
Apple Confidential

ti. Apple. Macintosh Coprocessor
Platform™ Developer's
Guide

Final Draft
February 20, 1989

..

o APPLE COMPUTER, INC.

This manual is copyrighted by Apple, with all rights reserved Under the copyright
laws, this manual may not be copied, in whole or in part, without the wrinen consent
of Apple Computer, Inc. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased may be sold, given or lent to
another person. Under the law, copying includes translating into another language.

© Apple Computer, Inc., 1987, 1988
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, AppleTalk, LaserWriter, and Macintosh are registered
trademarks of Apple Computer, Inc. LocalTalk, the Macintosh Coprocessor
Platform, MR-DOS, and MPW are trademarks of Apple Computer, Inc.

AST and AST-ICP are trademarks of AST Research, Inc.

DEC is a trademark of the Digital Equipment Corporation.

EtherTalk ls a trademark of ??

Magnetic Resonance Imaging (MRI) -ls this trademarked at all, or just an
industry term?

NuBus is a trademark of Texas Instruments.

Open Systems Integration (OSI) - trademark? or any acknowledgement for
this proposed standard

Systems Network Architecture (SNA) is a registered trademark of International
Business Machines Corporation. just the initials or the whole thing?

Simultaneously published in the United States and Canada.

(

..

1

Contents

Figures and tables I xx

Preface I I

1 What Is MCP? I 1-1
The components of MCP I 1-2

The MCP hardware I 1-3
The MCP software I 1-4

MR-DOS I 1-4
Apple IPC I 1-6
Developmental diagnostics I 1-6

Developing with MCP I 1-6
Development opportunities and applications I 1-7

Off-loading task processing I 1-8
Parallel processing I 1-8
Interfacing or controlling I 1-8
Data acquisition I 1-9
Intemetworking I 1-9

Limitations I 1-9

2 Getting Started I 2-1

Preparing to use MCP I 2-2

Installing the MCP card I 2-2
Installing MCP software I 2-5

Installing the Apple IPC driver I 2-6
Running a sample program I 2-6

Selecting files for the sample exercise I 2-7
Downloading files to the card I 2-9
Verifying the sample exercise I 2-9

Where do you go from here? I 2-12

Contents

2

3 Introduction to the MCP Software Interface I 3-1

What is MR-DOS? I 3-2
MR-DOS primitives I 3-2
MR-DOS utilities I 3-3
MR-DOS managers I 3-3

Echo Manager I 3-4
IncerCard Communications Manager OCCM) I 3-4
Name Manager I 3-5
Print Manager I 3-5
Remote System Manager (RSM) I 3-5
Timer library and Timer Manager I 3-6
Trace Manager I 3-6

What is Apple IPC? I 3-7
Apple IPC driver I 3-7
Apple IPC library I 3-8

. Apple IPC managers I 3-8
Functions of MCP software I 3-9

Using messages for interprocess communication I 3-9
Message structures I 3-9
Mechanisms for data transfer I 3-14
Message and status codes I 3-14

The client/server relationship I 3-15
Clients and servers running on a smart card under MR-DOS I 3-15
Clients and servers running on the Macintosh II using Apple IPC I 3-16

Using task scheduling in a multitasking environment I 3-18
Task Identifiers I 3-18
Modes in which tasks run I 3-18
Timer services I 3-19
Task scheduling I 3-19
Task initi.ali7.ation I 3-20
Task execution I 3-20
Task termination I 3-20

Memory management I 3-21

4 MR-DOS Primitives I 4-1
Operating system primitives I 4-2

FreeMemO I 4-3
FreeMsgO I 4-3
GetMemO I 4-4
GetMsgO I 4-4
ReceiveO I 4-5

Contents

RescheduleO I 4-6
SendO I 4-9
SplO I 4-10
StartTaskO I 4-11
StopTaskO I 4-13

5 MR-DOS Utilities I 5-1

A description of utilities I 5-3
Bloc:kMoveO I 5-4
CopyNuBusO I 5-4
Date2Secs0 I 5-5
GetB.5izeO I 5-6
GetemiO I 5-6
GetDateTimeO I 5-7
GetETickO I 5-7
GetgCommonO I 5-8
GetHeapO I 5-8
GeUCCTIDO I 5-9
GetNameTIDO I 5-9
GetStParmsO I 5-9
GetTCBO I 5-10

rf
GetTickPSO I 5-10

\', GetTIDO I 5-10
GetTimerTIDO I 5-11
GetTraceTIDO I 5-11
GetUCountO I 5-12
IncUCountO I 5-12
IsLocalO I 5-13
Lookup_TaskO I 5-13
MapNuBusO I 5-14
Regi.ster_TaskO I 5-15
Secs2Date0 I 5-16
SwapTIDO I 5-17
ToNuBusO I 5-17
TraceRegO I 5-18

6 MR-DOS Managers I 6-1
MR-DOS Managers I (r2

Echo Manager I (rz

3 Contents

4

InterCard Communications Manager I 6-3

ICC_GITCARDS I 6-3
Name Manager I 6-4

looking up tasks I 6-7
NM_LOOKUP_NAME I 6-7
NM_LOOKUP _no I 6-8

Notification of Communications Loss I 6-9
NM_N_SLOT_REQ I 6-9
NM_N_SLOT_CAN I 6-9

Notification of Task Termination I 6-9
NM_N_TASK_REQ I 6-11
NM_N_TASK_CAN I 6-11

Registering tasks I 6-11
NM_REG_TASK I 6-12
NM_UNREG_TASK I 6-12

Printing support I 6-12
Print buffer request I 6-14

Remote System Manager I 6-14
RSM_FreeMem I 6-15
RSM_GetMem I 6-15
RSM_StartTask I 6-16
RSM_StopTask I 6-16
Finding the Remote System Manager I 6-17

. Loading remote tasks I 6-17
Tuner library and Timer Manager I 6-17

Tuner library I 6-18
TUnitTimerO I 6-18
TLStartTimerO I 6-18
nCancelTimerO I 6-19
TI.ActiveTimerO I 6-19
TLReceiveO I 6-19

Timer Manager I 6-19
Active Timer Query I 6-21
Cancel Timeouc I 6-21
Request One-Shot Tuneout I 6-22
Request Periodic Timeout I 6-22

Trace Manager I 6-23
Tum on tracing I 6-24
Tum off tracing I 6-24
Tracing messages I 6-24
DumpTrace I 6-25

Contents

(
7 Programming Notes for MR-DOS I 7-1

Intercard communications I 7-2
Address mapping I 7-2
lntercard buffer copy I 7-3
Intercard message passing I 7-3

Interrupt handlers I 7-4
Tick Cllain I 7-6
Idle Cllain I 7-7
Writing your own download program I 7-8

Findcard subroutine I 7-9
Download subroutine I 7-9
Downloaderrors I 7-10

8 Developing Smart Card Applications I 8-1

What you will develop I 8-2
Before you start I 8-2

How to create applications using MCP I 8-3
Create new code I 8-3
Modify the main program I 8-4

Modifying the makefile I 8-14

t
MR-DOS include flies I 8-14
MR-DOS libraries I 8-15

' Cllanges to the makeftle I 8-15
Compiling and linking your code I 8-19
Downloading code to the MCP card I 8-20

Calling the Downloader tool I 8-21
Download errors I 8-22

Debugging your code I 8-23

9 Apple IPC I 9-1
The Apple IPC software I 9-2
Installing Apple IPC I 9-3
Using Apple IPC I 9-3
Apple IPC services I 9-4

C~eue() I 9-5
CopyNuBusO I 9-5
FreeMsgO I 9-6
GetCardO I 9-6

(

5 Contents

6

GetET'ickO I 9-7
GetICCI1D0 I 9-7
GetIPCg() I 9-7
GetMsg() I 9-8
GetNameTIDO I 9-8
GeffickPSQ I 9-9
GetTIDQ I 9-9
IsLocalO I 9-9
KillReceiveO I 9-10
Lookup_TaskO I 9-10
OpenQueue() I 9-11
ReceiveO I 9-12

Results returned I 9-15
Register_TaskO I 9-16
SendO I 9-17
SvvapTII>() I 9-18

10 Using the Forwarder with Apple IPC I 10-1
What is the Forwarder? I 10-2

How the Forwarder sends messages I 10-3

Initiali1.atioo I 10-3
Normal processing using the Forwarder I 10-4
Completing communication with the Forwarder I 10-5

Using the Forwarder I 10-6

Installing the Forwarder I 10-6
Messages used by the Forwarder I 10-6

MC_CLOSECONNECT I 10-7
MC_CLOSESERVER I 10-7
MC_ECHO I 10-7
MC_OPENSERVER I 10-8
MC_READDATA I 10-8
MC_SENDDATA I 10-9

Using the Forwarder on the server machine I 10-9
Using the Forwarder from the client machine I 10-15
Message transactions when using the Forwarder I 10-22
Errors returned by the Forwarder I 10-24

Contents

i
/

(

7

11 Troubleshooting I 11-1

Whathappened? I 11-2
Troubleshooting MR-DOS I 11-2

Using dumpcard I 11-3
MR-DOS crashes I 11-10

Using the load map I 11-10
Using MR-DOS error codes I 11-11

eBTHH - Bad Things Have Happened I 11-12
eCAIT-Cannot Allocate Idle Task I 11-13
eCAMS - Cannot Allocate Mes.sage Space I 11-13
eCAPR - CannotAllocate Priority Table I 11-13
eCAPT- Cannot Allocate Process Table I 11-14
eFMSG - Attempt to Free Bad Message I 11-14
eMEMB - Attempt to Free Bad Memory Buffer I 11-15
eNPTR - No Processes to Run I 11-16
eOVFL-Stack Overflow Detected I 11-17
eSMSG - Attempt to Send Bad Message Buffer I 11-17
eSTPI- Stop Task cannot be called from interru1)t routine I 11-17
eSTil- Start Task cannot be called from interrupt routine I 11-17
eTIMQ-Task Not in Tuner Queue I 11-18
Task Not Stopped I 11-18

MR-DOS hang.5 I 11-19
gMajorTick is not incrementing I 11-20

Determining the cause I 11-20

gMajorTick is incrementing I 11-21
A task may be waiting on a blocking Receive request I 11-22
MR-DOS may have run out of mes.sage buffers I 11-22
A task may be running in Block Scheduling Mode I 11-24
A task may be executing in an infinite loop in Slice Scheduling Mode I 11-24
Code on the Idle Chain may be executing in an infinite loop I 11-24

Troubleshooting Apple IPC I 11-25

Apple IPC crashes I 11-27
Crashes during Macintosh II startup I 11-27

Apple !PC INIT31- Unit Table full I 11-27
Apple IPC INIT31- No DRVR resource in file I 11-27
Apple IPC INIT31 - Failed to open driver I 11-27

Crashes with improper parameter usage I 11-28
Apple IPC FreeMsg- Bad message pointer I 11-28
Apple IPC Send- Bad message pointer or mFrom I 11-28

Crashes during driver initializ.ation I 11-28

Contents

8

Apple IPC- Missing resource: Apple IPC entries I 11-29
Apple IPC- Unable to get space from system heap I 11-29
Apple IPC Name Manager- Missing aipn resource: NameManagerentries I 11-29

IPC driver crashes during execution I 11-30
Apple IPC KillReceive/CloseQueue - timeout queue error I 11-30
Apple IPC Send - timeout queue error I 11-30
Apple IPC Periodic processing- timeout queue error I 11-30
Apple IPC Receive- timeout queue error I 11-31
Apple IPC Receive - Interrupt routine did blocking Receive I 11-31

IPC Name Manager crashes during execution I 11-31
Name Manager Receive with Completion I 11-31 .
Name Manager Receive Request Failure I 11-31
Name Manager Receive Request without Completion I 11-32

IPC glue code crashes I 11-32

Apple IPC hangs I 11-33
Events causing Apple IPC hangs I 11-33

Macintosh II 32-bit mode debugger hang I 11-33
Unsatisfied blocking Receive request I 11-33

Examining the Apple IPC global area I 11-34
Finding the Apple IPC global area I 11-34

12 MCP Card Specifications I 12-1

Introduction to the MCP card I 12-2
Hardware description I 12-3

Processor I 12-3
ROM I 12-3
RAM I 12-4
Address map I 12-4
Tuner I 12-5
Reset I 12-5
Interrupts I 12-5

NuBus interface I 12-6
NuBus address space I 12-6
Acquiring the internal 68000 bus I 12-6
Design notes for NuBus I 12-7

13 Lists for the MCP Card I 13-1

PAL listings I 13-2
PAL equation: arbitration I 13-3
PAL equation: bus driver I 13-4

Contents

(

{

9

PAL equation: bus master I 13-5
PAL equation: bus master control I 13-6
PAL equation: bus slave I 13-7
PAL equation: decode I 13-9
PALequation: DMAexample I 13-10
PALequation: interrupt I 13-11
PAL equation: RAM I 13-12
PALequation: RAM24 I 13-14

Parts for the MCP card I 13-16

14 Diagnostics for the MCP Card I 14-1
What does Apple provide? I 14-2
Diagnostic capabilities I 14-3
MCP card declaration ROM I 14-5

Power-up diagnostics I 14-5
68o20 primary initialization tests I 14-6
Data area I 14-7
Error codes I 14-8

Using the MCP _Diagnostic library I 14-9

15 MCP Sequentlal Diagnostics I 15-1
An overview I 15-1

NuBus support I 15-1
MCP_Diagnostic main window I 15-1
MCP menu I 15-4

Slot n I 15-5
Failure Analysis I 15-6
Run Script.. I 15-6
Run Script Repeatedly ... I 15-6
Run Script at Startup ... I 15-7
Run Level Three Shell... I 15-7
VendorMenu Item I 15-7

Options menu I 15-7
Auto Run is Selected I 15-8
Auto Run is NotSelected I 15-8
Save Configuration I 15-8
Quit I 15-9
Eject and Reset I 15-9

Contents

10

Debug Ai~ menu I 15-9
Stop After Pass I 15-9
Enable Miao Stepping I 15-10
Enable One Test Stepping I 15-10
Enable v~ Data Logging I 15-10
Zero Data Log File I 15-10
OearGraph I 15-11
D~able All Logging I 15-11

D~play menu I 15-11
Show O>ntrols I 15-11
Testing RAM on the MCP card I 15-12
Testing ROM on the MCP card I 15-13
Testingthe68000 I 15-14
Testing NuBus I 15-15

Reading from Macintosh II system ROM I 15-16
Writing to Macintosh II system RAM I 15-16
Reading from Macintosh II system RAM I 15-16
MCP interprocessor tests I 15-16
Test and set using 68000 memory I 15-16
Test and set using 68o20 memory I 15-16

Reset/timer/interrupts I 15-17
Level 1 timer interrupt I 15-17
Level 1 timer speed verification I 15-17
Level 2 NuBus Interrupt I 15-lS
The MCP Card interrupts the Macintosh II 68o20 I 15-18

Show Bits I 15-18
Show Data Log I 15-18
Show Measurement Log I 15-19
Show Graph I 15-19
Ignore Show Bits I 15-19

16 Adding to MCP I 16-1

Adding code to the ROM I 16-2
The file ApplROM.a I 16-3

Boord sResource list I 16-4
Application-specific driver sResource list I 16-4

The file ApplPowerOn.a I 16-5
The file ApplPrimarylnit.a I 16-5
The fileApplication.h I 16-5
The fde ROMbum I 16-5

Adding required resources in the ROM I 16-6

Contents

(

11

sMemory resource list I 16-6
sMemory resource list identifier I 16-8

Source files for adding tests I 16-10
Including new tests in the MCP _Diagnostic I 16-10

Adding menu commands to the MCP _Diagnostic I 16-11
Macintosh address mode compatiblity I 16-11
Trapping bus errors I 16-12
The Dial routine I 16-12

The tester script language I 16-13
The control section I 16-13
Conditional tests I 16-14

Examples I 16-15
The message section I 16-16

Comments I 16-16
Error reporting I 16-16
Reserved words I 16-17

The temporary file I 16-17
Scriptcontrol I 16-17

17 MCP Coprocessor Diagnostics I 17-1
What are coprocessor diagnostics? I 17 -2

Entering third-level tests I 17-2
Starting third-level tests I 17 -4

Third-level menus I 17-5
File I 17-5

Quit I 17-6
Edit I 17-6
Ma> I 17-6

Mac II Window I 17-7
Serial A Wlndow I 17-7
Serial B Wmdow I 17-7
Serial Setup I 17-8
Disable Verbose Messages I 17-8

Third-level operations I 17-8
Writing coprocessor diagnostics I 17-8

Creating a stack file I 17-10
Operator commands I 17-11

Dumpregs I 17-12
Freemem I 17-12
Getmem I 17-13

Contents

12

Kill I 17-14
Readmem I 17-15
Run I 17-16
Send I 17-17
Writemem I 17-18

Buffer management I 17-19
Programmer subroutines I 17-22

enprintf() I 17-22
GetCards() I 17-23
GetSlot() I 17-23
GetTimeStamp() I 17-24
HandleSystemTask() I 17-24
HexToString() I 17-25
InitMessage() I 17-25
KillThisTask() I 17-25
LogErrorQ I 17-26
printf() I 17-26
ReadByte() I 17-26
ReadMessage() I 17-27
ReadWord() I 17-27
Reply() I 17-27
SendNextCommand() I 17-28
StringToHex() I 17-28
strlen(), strcpy(), and strcat() I 17-29
TickCount() I 17-29
WriteByte() I 17-29
WriteMessage() I 17-29
Write Word() I 17-31

Appendix A Files on the MCP Distribution Disks I A-1

What this appendix tells you I A-2

Files on MR-DOS 1 I A-2

Files on MR-DOS 2 I A-8
Files on MCP Diagnostics I A-12

Appendix B Where to go for more information I B-1

What this appendix tells you I B-2

Contents

(

Figures and Tables

CHAPTER 1 What is MCP?

