
ti® Macintosh®

Macintosh Programmer's
Workshop 3.0 Assembler
Reference

ti APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted, with
all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in whole
or part, without written consenr of
Apple, except in the normal use of the
software or to make a backup copy of
the software. The same proprietary
and copyright notices must be affixed
to any permitted copies as were
affixed to the original. This exception
does not allow copies to be made for
others, whether or not sold, but all of
the material purchased (with all
backup copies) may be sold, given,
or loaned to another person. Under
the law, copying includes translating
into another language or format.

You may use the software on any
computer owned by you, but extra
copies cannot be made for
this purpose.

© 1985-88 Apple Computer, Inc.
20525 Mariani Ave.
Cupertino,Caluornia 95014
(408) 996-1010

Pascal Compiler © 1982-88
Apple Computer, Inc.
© 1981 SYS, Inc.

Apple, the Apple logo, AppleShare,
AppleTalk, A/UX, ImageWriter,
I.aserWriter, Lisa, MacApp, Macintosh,
and SANE, are registered trademarks
of Apple Computer, Inc.

MPW, QuickDraw, ResEdi!, APDA,
and SADE are trademarks of
Apple Computer, Inc.

MacDraw, MacPaint, and MacWrite
are registered trademarks of
Claris Corporation.

Microsoft Word is a trademark of
Microsoft Corporation.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of
International Typeface Corporation.

POSTSCRIPT is a registered trademark
of the Adobe Systems Incorporated.

Adobe Illustrator 88 is a trademark of
Adobe Systems Incorporated.

ImageStudio is a trademark of Esselte
Pendaflex Corporation in the United
States, of LetraSet Canada Limited in
Canada, and of Esselte LetraSet
Limited elsewhere.

Motorola is a trademark of
Motorola, Inc.

MathType is a trademark of
Design Science, Inc.

QMS is a registered trademark of
QMS, Inc.

UNIX is a trademark of AT&T
Bell laboratories.

Simultaneously published in the
United States and Canada.

MPW sample programs
Apple Computer, Inc. grants users of
the Macintosh Programmer's Workshop
a royalty-free license to incorporate
Macintosh ~rammer's Workshop
sample programs into their own
programs, or to modify the sample
programs for use in their own
programs, provided such use is
exclusively on Apple computers. For
any modified Macintosh Programmer's
Workshop sample program, you may
add your own copyright notice
alongside the Apple copyright notice.

Contents

Figures and tables xiii

Preface About This Manual xv
What this manual contains xvii
Other reference materials xviii
Notation conventions xix
Aids to understanding xix

Courier typeface xx
Italic xx
Fields xxi
Delimiter symbols xxi
Braces xxii
Brackets xxii
Ellipses xxiii
Underlining xxiii

For more information xxiv

Part I Using the Assembler 1

1 About the Assembler 3
General characteristics 5
Overview of the assembly process 6
Assembly files 7
Programming for the Macintosh 8

Macintosh libraries 9

2 Coding Conventions 11
Source text structure 13

Scope of definitions 15
Imported and exported objects 17
@-labels 17
Summary 18

Segmentation 18

iii

Machine instruction syntax 19
The label field 20
The operation field 21
The operand field 23
Comments 24

Symbols 25
Identifiers 25
Numeric constants 26
Strings 27

Expressions 28
Evaluation of expressions 30
Absolute and relocatable expressions 31

Absolute expressions 32
Relocatable expressions 33

3 Address Syntax 35
Addressing modes 37

Ambiguities and optimizations 41
Forward-reference addressing 43

Registers 44
Special address formats 46

MC68xxx instructions 46
MOVEM: Multiple moves 46

MC68020 instructions 47
MULS and MULU: Signed and unsigned multiplication 47
DIVS and DIVU: Signed and unsigned division 47
TDNS and TDIVU: Truncated signed and unsigned division 47
PACK and UNPK: Packing and unpacking 48
CAS and CAS2: Comparing and swapping 48
Bit field instructions 49
Tee and TPcc: Trap on condition 49
Assembler control 49

The MC68030 processor 49
Assembler control 50
MC68020 statements you can use 50
MC68851 instructions you can use 50

iv MPW 3.0 Assembler Reference

MC68881 and MC68882 instructions 52
FMOVEM with explicit register lists 52
FMOVE with packed BCD data 52
FSLNCOS: Simultaneous sine and cosine 53
Free and FTPcc: Floating-point trap on condition 53
FfEST: Text operand and set floating-point condition codes 53

MC68851 instructions 53
literals 55

4 Assembler Directives 57
Assembler directives 59

Code and data module definitions 59
Symbol definitions 59
Data definitions 59
Template definitions 59
Linker and scope controls 60
Assembly options 60
Location-counter controls 60
File controls 60
Listing controls 60

Directive formats 61
Code and data module definitions 62

PROC and ENDPROC: Define procedure code module 62
FUNC and ENDFUNC: Define function code module 63
MAIN and ENDMAIN: Define main program code module 63
RECORD and ENDR: Define a data module 64

INCREMENT and DECREMENT 65
MAL~ 66

CODE and DATA: Switch between code and data 67
END: End the assembly 67

Symbol definitions 68
EQU and SET: Name constants and registers 68
REG and FREG: Name register list 70
OPWORD: Name machine instruction 71

Data definitions 72
DC and DCB: Place constants in code or data 73
DS: Define storage area 75

Table of Contents v

Template definitions 76
RECORD and ENDR: Define a template 76

Using templates as data types 81
WITH and ENDWITH: Supply RECORD name qualification 82

linker and scope controls 84
EXPORT and ENTRY: Expand scope of entry points 85
IMPORT: Identify external entry points 87
CODEREFS and DATAREFS: Control name linking 88

Code-to-code references 89
Code-to-data references 90
Data-to-code references 90
Data-to-data references 91

SEG: Specify current code segment 92
COMMENT: Place a comment in object file 93

Assembly options 93
MACHINE: Specify target machine 93
MC68881: Assemble MC68881/MC68882 coprocessor instructions 94
MC68851: Assemble MC68851 coprocessor instructions 95
STRING: Specify string format 95
BRANCH and FORWARD: Resolve forward branches 96
OPT: Specify level of code optimization 97
CASE: Specify treatment of lowercase letters 98

Writing register names 99
BLANKS: Control acceptance of blanks in operand field 99

Location-counter controls 100
ALIGN: Align location counter 100

Special cases 101
ORG: Set location counter 102

File controls 103
File search rules 104
INCLUDE: Take source text from another file 104
DUMP and LOAD: Write and read symbol table files 105
ERRLOG: Specify error log file 106

Listing controls 107
PAGESIZE: Specify listing page size 107
TITLE: Specify title line for listing 108
PRINT: Control listing information 108
EJECT: Start new listing page 111
SPACE: Insert blank line in listing 111

vi MPW 3.0 Assembler Reference

Part II The Macro Processor and the Macro Language 113

5 Macros 115
Macro expansion 117
Scope of macro symbols 118
Defining macros 118

MACRO and ENDM or ME.ND: Delimit macro 119
The prototype statement 119
The macro body 120
Macro comments 121
Symbolic parameters 123

Concatenating symbolic parameters 124
Calling macros 125

The macro-qualifier 126
Macro call labels 127
Operand syntax 128

Paired single quotation marks 128
Paired parentheses and brackets 128
Ampersands 129
Commas 129
Blanks (spaces and tabs) 129
Backquotes 130
@-labels 130
Omitted or extra operands 130

Operand sublists 131
Accessing sublist elements 131
Parameter types and default values 132

Nesting macros 133
Keyword macros 135

Defining keyword macros 135
Calling keyword macros 136

Mixed-mode macros 138

6 Macro Variables and Functions 139
SET variables 141

SET variables and symbolic parameters 143
LCLA, LCLC, GBLA, and GBLC: Define SET variables 143

Table of Contents vii

SETA and integer expressions 145
&ABS: Return absolute value 146
&EV AL: Evaluate contents of string 147
&ISINT: Test string for integer content 147
&LEN: Measure string length 147
&LEX: Parse string lexically 148
&LIST: Divide string into list 150
&MAX: Find maximum in integer list 151
&MIN: Find minimum in integer list 151
&NBR: Count sublist elements 151
&ORD: Return integer value 152
&POS: Find position of substring in string 152
&SCANEQ and &SCANNE: Scan string 153
&STRTOINT or &S2I: Convert string to integer 154

Symbol table functions 154
&NEWSYMTBL: Create new symbol table 154
&ENTERSYM: Enter or update symbol in table 155
&FLT\TDSYM: Find symbol in table 156
&DELSYMTBL: Delete symbol table 157

SETC and string expressions 157
Accessing substrings of string variables 158
&CHR: Convert integer to character 159
&CONCAT: Concatenate strings 160
&DEFAULT: Return string value or default 160
&GETENV: Return MPW Shell variable value 160
&INTTOSTR or &I2S: Convert integer to string 160
&LOWCASE or &LC: Convert string to lowercase 161
&SE111NG: Return directive setting 161
&SUBSTR: Return substring of string 162
&TRIM: Trim spaces and tabs from string 163
&mE: Determine identifier type 163
&UPCASE or &UC: Convert string to uppercase 164

SET array variables 165
Defining SET array variables 165
Using SET array variables 1_66
Accessing substrings in SET array string elements 167

viii MPW 3.0 Assembler Reference

Assembler system variables 168
&SYSINDEX or &SYSNDX: Macro call index 168
&SYSUST or &SYSIST: Macro operand list 169
&SYSSEG: Current segment identifier 170
&SYSMOD: Current module identifier 170
&SYSDATE: Current date 170
&SYSTIME: Current time 170
&SYSTOK.EN and &SYSTOKSTR: Values set by &LEX 171
&SYSVALUE and &SYSFLAGS: Values set by &FINDSYM 171
&SYSLOCAL and &SYSGLOBAL: System symbol table ID's 171

7 Macro and Conditional-Assembly Directives 173

Boolean control expressions 175
Comparing two integer expressions 175
Comparing two string expressions 175
Comparing integer and string expressions 176

GOTO, IF ... GOTO, and macro labels: Branching 176
IF, EI.SEIF, ELSE, and ENDIF: Conditional assembly 178
WHILE and ENDWHILE: Looping 179

CYCLE and LEA VE directives 180
ACTR: Limit looping 180
EXITM or MEXIT: Exit macro 181
WRITE and WRITELN: Write to diagnostic output file 181
AERROR: Error generation 182
ANOP: Assembler NOP 182

Part ill Appendixes 183

A Generic Instruction Formats 18;

B Syntax Diagrams 189

Assembly-language addresses 191
Addressing modes 191

Address optimizations 192

Table of Contents ix

Special address formats 192
MC68000 instructions 192

MOVEM: Multiple moves 192
MC68020 instructions 192

MUIS and MULU: Signed and unsigned multiplication 192
DIVS and DIVU: Signed and unsigned division 193
TDIVS and TDIVU: Truncated signed and unsigned division 193
PACK and UNPK: Packing and unpacking 193
CAS and CAS2: Comparing and swapping 193
Bit field instructions 193
Tee and TPcc: Trap on condition 193

MC68881 and MC68882 instructions 194
FMOVEM with explicit register lists 194
FMOVE with packed BCD data 194
FSINCOS: Simultaneous sine and cosine 194
Free and FTPcc: Floating-point trap on condition 194
FI'EST: Test operand and set floating-point condition codes 194

MC68851 instructions 195
literals 195

General assembly directives 196
Macro and SET variable directives 200
SET variable functions 202

C Assembly Listing Format 205

D Other Assemblers 211

Syntax comparison 213
Writing identifiers 213
Writing numbers 214
Writing strings 214
Defining modules 215
Communicating between modules 215
Writing expressions 215
Location-counter reference 216
Addressing features 217
Writing macros 217

x MPW 3.0 Assembler Reference

E The Macintosh Character Set 219

F Instruction Sets 223

Instruction evaluation 225
Listing conventions 225

Opcode 226
Operands 226
Opcode word 227
Cp type 228
Group 228
Flags 228
Range 229
Equivalent 229

Condition codes 229
Instruction set listings 233

G Assembler Command Syntax 2;3
Assembler command syntax 255

H Object Assembler Macros 261

InitObjects 263
ObjectDef 263
Objectlntf and the IMPL keyword 265
ObjectWith and EndObjectWith 266
ProcMethOf, FuncMethOf, and EndMethod 267
MethCall 268
Inherited 268
NewObject 269
MoveSelf 269

I Pascal and C Calling Conventions 271

Pascal calling conventions 273
Parameters 273

Real-type parameters 274
Structured-type parameters 275

Function results 275
Register conventions 277

Table of Contents xi

C calling conventions 277
Parameters 278
Function results 278
Register conventions 278

J Structured Assembly Macros 279

Structured macro statements 281
Expressions 281
Flow-control macros 283

The If statement 283
The Switch statement 285
The Repeat statement 287
The While statement 287
The For statement 288
The Leave statement 290
The Cycle statement 291
The GoTo statement 292

Program structure macros 292
Sample code generation from program structure macros 294
Procedure and function header 295
Local variable declaration 298
Procedure or function start 299
Procedure or function secondary entry point 300
Procedure or function exit 301
Procedure, function, or trap invocation 303

Considerations for use 306
Why you should or should not use the structured assembly macros 307
Rules for using structured assembly macros 308

Syntax summary 309
Expressions 309
Flow-control macros 310
Program structure macros 311

Glossary 313

Index 319

xii MPW 3.0 Assembler Reference

Figures and tables

Part I Using the Assembler 1

1 About the Assembler 3

Table 1-1 Assembler status codes 7

2 Coding Conventions 11

3

Figure 2-1
Table 2-1
Table 2-2

Source text structure 14
Data size qualifiers 22
Operators 29

Address Syntax 35

Table 3-1 Address symbols 37
Table 3-2 Address syntax sununary 38
Table 3-3 Effective address transformations
Table 3-4 Registers 44
Table 3-5 MC68851 registers in the MC68030

42

50
Table 3-6 MC68851 instructions valid for the MC68030
Table 3-7 Special MC68851 operand formats 54

4 Assembler Directives 57
Figure 4-1 Stack frame example 79
Figure 4-2 Sample template format 103
Table 4-1 DC and DCB data increments 73
Table 4-2 Effects of CODEREFS and DATAREFS 91
Table 4-3 PRINT directive parameters 109

Part Il The Macro Processor and the Macro Language 113

6 Macro Variables and Functions 139

Table 6-1 Values returned by &LEX 148
Table 6-2 &SE'ITING values 162
Table 6-3 Assembler system variables 168

51

CONTENTS xiii

Part Ill Appendixes 183

A Generic Instruction Formats 185

Table A-1 Generic instruction conversions 187

C Assembly listing Format 205

Figure C-1 Default assembly listing format 207

D Other Assemblers 211

Table D-1 Identifier syntax rules 213
Table D-2 Number syntax 214
Table D-3 String syntax 214
Table D-4 Module definition 215
Table D-5 Communication directives 215
Table D-6 Allowable operators 216
Table D-7 Addressing features 217

F Instruction Sets 223

Table F-1 Instruction operands 227
Table F-2 MC68xxx condition codes 230
Table F-3 MC68881 IEEE nonaware tests 231
Table F-4 MC68881 IEEE aware tests 231
Table F-5 MC68881 miscellaneous tests 232
Table F-6 MC68851 PMMU condition codes 232
Table F-7 MC68000, MC68010, and MC68020/MC68030 instructions 233
Table F-8 MC68881 instructions 243
Table F-9 MC68851 instructions 249

I Pascal and C Calling Conventions 271

Table I-1 Parameter passing conventions 273
Table I-2 Function-result passing conventions 276

xiv MPW 3.0 Assembler Reference

Preface About This Manual

THIS MANUAL TEI.IS YOU HOW TO PREPARE SOURCE FILES to be assembled by the
Macintosh® Programmer's Workshop Assembler (also called the MPW Assembler).

This manual assumes that you are generally familiar with assembly-language
programming. It also assumes that you understand and are able to write the
symbolic assembly language for the Motorola MC68xxx instructions you want
to use. •

Contents

What this manual contains xvii
Other reference materials xviii
Notation conventions xix
Aids to understanding xix

Courier typeface xx
Italic xx
Fields xxi
Delimiter symbols xxi
Braces xxii
Brackets xxii
Ellipses xxiii
Underlining xxiii

For more information xxiv

xv

What this manual contains

This manual is divided into 7 chapters in two sections, and 10 appendixes. Here is a
summary of the information it contains:

• Part I is about using the Assembler. It contains 4 chapters.

o Chapter 1, "About the Assembler," lists some characteristics of the Macintosh
Workshop Assembler and describes its general mode of operation. It also includes
a summary of file-naming conventions.

o Chapter 2, "Coding Conventions," discusses the overall structure of MPW
assembly-language source text. It includes information about statement and
directive formats, symbol formation, and the evaluation of expressions.

o Chapter 3, "Address Syntax," describes the ways you can address the Macintosh
memory and gives the syntax rules for writing addresses in your source text.

o Chapter 4, "Assembler Directives," provides detailed instructions for using most of
the MPW Assembler directives, grouped by the kinds of tasks the macros perform.
Macro-expansion directives are covered in Chapter 7.

• Part II covers the Macro Processor and the Macro Language features that relate to it.
It contains 3 chapters.

o Chapter 5, "Macros," tells you how to define and call macros in your source text.

o Chapter 6, "Macro Variables and Functions," tells you how to use SET variables to
program the expansion of your macros.

o Chapter 7, "Macro and Conditional-Assembly Directives," describes the directives
of the MPW Assembler macro language.

• Part III contains the appendixes.

o Appendix A, "Generic Instruction Formats," gives you the rules for writing the
generic forms of some assembly-language statements that the MPW Assembler
accepts and converts to specific instructions.

o Appendix B, "Syntax Diagrams," contains copies of all the syntax diagrams used in
this manual.

o Appendix C, "Assembly Llsting Forma~" describes the way the Assembly listing is
constructed.

o Appendix D, "Other Assemblers," compares the MPW Assembler with other
assemblers available for the Macintosh and tells you how to use programs that
translate source text from other forms.

o Appendix E, "The Macintosh Character Set," shows the characters in the Macintosh
character set and gives their numeric values.

Preface xvii

o Appendix F, "Instruction Sets," lists the MC68000, MC68010, MC68020, MC68030,
MC68851, and MC68881/MC68882 machine instructions and condition codes
accepted by the Assembler.

o Appendix G, "Assembler Command Syntax," defines the syntax for writing the
Assembler command line, including information about the Assembler options.

o Appendix H, "Object Assembler Macros," describes the macros provided for
object-oriented programming in the MPW assembly language.

o Appendix I, "Pascal and C Calling Conventions," gives the assembly-language
calling conventions for routines written in Pascal and C.

o Appendix], "Structured Assembly Macros," explains how to use the structured
macros that provide MPW Assembler with many of the powerful commands usually
found only in the higher-level languages.

At the end of this manual you will find a glossary and an index.

Other reference materials

Before trying to write and assemble a Macintosh assembly-language program, you should
read and understand the following books:

• Apple® Computer. Macintosh Programmer's Workshop 3.0 Reference. A full
description of how to use the Workshop's program preparation tools, including the
Assembler.

• Motorola. M68000 8-/16-132-Bit Microprocessors Programmer's Reference Manual,
6th ed. Prentice-Hall, 1988. The latest comprehensive guide to the MC68000
microprocessor.

In addition, you may find these books helpful:

• Apple Computer. Inside Macintosh. Vol. I-III. Reading, Mass. Addison-Wesley, 1985.
The complete story of the architecture and operation of the 128K and 512K
Macintosh, including details on their ROM routines.

• Apple Computer. Inside Macintosh. Vol. IV. Reading, Mass. Addison-Wesley, 1986.
Additional and updated material covering the Macintosh and the Macintosh Plus.

• Apple Computer. Inside Macintosh. Vol. V. Reading, Mass. Addison-Wesley, 1988.
New material covering the Macintosh SE and the Macintosh II.

xviii MPW 3.0 Assembler Reference

• Apple Computer. Apple Numerics Manual. Second Edition. Reading, Mass. Addison
Wesley, 1986. Describes the Standard Apple Numeric Environment (SANE), which
includes extended-precision floating-point arithmetic as specified by IEEE Standard
754. Describes each routine in detail,.including boundary conditions and exception
handling, and explains how to control the floating-point environment.

• Motorola. MC68020 32-Bit Microprocessor User's Manual. Second Edition. A guide to
the MC68020 instructions and addressing modes.

• Motorola. MC68030 Enhanced 32-Bit Microprocessor User's Manual. A guide to the
MC68030 instructions and addressing modes.

• Motorola. MC68851 Paged Memory Management Unit User's Manual. A guide to the
MC68851 coprocessor, with details of all its instructions.

• Motorola. MC68881/MC68882 Floating-Point Coprocessor User's Manual. A guide to
the MC68881 and MC68882 coprocessors, with details of all their instructions.

Notation conventions

The discussions in this manual include a number of syntax diagrams and source text
examples, designed to help you understand exactly how to write source text structures.
Syntax diagrams appear as appropriate in the text and are also gathered together in
Appendix B. This section tells you how to interpret the symbols used in the syntax
diagrams and examples.

Aids to understanding

Look for these visual cues throughout the manual:

.A Warning Warnings like this indicate potential problems. .a.

£:::,. Important Text set off in this manner presents important information. c::.

+ Note: Text set off in this manner presents notes, reminders, and hints.

Computer words and phrases appear in boldface type when they are introduced. The
term is defined in the glossary.

Preface xix

Courier typeface

Anything printed in the Courier typeface is a sample of actual source text, as it might be
processed by the Assembler. Where the Courier typeface occurs in syntax diagrams, it
indicates fixed symbols of the MPW assembly language. Such symbols, which must be
written in the source text as they are written in the syntax diagram, are sometimes called
terminal symbols.

+ Note: To further distinguish them, directives and machine instructions are printed in
capital letters. However, you do not need to use capitals in your source text.

Italic

Generic terms that designate information to be supplied by the programmer are printed in
italic. They are sometimes called nonterminal symbols. Such terms may contain hyphens
instead of spaces. The most common ones are shown here:

abs-e::rpr
arith-expr
rel-expr
expr
string
str-expr
name
label
macro-label
filename
rlist
reg

An absolute expression
A numeric expression
A relocatable expression
An absolute or relocatable expression
A string constant
A string expression
An identifier
An identifier used as a label
A macro label
A string expression representing a filename
A MOVEM register list
Any MC68000, MC68010, MC68020, or MC68030 register

Nonterminal symbols not shown in this list are defined where they are used for specific
statements.

Where a nonterminal symbol is repeated in a syntax diagram, the repetitions are
sometimes distinguished by subscripts, as shown here:

abs-e:xpr1 , abs-e:xpr2

You write two absolute expressions at this point, separated by a comma. The expressions
may be the same or different.

xx MPW 3.0 Assembler Reference

In some syntax diagrams, the connective ::= is used to show the possible values for a
nonterminal symbol. For example,

size::=WIL

indicates that you may write either W or L for the nonterminal symbol size.

References to nonterminal symbols in explanatory text are printed in italic, so you won't
confuse them with ordinary words or phrases.

Fields

Syntax diagrams distinguish the fields into which source text lines are divided by
horizontal spacing, as shown here:

[macro-laben INCLUDE filename

The nonterminal symbol macro-label, enclosed in brackets, indicates that you may write
an optional macro label in the first field. The terminal symbol INCLUDE indicates that you
must write the word include in any combination of uppercase and lowercase in the second
field. The nonterminal symbol filename indicates that you must write a filename in the
third field. For further details about fields, see "Machine Instruction Syntax" in Chapter 2.

Delimiter symbols

You must write the following delimiter symbols in your source text exactly as they are
shown in the syntax diagrams:

'
Comma

() Parentheses
Period

• Asterisk
Equal sign

Occasionally, required delimiters may look like part of the syntax diagram's punctuation.
To prevent confusion in such cases, the required marks are enclosed in single quotation
marks. For instance, the expression' {'origin'}' means that the word origin, enclosed in
braces, is required.

Preface xxi

Braces

Material within braces represents required items, one of which must be chosen.
For instance,

{
ALPHA}
BETA

GAMMA

indicates that you must write either alpha, beta, or gamma at that point in your
source text.

Notice that the alternatives are written on separate lines. Terms on separate lines always
represent expressions with distinct meanings. In some instances, alternate choices have
the same effect. Such alternatives that mean the same are separated by a vertical bar (I),
as shown:

{ ONI YES}

OFF I NO

Because all the choices in this example are enclosed in braces, you must choose one line or
the other. If you choose the first line, you may write either on or yes; if you choose the
second line, you may write either off or no.

Brackets

Material within brackets represents optional items. Braces within brackets signify that
one of the alternatives must be chosen if the material is to be included at all. Here are
some examples:

[abs-expr]

INCR[EMENT)

[ENTRY J
EXPORT

You may write an absolute expression at this poin~ or nothing.

You may write either incror increment.

You need not write anything, but if you do, it must be either entry
or export.

xxii MPW 3.0 Assembler Reference

Ellipses

An ellipsis containing three dots (. ..) indicates repetition of the preceding material. If the
material is enclosed in brackets, you don't have to write it at all; if the material is not
enclosed in brackets, you must write it at least once. A comma before the ellipsis
indicates that repetitions must be separated by commas. You may repeat the material
indefinitely, subject to the general length limitation for that particular source text
structure. Here are two examples:

abs-expr, ...
[abs-expr], ...

Write one or more absolute expressions separated by commas.
Write nothing, or write one or more absolute expressions separated
by commas.

Occasionally this notation can be ambiguous, in which case a longer form is used. For
example,

-dlefinel name[=value] [, name[=value]]. ..

indicates that you may write more name or name= value groups after the first one, with a
comma preceding each one.

An ellipsis containing two dots (..) indicates a scalar range. For example, 0 . .127 means "O
and 127 and all the intervening numbers."

A sequence of three hyphens (- - -) in sample source text indicates lines of source text not
specified by the diagram.

Underlining

An underlined item indicates a default or preset value, which the Assembler will assume if
you omit an optional parameter. Here is an example:

[ENTRY J
EXPORT You need not write anything, but if you write nothing, the

Assembler will act as if you had written entry.

Preface xxiii

For more information

APDA ™ provides a wide range of technical products and documentation, from Apple and
other suppliers, for programmers and developers who work on Apple equipment. (MPW is
distributed through APDA.) For information about APDA, contact

APDA
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 95014-6299

1-800-282-APDA, or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
AppleLink: DEV.CHANNELS

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51-W
Cupertino, CA 95014-6299

xxiv MPW 3.0 Assembler Reference

Part I Using the Assembler

Chapter 1 About the Assembler

THE MPW ASSEMBLER IS CONTAINED IN A SINGLE FILE named Asm. This chapter
describes some of its general characteristics. For instruction on invoking the
Assembler, including further information about the environment in which it runs,
see the Macintosh Programmer's Workshop 3.0 Reference. A summary of
Assembler command syntax and options is given in Appendix G. •

Contents

General characteristics 5
Overview of the assembly process 6
Assembly files 7
Programming for the Macintosh 8

Macintosh libraries 9

3

General characteristics

The MPW Assembler is a Macintosh program that reads your source text and creates a file
of linkable MC68xxx object code. It has the following principal features, which help you
build powerful assembly-language programs:.

• It supports all the instructions and addressing modes for the MC68000, MC68010,
MC68020, and MC68030 microprocessors, the MC68851 Paged Memory Management
Unit (PMMU), and the MC68881 and MC68882 Floating-Point Coprocessors, in all
usable combinations.

• It has powerful macro capabilities, which handle both positional and keyword
macros. These capabilities resemble those of the macro facilities in the IBM 360/370
Assemblers.

• Its macro capabilities accept global and local variables (called SET variables) that
allow macros to communicate with one another. SET variables may contain numbers,
characters, strings, or arrays. You can use them with conditional and looping
statements to control the generation of complex structures of object code.

• It gives you the choice of creating either a single object module or a series of separate
object modules.

• It gives you full control over the generation of both code and data modules, including
AS-relative data. You can share global data between your assembly-language routines
and routines written in MPW Pascal and MPW C.

• It lets you specify the scope of all code and data definitions. You can make the
objects they define accessible only within modules, within files, or between files.

• It lets you define templates that determine the mapping of data in memory. Their
function is similar to that of Pascal records or C structures. You can use templates as
data types in much the same way as you use record types in Pascal.

• It lets you store its global symbol tables in files and then use these files for new
assemblies. This increases assembly speed and saves disk space.

• It can generate Pascal-formatted and C-formatted strings, as well as fixed-length
strings.

c H A PT E R 1 About the Assembler 5

·Overview of the assembly process

The MPW Assembler processes your source text in two passes. The first pass reads the
source text, defines and expands all macros, and defines all symbols. It detennines the
length of the object code and resolves forward references. It also creates the following
symbol tables:

• a global symbol table for symbols defined outside code or data modules

• a macro symbol table for all macro symbols and definitions

• a local symbol table for each code or data module

These operations do not create any object code.

As it starts to read each code or data module on its first pass, the Assembler creates an
internal file in Macintosh memory containing a translation of your source text into postfix
notation. At the end of each module, the Assembler performs its second pass, converting
the postfix file into object code. The Assembler appends this code to the growing object
code file. After processing each module, it releases memory held for the internal postfix
file and the local symbol table.

Thus, the Assembler translates each module separately, releasing the memory used before
the next module is started. Nevertheless, symbol tables, macro definitions, and the
postfix file all compete for the Macintosh's memory. To permit you to assemble large
programs with limited RAM space, the MPW Assembler lets the postfix file spill over onto
a disk. When this happens, the Assembler returns a warning message at the end of the
assembly process and assembly time increases by about 25 percent. Hence once there is
enough RAM space available for its basic operations (including maintaining all symbol
tables), the only memory limitation on the assembly process is the availability of
disk space.

If you are generating an assembly listing, the Assembler creates a scratch file on the disk,
in addition to the listing file. During the first pass, the Assembler writes source text lines
that occur outside modules to the listing file directly. The Assembler writes lines that
occur inside modules (including conditionally assembled lines and macro expansions) to
the scratch file during the first pass, and then from the scratch file to the listing file during
the second pass. To ensure that they appear in the correct location in the listing, the
Assembler generates additional postfix code. As a consequence, assemblies that create
listing files generate more postfix code.

6 MPW 3.0 Assembler Reference

During assembly, the Assembler sends errors and warnings to the diagnostic output file
(the active window, unless you specify otherwise). If you use the -p Assembler option,
described in Appendix G, the Assembler also writes progress and summary information to
the diagnostic output. Status codes that the Assembler may send to the MPW Shell are
listed in Table 1-1.

• Table 1-1 Assembler status codes

Code Status

0 No errors detected in any files assembled
1 Assembler command line parameter or option errors detected
2 Assembly processing errors detected
3 Assembly terminated before completion

Assembly files

By convention, you add the suffix .a to your assembly-language source text files. Object
code files created by the Assembler are normally named after your source text file with the
suffix .o added. However, you can change the name that the Assembler assigns to your
object file by using the -o Assembler option, described in Appendix G. If you tell the
Assembler to create a listing file, it will be named after your source text file with the suffix
.lst added.

For example, given an assembly-language source text file Name . a, the Assembler will
create an object code file Name . a . o and a listing file Name . a . lst from it.

In addition to the Assembler itself, the MPW disks contain library files of useful routines,
together with the corresponding files of assembly-language interface statements, macros,
and equates that access them. Your program can use any of these files. Files whose names
end in . a contain assembly-language statements that you can include in your source text.
Files whose names end in . o must be linked to your assembly. They contain executable
code called by the assembly-language files. Most of the available libraries and their
interface files are described in the Macintosh Programmer's Workshop 3.0 Reference; some
are described in this book, in Appendix J.

c H A Pr E R 1 About the Assembler 7

Programming for the Macintosh

There are four kinds of programs you can write for execution on the Macintosh:

• applications

• tools-programs that run under the MPW Shell

• desk accessories and other drivers

• 'CODE' resources such as cdevs and Th11Ts, which are used to customize the Macintosh
environment, and XCMDs for extending the HyperTalk language used in HyperCard.
(See the Macintosh Technical Notes for further information.)

General information about building and installing these kinds of programs is given in the
Macintosh Programmer's Workshop 3.0 Reference. The following notes are specifically
applicable to assembly-language programs:

• If an application contains one or more data modules containing DC or DCB directives,
it must be linked with the library Runtime.a, which contains the data initialization
routine _Datarnit. Its first executable statement must be a call (JSR) to the entry
point _Datarni t. This entry point must also be declared as IMPORT. After returning
from _Datainit, your program may unload the segment %AS I nit that contains it,
by calling the Macintosh routine UnloadSeg.

• Routines you can use with tools that run under the MPW Integrated Environment are
described in Chapter 12 and Appendix F of the Macintosh Programmer's Workshop 3.0
Reference.

• Assembly-language desk accessories may not declare any global data. They must be
linked with the file DRVRRuntime.o, which contains the main code module for all desk
accessories. Use Create Build Commands ... from the Build menu in MPW to help create
build files for desk accessories and other types of 'CODE' resource.

8 MPW 3.0 Assembler Reference

Macintosh libraries

Inside Macintosh describes an extensive group of Macintosh library routines, also called
operating-system routines and toolbox routines. They perform jobs such as creating
menus, windows, and dialog boxes, providing simple text editing, and accessing files
and devices.

Many of the Macintosh library routines are implemented in the Macintosh ROM. You can
call them from an assembly-language program by using machine instructions whose high
order four bits are %1010 (that is, whose opcodes begin with $A). Such machine
instructions are unimplemented, and using one of them invokes what is called an A-trap.
The Macintosh trap dispatcher determines which of the library routines to call by
examining the rest of the opcode.

The opcodes for various Macintosh library routines are defined by OPWORD directives
contained in assembly-language files in the MPW folder {Aincludes}. If you include the
appropriate files in your assembly, you can call the routines they cover by writing the
routine identifiers (such as _Read instructions).

Certain Macintosh library routines are in library object files, instead of in ROM. They are
flagged in Inside Macintosh with the notation "[Not in ROM]." You call these routines with
JSR instructions. If you use any of them in your program, you must link your assembly
with the MPW file {Libraries}Interface.o, which contains their code.

Additional information about calling Macintosh operating-system and toolbox routines
from assembly-language programs is contained in the Using Assembly Language chapter of
Inside Macintosh. The include files and library files supplied with MPW are described in the
Macintosh Programmer's Workshop 3.0 Reference.

c HAP TE R 1 About the Assembler 9

Chapter 2 Coding Conventions

THIS CHAPTER DESCRIBES TIIE SYNTAX RULES AND OVERAU

form required for source text that is to be processed by the
MPW Assembler. •

Contents

Source text structure 13
Scope of definitions 15

Imported and exported objects 17
@-labels 17
Summary 18

Segmentation 18
Machine instruction syntax 19

The label field 20
The operation field 21
The operand field 23
Comments 24

Symbols 25
Identifiers 25
Numeric constants 26
Strings 27

Expressions 28
Evaluation of expressions 30
Absolute and relocatable expressions 31

Absolute expressions 32
Relocatable expressions 33

11

Source text structure

The source text formats for most higher-level programming languages are similar in
structure. They consist of related procedures and functions plus various forms of data.
The programs that interpret them differ mainly in the ways they support relationships
among the routines and data. The MPW assembly language, although not a higher-level
language, includes many of the programming facilities found in higher-level languages.

In order to understand the structure of MPW assembly-language source tex~ it is helpful to
understand the various components that make up a linked and executable program.
Therefore, this discussion begins by defining some terms that describe an executable
Macintosh program, together with how they relate to an assembly source text and the
environment in which the program is executed.

Each line of MPW Assembler source text is either a machine instruction statement or a
directive statement. Machine instruction statements generate executable code, using
MC68xxx instructions. Directive statements are commands to the Assembler to perform
certain operations during assembly. The syntax rules for writing machine instruction
statements are given later in this chapter. The syntax rules for writing directive statements
are given in "Directive Formats" at the beginning of Chapter 4.

Every executable assembly-language program is built from a collection of object files.
Each object file corresponds to one assembly and is made up of a collection of code and
data modules. Each module contains one contiguous piece of code or data. Data
modules represent static data, because the data space is defined before the program
begins and the data remains accessible during the entire execution of the program.

When you link a program, the linker groups all the code modules together and makes a
separate grouping of all the data modules. Thus a linked object file consists of two parts:
a collection of code modules and a collection of data modules.

In the Macintosh, the Segment Loader takes the collection of data modules and loads
them into an area called the application globals area. This area is just below the area
pointed to by register A5, called the application parameter area. Thus when the linker
adjusts code references to data in the data modules, it does so by setting negative
offsets relative to AS, the assumed base register for data access.

References by code to other code are made by jumping indirectly through a structure
called the jump table, which is also built by the linker and loaded by the Segment Loader
just above the application parameter area. So the jump table is accessed by positive
offsets from AS. A map of all these memory areas is included in Figure 9 of the Memory
Manager chapter of Inside Macintosh.

C H A P T E R 2 Coding Conventions 13

Figure 2-1 is a syntax diagram that covers the overall structure of an assembly-language
source file. The modules and directive statements in such a source file may occur in any
order, subject only to the scope rules given later in "Scope of Definitions."

• Figure 2-1 Source text structure

[{ directive gm~t }]
data module ...
code module

END

Data module

name RECORD

[directive statemenrl

(ENDR)

Code module

name { PROC I FUNC I MAIN }

[r directive statement

ll-·· 1 machine _instruction statement
data section
code section

(ENDP I ENDF I ENDMAIN)

Data section

DATA

[directive statemenrl

Code section

CODE

l { directive statement }J
machine instruction statement · · ·

14 MPW 3.0 Assembler Reference

Each module starts with a module directive (PROC, FUNC, MAIN, or RECORD). Each
module terminates at the start of the next module directive, at the matching ENDX (ENDP,

ENDF, ENDMAIN, or ENDR), or at the end of the source text. The end of the source text is
indicated by an END directive.

Code modules are always introduced explicitly by either a PROC, FUNC, or MAIN directive.
There is no structural difference between PROC and FUNC directives; FUNC is used instead
of PROC only for documentation purposes. MAIN is essentially the same as PROC or FUNC,

but has the additional function of indicating that this module is the main code module,
and that its first instruction is the execution starting point for the program. There must be
exactly one main code module in a linked program.

There are three ways to declare data in an assembly-language source file:

• As a data module introduced by the RECORD directive. Such a module generally
contains data-definition and storage-allocation statements. It may also contain
initialized values. All the data defined between the RECORD directive and its matching
ENDR (or the start of the next module) generates a single data module.

• As a data module corresponding to one data-definition statement. Before the first
module, or between explicitly declared modules, you may write directive statements.
Such statements outside of explicitly declared modules define their own data
modules, one corresponding to each statement.

• As data that is part of a code module. Although you use the PROC, FUNC, and MAIN

directives to indicate the start of a code module, you may generate an associated
data module inside the code module, using the CODE and DATA directive. CODE and
DATA may be used only inside a code module (PROC, FUNC, or MAIN); they indicate a
switch from code to data (DATA), and then back to code again (CODE). Hence they
delimit sections of code or data within the code module. Code in the code sections is
generated contiguously-the first byte of one code section immediately follows the
last byte in the previous code section. Similarly, the data in the data sections is
contiguous.

Scope of definitions

The scope of a definition is the area of source text in which the code or data object it
defines is accessible-that is, the area in which the object can be accessed by code or
data statements. Scope rules permit you to restrict the scope of definitions. This lets you
allow communication among the various routines of your program, while at the same time
making selected objects inaccessible to other routines. Selectivity of scope promotes
structured programming and helps you avoid identifier conflicts.

C H A P T E R 2 Coding Conventions 15

Here are the scope rules:

• All code or data definitions in a source file have either global or local scope.

• Local definitions override global definitions.

• The scope of a global definition extends from the point at which it occurs in the
source file to the end of that file. Global definitions include those declared outside of
a code or data module as well as definitions of code and data module identifiers. All
identifiers assigned to global objects must be unique within the assembly.

• All code or data labels must be declared or defined before they are used. In order to
access a label prior to its definition in the file, you must declare it with an IMPORT or
EXPORT directive before the access.

• The Assembler permits field identifiers within a data module (created by the directive
RECORD) to be accessed as qualified identifiers. Qualified identifiers are written in
the form modname. fieldname, where modname is the data module identifier and
fieldname is a data-definition field identifier, as defined within the data module.
Field identifiers accessed in this way have global scope.

• A definition is considered to have local scope if it occurs inside a code or data
module. Local objects may be accessed only from within the module; you may use the
objecf s identifier in different modules or outside the module without causing an
identifier conflict.

• The global/local scope rules may be overridden with the ENTRY, EXPORT, and IMPORT

directives described in this chapter and in Chapter 4.

• ENTRY forces specific identifiers to be global. An identifier that is to be declared as
ENTRY must be so declared before it is defined. From that point on, the identifier
follows the same rules as global identifiers. This means that ENTRY may be used to
access identifiers defined later in your source text, such as labels in subsequent PROC

directives.

• Since all data objects outside of modules, as well as the module identifiers themselves,
have global scope, they are implicitly declared as ENTRY by the Assembler. For
documentation purposes, a module identifier may also be declared explicitly
as ENTRY.

16 MPW 3.0 Assembler Reference

Imported and exported objects

Local or global code or data objects may be made accessible to source text files other
than the file in which they are defined. Objects defined in a file, intended to be accessed
outside it, are said to be exported. Objects accessed from outside the file in which they
were defined are said to be imported. Thus an exported object in an object file can be
imported into any number of other object files. You export and import objects by using
the EXPORT and IMPORT directives.

Using EXPORT inside a code or data module declares specified local identifiers as
exported. You must use EXPORT before defining the specified identifiers. The identifiers
may then be accessed from other files that import those identifiers. Since an exported
local identifier is made accessible outside of the module in which it is defined, EXPORT

promotes local identifiers to global scope within the same source text file, just as ENTRY

does. Module identifiers, code or data labels, global data definitions, and storage
allocation identifiers may be exported.

Once an object's identifier is declared as EXPORT, other source text files may import the
identifier by using IMPORT. The IMPORT directive declares specified identifiers as local
or globa~ depending on where the IMPORT statem~nt is used within the file. If IMPORT is
used inside a module, then the identifiers are local to that module. Using IMPORT outside
a module declares the identifiers as global to the rest of the file.

Since EXPORT identifiers are global to the file in which they are declared, the Assembler
treats references to such identifiers from modules other than the one that actually defines
the identifier as imports of those identifiers. For documentation purposes, however, you
can always import such identifiers explicitly by using IMPORT in the same file.

@-labels

label identifiers that begin with an at symbol(@) are called @-labels. They have more
limited scope than other labels and can't be used in directives or outside modules.
Specifically, the scope of an @-label extends through the source text, in both directions,
to the nearest label that doesn't begin with@. You may redefine an @-label, but not in the
scope of another instance of the same @-label. All @-labels defined or used inside macros
follow the same rules, but in addition their scope is limited to the body of the macro. Any
@-labels passed as macro parameters retain the scope they had when the macro was called,
with certain restrictions. For further information about passing @-labels to macros, see
"Operand Syntax" in Chapter 5.

C HAP TE R 2 Coding Conventions 17

Summary

Here is a summary of the kinds of identifiers used in definitions of different scope.

• Temporary scope (can be accessed only within a part of a module)
o @-labels (beginning with @)

• Local scope (can be accessed only from within the module; overrides global
declarations)

o All identifiers defined within a code or data module

o Identifiers imported by using IMPORT within a module

• Global scope (can be accessed from the point of definition to the end of
the file)

o Code and data module identifiers

o All identifiers defined outside of code and data modules

o Identifiers imported by using IMPORT outside of any module

o Identifiers declared as ENTRY

o Qualified data module identifiers

• Identifiers accessible between files

o Local identifiers declared as EXPORT (EXPORT used inside a module)

o Global identifiers declared as EXPORT (EXPORT used outside any module)

Segmentation

In addition to dividing your program into code modules, you can associate groups of one
or more code modules into segments. As your program is executed, the Macintosh
Segment Loader will load all the modules in each segment at the same time, whenever any
one module in the segment is called. This lets you use the same memory space for different
modules as long as they are in different segments. For example, you may have a collection
of modules needed only for initialization of your program. These modules could be in one
segment and the rest of your program in another segment. During initializ.ation, only the
initialization segment need be loaded. After initialization, that segment can be unloaded
(by a call to UnloadSeg) and the same memory space reused by the remainder of your
program. Segments and the Segment Loader are further discussed in the Segment Loader
chapter of Inside Macintosh. Data initialization is discussed in the Macintosh
Programmer's Workshop 3.0Reference.

18 MPW 3.0 Assembler Reference

The SEG directive, described in Chapter 4, lets you group a code module or a collection of
code modules into a particular segment. Only code modules may be placed in segments;
data modules are not affected by SEG directives.

Each SEG directive specifies a name for the succeeding segment. All code modules up to
the next SEG directive are grouped in the specified segment, beginning at the next code
module directive.

Code modules grouped in the same segment do not have to be contiguous in the source
file. Code modules belonging to different segments may be mixed in your source text as
long as they are covered by the appropriate SEG directives. The SEG directive is further
discussed in "Llnker and Scope Controls" in Chapter 4.

+ Note: Segment names are case-sensitive. Be careful to capitalize them consistently.

Machine instruction syntax

Machine instruction statements are written in four fields-the label field, the operation
field, the operand field, and the comment field. These fields must be separated by one
or more spaces (ASCII code $20) or tabs (ASCII code $09), and must be written in the
order given. Total statement size is limited to 255 characters. You may continue writing a
statement on the next line if you follow these rules:

• The fields must remain in their proper sequence: label, operation, operand,
and comment.

• The fields must be separated by one or more spaces or tabs.

• Only the operand and comment fields may be continued. The label and operation
fields must be completed in the first line of the statement, including at least one space
following the operation entry.

Each continued line (after the first line) starts at the first character on that line that is not
a space or tab; leading spaces or tabs on continued lines are ignored. For further
information about continuing machine instruction statements, see "The Operand Field"
later in this chapter.

C H A P T E R 2 Coding Conventions 19

The label field

The label field is the first field in a source text line. It may be empty or it may contain an
identifier. The syntax rules for identifiers are given in "Identifiers" later in this chapter.

If the label field contains an identifier, it need not begin in the first character position on
the line. However, if it contains an identifier that begins after the first character position
(that is, if the identifier is preceded by one or more spaces or tabs), the label field must
be tenninated by a colon. Otherwise the label field may be tenninated by either a colon, a
tab, or one or more spaces. The colon, if used, is not pan of the identifier.

Within code and data modules, the label field may be the sole field of a source text line, in
which case it tenninates with the return character that ends the line. In code modules, the
Assembler always aligns such label positions to start on a word boundary. When a source
text line contains only the label field and the comment field, they must be separated by a
semicolon (;) preceded by at least one space character.

Here are some examples of valid label syntax:
label MOVE.W DO,Dl
label: MOVE.W DO,Dl

label
label ;Comment

The first line shows a label that begins in the first character position, and hence can be
tenninated by tabs or spaces. The second line shows a label preceded by a space; it must
be tenninated by a colon. The third line contains only a label. The last line contains a label
and a comment, which must be separated by a semicolon preceded by at least one space
or tab.

All labels that begin with an at symbol(@) are called @-labels. They can be used only inside
modules, as described in "Scope of Definitions," given earlier in this chapter.

The Assembler allows labels for all instructions, macro calls, and directives that define data
structures or values. For instructions and data-definition directives, the label is given a
value equal to the location-counter value associated with the first byte of the instruction
or data. For macro calls and other directives, the label's value is defined as a function of
the macro call or directive.

20 MPW 3.0 Assembler Reference

The operation field

The operation field contains the mnemonic operation code specifying the desired
machine instruction or Assembler directive. Mnemonic operation codes conform to the
rules for identifiers given later in this chapter. Valid operation codes include the following:

• mnemonics for the MC68000 and MC68010 instructions described in the Motorola
M68000 8-/16-132-Bit Microprocessors Programmer's Reference Manual

• mnemonics for the MC68020 instructions described in the Motorola MC68020 32-Bit
Microprocessor User's Manual

• mnemonics for the MC68030 instructions described in the Motorola MC68030
Enhanced 32-Bit Microprocessor User's Manual

• mnemonics for the MC68851 PMMU coprocessor instructions described in the
Motorola MC68851 Paged Memory Management Unit User's Manual

• mnemonics for the MC68881 and MC68882 floating-point coprocessor instructions
described in the Motorola MC68881/MC68882 Floating-Point Coprocessor User's
Manual

• the Assembler directives, including macro instructions, described in this book

• Note: Some mnemonics have been changed to eliminate ambiguities and to conform
to the Motorola assembler fonns. If in doub~ check your mnemonics with those listed
in Chapter 3 and Appendix F.

The operation field must be preceded by at least one space or tab. The Assembler ignores
uppercase and lowercase distinctions when reading it.

Certain machine instruction mnemonics include condition codes, indicated by the symbol
cc. A list of the condition codes the MPW Assembler accepts is included in Appendix F.

Many instructions and directives can operate on more than one data size. For these
operations, the data size must be specified as part of the mnemonic; otherwise a default
size is assumed. The size is specified by appending to the mnemonic a period (.)
followed by one of the qualifier letters shown in Table 2-1.

C H A P T E R 2 Coding Conventions 21

• Table 2-1 Data size qualifiers

letter Name Data S.il.e

B

w
L

s
D

s

D

x

p

Byte
Word
Longword
Short
Double long word
Single precision

Double precision

Extended

Packed BCD

8 bits
16 bits
32 bits for data; signed offset for branch instructions
8-bit signed offset, -128 . .127, for branch instructions
64 bits; for certain MC68851 and MC68030 registers only
32-bit IEEE format for binary reals: 8 exponent bits,
23 mantissa bits, 1 sign bit; MC68881 and MC68882 only
64-bit IEEE format for binary reals: 11 exponent bits,
52 mantissa bits, 1 sign bit; MC68881/MC68882 only
96-bit IEEE format for binary reals: 15 exponent bits,
64 mantissa bits, 1 sign bit, 16 reserved bits;
MC68881/MC68882 only
96-bit packed BCD format for real strings: 3 decimal
digits exponen~ 17 decimal digits mantissa, 4 bits sign
and range, 12 reserved bits; MC68881/MC68882 only

In macro calls, the period may be followed by any sequence of characters, as long as none
of them are spaces or tabs. The meaning of such a qualifier is a function of the macro
definition associated with the call. See "Defining Macros" in Chapter 5 for further details.

Ordinarily, the default data size qualifier is word (W) for MC680XO and MC68851
instructions and extended (X) for MC68881/MC68882 instructions. Some instructions do
not permit a data size specification, since the size is implicit in their operation.

In some cases, the Assembler accepts a generic form for an instruction and assembles a
more appropriate form. The instruction ADD, for example, is translated into ADD, ADDA,

ADDQ, or ADDI, depending on context. The generic instruction formats are listed in
Appendix A The reasons for using them fall into three overlapping categories:

• Optimization

o Instructions can often be encoded into a more compact (and generally faster
executing) form that is not the same as the original instruction. An example of such
an instruction is SUBA An, An in place of MOVE * o, An. When an instruction is
optimized, the object code generated is differen~ but the mnemonics are not
changed in the listing.

22 MPW 3.0 Assembler Reference

• Convenience
o Instructions may need to be encoded based on context, such as an ADDI in place

of an ADD. Also, alternate mnemonics may make coding easier and more readable.
For example, BZ (branch if zero) would replace BEQ.

• Compatibility
o Instructions may need to be translated for compatibility with the Lisa™

Workshop Assembler (TI.A), the Macintosh 68000 Development System Assembler
(MDS), or the Motorola assembler. Examples here include BHS (branch on high or
same) for Bee (branch on carry clear), and BLO (branch on low) for Bes (branch on
carry set).

You can control whether the Assembler optimizes instructions by using the OPT directive,
described under "Assembly Options" in Chapter 4.

The operand field

Many instructions and directives require operands as part of their specification. The
operand field follows the operation field and must be separated from it by at least one
space or tab. The operand field may be empty, or it may be composed of one or more
subfields separated by commas.

The BLANKS Assembler directive controls where tabs or spaces may be placed within the
operand field. With BLANKS OFF, they may occur only after commas separating operand
subfields and between paired parentheses, brackets, or braces. With BLANKS ON, tabs
and spaces may be placed anywhere in the operand field except within symbols. (Symbols
are discussed under "Symbols" later in this chapter). With BLANKS ON (the preset
condition), a semicolon is always required to separate the operand field from the
comment field. For further information, see the discussion of BLANKS under "Assembly
Options" in Chapter 4.

If you intend to continue an operand field on the next line, you must place the backslash
continuation character(\) in the operand field before any semicolon that precedes a
comment. The backslash character may not be used to continue a single symbol. This
means that line continuation can occur only between symbols. Furthermore, with BLANKS

OFF you must place the continuation character so that the Assembler treats it as part of
the operand field-that is, immediately before or after a symbol, or among tabs or spaces
that the Assembler will ignore because the operand field is not yet complete.

Here is an example of the correct way to continue an operand field:
EXPORT namel,name2,name3,\

name4,name5:DATA ; Looks good

C H A P T E R 2 Coding Conventions 23

Here is an example of an incorrect operand continuation:
EXPORT namel, name2, na\

me3:DATA Broken symbol

Comments

You can insert a comment into your source text in two ways: as a comment field or as a
comment line. Comments are ignored by the Assembler and may contain any characters
except return (ASCII $OD). Comments are intended for your use in documenting your
program.

The comment field is the last field in a source text line; it must be separated from the
preceding field by at least one tab or spa~e. As mentioned earlier in this chapter in "The
Operand Field," the setting of the BLANKS directive influences whether or not comments
must be preceded by semicolons. In statements where an optional opcode, operand field,
or subfield is omitted but a comment is desired, the comment must always be separated
from the rest of the line by a semicolon preceded by one or more tabs or spaces, even with
BLANKS OFF.

An entire line may be used for a comment by placing an asterisk (') or semicolon (;) in the
first character position of the line. On lines which contain only a label, the semicolon
convention must be used, even with BLANKS OFF.

To continue a comment that began with an asterisk ('), enter a backslash continuation
character (\) and go immediately to the next line. Comments that begin with semicolon
(;) cannot be continued.

The Assembler ignores lines that contain no characters. They are treated like comment
lines and can be used to separate sections of code or comments.

Here are some examples of valid comment syntax:

labell

la bell

label2

label3

MOVE.W

MOVE.W

PROC

DO,Dl

DO,Dl

* This is a whole-line comment.
This is also a whole-line comment.

This is a comment with BLANKS OFF

This is a comment with BLANKS ON

No opcode-- semicolon required

Semicolon required because

PROC has optional parameters

* This is a comment that is too long to fit entirely on one line \
and therefore is continued on a second line.

* However, you can also continue a comment on a second line without using the
* continuation character, by starting the second line with another asterisk.

24 MPW 3.0 Assembler Reference

Symbols

Except for comments, all fields of an Assembler statement are composed of symbols. A
symbol is a character or a combination of characters used to represent an identifier, a
numeric constan~ or a character string.

Different kinds of symbols are allowed in the different fields of assembly-language
source text:

• The label field may contain only a single identifier.

• The operation field must contain a single MC68xxx instruction mnemonic, a macro
call, a directive narrie, or an identifier defined by OPWORD.

• The operand field may contain one or more symbols or expressions composed of
symbols of any kind.

The following sections discuss the symbols accepted by the MPW Assembler.
"Expressions," later in this chapter, discusses the expressions that you can form out of
symbols.

Identifiers

Names and labels are identifiers. The first character of an identifier must be an uppercase
or lowercase letter (A .. Z, a .. z), an underscore (_), or an at symbol(@). The Assembler
treats any label that begins with @ as an @-label.

Subsequent identifier characters can be letters, digits (0 .. 9), underscores (_), dollar signs
($),number signs(#), percent signs(%), or at symbols(@). An identifier can be any length,
but only the first 63 characters are significant. By using the CASE directive, you can
specify whether uppercase and lowercase letters are to be treated as different or the
same. See "Assembly Options" in Chapter 4 for more information.

Some examples of valid identifiers are shown here:

BYTE
Start

Next Char
Next Char

ApplZone
inverseBit

_trap
Numt65

x
a%

@2 A 1
A$2

A#2
A@2

A special identifier symbol is used to refer to the current value of the location counter in
a module or template. This symbol is the asterisk (*). It may appear only in the operand
field. It stands for the address of the first byte of currently available storage after any
required boundary alignment. Using the asterisk in the operand field of a statement is the
same as placing a label in the label field of the statement and then using that label in the
operand field of the same statement.

C H A P T E R 2 Coding Conventions 25

The Assembler uses the location counter referred to by the asterisk symbol to assign code
and data module addresses to statements. It is the Assembler's equivalent to a computer's
instruction counter. Since all modules are relocatable, all modules are assembled with their
addresses relative to zero. Therefore the location counter is a zero-relative offset to the
address of the start of the current module. Since it is an offse~ the location counter may
also be used in templates. Hence each module and template may be viewed as having its
own location counter.

Numeric constants

You can express numeric constants in your source text in either decimal, hexadecimal,
binary, or floating-point form.

These are the syntax rules for expressing numeric constants.

• A decimal number is formed as a string of decimal digits (0 .. 9), as shown here:
123
5
32

• A hexadecimal number is specified by a dollar sign ($) followed by a sequence of
hexadecimal digits (0 .. 9, A .. F, or a .. f), as shown here:
$123
$1A3C
$FFFF
$alC2

• A binary number is specified by a percent sign (%) symbol followed by a sequence of
binary digits (O or 1), as shown here:
%1010
%101
%1011101

• A floating-point number is specified by enclosing a decimal or hexadecimal number in
quotation marks(", ASCII $22). Decimal numbers, for this purpose, may include any
of the fonns listed in the Apple Numerics Manual, Second Edition, Table 3-2. A
hexadecimal floating-point number must begin with a dollar sign, following the format
given above. Here are some examples:
"123"
"-0"

"123.4E-12"
"-INF"

"123."
"NAN (12)"

".456"
"-Nan ()"

"nan"
"$3F800000"

The MPW Assembler interprets decimal, hexadecimal, and binary constants as signed
32-bit values. For example, $FFFF is interpreted as the value 65535, not -1. If you
want -1, you must write it in decimal as -1 or in hexadecimal as SFFFFFFFF. The
Assembler interprets floating-point numbers as required by the MC68881/MC68882
instruction that uses them-as single, double, extended, or packed BCD.

26 MPW 3.0 Assembler Reference

+ Note: The Assembler pads incomplete hexadecimal floating-point numbers with zeros
at the right end. For example, if you write $Al 2 3 as an operand for an
MC68881/MC68882 instruction that requires eight-byte data, the Assembler will
interpret it as the number $Al 23 00 00 00 00 00 00. (Spaces added for clarity.)

Strings

A string is a sequence of one or more ASCII characters (including spaces and tabs)
enclosed in single quotation marks (' , ASCII $27). Within a string, two single quotation
marks in succession represent one single quotation mark. Some examples of strings are

'Hello'
'don' 't'
' 1 ' ' (Generates one single quote)

There are restrictions on how long a string can be, as well as how it is interpreted by the
Assembler. These restrictions depend on its context and form, as explained here.

A string constant used to represent an integer value in an arithmetic expression is limited
to four characters. The Assembler evaluates each character as having the value of its ASCII
code. It treats such a string as a right-justified 32-bit value, padded on the left with zeros.
Here are some examples:

SUB i'a'-'A',DO Constant represents the value 32
SUB ll' a' -$41,DO Same as the previous example
MOVE.B i'l',DO Put $31 into low byte of DO
MOVE.W ll' l' ,DO Put $0031 into low word of DO
MOVE.W ll' 12' ,DO Put $3132 into low word of DO
MOVE.L i'l',DO Put $00000031 into DO
MOVE.L ll' 12' ,DO Put $00003132 into DO
MOVE.L i'l23',DO Put $00313233 into DO
MOVE.L !1'1234',DO Put $31323334 into DO
MOVE.L !1'12'+1,DO Put $00003133 into DO

Strings used under any of the following conditions may be of any length up to the line
length limit of 255 characters:

• Strings defined as data operands to DC and DCB directives.

• Strings used in relational expressions.

• Strings used to assign values to macro variables.

• Strings used as source operands for PEA and LEA instructions. This is the only case
where an arbitrary-length (within the 255 character line-length limit) string may be used
in a machine instruction. It represents an instance of a literal. Literals are discussed in
Chapter 3 under "Special Address Formats."

C H A P T E R 2 Coding Conventions ?:!

Using the STRING directive, arbitrary-length string constants may be generated in any of
three formats, depending on the option specified:

• As-is string: the string is generated as specified.

• C string: the string is generated with a zero-value byte following its last character. This
is the string format used by C.

• Pascal string: the string is preceded by a length byte. This, the default setting, is the
format of strings used by Pascal and the Macintosh library routines. Pascal strings asre
limited to 255 characters.

For further information about the STRING directive, see "Assembly Options" in
Chapter 4.

If a string variable appears as the value of a macro parameter, the Assembler interprets it
as a string when it appears in a relation and as an integer when it appears in an arithmetic
expression. For example, suppose the string • 12 3 • is the value of the macro parameter
&i. When used in the expression &i = • 123 •,it would appear as a string. In the
expression &i + 1 o, it would yield the 32-bit value of the integer 133. This is different
from the case of a string constant '123 •,which is treated as the value $00313233.

Declared macro string variables are always treated as strings and may be used only as
strings. Macros have typed variables, as described in Chapter 6. Such variables declared as
specific types may be used only in contexts appropriate to their type.

Expressions

Expressions are used either in the operand field of source text or as SET array variable
subscripts (defined in Chapter 6 under "SET Array Variables"). They may be composed of
a single term or a combination of terms, with each term being either an identifier, a
constant, the location-counter symbol (•), or a macro function call. Integer terms are
treated as 32-bit signed values, and are combined by arithmetic, logical, shift, and
relational operators. Macro string terms may be combined only with relational operators.

