errors detected.

-3 Break is found outside a For...End or Loop...End, or the parameters
to Break are incorrect.

-5 Invalid expression.

Options None.

38 MPW 3.0 Reference

Examples Set Exit 0

For file in Startup UserStartup Suspend Resume Quit
EnTab "{file}"™ > temp
Break If {Status} != 0
Rename -y temp "{file}"
Print -h "{file}"
Echo "{file}"™

End

This For loop entabs and prints each of the special MPW scripts; the Break
command terminates the loop if a nonzero status value is returned. (See the For
command for further explanation of this example.)

Set loopcount |

Loop
Break if {loopcount} > 10
Echo "Loop Number {loopcount}"
Evaluate loopcount +=1

End

This example loops until the variable {loopcount} is greater than 10. Use of the
Evaluate command is also demonstrated.

See also For, Loop, and If commands.
Evaluate command (for a description of expressions).

“Structured Commands” in Chapter 5.

Break—break from For or Loop 39

BuildCommands—show build commands

Syntax

Description

Type
Input

Output

Diagnostics

Status

Option

BuildCommands program [options...]

BuildCommands writes to standard output the commands needed to build the
specified program.

Make is used to generate the build commands. If file program.make exists, it is
used as the makefile. If not, file MakeFile is used.

The specified options control the generation of the build commands. The
options are passed directly to Make. BuildCommands is used to implement the
Show Build Commands and Show Full Build Commands menu items in the Build
Menu.

Script.
None.

The commands needed to build the specified program are written to standard
output.

Errors and warnings are written to diagnostic output. They may be written either
by BuildCommands or by Make.

Status code 0 is returned if the build commands are generated without error. If an
error occurs, the status code returned by Make is returned.

The options specified are passed directly to Make and control the generation of

the build commands. Although other Make options may be used, the most useful

is -e. »

- Generate complete build commands, regardless of file dates.
Ignore any up-to-date object files or other temporary files that may
already exist.

40 MPW 3.0 Reference

Example Open "{Worksheet}"
BuildCommands Count >> “{Worksheet}" 22 Dev:StdOut

Generates the build commands for Count. The Worksheet window is brought to
the front. The build commands, or any errors generated by Make are written at
the end of the Worksheet. The Show BuildCommands menu item is implemented
using similar commands.

See also “Building a Program: An Introduction” in Chapter 2.

BuildCommands—show build commands 41

BuildMenu—create the Build menu

Syntax BuildMenu
Description Creates the Build menu shown below. Each of the items in the menu is described
in Chapter 3.

Create Build Commands...

Build... %8
Full Build...

Show Build Commands...
Show Full Build Commands...

Type Script.

fnput None.

Output None.

Diagnostics Errors are written to diagnostic output.
Status A status code of 0 is always returned.
Options None.

Example BuildMenu

Creates the Build menu. This command should appear in the UserStartup file to
create the Build menu.

See also “Building a Program: An Introduction” in Chapter 2.

42 MPW 3.0 Reference

BuildProgram—build the specified program

Syntax

Description

Type

Input

Output

Diagnostics

Status

Option

BuildProgram program [option...]

Builds the specified program. A simple transcript of the build, including timing
information and commands used to do the build, is written to standard output.

Make is used to determine the commands needed to do the build. If file
program.make exists, it is used as the makefile. If not, the file MakeFile is used.

The options specified are passed directly to Make; they control the generation of
the build commands. BuildProgram is used to implement the Build and Full Build
menu items in the Build menu.

Script.
None.

A transcript of the build, including timing information and the commands used to
do the build, is written to standard output.

Errors that occur during the generation of the build commands or during the build
are written to diagnostic output.

Status code 0 is returned if the build is completed without error. If an error occurs
during the generation of the build commands, the status value returned by Make
is returned. If an error occurs during the build, the status value returned by the
build step that detected the error (such as Asm or Link) is returned.

The options specified are passed directly to Make, and control the generation of

the build commands. Although other Make options may be used, the most useful

is -e.

- Rebuild everything, regardless of dates. The specified program is
completely rebuilt, ignoring any up-to-date object files or other
temporary files that may already exist.

BuildProgram—build the specified program 43

Example Open "{Worksheet}"
BuildProgram -e Count >> "{Worksheet}" 2> Dev:StdOut

Completely rebuilds Count. The Worksheet window is brought to the front. The
transcript of the build and any errors are written at the end of the Worksheet. The
Full Build menu command is implemented using similiar commands.

See also “Building a Program: An Introduction” in Chapter 2.

44 MPW 3.0 Reference

C—C compiler

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

G loption...] [fl]

Compiles the specified C source file. Compiling file Name.c creates object file
Name.c.o. (By convention, C source filenames end in a “.c” suffix.) If no
filenames are specified, standard input is compiled and the object file “c.o” is
created.

(Note that SADE object file information cannot be generated for standard input
source files.)

See the MPW 3.0 C Reference Manual for details of the C language definition.
Tool.

If no filenames are specified, standard input is compiled. You can terminate
input by pressing Command-Enter.

If you specify the -e or -e2 options, preprocessor output is written to standard
output, and no object file is produced.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to the diagnostic
output,

The following status codes may be returned:
0 Successful completion.
1 Errors occurred.

-b Generate PC-relative references for functions in the same segment
and for string constants (which are kept at the end of the function
code module). Useful for writing DAs, WDEFs, and so on.

-b2 Same as the -b option, but also allows the code generator to reduce
code size by overlaying string constants where possible.

-b3 Allow the code generator to keep string constants in the code
segment and overlay them when possible (but always generate A5
relative references for function addresses).

- Don't call the code generator.

C—C compiler 45

-d name Define name to the preprocessor with value one. This is the same
as writing
#define name 1
at the beginning of the source file. (The -d option does not
override #define statements in the source file.)

-d name=string
Define name to the preprocessor with value string. This is the same
as writing
#define name string
at the beginning of the source file.

-€ Do not compile the program. Instead, write the output of the
preprocessor to standard output. This option is useful for
debugging preprocessor macros.

€2 Same as the -e option, but also suppresses comments.

elems881 Use in-line MC68881 instructions for all transcendental functions
available on the MC68881 processor. See the MPW 3.0 C Reference
for a complete list of these functions. This option implies the
-mc68881 option.

- pathname |, pathname)...

Search for inc1ude files in the specified directories. Multiple -i

options may be specified. A maximum of 15 directories can be

searched. This is the search order:

1. The include filename is used as specified. If a full pathname
is given, no other searching is applied. If the file wasn’t found,
and the pathname used to specify the file is a partial pathname
(no colons in the name or a leading colon), the following
directories are searched:

2. The directory containing the current input file.

3. The directories specified in the -1 options, in the order listed.

4. The directories specified in the Shell variable {Cincludes}.

-m Generate 32-bit data references. More than 32K of global data is
assumed. The object code is less efficient.

-mbg off Don't include symbols for the MacsBug debugger.

-mbg full Include full (untruncated) symbols for MacsBug.

46 MPW 3.0 Reference

-mbg ch8

Include MPW 2.0-compatible MacsBug symbols (eight characters
only, in a special format).

-mbg number

-mc68020

-mc68881

-n

-0 objname

-S name

-sym off

Include MacsBug symbols truncated to length number.

Generate MC68020 instructions whenever doing so would provide
faster and/or smaller object code.

Generate MC68881 instructions for all basic floating-point
operations.

Change errors of pointer assignment incompatibility into warnings.

Pathname for the generated object file. If objname ends with a
colon, it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputfilename.o). It
objname does not end with a colon, the object file is written to the
file objname.

Write progress information (include file names, function names,
and sizes) and summary information (number of errors and
warnings, code size, global data size, and compilation time) to
diagnostic output.

Emit a2 warning when calling a function that doesn’t have a
definition.

Name the object code segment. (The default segment name is
“Main”.)

Do not emit SADE object file information.

-sym on | full

-u name

Write complete object file records containing information for
SADE, the MPW symbolic debugger. This option can be limited by
also specifying one or more of nolines, notypes, and novars,
which causes omission of line, type, and variable information,
respectively, from the object file.

Write compilation time to diagnostic output.

Undefine the predefined preprocessor symbol name. This is the
same as writing

#undef name

at the beginning of the source file.

C—C compiler 47

Example

See Also

-w Suppress compiler warning messages. (By default, warnings are
written to diagnostic output.)

-w2 Emit even more warnings about constructs that the compiler has
reason to suspect.

-y pathname
Put the compiler's temporary intermediate (“.0.i”) files in the
directory specified by pathname.

C -p Sample.c

Compiles Sample.c, producing the object file Sample.c.o. Writes progress
information to diagnostic output. (Sample.c is found in Examples:CExamples.)

MPW3.0C Reference.

48 MPW 3.0 Reference

Canon—canonical spelling tool

Syntax

Description

Canon [s] [a] [n] dictionaryFile [inputFile...]

Canon copies the specified files to standard output, replacing identifiers with
the canonical spellings given in dictionaryFile. If no files are specified, standard
input is processed.

DictionaryFile is a text file that specifies the identifiers to be replaced and their
new (or canonical) spellings. Identifiers are defined as a letter followed by any
number of letters or digits. (The underscore character (_) is also considered a
letter.) Each line in the dictionary contains either a pair of identifiers or a single
identifier:

s If two identifiers appear, the first is the identifier to replace, and the second
is its canonical spelling. For example, the dictionary entry

NIL NULL # change NIL to NULL
changes each occurrence of “NIL” to “NULL”.

s A single identifier specifies both the identifier to match and its canonical
spelling. This feature is useful because the matching may not be case
sensitive or restricted to a fixed number of characters. (See the “Options”
section on the next page.) For example, the dictionary entry
true
changes all occurrences of “TRUE”, “True”, “RUE”, and so on to “true”.

You can specify a left context for the first identifier on each line of the
dictionary by preceding it with a sequence of nonidentifier characters.
Replacement will then occur only if the left context in the input file exactly
matches the left context in the dictionary. For example, if C structure component
upperLeft should be replaced with topLeft, the dictionary might include the
following:

.upperLeft topLeft
->upperLeft topleft

You can include comments in the dictionary file by using the # symbol: everything
from the # to the end of the line is ignored.

@ Note: The file Canon.Dict is a sample dictionary file that's included with
MPW. (See the “Examples” section below.)

Canon—canonical spelling tool 49

Type

Input
Output
Diagnostics

Status

Options

Tool.

Standard input is read if no files are specified.

The specified files are written to standard output with the identifiers replaced.
Errors are written to diagnostic output.

The following status codes may be returned:

0 Allfiles processed successfully.
1 Ermor in command line.
2 Other errors.

~Canon Options

DictionaryFile |]

[Case sensitive
(enes o process...) [J Assembler indentifiers

Number of significant characters E:l

Output Error

~Command Line
Canon

e
Copies the specified files to standard output, replacing identifiers with the
canonical spellings given in dictionaryFile. Canon

-S Use case-sensitive matching. (Pattern matching is normally not case
sensitive.

-a Causes the characters $, %, and @ to be considered letters (for
defining identifiers). This option is useful when processing an
assembly language source.

<n Take only the first 7 characters as significant. (Normally all

characters in identifiers are significant.)

50 MPW 3.0 Reference

Examples

Limitations

The file Canon.Dict, in the Tools folder, contains a list of all of the identifiers
used in the Standard C library and the Inside Macintosh C interfaces. This list was
made from the Library Index in the MPW 2.0 C Reference. The entries in
Canon.Dict look like the following:

abbrevDate
ABCallType
abortErr
ABProtoType
abs

acos
activateEvt

The following command copies the file Source.c to the file Temp; identifiers
whose first eight characters match a dictionary entry are replaced with that entry.

Canon -c 8 "{MPW}"Tools:Canon.Dict Source.c > Temp

The -c 8 option is useful when porting source code from other systems where
only eight characters are significant.

& Note: The list of Pascal identifiers used in the Inside Macintosh interface
is almost identical to the list used in C. The dictionary Canon.Dict can
also be used to port Pascal programs from other systems, as long as you
use the canonical capitalizations for the various Standard C library
identifiers.

The maximum line length in the dictionary file is 256 characters. Longer lines are
considered an error. Identifiers and words in comment sections are replaced.

Canon—canonical spelling tool 51

Catenate—concatenate files

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Examples

Catenate [file...]

Catenate reads the data fork of each file in sequence and writes it to standard
output. If no input file is given, Catenate reads from standard input. None of the
input files may be the same as the output file.

i3uilt-in.

Standard input is processed if no input files are specified.
All files are written to standard output.

Errors are written to diagnostic output.

The following status codes may be returned:

0 Allfiles were processed successfully.
1 One or more files were not found.
2 Anerror occurred in reading or writing.

None.

Catenate Makefile.a

Writes Makefile.a to the active window immediately following the command.

Catenate Filel File2 > CombinedFile

Concatenates the first two files and places the result in the third. If CombinedFile
doesn’t exist, it will be created; if it exists, it will be overwritten.

Set selection "'Catenate §'"

Captures the selection from the target window in the Shell variable {selection}.

Catenate >> {Worksheet}

Appends all subsequently entered text to the Worksheet window (until you
indicate end-of-file by pressing Command-Enter).

52 MPW 3.0 Reference

Warning Beware of commands such as

Catenate Filel File2 > Filel‘

The above command will cause the original data in Filel to be lost. To append
one file to another, use the form

Catenate File2 >> Filel

See also Duplicate command.

“Redirecting Input and Output” in Chapter 5.

Catenate—concatenate files 53

CheckIn—check in files to a project

Syntax

Description

Type

Input
Output

Diagnostics

CheckIn-w | close | [-u user] [-project project] [-t task][-p]
[<cs comment | - file][-new | -b][-m | delete] [-touch]
[y l-nl<]lalfie..

Return ownership of the specified files to Projector and save all changes as new
revisions. The default is to leave you with a read-only copy of the file.

File must be an HFS pathname. Projector determines the project each file
belongs to by inspecting the file's resource fork. Since Projector puts the name
of the project in the resource fork of checked-out files, files belonging to
different projects can be checked in with a single command.

If the -a (all) option is used instead of file..., Projector examines all files in the
current directory and checks in all files in the current directory that have been
checked out for modification. The files are checked into their respective
projects.

To add a new file to the project, use the -new option.

When the file is checked in, Projector automatically increments the revision
number by one. For example, if revision 2.17 was checked out, the new revision
will be 2.18. To override this, use the Projectinfo command to find the revision
number, increase it by the amount desired, and then check the file in, using the
“filename,rev” notation. For example, if file.c revision 2.17 was checked out, you
could check it in as file.c,3.0 to jump to the next major revision level.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in. Option -u 'user' is required if the Shell variable {user} is null.
None.
Progress is written to standard output if the -p option is specified.