Figure 1-1
Figure 1-2
Table 1-1

Macintosh Coprocessor Platform in the Macintosh II
TheMCP card
Features of MR-DOS

C H A PT E R 2 Getting Started

Figure 2-1 Aligning the card
Figure 2-2 MPW window
Figure 2-3 Select Current Directory window

C H A PT E R 3 Introduction to the MCP Software Interface

CHAPTER 4

CHAPTER 5

Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

Figure 3-6

Table 3-2
Table 3-3

MR-DOS

Table 4-1
Table4-2

MR-DOS

Table 5-1

Structure of MR-DOS
Flow of information between MR-DOS and managers
Fixed-length message structure
Client/server transaction
Client/server relationship for MR-DOS program modules (NuBus
card-to-NuBus card)
Client/server relationship for applications using the Apple !PC
driver (Macintosh II-to-Macintosh II)
Structure for fixed-length messages
Message and status codes

Primitives

MR-DOS primitives
Reschedule options

Utilities

MR-DOS utilities

CH APTER 6 MR-DOS Managers

Table 6-1 MR-DOS managers
Table 6-2 Card status
Table 6-3 Name Manager message codes
Table 6-4 P1intf standard conversion
Table 6-5 Printf nonstandard conversion

CH APTER 7 Programming Notes for MR-DOS

Table 7-1 Error constants for Download

C HAP TE R 8 Developing Smart card Applications

Table 8-1 Include files
Table 8-2 Link command parameters
Table 8-3 Error constants for Download
Table 8-4 Dump area format

C H A P T E R 9 Apple IIPC

Table 9-1
Table 9·2
Table 9·3

Apple IPC services
State stable for the Receive call
Errors returned

CH APTER 10 Using the Forwarder with Apple IIPC

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Table 10-1
Table 10-2

Messages paths using the Forwarder
Initialization process using the Forwarder
Normal processing using the Forwarder
End of processing using the Forwarder
Messages used by the Forwarder
Errors returned by the Forwarder

C H APT E R 11 Troubleshooting Guide

Table 11-1 Crash area forma
Table 11-2 Dumpcard cross reference
Table 11-3 Error codes for MR-DOS
Table 11-4 Error codes for Apple IPC driver
Table 11-5 Error messages from the INIT resource
Table 11-6 Error messages from the Apple IPC driver/Name Manager

CH APTER 12 MCP Card Specifications

Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Table 12-1
Table 12-2

MCP card installed in the Macintosh II
MCP card functions
Generation of 20-MHz and lOMHz clocks
A simple NuBus slave design
Read and writing timing cycles
Address map
Interrupt priorities

CHAPTER 13 Lists for the MCP Card

Table 13-1 Parts lists for the MPC card

(

(

CHAPTER 14 Diagnostics for the MCP Card

Table 14-1
Tablel4-2
Table14-3
Table 14-4

Diagnostics folders
Levels of MCP diagnostics provided
Data area
Error codes

CH APTER 15 MCP Sequential Diagnostics

Figure 15-1 MCP _Diagnostic main window
Figure 15-2 MCP menu
Figure 15-3 Warning dialog box
Figure 15-4 Menu dialog box (Run Script... command)
Figure 15-5 Dialog box (Run Script Repeatedly ... command)
Figure 15-6 Options menu
Figure 15-7 Save Configuration dialog box
Figure 15-8 Debug Aids menu
Figure 15-9 Zero Data Log File dialog box
Figure 15-10 Display menu
Figure 15-11 Block 1-RAM test blocks
Figure 15-12 Block 2-ROM test blocks
Figure 15-13 Block 3-68000 test blocks
Figure 15-14 Block 4--NuBus test blocks
Figure 15-15 Block 5--Interrupt test blocks
Figure 15-16 The Data Log window
Table 15-1 Tests on-card RAM
Table 15-2 How errors are returned for RAM tests

CHAPTER 16 Adding to MCP

Figure 16-1
Figure 16-2
Table 16-1
Table 16-2
Table 16-3
Table16-4
Table 16-5
Table 16-6

sMemory resource list for a generic MCP card
SetVar dialog box
ROM:MCP files
Resource list entries in the file ApplROM.a
Resource list for smart cards
Resources required for MR-DOS
MCP _Diagnostics routine files
Test description parameters

CH APTER 17 MCP Coprocessor Diagnostics

Figure 17-1 Third-level diagnostics menu and dialog box
Figure 17-2 Window into a text file
Figure 17-3 File menu for third-level tests
Figure 17-4 Edit menu for third-level tests
Figure 17-5 MCP menu for third-level tests
Figure 17-6 MCP card buffer
Table 17-1 Options for third-level Dumpregs command
Table 17-2 Options for third-level Freemem command
Table 17-3 Options for third-level Getmem command
Table 17-4 Options for third-level Kill command
Table 17-5 Options for third-level Readmem command
Table 17-6 Options for third-level Run command
Table 17-7 Options for third-level Send command
Table 17-8 Options for third-level Writemem command
Table 17-9 Format of message
Table 17-10 Slots for application
Table 17-11 Returns for SendNextCommandO

A P P E N D I X A Files on the MCP Distribution

Table A-1
Table A-2
Table A-3

Files on MR-DOS 1
Files on MR-DOS 2
Files on MCP Diagnostics

A P P E N D I X B Where to Go for More Information

Table B-1 List of reference material
Table B-2 Additional references

(

Preface

About This Manual

MCP Developer's Gulde • Final to Production

What this guide tells you
This guide is intended to infonn and assist you in your efforts to aeate an interface to
the Macintosh® II bus. Developers may be within Apple Computer, Inc., as well as
third-party developers (such as a VAR channel or a national account) working under a
licensing agreement.

What you should know
You should be familiar with the Macintosh Il computer and NuBusTM. Refer to
Appendix B for information on developer tools and reference documents that may
facilitate your development efforts.

The Macintosh Coprocessor PlatformTM (MCP) is intended to support applications
written under the Macintosh Programmer's Workshop™ (MPW) development
environment, which uses Assembler or C. This guide assumes that you are familiar
with MPW and have a working knowledge of MPW C, MPW Assembler, or both.

How to use this guide
This section provides a road map to information on the various components of the
Macintosh Coprocessor Platform.

To find out aboyt:

General information on MCP

What makes up the Macintosh Coprocessor
Platform

Applications or potential uses of MCP

Installing the MCP card and running a
sample program

Look in:

Part I - Getting Started

Chapter 1, "What is MCP?•

Chapter 1

Chapter 2, "Getting Started"

Apple Confidential 2/20/89

Sped.fie information on MCP software

MR-DOS™ and Apple IPC software
in the Macintosh II

Part II - Software Development

Chapter 3, •An Introduction to the
MCP Software•

Task scheduling in the operating system

Interprocess communication between tasks
or processes on the Macintosh II and tasks on
the MCP card

II About This Manual

Chapter 3

Chapter 3 for general information
(for additional information, see
Chapter 9, "Apple IPC-)

--... _,/

(

(

MCP Developer's Guide • Final to Production

Fundamental services of the MR-DOS
operating system

Llbrary routines available to tasks in your
application

Operating-system managers that
provide services to other tasks

Peculiarities of MR-DOS and programming
notes (with examples of code)

How to develop applications using MCP
software (with examples of code)

MR-DOS services provided on the
Macintosh II

Forwarding data on an AppleTalk® network
system using Apple IPC

Troubleshooting MCP software

Information about the MCP card
and NuBus™

MCP card specifications and information
accessing the NuBus

PAL listings and parts lists

Information about diagnostics

The diagnostics provided for
development of the MCP Card

Using MCP diagnostic software

How to customize diagnostics provided
for your application-specific card and
add code to the ROM

Creating new diagnostics for your card

Apple Confidential 2/20/89

Chapter 4, "MR-DOS Primitives•

Chapter 5, "MR-DOS Utilities•

Chapter 6, "MR-DOS Managers•

Chapter 7, "Programming Notes for
MR-DOS"

Chapter 8, "Developing MCP
Applications"

Chapter 9, "Apple IPC-

Chapter 10, "Using the Forwarder
with Apple IPC"

Chapter 11, "Troubleshooting
Guide"

Part ill - Hardware
Development

Chapter 12, "MCP Card on
Specifications•

Chapter 13, "Lists for the
MCP Card"

Part IV - MCP Diagnostics

Chapter 14, "Diagnostics for the
MCP Card"

Chapter 15, "MCP Sequential
Diagnostics•

Chapter 16, "AddiPg to MCP"

Chapter 17, "MCP Coprocessor
Diagnostics"

How to use this guide Iii

MCP Developer's Gulde - Final Draft

Cl a NuBus-compatible Macintosh computer running System 6.0.2

Cl MPW, version 2.0 or later

Cl one or more MCP cards

Cl MCP distribution disks

Cl MPW C and/or MPW Assembler

Cl the appropriate debugging tools

Apple Confidential 2/20/89

CoMectors and memory requirements are hardware-specific; refer to Part III, "Hardware Development",
for more infonnation.

Important safety instructions
You are almost ready to plug in your Macintosh Il and get started, but fust read these important safety
instructions.

Warning

This equipment Is Intended to be electrically grounded.
Your Macintosh II ls equipped with a three-wire grounding plug-a plug that hos
a third (grounding) pin. This plug will flt only a grounded AC outlet. This is a safety
feature.
If you ore unable to Insert the plug Into the outlet. contact a licensed electrician
to replace the outlet with a properly grounded outlet.
Do not defeat the purpose of the grounding plug!

For your own safety and that of your equipment, always take the following precautions:

Be sure the power plug is disconnected (disconnect by pulling the plug, not the cord):

Cl whenever you remove the cover and as long as the cover is off

o if the power cord or plug becomes frayed or otherwise damaged

Cl if you spill anything into the case

o if your Macintosh II is exposed to rain or any other excess moisture

o if your Macintosh II has been dropped or if the case has been otherwise damaged

o if you suspect that your Macintosh II needs service or repair

o whenever you clean the case (use only the recommended procedure described below)

Be sure that you always do the following:

o Keep your Macintosh II, the MCP card, and distribution disks away from sources of liquids, such as
wash basins, bathtubs, and shower stalls.

Cl Protect your equipment and materials from dampness or wet weather, such as rain and snow.

Iv About This Manual

'" ,/

·""·

(

MCP Developer's Guide • Final Draft Apple Confidential 2/20/89

o Read all the installation instructions carefully before you plug your Macintosh II into a wall socket

o Keep these instructions handy for reference by you and others.

o Follow all instructions and warnings dealing with your system.

Warning
Electrical equipment may be hazardous If misused. Operation of this product. or
similar products, must always be supervised by an adult. Do not allow children
access to the Interior of any electrlcal product and do not permit them to
handle any cables.

To clean the case, do the following:

1. Disconnect the power plug. (Pull the plug, not the cord.)

2. Wipe the surfaces of your Macintosh II lightly with a clean, soft cloth dampened with water.

Conventions
This section provides general information on the conventions used in printing this guide.

Each new term inuoduced in this book is printed in bold type where it is first defined. That lets you know
that the term has not been defmed earlier, and also indicates that there is an entry for it in the glossary.

Any text displayed in Courier typeface is used to represent:

o text that you will see on the screen (such as source code or an example file)

o a command that you enter on the keyboard

o a program or subroutine name

o a parameter or field name

o the name of a file provided on the MCP distribution disks

Any text that is surrounded by colons (:) refers to the pathname of a particular folder or file. For example,
:MR-DOS:Examples: refers to the folder named "Examples within the folder named "MR-Dos•.

MR-DOS uses C calling conventions, and all registers are preserved except DO, Dl, AO, and Al. The
assembly-language macros also adhere to these conventions.

The following words mark special mesages to you:

•> Note: Text set off in this manner presents sidelights or interesting points of information.

Important
Text set off in this manner-with the word Important-presents Important
Information or Instructions.

Conventions v

MCP Developer's Guide • Final Draft Apple Confidential 2/20/89

Caution

Text set off In this manner-with the word Caution-Indicates potentially serious
problems. Actions could result In system hangs or Incompatibility with future
versions.

Warning
Text set off In this manner-with the word Warning-indicates potentially
hazardous consequences to you or to your equipment.

Terms
This document refers to processes on the Macintosh II computer, and tasks under MR-DOS and Apple
IPC. A process is an operation or function performed by the Macintosh operating system. A task is a
message-driven transaction process that runs on the MCP card. The behavior of a task depends on the
messages it receives.

User refers to the end user of the hardware or software product that you will develop using the Macintosh
Coprocessor Platform.

Refer to the glossary at the end of this guide for a comprehensive list of terms and an explanation of each.

v I About This Manual

(

Part I

Getting Started with MCP

Part I, Getting Started with MCP, provides:

0 an introduction to and overview of the
Macintosh Coproc;:essor Platform

o descriptions of the hardware, software
interface, and diagnostics

o instructions for installing the MCP card,
operating system, and support software

o a simple "hands-on• exercise that
demonstrates how the operating system
works with the MCP card

/

(

(

Chapter 1

What Is MCP?

MCP Developer's Guide - Final to Production

The Macintosh Coprocessor PlatformTll (MCP) is a generic hardware and software
foundation to help developers create add-in cards and software applications for
NuBus-compatible Macintosh® computers.

Apple Computer, Inc. makes this platform available to assist developers in quickly
building Macintosh coprocessor prototypeS and to reduce the time-to-market for new
produas. The Macintosh Coprocessor Platform is available through Apple
Computer, Inc., under a licensing agreement.

Technical information about the components of MCP is provided in this guide, along
with a discussion of potential applications. Refer to Appendix A for a desaiption of
associated development tools, documents, and references.

The components of MCP
The Macintosh Coprocessor Platform is made up of hardware, software, and
developmental diagnostic software, provided as follows:

o hardware: the MCP card, an intelligent NuBus prototype card (such cards may be
referred to as smart cards)

o software: two distribution disks (labeled MR-DOS 1 and MR-DOS 2) that includes
MR-DOS (Minimal, Real-time, Distributed Operating System) and Apple IPC
CinterProcess Communication)

MR-DOS is a multitasking operating system for smart cards, such as the MCP card,
and provides an intelligent peripheral-controller interface to NuBus on the
Macintosh II.

Apple IPC includes a driver and support software installed in the Macintosh II
computer. Apple IPC allows Macintosh applications to communicate with an
application running under MR-DOS on the MCP card or another computer.

o developmental diagnostic software: one distribution disk Gabeled
MCP _Diagnostic) that includes the diagnostic application, support code, and
examples to test various functions of the MCP-based hardware you develop

Figure 1-1 shows the MCP software and hardware components of the Macintosh II
computer.

1-2 What Is MCP?

Apple Confidential 2/20/89

~-- MR-005 and application taSks in RAM

Macintosh Coprocessor

platfottn ~-- MCP Diagnostics in ROM and RAM

•

----=\,,· :· ,&..pple lPC in RAM on the
main logic toard

Fig. 1-1 -COMP (L1)
MCP Developer's Guide
Apple Computer, Jnc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

MR-D05 l

MR-DOS 2
MCP _Diagn~tics

MCP Developer's Guide - Final to Production

MSCNNNN
ART: NN x 17 pi
20.S pi text to FN b/b

Figure 1-1
Macintosh Coprocessor Platform In the Macintosh II

You can customize each of these components, which are described in this chapter,
for the particular application or product you want to develop. For more detailed
information, refer to Part II on Software Development, Part III on Hardware
Development, and Part N on Developmental Diagnostics.

The MCP hardware

With approximately 26 square inches of space available, the MCP card is intended as a
vehicle for creating a prototype of the features and interface required for your product
or application. Figure 1-2 shows the layout of the MCP card; shading indicates the
primary area available for development.

MSCNNNN
ART: NN x 17 pi
20.S pi text to FN b/b

Figure 1-2
The MCP card

Apple Confidential 2/20/89

The components of MCP 1-3

.___ _ ___Jlo
.___-..111.__----J
l:=:::J c:::J '--------'
l:=:::J c==i c:::::J c::=J I..____. .---'------' ..______,
l:=:::J l:=:::J C::J' .._ ---' .._ _ __, '----'
1:=:::J 1:=:::J c::::J I I ...-~

c::::J c::::::J c::::::J c::::J c::::::J

Fig. 1-2 -COMP (L2)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

MCP Developer's Guide - Final to Production

The MCP card itself has no input/output 0/0) interface, but is a generic master/slave
VO processor. Afilliated VO devices that you develop, such as RS-232 ports or Token
Ring connectors, give the smart card access to the outside world

The MCP card includes a Motorola 68ooO processor operating at 10 megahertz and 512
kilobytes of random access memory (RAM). The NuBus interface provides a bus
master interface to NuBus on the Macintosh II main logic board The MCP card acts as
a "slot device" to the Macintosh II operating system, freeing the processor on the
Macintosh II to perform other functions.

During development efforts, you may additionally want to use a smart card that is
available commercially, such as the AST-ICP (Intelligent Communications Processor)
smart card from AS'f Research, Inc., which includes an VO interface through four
serial ports.

The MCP software
Software for the Macintosh Coprocessor Platform consists of MR-DOS, Apple IPC,
and support software ('include files, source code examples, and other development
software tools). MCP software was created to take advantage of the common design
features of the MCP card by providing common software services to smart card
application programs.

The code for MR-DOS and Apple IPC includes a collection of traps, interrupt
handlers, and tasks that provide support for task naming, timing services, and
intercard and intracard communications using messages. These routines enable a
smart card to support a multitasking distributed operating environment for
communications and other real-time services on the same card or on other smart
cards installed in the Macintosh II computer .

.:. Note: To assist in development efforts, MCP software is released in versions that
support two smart cards: the MCP card and the AST-ICP card.

MR-DOS

MR-DOS provides the operating system and core software services required by MCP
cards for on-board applications software. The design of MR-DOS is sufficiently
general to support a wide variety of software applications on MCP cards, and offers the
functionality described in Table 1-1.

1-4 What Is MCP?

Apple Confidential 2/20/89

(
MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89

Table 1·1
Features of MR-DOS

Feature

Configurability

Intercard
services

Interprocess
communication

Multitasking

Priority scheduling
and timer services

Real-time
responsiveness

Description

For maximum flexibility in meeting the needs of a variety of
products, large parts of MR-DOS are configurable. MR-DOS
code that supports services not required by an application
need not be loaded onto the MCP card. To complement
configurability, the MR-DOS kernel is as small as possible.

Allows communication between tasks on different cards.
Remote system facilities allow allocating and freeing
memory, as well as starting and stopping tasks, to support
dynamic downloading of tasks on a different smart card in
the same machine.

Interprocess communication is accomplished through
messages that are fixed-size but flexibly formatted
MR-DOS allows dynamic name-binding of tasks to support
interprocess communication.

Multiple independent tasks share the CPU on the smart
card, under control of MR-DOS. Tasks are always executed
in the user modeon the 68000, while interrupt routines and
the main program are executed in supervisor mode This
process is important because some 68000 instructio"lS
cannot be executed in user mode (such as any in.5truction
that modifies the status register).

Priority scheduling is available to control the order in which
tasks use the CPU. MR-DOS supports time slicing and
processing that cannot be preempted Tasks may request
one-shot or recurrent notification of time events.

To deal with the demands of real-time environments,
such as communications VO, both context switching and
message passing are designed for very high performance.
Memory management is available in an efficient form.

Refer.to Part II for more detailed information on MR-DOS and the services it provides.

The components of MCP 1-5

MCP Developer's Guide - Final to Production

Apple IPC

Apple IPC is composed of:

o a driver that runs under the Macintosh operating system

o Apple IPC interface code

o library routines (in the file IPCglue. o)

o associated support code, including the Apple IPC Name Manager and Apple IPC
Echo Manager

The Apple IPC driver handles all message passing (interprocess communication)
between processes on the Macintosh Il operating system and MCP card tasks on the
NuBus.

Periodically, Apple IPC scans for and processes incoming messages,times out slots
that have become inactive, and processes outgoing messages. The driver receives
messages from and delivers messages to Macintosh II processes.

•:. Note: Since the Macintosh II computer currently does not implement a multitasking
operating system, the functions are ref erred to as processes rather than tasks.