The MPW Assembler recognizes the operators shown in Table 2-2. They are listed from
highest precedence to lowest. Groupings indicate operators of the same precedence.

MPW 3.0 Assembler Reference

• Table 2-2

filghest

Lowest

Operators

Symbols

()

*
I
II

+

>>
<<

<>

<

>
<=

>=

**

++

NOT

DIV
MOD

s;

~

AND

OR
XOR

+

The rules for writing expressions are as follows:

Operation

Grouping by parentheses

Ones complement
Logical not
Unary negation

Multiplication
Division
Modulus division

Addition
Subtraction

Shift right
Shift left

Equal to
Not equal to
Less than
Greater than
less than or equal to
Greater than or equal to

Logical and

Logical or
Logical exclusive-or

• Only parentheses and the +, - , - ,,, and NOT operators are allowed at the start of an
expression.

• Subexpressions are designated by enclosing the subexpression in parentheses.

• An expression may not contain two terms or two operators (other than parentheses) in
succession.

• Parentheses may be nested to a maximum depth of 9 pairs.

• Arithmetic expressions should contain a maximum of 20 terms.

• If an expression is enclosed in parentheses, the Assembler ignores blanks within the
expression regardless of the setting of the BLANKS directive.

C H A P T E R 2 Coding Conventions 19

• The multicharacter operators DIV, MOD, AND, OR, xoR, and NOT must be separated
from identifiers by at least one space. Hence these operators may be combined with
identifiers only if the BLANKS directive is ON (the preset mode), or if the expression
containing them is enclosed in parentheses.

• Floating-point constants may be enclosed in parentheses but may not be combined
with any of the other operators in Table 2-2.

Evaluation of .expressions

A single symbol is a single-tenn expression with the value represented by the symbol. The
Assembler reduces multiterm expressions to single values, following these rules:

• Each numeric tenn is given a 32-bit value. Overflows are ignored.

• Operations are perf onned from left to right, following the precedence indicated in
the operator table above.

• A parenthesized subexpression is reduced to a single value. The resulting value is then
used in computing the final value of the expression.

• When parenthesized subexpressions are nested, the innennost subexpression is
evaluated first.

• Every expression is computed as a 32-bit signed value. The limits on the final value
depend on how the expression is used.

• Division always yields an integer result; any fractional portion of the result is dropped.

• Division by 0 yields 0 as the result.

• The relational operators assign the absolute value 1 when the relation is true, and the
absolute value 0 when the relation is false. The comparison is algebraic, except when
two character strings are compared. See "Boolean Control Expressions" in Chapter 7
for a discussion of the rules governing string comparisons.

• The NOT operator is equivalent to an exclusive-or with 1-that is, -,e is equivalent to
the expression e xoR 1. This lets you negate Boolean expressions containing
relational operators.

• The shifting operators « and » shift the left operand by the number of bits
specified in the right operand. Zeros are shifted into vacated bit positions. Bits
shifted out are lost. Shifting by more than 32 bits does not generate an error.

30 MPW 3.0 Assembler Reference

Expressions used as operands for DC and DCB directives or as literal operands for PEA and
LEA statements may have either string or integer values. The Assembler decides which
type the expression has by checking its first symbol. If the first symbol can be interpreted
as a string, the Assembler assumes the whole expression is a string. Thus the Assembler may
fail to evaluate certain ambiguous expressions, such as 'a' - 32, as you may expect,
because the first symbol is a string constant. To force the Assembler to evaluate an
expression arithmetically, enclose it in parentheses; for example, ('a r - 32).

Here are some examples of valid expressions:

*
* + 100
Rec.Field+lO
Alpha - Beta
(a - b) I (20 + (c - d))

'a' - 32

A * 10
Alpha+ (i > j)* 10
-64

(a - b)+(c - d)

NOT (a OR b)

'ab' + $8000

Absolute and relocatable expressions

(a AND b)

(a ** b) ++ (c ** d)

(a AND b) OR (c AND d)
-(x + 10)

a >> b

10 + x.y

When an identifier is used as a label, the Assembler assigns it a value. This value is absolute
or relocatable, depending on the kind of statement or directive being labeled. Absolute
values are unaffected by their code module's location in memory and have the same values
at assembly time as they do at run time. Relocatable values represent addresses.

Code and data module identifiers and code or data labels are relocatable. All code
modules are relocatable and data modules are relocated relative to register A5. Template
identifiers and fields are absolute.

Using the location-counter symbol (*) in an Assembler statement is the same as placing a
label in the label field of the statement and then using that label in the operand field of the
same statement. Since using the location counter is equivalent to using the label, it may be
considered either relocatable or absolute-relocatable when used in a code or data
module, absolute when used in a template.

The use of absolute and relocatable values in expressions causes the expression and its
resulting value to be either absolute or relocatable. The following sections describe how to
create absolute and relocatable expressions.

C H A P T E R 2 Coding Conventions 31

Absolute expressions

An absolute expression may be an absolute symbol representing an absolute value, or any
arithmetic combination of absolute symbols. The resulting value is an absolute value. All
operators are allowed in absolute expressions, subject to the rules given above under
"Evaluation of Expressions."

An absolute expression may contain relocatable values, alone or in combination with
absolute terms. All terms in such an expression must already have a value; there may be no
forward references. If there are relocatable terms there must be exactly one pair of them,
and the relocatable terms

• may be used only in effective addresses of machine instructions and DC or DCB

directive statements

• must access the same segment

• must refer both to code or both to data

• must consist of terms with opposite signs (+ and -)

The pairing of relocatable terms of opposite sign is allowed in an absolute expression
because the subexpression involving the difference between the relocatable terms cancels
the effect of relocation, thus producing an absolute value.

The following examples illustrate absolute expressions. In these examples, rl and r2 are
relocatable symbols; al and a2 are absolute symbols.

al
al+ 100 - a2
al* a2
rl- r2
(rl - r2) + al * 10
rl +al* 10 - r2

32 MPW 3.0 Assembler Reference

Relocatable expressions

A relocatable expression may contain relocatable values, alone or in combination with
absolute terms, provided that it conforms to these rules:

• There must be either one or three relocatable terms.

• If there are three relocatable terms, two of them must be paired, as described earlier in
this chapter in "Absolute Expressions."

• Relocatable symbols may be combined only with the+ and - operators.

A relocatable expression reduces to a single relocatable value. This value is derived from
the odd relocatable term, adjusted by the values of the absolute terms.

In effective addresses, the Assembler assumes that all imported code or data symbols and
all forward references to undefined symbols are relocatable.

The following examples illustrate relocatable expressions. In these examples, rl and r2 are
relocatable symbols; al is an absolute symbol; and i1 and i2 are imported symbols.

rl + 10
rl + (al * 1 o) - r2
il
il + 10 - i2
il + 10

C H A P T E R 2 Coding Conventions 33

Chapter 3 Address Syntax

THIS CHAPTER COVERS THE SYNfAX RULES FOR writing
MC68000, MC68010, MC68020, and MC68030 addresses in
MPW assembly-language source text. •

Contents

Addressing modes 37
Ambiguities and optimizations 41
Forward-reference addressing 43

Registers 44
Special address formats 46

MC68xxx instructions 46
MOVEM: Multiple moves 46

MC68020 instructions 47
MULS and MULU: Signed and unsigned multiplication 47
DIVS and DIVU: Signed and unsigned division 47
IDIVS and TDIVU: Truncated signed and unsigned division 47
PACK and UNPK: Packing and unpacking 48
CAS and CAS2: Comparing and swapping 48
Bit field instructions 49
Tee and TPcc: Trap on condition 49
Assembler control 49

The MC68030 processor 49
Assembler control 50
MC68020 statements you can use 50
MC68851 instructions you can use 50

35

MC68881 and MC68882 instructions 52
FMOVEM with explicit register lists 52
FMOVE with packed BCD data 52
FSINCOS: Simultaneous sine and cosine 53
FTcc and mcc: Floating-point trap on condition 53
FTEST: Text operand and set floating-point condition codes 53

MC68851 instructions 53
literals 55

36 MPW 3.0 Assembler Reference

Addressing modes

The MC68000 effective addressing modes are fully discussed in the Motorola M68000
8-116-132-Bit Microprocessors Programmer's Reference Manual. Additional addressing
modes are available for the MC68020/MC68030. Both the MC68000 and MC68020
addressing modes are discussed in the MC68020 32-Bit Microprocessor User's Manual.
MC68030 extensions are discussed in the MC68030 Enhanced 32-Bit Microprocessor User's
Manual. If you are not familiar with how the Motorola addressing modes work, you should
read one of these books before trying to understand this chapter. The symbols used in
MPW assembly-language addresses are listed in Table 3-1.

• Table 3-1 Address symbols

ID Meaning

An Address register n, where n is a number in the range 0 .. 7
on Data register n, where n is a number in the range 0 .. 7
Rn Register n, either address or data, where n is a number in the range 0 .. 7
Xn Index register n, where n is a number in the range 0 .. 7. An index register may be

a data register (Dn) or an address register (An), optionally followed by a period
and aw or L size designation (16 or 32 bits, respectively).

* s Scaling factor, where sis an absolute expression which must produce the value 1,
2, 4, or 8. Values 2, 4, and 8 can be used only with the MC68020 and MC68030. The
default value for sis 1. If you omit s, you must omit the asterisk also.

PC The program counter
ae An absolute expression
re A relocatable expression
d An absolute (ae) or relocatable (re) expression resolving to 8 or 16 bits,

depending on the addressing mode.
bd Base displacement that is added before indirection occurs (MC68020 and

MC68030 only). This is defined as an absolute expression for addressing mode 6
and a relocatable expression for addressing mode 73. A word or long word is
generated for the bd as a function of its value, or for forward references as
specified by the FORWARD directive, discussed in Chapter 4. You may, however,
explicitly control the generated size by using the syntax (bd> .w or (bd) .L.

(continued)

C H A P T E R 3 Address Syntax 37

• Table 3-1 (continued) Address symbols

ID Meanmg

od Outer displacement that is added after indirection occurs (MC68020 and
MC68030 only). This is defined as an absolute expression. A word or long word is
generated for the od as a function of its value, or for forward references as
specified by the FORWARD directive. You may, however, explicitly control the
generated size by using the syntax (od) .w or (od) .L.

Table 3-2 defines the syntax accepted for each addressing mode. Not all addressing
modes are allowed for all machine instructions. The Motorola manuals cited at the
beginning of this chapter tell you which addressing modes may be used with each
instruction. Some of the modes have alternate syntactic forms, as shown. These alternate
forms are discussed in "Ambiguities and Optimizations," given later in this chapter.

• Table 3-2 Address syntax summary

Mode Addressing mode Effective address syntax

0 Data register direct Dn

1 Address register direct An

2 Address register indirect (An)

3 Postincrement address register indirect (An)+

4 Predecrement address register indirect -{An)

5 Address register indirect with 16-bit
displacement d(An)

6 Indirect with indexing plus
8-bit displacement d(An,Xn)

6* Indirect with indexing plus base
displacement (bd,An,Xn* s) bcl_An,Xn*s)

6* Indirect with preindexing ([bd,An,Xn* s],od)
6* Indirect with postindexing ([bd,An],Xn* s,od)

70 Absolute word (16 bits) ae (ae).W

71 Absolute long (32 bits) ae (ae).L

72 PC-relative with
displacement re d(PC)

38 MPW 3.0 Assembler Reference

• Table 3-2 (continued) Address syntax sununary

Mode Mdres&ng mode

72

73

73•

73•
73•
74

Literal (PC-relative with
16-bit displacement)••
PC-relative, indexing, 8-bit
displacement
PC-relative, indexing, base
displacement

PC-relative with preindexing
PC-relative with postindexing
Immediate

• Modes usable only with the MC68020 and MC68030

Effective address syntax

#ae #(ae).w #(ae).L

d(on) d(Pc,Xn)

(bd,Pc,Xn* s) bc!.Pc,Xn* s)
bd._Xn*s)

([bd,Pc,Xn* s],od)

([bd,Pc],Xn* s,od)

#ae

.. MPW Assembler only; not supported directly by the processor.

When writing the address forms shown in Table 3-2, you must follow these rules:

• You must write parameters in the order shown.

• The square brackets shown in Table 3-2 do not indicate optional parameters. You
must write the brackets as shown.

• Expressions that specify immediate operands, literals, or absolute addresses may not
contain any forward, undefined, or imported references.

• Expressions that specify immediate operands and literals, with the exception of
absolute addresses, may contain SET variables and functions. You may follow the rules
for absolute expressions in macro directives, explained in Chapter 5.

• Expressions that specify displacements may contain imported references but no SET
variable or function references.

• Any expression involving an unpaired data reference or a forward reference to an
undefined identifier is assumed to be relocatable.

• Wherever Xn is shown, it may be written as Xn. w or Xn. L to indicate either 16-bit or
32-bit indexing. If the size is omitted, 16-bit indexing (suffix w) is assumed.

• The scale factor * s may be omitted. If omitted, a scale factor of 1 is assumed. If it is
specified, s must be an absolute expression with the value 1, 2, 4, or 8. Values of 2, 4,
and 8 are allowed only with the MC68020 and MC68030.

C H A P TE R 3 Address Syntax 39

• The addressing form bd c An, X n* si with a scale factor s of 1, 2, 4, or 8 generates a
brief MC68020 effective address forma~ while the form c bd, An, Xn*Sl generates the
full format. Similarly for the PC-relative forms: bd<PC, Xn*Sl attempts to generate
the brief format and c bd, PC, Xn*Sl generates the full format. (Brief formats are
possible only if bd is 8 bits.)

• The addressing form d (DnJ is equivalent to d (PC, nm and generates the effective
address d-* CPC,DnJ. Similarly, the form bdcXn*s> generates the effective address
bd-* (PC, Xn*S).

• When two registers appear in parentheses, if the leftmost could be either An or Xn
(that is, if no explicit scaling or size is specified), then the base register An is assumed
to be the leftmost and the second is assumed to be the index register Xn.

• Parameters may be omitted in the six additional MC68020/MC68030 modes. If a
parameter is omitted, the comma preceding it, if any, must also be omitted. Omitted
registers take on suppressed register values (0). Omitted displacements or
displacements with the value 0 take on null values (also 0). Omitted parameters may
result in ambiguous addressing modes. These are discussed ne~ in "Ambiguities and
Optimizations." You can resolve these ambiguities by using zero-suppressed registers
-registers whose values are treated as 0 during effective address calculations.

• Register mnemonics ZPC, ZAO .. ZA7, and zoo .. zo7 specify zero-suppressed registers.
These symbols may be used to specify any allowable register in the six additional
MC68020/MC68030 addressing modes. Using such mnemonics also explicitly forces
one of the extended addressing modes, if omitting the specified registers would
cause the Assembler to substitute a simpler mode. For the rules covering such
substitutions, see the next section, "Ambiguities and Optimizations."

• Equates (EQU and SET directive statements) to absolute values (such as constants
and registers) must be written before the equated symbols are used in the source text.
When the Assembler encounters a symbol in an effective address, the Assembler first
looks for the symbol in the code module's local symbol table. If it does not find the
symbol there, it searches for it in the global symbol table.

• Displacements are always sign-extended to 32 bits by the processor. Because a
number like $FFF6 could be incorrectly interpreted by a human (as 65526), it has been
made illegal in the MPW Assembler. To specify an offset of -10, you must write either
-10 (AS)Or-$A(A5).

40 MPW 3.0 Assembler Reference

• Addressing mode 71 (absolute long) may be optimized to addressing mode 70
(aboluste word), depending on the value of your operand. Because $FFFF in the upper
word of a 32-bit operand is equivalent to sign-extension of a lower word that is
between $8000 and $FFFF, and because the absolute word mode is more efficient than
the absolute long mode, the Assembler automatically optimizes when it can, even if
OPT NONE is in effect Thus, if your absolute expression is 32 bits long and has $FFFF
(or $0000) in its upper byte, matching the value of the high bit of the low word, the
Assembler automatically generates an instruction that uses the absolute word
addressing mode. If you want to force a specific size, use the alternate notation. For
example, by writing ($FEDC) .L you can force the value of $FEDC to 32 bits, padded
with zeros, and by writing ($ OFEDC) • w you can force the value to 16 bits (in this
case, $FEDC). Remember that this truncation proceeds without notice or warning, and
produces $FFFFFEDC after the processor sign-extends it!

• With the Macintosh, all global data references are relative to the address in register A5.
This means that mode 5 or 6 addresses referring to global data should specify A5 as the
address register. With data record fields or imported templates, such a specification
takes the form record.field (AS> or recordfield (AS, Xn> , where record is a data
module record identifier and field is a field identifier within the record. See the
discussion of the Memory Manager in Inside Macintosh, Volume II, for a description of
the use of register A5.

+ Note: If you specify a data field reference without an explicit base register, the
Assembler will assume register A5 and will change the addressing mode to mode 5, as
appropriate.

Ambiguities and optimizations

Under certain conditions, the Macintosh Assembler will transform the address syntax you
write in your source text to a simpler form. It does this to remove ambiguities, reduce
object code, and improve execution speed. These automatic transformations are
summarized in Table 3-3.

C H A P T E R 3 Address Syntax 41

• Table 3-3 Effective address transformations

Original form

(bd, An, Xn*s)
(An, Xn*s)
(bd, PC, Xn*s)
(bd, An)

(bd, PC)

d(An)

Condition for optimization

Size of bd s 8 bits
Omitted bd (bd = 0)
Size of bd s 8 bits
Size of bd S 16 bits
Size of bd S 16 bits
d=O

Optimb:ed form

bd (An, Xn* S)

o (An,Xn*s)
bd(Pc, Xn*s)
bd(An)

bd(PC)

(An)

Here are the rules by which the Assembler performs automatic address transformation
during assembly:

• The syntax for the mode 6 MC68020 extended addressing form, (bd, An,Xn*s), is
identical to the mode 2 addressing mode, (An), if the displacement and index are
omitted. If just the index is omitted, and the displacement is 16 bits or less, then the
mode 6 form, (bd, An) , is identical to mode 5, d (An) . Even when the index is
specified, if the displacement is eight bits or less then the mode 6 form,
(bd, An, Xn>, is identical to the form d (An, Xn>. The Assembler resolves these

ambiguities by selecting the more efficient forms.

• A similar situation exists for the mode 73 form, (bd, PC, Xn*s) . It is identical to
mode 72, d (PC) , when the index is omitted and the displacement is 16 bits or less,
and to mode 73, d (PC, Xn>, when the displacement is eight bits or less. As in the
mode 6 cases, the Assembler chooses the more efficient mode 72 form.

• The Assembler optimizes each address before it checks to see if it is an MC68020
address. If an MC68020 address is optimized to an MC68000 form, the Assembler will
accept it even when the target microprocessor is not the MC68020. Hence you can use
MC68020 forms to write MC68000 addresses if you really want to, provided they meet
the criteria for optimization.

• Some optimizations are made by detecting when it is possible to use the brief format
extension word instead of the full format extension word in the extended addressing
modes of the MC68020 and MC68030. The full format extension word is always used
when OPT NONE is selected.

42 MPW 3.0 AsSembler Reference

Normally, the Assembler tries to use the shorter and more efficient form when interpreting
the foregoing addressing modes. If you want to preserve the extended address form, use
the OPT directive described under "Assembly Options" in Chapter 4 to suppress
transformation. In this case, remember that preindexing is more efficient than
postindexing, and using an index register is more efficient than using a base register with
displacement for indirect modes.

If you want to override automatic mode transformations with an individual instruction
and explicitly force a specific mode, use zero-suppressed registers (ZPC, ZAO .. ZA7,
ZDO .. ZD7).

• Note: Remember that when the program counter is zero-suppressed (ZPC), its
displacement is assumed to be absolute and hence is not offset from the current
location-counter (PC) value.

Forward-reference addressing

The size of the displacement values in the various modes of effective addresses can be 8,
16, or 32 bits depending on the value, the mode, and the processor. When you use
imported or forward-referenced identifiers in addresses, and there is no other way to
determine their size, the Assembler assumes default sizes for the various displacements.
All such default actions may be overridden with the BRANCH and FORWARD assembly
control directives.

The BCC, BSR, BRA, FBCC, and PBCC instructions contain 8-bit, 16-bi~ and 32-bit PC
relative displacements without any explicit mode indication in their syntax. The 32-bit
displacement is available only in the MC68020 and MC68030, and the FBcc and PBcc

instructions are limited to 16-bit and 32-bit forms. The Assembler assumes a 16-bit
forward-referenced offset, unless a period and suffix s or L is written after the mnemonic.
The BRANCH directive allows you to change the default size.

The FORWARD directive controls the default size for all other forward-referenced
displacement encodings-offsets, base displacements, and outer displacements. The
default size is 16 bits; you can change this to 32 bits with the MC68020 and MC68030 only.

C HAP TE R 3 Address Syntax 43

Registers

The addressing modes defined in Table 3-2 use the standard MC68000 address registers
(AO through A7), data registers (DO through D7), and program counter (PC). Besides these,
the other processors and coprocessors supported by the MPW Assembler contain
additional registers, which may be named in some instructions and not in others. Table 3-4
lists all the registers recognized by the Assembler, including those already discussed. Refer
to the appropriate Motorola manuals, listed in the preface of this manual, for the exact
formats and uses of these registers.

• Table 3-4 Registers

Designation Usage

MC68000, Mc6S010, Mc68020 and MC68030
DO .. D7 Data registers
AO .. A7 Address registers
A7, SP The current stack pointer
SR Status register
USP User stack pointer
MSP, SSP Master stack pointer
PC Program counter
MC68010, Mc68020, and MC68030 only
SFC Source function code register
DFC Destination function code register
VBR Vector base register
MC68020 and MC68030 only
ISP Interrupt stack pointer
CACR Cache control Condition code register
CAAR Cache address register
ZPC Zero-suppressed program counter
ZAO .. ZA7 Zero-suppressed address registers
ZDO .. ZD7 Zero-suppressed data registers

44 MPW 3.0 Assembler Reference

• Table 3-4 (continued) Registers

Designation Usage

MC68030 only
TIO .. Til Transparent translation control registers
MMUSR Memory Management Unit Status Register
CRP CPU root pointer register
SRP Supervisor root pointer register
TC Translation control register
MC68851 only
CRP CPU root pointer register
SRP Supervisor root pointer register
DRP DMA root pointer register
PCSR PMMU cache status register
TC Translation control register
AC Access control register
CAL Current access level register
VAL Validate access level register
SCC Stack change control register
PSR PMMU status register
BACO .. BAC7 Breakpoint acknowledge control registers
BADO .. BAD7 Breakpoint acknowledge data registers
MC68881 and Mc68882 only
FPO .. FP7 Floating-point data registers
FPCR Floating-point control register
FPSR Floating-point status register
FPIAR Floating-point instruction address register

Any of the register names listed in Table 3-4 may be equated to other identifiers by using
the EQU and SET directives. If you do this, make sure that you write the equates before
you use the new symbols. When the Assembler encounters a symbol in an effective address
position that may be a register, it first looks for the symbol in the code module's local
symbol table. If it doesn't find it there, it searches the global symbol table.

C H A P T E R 3 Address Syntax 45

Special address formats

Most MC68xxx instructions contain two effective addresses separated by a comma. The
first address is called the source and the second the destination. The instructions
generally cause an operation to be performed on the source, possibly in combination with
the destination, and place a result in the destination. However, there are some exceptions
to this format. This section gives the syntax rules for such exceptions.

In the following sections, ea represents any effective address format that may legally be
used with the instruction being discussed.

MC68xxx instructions

MOVEM: Multiple moves

MOVEM.size

MOVEM.size
size::= w 1 L

rlist, ea
ea, rlist

The MOVEM instruction takes a register list, rlist, as either a source or destination. The
register list syntax is as follows:

• Rm-Rn designates registers Rm through Rn (where m =::;; n, and Rm and Rn are both A
registers or both D registers).

• Ril Rjl Rk ... designates registers Ri, Rj, Rk ... where each term is an A register, a D
register, or a range Rm .. Rn.

Here are two examples:

Example

D0-Dl/A3
D2-D4/Al-A2/D7

MC31ling

DO, Dl, and A3
02, D3, D4, Al, A2, and D7

46 MPW 3.0 Assembler Reference

MC68020 instructions

For details of the syntax of these instructions, see the Motorola MC68020 32-Bit
Microprocessor User's Manual.

MULS and MULU: Signed and unsigned multiplication

MULS.L
MULS.L
MULU.L
MULU.L

ea,Dl
ea, oh:ol
ea, DI
ea,Dh:ol

32 x 32-> 32
32 x 32-> 64
32 x32-> 32
32 x 32-> 64

In these syntax diagrams, o/ designates the low-order register(/= 0 .. 7) and oh the high
order register (h = 0 . .7). These instructions support 32-bit multipliers and a
32-bit or 64-bit product, as shown by the comments in the far right column.

DIVS and DIVU: Signed and unsigned division

DIVS.L
DIVS.L
DIVU.L
DIVU.L

ea,Dq
ea,Dr:oq
ea,oq
ea,Dr:oq

32/32-> 32q
64/32 -> 32r:32q
32/32-> 32q
64/32 -> 32r:32q

In these syntax diagrams, Dq designates the quotient register (q= 0 .. 7) and Drthe
remainder register (r = 0 .. 7). These instructions support a 64-bit dividend, a 32-bit
quotient, and a 32-bit remainder, as shown by the comments in the far right column.

TDIVS and TDIVU: Truncated signed and unsigned division

TDIVS.L
TDIVS.L
TDIVU.L
TDIVU.L

ea,Dq
ea,Dr:Dq
ea,Dq
ea,Dr:Dq

32/32-> 32q
32/32 -> 32r:32q
32/32-> 32q
32/32 -> 32r:32q

In these syntax diagrams, oq designates the quotient register (q = 0 .. 7) and or the
remainder register (r = 0 .. 7). These instructions divide two 32-bit values and return either a
quotient and a remainder or just a quotient, as shown by the comments in the far right
column.

+ Note: The current edition of the Motorola MC68020 user's manual uses the mnemonic
orvsL. L to refer to these instructions.

C H A P T E R 3 Address Syntax 47

PACK and UNPK: Packing and unpacking

PACK -(AX) ,-(Ay) , #adjustment
PACK DX, Dy, #adjustment
UNPK -(AX) ,-(Ay) , #adjustment
UNPK DX, Dy, #adjustment

These instructions pack and unpack BCD digit formats between the source (x) and
destination ()') registers. The adjustment is a 16-bit absolute expression added to the
source value to allow character translation. This expression follows the same rules as those
for immediate operands.

CAS and CAS2: Comparing and swapping

CAS. size DC, DU, ea
CAS2 .size DC1:DC2,Dul:DU2, (Rnl): (Rn2)
size::= B I w I L

These instructions are most easily explained as if they were a sequence of pseudo-Pascal
statements:

CAS: IF Dc=ea"
THEN

ea" : = Du
ELSE

De := ea";

CAS2: IF (Del = Rnl")
THEN

BEGIN
Rnl" := Dul;
Rn2" := Du2

END
ELSE

BEGIN
Del := Rnl";
Dc2 ·= Rn2"

END;

{We have a match}
{Copy Du to ea"}
{No match}
{Copy ea" to De}

AND (Dc2 = Rn2")
{We have a match}

{Set destination}
{Copy Dul to Rnl"J
{Copy Du2 to Rn2" J

{No match}

{Copy Rnl" to Del}
{Copy Rn2" to Dc2}

Both instructions operate the same way, except that CAS2 operates on two sets of
registers simultaneously while CAS operates on only one set of registers.

48 MPW 3.0 Assembler Reference

Bit field instructions

BFCHG
BFCLR
BFEXTS
BF EX TU
BFFFO
BF INS
BF SET
BFTST

eri { 'offset: widtlt } '
ert { 'offset: width' } '
eri { 'off set : width' } ', D n
eri { 'off set: width' } ', D n
eri { 'off set : width' } ', D n
D n, eri { 'off set : width' } '
eri { 'offset: widtlt } '
ert { 'offset: widtlt } '

These instructions operate on a string of consecutive bits in a bit array. In the syntax
given, the braces and colon must be included as shown. A comma may be used in place of
the colon. The offset and width parameters must be either data registers or absolute
expressions. If they are expressions, they must follow the same rules as those for
immediate operands.

Tee and TPcc: Trap on condition

TCC

TP cc.size #ae
size::=w I L

These instructions are the same as described in the MC68020 user's manual except that the
single mnemonic, TRAPcc, has been changed to two mnemonics, Tccand TPcc. Tccis
used for the parameterless fonn, while TP cc is used when an immediate data operand is
specified.

Assembler control

Source text written for the MC68020 processor must contain the following directive
before any MC68020 operations:

[macro-laben MACHINE MC68020

This directive tells the Assembler to process all subsequent code to run on the MC68020.

The MC68030 processor

The MC68030 processor is a single chip that combines most of the capabilities of the
MC68020 processor with some, but not all, of the capabilities of the MC68851 Paged
Memory Management Unit coprocessor. It is discussed in full detail in the Motorola
MC68030 Enhanced 32-Bit Microprocessor User's Manual.

C H A P T E R 3 Address Syntax 49

Assembler control

Source text written for the MC68030 processor must contain the following directive
before any MC68030 operations:

[macro-Iaben MACHINE MC68030

This directive tells the Assembler to process all subsequent code to run on the MC68030.

.A Warning The source text must not contain an MC68851 directive as well; if it
does, the Assembler reports an error. However, the source text may
include an MC68881 directive

After a MACHINE MC6 8 030 directive, the & SETTING function will return a value of
MC68030 when its operand is MACHINE. The &SETTING function is described in
Chapter 5.

MC68020 statements you can use

In source text intended for the MC68030 processor, you may use any of the instructions
and directives valid for the MC68020 except the CALLM and RTM instructions. These two
instructions may be used only with the MC68020 processor.

MC68851 instructions you can use

The MC68030 processor contains only six of the MC68851 registers (in addition to the
MC68020 registers), and can execute only some of the MC68851 coprocessor instructions.
The registers are listed in Table 3-5; the valid coprocessor instructions are listed in
Table 3-6.

• Table 3-5

Designation

CRP
SRP
MMUSR
TC
TIO .. TI1

MC68851 registers in the MC68030

Usage

CPU root pointer register
Supervisor root pointer register
PMMU status register (PSR in the MC68851)
Translation control register
Transparent translation control registers

50 MPW 3.0 Assembler Reference

• Table 3-6

Opcode

PFLUSH

PFLUSHA

MC68851 instructions valid for the MC68030

Operand format Sizes

Jc,#ad._,ea]

PLOADR Jc, ea
PLOADW Jc, ea
PMOVE PMMU-reg,ea depends on PMMU-reg

PMOVE ea,PMMU-reg depends on PMMU-reg

PTESTR Jc,ea,#acl,An]
PTESTW Jc,ea,#acl,An
The MC68o30 also allows one instruction that is not valid for the MC68851:
PMOVEFD ea,PMMU-reg depends on PMMU-reg

The mask, #ae in several of the instructions in Table 3-6, is a three-bit absolute expression
and is stored in the instruction. The function code, Jc in several of the instructions, may
be specified as follows:

Jc::= #ae (specified as three bits in the command word, absolute expression)
on (contained in the lower three bits of on)
SFC (contained in the processor's source function register)
DFC (contained in the processor's destination function code register)

The PMMU registers, mentioned in the PMOVE instruction, are listed in Table 3-5.

The root pointer registers in the MC68030 contain double long words, 64 bits long. The
PMOVE instruction, which references these registers, accepts immediate effective
addresses; hence for ea you can use #ae (mode 74, Table 3-2). If you do this, however, the
Assembler will convert the 32-bit effective address to a 64-bit value by filling it on the left
with 32 zero bits. It will also issue a warning, because it does not support 64-bit values.
You can avoid this limitation by defining a constant with two oc. L directives, then
referencing them in your PMOVE instruction.

C H A P T E R 3 Address Syntax 51

MC68881 and MC68882 instructions

For details of the syntax of these instructions, see the Motorola MC68881/MC68882
Floating-Point Coprocessor User's Manual.

FMOVEM with explicit register lists

FMOVEM . size
FMOVEM . size
size::= L J x

fp-rlist, ea
ea, fp-rlist

The FMOVEM instruction takes a floating-point register list, fp-rlist, as either a source or a
destination. Here are the rules of register list syntax:

• FPm-FPn designates floating-point registers FPm through FPn where m ~ n.

• FPi/FPj/FPk ... designates registers FPi, FPj, FPk Each term is either a single register
FPnora range FPm .. FPn.

• FPCR/FPSR/FPIAR designates the floating-point control registers FPCR, FPSR, and
FPIAR, in any order. You cannot combine these registers with other registers in a
register list.

Here are two examples:

Example Meaning

FP0-FP3/FP7 FPO, FPl, FP2, FP3, and FP7
FPCR/FPSR Control registers FPCR and FPSR

FMOVE with packed BCD data

FMOVE. P
FMOVE.P
FMOVE.P

FPn, ea
FPn, ed { '#k'}'
FPn, ed{'Dn'}'

When writing this instruction you must include the braces as shown. The numerical
expression inside the braces is the k-factor, which tells the MC68881 coprocessor in what
format to construct the resulting decimal string. It may be expressed either dynamically
(as the value in register D n), as an absolute expression preceded by the pound sign (#), or
by default. For an explanation of k-factors, see the discussion of FMOVE in the Motorola
MC68881/MC68882 Floating-Point Coprocessor User's Manual.

52 MPW 3.0 Assembler Reference

FSINCOS: Simultaneous sine and cosine

FSINCOS . size ea, FPC: FP s
FSINCOS. X FPm, FPC: FPS
size::= B I w I L I s I D I x I p

FPC is the floating-point register holding the cosine result. FPS is the floating-point
register holding the sine result. FPm is the floating-point register holding the source value.

Ff cc and FfPcc: Floating-point trap on condition

FTCC
FTP CC.size #ae
size::= w 1 L

These instructions are the same as FTRAP cc, described in the Motorola
MC68881/MC68882 user's manual, except that the two mnemonics FTccand FTPCC have
been substituted for FTRAPcc. You write FTcc for the form without parameters and
FTP cc for the form with an operand.

FfEST: Test operand and set floating-point condition codes

FTEST. size a::i

FTEST.X FPn
size::= B I w L I s I D I x I p

The FTEST instruction is the same as FTST, described in the Motorola
MC68881/MC68882 Floating-Point Coprocessor User's Manual. The mnemonic was
changed to FTEST to avoid ambiguity with the FTcc instruction using a signaling true
(sT) conditional predicate.

MC68851 instructions

If your source text contains code for the MC68851 PMMU coprocessor, you may use
special operand formats with the instructions listed in Table 3-7. For details of the syntax
of these instructions, see the Motorola MC68851 Paged Memory Management Unit
User's Manual.

C H A P T E R 3 Address Syntax 53

• Table 3-7 Special MC68851 operand formats

Opcode Operand format Sizes Notes

PB CC.size label w I L
PDBCC.size Dn, label w
PFLUSH Jc,#ae[, ea] 1
PFLUSHA
PFLUSHS Jc,#ae[, ea] 1
PFLUSHR ea D 4
PLOADR Jc, ea 1
PLOADW Jc, ea 1
PMOVE PMMU-reg, ea BIW L I D 2
PMOVE ea, PMMU-reg B I W L I D 2,4
PRE STORE ea
PSAVE ea
PSCC ea B
PTESTR Jc, ea, #ae [,An] 1
PTESTW Jc, ea, #ae [,An] 1
PTCC 3
PTPCC #ae w I L 3
PVALID VAL, ea L 2
PVALID An, ea L

1. The function code is defined as follows:

Jc ::= #ae (specified as three bits in the command word)
on (contained in the lower three bits of on)
SFC (contained in the processor's source function register)
DFC (contained in the processor's destination function code register)

2. The MC68851 registelS are listed in Table 3-4.

3. The Assembler recognizes the instruction mnemonics PTCC and PTPcc in place of the
Motorola mnemonic PTRAPCC. Use PTcc for the form without parameters and PTPcc
for the form with an immediate data operand.

4. The root pointer registers in the MC68851 contain double long words, 64 bits long. The
FLUS HR and PMOVE instructions, which reference these registers, accept immediate
effective addresses; hence for ea you can use #ae (mode 74, Table 3-2). If you do this,
however, the Assembler converts the 32-bit effective address to a 64-bit value by
filling it on the left with 32 zero bits. It also issues a warning, because it does not
support 64-bit values. You can avoid this limitation by defining a constant with two
DC. L directives, then referencing them in your FLUSHR or PMOVE instruction.

5. The label in the PB cc.size and PD B cc.size instructions must obey the rules for
relocatable expressions.

54 MPW 3.0 Assembler Reference

Literals

Frequently, it is necessary to push the address of a constant value onto the stack.
Unfortunately, in the MC68xxx instruction set, the effective addressing modes for the PEA

and LEA instructions do not permit immediate data. Nonetheless, these instructions are
used quite often for passing parameters to subroutines, particularly for passing string
addresses to Macintosh ROM routines. Hence the MPW Assembler allows you to specify
immediate data to PEA and LEA instructions. As used here, an absolute expression (with
no forward, imported, or undefined references) or a string is called a literal.

The syntax for writing PEA and LEA instructions with literals is as follows:

PEA #data
LEA #data, An

Pushes address of data
Loads address of data

PEA #'MyConstant' Pushes address of • MyConstant •

This is functionally equivalent to the following:

PEA Ll
LEA Ll,An
PEA ConstAddr

ALIGN 2 ; Must be on word boundary

Ll
ConstAddr

DC • size data
DC.size 'MyConstant'

The size qualifier is B or w or L, corresponding to the data size or to the explicit
specification of the literal.

The Assembler creates a PC-relative mode-72 address when processing PEA and LEA

instructions.

All literals encountered during the assembling of a code module are accumulated in an area
called the literal pooL Multiple references to the same literal address only generate one
instance of the literal in the literal pool; duplicate literals are not generated. The literal
pool is attached to the end of the code module as part of the code.

When a string literal is generated, it may be any one of the three fonnats for character
strings-an as-is string, a C string, or a Pascal string. The Assembler determines which
format to use by the current setting of the STRING directive at the time the literal is
placed in the literal pool by the PEA or LEA instruction. A STRING directive setting at the
end of the module has no effect on the format of strings in the literal pool.

C H A P T E R 3 Address Syntax 55

If an absolute expression is used to generate a literal, the size of the literal depends on its
value, as follows:

• Values between -32767 and (unsigned) 65535 are created as word-size literals.

• All other integer values are created as long-word literals.

• Floating-point values are created as extended (12-byte) literals. You may use such
values only if the MC 6 8 8 81 directive is in force.

Because both strings and absolute expressions may be used as literals, the Assembler may
interpret an absolute literal incorrectly if its first symbol is a string constant. To force the
Assembler to treat a literal as absolute, enclose it in parentheses.

The Assembler lets you override the implicit sizing of numeric literals by explicitly
specifying their size. This is done by extending the literal syntax, as follows:

PEA #(ae). w Immediate word data for PEA
PEA #(ae). L Immediate long-word data for PEA
PEA #(ae). s Immediate single-precision data for PEA
PEA #(ae) .D Immediate double-precision data for PEA
PEA #(ae). x Immediate extended data for PEA
PEA #(ae). P Immediate packed BCD data for PEA
LEA #(ae).w,An Immediate word data for LEA
LEA #(ae). L,An Immediate long-word data for LEA
LEA #(ae).s,An Immediate single-precision data for LEA
LEA #(ae).D,An Immediate double-precision data for LEA
LEA #(ae).x,An Immediate extended data for LEA
LEA #(ae). P ,An Immediate packed BCD data for LEA

+ Note: Single, double, extended, and packed BCD data can be used only if the MC 6 8 8 81

directive is in force.

Enclosing the literal in parentheses and following it with a size qualifier (such as w)
establishes its size. The value of the literal must always lie within the range specified. Size
qualifiers are described in Table 2-1.

56 MPW 3.0 Assembler Reference

Chapter 4 Assembler Directives

DIRECITVES ARE INSTRUCTIONS TO TIIE MPW ASSEMBLER to perform
specific operations during assembly. •

Contents

Assembler directives 59
Code and data module definitions 59
Symbol definitions 59
Data definitions 59
Template definitions 59
Linker and scope controls 60
Assembly options 60
Location-counter controls 60
File controls 60
Listing controls 60

Directive formats 61
Code and data module definitions 62

PROC and ENDPROC: Define procedure code module 62
FUNC and ENDFUNC: Define function code module 63
MAIN and ENDMAIN: Define main program code module 63
RECORD and ENDR: Define a data module 64

INCREMENT and DECREMENT 65
MAIN 66

CODE and DATA: Switch between code and data 67
END: End the assembly 67

Symbol definitions 68
EQU and SET: Name constants and registers 68
REG and FREG: Name register list 70
OPWORD: Name machine instruction 71

Data definitions 72
DC and DCB: Place constants in code or data 73
DS: Define storage area 75

57

Template definitions 76
RECORD and ENDR: Define a template 76

Using templates as data types 81
WITH and E.r-.TDWITH: Supply RECORD name qualification 82

Llnker and scope controls 84
EXPORT and ENfRY: Expand scope of entry points 85
IMPORT: Identify external entry points 87
CODEREFS and DATAREFS: Control name linking 88

Code-to-code references 89
Code-to-data references 90
Data-to-code references 90
Data-to-data references 91

SEG: Specify current code segment 92
COMMENT: Place a comment in object file 93

Assembly options 93
MACHINE: Specify target machine 93
MC68881: Assemble MC68881/MC68882 coprocessor instructions 94
MC68851: Assemble MC68851 coprocessor instructions 95
STRING: Specify string format 95
BRANCH and FORWARD: Resolve forward branches 96
OPT: Specify level of code optimization 97
CASE: Specify treatment of lowercase letters 98

Writing register names 99
BLANKS: Control acceptance of blanks in operand field 99

Location-counter controls 100
ALIGN: Align location counter 100

Special cases 101
ORG: Set location counter 102

File controls 103
File search rules 104
INCLUDE: Take source text from another file 104
DUMP and LOAD: Write and read symbol table files 105
ERRI.OG: Specify error log file 106

Listing controls 107
PAGESIZE: Specify listing page size 107
TITLE: Specify title line for listing 108
PRINT: Control listing information 108
EJECT: Start new listing page 111
SPACE: Insert blank line in listing 111

MPW 3.0 Assembler Reference

Assembler directives

A number of MPW Assembler directives (RECORD, PROC, EXPORT, SEG, and so on) were
mentioned in Chapter 2. This chapter covers them and others in detail. The discussion is
organized into these groups:

Code and data module definitions

PROC
ENDPROC
FUNC
ENDFUNC
MAIN
ENDMAIN
RECORD
ENDR
CODE
DATA
END

Begin a procedure code module
End a procedure code module
Begin a function code module
End a function code module
Begin a main program code module
End a main program code module
Begin a data module
End a data module
Switch assembly from data to code
Switch assembly from code to data
End the whole assembly

Symbol definitions

Assign a permanent value to a symbol
Assign a temporary value to a symbol

EQU
SET
REG
FREG
OPWORD

Assign an identifier to a processor register list
Assign an identifier to an MC68881 register list
Assign an identifier to an opcode

Data definitions

DC Place constants in a code or data module
DCB Place a block of constants in a code or data module
DS Define a storage area

Template defmitions

Begin a record template definition
End a record template definition

RECORD
ENDR
WITH
ENDWITH

Begin default record identifier qualification
End default record identifier qualification

C H A P T E R 4 Assembler Directives 59

linker and scope controls

EXPORT Make entry points accessible in other assemblies
ENTRY Make local entry-points global
IMPORT Identify entry points declared externally
coDEREFS Control the linking of code-to-code references
DATAREFS Control the linking of data-to-code and data-to-data references
SEG Specify the current code segment
COMMENT Place a comment in the object file

Assembly options

MACHINE
MC68881
MC68851
STRING
BRANCH
FORWARD

OPT
CASE
BLANKS

Identify the target microprocessor model
Control the assembly of floating-point coprocessor instructions
Control the assembly of PMMU coprocessor instructions
Control the encoding of string constants
Control the encoding of branch instructions
Control the encoding of forward references
Control the level of code optimization
Control the treatment of lowercase letters in identifiers
Control the treatment of spaces and tabs in the operand field

Location-counter controls

ALIGN
ORG

File controls

INCLUDE
DUMP
LOAD
ERRLOG

Advance the location counter to the next multiple of a value
Set the value of the location counter

Insert source text from another file
Write the current global symbol table to a file
Read a file into the current global symbol table
Create an error-listing file

Listing controls

PAGESIZE Specify the listing page size
TITLE Define a title for the listing header
PRINT Control miscellaneous listing options
EJECT Start a new page in the listing
SPACE Insert blank lines in the listing

In addition to the directives listed above, the MPW Assembler supports directives for
macro definition and expansion, macro variables, and conditional assembly. These are
described in Chapters 5, 6, and 7.

()() MPW 3.0 Assembler Reference

Directive formats

Macintosh directives follow the general fonnat for Assembler statements. You write them
in four fields, separated by spaces or tabs, as described in Chapter 2 under "Machine
Instruction Syntax":

Label field

[identifier]

Operation field

directive name
Operand field Comment field

[directive parame~ [comments]

The identifier in the label field may be required by the directive or may be an optional
macro label. If you include a macro label, you can reference the directive from macro
statements as described under "GOTO, IF ... GOTO, and Macro labels: Branching" in
Chapter 7.

If the directive does not require a label or allow an optional macro label, you cannot
include a label with it.

The directive name specifies which directive the Assembler executes. It is always
required. The Assembler makes no distinction between uppercase and lowercase letters in
directive names.

The operand field contains the directive's parameters, if any. Such parameters may be
either required or optional, depending on the directive.

You can include a comment with a directive, writing it after all the directive's required
parameters (if any). With directives that have no parameters or have only optional
parameters, you can still include comments even if you don't specify any parameters. Use
the standard convention of placing a semicolon in the operand field, following it with the
comment field. Directive comments are ignored by the Assembler.

+ Note: In the remainder of this chapter and in Chapters 5, 6, and 7, directive syntax is
usually defined by means of syntax diagrams. You can find the rules for interpreting
these diagrams under "Notation Conventions" in the Preface.

C H A P T E R 4 Assembler Directives 61

Code and data module definitions

"Source Text Structure" in Chapter 2 describes how Macintosh object files are built from
code and data modules. The directives described in this section delimit the code and
data parts of your source text and tell the Assembler how to apply the statements in each
part to specific modules. They are the following:

PRoc Begin a procedure code module
ENDPROC End a procedure code module
FUNC Begin a function code module
ENDFUNC End a function code module
MAIN Begin a main program code module
ENDMAIN End a main program code module
RECORD Begin a data module
ENDR End a data module
coDE Switch assembly from data to code
DATA Switch assembly from code to data
END End the whole assembly

PROC and ENDPROC: Define procedure code module

[name]

[macro-Iaben

PROC

statements
ENDP[Roc]

[{ ENTRY }]
EXPORT

A PROC directive in your source text marks the beginning of a code module. The code
module extends from the PROC directive until the next ENDPROC, or until the start of the
next code module (PROC, FUNC, or MAIN), the next data module (RECORD), or the end of
the assembly (END). You can write ENDPRoc as ENDP. Code modules are the only places
where you can write machine instruction statements.

If you write a name in the label field of a P Roe directive, it becomes the identifier of the
code module that begins there. The identifier is global to the assembly file. If you do not
provide an identifier, you must define entry points inside the module by using ENTRY or
EXPORT directives. ENTRY and EXPORT are described later in this chapter.

You can declare the code module itself as EXPORT in two ways: by specifying the module
identifier in an EXPORT directive before you define the module or by writing EXPORT as
an operand in the PROC directive itself. In either case the PROC directive that begins an
EXPORT code module must include an identifier in its label field.

62 MPW 3.0 Assembler Reference

If you do not declare a code module as EXPORT, the Assembler declares it as ENTRY by
default. For clarity of documentation, you may explicitly declare it as ENTRY in the PROC

directive or specify its identifier in an ENTRY directive before defining the module. The
latter technique is useful if you need to make a forward reference to the module.

You can declare the identifier of a procedure code module as MAIN by using a previous
ENTRY or EXPORT directive. This has the same effect as declaring it with the MAIN

directive described later in this chapter.

I.abels defined inside a code module are local to that module. The only way to make these
labels accessible to other modules is to declare them as EXPORT or ENTRY inside the
module.

FUNC and ENDFUNC: Define function code module

[name]

[macro-Jaben

FUNC

statements
ENDF[UNc]

FUNC and ENDFUNC act exactly the same as PROC and ENDPROC. They are included for
documentation purposes only, so that you can indicate that the code module is a
function rather than a procedure. You can write ENDFUNC as ENDF.

MAIN and ENDMAIN: Define main program code module

[name]

[macro-Jaben

MAIN

statements
END MAIN

MAIN and ENDMAIN act exactly like PROC and ENDPROC, except that they declare the
code module that they define as the main program. The first executable statement of that
code module becomes the execution entry point for the whole program.

To declare a code module statement other than the first executable statement as a main
entry poin~ use a previous ENTRY or EXPORT directive. ENTRY and EXPORT are
described later in this chapter.

An assembly, including all its linked parts, may have only one main program module or
main entry point.

C H A P T E R 4 Assembler Directives 63

• Note: If your program contains one or more data modules containing DC or DCB
directives, you must link it with the library file Runtime.o, which contains the data
initialization routine _Datainit. If your main code module is written in assembly
language, its first executable statement must be a call (JSR) to the entry point
_Datainit. This entry point must also be declared as IMPORT. After returning from
_Dataini t, your program may unload the segment %ASini t that contains it, by
calling the Macintosh routine unloadSeg. If your main program is written in C or
Pascal, no explicit call to _Datainit is required, because the run-time libraries for C
and Pascal automatically take care of data initialization.

RECORD and ENDR: Define a data module

[nam~ RECORD [{ ENTRY }] [
EXPORT

{ IN.CR [EMEN.T.] }]
' DECR[EMENT]

directives
[macro-laben ENDR

RECORD and ENDR let you delimit and name a data module. The data module extends
from the RECORD directive until the next ENDR or until the start of the next code module
(PROC, FUNC, MAIN), the next data module or template (RECORD), or the end of the
assembly (END). RECORD and ENDR act like PROC and ENDPROC, but define a data
module instead of a code module.

• Note: RECORD and ENDR are also used to define templates. This usage is described
below under "Template Definitions."

Data modules may contain only directives. Some of these directives-oRG, ALIGN, DC,
DCB, and Ds-define data fields. Others, such as symbol definitions, define data within
the fields.

Every data module must have an identifier. This is because the identifier is used to qualify
the module's field identifiers when they are accessed from code modules. Unlike labels in
code modules, the field labels in data modules may be accessed by all code modules that
follow them in the source text file. You can also make them accessible to other files by
including EXPORT directives inside the module. Conversely, you must define a data
module before accessing any of its fields in the same file.

You can access a field in a data module by an identifier of the fonn mod. field, where mod
is the identifier of the data module and field is a label inside the module.

MPW 3.0 Assembler Reference

Data modules may be declared as EXPORT Or ENTRY just like code modules. You can
either specify the module identifier in an EXPORT or ENTRY directive before defining the
module, or include EXPORT or ENTRY as an operand in the RECORD directive itself. If you
do not specify one or the other, the Assembler declares the data module as ENTRY.

The MPW linker collects all global data modules so that they may be loaded as a group by
the Segment Loader. It loads them just below the application parameters, pointed to by
A5. Thus all global data modules are accessed relative to A5, with negative offsets
determined by the Linker. The implied base register for qualified field references is A5; it
need not be specified in machine instructions unless indexing is used. See the discussion
of the Memory Manager in Inside Macintosh, Volume II, for further details about AS.

As with code modules, data modules have their own location counter; it points to the next
available data location in the data module. In any data module, the value of this counter
may range from -32768 to +32767.

INCREMENT and DECREMENT

In code modules, each machine instruction is executed immediately after the one
preceding it. Thus the location counter for a code module is incremented for each
instruction. Data module location counters act similarly, except that you can choose
whether they increment or decrement.

INCREMENT is the default action for any data module location counter. If you specify it
in a RECORD directive or omit the parameter altogether, the Assembler increments the
resulting data module's location counter by the size of each piece of data after that data
is allocated. The location counter therefore always points to the lowest address of the
next piece of data.

If you specify DECREMENT in a RECORD directive, the Assembler allocates data in the
data module in the reverse direction. This corresponds to the allocation algorithm of
Pascal. The location counter is first decremented by the size of each piece of data,
before it is allocated; hence, each piece of data starts at an address lower than the one
before it.

When the Assembler defines a DECREMENT data module, it locates the module's identifier
at an entry point outside the module and at a higher address. Thus the actual module is
anonymous; you cannot access it directly. Further, since the Assembler gives the
module's identifier an offset that is equal to the size of the module, the identifier remains
undefined until the completion of the module's definition. This means it cannot be
accessed inside the module by expressions that require all identifiers to be previously
defined, such as equates.

C H A P T E R 4 Assembler Directives 65

In terms of their actual structure in the object file, all code and data modules containing n
bytes are considered to have their bytes numbered positively from 0 to n - 1. With code
modules and incrementing data modules, their location-counter offsets correspond
directly to their object file numbering. With decrementing data modules, however, their
location-counter offsets and object file numbering are complementary. Byte 0 in the
object file corresponds to the end of the last byte of the last piece of data in the module.

To illustrate this, suppose you defined a data module consisting of three long words:

location Object file
counter bytes

Data RECORD ,DECREMENT 12
-4 a DS.L 1 8
-8 b DS.L 1 4
-12 c DS.L 1 0

ENDR

The numbers on the left are the generated offsets as determined by the location counter.
The numbers on the right are the module offsets in the object file. Since the Assembler
generates references to the module as offsets from the module identifier, the Assembler's
negative offsets will work only if we define the identifier as byte n of the module (not as
byte 0), where n is the size of the module-in the above example, 12. In this way the
identifier specifies an entry point in an anonymous module.

You can write INCREMENT as INCR and DECREMENT as DECR.

MAIN

The parameter value MAIN in a RECORD directive generates a special form of
decrementing data module, called the main data module. When it collects all the data
modules in your source text together, the I.inker normally adjusts the AS offsets in all code
statements that access data. This means that the I.inker must retrieve all referenced data
locations from the object file. By declaring one data module as MAIN, you can shorten
this process.

A program can have only one main data module. The Segment Loader loads it first,
immediately below AS. Because the position of the main data module is unique, the
Assembler can adjust the code statement offsets that access it without relying on the
linker. The linker, in tum, does not retrieve the locations of data in the main data module
and no I.inker records are generated for it in the object file. As a result, the unlinked
object file is smaller and the Linker runs faster.

Because the main data module is loaded below AS and its offsets are generated by the
Assembler, the generated offsets are negative. Therefore the main data module is always a
decrementing data module.

MPW 3.0 Assembler Reference

CODE and DATA: Switch between code and data

[macro-label l CODE

[macro-laben DATA

You can define an associated data module during the definition of a code module,
without ending the current code module, by using CODE and DATA. (This technique is
illustrated in Chapter 2 under "Source Text Structure.")

CODE and DATA may be used only inside a code module-a module defined by PRoc,

FUNC, or MAIN. The DATA directive switches the Assembler to defining a data module;
CODE switches it back to defining the original code module. The final result is one
contiguous code module and one contiguous data module, regardless of how many times
you use CODE and DATA. Remember that your source text may contain only directive
statements when DATA is in force; it may contain both machine instruction statements
and directive statements when CODE is in force.

The DATA directive can generate either an incrementing, decrementing, or main data
module, depending on the value of its parameter. With no parameter, it generates an
incrementing data module. A full explanation of these options is given under "RECORD and
ENDR" earlier in this chapter. The option you select the first time you use DATA in a given
code module governs all data generation within that module; the Assembler ignores
subsequent DATA parameters until the code module ends. You can generate different
kinds of data modules from different code modules, however. You can use MAIN, with
either RECORD or DATA, only once in a program.

You can write INCREMENT as INCR and DECREMENT as DECR.

END: End the assembly

[macro-laben END

The END directive marks the end of your assembly. The Assembler ignores any source text
after END.

END is a required directive. The Assembler generates a warning (not an error) if it is
orniued. You must not place END in a file called by an INCLUDE directive, unless you
intentionally want to terminate your assembly from the included file.

C H A P T E R 4 Assembler Directives 67

Symbol definitions

The directives described in this section let you assign values to individual identifiers.
They let you name certain objects-numeric constants, individual registers, register lists,
and opcodes-so that you can use the identifiers instead of the original objects in your
source text. The directives are as follows:

EQU Assign a permanent value to a symbol
SET Assign a temporary value to a symbol
REG Assign an identifier to a processor register list
FREG Assign an identifier to an MC68881 register list
OPWORD Assign an identifier to an opcode

EQU and SET: Name constants and registers

name EQU {;th-exprJ
import-na

name SET

EQU and SET assign the value in the operand field to the identifier in the label field. Both
fields are required. These directives are collectively called equates. The operand may be a
numeric expression, a register name, or an identifier imported from another module.

EQU assigns a permanent value; once an identifier has been used in an EQU directive it may
not be redefined in another EQU directive within its scope, with the one exception that an
EQU with the same value generates a warning. SET assigns a temporary value; the same
identifier may be redefined with another SET directive.

When you use EQU or SET with a numeric expression, follow these rules:

• The numeric expression arith-expr must not contain any forward or undefined
references.

• Relocatable expressions are allowed only inside code modules and data modules.

• Equates defined outside modules or inside code modules may take any value. If you
use an equate in a template or data module, its value must be in the range
-32768 .. +32767 (that is, a signed 16-bit value).

MPW 3.0 Assembler Reference

Yo1,1 can use EQU or SET with any of the register names listed in Table 3-4 or with any
identifier previously equated to one of those register names.

You can equate an identifier to a floating-point constant or to any identifier previously
equated to a floating-point constant, but only if the MC68881 directive is in effect.
Because such constants are not evaluated until used (by a DC directive or an MC68881
machine instruction), EQU and SET store their values as strings and do not validate them.

Equates to absolute values (constants and registers) must appear in your source text
before you use the equated identifiers. When the Assembler encounters a symbol in an
effective address in a code module, it searches for its value first in the code module's local
symbol table (if the symbol has been defined), then in the global symbol table. This means
that effective addresses may not contain forward references to equates defining absolute
values or registers. Forward references to relocatable equated values (for example,
equates to the location-counter value) are allowed, since the Assembler always assumes
that forward references refer to relocatable objects.

A Warning If you give the same identifier to a forward-referenced local label as
you give to a global absolute equate symbol, the Assembler uses the
value of the global symbol and issues a name conflict warning. This
occurs because the local identifier is not yet defined. Here is an
example:

Piotrus

Alek PROC

EQU 7

MOVE fPiotrus,A2

Piotrus MOVE fO,Al

END

Warning 233 f#f Possible name conflict with

global symbol: PIOTRUS File "hd40:MPW:Worksheet";
line 4 .A.

Here are some examples of valid equates:

Length EQU *-Start Define Length,
Start to location counter

Cr EQU $OD Define the return character
x SET Y+lO Define X as the value of Y+lO
x SET Y+20 Redefine X as the value of Y+20
StkPtr EQU A7 Define StkPtr as register A7
ProgCtr EQU PC Define ProgCtr as

the program counter
SuppA2 SET ZA2 Define SuppA2 as a

zero-suppressed A2

C H A P T E R 4 Assembler Directives 69

Alpha EQU (a+b) *10

Pi EQU "3.14159"

REG and FREG: Name register list

name
name

REG

FREG

rlist
fp-rlist

Define Alpha with the
; expression's value
; Define Pi as a floating-point
; constant

The REG and FREG directives assign the register list rlist or fp-rlist to the specified name.
Llsts named by REG are used with MOVEM instructions; lists named by FREG are used with
FMOVEM instructions. You can use FREG only if the MC 6asa1 directive is in force. Simple
register lists are composed as follows:

• RrrrRn designates registers Rm through Rn (where m ~ n, and Rm and Rn are both A
registers or both D registers).

• Ril Rj/ Rk ... designates registers Ri, Rj, Rk ... where each term is an A register, a D
register, or a range Rm .. Rn.

• FPm-FPn designates floating-point registers FPm through FPn (m ~ n).

• FP i/FP j/FP k ... designates registers FP i, FP j, FP k F.ach term is either a single
register FP n or a range FP m .. FP n.

• FPCR/FPSR/FPIAR designates the floating-point control registers FPCR, FPSR, and
FPIAR, in any order. You cannot combine these registers with other registers in a
register list.

Here are some examples:

Example

DO-Dl/A3
D2-D4/ Al-A2/D7
FPO-FP3/FP7
FPCR/FPSR

Meaning

DO, Dl, and A3
D2, D3, D4, Al, A2, and D7
FPO, FPl, FP2, FP3, and FP7
Control registers FPCR and FPSR

The scope and search rules for register-list identifiers are exactly the same as for equate
identifiers, as discussed earlier under "EQU and SET."

You can use identifiers defined by REG and FREG to build up more complex register lists.
To do this, you concatenate them with register lists or other register-list identifiers, as
shown here:
VolatileDs REG
VolatileAs REG
VolatileRegs REG
ActiveRegs REG

D0-D2 Volatile D registers
AO-Al ; Volatile A registers
VolatileAs/VolatileDs Volatile A and D registers
VolatileRegs/D6-D7/A4 All required registers

70 MPW 3.0 Assembler Reference

In this example, the register list Ac ti veRegs is defined so that it is equivalent to the
simple list D0-D2/D6-D7 /A0-Al/A4.