Errors and warnings are written to diagnostic output.

54 MPW 3.0 Reference

Status

Options

The following status codes may be returned:

0 No errors.

1 Syntax error.

2 Error in processing.

3 System error.

W Open the Check In window.

-close Close the Check In window.

-u user Name of the current user. This option overrides the {User} shell
variable.

-project project

Name of the project that contains the files. This becomes the
current project for this command.

-new Add a new file to the project.

-t task A very short description of the task that was accomplished by the
changes made to the file(s). This task overrides the task found in
the *ckid' resource of each file specified.

-cs comment
A short description of what changes have been made to the file(s)
being checked in. This comment overrides the comment found in
the *ckid' resource of each file specified.

-cf filename The comment is contained in the file filename. This comment
overrides the comment found in the *ckid* resource of each file

specified.
-a Check in all the files in the current directory.
-b Check in the file as a branch off the revision that was checked out.
-m Keep a write-privileged copy of the file(s) for further modification.

This basically does a check-in followed by a check-out for
modification of the new revision.

-delete Delete the file after checking it in.

-p Write progress information to standard output.

-touch Touch the modification date of the file before checking it in.
-y Answer “Yes” to all dialogs (doing so avoids the dialogs).

CheckIn—Check in files to a project 55

Examples

See Also

-n Answer “No” to all dialogs (doing so avoids the dialogs).

-C Cancel the dialog if a conflict occurs (doing so avoids the dialogs).

CheckIn file.c -cs “added some comments"

Check in file.c to the current project. A new revision of file.c is created and the
user is left with a read-only copy of the file. The comment is saved with the new
revision. Because no revision number is specified, Projector simply increases the
revision number by one.

CheckIn file.c interface.c,5 -t "Added -x option" 0
-cf commentFile

This command checks in two files reading the comment from the file
commentFile. The task is also saved with the new revisions. The user is left with
read-only copies of the files. The new revision for interface.c is revision 5.

CheckIn hd:work:file.c hd:work:main.c -m

The files to be checked in are hd:workfile.c and :main.c. After the command
executes, the user still has modifiable copies of the files.

CheckIn -new file.c

To check a new file into the project use the -new option. The above command
adds file.c to the current project.

CheckOut -project Zoomhkilitiesb@?roject file.c -m
..edit the file...

CheckIn -project ZOOmhkilitieshWProject file.c -b

The preceding command sequence illustrates the usefulness of the -b option. In
this case, the user checked out a write-privileged copy of the latest revision of
file.c from the current project, edited the file, and then, using the branch option,
checked in the file on a branch.

CheckOut and CheckOutDir.

56 MPW 3.0 Reference

CheckOut—check out files from a project

Syntax

Description

Type

Input
Output

Diagnostics

CheckOut -w | close | [-u user] [-project project](-m | -b [-t task]][-cs comment |

f file] [d directory] [-r] [open][-y | -n | <] [-pll-noTouch]
[-cancel |-update | -a | -newer | file...]

Under Projector, CheckOut obtains copies of file revisions from a project. The
default is to check out read-only copies. Unless otherwise specified, copies are
placed in the checkout directory associated with the project.

If file is a leafname (that is, file.c), Projector checks out the latest revision of the
file from the current project. If file specifies a revision (for example, file.c,22),
that revision is checked out.

If file is a partial or full HFS pathname (that is, :work:file.c or HD:work:file.c),
the file does not go into the checkout directory. Instead, Projector checks out
the file (that is, file.c) in the current project and places the copy in the specified
HFS location (that is, in the :work: or HD:work: directory, respectively).

Finally, file may be a Name. See the NameRevisions command for more
information about Names. The Name is expanded and the corresponding
revisions are checked out.

To check out an old revision for modification, you must specify the -b (branch)
option.

If you are checking out revision 5 of file.c into hd:work and Projector
determines that you already have that revision in the work directory, Projector .
will not recopy the data of revision 5. This is especially nice when you are
checking out a revision for modification, and you already have a read-only copy
of that revision.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.
None.
Progress is written to standard output if the -p option is specified.

Errors and warnings are written to diagnostic output.

CheckOut—check out files from a project 57

Status The following status codes may be returned:

0 No errors.
1 Syntax error.
2 Error in processing.
3 System error.
Options -w Open the Check Out window.
~close Close the Check Out window.
-u user Name of the current user. This overrides the {User} shell variable.
-project project

Name of the project that contains the files. This becomes the
current project for this command.

-d directory The directory to which the checked-out files should go. This
overrides the checkout directory for the current project. See the
CheckOutDir command.

-t task A very short description of the task to be accomplished by
checking out files for modification.

-cs comment
A short description of what changes will be made to the file(s)
being checked out.

-cf filename The comment is contained in the file filename.
-a Check out all the files in the Project.

-m Check out a write-privileged copy of the file for modification.
This locks the revision, preventing other users from inadvertently
changing the revision.

-open Open the files after checking them out. This only works on files of
type text.
b Create a branch. A write-privileged copy of the file is checked out.

When the file is checked back in, it will become a branch of the
revision that was checked out.

-update Find all read-only copies of the project in the checkout directory
(or the -d directory) and update them to the latest revision if they
are older revisions. Files that have been checked out for
modification, or that are on branches, are not affected. This
option cannot be used when checking out files for modification.

58 MPW 3.0 Reference

Examples

-p Write progress information to standard output.

T Recursively execute the CheckOut command on the current project
and all of its subprojects.

-newer Check out the latest copy of all files in the project. Files that have
been checked out for modification, or that are on branches, are
not affected. This option cannot be used when checking out files
for modification.

-cancel Cancel the check out of the specified files.

-noTouch Don't touch the modification date of the checked out files.

-y Answer “Yes” to all dialogs (avoids the dialogs).
-n Answer “No” to all dialogs (avoids the dialogs).
-C Cancel the dialog if a conflict occurs (avoids the dialogs).

CheckOut -m -project ZomﬂUtilitieisProject file.c

Checks out a write-privileged copy of the latest revision of file.c from the
Zoom|UtilitiesMyProject project. The file is placed in the checkout directory
for the project.

CheckOut -m file.c

The above command checks out the latest revision of file.c for modification.

The file is placed in the checkout directory for the project. If you already happen
to have the latest revision of file.c in the checkout directory, then Projector only
updates the *ckid* resource of file.c to indicate that it is now a modifiable file.

CheckOut -project zoomfUtilities/Kerfroodi file.c,22

The above command checks out a read-only copy of revision 22 of file.c from the
Zoom/Utilities/Kerfroodi project. The file is placed in the checkout directory
for the project.

Project zoomlUtilities[Kerfroodi
CheckOut file.c -t "Fix Bug 7" -m -dd
"{Zoom}UtilitiesSrc:Kerfroodi"

By setting the current project with the Project command you don’t need to
specify a project on subsequent Projector commands. By setting the task other
users will be able to see why you have checked out file.c. The files are placed in
{Zoom}UtilitiesSrc:Kerfroodi.

CheckOut—check out files from a project 59

CheckOut -a -d HD:Work:Test

The above example checks out read-only copies of all of the files in the current
project and places the copies in the directory HD:work:Test.

CheckOut -a -project zoom| -r

Checks out read-only copies of all files in the Zoom project and all of its
subprojects. Its behavior is the same as if you had executed these commands

individually:

CheckOut -a -project zoom/

CheckOut -a -project ZoomfVoom

CheckOut -a -project ZzoomfUtilities

CheckOut -a -project ZomﬂUtilitiesb@?roject

You can conveniently update the read-only files (from the current project) in the
current directory without affecting any files checked out for modification. To
do this, use the -update option:

CheckOut -update -d :

See Also CheckIn and CheckOutDir.

60 MPW 3.0 Reference

CheckOutDir—set checkout directory

Syntax

Description

Type
Input

Output

Diagnostics

Status

Options

CheckOutDir [-project project] [-m] [-r][-x | directory]

Under Projector, CheckOutDir changes the checkout directory associated with
the current project to the HFS pathname directory. From this point on, files
checked out of the named project are placed, by default, into this directory. The
directory is created if it does not exist. When a project is mounted, the
checkout directory is initially set to “:"—that is, the current directory.

It is recommended that you put CheckOutDir commands immediately following
the corresponding MountProject commands you place in your UserStartup file,
script, or AddMenu for project initialization.

If directory is missing, the checkout directory of the current project is written to
standard output in the form of a CheckOutDir command.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.
None.

If directory is missing, the checkout directory of the current project is listed in
the form of a CheckOutDir command.

Errors and warnings are written to diagnostic output.

CheckOutDir may return these status codes:

0 No errors.

1 Syntax error.

2 Error in processing.
3 System error.

-project project
Name of the project with which to associate the checkout
directory. This becomes the current project for this command.

-m Display or set the checkout directories for all “mounted” root
projects.

CheckOutDir—set checkout directory 61

Examples

T Recursively display or set checkout directories.

-X Reset the checkout directory back to the default—that is, the
current directory “”.

CheckOutDir HD:work:Test

This command causes subsequent files in the current project to be checked out
to the HD:work:Test folder.

CheckOutDir
CheckOutDir -project ZoomfUtilities[Test HD:work:Test

The above command outputs the checkout directory of the current project in the
form of a CheckOutDir command.

CheckOutDir -project zoom| -r

CheckOutDir -project Zoom :

CheckOutDir -project ZoomfVroom :

CheckOutDir -project zoomfUtilities

CheckOutDir -project ZoomfUtilities|Test HD:work:Test

The -r option lets you display the checkout directory for the current project and
all subprojects. In this case, only the sort project has a checkout directory
setting that differs from the default.

The -r option can also be used to set the checkout directories of a complex
project to mirror the projects own hierarchical structure. For example:

CheckOutDir -project Zoom/ -r HD:Work:

After executing the above command, listing the checkout directories for the
projects under Zoom yields

CheckOutDir -project zoom -r

CheckOutDir -project Zoom| HD:work:

CheckOutDir -project Zoom/Vroom HD:Work:Vroom
CheckOutDir -project ZoomfUtilities HD:Work:Utilities
CheckOutDir -project ZoomfUtilities|Test
HD:Work:Utilities:Test

Notice how the directory structure is similar to the project structure. The
directories are created if they do not exist.

62 MPW 3.0 Reference

See Also

The -m option lists the checkout directories of the root projects. For example

CheckOutDir -m

CheckOutDir -project zoom/ HD:Work:Zoom
CheckOutDir -project Test] HD:Test

MountProject, Checkln, and CheckOut.

CheckOutDir—set checkout directory 63

Choose—choose or list network volumes and printers

Syntax Choose [options...] name...

Description Choose noninteractively mounts or lists the specified AppleShare volumes or
printers. Each name takes the form

[zone] : [server[:volume]]

(“Server” means any file or printer server.) The zone name is always optional and
defaults to the current zone. A server name must be preceded by (at least) a
colon. Volume names are only applicable to file servers.

When mounting file server volumes, a server name is required. If a volume name is
specified, only that volume is mounted. If the volume name is omitted, or if it is
the wildcard character “=”, all volumes on the server are mounted:

[zone] : server:volume '

[zone] :server[:=]

When -list is specified, the wildcard character "=" may be used in place of names
in all of the fields: "=" in the zone field expands to all zones; "=" in the server
field expands to all servers in the specified zones; "=" in the volume-name field
expands to volumes on the specified servers (listing volumes on a server requires a
server login—that is, as a user with a valid password or as a guest). If the wildcard
character “=” is used, it must be quoted so that the Shell will not expand it.

The -list option also expands the next unspecified item in a name. A zone name
followed by nothing else expands to a list of servers in that zone, and a server
name followed by nothing else expands to a list of volumes on the server.

Ifa “=", “:” or “3" character appears in a server, volume, or zone name, it may be
quoted with the character “a”. This quoting mechanism supplements quoting
already performed by the Shell.

Any number of volumes may be mounted (though a system-dependent limit exists
on the number of active server connections). Only one printer may be chosen at a
time, since only one printer can be active.

Server and volume passwords are case sensitive. More than one server and volume
may be mounted with a single command, but the server and volume passwords
must be the same for each, since at most one password of each type may be
specified on the command line.

64 MPW 3.0 Reference

Input

Output

Diagnostics

Status

Options

None.

If -list is specified, the names of zones, servers, and volumes on file servers are
printed in a form suitable for reinput to Choose command lines. If -c is specified,
the name of the tool (plus appropriate options) appears on each output line.

If -v is specified, the names of volumes that were mounted are printed.

If -cp is specified, the name, type, and driver of the currently chosen printer are
printed.

Errors are written to diagnostic output.

Various confusing messages (such as “No AFPLogin call has been successfully
made for this session”) are usually the result of a missing or mistyped password.

The following status codes may be returned:

0 No errors.
1 Syntax error on command line.
3 Any othererror.

-list Print information about the specified network entities.

- Precede each line of -list output with the name of the Choose tool
(that is, output Choose commands).

-type typename
This option sets the type of the network object to choose or list.

The type name is not case sensitive. For mounting or listing
volumes, the type name defaults to 'AFPServer'; for choosing or
listing printers, it defaults to the name of the current printer driver
(such as 'LaserWriter). Use this option to choose or list network
entities of other types.

A type name of “=” or “=" matches all network entity types. You can
list or attempt to mount network entities that are not chooseable.
For instance, it is not possible to mount or list volumes on servers
of types other than 'AFPServer'.

-p Writes Choose's version number and step-by-step progress
information to standard output. This is reassuring when you are
doing listings that can take several minutes (for example, every
server on the internet).

Choose—choose or list network volumes and printers 65

Examples

The following options are applicable to file servers only and may not be specified
in conjunction with any printer options:

-u name Specify the user name for the server log-in. This option has
precedence over the Shell variable "{User}", which in turn has
precedence over the user name string in the system resource file
('STR ' -16096). If no valid user name is found in any of the above
locations, -guest is assumed.

-guest Login as a guest instead of with a user name.

-pwpassword
Specify the server log-in password. The server password defaults to
the value of the Shell variable "{ServerPassword}".

-vp password
Specify the volume log-in password. The volume password defaults
to the value of the Shell variable "{VolumePassword}".

-V Print the volume names (only) of any volumes mounted. Colons are
appended to each volume name. This is useful in Shell scripts when
volume names are not known ahead of time.

The following options are applicable to printers only and may not be specified in
conjunction with any file server options:

-pr Specify that a printer is being chosen or listed.

<p Print the name and type of the currently chosen printer to standard
output. This occurs before any new printer is chosen.

-dr drivername
Specify the driver name of the printer to choose. This is the name
of a printer driver in the system folder (such as “ImageWriter”).

Choose :Linker:Sources

Mount the volume Sources on the server Linker, located in the current zone, using
the default user name, server password, and volume password.