Refer to Part II for more detailed infonnation on Apple IPC and the services it
provides.

Developmental diagnostics
Developmental diagnostics are provided in the form of both firmware and software.
The firmware is provided in the declaration ROM on the MCP card, and the software is
provided on the third MCP distribution disks.

These diagnostics are being provided solely as a framework for test verification of
board designs. You can use the basic tests provided on the distribution disk, or
customize the diagnostics for the particular board you are developing. Refer to Part
N, "MCP Diagnostics", for more detailed information.

Developing with MCP
MCP provides hardware and software to assist you in creating

o an application-specific smart card

o Macintosh II application software that uses Apple !PC for communication with tasks
on the card

o software that executes under MR-DOS on the card

1-6 What Is MCP?

Apple Confidential 2/20/89

(

,.

MCP Developer's Gulde - Final to Production

MCP provides a common design to save time in research, design, and development
efforts, helping you produce greater and more accurate results in a shorter period of
time.

During development, you'll need MPW and standard development tools Oinker, ·c
compiler, As$embler, and so forth). The MCP distribution disks provide source code
files and examples for MR-DOS and Apple !PC, as well as all of the support software.

You will also need a Macintosh II computer with one or more smart cards in the
expansion slots .. You could conceivably create applications on a Macintosh II
computer without smart cards installed, and then port it to a Macintosh II computer
with smart cards installed for testing.

Some of the specific concerns you may have in developing your own application may
include the following (refer to the chapters listed for detailed information):

o how to create a MR-DOS or Apple IPC application; refer to Chapter 8

o how to create interrupt handlers; refer to Chapter 9

o how to to send data directly to another card; refer to Chapter 5

A few development opportunities and potential applications are discussed in the next
section.

Development opportunities and applications
The communications and networking strategy of Apple Computer is to integrate the
Macintosh II computer into other environments. Some of these environments include
those offered by Digital Equipment Corporation (DEC)™, IBM's Systems Network
Architecture (SNA), and the proposed standard Open Systems Integration (OSD.

The on-board operating system provided with MCP gives you the capability to

o offload tasks usually performed by the central processor, and thus have faster
response times (computational speed)

o control and arbitrate multiple communications protocols

o control sessions among users

o run applications in the background

Applications developed with MCP may or may not require users to dedicate a
Macintosh II computer for the application, depending on how you customize the
interface on the card. It is possible to create MCP card applications which, once
downloaded, have no dependence on the Macintosh II operating system.

Apple Confidential 2/20/89

Developing with MCP 1-7

MCP Developer's Gulde - Final to Production

Any application or environment that requires the performance of a Macintosh II
computer can use MCP-developed cards and software. Some of the potential
development opportunities described in this section include off-loading task
processing, parallel processing, interfacing to or controlling other equipment, data
acquisition, and intemetworking.

Off-loading task processing

With RAM and a processor on the MCP card, you can off-load a task from the main
logic board of the Macintosh II (commonly referred to as the motherboard) and have
MR-DOS handle the interprocess communication. A potential development
opportunity would be a digital signal processor or a high-speed modem.

Parallel processing

With shared data in a Macintosh II computer, the user may want multiple processors to
work on data simultaneously. Using multiple cards, an application could

1 . Load a task that processes the data onto MCP cards.

2 . Send messages to the tasks on the cards with instructions and data.

3 . Have the tasks compute in parallel.

4 . Receive the results.

Data analysis is an example of this type of an application.

Interfacing or controlling

MCP-developed cards and applications are not strictly a communications interface,
but rather a connectivity interface. The product you develop can tie into the
Macintosh II environment, using the power of the Macintosh II to control devices,
collect data, or perfonn some type of analysis. In this situation, the Macintosh II
computer is dedicated to controlling that device.

Some examples of potential products include

o a numeric controller, machine controller, or any type of device that needs a
computerized controller, such as process control in a factory environment (factory
automation, specialized devices, or robots)

o medical imaging, such as a system console for a Magnetic Resonance imaging
(MRI) machine

1-8 What Is MCP?

Apple Confidential 2/20/89

(

MCP Developer's Gulde • Final to Production

Data acquisition

By developing a SCSI or EDSI connec.tion on the MCP card, you could connect a drive
from the Macintosh II computer to use it as a database machine distributed over a
network, with connections either to or from a host mainframe or other workstations.
Examples of applications include instrumentation in a lab, medical applications, or
areas in which there is a great deal of testing activity.

lnternetworking

The Macintosh Coprocessor Platform offers cost-effective solutions for
internetworking needs, including

o providing an environment in which many different kinds of links are simultaneously
active

o locally distributing services across networks

o using the intercard communications capability (such as LU 6.2 to EtherTalk)

o using the card as a gateway, bridge, or router into another envirorunent (the other
environment may be a nonmainstrearn environment or a computer that does not
use standard protocols)

o enabling other AppleTalk-connected machines to use the communication facilities
of the Macintosh II

Limitations
When using MCP to develop a NuBus peripheral interface card and associated
applications, you are limited in just two aspects:

o what you can program on the card in the existing memory space

o what you can physically build onto the board in the remaining real estate

Apple Confldentlal 2/20/89

Developing with MCP 1-9

MCP Developer's Gulde - Final to Production Apple Confldenflal 2/20/89

1-10 What Is MCP?

(

(

Chapter 2

Getting Started

MCP Developer's Gulde - Final to Production

This chapter takes you through an exercise using the Macintosh Coprocessor Platform
card and source-code files. This exercise demonstrates a simple function of the
operating system and verifies that the smart card and operating system are working.

This chapter assumes you have already set up your Macintosh II computer, but have
not yet installed any MCP software or hardware.

Preparing to use MCP
Before you proceed, follow these steps to prepare for this exercise.

1. Install MPW software on your hard disk into a new folder called MPW.

2. Install Macsbug into the System Folder of your Macintosh II.

3. Make a backup copy of the three distribution disks for MCP. When you finish
copying the disks, remember to put the master disks in a safe place.

Two of the MCP distribution disks contain source code and programming examples
you will need for application software development and this exercise; these disks
include MR-DOS, Apple IPC,and the support software for both. The third disk
contains source code and the MCP diagnostics program you will need to create
diagnostic software.

+ Note: Plea5e be sure to follow instructions in the section in this chapter, "Installing
MCP software• when copying the contents of the MCP distribution disks to your
hard disk. The source code examples check certain locations in the hierarchical file
structure for any files needed, not only for this exercise but for all software
development efforts.

For a complete guide to the folders and files included on the MCP distribution disk,
refer to Appendix A, "Development Tools and Resources•. (This chapter simply
identifies the folders and files you will need for this exercise.)

Now follow the instructions provided in the next section to install hardware and
software for the Macintosh Coprocessor Platform.

Installing the MCP card
This section tells you how to install the MCP card in the Macintosh II. If you are not
familiar with installing cards, refer to the owner's guide for your Macintosh II and to
the Preface of this guide for important safety instructions. Follow all instructions and
warnings dealing with your system detailed in the owner's. guide for your Macintosh IT.

For your own safety and the safety of your equipment, take the following precautions
before installing the MCP card:

2-2 Getting Started

Apple Confidential 2/20/89

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

o Do not tum on the computer system until you have completed the entire
installation process.

Warning
Turning on the system at the wrong time could result in electrical shock to you
or cause damage to your computer system's components.

o Disconnect cables for the monitor, mouse, and keyboard by pulling on the plugs,
not the cords. Leave the power cord plugged in.

Warning
The plugged-in power cord acts as a ground for the system, protecting Its
components from static electrlcai discharge. Do not defeat the purpose of the
grounding plugl

o Touch the power supply case inside the computer to discharge any static electricity
that might be on your clothes or body.

Warning
It's OK to touch the power supply If you've just unpacked It. However. the
power supply can get hot in normal use. If the computer has been on, shut It off
and let It cool down for at least five minutes before you open up the main unit
and touch the power supply.

To install the MCP card, follow these steps:

1. Cho~e the expansion slot in which you would like to install the MCP card.

For putp0.5es of this exercise, you can use any slot except the founh to the right of
the video card (slot D).

+ Note: The MCP software downloaded in this example assumes that the MCP card in
slot D has an SCC interface; therefore, it is reconunended that you use another slot,
such as slot B, for purposes of this exercise.

o Remove the expansion cover shield behind the expansion slot you plan
to use by lifting up until the shield is free of the guide and pin.

o Push out the plastic hole cover that lines up with the slot you plan to use.

2. Insert the MCP card into the expansion slot.

o Being careful not to touch the pins on the bottom of the card, pick up the MCP
card by the top of the metal bracket and the top of the card's other end.

o The expansion cover shield on the card attaches to the inside of the back panel in
the same way as the shield you removed in step 1. Align the card so that the guide
fits through the lower slot.

Installing the MCP card 2-3

MCP Developer's Gulde - Final to Production

o Align the connector on the bottom of the card, directly over the slot, as shown in
Figure 2-1.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 2·1
Aligning the card

o Place one hand along the top edge of the card, directly over the connector area,
and push down firmly until the connector is fully seated

Im portent

Apple Confidential 2/20/89

Don't force the card. If you meet a lot of resistance. pull the card out and try
again.

Don't wiggle the card from side to side when you Insert It. Wiggling the card puts
unnecessary stress on the card and the slot. and may break electrical
connections.

You can test to see if the card is properly connected by gently trying to lift the card.
If it resists and stays in place, it is connected.

3. If you have purchased other peripheral devices that require cards, install
them now.

You can use this same method for installing all expansion cards in your Macintosh
II at any time. Read and follow any instructions that come with other expansion
cards you may have. If you plan to install more cards, see Appendix C in the
owner's guide to your Macintosh II for details on the power available for expansion
slots.

4. Now that the card is installed, reconnect the monitor, the mouse, the
keyboard, and plug in any necessary cables.

If you installed additional cards (such as the AST-ICP smart card) that interface to a
network or some other device, connect those cables at this time.

The owner's guide for your Macintosh II shows different ways to connect Apple
DeskTop Bus™ devices (the keyboard, the mouse, and other devices such as a
graphics tablet, a joystick, or another keyboard). You can either daisy-chain them
to the keyboard or use one of the back-panel connectors.

2-4 Getting Started

('

Fig. 2-1 -COMP (Lll)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

-> Note: Avotd turning on the power prematurely. The steps are presented in this
order so that the last thing you do is connect the keyboard to a power source. Once
the keyboard has power, you could accidentally press the Power On key and tum on
your computer before it is appropriate.

s. Connect any other equipment you plan to use, such as a printer, external
disk drive, or modem.

You will find instructions for connecting tho.se devices in the manuals that came
with them. If you're using an external device of any kind that uses a sc.5I (Small
Computer System Interface) connector, you must connect that device to the one
SCSI port on the back of the Macinto.sh II.

Warning
Connecting a SCSI device to the wrong port can damage your system. You can
also damage the system If you mistakenly connect a non-SCSI device (with an
RS-232 plug, for example) to this port. Read ·Adding SCSI Terminators· In
Appendix A of the owner's guide to your Macintosh II for important Instructions
about SCSI terminators.

Once you are satisfied that everything is connected properly, arrange the Macintosh II
components conveniently in your work area. Tum the main unit so that it faces you,
and place the monitor where you want it (on top of the main unit is fme). Po.sition the
keyboard and mouse where you can reach them comfortably.

Warning
Always keep your computer's main unit flat. sitting on Its rubber feet. Standing
the main unit on edge defeats the cooling design and Is likely to make your
computer overheat. A vertical position may eventually damage the main unit.

Installing MCP software
To install MCP software, reboot your Macintosh II and do the following:

1. Create a new folder called MCP Software on your Macintosh II desktop.

2. Copy the contents of the distribution disks to the new MCP Software folder.

It takes just a couple of minutes to copy all files from the MCP distribution disks.

Installing MCP software 2-5

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Important

Because of naming conventions required by MR-DOS, do not change the names
of any of the flies or folders copied from the distribution disks. Of course, you can
create your own names for the hard disk and first-level folder to which you copy
the MCP files and folders.

•!• Note. The MR-DOS folder and Apple IPC folder must be at same level within the
new folder you just created, because certain items within the Apple IPC file use data
in the include files in the MR-DOS folder.

Installing the Apple IPC driver
Now that the files and folders for the MCP software are installed on your hard disk, you
will need to install the Apple IPC driver into the System Folder on the Macintosh II.
Here are the steps that you should follow:

1. Select the Apple IPC folder within the new folder you created on the
Macintosh II desktop.

2. Within the Apple IPC folder, open the Examples folder and select the Apple
IPC file.

3. Copy the Apple IPC file into the System Folder of the Macintosh II.

<• Note: You can copy the file in one step by holding down the Option key while
dragging the Apple IPC file into the System Folder.

4. Reboot the Macintosh II.

The Apple IPC driver is loaded into the system heap during system startup by an
INIT31 resource within the Apple IPC file. ·

Running a sample program
This section describes how to run a sample program that shows the features and
functions of the MR-DOS operating system on the MCP card.

To execute this exercise, you must first run MPW. To do so:

1. Open the MPW folder.

You can open the folder either by selecting it, then selecting Open from the File
menu, or by double-clicking the MPW folder icon.

2-6 Getting Started

2. Run MPW by double-dicking on the application called MPW ShelL

An MPW worksheet appears, similar to that shown in Figure 2-2.

SCREEN S.HOT

MSCNNNN
ART: NN x.17 pi
20.5 pi text to FN b/b

Figure 2-2
MPW window

Selecting files for the sample exercise
Now you must select the appropriate files to use for the exercise. To do so, first open
the folders in which they are located. Follow these steps:

1. Choose Set Directory ••• from the Directory menu.

A dialog box appears similar to that shown in Figure 2-3.

+ Note: The contents of this dialog box will vary depending on the contents of your
hard disk.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

SCREEN SHOT

Figure 2-3
Select Current Di.rectory window

The box beneath the directory title shows all the items in that folder.

2. Locate and open the folder named MCP Software that you created earlier in
this chapter.

To open the folder, select the file name, then click Open. You can also open
folders and flies by double-clicking on the name of the folder you want.

3. Open the folder named MR-DOS.

4. Open the folder named Examples.

Running a· sample program 2-7

,. c File Edit Find Merk Window Directory Build

New Baby:MPW:Worksheet

(

Figure 2-2

,. c Fiie Edit Find Mark Window Directory Build

New Baby:MPW:Worksheet

Figure 2-3
[Select Current Directory:)

I c::> New Baby I
~ ~ c::> New Baby
Cl Diagnostics

[qe< t l Cl HYPERCRRD
~· I Ill!TI' ([hill<~ l
Cl Misc Applications -If
CJMPW ---------
Cl System Folder (Open)

k;; ~ Directory ,

(Cancel l

MCP Developer's Guide - Final to Production

S. Select the folder named MCP.

6. Oick the Directory button.

To verify the directory (folder) in which you are working, type the MPW command
di rectory and press Enter. To continue the example in this chapter, you should
see the following lines on the screen:

directory
'New Baby:MCP Software:MR-DOS:Examples:MCP:'

where: directory is the command you entered

Apple ConfldenHal 2/20/89

'New Baby:MCP Software:MR-DOS:Examples:MCP:' isthepathname
to the folder

+ Note. Your saeen will display the pathname and name of the hard disk you are
using instead of the text shown in this example.

To see the name of the files in the MCP Examples folder, type the MPW conunand
files and press Enter. You should see the following list of all files in the MCP
Examples folders.

files
Download
dumpcard
echo.c.o
L3MMSVP.a.o
L3MMSVP.c.o
L3MMSVPClient.c.o
map
name_tester.c.o
osmain.c.o
ossccint.a.o
pr_manager.c.o
printf.c.o
start
tirneit.c.o
timer tester.c.o
trace_manager.c.o
xref

2-8 Getting Started

/

.-- ..

r:
' '

MCP Developer's Gulde • Final to Production

For this exercise, you will use the files named down lo ad and st a rt. The
download file contains an MPW tool that loads code from MR-DOS to the card; the
start file is sample code that runs on the smart card. (Ref er to Part II for more detailed
information on the download tool.)

Downloading files to the card
To download the file, enter both the command name and the name of the sample file,
as follows:

download start

The start file is now running with the MR-OOS operating system on the MCP smart
card in your Macintosh II. Until you verify that the program is running by using the
process described in the next section, you will not see any activity on the screert

Verifying the sample exercise
Using an MPW tool provided on the MCP distribution disk called the print manager
(pr_manager), you can verify that

o the card is running the sample program and file

o communication processes between the card and Macintosh are functioning
correctly

The print manager is also designed to run on a card that has an sec for printing to a
tenninal (such as an AST-ICP card).

To verify that the program is running, follow these steps:

1. In the MCP Software folder, find the folder named Apple IPC, then tre
folder named Examples.

Follow the steps listed for "Selecting Files for the Sample Exercise,• given earlier in
this chapter.

2. Verify the dlrectory using the MPW command directory.

You should see the following text displayed on the screen:

directory
'New Baby:MCP Software:Apple IPC:Examples:'

3. Verify the files in that folder using the MPW command f i 1 es.

You should see the following listing on the screen:

Apple Confidential 2/20/89

Running a sample program 2-9

MCP Developer's Guide - Final to Production

files
:AST ICP:
:DumpTrace:
:MCP:
'Apple IPC'
'Apple IPC.r'
echo.c
echo example
echoqlobals.a
Makefile
name tester
name_tester.c
pr_manager·
pr manager.c
RSM_File.c
RSM_tester.c
TestR
TestR.c
time it
timeit .c
trace monitor.c
TraceMonitor

Notice the file for the print manager (named pr_ manager).

3. Toviewtheactivityofthecard,type pr_manager andpressEnter.

You'll see messages similar to the following on the saeen; for example, the Task
Identifier (TID) numbers would be different for different slots.