Here is a sample program fragment that shows REG and FREG directives used with MOVEM

and FMOVEM statements:

PascalRegs REG D2-D7/A3-A5
FPRegs FREG FP0-FP7

p PROC EXPORT
LINK A6,#-LocalSize
MOVEM.L PascalRegs,-(A7)
FMOVEM.X FPRegs, - (A 7)

FMOVEM.X (A7)+,FPRegs
MOVEM.L (A7)+,Pasca1Regs
RTS
ENDPROC

OPWORD: Name machine instruction

name OPWORD abs~

Names Pascal registers
Names FP registers

Save Pascal registers
Save FP registers

Restore FP registers
Restore Pascal registers

OP.WORD is used to assign a numeric value to the identifier name so that it may
subsequently be used as a machine instruction. The expression abs-expr must have an
absolute value in the range 0 .. 65535 ($0 .. $FFFF, hexadecimal) and may not contain any
forward, undefined, or imported references. Identifiers defined by OPWORD may be used
only inside code modules.

When the Assembler processes any mnemonic, it searches the following lists in the
order shown:

1. standard opcodes and directives, including coprocessor instructions

2. macro identifiers

3. OPWORD names in the code module's local symbol table

4. OPWORD names in the global symbol table

Although the Assembler makes no assumptions about the use of OPWORD definitions, the
intent of OPWORD is to allow you to define the Macintosh trap values. For example, you
could define_ Read as an identifier for the Macintosh File Manager read trap ($AO o 2 l
as follows:

Read OPWORD $A002 ; Define read trap call

C H A P T E R 4 Assembler Directives 71

To generate the value represented by an OPWORD name, use the name just like an
Assembler mnemonic or macro call. For example, after the OPWORD directive just
illustrated, the following causes the Assembler to generate an opcode of value $Ao o 2:

Read ; Generate $A002 trap call

Names defined by OPWORD may be used with parameters. The general syntax for the use of
an OPWORD name is

[{label I macro-label}] opword-name [abs-exjni,. ..

The expressions abs-expr must have absolute values in the range 0. 65535 ($0 .. $FFFF) and
must not contain any forward, undefined, or imported references. Each value is combined
under the rules governing logical OR with the value of opword-name to produce the final
generated machine instruction code.

Hence the earlier example could be extended by means of the following equate:

A sync EQU $400 ; Defines "async" bit for
; File Manager traps

The original _Re ad statement with a parameter would then generate $A4 o 2:

Read A sync ; Generates $A402 trap call

OPWORD parameters must be separated by commas, but there need not be any expressions
between commas. Two adjacent commas delimit an expression that does not affect the
generated instruction. Hence the following statement also generates $A402:

Read ,Async,,, ; Generates $A402

• Note: The standard Macintosh trap macros, discussed under "Macintosh Llbraries" in
Chapter 1, consist largely of OPWORD directive statements.

Data definitions

The data-definition and storage-allocation directives described in this section let you
define constants, initialize data, and reserve storage areas in code modules, data
modules, and templates. They are the following:

DC Place constants in a code or data module
DCB Place a block of constants in a code or data module
D s Define a storage area

72 MPW 3.0 Assembler Reference

DC and DCB: Place constants in code or data

[{ label I macro-label}]
[{ label I macro-label}]

Dc[.sizeJ
DCB[.sizeJ

{ expr I string}, ...
length, { expr I string}

DC and DCB place data in the current (code or data) module. When used outside an
existing module, they define a new data module containing the specified data. The
optional qualifier size, which is separated from the directive name by a period, consists of
a letter that indicates the size of each data increment. Word (w) is the default value if you
do not include the qualifier. Size also determines the size of the increments specified by
the integer expression length, as shown in Table 4-1.

• Table 4-1 DC and DCB data increments

Qualifier Name Length increments, in bytes

B Byte 1
w Word 2
L Longword 4
s Single precision 4
D Double precision 8
x Extended 12
p Packed BCD 12

The operand field of a DC directive statement may contain up to 25 values, numeric
expressions, and strings in any mixture, separated by commas.

The operand field of a DCB directive statement begins with a length expression that
specifies the number of data increments in the data block. The size of each increment is
determined by the size qualifier, as shown in Table 4-1. This is followed by a single value to
be placed in each such increment. Hence a DCB directive statement with a length of n acts
the same as n DC directives. The DCB length parameter must be an absolute expression
with a value greater than 0, and may not contain any forward, undefined, or imported
references.

All the values specified in a single DC or DCB directive statement make up one data
module if the statement is used outside a code or data module. All the values make up one
block of ascending bytes if it is used inside a code or data module. This is true even when
the data module is declared as having a decrementing location counter.

All data sizes except byte (B) are aligned to the next word boundary unless an ALIGN o
directive is in force. The optional label is associated with the first byte of data after
alignment.

C H AP TE R 4 Assembler Directives 73

Integer expressions must fit into the size specified by the DC or DCB size qualifier. For
example, a value of 1000 cannot be used with a DC. B directive. Strings are formatted
according to the current STRING directive setting. When used with a string value, the DC
or DCB size qualifier affects alignment only.

Here are some examples of size qualifiers and data values:

DC.B

DC.L

DC.B

DC.B
DC.W
DC.X

DC.D
DC.L

DC.L

'Nebur L. Ari'

l, 2' 3

Tl-T2

$FDF

1

"1.234"
"Nan (1)"

'1234'

(1 1234 I)

A 12-character string in

current format
Three long words containing 1, 2,

and 3
A byte with two relocatable

references
An error ($FDF is too big for a byte)
A word constant containing integer 1

A 12-byte extended constant
An 8-byte double-precision constant

A 4-character string in current

format
A 4-byte constant $31323334

The last example is a four-character string enclosed in parentheses. Because both strings
and integer expressions may be used as DC or DCB operands, the Assembler decides the
operand's type by examining its first symbol. The parentheses force the Assembler to type
the operand as an integer expression. As such, it can contain a string constant of up to
four characters without exceeding the long-word size set by the L qualifier; the Assembler
treats it as a right-justified 32-bit value padded on the left with zeros. In the next-to-last
example, the Assembler treats the operand as an ordinary string constant.

You must take care when using DC and DCB with imported data parameters. If the current
DATAREFS setting is ABSOLUTE (the default value), then any imported data reference is
treated as a 32-bit absolute address, requiring a qualifier of L. Other situations require
different qualifiers. For further information see "Linker and Scope Controls," later in this
chapter.

When you use DC or DCB to place data in a data module, you must link your finished
program with the library file Runtime.o, which contains the data initialization routine
_Dataini t. If your main code module is written in assembly language, its first
executable statement must be a call (JSR) to the entry point_Datainit. This entry
point must also be declared as IMPORT. After returning from _Datainit, your program
may unload the segment %A5 I nit that contains i~ by calling the Macintosh routine
UnloadSeg. If your main program is written in C or Pascal, no explicit call to _Dataini t
is required, because the run-time libraries for C and Pascal automatically take care of data
initialization.

74 MPW 3.0 Assembler Reference

DS: Define storage area

[{ label I macro-label}] DS [.sizEI

Theos directive allocates and defines an uninitialized storage area in a code module,
data module, or template. When used outside an existing module, it defines a new data
module of the specified length. The optional qualifier size, which is separated from the
directive name by a period, consists of a letter that indicates the size of each of the data
increments defined by length, as shown in Table 4-1. Word (w) is the default value if you
do not include the qualifier. Length must be an absolute expression with a value greater
than or equal to zero. It cannot contain any forward, undefined, or imported references.

All data sizes except byte (B) are aligned to the next word boundary unless an ALIGN o
directive is in force. The optional label is associated with the first byte of data after
alignment.

A os directive with a length of 0 aligns code or data to a word boundary. In this form, it
ignores any prior ALIGN o directive. ALIGN is discussed later in this chapter under
"Location-Counter Controls."

The storage area allocated by o s can also be specified by a template identifier that has
been previously defined. Template definitions are discussed in the next section. In this
case, the length allocated is detennined by the size of the template. If you use a label with
os and a template identifier, that label is given the type represented by the template. You
can then access the fields of the template by qualifying its field identifiers with the o s
label instead of the template identifier, using the form DSlabel . .fieldname. You can also
use o s in the same way to type fields of templates and then access fields within them,
using the form DSlabel. fieldname. innerfield. You can create nested fields in this way to
any depth.

You can use template identifiers to specify os data types in all cases except when os is
used in the code section of a code module or when there is no label specified. Although
the data area allocated by o s is not typed in these cases, its size is still determined by the
template's size. When you use a template identifier to specify size or type in a o s
directive statement, that identifier must be the directive's only operand. Using the
identifier any other way (such as by enclosing it in parentheses or including it in an
expression) refers to the identifier's offset value instead of to its type and size.

C H A P T E R 4 Assembler Directives 75

Template. definitions

A template describes the layout of a collection of data without actually allocating any
memory space. This section describes the following template definition directives:

RECORD

ENDR

WITH

ENDWITH

Begin a record template definition
End a record template definition
Begin default record identifier qualification
End default record identifier qualification

A template definition starts with a RECORD directive statement and ends with an ENDR

directive. In between are directives that describe the layout of the template, using os,
ORG, ALIGN, EQU, and SET. Sections of data within a template are called fields. Fields are
referenced by the form record. field, where record is the template identifier and field is
the label in the directive that defined the field. As a convenience, you may use the WI TH

and ENDWITH directives to specify a template identifier over a section of your source
text, so you only have to specify the field name. This is like the Pascal WITH statement.

RECORD and ENDR: Define a template

name RECORD

DS, ORG, AllGN, EQU, and SET directive statements

[macro-Iaben ENDR

RECORD and ENDR delimit the section of source text in which you define a template.
Notice that RECORD and ENDR are also used to define data modules, as described in
"Code and Data Module Definitions," earlier in this chapter. The Assembler distinguishes
the two usages by the parameters in the RECORD directive statement. When used to
define a data module, RECORD has either no parameters or one of the terminal symbols
EXPORT or ENTRY as its first parameter. When used to define a template, RECORD always
has at least one parameter-the absolute expression offset, the terminal symbol IMPORT,

or the identifier origin enclosed in braces.

76 MPW 3.0 Assembler Reference

The definition of a template is equivalent to a sequence of equates. However, it is a more
natural way to specify a storage layout. Templates may be defined only outside modules
or as local definitions inside code modules.

As with code and data modules, templates have their own location counters
corresponding to the next available data location. As each data field is defined, the
location counter is incremented by the size of that data field. The next piece of data is
then placed at the next available location. Location-counter values must be in the
range -32768 .. +32767.

To define field locations in both positive and negative directions, you can include
INCREMENT or DECREMENT in the RECORD directive, preceded by a comma.
INCREMENT is the default parameter; it makes RECORD allocate fields at ascending
locations, as just described. If you specify DECREMENT, fields are located at descending
locations, corresponding to Pascal memory layouts. Before defining each field, the
Assembler decrements the location counter by its size; hence each field starts at an
address lower than the one before it.

The parameter offset represents an initial offset for the template. It must be an absolute
expression without any forward, undefined, or imported references. Specifying a nonzero
offset is equivalent to specifying a zero offset and placing an ORG directive at the start of
the template definition, as shown in these examples:

Name RECORD 10 0 Name RECORD 0
defines the same template as ORG *+100

ENDR ENDR

The main advantage of the specification on the left is that the template name takes the
value of the initial offset. The template name can then be used in place of the offset value
in arithmetic expressions.

You can specify a negative offset with RECORD. This is useful for mapping Macintosh
Pascal stack frames. Suppose, for example, you want to write an external Pascal
procedure P x with the following declaration:

PROCEDURE Px(a,b,c: INTEGER); EXTERNAL;

C H A P T E R 4 Assembler Directives 77

If the Pascal program calls this procedure in the form Px(a, b, c), then the following
equivalent code actions are generated by Pascal:

MOVE.W
MOVE.W
MOVE.W
JSR

a (A6) , - (A 7)
b(A6),-(A7)
c(A6),-(A7)
Px

Push a
; Push b

Push c
Call external procedure Px

In assembly-language procedure Px, you want to reserve stack space for local variables.
So, following the conventions used by the MPW Pascal Compiler, start the subroutine with
LINK A6 to reserve the local stack space, as follows:

Px PROC
WITH
LINK

RTS
ENDP

EXPORT
StackFrame
A6,#Loca1Size Reserve space for locals on stack

You can now define the stack frame, using RECORD to delimit the following template
definition:
StackFrame RECORD -6 Start at -6 for 3 local integers
Local3 DS.W 1 Third local
Local2 DS.W 1 Second local
Locall DS.W 1 First local
Local Size EQU Local3-* Local area (-6) used in LINK
A6Link DS.L 1 Old value of A6 set by LINK
Return DS.L 1 Return address for RTS
c DS.W 1 c parameter
B DS.W 1 b parameter
A DS.W 1 a parameter

ENDR

Figure 4-1 shows the stack frame after the LINK A6 instruction in the example has been
executed. It illustrates two ways to view the same template layout.

78 MPW 3.0 Assembler Reference

• Figure 4-1 Stack frame example

High
12 Memory

I

A
T

Low
--0 Memory

I

Local3 T
10 B -4 Local2 LocalSize

8 c -2
r

Locall 1
T

6 0
Return A6Llnk

4 2
I T

2 4
A6Llnk Return

0 6

-2
T

Local!
T T 8 c

r

-4 Local2 LocalSize 10 B

Low --0
Memory

Local3 l High 12
Memory

T

A

The low-to-high layout on the right matches the record template definition just given
because the RECORD directive assumed the default parameter INCREMENT, even though
it contained a negative initial offset. By specifying DECREMENT, you could equally well
define the template to match the high-to-low diagram on the left:

StackFrame RECORD 14,DECR Start at 14 and decrement
A DS.W 1 a parameter (at location 12)
B DS.W 1 b parameter (at location 10)
c DS.W 1 c parameter (at location 8)
Return DS.L 1 Return addr for RTS

(location 4)
A6Link DS.L 1 Old A6 value set by LINK

(location 0)
Locall DS.W 1 First local (at location -2)
Local2 DS.W 1 Second local (at location -4)
Local3 DS.W 1 Third local (at location -6)
Local Size EQU * Local area (-6) used in LINK

ENDR

C H A P T E R 4 Assembler Directives 79

Notice that in both of the foregoing stack frame layouts the initial offset had to be given.
For most mappings the offset will be 0. However, for stack frames the initial offset must
be chosen so that the A6Link field will have an offset of 0. This is the reason that you
specified ...{) in the sample incrementing layout and 14 in the sample decrementing layout
It is not necessary, however, to compute the size of each template and enter it as an
absolute value. You can use the {origin} parameter to make the Assembler do this
work for you. The template origin is defined as the field which is to have an offset of 0.
You specify a field identifier enclosed in braces to indicate that that field is to be the
template's origin. The Assembler then reads in the the template definition as if the initial
offset was 0 (displaying these values in the Assembly listing) and subtracts the zero
relative offset of the origin field from each field offset. The effect is to shift the
template's origin from the start of the template to the field specified by the origin
parameter.

Hence in the preceding examples, you could have used simpler RECORD directive forms,
leaving the rest of the template definitions unchanged:

StackFrame RECORD {A6Link}
StackFrame RECORD {A6Link},DECR

Notice that shifting the origin of a template affects only the field offsets. Equates are not
changed. In origin-shifted templates, the Assembler distinguishes between equates to
absolute expressions (such as Local3-* in the incrementing example) and equates to
other field identifiers.

Normally you define some dynamic data, such as the stack frame illustrated in Figure 4-1,
and then use a template to map over the data. However, you may also have static data,
defined somewhere else in your assembly-language program as a data module, that you
want to map. Because both templates and data modules are defined by RECORD

directives, they have the same underlying form. This lets you import an entire data module
and directly access its fields. You map a data module by specifying its identifier in an
IMPORT directive and then using that same identifier as a template label in a RECORD

directive. Alternatively, you can specify the IMPORT directive identifier explicitly as the
RECORD template parameter. The base register for a data module imported as a template
is always AS.

In C programming, the situation just described corresponds to declaring a static structure
(struct) as external, and then importing the entire structure (extern) from another file. The
struct declaration m~t appear in both ftles, just as the RECORD directive appears twice in
the assembly-language source text.

MPW 3.0 Assembler Reference

Using templates as data types

In higher-level languages, data types define the specific ways that data is stored in
memory. For example, a Pascal record type or a C struct type specifies the memory layout
and size of all data items of that type. Fields within data structures also have types; hence
higher-level languages allow the creation of complex structures of typed data.

In the MPW assembly language, templates serve the same purpose. To create the
equivalent of a data type, you use the identifier of a template (the label you used in the
RECORD directive that created it) as the operand of a os directive. Here is an example:

label os template-name

Specifying a template identifier alone makes the D s directive allocate an amount of
memory equal to the size of the template. If a label is also specified, that label acquires
the type represented by the specified template. You can then access fields of the
template by qualifying the field identifiers with the os label instead of the template
identifier, in the form label. fieldname. Fields of templates can themselves be typed the
same way. You can identify them by a series of qualifications, in the form
label. field name. innername. Fields can be nested this way to any depth.

The following is an example of how template types are used. The example shows the
Macintosh QuickDraw definitions for points and rectangles. The corresponding Pascal
type declarations are shown as comments:

Point RECORD 0 Point = RECORD CASE INTEGER OF
v DS.W 1 0: (v: INTEGER;
h DS.W 1 h: INTEGER);

ORG v
vh DS.W 2 1: (vh: ARRAY [2] OF INTEGER)

ENDR END;

Re ct RECORD 0 Re ct = RECORD CASE INTEGER OF
top DS.W 1 0: (top: INTEGER;
left DS.W 1 left: INTEGER;
bottom DS.W 1 bottom: INTEGER;
right DS.W 1 right: INTEGER);

ORG top
topLeft DS Point 1: (topLeft: Point;
botRight DS Point botRight: Point)

ENDR END;

In this example, both topLeft and bot Right are defined as having the type Point.

Point and Rect may now be used to allocate space in a data module. For example:

MyData RECORD ; Define a data module

MousePt DS Point
DragRect DS Rect

ENDR

C H A P T E R 4 Assembler Directives 81

You can now access the various fields of MousePt and DragRect by using the field
identifiers established in the template definition. First, though, you must make these
field labels known to the code by bracketing them with a WITH MyData ... ENDWITH pair
as described in the next section. Because these fields are in a data module, the base
register is A5. Here are some examples:

MOVE.W MousePt.v(A5),D0 Get v component
MOVE.L MousePt.vh(A5),D0 ; Get full point

position
MOVE.W DragRect.left(A5),D0 Get left coordinate
MOVE.L DragRect.topLeft(A5),D0 Get topLeft of

rectangle
MOVE.W DragRect.botRight.h(AS),DO Get botRight h

; component

You can use templates as types in DS directives any time except when you use DS in the
code section of a code module, or when the DS directive has no label. Although the
Assembler does not establish a type in those cases, it still uses the template size to define
the space allocated by DS. To use a template identifier as a size or type specification,
you must supply it as the only operand ih the DS directive statement. Using the identifier
any other way (for instance, enclosing the identifier in parentheses or using the identifier
in an expression) makes DS use the template's value instead of its identifier.

In the foregoing example, incrementing templates were used to define types.
Decrementing templates may also be used. If you use a decrementing template as a type,
its origin for data allocation purposes is shifted so that its lowest address corresponds to
a location-counter value of 0. You can freely mix incrementing and decrementing
templates to define complex data types.

WITH and ENDWffiI: Supply RECORD name qualification

[macro-laben

[macro-Iaben

WITH name, ...
Code-module statements
ENDWITH

The WITH directive lets you access RECORD field identifiers without explicit
qualification. WI TH may only be used inside code modules (modules delimited by PROC,

FUNC, or MAIN). You can write a series of identifiers, separated by commas, as
parameters; they all become field qualifiers. They may be the identifiers of data modules,
templates, or typed fields. For a description of field typing see "Using Templates as Data
Types," earlier in this chapter. The implicit qualification established by WITH remains in
effect until a matching ENDWITH or the end of the code module.

82 MPW 3.0 Assembler Reference

Using the StackFrame RECORD template illustrated earlier, the following example shows
how WITH can be used to access a template's fields:

WITH
LINK A6,fStackFrame.LocalSize LINK

StackFrame
A6,tLocalSize
A (A6) ,DO
B(A6),Dl

MOVE StackFrame.A(A6) ,DO is MOVE
MOVE StackFrame. B (A6) I Dl equivalent MOVE
MOVE StackFrame.C(A6),D2 to MOVE C (A6) ,D2

ENDWITH

WITH directives may be nested. Alternatively, more than one identifier may be specified
in a single WITH directive. The latter is equivalent to nesting WITH directives, with the last
parameter being considered the most deeply nested:

WITH alpha, beta, gamma

ENDWITH

WITH alpha
is WITH beta

equivalent WI TH gamma
to

ENDWITH
ENDWITH

ENDWITH

You can nest field qualifications, using WITH directives in either form. Parameters
occurring earlier will qualify parameters occurring later. The Assembler searches for each
specified field identifier, starting with the most deeply nested WITH, and attaches the
qualification when it finds it. If two fields have identical identifiers, it supplies the most
deeply nested qualification. Here is an example, based on the DragRect definition given
in "Using Templates as Data Types" in the discussion of REC and ENDREC:

WITH

MOVE.W
MOVE.W
MOVE.W
ENDWITH

DragRect,topLeft

v(AS),DO
left(A5),D2
botRight.h(AS),Dl

Qualify with DragRect
and DragRect.topLeft
DragRect.topLeft.v
DragRect.left
DragRect.botRight.h

Notice here that topLeft is subject to the WITH qualification of DragRect, the WITH

directive's first parameter. This is equivalent to the explicit qualification
DragRect. topLeft. The v field reference is qualified by topLeft, so that it is
equivalent to a reference to DragRect. topLeft. v. The left field is a field of
DragRect, so that it is equivalent to a reference to DragRect. left. The last reference
is to the h field of botRight, which is itself a field of DragRect. However, h also
occurs as a field identifier in topLeft. The explicit reference to botRight is required to
override the implicit qualification topLeft.

C H A P T E R 4 Assembler Directives 83

As you can see from the last example, nested WITH directives can generate unintended
field identifier qualifications, leading to very subtle program bugs. (It would have been
simple, and incorrec~ to refer to h without realizing it was the topLeft when you meant
the botRight.) Use WITH only to cover short sections of source text, and avoid complex
nestings. If in doubt, replace WITH directives with fully qualified field identifiers. Your
program will become easier to understand and maintain when the reader always knows to
which module or template every field belongs.

Linker and scope controls

The directives described in this section all pass information to the MPW Linker. They tell
the Linker how to associate identifiers between object files, how to group individual
modules into segments, and how to comment the object-code file. At the same time, they
give the Assembler information about the scope of objects named in the directives and
tell it whether they are code or data. They are the following:

EXPORT

ENTRY

IMPORT

CODEREFS

DATAREFS

SEG

COMMENT

Make entry points accessible in other assemblies
Make local entry-points global
Identify entry points declared externally
Control the linking of code-to-code references
Control the linking of data-to-code and data-to-data references
Specify the current code segment
Place a comment in the object file

ENTRY, EXPORT, and IMPORT all affect the scope of code or data module identifiers.
ENTRY promotes an identifier to global scope within a file, so that it is accessible to all
references in the same file. EXPORT has the same effect as ENTRY; in addition, it makes
the identifier accessible to other files, or global to the assembly. IMPORT provides a
reference in the current module or assembly for identifiers exported in another module,
assembly, or compilation.

coDEREFS and DATAREFS allow you to control some of the characteristics of the way the
linker associates code and data references created by EXPORT, ENTRY, and IMPORT.

SEG specifies the code modules in a segment. For a discussion of code module segments,
see "Segmentation" in Chapter 2.

COMMENT tells the Linker to generate a comment record for your object file.

84 MPW 3.0 Assembler Reference

EXPORT and ENTRY: Expand scope of entry points

{ CODE} (name1' name2 , .. -) : DATA

[macro-label] ENTRY

-·H:~:}J , ...

{ CODE} (name , name , .. ·) :
1 2 DATA

[macro-laben ENTRY , ...

With the exception of local labels, all identifiers in a code or data module are
automatically accessible throughout the module in which they are defined. EXPORT and
ENTRY extend the scope of specified identifiers by making them accessible in other
modules as well. EXPORT makes them accessible in modules in all files linked with the file
containing it; ENTRY makes them accessible only in modules within the same assembly.

Identifiers listed with EXPORT are said to be exported. Each one must be designated as
code or data; one may be designated as MAIN. You can accept the default designations or
you can specify them explicitly. These rules govern how the Assembler treats the operands
of EXPORT and ENTRY directives by default:

• The default designation for identifiers listed inside a code module is CODE.

• The default designation for identifiers listed inside a data module is DATA.

• The default designation for identifiers listed outside any module is CODE.

You can override any of these default designations by writing explicit declarations. If you
specify CODE, DATA, or MAIN explicitly, you can write a series of identifiers separated by
commas and enclosed in parentheses, followed by a declaration:

EXPORT (name1,namei,na~: DATA

Alternatively, you can write a separate declaration for each name, omitting the
parentheses:

ENTRY
na11U1: DATA,narnei,: CODE,na~: DATA

C H A P T E R 4 Assembler Directives 85

Here are the rules for using EXPORT and ENTRY:

• You must place each EXPORT or ENTRY directive in your source text before defining
any of the identifiers it affects.

• The directive must be written within the existing scope of all identifiers it affects.

• An exported identifier may not be identical to any other identifier within its new
scope.

• You export a module identifier either by using EXPORT or ENTRY before the directive
that starts the module (PROC, FUNC, MAIN, or RECORD) or by including EXPORT or
ENTRY in the module directive's parameter list.

• You export identifiers occurring within a module by including an EXPORT or ENTRY

directive inside the module, before they are defined.

• An identifier may be mentioned in more than one EXPORT or ENTRY directive,
provided it is not listed as both code and data.

• An EXPORT directive mentioning an identifier previously listed in an ENTRY directive
supersedes the ENTRY.

• An ENTRY directive mentioning an identifier previously listed in an EXPORT directive
has no effect.

• An identifier designated as CODE in an ENTRY or EXPORT directive may be later
designated as MAIN by an ENTRY' EXPORT' or MAIN directive.

• Only one identifier in an assembly may be designated as MAIN.

• You cannot include a qualification when exporting a field identifier. Only the
unqualified field identifier will be exported.

The following example illustrates the placement of EXPORT statements in a file:

EXPORT x Export code module name X
EXPORT Y:DATA ; Export data module name Y

y RECORD Could have exported from here
EXPORT Fieldl,Field.2 Export inside module

Fieldl DS.W 1
Field.2 DS.L 2

ENDR

x PROC Could have exported from here
EXPORT z Declare secondary entry point

Code for X

z Secondary entry point Z

More code for X
END

MPW 3.0 Assembler Reference

IMPORT: Identify external entry points

[macro-label] IMPORT , ...

The IMPORT directive makes specified identifiers accessible to the file or module in
which it occurs. Such identifiers are said to be "imported." Every imported identifier
must be declared elsewhere in one of the following ways:

• as either ENTRY or EXPORT in other modules of the same assembly

• as EXPORT in other assemblies

• as an exported procedure, function, or global variable in another language

In the syntax diagram given here, type is the identifier of a template used to define a
record structure, as explained in the discussion of RECORD and ENDR in "Template
Definitions," earlier in this chapter. As explained there, the template itself may be
declared as IMPORT. Using an IMPORT directive, however, lets you import several
templates under other identifiers without having to modify the original template
declarations.

Here are the principal rules governing the use of the IMPORT directive:

• The inclusion of an identifier in an IMPORT statement is treated as a definition of the
identifier with respect to identifier scope. This means that imported identifiers
follow the standard local/global scope rules covered in "Scope of Definitions" in
Chapter 2.

• Imported identifiers that are to be made accessible to more than one module in a file
must be imported before any modules that use the identifiers are defined.

• Imported identifiers local to a module must be listed in an IMPORT directive inside
that module before they are mentioned in any other statement.

• The Assembler does not verify the CODE or DATA designation of imported identifiers.
Hence you should give them the same designation they had when they were exported.

• You can access fields of imported templates by qualifying the identifiers used in
IMPORT with the original field identifiers.

• Imported code identifiers may be used in all PC-relative effective address modes.
However, their use in short branches and in indexed modes with 8-bit displacements
may result in run-time errors.

CH APTER 4 Assembler Directives 'OJ

The Assembler gives default CODE or DATA assignments to the operands of the IMPORT
directive according to these rules:

• The default designation for identifiers listed inside a code module is code.

• The default designation for identifiers listed inside a data module is data.

• The default designation for identifiers listed outside any module is code.

You can override any of these default designations by writing CODE or DATA explicitly, as
described in "EXPORT and ENTRY," earlier in this chapter.

Referring to the example given in "EXPORT and EN1RY," the following example shows how
the identifiers exported there could be imported into another file. It also illustrates the
identifier scope rules:

IMPORT x Import X as a code identifier
IMPORT (Fieldl, Y) :DATA ; Import Fieldl and Y as data

w PROC
IMPORT (Z, Ll) : CODE ; Allow local access to z and Ll
IMPORT Field2:DATA Allow local access to Field2

MOVE.L Field2,Dl Field2 accessible only
from module W

JSR Ll Call Ll in another module
MOVE.W DO, Fieldl (AS) Copy DO into Fieldl

(in other file)
JSR x

ENDPROC

CODEREFS and DATAREFS: Control name linking

[macro-label] CODE REFS

[macro-Iaben DATAREFS

{
F[ORCE[JT]] }
HQI:[~[i:rr.]]
F[ORCE]PC

{ R[EL[ATIVEl] }
A[.B..S.[QLUIE]]

CODEREFS lets you control how the MPW Linker treats code-to-code identifier
references-that is, references from one code module to another. With NOFORCEJT,
a reference to an address in the same segment will cause the Linker to treat it as
PC-relative. References between segments will go through the jump table. With FORCEJT,

88 MPW 3.0 Assembler Reference

all references will go through the jump table even if they are in the same segment.
FORCEPC is the inverse of FORCEJT; it requires that all code-to-code references be
PC-relative and in the same segmen~ and causes a Linker error if any are not. coDEREFS
NOFORCEJT is the preset condition.

DATAREFS lets you control how the Linker treats data-to-code and data-to-data
identifier references. With ABSOLUTE, all references to code or data are 32-bit absolute
jump-table addresses and may be used only in DC. L statements. With RELATIVE, all
references to code are AS-relative jump-table offsets and all references to data are
AS-relative offsets. You may use DC.wand oc. L for RELATIVE references. DATAREFS
ABSOLUTE is the preset condition.

Code-to-data identifier references are always AS-relative; they are unaffected by
CODEREFS OrDATAREFS.

You can write operands for CODE REF s and DATAREF s in any of the following alternate
forms:

• FORCEJT as FORCE or F

• NOFORCEJT as NO FORCE or NOF

• FORCEP as FPC

• RELATIVE as REL or R

• ABSOLUTE as ABS or A

To understand the operation of coDEREFS and DATAREFS fully, you must know their
effects on the linking process. The four possible identifier reference combinations
between code and data modules are discussed next in "Code-to-Code References."

Code-to-code references

When a reference points from one code module to another and CODEREFS NOFORCEJT is
in eff ec~ the Linker checks to see whether both code modules belong to the same
segment. If so, it changes the addressing mode to PC-relative with a 16-bit displacement
and sets the appropriate displacement. If the reference is to a code location in a different
segment, the linker converts the address to a location in the jump table (a positive offset
from AS). The linker assumes that the word immediately before the 16-bit displacement
represents an instruction which has its destination mode and register fields in bits 0
through S (the 6 low-order bits).

.6. Warning The linker does not support editing of the new addressing modes
with 32-bit displacements found in the MC68020/MC68030

C H A P T E R 4 Assembler Directives 89

The Linker accepts all code references from one module to another. With instructions
other than JSR, JMP, PEA, and LEA, however, the referenced identifiers must be in the
same segment.

To summarize, the Linker follows these rules when checking for illegal code-to-code
references:

• If the reference is to a module in the same segmen~ the Linker accepts it for any
instruction and any coDEREFS setting. If the instruction being used is not JSR, JMP,

PEA, or LEA, the referenced identifier must be in the same segment.

• If the reference is to a module in another segment, the Linker accepts it only for JSR,

JMP' PEA, and LEA instructions, and only if CODE REF s FORCEPC is not in effect.

• If the reference is to a module in another segment and CODEREFS FORCEPC is in
effect, the Linker wiJJ not accept it.

You can use CODEREFS FORCEJT to forestall certain run-time problems. If, for example,
you want to save the PC-relative address of a procedure to caJJ it later and that procedure
belongs to a segment that may become unloaded, then attempting to caJJ the procedure
after the segment has been unloaded will not work. The solution is to use CODEREFS

FORCEJT. It forces all code-to-code references to go through the jump table anyway, as if
the modules were in different segments. Saving a jump table address and using it to call a
procedure later guarantees that the corresponding segment will be loaded, even if it is
currently unloaded.

Code-to-data references

When a reference points from a code module to a data module, the Assembler always
generates an A5 offset. If you do not need indexing and the Assembler knows the
reference is to data for a machine instruction, you can omit the A5 reference; the
Assembler will generate it for you.

Data-to-code references

You can reference a code address from a data module only with a DC instruction. When
you do this, you can choose to make the Linker generate a jump table offset or let it
generate the actual run-time jump-table address. If you make the Linker generate an
offset, you can specify its size as a word or a long word by qualifying the DC instruction
(Dc. w or DC. L). If you Jet the Linker generate the actual run-time jump-table address, you
must specify DC. L, because a 32-bit address will be added to the DC statement at load
time. But any DC reference to a local label in the same code module (or in a nested data
module) wiJJ always be treated as a module offset.

90 MPW 3.0 Assembler Reference

DATAREFS controls the two forms of data-to-code addressing. DATAREFS RELATIVE
indicates that offsets are to be used, while DATAREFS ABSOLUTE (or no directive at all)
indicates that AS-relative 32-bit absolute jump-table addresses are to be generated.

Data-to-data references

Data-to-data references are similar to data-to-code references. You can force the linker
to generate an AS-relative offset to the data by using DATAREFS RELATIVE, or you can
let it refer to the 32-bit absolute address created at run time by doing nothing or by using
DATAREF S ABSOLUTE.

Table 4-2 summarizes the effects of CODEREFS and DATAREFS in the four cases just
discussed.

• Note: If your program uses absolute data references, you must link it with the library
file Runtime.o, which contains the data initialization routine _Datainit. If your
main code module is written in assembly language, its fiist executable statement must
be a call (JSR) to the entry point _Dataini t. This entry point must also be declared
as IMPORT. After returning from_Datainit, your program may unload the segment
%A5Ini t that contains it, by calling the Macintosh routine UnloadSeg. If your main
program is written in C or Pascal, no explicit call to _Datainit is required, because
the run-time libraries for C and Pascal automatically take care of data initialization.
Also, in order to use Unloadseg, you must INCLUDE 'traps . a'.

• Table 4-2 Effects of CODEREFS and DATAREFS

From To Directive Effect

Code Code CODEREFS FORCEJT Always uses jump table
Code Code CODEREFS FORCEPC Always PC-relative
Code Code CODEREFS NOFORCEJT Uses jump table if across segments
Code Data Always generates AS offset
Data Code DATAREFS RELATIVE Uses jump table (w or L) offset
Data Code DATAREFS ABSOLUTE Uses 32-bit absolute jump-table

addresses (L)
Data Data DATAREFS RELATIVE Generates AS (w or L) offset
Data Data DATAREFS ABSOLUTE Uses 32-bit absolute addresses (L)

C H A P T E R 4 Assembler Directives 91

SEG: Specify current code segment

[macro-/aben SEG [str-exprl

All code modules are grouped into segments, as discussed in Chapter 2 under "Source Text
Structure." The SEG directive lets you control this grouping. It declares that all subsequent
code modules (ignoring any data modules) are to be placed in the segment named by the
expression str-expr. SEG takes effect at the next PROC, FUNC, or MAIN directive. It
remains in effect until the next SEG directive. The modules thus placed in one segment
need not be contiguous in the source text.

The default value of str-expris Main (uppercase M, the rest lowercase, as shown). If you
do not use the SEG directive or use it without an operand, all subsequent code modules
will be placed in the Main segment.

• Note: Code segment names are case-sensitive. Be careful to use identical
capitalization when writing segment names that are to be treated as identical.

Code modules in the same segment do not have to be contiguous in the source file. Code
modules belonging to other segments may be mixed with them as long as they fall under
the appropriate SEG directive. Here's an example:

A

B

SEG
PROC

ENDP
SEG
PROC

ENDP
C PROC

ENDP

'Namel'

'Name2'

SEG 'Namel'
D PROC

ENDP
SEG 'Name2'

E PROC

ENDP

In this example, modules A and D belong to the segment' Namel '; B, c, and E belong to
the segment 'Name2 ' .

92 MPW 3.0 Assembler Reference

COMMENT: Place a comment in object file

[macro-laben COMMENT str-expr

The COMMENT directive lets you place a comment in your unlinked object file. It causes
the Assembler to generate an object file comment record containing the value of the
COMMENT directive's string expression operand.

Assembly options

The assembly option directives described in this section let you control certain
assumptions the Assembler makes about the program it is assembling. The assembly
option directives and the assumptions they control are as follows:
MACHINE Identify the target microprocessor model
MC68881 Control the assembly of floating-point coprocessor instructions
MC68851 Control the assembly of PMMU coprocessor instructions
STRING Control the encoding of string constants
BRANCH Control the encoding of branch instructions
FORWARD Control the encoding of forward references
OPT Control the level of code optimization
CASE Control the treatment of lowercase letters in identifiers
BLANKS Control the treatment of spaces and tabs in the operand field

MACIIlNE: Specify target machine

[macro-laben MACHINE {~=1 MC 68020
MC 68030

This directive tells the Assembler that the target microprocessor is an MC68000 (the preset
assumption), an MC68010, an MC68020, or an MC68030. The Assembler will accept only
those instructions and addressing forms supported by the target microprocessor. A
MACHINE directive has effect until the end of the source text file or until another
MACHINE directive is encountered.

C H A P T E R 4 Assembler Directives 93

MC68881: Assemble MC68881/MC68882 coprocessor instructions

[macro-Iaben MC68881 [jp-option], ...

This directive tells the Assembler that subsequent source text may contain instructions to
an MC68881 or MC68882 Floating-Point Coprocessor and specifies how the Assembler is
to interpret them.

Your source text must contain this directive-before the first MC68881/MC68882
instruction. Each fp-option operand consists of a keyword, an equal sign, and an
expression. There are four possible options:

COID=exfJr
PREC[ISION]={ X I D I S }
ROUND[ING]={ N I U I D I Z
KFACTOR=exfJr

The numeric expression exprfollowing corn is the coprocessor ID number of the MC68881
coprocessor, in the range 1..7. It has a default value of 1.

The letter following PRECISION indicates how much precision and range the Assembler
should retain when converting floating-point constants in the source code into binary
values. The default value is extended (x); however, you may alternatively specify double
precision (o) or single precision (s).

The letter following ROUNDING indicates how the Assembler should round floating-point
constants in the source code when converting them into binary values. The default value is
to round to the nearest representation (N); however, you may alternatively specify
rounding upward (u), downward (o), or toward zero (z).

The numeric expression expr following KFACTOR specifies the default k-factor that the
coprocessor uses when interpreting FMOVE • P instructions in which the k-factor is not
explicit. The k-factor tells the MC68881 coprocessor in what format to construct the
resulting decimal string. The preset default value is -16, but you can specify any value in
the range -64 .. +63. For an explanation of k-factors, see the discussion of FMOVE in the
Motorola MC68881 Floating-Point Coprocessor User's Manual.

+ Note: It is advisable to program for the MC68882 even if your target hardware currently
contains a MC68881, so that no program changes will be required if the hardware is
upgraded. The MC68882 offers all the features of the MC68881, as well as concurrent
execution of multiple floating-point instructions, some special-purpose hardware for
faster format conversions, simultaneous access to the floating-point registers by the
conversion and arithmetic processing units, and reduced coprocessor interface
overhead. All these contribute to increased throughput. Please see the Motorola
MC68881/MC68882 Floating Point Coprocessor User's Manual for details of the
programming differences (which are relatively minor).

94 MPW 3.0 Assembler Reference

Here are some rules about writing the MC68881 directive:

• If you include one or more operands, the Assembler will change only these
characteristics specified by those operands from their previous values.

• If you do not include any operands, the Assembler will reset all four characteristics to
their default values: COID=l, ROUNDING=N, PRECI SION=X, and KFACTOR=-16.

• Operands may be written in any order.

+ Note: The Macintosh ROM contains routines that perform a variety of fixed-point
mathematical operations. For information about these routines, see the Toolbox
Utilities chapter of Inside Macintosh.

MC68851: Assemble MC68851 coprocessor instructions

[macro-Iaben MC68851

This directive tells the Assembler that subsequent source text may contain instructions to
an MC68851 Paged Memory Management Unit coprocessor. Your source text must contain
this directive before the first such instruction.

.A. Warning You may not use an MC68851 directive in the same assembly with a
MACHINE MC68030 directive. •

STRING: Specify string format

[macro-labeiJ STRING {
ASIS }
~AS CAL

The STRING directive tells the Assembler how to encode all string constants occurring in
the data-definition directives DC and DCB and in literals. The Assembler encodes strings as
specified until it processes the next STRING directive. STRING PASCAL is the preset
condition.

C H A P T E R 4 Assembler Directives 95

You can supply any one of these three operands with STRING:

Operand

ASIS

PASCAL

c

Effect

Strings are encoded exactly as specified; they contain just the
characters included between the single quotation marks.

Pascal-formatted strings are generated. Each one is preceded by a
length byte, as if it were stored in a Pascal variable_ of the type STRING.

C-formatted strings are generated. This format always contains at
least one 0 byte following the last character of the string.

The Assembler may add one or more 0 bytes after the last character of any string, to end it
on a word or long word boundary. Literals and strings defined by DC.ware filled to the
next word boundary; strings defined by oc. L are filled to the next long word boundary.

BRANOI and FORWARD: Resolve forward branches

[macro-label] BRANCH

[macro-label] FORWARD

{
s [HORT] I :B[YTE]}
li[mm]
L[ONG]

{li[.QBil]}
L[ONG]

BRANCH and FORWARD tell the Assembler what size to assume for the displacement
encodings of forward-referenced identifiers. BRANCH covers the branch instructions Bee,
BSR, and BRA, if no size specification (s or L) is given with the mnemonic. FORWARD
covers the base and outer displacements for the MC68020 extended addressing modes 6
and 73, shown in Table 3-2. Size specifications are discussed in Chapter 3 under "Forward
Reference Addressing."

BRANCH WORD and FORWARD WORD are the preset conditions; they generate 16-bit
displacements. If you specify s, SHORT, B, or BYTE, the Assembler generates 8-bit
displacements. If you specify L or LONG it generates 32-bit displacements. Each BRANCH
or FORWARD directive remains in effect until the next BRANCH or FORWARD. You can
specify FORWARD LONG with MC68020 instructions only.

MPW 3.0 Assembler Reference

+ Note: The Assembler will report an error on any forward-referencing instruction with
too small a displacement field. For example, if BRANCH s is specified but the
Assembler generates a displacement that is too great for eight bits, the Assembler will
report an error.

OPT: Specify levd of code optimi1.ation

[macro-laben OPT [{:Jl
The Macintosh Workshop Assembler accepts generic forms for certain machine
instructions and addresses, converting them to other forms at run time. The instructions
for which it accepts generic forms are listed in Appendix A; the address formats are listed
in Table 3-2. There are three general reasons for making such conversions:

• Optimization: The Assembler converts instructions and addresses if they can be
encoded more efficiently. The result occupies less memory and often runs faster as
well. An example of an instruction conversion is SUBA An, An in place of
MOVE :lfO,An. Examples of address conversions are bd(Pc) for(bd, Pc) and the
suppression of MC68020-addressing base displacements and outer displacements
when their values are 0.

• Convenience: The Assembler converts instructions on the basis of their context-for
example, ADDI in place of ADD. It also permits substituting instructions to make
coding easier and more readable-for example, by substituting BZ for BEQ.

• Compatibility: The MPW Assembler converts certain instructions to make them
compatible with other assemblers. Examples include substituting BHS for BCC and
BLO for BCS.

The generic address forms listed in Table 3-2 are all converted for optimization. The
generic instruction forms listed in Appendix A are grouped by their reasons for conversion.

The OPT directive lets you control parts of this conversion process. You might want to
eliminate optimization, for example, when writing a table of branch instructions or a
routine with a critical execution time.

C H A P T E R 4 Assembler Directives 97

You can specify one of three operands:

• ALL allows all conversions. This is the preset case.

• NONE eliminates all optimiz.ations; the Assembler will not accept generic instruction
forms and will not optimize addressing modes.

• NOCLR is similar to ALL. On some hardware, a CLR ea instruction in place of MOVE
o , ea is not exactly equivalent. NOCLR provides for this difference by allowing all
conversions except for the MOVE-tO-CLR substitution.

The current OPT directive setting remains in effect until the next OPT directive is
processed.

CASE: Specify treatment of lowercase letters

[macro-Iaben CASE {
ON I y[Es]}
.QIT I N[Q.]
OBJ[ECT]

The CASE directive lets you determine how the Assembler interprets lowercase letters in
identifiers.

The operand ON, Y, or YES forces the Assembler to treat uppercase and lowercase letters
as distinct. For example, the Assembler treats abed and Abed as two different identifiers.
This is the way C treats uppercase and lowercase letters.

The operand OFF, N, or NO lets the Assembler treat uppercase and lowercase letters
identically. For example, the Assembler treats abed and AbCd as the same identifier. It is
the preset condition.

OBJECT or OBJ forces the Assembler to generate in the object file all module identifiers
and all exported and imported identifiers exactly as specified in the source text, retaining
uppercase and lowercase distinctions. It ignores uppercase and lowercase distinctions for
references within the source text, however. Hence CASE OBJECT has the same effect as
CASE OFF within an assembly.

+ Note: The CASE directive has no effect on segment names. They are always case
sensitive except for macro variables, which are case-insensitive.

98 MPW 3.0 Assembler Reference

The MPW Linker always distinguishes between uppercase and lowercase when matching
exported entry-point identifiers with their imported references. Hence you must be
careful when linking an assembly-language program with programs written in C or Pascal.
When CASE OFF is in effec~ the Assembler generates exported and imported identifiers
entirely in upper case. This matches the MPW Pascal Compiler, which also generates
uppercase identifiers. When CASE ON is in effec~ the Assembler preserves the
capitalization used in the source text. This matches the MPW C compiler, which maintains
case distinctions.

CASE OBJECT lets you communicate with C in uppercase and lowercase, without needing
to preserve case distinctions inside your program. Case distinctions can create a problem
when you are using large files of equates-for instance, the standard Macintosh equates.
CASE OBJECT lets you preserve case distinctions in your object file while ignoring them
in your source text. The CASE directive remains in force until the next CASE directive is
processed. However, it is not a good idea to mix CASE modes within a single source file.
The CASE value may be overridden from the Assembler's command line with the -case flag.

Writing register names

The MPW Assembler predefines two sets of all the register names listed in Table 3-4: one
set all uppercase, one set all lowercase. With CASE OFF (the preset condition), the
lowercase set of names is superfluous. With CASE ON, you can use both sets
interchangeably. However, with CASE ON, the Assembler does not accept register names
with any case combination except all uppercase or all lowercase; register names such as Sp

and zA 7 are illegal. You can get around this by writing specific equates to legal predefined
register names.

BLANKS: Control acceptance of blanks in operand field

[name] BLANKS { Qli I rl:ESJ}
OFF I N[O]

The BLANKS directive controls where the Assembler will accept spaces and tabs within the
operand field. It is discussed in Chapter 2 under "Machine Instruction Syntax."

An operand of OFF, N, or NO lets the Assembler accept spaces and tabs only in places
where the operand field is incomplete: following commas separating operand subfields
and between paired constructs such as parentheses, brackets and braces. Where the
operand field is complete, a space or a tab signals the beginning of the comment field.

C H A P T E R 4 Assembler Directives 99

An operand of ON, Y, or YES forces the Assembler to accept spaces and tabs anywhere in
the operand field, except within single symbols (such as identifiers). With BLANKS ON,

you must write a semicolon at the end of the operand field to separate it from the
comment field. BLANKS ON is the preset condition.

The BLANKS directive remains in force until the next BLANKS directive is processed.

Location-counter controls

The two directives described in this section control the value of the current location
counter, represented in your source text by the asterisk (*) symbol. They are the following:

ALIGN Advance the location counter to the next multiple of a value
ORG Set the value of the location counter

AllGN: Align location counter

[macro-Iaben ALIGN [~

The ALIGN directive generally has only local effect: it forces the next code or data
statement to be assembled at a new location.

When the Assembler encounters an ALIGN statement, it increments the location counter
to the next multiple of the value of the ALIGN parameter expr(typically 2 or 4); it then
continues assembling instructions and data at the next valid location for the current code
or data statement. Since the Assembler aligns all instructions and any data larger than a
byte on even-byte boundaries, if the location counter is odd, the Assembler will assemble
the next instruction on the next even-byte boundary.

100 MPW 3.0 Assembler Reference

Special cases

ALIGN

ALIGN 0

ALIGN 1

With no parameter specified, the Assembler assumes a value of 2.

Causes the Assembler to stop its default alignment of most data to even
byte boundaries until it encounters another ALIGN directive with a non
zero operand. Data that are normally aligned to even byte boundaries
but that are assembled on odd-byte boundaries under an ALIGN o
directive generate a warning.

While the Assembler is in this no-align state, the location counter can be
forced to the next even-byte boundary by a ds . size o directive, where
size is larger than B(yte). For further information, see the discussion of
the DS directive under "Data Definitions" earlier in this chapter.

Has no effec~ except to start assembler default alignment again, if it has
been turned off by ALIGN o.

The statement ALIGN a-expracts the same as ORG o-expr, where o-exprmod a-expr = 0.
The parameter expr may not contain any forward, undefined, or imported references.
Except for the special case of an exprvalue of 0, ALIGN directives may appear only inside
code modules, data modules, or templates.

Remember these points when using ALIGN:

• When you use ALIGN in decrementing templates and data modules, the Assembler
decrements the location counter. In other words, it aligns in the same direction as the
prevailing counter direction.

• If you use ALIGN with no operand, the Assembler assumes a value for expr of 2,
thereby aligning the current location counter to the next word boundary.

C H A P T E R 4 Assembler Directives 101

ORG: Set location counter

[macro-Jaben ORG [~

ORG sets the current module or template location counter to the value specified by the
expression expr.

Remember these points when using ORG:

• You cannot use ORG to change the location counter from positive to negative (or vice
versa) in code modules, data modules, or imported templates. You can change the
sign of the location counter only in nonimported templates.

• You must be careful when using ORG to set the current location counter backward in a
decrementing template. Remember that in a decrementing template each label is
defined by first decrementing the location counter and then assigning its value to the
label. You must take this additional decrement into account.

• If you use ORG with no operand, the Assembler sets the current location counter to the
maximum positive or maximum negative location-counter value assigned to the
module up to this point. The Assembler sets the current location counter to the
maximum positive value for code modules and for incrementing templates and data
modules. It sets the current location counter to the maximum negative value for
decrementing templates and data modules.

The following example illustrates the use of ORG in a template definition:

Region RECORD
rgnSize DS.W
rgnBBox EQU
Top DS.W
Left DS.W
Bottom DS.W
Right DS.W

ORG
topLeft DS.L
bot Right DS.L

ORG
MyData DS.B

ENDR

0
1

*
1
1
1
1
Top
1
1

100

; Integer
; · Rect

Points mapped over Rect

Make sure of location counter
Reserve 100 bytes

The template just defined has the memory format shown in Figure 4-2.

102 MPW 3.0 Assembler Reference

• Figure 4-2 Sample template format

Region Template

0 rgnSize 0 rgnSize

2 Top 2
Top Left

4 Left
rgnBBox = Rect

6 Bon om 6
BotRight

8 Right 8

10 My Data 10 My Data

D D
In this example, the first ORG directive sets the location counter to Top, so that topLeft

and botRight map onto Top, Left, Bottom, and Right. The second ORG directive has
no operand, so the Assembler sets the location counter to the highest value so far-in this
case, 10. Although the mapping is exact, using ORG guarantees a correct final value for the
location counter. This technique is particularly useful, for example, when a variant field
does not exactly map onto another variant.

File controls

The file control directives described in this section let you create and access files other
than the current source text files during assembly. The directives are as follows:

INCLUDE Insert source text from another file
DUMP Write the current global symbol table to a file
LOAD Read a file into the current global symbol table
ERRLOG Create an error-listing file

These directives are discussed in detail later in this chapter. An additional file control
directive, MACLIB, is reserved for future implementation.

C H A P T E R 4 Assembler Directives 103

File search rules

The Assembler searches in several directories for files specified in INCLUDE and LOAD

directives. If the directive is given a full pathname (a name containing at least one colon
but not beginning with a colon), it opens the specified file. If the directive is given a
partial pathname (a name that either starts with a colon or contains no colons), it searches
the accessible directories for the file in the following order:

1. The current directory

2. The directory that contains the current input file

3. The directory or directories specified by the -i Assembler option, in the order
specified. Assembler options are described in Appendix G.

4. The directory or directories specified in the {Alncludes} MPW Shell variable. Shell
variables are discussed in Macintosh Programmer's Workshop Reference.

The foregoing search rules are implemented by prefixing the specified partial filename
with the name of the directory being searched.

INUUDE: Take source text from another file

[macro-laben INCLUDE filename

The INCLUDE directive causes the Assembler to accept source input from a specified file.
The value of filename, a quoted literal string, is the name of the file. The file is said to be
included Here is an example:

INCLUDE 'traps.a'

The Assembler takes input from the included file until it reaches the end of the file. It then
resumes taking input from the original file, starting with the line following the INCLUDE

directive. The only time the Assembler does not switch back to the original file is when it
encounters an END directive in the included file.

An included file may itself include another file. Included files may be nested in this way up
to five levels deep. When looking for included files the Assembler follows the procedure
described above under uFile Search Rules."

INCLUDE directives are not pennitted in macro definitions.

104 MPW 3.0 Assembler Reference

DUMP and LOAD: Write and read symbol table files

[macro-laben
[macro-laben

DUMP

LOAD

filename
filename

The DUMP and LOAD directives let you store and retrieve the Assembler's global symbol
tables in external files. This capability helps speed assembly by letting the Assembler
access often-used symbol tables from a file instead of building them repeatedly. Symbol
tables stored in an external file are said to be "dumped." When they are retrieved, they are
"loaded."

The value of filename is the name of an external file. With the DUMP directive, the
Assembler creates a new file, or overwrites an old file, of that name. With the LOAD

directive, the Assembler searches for the specified file according to the rules given earlier
in this chapter under "File Search Rules."

Symbol tables are created by the Assembler from the source text. They are kept in memory
different lengths of time, depending on the scope of the symbols in the table. Local
symbol tables for code modules are purged at the end of the assembly of each module.
Global symbol tables-containing module identifiers, data module field identifiers, and
all symbols defined outside of code modules, including macro definitions-are kept for
the duration of the assembly process.

By using DUMP, you can tell the Assembler to write the following items from the current
global symbol table to the file named by filename.

• template definitions (including type information)

• absolute equates

• equates to imported identifiers

• register equates

• OPWORD definitions

• imported identifiers

• macro definitions

Remember that LOAD assumes the same environment as when DUMP was used. The
Assembler does no cross-checking to determine whether, for instance, register equates for
floating-point registers are defined even though MC68881 is not turned on in the
"loaded" file.

C H A P T E R 4 Assembler Directives 105

DUMP does not write these items:

• macro variables

• data module identifiers

• data module field definitions

• data type information

• code module identifiers

• code module labels

• information about exported identifiers

You use LOAD to read a previously dumped symbol table into current memory. When a
dumped symbol table is loaded, the loaded symbols are merged with the current global
symbol table. This means that there must not be duplicate definitions; the Assembler will
report, as an error, any conflict between a current symbol table entry and a loaded entry. A
symbol entry in a loaded table will not override an already existing symbol entry.You can
use the LOAD directive only outside modules and templates.

The Assembler writes files containing dumped symbol tables in a format that is more
compact than the original source files used to produce the symbol tables. Hence it is
advantageous to use DUMP and LOAD when you are using a large number of equates-for
example, with the standard Macintosh equates. If you do, your dumped files will require
substantially less disk space than the corresponding source files. The assembly process will
go faster as well, because the Assembler will not need to scan all the external equate source
files.

ERRLOG: Specify error log ftle

[macro-Laben ERRLOG filename

The ERRLOG directive lets you create a separate log file containing all the error messages
reported by the the Assembler. Its name will be the value of filename. All errors and
warnings reported in the listing file will also be copied to this error log file. At the start of
the assembly process, there is no preset error log file, unless one is specified by the -e
option in the Assembler command string. You specify one with the first ERRLOG directive
in your source text. However, the file is not actually created until there is an error or
warning message to write into it.

+ Note: If only warnings (no errors) are generated during assembly, the error log file is not
created.

lo6 MPW 3.0 Assembler Reference

You can also switch error log files by specifying another ERRLOG directive with a different
filename. You can terminate error logging by using ERRLOG with a null string for its
filename.

• Note: Use of this option under MPW is discouraged.

Listing controls

The listing control directives let you control the layout and content of the listing file that
the Assembler produces during the assembly process. They include the following
directives:

PAGESIZE Specify the listing page size
TITLE Define a title for the listing header
PRINT Control miscellaneous listing options
EJECT Start a new page in the listing
SPACE Insert blank lines in the listing

These directives are discussed in detail below. In addition, you can control the listing font
and font size by using the -font Assembler option described in Appendix G.

The assembly listing format is described in Appendix C.

PAGESIZE: Specify listing page size

[macro-taben PAGESIZE [lines][, width]

The PAGE SIZE directive lets you specify the number of lines and the number of
characters per line that the Assembler sends for each page of the listing. Both the lines and
width parameters must be absolute expressions; they cannot contain any forward,
undefined, or imported references.

C H A P T E R 4 Assembler Directives 107

The lines parameter indicates how many text lines the Assembler sends to the listing file
between successive fonn feed characters (ASCII $0C). Its value must be greater than 29.
Each page also contains six header lines; therefore the actual page length is lines + 6. If you
omit PAGESIZE in your source text or include PAGESIZE without a lines value, the
Assembler will assume a default value of 75 text lines. With the six header lines, this makes
a default page length of 81 lines.The width parameter indicates how many characters the
Assembler sends to the listing file between successive return characters (ASCII $OD). Its
value must lie in the range 70 . .160. The Assembler uses this number to right-justify the date
and page entries in the header and to truncate the source line display in the listing. If you
omit PAGE s I ZE in your source text or include PAGES I zE without a width value, the
Assembler will assume a default line width of 126 characters. The default values for lines
and width are based on printing listings in 7-point Courier on a I.aserWriter® printer. On
screen, the listing is presented in 7-point Monaco.

TITIE: Specify title line for listing

[macro-Iaben TITLE str-expr

The TITLE directive lets you specify a title line to be placed in the header information of
the listing file. ~is title remains in effect until the next TITLE directive. The text str-expr
may contain a maximum of 80 characters; the Assembler will truncate it if it is either longer
than 80 characters or too long to fit in the header.

When the Assembler encounters a TITLE directive in your source text, it perfonns an
EJECT action to tenninate the current listing page. The new title appears on the next
page, with the TITLE directive listed first below the new page's header.

PRINT: Control listing information

[macro-Iaben PRINT parameter, ...

The PRINT directive lets you control whether or not the Assembler creates a listing, and if
so, what information it contains. It may contain from 1 to 13 parameters, separated by
commas; in the operand field. The parameters may appear in any order. The possible
parameters for any PRINT directive are shown in Table 4-3 and explained below; those
that are underlined in Table 4-3 are preset. Those values are in force unless you specifically
override them.

108 MPW 3.0 Assembler Reference

• Table 4-3 PRINT directive parameters

Parameter Action

.QN Send lines to the assembly listing file
OFF Do not send lines to the assembly listing file
~ Show macro expansions
NOGEN Do not show macro expansions
~ Allow automatic page ejects
NOPAGE Suppress automatic page ejects
X1ABli Show warning messages
NOWARN Do not show warning messages
~ Show macro call statements
NOMCALL Do not show macro call statements
.Qa.J: Show generated object code
NOOBJ Do not show generated object code
DATA Show up to 90 bytes of generated data
NODATA Show only the first line of generated object data
~ Show macro directive lines
NOMDIR Do not show macro directive lines
.HIIB Show header lines
NOHDR Do not show header lines
LllS. Show generated literals
NOLI TS Do not show generated literals
STAT Show assembly status
NOSTAT Do not show assembly status
SYM Show symbol tables
NOSYM Do not show symbol tables
PUSH Save current print status
POP Retrieve saved print status

ON allows a listing file only if you specified a listing filename when invoking the Assembler.
OFF suppresses listing until PRINT ON occurs. PRINT OFF directives are not listed in the
listing file, regardless of any other parameters they may contain.

GEN and NOGEN control the listing of macro expansion lines. Macro directives appear only
if PRINT MDIR is also in force.

PAGE and NOPAGE control whether or not the Assembler sends automatic form feed
characters to the listing file.

WARN and NOWARN control both the display and counting of warning messages.

C H A P T E R 4 Assembler Directives 109

MCALL and NOMCALL control the listing of macro call statements.

OBJ lets the Assembler list the generated object code or data for each listed line.
Generated object code is always shown in full. Up to 18 lines (about 90 characters) of
generated object data are shown if PRINT DATA is also in force. If PRINT NODATA is in
force, only one line of generated object data is shown. NOOBJ suppresses all listing of
object code and data. This results in a briefer listing that shows only source text lines and
their addresses. If you include PRINT NOOBJ in your source text it should be the first
line, to avoid changes in format after the listing has begun.

DATA and NODATA control whether object data is shown in full or limited to one line.
These parameter values are effective only if PRINT OBJ is in force.

MDIR and NOMDIR control whether or not macro directives (including conditional
assembly directives and SETA and SETC directives) are shown in the listing.
PRINT GEN, NO.MD IR lets you list macro expansions without listing any of the macro
control statements that produced them.