Choose -v -guest 'Systems:Sources:Doc' 'Systems:Games:='

Mount the volume Doc on the server Sources and every volume on the server
Games in the zone Systems as a guest. Print the names of the volumes that are
mounted by the command. List the names of all zones. Notice that the wildcard
character “=” is quoted.

66 MPW 3.0 Reference

See also

Choose -list 'Whale Zone:=' 'Whale Zone:Moby Dick:=' '=:'

List all file servers in the zone Whale Zone, all volumes on the file server Moby Dick
in that zone (after logging in with the default user name and server password) and
all zones (with their servers).

Choose -pr -list ':='

Choose -cp -pr "Zarf:Kitchen Sink"

List all printers of the current type in the current zone. Printthe name of the
currently selected printer, then select the printer called Kitchen Sink in the zone
Zarf,

Choose -list -type "Fortune Cookie Server" '=:='

List all network entities of type Fortune Cookie Server in all zones.

Unmount and Volumes commands.

Choose—choose or list network volumes and printers 67

Clear—clear the selection

Syntax Clear [-c count] selection [window)

Description Finds selection and deletes its contents. The selection is not copied to the
Clipboard. (For a definition of selection, see Chapter6.)

If window is specified, the Clear command acts on that window. It’s an error to
specify a window that doesn’t exist. If no window is specified, the command
operates on the target window (the second window from the front).

Type Built-in.

Input None.

Output None.

Diagnostics Errors are written to diagnostic output.
Status Clear may return the following status codes:

0 At least one instance of selection was found.
1 Syntax error.
2 Any other errors.

Option -C count Repeat the select-and-delete operation count times.

Examples Clear §

Deletes the current selection. This is like the Clear command in the menu bar,
except that the action occurs in the target window rather than the active window.

Clear /BEGIN/:/END/

Selects everything from the next BEGIN through the following END, and deletes
the selection.

See also Cut and Replace commands.

“Selections” in Chapter 6 (see Appendix B for a summary).

68 MPW 3.0 Reference

Close—close specified windows

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Close [-y | -n | <] [| window...]

Close the window or windows specified by window. If no window is specified,
the target window is closed. If changes to the window have not been saved, a
dialog box requests confirmation of the Close command. In scripts you can use
the -y, -n, or -¢ option to avoid this interaction. Use the -a option instead of
window to close all of the open windows (other than the Worksheet).

Built-in.

None.

None.

Errors are written to diagnostic output.

Close may return the following status codes:

0

1
2
4

No errors.

Syntax error

Any other error, such as “Window not found.”
Cancelled from dialog.

Close all open Shell windows (except for the Worksheet, which
cannot be closed). This option cannot be specified when any
windows are specified.

Answer “No” to any confirmation dialogs, causing all of the
specified windows to be closed without saving any changes.

Answer “Yes” to any confirmation dialogs, causing all of the
specified windows to be saved before closing them.

Answer “Cancel” to any confirmation dialogs, causing any modified
windows to be left open.

Close—close specified windows 69

Examples Close

Closes the target window, prompting the user with a confirmation dialog box if
needed.

Close -a -y

Saves and closes all open windows.

Close -n Test.a Test.r

Closes the windows Test.a and Test.r without saving any of the changes.

See also “File Menu” in Chapter 3.

70 MPW 3.0 Reference

Commando—display dialog for a command

Syntax

Description

Type
Input

Output

Diagnostics

Status

Option

Commando [commandname] -modify

The Commando interface lets you operate any properly configured MPW tool or
script using specialized Macintosh dialog boxes instead of the ordinary
command line method. The dialogs make it easy to find options and build up
complex command lines.

Commands with many options and parameters may employ one or more nested
dialog boxes. See “Commando Dialogs” in Chapter 4 for more information on the
basics of using the Commando dialogs. Chapter 13 describes the structure of the
Commando resource and shows how to create Commando dialogs for your own
tools and scripts.

The controls of a Commando dialog box, including text fields, buttons, titles,
and so on, can be sized and moved within the dialog box by using the mouse,
exactly as you would drag an object in the Finder. See “Editing Commando
Dialogs” in Chapter 13 for information on moving and sizing controls.

Tool.
None.

If Commando is invoked by typing Commando (commandname), the command
line is simply written to standard output. However, the command line is
intercepted by the Shell and executed if Commando is invoked by typing
[commandname] ... (the ellipsis generated by Command-semicolon), or if
Commando is invoked by typing [commandname] Option-Enter.

Errors are written to diagnostic output.

Commando may return the following status codes:

0 The Do It button was selected.

1 The Cancel button was selected.

2 Error occurred while parsing the cmdo resource.
3 I/O or program error.

-modify Enables Commando’s built-in dialog editor.

Commando—display dialog for a command 71

Examples Commando Rez

Displays the frontmost Rez dialog box shown under “Rez” in Part II.

Rez..

Displays the frontmost Rez dialog box shown under “Rez” in Part II, exactly as in
the previous example.

See also “Invoking Commando” in Chapter 4.
Chapter 13.

72 MPW 3.0 Reference

Compare—compare text files

Syntax

Description

Compare [option ...] filel [file2]

Compares the lines of two text files and writes their differences to standard
output. Options are provided to compare a specific column range in each file
(-¢), to ignore blanks (-b), and to ignore case (-I).

Both files are read and compared line for line. As soon as a mismatch is found, the
two mismatched lines are stored in two stacks, one for each file. Lines are then
read alternately (starting from the next input line in file2) until a match is found
to put the files back in synchronization. If such a match is found, Compare writes
the mismatched lines to standard output.

Files are considered resynchronized when a certain number of lines in the two
stacks exactly match. By default, the number of lines, called the grouping factor,
is defined by the formula

G = Trunc((2.0 * Log, (M) + 2.0)

where G is the grouping factor and M is the number of lines saved in each stack so
far. This definition requires more lines to be the same after larger mismatches.
Using this formula, the following table shows the grouping factor G as a function
of the number of mismatched lines:

M: Number of G: Grouping
mismatched lines factor

1 to 3 2
4 to 9 3
10 to 31 4
32 to 99 5
100 to 315 6
316 to 999 7
1000 to 3161 8
3162 to 9999 9

With the default dynamic grouping, the -g option sets the lower limit for G (which
must be at least 2, because the formula is always applied). The -s option lets you
fix G as a static constant. A static G may be desirable under some circumstances,
but may also resynchronize the files at undesirable points, especially if G is too
small. It's recommended that you use the default (dynamic G) first; if the results
aren'’t satisfactory, try a higher minimum value of dynamic G (such as 3 or 4). If
that is still unsatisfactory, try the static G option.

Compare—compare text files 73

With either option, there’s a limit on the depth of the stacks— that is, on how far
out of synchronization the two files can get before they're no longer worth
comparing. For a dynamic G, the limit on the number of mismatched lines is 1000,
but you can choose a lower limit with the -d option. For the static G option,
typical values for G are 1 to 5, and the stack depth should be between about 10
and 50 (the default limit is 25).

Type Tool.

Input The file1 and file2 parameters specify the two files to be compared. If file2 is
omitted, fileI is compared to standard input.

Output Mismatched lines, optionally shown with context (-e) or suppressed entirely
(-m), descriptive messages, and Shell editor commands to select the mismatches
are written to standard output. With the -h option, some of each file’s output
lines are displayed side by side; otherwise, the first stack’s lines are displayed
before the second stack’s. In either case, lines are shown with their line numbers.

The following messages appear when showing mismatches:

Nonmatching lines (Shell editor commands)
... both stacks are displayed...

Extra lines in 1st before <line> in 2nd (Shell editor commands)
... lines in file1’s stack are displayed...

Extra lines in 2nd before <I[line> in 1st (Shell editor commands)
... lines in file2’s stack are displayed...

Extra lines in 1st file (Shell editor commands)
... limes in file1’s stack are displayed...

Extra lines in 2nd file (Shell editor commands)
...lines in file2’s stack are displayed...

The Shell editor commands consist of File and Line (Line is provided in the MPW
Scripts folder) commands to select the mismatched lines. In the case of extra
lines in one file and not the other, the selection for the missing lines is generated
as an insert point.

The lines displayed may be suppressed with the -m option. If you use -m the
messages are formatted slightly differently:

Extra lines in 2nd file

Shell editor commands

74 MPW 3.0 Reference

Diagnostics

Status

When mismatched lines are shown, their context can also be displayed by the
using the -e option. Up to n equal lines (% is specified with the -e option) in both
files preceding and succeeding the mismatches will be displayed like this:

...preceding context lines ...

...mismatched or extra lines...

e

...Succeeding context lines...

If an end-of-file condition occurs or the maximum stack depth is reached during
resynchronization, one of the following messages will also appear:

*** Nothing seems to match **x*
*** EQF on both files ***

*** EOF on file 1 **x*

*** EOF on file 2 **x

If both files are in synchronization, and both reach their end-of-file at the same
time, the following message will appear if any mismatches occurred:

*** EQF on both files at the same time ***

If both files match, the following message is displayed:

***x Files match *x*x*

Parameter errors are written to diagnostic output.

The following status codes may be returned to the Shell:

0 Files match.
1 Parameter or option error.
2 Files don’t match.

Compare—compare text files 75

Options -b Treat several blanks (spaces or tabs) as a single space, and ignore
trailing blanks.

—~Compare Options
(File 1] = [file 2]
[1/ Redirection... |

Options

[ignore blanks [Ignore trailing blanks s.»oupmgl:l

[Jignore case [show mismatched lines

[Progress

O] Fised grouping width :]

[JNo tabs

[JNo line numbers Content l:
—~Command Line
Compare

elp
Compare the tines of two TEXT files and writes their difference to the
standard output file. Campare

-¢ col1-col2l,col1-col2]
Compare only the columns col1 to col2 of each file. If the second
column range is omitted, then the first range applies to both files;
otherwise the first range applies to fileI and the second range
applies to file2. If coll is omitted, 1 is assumed. If col2 is omitted,
255 is assumed.

¢ Note: To use the -c option, the tabs must be expanded. The tab
setting is determined from the file’s tab value. (See also the -x
option below.)

-d depth Sets the maximum stack depth (size) for resynchronization—that
is, how far out of synchronization the files can get before they’re no
longer worth comparing. Depth is an integer value from 1 to 1000.
The default is 1000 if dynamic grouping is in use, and 25 for static
(-s) grouping.

-e context Up to the specified number of context lines are displayed before
and after the mismatched or extra lines. Values of 1 to 100 are
allowed. Context lines are shown only if they are equal in both files,
so fewer than the specified number of lines may be shown. Note
that this option is ignored if the -m option is specified.

76 MPW 3.0 Reference

-g groupingFactor

-h width

Specifies the grouping factor, G. For dynamic grouping, -g
specifies the minimum grouping factor, that is, the minimum
number of lines that must match for the two files to be considered
resynchronized. (This value must be at least 2, which is the default.)
If the -s (static) option is used, -g specifies a fixed grouping
factor. (Values are from 1 through 1000; the default is 3.)

Display mismatches in the horizontal format. Only a portion of
each mismatched line is displayed side by side. Width, the total
display line width, is a number from 70 to 255 that controls the total
number of characters displayed in each of the two columns, or
portions, of equal width.

Ignore case differences (convert all lines to lowercase before
comparing them). The default is case sensitive.

Suppress the display of mismatched and extra lines. Only the
mismatch messages and Shell editor commands to select the
mismatches are displayed. The default is to display the
mismatched and extra lines along with the messages. This option is
ignored if the -h option is specified.

Do not write any messages to standard output if both files match.
Write Compare’s version information to diagnostic output.

Static (fixed) grouping factor. The grouping factor is set with the
-g option.

Ignore trailing blanks (spaces or tabs). This is a subset of the
-b option.

Display differences between two files in a format that allows
output lines to be cut and pasted into a source file.

Suppress tab expansion. Normally, tabs are expanded into spaces
except when the -b option is used. The tab value is determined
from the file’s tab setting (a resource); if there is no setting, 4 is
used.

A Caution: This option can cause stacked lines to be displayed
incorrectly if the files contain tabs. Also, the -¢ option should
not be used with -x, because -c¢ depends on the true columns as
displayed with tabs expanded. a

Compare—compare text files 77

& Note: All comparison criteria that affect the individual lines
before comparison—column range (-c), blanks compression
(-b), and case conversion (-1)}—are applied to those lines
before they are stacked. Thus when the lines are displayed,
they’ll be shown in their modified form.

Examples Compare File File.bak > Mismatches

Compares File and File.bak, writing the results to the file Mismatches. No options
are specified, so dynamic grouping is used, blanks are retained, tabs are
expanded into spaces, and matching is case sensitive.

Compare File.old.§ File.new.$

Compares the selected portions of the two windows and writes out the results.

Limitations Compare can handle text files with 2 maximum line length of 255 characters.

The text files compared should be fewer than 9999 lines long, because the displays
are formatted based on four-digit line numbers.

See also Equal command (Equal is a quicker command that tells you whether files are
: different, but stops at the first byte at which they differ).

78 MPW 3.0 Reference

CompareFiles—show file differences

Syntax

Description

CompareFiles [-9 | -13 | -bx y] oldFile newFile

CompareFiles compares two text files (using the tool Compare) and, if there are
any differences, displays the file in adjacent windows for interactively viewing
the differences. A menu will be appended to the menu bar to go through the
changes.

When all the changes have been shown, the windows will be closed (if they were
closed when CompareFiles started) and the menu will be deleted.

The Compare menu contains four items for viewing and editing the differences.
The items perform the following actions:

Find Next Change Finds the next difference and highlights the changes in each
window. (Notice that the differences are shown from
bottom to top. This is so editing changes will not affect
the file offsets recorded from the Compare tool.)

Copy Selection » Replaces the changed text in the new file with the old text.

Copy Selection « Replaces the old text with the changed text from the new
file.

Done Closes the files (asking if you want to save changes) and
deletes the Compare menu. Use this item to close all the
windows and delete the menu. (If you close any of the
windows yourself, they will not be restored to their
previous size and position.)

The figure below shows the CompareFiles menu.

Compare
Find Next Change

Copy Selection »»
«« Copy Selection

CompareFiles—show file differences 79

Type
Input
Output

Diagnostics

Status

Options

Examples

See Also

To increase the speed of CompareFiles, there are a few restrictions: the options
and parameters must be specified in the order indicated on the Syntax summary
above, and the size of the rectangle specified with the -b option is not checked
for accuracy. Remember, however, that since CompareFiles is a script, you may
easily modify the behavior to fit your working style.

Script.
None.
None.

Errors from the script itself are written to standard output. Errors from running
Compare are written to diagnostic output.
The following status codes may be returned:

0 The files match.
1 Syntax error.
2 The files differ.

The options specify the screen size to use for the tiling of the windows. The
default screen size is 640 by 480.
9 Tile the two open windows to fit on a 512 by 342 (9-inch) screen.