2-1 O Getting Started

Apple Confidential 2/20/89

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

pr_manager
Print Manager TID = 4
Starting Main Loop
TID bOOOOOa - echo tid = b000005
TID b000008 - Sent message, waiting for reply ---
TID b000008 - Received msg = FB0706AC, ID = FB00247 6·
TID b000008 - From: 0364, To: B000008, mCode = -32666, mStatus
TID bOOOOOc - RAM test @$fb064898 passed.
TID = bOOOOOc - Testing Slot B
TID b000008 - About to send msg = FB0706AC, ID = FB0029AC
TID = b000008 - To: 0464, mCode = 102, mDataSize = 1144
TID b000008 - Sent message, waiting for reply ----
TID b000008 - Received msg = FB0708FO, ID = FB0029AC
TID b000008 - From: 0464, To: B000008, mCode = -32666, mStatus
TID b000008 - About to send msg = FB070638, ID = FB0029BC
TID b000008 - To: 0564, mCode = 102, mDataSize = 1144
TID = b000008 - Sent message, waiting for reply ----
TID = b000008 - Received msg = FB0708FO, ID = FB0029BC
TID = b000008 - From: 0564, To: B000008, mCode = -32666, mStatus
TID = b000008 - About to send msg = FB0706AC, ID = FB0029Dl
TID • b000008 - To: 0664, mCode = 102, mDataSize = 1144
TID = b000008 - Sent message, waiting for reply ----
TID = b000008 - Received msg = FB0708FO, ID = FB0029Dl
TID = b000008 - From: 0664, To: B000008, mCode = -32666, mStatus
TID b000008 - About to send msg = FB07087C, ID = FB0029El
TID b000008 - To: 0764, mCode = 102, mDataSize = 1144
TID b000008 - Sent message, waiting for reply ----
TID b000008 - Received msg = FB0708FO, ID = FB0029El
TID b000008 - From: 0764, To: B000008, mCode = -32666, mStatus
TID b000008 - About to send msg = FB070638, ID = FB0029F5
TID b000008 - To: 0864, mCode = 102, mDataSize = 1144
TID b000008 - Sent message, waiting for reply ----
TID = bOOOOOc - RAM test @$fb064dl8 passed.
TID - b000008 - Received msg = FB0708FO, ID = FB0029F5

where: pr_manager is the conunand you entered

Print Manager is the name of the program that started running
under MR-DOS

T ID= 4 is the Task Identifier (TID) assigned to that task by MR-DOS

bO 0 0 On is a task (Note that there are several tasks running at the samt time.)

These messages originate on the MCP card. This activity not only shows that MCP is
functioning correctly, but also displays that multitasking activities are taking place.

-32768

-32768

-32768

-32768

-32768

Running a sample program 2-1 l

MCP Developer's Guide • Final to Production

The program continues to execute. To stop the activity, press the Command-period
key combination. MPW stops the program and displays the following message on the
screen:

CloseQueue Called
MPW Shell - pr_manager aborted.

You can direct this output as you would do anything else in MPW, such as saving it t.J a
temporary file for printing later.

Where do you go from here?
Now that you've been through a sample exercise, it is time to work on your own
applications. Part n, "Software Development", provides information on software
development using MR-DOS and Apple IPC; Part ill, "Hardware Development•,
provides information on hardware development; and Part N, "MCP Diagnostics•,
provides information on customizing development diagnostics.

2-12 Getting Started

Apple Confldentlal 2/20/89

\.,

(

Part II

Software Development

Part II, Software Development, provides

o an introduction to and an overview of
MR-DOS and Apple IPC

o definitions of operating system
primitives, utilities, and managers for
MR-DOS and Apple IPC, along with
examples in both assembly language
andC

0

0

information on how to use the
operating system

an exercise to modify standard MCP
files to build an application program

o programming guidelines and notes
for MR-DOS, with program listings for
selected examples

o a troubleshooting section for crashes
and hangs wirh either MR-DOS or
Apple IPC

(

Chapter 3

Introduction to the MCP
Software Interface

MCP Developer's Gulde - Final to Production

Software for the Macintosh Coprocessor Platform includes MR-DOS, Apple IPC, and
support software (development tools, include files, and examples). This software was
aeated to take advantage of the common design features of the MCP card by
providing a common software environment.

Some of the specific concerns you may have in developing your own application may
include how to:

o create a MR-DOS or Apple IPC application; refer to Chapter 8

o create interrupt handlers; refer to Chapter 9

o send data directly to another card; refer to Chapter 5

This chapter describes the components of MCP software in gr_eater detail.

What is MR-DOS?
MR-DOS (Minimal, Real-time, Distributed Operating System) is a multitasking
operating system for smart card devices, such as the MCP card, and provides an
intelligent peripheral-controller interface to NuBus.

MR-DOS is a kemel operating system that operates in supervisor mode (sometimes
referred to as server mode). The basic part of the kernel is as small as possible, with
the fewest functions necessary to do real work. The design philosophy of the
operating syscein is to not get in the way of what most people want to do; MR-DOS
makes minimal assumptions about how things operate. MR-DOS provides basic
support services to tasks through system calls (primitives) and library routines
(utilities).

MR-DOS primitives
A primitive is a MR-DOS system call that provides fundamental services; it is part of
the operating system kernel. You must use these services to start and stop tasks, get
and free memory, get and free message buffers, send and receive messages, change
the scheduling parameters of a task, and set the hardware-interrupt priority level.
Refer to Chapter 4 for more detailed information on MR-DOS primitives.

3-2 Introduction to the MCP Software Interface

Apple Confidential 2/20/89

(
MCP Developer's Guide • Final to Production

MR-DOS utilities

A utility is the library code needed to make the functional call interface between the
kernel and ocher code providing higher-level services (such as the MR-DOS managers
or code you develop for ocher tasks). The utilities allow you to move data, manage
buffers, obtain the operating environment, translate NuBus addresses, and register
and look up task names through the Name Manager. Refer to Chapter 5 for more
information on MR-DOS utilities.

MR-DOS managers

Managers are tasks that carry out higher-level services on behalf of other tasks. MR
DOS managers extend the kernel to provide services that are not in the kernel, but are
useful for all users of the MR-DOS operating system.

Managers exist on top of the kernel . Because code for the managers is provided on
the MCP distribution disk, you can incorporate desired functions into the application
program you develop using appropriate calls. Both managers and application code
for tasks that you develop operate in user mode (sometimes referred to as client
mode). •

Figure 3-1 shows the relationship between the MR-DOS kernel, primitives, utilities,
and managers.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 3·1
Structure of MR-DOS

Figure 3-2 illustrates the flow of information between MR-DOS and these managers on
an MCP card.

Apple Confidential 2/20/89

What Is MR-DOS? 3-3

Supervision mode -----

.. ·
..

~ .. ;:::-.;:J ••

-~ .. "'U

Syste:::: trap interface -------'

Fig. 3-1 -COMP (L3)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

Kernd
• (primfilves)

~ ... ··
~---

... ~

.. ..

e
·a ~

(
MCP Developer's Guide - Final to Production

MSCNNNN
ART: NN x 17 pl
20.5 pi text to FN b/b

Figure 3-2
Flow of Information between MR-DOS and managers

This section provides a brief description for each of the MR-DOS managers (refer to
Chapter 6 for more detailed information):

o Echo Manager

o InterCard Communications Manager

o Name Manager

o Print Manager

o Remote System Manager

o Timer Manager and Timer Library

o Trace Manager

Echo Manager

The Echo Manager returns each message it receives to the sender. You can use the
Echo Manager primarily during the early stages of development for

o sending test messages

o determining the time required for a round-trip message response

lnterCard Communications Manager CICCM>

The lnterCard Communications Manager OCCM) is responsible for sending and
receiving all messages between smart cards installed in the same machine. MR-DOS
delivers any messages addressed off-card to Apple IPC or ICCM. ICCM forwards the
message to a peer ICCM on the destination smart card for delivery. ICCM also allows
tasks to request information about other cards; namely, the tasks ask for information
about the existence of a smart card in a given slot and the task identifier of its Name
Manager.

3-4 Introduction to the MCP Software Interface

Apple Confidential 2/20/89

MCPcard

:;:;.___ NuBus interface

_____ U_se_r_tas_k _____ __,] 1 __________ M_a_d_nt_o_sh_II_ma1n __ 1ogi_·c_bo_ar_
1
d

Other Name
~ks Man:ger User application

ICCM

Ii JI..

MR-DOS Name l Other
~gerJ P~ •

Ill)II Ii
; ..I ~ ro;t;l

~---------------~'"'~---A~p~p~_IPC __ dri_·~-r---'~'-----'

I

User task

Other Name

~ks M~ger •
JI.. x Jt
~ ::[~

MR-DOS

Second MCP card

Fig. 3-2 -COMP (I.A)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

I I Macintosh OS

ICCM I
x

~~ ~

"--- -- Path that a message may take

(

MCP Developer's Gulde - Final to Production

Name Manager

The Name Manager allows user programs to find the task IDs of other user programs,
given the names of those programs.

To provide these naming services, the Name Manager allows tasks to

o register and unregister their own name with the Name Manager

o look up the task identifier of named tasks

o look up the name of a task corresponding to a given task identifier

o become visible to other tasks on the same card and, optionally, to tasks on the
Macintosh II or other smart cards

The Name Manager supports searching for names using wildcard characters; the Name
Manager also provides for notifying tasks of the loss of communication with a smart
card or the termination of a task.

The Name Manager operates with a single message loop: for each message it receives,
it performs the service specified in the message code. The Name Manager handles
errors by indicating the failure status in the message sent back to the requesting task.

Print Manager

The Print Manager is a diagnostic tool that allows you to put print statements in your
program and get the output printed on a display. The display can be output either on
the Macintosh II or out to a serial port.

Remote System Manager (RSM)

The Remote System Manager (RSM) provides a mechanism for supporting dynamic
downloading of tasks to another smart card in the same machine. RSM provides two
types of services:

o getting and freeing memory

o starting and stopping tasks

RSM operates with a single message loop; for each message it receives, it performs the
service specified in the message code. For each kind of request message, RSM on the
remote (destination) card executes the applicable MR-DOS primitive on behalf of the
requesting task. RSM handles errors by indicating the failure status in the message sent
back to the requesting task.

Apple Confidential 2/20/89

What Is MR-DOS? 3-5

MCP Developer's Gulde - Final to Production

nmer Ubrary and nmer Manager

The timer library allows user programs to receive "wake-up" calls and activates timing,
cancels timing, sets timing, and so forth. Use the timer library when you want to use
periodic timers, for high-performance timers, and when you want to cancel a timer
reliably when an event occurs.

The timer library is available in the file os • o on the MCP distribution disk. The
timer library provides three types of timing services to tasks:

o time-event notification

D time-event query

o time-event cancellation

The user task can request two types of time events:

o one-shot, in which only one time-event notification message is sent

o periodic, in which time-event notifications are sent at specified intervals

The T'uner Manager is provided with this version of the MR-DOS software for historical
purposes.

Trace Manager

The Trace Manager provides a way to dynamically trace all the message exchanges in
the operating system. The Trace Manager can be an extremely useful debugging
facility; when all else fails, you can trace messages and slow the process down in order
to see things you could not see before. The Trace Manager traces everything except
itself: every message that is sent is put in a log file.

Caution

Apple Confidential 2/20/89

A !Imitation of using the Trace Manager Is that It alters time where a program Is
concerned. and therefore may affect the operation of a task If timing Is a factor.
Therefore. some operations work while others do not when the Trace Manager Is
running.

For example. the Trace Manager may impact programs that control high-speed
1/0 devices. Because messages are traced. they may not return fast enough to
activate the device. or the timing may be altered. This results In errors that are
time-dependent.

3-6 Introduction to the MCP Software Interface

(

MCP Developer's Gulde - Final to Production

What is Apple IPC?
Apple IPC (InterProcess Communication) is a combination of a driver and support
software found in the Apple IPC file in the Apple IPC folder on the MCP distribution
dSc.

Apple IPC provides message-passing and naming services for communications from
the Macintosh II to other tasks on the Macintosh II and to tasks on smart cards.
Interprocess communication is accomplished through messages that are fixed-size but
flexibly fonnatted (Apple IPC is similar to the InteICard Communications Manager
on MR-DOS.)

+ Note: This document refers to processes on the Macintosh II, and tasks under MR-
DOS and Apple IPC.

An application that uses Apple IPC must have an initial call to Open Queue to
establish its use of Apple IPC. Messages are sent and received via the Send and
Receive calls, much like tasks under MR-DOS. Several source-language examples of
applications are provided in the Apple IPC folder on the MCP distribution disk. Refer
to Chapter 9 for a more detailed description of the services provided by Apple IPC.

Apple IPC driver
Apple IPC services are handled by the Apple IPC driver, which handles all message
passing between processes on the Macintosh II operating system and MR-DOS tasks on
the smart card over the NuBus. Using calls to the Apple IPC drive, the Macintosh II
process sends messages to and receives messages from tasks on the smart card
processes and on the Macintosh II. In addition, Apple IPC allows communication
between two or more processes running on the same Macintosh II main logic board

The Apple IPC ftle is placed in the System Folder; routines contained in the file are
installed by the INIT31 mechanism during system startup. (Refer to Chapter 2,
"Getting Started,• for installation instructions.)

During initialization, the driver sets up a communication area, and then searches
NuBus slots for the ICCM communication areas of smart cards installed in the
Macintosh II, much as the MR-DOS ICCM does. For each valid ICCM communication
area found, the driver stores the address of the Apple IPC communication area in a
vector in the ICCM's communication area.

Periodically, Apple IPC scans for Receive operations that have timed out,
incoming messages, active slots that have timed out, and outgoing messages. The
driver receives messages from and delivers messages to the Macintosh II processes.

Apple Confidential 2/20/89

What Is Apple IPC? 3-7

MCP Developer's Guide - Final to Production

Apple IPC library
The interface between a Macintosh application and the Apple IPC driver is made
through the object routines, or glue code, in the Apple IPC library. These routines
provide for opening and dosing the message queue to the driver, getting and freeing
message buffers, and sending and receiving messages.

In addition, the Apple IPC library provides access to many of the same utilities as
provided by MR-DOS, such as moving data, obtaining the operating environment,
and registering and looking up task names through the Apple IPC Name Manager.
These routines are located in the file Apple IPC:IPCGlue.o on the MCP distribution
disks. (All of these routines use the C calling sequence.)

Apple IPC managers
The managers for Apple IPC are the Echo Manager and the Name Manager. These
Apple IPC managers perform functions identical to and have the same message
interface as those of their MR-DOS counterparts; minor differences are due to the
slightly different interface to Apple IPC.

The Apple IPC managers are processes that carry out higher-level services on behalf of
applications on the Macintosh II computer. These managers are often referred to as
slot 0 managers, and the Macintosh itself is sometimes referred to as the slot 0
card

-> Note: The slot 0 card is not to be confused with the Slot Manager in the Macintosh II
(part of the Macintosh operating system).

3-8 Introduction to the MCP Software Interface

Apple Confidential 2/20/89

(

(

Functions of MCP software
The operation of MCP software is described in terms of the following functions:

o using messages for interprocess communication

o using the client/server relationship as a mechanism for data transfer

o using task scheduling in the MR-DOS muhitasking environment

o managing memory under MR-DOS

Using messages for interprocess communication
Messages are the fundamental means for communication between tasks for MR-DOS
and Apple IPC. Message structures are allocated from and returned to a special area of
memory dedicated to holding messages. Intracard messaging is accomplished
through the operating-system kernel; intercard messaging is handled by ICCM.

Message structures

A message is a fixed-length data structure that is sent between tasks. Some of the
fields in a message include

o a destination address, which is the identifier of the task to which the message is
directed

o a source address, which is the identifier of the task that sent the message

o a message code specified by the user

o three long words of data for the receiver

o three long words of data that should be returned untouched by the receiver in a
response

o a pointer to a data buffer

. o the size of the data buffer

o a message identifier (ID)

o the message priority

o the message status

F.unctlons of MCP software 3-9

MCP Developer's Gulde - Final to Production

Some of the fields in a message structure in C are:

long
short
short

mid;
mCode;
mStatus;

Apple Confidential 2/20/89

/* Message ID */
/* Message code */
/* Message return status */

unsigned
tid_type
tid_type
unsigned
unsigned
long

short mPriority; /* Message priority */

long
long

mFrom;
mTo;
mSData[3];
m0Data[3];

/* Message source */
/* Message destination */
/* Sender's private data */
I* Sender's shared data */

mDataSize; /* Size of data buffer */
I* in bytes */

char *mDataPtr; /* Address of data */

Figure 3-3 illustrates the fields contained in fixed-length messages for MR-DOS and
Apple IPC.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 3-3
Fixed-length message structure

Table 3-1 describes some of the fields in the message structure and provides a brief
description of each.

•> Note: Always use the message structure as defined in the includes file.

3- l 0 Introduction to the MCP Software Interface

/

(

(

Fig. 3-3 -COMP (L5)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

mScatus

mPriority

mFrom

mTo

mDataSize

mDataPtr

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 3-1
Structure for fixed-length messages

FleldName Field Size

mid long

mCode short

mStatus short

Description/Usage

a statistically-unique, 32-bit number to identify
the message, used when a message is obcained
from MR-DOS or the Apple IPC driver by way of a
GetMsg () request

a 16-bit message code understood only
by the sender and receiver of a message

By convention, an even mCode is a request
message, and an odd mCode is a reply message.
You can find examples of this convention in the
flies :MR-DOS:includes:managers.a and
:MR-DOS:includes:managers.h. For example, the
ICCMrequestcode ICC_GETCARDS (150) is
even; the ICCM reply code
ICC_GETCARDS+l (151) isodd. The Name
ManagerrequestcodeNM_REG_TASK (100) is
even; the Name Manager reply code
NM_REG_TASK+l is odd.

The MR-DOS operating system, the Apple IPC
driver, the managers (Name Manager, ICCM, and
others) set the high bit of the mCode in a message
if the mCode is not recognized or the message is
undeliverable. The file managers. a and the file
managers. h in the folder :MR-DOS: includes:
list the mCodes known by MR-DOS, the Apple IPC
driver, and the managers.

a 16-bit status code, with the upper 8 bits of mStatus
designated as a MR-DOS system status code and the
lower 8 bits of mStatus designated as a user status
code. The mStatus values used by MR-DOS, Apple
!PC, and the managers are found in the ftles
managers. a and managers. h in the folder
:MR-DOS:incl udes:.

Functions of MCP software 3-11

/

MCP Developer's Gulde - Final to Production Apple Confldentlcl 2/20/89

mPriarity

mFram

mTo

mSData

unsigned
short

long

long

31ongwords

For any message that is undeliverable, MR-DOS and
Apple IPC change the entire mS tat us word to a
value of $8000. If a message with mS tat us already
set to $8000 is found to be undeliverable, MR-DOS
and Apple IPC discard the message.

a 16-bit unsigned word representing the priority of
the message (0 is the lowest priority).

a source address (the task that sent the message)

By convention, mF ram is the TaskID (fID) of the
task sending the message. MR-DOS automatically
fills in the mF ram field to that of the current TID
when a message is obtained by a GetMsg ()
request A task receiving a message should swap the
mFram and mTa fields before sending a message
in reply.

To declare the TID number, use tid _type
TYPEDEF described later in this chapter. Do not
assume anything about the format of fields in the
TID. For example, the slot number may not always
appear in the same location of the TIO.

a destination address (the task to which the message
is directed)

The mTo field is the Task!D (TID) of the task to
which you want to send a message. This field must
be filled in before doing a Send request.

To declare the TID number, use t id_ type
TYPEDEF . Do not assume anything about the
format of fields in the TID. For example, the slot
number may not always appear in the same location
of the TID.

12 bytes of data defined by the sender, associated
with the message, that should be returned
untouched by the receiver in a response. This field
contains internal context information meaningful
only to the requesting task.

3-12 Introduction to the MCP Software Interface

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

mOData 3longwords

mDataSize long

mDataPtr long

By convention within MR-DOS, a task receiving a
Request message copies the three mSData words
from the requestto the mSData words of the reply
message. The task receiving the request should not
otherwise manipulate this mSData.