HDR and NOHDR control whether or not header lines are printed in the listing. HDR is
effective only if PRINT PAGE is in force.

LITS and NOLI TS control the listing of literals produced by PEA and LEA machine
instructions. If LIT s is in force, literals are printed at the end of the code module in which
they were produced.

STAT and NOS TAT control showing the assembly status in the listing. If PRINT STAT is in
force, each module identifier is listed to the diagnostic output file when the Assembler
encounters it in the source text.

SYM and NOSYM control showing symbol tables in the listing, including local symbol tables
at the end of each module and the global symbol table at the end of the assembly.

PUSH saves the current PRINT parameter values before processing new ones. POP

retrieves the most recently saved values and places them in force. You can save up to five
different sets of values in this way. PRINT directives containing PUSH or POP are not
listed. A typical use of PUSH and POP is to save the current listing format before listing a
macro in a different forma~ then restore it afterward. By using the & SETT ING function
described in Chapter 6, you can access the listing format at any level on the stack.

110 MPW 3.0 Assembler Reference

To override the preset values of one or more parameters, write a PRINT directive in your
source text containing only the parameter values you want to change. Repeating a
parameter value already in force will not cause an assembly error.

+ Note: You can also accomplish most of the PRINT directive actions by using the
-print Assembler option described in Appendix G. However, PRINT directives in your
source text override the -print Assembler option.

EJECT: Start new listing page

[macro-laben EJECT [line~

EJECT causes the next line of a listing to appear at the top of the next page. The EJECT

directive itself is not listed. If EJECT occurs when the next line would already be at the
top of the next page, it has no effect.

The parameter lines is optional. If present, it must be an absolute expression without any
forward, undefined, or imported references, with a positive value greater than zero. Lines
makes EJECT conditional on whether the specified number of lines is available on the
current page. If the lines are available, the Assembler takes no action; if not, it ejects a
new page in the listing. Using this parameter lets you make sure that a section of your
source text is listed all on one page.

SPACE: Insert blank line in listing

[macro-laben SPACE [line~

SPACE lets you insert one or more blank lines into your listing. The SPACE directive itself
is not shown. The optional parameter lines indicates how many blank lines to insert (from
one to the current page length). It must be an absolute expression without any forward,
undefined, or imported references. If the parameter is omitted, the Assembler inserts one
blank line. If the value of the lines parameter exceeds the number of lines remaining on the
page, SPACE has the same effect as EJECT.

C H A P T E R 4 Assembler Directives 111

Part II The Macro Processor and the
Macro Language

EVERY IlNE OF YOUR SOURCE TEXT IS INTERPRITED BY TIIE Macro Processor before it
is handed to the rest of the Assembler. The Macro Processor operates on the
elements of the macro language: macro directives, macro variables, which may
be present within or outside of macros, and conditional assembly directives. The
next three chapters describe this macro language and its use in detail. •

• Chapter 5 tells you how to write macro def"lnitions and macro calls. A
macro definition is a named section of source text containing the statements
or directives that constitute a macro. Macro definitions are set off by the
directives MACRO and ENDM or MEND. A macro call is a statement that invokes
a macro by name, causing the Macro Processor to expand the call. When the
Macro Processor expands a macro call, it replaces the macro call statement
with the contents of the macro definition, substituting actual values for
certain of its variables and parameters. Macro expansion makes it easy for
you to generate lengthy but repetitious source text sequences, by defining a
few macros and then calling them repeatedly.

• Chapter 6 discusses macro variables and the functions that operate on
them. A macro variable is a variable whose value is assigned by the macro
language. The macro language contains a set of functions that let you form
expressions out of constants and macro variables. When such expressions
occur in the body of a macro, they are replaced by their current values every
time the Macro Processor expands a call to that macro. You can use macro

variables outside of macros (if they were originally declared to be global) and
thereby access their current values outside or inside macros. There are three
kinds of macro variables: symbolic parameters (discussed in Chapter 5),
SET variables, and Assembler system variables. These three types differ
in the ways they acquire values. Symbolic parameters acquire values when the
Macro Processor expands macro calls; Assembler system variables are
assigned values by the Assembler itself; and SET variables are assigned values
by explicit macro directives.

• Chapter 7 describes the MPW Assembler macro directives, which are
instructions you give to the Macro Processor. Using the macro directives, you
can determine whether the Assembler will process or ignore sections of your
source text, based on the values of boolean control expressions. This facility
is called conditional assembly. It is a powerful tool for creating and
controlling source text structures.

Chapter 5 Macros

A MACRO IS A PREVIOUSLY DEFINED SEQUENCE OF STATEMENTS, directives, or both
that the Assembler processes when it encounters a corresponding macro call.
During macro processing, the Assembler usually generates new source text. This
chapter describes the part of the macro language that is involved in defining and
using macros. •

Contents

Macro expansion 117
Scope of macro symbols 118
Defining macros 118

MACRO and ENDM or MEND: Delimit macro 119
The prototype statement 119
The macro body 120
Macro comments 121
Symbolic parameters 123

Concatenating symbolic parameters 124
Calling macros 125

The macro-qualifier 126
Macro call labels 127
Operand syntax 128

Paired single quotation marks 128
Paired parentheses and brackets 128
Ampersands 129
Commas 129
Blanks (spaces and tabs) 129
Backquotes 130
@-labels 130
Omitted or extra operands 130

115

Operand sublists 131
Accessing sublist elements 131
Parameter types and default values 132

Nesting macros 133
Keyword macros 135

Defining keyword macros 135
Calling keyword macros 136

Mixed-mode macros 138

116 MPW 3.0 Assembler Reference

Macro expansion

Each line of source text is handled by the Macro Processor as follows:

• If the source text line does not contain any elements of the macro language, the Macro
Processor simply passes it unaltered to the rest of the Assembler for assembly-language
interpretation.

• If the line contains any macro variables or functions but is not a macro directive
statement, the Macro Processor replaces the expressions with their current values. It
then passes the result to the rest of the Assembler for assembly-language
interpretation.

• If the line is a macro directive statement, the Macro Processor handles it according to
the rules defined in Chapter7. In this case it interprets and acts upon any macro
expressions that the line contains, instead of replacing them with their current values.

Thus macro directive statements are handled entirely by the Macro Processor; they are not
passed to the rest of the Assembler. Machine instruction statements and other directive
statements are handled by the rest of the Assembler, after the Macro Processor has
converted any macro expressions they might contain to actual values.

You should remember certain rules that the Macro Processor follows when preparing
statements to be passed to the rest of the Assembler:

• An element to be replaced, such as a macro parameter or a variable reference, may not
be continued across a line boundary.

• An element to be replaced may not contain another element (such as an array index or
function parameter) that must be replaced first.

• All fields are expanded, including comments. If you want to refer to a macro variable
in a comment that is part of a macro call or prototype statement, you must precede it
by a backquote (') to force the Macro Processor to treat it literally instead of
replacing it with its value. Similarly, the name of a macro function must be preceded
by an extra ampersand.

CHAPTER 5 Macros 117

Scope of macro symbols

As explained in Chapter 2 in "Scope of Definitions," the scope of a definition is the range
of source text in which the defined identifier can be accessed by code or data
statements. A variable is called "accessible" within the scope of its identifier. The lifetime
of a variable is the duration of the assembly process over which it is accessible. These rules
govern the scope of macro symbols and the lifetime of macro variables:

• Variables declared within a macro, including all its parameters, are accessible only in
subsequent statements of that macro. Their lifetime is the duration of the current
expansion of the macro; they are not accessible in future or nested invocations of the
same macro. Local variables with the same identifier that are defined in other macros
or outside of macros are different variables.

• Variables declared local outside of any macro definition are accessible only in
subsequent statements outside macros. You can think of them as program-level
variables. Their lifetime is the remainder of the assembly process after their
definition. local variables of the same identifier defined inside macros are different
variables.

• Variables declared global within a macro are accessible in all subsequent statements of
the program. Their lifetime is the remainder of the assembly process after their
definition.

• When the lifetime of a local variable or the scope of its identifier overlaps that of a
global variable, the local variable takes precedence and the global variable becomes
temporarily inaccessible.

Defining macros

A macro definition is a sequence of statements that tells the Macro Processor the name of
a macro, the format of its call, and the source text to be generated when the macro is
called. It consists of four parts:
• the header directive (MACRO)

• the prototype statement

• the macro body

• the trailer directive (ENDM or MEND)

118 MPW 3.0 Assembler Reference

Here is the format and syntax of a macro definition:

MACRO
Header

[laben namd. macro-qua/if um [parameter-list]

[macro-taben

Prototype

machine instruction or directive statements
Body

{ ENDM I MEND }

Trailer

Here are some rules about macro definitions:

• Every macro must be defined before it can be used; that is, the definition must
precede any calls to the macro.

• You can write macro definitions anywhere in a program except within other macro
definitions.

• A macro whose definition appears within a conditional section of source text (for
example, within a section delimited by the IF directive) will not be defined if the
conditional branch causes the Macro Processor to skip over its definition.

MACRO and ENDM or MEND: Delimit macro

The MACRO and ENDM directives begin and end the macro definition. In place of ENDM

you may write MEND.

MACRO takes no labels or operands. ENDM may be preceded by a macro label, but such a
label can be referred to only by a GOTO directive (described in Chapter 7).

The prototype statement

The macro prototype statement specifies the name of the macro being defined and the
format of calls to the macro. The prototype statement also establishes the identifiers of
the macro parameters, if any. The basic form of the macro prototype statement is as
follows:

label field

r1aben
Operation field

name[. macro-qualifien
Operand field

[parameter-list]

C H AP TE R 5 Macros 119

For the full syntax of the macro prototype statement, including parameter types, default
values, and keywords, see "Parameter Types and Default Values" in "Calling Macros," later
in this chapter.

The only required part of the macro prototype statement is the macro's name, which
identifies it for later calls. The macro name must follow the rules for identifiers given in
Chapter 2. It may not be the same as the name of any machine instruction, Assembler
directive, or other macro used in the same assembly.

In the other parts of the prototype statement-the label, the macro qualifier, and the
parameter list-you may write only symbolic parameter identifiers. These are valid
assembly-language identifiers preceded by an ampersand(&). They are described later in
this chapter, in "Symbolic Parameters." For the parameter list, you may write a series of
symbolic parameter identifiers separated by commas. The macro qualifier, if present,
must follow the macro name with a period as a separator.

The label field in a macro prototype statement is discussed in "Macro Call Labels," later in
this chapter.

You may continue a prototype statement on the next source text line at any point after
the macro name (or macro qualifier, if present). To continue a line, you must break it after
a comma and insert a backslash as a continuation character, as in the following:

MyMacro &pannA,&parmB,&parmC,\
&parmD, &parmE

You can continue a prototype statement indefinitely.

The macro body

The macro body consists of the set of machine instruction or directive statements
between the macro's prototype statement and its trailer. It may contain any or all of three
kinds of source lines:

• model statements, which the Macro Processor uses as a model to generate actual
Assembler statements or directives

• macro directives, which control the process of macro expansion but generate no
statements

• inner macro calls, which invoke other macros

+ Note: You can nest macros recursively to a maximum depth of 512.

120 MPW 3.0 Assembler Reference

Just like other assembly-language statements, model statements consist of four fields,
some of which may be omitted: the label field, the operation field, the operand field, and
the comment field.

The label field may be omitted or may contain a symbol or symbolic parameter.

+ Note: A symbolic parameter in a macro label field whose value is an asterisk (*), period
asterisk (.*),or semicolon(;) will not tum a model statement into a comment, since
the Macro Processor decides whether the statement is a comment before substituting
values for its macro variables.

The operation field may contain any MPW assembly-language instruction or directive,
including macro directives, or any variable symbol. It may not, however, contain an
INCLUDE directive. If it contains the word endm or mend, the macro will terminate at
that point.

The operand field within a model statement follows the same rules as in other statements
and directives. The operand fields of some macro directives, however, require embedded
keywords. In such cases the operand field terminates when the required syntax is
complete, rather than with the first space or tab.

Macro comments

Several types of comments can be added to macros. Comments that appear on macro
prototype statements, macro model statements, and lines of their own are expanded with
the macro. Special macro comment statements, which are present only in the macro
definition, are also permitted.

You may add comments to macro prototype statements, subject to these rules:

• If your prototype statement has no parameters, you must begin your comment with a
semicolon.

• If a parameter list is present and you want to write a commen~ you must separate your
comment from the end of the parameter list by at least one space or tab (with
BLANKS ON) or a semicolon (with BLANKS OFF).

CHAPTER 5 Macros 121

• If the parameter list is continued on a second line, you may insert comments on
individual lines. Finish each line with a comma and a backslash continuation character.
The Macro Processor will treat all text remaining on the line after the continuation
character as a comment. Here is an example:

MyMacro &parmA, \ Comment on ParmA
&parrnB, &ParmC, \ Comments on ParrnB and ParrnC
&parmD Comment on ParmD

You may add comments to macro model statements in the same way as you add them to
ordinary statements, but you must follow one additional rule. To refer to a macro variable
or function in a commen~ you must precede it with an additional ampersand; otherwise
the Macro Processor will substitute its value during macro expansion.

You can write a line containing only a comment in a macro if it starts with an asterisk (*) or
a semicolon(;). Additionally, you may write a special variety of comment line beginning
with period-asterisk (.*), which is not stored in the macro definition. In an Assembler
listing, a comment beginning with a period-asterisk will be listed in the macro definition
but not in any macro expansion; comment lines that begin with a sole asterisk or a
semicolon will be listed both in the definition and in all expansions.

The following example demonstrates all the types of macro comment lines. The line
numbers are for reference only.

1 MACRO
2 DbgHead ; Macro DebugHead
3 * Puts the Pascal entry code in front of a
4 * subroutine so MacsBug can identify it
5 * >>> Debug Header <<<
6 LINK A6, :ltO Set up stack frame
7 ENDM

The comment on line 2 is preceded by a semicolon because the prototype statement has
no parameters. The comments on lines 3 and 4 explain what the macro does. They are
intended to appear only in the listing of the definition, so they are preceded by period
asterisks. The comment on line 5 is a note that appears in the expansion of each call, so it
is preceded by an asterisk alone. This causes the Macro Processor to list it both in the
definition and in all expansions. The comment on line 6 is a model statement comment.

U2 MPW 3.0 Assembler Reference

Symbolic parameters

Symbolic parameters are a special type of variable symbol, to which the Macro Processor
assigns values when a macro is called. They are used to pass information to the macro from
macro call statements. Symbolic parameters must be defined in the prototype statement.
Only then can you refer to them in statements in the macro body. The values of symbolic
parameters are assigned when a macro is called and cannot be subsequently changed
except by another call to the same macro.

The following macro definition illustrates the use of symbolic parameters. The line
numbers are for reference only; they would not appear in an actual source text.

1 MACRO
2 Iner &src,&dest Get src, increment, move to
3 MOVE.W &src,DO Move &src to temp register
4 ADDQ.W *1,DO Increment temp register
5 MOVE.W DO,&dest Move temp register to &&dest
6 ENDM

When the macro Iner is called, the Macro Processor replaces all references to symbolic
parameters in the macro body by corresponding values in the macro call (except when the
reference is preceded by an additional ampersand). Thus when the Macro Processor
encounters the macro call

Iner Alpha,Beta

it replaces it with the following lines:

3
4
5

MOVE.W
ADDQ.W
MOVE.W

Alpha, DO
*1,DO
DO,Beta

Move Alpha to temp reg
Increment temp reg
Move temp reg to &&dest

Notice that the & s re parameter defined on line 2 of the macro definition appears twice
on line 3 in the macro body. When the macro is expanded, both references to & s re are
replaced with the parameter value Alpha. In line 5, however, the second occurrence of
&dest is not replaced with the value Beta, because it is preceded by a second
ampersand. The process of macro expansion is explained in more detail later in this
chapter in "Calling Macros."

de st

C H A P T E R 5 Macros 123

Concatenating symbolic parameters

When symbolic parameters occur outside macro directives, and are not part of SET
variable subscripts or function arguments, you can concatenate them with other
characters or symbols by simply putting the objects to be concatenated next to each
other, without any intervening spaces. Potential ambiguities arise when a character, a
number, a left square bracket, a period, or an ampersand is concatenated to the right of a
symbolic parameter reference, because the Macro Processor interprets these characters as
part of the parameter reference. In such cases you must terminate the parameter reference
with a period, to distinguish the end of the parameter identifier from the characters
concatenated to the right.

When a symbolic parameter or a variable reference is followed by a period, the Macro
Processor replaces the symbol and the period with the symbol's value when the macro is
expanded. The period does not appear in the generated statement.

The following table shows some sample results from the concatenation of a parameter
with various combinations of text, other parameters, and special characters. The column
on the left contains examples of concatenation with the parameter ¶m. The column
on the right shows the result of macro expansion when the value of &pa ram is A:

Expression Result

¶m.B AB

¶m .. B A.B

¶m. (B) A(B)

B¶m BA

B,¶m B,A

B2¶m B2A

¶m.2B A2B

¶m, .2B A, .2B

¶m¶m AA

¶m. ¶m AA

¶m .. ¶m A.A

The following examples illustrate some variations that often cause problems:

Expression Result Notes

¶m. [1] A [1] Period makes it not a sublist reference
¶m[l] null Sublist reference, but parameter value is not a lis~

yields null string
¶m.B AB
¶mB error If ¶mB is not defined

U4 MPW 3.0 Assembler Reference

The first two examples look like attempts to write parameter sublist references, as
described in "Calling Macros"; they also have the same fonn as subscripted SET variable
references, discussed in Chapter 6 in "Set Array Variables." The final example represents
the common mistake of forgetting to tenninate a parameter identifier with a period when
it is followed by other characters, causing the Assembler to read the string as one
parameter name, ¶rnB.

Calling macros

A macro call is an instruction to the Macro Processor to insert at that point in the source
text, the statements or directives specified by the macro definition. The inserted source
text replaces the macro call statement

The fonnat and syntax of a macro call is as follows:

label field Operation field

liaben macro-namd.. macro-qualifierl

Operand field

[parameter-list]

C.Om.mcnt field

[comment]

The contents of the operation, operand, and comment fields of a macro call are
summarized in the next few paragraphs; the content of the label field is discussed in the
next section.

The operation field contains the name of the macro to be called. The macro being called
must have been defined previously in the assembly process.

The operand field contains information that the macro call passes to the body of the
macro. Thus the order of operands in a macro call statement must correspond to the order
of the symbolic parameters in the prototype statement of the corresponding macro
definition. Parameters of this type are called positional parameters. The parameters
defined in a macro definition are called formal parameters, while the corresponding
parameters specified in a macro call are called actual parameters. The Macro Processor
assigns the values of the actual parameters to the formal parameters when it calls a macro.

When BLANKS OFF is in effect, operands specified in a macro call must be separated by
commas, with no intervening spaces. The first space not embedded inside a quoted string
will tenninate the operand field (as well as the parameter list) and begin the comment
field. With BLANKS ON in effect, leading and trailing blanks in the operand field are
ignored and comments must be preceded by semicolons. The fonn required for individual
operands in both cases is discussed in detail later in this chapter.

C H A P TE R 5 Macros 125

The comment field is ignored by the Macro Processor. The operand and comment fields
of macro calls may be continued on more than one line, using the conventions applicable
to prototype statements. For details, see "The Prototype Statement" earlier in this
chapter.

The macro-qualifier

The macro-qualifier is a way to allow a macro to act as much as JX>Ssible like a single
instruction. That is, just as certain instructions may be qualified with a size value (byte,
long, word, and so on), the macro-qualifier allows a macro to accept similar size
qualifications. It is the responsibility of the macro to check the information passed
through for correctness.

The following example illustrates a macro call with a macro-qualifier defined:

MACRO

BMOVE.&size

ENDM

BMOVE

BMOVE.B

BMOVE.L

END

&src, &dest, &len

source,destination,12

source,destination,12

source,destination,3

When the BMOVE macro is invoked, the value of &size is undefined (blank) in the first
case. In the second case it is "B", and in the third case, it is "L". (The period after the
macro name is stripped out by the preprocessor.)

Unlike other parameters, the macro-qualifier does not take default values. In the example
given here, the value of &size has to be tested explicitly against blank.

126 MPW 3.0 Assembler Reference

Macro call labels

The label field of the macro call may contain an identifier. The Macro Processor interprets
macro call labels according to these rules:

• If the prototype statement of the macro being called does not contain a label, the
macro call label refers to the current location counter value at the point of the macro
call. In code modules, this is a reference to the first generated statement of the macro.
In data modules, however, the current location counter is not necessarily aligned with
the next defined data item.

• If the prototype statement of the macro being called contains a label, the value of the
call's label is passed to the macro, as if the prototype's label were an operand.
However, the syntax of the label identifier is restricted to the rules covering other
identifiers; you cannot declare it as a sublist or keyword, type it, or give it a default
value, as you can with a normal operand.

• When the value of the call's label is passed to the macro as just described, it may be
used for any purpose-as a label on a statement in the body of the macro, or as a
variable.

For example, suppose a call to the macro Iner, described earlier in this chapter in
"Symbolic Parameters," is contained in the following code fragment (the line numbers are
included for reference):

BRA.S xl

xl Iner D2,D3

Because the macro definition of Iner does not contain a label in its prototype
statement, the branch to x 1 will automatically be interpreted as a branch to the first
generated statement of Iner (line 3).

Now suppose the same call is used with a different definition of Iner:

1

2

3

4

5

6

&yl

&yl

MACRO

Iner

MOVE.W

ADDQ.W

MOVE.W

ENDM

&src, &dest

&src,DO

fl,DO

DO, &dest

Get src, increment, move to dest

Move &src to DO

; Increment DO

Move DO to &&dest

In this case the branch will go to line 5, because the actual value xl is now passed to the
formal label &yl, which is a label on the third generated line of Iner.

C H A P T E R 5 Macros 127

Operand syntax

The value of any macro call operand may be numeric or may be any sequence of up to 255
characters. In the latter case, you must observe these conventions:

Paired single quotation marks

A macro call operand may contain one or more strings enclosed by single quotation marks
('), called quoted strin~. However, quoted strings may themselves contain single
quotation marks. Single quotation marks that are part of the string are written as two
adjacent single quotation marks. Thus, if the first single quotation mark of a quoted
string is numbered one, then the string ends with the first even-numbered single quotation
mark that is not followed immediately by another. The first and last single quotation
marks of a quoted string are called paired single quotation marks.

The following sample operand consists of a sequence of characters that contains two
quoted strings:

'='lO'C' 'C's

The first and second single quotation marks are paired, as are the third and last. The
Macro Processor interprets the fourth and fifth single quotation marks as one embedded
single quotation mark. Note that this sample operand contains characters in addition to
those in the strings.

Paired parentheses and brackets

A macro call operand must be balanced with respect to parentheses and brackets; that is,
there must be an equal number of left and right parentheses and the nth left parenthesis
must appear to the left of the nth right parenthesis. The same is true for square brackets.

The simplest case of paired parentheses is a left parenthesis followed by a right
parenthesis without any intervening parentheses or brackets. Similarly, the simplest case
of paired brackets is a left bracket followed by a right bracket without any intervening
parentheses or brackets. If there is more than a single pair of parentheses or brackets, the
Macro Processor associates them by repeatedly recognizing and removing such simple
pairs.

This method is used because paired parentheses and brackets normally enclose lists, which
may be nested. Searching for the simplest pairs lets the Macro Processor recognize the list
structure, as well as determine whether any given comma is an interior part of a list or the
end of an operand in the parameter list.

128 MPW 3.0 Assembler Reference

The following example contains three sets of paired parentheses and one set of paired
brackets:

(READ, (src.text,EXT))inBufr(input[2,512])

The first and fourth parentheses are paired, as are the second and third and the fifth and
sixth. The two brackets are paired.

The Macro Processor ignores any parentheses or brackets appearing between paired single
quotation marks when associating paired parentheses, as in the following example:

(N' ('closed)

Ampersands

To write a literal ampersand(&) in source tex~ you must write two consecutive
ampersands. The Macro Processor interprets any single ampersand as the beginning of a
reference to a symbolic parameter, a SET variable or function call, or a Macro Processor
system variable. In nested macro calls in which a symbolic parameter is concatenated to
one or more preceding ampersands, the Macro Processor interprets the concatenation as a
sequence of literal ampersands in which the final odd-numbered ampersand is the
beginning of a variable reference.

Commas

A comma delimits the end of every macro call operand unless the comma appears between
paired single quotation marks, parentheses, or brackets. For example, the following is a
single operand even though it contains several commas:

(D0,Dl,D2)delim','right

Blanks (spaces and tabs)

The effect of spaces and tabs in a macro call operand depends on the setting of the
BLANKS Assembler directive. If the current setting is BLANKS OFF, then any space or tab
terminates the operand field, unless the line is continued. The only exceptions are spaces
or tabs written between paired single quotation marks, as in the following example:

'Value too large' (&Count,10)

If the current setting is BLANKS ON, the Macro Processor will retain spaces and tabs if
they are followed by more valid operand characters. It will ignore trailing spaces and tabs
if they occur at the end of a line or before the comma delimiting the next operand.

CHAPTER 5 Macros 129

Backquotes

The backquote (') is used in macro prototype and call operands to indicate that the next
. character should be passed through the Macro Processor without interpretation. Thus an
ampersand may be put into a call operand without the Macro Processor interpreting it as
the beginning of an & reference if it is preceded by a backquote. For example:

Bonanno'&Sons

A backquote can be used to literalize any character in a macro prototype or call operand,
including another backquote.

@-labels

When interpreting macro call operands, the Macro Processor assumes that any string
beginning with @ is an @-label, unless it is enclosed in single quotation marks or preceded
by a backquote. For example, when processing the sublist (A, @2, B) the Macro Processor
will treat the element @2 as an @-label. Implementation restrictions force it to make this
assumption in order to encode the scope of the caller's @-label inside the macro. If you
want to begin a call operand that is not an @-label with @, you must literalize it with a
backquote.

Omitted or extra operands

If you omit an actual parameter from a macro call, you must still include the comma that
would have separated the omitted actual parameter from the next parameter. This
preserves the positional correspondence of parameters. The Macro Processor gives each
omitted actual parameter a value of 0 if the corresponding formal parameter has integer
type, or assigns it the null string if the corresponding formal parameter is type string.
Parameter types are discussed in Chapter 6. ·

If you omit one or more of the last operands from a macro call, you may also omit the
commas that would have separated these final operands. With macros that use the number
of actual parameters internally, the Assembler counts trailing commas when determining
the number.

These rules are demonstrated in the following sample macro prototype statement and its
subsequent macro call:

Prototype ExarnpleMac
&parml,&parrn2,&parm3,&parm4,&parm5,&parm6

Call ExarnpleMac DO, *+6, , 'syntax error'

In this macro call, the third parameter has been omitted (nothing is between the second
and third commas), as have the fifth and sixth parameters; no final commas are required.

130 MPW 3.0 Assembler Reference

To avoid having the Macro Processor assign the null string as the value of an actual
parameter omitted from a macro call, you may write the prototype statement so that it
assigns default values to omitted parameters. "Parameter Types and Default Values," later
in this chapter, tells you how to do this.

It is permissible in a macro call to specify more actual parameters than there are formal
parameters defined in the corresponding macro definition. There will, of course, be no
formal parameter identifiers by which you can refer to these extra operand values;
however, you can still access them by using &SYSLIST, as described in Chapter 6 in
"Assembler System Variables."

Operand sublists

You can structure a macro call operand as a sublist This lets you refer to a collection of
operands in the same way as you would refer to a single operand, while still being able to
refer to individual members of the collection. Each operand in a sublist is called an
element Sublists are always string types.

A sublist may contain one or more operands, separated by commas and enclosed in paired
parentheses. The Macro Processor treats the entire sublist, along with the paired
parentheses, as a single operand (limited to 255 characters). Any element of a sublist may
itself be a sublist. Some examples are shown here:

(A)

(A, B, C)
(A, (B,C) ,D)
(((A)) ,B,C)

A sublist may be continued on subsequent lines and may contain comments, following the
same conventions as macro prototype statements. However, it may not contain more
than 255 characters (excluding comments). These conventions are described in "The
Prototype Statement," earlier in this chapter.

Accessing sublist elements

You can refer to an element of a macro sublist operand in the body of the macro. To do
this, you write a sublist as an absolute arithmetic expression enclosed in square brackets
immediately after the identifier of the sublist's symbolic parameter. The expression in
brackets represents the index (position) of the desired element, with the first element
being 1. For example, if &abc is the identifier of a sublist parameter, then &abdn] refers
to the nth element in the sublist. The index value n must be greater than zero.

C H A P TE R 5 Macros 131

If the nth element of the sublist is omitted, or if there are fewer than n elements in the
sublist, then the value of & abc [n] will be the null string. If the nth element of the sublist
is itself a sublis~ then & abc [n, m] refers to the mth element in the sublist which is the
nth element of &abc. You can create sublist references up to any depth by specifying as
many subscripts as necessary, separated by commas, between the brackets. You can use
the &NBR function, described in Chapter 6, to find out how many elements a sublist has.

If you write a sublist reference to a parameter that is not a sublis~ its value will always be
the null string.

Note that the left bracket that begins the index expression must follow the parameter
identifier without any intervening characters. You should not place a period between the
parameter identifier and the left bracket unless you want to concatenate the value of the
entire operand with a left bracket.

The following examples illustrate various references to sublist elements. They are based on
a parameter &p with the sublist CA, CB, C), D) as its value. The left column shows sublist
element references; the right column shows their corresponding values.

Reference Value

&p (A, (B,C) ,D)

&p[l) A

&p[2) (B, C)

&p [3) D

&p [4) null
&p[2,l) B

&p[2,2] c

Parameter types and default values

The Macro Processor assumes that all macro parameters are strings. Sometimes, however,
it is necessary to declare a parameter as an integer type. You can assign a parameter a type
by following the parameter identifier in the prototype statement with a colon (:) followed
by STR or c for a character string parameter and INT or A for an integer (arithmetic)
parameter.

If you omit an actual parameter of type integer when calling a macro, the Macro Processor
gives it a value of 0. If you omit a string parameter, the Macro Processor assigns it the null
string.

The actual value passed to a parameter of integer type must be an integer constan~
because the Macro Processor interprets it using the & STRTOINT function. Values of
integer expressions must be passed as strings and then converted inside the macro, using
the &EVAL function. The functions &STRTOINT and &EVAL are described in Chapter 6.

132 MPW 3.0 Assembler Reference

You can assign default values to macro parameters by following their identifiers (or type
specifications) in the prototype statement with an equal sign (=) followed by the default
value. Each such parameter will take on the default value if it is omitted in a
macro call.

The following example of a macro prototype statement defines two parameters of
different types with different default values; & s z is an integer with a default value of 4,
while & reg is a string with a default value of • Do • .

MACRO

BumpSz

ENDM

&Sz:Int=4,®=DO

The full syntax of any macro prototype statement is therefore the following:

[& name namJ.&namJ [& ••{{f }] [{:J~nd-~ue] , ...]
The double equal sign (==) preceding the default operand value opnd-value in this syntax
diagram identifies keyword parameters. Keyword parameters are discussed in "Keyword
Macros" in this chapter.

Nesting macros

Macros may be called from the bodies of other macro definitions. Such macro calls are
termed inner macro calls, because they are executed within a macro definition. They are
also termed "nested calls." A macro call that is not within the body of a macro definition is
an outer macro call.

When the Macro Processor encounters an inner macro call during macro expansion, it
suspends processing the current macro and expands the inner macro. When it has finished
expanding the inner macro, it resumes expansion of the outer macro. The macros invoked
by inner macro calls may call other macros, so there may be any number of macros up to
511 (the maximum nesting depth is 512) suspended in midprocess while the current macro
is being expanded. The sequence of macros suspended in this way is called the current
macro call chain.

C H A P T E R 5 Macros 133

The definition of a macro called by an outer macro call may contain any number of inner
macro calls. The outer call is termed the first-level call; all inner calls in a first-level macro
are termed second-level calls; calls within second-level macros are third-level calls; and
so on. The number of each such dynamic nesting level is available in the Assembler
listing if macro expansions are being listed.

Nesting levels refer only to the way the Macro Processor actually expands macros in a given
assembly. Any particular inner macro call may have different nesting levels at different
points in an assembly, because the macro containing it may be called from a variety of
places, along a variety of call chains. The number of levels of nested macros that your
program can call depends only upon the complexity of your macro constructs and the
memory available.

The following example demonstrates how a macro may be called from within another
macro. This is the definition of Iner, the macro to be called:

MACRO
Iner
MOVE.W
ADDQ.W
MOVE.W
ENDM

&src,&dest
&src,DO
U,DO
DO,&dest

Now here is the definition of a macro, Incr2, that calls Iner:

MACRO
Incr2 &a,&b,&c

* Increment &a and &b, put sum in &c
Iner
MOVE.W
Iner
ADD.W
MOVE.W
ENDM

&a,&a
&a,Dl
&b,&b
&b,Dl
Dl,&c

If Incr2 is called with x, Y, and z as its three parameter values, the Macro Processor will
generate the statements shown in the following code segment by macro expansion. The
line numbers on the left are included only for reference to the example.

Incr2 X,Y,Z macro call
1 MOVE.W X,DO ; macro expansion
2 ADDQ.W fl,DO
3 MOVE.W DO,X
4 MOVE.W X,Dl
5 MOVE.W Y,DO
6 ADDQ.W U,DO
7 MOVE.W DO,Y
8 ADD.W Y,Dl
9 MOVE.W Dl,Z

134 MPW 3.0 Assembler Reference

Notice that lines 1 through 3 are generated by the first inner macro call to Iner. Lines 5
through 7 are generated by the second inner macro call. The other lines are generated from
the Incr2 macro.

KeJ7lVord niacros

Keyword macros provide an alternate way to pass parameter values during macro
expansion. In a keyword macro definition, you can specify parameters in any order and
give them default values. The Macro Processor identifies different parameters by their
keywords rather than by their position in the parameter list. As a result, when you call a
keyword macro, you need specify only those parameters that require values different
from their default values.

The different ways you can write macros are distinguished by this terminology:

• Positional macros are the kind discussed earlier in this chapter. Their parameters are
distinguished by their positions in the macro prototype statement.

• Keyword macros are the kind described in the section that follows this list.

• Mixed-mode macros contain both positional and keyword parameters. They are
described at the end of this chapter.

+ Note: You cannot use &SYSLIST to access keyword parameters.

Defining keyword macros

The prototype statement that defines a keyword macro is like the prototype statement
for a positional macro (described at the beginning of this chapter in "Defining Macros"),
except that each parameter identifier in the parameter list is followed by two equal signs
(==).This tells the Macro Processor that the parameter identifiers are keywords.

The two equal signs may optionally be followed by an integer constant or string giving the
parameter's default value. This constant must have the same type as the parameter.

The following are examples of valid keyword prototype operands:

&recSize==l2
&recSize:INT==l2
&inLine==
&err==(l2,'syntax error')

CHAPTER 5 Macros 135

The following are examples of invalid keyword prototype operands:

InLine No & (not a parameter)
&recSize No equal signs
&blkSize ==512 Space before ==

&x=2 Single equal sign; interpreted as a positional operand with a default value

The following is an example of a keyword prototype statement with a symbolic parameter
in the label field and three keyword parameters in the operand field:

&lab CopyBuff &src==InBuff,&dest==,&count==512

Note that the second parameter does not have a default value.

Calling keyword macros

Once you have defined a keyword macro, you can tell the Macro Processor to expand it
and insert it into your source text with a keyword macro call directive of the following
form:

[Iaben macro-name [keyword=[value]] , ...

The keyword operands are keywords without their & prefixes, each of which is followed
immediately by an equal sign (=). Each equal sign may optionally be followed by a value.
Such operand values must conform to the same rules as operand values in positional macro
calls (see "Calling Macros," earlier in this chapter).

The keywords specified in the macro call must have the same identifiers as the keyword
parameters defined in the keyword macro definition (without initial ampersands). The
Macro Processor does not distinguish between uppercase and lowercase in keywords.

The following are examples of valid keyword macro call operands:

RecSize=l024
dest=printBufr
Count=

The following are examples of invalid keyword macro call operands:

&Err=(B, 'bad input')

sysin =foe.text

de st

=1024

Starts with &
Space before =

No equal sign
No keyword

136 MPW 3.0 Assembler Reference

Here are some rules about writing keyword macro calls:

• You can write keyword operands in any order.

• You need specify only those operands whose values must be different from the default
values specified in the macro definition.

• You need not write extra commas for omitted operands.

When the Macro Processor expands a keyword macro, it follows these rules:

• It processes identifiers in the label and operation fields in the same way that it
processes such identifiers in positional macro calls.

• In the operand field, it replaces all parameters mentioned in the call with their
specified values.

• It replaces all parameters not mentioned in the call with their default values, as
specified by the keyword macro prototype statement.

• If a parameter not mentioned in the call has no default value, the Macro Processor
replaces it with the null string (type string) or 0 (type integer).

• If a parameter is mentioned in the call but is not followed by a value, the Macro
Processor replaces it with the null string (type string) or 0 (type integer).

The following example illustrates the use of keyword macros. It is the same as the example
given in "Symbolic Parameters" in this chapter but rewritten with keywords instead of
positional parameters. Using keywords improves the macro in four ways: it lets you
specify a default temporary register, it gives you the option of leaving the result in the
temporary register by simply not specifying a destination register when you call the
macro, makes it easy for you to specify an increment value other than 1, and makes the
macro call easier to understand.

&lbl
&lbl

MACRO
Iner
MOVE.W
ADD.W
IF
MOVE.W
END IF
ENDM

&sre==,&dest==,&DReg==DO,&ine==l
&sre, &DReg
#&ine,&DReg
'&dest'<>'' THEN
&DReg,&dest

The following are examples of possible calls to this macro:

Iner sre=D2,dest=Dl
Iner sre=D3,ine=4
Iner sre=DO,dreg=Dl

C H A P T E R 5 Macros 137

Mixed-mode macros

Mixed-mode macros are macros that contain a combination of positional and keyword
parameters.

The prototype statement of a mixed-mode macro resembles that of a positional macro
except for its parameter list. In a mixed-mcx:le macro parameter !is~ you must write all the
keyword parameters after all the positional parameters. A positional parameter may not
follow a keyword parameter.

The operand lists of mixed-mode macro call directives may include zero or more
positional operands, plus zero or more keyword operands. All the actual positional
parameters must precede the first actual keyword parameter.

Remember these points when using mixed-mode macros:

• You treat positional operands as if they were in a positional macro and keyword
operands as if they were in a keyword macro.

• If you omit a positional parameter, you must insert a comma to indicate the missing
position; however, you may omit all trailing commas.

• You can nest all three kinds of macros-positional, keyword, and mixed-mode-in
macros of the other kinds. In other words, a macro of any kind may be called as an
inner macro from a macro of the same or any other kind.

• The Assembler system variable & SYS LI ST lists only the positional parameter values in
a mixed-mode macro call.

The example given earlier in "Calling Keyword Macros" could be changed to a mixed-mode
macro by removing the equal signs after the & s r c and & des t parameters in the
prototype statement. Then the keyword macro call,

Iner src=A3,ine=4

could be replaced with this mixed-mode macro call:

Iner A3,ine=4

In this example, writing a mixed-mode macro definition lets you specify the frequently
used &sre and &dest parameters more conveniently in your macro calls, without having
to write out their keywords.

138 MPW 3.0 Assembler Reference

Chapter 6 Macro Variables and Functions

MACRO VARIABLES ARE VARIABLES OF TIIE MACRO LANGUAGE. You can combine them
with the functions described in this chapter and use them to control conditional
assembly plus certain features of macro expansion. They include the following:

• symbolic parameters, which acquire values when the Macro Processor
expands macro calls

• SET variables, which are assigned values by explicit macro directives

• assembler system variables, which are assigned values by the Assembler itself

Symbolic parameters were discussed in Chapter 5. SET variables and Assembler
system variables are discussed in this chapter. •

Contents

SET variables 141
SET variables and symbolic parameters 143
LCLA, LCLC, GBIA, and GBLC: Define SET variables 143

SETA and integer expressions 145
&ABS: Return absolute value 146
&EVAL: Evaluate contents of string 147
&ISINT: Test string for integer content 147
&LEN: Measure string length 147
&LEX: Parse string lexically 148
&LIST: Divide string into list 150
&MAX: Find maximum in integer list 151
&MIN: Find minimum in integer list 151
&NBR: Count sublist elements 151
&ORD: Return integer value 152
&POS: Find position of substring in string 152
&SCANEQ and &SCANNE: Scan string 153
&STRTOit-.1' or &S2I: Convert string to integer 154

139

Symbol table functions 154
&NEWSYMTBL: Create new symbol table 154
&ENTERSYM: Enter or update symbol in table 155
&FINDSYM: Find symbol in table 156
&DELSYMI'BL: Delete symbol table 157

SETC and string expressions 157
Accessing substrings of string variables 158
&CHR: Convert integer to character 159
&CONCAT: Concatenate strings 160
&DEFAULT: Return string value or default 160
&GETENV: Return MPW Shell variable value 160
&INTIOSTR or &I2S: Convert integer to string 160
&LOWCASE or &LC: Convert string to lowercase 161
&SETTING: Return directive setting 161
&SUBSTR: Return substring of string 162
&TRIM: Trim spaces and tabs from string 163
&TYPE: Determine identifier type 163
&UPCASE or &UC: Convert string to uppercase 164

SET array variables 165
Defining SET array variables 165
Using SET array variables 166
Accessing substrings in SET array string elements 167

Assembler system variables 168
&SYSINDEX or &SYSNDX: Macro call index 168
&SYSilST or &SYSLST: Macro operand list 169
&SYSSEG: Current segment identifier 170
&SYSMOD: Current module identifier 170
&SYSDATE: Current date 170
&SYSTIME: Current time 170
&SYSI'OKEN and &SYSTOKSTR: Values set by &LEX 171
&SYSVALUE and &SYSFIAGS: Values set by &FINDSYM 171
&SYSLOCAL and &SYSGLOBAL: System symbol table !D's 171

140 MPW 3.0 Assembler Reference

SET variables

SET variables help you program the ways that the Macro Processor converts your macro
structures into the source text that the rest of the Assembler assembles.

SET variables can have either integer or string values. The MPW Assembler Macro Processor
recognizes two different groups of directives, one to handle integer SET variables and the
other to handle string SET variables. Similarly, it interprets two classes of expressions
formed from these variables. It treats the Boolean expressions used to control
conditional assembly directives as a restricted class of integer expressions.

You use separate directives to define SET variables and to assign them values. The four
variable definition directives are shown here:

LCLA Defines integer SET variables of local scope (LoCaL Arithmetic)
GBLA Defines integer SET variables of global scope (GloBaL Arithmetic)
LCLC Defines string SET variables of local scope (LoCaL Character)
GBLC Defines string SET variables of global scope (GloBaL Character)

The two directives that assign values to SET variables are shown here:

SETA Assigns a value to an integer set variable
SETC Assigns a value to a string set variable

The MPW Assembler macro language lets you form complex expressions out of macro
variables, using a variety of built-in functions. The functions that return integer values
are shown here:

&ABS

&ISINT

&LEN

&LEX

&LIST

&MAX

&MIN

&NBR

&ORD

&POS

&SCANEQ

&SCANNE

&STRTOINT

Returns an absolute value
Tests whether a string contains an integer
Returns the length of a string
Scans the tokens in a string
Divides a string into a list and places the list elements in an array
Returns the largest value in a list -0f integer expressions
Returns the smallest value in a list of integer expressions
Returns the number of elements in a sublist or parameter list
Returns the integer value of a relocatable numeric expression or one
character string expression
Finds the position of a substring in a string
Finds a character in a string
Finds the first non occurrence of a character in a string
Converts a string expression to its integer value

C H A P T E R 6 Macro Variables and Functions 141

Among the integer functions, the following let you create and manipulate symbol tables:

&NEWSYMTBL Creates a new symbol table and returns its id number
&ENTERSYM Enters or updates a symbol in a symbol table
&FINDSYM Finds a symbol in a symbol table
&DELSYMTBL Deletes a symbol table

The functions that return string values are shown here:

&CHR

&CONCAT

&DEFAULT

&GETENV

&INTTOSTR

&LOWCASE

&SETTING

&SUBSTR

&TRIM

&TYPE

&UPCASE

Converts an integer value to a one-character string containing its
ASCII equivalent
Concatenates string expressions
Returns a default string value if a test string is null
Returns the value of an MPW Shell variable
Converts an integer expression to its string value
Converts a string to all lowercase
Returns the current setting value for certain other directives
Returns a substring of a string
Removes leading or trailing spaces and tabs from a string
Returns the type of a symbol
Converts a string to all uppercase

One function returns either an integer or string value but is ordinarily used as an
integer function:

&EVAL Converts a string expression to either an integer or a string,
by evaluating the expression contained in its string argument

The Macro Processor treats SET variables differently, depending on where they occur in
the source text. It follows these rules:

• When a SET variable appears in the label, operation, or operand field of a model
statement in a macro definition, the Macro Processor replaces the SET variable with
its current value regardless of its context. In this situation, SET variables act like
symbolic parameters. Remember that SET variables must be declared in the macro
definition (redeclared if they are declared outside the macro definition) in order for
you to use them in the macro.

• When a SET variable appears inside a macro definition as a label or operand of a
macro directive statement, it is replaced only if explicitly allowed by the syntax of the
directive or expression where it occurs. In this situation, SET variables act like normal
variables.

• SET variables may also appear outside macro definitions, but only in SET variable
definitions, SETA or SETC directives, absolute expressions, immediate effective
addresses, and conditional assembly directives. If they appear in other kinds of

·expressions, the Assembler does not recognize them as SET variables.

142 MPW 3.0 Assembler Reference

SET variables and symbolic parameters

SET variables have broader capabilities than the symbolic parameters discussed in
"Defining Macros" in Chapter 5. These are their main differences:

• Flexibility of values. Symbolic parameters are assigned values in macro call statements,
and these values remain fixed during macro expansion. SET variables acquire values
when you use either the SETA or SETC directive. Symbolic parameters are not referred
to as variables because their values cannot be changed during macro expansion. SET
variable values, on the other hand, may vary during macro expansion as the result of
any number of SETA or SETC directives.

• Use outside macros. Symbolic parameters can be accessed only inside macro
definitions. SET variables can be accessed both inside and outside of macros. SET
variables outside macros are normally used to control conditional assembly.

• Different types. Unless you type them to the contrary in their prototype statement,
symbolic parameters are always strings. SET variables, on the other hand, are divided
explicitly into string and integer types. Each type has its own functions for creating
expressions.

• Global or local scope. Symbolic parameters always have local scope; they may be
accessed only in the macro in which they are defined. You can define SET variables so
that their scope is local to a macro. However, you can also define SET variables so
that their scope is local to your source text outside any macro. Finally, you can define
them globally, so that the same SET variable may be accessed in several macros or
both inside and outside macros.

La.A, LO.C, GBLA, and GBLC: Define SET variables

[macro-label] {
LCLA} LCLC

GBLA

GBLC

set-var-name, ...

You must define any SET variable before you can give it a value or refer to it in an
expression. You use the LCLA, LCLC, GBLA, and GBLC directives to define SET variables.
GBLA and GBLC define global integer and string variables, respectively, and LCLA and
LCLC define local integer and string variables.

CH A P TE R 6 Macro Variables and Functions 143

Each of these directives takes a list of one or more SET variable identifiers (set-var-name
in the syntax diagram just given), separated by commas, in its operand field. Every SET
variable identifier consists of an ampersand (&) followed by a valid identifier (as if the
ampersand were a valid initial alphabetic character), just like a symbolic parameter
identifier. If the SET variable is an array its identifier is followed by a dimension, as
described later in this chapter in "Defining SET Array Variables." The Macro Processor
ignores uppercase and lowercase distinctions in these identifiers, regardless of the setting
of the CASE Assembler directive. LCLA, LCLC, GBLA, and GBLC directives may appear
anywhere in your source text, including in macro definitions.

These are examples of valid SET variable definitions:

LCLA &n
LCLC &args
GBLC &mainModName,&mainSegName

You decide whether to use integer-type or string-type SET variables by analyzing the
values the variable must store and how the variable is to be used. Integer variables contain
32-bit values in the range -2147483648 .. +2147483647. String variables contain strings of
length 0 .. 255. Such strings may contain any ASCII characters, with these exceptions:

• String constants may not contain the return character (ASCil code $OD).

• String constants may not contain the NUL or SOH characters (ASCII codes $00 and
$01) when appearing in macro definitions, because these characters have special
significance during macro definition storage.

The choice of whether to use variables of local or global scope is determined by where a
variable needs to be accessed. Local scope is sufficient for most purposes, unless a
variable must be shared by several macros or preserved between macro calls. The
applicable rules are given in Chapter 5 in "Scope of Macro Symbols."

Remember these rules when defining SET variables:

• You cannot use the same identifier for both a symbolic parameter and a SET variable
in the same macro. For example, consider the following macro prototype statement:

&label MyMove &from, &to

The Assembler would report an error if you tried to define a SET variable named
&label, &to, or &from within the macro-that is, in the same scope.

• You cannot define two SET variables with the same identifier but with different types
(integer and string) and with the same or overlapping scopes.

• A global variable defined by a GBLA or GBLC directive must be redeclared whenever it
is used in a particular macro.

144 MPW 3.0 Assembler Reference

The Macro Processor assigns initlal values to SET variables when they are defined,
following these rules:

• Integer types are set to 0.

• String types are assigned the null string (length zero).

• Local variables are given initial values whenever they are defined-that is, whenever a
LCLA or LCLC directive occurs.

• Global variables are given initial values only the first time they are defined-that is,
when the first GBLA or GBLC statement defining the variable occurs.

SETA and integer expressions

Every SET variable of integer type has a 32-bit value. The Macro Processor sets this value
to 0 at the first definition of a global integer variable and at every definition of a local
integer variable. You can subsequently change the value, using the SETA directive. It has
this form:

set-var-name SETA arith-expr

The label set-var-name must be the identifier of an integer SET variable defined by LCLA

or GBLA that includes the SETA directive in its current scope. The operand arith-expr must
be an absolute integer expression. It may contain any of the following functions,
described in this section:

&ABS

&DELSYMTBL

&ENTERSYM

&EVAL

&FINDSYM

&ISINT

&LEN

&LEX

&LIST

&MAX

&MIN

Returns an absolute value
Deletes a symbol table
Enters or updates a symbol in a symbol table
Converts a string expression to either an integer or a string,
depending on its actual value
Finds a symbol in a symbol table
Tests whether a string expresses an integer
Returns the length of a string
Scans the tokens in a string
Returns number of elements in a list created from a string
Returns the largest value in a list of integer expressions
Returns the smallest value in a list of integer expressions

CH A PT ER 6 Macro Variables and Functions 145

&NEWSYMTBL

&NBR

&ORD

&POS

&SCANEQ

&SCANNE

&STRTOINT

Creates a new symbol table and returns its id number
Returns the number of elements in a sublist or parameter list
Returns the integer value of an integer expression or one-character
string expression
Finds the position of a substring in a string
Finds a character in a string
Finds the first nonoccurrence of a character in a string
Converts a string expression to its integer value

Integer expressions used with SETA must confonn to the syntax rules for integer
expressions set forth in Chapter 2 in "Expressions." They are also subject to these
additional rules:

• As absolute expressions, they must not contain any forward, undefined, or imported
references.

• They may contain references to integer SET variables and to symbolic parameters and
nonmacro variables and constants with integer values, as long as their scopes include
the SETA directive.

• They may refer to untyped symbolic parameters with string values, as long as the string
values express valid integer constants. Symbolic parameters of explicit string type
must be converted to integer type, using the &STRTOINT function described later in
this chapter.

These are examples of valid integer expressions:

33
lab + 12
tableBase + (2 * &entryNum)

&ABS: Return absolute value

&ABS (arith-expr)

The &ABS function returns the absolute value of the integer expression arith-expr. Hence if
arith-expr is negative, &ABS returns its positive value. The Macro Processor does not
check for value overflow.

146 MPW 3.0 Assembler Reference

&EV AL: Evaluate contents of string

&EVAL (str-expr)

The &EVAL function takes a string expression argument and evaluates the contents of the
string as if it were untyped. It returns either a string value or an integer value. It follows the
same parsing rules as the Assembler itself; for details, see "Expressions" in Chapter 2. Here
are some examples:

Function

& EVAL (' 2 + 3 ')
&EVAL ('&foo')
&EVAL(&foo)

&EVAL ('2 + x')

Value returned

integer 5
'&bar' if&foohasthevalue '&bar'
'fubar' if &foo has the value '&bar' and &bar has the value
'fubar'
integer 5 if xis equated to 3 (by EQU or SET)

The &EVAL function can be used to evaluate a macro directive parameter whose value is
an expression of unknown type. For example, if the formal parameter & a is passed the
actual value B + 2, the expression &EVAL < & a> returns the value 4 if B = 2, rather than the
string 'B+2 '.

&ISINT: Test string for integer content

&ISINT (str-expr)

The &ISINT function examines the string expression str-exprand returns an integer value
of 1 if the string expresses an integer, 0 if it does not. The rules by which & Is INT
recognizes an integer in a string are these:

• It ignores leading and trailing spaces and tabs.

• For nonblank characters, it accepts only numerals and leading plus or minus signs.

• The integer value must not exceed 32 bits.

&LEN: Measure string length

&LEN (str-expr)

The &LEN function examines the string expression str-exprand returns an integer value
equal to the number of characters in its string value.

CH APTER 6 Macro Variables and Functions 147

&LEX: Parse string lexically

&LEX (str-expr, start)

The & LEX function parses a string into tokens-characters or substrings that the
Assembler treats as syntactical units-using the Assembler's own lexical scanner. The value
of str-expris the string being parsed and start is an integer expression whose value is the
scan's starting position (the first character of str-expr having position one). &LEX returns
the integer value of the next token's position, or the current token position if it is the last
token of the string.

Each call to & LEX sets the value of two Assembler system variables, as follows:

• It sets the value of & SYS TOKEN to an integer value that identifies the kind of token
just read.

• It sets the value of &SYSTOKSTR to the actual characters in the token.

The possible values of &SYSTOKEN and &SYSTOKSTR are shown in Table 6-1. These
variables are further discussed later in this chapter, in "Assembler System Variables."

• Table 6-1 Values returned by &LEX

&SYSTOKEN &:SYSTOKSTR Meanlng

0 identifier Assembler identifier
1 integer Assembler integer constant
2 ':floating-point constant" Characters enclosed in double

quotation marks
3 'string' Assembler string constant enclosed in

single quotation marks
4 + Plus (Assembler add symbol)
5 Minus (Assembler subtract symbol)
6 * Asterisk (Assembler multiply symbol)
7 I _,_ Slash or divide symbol (Assembler

divide symbol)
8 II Assembler MOD symbol
9 ++ Assembler OR symbol
10 Assembler XOR symbol
11 ** Assembler AND symbol
12 Assembler equal symbol

148 MPW 3.0 Assembler Reference

• Table 6-1 (continued) Values returned by &LEX

&SYSTOKEN &SYSTOKSTR Meaning

13 <> .Assembler not equal symbol
14 < .Assembler less than symbol
15 > .Assembler greater than symbol
16 >= ~ .Assembler greater than or equal to

symbol
17 <= ::;; .Assembler less than or equal to

symbol
18 >> .Assembler shift right symbol
19 << .Assembler shift left symbol
20 ---, .Assembler NOT symbol
21 .Assembler one's complement symbol
22 Left parenthesis
23) Right parenthesis
24 [Left bracket
25 Right bracket

27 Right brace
28 Comma
29 Period
30 Semicolon and end-of-string symbol
31 Colon
32 # Number sign
33 \ Backslash (Assembler continuation

character)
34 Not used
35 All other characters

By calling &LEX repeatedly, using the value returned by the previous call for each call's
start, you can parse a string into its tokens. An &SYSTOKEN value of 30 indicates the last
token in the string; &LEX sets &SYSTOKEN to 30 under these conditions:

• if & LEX finds a semicolon

• if the value of start is less than 1 or greater than the number of tokens in str-exp

• if the current setting of the BLANKS directive is OFF and &LEX finds a space or a tab

If the current setting of BLANKS is ON, &LEX ignores spaces and tabs.

CH APTER 6 Macro Variables and Functions 149

.A Warning The action of &LEX depends on the action of the Assembler's lexical
scanner. This could change in future versions of the Assembler. •

&UST: Divide string into list

&LIST (str-expr, str-arr[, delimiter])

The &LIST function divides a string containing a list of items into an array of strings
containing the individual items and returns the number of elements in the list. The value of
str-expr is the string to be treated as a list. The value of str-arr is a string containing the
name of a SETC array variable represented as a string expression. The &LIST function sets
its array elements with the individual elements contained in str-expr. If the array is too
small to hold all the elements in str-expr, & LI s T returns the value of the maximum
dimension of the array with a negative sign, to indicate that not all elements could be
placed in the array.

The &LIST function treats str-expras a sequence of substrings, all separated by a unique
delimiter not enclosed in paired parentheses, brackets, or single quotation marks. By
default, &LIST assumes the delimiter is a comma, but you can override this default by
specifying an optional third argument to & LI s T. This argumen~ delimiter, is a string
expression that evaluates to a single character which & LI s T is to use as the list delimiter.

Here are some examples of values returned by &LIST, assuming that &a is a SETC array
variable with a maximum dimension of 4:

Value
Function returned &a[l] &a[2] &a[3] &a[4]

&LIST('a,b,c', '&a') 3 a b c

&LIST('a/b/c/d', '&a','/') 4 a b c d

&LIST('a,,,d', '&a') 4 a d

&LIST(' (a,b) ','&a') 1 (a,b)

&LIST ('a (b) , ([', • J) •, •&a•) 2 a(b) ([. , .])

&LIST('a,b,c,d,e,f', 1 &a 1). -4 a b c d

&LIST('a = b','&a','=') 2 a b

&LIST (' (a)) : b', '&a', ') •) 2 (a) :b

The last two examples show how &LIST can be used to split a string into two parts
separated by a delimiter. In the seventh example, the delimiter is the equal sign. In the last
example, a right parenthesis is the delimiter. This example illustrates how &LIST looks for

150 MPW 3.0 Assembler Reference

delimiters only when they are not enclosed between paired parentheses, brackets, or
single quotation marks. The second right parentheses is not enclosed between any of
these characters and is therefore valid as a possible list delimiter.

&MAX: Find maximum in integer list

&MAX (arith-expr, ...)

The &MAX function accepts a series of integer expressions, separated by commas, and
returns the highest value in the list.

&MIN: Find minimum in integer list

& MIN (arith-expr, ...)

The &MIN function accepts a series of integer expressions, separated by commas, and
returns the lowest value in the list.

&NBR: Count sublist elements

&NBR<\symb-param I &SYSLISTh

You can use the &NBR function to find out how many elements a sublist contains. The
integer value returned by &NBR is equal to 1 plus the number of commas that separate
operands in the sublist symb-param. When using the value returned by &NBR, keep these
rules in mind:

• The empty sublist-with no elements-returns a value of 0.

• If some of the sublist elements are themselves sublists, they may contain commas.
&NBR will not count these sub-order commas.

• If the argument given to &NBR is not a sublist, &NBR will return 0.

• If the argument given to &NBR corresponds to an omitted operand, &NBR will return 0.

C H A P T E R 6 Macro Variables and Functions 151

The predefined variable &SYSLIST, which contains the actual positional parameter list of
the current macro, may also be used as an argument to &NBR. With &SYSLIST, &NBR

returns the number of positional parameters specified in the call statement that called the
current macro. It does not count keyword parameters.

You can use &NBR with arguments that include sublist index expressions-in other words,
with sublists that are elements of sublists. In those cases, the &NBR function returns the
number of elements making up the specified sublist. For example, & NBR c & pa rm [3 l >

returns the number of elements in the sublist & pa rm [3 J . This also works with
&NBR (&SYSLIST [i]).

&ORD: Return integer value

&ORD (exfJr)

The &ORD function returns the integer value of the expression expr. If expr has a string
value, it may not be more than one character long; & ORD returns the ASCII code of this
character. If expr is a relocatable numeric expression, & ORD returns its absolute integer
value. For example, &ORD(*), written in a code module, lets you use the value of the
location counter as an absolute value.

&POS: Find position of substring in string

&Pos (str-exprl' str-expr2)

The &Pos function returns an integer value equal to the position of the first occurrence of
a substring within a string. The value of str-expr1 is the substring; the value of str-expr2 is the
string. If the substring does not appear in the string, &Pos returns a value of 0. Otherwise,
it returns the position of the first character of the substring, counting the first character
of the string as 1. Here are some examples:

Expression Result
&POS('bar', 'foobar') 4
&POS('fu','foobar') 0
&POS('o', 'foobar') 2

152 MPW 3.0 Assembler Reference

&SCANEQ and &SCANNE: Scan string

&SCANEQ (ch, str-expr, start)
&SCANNE (ch, str-expr, start)

The & SCANEQ and & SCANNE functions scan the string value of str-e.xpr for the value of ch,
a single-character string expression. & scANEQ scans until it finds the same character
("scan until equal"); & SCANNE scans until it finds the first character that is not the same as
ch ("scan until not equal").

Both functions begin scanning at the character position specified by the integer
expression start. If start is positive, the string is scanned from left to righ~ if start is
negative, from right to left. The first character of the string is position 1.

Both functions return an integer value equal to the number of characters skipped before
finding the target character (or the first character that is not the target character); that is,
they return the value of index - &ABS(start), where index is the position of the character
sought. They return special values under these conditions:

• They return a value of 0 if the target character is at the start position.

• They return the number of characters in the value of str-expr if start is 0 or if it is
positive and greater than the number of characters in the value of str-expr.

• They return a value of 1 if start is negative and its absolute value is greater than the
number of characters in the value of str-e.xpr.