-13 Tile the open windows to fit on a 640 by 480 (13-inch) screen. This
is the default screen size.

bxy Tile the open windows to fit within the area specified by x and y.

CompareFiles Sample.old Sample.c
Compares the file Sample.c to Sample.old. If there are some differences, those
two files are opened side by side on the screen.

CompareFiles -b 1024 1024 Sample.old Sample.c

Compares the file Sample.c to Sample.old. If there are differences, the files are
opened and tiled into a 1024 by 1024 rectangle.

Compare Tool.

80 MPW 3.0 Reference

CompareRevisions—compare revisions

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

CompareRevisions file

Compare the revision of the HFS file file with another revision of that same file.

CompareRevisions uses the Projectinfo command to determine what project file
belongs to and what its revision is. CompareRevisions then displays a list of the
other revisions of the file for the user to choose. CompareRevisions checks this
other revision out and calls the CompareFiles script to display both revisions on
the screen and to highlight the differences between them. CompareFiles puts up
an AddMenu named Compare to help you step through the differences between
the two revisions.

The file must belong to a currently mounted project. If the project that the file
belongs to is not currently mounted, CompareRevisions displays an Alert.

CompareRevisions uses the CompareFiles script.
Script.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

0 No Errors.

1 Syntax Error.

2 Error in Processing.
3 System Error.

None.

CompareRevisions—compare revisions 81

Examples CompareRevisions file.c

This example compares the revision in HFS file “file.c” in the working directory
with any other revisions of file.c in the project.

AddMenu Project ‘'Compare Revisions' 'CompareRevisions d
"{Active}" XY "{WorkSheet}"®

This example adds CompareRevisions to the Project menu and allows you to
compare revisions by opening the file you wish to compare and then selecting the
'Compare Revisions' menu item in the Project menu.

See Also CompareFiles.

82 MPW 3.0 Reference

Confirm—display confirmation dialog box

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Confirm [-t] [message...]

Confirm displays a confirmation dialog box with OK and Cancel buttons and the
prompt message. There is no output to this command: the result of the dialog is
returned in the {Status} variable.

Note: Because Confirm returns a nonzero status value to indicate that No or
Cancel was selected, a script should set the Shell variable {Exit} to zero before
executing the Confirm command. (This step is necessary because the Shell
aborts script processing when a nonzero status value is returned and {Exit} is
nonzero.)

Built-in.

Reads standard input for the message if no parameters are specified.
None.

Errors are written to diagnostic output.

The Confirm command may return the following status codes:

0 The OK button was selected.

1 Syntax error.

4 The Cancel button was selected or the No button was clicked in a three-way
dialog box.

5 The Cancel button was selected in a three-way dialog box; see the -t option.

¢ Note: In a two-button dialog box, “Cancel” means the same thing
as “No”; OK means “Yes.”

-t Display a three-way confirmation dialog box, which includes Yes,
No, and Cancel buttons. In this case, 4 means “No” and 5 means
“Cancel.”

Confirm—display confirmation dialog box 83

Examples Set Exit 0
Confirm "Replace files with the same name? "
If {Status} ==
Duplicate -y Source:= Destination:
End
Set Exit 1

The following confirmation dialog box will be displayed:

Replace files with the same name?

If you select the OK button, the Duplicate command will be executed.

The following script makes use of a three-way confirmation dialog box:

Set Exit 0

Set list ""

For file In ‘files -t TEXT
Confirm -t "Print file {file}?"
Set SaveStatus {Status}

Continue If {SaveStatus} == 4 # No
Break If {SaveStatus} == # Cancel
Set 1list "{list} ‘'{file}'"™ # Yes
End
If "{list}" ! = "»
Print {PrintOptions} {list}
End
Set Exit 1

This example prints selected TEXT files in the current directory. For each file, it
displays a dialog box with three choices (Yes, No, and Cancel). Selecting “Yes”
prints the file. If you select “No,” the Continue command causes this file to be
skipped, but processing continues with the next file in the list. If you select
“Cancel,” the Break command causes the For loop to be terminated, ending the
question-and-answer session. The filenames are saved in the variable {list} and
printed following the loop.

See also Alert and Request commands.

84 MPW 3.0 Reference

Continue—continue with next iteration of For or Loop

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Continue [If expression]

If expression is nonzero, Continue terminates this iteration of the immediately
enclosing For or Loop command and continues with the next iteration. (Null
strings evaluate to zero.) If the “If expression” clause is omitted, the Continue is
unconditional. If no further iterations are possible, the For or Loop is terminated.
(For a definition of expression, see the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

Continue may return the following status codes:

0 No errors.
-3 Emor in parameters, or Continue not within For...End or Loop...End.
-5 Invalid expression.

None.

Continue—continue with next iteration of For or Loop 85

Example Set Exit 0
Set list ""
For file In ‘files -t TEXT"
Confirm -t "Print file {file}?"
Set SaveStatus {Status}

Continue If {SaveStatus} == 4 # No
Break If {SaveStatus} == # Cancel
Set list "{list} '{file}'"™ # YesEnd

End

Print {PrintOptions} {list}

Set Exit 1

In this example, the Continue command is executed if the user selects No (status
value 4). The Continue causes the current file to be skipped, but processing
continues with the next file in the list.

(For a full explanation of this example, refer to the Confirm command.)

See also For, Loop, Break, and If commands.
Evaluate command, for a description of expressions.

“Structured Commands” in Chapter 5.

86 MPW 3.0 Reference

Copy—copy selection to Clipboard

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Copy [-c count] selection [window)

Finds selection in the specified window and copies it to the Clipboard, replacing
the previous contents of the Clipboard. If no window is specified, the command
operates on the target window (the second window from the front). It's an error

to specify a window that doesn’t exist.

For a definition of selection, see “Selections” in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

& Note: To copy files, use the Duplicate command.

Built-in.

None.

None.

Errors are written to diagnostic output.

Copy may return the following status codes:

0 At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

- count For a count of #, find and copy the nth instance of selection.

Copy—copy selection to Clipboard

87

Examples Copy §

Copies the current selection to the Clipboard. This command is like the Copy
command in the Edit menu, except that the action takes place in the target
window.

Copy /BEGIN/:/END/

Selects everything from the next BEGIN through the following END and copies
this selection to the Clipboard.

See also Cut and Paste commands.

“Selections” in Chapter 6 and Appendix B.

88 MPW 3.0 Reference

Count—count lines and characters

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Examples

Count [4] [[fil...]

Counts the lines and characters in its input and writes the results to standard

output. If no files are specified, standard input is read. If more than one file is

specified, separate counts are printed for each file, one per line and preceded by

the filename. A total is printed following the list.

Tool.

Standard input is read if no files are specified on the command line.
Line and character counts are written to standard output.

Errors are written to diagnostic output.

Count may return the following status codes:

0 No errors.
1 Error in parameters.
2 Unable to open input file.

-1 Write only the line counts.

-c Write only the character counts.

Count MakeFile.c Count.c

Displays line counts and character counts in the form

MakeFile.c 43 981
Count.c 153 3327
Total 196 4303

Count—count lines and characters

89

Files | Count -1

Displays the total number of files and directories in the current directory.

Count -1 §

Displays the number of lines selected in the target window.

¢ Note: The source code for Count is included in the CExamples folder in
the file Count.c, as part of MPW C.

90 MPW 3.0 Reference

CPlus—C++ compiling system

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

CPlus [option ...] [file]

CPlus compiles the specified C++ source file. Compiling file Name.cp creates
object file Name.cp.o. (By convention, C++ source filenames end in a “.cp”
suffix.) If no filenames are specified, standard input is compiled and the object
file “c.0” is created.

(Note that SADE object file information cannot be generated for standard input
source files.)

The CPlus script activates, in turn, CFront, and the MPW C Compiler. (CFront
consists of two components: a C preprocessor and a C++ to C translator.)

See the MPW 3.0 C++ Reference Manual for details of the MPW C++ language
definition.

Script.

If no filenames are specified, standard input is compiled. You can terminate
input by pressing Command-Enter.

If you specify the -e or -e2 option, preprocessor output is written to standard
output, and no object file is produced. If you specify the -¢ option, the C code
produced by Cfront is written to standard output.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to the diagnostic
output.

The following status codes may be returned:

0 Successful completion.
1 Errors occurred.

-b Generate PC-relative references for functions in the same segment
and for string constants (which are kept at the end of the function
code module). The default is to place string constants in the global
data area, and to generate AS-relative (jump table) references for
function addresses. Useful for writing DAs, WDEFs, and so on.

Cplus—C++ compiling system 91

92

Provide the actions of option -b, but also allow the code generator
to reduce code size by overlaying the storage constants where
possible.

Cause the code generator to keep string constants within the code
and overlay them when possible (but always generate A5-relative
references for function addresses).

Do not generate object code. Write the intermediate C code to
standard output. This option is useful for two purposes: to pipe
the output of Cfront to a different C compiler, and to produce the
C code for human inspection in order to clarify the semantics of a
C++ construct.

Define name to the preprocessor with value 1. This is the same as
writing
#define name 1

at the beginning of the source file. (The -d option does not
override #define statements in the source file.)

-d name=string

€2
-elems881

MPW 3.0 Reference

Define name to the preprocessor with value string. This is the same
as writing
#define name string

at the beginning of the source file.

Do not compile the program. Instead, write the output of the
preprocessor to standard output. This option is useful for
debugging preprocessor macros.

Implies -e, but also suppresses comments.

Use in-line MC68881 instructions for all transcendental functions
available on the MC68881 processor. See the MPW 3.0 C Reference
for a complete list of these functions. This option implies the
-mc68881 option.

When CFront gets its source from standard input—for example,
when the source is sent to a stand-alone preprocessor whose output
is piped to Cfront—the option -f <filename> will cause correct line
number information to be sent to debuggers.

Causes CFront to send a tokenized version of the intermediate
code to the C compiler. This option is required if SADE offsets are
needed.

- pathname | ,pathnamé....

Search for include files in the specified directories. Muitiple -i
options may be specified. A maximum of 15 directories can be
searched. The following is the search order:

1. The include filename is used as specified. If a full
pathname is given, no other searching is applied. If the file
wasn't found, and the pathname used to specify the file is a
partial pathname (no colons in the name or a leading colon),
then the following directories are searched:

2. The directory containing the current input file.
3. The directories specified in the -1 options, in the order listed.
4. The directories specified in the Shell variable {Cincludes}.

-1 Generate the #J/ine pragma in the nonstandard form
<line_number> "<file>".

-m Generate 32-bit references for data. Required when there is more
than 32K of global data.

-mgb off Do not include symbols for the MacsBug debugger.

-mbg full | on
Include full (untruncated) symbols for MacsBug.

-mbg ch8 Include V2.0-compatible MacsBug symbols (eight characters only,
in a special format). This option is useful for generating symbols.
for the MacApp debugger.

-mbg number
Include MacsBug symbols truncated to length number.

-mc68020 Generate MC68020 instructions whenever doing so would provide
faster and/or smaller object code.

-mc68881 Generate MC65881 instructions for all basic floating-point
operations.

-mtbl0 Suppress output of method tables for each Object Pascal Class.

-mtbl1 Force output of method tables for each Object Pascal Class.

If neither -mtbl0 nor -mtbl1 is selected, the default is to emit
method tables only for classes for which one or more virtual
member functions are defined in the source file.

Cplus—C++ compiling system 93

-n

-0 objname

-S name

Turn pointer assignment incompatibility errors into warnings.

Pathname for the generated object file. If objname ends with a
colon, it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputfilename.o). If
objname does not end with a colon, the object file is written to the
file objname.

Write progress information (include filenames, function names, and
sizes) and summary information (number of errors and warnings,
code size, global data size, and compilation time) to diagnostic
output,

Name the object code segment. (The default segment name is
“Main”.)

-sym on | full

-u name

-vtbl0

-vtbll

94 MPW 3.0 Reference

Write complete object file records containing information for
SADE, the MPW symbolic debugger. This option can be limited by
also specifying one or more of nolines, novars, notypes, which
cause omission of line, type, and variable information,
respectively, from the object file (such as -sym on, nolines,
novars). For more information, see the MPW 3.0 C Reference
Manual.

Write C compilation time to diagnostic output.

Undefine the predefined preprocessor symbol name . This is the
same as writing
#undef name

at the beginning of the source file.

Suppress output of virtual tables for each ordinary class with virtual
functions.

Force output of virtual tables for each ordinary class with virtual
functions. If neither -vtb10 nor -vtb1 is selected, the default is to
emit virtual tables only for classes for which one or more virtual
member functions are defined in the source file.

Suppress compiler warning messages. (By default, wamnings are
written to diagnostic output.)

Cause Cfront to generate additional warnings.

-X filename
This option names the file containing a cross-compilation table. It
is used when doing cross-development to a different processor.

-y pathname
Put the C compiler's temporary intermediate (“.0.i”) files in the
directory specified by pathname.

-z0 Force “inline” functions to be non-inline.
-26 Do not optimize enumerations. ENUM variables become the same
as INT.
Example cplus -p Sample.c

Compiles Sample.c, producing the object file Sample.c.o. Writes progress
information to diagnostic output. (Sample.c is found in
Examples:CPlusExamples.)

See Also MPW 3.0 C Reference, MPW C++ Reference.

Cplus—C++ compiling system 95

CreateMake—create a simple makefile

Syntax

Description

CreateMake [-Application [-c creator | | -Tool | -DA | -CR -m entry point
-1t resource type[-c creator file type]] [-symon] program file...

CreateMake creates a simple makefile for building the specified program. The
parameter program is the name of the program. Makefile program.make is
created. The list of files includes both source and library files. Source files may be
wiitten in any combination of assembly language (suffix “a”), C (“.c”), C++
(“.cp™, Pascal (“.p"), and/or Rez (“.r").

You can also specify Library files (suffix “.0"). Link the program with these files.
CreateMake automatically links with the library files listed below. It is not
necessary to specify these files as parameters to CreateMake.

You can create Makefiles for building applications (the default), desk
accessories, and tools.