12 bytes of data def med by the receiver, associated
with the message.

By convention, these 3 long words are meant to be
used between the requesting task and the replying
task for passing information.

the size of an associated data buffer pointed to by
InoataPtr. This size is in 8-bit bytes.

a pointer to an associated data buffer. MR-DOS
assumes that this pointer is the address of the
associated data buffer as seen from the Macintosh II
NuBus.

For example, suppose there is an associated data
buffer on a card in slot Cat address 1234; the
mDataPtr should have the value FC001234, which
is the NuBus address.

Messages are obtained by a Receive request in the following order:

1. The message must fit any match criteria that was specified on the Receive
request.

2. The highest mP r io r it y message fitting the match criteria is obtained.

+Note: If two or more messages fitting the match criteria have the highest
mP r io r it y, the first one received and queued for the task is obtained (as lll a
First-In/First-Out, or FIFO, queue).

Functions of MCP software 3-13

(

MCP Developer's Gulde - Final to Production

Mechanisms for data transfer

Data is transferred between tasks by one of three mechanisms: in the message code, in
three long words in the message, or in a data buffer. A task may use all three
mechanisms simultaneously when sending a message. Here is a description of these
three mechanisms:

o the message code

Through bilateral agreement between cooperating processes, the message code
alone may convey the entire meaning of the message.

o three long words in the message

Apple Confidential 2/20/89

The second mechanism allows a task to pass three long words of data in the message
(rnOData [0], mOData [1], and mOData [2])whosemeaningisspecifiedby
the receiving task (refer to the Tuner Manager on the MCP distribution disk for an
example).

In addition, the task may pass another three long words of data in the message
(mSData[O], mSData[l], and mSData[2])thatthereceiverretums
untouched. The mSData long words are private to the sending task; these words
are not altered by the receiving task and should be returned to the requesting task
unchanged. This feature allows tasks to pass context and other information, such as
return addresses for processing, for the task's private use within the messaging
mechanism.

+ Note: This is a convention; it is not enforced by the MR-DOS operating system.

o a data buffer

The third mechanism involves passing a data buffer address and its size (that is, the
length in bytes) in the message to the receiving process for it to use. The address of
the buffer is placed in mDataPtr, and the size of the buffer is placed in
mDataSize.

In an environment that includes intercard communications, mDataPtr <."Ould be
pointing to an off-card buffer. The MCP card supports 32-bit accesses; however,
with some other smart cards, all reads and writes to off-card buffers from a 32-bit
CPU must be made with 16-bit accesses or less (for example, accessing the NuBus
using the AST-ICP card).

In addition, the buffer address must be mapped to a local address with the function
MapNuBus, described in Chapter 12. MapNuBus sets up any required latch
registers on hardware that requires it, such as on 68000-based cards, and returns the
local address to be used for the access. The operating system automatically saves
and restores the address mapping for each task.

Message and status codes

Table 3-2 lists message and status codes, with a brief description.

3-14 Introduction to the MCP Software Interface

MCP Developer's Gulde - Final to Production

Table 3-2
Message and status codes

Field Size

mCode 16-bit

mStatus 16-bit

Description/Comments

message code field
• use an even number to request services
• use an odd number for replies

message status field
• use the upper 8 bits for passing operating system

statm
• use the lower 8 bits used p3.$ing user status

The reply mCode to a request for service is the original mCode, plus 1.

The Receive system call uses message code 0 to indicate a match of any value.
Therefore, you should not use message code 0 in the mCode field, as the field cannot
be explicitly matched. By convention, the message code OxFFFF (-1) is not used.

When a message cannot be delivered, the operating system changes the message code
and message status as follows:

o the message code bit 1 «15 is set (mCode I 0x8000)

o the message status is 3.$igned a value of Ox8000

If the operating system is unable to return the message to the sender (that is, if the
sender has stopped or does not exist), the operating system frees the message but not
any buffer associated with the message (pointed to by mDataPtr).

A task that receives a message it does not recognize must check if (mCode & 0x8000) is
true (bit 1 « 15 is set).

o If true, the message should be released via FreeMsg (). Any buffer associated with
the message must not be released. This requirement ensures that messages will not
loop and shared buffers are not freed.

Apple Confidential 2/20/89

o If false, mCode should be modified by setting bit 1«15 (me ode I 0x8000). The
messagestatus, mStatus, shouldbesetto OS_UNKNOWN_MESSAGE. Thetask
should then return the message to the sender.

Functions of MCP software 3-15

(

The client/server relationship
The life of a typical message buffer begins in the message buffer pool. This message
buffer pool is available to any task that may request a message buffer from the system.

When a task sends a message, it either utili7.es a message buffer it owns (usually the
message buffer it just received) or requests a message buffer from the system using a
GetMsq () call. After filling the message with required addressing information and
data, the task sends the message to its destination with a Send system call. The
sending task has then lost rights to the message buffer, and it should not read from or
write into the rressage buffer (or otherwise use the message buffer).

Upon receipt, the destination task either re-utilizCs the message buffer for an outgoing
message, or returns it to the message buffer pool using a F reeMs g () call.

Figure 3-4 illustrates the normal sequence of actions between clients and servers. This
sequence is similar for clients and servers that run either on the MCP card under MR
DOS or on a Macintosh II using the Apple IPC driver. The client can be on a different
slot than the server; that is, one could be on one MCP card, and the other could be on
a different MCP card or slot 0 (the Macintosh II, for example).

MSCNNNN
ART: NN x 17 pi
20.5 pl text to FN b/b

Figure 3-4
Client/server relationship

Clients and servers running on a smart card under MR-DOS

This section provides an example of a client and server running on a smart card under
MR-DOS. You can find the source code for this example in the folder
:MR-DOS: Examples. The client is a timing test found in the time it . c file; the
server is the Echo Manager (similar to the echo example found in the echo. c file).
(See the file MakeFile in the folder :MR-DOS:Examples for making the echo. c
and time it . c examples.)

Both tasks are started within osmain, the main program, during MR-DOS
initialization. The server first uses the subroutine Register_ Task to register its
name so that clients can find it. The server then enters its main loop and issues a
Receive request, waiting for messages from clients.

Functions of MCP software 3-15

Typical client/server transaction

Fig. 3-4 (L6)

GetMsg
buffer

message
parameters

Send to
server

Get reply
(receive)

Free Msg
buffer

MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

Server task

Wait for
request
(receive)

Perform
service

Put reply
in message

(
MCP Developer's Gulde • Final to Production

A client locates the server it wants to communicate with, using Lookup_ Task to
obtain the TID of the server. The client next obtains a message buffer, stores the TID
of the server into the mTo field of the message buffer, sets the desired mCode
request in the message buffer, and uses the Send request to send the message buffer
to the server. Next, the client issues a Receive to wait for a reply from the server.

The server receives the message, takes any action that is required of it, swaps the
contents of the mF ram and mTo fields of the message, sets an appropriate mCode
reply in the message buffer, and uses the Send request to send the message buffer to
the client. The server next issues a Receive request to wait for another message
from a client.

The client receives the reply from the server and takes appropriate action.

Figure 3-S illustrates this process for program modules containing MR-DOS running
on the MCP card.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 3·5
Client /server relationship for MR-DOS program modules

Clients and servers running on the Macintosh II using Apple IPC

The sequence of actions needed for clients and servers running on the Macintosh II
using Apple !PC is similar to that described above. This section also describes some
of the differences between an application program running on the Macintosh II and
program modules running under MR-DOS on the MCP card.

A server and client process using the Apple IPC driver on the Macintosh II is different
from a server and client process running under MR-DOS due to the differences
between MR-DOS and the Macintosh II operating system; that is, MR-DOS is a
multitasking operating system, and the Macintosh II operating system assumes that
there is a single application.

The source code for the example discussed in this section is found in the me
MakeFile in folder :MR-DOS:Apple IPC:Examples, as follows:

o For the client, source code for a timing example, found in the time it . c file
(f'uneit is an MPW tool)

o For the server, source code for the Echo Manager can be found in the os. o me

The Echo Manager is started during INIT31 resource processing.

3-16 Introduction to the MCP Software Interface

Apple Confidential 2/20/89

NuBus card • to • NuBus card

Client task

Initialize

CT_tid • GetTIO ()

NM_tid • GetNameTID ()

NM_tid •• 0 '?

ST_tid • Lookup_Task (ntxamplen,
nservern, NM_tid, 'index) /

ST_tid •• 0 ?

msg • Get.Msg (J

msg •• 0 ?

mid • msg->mid

Formulate Request

msg->mTo • ST tid
msg->mFrom • CT tid
msg->mCode • code
Send (msg)

msg • Receive (mid,
OS MATCH ALL, OS MATCH ALL,
OS=NO_TIMEOUT) - -

Process Response

Done ?

FreeMsg (msg)

Fig. 3-5 (L7)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

Mll·DOSOO
MCPcud

Remove
Message
from
Pool

Forward
Message

Forward
Message

Add
Message
to
Pool

Server task

Initialize

ST_tid • GetT!O ()

ok • Register Task (ntxample",
"Server", FALSE)

ok •• O ?

msg • Receive (OS MATCH ALL,
OS MATCH ALL, OS MATCH ALL,
OS=NO_TIMEOUT) - -

Perform Service
Formulate Response

msg->mTo • msg->mFrom
msg->mFrom • ST tid
msg->mCode++ -
Send (msg)

(
MCP Developer's Gulde - Final to Production

A server or client running under MR-DOS automatically has a TID associated with it; a
server or client using the Apple IPC driver on the Macintosh II must first make itself
known to the driver by issuing an OpenQueue () request. The Open Queue ()
request makes the task known to the driver and assigns the requesting task a TIO. The
server in this example registers its name with the Name Manager as it did under MR-
DOS so that clients can find it.

Under MR-DOS, both the server and the client can issue a blocking Receive
request. MR-DOS has separate stacks for each task and saves each task's registers when
switching between tasks. Using Apple IPC on the Macintosh II, only one process at a
time (either the server or the client) can issue a blocking Receive request. Since the
Macintosh II operating system assumes that there is a single application, it will not
switch to another application while one application is waiting for something to finish.

Using the Apple IPC driver on the Macintosh II, the Receive request has an extra
parameter. This parameter is the address of a completion routine to be called when
the Apple IPC driver receives a message that satisfies the Receive request. A task
not using a completion routine to receive messages and not blocking must periodically
issue a nonblocking Receive request to determine if there are any messages for it.

The server issues a Receive request with a completion routine specified The code
following the Receive request exits the server; effectively, the server is no longer
running. The server becomes a dangling piece of code tucked away in memory, called
by the Apple IPC driver when the driver receives a message satisfying its Receive
request.

•:• Note. The echo . c ftle has no AS references within it. An assembly language
routine is used to access echo. c globals.

The client locates the server it wants to communicate with, using Lookup_Task to
obtain the TIO of the server. The client next obtains a message buffer, sets the TIO of
the server into the mTo field of the message buffer, sets the desired mCode request in
the message buffer, and uses the Send request to send the message to the server. The
client then issues a Receive request to wait for a reply from the server.

The Apple IPC driver calls the server at the server's completion routine address,
passing the message to the server. The server takes any action required of it, swaps the
contents of the mFrom and mTo fields of the message, sets an appropriate mCode
reply in the message buffer, and uses the Send request to send the message buffer to
the client. The server must be careful in what it does in the completion routine, since
the completion routine may be called from an interrupt.

The client receives the reply from the server and takes appropriate action. The client
then issues a CloseQueue request to notify the Apple !PC driver that the client is
finished talking to the IPC driver.

Apple Confidential 2/20/89

Functions of MCP software 3-17

MCP Developer's Gulde - Final to Production

Figure 3-6 illustrates the process between the client/server relationship for
applications using the Apple IPC driver. The first Receive request in the completion
routine p~ all messages in the queue. When there are no more messages, the
second Receive request specifies a completion routine so that the completion routine
will be called when there is another message.

+ Note: Two Receive requests are specified so that the stack will not be overrun.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 3-6

Apple Confidential 2/20/89

The client/server relationship for appllcatlons using the Apple IPC driver

Using task scheduling in a multitasking environment
This section discusses the elements of task scheduling in a multitasking environmeru.

A task is a message-driven transaction processor that runs on the MCP card. The
behavior of a task depend.5 on the messages it receives.

Tasks includethe Idle Task; managers such as the ICCM, Name Manager, Print
Manager, Remote System Manager, Timer Manager, Trace Manager; and any
developer-written tasks.

Task Identifiers

Tasks are known by and referred to MR-DOS by task identifiers. These identifiers are
for internal use and are automatically assigned by MR-DOS when it stans a task.

Modes in which tasks run

There are two nxxles in which tasks run:

o Run-to-block mode (also referred to as block mode)

o Slice mode

In run-to-block mode, a task has control of the CPU until the task explicitly releases it,
eil.her by changing its scheduling parameters (using a Reschedule call), or by
waiting to receive a message (using a Receive call) or by using a MR-DOS library
routine that waits fora response to a message (printf, Lookup_Task, and so
forth). The purpose of run-to-block mode is to guarantee uninterrupted use of the
CPU to tasksjhat need it; an example of a place where you should use run-to-block
nxxie is in Critical sections of code.

3-18 Introduction to the MCP Software Interface

(

(

Macintosh II to Macintosh II

Client task

Initialize

ok • OpenQueue (0)

ok •• O ?

CT_tid • GetTID ()

NM_tid • GetNameTID ()

NM_tid •• 0 ?

ST tid • Lookup Task("Example",
~server•, NM_tid, 'index)

ST_tid •• 0 ?

msg • GetMsg ()

msg •• 0 ?

mid • msg->mid

Formulate Request

msq->mTo - ST tid
msg->mFrom • CT tid
msg->mCode • code
Send (mag)

msg • Receive (mid,
OS MATCH ALL, OS MATCH ALL,
OS=NO_TIMEOUT, Of -

?recess Response

:)one ?

FreeMsq (msq)

CloseQueue ()

Fig. 3-6 (L8)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA \' ARRO
Illustrator 88
GEORGE .W. VRANA

ApplelPC

Remove
Message
from
Pool

Forward
Message

Forward
Message

Add
Message
to
Pool

Initialize

ok • OpenQueue <=>

ok •• 0 ?

ok • Register_Task ("Example",
•server•, FALSE)

ok •• 0 ?

Receive (OS MATCH ALL,
OS MATCH ALL, OS MATCH ALL,
OS=NO_TIMEOUT, completion)

Compledon routine

completion (msq)

Perform Service

ST_tid • GetTID ()

Formulate Response

msg->mTo • msq->mE'rom
msq->mFrom • ST_:id
msg->mCode++
Send (msq)

msg • Receive (CS MATCH ALL,
OS MATCH ALL, CS_MATCH_ALL,
-1:- 0) -

msq > 0 '?

Receive (OS MATCH ALL,
OS MATCH ALL, OS MATCH ALL,
OS=NO_TIMEOUT, completion)

MCP Developer's Gulde - Final to Production

+ Note: Do not confuse run-to-block mode with the blocking receive operation in
which a message is awaited. The name "run-to-block• captures the idea that the task
holds onto the processor until it performs a blocking receive. A blocked task is
one that waits for a message, having performed a blocking Receive.

In slice mode, the task can be time-slice~ that is, the operating system temporarily
suspends execution of the task to allow tasks of equal or higher priority to run.

A task can change its running mode as necessary by using the MR-DOS primitive
Reschedule () .

nmer services

You can schedule tasks using timer services provided on the MCP distribution disk.
For timer services and message reception done with a timeout, time is specified in
major ticks. A major tick is the smallest time unit recognized by tasks in the operating
system. This value is specified in all blocking Receive and timing operations.

Wamlng

Apple ConfldenHal 2/20/89

All code segments that have been Installed in the Tick chain run when a major
clock tick Is detected by the operating system. These segments are executed
even If the current task Is In run-to-block mode. Refer to Chapter 7 for more
Information about the Tick chain.

Task scheduling

Tasks are scheduled in round-robin fashion in each priority ring. There are 32
priorities, ranging from 0 Oowest) to 31 (highest). The operating system scans the
priority table, beginning at the highest priority, for a task that is eligible to run. Tasks
with the same priority are scheduled on a first-come, first-served basis. Over time,
this scheduling allows all tasks in a priority ring to be given an equal opportunity to
execute. Tasks of equal priority therefore share the processor.

A task of higher priority can indefinitely keep a lower priority task from executing, but
in common practice, a task always does a blocking Receive that permits lower priority
tasks to execute. Obviously, priorities of tasks must be chosen carefully, so that the
most critical tasks have the highest priorities. A task may change its scheduling mode
byusinga Reschedule call.

Scheduling decisions are made at every major tick of the system clock.

o If the current task is in slice mode, it can be preempted; that is, another task with a
higher priority can take precedence over the task running in slice mode. If a high
priority task is available (not blocked), that task will be scheduled before the lower
priority task running in slice mode.

o If the current task is in run-to-block mode, it is always allowed to continue.

Functions of MCP software 3-19

(

MCP Developer's Guide • Final to Production

Task initialization

During initialization, a task perfonns whatever functions may be necessary for its
execution. Every task has different needs, but typical functions include

o setting its scheduling mode as necessary

o getting its own task identifier

o waiting for other required tasks to begin

o registering its name with the Name Manager

The choice of scheduling mode depends on the function the task performs:

o Slice mode is used for tasks that are pre-emptible. Time-slicing of such processes
permits other tasks to share the CPU.

o Run-tcrblock mode is for tasks that, because of time constraints or the need to be
protected during critical sections of code, cannot give up the CPU for other tasks.

•> Note: Tasks can take exclusive control of the CPU only in situations where other
tasks do not need to execute; if other tasks are ever to execute, the task must change
its scheduling mode or perform a blocking receive to free the CPU.

In response to its needs, a task can change its scheduling mode as it executes.

MR-DOS always creates one task during its initialization; that task is the Idle task. The
Idle task is one that increments a counter, calls the Idle Chain, and issues the
Reschedule primitive to allow tasks to run. The Idle task runs in block mode, and is
given the lowest priority (priority 0). When no other task is eligible for execution on
the processor, MR-DOS schedules the Idle task. Code segments can be run when MR
DOS is idle by installing them in the Idle Chain (refer to Chapter 7 for more
information).

Warning

Apple Confidential 2/20/89

The Idle task must always be eligible for execution. The system halts If it can find
no tasks to schedule; hence a StopTask should not be performed on the Idle task.

Task execution

The bulk of a task is a message loop in which a message is waited for, received, and
processed Actually, a message is both waited for and received through the Receive
primitive.

Task termination

If a task must terminate, it notifies the operating system via a StopTask call.
Start Task initializes a task such that, if the main routine returns, a StopTask is
automatically issued.

3-20 Introduction to the MCP Software Interface

MCP Developer's Guide - Final to Production

Memory management
A distinction is made between using general-purpose memory and using message
buffers to increase performance of the MR-DOS operating system.