Here are some examples of values returned by & SCANEQ and & SCANNE:

Expression Result
&SCANNE('. ', ' foobar' ,1) 5
&SCANEQ('. ', '• foobar',-11) -6
&SCANEQ ('o', ' •.••• foobar', 1) 6

&SCANNE('o', ' ••••• foobar',7) 2
&SCANNE('. ', ' •..•• foobar',100) 11
&SCANNE ('. ', ' •.••• foobar', 0) 11
&SCANNE('. ', ' •.... foobar',-100) 1

CH A P T E R 6 Macro Variables and Functions 153

&STRTOINT or &S21: Convert string to integer

{ &STRTOINT I &S2I} (str-expr>

The &STRTOINT function accepts a string expression argument and converts it to an
integer. This function does not accept strings beginning with "$" or"%'', the signifiers for
hexadecimal and binary numbers, respectively. If the string cannot be parsed into an
integer token, the Assembler will issue a warning and &STRTOINT will return a value of 0.
& STRTOINT follows the same token-parsing rules as the Assembler itself; for a discussion
of integer tokens, see "Numeric Constants" in Chapter 2 and the discussion of & LEX earlier
in this chapter. You can also write &STRTOINT as &S2I.

Symbol table functions

A special group of SET functions let you create and manipulate your own symbol tables.
They are the following:

&NEWSYMTBL Creates a new symbol table and returns its ID number
&ENTERSYM Enters or updates a symbol in a symbol table
&FINDSYM Finds a symbol in a symbol table
&DELSYMTBL Deletes a symbol table

These functions are described in the next four sections.

&NEWSYMTBL: Create new symbol table

&NEWSYMTBL

The &NEWSYMTBL function has no parameters. It creates a new symbol table in memory
and returns an integer value that is its ID number. You use this number as the value of sym
tbl in subsequent &ENTERSYM, &FINDSYM, and &DELSYMTBL expressions. You may
create up to four new symbol tables at any one time, which exist in addition to the
Assembler's own local and global tables (identified by the system variables &SYSLOCAL

and &SYSGLOBAL). Remember, however, that each symbol table occupies a minimum of
1016 bytes of memory. &NEWSYMTBL returns a value of 0 if it cannot create a new
symbol table.

154 MPW 3.0 Assembler Reference

&ENTERSYM: Enter or update symbol in table

&ENTERSYM (sym-tbl, symbol, value, flags)

The &ENTERSYM function enters or updates a symbol in the symbol table identified by
the integer expression sym-tbl. The value of sym-tbl may be &SYSLOCAL, & SYSGLOBAL,

or any nonzero value returned by &NEWSYMTBL. If it is &SYSLOCAL, you can use
&ENTERSYM only in source text inside a code or data module. The value of the string
expression symbol is the symbol's identifier, with uppercase and lowercase distinctions
preserved. If it has already been entered in the table, the existing information is
overwritten.

You can use &ENTERSYM to create new symbol table entries or amend existing ones, either
in the Assembler's own local or global tables or in a table you have created with
&NEWSYMTBL. If you operate on one of the Assembler's tables you must follow its rules, as
described later in this chapter. If you operate on a table you have created, you have more
freedom. In particular, you may assign either a string or integer value to symbol, and may
select any 16-bit positive flags value.

If the symbol table was created by &NEWSYMTBL, value may be either a string expression
or a 32-bit integer expression. If it is one of the Assembler's own tables (identified by
& SYS LOCAL or & SYSGLOBAL), value must be a 32-bit integer. In the latter case, it is used
to contain the value assigned to the identifier by an equate directive (see "Symbol
Definitions" in Chapter 4).

The integer expression flags must have a positive 16-bit value. If sym-tbl identifies a table
created by &NEWSYMTBL,flags may have any value in the range 0 . .32767. You can create or
update new EQU or SET definitions in the Assembler's tables with &ENTERSYM, using the
appropriate flags value. If sym-tbl identifies one of the Assembler's tables, the flags value
must be 0 if value is to be treated as assigned by an EQU directive or 1 if it is to be treated
as assigned by a SET directive; no other flags values are allowed.

&ENTERSYM returns a value of 1 if it has successfully entered or updated the requested
symbol table entry; 0 otherwise.

• Note: Before using & ENTERSYM to enter a new symbol, it is usually wise to check for an
existing symbol of the same name by using & TYPE.

CH APT E R 6 Macro Variables and Functions 155

&FINDSYM: Find symbol in table

&FINDSYM(sym-tbJ, symbol)

The &FINDSYM function searches for a symbol in the symbol table identified by the
integer expression sym-tbl. The value of sym-tbl may be &SYSLOCAL, &SYSGLOBAL, or
any value returned by &NEWSYMTBL. If it is &SYSLOCAL, you can use &FINDSYM only in
source text inside a code or data module. The value of the string expression symbol is the
symbol's identifier, with uppercase and lowercase distinctions preserved.

If &FINDSYM cannot find the symbol, it returns a value of 0. Otherwise it returns a value of
1 and sets the values of the Assembler system variables & SYSVALUE and &SYSFLAGS

equal to the symbol's associated values of valueandjlags, respectively.

+ Note: With regard to macros, the macro language permits you to manipulate your own
or the Assembler's internal symbol tables. If you enter a symbol into your own symbol
table, it is entered exactly as you present it, regardless of case sensitivity. If the
Assembler enters a symbol into its own table, however, as, for example through an
EQU directive, and case is set to off, the symbol is converted to all uppercase. The
&FINDSYM function will then fail when it is applied to that symbol unless the symbol
is presented in all uppercase. The action of &FINDSYM in this example is different
from the action with your own symbol table. Here is an example of each:

CASE OFF

label EQU 1

&FINDSYM(&SYSGLOBAL,'label')
&FINDSYM(&SYSGLOBAL,'LABEL')

&ENTERSYM(&myowntable,'label')
&FINDSYM(&myowntable, 'label')

;fails
;succeeds

;succeeds

If sym-tbl identifies a table created by &NEWSYMTBL, these may be any values within the limits
described earlier in "&ENI'ERSYM," including both strings and integers for the symbol's value. If the
value of sym-tbl is either &SYSLOCAL or &SYSGLOBAL, the following rules apply:

• The value of &SYSFLAGS is 0 for symbols most recently equated by EQU directives
and 1 for symbols most recently equated by SET directives, except for register
equates.

• The value of &SYSFLAGS is 2 for nonequated symbols and register equates.

• &SYSVALUE contains the symbol's equated value if the value of & SYSFLAGS is 0or1;
otherwise it contains 0.

156 MPW 3.0 Assembler Reference

&DELSYMTBL: Delete symbol table

&DELSYMTBL(sym-tb/)

The &DELSYMTBL function deletes the symbol table identified by the integer expression
sym-tbl. The value of sym-tbl may be any value returned by &NEWSYMTBL; it may not be
&SYSLOCAL or &SYSGLOBAL. The Assembler releases all memory allocated for the table,
and you should not try to access it again.

&DELSYMTBL returns a value of 1 if the table was successfully deleted and 0 otherwise.

SETC and string expressions

Every string SET variable has a variable-length string value up to 255 characters long. The
Macro Processor sets this value to the null string at the first definition of a global string
variable and at every definition of a local string variable. You can subsequently change the
value using the SETC directive. SETC statements have this form:

set-var-name SETC str-expr

The label set-var-name must be the identifier of an accessible string SET variable
one that includes the SETC directive in its current scope.

The operand str-expr may be composed of the following:

• quoted strings

• symbolic parameters of type string

• string SET variables

• string functions

These rules apply to the operand str-expr:

• String functions may be combined with other string and integer functions to make
more complex string expressions.

• The value of a string expression, including any intermediate values, cannot exceed 255
characters.

C HA PT ER 6 Macro Variables and Functions 157

The operand str-expr may contain any of the following functions, described later in this
section:

&CHR

&CONCAT

&DEFAULT

&GETENV

&INTTOSTR

&LOWCASE

&SETTING

&SUBSTR

&TRIM

&TYPE

&UPCASE

Converts an integer value to a one-character string containing its ASCII
equivalent
Concatenates string expressions
Returns a default string value if a test string is null
Returns the value of an MPW Shell variable
Converts an integer expression to its string value
Converts a string to all lowercase
Returns the current setting value for certain other directives
Returns a substring of a string
Removes leading or trailing spaces and tabs from a string
Returns the type of a symbol
Converts a string to all uppercase

Here are some examples of valid string expressions:

'abacab'

&str

&CONCAT(&modname,'. ',&var)

String constant
Symbolic parameter or SET variable
Function

Accessing substrings of string variables

When referring to a string variable, including a string SET variable, a string parameter, or a
string array elemen~ you may append a subscript to access individual characters or
substrings in its value. Array elements are described later in this chapter in "Set Array
Variables."

There are two possible forms for a subscript that accesses part of the string value of a SET
variable:

[arith-exptj
[start: length]

Accesses a single character in the string
Accesses a substring in the string

158 MPW 3.0 Assembler Reference

Arith-expr, start, and length may be absolute integer expressions of any complexity. Arith
expr accesses a single character, counting the first character of the string as 1. Start
specifies the position of the first character of a substring, and length specifies its length.
Here are some examples of accessing parts of the string value of a SET array element; they
all assume that the value of the SET variable & foo is the string 'slangword':

Reference Value

&foo[4] 'n'
&foo[5:3J 'gwo'
&foo [&x: 4) 'angw' if &x = 3

The use of a subscript with a string SET variable identifier is subject to these rules:

• When accessing a single character, if the value of arith-expr is greater than the length of
the string, the Macro Processor will return a string consisting of a single space (ASCII
$20) character.

• When accessing a substring, if the value of start is 0 or is greater than the length of the
string, the Macro Processor will return the null string.

• When accessing a substring, if the position of start is within the string, but fewer than
the number of characters specified by length remain, the Macro Processor will return
only the remainder of the string.

• You can use the substring form, but not the single character form, when accessing a
macro parameter. This is because the Macro Processor interprets a single subscript as
identifying an element of a sublist parameter. To access a single character in a macro
parameter, use the substring form with a length value of 1.

&am: Convert integer to character

&CHR (arith-expr)

The & CHR function returns a string value containing the single character that has the ASCII
value specified by arith-expr. This value must lie in the range 0 .. 255.

C H A P T E R 6 Macro Variables and Functions 159

&CONCAT: Concatenate strings

&CONCAT (str-expr, ...)

The &CONCAT function concatenates the values of any number of string expressions,
separated by commas. The value returned by &CONCAT is the string resulting from
appending all its arguments in the order given. It 'Will be truncated to 255 characters if it
exceeds that length.

&DEFAULT: Return string value or default

&DEFAULT (str-exprlf str-expr2>

The &DEFAULT function takes a string expression as its first argument, str-expr1• If the
value of str-expr1 is not null, &DEFAULT returns that value. If the value of str-expr1 is null,
&DEFAULT returns the value of the string expression str-expr2. Hence you can use str-expr2
as a default value for the result.

&GETENV: Return MPW Shell variable value

&GETENV (str-expr)

The &GETENV function returns the current value of a Macintosh Programmer's Workshop
Shell variable specified by the string str-expr. If str-expr names a variable that is undefined
or not exported from the MPW Shell, &GETENV returns the null string. MPW Shell variables
are explained in the Macintosh Programmer's Workshop Reference.

&INTIOSTR or &I2S: Convert integer to string

{ &INTTOSTR I &I2S }(arith-expr[, width[, hex]])

The & INTTOSTR function converts an integer value to its equivalent string form. The first
argumen~ arith-expr, specifies the integer to convert. The second argumen~ width, is
optional. It specifies the length of the resulting string. The third argumen~ hex, also
optional, and used only if width is specified, tells the Macro Processor whether to return a
hexadecimal or decimal number. Zero produces decimal conversion; any nonzero value
produces hexadecimal conversion. &INTTOSTR conforms to these rules:

16o MPW 3.0 Assembler Reference

• If the conversion results in fewer digits than specified by width, the left end of the
string will be filled with spaces (ASCII $20) unless you specify a negative value for
width, in which case the Macro Processor will fill the left end of the string with zero
(ASCII $30) characters.

• If the conversion results in more digits than specified, the Macro Processor will ignore
width and return a string as long as necessary.

• If you omit the width and hex arguments, the Macro Processor will assume a width of
l~a~w~dn ·

You can also write &INTTOSTR as &I2S.

&LOWCASE or &LC: Convert string to lowercase

{ &LOWCASE I &LC} (str-e:xpr)

The & LOWCASE function returns the string expression str-exprwith any uppercase
characters in the range A .. Z converted to lowercase. You can also write &LOWCASE as &LC.

&SETIING: Return directive setting

& SETTING (str-exp [, arith-e:xpr l)

The & SETTING function determines the current mode setting for the directive named by
the string expression str-expr. It returns a string whose value is the name of that mode. By
using this function, you can access and store the current setting of a directive before
temporarily changing it; this lets you restore the setting later to its original value.

The integer expression arith-e:xpris used only when the value of str-e:xpris •PRINT •-that
is, when &SETTING is used to return values set by the PRINT directive. In this case, arith
exprtakes a value in the range 0 .. 5 and specifies the nesting level of PRINT settings that
have been stacked by using the directive's PUSH parameter. The default value, 0, refers to
the current setting; the maximum value, 5, refers to the setting that held before the last
five PRINT PUSH directives. This lets you choose up to six different groups of current or
prior PRINT settings; for example, the directive statement,

PRINT &SETTING('PRINT',3)

restores the settings three levels down on the PRINT fonnat stack.

C H A P T E R 6 Macro Variables and Functions 161

Table 6-2 shows all the directive names that are accepted by & SETTING and the possible
values that &SETTING might return for each directive. In the case of PRINT, multiple
setting values are concatenated with commas between them.

• Table 6-2 &SETI1NG values

Directive Poss1ble return values

ALIGN 0, 1
BLANKS ON, OFF
BRANCH SHORT, WORD, LONG
CASE ON, OFF, OBJECT
CODEREFS FORCEJT, NOFORCEJT, FORCEPC
DATAREFS ABSOLUTE, RELATIVE
FORWARD WORD, LONG
MACHINE MC68000, MC68010, MC68020, MC68030
OPT ALL, NONE, NOCLR
PRINT ON, OFF, GEN, NOGEN, PAGE, NOPAGE, WARN, NOWARN,

MCALL, NOMCALL, OBJ, NOOBJ, DATA, NODATA, MDIR,
NOMDIR, HDR, NOHDR, LITS, NOLITS, STAT, NOSTAT,
SYM, NOSYM

STRING PASCAL, ASIS, C

&SUBSTR: Return substring of string

& SUBSTR(str-expr, start, length)

The &SUBSTR function returns a substring of i~ first argument, the string expression str
expr. I~ second and third argumen~, start and length, must be integer expressions. Start
specifies the position in str-expr of the first character of the string returned by & suss TR;

length specifies i~ length. The first character of str-expr is position 1. The & SUBS TR

function follows these rules:

• If the value of start is less than one, & SUBS TR returns the null string.

• The value of length may not be negative.

• If start is greater than the length of str-expr, & SUBS TR returns the null string.

• If length is greater than the number of characters remaining in str-exprafter start,
& SUBS TR will return only the remainder of str-expr.

162 MPW 3.0 Assembler Reference

The following are examples of the use of &SUBSTR:

Expression Result

&SUBSTR('foobar' ,4,3) bar
&SUBSTR('abcdef',10,2) null
&SUBSTR('abcd',3,3) cd

&TRIM: Trim spaces and tabs from string

&TRIM (str-expr['trim-left])

The &TRIM function removes leading and trailing spaces or tabs (blanks) from the value of
the string expression str-expr. The argument trim-left must be an arithmetic expression. It
gives you these possible actions:

• If you omit trim-left, & TRIM deletes both leading and trailing blanks.

• If trim-left is present and its value is 0, & TRIM deletes only trailing blanks.

• If trim-left is present and its value is not 0, & TRIM deletes only leading blanks.

&lYPE: Determine identifier type

&TYPE {str-expr)

The & TYPE function detennines the type of a macro or nonmacro identifier, returning a
string whose value indicates the type. The identifier is the value of the string expression
str-expr.

• Note: If a macro identifier is the same as a nonmacro identifier, &TYPE will return the
type of the nonmacro identifier.

The type specification string returned by &TYPE may have various values. The
possibilities follow these conventions:

• Words enclosed in brackets may or may not be present, depending on the specific
type of str-expr.

• Words separated by vertical bars (I) represent choices, one of which is always present
in the value returned by &TYPE.

• The expression type represents a template identifier if str-expr refers to an object given
a type by a template.

C HAP TE R 6 Macro Variables and Functions 163

• The expression '['dim']' represents the integer value of an array dimension enclosed in
brackets.

• The expression '('type')' represents the string value of a type identifier enclosed in
parentheses.

• UNDEFINED is the word that & TYPE returns if str-expr specifies an invalid or
undefined identifier.

If str-expr specifies a macro variable identifier, & TYPE returns one of the following type
descriptions:

UNDEFINED
PARM [STRUCTURED] { INT I STR }
{ SETA I SETC } [ARRAY' ['dim'] ']
MACRO ({ FUNCTION I SYSVAR }]

If str-expr specifies a nonmacro identifier, then the identifier is interpreted exactly as if it
were used in an absolute expression. It is subject to the standard scope rules given in
Chapter 2 in "Scope of Definitions." It may be a fully qualified field reference or a partially
qualified reference covered by a WITH directive. With nonmacro identifiers, &TYPE

returns one of the following type descriptions:

UNDEFINED
{ CODE I DATA } IMPORT
REG { An I Dn I ZAn I ZDn I CCR I SR I USP I MSP I SFC I DFC I CAAR I

VBR I CACR I ISP I CRP I SRP I DRP I TC I PSR I PCSR I AC I CAL
sec I VAL I BADn I BACn }

FPREG { FPn I FPCR I FPSR I FPIAR }
RLIST
FRLIST
FCRLIST
{ CODE I DATA} MODULE { EXPORT I ENTRY I IMPORT} [MAIN] ['('type ')']
TEMPLATE [DATA IMPORT] ['('type ')']
TEMPLATE FIELD ['('type ')']
DATA FIELD [{ EXPORT I ENTRY I IMPORT }] [' ('type ') ']
{ CODE I DATA } LABEL [{ EXPORT I ENTRY I IMPORT }]

SET
EQU
OPWORD

[MAIN] ['('type ') ']

&UPCASE or &UC: Convert string to uppercase

{ &UPCASE I &UC } (str-expr)

The &UPCASE function returns str-exprwith any lowercase characters in the range a .. z
converted to uppercase. You can also write &UPCASE as &UC.

164 MPW 3.0 Assembler Reference

SET array variables

You can define a SET variable as an array, thereby referring to many values with a single
identifier. The individual values in a SET array variable are called elements. SET array
elements may contain either integer or string values and may have either local or global
scope. To access an element in a SET array variable, follow the SET variable identifier
immediately with a subscript enclosed in brackets.

SET array variables are subject to these rules:

• All elements in a variable must have the same type and scope.

• The subscript may be any integer expression, as long as its value is not 0 or negative.

• You may not use a subscript with a nonarray SET variable.

• A SET array element cannot be accessed without a subscript.

The following are examples of valid SET array element references:

&foo[12]
&foo [&bar]
&foo[12+&bar]
&foo[&NBR(&bar)]

The following are examples of erroneous set array element references:

&foo
[12)
&foo [12)

No subscript (a good nonarray variable reference)
No SET variable identifier
Space between identifier and subscript

You may not continue the subscript part of a SET array variable reference to the next line.

Defining SET array variables

You define SET array variables the same way as other SET variables, except that you
enclose a decimal, binary, or hexadecimal number in brackets immediately following the
variable's identifier in the variable list of your LCLA, LCLC, GBLA, or GBLC directive. This
number is called the dimension; it specifies the number of elements in the array. A SET
array variable may not have more than one dimension number. The maximum dimension
number allowed is (decimal) 4096. Arrays with dimensions larger than 250 are represented
as sparse arrays, and do not necessarily have memory allocated for unassigned elements.
You may mix SET array variable definitions with nonarray definitions in the same
directive.

CH A PT ER 6 Macro Variables and Functions 165

If you define a SITT array variable as global, you must specify the same dimension number
every time you define it again as global. Alternately, you can write an asterisk (•) in place
of the dimension number after the first definition; this indicates that the first dimension
number is to be used. The first time a SET array variable is defined, the Macro Processor
assigns to each of its elements either 0 or the null string, depending on whether the
variable's type is integer or string.

Following are examples of valid definitions of SET array variables:

LCLA &foo[lO]
LCLC &bar[100],&car[54]
GBLA &totals[4]
GBLC &currline,&lines[100],&charset[256]

Using SET array variables

Once you have defined a SITT array variable, you may assign values to its elements with
SETA or SETC directives. You can then access these values by referring to the array's
elements in subsequent statements or directives. The subscripts in references to SET array
elements may be arithmetic expressions of any complexity, as well as absolute integers.

The following example illustrates the definition and use of a SITT array variable:

MACRO
ArgScan No parameters, uses
LCLC &a [10]
LCLA &i,&n

&n SETA &NBR (&SYSLIST) Number of actual
macro parameters

&i SETA 1
WHILE &i<=&n DO

&a[&i] SETC &SYSLIST[&i]
&i SETA &i+l

ENDW
* the macro parameters have now been stored in the &a
* array, where they can be manipulated or modified.
* The macro can always access their original values
* via &SYSLIST

; Body of macro
ENDM

166 MPW 3.0 Assembler Reference

&&SYSLIST

Accessing substrings in SET array string elements

When referring to a SET array element that is a string, you may append a second subscript
to access individual characters or substrings in the string.

"SETC and String Expressions," given earlier in this chapter, explains how a subscript on a
nonarray SET variable of type string lets you access parts of the string value. In the same
way, a second subscript on a SET array variable with string elements extracts part of the
array string specified by the· first subscript.

There are two possible forms for a subscript that accesses part of a string:

' ['array-sub, arith-expr] '
' ['array-sub, start: lengtft] '

Accesses a single character in the string
Accesses a substring in the string

Array-sub is the array subscript. Arith-expr, start, and length may be integer expressions of
any complexity. Arith-expr accesses a single character, counting the first character of the
string as 1. Start specifies the position of the first character of a substring, and length
specifies its length.

Here are some examples of accessing parts of a SET array element with string value; they
all assume that the value of the sixth element of the SET array variable & foo [6 l is the
string I SlangWOrd I:

Reference Value

&foo[6,4] 'n'
&foo[6,5:3] 'gwo'
&foo[x + 3,x : 4] 'angw' if x = 3

The use of a second subscript with a SET string array variable identifier is subject to these
rules:

• When accessing a single character, if the value of arith-expr is greater than the length of
the string, the Macro Processor will return a string consisting of a single space character
(ASCII $20).

• When accessing a substring, if start is 0 or is greater than the length of the string, the
Macro Processor will return the null string.

• When accessing a substring, if the position of start is within the string but fewer than
length characters remain, the Macro Processor will return only the remainder of the
string.

C H A P T E R 6 Macro Variables and Functions 167

Assembler system variables

Assembler system variables are variables which are defined and assigned values by the
Assembler. These values may change during the assembly process. If you define them in
your source text, you will override their original purpose. They are also subject to the
restrictions given for SET variables earlier in this chapter. Table 6-3 lists the Assembler
system variables.

• Table 6-3 Assembler system variables

Name Value Type

&SYSNDX Index number of the current macro call Integer or string
&SYSLIST current macro parameter list String
&SYSSEG Identifier of the current code segment String
&SYSMOD Identifier of the current code module String
&SYSDATE current date String
&SYSTIME current time String
&SYSTOKEN Token code from & LEX call Integer
&SYSTOKSTR Token string from &LEX call String
&SYSVALUE symbol value returned by &FINDSYM Integer or string
&SYSFLAGS symbol flags returned by &FINDSYM Integer
&SYSLOCAL ID of the Assembler's local symbol table Integer
&SYSGLOBAL ID of the Assembler's global symbol table Integer

&SYSINDEX or &SYSNDX: Macro call index

The Macro Processor assigns &SYSINDEX the four-digit number 0001 when it encounters
the first macro call directive in your source text It increases this number by one at each
subsequent macro call directive, including inner macro calls. The value of &SYSINDEX

remains the same throughout macro expansion (being restored after inner macro calls).
You can also write &SYSINDEX as &SYSNDX.

If &SYSINDEX is used in a model statement or in a string expression, the Macro Processor
treats it as a string symbol. Its value will include any leading zeros needed to create a four
digit number. If &SYSINDEX is used in an integer expression (for example, in the operand
of a SETA directive), the Macro Processor treats it as an ordinary integer.

168 MPW 3.0 Assembler Reference

A typical use of &SYSINDEX is to concatenate it with other characters, thereby creating
unique labels for statements generated during different expansions of the same macro
model statement.

&SYSllST or &SYSLST: Macro operand list

The & SYS LI ST variable gives you an alternate way to access macro parameters. However,
it accesses only the positional parameters; it does not access keyword parameters,
described in Chapter 5. You can also write &SYSLIST as &SYSLST.

You can use &SYSLIST only in macro definitions.

&SYSLIST [n] refers to the nth positional operand of the current macro. If the nth
operand is a sublis4 &SYSLIST [n,m] refers to the mth sublist element of the nth
operand. You may use any absolute integer expression for the subscripts n and m, as long
as their values are greater than zero and not greater than the numbers of parameters or
sublist elements. If the mth element of the nth parameter is itself a sublis4 then
&SYSLIST [n,m,k] refers to its kth elemen4 and so on.

You can use the &NBR function with &SYSLIST to determine the number of positional
operands that were specified when the current macro was called. When applied to
&SYSLIST [nJ, &NBR returns these values:

• the number of elements in the nth operand, if it is a sublist

• 0 if the nth operand is not a sublist

• 0 if the nth operand was omitted in the current macro call

Here are some examples of values returned by &SYSLIST expressions in a macro
definition whose parameter list is A, < B, c > , D :

Expression Value

&SYSLIST[l] A

&SYSLIST[2] (B,C)

&SYSLIST[3] D

&SYSLIST[2,l] B

&SYSLIST[2,2] c

CH APT E R 6 Macro Variables and Functions 169

&SYSSEG: Current segment identifier

The value of the &SYSSEG variable is the name of the current code segment.

&SYSMOD: Current module identifier

The value of the & s Y SMOD variable is the identifier of the current module. This value is the
null string if &SYSMOD is used outside a module or inside an unnamed module.

&SYSDATE: Current date

The value of the & SYSDATE variable is the current date, expressed in the fonnat
dd-mmm-yy where
dd String containing two-numeral day of the month
mm m String containing first three letters of the current month
yy String containing two-numeral year

All these values are copied from the Macintosh internal clock.

&SYSTIME: Current time

The value of the &SYSTIME variable is the current time, expressed in the fonnat hh:mm:ss
where

hh String containing two-numeral hour of the day (24-hour basis)
mm = String containing two-numeral minute
ss = String containing two-numeral second

All these values are copied from the Macintosh internal clock.

170 MPW 3.0 Assembler Reference

&SYSTOKEN and &SYSTOKSTR: Values set by &LEX

The values of &SYSTOKEN and &SYSTOKSTR are set every time &LEX is called.
&SYSTOKEN contains an integer code indicating the token type, and &SYSTOKSTR

contains the token's string value. Table 6-1 shows all possible values of these variables.

&SYSVALUE and &SYSFLAGS: Values set by &FINDSYM

The values of &SYSVALUE and &SYSFLAGS are set every time &FINDSYM is called.
&SYSVALUE contains the value associated with the symbol found, and &SYSFLAGS

contains a positive 16-bit integer that indicates certain characteristics of the symbol.
These variables have different types and values, depending on how &FINDSYM was called.
For further information, see "&FINDSYM" earlier in this chapter.

&SYSLOCAL and &SYSGLOBAL: System symbol table ID's

These variables have fixed values assigned by the Assembler. They are used only as
parameters for the &ENTERSYM and &FINDSYM functions. &SYSLOCAL may be used only
in source text inside a code or data module. For further information, see "&ENTERSYM"
and "&FINDSYM" earlier in this chapter.

CH APTER 6 Macro Variables and Functions 171

Chapter 7 Macro and Conditional-Assembly
Directives

THE POWER OF THE MACRO IANGUAGE DEPENDS PRIMARILY on its ability to loop and
branch, thereby letting you program the ways that it expands your original source
text. This chapter discusses the following directives:

GOTO

IF ... GOTO

IF ... ENDIF

Unconditional jump to another part of the source text
Conditional jump to another part of the source text
Conditional assembly of enclosed source text

ELSEIF, ELSE

WHILE ... ENDWHILE

ACTR

Further conditions on assembly of enclosed source text
Conditional looping of enclosed source text

EXITM

Set maximum number of branches in macro expansion
Unconditional termination of macro

WRITE, WRITELN

AERROR

ANOP

Write information to the diagnostic output
Generate an Assembler error
Assembler NOP

Many of these directives use Boolean expressions for control. Such expressions
are discussed in the next section. •

Contents

Boolean control expressions 175
Comparing two integer expressions 175
Comparing two string expressions 175
Comparing integer and string expressions 176

GOTO, IF ... GOTO, and macro labels: Branching 176
IF, EI..5EIF, ELSE, and ENDIF: Conditional assembly 178
WHILE and ENDWHILE: Looping 179

CYCLE and LEA VE directives 180
ACTR: Limit looping 180
EXITM or MEXIT: Exit macro 181
WRITE and WRITELN: Write to diagnostic output file 181
AERROR: Error generation 182
ANOP: Assembler NOP 182

173

Boolean control expressions

Conditional-assembly directives are controlled by Boolean expressions, in which integer
values are treated as true or false. Hence every absolute integer expression may also be
used as a Boolean expression. The Macro Processor interprets an integer value of 0 as a
Boolean value of false; it inteprets any nonzero integer value as a Boolean value of true.
For correct results with expressions containing AND or OR, however, you should always use
1 to denote the Boolean value true.

In addition, however, Boolean expressions may be constructed from logical and
comparison operators. To extend the utility of these operators in macro constructs, the
comparison operators may be used for string comparisons as well as for integer
comparisons.

The logical operators are OR, XOR, AND, and NOT. The comparison operators are=,<> or -:F-,

>, <, >= or~. and <= or:$;, The syntax rules for writing these operators are discussed more
fully in "Expressions" in Chapter 2.

Each operand of a comparison expression may have either an integer or a string value. The
ways the Macro Processor evaluates the whole expression depends on the types of the two
operands, as discussed here.

Comparing two integer expressions

The Macro Processor performs integer comparisons in the normal arithmetic way; the
results are always either 0 (false) or 1 (true).

Comparing two string expressions

String comparisons compare the values of two string expressions for equality,
inequality, and relative alphabetical ordering. The results are integer values-0 for false,

1 for true.

The Macro Processor distinguishes between uppercase and lowercase wnen comparing
strings. You can mask the distinction by using the & UPCASE or &LOWCASE functions
described in "SETC and String Expressions" in Chapter 6.

Two strings are equal if they are indistinguishable; otherwise they are unequal.

C H A P T E R 7 Macro and Conditional-Assembly Directives 175

The Macro Processor ranks strings by relative ASCil ordering for comparisons using the
>, <, <:::,and$ operators. It performs this ranking by the following steps:

1. The two strings are compared a character at a time, starting with the first character.

2. Two corresponding characters are compared. If the ASCII value of one character is
greater than the other, then the corresponding string is greater than the other.

3. If the two corresponding characters are equal, the point of comparison advances to
the next character in each string, and the process returns to step 2.

4. If the end of one string is reached before the end of the other, its value is less than the
other string.

5. If the ends of both strings have been reached, the two strings are equal.

Comparing integer and string expressions

To compare an integer with a string, the Macro Processor first converts the second
operand to the type of the first operand. If the first operand is type integer, the second
operand will be converted to an integer by interpreting the string contents as an integer
constant. It does this by following the same parsing rules as & Is INT, described in "SET A
and String Expressions" in Chapter 6. If the string does not contain an integer, the
Assembler reports an error. If the first operand is a string, the integer operand will be
converted to a string containing the digits that represent the operand's value. Note that
comparisons of the string representations of integers do not always yield the same results
as arithmetic comparison of the same integers.

GOTO, IF ... GOTO, and macro labels: Branching

[macro-taben

[macro-taben

GOTO

IF

[+ I -]{ macro-label I str-expr}

bool-e.xprGOTO [+ I -]{macro-label I str-expr}

You can use the GOTO and conditional GOTO directives to alter the sequence in which the
Assembler processes your source text. The destination of a GOTO directive is always a
macro label. You can specify a macro label by using either a macro label identifier or an
expression whose value is a string containing a macro label identifier.

176 MPW 3.0 Assembler Reference

A macro label consists of a period followed by a valid identifier, and is defined when it
appears in the label field of a statement or directive. If the period is not the first
character of the source text line, you must terminate the macro label with a colon. You
may write macro labels in any machine instruction statement, or in any directive
statement that accepts a macro label. Macro labels conform to these rules:

• Macro labels defined within a macro are local to that macro.

• Macro labels with the same identifier are not allowed in the same scope.

• A macro label may appear on a line by itself, without an operation. This is necessary in
cases where the destination line already has a label. Alternatively, you can write a label
on an ANOP directive.

• The Macro Processor does not distinguish between uppercase and lowercase when
interpreting macro labels.

If the jump is within a macro, you may optionally write either a plus or a minus character
before the macro label to tell the Macro Processor whether the jump is forward or
backward. The label must, of course, be located where the plus or minus indicates it will
be. Using the plus or minus decreases assembly time.

The GOTO directive causes assembly processing to jump unconditionally to the source
text line where the specified label is defined. Any lines passed over are not processed.

The IF .•• GOTO directive determines the value of the expression bool-expr. If it is true
(nonzero), the assembly process jumps to the source text line where the specified label is
defined. If it is false (zero), processing continues with the succeeding source text line as
usual.

When using GOTO and IF ••• GOTO, bear these rules in mind:

• GOTO and IF •.• GoTo directives outside macros may jump only to macro labels that are
defined in subsequent statements; backward jumps are not allowed outside macros.

• GOTO and IF •.. GOTO directives in a macro definition may not cause a branch to any
label outside the body of that macro except to the macro label (if any) in the macro's
ENDM statement.

The following example illustrates the use of GOTO directives and macro labels. It uses a
conditional GOTO directive to avoid the unnecessary code sometimes generated by the
sample macro given in Chapter 5 in "Symbolic Parameters."

.labl

MACRO
Iner
IF
MOVE.W
ADDQ.W
IF
MOVE.W

.lab2 ENDM

&src,&dest
UPCASE(&src)='DO' GOTO .labl
&src,DO
#1,DO
UPCASE(&dest)='DO' GOTO .lab2
DO,&dest

C H A P T E R 7 Macro and Conditional-Assembly Directives 177

IF, EI.SEIF, EI.SE, and ENDIF: Conditional assembly

[macro-laben IF boo/-e:xpr THEN
statements
ELSEIF boo/-expr THEN
statements
ELSE
statements
ENDI(F]

The IF, ELSE IF, ELSE, and ENDIF directives provide facilities for conditional
assembly. You use them to enclose sections of source text that the Assembler will process
only if certain Boolean values are true. You may abbreviate ENDIF as ENDI.

Each IF directive must be followed by an END IF directive. Together they form an
IF •.. ENDIF constmct. ELSE IF and ELSE directives are optional, but when they
appear they must be located within an IF ... ENDIF construct, as indicated in the above
syntax diagram Here are the rules:

• You can write any number of ELSE IF directives, but only one ELSE directive.

• The ELSE directive, if any, must follow all the ELSE IF directives.

• The region of source text controlled by IF extends to its corresponding ENDIF, or to
the first ELSEIF or ELSE, whichever comes first.

• The region of source text controlled by each ELSEIF extends to the next ELSEIF,
ELSE, or END IF, whichever comes first.

• The region of source text controlled by ELSE extends to END IF.

When the Macro Processor processes IF and ELSE IF directives, it evaluates their
Boolean expressions. For a given IF ... ENDIF construct, the first Boolean value of true
in an IF or ELSEIF directive will cause assembly of the source text controlled by that
directive. All further ELSEIF directives in the construct, and the source text they control,
will be skipped. If the Macro Processor does not find any true IF or ELSE IF directives in
the construct, it assembles the source text controlled by ELSE.

Remember that an entire IF ... END IF construct may be skipped if it is enclosed in an
IF ... ENDIF orwHILE ... ENDWHILE construct whose Boolean control value is false.

You can nest IF ... ENDIF constructs; the Macro Processor will associate the last IF
with the first END IF, the next-to-last IF with the second END IF, and so on.

178 MPW 3.0 Assembler Reference

The following example illustrates the use of an IF ... END IF construct It improves the
example given in Chapter 5 in "Macro Comments" by generating a debug procedure header
only if the global SET variable &Debugging is true (nonzero).

MACRO

DbgHead

GBLA &Debugging Declare (import)

global variable

IF &Debugging THEN Header only if debugging

[macro-laben

[macro-Jaben

LINK A6,f0 Debug header

END IF

ENDM

WHILE boo/-expr DO

statements
ENDW[HILE]

WHILE and ENDWHILE: Looping

The WHILE and ENDWHILE directives provide conditional looping. You can use them only
in macro definitions. You use them in pairs to enclose sections of source text that the
Assembler will process repeatedly, as long as the value of bool-expr is true. The result is
called a WRI:LE . •• ENDWHILE construct. You may abbreviate ENDWHILE as ENDW.

When the Macro Processor encounters a WHILE directive, it evaluates its Boolean
expression. If the value of the expression is true (nonzero), the Macro Processor processes
source text until the corresponding ENDWHILE. If the Boolean value is false (0), the Macro
Processor skips to the source text line immediately following ENDWHILE.

When the Macro Processor encounters ENDWHI LE (which happens only if the
corresponding WHILE directive was true), the next line it processes will be the
corresponding WHILE directive. In other words, it loops back from ENDWHILE to WHILE.

It evaluates the WHILE directive's Boolean expression again and repeats the procedure
just described.

WHILE ••• ENDWHILE constructs may be nested; the Macro Processor will associate the
last WHILE with the first ENDWHILE, the next-to-last WHILE with the second ENDWHILE,

and so on.

CH APTER 7 Macro and Conditional-Assembly Directives 179

CYCLE and LEA VE directives

The CYCLE and LEAVE directives are used with WHILE statements. The CYCLE

directive makes the next executed statement the enclosing WHILE directive. The LEA VE

directive makes the next executed statement the corresponding ENDWHILE directive.

Here is the syntax of the CYCLE and LEA VE directives:
[macro-label] CYCLE [{ macro-label I str-expr }]
[macro-label] LEAVE [{ macro-label I str-expr }]

You can specify macro label (or a string expression evaluating to a macro label) as an
argument to a CYCLE or LEAVE directive in order to identify one of several enclosing
WHILE directives. (This assumes that each of the enclosing WHILE directives was labeled
with the appropriate macro label.) Here is an example:
. lab WHILE ... DO

WHILE ... DO

IF ... THEN
LEAVE.lab ;will leave outer WHILE

END IF

ENDWHILE

ENDWHILE

ACTR: Limit looping

[macro-Jaben ACTR arith-expr

The ACTR directive sets the maximum number of GOTO, IF ... GOTO, and WHILE

branches that the Macro Processor can make. This number is the value of arith-expr. If you
write an ACTR directive in the body of a macro definition, the limit applies to each
expansion of that macro. If you write it anywhere else, it applies to the whole assembly
process except macro expansions. The limit remains in force until the end of the assembly
process or until it is superseded by another ACTR directive. In the absence of any ACTR

directive, the preset limit value is 512.

The ACTR directive is useful to prevent macros that have not been debugged from
becoming processed in infinite loops.

180 MPW 3.0 Assembler Reference

Here are some rules about AC TR:

• The value of arith-expr must be positive.

• When counting branches during macro expansion, ACTR ignores branches made during
inner macro calls.

• Any time the actual number of branches exceeds the limit set by ACTR, the Assembler
reports an error.

• If the limit set by ACTR is exceeded during a macro expansion, that macro expansion
will terminate.

• If the limit set by ACTR is exceeded outside any macro expansion (which could be
caused only by forward GOTO branches), the entire assembly process will terminate.

EXITM or MEXIT: Exit macro

[macro-laben { EXITM I MEXIT}

The EXITM directive terminates expansion of the macro currently being called. You can
use EXITM only within the body of a macro definition. You can also write EXITM as
MEXIT.

After an EXITM directive is processed, the next source text line to be assembled is the one
just after the macro call that invoked the macro just terminated. If that macro call is an
inner macro call (nested inside another macro) then the Macro Processor continues
processing the higher-level macro.

• Note: Don't confuse EXITM with ENDM, which is the last directive in every macro
definition.

WRITE and WRITELN: Write to diagnostic output file

[macro-laben
[macro-laben

WRITE item, ...
WRITELN [item], ...

The WRITE and WRITELN directives write information to the diagnostic output file
during the assembly process. You may use them both within and outside macros.

CH APTER 7 Macro and Conditional-Assembly Directives 181

The item operands may be symbolic parameters, SET variables, string expressions, or
integer expressions. The Assembler will send their values to the diagnostic output file with
no intervening spaces. The difference between WRITE and WRITELN is that WRITELN

sends a final return character (ASCII SOD) after the last item. WRITELN with no operand
sends a single return character to the diagnostic output.

WRITE and WRI TELN are typically used for debugging macros or for displaying
information about the current state of the assembly process.

AERROR: Error generation

[macro-laben AERROR str-expr

The AERROR directive generates a synthetic Assembler error and sends the value of the
string expression str-exprto the diagnostic output as the error message. You can use
AERROR both within macro definitions and outside macros.

AERROR is typically used in conjunction with a conditional directive to report when
conditions required for a successful assembly or macro expansion have not been met.
Here is an example:

AERROR 'Bad parameter value to macro foo'

ANOP: Assembler NOP

[macro-laben ANOP

The ANOP directive lets you specify a macro label as the destination of a GOTO directive.
The macro-label destination of a GOTO directive must be placed in the label field of the
statement to which it branches. If there is already a symbol in the label field (for example,
a SETA assignment) you cannot put the macro label there. However, you can achieve the
same effect by labeling an ANOP statement just before the desired destination statement.

+ Note: Using ANOP is not the quite the same as defining a macro label on a line with a
blank operation field. ANOP does not generate a line from the macro, while a macro
label on a line by itself will generate a blank line. This difference shows up on an
assembly listing.

182 MPW 3.0 Assembler Reference

Part III Appendixes

Appendix A Generic Instruction Formats

You CAN WRITE CERTAIN AS.SEMBLY-LANGUAGE INSTRUCTIONS IN generic form, letting
the Assembler transform them automatically to the final instructions that will
appear in your source text. There are three general reasons for writing generic
instructions:

• Optimization: The Assembler transforms your instructions if they can be
encoded more efficiently. The result occupies less memory and often runs
faster as well.

• Convenience: The Assembler transforms your instructions on the basis of
their context, to make coding easier and your source text more readable.

• Compatibility: The Assembler transforms your instructions to make them
compatible with other assemblers. Other assemblers are discussed in
AppendixD.

The OPT directive, described in Chapter4 in "Assembly Options," gives you some
control of whether or not the Assembler performs address optimization and
generic instruction substitution.

Whenever the Assembler performs a generic instruction substitution, it identifies
that statement in the Assembly listing with a letter G in the flags column. See
Appendix C for a full description of the assembly listing format.

For each instruction that you can write generically, Table A-1 lists the following:

• the generic form that you write

• the form generated by the Assembler

• any conditions that must be met for the Assembler to perform the
transformation

The table is grouped by the reason for the transformation. •

185

• Table A-1 Generic instruction conversions

Generic Instruction ~led form C:Onditions

Optimi1.ation
ADDA #data, <eal> ADDQ #data, <eal> #data = 1.. 8
CLR.L Dn MOVEQ #O,Dn
MOVE #O, <ea3> CLR <ea3> <ea3> *- on
MOVE.L #data, An MOVEA.W #data, An #data =

-32768 .. 32767
MOVE.L #data,Dn MOVEQ #data,Dn #data =

-128 .. 127
MOVE #0,An SUBA An, An
MO VEA #0,An SUBA An, An
MOVEA.L #data, An MOVEA.W #data, An #data =

0 .. 32767
ADDA.L #data, An MOVEA.W #data, An #data =

0 .. 32767
CMPA.L #data, An MOVEA.W #data, An #data =

0 .. 32767
SUBA.L #data, An MOVEA.W #data, An #data =

0 .. 32767
MOVEQ #0,An SUBA An, An
SUB #data, <eal> SUBQ #data, <eal> tdata 1.. 8
SUBA #data, <eal> SUBQ tdata, <eal> tdata 1.. 8

Convenience
ADD #data, <ea3> ADDI #data, <ea3>
ADD <eaO>, An ADDA <eaO>,An
AND #data, <ea3> ANDI #data, <ea3>
BNZ label BNE label
Bcc.S label NOP label label= next

instruction
BT label BRA label
BZ label BEQ label
CMP #data, <ea3> CMPI f data, <ea3>
CMP <ea3>, An CMPA <ea3>,An
CMP (An) +, (An) + CMPM (An) +, (An) +
DBNZ on, label DBNE on, label
DBZ Dn, label DBEQ Dn, label
DBRA Dn, label DBF Dn, label
EOR tdata, <ea3> EORI f data, <ea3>
MOVE <eaO>, An MO VEA <eaO>, An
MOVEM <ea8>, An MO VEA <ea8>,An
OR #data, <ea3> ORI #data, <ea3>

(continued)

A P P E N D I X A Generic Instruction Formats 187

• Table A-1 (continued) Generic instruction conversions

Generic instruction Assembled form C:Onditions

Convenience, (continued)
SNZ <ea3> SNE <ea3>
SUB #data, <ea3> SUBI *data, <ea3>
SUB <eaO>, An SUBA <eaO>, An
TNZ TNE
TZ TEQ
TPNZ #data TPNE #data
TPZ #data TPEQ #data

Compatibility
BHS label BCC label
BLO label BCS label
DBHS Dn, label DBCC Dn, label
DBLO Dn, label DBCS Dn, label
EXTB Dn EXT.W Dn
EXTW Dn EXT.L Dn
SHS <ea3> sec <ea3>
SLO <ea3> scs <ea3>
THS TCC
TLO TCS
TPHS #data TPCC #data
TPLO tdata TPCS #data

188 MPW 3.0 Assembler Reference

Appendix B Syntax Diagrams

'fHis APPENDIX GROUPS TOGETIIER All TIIE SYNTAX DIAGRAMS USED IN THIS BOOK. The
listing is divided into the following sections:

• assembly-language addresses (described in Chapter 3)

• special address formats (described in Chapter 3)

• general assembly directives (described in Chapter 4)

• macro and SET variable directives (described in Chapter 5)

• SET variable functions (described in Chapter 5)

For an explanation of how to interpret these diagrams, see "Notation
Conventions" in the Preface. •

Contents

Assembly-language addresses 191
Addressing modes 191

Address optimizations 192
Special address formats 192

MC68000 instructions 192
MOVEM: Multiple moves 192

MC68o20 instructions 192
MUL.5 and MULU: Signed and unsigned multiplication 192
DIVS and DIVU: Signed and unsigned division 193
TDIVS and IDIVU: Truncated signed and unsigned division 193
PACK and UNPK: Packing and unpacking 193
CAS and CAS2: Comparing and swapping 193
Bit field instructions 193
Tee and TPcc: Trap on condition 193

189

MC68881 and MC68882 instructions 194
FMOVEM with explicit register lists 194
FMOVE with packed BCD data 194
FSINCOS: Simultaneous sine and cosine 194
FTcc and FI'Pcc: Floating-point trap on condition 194
FTEST: Test operand and set floating-point condition codes 194

MC68851 instructions 195
literals 195

General assembly directives 1%
Macro and SET variable directives 200
SET variable functions 202

190 MPW 3.0 Assembler Reference

Assembly-language addresses

For an explanation of the symbols used in address syntax diagrams, see Table 3-1.

Addressing modes

Here is a short list of the addressing modes of the MC68xxx and the addressing
optimizations performed by the Assembler.
Mode Addressing mode Effective address syntax

0 Data register direct Dn
1 Address register direct An
2 Address register indirect (An)
3 Postincrement register indirect (An)+
4 Predecrement register indirect -{.An)
5 Indirect with 16-bit displacement d(An)
6 Indirect with indexing plus

8-bit displacement d(An,Xn)
6• Indirect with indexing plus

base displacement (bd,An,Xn* s) bd{An,Xn* s)
6• Indirect with preindexing ([bd,An,Xn* s],od)
6• Indirect with postindexing ([bd,An],Xn* s,od)
70 Absolute word (16 bits) ae (ae).W
71 Absolute long (32 bits) ae (ae).L
72 PC-relative with 16-bit

displacement re d(PC)
73 PC-relative, indexing, 8-bit

displacement d(Dn) d(Pc,Xn)
73• PC-relative, indexing, base

displacement (bd,Pc,Xn* s) bd)c,Xn* s)
btl..Xn*s)

73• PC-relative with preindexing ([bd,Pc,Xn* s],od)
73• PC-relative with postindexing ([bd,Pc],Xn* s,od)
74 Immediate #ae
72 Literal (PC-relative with

16-bit displacement) #ae #(ae).W#(ae).L

• Modes usable only with the Mc68020 and MC68030

A P P E N D I X B Syntax Diagrams 191

Address optimizations

Original form

(bd, An, Xn* S)

(An, Xn*s)
(bd,Pc,Xn*s)
(bd, An)

(bd, PC)

d(An)

Condition for optimization

Size of bd ~ 8 bits
Omitted bd (bd = O)

Size of bd ~ 8 bits
Size of bd ~ 16 bits
Size of bd ~ 16 bits
d= 0 (An)

Special address formats

Optimized form

bd(An, Xn*s)
o (An, Xn*s)
bd (PC, Xn*s)
bd (An)

bd(PC)

Some instructions accept address formats that are unusual or are special cases of more
usual formats. These instructions are described here.

MC68000 instructions

MOVEM: Multiple moves

MOVEM . size rlist, ea
MOVEM . size ea, rlist
size::= w 1 L

MC68020 instructions

MUL5 and MULU: Signed and unsigned multiplication

MULS.L
MULS.L
MULU.L
MULU.L

ea, DI
ea,Dh:Dl
ea, Di
ea,Dh:Dl

192 MPW 3.0 Assembler Reference

32x 32-> 32
32 x 32-> 64
32 x 32-> 32
32 x 32-> 64

DIVS and DIVU: Signed and unsigned division

D!VS.L
DIVS.L
DIVU.L
DIVU.L

ea,Dq
ea, or:Dq
ea, Dq
ea, Dr: oq

IDIVS and IDIVU: Truncated signed and unsigned division

TDIVS.L
TDIVS.L
TDIVU.L
TDIVU.L

ea,Dq
ea,or:Dq
ea,Dq
ea, Dr:Dq

PACK and UNPK: Packing and unpacking

PACK
PACK
UNPK

UNPK

-(A.X) , -<AY> , #adjustment
o.x, oy, #adjustment
- < A.X) , - (A y> , #adjustment
o.x, Dy, #adjustment

CAS and CAS2: Comparing and swapping

CAS.size DC, Du, ea

32/32-> 32q
64/32 -> 32r:32q
32/32-> 32q
64/32 -> 32r:32q

32/32-> 32q
32/32 -> 32r:32q
32/32-> 32q
32/32 -> 32r:32q

CAS2 . size Del: DC2, DUl: Du2, <Rnl) : <Rn2)
size::= B I w I L

Bit field instructions

BF CHG
BFCLR
BFEXTS
BFEXTU
BFFFO
BF INS
BF SET
BFTST

eri { 'offset: widtft } '
eri { 'offset: widtft } '
eri {'offset: width'} ', on
eri {'offset: width'}', on
eri {'offset: width'} ', on
on, eri { 'off set : width' } '
eri { 'offset: widtft } '
eri { 'offset : width' }

Tee and TPcc: Trap on condition

TCC
TPCC.size #ae
size::= w 1 L

A P P E N D I X B Syntax Diagrams 193

MC68881 and MC68882 instructions

FMOVEM with explicit register lists

FMOVEM • size
FMOVEM. size
size::= L I X

FMOVE with packed BCD data

FMOVE.P
FMOVE.P
FMOVE.P

fp-rlist, ea
ea, fp-rlist

FPn, ea
FPn, ea' {':/l:k'}'
FPn, ed { 'ort}'

FSINCOS: Simultaneous sine and cosine

FSINCOS .size ea, FPC: FPS
FSINCOS .X FPm, FPC: FPS
size::= B I w I L I s I D I x I p

Free and FI'Pcc: Floating-point trap on condition

FTCC
FTP CC.size #ae
size::= w 1 L

FfEST: Test operand and set floating-point condition codes

FTEST.size 8:l

FTEST.X FPn

size ::= B I w L I s I D I x I p

194 MPW 3.0 Assembler Reference

MC68851 instructions

Opcode Operand format Sizes Notes

PB CC.Size label w I L
PDBCC.size Dn, label w
PF LUSH Jc,#ae [,ea] 1
PFLUSHA
PFLUSHS Jc,#ae [,ea] 1
PFLUSHR ea D 4
PLOADR Jc, ea 1
PLOADW Jc, ea 1
PMOVE PMMU-reg, ea B I w I L I D 2
PMOVE ea, PMMU-reg B I w I L I D 2,4
PRE STORE ea
PSAVE ea
PSCC ea B
PTESTR Jc, ea, #ae [,An] 1
PTESTW Jc, ea, #ae [,An] 1
PTCC 3
PTPCC #Cle w I L 3
PVALID VAL, ea L 2
PVALID An, ea L

1. Jc::= #ae (specified as 4 bits in the command word)
2. Dn (contained in the lower 4 bits of D n)

3. SFC (contained in the processor's source function register)
4. DFC (contained in the processor's destination function code register)

Literals

PEA #(ae). w Immediate word data for PEA

PEA #(ae). L Immediate long-word data for PEA

PEA #(ae). s Immediate single-precision data for PEA

PEA #(ae).D Immediate double-precision data for PEA

PEA #(ae) .x Immediate extended data for PEA

PEA #(ae). P Immediate packed BCD data for PEA

LEA #(ae).w,An Immediate word data for LEA

LEA #(ae). L, An Immediate long-word data for LEA
LEA #(ae). s, An Immediate single-precision data for LEA

LEA #(ae).D, An Immediate double-precision data for LEA

LEA #(ae). x, An Immediate extended data for LEA

LEA #(ae).P,An Immediate packed BCD data for LEA

AP P E ND IX B Syntax Diagrams 195

General assembly directives

[macro-label] ALIGN

[name] BLANKS

[macro-label] BRANCH

[macro-label] CASE

[macro-laben CODE

[macro-label] CODEREFS

[macro-Iaben COMMENT

[macro-label] DATA

196 MPW 3.0 Assembler Reference

[expr]

{ Qli I ::d ~l}
OFF I N[O]

{
S[HORT] I B[YTEl}
N[Qlm]
llONG)

{
ON I Y[ES]}
m:.E. i N[Q]
OBJfECT)

{
F[ORCE[JT)) }
NOF(~(.!ll))

F[ORCEJPC

str-e:xpr

[macro-label] DATAREFS

[{ label I macro-label}] Dc(.sizeJ

[{ label I macro-label}] DCB[.sizeJ

[{ label I macro-label}] DS(.sizeJ

[macro-laben DUMP

[macro-laben EJECT

[macro-laben END

[macro-laben ENDF[UNC]

[macro-laben END MAIN

[macro-taben ENDP[ROC]

[macro-laben ENDR

[macro-laben ENDWITH

[macro-label] ENTRY

name EQU

[macro-/aben ERRLOG

{ R[EUATIVE]] }
A[-'lli [.QLllIE]]

{ expr I string } , ...

length, { expr I string}

{length I template-namcl

filename

[lines]

{CODE} (name , name , .. ·) :
I 2 DATA

··~.[{:~~}] ...

{
arith-exprj

~port-na

str-expr

, ...

AP P E ND IX B Syntax Diagrams 197

{ CODE}
(name , name , .. ·) :

I 2 DATA

[macro-label] EXPORT

[macro-label] FORWARD { N[QBQ]}
UONG]

name FREG fp-rlist

[name] FUNC [{ ENTRY }]
EXPORT

[macro-label] IMPORT ' ...

name,[{ :~!}]

[macro-laben INCLUDE filename

[macro-laben LOAD filename

r·8000}
[macro-label] MACHINE

MC 68010

MC 68020

MC 68 030

198 MPW 3.0 Assembler Reference

[name] MAIN [{ ENTRY }]
EXPORT

[macro-Iaben MC68851

[macro-Iaben MC68881 rfp-option], ...

[macro-label] OPT [{~j]

name OPWORD abs-expr

[macro-Iaben ORG [exj»j

[macro-laben PAGESIZE [lines][, width]

[name] [{ENTRY }] PROC
EXPORT

[macro-Iaben PRINT parameter, ...

[name] RECORD [{ }] [{ ~(EMENT]}] ::~~!T , :~:[EMENT]

name RECORD {
offset } { .I.NCR(EMENT] :{~O~T . '}, [, DECR [EMENT]} J

origin

name REG rfist

[macro-Iaben SEG [str~

A P P E N D I X B Syntax Diagrams 199

name SET

[macro-taben SPACE

[macro-label] STRING

[macro-taben TITLE

[macro-laben WITH

Macro and SET variable directives

[macro-taben

[macro-taben

[macro-taben

[macro-taben

[macro-label]

[macro-taben

[macro-taben
expr}

ACTR

ANOP

AERROR

{EXITMIMEXIT}

ru} LCLC
GBLA
GBLC

GOTO

IF

200 MPW 3.0 Assembler Reference

{
arith-expr J
:port-nam

[linesj

{
ASIS }
~ASCAL

str-expr

name, ...

arith-expr

str-expr

set-var-name, ...

[+ I -]{macro-label I str-expr}

bool-exprGOTO [+ I -]{ macro-label I str-

[macro-taben

[macro-laben

IF boo/-e:xpr THEN

statements
ELSEIF boo/-e:xpr THEN

statements
ELSE
statements
ENDI[F]

MACRO

[& nama naml.. & nama [. ··{{T}l [tJ~~··] ····l

[macro-taben

set-var-name

set-var-name

[macro-taben

assembler statements

[macro-taben

[macro-taben

[macro-taben

machine instruction or directive statements

{ ENDM I MEND }

SETA arith-expr

SETC str-expr

WHILE boo/-expr DO

ENDW[HILE]

WRITE item, ...

WRITELN [item], ...

A P P E N D I X B Syntax Diagrams 201

SET variable functions

&ABS (arith-exj>r)

& CHR (arith-exj>r)

&CONCAT (str-e.xpr, ...)

&DELSYMTBL <sym-tbl>

&DEFAULT (str-exprlT str-eXJJr2)

&ENTERSYM <sym-tbl, symbol, val-ue, flags>

&EVAL cstr-expr>

&FINDSYM <sym-tbl, symbo[)

&GETENV (Str-e.xpr)

{ &INTTOSTR 1 &I2s} carith-e.xpr[, width[, hex]]>

&ISINT (str-exj>r)

&LEN (str-expr>

&LEX (str-expr, start)

&LIST cstr-expr, str-an{, delimiter])

{ & LOWCASE I & LC } (str-expr>

&MAX (arith-expr, ...)

&MIN (arith-expr, ...)

&NBR dsymb-param &SYSLISTh

&NEWSYMTBL

& ORD (exfJr>

& POS (str-expr1 ' str-expr2)

&SCANEQ (ch, str-expr, start)

& SCANNE (ch' str-expr' start)

&SETTING (Str-exp [, arith-expr h

202 MPW 3.0 Assembler Reference

return value ::•
0, 1
ON, OFF

str-exp ::•
ALIGN
BLANKS
BRANCH
CASE
CODEREFS
DATAREFS
FORWARD
MACHINE
OPT
PRINT

SHORT, WORD, LONG
ON, OFF, OBJECT

FORCEJT, NOFORCEJT, FORCEPC
ABSOLUTE, RELATIVE
WORD, LONG
MC68000, MC68010, MC68020, MC68030
ALL, NONE, NOCLR
ON, OFF, GEN, NOGEN, PAGE, NOPAGE, WARN,

NOWARN, MCALL, NOMCALL, OBJ, NOOBJ, DATA,
NODATA, MDIR, NOMDIR, HDR, NOHDR, LITS,
NOLITS, STAT, NOSTAT, SYM, NOSYM

STRING PASCAL, ASIS, C

{ &STRTOINT I &S2I} (Str-expr)
& s UBS TR(Str-expr' start' length)
&TRIM(str-expr[, trim-left])
&TYPE (Str-expn

If str-expris a macro variable name, then the return value ::=

UNDEFINED
PARM [STRUCTURED] { INT I STR }
{ SETA I SETC } [ARRAY'['dim']']
MACRO [{ FUNCTION I SYSVAR }]

If str-expr is a non-macro name, then value ::=

UNDEFINED
{ CODE I DATA } IMPORT
REG { An I Dn I ZAn I ZDn I CCR I SR I USP I MSP I SFC I DFC

CAAR I VBR I CACR I ISP I CRP I SRP I DRP I TC I PSR
PCSR I AC I CAL I sec I VAL I BADn I BACn }

FPREG { FPn I FPCR I FPSR I FPIAR }
RLIST
FRLIST
FCRLIST
{ CODE I DATA } MODULE { EXPORT ENTRY I IMPORT } [MAIN] ['('type')']
TEMPLATE (DATA IMPORT] ['('type')']
TEMPLATE FIELD ['('type ') ']
DATA FIELD [{ EXPORT I ENTRY I IMPORT }] ['(type')']
{ CODE I DATA } LABEL [{ EXPORT I ENTRY I IMPORT }] [MAIN] ['(type')']
SET
EQU
OPWORD
{ &UPCASE I &UC } (Str-expn

AP P E ND IX B Syntax Diagrams 203

Appendix C Assembly Listing Format

WHEN 1HE MPW ASSEMBLER PRODUCES A LISTING, it normally follows the format
shown in Figure C-1. This fonnat is based on the assumption that you will handle
the listing in one of the following ways:

• print it, using a monospace font

• edit it with an editor program that can scroll horizontally

The Assembler follows this fonnat when all the listing-control default values are in
effect; that is, when your source text includes only a TITLE directive and you
specify no listing-control options in the Assembler command line. By using any
other of the listing-control directives described in Chapter 4, or by using the
listing-control Assembler options described in Appendix H, you can change the
listing format. •

205

• Figure C-1 Default assembly listing format

MC68020 Assembler - Ver v.rr <Title goes here>
Copyright Apple Computer, Inc. 1984 - 1988

dd-Mon-yy Page xxx

Loe F
x:oxx x

Object Code
x:o:x x:o:x x:o:x

Addr M
x:oxx x

Source Statement

xxxx x:o:x
xxxx

x:o:x x:o:x x:o:x
x:o:x x:o:x x:o:x

x

1-- machine instruction ------->

1-- data statement----------->

Figure C-1 shows the layout of an assembly listing, including a typical header plus a few
listing lines. The xs in Figure C-1 indicate the number of characters generated in each
section; other text indicates the type of information listed in that section. The six header
lines (three of which are always blank) appear at the top of every page.