CreateMake generates commands that link the program with the following set of
MPW libraries:

n Inside Macintosh Interfaces
{Libraries}Interface.o

= Runtime support—one of the following:
{Libraries}Stubs.o # a tool is to be built
{Libraries|Runtime.o # no C object files
{CLibraries}CRuntime.o # any C object files

s C Libraries—if any source is in C
{CLibraries}StdCLib.o
{CLibraries}CSANELib.o
{CLibraries}Math.o
{CLibraries}CInterface.o

s C Libraries—if any source is in C++

{CLibraries}CPlusStreams.o # a tool is to be built
{CLibraries}CPlusStubs.o #a DA is to be built
{CLibraries}CSANELib.o

{CLibraries}Math.o

{CLibraries}CInterface.o

96 MPW 3.0 Reference

Type

Input
Output
Diagnostics

Status

Options

» Pascal Libraries—if any source is in Pascal
{PLibraries}PasLib.o
{PLibraries]SANELib.o

s For tools:
{Libraries}ToolLibs.o

s For desk accessories:
{Libraries])DRVRRuntime.o

CreateMake does not include dependencies on include files and uskes files in
the makefile. Libraries other than those listed above are not included in the Link
command generated by CreateMake, unless specified as parameters. CreateMake
is used to implement the Create Build Commands item in the Build menu.

Script.
None.
None.
Errors are written to diagnostic output.

The following status codes may be returned:

0 Successful completion.
1 Parameter or option error.

-Application
Create build commands for building an application. This is the
default.

- creator If a code resource or an application, optionally provide the creator.
-CR Create build commands for building a stand-alone code resource.
-DA Create build commands for building a desk accessory.

-m main entry point
If a code resource, provide the main entry point.

-t resource type
If a code resource, provide the type and ID in the form type=ID.

-T file ype If a code resource, optionally provide the file type.

-tool Create build commands for building a tool.

CreateMake—create a simple makefile 97

sym on Create build commands that construct an object containing
symbolic debugger information for SADE.

Exanqﬂe CreateMake -tool count count.c count.r

Creates the makefile Count.make containing commands for building the tool
Count from the source files Count.c and Count.r. The makefile is similar to the

following:

File: count .make

Target: count

Sources: count.c count.r

Created: Thursday, June 2, 1988 5:33:38 PM

count.c.o0 f count.make count.c
C count.c
count ff count.make count.r
Rez count.r -append -0 count

SOURCES = count.c count.r
OBJECTS

count.c.o

count ff count.make {OBJECTS}

Link -w -t MPST -c 'MPS ' @
"{Libraries}"Stubs.o 0
"{CLibraries}"CRuntime.o d
"{Libraries}"Interface.o 0
"{CLibraries}"StdCLib.o d
"{CLibraries}"CSANELib.o d
"{CLibraries}"Math.o 0
"{CLibraries}"CInterface.o 9
"{Libraries}"ToolLibs.o 0
" {OBJECTS}" d
-0 count

See also BuildMenu and BuildProgram commands.
“Building a Program: An Introduction” in Chapter 2.

98 MPW 3.0 Reference

Cut—copy selection to Clipboard and delete it

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Examples

See also

Cut [-c count] selection [window)

Finds selection in the specified window, copies its contents to the Clipboard, and
then deletes the selection. If no window is specified, the command operates on
the target window (the second window from the front). It's an error to specify a
window that doesn't exist.

For a definition of selection, see “Selections” in Chapter 6; a summary of the
selection syntax is contained in Appendix B.

Built-in.

None.

None.

Errors are written to diagnostic output.

Cut may return the following status codes:

0 At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-C count Find and cut count instances of selection.

Cut §

Cuts the current selection in the target window. (This is the same as the Cut menu
item, except that it operates on the target window rather than the active
window.)

Cut /BEGIN/:/END/

Selects everything from the next BEGIN through the following END, copies the
contents of the selection to the Clipboard, and then deletes the selection.

Clear, Copy, and Paste commands.

“Selections” in Chapter 6 and in Appendix B.

Cut—copy selection to Clipboard and delete it 99

Date—write the date and time

Syntax

Description

Type

Input
Output
Dﬁgnosﬁw

Status

Options

Date [[-a | -s][-d | -t] [num]] | [-n]

Writes the current date and time to standard output in a variety of standard and

user-specified formats. Date arithmetic is supported with the -n and -c¢ options

that work with the number of seconds since January 1, 1904. With no options the
Date output has this form: Thursday, August 30, 1988 10:45:51 A.M.

Built-in.

None.

The date is written to standard output.
Errors are written to diagnostic output.

Date may return the following status codes:

0 Noerror.
1 Syntax error.

-a Abbreviated date. Three-character abbreviations are used for the
month and day of the week. For example, Thu, Aug 29, 1988.

< num Write the date corresponding to num, which is interpreted as the
number of seconds since midnight, January 1, 1904. You can use the
other output format options with -c to specify the output format.

-d Write the date only.

-n Return a numeric value for the current date and time, in terms of the
number of seconds since midnight, January 1, 1904. This option is
useful for date and time arithmetic.

-S Short date form. Numeric values are used for the date. The day of
the week is not given. For example, 8/30/88 10:45:51

-t Write the time only.

100 MPW 3.0 Reference

Examples Date

returns the date in the form
Friday, February 14, 1988 10:34:25 PM

Date -a

returns
Fri, Feb 14, 1988 10:34:25 PM

Date -s -d
returns
2/14/86

Set starttime ‘Date -n°
BuildMyProgram

Set endTime ‘Date -n°

Echo Total time for BuildMyProgram d
‘Evaluate {endTime} - {startTime}"

This example demonstrates how date arithmetic may be used to show how long a
tool or script takes to execute.

Date—write the date and time 101

Delete—delete files and directories

Syntax

Description

Type
Input
Output

Diagnostics

Status

Options

Delete [-y | -n | <] [-] [-p] name..

Deletes file or directory name. If name is a directory, name and its contents
(including all subdirectories) are deleted.

Before deleting directories, a dialog box will request confirmation for the
deletion. Use the -y, -n, or -c options in scripts to avoid this interaction. Be sure
to see the warning at the end of this section.

Built-in.
None.
None.

Errors and warnings are written to diagnostic output. Progress and summary
information is also written to diagnostic output if the -p option is specified.

The following status codes may be returned:

0 All specified objects were deleted (except for any directories skipped with
the -n option).

1 Syntax error.
An error occurred during the delete.

4 Cancel was selected or implied by the -c option.

4 Ignore errors (that is, do not print messages, and return a status
code of 0).

-n Answer “No” to any confirmation dialog that may occur, skipping
the delete for any directories encountered.

-p List progress information as the delete takes place.

-y Answer “Yes” to any confirmation dialog that may occur, causing

any directory encountered to be deleted.

- Answer “Cancel” to any confirmation dialog that may occur, causing
the delete to stop when a directory is encountered.

102 MPW 3.0 Reference

Example Delete HD:MPW:=.c

Deletes all items in the MPW folder that end in “.c”. (Recall that the Shell first
replaces the parameter “=.c” with a list of filenames matching the pattern—the
Delete command then deletes each of these files.)

Warning Beware of potentially disastrous typographical mistakes such as the following:

Delete = .c

Note the space after “="—this space causes “=” and “.c” to be treated as two
separate parameters. In this case, Delete deletes all files in the current directory
and also attempts to delete a file named “.c”.

Also note that the following command deletes everything:
Delete =:

That is, the filename pattern =: expands to the names of all volumes online
(including the startup volume!).

When deleting files en masse, it's a good practice to use the Echo command to
verify the action of the filename generation operators; for example,
Echo =.c

See also Clear command (for deleting selections).

“Filename Generation” in Chapter 5.

Delete—delete files and directories 103

DeleteMenu—delete user-defined menus and items

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Example

See also

DeleteMenu [menuName | itemName]]

Deletes the user-defined item itemName in the menu menuName. If itemName is
omitted, all user-defined items for menuName are deleted.

A Caution If temName and menuName are both omitted, all user-defined
items are deleted. Menu items that haven’t been added with
AddMenu can'’t be deleted with DeleteMenu. a

Built-in.

None.

None.

Errors are written to diagnostic output.

DeleteMenu may return the following status codes:

0 No errors.

1 Syntax error.
2 Other errors.
None.

DeleteMenu File

Deletes all user-defined items from the File menu.

AddMenu command.

104 MPW 3.0 Reference

DeleteNames—delete symbolic names

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

DeleteNames [-u user] [-project project] [-public] [-r] [names... | -a]

Delete symbolic names used to represent a set of revisions under Projector. You
can create symbolic names by using the NameRevisions command.

You can use the -log option of the Projectinfo command to see which names
have been deleted and what their values were.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

0 No errors.
1 Syntax error.
2 Emor in processing.

-u user Name of the current user. This overrides the {User} Shell variable. ‘

-project project
Name of the project which contains the files. This becomes the
current project for this command.

-public Delete public Names.
-a Delete all names in the project.

-r Recursively execute the DeleteNames command on the current
project and all its subprojects.

DeleteNames—delete symbolic names 105

Examples Suppose you have created a Name “Work” that is expanded to the files file.c and
interactive.c using the command

NameRevisions Work file.c interactive.c

Then :

DeleteNames Work

removes “Work” from the list of symbolic names.

See Also NameRevisions, Projectlnfo.

106 MPW 3.0 Reference

DeleteRevisions—delete revisions and branches

Syntax

Description

Type

Input
Output
Diagnostics

Status

DeleteRevisions [-u user] [-project project] [-file] [-y] revision...

Delete old revisions by specifying the oldest revision that you want to keep. All
prior revisions are deleted. Delete all revisions on a branch by naming the branch
or branches in the named files under Projector. It is an error to try to delete a
revision that is currently checked out for modification.

Revision is either a filename, a filename followed by a comma and a revision
number, or a filename followed by a comma and a branch name (such as
foo.c,22a).

You can use the -file option to remove the file and all of its revisions from the
project.

A Warning DeleteRevisions permanently removes the revisions and branches
specified. They cannot be recovered. a

You can use the -log option of the ProjectInfo command to see which revisions
have been deleted and who deleted them.

See Chapter 7 for complete definitions of the terms and symbols used in
Projector commands.

Built-in.

None.

None.

Errors and warnings are written to diagnostic output.

The following status codes may be returned:

0 No errors.

1 Syntax error.

2 Error in processing.
3 System error.

DeleteRevisions—delete revisions and branches 107

Options

Examples

See Also

-u user Name of the current user. This overrides the {User} Shell variable.

-project project
Name of the project that contains the files. This option becomes
the current project for this command.

file Deletes the file and all its revisions.
-y Deletes the file/revision (avoids dialogs).
DeleteRevisions -project Zoomhkilitiesb@@roject file.c

This example deletes all revisions except the latest in file.c in the named project.

DeleteRevisions file.c,22a3

This example deletes all revisions on branch 22a before revision 3 of file.c.

DeleteRevisions file.c,22a

This command deletes all the revisions on branch 22a in file.c of the current
project.

DeleteRevisions -file file.c

This command deletes the file file.c and all of its revisions from the current
project.

NameRevisions, ProjectInfo.

108 MPW 3.0 Reference

DeRez—Resource decompiler

Syntax

Description

Input

DeRez [option... | resourceFile [resourceDescriptionFile...]

Creates a text representation (resource description) of the resource fork of
resourceFile, according to the resource type declarations in the resource
description file(s). The resource description is written to standard output.

A resource description file is a file of type declarations in the format used by
the resource compiler, Rez. The type declarations for standard Macintosh
resources are contained in the files Types.r and SysTypes.r, contained in the
{RIncludes} folder. If no resource description file is specified, the output consists
of data statements giving the resource data in hexadecimal form, without any
additional format information.

If the output of DeRez is used as input to Rez, with the same resource
description files, it produces the same resource fork that was originally input to
DeRez. DeRez is not guaranteed to be able to run a declaration backwards; if it
can't, it produces a data statement instead of the appropriate resource
statement.

DeRez ignores all include (but not #include), read, data, change,
delete, and resource statements found in the resourceDescriptionFile. (It
still parses these statements for correct syntax.)

For the format of resource type declarations, see Chapter 11 and Appendix D.
Tool.

Standard input is never read. DeRez requires a resource file as input. You may give
optional formatting information by specifying one or more resource description
files.

For all resource description files on the command line, the following search rules
are applied:
1. DeRez tries to open the file with the name specified “as is.”

2. If rule 1 fails and the filename contains no colons or begins with a colon,
DeRez appends the filename to each of the pathnames specified by the
{RIncludes} variable and tries to open the file.

DeRez—Resource decompiler 109

Output A resource description is written to standard output. The resource description
consists of resource and data statements that can be understood by Rez. (See
Chapter 11.)

Diagnostics If no errors or warnings are detected, DeRez runs silently. Errors and warnings are
written to diagnostic output.

Status DeRez may return the following status codes:

0 No errors.

1 Error in parameters.
2 Syntax error in file.

3 /O or program error.

Options -clompatible]
Generate output that is backward compatible with Rez 1.0.

-dlefine] macrd=data)
Define the macro variable macro to have the value data. If data is
omitted, macro is set to the null string—note that this still means
that macro is defined. Using the -d option is the same as writing

$define macro| data)

at the beginning of the input. The -d option may be repeated any
number of times.

—Derez Options
(File to decompile | ~Types

(Tupes Files..) (FINCLUDE Paths...) |oocometie o Skip
Width of decompiled strings [40] |
D No wnm"_‘gs for fe.det'ﬂfed tyﬂes 6
8 rllr;?;el::zqugrgx:::r;ible output —[I:;:il::;ocessor Undefine
O Don‘t escape characters — | S
Output Error r B
| | 1 T =

~Command Line
DeRez :AExamples :Sampld

DeRez — the resource decompiler. This tool can decompile a resource file
into a text representation suitable for Rez input. Derez

110 MPW 3.0 Reference

-e[scape]

When this option is specified, characters that are normally escaped
(such as \0xff) are no longer escaped. Instead they are printed as
extended Macintosh characters. (Note: Not all fonts have all the
characters defined.) Normally characters with values between $20
and $D8 are printed as Macintosh characters. With this option,
however, all characters (except null, newline, tab, backspace, form
feed, vertical tab, and rubout) are printed as characters, not as
€scape sequences.

Lets you specify one or more pathnames to search for #include
files. This option may be specified more than once. The paths will
be searched in the order they appear on the command line.

derez -i {mpw}myStuff: -i hd:tools..

-mlaxstringsize] n

Set the maximum string size to »; » must be in the range 2-120. This
setting controls string width in the output.

-only typeExpr [(ID1[:ID2]) | resourceName]

-only #pe

Read only resources of resource type typeExpr. If an ID, range of
IDs, or resource name is given, read only those resources for the
given type. This option may be repeated.

& Note: typeExpr is an expression, so literal quotation
marks (') might be needed. If an ID, range of IDs, or
name is given, the entire option parameter must be
quoted; for example,

DeRez -only "'MENU' (1:128)" ...

See also the “Examples” section below.

¢ Note: The -only option cannot be specified together with the
-skip option.

A simpler version of the above option: no quotation marks are
needed to specify a literal type as long as it starts with a letter.
Items such as escape characters are not allowed. For example,

DeRez -only MENU ...