For general-purpose memory, the available pool of memory is initialized as the last
a~ in which the operating-system code is loaded, up to the system stack area that
occupies the last cos stack bytes of RAM. The system stack occupies the last portion
of RAM and is of a size you specify. Therefore, the amount of memory available in the

Apple Confldentlal 2/20/89

pool depends on the sizes of the code and data space. You can allocate and free
general-purpose memory to tasks using the GetMem and FreeMem calls, described
in Chapter 4.

For message buffers, during initiali2.ation the operating system sets aside a block of
memory large enough to hold a maximum number of messages that you specified.
This block of memory is then linked together to form the free list of messages.
Messages can be quickly allocated and released from this list. You specify the number
of messages allocated to the operating system in the call to os ini t () in ma in () .

Functions of MCP software 3-21

\

(

Chapter 4

MR-DOS Primitives

(

MCP Developer's Guide - Final to Production

This chapter desaibes the operating-system primitives used for MR-DOS. A primitive
is similar to a system call, in that a primitive provides fundamental services from the
operating system. Primitives are invoked as hardware traps and thus operate in
supervisor mode.

Table 4-1 lists the primitives provided by MR-DOS operating system and gives a brief
description of each.

Table 4-1
MR-DOS primitives

Name Description

FreeMem() Frees a block of memory

FreeMsq () Frees a message buffer

GetMem() Allocates a block of memory

GetMsq () Allocates a message buffer

Receive() Receives a message

Reschedule() Reschedules a task for a later time

Send() Sends a message

Spl () Sets the hardware-priority level

Start Task() Initiates a task

StopTask () Stops a task

These primitives are calls that are made for a variety of processes in the MR-DOS.
Some primitives are used in main (),the program that executes before anything else
starts. You can modify main () for whatever application you are doing.

•) Note: MR-DOS uses C calling conventions, and all registers are preserved except
DO, Dl, AO, and Al. The assembly-language macros also adhere to these
conventions.

Operating system primitives
This section describes each of the operating system primitives and provides examples
of how to call primitives from both C and assembler. Both types of calls take
arguments and use similar data structures.

4-2 MR-DOS Primitives

Apple Confidential 2/20/89

', ' - ,/

,,..,.-·

_,./

(
MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

FreeMem()
F reeMem () frees a block of memory that was acquired earlier by a call to GetMem () .
MR-DOS decrements the usage count associated with the buffer. If the resulting usage
count is zero, the memory is returned to the free poo~ if the usage count is non-zero,
the memory is not released

The C declaration of F reeMem () is

void FreeMem(ptr)
char *ptr; /* pointer to memory buffer to free */

The form for the FreeMem macro is as follows, where P 1 is the address of the
memory block to be freed:

[Label] FreeMem Pl

P 1 can be specified as a register (AO-A6, o 0-07), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

Caution
In most cases. MR-DOS will execute an illegal Instruction If an attempt Is. made to
free a memory buffer that has not been allocated by MR-DOS.

FreeMsg()
F reeMsg () frees a message buffer that was acquired earlier by a call to GetMsg () .

The operating system distinguishes between messages and memory in order to speed
up the acquisition and dispo.5al of messages. The number of messages initially
available depends upon the number requested in the call to osinit () from
main().

The C declaration of FreeMsg () is

void
message

FreeMsg (rnptr)
rnptr; / pointer to message buffer to free */

The form for the FreeMsg macro is as follows, where P 1 is the address of the message
buffer to be freed:

[Label] FreeMsg Pl

Pl can be specified as a register (A0-A6, 00-07), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

Operating system primitives 4-3

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

Caution
In most coses, MR·DOS will execute on Illegal instruction If on attempt Is mode to
free a message ofter It hos been sent and when a message buffer that hos not
been allocated by MR-DOS Is freed using FreeMsg().

GetMem()
GetMem () requests a block of memory from the free memory pool. The size of the
free memory pool size depends upon the size of the program or code space loaded
and the amount of memory installed on the card.

GetMem () returns either a pointer to the allocated block of memory or zero. A call to
FreeMem () releases the memory. The returned message block is initialized to 0 by
GetMem () if the number of bytes requested is greater than O; otherwise, the memory is
not initialized. For example, GetMem (-10) returns a pointer to a block of 10 bytes.
GetMem (10) returns a pointer to a block of 10 bytes that have been initialized to zero.
The usage count associated with the buffer is set to 1. (See MR-DOS library routines
GetUCount and IncUCount in Chapter 5.)

The C declaration of Ge tMem () is

char
long

*GetMem(size
size; I* size of block to allocate */

The form for the GetMem macro is as follows, where Pl is the size of the memory
block to be allocated:

[Label] GetMem Pl

Pl can be specified as a register (AO-A6, D0-07), or an immediate value(#<abs
expr>), or can use any 68ooo addressing mode valid in an I.EA instruction to specify
the location of a long word holding the desired block size. The address of the allocated
block is returned in D 0 unless the block could not be allocated, in which case 0 is
returned in D 0.

GetMsg()
GetMsg () requests a message buffer from the free message pool. GetMsg (> either
returns a pointer to the allocated message or zero. A call to F reeMs g () releases the
message.

4-4 MR-DOS Primitives

(

(

MCP Developer's Gulde · Final to Production Apple Confidential 2/20/89

MR-DOS clears all fields in the message, except Message ID and From address, before
the pointer to the message is returned. Message ID (mID) is set to a number that is
statistically unique to the field From address (mFrom) is set to the current task
identifier.

The C declaration of GetMsg () is

message *GetMsg ()

The form for the GetMsg macro is

[Label] GetMsg

The address of the allocated message buffer is returned in D 0 unless no buff er was
available. In that case, 0 is returned in D 0.

Receive()
Receive () returns the highest priority message from the task's message queue that
matches the specified criteria. Llke the Reschedule primitive, Receive may be
used to enable the CPU to run other tasks. Unlike Reschedule, Receive allows
tasks of lower priority to run.

The C declaration of Receive () is

message *Receive(mID,
unsigned long mID;
tid_type mFrom;
unsigned short mCode;
long timeout;

mFrom, mCode, timeout)
/* Unique message ID to wait on
I* Sender address to wait on
/* Message code to wait on
/* Time to wait in major ticks
/* before giving up

The first three criteria (mID, mF ram, and mCode) may be set to match either a
specific value (by specifying the value), or to match any value (by specifying the
symbol OS_ MATCH_ ALL), or to no value (by specifying the symbol
OS_ MATCH _NONE).

The timeout parameter in major ticks takes one of the three values described here:

o A value of timeout< 0 requests a nonblocking Receive. A nonblocking
Receive returns control immediately to the task, regardless of whether a message
matching the criteria was found or not. If no message was found, zero is returned
Any negative value can be used.

o A value of timeout= 0 requests a blocking Receive with no timeout. This
Receive returns control only when a message matching the criteria is found.

o Avalueoftimeout>Orequestsablocking Receive wilhatimeouc.This
Receive returns when either the timeout parameter expires or a message
matching the criteria is received, whichever occurs first. A timeout returns zero.

*I

*I
*I
*/

Operating system primitives

*/

4-5

MCP Developer's Guide - Final to Production

The fonn for the Receive macro is as follows, where P 1 is the message ID match
code, P 2 is the sender address match code, P 3 is the message code match code,
and P 4 is the timeout code:

[Label] Receive Pl, P2, P3, P4

Pl through P4 can each be specified as a register (AO-A6, D0-07) or an immediate
(#<abs-expr>) or it can use any 68000 addressing mode valid in an LEA instruction to
specify the location of a long word containing the desired value. The address of the
returned message buffer is returned in D 0 unless no message was available. In that
case, 0 is returned in D 0.

The following example shows how to use the Receive primitive in your code
segment to delay a task for five seconds:

Apple Confidential 2/20/89

Receive (OS_MATCH_NONE, OS_MATCH_NONE, OS_MATCH_NONE,
S*GetTickPS ());

The Receive criteria for message ID, sender's address, and message code must
never be satisfied in order to delay for a specified period of time. After every five
seconds, MR-DOS causes the task to be eligible for execution. To implement a delay,
you can use a Receive with matching criteria that can match no message.

Important
Take care using the mCode selector In Receive requests. The operating
system will set bit 15 of mCode (mCode I Ox8000) when a message cannot be
delivered. If a task does a Receive and waits on mCode. Receive will never
see Its message criteria matched If the message Is undeliverable; hence the
program will never get what It's waiting for. It's better to wait on mID. because
the operating system does not change this field.

Reschedule()
The Reschedule() primitive is used to give tasks of the same or higher priority a
chance to run before scheduling the task that issues the Reschedule call.
Reschedule () never causes tasks oflower priority to run.

Reschedule() selects the operating mode of the task, which can be anyone of the
options listed in Table 4-2. Block mode differs from slice mode only in that the task
will not give up the CPU until the task is explicitly blocked by Receive () or executes
another call to Reschedule() .

4-6 MR-DOS Primitives

,r' ''-,

(

1.i 1;,
'·

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 4-2
Reschedule options

Option

OS SLICE MODE -
OS BLOCK MODE - -
OS SLICE IMMED - -
OS_BLOCK_IMMED

OS RTN MODE - -
OS RTN IMMED - -

New scheduling
mode

Slice

Block

Slice

Block

Does not change

Does not change

Schedule a higher-or equal priority task
before returning to the task that issued
the Reschedule request?

Yes

Yes

No

No

Yes

No

o s _ s LI CE_ MODE changes the scheduling mode of the task to time-slice scheduling,
and allows any higher-priority or equal-priority task to execute before this task
executes again.

o s _BLOCK_ MODE changes the scheduling mode of the task to run-to-block scheduling
mode, and allows any higher-priority or equal-priority task to execute before this task
executes again.

OS SL I CE IMMED changes the scheduling mode of the task to time-slice scheduling
mode, and continues execution of this task until the next time-slice interval, when
no!lilal task scheduling occurs.

OS_ BLOCK_ IMMED changes the scheduling mode of the task to run-to-block mode,
and continues execution of this task until the task blocks itself by doing another
Reschedule or a blocking Receive request.

OS_ RTN _MODE returns the current scheduling mode of the task without changing the
scheduling mode, and allows any higher-priority or equal-priority task to execute
before this task executes again.

OS_ RTN _ IMMED returns the current scheduling mode of the task, and continues
execution of the current task without auempting to schedule any other higher-priority
or equal-priority task.

The C declaration of Reschedule () is

Reschedule(mode) short
short mode; /* Scheduling mode */

Reschedule returns the previous scheduling mode.

Operating system primitives 4-7

MCP Developer's Guide - Final to Production

The form for the Reschedule macro is as follows, where P 1 specifies the new
operating mode of the task:

[Label] Resched Pl

Pl can be specified as a register (AO-AG, DO-D7), an immediate value (#<abs
expr>), or use any 68000 addressing mode valid in an LEA instruction to specify the
location of a long word containing the desired operating mode. The previous
scheduling mode is returned in D 0.

Reschedule may be useful when combined with a nonblocking Receive request
to give other tasks a chance to run, as shown in the following example.

This example describes how to use Reschedule for two tasks implementing two different
layers of the X25 protocol. Suppose one task implements X25 Level 2; the other task
implements X.25 Level 3. In this example, both tasks execute with the same scheduling
priority. The Level 2 task is operating in block scheduling mode; the Level 3 task is
operating in either time slice or block scheduling mode and should not depend on
what the Level 2 layer is doing.

Accordingly, a portion of the Level 2 task might look like the following:

message *m;

Apple Confidential 2/20/89

m • Receive(OS MATCH ALL, OS MATCH ALL, OS MATCH ALL, -1);
- - I* See if data present from Level 3 */

Send(m); /*Send data to Level 3 task*/

if (m == 0)
{

/* If nothing from Level 3 yet */

Reschedule(OS BLOCK MODE);/* Let Level 3 task execute*/
m = Receive(OS MATCH ALL, OS MATCH ALL, OS MATCH ALL, -1);

- /* T~y to get data- from Le~el 3 *!

/* Three cases exist:
* 1. No information was available; m = 0
* 2. Information was previously available from Level 3 before we
* did the Send; m = address of message
* 3. Level 3 task had enough time to provide information after
* we did the send; m = address of message
*/

4-8 MR-DOS Primitives

(

MCP Developer's Guide • Final to Production Apple Confidential 2/20/89

if (m ! = 0)
{

/* If Level 3 task has information to be sent, */
/* send I frame message with information. */

else
{

/* If Level 3 did not have information to be sent, */
/* send RR frame. */

The Level 2 task gives up the CPU byway of the Reschedule requestinordertoallow
the Level 3 task to execute. In the case of an X25 implementation, this could allow
Level 2 acknowledgements to be piggy-backed with data from Level 3.

Send()

Send () places a message on the task's queue specified by the message field, mTo.
The message is placed in the queue in priority order (from highest to lowest).

Caution

In most cases. MR-DOS executes an Illegal Instruction If an attempt Is made to
send a message that Is not available to a task for sending. For example. do not
send the same message twice; also. do not send a message and then free It.

The C declaration of Send() is

void Send(mptr)
message *mptr; /* pointer to message buffer */

If a message is undeliverable, iI will be returned to the sender with the message status
(mStatus) set to Ox8000 and the message code (mCode) having bit 15 set.

•:•Note: Send() assumesthatallfieldshavebeenfilledin(mFrom, mTo, mCode,
and so forth) when this call is made.

The form for the Send macro is as follows, where Pl is the address of the message
buffer to be sent:

(Label] Send Pl

P 1 can be specified as a register(AO-A6, DO-D7) or use any68000 addressing mode
valid in an I.EA instruction to specify the location containing the address of the
message buffer to be sent.

Operating system primitives 4-9

Spl()

Programmers modify the status register to temporarily disable interrupts; MR-DOS
provides the Spl () system call to allow user-mode tasks to set the hardware interrupt
priority level.

Tasks are always executed in the 68000's user mode, while interrupt routines and
ma in () are executed in supervisor mode. This process is important because some
68000 instructions cannot be executed in user mode (such as any instruction that
explicitly modifies the status register).

While a task is running with an elevated (non-zero) interrupt priority, it temporarily
behaves as if it is in run-to-block mode.

Warning

Depending upon the elevated priority, Interrupt handlers may still execute.

In addition, if the task calls Receive and blocks with an elevated priority level, the
priority level of the hardware is changed to the priority level of the next task that MR
DOS schedules. Therefore, you should not call Receive with an elevated priority
level.

Spl () expects an integer from 0 to 7, and returns the previous priority as an integer
from 0 to 7 (O is the lowest interrupt priority and 7 is the highest interrupt priority).

The C declaration of Sp 1 () is

short
short

Spl(npr
npr; /* New interrupt priority */

The form for the SIL macro is as follows, where P 1 specifies the new interrupt priority
(Oto 7):

[Label] SIL Pl; not Spl

Caution
The name of the macro Is SIL. not the 68000 Instruction Spl to avoid any conflict
with the 68000 Instruction.

P 1 can be specified as a register (AO-A6, D0-D7), an immediate value (#<abs
expr>), or can use any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word comaining the desired interrupt priority level. The
previous interrupt priority level is returned in DO.

4-10 MR-DOS Primitives

(
MCP Developer's Guide • Final to Production Apple Confidentlcl 2/20/89

StartTask()
Start Task () is used to create a task and make it eligible for execution.
St a rt Task () returns either the task identifier of the created task, or 0 if the task
could not be created. The new task is initially started in slice mode.

TheCdeclarationof StartTask () is

tid_type StartTask(STpb)
struct ST_PB *STpb;

The format of the parameter block referenced by * s Tpb is shown next.

struct ST PB

char *CodeSegment; /* memory region

char *DataSegment; /* memory region
/* global data

on card for

on card for
*/

char *StartParmSegment; I* memory region on card for
/* start parameters */

struct ST_Registers InitRegs; I* initial register set for
/* starting task */

code

*I

*/

*I

long

long

short

stack;

heap;

return_code;

/* initial stack size (in bytes) */

/* initial heap size (in bytes) */

/* error code if task not started */
/* (Tid = 0) */

} ;

unsigned char priority;

tid_type ParentTID;

struct ST_Registers

/* priority of task */

/* TID of Parent on Network/Host */

/* DO - D7 */

*/

long D_Registers [8];
long A_Registers [8];
long PC;

/* AO - A7 Note: A7 not used */
/* Program Counter */

Operating-system primitives 4-11

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

These parameters include the following:

o priority, which is the scheduling priorityac which the task will run. There is
cwrently no way to change this priority once a task is created. Priority 0 is the
lowest; priority 31 is the highest.

o stack, which is the size of the task's stack in bytes. There is no way to change this
size after execution of st a rt Task () .

o heap, which is the amount of heap storage in bytes that the task will need to start up.
Using heap prevenrs tasks from coming up and not being able to run due to lack of
memory. The pointer to this storage is accessible via GetHeap ().

o ParentTID, the task ID of the task that is designated as the parent of the running
task; use Get TID () to obtain the TIO to be used for the parent TIO.

The parameter blOck contains pointers to up to three memory segments thac must have
been previously allocated by calls to GetMem () .

In all cases, CodeSegment and DataSegment must be zero if the task being started
was linked into the operating system.

If the task was not linked into the operating system, you must issue a GetMem () or an
RSMGetMem () request to reserve the space for the code segment The
CodeSegmen t parameter must be set to the value returned by Ge tMem () . If the task
was linked to the operating system, set the CodeSegment parameter to zero.

A GetMem request must be issued to reserve space for the DataSegment, if the
DataSegment ispresent The DataSegment mustbesettothevalueretumedby
GetMem(), orzeroifthe DataSegment isnotpresent.

If there are parameters, a GetMem request must be issued to get memory for the
StartParmSegment. StartParmSegment is set to zero if there are no start
parameters to pass to the task; otherwise, the StartParmSegment must be set to the
value returned by GetMem () .

The registers hold the initial values of the registers when the task is started. The value
specified for Register A7 is not used; the value is replaced by the pointer to the stack
when the task is started. The program counter contains the ab.solute address of the start
code.

The task is initially started in slice mode. If the task was not started (If it returns O), the
return code specifies the reason, as shown here:

STE_NO_ERRORS /* The start task functions
/* successfully *I

STE NO TCB /* No room in task table or

*/

*/
/* no memory available for stack
I* or heap */

4-12 MR-DOS Primitives

*/

/

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Warning
F reeMem () must not be called by your applicatlon to release the memory
allocated for CodeSegment, DataSegment, or Startl?armSegment. because
releasing memory Is done automatically by StopTask (). Refer to the section
later In this chapter on StopTask () for more Information.

The form for the Start Task macro is as follows, where 1?1 is the address ofa
St art Task parameter block:

(Label] Start Task 1?1

Pl can be specified as a register (AO-A6, DO-D7), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an LEA instruction to specify the location of a
long word containing the address of the parameter block. The task ID of the started
task is returned in D 0 uilless the task could not be started, in which case 0 is returned
in DO.