The first header line contains only the form feed character (ASCII $0C) that ejects
each page.

The second header line contains the version and revision number of the Assembler, the
title (if you wrote a TITLE directive in your source text), the date, and the page number.
The Assembler formats this information according to these rules:

• The date and page number are right-justified on the page in conformance with the
current PAGE s I z E directive width setting.

• The title is truncated if it is too long for the available space.

The third header line always contains Apple's copyright notice.

The fourth and sixth header lines are always blank.

The fifth header line always contains the column headings for the listing. The xs under the
first five headings in Figure C-1 tell you the maximum number of characters that may
appear in these columns. The six headings identify parts of each listing line, as described
in the following paragraphs.

A P P E N D I X C Assembly Listing Format 207

The Loe column identifies the location of the generated object code in the code or data
module. This field is truncated to five hexadecimal digits or the number of digits you
specified with an -addrsize option when invoking the Assembler (see "Assembler
Options" in Appendix G). It is blank if the corresponding source text does not generate
any object code. There is no guarantee that this location is correct if an Assembler error
has occurred.

The F column contains generic and privileged instruction flags. If the Assembler converts a
machine instruction from generic form, as described in Appendix A, the letter G appears in
this column. If a machine instruction is privileged, the letter P appears. (Privileged
instructions are described in the Motorola M68000 8-116-132-Bit Microprocessors
Programmer's Reference Manual.) In all other cases this column is blank.

The Object Code column contains the generated object code for the source line. This
column is formatted one of three ways, depending on whether it contains a machine
instruction, DC-generated data, or DCB-generated data:

• With machine instructions, all generated code is shown. The first line contains up to
three words of four hexadecimal digits each. Each subsequent line, if any, contains up
to two words, indented by one word.

• With data generated by a DC directive, every line contains up to three words. If you
specified PRINT NODATA, then only the first line (or one line for each continuation)
will appear. If you specified PRINT DATA, then up to 18 lines of data will appear. Any
data remaining after 18 lines will be indicated by three periods, as illustrated at the
bottom of Figure C-1.

• Data generated by a DCB directive appears in the same fonn as data generated by a DC
directive; but instead of appearing only as words, it appears as bytes, words, or long
words, depending on the directive's modifier, with a space between each text item.
Such data listings are also limited to 18 lines.

The Object Code column also lists the values of defined symbols and SET variables.
Register equates give the register name if the equate is to an A or D register; control
registers are not shown. REG and FREG directive register-mask equates show a value
consisting of two register masks, one in each direction, depending on the form of the
MOVEM or FMOVEM instruction using the mask. EXPORT and ENTRY directives inside
modules give the Loe-column locations corresponding to the specified labels.

208 MPW 3.0 Assembler Reference

The Addr column contains addresses accessed by machine instructions that have
nonimported PC-relative address operands. It tells you the Loe-column value referenced
by the instruction. As with the Loe column, the Addr-column value is truncated to five
digits or to the number of digits specified by an -addrsize Assembler option. All other
addressing modes that access locations express offsets and so may be seen in the object
code itself. If the instruction does not have a PC-relative address operand, or if its
operand is a PC-relative reference to an imported identifier, this column is blank.

The M column lists the dynamic macro-nesting level, reduced modulo 10. If the listing line
was not generated from a macro, the M column is blank.

The Source Statement column contains your source text line.

+ Note: If you specified PRINT NOOBJ, either by a directive or by an Assembler
option, then only the Loe and Source Statement columns will be displayed. This
produces a more compressed listing with less information.

When the Assembler creates a listing file, it defines the creator as 'MPs ' and the type as
'TEXT'. This lets you use the Macintosh Programmer's Workshop facilities to edit the
listing. It also creates the following MPW Editor resource information to facilitate editing
with the MPW Editor and printing with the MPW Print command:

• The listing's tabs are set to the same locations as the original source text tabs, or every
four columns if the source text has no tabs. The Assembler places a tab in the listing
file just before each entry in the source statement column. This gives the source
statements in the listing the same format they had when being edited.

• The listing's font and font size are set according to the -font Assembler option. The
standard default font is 7-point Monaco. However, a LaserWriter printer will adopt
Courier as a default font when printing the listing.

A P P E N D I X C Assembly listing Format 209

Appendix D Other Assemblers

BEFORE TIIE RELEASE OF MPW, TIIE PRIMARY DEVELOPME.NT E:NVIRONMENrS for the
Macintosh were the Ilsa Workshop (which included the TIA Assembler) and the
Macintosh 68000 Development System (MDS). This appendix compares MPW
with these other two assemblers and with the Motorola assembler. •

Contents

Syntax comparison 213
Writing identifiers 213
Writing numbers 214
Writing strings 214
Defining modules 215
Communicating between modules 215
Writing expressions 215
Location-counter reference 216
Addressing features 217
Writing macros 217

211

Syntax comparison

This section compares the syntax accepted by the MPW Assembler with that accepted by
the following other assemblers:

• The Motorola assembler (Mot)

• Apple MDS

• Apple TI.A

Writing identifiers

Table D-1 shows which characters may be used to compose identifiers in the four
assembly languages, and how long those identifiers may be.

• Table D-1 Identifier syntax rules

Rule MPW Mot MDS TIA

Lowercase letters (a .. z) Yes• Yes• Yes• Yes•
Uppercase letters (A .. Z) Yes• Yes• Yes• Yes*
Digits (0 .. 9) Yes Yes Yes Yes
Underscores (_) Yes• Yes Yes* Yes*
Periods (.) No Yes Yes* Yes
At symbols (@) Yest No Yest Yest
Dollar signs ($) Yes No Yes No
Number signs(#) Yes No No No
Percent signs (%) Yes•,; No No Yes•,;
Maximum length 63 8 00 8

• Identifiers may start with these characters.

The at symbol is used to begin @-labels. It may be embedded inside identifiers with the MPW Assembler.
; Leading percent signs should be avoided. They are reserved by Apple for special software such as the

Pascal runtime system. In the MPW Assembler, identifiers beginning with % may not use 0 or 1 for a
second character because % is used to indicate binary numbers.

A P P E N D I X D Other Assemblers 213

Writing numbers

Table D-2 shows how numbers are written in the four assembly languages. In this table, d ...
represents any sequence of integers.

• Table D-2 Number syntax

Numerical base MPW Mot MOS 11.A

Decimal d ... d ... d. .. d ...
Hexadecimal $d ... $d ... $d ... $d ... ord .. H
Binary O/od ... O/od ... O/od. .. d .. B
Octal @d ... /\d ... d ... O

±d.d ... ord ... Floating-point " "* ...
• Wrirren as decimal or hexadecimal strings enclosed in quotation marks. Floating-point string formats may be any of

those shown in the Apple Numerics Manual.

Writing strings

Table D-3 gives the rules and capabilities for writing strings in the four assembly languages.
In this table, the ellipsis (...) indicates a sequence of characters.

• Table D-3 String syntax

Syntax rule MPW Mot MOS 11.A

Form ' ' ' ' ' ' ' ... 'or" ... "
Apostrophe representation " " " " ' "
Ampersand representation &&* & & &

Generates Pascal strings Yes No Yes No
Generates C strings Yes No Yes No . In macros only .

214 MPW 3.0 Assembler Reference

Defining modules

Table D-4 compares the way that the four assembly languages define code and data
modules in source text.

• Table D-4 Module definition

Module MPW

Code PROC ••. ENDP*

Data RECORD ••• ENDR*

• Modules may be local to a file.

Mot

Control section
Control section

t MODULE directive permits multiple code modules in MDS 2.0.
; Modules are always exported.
§ Only DS directives generate AS-relative data.

Communicating between modules

MDS

One modulet
D s directive§

Table D-5 compares the directives that allow each assembly language to transfer
references to the source text between modules.

• Table D-5 Communication directives

MPW

EXPORT
IMPORT
ENTRY

Mot

XDEF
XREF

Writing expressions

MDS

XDEF
XREF

TIA

DEF
REF, REFA5, REF32

TIA

PROd

None

Table D-6 lists the operators you can use when writing expressions in each of the four
assembly languages. Some MPW operators may be wrinen in more than one way. All
alternatives are shown.

A P P E N D I X D Other Assemblers 215

• Table D-6 Allowable operators

Operation MPW' Mot• Mos· TIAt

Addition + + + +
Subtraction
Multiplication * * * *
Division I DIV I I I
Modulus reduction II MOD \
Logical or ++ OR

Exclusive-or XOR

logical and ** AND & &

Equal to
Not equal to <> ':/:- <>

Less than <

Greater than >

less than or equal to <= $

Greater than or equal to >= ;;::::

Shift left << << <<

Shift right >> >> >>

One's complement
Negation
logical not -. NOT

. Operators have precedence; parentheses are allowed .

I No operator precedence; no parentheses allowed. Angle brackets (greater than and less than symbols)

are used in place of parentheses.

Location-counter reference

The meaning of the location-counter symbol (*) varies between the four assembly
languages when used in the DC directive (woRD or LONG in TI.A). For example, in the
statement

label DC.W 1,2,*-X,3,4

the value of * is defined as the value of the iabel-the location of the first word-in the
MPW, Motorola, and TIA assemblers. In MDS, rl1e value of * is the location of the word
representing the current operand. Therefore in MDS, * represents the location of the third
word.

216 MPW 3.0 Assembler Reference

Addressing features

The four assembly languages include different features for writing addresses, as shown in
Table D-7.

• Table D-7 Addressing features

Feature MPW Mot MDS TIA

MC68020 addressing Yes Yes No No
Bases AS default AS for data AS for DS No
Qualified identifiers Yes No No No
Data structures Templates OFFSET, EQU EQU

EQU

Writing macros

The MPW Assembler Macro Processor does not accept macro definitions written in any of
the other three languages. In all four assemblers, however, macro calls have the same basic
form.

The MPW Assembler's Macro Processor supports all the features of the other assemblers
with one exception: macros that generate only part of a statement (such as only an
operand) are not supported. Such macros can be written only in the MDS Assembler. The
MPW Assembler also supports a number of features not found in any of the other
assemblers, such as keyword macros and SEf variables.

Hence you can always rewrite Motorola, TIA, and MDS macro definitions into MPW form,
except for MDS macros that generate partial source lines. In most cases, you can leave
macro call directives as they were originally written.

AP P E ND IX D Other Assemblers 217

Appendix E The Macintosh Character Set

TuE MACINfOSH CHARACTER SET IS INCLUDED HERE for
your convenience. •

219

First digit

0 1 2 3 4 5 6 7 8 9 A B C D E F

p X e t • i

1 A Q a q A. e ±

2 ::11:!!:: .:I!!!:!: " 2 B R b r <; 1 ¢ £ -, u

3rncl.li;J,;.# 3 cs cs E £
,,

N 1 § ¥ f

: 11,1--:-+--:-+--:-+--~-+-;--+-~---+-~-::-+--:-+--cr-+--+---+---+--+--1 m !

d D

7 :.;j:i:,:1 ·11::.i.'/ 7 G W g w a 6 B A.

8 85 1jli/:·C 8 H X h x a o ®

A :1.1::.:::i':.I.',': •

B 11:.::i::/·::l'.1:·:: +

C fl':.::::,:1 FS

D CR GS

I

y a o © p

J z j z i 6 ™ 0
K k a 5 i A

< L \

M m

> N A n

0

-a u 2 A

w 0

ii 0 0 a:

.._.. Stands for a nonbreaking space, the same width as a digit

* y

El The dark-shaded characters cannot normally be generated from the Macintosh
keyboard or keypad.

AP P E N D I X E Macintosh Character Set 221

Appendix F Instruction Sets

THIS APPENDIX DEFINES TiiE INSTRUCTION SETS accepted by the MPW Assembler.
They are equivalent to the MC68000, MC68010, MC68020, MC68030,
MC68881/MC68882, and MC68851 instruction sets described in more detail in the
Motorola M68000 8-116-132-Bit Microprocessors Programmer's Reference
Manual, the Motorola MC68881 Floating-Point Coprocessor User's Manual, and the
Motorola MC68851 Paged Memory Management Unit User's Manual. Refer to
those manuals for full descriptions of these instructions.

• Note: Some mnemonics have been changed to eliminate
ambiguities or to conform to the Motorola assembler forms. If in
doubt, check your mnemonics with those given later in this
appendix (in Tables F-7, F-8, and F-9).

The Macintosh instruction sets contain certain machine instructions that encode
into more than one bit configuration, depending on the instruction's operands.
Each instruction consists of an opcode word and zero or more extension words.
The opcode word contains some basic constant information about the
instruction, but other fields must be set to indicate the kinds of operands
(effective addresses) and the size of the instruction. •

Contents

Instruction evaluation 225
Listing conventions 225

Opcode 226
Operands 226
Opcode word 227
Cp type 228
Group 228
Flags 228
Range 229
Equivalent 229

Condition codes 229
Instruction set listings 233

223

Instruction evaluation

The Assembler determines the encoding for an instruction by looking at the group
corresponding to the mnemonic. Starting with the first encoding line in the group, the
Assembler checks the machine type, the size, the source operand mode, the destination
operand mode, and (where applicable) the immediate data range. If all the infonnation
matches, the Assembler generates the code for the instruction, through its encoding group
number. If any one of the items doesn't match, the next encoding (if any) in the group is
checked. This process continues until an encoding is found or the end of the group is
reached.

If the Assembler reaches the end of the group before finding a valid encoding (including
coprocessor opcodes), it indicates an invalid instruction. It then tries to interpret the
source text line as a macro. Finally, it tries to interpret it as an OPWORD directive.

Listing conventions

Tables F-2 through F-9 list the instructions and condition codes accepted by the MPW
Assembler. Table F-7, covering the processor instructions for the MC68000, 68010, and
68020, is divided into seven columns with the following headings:

• Opcode: The mnemonic you write in your source text.

• Operands: The operands (if any) required by the opcode.

• Opcode word: The binary encoding of the first word or extension word of the
instruction.

• Group: The encoding group number assigned to the instruction.

• Flags: Letters indicating specific characteristics of the instruction.

• Range: A code number identifying the instruction's data range.

• Equivalent: The actual code equivalent for generic instructions.

A P P E N D I X F Instruction Sets 225

Tables F-8 and F-9, covering the coprocessor instructions, have a slightly different set of
column headings:

• Opcode: The mnemonic you write in your source text.

• Operands: The operands (if any) required by the opcode.

• Opcode word: The binary encoding of the first word of the instruction.

• Cp type: The coprocessor instruction type.

• Group: The encoding group number assigned to the instruction.

• Flags: Letters indicating specific characteristics of the instruction.

• Equivalent: (Table F-8 only.) The actual code equivalent for generic instructions.

The columns are described in more detail in the following sections.

Opcode

This column contains the legal instruction mnemonics recognized by the Assembler. For
further information about the instructions they represen~ see the appropriate Motorola
manual listed at the beginning of this appendix.

Operands

This column may contain register names (such as Dn or An) or nonterminal symbols (such
as ean or Re). The nonterminal symbols stand for addressing modes.Table F-1 shows all
possible operand forms. The number 1 in the table indicates that the corresponding
addressing mode is legal. The number 0 means it is illegal. Addressing modes are further
described in the Motorola manuals and in Chapter 3 of this manual.

226 MPW 3.0 Assembler Reference

• Table F-1 Instruction operands

Operand eaO eal ea2 ea3 ea4 ea5 ea6 ea7 ea8 ea9 ealO

Special 0 0 0 0 0 0 0 0 0 0 0
Dn 1 1 0 1 0 0 1 0 0 1 1
An 1 1 0 0 0 0 0 0 0 0 0
(An) 1 1 1 1 1 1 1 1 1 1 1
(An)+ 1 1 1 1 0 1 1 0 1 0 0
- (An) 1 1 1 1 1 1 1 0 0 0 0
d(An) 1 1 1 1 1 1 1 1 1 1 1
d(An, Xn) 1 1 1 1 1 1 1 1 1 1 1
<bd, An, xn) 1 1 1 1 1 1 1 1 1 1 1
< [bd, An, xnJ, od) 1 1 1 1 1 1 1 1 1 1 1
([bd, An] , xn, od) 1 1 1 1 1 1 1 1 1 1 1
(ae) .w 1 (ae) . L 1 1 1 1 1 1 1 1 1 1 1
#data 1 0 0 0 0 0 1 0 0 0 0
label 1 0 0 0 0 1 1 1 1 0 1
d(PC) 1 0 0 0 0 1 1 1 1 0 1
d(PC, Xn) 1 0 0 0 0 1 1 1 1 0 1
(bd,PC,Xn) 1 0 0 0 0 1 1 1 1 0 1
([bd, Pc, xnJ , od) 1 0 0 0 0 1 1 1 1 0 1
([bd, PCJ , xn,od) 1 0 0 0 0 1 1 1 1 0 1
RList 0 0 0 0 0 0 0 0 0 0 0
CCR 0 0 0 0 0 0 0 0 0 0 0
SR 0 0 0 0 0 0 0 0 0 0 0
USP 0 0 0 0 0 0 0 0 0 0 0
Ct! Regs• 0 0 0 0 0 0 0 0 0 0 0

• Re ::= SFC I DFC I CACR I VBR I CAAR I MSP I ISP

Opcode word

This column contains the binary encoding of the fixed information placed in the first
word of the instruction corresponding to the specified mnemonic.

eall

0
0
0
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

A P P E N D I X F Instruction Sets

eal2 Re

0 0
0 0
0 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 0
0 0
0 0
0 1
0 1

Cp type

This column lists the instruction type for coprocessor instructions. The meanings of the
type codes in this column are shown here:

Type Meaning

Genl General coprocessor instruction; register operand or operands, or no operand
Gen2 General coprocessor instruction; memory to register or registers
Gen3 General coprocessor instruction; register or registers to memory
Bee Branch on coprocessor condition
DBcc Decrement and branch on coprocessor condition
Rest Coprocessor restore instruction (privileged)
Save Coprocessor save instruction (privileged)
Sec Set on coprocessor condition
Teel Trap on coprocessor condition; predicate supplied by processor
Tcc2 Trap on coprocessor condition; operand predicate

Group

This column lists the Assembler's encoding group for that mnemonic. The set of all MPW
Assembler instructions may be viewed as a collection of subsets, with each subset
corresponding to a specific encoding. There are 49 distinct encoding groups, numbered 0
to 48.

Flags

This column indicates various attributes about the instruction. The meanings of the flag
symbols are given here:

Flag Meaning

1 MC68010 instruction
2 MC68020 instruction
P Privileged instruction
G Generic instruction
B Byte data size accepted
W Word data size accepted
L Long-word data size accepted
S Single-precision data size accepted
D Double-precision data size accepted
X Extended data size accepted
K Packed BCD data size accepted

228 MPW 3.0 Assembler Reference

Range

This column specifies the legal range for absolute data, if the range is not otherwise
expressed. The codes that specify the ranges are described here:

Number Meaning

0 Value= 0
3 Value ::= 1..8; 0 indicates a value of eight
4 4-bit unsigned value
8 8-bit unsigned value

-8 8-bit signed value
16 16-bit unsigned value

-16 16-bit signed value
32 32-bit unsigned value

Equivalent

This column indicates what actual instruction the mnemonic represents in cases where the
instruction form is generic. Generic instructions are described in Appendix A.

Condition codes

Tables F-2 through F-6 list only the condition codes that the MPW Assembler accepts.
Tables F-7, F-8, and F-9 list all combinations of instructions and condition codes that the
MPW Assembler accepts.

A P P E N D I X F Instruction Sets 229

• Table F-2 MC68xxx condition codes

Mnemonic C.Onclition Encoding Test

T True 0000 1

HI High 0010 c•z
LS Low or same 0011 c+z

cc, cs Carry clear 0100 c
CS,LO Carry set 0101 c

ME,NZ Not equal 0110 z
EQ,Z Equal 0111 z

VC Overflow clear 1000 v
vs Overflow set 1001 v

PL Plus 1010 N

MI Minus 1011 N

GE Greater than or equal to 1100 N•V+N•V

LT Less than 1101 N•V+N•V

GT Greater than 1110 N•V•Z+N•V• z

LE Less than or equal to 1111 Z+N•V+N•V

230 MPW 3.0 Assembler Reference

• Table F-3 MC68881 IEEE nonaware tests

Mnemonic Definition Equation Predicate

EQ Equal z 000001

Not equal -
001110 NE z

GT Greater than NAN+Z+N 010010

NGT Not greater than NAN+Z+N 011101

GE Greater than or equal to Z+(NAN+N) 010011

NGE Not (greater than or equal to) NAN+(N•Z) 011100

Less than --
LT N• (NAN+Z) 010100

NLT Not less than NAN+Z+N 011011

LE Less than or equal to Z+(N+NAN) 010101

NLE Not (less than or equal to) NAN+(N+Z) 011010

GL Greater than or less than NAN+Z 010110

NGL Not (greater than or less than) NAN+Z 011001

GLE Greater than, less than, or equal to NAN 010111

NGLE Not (greater than, less than, or equal to) NAN 011000

• Table F-4 MC68881 IEEE aware tests

Mnemonic Definition Equation Predicate

EQ Equal z 000001

Not equal -
NE z 001110

OGT Ordered greater than NAN+Z+N 000010

ULE Unordered less than or equal to NAN+Z+N 001101

OGE Ordered greater than or equal to Z+(NAN+N) 000011

ULT Unordered less than NAN+(N•Z) 001100

OLT Ordered less than N• (NAN+Z) 000100

UGE Unordered or greater than or equal to NAN+Z+N 001011

OLE Ordered less than or equal to Z+(N+NAN) 000101
(continued)

A P P E N D I X F Instruction Sets 231

• Table F-4 (continued) MC68881 IEEE aware tests

Mnemonic

UGT

OGL

UEQ

OR

UN

• Table F-5
Mnemonic

F

T

SF
ST
SEQ
SNE

• Table F-6

BS
BC
LS
LC
SS
SC
AS
AC
ws
we
IS
IC
GS
GC
cs
cc

Definition

Unordered or gi:!ater than

Ordered greater than or less than
Unordered or equal to

Ordered

Unordered

MC68881 miscellaneous tests
Definition Equation

False False
True True
Signaling false False
Signaling true True
Signaling equal z
Signaling not equal z

MC68851 PMMU condition codes

Condition Encoding

B set 000000
B clear 000001
L set 000010
L clear 000011
S set 000100
S clear 000101
A set 000110
A clear 000111
W set 001000
Wclear 001001
I set 001010
I clear 001011
G set 001100
G clear 001101
C set 001110
C clear 001111

232 MPW 3.0 Assembler Reference

Equation

NAN+ (N+Z)

NAN+Z

NAN+Z

NAN

NAN

Predicate

000000
001111
010000
011111
010001
011110

Predicate

001010

000110

001001

000111

001000

Instruction set listings

Tables F-7, F-8, and F-9 are edited listings of the actual data files used to produce the
opcode table used by the Assembler. These tables show all the opcodes sorted
alphabetically. Different encodings for the same mnemonic are grouped, with a blank line
separating each group. The encodings within each group are ordered so that generic forms
or optimizations occur before more general forms.

In Tables F-8 and F-9, the following metasymbols are used to denote groups of
coprocessor registers:

FPn FPO .. FP7
FRList Floating-point register list
FCRList . ·= Floating-point control register list
BADn : := BADO .. BAD7
BACn . ·= BACO .. BAC7
XRP . ·= CRP I SRP I DRP
SCCCAL : := sec 1 CAL

• Table F-7 MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

ABCD Dn,Dn 1100 000 100 000 000 6 B
ABCD - (An), - (An) 1100 000 100 001 000 6 B

ADD :tdata, <eal> 0101 000 000 000 000 24 BWLG 3 ADDQ (Opt)
ADD * da.ta, <ea3> 0000 011 000 000 000 25 BWLG ADDI
ADD <eaO>, Dn 1101 000 000 000 000 22 BWL
ADD Dn, <ea2> 1101 000 100 000 000 23 BWL
ADD <eaO>, An 1101 000 011 000 000 27 WLG ADDA

ADDA :tdata, <eal> 0101 000 000 000 000 24 WLG 3 ADDQ (Opt)
ADDA <eaO>,An 1101 000 011 000 000 27 WL

ADDI *data, <ea3> 0000 011 000 000 000 25 BWL

ADDQ tdata, <eal> 0101 000 000 000 000 24 BWL 3

ADDX Dn,Dn 1101 000 100 000 000 8 BWL
ADDX - (An), - (An) 1101 000 100 001 000 8 BWL

AND *data, <ea3> 0000 001 000 000 000 25 BWLG ANDI
AND Dn, <ea2> 1100 000 100 000 000 23 BWL
M"'D <ea6>, Dn 1100 000 000 000 coo 22 BWL

(continued)

A P P E N D I X F Instruction Sets 233

• Table F-7 (continued)

Opcode

ANDI
ANDI
ANDI

ASL
ASL
ASL

ASR

Operands

:it data, CCR
:itdata, SR
:it data, <ea3>

:itdata,Dn
on,Dn
<ea2>

:it data, Dn
ASR Dn, Dn
ASR <ea2>

BCC /al;el

BCHG :it data, Dn
BCHG :itdata, <ea2>
BCHG Dn, Dn
BCHG D n' <ea2>

BCLR :itdata, Dn
BCLR *data' <ea2>
BCLR Dn,Dn
BCLR Dn, <ea2>

BCS /al;el

BEQ /al;el

BFCHG special

BFCLR special

BFEXT s special

BFEXTU special

BFFFO special

BFINS special

BF SET special

BFTST special

BGE /al;el

BGT Jaf;el

BHI Jaf;el

BHS

BKPT

lal;el

:it data

MC68000, MC68010, and MC68020/MC68030 instructions

Opcode word

0000 001 000 111 100
0000 001 001 111 100
0000 001 000 000 000

1110 000 100 000 000
1110 000 100 100 000
1110 000 111 000 000

1110 000 000 000 000
1110 000 000 100 000
1110 000 011 000 000

0110 0100 00000000

0000 100 001 000 000
0000 100 001 000 000
0000 000 101 000 000
0000 000 101 000 000

0000 100 010 000 000
0000 100 010 000 000
0000 000 110 000 000
0000 000 110 000 000

0110 0101 00000000

0110 0111 00000000

1110 101 011 000 000

1110 110 011 000 000

1110 101 111 000 000

1110 100 111 000 000

1110 110 111 000 000

1110 111 111 000 000

1110 111 011 000 000

1110 100 011 000 000

0110 1100 00000000

0110 1110 00000000

0110 0010 00000000

0110 0100 00000000

0100 100 001 001 000

Group Flags Range Equivalent

1 B
1 PW
25 BWL

10 BWL
9 BWL
15 w
10 BW
9 BWL
15 w

14 BWL

19 L
19 B
20 L
20 B

19 L
19 B
20 L
20 B

14 BWL

14 BWL

31 2

31 2

32 2

32 2

32 2

33 2

31 2

31 2

14 BWL

14 BWL

14 BWL

8
16

3

3

14

2

BWLG BCC

2 4

234 MPW 3.0 Assembler Reference

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

BLE label 0110 1111 00000000 14 BWL

BLO label 0110 0101 00000000 14 BWLG BCS

BLS label 0110 0011 00000000 14 BWL

BLT label 0110 1101 00000000 14 BWL

BMI label 0110 1011 00000000 14 BWL

BNE label 0110 0110 00000000 14 BWL

BNZ label 0110 0110 00000000 14 BWLG BNE

BPL label 0110 1010 00000000 14 BWL

BRA label 0110 0000 00000000 14 BWL

BSET #data, Dn 0000 100 011 000 000 19 L
BSET #data, <ea2> 0000 100 011 000 000 19 B
BSET Dn,nn 0000 000 111 000 000 20 L
BSET Dn, <ea2> 0000 000 111 000 000 20 B

BSR label 0110 0001 00000000 14 BWL

BT label 0110 0000 00000000 14 BWLG BRA

BTST #data, nn 0000 100 000 000 000 19 L
BTST #data, <ea5> 0000 100 000 000 000 19 B
BTST nn,Dn 0000 000 100 000 000 20 L
BTST nn, <ea12> 0000 000 100 000 000 20 B

BVC label 0110 1000 00000000 14 BWL

BVS label 0110 1001 00000000 14 BWL

BZ label 0110 0111 00000000 14 BWL BEQ

CALLM #data, <ea 7> 0000 011 011 000 000 47 2

CAS special 0000 100 011 000 000 34 2BWL

CAS2 special 0000 100 011 111 100 35 2BWL

CHK <ea6>, nn 0100 000 110 000 000 21 w
CHK <ea6>, on 0100 000 100 000 000 21 2L

CHK2 <ea7>, Dn 0000 000 011 000 000 36 2BWL
CHK2 <ea7>, An 0000 000 011 000 000 36 2BWL

CLR Dn 0111 000 0 00000000 11 LG MOVEQ (Opt)
CLR <ea3> 0100 001 000 000 000 17 BWL

(continued)

A P P E N D I X F Instruction Sets 235

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

CMP
CMP
CMP
CMP
CMP
CMP

CMPA

CMPI

CMPM
CMPM
CMPM

CMP2
CMP2

OBCC

OBCS

OBEQ

OBF

OBGE

OBGT

OBHI

OBHS

OBLE

OBLO

OBLS

OBLT

OBMI

OBNE

OBNZ

OBPL

OBRA

OBT

OBVC

Opcode word

tdata, <ea3> 0000 110 ooo ooo ooo
<eaO>, on 1011 ooo ooo ooo ooo
<eaO>,An 1011 ooo 011 ooo ooo
(An)+, (An)+ 1011 000 100 001 000
(An)+, (An)+ 1011 000 101 001 000
(An)+, (An)+ 1011 000 110 001 000

<eaO>,An 1011 ooo 011 ooo ooo
tdata,<ea3> 0000 110 ooo ooo ooo
(An)+, (An)+ 1011 000 100 001 000
(An)+, (An)+ 1011 000 101 001 000
(An)+, (An)+ 1011 000 110 001 000

<ea7>, on
<ea7>,An

on, label

Dn, label

Dn, label

Dn, label

on, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

Dn, label

on, label

on, label

on, label

0000 000 011 000 000
0000 000 011 000 000

0101 0100 11 001 000

0101 0101 11 001 000

0101 0111 11 001 000

0101 0001 11 001 000

0101 1100 11 001 000

0101 1110 11 001 000

0101 0010 11 001 000

0101 0100 11 001 000

0101 1111 11 001 000

0101 0101 11 001 000

0101 0011 11 001 000

0101 1101 11 001 000

0101 1011 11 001 000

0101 0110 11 001 000

0101 0110 11 001 000

0101 1010 11 001 000

0101 0001 11 001 000

0101 0000 11 001 000

0101 1000 11 001 000

236 MPW 3.0 Assembler Reference

Group Flags .Range Equivalent

25 BWLG
22 BWL
27 WLG
6 WG
6 BG
6 LG

27 WL

25 BWL

6
6
6

w
B
L

37 2BWL
37 2BWL

13 w
13 w

13 w
13 w
13 w

13 w
13 w

13 WG

13 w

13 WG

13 w
13 w
13 w

13 w

13 WG

13 w

13 WG

13 w
13 w

CMPI

CMPA
CMPM
CMPM
CMPM

DBCC

DBCS

DBNE

DBF

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

DBVS

DBZ

DIVS
DIVS

DIVU
DIVU

EOR
EOR

EORI
EORI
EORI

EXG
EXG
EXG
EXG

EXT
EXT

EXTB
EXTB

EXTW

ILLEGAL

JMP

JSR

LEA

LINK
LINK

LSL
LSL
LSL

LSR
LSR
LSR

Operands

Dn, label

Dn, label

special
<ea6>, on

Opcode word

0101 1001 11 001 000

0101 0111 11 001 000

0100 110 001 000 000
1000 000 111 000 000

special 0100 110 001 ooo ooo
<ea6>,on 1000 ooo 011 ooo ooo
fdata,<ea3> 0000 101 ooo ooo ooo
on,<ea3> 1011 ooo 100 ooo ooo
fdata,<ea3> 0000 101 ooo ooo ooo
fdata,CCR 0000 101 000 111 100
fdata,SR 0000 101 001 111 100

An,Dn
on, on
An, An
on, An

Dn
Dn

Dn
Dn

Dn

<ea7>

<ea7>

<ea7>,An

An, fdata
An, fdata

fdata, Dn
on,Dn
<ea2>

fdata, on
on,Dn
<ea2>

1100 000 110 001 000
1100 000 101 000 000
1100 000 101 001 000
1100 000 110 001 000

0100 100 010 000 000
0100 100 011 000 000

0100 100 010 000 000
0100 100 111 000 000

0100 100 011 000 000

0100 101 011 111 100

0100 111 011 000 000

0100 111 010 000 000

0100 000 111 000 000

0100 111 001 010 000
0100 100 000 001 000

1110 000 100 001 000
1110 000 100 101 000
1110 001 111 000 000

1110 000 000 001 000
1110 000 000 101 000
1110 001 011 000 000

Group Flags Range Equivalent

13 w

13 w

38 2L
21 w

39 2L
21 w

DBEQ

25 BWLG EORI
23 BWL

25 BWL
1 B 8
1 PW 16

6
7
7
7

2
2

2
2

2

0

L
L
L
L

w
L

WG
2L

LG

15 w

15 w

46 L

4 w -16
4 L

10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w

EXT.W

EXT.L

(continued)

A P P E N D I X F Instruction Sets 237

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

MO VEA
MO VEA

MOVEC
MOVEC
MOVEC
MOVEC

MOVEM
MOVEM

MOVEP
MOVEP
MOVEP
MOVEP

MOVEQ
MOVEQ

MOVES
MOVES
MOVES
MOVES

MULS
MULS

MULU
MULU

NBCD

NEG

NEGX

NOP

Operands Opcode word Group Flags Range Equivalent

#data, on 0111 ooo o 00000000 11 LG -8 MOVEQ (Opt)
#data,<ea3> 0100 001 ooo ooo ooo
#data, An 1001 ooo 111 ooo ooo
<ea0>,<ea3> 0000 ooo ooo ooo ooo

18 BWLC 0 CLR (Opt)
28 WLG 0 SUBA.L (Op0
26 BWL

<eaO>, An 0000 ooo ooo ooo ooo 26 WLG MOVEA
An,USP 0100 111 001 100 000
USP,An 0100 111 001 101 000
<ea6>, CCR 0100 011 011 000 000
CCR, <ea3> 0100 001 011 000 000
<ea6>, SR 0100 010 011 ooo ooo
SR, <ea3> 0100 ooo 011 ooo ooo

2 PL
3 PL
15 w
16 1 w
15 PW
16 PW

#data,An 1001 ooo 111 ooo ooo 28 WLG 0 SUBA.L (Op0
<eaO>, An 0000 ooo ooo ooo ooo 26 WL

Rc,Dn
Re, An
on, Re
An, Re

<ea8>, rlist
rlist, <ea4>

d (An), on
on, d (An)
d(An),Dn
on, d (An)

:If data, on
:If data, An

on, <ea2>
An, <ea2>
<ea2>, on
<ea2>, An

special
<ea6>, on

special
<ea6>, Dn

<ea3>

<ea3>

<ea3>

0100 111 001 111 010
0100 111 001 111 010
0100 111 001 111 011
0100 111 001 111 011

0100 110 010 000 000
0100 100 010 000 000

0000 000 100 001 000
0000 000 110 001 000
0000 000 101 001 000
0000 000 111 001 000

0111 000 0 00000000
1001 000 111 000 000

42 lPL
42 lPL
42 lPL
42 lPL

29 WL
30 WL

5 w
5 w
5 L
5 L

11 L

28 LG

0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL
0000 111 000 000 000 43 lPBWL

0100 110 000 000 000 38 2L
1100 000 111 000 000 21 w

0100 110 000 000 000 39 2L
1100 000 011 000 000 21 w

0100 100 000 000 000 15 B

0100 010 000 000 000 17 BWL

0100 000 000 000 000 17 BWL

0100 111 001 110 001 0

-8
0 SUBA. L (Opt)

238 MPW 3.0 Assembler Reference

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

NOT

OR
OR
OR

ORI
ORI
ORI

PACK

PEA

RESET

ROL
ROL
ROL

ROR
ROR
ROR

ROXL
ROXL
ROXL

ROXR
ROXR
ROXR

RTD

RTE

RTM
RTM

RTR

RTS

SBCD
SBCD

sec

scs

Operands Opcode word

<ea3> 0100 011 000 000 000

#data, <ea3> 0000 ooo ooo ooo ooo
<ea6>,Dn 1000 ooo ooo ooo ooo
Dn,<ea2> 1000 ooo 100 ooo ooo
#data, <ea3> 0000 ooo ooo ooo ooo
#data, CCR 0000 000 000 111 100
#data, SR 0000 000 001 111 100

special 1000 ooo 101 ooo ooo
<eal>

#data, Dn
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data, on
Dn,Dn
<ea2>

#data

Dn
An

0100 100 001 000 000

0100 111 001 110 000

1110 000 100 011 000
1110 000 100 111 000
1110 011 011 000 000

1110 000 000 011 000
1110 000 000 111 000
1110 011 111 000 000

1110 000 100 010 000
1110 000 100 110 000
1110 010 111 000 000

1110 000 000 010 000
1110 000 000 110 000
1110 010 011 000 000

0100 111 001 110 100

0100 111 001 110 011

0000 011 011 000 000
0000 011 011 001 000

0100 111 001 110 111

0100 111 001 110 101

on,Dn 1000 ooo 100 ooo ooo
-(An) ,-(An) 1000 ooo 100 001 ooo
<ea3> 0101 0100 11 ooo coo
<ea3> 0101 0101 11 ooo ooo

Group Flags Range Equivalent

17 BWL

25 BWLG ORI
22 BWL
23 BWL

25 BWL
1 B 8
1 PW 16

44 2 16

45

0

L

p

10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w
10 BWL 3
9 BWL
15 w

10 BWL 3
9 BWL
15 w
1 lW -16

0

48
48

0

0

p

2
2

6 B
6 B

15 B

15 B

(continued)

A P P E N D I X F Instruction Sets 239

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

SEQ

SF

SGE

SGT

SHI

SHS

SLE

SLO

SLS

SLT

SMI

SNE

SNZ

SPL

ST

STOP

SUB
SUB
SUB
SUB
SUB

SUBA
SUBA

SUBI

SUBQ

SUBX
SUBX

SVC

svs
SWAP

TAS

TCC

Operands

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

<ea3>

4tdata

- 4tdata, <eal>
*data, <ea3>
Dn, <ea2>
<ea()>, Dn
<ea()>, An

4tdata, <eal>
<eaO>, An

*data, <eaJ>

4tdata, <eal>

Opcode word

0101 0111 11 000 000

0101 0001 11 000 000

0101 1100 11 000 000

0101 1110 11 000 000

0101 0010 11 000 000

0101 0100 11 000 000

0101 1111 11 000 000

0101 0101 11 000 000

0101 0011 11 000 000

0101 1101 11 000 000

0101 1011 11 000 000

0101 0110 11 000 000

0101 0110 11 000 000

0101 1010 11 000 000

0101 0000 11 000 000

0100 111 001 110 010

0101 000 100 000 000
0000 010 000 000 000
1001 000 100 000 000
1001 000 000 000 000
1001 000 011 000 000

0101 000 100 000 000
1001 000 011 000 000

0000 010 000 000 000

0101 000 100 000 000

Dn,on 1001 ooo 100 ooo ooo
-CAn),-(An) 1001 ooo 100 001 ooo
<ea3> 0101 1000 11 ooo ooo
<ea3> 0101 1001 11 ooo ooo
Dn 0100 100 001 000 000

<ea3> 0100 101 011 ooo ooo
0101 0100 11111 100

240 MPW 3.0 Assembler Reference

Group Flags Range Equivalent

15 B

15 B

15 B

15 B

15 B

15 BG

15 B

15 BG

15 B

15 B

15 B

15 B

15 BG

15 B

15 B

1 p 16

24 BWLG 3
25 BWLG
23 BWL
22 BWL
27 WLG

24 WLG 3
27 WL

25 BWL

24 BWL 3

8 BWL
8 BWL

15 B

15 B

2 w
15 B

0 2

sec

scs

SNE

SUBQ (Opt)
SUBI

SUBA

SUBQ (Opt)

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode Operands Opcode word Group Flags Range Equivalent

TCS 0101 0101 11111 100 0 2

TD IVS special 0100 110 001 000 000 40 2L

TDIVU special 0100 110 001 000 000 41 2L

TEQ 0101 0111 11111 100 0 2

TF 0101 0001 11111 100 0 2

TGE 0101 1100 11111 100 0 2

TGT 0101 1110 11111 100 0 2

THI 0101 0010 11111 100 0 2

THS 0101 0100 11111 100 0 2G TCC

TLE 0101 1111 11111 100 0 2

TLO 0101 0101 11111 100 0 2G TCS

TLS 0101 0011 11111 100 0 2

TLT 0101 1101 11111 100 0 2

TMI 0101 1011 11111 100 0 2

TNE 0101 0110 11111 100 0 2

TNZ 0101 0110 11111 100 0 2G TNE

TPCC #data 0101 0100 11111 010 1 2W -16
TPCC #data 0101 0100 11111 011 1 2L

TPCS #data 0101 0101 11111 010 1 2W -16
TPCS #data 0101 0101 11111 011 1 2L

TPEQ #data 0101 0111 11111 010 1 2W -16
TPEQ #data 0101 0111 11111 011 1 2L

TPF #data 0101 0001 11111 010 1 2W -16
TPF #data 0101 0001 11111 011 1 2L

TPGE #data 0101 1100 11111 010 1 2W -16
TPGE #data 0101 1100 11111 011 1 2L

TPGT #data 0101 1110 11111 010 1 2W -16
TPGT #data 0101 1110 11111 011 1 2L

TPHI #data 0101 0010 11111 010 1 2W -16
TPHI #data 0101 0010 11111 011 1 2L

TPHS #data 0101 0100 11111 010 1 2WG -16 TPCC
TPHS #data 0101 0100 11111 011 1 2LG TPCC

(continued)

A P P E N D I X F Instruction Sets 241

• Table F-7 (continued) MC68000, MC68010, and MC68020/MC68030 instructions

Opcode

TPL

TPLE
TPLE

TPLO
TPLO

TPLS
TPLS

TPLT
TPLT

TPMI
TPMI

TPNE
TPNE

TPNZ
TPNZ

TPPL
TPPL

TPT
TPT

TPVC
TPVC

TPVS
TPVS

TPZ
TPZ

TRAP

TRAPV

TST

TT

TVC

TVS

TZ

UNLK

UNPK

Operands

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata
tdata

tdata

<ea3>

An

special

Opcode word

0101 1010 11111 100

0101 1111 11111 010
0101 1111 11111 011

0101 0101 11111 010
0101 0101 11111 011

0101 0011 11111 010
0101 0011 11111 011

0101 1101 11111 010
0101 1101 11111 011

0101 1011 11111 010
0101 1011 11111 011

0101 0110 11111 010
0101 0110 11111 011

0101 0110 11111 010
0101 0110 11111 011

0101 1010 11111 010
0101 1010 11111 011

0101 0000 11111 010
0101 0000 11111 011

0101 1000 11111 010
0101 1000 11111 011

0101 1001 11111 010
0101 1001 11111 011

0101 0111 11111 010
0101 0111 11111 011

0100 111 001 00 0000

0100 111 001 110 110

0100 101 000 000 000

0101 0000 11111 100

0101 1000 11111 100

0101 1001 11111 100

0101 0111 11111 100

0100 111 001 011 000

1000 000 110 000 000

242 MPW 3.0 Assembler Reference

Group Flags Range Equivalent

0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

12

0

2

2W
2L

-16

2WG -16 TPCS
2LG TPCS

2W
2L

2W
2L

2W
2L

2W
2L

-16

-16

-16

-16

2WG -16 TPNE
2LG TPNE

2W
2L

2W
2L

2W
2L

2W
2L

2W
2L

-16

-16

-16

-16

-16 TPEQ
TPEQ

4

17 BWL

0

0

0

0

2

44

2

2

2

2

2

TEQ

16

• Table F-8 MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FABS FPn 000 000 000 0011000 Genl 1 x
FABS FPn, FPn 000 000 000 0011000 Genl 2 x
FABS <ea6>, FPn 010 000 000 0011000 Gen2 3 BWLSDXK
FACOS FPn 000 000 000 0011100 Genl 1 x
FACOS FPn, FPn 000 000 000 0011100 Genl 2 x
FACOS <ea6>, FPn 010 000 000 0011100 Gen2 3 BWLSDXK
FADD FPn 000 000 000 0100010 Genl 1 XG FADD FPn, FPn
FADD FPn, FPn 000 000 000 0100010 Genl 2 x
FADD <ea6>, FPn 010 000 000 0100010 Gen2 3 BWLSDXK
FAS IN FPn 000 000 000 0001100 Genl 1 x
FAS IN FPn, FPn 000 000 000 0001100 Genl 2 x
FAS IN <ea6>, FPn 010 000 000 0001100 Gen2 3 BWLSDXK
FATAN FPn 000 000 000 0001010 Genl 1 x
FATAN FPn, FPn 000 000 000 0001010 Genl 2 x
FATAN <ea6>, FPn 010 000 000 0001010 Gen2 3 BWLSDXK
FATANH FPn 000 000 000 0001101 Genl 1 x
FA TANH FPn, FPn 000 000 000 0001101 Genl 2 x
FATANH <ea6>, FPn 010 000 000 0001101 Gen2 3 BWLSDXK
FBEQ label 1111 000 01 0 000001 Bee 4 WL
FBF label 1111 000 01 0 000000 Bee 4 WL
FBGE label 1111 000 01 0 010011 Bee 4 WL
FBGL label 1111 000 01 0 010110 Bee 4 WL
FBGLE label 1111 000 01 0 010111 Bee 4 WL
FBGT label 1111 000 01 0 010010 Bee 4 WL
FBLE label 1111 000 01 0 010101 Bee 4 WL
FBLT label 1111 000 01 0 010100 Bee 4 WL
FBNE label 1111 000 01 0 001110 Bee 4 WL
FBNGE label 1111 000 01 0 011100 Bee 4 WL
FBNGL label 1111 000 01 0 011001 Bee 4 WL
FBNGLE label 1111 000 01 0 011000 Bee 4 WL
FBNGT label 1111 000 01 0 011101 Bee 4 WL
FBNLE label 1111 000 01 0 011010 Bee 4 WL
FBNLT label 1111 000 01 0 011011 Bee 4 WL
FBOGE label 1111 000 01 0 000011 Bee 4 WL
FB_OGL label 1111 000 01 0 000110 Bee 4 WL
FBOGT label 1111 000 01 0 000010 Bee 4 WL
FBOLE label 1111 000 01 0 000101 Bee 4 WL
FBOLT label 1111 000 01 0 000111 Bee 4 WL
FBRA label 1111 000 01 0 001111 Bee 4 WLGFBT
FBSEQ label 1111 000 01 0 010001 Bee 4 WL
FBSF label 1111 000 01 0 010000 Bee 4 WL
FBSNE label 1111 000 01 0 011110 Bee 4 WL
FBST label 1111 000 01 0 011111 Bee 4 WL

(continued)

A P P E N D I X F Instruction Sets 243

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FBT label 1111 000 01 0 001111 Bee 4 WL
FBUEQ label 1111 000 01 0 001001 Bee 4 WL
FBUGE label 1111 000 01 0 001011 Bee 4 WL
FBUGT label 1111 000 01 0 001010 Bee 4 WL
FBULE label 1111 000 01 0 001101 Bee 4 WL
FBULT label 1111 000 01 0 001100 Bee 4 WL
FBUN label 1111 000 01 0 001000 Bee 4 WL
FCMP FPn, FPn 000 000 000 0111000 Genl 2 x
FCMP <ea6>, FPn 010 000 000 0111000 Gen2 3 BWLSDXK
FCOS FPn 000 000 000 0011101 Genl 1 x
FCOS FPn, FPn 000 000 000 0011101 Genl 2 x
FCOS <ea6>, FPn 010 000 000 0011101 Gen2 3 BWLSDXK
FCOSH FPn 000 000 000 0011001 Genl 1 x
FCOSH FPn, FPn 000 000 000 0011001 Genl 2 x
FCOSH <ea6>, FPn 010 000 000 0011001 Gen2 3 BWLSDXK
FDBEQ Dn, label 0000000000 000001 DBcc 5 w
FDBF Dn, label 0000000000 000000 DBcc 5 w
FDBGE Dn, label 0000000000 010011 DBcc 5 w
FDBGL Dn, label 0000000000 010110 DBcc 5 w
FD BG LE Dn, label 0000000000 010111 DB cc 5 w
FDBGT Dn, label 0000000000 010010 DB cc 5 w
FDBLE Dn, label 0000000000 010101 DB cc 5 w
FD BLT Dn, label 0000000000 010100 DB cc 5 w
FDBNE Dn, label 0000000000 001110 DB cc 5 w
FDBNGE Dn, label 0000000000 011100 DB cc 5 w
FDBNGL Dn, label 0000000000 011001 DB cc 5 w
FDBNGLE Dn, label 0000000000 011000 DB cc 5 w
FDBNGT on, label 0000000000 011101 DB cc 5 w
FDBNLE Dn, label 0000000000 011010 DB cc 5 w
FDBNLT Dn, label 0000000000 011011 DBcc 5 w
FD BOGE Dn, label 0000000000 000011 DB cc 5 w
FDBOGL Dn, label 0000000000 000110 DBcc 5 w
FDBOGT Dn, label 0000000000 000010 DBcc 5 w
FD BOLE Dn, label 0000000000 000101 DB cc 5 w
FD BOLT Dn, label 0000000000 000100 DBcc 5 w
FDBOR Dn, label 0000000000 000111 DB cc 5 w
FD BRA Dn, label 0000000000 001111 DB cc 5 WGFDBT
FDBSEQ Dn, label 0000000000 010001 DB cc 5 w
FDBSF Dn, label 0000000000 010000 DBcc 5 w
FDBSNE Dn, label 0000000000 011110 DB cc 5 w
FDBST Dn, label 0000000000 011111 DB cc 5 w
FDBT Dn, label 0000000000 001111 DB cc 5 w
FDBUEQ Dn, label 0000000000 001001 DB cc 5 w
FDBUGE Dn, label 0000000000 001011 DBcc 5 w
FDBUGT Dn, label 0000000000 001010 DB cc 5 w

244 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FDBULE Dn, label 0000000000 001101 DBcc 5 w
FD BULT Dn, label 0000000000 001100 DB cc 5 w
FD BUN Dn, label 0000000000 001000 DBcc 5 w
FDIV FPn, FPn 000 000 000 0100000 Genl 2 x
FDIV <ea6>, FPn 010 000 000 0100000 Gen2 3 BWLSDXK
FETOX FPn 000 000 000 0010000 Genl 1 x
FETOX FPn, FPn 000 000 000 0010000 Genl 2 x
FETOX <ea6>, FPn 010 000 000 0010000 Gen2 3 BWLSDXK
FETOXMl FPn 000 000 000 0001000 Genl 1 x
FETOXMl FPn, FPn 000 000 000 0001000 Genl 2 x
FETOXMl <ea6>, FPn 010 000 000 0001000 Gen2 3 BWLSDXK
FGETEXP FPn 000 000 000 0011110 Genl 1 x
FGETEXP FPn,FPn 000 000 000 0011110 Genl 2 x
FGETEXP <ea6>, FPn 010 000 000 0011110 Gen2 3 BWLSDXK
FGETMAN FPn 000 000 000 0011111 Genl 1 x
FGETMAN FPn,FPn 000 000 000 0011111 Genl 2 x
FGETMAN <ea6>, FPn 010 000 000 0011111 Gen2 3 BWLSDXK
FINT FPn 000 000 000 0000001 Genl 1 x
FINT FPn, FPn 000 000 000 0000001 Genl 2 x
FINT <ea6>, FPn 010 000 000 0000001 Gen2 3 BWLSDXK
FINTRZ FPn 000 000 000 0000011 Genl 1 x
FINTRZ FPn, FPn 000 000 000 0000011 Genl 2 x
FINTRZ <ea6>, FPn 010 000 000 0000011 Gen2 3 BWLSDXK
FLOGlO FPn 000 000 000 0010101 Genl 1 x
FLOGlO FPn, FPn 000 000 000 0010101 Genl 2 x
FLOGlO <ea6>, FPn 010 000 000 0010101 Gen2 3 BWLSDXK
FLOG2 FPn 000 000 000 0010110 Genl 1 x
FLOG2 FPn, FPn 000 000 000 0010110 Genl 2 x
FLOG2 <ea6>, FPn 010 000 000 0010110 Gen2 3 BWLSDXK
FLOGN FPn 000 000 000 0010100 Genl 1 x
FLOGN FPn, FPn 000 000 000 0010100 Genl 2 x
FLOGN <ea6>, FPn 010 000 000 0010100 Gen2 3 BWLSDXK
FLOGNPl FPn 000 000 000 0000110 Genl 1 x
FLOGNPl FPn,FPn 000 000 000 0000110 Genl 2 x
FLOGNPl <ea6>, FPn 010 000 000 0000110 Gen2 3 BWLSDXK
FMOD FPn, FPn 000 000 000 0100001 Genl 2 x
FMOD <ea6>, FPn 010 000 000 0100001 Gen2 3 BWLSDXK
FMOVE special 011 000 000 0000000 21 P {k-factor}
FMOVE FPn,FPn 000 000 000 0000000 Genl 2 x
FMOVE FPn,<ea3> 011 000 000 0000000 Gen3 6 BWLSDX
FMOVE <ea 6>, FPn 010 000 000 0000000 Gen2 3 BWLSDXK
FMOVE FPCR, <ea3> 101 100 0000000000 Gen3 7 L
FMOVE FPSR, <ea3> 101 010 0000000000 Gen3 7 L
FMOVE FPIAR, <ea3> 101 001 0000000000 Gen3 7 L

(continued)

A P P E N D I X F Instruction Sets 245

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FMOVE FPIAR,An 101 001 0000000000 Gen3 7 L
FMOVE <ea6>, FPCR 100 100 0000000000 Gen2 8 L
FMOVE <ea6>, FPSR 100 010 0000000000 Gen2 8 L
FMOVE <ea6>, FPIAR 100 001 0000000000 Gen2 8 L
FMOVE An, FPIAR 100 001 0000000000 Gen2 8 L
FMOVECR #data, FPn 010111 000 0000000 Genl 9 x
FMOVEM <ea8>, f rlist 110 10 000 00000000 Gen2 10 x
FMOVEM frlist, <ea4> 111 00 000 00000000 Gen3 11 x
FMOVEM <ea8>, on 110 11 000 00000000 Gen2 12 x
FMOVEM on, <ea4> 111 01 000 00000000 Gen3 13 x
FMOVEM <eaO>, fer list 11 0 000 0000000000 Gen2 14 L
FMOVEM fcr/ist, <eal > 11 1 000 0000000000 Gen3 15 L
FMUL FPn 000 000 000 0100011 Genl 1 XG FMUL FPn, FPn

FMUL FPn, FPn 000 000 000 0100011 Genl 2 x
FMUL <ea6>, FPn 010 000 000 0100011 Gen2 3 BWLSDXK
FNEG FPn 000 000 000 0011010 Genl 1 x
FNEG FPn, FPn 000 000 000 0011010 Genl 2 x
FNEG <ea6>, FPn 010 000 000 0011010 Gen2 3 BWLSDXK
FNOP 0000000000000000 0
FREM FPn, FPn 000 000 000 0100101 Genl 2 x
FREM <ea6>, FPn 010 000 000 0100101 Gen2 3 BWLSDXK
FRESTORE <ea8> 1111 000 101 000 000 Rest 16 p
FSA VE <ea4> 1111 000 100 000 000 Save 16 p
FSCALE FPn, FPn 000 000 000 0100110 Genl 2 x
FSCALE <ea6>, FPn 010 000 000 0100110 Gen2 3 BWLSDXK
FSEQ <ea3> 0000000000 000001 Sec 17 B
FSF <ea3> 0000000000 000000 Sec 17 B
FSGE <ea3> 0000000000 010011 Sec 17 B
FSGL <ea3> 0000000000 010110 Sec 17 B
FSGLE <ea3> 0000000000 010111 Sec 17 B
FSGT <ea3> 0000000000 010010 Sec 17 B
FSLE <ea3> 0000000000 010101 Sec 17 B
FSLT <ea3> 0000000000 010100 Sec 17 B
FSNE <ea3> 0000000000 001110 Sec 17 B
FSNGE <ea3> 0000000000 011100 Sec 17 B
FSNGL <ea3> 0000000000 011001 Sec 17 B
FSNGLE <ea3> 0000000000 011000 Sec 17 B
FSNGT <ea3> 0000000000 011101 Sec 17 B
FSNLE <ea3> 0000000000 011010 Sec 17 B
FSNLT <ea3> 0000000000 011011 Sec 17 B
FSOGE <ea3> 0000000000 000011 Sec 17 B
FSOGL <ea3> 0000000000 000110 Sec 17 B
FSOGT <ea3> 0000000000 000010 Sec 17 B
FSOLE <ea3> 0000000000 000101 Sec 17 B
FSOLT <ea3> 0000000000 000100 Sec 17 B

246 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opa>deword Cp type Group Flags Equivalent

FSOR <ea3> 0000000000 000111 Sec 17 B
FSSEQ <ea3> 0000000000 010001 Sec 17 B
FSSF <ea3> 0000000000 010000 Sec 17 B
FSSNE <ea3> 0000000000 011110 Sec 17 B
FSST <ea3> 0000000000 011111 Sec 17 B
FST <ea3> 0000000000 001111 Sec 17 B
FSUEQ <ea3> 0000000000 001001 Sec 17 B
FSUGE <ea3> 0000000000 001011 Sec 17 B
FSUGT <ea3> 0000000000 001010 Sec 17 B
FSULE <ea3> 0000000000 001101 Sec 17 B
FSULT <ea3> 0000000000 001100 Sec 17 B
FSUN <ea3> 0000000000 001000 Sec 17 B
FSGLDIV FPn, FPn 000 000 000 0100100 Genl 2 x
FSGLDIV <ea6>, FPn 010 000 000 0100100 Gen2 3 BWLSDXK
FSGLMUL FPn, FPn 000 000 000 0100111 Genl 2 x
FSGLMUL <ea6>, FPn 010 000 000 0100111 Gen2 3 BWLSDXK
FSIN FPn 000 000 000 0001110 Genl 1 x
FSIN FPn, FPn 000 000 000 0001110 Genl 2 x
FSIN <ea6>, FPn 010 000 000 0001110 Gen2 3 BWLSDXK
FSINCOS special 000 000 000 0110 000 22 BWLSDXK
FSINH FPn 000 000 000 0000010 Genl 1 x
FSINH FPn, FPn 000 000 000 0000010 Genl 2 x
FSINH <ea6>, FPn 010 000 000 0000010 Gen2 3 BWLSDXK
FSQRT FPn 000 000 000 0000100 Genl 1 x
FSQRT FPn, FPn 000 000 000 0000100 Genl 2 x
FSQRT <ea6>, FPn 010 000 000 0000100 Gen2 3 BWLSDXK
FSUB FPn, FPn 000 000 000 0101000 Genl 2 x
FSUB <ea6>, FPn 010 000 000 0101000 Gen2 3 BWLSDXK
FTAN FPn 000 000 000 0001111 Genl 1 x
FTAN FPn, FPn 000 000 000 0001111 Genl 2 x
FTAN <ea6>, FPn 010 000 000 0001111 Gen2 3 BWLSDXK
FTANH FPn 000 000 000 0001001 Genl 1 x
FT ANH FPn, FPn 000 000 000 0001001 Genl 2 x
FTANH <ea6>, FPn 010 000 000 0001001 Gen2 3 BWLSDXK
FTENTOX FPn 000 000 000 0010010 Genl 1 x
FT ENT OX FPn,FPn 000 000 000 0010010 Genl 2 x
FTENTOX <ea6>, FPn 010 000 000 0010010 Gen2 3 BWLSDXK
FTEST FPn 000 000 000 0111010 Genl 20 x
FTEST <ea6> 010 000 000 0111010 Gen2 20 BWLSDXK
FTEQ 0000000000 000001 Teel 18
FTF 0000000000 000000 Teel 18
FTGE 0000000000 010011 Teel 18
FTGL 0000000000 010110 Teel 18
FTGLE 0000000000 010111 Teel 18

(continued)