DeRez—Resource decompiler 111

Examples

See also

-p Display progress and version information.
-rd Suppress warning messages if a resource type is redeclared.

-slkip] typeExpr [(ID1[: ID2]) | resourceName]
Skip resources of type typeExpr in the resource file. For example,
it's very useful to be able to skip 'CODE' resources. typeExpr is an
expression; see the note under -only. The -s option may be
repeated any number of times.

-s[kip] type A simpler version of the -s option; no quotation marks are needed
to specify a literal as long as it starts with a letter.

-ulndef] macro
Undefine the macro variable macro. This is the same as writing
#undef macro

at the beginning of the input file. It is meaningful to undefine only
the preset macro variables. This option may be repeated.

DeRez "{ShellDirectory}MPW Shell" -only MENU Types.r

Displays all of the '"MENU' resources used by the MPW Shell. The type definition
for '"MENU' resources is found in the file Types.r.

DeRez HD:0S:System SysTypes.r o
-only "'DRVR' (9"\0x00Scrapbookd")"

Decompiles the Scrapbook desk accessory in the copy of the System file that's
located in directory HD:OS:. (The type definition for 'DRVR' resources is found
in the file SysTypes.r.)

Rez and RezDet commands.
Chapter 11.

Type declaration files in RIncludes folder:
s Types.r

s SysTypes.r

s MPWTypes.r

s Pictr

112 MPW 3.0 Reference

Directory—set or write the default directory

Syntax

Description

Type
Input

Output

Diagnostics

Status

Option

Examples

Directory [-q | directory]

If specified, directory becomes the new default directory. Otherwise the
pathname of the current default directory is written to standard output.

If directory is a leafname, the command searches for directory in the directories
listed in the Shell variable {DirectoryPath}. If the variable is undefined, the
command looks in the current directory.

¢ Note: To display a directory’s contents, use the Files command.

Built-in.
None.

If no directory is specified, the default directory pathname is written to standard
output.

Errors are written to diagnostic output.

Directory may return the following status codes:

0 No error.
1 Directory not found, command aborted, or parameter error.

-q Don't quote the pathname that is written to standard output.
Normally, a directory name is quoted if it contains spaces or other
special characters.

Directory

Writes the pathname of the current directory to standard output.

Directory HD:MPW:Examples:

Sets the default directory to the folder Examples in the folder MPW on the
volume HD. The final colon is optional.

Directory—set or write the default directory 113

Directory Reports:

Sets the default directory to the volume Reports. Note that volume names must
end in a colon.

Directory :Include:Pascal:

Sets the default directory to the folder Pascal in the folder Include in the current
default directory.

Set DirectoryPath ":, {MPW}, {MPW}Projects:"
Directory Tools

Sets the directory to the Tools directory. The current directory is searched first,
followed by the {MPW} directory, and finally by the {MPW} Projects directory. If
there is no Tools directory in your current directory, the directory is set to
{MPW}Tools.

See also “File and Window Names” in Chapter 4.

Files, NewFolder, and SetDirectory commands.

114 MPW 3.0 Reference

DirectoryMenu—create the Directory menu

Syntax

Description

Type

Input
Output
Diagnostics
Status

Options

DirectoryMenu [directory...]

Creates the Directory menu shown here. The optional directory... parameter
specifies the initial list of directories that appears in the menu. The menu items
are described in Chapter 3. '

Show Directory
Set Directory...

HD2:MPW:Examples:AERamples:
HO2:MPLW:Examples:CExamples:
HD2:MPW:Examples:CPlusEramples:
HD2:MPW:Examples:Eramples:
HD2:MPW:Examples:PExamples:
HD2:MPLW:Eramples:Projector Eramples:
HD2:MPW:

The lower section of the Directory menu contains a list of directories. Initially
this list consists of the parameters to DirectoryMenu. As other directories
become the current directory (using the Set Directory menu item or the
SetDirectory command), they are added to the list.

Script.

None.

None.

Errors are written to diagnostic output.

Status code 0 (no problem) is always returned.

None.

DirectoryMenu—create the Directory menu 115

Example DirectoryMenu ' (Files -d -i "{MPW}"Examples:=) 2 Dev:Null'd
‘Directory’
Creates the Directory menu. Directories in directory "{MPW}" that match the

pattern Examples:= will be included in the Directory menu, along with the current
directory.

This DirectoryMenu command should be included in your UserStartup file to
install the Directory menu. You might replace the Examples directories and the
default directory with your favorite list of directories.

116 MPW 3.0 Reference

DolIt—highlight and execute a series of commands

Syntax

Description

Type
Input

Output

Diagnostics

Status

Options

Dolt (CommandFile [-echo] [-dump]) | -selection

Dolt will execute a series of Shell commands, highlighting each command as it is
executed. The commands can be either in a file or in the current selection of the
active window. If a CommandFile is passed to Dolt, the file is opened (as the
active window) and each command is executed. The window is closed when all
commands have been processed.

This command _will not work for a series of commands that contains structured
commands such as If statements or Loops.

Script.
None.

Errors produced by the Dolt script are sent to standard output. If the -echo
option is specified, the commands are echoed to the WorkSheet as they are
executed.

Errors and warnings generated by the commands being executed by the Dolt
script are written to diagnostic output.

Dolt may return these status codes:

0 No errors.
1 Syntax error.
n Any status code returned by a command being executed by Dolt.

-echo Each command is echoed to the WorkSheet before execution.

-dump If an error occurs in one of the commands being executed, all the
remaining commands (including the command that failed) are
wiitten to the WorkSheet and marked with a marker called “ToDo.”

-selection Execute the commands in the current selection of the active
window.

Dolt —highlight and execute a series of commands 117

Examples

Backup -from "HD:Src:" -to "Backup:Src" -a -r -c > out
DoIt out

The above command will highlight and execute all the Duplicate commands
generated by the Backup command. In this way you can see progress as the files
are being duplicated.

AddMenu DolIt "DoIt Selection"™ "DoIlt -selection™

The above AddMenu command will create a menu that can be used to highlight
and execute the current selection. This could be used on a series of commands
generated by Make or Backup that were written to the Active window. Simply
select the commands and select the “Dolt Selection” menu item.

Make > make.out
DoIt -dump make.out

This Dolt command will open the make.out file and highlight and execute each of
the commands generated by the previous make command. In this way you can
see progress as the files are being compiled and linked. If an error occurs (for
instance, in one of the compiles), that compile command along with the rest of
the commands in the make.out will be written to the WorkSheet. At this point
you could fix the error (in the source file), select the “ToDo” marker (which would
select the remaining commands), and select the “Dolt Selection” menu item to
execute the remaining commands.

118 MPW 3.0 Reference

DumpCode—write formatted resources

Syntax

Description

Type

Input
Output

Diagnostics

Status

DumpCode [option...] resourceFile

Disassembles object code that is stored in resources such as 'CODE', 'DRVR', and
'"PDEF'. DumpCode reads from the resource fork of the specified file and writes
the formatted assembly code to standard output. The default formatting
convention is to disassemble the code and to display the corresponding bytes in
hexadecimal and ASCIL.

The default behavior of DumpCode is to dump all the 'CODE' resources from a
program file. The -rt option can be used to dump resources of other types, such
as drivers and desk accessories.

Some conventions about executable code resources are built into DumpCode and
affect the formatted output in special ways:

= 'CODE' resources with ID 0 are formatted as a jump table (unloaded format).

n Other 'CODE' resources have information about jump table entries in the first
four bytes.

= 'DRVR resources have a special format at the beginning of the resource.

In addition, you can direct DumpCode to give a symbolic dump of data
initialization descriptors and initial values.

Tool.
None.
DumpCode writes formatted resources to standard output.

Errors and warnings are written to diagnostic output. Progress information can
also be written to diagnostic output (with the -p option).
DumpCode may return the following status codes:

0 No problem.
1 Syntax error.
2 Faulerror,

DumpCode—write formatted resources 119

Options

120

Note: Numeric values for options can be specified as decimal constants, or as

hex constants preceded by a “$”.

-d

P

Suppress the disassembly and dumping of code. (The default is to
disassemble the code.)

This option is useful in producing a small output file and looking at
just the resource names, sizes, and resource header information. It
is also useful when just some specialized information is desired,
such as the jump table or data descriptors.

Suppress display of data initialization code.

Suppress the writing of header information, such as resource
relative locations, hexadecimal and ASCII equivalents, and so on.
The default is to produce this type of header information.

This option is useful in producing output that can be edited and
submitted to the assembler for reassembly.

Suppress formatting of the jump table. Only summary information
for the jump table is given. (The default is to format the jump
table unless one of the options -s, -rt, -n, or -jt is specified.)

Write only the resource names associated with resources. This
option is useful for finding segments or desk accessories by name.

Write progress information (filenames, resource names, IDs, and
sizes) to diagnostic output.

-r bytel[,byteN]

-t typel=1D]

Limit the disassembly of code to the range bytel...byteN. The
default is to disassemble all bytes in a segment. If byteN is omitted,
the rest of the segment is disassembled. This does not affect
disassembly alignment; the disassembly still starts at the base of
the resource, but instructions are printed only for the specified
range.

Dump only the single resource with type #ype and ID number ID. If
ID is omitted, all resources of the specified type are dumped.

-8 resourceName

MPW 3.0 Reference

Dump only the single resource named resourceName.

Example

See also

DumpCode Sample > SampleDump

Formats the 'CODE' resources in the file Sample, writing the output to the file
SampleDump. The output has this format:

File: sample, Resource 3, Type: CODE, Name: _Datalnit
Offset of first jump table entry: $00000018
Segment is $000000D2 bytes long, and uses 1 jump table entry

000000: 48E7 FFFO 'H...' MOVEM. L D0-D7/A0-2A3, - (
000004: 4247 'BG' CLR.W D7

000006: 4EAD 0032 'N..2" JSR $0032 (A5)
00000A: 2218 et MOVE.L (a0)+,D1

etc.

DumpObj command.

“The Jump Table” in the chapter “Segment Loader” of Inside Macintosh, for a
description of the jump table.

Appendix H, “Object File Format.”

DumpCode—write formatted resources 121

DumpFile—display contents of an arbitrary file

Syntax

Description

Type
Input

Output

Diagnostics

Status

Options

DumpFile [option...] filename

DumpFile lets you display the contents of the resource fork or data fork of a file
in a variety of formats.

Tool.
DumpFile does not read standard input.

DumpFile writes formatted object file records and disassembled code to
standard output.

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpFile may retumn the following status codes:

0 No problem.
1 Syntax error.
2 Fatal error.

-of Display the resource fork of the file. (Default is data fork.)
-bf Display both forks of file.

-a Suppress display of ASCII character values.

-h Suppress display of hexadecimal characters.

-0 Suppress display of file offsets.

W mm Display width of mm bytes on each line of output. (Default is 16.)

¢ Note: The mm value in option -w must be a multiple
of the nn value in -g.

gnn Group nn bytes together without intervening spaces. (The default
is 1)

122 MPW 3.0 Reference

-p Write progress information (such as the name of the file being
dumped and the version of DumpFile) to diagnostic output.

-r bytell,byteN]
Display only the byte range byteI to byteN.

Examples DumpFile -p ATestFile

Formats the data fork of the file ATestFile and writes its contents to standard
output. This output has the following format:

DumpFile -p ATestFile
MPW File Display Utility Version 3.0Bl1 Release April 15,
1988 Start: 1:24:09 PM 4/19/88

Copyright Apple Computer, Inc. 1985-1988
All Rights Reserved.

File : ATestFile

Data Fork Length : 20

Resource Fork Length : 382

Dumping Data Fork from offset 0 to 20

0: 54 68 69 73 20 69 73 20 61 20 74 65 73 74 20 66 This.is.a.test.file.

10: 69 6C 65 2E
DumpFile completed normally

Execution required 0 seconds.

DumpFile -w 12 -g 4 ATestFile

Formats the data fork of the file ATestFile and writes its contents to standard output, grouping four
bytes at a time and displaying 12 bytes per line. This output has the following format:

File : ATestFile

Data Fork Length : 20

Resource Fork Length : 382

Dumping Data Fork from offset 0 to 20

0: 54686973 20697320 61207465 This.is.a.te
C: 73742066 696C652E st.file.

Dumpfile—display contents of an arbitrary file 123

DumpFile -rf -r 0,30 -g 4 ATestFile

Formats the resource fork of the file ATestFile and writes the contents of bytes 0 through 30 to
standard output in 4-byte groups. This output has the following format:

File : ATestFile

Data Fork Length : 20

Resource Fork Length : 382

Dumping Resource Fork from offset 0 to 30

0: 00000100 0000014C 0000004C 00000032 L...L...2
10: 696C652E 6F727920 2227227B 646972 ile.ory."'"{dir

124 MPW 3.0 Reference

DumpObj—write formatted object file

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

DumpObj [option...] objectFile

Disassembles object code that is stored in the data fork of an object file. By
convention, object files end in the suffix “.0”. In addition, the object file must
have type 'oBJ'.

Tool.
DumpObj does not read standard input.

DumpObj writes formatted object file records and disassembled code to
standard output.

Errors and warnings are written to diagnostic output. Progress information is also
written to diagnostic output with the -p option.

DumpObj may return the following status codes:

0 No problem.
1 Syntax error.
2 Fatal error.

-d Suppress disassembly of code and display of data. The default is to
disassemble code and to display data in hexadecimal and ASCIL.

-h Suppress printing of header information on code lines. Header
information includes the offset of the code and the code bytes in
hex and ASCII. The default is to print header information.

Use this option to produce code that can be edited and submitted
to the assembler for reassembly.

4o Print just names for IDs, omitting the ID numbers. This option is
useful for comparing object files that have identical names but
different IDs.

DumpObj—write formatted object file 125

—~DumpObj Options

Suppress substitution of names for IDs. The default is to preread
the entire file, process the Dictionary records, and then show names
in place of ID numbers.

This option is useful in examining an object file up to the point
where an object file format error has been reported by Link or Lib;
that is, it suppresses the preread, which is also likely to fail.

(objectFile] [JProgress Info Module:

| Output

[No headers I |
[J Use IDs

L

) [JFile Locations

Error

[J Names only |
[Just names (no 1Ds)

L

] [No disassembly

Byte Range:

dumpob

l ~Command Line

~Help

Dumpobj ts used to display the contents of MPW object files.

-m name

126 MPW 3.0 Reference

Print file locations of object records. The default is not to print
these locations.

This option is useful in debugging compilers and assemblers,
particularly when debugging code used to generate Pad records to
assure alignment. (See Appendix H.)

Dump a particular module. If name is an entry point, the module
containing name is dumped. Other options that control format still
have an effect.

Note: name is case sensitive, as are all object file identifiers.

Print names only. When this option is specified, only the -p option
has an effect.