To start a task on a different smart card that is also running MR-DOS, send a message
to the Remote System Manager on the other card to reserve memory for the task;
download the task to the card; then send messages to the Remote System Manager to
start executing the task.

StopTask()

StopTask () kills a currently executing task. StopTask () is automatically called to
kill the task when the task fails or rerurns from the task's ma in () .

If the task was started with any Code Segment, DataSegment, or
Startl?arrnSegment, StopTask () calls FreeMem () to release each memory
buffer.

The C declaration of st opTa s k () is

void StopTask(tid
tid_type tid; /* Task ID to kill */

The form for the StopTask macro is as follows, where l?l specifies the task ID of
tre task to stop:

[Label] StopTask Pl

I? 1 can be specified as a register (A0-A6, DO-D7) or as an irrunediate value (#<abs
expr>) or it can use any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word containing the desired task ID.

Operating-system primitives 4-13

MCP Developer's Guide - Final to Production

The task identifier specified must not be that of the idle task (TIO = 0), and it must be a
task running on the requester's card.

•> Note: If a task calls StopTask () and specifies its own task identifier, the task will
kill itself and stop your program. To stop a task on a different smart card that is also
running MR-DOS, send a message to the Remote System Manager on the other
card.

Warning

Apple Confldentlcl 2/20/89

If one task stops another task, that task being stopped will not have the
opportunity to release any message buffers that it Is currently processing.

4-14 MR-DOS Primitives

Chapter 5

MR-DOS Utilities

MCP Developer's Guide - Final to Production

This chapter describes the operating system utilities available wilh MR-DOS. A utility
is a library code segment linked wilh your application. Table 5-1 lists the MR-DOS
utilities, and provides a brief description of each.

Table 5-1
MR-DOS utilities

Name

BlockMove ()

CopyNuBus ()

Date2Secs()

GetBSize ()

GetCard()

Description

Copies a block of data from the source address to the destination
address on the same card

Copies a block of data from the source address to the destination
address between on-card and off-card buffers

Calculates and returns the number of seconds given a specific
date and time

Returns the size of a memory buffer in bytes

Returns the Nu Bus slot number of the card on which the calling
proces.s or task is running

GetDa teT ime () Returns the number of seconds between midnight, January 1,
1904, and the time that the function was called

GetET ick () Returns the number of major ticks since the operating system
started

GetgCorrunon () Returns the address of the gCommon operating system data area

Ge tHea p () Returns the address of the heap area allocated to the task

Get ICCTID () Returns the task identifier of the InterCard Communication
Manager

GetNameTID {) Returns the task identifier of the Name Manager

GetStParms () Returns the address of the calling task's Start Parameters

Get TCB () Returns the address of the calling task's Task Control Block

Get Tic kP S () Returns the number of major ticks in 1 second

Get T ID () Returns the task identifier of the calling task

Get Time rT ID () Returns the task identifier of the Timer Manager

Get TraceTID () Returns the task identifier of the Trace Manager

GetUCount()

IncUCount()

IsLocal ()

Returns the usage count associated with the buffer

Returns the incremented usage count of the buffer

Returns an indication of whether or not an address is local

5-2 MR-DOS Utilities

Apple Confidential 2/20/89

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

MR-DOS utllltles (continued)

Name Description

Lookup_Task () Returns the task identifier of the task that matches the Object
Name and the Type Name specified

MapNuBus ()

Register_Task ()

Secs2Date ()

Translates a pointer that may contain a global address
(NuBus address) to a local pointer

Register.; a task with the Object Name and the Type Name
specified

Calculates and returns the corresponding date and time
record, given a number of seconds

SwapTID ()

ToNuBus ()

Swaps the mF rom and mTo fields in a message buffer

Translates a local pointer to a global address (NuBus
address)

TraceReg() Registers the current task as the Trace Manager

A description of utilities
This section describes each of the operating system utilities and provides examples of
the C declarations for each utility. This section also describes the assembler macros;
these macros have a one-to-one relationship to the calls and require the same number
of parameter.;. MR-DOS uses C calling conventions, and all registers are preserved
except D 0 , D 1, AO , and Al. MR-DOS macros adhere to this convention.

-> Note: The routines MapNuBus and ToNuBus are hardware dependent. Code
written in C that uses these calls may not be portable. Ccxie written in Assembler
that makes calls to MapNuBus and ToNuBus will not be portable.

Three date- and time-related routines are provided with MR-DOS; the calling
sequences and structures for these routines are defined in the file os • h in the folder
:MR-DOS: includes:. These routines are identical to the routines
GetDateTime (), Date2Secs (),and Secs2Date () withintheMacintoshII
operating system.

A description of utllltles 5-3

MCP Developer's Guide - Final to Production

BlockMove()
BlockMove () does a simple move of bytes from the source to the destination,
without checking for overlapping source and destination addresses. The number of
bytes is specified in count. The source and destination addresses must both be on
the same card, otherwise use CopyNuBus () .

Caution

Apple Confidential 2/20/89

Overlapping the source and destination blocks could cause partial overwriting of
the destination block.

The C declaration for BlockMove () is

'void BlockMove source, destination, count)

char
char
unsigned short

*source;
*destination;
count;

The following example shows how to call BlockMove in as.sembly language .

MOVE.L .Jl:Count,-(A7)
PEA Destination
PEA Source
JSR BlockMove
ADD.L U2,A7

CopyNuBus()
CopyNuBus () copies a block of data from the source to the destination aaOM the
NuBus, without checking for overlapping source and destination addresses. The
source address, destination address, or both may be main memory of the Macintosh
II or memory on a smart card The number of bytes is specified in count. The file
:Apple IPC:Examples:pr_manager.c contains a sample program that uses
CopyNuBus.

Caution
This routine deals with the complexity of potential 32-blt NuBus addresses for the
source. the destination. or both. but does not deal with the possibility of
overlapping buffers. Therefore. overlapping the source and destination blocks

· could cause partial· overwriting of the destination block.

5-4 MR-DOS Utilities

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The C declaration for CopyNuBus () is

void CopyNuBus (source, destination, count)

char *source; /* Address of source buffer */
char *destination; /* Address of destination buffer */
unsigned short count; I* Byte count *I

The following example shows how to call CopyNuBus in assembly language:

MOVE.L
PEA
PEA
JSR
ADD.L

#Count,-(A7)
Destination
Source
CopyNuBus
U2,A7

Date2Secs()
Da te2Secs () takes the given date/time record, converts it to the corresponding
number of seconds elapsed since midnight, January 1, 1904, and returns the result in
the secs parameter.

The C declaration for Date2Secs () is

pascal void Date2Secs(Date, secs)
DateTimeRec Date;
long *secs;
extern;

The following example program shows how to use all three date/time utilities.

#include
main()

"os.h"

{

unsigned long secs;
DateTimeRec dtrec;
unsigned long newsecs;

GetDateTime(&secs);
Secs2Date(secs, &dtrec);
Date2Secs(dtrec, &newsecs);

printf (" Date = %d/%d/%d, Time = %d: %d: %d\n",
dtrec.year, dtrec.rnonth, dtrec.day,
dtrec.hour, dtrec.rninute, dtrec.second);

printf("Secs = %d, Day of week= %d, New secs
secs, dtrec.dayOfWeek, newsecs);

%d\n",

A description of utllltles 5-5

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The following example shows how to call Date2Secs in assembly language:

PEA
PEA
JSR

Date
secs
Date2Secs

Address of Date/time record
Address for result

GetBSize()
The input to GetBSize () is a pointertoamemorydata buffer. The pointer was
obtained by a call to GetMem () . The output from Get BS ize () is either the size of
the buffer in bytes or 0. Each buffer has an associated buffer header that is not
included in the value returned by Get BS i ze () .

GetBSize () acceptsOasinputandretumsOasoutput. GetBSize ()does not check
the input pointer for validity. The C declaration for GetBSize () is

unsigned long GetBSize (buffer)
char *buffer; /*pointer to buffer */

The following example shows how to call Get BS i ze in assembly language:

buff er pointer in A4
MOVE.L A4,-(A7) i move buffer address onto
JSR GetBSize get the buff er size
ADD.L J4,A7 pop the stack
TST.L DO DO has the size
BEQ.S xxx bad buffer

•!• Note: If a pointerto the buffer is given to Get BS i ze () which was not obtained
through the GetMem () call, the return results are not predictable.

GetCord()
Get Card () returns the NuBus slot number of the card on which the calling task is
running.

The C declaration for Get Card() is

char GetCard ();

The following example shows how to call Get Card in assembly language:

JSR Get Card

Upon return, DO contains the slot number. For the slot number, get the value of
location gSlotNum in the gCommon data area.

5-6 MR-DOS Utilities

stack

(

MCP Developer's Guide • Final to Production Apple Confidential 2/20/89

GetDateTime()
GetDateTirne () returns the number of seconds between midnight, January 1, 1904,
and the time that the function was called.

TheCdeclarationfor GetDateTirne () is

pascal void GetDateTime(secs)
long *::secs;
extern;

The following example shows how to call GetDa teT ime in assembly language:

PEA
JSR

secs
GetDateTime

; Address for result

Referto the utility Date2Secs () earlier in this chapter for an example program that_
shows how to use each date/time utility.

GetETick()
GetET ick () returns the number of major ticks-that is, the elapsed time in
ticks-since the operating system started.

The C declaration for GetE Tick () is

unsigned long GetETick ();

The following example shows how to call Get ET ick in assembly language. To
return the number of major ticks, get the value of location gMajorTick in the
gCommon dataarea.

JSR GetETick

Upon return, DO contains the number of major ticks since the operating system
started.

A description of utilities 5.7

MCP Developer's Gulde • Final to Production

GetgCommon()
GetgCommon () returns the address of the MR-DOS operating system data area,
gCommon. Refer to the include files on your distribution disk for the structure of
gCommon.

The C declaration for GetgCommon () is

struct gCommon *GetgCommon();

The following example shows how to call Get gCommon in assembly language. To
return the gCommon address, get the value of the constant gCommon.

Apple Confidential 2/20/89

JSR
MOVE.L

GetgCommon
DO -> AO /* AO contains the beginning */

/* address of the gCommon data area*/

GetHeap()
Get Heap () returns the address of the heap area allocated to the task. If no heap area
has been allocated, GetHeap returns zero. The heap size is specified on the call to
Start Task.

The C declaration for GetHeap () is

char *GetHeap();

The following example shows how to call GetHeap in assembly language:

JSR
TST.L
BEQ.S

Warning

GetHeap
DO
xxx

on return, DO has pointer to heap
check if heap present
jump if no heap

FreeMem c) must not be called by your application to release the heap area
allocated. as this process Is done automatically by StopTask c).

5·8 MR·DOS Utilities

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

GetlCCTID()
Get ICCT ID () returns the task identifier of the InterCard Communication Manager. If
there is no ICCM registered, GetICCTID returns zero. The C declaration for
GetICCTID () is

tid_type GetICCTID ();

The following example shows how to call Get ICCT ID in assembly language. To get
the task identifier of the InterCard Communication Manager, get the value of the
location giccTask in the gCommon data area.

JSR GetICCTID

Upon return, D 0 contains the task identifier of the ICCM.

GetNameTID()
GetNameT ID () returns the task identifier of the Name Manager. The C declaration
for GetNameTID () is

tid_type GetNameTID ();

The following example shows how to call GetNameTID in assemblylanguag\!. To get
the task identifier of the Name Manager, get the value of the location gN ameT ask in
the gCommon data area.

JSR GetNameTID

Upon return, DO coruains the task identifier of the Name Manager.

GetStParms()
GetStParms () returns the address of the calling task's Start Parameters. If the
calling task has no StartParameter, GetStParms returns zero. The C
declaration for GetStParms () is

char *GetStParms ();

The following example shows how to call Get S tP arms in assembly languagt.:

JSR

TST.L
BEQ.S

GetStParms

DO
xxx

on return, DO has po1.1ter to
Start Parameters
check if Start Parameters present
jump if no Start Parameters

A descrlptlon of utilities 5-9

Warning
Your application must not call FreeMern () to release the memory allocated for
Its start parameters; this process Is done automatically by StopTask ().

GetTCB()
GetTCB () returns the address of the calling task's Task Control Block (TCB). The C
include ftles contain information on the TCB structure. The C declaration for
GetTCB () is

struct pTaskSave *GetTCB ();

The following example shows how to call Get TCB in assembly language. For the
address of the calling task's Task Control Block, get the value of the location
gCurrTask in the gComrnon data area.

JSR GetTCB

GetTickPS()
Get T ickP S () returns the number of major ticks in one second. The C declaration
for GetTickPS () is

unsigned short GetTickPS ();

The following example shows how to call Get Tic kP S in assembly language. For the
number of majorticks in 1 second, get the value of the location gTickPerSec in the
gComrnon data area.

JSR GetTickPS

GetTIDO
Get TID () returns the task identifier of the calling task.

The C declaration for Get T ID () is

tid_type GetTID () ;

The following example shows how to call Get T ID in assembly language. For the task
identifier of the calling task, get the value of the location gTID in the gCornrnon data
area.

JSR GetTID

5-10 MR-DOS Utilities

MCP Developer's Gulde • Final to Production

GetTimerTID()
Get T imerT ID () returns the task identifier of the Tuner Manager. If there is no T.tmer
Manager registered, Get T irne r returns zero.

The C declaration for Get T irne rT ID () is

tid_type GetTirnerTID ();

The following example shows how to call Get T irne rT ID in assembly language. For
the task identifier of the Tuner Manager, get the value of the location gT irne rT ask
in the gComrnon data area.

JSR GetTirnerTID

GetTraceTID()
GetTraceTID () returns the task identifier of the Trace Manager. If there is no Trace
Manager registered, then GetTraceTID returns zero.

TheCdeclarationfor GetTraceTID () is

tid_type GetTraceTID ();

The foll0wing example shows how to call GetTraceTID in assembly language. For
the task identifier of the Trace Manager, get the value of the location gTraceTask in
the gComrnon data area.

JSR GetTraceTID

Apple Confidential 2/20/89

A description of utilities 5-11

MCP Developer's Guide - Final to Production

GetUCount()
Get UCoun t () provides information when one task is sending information to many
tasks; that is, when there are multiple tasks sharing a buffer. GetUCount () returns the
usage count associated with the buffer. The buffer must have been allocated by a call to
GetMem () . The usage count starts at 1 and increases. A return value of 0 indicates that
the pointer passed was 0.

The C declaration for GetUCount () is

unsigned char GetUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows how to call GetUCount from assembly language:

push buffer address

Apple Confidential 2/20/89

MOVE.L
JSR
ADD.L

A0,-(A7)
GetUCount
#4,A7

usage count is returned in DO
pop the stack

•> Note: If a pointer to the buffer not obtained through the GetMem () call is given to
GetUCount () , theretumresultsarenotpredictable.

lncUCount()
IncUCount () is useful where buffers are shared between different tasks and a
mechanism is needed to ensure orderly release of the buffers. IncUCount () returns
the incremented usage count (when it has a value of2 or greater) of the buffer, or 0. A
return value of 0 indicates that the pointer passed was 0 or that the usage count has not
been incremented because an overflow of the usage count field would have resulted.
The buffer must have been allocated with a call to GetMem () . The usage count is
decremented when the buffer is freed using F reeMem () .

The C declaration for IncUCount () is

unsigned char IncUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows how to call Inc UCo un t in assembly language:

MOVE.L
JSR
ADD.L

A4,-(A7)
IncUCount
#:4,A7

push buff er address
usage count is returned in DO
pop the stack

•!• Note: If a pointer to the buffer not obtained through the GetMem () call L~ given to
IncUCoun t () , the return results are not predictable.

5-12 MR-DOS Utilities

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

ls Local()

IsLocal () returns a true or false indication of whether or not an address is local.

The C declaration for Is Local () is

short
char

IsLocal (address)
address; / address to test. */

Is Local() returns true (non-zero) if the address passed is local. Is Local () returns
false (zero) if the address passed is a remote Nubus address.

The form for the IsLocal macro is as follows, where l?l is the address to examine:

[Label] Is Local 1?1

l?l can be specified as a register (AO-A6, DO-D7) or an immediate (#<abs-expr>) or it
can use any 68000 addressing mode valid in an LEA instruction to specify the location
of a long word containing the desired value.

Lookup_Task()

Lookup_Task () returns either the task identifier of the task that matches the Object
Name and Type Name specified, or 0 if no matching task is found The wildcard
character• is allowed Initially, the index must be set to O; on subsequent calls, it
should be left unchanged Lookup_Task () modifies the variable index; thi5 index
allows Lookup_ Task () to find any additional entries that may match the criteria in
subsequent calls.

•>Note: Lookup_Task () communicateswiththeNameManagerandissuesa
blocking Receive; therefore, the task gives up control of the CPU during thi5 call.

TheCdeclarationfor Lookup_Task() is

tid_type
char
char
tid_type
unsigned

Lookup_Task (object, type, run_TID, index)
object[];
type [J:
nm_TID;
short *index;

The task identifier of a Name Manager is nm_ TID, and may be obtained by using
GetNameTID () orbysendingthemessage ICC_GetCards tothe!CCM.
Lookup_ Task () returns the task identifier of the first task that matches the criteria.

A description of utilities 5-13

MCP Developer's Guide - Final to Production

The following code provides an example of how to look up all tasks on the current
card:

short index ;
tid_type tid ;

index = 0 ;

Apple Confidential 2/20/89

while ((tid = Lookup_Task ("=", "=", GetNameTID (), &index)) > 0)
printf ("TID %x Found \015\012", tid);

The following example shows how to call LookupTas k in assembly language:

MOVE.W #0,INDEX initialize index
!?EA INDEX ; address of index
MOVE.L TID,DO value of tid on stack
MOVE .. L D0,-(A7) place on stack
!?EA TYl?E NAME address of type name
!?EA OBJECT_NAME; address of object name
JSR Lookup_Task
ADD.W U6,A7 pop the stack
TST.L DO check if found
BNE.S DO,XXX jump if found

MapNuBus()
MapNuBus () translates a pointer that may contain a global address (a NuBus address)
to a local pointer. This local pointer is used by the calling task to access the associated
data. MapNuBus (l also sets up any address mapping hardware required for the
access.

•> Note: The local pointer is hardware specific. See Part II for details on the numeric
value or the bounds on the value.

MapNuBus () passes through 0 and local addresses without modifying them. You
should assume that only a single off-card mapping may be active at any given time on
each card; each call to MapNuBus () invalidates any mapping established by
previous calls to MapNuBus ().

The C declaration for MapNuBus () is

char *MapNuBus (ptr)
char *ptr;

The following example shows how to call MapNuBus in assembly language. The
MapNuBus macro generates code in-line; only the register supplied is modified. The
address may be specified by an A register or a D register. The mapped address is
returned in the register supplied.

MapNuBus AO

5-14 MR-DOS Utilities

(

----~---------

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The file :MR-DOS:Examples:pr_manager.c contains a sample program that uses
MapNuBus.