A P P E N D I X F Instruction Sets 247

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FTGT 0000000000 010010 Teel 18
FTLE 0000000000 010101 Teel 18
FTLT 0000000000 010100 Teel 18
FTNE 0000000000 001110 Teel 18
FTNGE 0000000000 011100 Teel 18
FTNGL 0000000000 011001 Teel 18
FTNGLE 0000000000 011000 Teel 18
FTNGT 0000000000 011101 Teel 18
FTNLE 0000000000 011010 Teel 18
FTNLT 0000000000 011011 Teel 18
FT OGE 0000000000 000011 Teel 18
FTOGL 0000000000 000110 Teel 18
FTOGT 0000000000 000010 Teel 18
FT OLE 0000000000 000101 Teel 18
FTOLT 0000000000 000100 Teel 18
FTOR 0000000000 000111 Teel 18
FT SEQ 0000000000 010001 Teel 18
FTSF 0000000000 010000 Teel 18
FTSNE 0000000000 011110 Teel 18
FTST 0000000000 011111 Teel 18
FTT 0000000000 001111 Teel 18
FTUEQ 0000000000 001001 Teel 18
FTUGE 0000000000 001011 Teel 18
FTUGT 0000000000001010 Teel 18
FTULE 0000000000 001101 Teel 18
FTULT 0000000000 001100 Teel 18
FTUN 0000000000 001000 Teel 18
FTPEQ :tdata 0000000000 000001 Tcc2 19 WL
FTPF #data 0000000000 000000 Tcc2 19 WL
FTP GE :tdata 0000000000 010011 Tcc2 19 WL
FTPGL :tdata 0000000000 010110 Tcc2 19 WL
FTPGLE :tdata 0000000000 010111 Tcc2 19 WL
FTP GT :tdata 0000000000 010010 Tcc2 19 WL
FTP LE :tdata 0000000000 010101 Tcc2 19 WL
FTP LT :tdata 0000000000 010100 Tcc2 19 WL
FTPNE #data 0000000000 001110 Tcc2 19 WL
FTPNGE tdata 0000000000 011100 Tcc2 19 WL
FTPNGL :tdata 0000000000 011001 Tcc2 19 WL
FTPNGLE :tdata 0000000000 011000 Tcc2 19 WL
FTPNGT :tdata 0000000000 011101 Tcc2 19 WL
FTPNLE :tdata 0000000000 011010 Tcc2 19 WL
FTPNLT :tdata 0000000000 011011 Tcc2 19 WL
FTP OGE #data 0000000000 000011 Tcc2 19 WL
FTPOGL #data 0000000000 000110 Tcc2 19 WL
FTPOGT tdata 0000000000 000010 Tcc2 i9 WL

248 MPW 3.0 Assembler Reference

• Table F-8 (continued) MC68881 instructions

Opcode Operands Opcode word Cp type Group Flags Equivalent

FTP OLE #data 0000000000 000101 Tcc2 19 WL
FTPOLT #data 0000000000 000100 Tcc2 19 WL
FTP OR #data 0000000000 000111 Tcc2 19 WL
FTP SEQ #data 0000000000 010001 Tcc2 19 WL
FTP SF #data 0000000000 010000 Tec2 19 WL
FTPSNE #data 0000000000 011110 Tcc2 19 WL
FTP ST #data 0000000000 011111 Tcc2 19 WL
FTPT #data 0000000000 001111 Tcc2 19 WL
FTPUEQ #data 0000000000 001001 Tcc2 19 WL
FTPUGE #data 0000000000 001011 Tcc2 19 WL
FTPUGT #data 0000000000 001010 Tcc2 19 WL
FT PULE #data 0000000000 001101 Tcc2 19 WL
FTPULT #data 0000000000 001100 Tcc2 19 WL
FT PUN #data 0000000000 001000 Tcc2 19 WL
FTWOTOX FPn 000 000 000 0010001 Genl 1 x
FTWOTOX FPn, FPn 000 000 000 0010001 Genl 2 x
FTWOTOX <ea6>, FPn 010 000 000 0010001 Gen2 3 BWLSDXK

• Table F-9 MC68851 instructions

Opcode Operands Opcode Word CpType Group Flags

PEAS label 1111 000 01 0 000110 Bee 4
PEAC label 1111 000 01 0 000111 Bee 4
PEES label 1111 000 01 0 000000 Bee 4
PEEC label 1111 000 01 0 000001 Bee 4
PECS label 1111 000 01 0 001110 Bee 4
PECC label 1111 000 01 0 001111 Bee 4
PEGS label 1111 000 01 0 001100 Bee 4
PEGC label 1111 000 01 0 001101 Bee 4
PEIS label 1111 000 01 0 001010 Bee 4
PEIC label 1111 000 01 0 001011 Bee 4
PELS label 1111 000 01 0 000010 Bee 4
PELC label 1111 000 01 0 000011 Bee 4
PESS label 1111 000 01 0 000100 Bee 4
PESC label 1111 000 01 0 000101 Bee 4
PEWS label 1111 000 01 0 001000 Bee 4
PEWC label 1111 000 01 0 001001 Bee 4
PDEAS Dn, label 0000000000 000110 DBec 5
PDEAC Dn, label 0000000000 000111 DBcc 5
PDEBS Dn, label 0000000000 000000 DB cc 5
PD BBC Dn, label 0000000000 000001 DB cc 5
PDBCS Dn, label 0000000000 001110 DB cc 5

(continued)

A P P E N D I X F Instruction Sets 249

• Table F-9 (continued) MC68851 instructions

Opcode Operands Opcode Word Cp Type Group Flags

PDBCC Dn, label 0000000000 001111 DBcc 5
PDBGS Dn, label 0000000000 001100 DBcc 5
PDBGC Dn, label 0000000000 001101 DB cc 5
PDBIS Dn, label 0000000000 001010 DB cc 5
PDBIC Dn, label 0000000000 001011 DB cc 5
PDBLS Dn, label 0000000000 000010 DB cc 5
PDBLC Dn, label 0000000000 000011 DB cc 5
PDBSS Dn, label 0000000000 000100 DB cc 5
PDBSC Dn, label 0000000000 000101 DB cc 5
PDBWS Dn, label 0000000000 001000 DB cc 5
PDBWC Dn, label 0000000000 001001 DB cc 5
PFLUSH special 001 100 0 0000 00000 10
PFLUSHA 001 001 0 0000 00000 Genl 0
PFLUSHR <ea12> 101 0000000000000 Gen2 2 D
PFLUSHS special 001 101 0 0000 00000 10
PLOADR special 001 000 1 0000 00000 11
PLOADW special 001 000 0 0000 00000 11
PMOVE <eaO>, BADn 011 000 0 0000000 00 Gen2 12 w
PMOVE BADn, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, BACn 011 000 0 0000000 00 Gen2 12 w
PMOVE BAcn, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, PSR 011 000 0 0000000 00 Gen2 12 w
PMOVE PSR, <eal> 011 000 1 0000000 00 Gen3 12 w
PMOVE <eaO>, TC 010 000 0 000000000 Gen2 12 L
PMOVE TC, <eal> 010 000 1 000000000 Gen3 12 L
PMOVE <eaO>, XRP 010 000 0 000000000 Gen2 12 D
PMOVE XRP, <eal> 010 000 1 000000000 Gen3 12 D
PMOVE <eaO>, SCCCAL 010 000 0 000000000 Gen2 12 B
PMOVE SCCCAL, <eal> 010 000 1 000000000 Gen3 12 B
PMOVE <eaO>, VAL 010 000 0 000000000 Gen2 12 B
PMOVE VAL, <eal> 010 000 1 000000000 Gen3 12 B
PMOVE <eaO>, AC 010 000 0 000000000 Gen2 12 w
PMOVE AC, <eal> 010 000 1 000000000 Gen3 12 w
PMOVE PCSR, <eal> 011 000 1 0000000 00 Gen3 12 w
PRES TORE <eaB> 1111 000 101 000 000 Rest 6
PSAVE <ea4> 1111 000 100 000 000 Save 6
PSAS <ea3> 0000000000 000110 Sec 7 B
PSAC <ea3> 0000000000 000111 Sec 7 B
PSBS <ea3> 0000000000 000000 Sec 7 B
PSBC <ea3> 0000000000 000001 Sec 7 B
PSCS <ea3> 0000000000 001110 Sec 7 B
PSCC <ea3> 0000000000 001111 Sec 7 B
PSGS <ea3> 0000000000 001100 Sec 7 B
PSGC <ea3> 0000000000 001101 Sec 7 B

250 MPW 3.0 Assembler Reference

• Table F-9 (continued) MC68851 instructions

Opcode Operands Opcode Word CpType Group Flags

PSIS <ea3> 0000000000 001010 Sec 7 B
PSIC <ea3> 0000000000 001011 Sec 7 B
PSLS <ea3> 0000000000 000010 Sec 7 B
PSLC <ea3> 0000000000 000011 Sec 7 B
PSSS <ea3> 0000000000 000100 Sec 7 B
PSSC <ea3> 0000000000 000101 Sec 7 B
PSWS <ea3> 0000000000 001000 Sec 7 B
PSWC <ea3> 0000000000 001001 Sec 7 B
PTESTR special 100 000 1 0000 00000 13
PTESTW special 100 000 0 0000 00000 13
PTAS 0000000000 000110 Teel 8
PTAC 0000000000 000111 Teel 8
PTBS 0000000000 000000 Teel 8
PTBC 0000000000 000001 Teel 8
PTCS 0000000000 001110 Teel 8
PTCC 0000000000 001111 Teel 8
PTGS 0000000000 001100 Teel 8
PTGC 0000000000 001101 Teel ·s
PTIS 0000000000 001010 Teel 8
PTIC 0000000000 001011 Teel 8
PTLS 0000000000 000010 Teel 8
PTLC 0000000000 000011 Teel 8
PTSS 0000000000 000100 Teel 8
PTSC 0000000000 000101 Teel 8
PTWS 0000000000 001000 Teel 8
PTWC 0000000000 001001 Teel 8
PTPAS #data 0000000000 000110 Tcc2 9 WL
PT PAC #data 0000000000 000111 Tcc2 9 WL
PTPBS #data 0000000000 000000 Tcc2 9 WL
PTPBC #data 0000000000 000001 Tcc2 9 WL
PTPCS #data 0000000000 001110 Tcc2 9 WL
PTPCC #data 0000000000 001111 Tcc2 9 WL
PTPGS #data 0000000000 001100 Tcc2 9 WL
PTPGC #data 0000000000 001101 Tcc2 9 WL
PTPIS #data 0000000000 001010 Tcc2 9 WL
PTPIC #data 0000000000 001011 Tcc2 9 WL
PTPLS #data 0000000000 000010 Tcc2 9 WL
PT PLC #data 0000000000 000011 Tcc2 9 WL
PTPSS #data 0000000000 000100 Tcc2 9 WL
PTPSC #data 0000000000 000101 Tcc2 9 WL
PTPWS #data 0000000000 001000 Tcc2 9 WL
PTPWC #data 0000000000 001001 Tcc2 9 WL
PVALID VAL, <eaJJ> 001 010 0000000000 Gen3 3 L
PVALID An, <eall> 001 011 0000000000 Gen3 3 L

A P P E N D I X F Instruction Sets 251

Appendix G Assembler Command Syntax

THIS APPENDIX DEFINES 1HE COMMAND SYNTAX ACCEPTED BY the MPW Assembler. It
includes a detailed listing of the invocation options. •

253

Assembler command syntax

Syntax

Description

Input

Output

Diagnostics

Status

Options

Asm [option .. .] (file .. .]

Assembles the specified assembly-language source files. One or more filenames
may be specified. If no filenames are specified, standard input is assembled and
the file a.o is created. By convention, assembly-language source filenames end in
the suffix .a. Each file is assembled separately-assembling file Name.a creates
object file Name.a.o. The object filename can be changed with the -o option.

If no filenames are specified, standard input is assembled. (End-of-file is
indicated by typing Command-Enter.)

If either the -I or -s option is specified, an assembler listing is generated. If
standard input is used for the source file, the listing is written to standard output.
If the input is taken from file Name.a, the listing is written to Name.a.1st. The
listing filename can be changed with the -lo option.

Errors and warnings are written to diagnostic output. If the -p option is
specified, progress and summary information is also written to diagnostic
output.

The following status values are returned to the Shell:

0 No errors detected in any of the files assembled
1 Parameter or option errors
2 Errors detected
3 Execution terminated

Except for the -case on option, options may appear in any order.

-addrsize size
Set address displays in the listing to size digits (values 4 to 8 are allowed).
The default is 5 digits.

-blksize blocks
Set the Assembler's text file VO buffer size to blocks• 512 bytes. Values 6 to
62 are allowed. Odd values are made even by reducing the value by 1. The
default value is 16 (8192 bytes) if the Assembler determines it has the
memory space for the VO buffers, and 6 (3072 bytes) otherwise. This
option permits optimization of I/O performance (transfer rate for text file
input, load/dump files, and listing output) as a function to the disk device
being used. Note that increasing the blocks value reduces the amount of
memory available for other Assembler structures (such as symbol tables).

A P P E N D I X G Assembler Command Syntax 255

-case on
Distinguish between uppercase and lowercase letters in non-macro names
(same as CASE oN). (Case is always ignored in macro names.) If you intend
to preserve the case of names declared by the -define option, then the case
on option must precede the -define option(s) in the command
parameter list.

-case obj[ect]
Preserve the case of module, EXPORT, IMPORT, and ENTRY names only in
the generated object file. In all other respects, case is ignored within the
assembly, and the behavior is the same as the preset CASE OFF situation.

-case off
Ignore the case of letters. All identifiers are case insensitive. This is the
preset mode of the Assembler, but it may be used in the command line to
reverse the effect of one of the other -case modes.

-c[heck]
Syntax check only. No object file is generated.

-d[efine] name[=value] [, name[=value]] ...
Define the name as having the specified value. The value is a decimal
integer. If value is omitted, a value of 1 is assumed. This option is
equivalent to placing the directive
name EQU value
at the beginning of your source file. Note that in order to test whether or
not the name is defined, the &Type function should be used. You can
define more than one name by specifying multiple -d options or multiple
namd=value] parameters separated by commas, as in this example:
Asm -d debugl, &debug=' on' ...

-d[efine] &namd=[value]] [, &namd=[valuell] ...
Define the macro name as having the specified value. The value is a decimal
integer or a string constant. If the "=value' is omitted, the decimal value 1 is
assumed. If only the value is omitted, the null string is assumed. -define is
equivalent to declaring the name as a global arithmetic symbol (GBLA for an
integer value) or global character macro symbol (GBLC for a string value)
and placing one of the following directives at the beginning of the
source file:

GBLA &name

&name SETA value
or
GBLC &name

&name SETC value

256 MPW 3.0 Assembler Reference

Note that in order to test whether the name is defined, the &Type
function should be used. You can define more than one macro name by
specifying multiple -d options or multiple &namll.=value] parameters
separated by commas.

-e[rrlog] filename

-f

Write all errors and warnings to the error log file with the specified filename
(same as ERRLOG 'filename'). If only warnings are generated during
assembly, the error log file is not created. Use of this option is discouraged.

Suppress page ejects (same as PRINT NOPAGE).

-font fontname[, fontsiz~

-h

Set the listing font to fontname (for example, Courier), and the size to
fontsize. This option is meaningful only if the -s or the -1 option is used. The
default listing font is Monaco 7. Note that listings will be formatted
correctly only if a monospaced font is used.

Suppress page headers (same as PRINT NOHDR).

-i pathname[, pathna~ ...

-1

Search for include and load files in the specified directories. Multiple -i
options may be specified. At most 15 directories will be searched. The
search order is as follows:

1. The include or load filename is used as specified. If a full pathname is
given, then no other searching is applied.

If the file wasn't found, and the pathname used to specify the file was a
partial pathname (no colons in the name or a leading colon), then the
following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -i options, in the order listed.

4. The directories specified in the Shell variable {Alncludes}.

Generate full listing. If file Name.a is assembled, the listing is written to
Name.a.1st.

A P P E N D I X G Assembler Command Syntax 257

-lo /istingname
Pathname for the listing file and directory for the listing scratch file. If
/istingname ends with a colon (:), it indicates a directory for the listing file,
whose name is then formed by the normal rules (that is,
inputFilename.a.lst). If listingname does not end with a colon, the listing
file is written to the file /istingname. In this case, listings for multiple source
files are appended to the listing file. In either case, the directory implied by
the listing name is used for the assembler's listing scratch file. The -lo option
is only meaningful if the -s or the -1 option is used.

-o objname
Pathname for the generated object file. If objname ends with a colon (:), it
indicates a directory for the output file, whose name is then formed by the
normal rules (that is, inputFi/ename.o). If objname does not end with a
colon, the object file is written to the file objname. (In this case, only one
source file should be specified to the Assembler.)

-pagesize I [, w]

-p

Set the listing page size. (This option is only meaningful if the -s or -1 option
is specified.) The I and w parameters are integers: I is the page length
(default= 75) and w is the page width (default= 126). (These settings
assume that Courier 7 is being used with the MPW Print command to the
LaserWriter.)

Write assembly progress information (module names, included, loads, and
dumps) and summary information (number of errors, warnings, and
compilation time) to the diagnostic output file. (This option is the same as
PRINT STAT.)

-print mode [, mode] ...
Set a print option mode. Mode may be any one of the following PRINT

directive options:
[No]DATA Data
[No]GEN Macro expansions
[No]HDR Page headings
[NO]LITS Literals
[No]MCALL Macro calls
[NolMDIR Macro directives
[No]oBJ Object code ·
[No]PAGE Page ejects
[No]sTAT Progress information
[No]sYM Symbol table display
[No]wARN Warnings

258 MPW 3.0 Assembler Reference

Example

-s

See Chapter 4 for a discussion of these PRINT settings. You can specify
more then one print option by specifying multiple -print options or
multiple mode parameters separated by commas, as in this example:

Asm -print nowarn,noobj,nopage ...

Note that single-letter options are provided for some of the settings: -f
(NOPAGE), -h (NOHDR), -p (STAT), and-w (NOWARN).

Set PRINT NOOBJ to generate a shortened fonn of the listing file. If the -I
option is also specified, the rightmost option takes precedence.

-sym off
Do not write object file records containing information for SADE, the MPW
symbolic debugger. This is the default, and will be in effect if no sym option
is specified.

-sym [onlfull]

-t

-w

-wb

Write complete object file records containing information for use by SADE.
The options on and full are equivalent. The symbolic infonnation generated
by the assembler consists of Module Begin (entry) oMF records for
identifiers defined by the PROC, FONC, and MAIN directives, Local
Identifier OMF records for all EQU and SET identifiers except for those
identifiers defined in the files included from the {Alncludes} folder, and
Local Label OMF records for the local code labels.

Display the assembly time and the number of lines to the diagnostic file
even if progress information (-p) is not being displayed.

Suppress warning messages (same as PRINT NOWARN).

Suppress branch warning messages only.

Asm -w -1 Sample.a Memory.a -d Debug

Assembles Sample.a and Memory.a, producing object files Sample.a.o and
Memory.a.o. Suppresses warnings and defines the name "Debug" as having the
value 1. Two listing files are generated: Sample.a.1st and Memory.a.1st. (These
programs are located in the AExamples directory.)

AP P E N D IX G Assembler Command Syntax 259

Appendix H Object Assembler Macros

THE FILE OBJMACROS.A CONfAINS A COllECITON OF MPW ASSEMBLY-language macros.
The macros permit you to write applications, or parts of applications, in an
object-oriented fashion using assembly language.

Object-oriented assembly language allows you to

• create descendants of objects defined in Object Pascal

• call methods written in Object Pascal from assembly-language code

• call methods written in assembly language from Object Pascal

Object-oriented assembly language is as much a style of programming as a
language. This chapter describes the macros provided for use with assembly
language. For more complete information about object-oriented programming in
general, see the Macintosh Programmer's Workshop Pascal Reference. For a sample
program that uses object-oriented macros, see the MacApp Programmer's
Guide. •

Contents

InitObjects 263
ObjectDef 263
Objectlntf and the IMPL keyword 265
ObjectWith and EndObjectWith 266
ProcMethOf, FuncMethOf, and EndMethod 267
MethCall 268
Inherited 268
NewObject 269
MoveSelf 269

261

InitObjects

I nit objects is a macro that must be called at the beginning of every program written
entirely in assembly language using objects. In other words, this must be the first line of
every object-oriented assembly-language program that isn't linked with an Object Pascal
program.

The InitObjects prototype statement is
InitObjects

ObjectDef

The objectDef macro allows you to define objects in object-oriented assembly
language programs. The ObjectDef macro also generates code so method calls are
handled properly.

The objectDef macro sets up assembly language definitions so that you can later refer
to fields of objects by using % Typename and the field name. For example, imagine that an
object has this definition:

ObjectDef
\

(nextShape, TShape),
(arcAngle,2),

METHODS,
(Draw)

You can then use a statement like this:

TArc,TShape,

\
\

\

MOVE.W %TArc.arcAngle(A0),-(SP)

A percent sign(%) is appended to the object type identifier (other than when used in the
ObjectDef and Objectwi th macros) so that you can use the Object Pascal object
type identifier in an EQU statement to define the size of an object and then use that name
in place of the size for a field that refers to an object of that type. For example,
TShape EQU 4

was used to set the value of the identifier TShape for the above ObjectDef.

+ Note: Because an object reference is a handle, the EQU value will always be 4.

A P P E N D I X H Object Assembler Macros

In object-oriented assembly language you must qualify the field name by the name of the
object type that defined it. For example, if TArc inherits the field £Color from
TShape, % TArc. £Color would be undefined. You would have to call it
%TShape. fColor. The ObjectWith macro (described later in this appendix) is
provided to get around this problem.

The ObjectDef prototype statement is
ObjectDef &TypeName,&Heritage[,fieldList] [,METHODS,methodList]

• Note: The part of the prototype statement for ObjectDef that is in square brackets
is optional. Fieldlist should be replaced by a list of all field.5 of the object type, with a
size for each field, all in parentheses, as shown in the examples. Methodlist, similarly,
should be replaced by a list of the methods of the object type. If you have a method
lis~ the word METHODS must be present. Otherwise, it should never be present.

These are some examples of the use of objectDef:
ObjectDef Shape,

(boundRect,8),
(borderThickness,2),
(color,2),

METHODS,
(Draw),
(MoveBy),
(Stretch)

TObject,
\
\
\
\
\
\

ObjectDef Arc,Shape, \
(startAngle,2), \
(arcAngle,2), \

METHODS, \
(Draw, OVERRIDE), \
(GetArea) , \
(SetArcAngle)

\

The numbers given after the field identifiers give the size, in bytes, of the storage
required. If a method is inherited and reimplemented, you must qualify the method name
with the word OVERRIDE as shown for the Draw method.

264 MPW 3.0 Assembler Reference

Objectlntf and the IMPL keyword

Objectintf is used to create an interface in assembly language for an object type that is
declared in Object Pascal. It is the same as ObjectDef except that it does not generate
method tables.

This macro is generally used when you want an assembly-language implementation of a
method declared in an Object Pascal unit. It allows you to specify which methods will be
implemented in assembly language. In the Object Pascal unit, you should declare the
method EXTERNAL, as shown here:

TFoo = OBJECT(TObject)
fieldl: INTEGER;
PROCEDURE TFoo.Methl;
PROCEDURE TFoo.Meth2;

END;

IMPLEMENTATION
PROCEDURE TFoo.Methl; EXTERNAL;
PROCEDURE TFoo.Meth2;

BEGIN

END;

In the assembly-language file, you need to supply an Objectintf template for the class.
You must give the entire object-type declaration in the objectintf template. You give
the IMPL keyword, preceded by a comma, after any method you want to implement in
assembly language. The corresponding assembly-language declaration for the Object
Pascal declaration just given is presented in "Examples," later in this appendix.

If the method for which you are providing an assembly-language implementation is a
reimplementation of an inherited method, you must specify both OVERRIDE and IMPL:

Object Inf
\

MyShape, Shape

\
(Draw, OVERRIDE, IMPL), \

\

The Objectintf prototype statement is

Objectintf &TypeNarne, &Heritage [,fteldlist] [,METHODS, methodlist]

A P P E N D I X H Object Assembler Macros 265

The parts of the prototype statement for objectintf that are in square brackets is
optional. A list of all fields of the object type should replace fieldlist, with a size for each
field as shown in the examples. Similarly, a list of the methods of the object type should
be replaced by methodList. If you have a method lis~ the word METHODS must be present.
Otherwise, it should never be present.

Here are some examples of its use:

Methl

Objectintf
\

ProcMethOf

EndMethod

(fieldl, 2),
METHODS,
(Methl, IMPL) ,
(Meth2)

TFoo, TObject,

\
\
\

TFoo

The following code creates an assembly-language interface for TObject:

Objectinf
METHODS,
(Free),
(ShallowFree),
(Clone),
(ShallowClone)

ObjectWith and EndObjectWith

TObject,,
\
\
\
\

\

The objectWith and EndObjectwi th macros allow you to specify a field of an object
without having to qualify it with the object reference.

As noted earlier, you must normally qualify the name of an inherited field with the name of
the object type that defined it. These macros allow you to avoid that. ObjectWith
inserts a series of MPW assembly language WITH directives, one for each ancestor class, so
you can specify fields of any ancestor object type without qualifying it with the ancestor
object type name. objectWith can be nested. The most recent invocation has
precedence when there are field-name conflicts. You end an objectWith block with an
EndObjectWith.

These are the ObjectWith and EndObjectWith prototype statements:

ObjectWith
EndObjectWith

&TypeName

266 MPW 3.0 Assembler Reference

Here are two examples:

ObjectWith
MOVE.W
EndObjectWith

ObjectWith
MOVE.W
PEA
EndObjectWith

Shape
color (Al) , DO

Arc
startAngle(Al),-(SP)
bound.Rect (Al)

ProcMethOf, FuncMethOf, and EndMethod

The ProcMethOf, FuncMethOf, and EndMethod macros are used to bracket methods.
ProcMethOf and FuncMethOf invoke the PROC and FUNC directives. They provide the
implicit parameter SELF, which is a reference to the object used to call the method. They
also invoke the Objectwi th macro with the specified type name so that fields of SELF

can be accessed without type-name qualification. End.Method invokes the
EndObjectWith macro and the ENDPROC directive.

As with any assembly-language routine, before ending the routine (that is, before the
EndMethod macro), you must remove the parameters from the stack. In a method, you
should be careful to remove the implicit parameter SELF. (See the sample program at the
end of this appendix for examples of this.)

The ProcMethOf, FuncMethOf, and End.Method prototype statements are as follows:

&ProcName ProcMethOf

&ProcName FuncMethOf

EndMethod

Here is an example of its use:

Draw ProcMethOf

EndMethod

GetArea

EndMethod

& TypeName

&TypeName

Shape

FuncMethOf Arc

A P P E N D I X H Object Assembler Macros 267

Meth Call

The MethCall macro is used to invoke methods. If the second parameter is omitted, the
current method's object type is assumed. The MethCall macro generates a JSR to the
proper method.

The MethCall prototype statement is

MethCall

Here is an example of its use:

Inherited

MOVE.L
MethCall
MOVE.W
MOVE.W
MOVE.L
MethCall

&ProcName,&TypeName

A2,-(SP)
Draw
DO,-(SP)
Dl,-(SP)
aShape(A6),-(SP)
MoveBy,Shape

The Inherited macro calls the named method in the closest ancestor object type that
implemented the method.

The Inherited prototype statement is

Inherited

This is an example of its use:

Move Self
Inherited

&ProcName

-(SP)
Draw

268 MPW 3.0 Assembler Reference

NewObject

The Newobject macro is used to create a new object. It is equivalent to the Pascal
procedure New used with an object reference.

NewObject generates a JSR to %_OBNEW after pushing the appropriate parameters onto
the stack. If & Size is omitted (and it usually is), the instance size for the given object
type is used. The &Loe parameter must be a memory reference.

The NewObject prototype statement is

NewObject

Here are examples of its use:

NewObject
NewObject

MoveSelf

&Loc,&TypeName,&Size

-4(A6),Arc

gArray,DynArray,200

The MoveSelf macro is a convenience macro. It executes the following statement:

MOVE.L 8 (A6) ,&Dest

Move Self assumes that the method began with a LINK A6, #nnnn. (8 (A6) is the
location of SELF when in a method.)

The MoveSelf prototype statement is

Move Self

These are some examples of its use:

Move Self
Move Self
MoveSelf

&Dest

A4
-(SP)
a Square (A6)

A P P E N D I X H Object Assembler Macros 269

Appendix I Pascal and C Calling Conventions

THIS APPENDIX DESCRIBES THE CONVENTIONS USED in Pascal and c to pass
parameters, return function results, and save and restore register contents during
procedure and function calls. •

Contents

Pascal calling conventions 273
Parameters 273

Real-type parameters 27 4
Structured-type parameters 275

Function results 275
Register conventions 277

C calling conventions 277
Parameters 278
Function results 278
Register conventions 278

271

Pascal calling conventions

This section covers parameter passing, function returns, and register conventions in
Pascal.

Parameters

Pascal parameters are evaluated from left to right and are pushed onto the stack in that
order as they are evaluated. The called procedure is responsible for removing the
parameters from the stack. All VAR parameters are passed as pointers to the actual storage
location. In cases of byte-wide types, VAR parameters may have odd absolute values.

Non-VAR parameters are passed in different ways, depending on the type of the
parameter. Values of type boolean, elements of an enumerated type with fewer than 128
elements, and subranges within the range -128 . .127 are passed as signed byte values. (They
are pushed as bytes; the 68000 allocates two bytes for each byte on the stack.) The called
procedure expects boolean parameters to be in the range 0 . .1. Values of types
integer, char, and all other enumerations and subranges are passed as signed word
values. In Pascal, values of type char are expected to be in the range 0 .. 255; the upper
half of this range is used for special characters. Pointers and longint values are passed as
signed 32-bit values.

Table 1-1 summarizes the Pascal parameter passing conventions.

• Table 1-1

Parameter type

boolean

enumeration:
range 0 .. 127

enumeration:
range 0 .. 32767
char

subrange:
range -128 . .127

Parameter passing conventions

Pascal caller Action

Pushes byte:
range 0 . .1

Pushes byte:
range 0 . .127

Pushes word:
range 0 .. 32767

Pushes word:
range 0 .. 255

Pushes byte:
range -128 .. 127

Pascal receiver Action

Accesses byte: range 0 . .1

Accesses byte: range 0 . .127

Accesses word: range
0 .. 32767

Accesses word: range 0 .. 255

Accesses byte: range
-128 . .127

(continued)

A P P E N D I X I Pascal and C Calling Conventions Z'T3

• Table 1-l(continued) Parameter passing conventions

Parameter type Pascal caller Action Pascal rccdver Action

subrange: Pushes word: Accesses word: range
range -32767 .. 32767 range -32767 .. 32767 -32767 .. 32767

integer Pushes word: Accesses word: range
range -32767 .. 32767 -32767 . .32767

longint Pushes long Accesses signed long value

pointer Pushes long Accesses long

real Converts to extended; Converts extended on stack
pushes address of to local real; accesses local
extended value

double Converts to extended; Converts extended on stack
pushes address of to local double; accesses
extended local value

comp Converts to extended; Converts extended on stack
pushes address of to local comp; accesses local
extended value

extended Pushes address of Copies extended to local
extended extended; accesses local

value

ARRAY, RECORD, Pushes value (word or Accesses value (word or long)
STRING~ four bytes long)

ARRAY, RECORD, Pushes address of value Copies value to local;
STRING> four bytes accesses local

SET Pushes set value rounded Accesses value on stack
to whole number of words (Note: Use word or long for

those sizes; accesses
low-order half of word for
byte-size set.)

Real-type parameters

Values of types real, double, comp, and extended are passed as pointers to
extended values. The Compiler does this in a reentrant way by allocating a temporary
location in the caller's activation record, converting the parameter value to an extended
value in this location, and passing a pointer to this location. The called procedure then
allocates a local location of the declared type and converts the extended value, using the
pointer, into the location and type.

274 MPW 3.0 Assembler Reference

Structured-type parameters

Arrays, strings, and records whose size is less than or equal to 4 bytes are passed by
pushing their value (either a word or a long word) onto the stack. larger arrays, strings, and
records (as well as extended values, as mentioned earlier in this appendix) are passed
as a pointer to the value; for reentry purposes, the Compiler emits code in the called
procedure to copy the value to a local storage location.

Sets are passed by rounding the set size up to the next whole word, if necessary, then
pushing the set value so that the lowest-order word is pushed last. In the case of a byte
width set, the called procedure will only access the low-order half of the word pushed.

Function results

Function results are returned by value or by address on the stack. Space for the function
result is allocated by the caller before the parameters are pushed. The caller is responsible
for removing the result from the stack after the call.

For types boolean, char, integer, and enumerated and subrange types, the caller
allocates a word on the stack to make space for the function result. Values of type
boolean, enumerated types with fewer than 128 elements, and subranges within the range
-128 . .127 are returned as signed byte values. The value goes in the low-address byte, which
is the most significant byte of the word. The calling procedure expects boolean results
to be in the range 0 . .1.

Integer and char values and all enumerated and subrange types not covered above are
returned as signed word values. Pascal char values are expected to be in the range 0 .. 255;
the upper half of this range is used for special characters.

For pointer, long int, and the real types, the caller allocates a long word on the stack to
make space for the function result. Pointers and longint values are returned as signed
32-bit values. Values of type rea 1 are returned as 32-bit real values. For double, comp,

and extended types, and also for sets, arrays, strings, and records greater than 4 bytes in
size, the caller pushes a pointer to a temporary location.

For 1-byte sets and for arrays, strings, and records whose size is 1 word, the caller allocates
a word on the stack. For sets, arrays, strings, and records whose size is 2 words, the caller
allocates a long word on the stack. 1-byte sets are returned as a byte value. Sets, arrays,
strings, and records whose sizes are 1 or 2 words are returned as either a word or a long
word.

Pascal function-result passing conventions are summarized in Table I-2.

A P P E N D I X I Pascal and C Calling Conventions T75

• Table 1-2 Function-result passing conventions

Parameter type Pascal caller Action Pascal receiver Action After the call

boolean Allocates Returns byte value: Pops byte
word range 0 . .1

enumeration: Allocates Returns byte value: Pops byte
range 0 . .127 word range 0 . .127

enumeration: Allocates Returns word value: Pops word
range 0 .. 32767 word range 0 .. 32767

char Allocates Returns word value: Pops word
word range 0 .. 255

subrange: Allocates Returns byte value: Pops byte
range -128 . .127 word range -128 . .127

subrange: Allocates Returns word value: Pops word
range -32768 .. 32767 word range -32768 .. 32767

integer Allocates Returns word value: Pops word
word range -32768 .. 32767

longint Allocates Returns long word Pops long word
longword value: range-signed

32 bits

real Allocates Returns real value Pops real value
longword

double Pushes Puts double result in Pops temporary
address temporary address, accesses
of double temporary value
temporary

comp Pushes Puts double result in Pops temporary
address temporary address, accesses
of comp temporary value
temporary

extended Pushes Puts extended result Pops temporary
address of in temporary address, accesses
extended temporary value
temporary

ARRAY, STRING, Allocates Returns word or long Pops word or
RECORD ::;; four bytes word or word longword

longword

Z'76 MPW 3.0 Assembler Reference

• Table 1-2 (continued) Function-result passing conventions

Parameter type Pascal caller Action Pascal receiver Action After the call

ARRAY, STRING, Pushes Puts result in Pops temporary
RECORD> four bytes address of temporary address, accesses

temporary temporary value

SET: one byte Allocates Returns byte value of Pops byte
word result

SET: one word Allocates Returns word value of Pops word
word result

SET: two words Allocates Returns long word Pops long word
longword value of result

SET> two words Pushes address Puts result in Pops temporary
of temporary temporary address, accesses

temporary value

+ Note: Pascal does not assume any initial value for memory space allocated to a
function result unless it is a pointer to a type that occupies more than 4 bytes of
memory.

Register conventions

Registers DO, D1, D2, AO, and Al are considered scratch registers and are not preserved
across procedure calls. All other registers are preserved by the called routine. Register AS is
the global frame pointer, register A6 the local frame pointer, and register A7 the stack
pointer.

C calling conventions

This section covers the treatment of parameters, function results, and registers in C.

AP P E ND IX I Pascal and C Calling Conventions zn

Parameters

Parameters to C functions are evaluated from right to left and are pushed onto the stack
in the order they are evaluated. Characters, integers, and enumerated types are passed as
sign-extended 32-bit values. Pointers and arrays are passed as 32-bit addresses. Types
float, double, comp, and extended are passed as extended 80-bit values. Structures
are also passed on the stack. Their value is rounded up to a multiple of 16 bits (2 bytes). If
rounding occurs, the unused storage has the highest memory address. The caller removes
the parameters from the stack.

Function results

Characters, integers, enumerated types, and ponters are returned as sign-extended 32-bit
values in register DO. Types float, double, comp, and extended are returned as
extended values in registers DO, Dl, and AO. The low-order 16 bits of DO contain the sign
and exponent bits; register Dl contains the high-order 32 bits of the significand; register
AO contains the low-order 32 bits of the significand. Structured values are returned as a 32-
bit pointers in register DO. The pointer contains the address of a static variable into which
the result is copied before returning. This implementation of structured function results is
not reentrant.

Register conventions

Registers DO, Dl, AO, and Al are scratch registers that are not preserved by C functions. All
other registers are preserved. Register A5 is the global frame pointer, register A6 is the local
frame pointer, and register A7 is the stack pointer. Local stack frames are not necessarily
created for simple functions.

?:JS MPW 3.0 Assembler Reference

Appendix J Structured Assembly Macros

HIGHER-LEVEL LANGUAGES, SUCH AS PASCAL AND c, provide the programmer with
statements that represent basic structured programming operations. There are
statements for looping (FOR, WHILE, REPEAT), conditionals (IF-THEN-ELSE,

SWITCH, CASE), procedure declarations (PROCEDURE, FUNCTION), and
procedure invocation. The compilers accept the high-level statements and
generate the proper code for the programmer. Assembler programmers must code
all these constructs explicitly. The structured assembly macros are used as high
level statements that serve the same purpose as their high-level language
counterparts, and thus relieve the programmer of such explicit coding. •

Contents

Structured macro statements 281
Expressions 281
Flow-control macros 283

The If statement 283
The Switch statement 285
The Repeat statement 287
The While statement 287
The For statement 288
The Leave statement 290
The Cycle statement 291
The GoTo statement 292

'!79

Program structure macros 292
Sample code generation from program structure macros 294
Procedure and function header 295
Local variable declaration 298
Procedure or function start 299
Procedure or function secondary entry point 300
Procedure or function exit 301
Procedure, function, or trap invocation 303

Considerations for use 306
Why you should or should not use the structured assembly macros 307
Rules for using structured assembly macros 308

Syntax summary 309
Expressions 309
Flow-control macros 310
Program structure macros 311

280 MPW 3.0 Assembler Reference

Structured tDacro statetDents

The macros are divided into two categories: program structure macrcs and flow-control
macros.

The program structure macros are as follows:

PROCEDURE Define a procedure declaration
FUNCTION Define a function declaration
VAR Declare procedure or function local variables
BEGIN Define a procedure or function primary entry point
ENTER Define a procedure or function secondary entry point
RETURN Exit from a procedure or function
CALL Invoke a procedure, function, or trap

The flow-control macros are as follows:

IF#,ELSEIF#,ELSE#,ENDIF#
SWITCH#, CASE#, DEFAULT#, ENDS#
REPEAT#, UNTIL#

WHILE#, ENDW#
FOR#,ENDF#
LEAVE#
CYCLE#
GOTO#

Multiway decision
Multiway decision
Loop control
Loop control
Loop control
Loop and switch terminator
Loop iterator
Transfer of control

With the exception of assignment statements and full arithmetic expressions, these
macros provide all the constructs found in high-level languages such as Pascal and C.
Because of the restrictions imposed on the kinds of conditional expressions allowed in
these macros (discussed later), the code generated for these statements is as efficient as
that any programmer can generate "by hand."

Expressions

Expressions are used as operands to many of the flow-control macros. Such expression
operands are used for testing conditions. The following syntax describes what is allowed
for flow-control macro expressions:

APPENDIX] Structured Assembly Macros 281

expr ··= s-expr I s-expr op s-expr
s-expr ··= cc I ea CC[. SZ] ea
op ··= AND I OR
cc ··= EQ I NE I LE LT GE GT MI I PL I HI I LS I

LO I cc I cs NZ HS vc vs
sz ··= B I w I L

An expression, expr, consists of either one simple expression, s-expr, or two simple
expressions combined by AND or OR. Simple expressions, in turn, either test a condition
code, cc, or set and test a condition code by comparing two operands, each of which is
specified by an effective address, ea. The comparisons cause the macros to generate
compare instructions. To indicate the size of the comparison, an optional size, sz, may be
specified along with the condition code. Word comparisons are the default.

Note that the effective address and size for the comparisons must be valid for the form
of compare instruction generated. For example, byte size cannot be specified for
comparisons involving address registers, and both effective addresses must specify a
post increment if a memory-to-memory comparison is to be done. However, the order of
the comparison will be reversed by the macros if a legal comparison cannot be generated
as specified, but it would be legal if the comparison were reversed. The condition being
tested would be similarly reversed.

The effective address operands may be arbitrarily complex effective addresses, which
may contain full Assembler expressions. AND and OR operators are also legal operators
when used in Assembler expressions. When using these operators in both Assembler and
macro expressions, the AND and OR macro expression operators will be recognized only if
not nested in paired parentheses. The use of the condition code symbols, cc, is somewhat
more restrictive. They should only be used as shown in the syntax and never for identifiers
used in effective addresses anywhere else.

Macro expressions combined by AND and OR will generate the comparisons determined by
the two simple expressions in the order given. However, for OR operations, the second
operand will not be executed if the first operand is true. Similarly, for AND operations, the
second operand will not be executed if the first operand is false. In these cases, the
resulting condition code would only reflect the result of the first simple expression.
NE *'$' LE.B DS
DO NE.W Dl 10(A5) NE.L D3
DO NE.B Dl D3 NE.B 10(A5)
*5 GT DO (A2)+ EQ.B (A3)+
DO EQ.B *'*' ([10,AS] ,D2) NE D3

282 MPW 3.0 Assembler Reference

MI OR VS
DO EQ.B *$13 OR DO EQ.B *$12
(A2)+ EQ *' I OR (A2) EQ *$13
(X+lO) (A2,D2.W) EQ.B D3 OR NE
([X,A5,D3], (Y) .L) NE.L D6

Flow-control macros

The flow-control macros provide a full set of the standard conditional and loop control
statements found in most higher-level languages. The flow-control macros are as follows:

IF#, ELSEIF#, ELSE#, ENDIF#

SWITCH#, CASE#, DEFAULT#, ENDS#

REPEAT#, UNTIL#

WHILE#, ENDW#

FOR#, ENDF#

CYCLE#

LEAVE#

GOTO#

The If statement

IF# expr 1 THENLextl

statements 1

[
ELSEIF# Lext] expr 2 THEN[. ext 2]]

statements 2

[
ELSE# Lext]]

statements 3

END IF#

Multiway decision
Multiway decision
Loop control
Loop control
Loop control
Loop iterator
Loop and switch terminator
Transfer of control

If expr1 is true, execute only the statement list, statementSi. If expr1 is false, execute the
statement list for the first true ELSEIF# clause if present. If all the expressions are false,
then execute the statement list, statement53, if the ELSE# clause is presen~ otherwise skip
to the first statement following END IF#.

APPENDIX J Structured Assembly Macros 283

There may be any number of ELSEIF# clauses, but only one ELSE# clause, betv.reen the
IF# and END IF# pair. If the ELSE# clause is presen~ it must follow all the ELSE IF#
clauses. If statements may be nested to an implementation-defined limit (see
"Considerations for Use").

The optional extension attributes, ext s, are the letters S or B, W, or L, and control the size .
of the branch instructions generated during compilation of the If statement.

• The extension on the THEN portion of the IF# determines the size of the branches to
the next ELSEIF#, ELSE#, or END IF#, whichever comes first.

• The ELSEIF# extension, e:xti, determines the size of the branch to the END IF#.

• The extension, e:xti., on the THEN portion of the ELSEIF# determines the size of the
branches to the next ELSEIF#, ELSE#, orENDIF#, whichever comes first.

• The ELSE# extension determines the size of the branch to ENDIF#.

The default for all the branch extensions is for word (w) branches. Here is an example:

IF# DO EQ.B #$20 OR DO EQ.B #$09 THEN.S
JSR SkipBlanks

ELSEIF#.S DO GE.B #'A' AND DO LE.B #'Z' THEN.S
JSR Identifier

ELSEIF#.S DO GE.B #'a' AND DO LE.B #'z' THEN.S
JSR Identifier

ELSEIF#.S DO GE.B #'0' AND DO LE.B #'9' THEN.S
JSR Number

ELSE#.S
JSR Special

END IF#

This example checks for characters in DO and calls an appropriate processing routine as a
function of the character. For blanks ($20) and tabs ($09), SkipBlanks is called. For
uppercase and lowercase letters, Identifier is called. For digits, Number is called, and
if the character is anything else, Special is called. Note that all the extensions are s to
cause all short branches to be generated.

284 MPW 3.0 Assembler Reference

The Switch statement

SWITCH# [.SZ] selector [, Dreg=Dn] [, JmpTbl= {NI y I ext} J , [ChkRng={ NI y} l
CASE# [• exrlae1 [.. a£2J , ...

statements1

[
DEFAULT#]

statements 2

ENDS#

The SWITCH statement is a multiway branch based on the value of selector. Each CASE#

absolute expression, ae1, specifies a list or range of constants representing a value of
selector. If selector equals one of the constants, then the statements following that CASE#

are executed. If selector is not one of the values, and the DEFAULT# clause is present, the
statements following the DEFAULT# are executed. If selector is not one of the values, and
there is no DEFAULT# clause, then none of the statements of the SWITCH statement are
executed and control passes to the first statement following END s #. After control passes
to one of the CASE or DEFAULT statements, execution continues through successive
statements until the end of the sw ITCH statement, END s #, is reached, or control is
transferred out of the SWITCH structure (for example, using a LEAVE# macro).

There may be any number of CASE# clauses, but only one DEFAULT# clause, between the
. i. SWITCH# and ENDS# pair. There is no restriction on the placement of the DEFAULT#

clause within the SWITCH statement. SWITCH statements may be nested to an
implementation-defined limit (see "Considerations for Use").

The code for SWITCH statements is generated to do either repeated subtractions from
the selector value to determine the case, or to use a relative address jump table indexed by
the selector value. The default is to use repeated subtractions unless either JmpTbl=Y or
JmpTbl=ext is specified. Using the jump table, you have the option of validating the
selector value to make sure it is in the proper index range of the jump table, and using the
default (or skipping the SWITCH statement) if it is out of range. This is specified by
ChkRng=Y. The default is to not validate the selector value when a jump table is used (and
therefore no DEFAULT# clause is possible).

APPENDIX J Structured Assembly Macros 28;

The choice of whether to use the repeated subtraction technique or a jump table is up to
you. It generally depends on Lie nurnber of cases and the distribution of case values. If
you choose the repeated subtraction technique, then you may specify a branch size, s or
B, w, or L, as an extension attribute on the CASE:#: statements, to indicate the size of the
branches to the next CASE:#: or DEFAULT:#: clause. If you choose the jump table technique,
then the CASE:#: extensions are ignored, but you may specify the size of the branch
required to branch from SWITCH:#: to ENDS:#:, where the actual indexed jump table code is
generated. This is specified by an explicit extension value for the SWITCH# JmpTbl

parameter; that is, JmpTbl=S I BI w IL. JmpTbl=Y is equivalent to JmpTbl=W.

No matter which technique is used, SWITCH statements require a work register in which to
do the subtractions or to convert to a table index. This is specified by the swI TCH:#:

DREG parameter, or DO is used by default If you explicitly specify the DREG parameter,
then the specified D-register will be loaded from selector. Whenever selector is placed in the
work register, you may indicate the size attribute of the move instruction, B or w, to do
the load by specifying an attribute, sz, on the SWITCH:#: macro call. The default is to
assume a word move. The work register is always used as a word (note that selectorwill not
be moved to the work register if DO is specified as selector, but in that case it is assumed
that DO already contains a word value).

SWITCHf DO

CASE:#:.S $20, $09

JSR SkipBlanks

LEAVE:#:.S

CASE:#: • S 'A' •• ' z ' ' ' a ' •• ' z '
JSR Identifier

LEAVE:#:.S

CASE:#:. s I 0 I •• I 9 I

JSR Number

LEAVE:#:.S

DEFAULT:#:

JSR Special

ENDS:#:

This example checks for characters in Do (previously loaded as a word) and calls an
appropriate processing routine as a function of the character. It is the same example
shown for IF statements, but here rewritten using a CASE statement. Repeated
subtractions and all short branches are used. The LEAVE statements are used to terminate
each case (see "The Leave Statement'' later in this appendix).

286 MPW 3.0 Assembler Reference

The Repeat statement

REPEAT:#
statements

UNTIL:#(.extJ {exfJr I FALSE}

The statements between REPEAT:# and UNTIL:# are executed at least once and then
repeatedly until expr is true. FALSE may be specified in place of expr to generate an
infinite loop. The size of the branch instructions, s or B, w, or L, generated by UNTIL# to
loop back to REPEAT# may be specified by the extension attribute, ext.

REPEAT statements may be nested to an implementation-defined limit (see
"Considerations for Use" later in this appendix).

REPEAT#
PEA filterProc
PEA itemHit(A6)
_ModalDialog

UNTIL:#.S itemHit(A6) EQ #OK

This example calls ModalDialog until the OK button is clicked. A short branch is used to
branch back to the top of the loop.

The While statement

WHILE# {~I TRUE} DO[. exn
statements

ENDW:#

The statements between WHILE# and ENDW:# are executed repeatedly only if expr is true.
If expr is false, control passes to the first statement following ENDW#. True may be
specified in place of exprto generate an infinite loop. The size of the branch, s ors, w, or
L, generated by the WHILE# to ENDW# structure is specified by the extension attribute
following the DO keyword.

While statements may be nested to an implementation-defined limit (see "Considerations
for Use" later in this appendix). Here is an example:

SkipBlanks WHILE# DO EQ.B #$20 OR DO EQ.B #$09 DO.S
JSR Next Char
ENDW#

APPENDIX J Structured Assembly Macros '1S'7

This example illustrates a possible blank and tab skipping routine that might be called by
the IF:#: or CASE:#: example. As long as DO contains a blank ($20) or tab ($09), a
Next Char routine is called, which loads DO with the next input character. As soon as DO
does not contain a blank or tab, a short branch (oo. s) is taken to the statement
following ENDW:#:.

The For statement

FOR:#: ctl-var[=[.szl initia~ [DOWN]To.final[BY increment] [UNTIL expr] DO[. ext]\
[,DREG=Dn] [,opt={Y I N}] [,Clr= { y IN}]

statements

ENDF:#:

The statements between FOR:#: and ENDF:#: are executed repeatedly while the control
variable, ctl-var, is assigned a progression of values starting with the initial value. If the
initial value is greater than (To) or less than (oowNTO) the final value on entry to the FOR
statement, control passes to the first statement following ENDF:#:. Otherwise, the control
variable is incremented (To) or decremented (oowNTO) by increment (default 1).
Incrementing continues on each repetition of the loop until the value of the control
variable is greater than (To) or less than (oowNTo) the final value, or until the value of e:xpr
is true. The optional UNTIL e:xprclause is similar in function to a REPEAT statement's
UNTIL clause. It is only processed at the end of the loop and thus does not control
whether the loop will be entered the first time.

For statements may be nested to an implementation-defined limit (see "Considerations
for Use" later in this appendix).

The variables ctl-var, intial, final, and increment all represent effective addresses. The
control variable must be an alterable effective address mode. All effective address modes
are allowed for the initial, final, and increment specifications. The size of the control
variable, B, w, or L, is determined by the size attribute, sz, following the equal sign
assigning the initial value to the control variable. The default is to assume a word size
control variable. Note that the initial value may be omitted, which implies a word size
control variable that already has its initial value.

The size of the branch statements, s or B, w, or L, generated by the FOR statement is
determined by the extension on oo. The default is to assume word size branches.

288 MPW 3.0 Assembler Reference

For statements always require the use of one work D-register. If the control variable
already specifies a D-register, that register is used and rri.ay be referenced by the loop
statements as usual. If the control variable does not specify a D-register, then the D
register specified by the DREG parameter is used, or DO if DREG is not specified. In that
case the control variable is still maintained and can be referenced by the loop statements.
Although the work register also contains the current control variable value, it should not be
considered safe across the loop.

As you can see, the most efficient FOR loop code is generated when the control variable is
a D-register. If it isn'~ additional code is generated to copy the control variable to and
from a work register while incrementing or decrementing it. The incrementing and
decrementing itself is done by explicit ADD or SUB instructions, and the end of loop
condition is tested with a CMP instruction.

For a restricted class of FOR loop operands the generated code can be further optimized
to use a DBCC instruction. The following four FOR statements will generate DBCC
instructions:

FOR#
FOR#
FOR#
FOR#

Dn
Dn
Dn
Dn

[=[.sz] initial]
[=[.sz] initial]
[=[.sz] initial]
[=[.sz] initial]

DOWNTO
TO
DOWNTO
TO

#0 [BY U]
#0 BY f-1
U [BY U]
U BY f-1

[UNTIL expr]
[UNTIL expr]

DO
DO

The first two FOR statements allow an UNTIL exprclause. If e.xpris just a condition code,
the DBcc instruction generated will be a function of that condition code. If expr is
anything more than a condition code, a DBF is generated, but additional code will be
generated to implement an If statement to test the terminating e.xpr. If the UNTIL expr
clause is omitted, or one of the last two FOR statement classes is specified, a DBF is
generated.

In all four special cases, the size, sz, for the control variable must be byte or word. Since
DBCC instructions require a word size register value, if the size is specified as byte, the
control variable must be cleared (cLR. w) prior to setting its initial value. This clearing
process may be suppressed by specifying the CLR=N FOR# parameter, or loading the
control variable (as a word) prior to FOR#, and not specifying an initial value. If you don't
want any of the optimizations, and would rather have an explicit increment or decrement
along with the accompanying CMP instruction, you may suppress the DBcc optimization
by specifying the FOR# OPT=N parameter.

FOR# DO=O TO #4*(N-l) BY #4 DO.S
IF# 0(A0,DO.W) GT Dl Then.S
MOVE.W O(AO,DO.W),Dl

END IF#
ENDF#

DO
DO

APPENDIX J Structured Assembly Macros 289

This example scans N word values pointed to by AO and returns the maximum value in Dl
(assumed initialized). Short branches are used. Since the FOR statement does not fall into
one of the four possible DBcc optimization classes, an explicit ADD and CMP will be
generated. Here is an example:

FOR# D0=#63 DOWNTO #0 DO.S
MOVE.L

ENDF#
(AO)+, (Al)+

This example copies 256 bytes from the area pointed to by AO to the area pointed to by
Al. A DBF loop is generated to loop 64 times (0 to 63) to move 4 bytes at a time.

The Leave statement

LEAVE#[.ext] [/aben (IF[#Je.?pr]]

The LEAVE statement causes execution of the smallest enclosing FOR, WHILE, REPEAT,
or SWITCH statement to be terminated. A label may be specified to indicate an enclosing
FOR, WHILE, REPEAT, or SWITCH statement that is at a higher nesting level than the one
containing this LEAVE statement. All loops and switches up to and including the one
associated with the label are terminated. The LEAVE statement may be made conditional
by specifying the IF clause.

LEAVE statements cause a generation of a branch to the first statement following the
loop or switch to be terminated. The size of the branch, s or B, w, or L, may be specified
with the extension attribute, ext.

FOR# DO=O TO #4*(N-l) BY #4 DO.S
LEAVE#.S IF TABLE(AS,DO.W) EQ Dl

ENDW#

This example searches a table of values for the value in Dl and stops when all the elements
of the table are searched or the value is found, whichever occurs first. Here is an example:

Outer FOR# DO=#l TO #N DO.S
Inner FOR# Dl=#l TO #M DO.S

LEAVE# Outer IF D3 EQ D4

ENDF#
ENDF#

In this example, both loops are terminated when D3 equals D4. The explicit label, outer,
indicates which loop is to be terminated. If the label were omitted, only the inner loop
would be terminated.

290 MPW 3.0 Assembler Reference

LEAVE statements used in switches are illustrated in the example for SWITCH statements
(see "The Switch Statement," given earlier in this appendix).

The Cycle statement

CYCLE#[.exrl [taben [IF[#]~]]

The CYCLE statement causes the next iteration of the smallest enclosing FOR, WHILE, or
REPEAT statement to be executed. A label may be specified to indicate an enclosing
FOR, WHILE, or REPEAT statement that is at a higher nesting level than the one containing
this CYCLE statement. All loops enclosing this CYCLE statement are tenninated and the
one associated with the label is iterated. The CYCLE statement may be made conditional
by specifying the IF clause.

CYCLE statements cause a generation of a branch to the loop continuation part of the
associated loop statement. The size of the branch, s or B, w, or L, may be specified with
the extension attribute, ext.

Note that CYCLE statements do not apply to SWITCH statements. A CYCLE statement
inside a swI TCH statement nested in a loop causes the loop to be iterated. Here is an
example:

Outer WHILE# DO NE.L 0 DO.S
Inner WHILE# Dl NE.L 0 DO.S

IF# D3 EQ D4 THEN.S
CYCLE# Outer
ELSEIF#.S D4 EQ.L #0 THEN.S
CYCLE# Inner
END IF#

ENDW#
ENDW#

In the example given here, when D3 equals D4, the inner loop is terminated and the outer
loop is iterated. If D3 does not equal D4, but D4 is zero, then the inner loop is iterated.
The explicit labels indicate which loop is to be terminated. In the case of CYCLE# Inner,

you could have omitted the label reference.

APPENDIX J Structured Assembly Macros 291

The GoTo statement

GOTO#Lextl [IF[4t)expt"THEN[.ext]]Iabe/

The GOTO statement is included only for the sake of completeness. A BRA instruction is
generated for the GOTO statement. The branch is made conditional by specifying the IF
clause. The size of the branch, s or B, w, or L, is specified by the extension, ext. It may be
specified either on the GOTO# or THEN. The rightmost extension is the one used.

Progratn structure tnacros

The program structure macros are used to define procedures and functions, to define local
variables belonging to them, and to call them. The macros are as follows:

PROCEDURE Define a procedure declaration header
FUNCTION Define a function declaration header
VAR Declare procedure or function local variables
BEGIN Define a procedure or function starting point
ENTER Define a procedure or function secondary entry point
RETURN Exit from a procedure or function
CALL Invoke a procedure, function, or trap

These macros make it easier to define and call modules. They take much of the burden off
you as a programmer, who would otherwise have to explicitly define formal parameters
and local variables using either equates or template mappings. The syntax is also more
readable, and taken together with the CALL macro, tends to compress an Assembler
source file so that it takes fewer source lines to define and call a procedure.

With the exception of the CALL macro, all the other program structure macros are used to
define a procedure or function code module. They have a fixed relationship with one
another. That relationship is governed by the standard rules imposed by the Assembler on
defining code modules.

To define a code module you first must have a PROC, FUNC, or MAIN directive to delimit
the scope of the code module and the local variables declared inside it. Inside the module
you may define a template to map over the formal parameters and local variables to be
placed in the module's stack frame. The entry point of the code module possibly does a
LINK to set up the stack frame, and saves any nonvolatile registers. Finally comes the
code for the module followed by a restore of the saved registers, an UNLK to delete the
stack frame, and a return to the caller. Thus the macros, which perform these functions,
are specified in the order illustrated by the following example:

292 MPW 3.0 Assembler Reference

Export FUNCTION EXAMPLE (Argl: L, Arg2, Arg3:B) :L ;Function hdr, formals,
VAR Locall:L, Local2:LEN ; Local variables
VAR Local3:B[256], Local4 :Tl;
BEGIN SAVE=D3-D5/A2-A4,WITH=(Globals,T2) ;Entry point, reg save,

;code for module •••
RETURN DO ; Exit with DO as result
ENDP ;End module

The PROCEDURE or FUNCTION macro is responsible for setting up the PROC or FUNC

directive and declaring the module's scope. The example just given shows an exported
function with a result. ENTRY procedures or functions are also possible, as well as
embedded (local) procedures. (An embedded procedure is one that is local to another
procedure.)

In addition to declaring the module's scope, the header also declares any formal
parameters. These are translated into a template mapping over a stack frame. The exact
syntax for declaring formal parameters is discussed in "Procedure and Function Header,"
given later in this appendix. In general, the syntax allows you to declare the name, size,
and a repetition count of each formal. Sizes can be specified as bytes, words, longs,
absolute expressions, or as template names. The latter case also defines the type of the
formal parameter.

If local variables are to be declared, as they are in this example, they are added to the
stack frame definition started by the procedure header by using the VAR macro. The
functionality for declaring local variables is much the same as that for formal parameters.
As many VAR macros as desired may be specified to declare all the local variables needed
by the procedure. They may be declared one variable per call or many variables per call.

All the VAR local variable declarations are placed between the procedure header and the
BEGIN macro. The BEGIN macro marks the start of the procedure code body. The stack
frame template definition is closed and LINK and MOVEM instructions are generated as
required. With BEGIN you specify any registers to be saved and additional templates or
data modules to be converted with a WITH directive. The stack frame is always covered
by a WITH directive, and the stack frame pointer, A6 or A7, is equated to the local name
FP. Using FP you can access the local variables and formals on the stack via the stack
frame template.

At the end of the procedure you use the RETURN macro to exit The RETURN macro
generates a MOVEM statement to restore any registers saved by the BEGIN macro. The
UNLK is also done and code is generated to pop the arguments off the stack and to rerum
to the caller. Depending on the PROCEDURE macro parameters you can also generate the
ASCII module name following the exit so that the procedures can be debugged using
MacsBug.

result

LINK

APPENDIX J Strucrured Assembly Macros 293

As you can see, the program structure macros do a lot of work for you. All the lines except
the ones marked as comments with an asterisk are generated by the macros. The following
sections will discuss each macro in detail.