This option is useful in determining which names exist in an object
file, particularly when there appears to be a discrepancy in spelling,
capitalization, or length of identifiers.

-p Write progress information (such as the name of the file being
dumped and the version of DumpObj) to diagnostic output.

-t bytell,byteN]
Limit the disassembly of code to the range bytel...byteN. The
default is to disassemble all bytes in a module. If byteN is omitted,
the rest of the module is disassembled. This does not affect
disassembly alignment; the disassembly still starts at the base of
each contents record, but instructions are printed only for the
specified range.

-sym [on | off
Enable or disable writing symbolic records to support SADE. The
default is ON.

,nolines Omit line information.
,nolabels Omit label information.
,novars Omit variable information.

,notypes] Omit type information.

Example DumpObj Sample.p.o >SampleDump

Formats the file Sample.p.o and writes its contents to the file SampleDump. This
output has the following format:

Dump of file sample.p.o

First: Kind 0 Version 1
Dictionary: FirstId 2

2: Main
Pad _
Module: Flags $00 ModuleId 1 SegmentId Main
Content: Flags $00
Contents offset 0000 size 006A
000000: 4ES56 FFFE 'NV..' LINK A6,#SFFFE
000004: 2F0Q7 LVAR MOVE.L D7, - (A7)
000006: 42a7 'B."' CLR.L -(a7)
000008: 3F3C 0080 <! MOVE.W #50080, - (A7)
elc.

For more information, see Appendix H.

See also DumpCode command.

Appendix H, “Object File Format.”

DumpObj—write formatted object file 127

Duplicate—duplicate files and directories

Syntax

Description

Type
Input
Output

Diagnostics

Status

Duplicate [y | -n |] [d | -] [-p] name... targetName

Duplicates nameto targetName. (Name and targetName are file or directory
names.) If targetName is a file or doesn'’t exist, the file or directory name is
duplicated and named targetName. If targetName is a directory, the objects
named are duplicated into that directory. (If more than one name is present,
targetName must be a directory.) Created objects are given the same creation and
modification dates as their source.

If a directory is duplicated, its contents (including all subdirectories) are also
duplicated. No directory duplicated can be a parent of targetName.

Name can also be a volume; if targetName is a directory, name is copied into
targetName.

A dialog box requests a confirmation if the duplication would overwrite an
existing file or folder. You can use the -y, -n, or -c option in scripts to avoid this
interaction.

Built-in.
None.
None.

Errors are written to diagnostic output. Progress and summary information is
written to diagnostic output if the -p option is specified.

The following status codes may be returned:

0 All objects were duplicated.

1 Syntax error.

2 Anerror occurred.

4 Cancel was selected or implied from the -c option.

128 MPW 3.0 Reference

Options

Examples

Limitation

See also

-y Answer “Yes” to any confirmation dialog that occurs, causing
conflicting files or folders to be overwritten.

-n Answer “No” to any confirmation dialog that occurs, skipping files
or folders that already exist.

-C Answer “Cancel” to any confirmation dialog that occurs, causing the
duplication to stop when a name conflict is encountered.

-d Duplicate the data fork only. If targetName is an existing file, its
data fork is overwritten and its resource fork remains untouched.

-r Duplicate the resource fork only. If targetName is an existing file,
its resource fork is overwritten and its data fork remains
untouched.

-p List progress information.

Duplicate Aug86 "Monthly Reports™

Assuming “Monthly Reports” is an existing directory, duplicates the file Aug86

into that directory.

Duplicate Filel Folderl "Backup Disk:"

Duplicates Filel and Folder1 (including its contents) onto Backup Disk.

Duplicate -y Filel File2

Duplicates Filel to File2, overwriting File2 if it exists.

Duplicate Diskl:= HD:Files:

Duplicates all of the files on Disk1 into the directory HD:Files.

Duplicate Diskl: HD:Files:

Duplicates all of Disk1 (as a directory) into HD:Files.
Duplicate doesn’t recognize folders on non-HFS disks.

Move and Rename commands.
“File and Window Names” in Chapter 4.

“Filename Generation” in Chapter 5.

Duplicate—duplicate files and directories

129

Echo—echo parameters

Syntax

Description

Type

Input
Output
Diagnostics
Status

Option

Examples

Echo [-n] [parameters...]

Writes its parameters, separated by spaces and terminated by a return, to
standard output. If no parameters are specified, only a return is written.

Echo is especially useful for checking the results of variable substitution,
command substitution, and filename generation.

Built-in.

None.

Parameters are written to standard output.

None.

Status code 0 is always returned.

-n Don’t write a return following Echo’s parameters (that is, the
insertion point remains at the end of the output line). The -n isn’t

echoed.

Echo "Use Echo to write progress info from scripts."

Use Echo to write progress info from scripts.

The Echo command above writes the second line to standard output.

Echo {Status}

Writes the current value of the {Status) variable—that is, the status of the last
command executed.

130 MPW 3.0 Reference

Echo =.a

Echoes the names of all files in the current directory that end with “.a”. (This
might be useful as a precaution before executing another command with the
argument “=.a”".)

Echo -n > EmptyFile

If EmptyFile exists, this command deletes its contents; if the file doesn’t exist, it
is created.

See also Parameters and Quote commands.

Echo—echo parameters 131

Eject—eject volumes

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Examples

Eject [-m] volume...
Flushes the volume, unmounts it, and then ejects it, if it is a 3.5-inch disk. A

volume name must end with a colon (:). If volume is a number without a colon,
i's interpreted as a drive number.

& Note: If you unmount the current volume (the volume containing the
current directory), the boot volume becomes the current volume. You can
keep the volume mounted with the -m option. (See the chapter “File
Manager” of Inside Macintosh.)

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

0 The disk was successfully ejected.

1 Syntax error.

2 Anerror occurred.

-m Leave the volume mounted.

Eject Memos:

Ejects (and unmounts) the disk titled Memos.

Eject 1

Ejects and unmounts the disk in drive 1 (the internal drive).

Mount, Unmount, and Volumes commands.

132 MPW 3.0 Reference

Entab—convert runs of spaces to tabs

Syntax

Description

Type

Input
Output

Diagnostics

Status

Options

Entab [option...] [file...]

Copies the specified text files to standard output, replacing runs of spaces with
tabs. The default behavior of Entab is to do the following:

1. Detab the input file, using the file’s tab setting (a resource saved with the file
by the Shell editor), or 4 if there is none. You can override this “detab” value
with the -d option.

2. Entab the file, setting tab stops every 4 spaces. You can specify another tab
setting with the -t option. The entabbed output file looks the same as the
original file(s), but contains fewer characters.

Options are also provided for controlling the processing of blanks between
quoted strings.

Tool.
If no filenames are specified, standard input is processed.
All files are written to standard output.

Parameter errors and progress information (with the -p option) are written to
diagnostic output.

The following status codes may be returned to the Shell:

0 Normal termination.

1 Parameter or option error.

-a Minimum run of blanks that can be replaced with a tab. The default
is 1.

-d tabSetting Override the input file’s default tab setting with tabSetting. This
option is useful for detabbing non-MPW files.

¢ Note: Entab always detabs the input file, using the file’s
tab setting, or 4 if there is none. For MPW files, specifying
a -d option would override the file’s own tab setting,
leading to incorrect results if a different value were used.

Entab—convert runs of spaces to tabs 133

-1 quote...

-q quote...

- quote...

-t tabSetting

A Caution

134 MPW 3.0 Reference

Specify a list of left quoting characters. Quote... is a string of one or
more nonblank characters. If -1 is specified, -r must also be
specified. Single quotation marks (') and double quotation marks
(") are assumed as the default quoting characters.

Treat all quotes as “normal” characters—entab the file, replacing
runs of spaces embedded in quoted strings with tabs.

A Caution This option should not be used when entabbing
program source files. If this option is used, the -q,
-1, and -r options are ignored. a

Write version and progress information to diagnostic output.

Specify a list of characters to be used as both left and right quoting
characters. Quote... is a string of one or more nonblank characters.
This is the default option; single quotation marks (') and double
quotation marks (") are assumed as the quoting characters.

Specify a list of right quote characters. Quote... is a string of one or
more nonblank characters. If -r is specified, -1 must also be
specified.

¢ Note: Entab does not check that a particular left quoting
character matches a particular right quoting character.

Set the output file’s tab setting to tabSetting. If the -t option is
omitted, 4 is assumed for the tab setting. If you specify a tab
setting of 0, no tabs are placed in the output. Thus -t 0 may be used
to completely detab input files.

If you specify the -q, -1, or -r option, you should quote the entire
string parameter to these options (otherwise, the Shell may
misinterpret special characters in the parameter string). a

Example Entab -t 2 Example.p > CleanExample.p

Detabs the file Example.p (using the file’s default tab setting), re-entabs it with a
tab setting of 2, and writes the resulting output to CleanExample.p.

Warning Beware of command formats such as

Entab Foo > Foo

Limitations Entab does not take into account embedded formatting characters other than
tab characters. Thus backspace characters may cause incorrect results.

The maximum width for an input line is 255 characters.

See also Format command.

Entab—convert runs of spaces to tabs 135

Equal—compare files and directories

Syntax

Description

Type
Input
Output

Diagnostics

Equal [-d | -r][H][-pllq] name... targetName

Compares name to targetName. By default, Equal makes no comment if files are
the same; if they differ, it announces the byte at which the difference occurred.
When comparing directories, the default condition is to report all differences,
including files not found—the -i option ignores files in targetName that are not
present in name.

If targetName is a file, every name must also be a file. The specified files are
compared with targetName.

If targetName is a directory and name is a file, Equal checks in targetName for the
file name and compares the two files. That is, the command

Equal Filel Dirl

compares Filel with :Dirl:Filel.

If more than one name is specified, Equal compares each name with the
corresponding file or directory in targetName. All subdirectories are also
compared. For example,

Equal Filel Dirl Dir2

If targetName is a directory, name is a directory, and only one name is specified,
the Equal command directly compares the two directories. That is, the command

Equal Dirl Dir2

compares Dirl (and all subdirectories) with Dir2.
Built-in.

None.

Differences are written to standard output.

Errors are written to diagnostic output.

136 MPW 3.0 Reference

Status

Options

The following status codes may be returned:

(=)

Identical files.

1 Syntax error.

2 Inaccessible or missing parameter.
3 Files not equal.

4 Ignore files missing from directory name; that is, if files in
targetName are not present in name, Equal won't report the missing
files as differences.

-d Compare the data forks only.

T Compare the resource forks only.

-p List progress information as files are compared.

-q Remain quiet about differences; return status codes only.

—Equal Options

(_ Files to compare...] [Ignore missing files
[Progress Infarmation /
(Target...) C] quiet mode
Forks to Compare
| @ Both forks _—‘

O Data fork only l Output Error
| O Resource fork only | | 1 |)

—Command Line
Equal

Compare files and directories for equality.

Equal—compare files and directories 137

Examples

Equal Filel FilelBackup

Reports if the files are different and at what point they differ, in a message
such as

Filel FilelBackup differ in data fork, at byte 5

Equal -i HD:Dirl Diskl:Dirl

Compares all files and directories in HD:Dirl with files and directories with the
same names found in Disk1:Dirl, and reports any differences. This command
does not report files in Disk1:Dirl that aren’t found in HD:Dirl.

Equal -i -d Backup: HD:Source

Compares the data forks of all files on the volume Backup: with all those of the
same name in the directory HD:Source.

Equal -p Old:=.c HD:Source

Compares all files on Old: ending in “.c” with their counterparts in HD:Source.
Prints progress information as the comparison proceeds.

Compare command.

138 MPW 3.0 Reference

Erase—initialize volumes

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Examples

Erase [-y] [-s] volume...
Initializes the specified volumes— the previous contents are destroyed. A

volume name must end with a colon (:). If volume is a number without a colon,
it's interpreted as a disk drive number.

A dialog box requests confirmation before proceeding with the command, unless
the -y option is specified. The -y option can be used in scripts to avoid this
interaction.

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

0 Successful initialization.

1 Syntax error.

2 No such volume, or boot volume.

3 Errors during the initialization procedure.

-y Answer “Yes” to the confirmation dialog, causing initialization to
begin immediately.

-s Format the disk for single-sided use (that is, as a 400K, non-HFS
disk).

Erase Reports:

Initializes the volume entitled Reports.

Erase 1

Initializes the volume in drive 1 (the intemal drive). The disk will be formatted as
a 400K disk if drive 1 is a 400K drive, or as an 800K disk if drive 1 is an 800K drive.

Erase—initialize volumes 139

Evaluate—evaluate an expression

Syntax

Description

Evaluate [-h | -0 | -b][word...]
Evaluate name [binary operator] = [word...]

The list of words is taken as an expression. After evaluation, the result is written
to standard output. Missing or null parameters are taken as zero. You should
quote string operands that contain blanks or any of the characters listed in the
table that follows.

The operators and precedence are mostly those of the C language; descriptions
follow.

The second form of the Evaluate command evaluates the list of words and assigns
the result to the variable name. The result of the expression is not written to
standard output in this case. C style operations of the form "+=", "-=" and so on,
are supported. If name is undefined at the time of execution, it is interpreted as
zero.

Different radices can be used in the input expression, and the result can be output
in a different radix by using the -h, -0, or -b option. The default radix is decimal.

140 MPW 3.0 Reference

Expressions: An expression can include any of the following operators. (In some
cases, two or three different symbols can be used for the same operation.) The

operators are listed in order of precedence; within each group, operators have the
same precedence.

Operator
1. (expn)
!
3‘ %
%
4, +
5. <<
>>
6. <
<=
>
>=
7_ ==
1=
8. &
9. A
10. |
11. &&
12. 11

NOT

DIV
MOD

IN

v

<>

AND
OR

Operation

Parentheses are used to group expressions
Unary negation

Bitwise negation

Logical NOT
Multiplication

Division

Modulus division
Addition

Subtraction

Shift left

Shift right

Less than

Less than or equal to
Greater than

Greater than or equal to
Equal

Not equal

Equal—regular expression
Not equal—regular expression
Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

All operators group from left to right. Parentheses can be used to override the
operator precedence. Null or missing operands are interpreted as zero. The result
of an expression is always a string representing a number in the specified radix

(the default is decimal).

The logical operators !, NOT, -, &&, AND, | |, and OR interpret null and zero
operands as false, and nonzero operands as true. Relational operators return the
value 1 when the relation is true, and the value 0 when the relation is false.

Evaluate—evaluate an expression 141

The string operators ==, !=, =~ and !~ compare their operands as strings. All
others operate on numbers. Numbers may be decimal, hexadecimal, octal, or
binary integers representable by a 32-bit signed value. Hexadecimal numbers
begin with either $ or 0x. Octal numbers begin with a 0 (zero). Binary numbers
begin with 0b. Every expression is computed as a 32-bit signed value. Overflows
are ignored.