Sample code generation from program structure macros

* Export FUNCTION

Example PROC
SF#X:UX RECORD
Example DS.L
Argl DS.L
Arg2 DS.W
Arg3 DS.W
RetAddr DS.L

* VAR
LinkA6 DS.L
FramePtr EQU
Locall DS.L
Local2 DS.W

* VAR
Local3 DS .B
Local4 DS.W

* BEGIN

Local Size
ENDR
WITH
LINK

FP SET
MOVEM

* RETURN
MOVEM.L
UNLK
MOVEA.L
ADD.W
MOVE.L
JMP
ENDP

EXAMPLE(Argl:L, Arg2, Arg3:B) :L
;Function hdr, formals, result

Export
{FramePtr),Decr
0
1
1
1
1
Locall:L, Local2:Len
1

*
1
LEN

;Local variables

Local3:B[256], Local4:Tl;
256
Tl
SAVE=D3-D5/A2-A4,WITH=(Globals,T2)

;Entry point, reg save, LINK
DS.W 0

Globals,T2,SF#XXX.X
A6,#Loca1Size
A6
D3-D5/A2-A4,-(A7)

DO ;Exit with DO as result
(A7)+,D3-D5/A2-A4

A6
(A7) +,AO
#8,A7 ;Optimizes to ADDQ
DO, (A7)
(AO)

294 MPW 3.0 Assembler Reference

Procedure and function header

[{
ENTRY }]

~~~~T 
{ PROCEDURE} 

FUNCTION 
[module-id] [( [jomzal , .. .]}]:[result] [,cl [,Link= {YI DEBUG} l\ 
[,Main=(NI Y}] 

where 

formal .. = 
formal-sz · · = 

count .. = 
result ··= 

idjomza~s~[counfj 

B I W I L I S I D I X I P I ae I template-id 
'['ae1' 
BIWILISIDIXIPlid 

The procedure and function header macros are used to do the following things: 

• Declare a new code module as a procedure or function. 

The two macro calls, PROCEDURE and FUNCTION, are interchangeable and may be 
used as appropriate for documentation purposes. For simplicity, both procedures and 
functions are ref erred to as procedures in the following discussion. A main program 
entry point may be specified using the Main=Y macro parameter. 

• Define the procedure's scope. 
A procedure may be declared as ENTRY (the default), EXPORT, or LOCAL. These 
words are specified in the label field of the macro call. An entry or export procedure is 
declared using the standard Assembler PRoc or FUNC directives, with ENTRY or 
EXPORT as the directive's parameter and the module name, module-id, as the 
directive's label (note that the macro syntax is thus inverted from that of the 
corresponding Assembler directives). A local procedure does not cause generation of a 
PRoc or FUNC directive. This form of declaration is used to define an inner procedure 
where only the label (module-id) is defined. An ALIGN 2 directive always precedes a 
local procedure declaration. 

• Declare a procedure's formal parameters (if any) that are to be passed on the 
stack. 

As shown in the syntax description at the beginning of this section, the formal 
parameter list is enclosed in parentheses. The formal parameters' identifiers are 
defined by placing them in a stack frame template definition started by the macro 
(discussed later in this appendix). 

APPENDIX ] Structured Assembly Macros 295 



Each formal parameter identifier may be followed by a size attribute. If the size is not 
specified, word (w) is assumed. If the size is specified it may be any of the standard 
Assembler size attributes, an absolute expression, or a template name. An absolute 
expression explicitly specifies the size of the formal. A template name defines both 
the size and the type of the formal (see description of template types elsewhere in 
this Reference). 

Following the size you may specify a repeat count enclosed in required brackets. The 
default repeat count is 1. The repeat count indicates how repetitions of the basic size 
are to be allocated for the formal parameter. Thus the amount of space actually 
allocated for a formal is count* f ormal-sz. Note that since you are describing the size 
of parameter passed on the stack, and assumed pushed on the stack using A7, all sizes 
are rounded up to an even value. Specifying a byte actually allocates a word, and 
absolute expressions are rounded up to an even value. 

Normally, each formal parameter is processed left to right, causing a new entry in the 
stack frame template set up for this procedure. However, for C procedures, you may 
have the option of processing the formal parameters right to left, so that the leftmost 
argument is the one closest to the top of the stack. Right-to-left processing is 
specified by using the C parameter, as indicated in the syntax. 

• Define a function result 

By placing result after the formal parameter list (if any), you indicate that a function 
result is to be returned (you can still use the Procedure macro even if this is a 
function). The result parameter specifies the size or an identifier. If you specify a 
size, then the assumed identifier is the same as the procedure's name, module-id. 
Whichever name is used, that name may be referenced as a stack frame offset to store 
the function result; for example, MOVE. w DO, namli.FP ). More specifically, the name 
is defined as the first stack frame entry (template) field with no space allocated to it 
(if you specify a size it is used for commentary purposes only). In this position you 
could set the function result after all arguments have been popped off the stack prior 
to exit. See "Procedure or Function Exit," given later in this appendix, for further 
details on how the function result is set. 

• Force a LINK to be done at entry (by the BEGIN macro) and the 
corresponding UNLK to be done at exit (by the RETURN macro). 

Normally the LINK/UNLK pair is automatically generated for a procedure when you 
specify local variables (with the VAR macro), or have saved registers (specified by the 
BEGIN macro) and a function result or formal parameters. However, you may force 
generation of the LINK/UNLK pair by specifying the L!NK=Y er LINK=DEBUG 

parameter on the PROCEDURE or FUNCTION macro call. The LINK=DEBUG is the same 
as LINK=Y, but in addition causes the procedure's module-id (up to its first eight 
characters) to be generated following the exit code. This allows you to use MacsBug, 
which requires the LINK/UNLK pair and name so it can identify the module in memory. 

296 MPW 3.0 Assembler Reference 



It is possible that you might want to tum on the debugging option during 
development of your program and later tum it off. It could be inconvenient for you to 
have to set all the LINK= parameters in your source file and then later have to change 
them again. A pair of global equates are provided so you can simulate the LINK= 
parameter without explicitly specifying the parameter on each macro call. 

The global LinkAll is assumed to be 0 (false). If you set it to 1 (true), then LINK=Y 
will be assumed on all the PROCEDURE and FUNCTION calls. The second global is 
named Debug. It too is initially 0. But by setting it to 1 you simulate LINK=DEBUG. 
Note that the Debug setting overrides the LinkAll setting. Both cause the 
LINK/UNLK pair to be generated, but the Debug global generates the module name 
after the exit code for MacsBug. The setting of these globals should be done prior to 
using any of the program structure macros. You may set them explicitly in your source 
via EQU or SET statements or through the Assembler's -d command line option. 

The general skeleton for the code generated by just the PROCEDURE or FUNCTION macros 
is as follows: 

module-id 

SFf.XXXX 

[resultName 

formali 

RetAddr 

PROC I FUNC ENTRY I EXPORT Start a new code module 
and declare its scope 

RECORD {FramePtr},DECR Origin-shifted 
decrementing stack frame 

DS. size 0 ] Function result if this 
is a function 

DS.size amount Declare all formals ... if 
any (all are word 
aligned) 
i=l to n or n to 1 for C 

DS.L 1 Return address 

The stack frame template has a unique name, SFtxxx.x(the :ts are digits), for each 
procedure. It is a decrementing, origin-shifted template with the origin defined by the 
field FramePtr. The field FramePtr is generated either by the first VAR declaration or 
BEGIN if there are no local variables declared (the descriptions of each of these macros 
will show the skeletons they follow in completing the stack frame). The template 
definition is left open by the PROCEDURE and FUNCTION macros because either a VAR or 
BEGIN macro must follow. VAR macros are used to define local variables that will be 
added to the stack frame. The BEGIN macro actually closes the template definition. 

APPENDIX J Structured Assembly Macros 2<J7 



Local variable declaration 

VAR local, ... 

where 

local::= formal (see "Procedure or Function Header," given earlier in this appendix) 

The VAR macro is used to declare local stack variables that are to be used by the 
procedure. Each VAR macro may declare one or more variables. VAR macro calls must be 
placed after the procedure or function header and before the BEGIN macro. 

The syntax for defining local variables is exactly the same as that for declaring formal 
procedure parameters (see "Procedure or Function Header," given earlier in this 
appendix). Each variable is added to the stack frame template definition opened by the 
PROCEDURE or FUNCTION macro the same way formal parameters are. The only 
difference is that local variables are not automatically aligned to word boundaries and 
rounded up to an even size. 

The general skeleton for the code generated by VAR macros continues the skeleton 
started in the procedure and function header description given earlier. 

LinkA6 DS.L 1 
FramePtr EQU * 

locali DS. size amount 

A6 link to previous stack frame 
Stack frame Origin 
(proc's A6 points here) 

Declare a local. 
(one for each VAR parameter) 

On the first VAR call following the procedure or function header, the fields LinkA6 and 
FramePtr are generated. They are followed by the local variable definitions. Each 
additional VAR call just adds its variable definitions to the stack frame. 

When local variables are declared, it is assumed a LINK on A6 will be generated (by the 
Begin macro). Thus the LinkA6 field is generated to hold the previous stack frame link 
address. The frame pointer will be defined as A6 and will point to LinkA6 (see "Procedure 
or Function Start," given later in this appendix). This then becomes the origin for the 
template definition. FramePtr was defined as the origin field label when the template 
definition was opened (see procedure and function header skeleton), so it is now defined 
as the same offset as LinkA6 (remember this is a decrementing template definition). 

298 MPW 3.0 Assembler Reference 



Procedure or function start 

BEGIN [non-blank] [,save= reg-list] [ { template-id }] 
WITH= . 

' (template-id, ... ) 

The BEGIN macro is placed after all the local variable declarations (if any). BEGIN is used 
to close (ENDR) the stack frame template definition begun by the PROCEDURE or 
FUNCTION header macros and to generate the procedure's entry point code. 

The general skeleton for the code generated by the BEGIN macro is shown here: 

LinkA6 DS.L 

FramePtr EQU 

LocalSize EQU 

ENDR 
WITH 

1 A6 link if required and allowed 

* ] Stack frame Origin (only if no Var macros) 

* Negative of the size of the stack frame 

; Close the stack frame template definition 
temp/ate-id, . .. , SF:#:XXX.X 

; Cover WITH= templates and the stack frame 

[ LINK A6,:#:Loca1Size ] 
Allocate local stack frame if required 

and allowed 

FP SET A6 or A7 ; A6 if LINK generated else A7 
[ MOVE[M].L reg-list,-(A7)] 

; Save registers specified by Save= 

If there are no local variables declared, the LinkA6 and FramePtr fields are generated 
(see "Local Variable Declaration," given earlier in this appendix, for the meanings of these 
fields). The BEGIN macro signals the end of the local variable declarations and defines 
procedure entry point, so that the stack frame definition is closed with LocalSize set 
to the current stack frame offset. Since the stack frame is defined as a decrementing 
template, Local Size is a negative value whose absolute value is the size of the 
template. Local Size is used for the LINK instruction. 

The LINK instruction is generated under the following conditions: 

• There are local variables declared with VAR macros. 

• You specify register to be saved with the SAVE= parameter of BEGIN, and you have 
either a function with a return value (result specified on a PROCEDURE or FUNCTION 

macro), or formal parameters declared on a PROCEDURE or FUNCTION macro. 

• LINK is forced by the LINK= {Y I DEBUG} parameter on a PROCEDURE or 
FUNCTION macro. 

• LINK is forced by setting either of the globals, LinkAll or Debug, to 1 (true). 

APPENDIX J Structured Assembly Macros 'NJ 



Even if you have any of these conditions you may still suppress LINK by specifying any 
nonblank value as the first parameter to BEGIN. 

If none of the listed LINK conditions is true, or you suppress LINK with the nonblank first 
BEGIN parameter, then the stack frame pointer, FP, will be defined to be A7. If LINK is 
generated, FP is defined as A6. You use the frame pointer register to access the local 
variables and arguments on the stack. The variables may be directly referenced as frame 
pointer offsets, for example, local ( FP) . 

The stack frame field names may be directly referenced because the BEGIN macro always 
generates an Assembler WITH directive to cover the stack frame template. You may add 
your own template and data module names to this WITH for additional coverage by 
specifying the WITH= BEGIN parameter. If more than one name is specified, you must 
enclose the list in parentheses. Note in the skeleton that the stack frame name is always 
placed last in the WITH list so its definitions will override fields that belong to templates 
mentioned earlier in the list. 

You may specify that registers are to be saved on the stack by using the SAVE= BEGIN 

parameter. This parameter takes either a single register or a list of registers using the same 
syntax defined for a MOVEM instruction. The registers that are saved will be restored for 
you when you exit from a procedure via a RETURN macro. 

Procedure or function secondary entry point 

entry-id ENTER [non-blank] [ { template-id }] 
WITH= . 

' (template-1~ ... ) 

Sometimes it is convenient to have one procedure or function with multiple entry points; 
for example, a sine function with a cosine entry point You can use the ENTER macro to 
define a secondary entry point into a procedure module. 

ENTER is used within the body of a procedure (that is, somewhere beyond the BEGIN 

call). A label, entry-id, should be specified to define the secondary entry point. It is up to 
you to define its scope; that is, EXPORT or ENTRY (the default) prior to calling ENTER. 

The parameters of ENTER are the same as those of BEGIN and perform the same 
functions. Thus you may define additional WITH coverage and suppress LINK. However, 
the one parameter missing in ENTER that is in BEGIN is the list of registers to be saved. 
The registers to be saved are assumed to be the same as those specified by BEGIN (there 
can only be one set of saved registers so that RETURN knows how to restore them). 

300 MPW 3.0 Assembler Reference 



The general skeleton of the code generated by ENTER is shown here: 

BRA.S %L%X::O:X ; Branch around secondary entry point code 
entry-id ; Entry point label -- you define its scope 

WITH temp/ate-id,. . . ] 
; Cover additional WITH= templates 

LINK A6,fLocalSize ] 
; Allocate the local stack frame 

MOVE [M] . L reg-list,- (A 7) ] 
Save registers specified by 

; Save= on Begin macro 
%L%.xxxx ; The branch-around label (the x's are digits) 

A short branch is always generated around the entiy point code. WITH, LINK, and MOVE[MJ 

are generated just as they are in BEGIN (except that WITH does not respecify the stack 
frame). 

Procedure or function exit 

where 

RETURN [ret-resulrl 

ret-result 
sz 

ea[:£ZJ 
BIWILISIDIXIP 

At the end of the procedure you must generate code to return to the caller. The RETURN 

macro is used to perform this function. It is responsible for 

• restoring any saved registers 

• unlinking (UNLK) the stack frame if IJNK was generated on entiy 

• popping the parameters off the stack (if not C) 

• leaving a function result on the top of the stack (if not C) 

• returning to the caller 

• defining the module name as a string for MacsBug 

If you are exiting from a C procedure (as indicated by the C parameter on the PROCEDURE 

and FUNCTION macros), or if you are exiting from a procedure that has no arguments and 
is not a function with a result to rerurn, then the following skeleton illustrates the code 
generated by RETURN: 

MOVE [M] . L (A 7) +'reg-list 

UNLK A6 ] 
RTS 

DC. B ' module-id• 

Restore registers specified by 
Save= on Begin macro 
Set A6 back to the caller's stack frame 
Exit 
Name for MacsBug as an as-is string 
(8 chars) 

APPENDIX J Structured Assembly Macros 301 



This skeleton shows the basic exit code. Registers saved by the BEGIN macro at entry are 
restored, UNLK is generated if LINK was generated by BEGIN, and execution exits. If you 
specified the LINK=DEBUG parameter to the PROCEDURE or FUNCTION macros, or you 
defined the global DEBUG as 1 (TRUE), then the module name is generated for MacsBug 
following RTS. The name will be generated as an as-is string of eight characters, padded on 
the right with blanks if necessary. 

If you are not exiting from a C procedure and the procedure has arguments or there is a 
result to return, as specified by the optional ret-result parameter of RETURN, then the 
following skeleton illustrates the code generated: 

MOVE [M] . L (A 7) +,reg-list ] 

UNLK A6 ] 

MOVEA.L (A7)+,AO 
ADDQ. w #argsize,A 7 

or 

LEA argsize(A7) ,A7 

[F] MOVE .szea, (A7) 

JMP (AO) 
DC.B •module-id• J 

Restore registers specified by 
Save= on Begin macro 

; Set A6 back to the caller's stack 
; frame 
; Pop return address into AO 
; Pop arguments off the stack 

c argsize :S a l 

Pop arguments off the stack 
c argsize > 8 l 
Set function value (MOVE if sz ::= B 

; W I L) 
Exit 
Name for MacsBug as an as-is string 
(8 chars) 

As in the simple case, the registers are restored, UNLK is generated, and the name for 
MacsBug is generated. But if there are arguments, they must be popped off the stack. 
They are popped by generating ADDQ or LEA to pop the stack most efficiently. If a 
function result is specified with the ret-result parameter, then it is left on the top of the 
stack prior to returning to the caller. 

Note that ret-result may only be specified if result was specified on the PROCEDURE or 
FUNCTION macro. The default size for the move is taken from the size specified for the 
PROCEDURE or FUNCTION result. If an identifier is specified for result instead of a size, 
then word is assumed. However, you do not have to use the size specified on the 
PROCEDURE and FUNCTION macros. Instead it may be overridden with an explicit size 
specification following the effective address portion of the ret-result (see syntax at the 
beginning of this section). No matter which way the size is specified, a standard MOVE is 
generated when the size is byte, word, or long (B, w, or L) and a FMOVE when the size is 
single, double, extended, or packed (s, D, x, or P ). 

302 MPW 3.0 Assembler Reference 



There is no requirement that a function's result must be set on exit from the module with 
RETURN. It may be more convenient at times to set the return value at various places 
within the module and just use RETURN for a common exit point. When a function result is 
specified to the PROCEDURE and FUNCTION macros, a field is defined in the stack 
template that corresponds to where the function result is to be returned; that is, the first 
field of the stack frame template with no space reserved, which corresponds to the stack 
position after all the arguments and RETURN have been popped off the stack. It may be 
addressed through the field name. This name is the same as the module-id if you specified 
the result as a size, or if an identifier was specified instead of a size, that identifier is used 
as the field name. You may access it prior to exit just like any of the other stack frame 
fields, namely as an offset from the frame pointer register, FP; for example, MOVE. w 
DO,naml(FP). 

Procedure, function, or trap invocation 

Call[ . ex~ module-id[ : result-sz] [ ( [arg], ... ) ] [,disposition] 

where 

ext 
result-sz 
arg 
arg-sz 
disposition · · = 

SIBIWILI* 
BI WI L 
ed: arg-sz] I NIL I TRUE I FALSE 
B I w IL I A I D-register 
~ I {ea I CC I POP}[: result-szl I (PASS,{ea I CC}[: result-sz]) 

The CALL macro is used to invoke a procedure, function, trap, or another macro. 
Arguments may be pushed on the stack. If the invoked routine is a function, space on the 
stack may be reserved for the function result and the disposition of that result may be 
specified. The following general code skeleton shows how all these actions are performed: 

APPENDIX ] Structured Assembly Macros 303 



SUBQ.W 
CLR.L 
ST 
CLR.B 
MOVE . arg-sz 
PEA 
MOVEQ 
MOVE.L 

JSR 
or 

BSR.ext 
or 

module-id 
TST. result-sz 

or 

#2 or *4,A7 ] 
- (A7) 
-(A7) 
-(A7) 
ea,-(A7) 
ea 
ea, D-register 
D-register,- (A 7) 

module-id 

module-id 

(A7)+ 

ADDQ.W #2 or #4,A7 

or 
MOVE. result-sz (A 7 > +, ea 

or 
TST. result-sz (A 7) 

or 
MOVE . result-sz (A 7) ' ea 

; Leave space if resu/t-sz specified 
If NIL 
If TRUE 

; If FALSE 
If ea: arg-sz, where arg-sz ::= B I w I L 
If ea:A 
If ea: D-register. . • 
... ea: D-register generates a push of a long 
Additional arguments are pushed onto 
the stack 

; Call if external or ext ::= * 

Call if ext ::= s I B I w I L 

Call if module-id is opword, macro, or _id 
If result-action : := cc: result-sz 

If result-action::= POP: result-sz 

If result-action : := ea: result-sz 

If result-action ::= (PASS, cc: result-SZ) 

If result-action::= (PASS, ea: result-SZ) 

Arguments are passed on the stack by enclosing the argument list in parentheses after 
module-id. An argument may take any of the following forms: 

• The identifier NIL. NIL causes a push of a long word 0 by generating 
CLR. L -{A7). 

• The identifier TRUE. TRUE causes a word push of $FFXX (the xx is a garbage byte) 
by generating ST -{A7). 

• The identifier FALSE. FALSE causes a word push of $00xx (the xx is a garbage 
byte) by generating CLR. B -(A7). 

• An effective address optionally followed by a size (B, w, or L) specifier. The size 
specifier indicates the size of the argument that is to be pushed on the stack (byte, 
word, or long). MOVE.sz ea,-{A7) is generated. If no specifier is given, a word push is 
assumed. Note that MOVE.sz #O,-{A7) will be optimized by the Assembler to 
CLR.SZ -{A7) unless OPT NOCLR or OPT NONE is in effect. 

• An effective address followed by the address specifier A. Using A as a specifier 
indicates that the address of the argument is to be pushed (PEA). 

304 MPW 3.0 Assembler Reference 



• An effective address followed by a D-register. This is a special case that restricts the 
effective address to an immediate mode (that is, #ae) with a value 
-128 .. +127. It is used to generate a space-efficient long word push of small constants 
by generating MOVEQ to the specified D-register and then a move of the D-register 
onto the stack. 

• An argument in the argument list may be omitted, indicated by a comma with nothing 
before it. Nothing is generated for such an argument. This is useful for commentary 
purposes when the first argument is already on the stack; for example, F ( , Y) • It 
could also be used for arguments beyond the first argument if, for example, you push a 
long argument that actually corresponds to two word arguments. Thus_ MOVE TO 
QuickDraw call, which requires integer point coordinates as parameters, could be 
written as _MOVETO(h,v). But if you happen to have a template defined that overlays 
the two integer coordinates with a long word, called, for example, thePoin~ you could 
write _MOVETO (thePoint: L,). 

To call the specified module-id either JSR, BSR, or module-id itself is used to perform the 
call. The determination of which call form is used is based on the following criteria: 

• JSR is generated whenever the routine you are calling is either undefined, a code 
module previously declared in the same file, or a code import; or an asterisk ( *) is 
specified for the CALL extension attribute, ext, to force JSR. 

• BSR is generated if you specify an explicit extension, s or B, w, or L, indicating the 
size of BSR. If you don't specify the extension, BSR (default size) is still generated if 
module-id does not satisfy the JSR criteria or the following criteria. 

• If module-id is an opword (defined by the Assembler's OPWORD directive), or a MACRO 
name, or an undefined type (as determined by the Assembler's &Type function) and 
begins with an underscore, then module-id itself is used as an opcode. This will cause 
generation of the opcode word (usually a trap) for opwords and a macro call for 
macros. 

If a function is being called, then the amount of space to be reserved on the stack for the 
function result is specified with result-sz following module-id. The result size may B, w, or 
L, with both B and w reserving a word on the stack and L reserving a long word. 

On return from the function it is assumed the result is left on the top of the stack in the 
space reserved prior to the call. The action to perform on the function result is specified 
by disposition. The value of disposition may be just the keyword PASS, an effective 
address, or the keywords cc or POP optionally followed by a size attribute. 

APPENDIX J Structured Assembly Macros 305 



Each of these forms causes a different action to be performed, as follows: 

• PAS s is the default disposition. This leaves the function result on the top of the 
stack. 

• cc causes the function result to be tested by a Ts T instruction to set the condition 
codes. 

• An effective address, ea, indicates that the function result is to be copied to the 
specified alterable address. 

• POP indicates that the function result is to be popped off the stack. 

Note that specifying an effective address, cc, or POP all cause the function result to be 
popped off the stack. The size attribute, result-sz, indicates how much to pop off the 
stack. The default is to use the size specified by result-sz, which is the normal case. The 
only time you might want to use a different pop size is if, for example, you want to pop 
less than what is actually the result size, leaving a portion of the result on the stack. For 
example, this could be used for the Menu Manager's MenuSelect call as follows: 

CALL _MenuSelect:L(thePoint:L),DO:W 

Since MenuSelect returns a long word with the high-order word containing the menu ID 
and the low-order word containing the menu item number, you could pop just the menu ID 
off the stack into DO while leaving the item number on the top of the stack for later use. 

A situation exists where you may want to copy the function result or set the condition 
codes based on the result, but still want to leave the result on the top of the stack. By 
enclosing the keyword PASS followed by an effective address or cc in parentheses, you 
may perform this action. The value of result-sz for this case indicates the size of the MOVE 

or Ts T instruction. 

Considerations for use 

This section describes the various considerations you need to take into account to use 
the structured assembly macros. The considerations are split into two groups. The first are 
the more esoteric considerations: why you should or should not use the macros. The 
second group of considerations are specific and cover the rules you must follow to use the 
macros, over and above the syntax and semantic considerations described in the previous 
sections. 

306 MPW 3.0 Assembler Reference 



Why you should or should not use the structured assembly macros 

This document provides a set of macros that essentially simulate almost all the 
functionality provided by a high-level language compiler. You have many of the 
advantages of a higher-level language but still retain the ability to "drop" into assembly 
code at any time. This is a powerful combination, and you can be reasonably sure that the 
code generated is as optimal as you can write. 

However, you must remember that this "compiler'' is implemented as a set of Assembler 
macros. Macros are more or less interpreted, and that means that this compiler is an 
interpretive compiler. In terms of raw speed it will never compile and generate code as 
fast as a native code compiler. The MPW Assembler is fast, but there is a limit. The macros 
presented here are extremely complex and push the Assembler to that limit. Average 
compilation speed is about 10,000 lines per minute on a 1-megabyte Macintosh Plus. That 
may appear faster than most compilers, but remember that most of those "lines" are 
macro definition lines, not source input lines. The actual net throughput is more on the 
order of 500-800 source lines per minute. 

Error and consistency checking is not perfect, and is in fact almost nonexistent, because 
such checking would slow the macros down even more (much more). Except for a few 
tests for specific parameter syntatic forms and depending on the Assembler itself to 
catch errors, there are no additional error checks. 

You have to weigh the advantages of using these macros against the assembly speed 
disadvantages. The reason the assembly speed aspect is noted as a consideration at all is 
that users of the Assembler not using these macros will see a large decrease in assembly 
speed when they do. This can be very disconcerting and discourage use of the macros, 
especially if you are already used to the speed of the Assembler and you know how long it 
takes to assemble a file. Those already coding in assembly language also have their own 
styles of coding and these macros will greatly affect those styles. It is conceivable that 
any advantages gained by using the macros cannot be justified when weighed against the 
loss of assembly speed or change of coding style. 

Of the two groups of macros, program structure macros and flow-control macros, the 
flow-control macros are the more complex and require the most assembly time. You could 
decide to compromise and use only the simpler program structure macros. If you consider 
ease of coding, maintainability, and readability more important than assembly time, then 
you may want to use the full set of macros. 

These arguments are presented for your careful consideration. Only you can decide 
whether these macros are worth using. 

APPENTIIX J Structured Assembly Macros 307 



Rules for using structured assembly macros 

It is assumed in the following discussion that you already know how to use the Assembler 
and its directives and modes, and how to call macros. 

The following rules must be observed when using the macros: 

• Nesting of IF, SWITCH, REPEAT, WHILE, and FOR statements is limited to a 
maximum depth of 25. 

• To use the flow-control macros you must have BLANKS ON (the Assembler default 
setting). The flow-control macros "read" like high-level language statements, with 
spaces or tabs between the keywords. 

• The macros assume OPT ALL is in effect because they generate generic instructions 
and depend on the modes of their effective address parameters to cause the proper 
instruction generation. Indeed, code generated from macros is one of the prime 
reasons for having generic instructions in an Assembler. 

• Don't generate assembly listings with PRINTGEN in effect. (This is a recommendation, 
not a must.) 

• Macro parameters may be continued the usual way using the standard Assembler"\" 
continuation character. This could be particularly useful for the VAR program structure 
macro for declaring multiple local variables and commenting on them with one VAR 

declaration. 

• Keyword macros may be in any order and there need not be a comma preceding the 
first keyword parameter if all the positional parameters are omitted. These are 
standard Assembler macro rules, but it is important to point out the fact that the 
syntax descriptions do not show all possible keyword permutations. For example, the 
BEGIN program structure macro may have its nonblank first (and in this case, only) 
positional parameter omitted. If it is omitted, the comma that follows it may be 
omitted and the two keyword parameters could be reversed. 

• Long branches (produced from an L ext extension specification) may only be used if 
the MC68020 or MC68030 is specified as the target microprocessor. 

• Branch warnings are not suppressed. This is done so you can get the appropriate 
extension specifications on the macros that require them, and normally default to 
word size branches. 

• Due to the size of the 5tructured assembly macros, you cannot use them on a 512K 
machine. 

308 MPW 3.0 Assembler Reference 



The macros are provided as two source files ready for assembly in the folder AStructMacs. 
File ProgStrucMacs.a contains the program structure macros and file FlowCtlMacs.a 
contains the flow-control macros. The folder also contains Sample.a, which is a rewrite of 
Sample.a in the AExamples folder, except that it illustrates the use of the structured 
macros. Both macro files are set up to generate DUMP files (ProgStrucMacs.d and 
FlowCtlMacs.d). You have the choice of editing the source files to remove the DUMP 

directives or just assembling them to generate the DUMP files. It is recommended that you 
generate DUMP files because to use the sources you have to INCLUDE them. Considering 
the size of these source files it is not a good idea to INCLUDE them. LOAD statements are 
very much faster. 

No matter which technique you decide to use, it is suggested that you put the files in the 
directory specified by the {Aincludes} MPW Shell variable. Since the {Aincludes} Shell 
variable is known to the Assembler as part of its standard search rules for input file 
pathnames, you only have to LOAD or INCLUDE the files with no additional qualification 
and no -i Assembler option to access them. 

Syntax summary 

Expressions 

expr ::= s-expr I s-expr op s-expr 
s-expr ::= cc I ea CC[. SZ] ea 
op ··= AND I OR 

cc ::= EQ I NE I LE LT GE GT MI PL I HI I 

LS I LO I cc cs NZ HS vc VS 

sz ::= B I w I L 

APPENDIX J Structured Assembly Macros 30CJ 



Flow-control macros 

IF# exprl THEN[ .ext] 
statements1 

ELSEIF#[.ext] exprz THEN[.ext~ 
statements2 

ELSE#[.ext] 

statemen~ 

END IF# 

SWITCH# [ .sz] selector[,Dreg=Dn] [,JmpTbl= {NI y I ext} ],[ChkRng={NIY}] 

CASE #Lextlae1L. aei], ... 
statements1 

DEFAULT# 
statements2 

ENDS# 

REPEAT# 
statements 

UNTIL#[. ext] {expr I FALSE} 

WHILE# {expr I TRUE} DO[. ext] 
statements 

ENDW# 

FOR# ctl-var[=[. sz] initian [DOWN]TO ftnal[BY incwnent] [UNTIL expr] DO[. ext]\ 
[,DREG=Dn] [,opt={Y IN}] [,clr={YIN)] 

statements 

ENDF# 

LEAVE#[. ext] [faben [IF(#JE?lpr] 

CYCLE#[. exrj [/aben [IF[#]exfJr] 

GOTO#[. ex~ [IF[#]exfJrTHEN[. exilllabel 

310 MPW 3.0 Assembler Reference 



Program structure macros 

EN..T.EY 
EXPORT PROCEDURE 
LOCAL FUNCTION 

[modul~id] [([formal, .. .])]: [ result][,c] [,Link= {YI DEBUG} J \ 
[,Main={NIY)] 

formal .. = 

f ormal-sz : : = 

count ··= 
result ··= 

Var local, ... 

local ::=formal 

idJormal-szl [count] 
B I w I L I S I D I X I P I ae I templa.te-id 
[at3 
BIWILISIDIXIPI id 

BEGIN [ non-blank ] [,save = Te'5-l ist ] [ { template - id }] 
,WITH= . 

( template - 1d, •.• ) 

entry-id ENTER [ non-blank] [ { template - id }] 
,WITH= . 

( template - Id, ... ) 

Return [ret-result] 

ret-result · · = ed:szl 
sz BIWILISIDIXIP 

call [.ex~ module-id:result-szl [([argl, ... )] [,disposition] 

ext 
result-sz 
arg 
arg-sz 
disposition 

··= 
··= 
··= 
··= 
··= 

SIBIWILI* 

BIWIL 

ed:arg-szl I NIL I TRUE I FALSE 

B I w I L I A I D-register 
~ I {ea I cc I POP}[:result-szl I (PASs,{ea I cc}[:result-szl) 

APPENDIX J Structured Assembly Macros 311 





Glossary 

@-label: A label of very limited scope, written 
with @ as its first character. 

absolute: Of an expression, having a value that 
can be determined during assembly. 

actual parameter: A parameter in a macro call. 

addressing mode: see effective addressing 
mode. 

anonymous: Of a file or variable, not having an 
identifier. Anonymous objects are accessed by 
pointers. 

application globals area: An area in RAM in 
which application programs store data. 

application parameter area: An area in RAM 
pointed to by register AS. 

array: A data structure containing an ordered set 
of elements. 

ASCII: Acronym for American Standard Code for 
Information Interchange; a system of assigning 
code numbers to letters, numerals, punctuation 
marks, and control codes. 

ASCII character: A character whose ASCII code 
number lies in the range 0 .. 127. 

as-is string: A string that the Assembler stores 
without length information. 

assembler: A program that translates source 
text into object code. 

Assembler option: An instruction passed to the 
Assembler at the time it is invoked. 

Assembler system variable: A variable whose 
value is determined by the Assembler. 

assembly: The process of translating source 
text into object code. Also, the set of modules 
being assembled. 

assembly-control directive: A directive that 
controls whether or not some portion of source 
text is assembled. 

back.quote: The ASCII $60 character, written, 
which tells the Macro Processor that the next 
character is to be processed literally during 
macro expansion. 

binary: Base-2 number representation, using the 
numerals 0 and 1. 

blank: A tab or space character. 

body: In a macro definition, the machine 
instruction and directive statements that 
comprise the macro, other than the MACRO 
directive, prototype line, and ENDM directive. 

Boolean expression: An expression whose 
value is either true or false. 

built-in function: A function that is part of the 
macro language. 

code: Executable computer instructions. 

command line: The text you enter to execute a 
command in the MPW Shell. 

comment: Source text intended for a human 
reader, ignored by the Assembler. 

313 



comment field: The area of a source text line 
reserved for comments. 

comment line: A source text line containing 
only a comment. 

comparison operator: An operator that 
compares two values; they are listed in Table 2-3. 

conditional assembly: The process of 
controlling what source text is assembled. 

continuation character: A character at the end 
of a source text line that lets you continue the 
text onto a second line. Backslash(\) is the 
Assembler's continuation character. 

C string: A string in a format compatible with 
the C programming language; it is terminated 
with a 0 byte. 

data: Information that a computer processes. 

decimal: Base-l 0 number representation, using 
the numerals 0 through 9. 

destination: An address into which an 
instruction places data. 

diagnostic output file: A file to which MPW 
tools, including the Assembler, write error 
messages and progress information. 

dimension: An ordering relation among 
elements of an array. 

directive statement: A source text instruction 
to the Assembler, which generates no direct 
code. 

equal: (Of strings) indistinguishable. 

equate: An EQU or SET directive. 

error code: A code (usually a number) returned 
by the Assembler to indicate that it has 
·encountered an error in the source text or 
assembly process. 

expand: To replace a macro call with the 
appropriate macro body, substituting actual 
values for variables and parameters where 
needed. 

export: To make a module or entry point 
defined in the current assembly linkable to other 
assemblies. 

field: A data structure within a template or 
statement. 

first-level call: The outer macro call of a macro 
call chain. 

floating-point: A way of representing decimal 
numbers. 

formal parameter: A parameter in a macro 
definition. 

generic form: A way of writing a statement so 
that the Assembler will convert it into a different 
form. 

global scope: The scope of code or data that is 
accessible in more than one module. 

global symbol table: A symbol table that 
contains symbols with global scope. 

dynamic nesting level: The ordinal position of header: In a macro definition, the MACRO 
a macro call in a macro call chain. directive itself. 

effective addressing mode: Any of several 
ways of writing an address so it can be 
assembled. 

element: One item in a sublist. 

314 MPW 3.0 Assembler Reference 

hexadecimal: Base-16 number representation, 
using the numerals 0 through 9 and the letters A 
through F. 

identifier: A name in source text. 



IF ... ENDIF construct: Source text enclosed by 
an IF directive followed by an E~'DIF directive. 

import: To make a module or entry point 
defined in another assembly linkable to the 
current assembly. 

include: To insert the contents of a source text 
file into an assembly. 

index: A numeric value that indicates the 
position of an element in a sublist or array, 
expressed by a subscript. 

initial value: The value the Macro Processor 
assigns to a SET variable when it is created. 

inner macro call: A macro call inside a macro. 

instruction: A program element representing a 
single computer operation. 

jump table: In the Macintosh, a table of 
references in RAM, used for communication 
between segments. 

keyword: An identifier for a macro parameter. 

keyword macro: A macro whose parameters are 
identified by keywords. 

keyword macro call: A call to expand a 
keyword macro. 

label: A name that identifies a location in 
assembled code or data. 

label field: The leftmost field of a statement. 

lifetime: Of a variable, the duration of program 
execution during which it is accessible. 

literal: Immediate data given to an instruction. 

literali7.e: To modify a symbol in source text so 
that the Assembler does not interpret it. 

literal pool: A table of all literals in an assembly, 
without duplications, maintained by the 
Assembler. 

local scope: The scope of code or data that is 
accessible in only one module. 

local symbol table: A symbol table that 
contains symbols with local scope. 

location counter: A counter maintained by the 
Assembler that points to the current byte of 
code or data being assembled. 

logical operator: One of the operators OR, 
XOR, AND, and NOT. 

machine instruction statement: A statement 
that generates executable code. 

Macintosh library routine: Any of the 
standard Macintosh routines described in Inside 
Macintosh. 

macro: Defined source text that the Macro 
Processor expands into other source text on 
command. 

macro call: A command to the Macro Processor 
to insert a macro at a specific point in a source 
text. 

macro call chain: A sequence of one outer 
macro call and any number of inner macro calls. 

macro definition: The source text that 
constitutes a macro. 

macro directive: A directive that controls 
macro expansion but does not generate any 
source text directly. 

macro label: A label indicating a location in 
source text, used only with GOTO directives. 

macro language: The directives and functions 
that create and manipulate macros. 

Glossary 315 



Macro Processor: The part of the Assembler 
that interprets the macro language. 

macro symbol table: A symbol table that 
contains macro symbols and definitions. 

macro variable: A variable whose value is 
controlled by macro directives. 

main code module: The code module that will 
be executed first when a program runs. 

main data module: A specific data module that 
the Linker places at the base of the global data 
area where its offset is known to the Assembler. , 

mixed-mode macro: A macro containing both 
positional and keyword parameters. 

mnemonic: A source text symbol that expresses 
an instruction or directive. 

model statement: In a macro body, a 
statement that the Macro Processor uses as a 
model to generate actual machine instruction or 
directive statements. 

module: A contiguous collection of code or 
data. 

module directive: A directive that defines a 
code or data module. 

nonterminal symbol: Part of a syntax diagram 
that stands for something to be written in the 
source text, such as expr for an expression. 

numeric constant: A number expressed directly 
in a source text 

object code: Machine-language code generated 
by the Assembler. 

object file: A file containing specifications for 
data and code module contents, references to 
other code and data modules, and segmentation 
information. 

316 MPW 3.0 Assembler Reference 

operand field: The source text column that 
contains instruction operands and directive 
parameters. 

Operating System routine: A Macintosh 
library routine that performs a task such as 
accessing a disk file or handling an error. 

operation: A directive or instruction in a source 
text. 

outer macro call: A macro call that is not inside 
a macro. 

paired brackets: A left bracket and a right 
bracket that the Assembler treats as enclosing an 
expression. 

paired parentheses: A left parenthesis and a 
right parenthesis that the Assembler treats as 
enclosing an expression. 

paired single quotation marks: The first and 
last single quotation marks in a quoted string. 

parameter: A piece of data in the operand field 
of a directive, macro prototype, or macro call 
statement. 

parameter list: A sequence of parameters, 
separated by commas, in a macro prototype or 
macro call. 

Pascal string: A string assembled into a form 
compatible with the Pascal programming 
language; it begins with a length byte and has a 
maximimum length of 255 characters. 

pass: One processing cycle of the Assembler. 

PC-relative: Located relative to the current 
value of the program counter. 

positional macro: A macro whose parameters 
are identified by their position in its parameter 
list. 



positional parameter: A macro parameter 
identified by its position in the parameter list. 

postfix notation: A way of representing object 
code in an incomplete form, used by the 
Assembler on its first pass. 

predefined SET variable: A SEf variable whose 
value is set by the Macro Processor. 

prototype: In a macro definition, the statement 
that establishes the name and parameter format 
of the macro. 

qualified: Said of an identifier that is written 
with a qualifier. 

qualifier: An identifier appended to another 
identifier (usually with a period between), which 
modifies its meaning. 

quoted string: A string enclosed in single 
quotation marks (' ). 

register list: A source text list of 
microprocessor registers, used as an operand of 
move-multiple instructions. 

relative ASOI ordering: The algorithm by 
which the Macro Processor compares strings. 

relocatable: Of an expression, having a value 
that cannot be determined during assembly. 

scope: The area of source text in which a piece 
of code or data can be referenced. 

scratch file: An area of RAM or disk memory 
used for temporary storage. 

second-level call: The first inner macro call in a 
macro call chain. 

segment: A collection of modules that is loaded 
together from disk into RA~ during program 
execution. 

SET variable: A macro variable whose value is 
assigned by a SETA or SETC directive. 

source: In instruction syntax, an address from 
which the instruction takes data. 

source text: Program text written by a 
programmer. 

statement: A line of source text, including 
machine instruction statements and directive 
statements. 

string: A sequence of one or more characters. 

string constant: A string written explicitly in 
source tex~ enclosed in single quotation marks. 

sublist: A collection of macro call parameters 
that the Macro Processor treats as a unit. 

subscript: A numeric expression whose value is 
the index of an element in a sublist or array. 

symool: A lexical component of source text 
processed by the Assembler. 

symbolic parameter: A variable that acquires a 
value during macro expansion. 

symbol table: A list of source text symbols and 
their values maintained by the Assembler. 

table: An ordered list of code or data objects 
that the Assembler creates in memory during 
assembly. 

template: A source text structure that describes 
a collection of data without allocating memory 
for it. 

terminal symbol: Part of a syntax diagram that 
must be written in the source text exactly as it 
appears in the diagram. 

token: A character or group of characters that 
the Assembler interprets as a single syntactic 
entity. 

Glossary 317 



tool: A program that runs in the MPW Shell 
environment. 

Toolbox routine: A Macintosh library 
routine that performs a task such as creating a 
menu or manipulating a window. 

trailer: In a macro definition, the ENDM or 
MEND directive. 

trap dispatcher: A routine in RAM that handles 
unimplemented instructions, among other tasks. 

unequal: Of strings, able to be distinguished. 

unimplemented: Of an instruction, one that is 
not part of the standard MC68xxx instruction 
set. 

variable definition directive: A directive that 
creates a macro variable. 

WHILE ... ENDWHILE construct: Source text 
enclosed by a WHILE directive followed by an 
ENDWHILE directive. 

318 MPW 3.0 Assembler Reference 



Index 

Cast of Characters 
& (ampersand) 124, 129, 144 

(asterisk) 24, 26, 121, 166 
@ (at sign) 17, 130, 213 

(backquote) 130 
\ (backslash) 23,24, 149 
{ ) (braces) xxi, 149 
[ l (brackets) xx~ 128, 149 

(colon) 107, 149 
(comma) 149 
(compliment) 29, 149 

I (division symbol) 29, 148 
$ (dollar sign) 26, 213 

(ellipses) xxii 
(equal sign symbol) 148, 175 

> (greater than symbol) 149, 175, 176 
~ (greater than or equal to symbol) 29, 149, 175, 176 
>= (greater than or equal to symbol) 29, 149, 175, 176 

(left bracket) 149 
< Gess than symbol) 175, 176 
~ Oess than or equal to symbol) 176 
<= Gess than or equal to symbol) 29, 149, 175, 176 
•• Gogical and) 29 

(minus sign) 29, 148 
II (modulus division) 29, 148 

(multiplication) 29 
, (NOD 29, 149 
<> (not equal symbol) 29, 149, 175 
':I:- (not equal symbol) 29, 149, 175 
# (number sign) 231 
() (parentheses) 29, 128 
% (percent sign) 26, 263 

(period) 149, 213 
(period-asterisk) 121 

+ (plus sign) 148 
(quotation mark) 26 
(right brace) 149 
(right bracket) 149 
(semicolon) 121 

« (shift left symbol) 149 
» (shift right symbol) 149 

(single quotation mark) 128 
I (slash) 29, 148 

(underscore) 25, 213 

A 

&ABS: return absolute value 146 
absolute expressions 31 
accessing variable substrings 158 
address 

formats 192 
optimizations 192 
registers 44 

address syntax 35-56 
ambiguities 41-43 
forward-reference 43 
MC68030 instructions 49 
MC68851 instructions 53 
MC68881 instructions 52-53 
MC68882 instructions 52-53 
modes 37-41 
optimizations 41 
registers 44-45 
special address formats 46-48 

literals 55-56 
MC68xxx instructions 46 
MC68020 instructions 47-48 
MC68030 processor 49-51 
MC68851 53-54 
MC68881 and MC68882 instructions 52-53 

-addrsize option 255 
AERROR directive 182 
anonymous module 65 
ANOP directive 182 
application global area 13 
application parameter area 13 
As-is string 28 
Assembler command syntax 23&-259 
assemblers, comparison of 211-218 

addressing 217 
communicating between modules 215 
defining modules 215 
expressions, writing of 215 
identifiers, writing of 213 
location-counter reference 216 
macros, writing of 217 
module definition 215 
number, writing of 214 
strings, writing of 214 

319 



assembly files 7 
assembly listing format 207-209 
assembly options 93-100 

BLANKS: control blanks in operand field 99-100 
BRANCH and FORWARD: resolve forward branches 
96-97 

CASE: treatment of lowercase letters 98-99 
MACHINE: specify target machine 93 
MC 6 8 8 51: coprocessor instructions 95 
MC 6 8 8 81 and MC 6 8 8 8 2: coprocessor instructions 
94-95 

OPT: specify level of optimization 97-98 
STRING: specify format 9~96 

@ labels 17, 130, 213 
aware and nonaware tests 231-232 

B 
backquote character(') 117, 130 
backslash character (\) 149 
binary numbers 26 
BLANKS directive 99 
-blks.i1.e option 255 
Boolean control expressions 17~ 176 

comparing two integers 175 
comparing two strings 175 
comparing integers and strings 176 

braces ({ }) :xxi, 149 
brackets CTD xxi, 128, 149 
BRANCH directive 96 
built-in functions 141-142 

c 
CASE directive 98 
C calling conventions 277-278 

function results 278 
parameters 278 
register conventions 278 

<[heck] option 256 
&CHR: convert integer to character 159 
code and data module definitions, 62-fJ7 

CODE and DATA, switch between 67 
END: end the assembly 67 
FUNC and ENDFUNC, define function code 

module 63 
MAIN and ENDMAIN: define main program 

code module 63 
PROC and ENDPROC: define procedure code 

module 62-fJ3 
RECORD and ENDR: define a data module 
64-65,7~ 

CODE directive 67 

320 MPW 3.0 Assembler Reference 

CODEREFS directive 88 
coding conventions 11-34 

definitions, scope of 1~18 
expressions 28 

absolute 31 
evaluation of 30 
relocatable 30 

imported and exported objects 17 
machine instruction syntax 19-24 

label field 20 
operand field 23 
operation field 21 

segmentation 18-19 
source text structure 13 
symbols 25 

identifiers 25 
numeric constants 26 
strings 27 

command syntax 253-259 
COMMENT directive 93 
comments 24, 93 
companion operators 29, 175 
&CONCAT: concatenate strings 16o 
concatenating symbolic parameters 124 
conditional-assembly directives 

ACTR: limit looping 180-181 
AERROR: error generation 182 
ANOP: Assembler NOP 182 
Boolean control expressions 17~176 
CYCLE and LEAVE directives 180 
EXITMandMEXIT:exitmacro 181 
GOTO and IF ... : branching 176-177 
IF, ELSE IF, ELSE, and END IF: conditional 
assembly 178-179 

WHILE and ENDWHILE: looping 179 
WRITE and WRITELN: write to output 181-182 

condition· codes 229-233 
coprocessor instructions 94-95 
c string 28 
CYCLE directive 180 

D 

data definition directives 59, 72-75 
DC and DCB: place contents in code or data 73 
D S: define storage area 75 
data module definitions 64--67 

DATA directive 67 
DATAREFS directive 88 
DC directive 73 
DCB directive 73 
DECREMENT parameter 65 



&DEFAULT: return string value or default 160 
-d[efine] option 256 
definitions of code and data modules 62---08 

scope of 15-16 
&DELSYMTBL: delete symool table 157 
directives 57-112 

ALIGN 100 
BLANKS 99 
BRANCH 96 
CASE 98 
CODE 67 
CODEREFS 88 
COMMENT 93 
DATA 67 
DATAREFS 88 
DC 73 
DCB 73 
DS 75 
DUMP 105 
EJECT 111 
END 67 
ENDFUNC 63 
ENDMAIN 63 
ENDPROC 62 
ENDR 64 
ENDWITH 82 
ENTRY 85 
EQU 68 
ERRLOG lo6 
EXPORT 85 
FORWARD 96 
FREG 70 
FUNC 63 
IMPORT 87 
INCLUDE 104 
LOAD 105 
MACHINE 93 
MAIN 63 
MC68851 95 
MC68881 94-95 
OPT 97 
OPWORD 71 
ORG 102 
P/'.GESIZE 107 
PRINT 108 
PROC 62 
RECORD 64 
REG 70 
SET 68 
SPACE 111 

E 

STRING 95 
TITLE 108 
WITH 82 

ellipses xxii 
END directive 67 
ENDFUNC directive 63 
ENDMAIN directive 73 
ENDPROC directive 62 
ENDR directive 64 
ENTRY directive 85 
ENDWITH directive 82 
EQU directive 68 
equates 40, 68, 105 
-e[rrlog] option 257 
&EVAL: evaluate contents of string 147 
exclusive OK 29 
EXPORT directive 85 
expressions 28-33 

F 

absolute 32 
evaluation of 3~31 
relocatable 33 

fields xx, 19-24, 76 
files, assembly-language 7 

search rules 104 
file control directives 103-107 

DUMP and LOAD: write and read symbol table 105 
ERRLOG: specify errorlog 106-107 
INCLUDE: take source text from another 104 
search rules 104 

&FINDSYM: find symbol in table 156 
flow-control macros 310 
-font option 110, 257 
formats 61-72 
FORWARD directive 96 
FREG directive 70 
FUNC directive 63 
FUNCTION macro 293, 311 
functions 

&ABS 146 
&CHR 159 
&CONCAT 160 
&DEFAULT 160 
&DELSYMTBL 157 
&ENTERSYM 155 
&EVAL 147 
&FINDSYM 156 

INDEX 321 



G 

&GETENV 160 
&INTTOSTR 160 
&ISINT 147 
&I2S 160 
&LC 161 
&LEN 147 
&LEX 148 
&LIST 150 
&LOWCASE 161 
&MAX 151 
&MIN 151 
&NBR 151 
&NEWSYMTBL 154 
&ORD 152 
&POS 152 
&SCANEQ 153 
&SCANNE 153 
&SETTING 161 
&STRTOINT 154 
&S2I 154 
&SUBSTR 162 
&TRIM 163 
&UC 164 
&UPCASE 164 
symbol table functions 154-157 

GBLA directive 143-145 
GBLC directive 143-145 
general assembly 196-200 
generic instruction 18S-188 
& GET ENV: return MPW Shell variable value 160 
global symbol table 6 
GOTO directive 178, 183 
GOTO statement 176 

H 

-h option 257 

I 

identifiers 25 
imported, exported objects 17 
INCREMENT parameter 65 
instruction sets 233-251 

condition codes 229 
instruction evaluation 225 
instruction operands 214 
instruction set listings 233 
listing conventions 22S-229 

322 MPW 3.0 Assembler Reference 

Cptype 228 
flag.s 228 
equivalent 229 
group 228 
operands 226-227 
opcode 226-227 
range 229 

& !NTTOSTR: COP.Vert integer to string 160 
-i option 257 
& IS INT: test string for integer content 147 
& I 2 s: convert integerto string 160 

J 
jump table 13 

K 

keyword macros 135-137 

L 

label field 20 
& LC: convert string to lowercase 161 
LCLA directive 143-145 
LCLC directive 143-145 
LEA VE directive 180 
&LEN: measure string length 147 
& LEX: parse string lexically 148 
libraries, Macintosh 9 
linker and scope controls 6o, 84-93 

CODEREFS andDATAREFS: control name 
linking 88 

EXPORT and ENTRY: expand scope of entry 
points 85-87 

SEG: specify current code segment 92 
Lisa Workshop 211 
&LIST: divide string into list 150 
listing controls 107-111 

EJECT: start new page listing 111 
PAGESIZE: specify listing page size 107-108 
PRINT: control listing information 108-111 
SPACE: insert blank line 111 
TITLE: specify title line 108 

lkerals 55, 113, 196 
local symbol table 6 
location-counter controls 100-102 

ALIGN: align location counter 100 
ORG: set location counter 102-103 

logical operators 29 
-1 ootion 255, 257 
-lo option 258 
&LOWCASE: convert string to lowercase 161 



MACHINE directive 93 
machine instruction syntax 19 

comments 24 
label field 20 
operand field 23-24 
operation field 21 

Macintosh character set 219 
macros 115-182 

body 120 
calling 125-134 
call labels 127 
comments 121-122 
conditional-assembly directives 173-182 

Boolean control expressions 175-176 
MACRO, ENDEM, and MEND delimit 119 
prototype statement 119 
symbolic parameters 123 

controls, scope of 118 
defining 118-125 

MACRO and ENDM delimit 119 
prototype statement 119 

expansion 117 
keyword 

calling 136-137 
defining 135 

mixed-mode 138 
nesting macros 133-135 
object assembler 261-269 
operand sublists 131-133 
operand syntax 128-131 
symbol table 6 

See also structured assembly 
main code module 15 
main data module 66 
MAIN parameter 66 
&MAX: find maximum integer in list 151 
MC68000 5 
MC68010 5 
MC68020 5, 47-49 
MC68030 5, 49 
MC68851 5, 53 
MC68881 5, 52-53 
MC 6 8 8 81 directive 94-95 
Mc68882 5, 52-53 
MC68851 directive 95 
&MIN: find minimum integer in list 151 
mnemonics 21, 223 
model statement 120 
MOLS 47, 192 
MOLU 192 

N 

&NBR: count sublist elements 151 
nesting macros 133-135 
notation conventions xviii 

braces and brackets xxi 
Courier typeface xviii 
delimiter symbols xx 
ellipses xxii 
fields xx 
italic xix 
underlining xxii 

numeric constants 26-27 

0 
object files 13 
object-oriented programming 

EndObjectWith 266 
EndMethod 267 
FuncMethOf macro 267 
IMPL keyword 265 
IMPL macro 265 
Inheritedmacro 268 
Ini tObjects macro 263 
MethCall macro 268 
MoveSelf macro 269 
NewObject macro 269 
ObjectDef macro 263 
Objectinf macro 265 
ObjectWithmacro 266 
ProcMethOf macro 267 

-o option 258 
opcode 226 
operand field 23 
operation field 21-23 
o PT directive 97 
optimiz.ation of instructions 22-23 
options 255-259 

-addrsb.e option 208-209, 255 
-blksb.e option 255 
<[heck] option 256 
-d{efine] option 256 
-e[errlog] option 257 
~font option 110, 209, 257 
-h option 257 
-i option 257 
-1 option 255, 257 
-lo option 258 
-o option 7, 258 
-p option 7, 258 
-pagesize option 258 

INDEX 323 



-print 114, 258 
-s option 259 
-sym off 259 
-sym[on][full] 259 
-t option 259 
-w option 259 
-wb option 259 

option directives 
BLANKS: control blanks in operand field 99-100 
BRANCH, FORWARD: resolve forward branches 
96-97 

CASE: treatment of lowercase letters 98-99 
MACHINE: specify target machine 93 
MC 6 8 8 51: coprocessor instructions 95-96 
MC 6 8 8 81, MC 6 8 8 8 2: coprocessor instructions 
94-95 

ORG directive 102 
& ORD: return integer value 152 

p 

PAGESIZE directive 107 
-pagesize option 258 
Pascal calling conventions 273-276 

function results 275-276 
parameters 273-274 

real-type 274 
structure-type 275 

register conventions 277 
PASCAL string 28 
&POS: find substring 152 
-p option 255 
print directive parameters 109 
-print option 258 
PROC directive 62-63 
PROCEDURE macro 293, 311 
programming for Macintosh 8-9 
program structure macros 281, 292-294, 311 

R 

RECORD directive 76 
REG directive 70 
relocatable expressions 31-33 

s 
scope of definitions 15-18 
SEG directive 92 
segmentation of code 18 
SET directive 68 
SET variables 141-143 
& SETTING: return directive setting 161 

324 MPW 3.0 Assembler Reference 

&SCANEQ: scan string 153 
&SCANNE: scan string 153 
s option 259 
source text structure 14 
SPACE directive 111 
special address formats 192-195 

bit field instructions 193 
CAS, CAS 2: comparing and swapping 193 
DIVs, DIVU: signed, unsigned division 193 
FMOVE with packed BCD data 194 
FMOVEM with explicit register lists 194 
FSINCOS: simultaneous sine and cosine 194 
FTee, FTPee: floating-point trap on condition 
194 

literals 195 
for MC6800 192 
for MC8020 192-193 
for MC68881 and MC68882 194-195 
for MC68851 195 
p ACK, UNPK: pack and unpack 193 
Tee, TPee: trap on condition 193 
TDIVS, TDIVU: truncated signed, unsigned 

division 193 
status codes 7 
STRING directive 95 
strings 27-28, 152-155, 157-159 
& s TRO I NT: convert string to integer 154 
structured assembly macros 279-311 

expressions 281-282 
flow-control macros 283-292 

Cycle statement 291 
For statemenr 288 
GoTo statement 292 
If statement 283 
Leave statement 290 
Repeat statement 287 
Switch statement 285 
While statemenr 287 

program structure macros 292-305 
code generation 294 
local variable declaration 298 
procedures and functions 295, 298-3o6 

syntax 309-312 
expressions 309 
flow-control macros 310 
program structure macros 311 
usage, considerations for 306-308 

&SUBSTR: return substring 162 
symbol definitions 

EQU and SET: name constants and registers 68 
OPWORD: name machine instruction 71-72 
REG and FREG: name register list 70 

symbols 25 



-sym off option 259 
-sym [on] [off] option 259 
syntax diagrams 189-204 

assembly-language addresses 191 
addressing modes 191 
literals 195 
macro 200 
SET variable 202 

syntax rules: see coding conventions 
& SYSDATE: current date 170 
&SYSFLAGS: values set by &FINDSYM 171 
&SYSGLOBAL: symbol table IDs 171 
& SYS INDEX: macro call index 168 
&SYSLIST: macro operand list 169 
&SYSLOCAL: symbol table IDs 171 
&SYSLST: macro call index 168 
&SYSMOD: current module identifier 170 
& SYSNDX: macro call index 168 
& SYSSEG: current segment identifier 170 
& SYS TIME: current time 170 
&SYSTOKEN: values set by &LEX 171 
&SYSTOKSTR: values set by &LEX 171 
& SYSVALUE: values set by &FINDSYM 171 

T 
template definitions 76-92 

linker, scope controls 60 
RECORD and ENDR: define a template 76-80 
WITH and ENDWITH: supply record name 
qualification 82-84 

TI TLE directive 108 
-t option 259 

u 
underlining xxii 

v 
variables 139-172 

Assembler system variables 16~172 
SET variables 141-144 
& SYSDATE: current date 170 
& SYS FLAGS: value set by &FINDSYM 171 
& SYSGLOBAL: symbol table IDs 171 
&SYSINDEX: macro call index 168 
&SYSLIST:macrooperandlist 169 
&SYSLOCAL: symbol table IDs 171 
& SYSLST: macro operand list 169 
& SY SMOD: current module identifier 164 
& SYSNDX: macro call index 168 
& SYSSEG: current segment identifier 170 

&SYSTIME: current time 170 
&SYSTOKEN: value set by &LEX 171 
&SYSTOKSTR: value set by &LEX 171 
& SYSVALUE: value set by &FINDSYM 171 

w 
-wb option 259 
WITH directive 82 
While statement 287 
-w option 259 

x 
XOR operator 29 

INDEX 325 



TIIE APPLE PUBLISHING SYSTEM 

This Apple® manual was written, 
edited, and composed on a 
desktop publishing system using 
Apple® Macintosh® computers and 
Microsoft® Word software. Proof and 
final pages were created on the Apple 
l.aserWriter® llNTx printer. 
POSTSCRIPT®, the LaserWriter® page
description language was developed 
by Adobe Systems Incorporated. The 
illustrations were created using 
Adobe Illustrator. Some syntax 
diagrams were prepared using 
MathType. 

The illustration on the cover was 
generated using Adobe Illustrator 88 
on a Macintosh® II computer. Some 
of the images were scanned using an 
Apple® Scanner and then 
manipulated in Image Studio. Initial 
proofing was done using a QMS color 
printer. Color separations were done 
using Adobe separator and output to 
a Llnotronic 300 at standard 
resolution. 

Text type is Apple's corporate fonl, a 
condensed version of Garamond. 
Bullets are ITC Zapf Dingbats. Some 
elemen!S, such as programs listings, 
are set in Apple Courier, a fixed
width fon!. 