Input Radices

Decimal number [0-9]
Hexadecimal number 0x[0-9A-F)
Octal number 0[0-7]
Binary number 0b01]

The pattern-matching operators =~ and !~ are like == and != except that the right
side is a regular expression that is matched against the left operand. Regular
expressions must be enclosed within the regular expression delimiters /.../.
Regular expressions are summarized in Appendix B.

& Note: There is one difference between using regular expressions
after =~ and !~ and using them in editing commands. When
evaluating an expression that contains the tagging operator, ®,
the Shell creates variables of the form {®7}, containing the
matched substrings for each ® operator. (See the examples that
follow.)

Filename generation, conditional execution, pipe specifications, and
input/output specifications are disabled within expressions, to allow the use of
many special characters that would otherwise have to be quoted.

Expressions are also used in the If, Else, Break, Continue, and Exit commands.

Type Built-in.
Input None.
Output The result of the expression is written to standard output. Logical operators

return the values 0 (false) and 1 (true).

142 MPW 3.0 Reference

Diagnostics

Status

Options

Examples

& Note: To redirect Evaluate’s output (or diagnostic output), enclose the
Evaluate command in parentheses; otherwise, the > and = symbols are
interpreted as expression operators, and an error occurs. (See the fifth
example that follows.)

Errors are written to diagnostic output.

These status codes may be returned:

0 Valid expression.
1 Invalid expression.

-h Output the result in hexadecimal. The number will be prefixed with
a Ox.

-0 Output the result in octal. The number will be prefixed with a 0.

-b Output the result in binary. The number will be prefixed with a Ob.

Evaluate (1+2) * (3+4)

Does the computation and writes the result to standard output.

Evaluate -h 8 + 8

Does the computation and writes the result to standard output in hexadecimal
(0x10).

Evaluate 0xA + 6

Writes the result 16 to standard output. (The default output radix is decimal. Use
-h for hexadecimal.) -

Evaluate lines += 1

The Evaluate command increments the value of the Shell variable {lines} by 1. If
{lines} was undefined before executing the command, {lines} would be 1 after
execution.

Evaluate—evaluate an expression 143

See also

(Evaluate "{aPathname}" =~ /(([—:]1+:)*)®1=/) > Dev:Null
Echo {®1}

These commands examine a pathname contained in the variable {aPathname} and
return the directory prefix portion of the name. In this case, Evaluate is used for
its side effect of enabling regular expression processing of a filename pattern.
The right side of the expression (/ (([—:1+:) *) ®1=/) is a regular expression
that matches everything in a pathname up to the last colon and remembers it as
the Shell variable {®1). Evaluate’s actual output is not of interest, so it's redirected
to the bit bucket, Dev:Null. (See “Pseudo-Filenames” in Chapter 5.) Note that the
use of I/O redirection means that the Evaluate command must be enclosed in
parentheses so that the output redirection symbol, >, is not taken as an
expression operator.

This is a complex but useful example of implementing a “substring” function. For
a similar example, see the Rename command.

“Structured Commands” in Chapter 5.

“Pattern Matching (Using Regular Expressions)” in Chapter 6, and Appendix B.

144 MPW 3.0 Reference

Execute—execute a script in the current scope

Syntax

Description

Type

Input
Output
Diagnostics
Status
Options

Example

See also

Execute script

Executes the script as if its contents appeared in place of the Execute command.
This means that variable definitions, exports, and aliases in the script will
continue to exist after it has finished executing. (Normally these definitions,

exports, and aliases would be local to the script.) Any parameters following script
are ignored. Any parameters to the enclosing script are available within script.

& Note: If script is not a command file (that is, if it’s a built-in command,
toal, or application), the command is run as if the word Execute did not
appear. Parameters are passed to the command as usual.

Built-in.

None.

None.

None.

Execute returns the status returned by script.

None.

Execute "{ShellDirectory}"Startup

Executes the Startup (and UserStartup) scripts. This command is useful for
testing any changes you've made to the Startup-UserStartup script. Variable
definitions, exports, and aliases set in Startup and UserStartup will be available
after Startup is done executing.

“Defining and Redefining Variables” in Chapter 5.

“The Startup and UserStartup Files” in Chapter 5.

Execute—execute a script in the current scope 145

Exists—confirm the existence of a file or directory

Syntax

Description

Type

Input

Output

Diagnostics

Status

Options

Example

See also

Exists [| -f | -w][q] name...

Determines the existence of the file or directory name. The options help you to
distinguish between directories and files and different access permissions. The
nonexistence of name is not considered an error (status remains zero).

Built-in.

None.

Files that exist and match the specifications have their names written to standard
output.

Errors are written to diagnostic output.

The following status codes may be returned:

0 No error.
1 Syntax error.
2 Other error.

-d Check if name is a directory.
£ Check if name is a file (as opposed to a directory).
W Check if the user has write access to the file name. You cannot

write to a file if it is open or locked.

-q Do not quote pathnames that are written to standard output.

If Not "‘Exists -d HD:dir*"™

NewFolder HD:dir
End
Duplicate =.c HD:dir

This example creates a new directory and copies all files ending with “.c” in the
current directory to this new directory.

Newer command.

146 MPW 3.0 Reference

Exit—exit from a script

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Example

See also

Exit [status] [If expression]

If the expression is nonzero (that is, true), Exit terminates execution of the script
in which it appears. When used interactively, Exit terminates execution of
previously entered commands. Status is a number; if present, it is returned as the
status value of the script. Otherwise, the status of the previous command is
returned. If the “If expression” is omitted, the Exit is unconditional. (For a
definition of expression, refer to the description of the Evaluate command.)

Built-in.

None.

None.

Errors are written to diagnostic output.

If status is present, it is returned as the status value of the script. If the expression
is invalid, -5 is returned. Otherwise, the status of the last command executed is
returned.

None.

Exit {ExitStatus}

As the last line of a script, this Exit command would return as a status value
whatever value had previously been assigned to {ExitStatus}.

Evaluate command (for information on expressions).
“Structured Commands” in Chapter 5.

{Exit} and {Status} variables, in “Variables,” Chapter 5.

Exit—exit from a script 147

Export—make variables available to programs

Syntax Export [-r| s | name...]

Description Make the specified variables available to scripts and tools. The list of variables
exported within a script is local to that script. An enclosed script or tool inherits a
list of exported variables from the enclosing script . (See Figure 5-1 in Chapter 5
for clarification.)

¢ Note: You can make a variable available to all scripts and tools by setting
and exporting it in the Startup or UserStartup files. (Startup acts as the
enclosing script for all Shell operations.)

If no names are specified, a list of exported variables is written to standard
output. (Note that the default output of Export is in the form of Export

commands.)

Type Built-in.

Input None.

Output If no names are given, Export writes a list of exported variables to standard
output.

Diagnostics None.

Status Export may return the following status codes:

0 No errors.
1 Syntax error.

Options T Reverse the sense of the output, causing Export to generate
Unexport commands for all exported variables.

-s Suppress the printing of “Export” before the exported variables.

148 MPW 3.0 Reference

Example Set AIncludes "{MPW}Interfaces:AIncludes:"
Export AIncludes

Defines the variable {Alncludes} as the pathname "{MPW}Interfaces:Alncludes:"
and makes it available to scripts and programs.

See also Unexport, Set, and Execute commands.
“The Startup and UserStartup Files” in Chapter 5.
“Exporting Variables” in Chapter 5.

Export—make variables available to programs 149

FileDiv—divide a file into several smaller files

Syntax

Description

Input

Output

Diagnostics

Status

FileDiv [£] [-n plitpoint] [-p] file [prefix]

FileDiv is the inverse of the Catenate command. It is used to break a large file
into several smaller pieces. The input file is divided into smaller files, each
containing an equal number of lines determined by the splitpoint (default=2000).
The last file contains whatever is left over.

There is also an option (-f) for splitting a file only when a form feed character
(ASCII $0C) occurs as the first character of a line that is beyond the splitpoint.
This option lets you split a file at points that are known to be the tops of pages.

Each group of splitpoint lines is written to a file with the name prefixNN, where NN
is a number starting at 01. If the prefix is omitted, the input file name is used as
the prefix.

Tool.
An input file must be specified in the command line. Standard input is not used.
FileDiv creates files with names of the form prefixNN, where NNis a number. (If
prefix is omitted, the input filename is used as a prefix.) Standard output is not
used.

Parameter errors and progress information are written to diagnostic output.

FileDiv may return the following status codes:

0 Normal termination.
1 Parameter or option error.

150 MPW 3.0 Reference

Options

Example

Limitation

£ Split the input file only when at least splitpoint lines have been
written to the current output file and there is a form feed character
(ASCII $0C) as the first character of a line. The line containing the
form feed becomes the first line in the next output file.

-n splitpoint
Split the input file into groups of splitpoint lines (or, if the -f option
was specified, splitpoint or more lines). If the -n option is omitted,
2000 is assumed.

-p Write version information and progress information to diagnostic
output.

FileDiv -f -n 2500 Bigfile

Splits Bigfile into files of at least 2500 lines; splits the file at points where there
are form feed characters. The output files have the names BigfileNN, where NN is
01, 02, and so on.

The maximum length of an input line is 255 characters.

FileDiv—divide a file into several smaller files 151

Files—list files and directories

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Files [option...] [name...]

For each disk or directory named, Files lists its contents; for each file named, Files
writes its name and any other information requested. Information is written to
standard output. When a directory is listed, all subdirectories are listed first in
alphabetical order, followed by all files in alphabetical order. If no name is given,
the current directory is listed.

Built-in.

None.

File information is written to standard output.

Errors are written to diagnostic output.

Files may return the following status codes:

0 All names were processed successfully.
1 Syntax error.
2 Anerror occurred.

-c creator List only those files with the given file creator.

-d List subdirectories only.
f Give full pathnames for all files listed.
4 Treat directories on the command line as files (ignore differences).

That is, don't list the contents of directories; instead, just list the
directory and any other information requested.

-1 List files in long format. This format is: name, type, creator, size,
flags, last modification date, and creation date.

-m count Multicolumn output. This option is not valid if specified with
1 or-x.

n No header in the long or extended format. Without the -1 or -x
option, this option has no meaning.

152 MPW 3.0 Reference

ttype

-X format

List only the contents of the directories; do not print the directory
titles themselves. Useful when combined with the -r option (or if
multiple directories are given in the command line) to list only the
contents of the directories.

Don't quote names in the output. Normally, the Files command
quotes names that contain spaces or special characters.

Recursively list the subfolders encountered; that is, list every file in
every directory.

Suppress the printing of directory names. Useful when combined
with the -r option to get listing of all files (excluding directories).

List only those files with the given file type.

Extended format. This option generates a listing similar to that
produced by the -1 option, except that the fields to be printed are
determined by format. Format is a string composed of the
following letters (in any order) where the order determines the
fields position in the output:

Flag attributes

Logical size in bytes of the data fork

Creator of file (Fldr' for folders)

Creation date

Group (applies only to folders on AppleShare)

Physical size in kilobytes of both forks

Modification date

Owner (applies only to folders on AppleShare)
Privileges (applies only to folders on AppleShare)
Type of file

Logical size in bytes of the resource fork

m~D o g X0 A0 TN

Files—list files and directories 153

Examples files -r -s -f
HD:source:defs.h
HD:source:main.c
HD:source:backup:main.c
HD:source:backup:defs.h
HD:source: junk:tmpfile

Recursively lists the contents of the current directory, giving full pathnames and
suppressing the printing of directory names.

files -d
:backup:
:junk:

Lists only the directories in the current directory.

Files -i -x kd "{AIncludes}"
Name Size Creation-Date

HD:MPW:Interfaces:AIncludes: 365K 8/25/87 5:32 aM

Lists the size and creation date of the "{Alncludes}" directory. Notice how the -i
option is used to avoid printing the contents of the directory.

files -m 2
:backup: deFs.h
:junk: main.c

This is the two-column format. Notice the order of the files.

154 MPW 3.0 Reference

Find—find and select a text pattern

Syntax

Description

Type

Input
Output
Diagnostics

Status

Option

Find [-c count] selection [window]

Creates a selection in window. If no window is specified, the target window (the
second window from the front) is assumed. It's an error to specify a window that
doesn't exist.

Selection is a selection as defined in Chapter 6 and in Appendix B.

¢ Note: Searches do not necessarily start at the beginning of a window. A
forward search begins at the end of the current selection and continues
to the end of the document. A backward search begins at the start of
the current selection and continues to the beginning of the document.

All searches are not case sensitive by default. You can specify case-sensitive
searches by first setting the Shell variable {CaseSensitive} to a nonzero value. (Or,
you can automatically set {CaseSensitive} by checking Case Sensitive in the dialog
boxes displayed by the Find and Replace menu items.)

Built-in.

None.

None.

Errors are written to diagnostic output.

The following status codes may be returned:

0 At least one instance of the selection was found.
1 Syntax error.
2 Any other error.

-C count For a count of n, find the nth occurrence of the selection.

Find—find and select a text pattern 155

Examples Find -

Positions the insertion point at the beginning of the target window.

Find -c 5 /procedure/ Sample.p

Selects the fifth occurrence of “procedure” in the window Sample.p.

Find 332
Selects line 332 in the target window.

See also “Selections” and “Pattern Matching” in Chapter 6, and Appendix B.
“Find Menu” in Chapter 3.

156 MPW 3.0 Reference

Flush—clear the command cache

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

Example

Flush

Flush clears the MPW Shell's tool cache.

The MPW Shell keeps the most recently used tools in memory so that execution
can be faster. However, there are times when you don’t want the tools to be in
the cache. For example, you cannot run a tool, and then switch to the Finder and
delete the file. The Finder will report that the tool is busy. You might also want to
flush the cache is when you are running benchmarks or timing tool perfformance.
Built-in.

None.

None.

None.

Flush may return the following status code:

0 No errors.
None.

Flush

Flush the current cache. This will free all tools in the cache.

Flush—clear the command cache 157

For...—repeat commands once per parameter

Syntax

Description

Type

Input
Output
Diagnostics

Status

Options

For name In word
command...
End

Executes the list of commands once for each word from the “In word...” list. The
current word is assigned to variable name, and you can therefore reference it in
the list of commands by using the notation {name}. You must end each line with
either a return character (as shown above) or with a semicolon (;).

The Break command can be used to terminate the loop. The Continue command
can be used to terminate the current iteration of the loop.

The pipe specification (1), conditional command terminators (&& and | |), and
input/output specifications (<, >, >>, 2, 2> ¥, and YY) may appear following
the End; they apply to all of the commands in the list.

Built-in.

None.

None.

Errors are written to diagnostic output.
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>