Caution

To move data across the NuBus, use CopyNuBus () . Tasks that use
MapNuBus () must assume the responsibility for checking NuBus boundaries.
Some hardware cards. including the MCP card. have a NuBus address space
through which NuBus accesses are made. The hardware page latch that
controls this NuBus address space needs to be changed whenever address
boundaries are crossed. CopyNuBus () checks for and correctly handles these
boundaries.

Register_Task()
Register_ Task () allows a task to register itself with the object and type names
specified, using the Name Manager. The object and type names must not exceed 32
characters. If the task should be visible only to other tasks on the same card,
local_only is set non-zero. If the task should be seen by other tasks on other cards,
thenlocal_only is setto 0. Register_Task () returns a non-zero value if the task was
registered; otherwise, 0 is returned.

+Note: Register_Task () communicateswiththeNameManagerandissuesa
blocking Receive; therefore, the application gives up control of the CPU during
this call.

The C declaration for Register_Task () is

typedef boolean short;
char Register_Task (object, type, local_only)
char object [];
char type (];
boolean local_only;

The following code provides an example of how to register a task:

if (!Reqister_Task ("my_name", "my_type", 0))
printf("Could not Register Task");

A description of utilities 5-15

MCP Developer's Guide • Final to Production

The following example shows how to call the Register_ Task routine in assembly
language:

Apple Confidential 2/20/89

MOVE.L #LOCAL, -(A7) value of local on stack
PEA TYPE NAME address of type name
PEA OBJECT_NAME address of object name
JSR Register_Task
ADDQ.W U2,A7 pop the stack
TST.B DO check if register ok
BNE.S OK jump if OK

Secs2Date()
Secs2Date () takes the number of seconds elapsed since midnight, January 1, 1904,
as specified by the seconds parameter, converts it to the corresponding date and
time, and returns the corresponding date/time record in the date parameter.

The C declaration for secs 2Da t e () is

pascal void Secs2Date(secs, Date)
long secs;
DateTimeRec *Date;
extern;

The following example shows how to call Secs2Da te from assembly language:

Move.L
PEA

JSR

secs, -(A7)
Date

Secs2Date

number of- seconds
Address for result -
date/time record

Refer to the utility Date2Secs () earlier in this chapter for an example program that
shows how to use each date/time request.

5-16 MR-DOS Utilities

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Swap TIO()
SwapTID ()swaps the mFrom and mTo fieldsofamessagebuffer.

The C declaration of SwapTID () is

void SwapTID(mptr);
message *mptr; I* pointer to message buffer *I

The form for the SwapTID macro is as follows, where P 1 is the address of the mes.sage
buffer:

[Label] SwapTID Pl

Pl can be specified as a register (AO-A6, D0-07), or can use any68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

ToNuBus()

ToNuBus () translates the pointer into a fonnat suitable for passing to processes that
may be on other cards. The pointer may contain a local address, which is translated to
a NuBus address. ToNuBus () passes through 0 and NuBus addresses without
modification.

+ Note: Addresses on the MCP card are already in NuBus address form. This call is
included to provide functionality for future releases.

The C declaration for ToNuBus () is

char *ToNuBus (ptr)
char *ptr;

The following example shows how to call ToNuBus from assembly language. The
ToNuBus macro generates code in-line; no registers are destroyed, except the
specified registers. The NuBus address may be specified by an A register or a D
register, or through any other 68000-addressing mode (other than auto-increment or
auto-decrement). The NuBus address is returned in the register or location supplied.

ToNuBus AO

A description of utilities 5-17

MCP Developer's Guide - Final to Production

TraceReg()
TraceReg () is used to register the current task as the Trace Manager. For more
information, refer to the section on the Trace Manager in Olapter 46.

TheCdeclarationfor TraceReg() is

void TraceReg ();

The following example shows how to call T raceReg () in wembly language:

JSR TraceReg

5-18 MR-DOS Utilities

Apple Confidential 2/20/89

Chapter 6

MR-DOS Managers

·.·.~

MCP Developer's Guide - Final to Production

This chapter desaibes the operating system managers provided with MR-DOS. A
manager is a task that provides a set of services to other tasks; each manager is specific
to a cettain function.

MR-DOS Managers
Table 6-1 lists the managers provided with the MR-DOS operating system and a brief
description of each.

Table 6·1
MR-DOS managers

Name

Echo Manager

Description

Returns messages sent to it Useful for diagnostic
purposes, and as a mechanism to time messages
between cards or between machines

Apple ConfldenHal 2/20/89

InterCard Communications
Manager

Responsible for intercard message delivery and
transport (sending and receiving all messages between
cards)

Name Manager

Print Manager

Provides naming services to tasks

Prov~ a means to print and to display information
and debugging messages

Remote Systems Manager Executes system calls on behalf of tasks on other cards

Timer library Provides timing services to tasks

+ Note: The Tuner Manager is provided in this version of the MR-DOS software for
historical purposes; it will not appear in the next version.

Trace Manager Sends copies of all messages to a Trace Monitor (if
available) for debugging purposes

Echo Manager
The Echo Manager returns each message it receives to the sender. The Echo Manager
is primarily used in the early stages of development for:

o test messaging

o determining how long the IPC takes to send a message round-trip to a card or the
Macintosh II

6-2 MR-DOS Managers

(

(

(

MCP Developer's Guide - Final to Production

The Echo Manager operates with a single message loop. For each message it receives,
it first checks if the received message is marked as undeliverable. If so, it is a message
the Echo Manager already attempted to send the message and it is discarded. If not,
Echo Manager inaements the message code, sets the message destination to the
previous source of the message, sets the message source tO the TIO of the Echo
Manager, and sends the message.

lnterCard Communications Manager
The ln1erCard Communications Manager OCOf) sends and receives all messages
between cards and provides a mechanism tasks use to find out which other cards are
configured on the NuBus.

+ Note: Slot 0 has an implicit ICCM, since the ICCM is built into the Apple IPC driver
that is configured into the System File of the Macintosh II.

At initialization time, the ICCM on a smart card registers itself with the operating
system; the task identifier of ICCM may be found by using GetICCTID (),described
in Chapter 5.

ICCM then attempts to discover if any other smart card installed (including slot 0) has
an ICCM running by searching the RAM of the card for the ICCM area. If it is found,
the ICCM area writes the NuBus address of its own communication area to the
corresponding ICCM. This action makes the receiving ICCM aware of the startup of a
new ICCM on the other card that it missed at its own initialization time.

ICC_GETCARDS
ICC_ GETCAIIDS is a message code to the ICCM that allows a task to fmd out which
other cards are known by ICCM on the NuBus. Conditionally, ICC_GETCARDS also
allows a task to find the TIO of the Name Manager on each of the configured cards.
The I cc_ GETCARD s message is passed with a buffer of the size indicated in
struct ra_GetCards. Each entry is filled in by ICCM, with the status of the card
installed in the corresponding slot and, optionally, with the TIO of the Name Maru.ger
on that card. The buffer contains one entry per slot number.

The message parameters for ICC_ GETCARD S are as follows:

rnCode ICC GETCARDS
mDataPtr Pointer to a data buffer
mDataSize Length of data buffer

Apple Confidential 2/20/89

lnterCard Communications Manager 6-3

MCP Developer's Gulde - Final to Production

Remember, the convention within MR-DOS is that an even mCode is a request and
an odd mCode is a reply. For example, the ICQd request code

Apple Confidential 2/20/89

ICC_GETCARDS (150) iseven;the ICCMreplycode ICC_GETCARDS+l (151) is
odd. The Name Manager request code NM_ REG_ TASK (l 0 0) is even; the Name
Manager reply code NM_REG_TASK+l isodd.

Thedatabufi"erfonnatfor ICC_GETCARDS is

#define IC_MaxCards 16;

struct ra_GetCards
{

/* Maximum NuBus Cards */

tid_type tid [IC_maxcards);
} ;

Each entry in the tid array corresponds to a NuBus slot number (tid [0] is slot 0,
t id [l] is slot 1, and so on). ICOd fills in each entry with the information shown in
Table 6-2.

Table 6·2
Card status

Value of the entry

<O

-o
>O

Card status

Either does not exist or has no functioning ICCM

Exists, and has an ICOd but no Name Manager

Exists, and has an ICOd; this value is the Name Manager's TIO

The rerumed TIO may be used in the mTo field of a message to send a message to the
Name Manager on the card corresponding to the entry.

Name Manager
The Name Manager performs functions similar to those of the Name Binding Protocol
(NBP) in AppleTalk. Tasks can register and unregister their names, look up the task
identifiers of named tasks, and look up the name or'a task corresponding to a given task
identifier. The Name Manager allows tasks to become visible to other tasks on the same
card and, optionally, to tasks on other cards.

The messages passed to the Name Manager are listed and described in Table 6-3.

6-4 MR-DOS Managers

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89

Table 6-3
Nome Manager message codes

Name

NM_LOOKUP_NAME

NM_LOOKUP_TID

NM_N_SLOT_REQ

NM_N_SLOT_CAN

NM_N_TASK_REQ

NM_N_TASK_CAN

NM_REG_TASK

NM_UNREG_TASK

Description

Looks up all object and type names for specified tasks

Looks up the task identifiers for specified Type Names
and Object Names

Provides notification of communications loss

Cancels the request for notiftcation of
communications loss

Provides notification of task termination

Cancels the request for notiftcation of task termination

Registers the task name

Unregisters the task name

A task has two names: a Type Name and an Object Name. Each name is a maximum of
32 characters long. (For more detailed information on Type Names and Object
Names, refer to Instde AppleTalk.)

+ Note: Any character may be used; however, the equal sign(=), a wildcard
character, should be avoided since it is not possible to match it explicitly.

The parameters in the message request to look up names, look up task identifiers, and
register tasks are passed in a buffer associated with the message. The address of the
buffer is placed in the message field mDataPtr, and the size of the buffer is placed in
the message field mDataSize. The message to unregister a task coruains in the
mF rom field the task identifier of the task to unregister.

Nome Manager 6-5

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

The following structures (defined in the f.tle managers . h) are used when calling the
Name Manager:

struct obj_rec
{

utiny o_len;
char o_name [NM_Obj_Size_Max];

} ;

struct typ_rec
{

utiny t_len;
char t_name [NM_Type_Size_Max];

} ;

struct pb_register_task
{

} ;

struct obj_rec rt_on;
struct typ_rec rt_tn;
char rt_local_vis;

struct ra_ltid
{

} ;

struct obj_rec ra_on;
struct typ_rec ra tn;
tid_type ra_tid;

struct pb_lookup_tid
{

} ;

struct obj_rec ltid_on;
struct typ_rec ltid_tn;
unsigned short ltid_index;
unsigned short ltid_RAsize;
struct ra_ltid ltid_ra [l];

struct ra lnm
{

} ;

struct obj_rec ra_on;
struct typ_rec ra_tn;

6·6 MR-DOS Managers

/* object name record */

/* length of object name */
I* object name */

/* type name record */

/* length of object name */
/* type name */

/* register name param block· *I

/* object name */
/* type name */
/* locally visible only flag */

/* return area for lookup tid */

I* object name */
/* type name */
/* task id */

/* lookup task id parameter block */

I* object name */
/* type name */
/* index */
/* size of return area */
/* return area (OUTPUT) */

/* return area for lookup name */

/* object name */
/* type name */

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

struct pb_lookup_name
{

/* task id */ tid_type lnm_tid;
unsigned short lnm_index;
unsigned short lnm_RAsize;
struct ra_lnm lnm_ra [l];

/* index (INPUT/OUTPUT) */
/* size of return area */
/* return area (OUTPUT) */

The Name Manager registers itself with Object Name "name manager" and Type
Name "name manager". The Name Manager is found by calling GetNameTID (),
or by sending ICCM an ICC_ GETCARDS message.

Looking up tasks
You can look up tasks by the names or task identifier using two Name Manager
messages:

D NM_LOOKUP_NAME

D NM_LOOKUP_TID

NM_LOOKUP _NAME

NM_ LOOKUP _NAME returns all Object Names and Type Names for the specified task
identifier. If no task identifier was found, then the size of Object Name will be set to
zero. The index parameter (in the parameter block) on the initial call must be set to
zero.

The parameter block for NM_ LOOKUP_ NAME is as follows:

struct pb_lookup_name
{

tid_type lnm_tid; /* task id */
unsigned short lnm_index;
unsigned short lnm_RAsize;
struct ra_lnm lnm_ra [l];

/* index (INPUT/OUTPUT) */
/* size of return area */
/* return area (OUTPUT) */

} ;

The rerum area specified will be filled with zero, or with one or more entries of the
following form:

struct ra lnm /* return area for lookup name */

} ;

struct obj_rec ra_on;
struct typ_rec ra_tn;

/* object name */
/* type name */

Name Manager 6-7

MCP Developer's Gulde - Final to Production

The last entry plus one (entry+ 1) in the return area has the length of Object Name set to
7.ero to indicate that there are no more entries to follow. If the return area is not large
enough to hold all entries that could be returned, the index is set to a non-7.ero value.
A subsequent NM_ LOOKUP _NAME me~ge must be sent to retrieve these entries, with
the value of index set to the returned value of the previous NM_ LOOKUP_ NAME
message.

The minimum size of the return area must be large enough to hold at least one entry
plus the size of Object Name. To return more information, increase the size enough to
hold the number of entries that the requesting task requests to process.

The parameter block for NM_ LOOKUP _NAME is as follows:

struct pb_lookup_name
{

tid_type lnm_tid; /* task id */

Apple ConfldenHal 2/20/89

unsigned short lnm_index;
unsigned short lnm_RAsize;
struct ra_lnm lnm_ra (l];

/* index (INPUT/OUTPUT) */
I* size of return area */
/* return area (OUTPUT) */

} ;

Tue message parameters for NM_ LOOKUP _NAME are as follows:

NM_LOOKUP_NAME mCode
mDataPtr
mDataSize

Address of the parameter block
Size. of the parameter block

NM_LOOKUP _TID

NM_ LOOKUP_ T ID looks up the task identifiers of all tasks that match the Type Name
and the Object Name specified Use the equal sign (=), a wildcard character, to match
all names. The index parameter on the initial call must be set to zero.

The parameter block for NM_ LOOKUP_ T ID is as follows:

struct pb_lookup_tid
{

} ;

struct obj_rec
struct typ_rec
unsigned short
unsigned short
struct ra ltid

ltid_on;
ltid_tn;
ltid_index;
ltid_RAsize;
ltid_ra (1];

6-8 MR-DOS Managers

/* lookup task id parameter block */

/* object name */
/* type name */

·;* index */
/* size of return area */
I* return area (OUTPUT)*/

/

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The return area specified will be filled with zero or with one or .roore entries of the
form:

struct ra_ltid
{

/* return area for lookup tid */

} ;

struct obj_rec ra_on;
struct typ_rec ra tn;
tid_type ra_tid;

I* object name */
/* type name */
I* task id */

The last entry plus one (entry+ 1) in the return area has the length of Object Name set to
zero to indicate that there are no more entries to follow. If the return area is not large
enough to hold all entries that could be returned, MR-DOS sets the index to a non-
zero value. You must make a subsequent NM_ LOOKUP_ T ID message to retrieve these
entries with the value of index set to the returned value of the previous
NM_LOOKUP_TID message.

The return area must be large enough to hold at least one entry, plus the size of Object
Name. For more information to be returned, the size should be increased to hold the
number of entries that the requesting task attempts to process.

The message parameters for NM_ LOOKUP_ T ID are as follows:

mCode
mDatal?tr
mDataSize

NM_LOOKUl?_TID
Address of the parameter block
Size of the parameter block

Notification of Communications Loss
A task can request that the Name Manager notify it when a card in a slot changes its
communications status. The Name Manager inunediately replies to the request,
indicating whether the card in the slot is up or down. The card is defined to be up if
MR-DOS is running on that card The Name Manager continues to notify the task
whenever the status of the card in the slot changes until the task either

o stops running, or

o issues a request to the Name Manager to cancel notification of conununications
status for that card slot

Name Manager 6-9

NM_N_SLOT_REQ

The notification of communications le>& request must be sent to the Name Manager on
the caro where the requesting task is running. The message parameters for Notification
of Communications Loss are as follows:

mCode NM_N_SLOT_REQ
mOData[O] Card slot number. Slots are numbered from

OxOO through OxOf.

+ Note: The Macintosh n currently supports slot 0, as well as slots Ox09 through OxOe.

The reply parameters for Notification of Communications Loss are as follows:

mCode
mStatus

NM_N_SLOT_REQ+l
NM_NO_ERRORS
NM_SLOT_NOT_UP

NM_N_SLOT_CAN

if the card in the slot is up
if the card in the slot is down

The message parameters for C.anceling Notification of Communications Loss are as
follows:

mCode NM_N_SLOT_CAN
mOData[O] Card slot number. Slots are numbered from Ox09

through OxOe.

+ Note: The Macintosh II currently supports slot 0, as well as slots Ox09 through OxOe;
the value -1 specifies all slots.

The reply parameters for Canceling Notification of Communications Loss are as
follows:

mCode
mStatus

NM_N_SLOT_CAN+l
NM NO ERRORS
NM_NO_ENTRY_FOUND

Notification of Task Termination

Request processed.
The task has no communications
loss requests.

A local task can request that a remote Name Manager notify it when a task on the Name
Manager's card tenninates. The Name Manager immediately replies to the request,
indicating whether the remote task is currently running or not. The remote task is
considered to be terminating if it stops or if it issues an NM_ UNREG _TASK request

+ Note: The Name Manager must be running on the slots of both the remote task and
the local task.

6-10 MR-DOS Managers

(

(

MCP Developer's Gulde - Final to Production Apple ConfidenHal 2/20/89

NM_N_TASK_REQ

The message parameters for Notification of Task Termination are as follows:

rnFrom

mCode
mOData[O]

TID

NM_N_TASK_REQ
TID

Task Identifier of the requesting or
local task

Task Identifier of the remote task
to monitor

The reply parameters for Notification of Task Termination are as follows:

mCode
mStatus

NM_N_TASK_REQ+l
NM_NO_ERRORS
NM TASK NOT EXIST - - -NM NAME NOT REG - - -

NM_N_TASK_CAN

if the remote task is currently running
if the remote task is not running
if there is no Name Manager on the card
where the local task is running

The message parameters for Canceling Notification of Task Termination are as follows:

rnFrom
mCode
mOData[O]

TID
NM_N_TASK_CAN
TID

Task Identifier of the local task

Task Identifier of the remote task to
monitor. The value of -1 specifies that
all notification of task termination
requests by this local task be
cancelled.

The reply parameters for Canceling Notification ofTask Termination are as follows:

mCode
mStatus

NM_N_TASK_CAN+l
NM_NO_ERRORS
NM_NO_ENTRY_FOUND

Registering tasks

Request processed.
The local task had no outstanding request
for notification of termination of the
remote task.

You can register and unregister tasks using two Name Manager messages:

D NM REG TASK - -
0 NM UNREG TASK

Name Managers 6-11

MCP Developer's Guide - Final to Production

NM_REG_TASK

NM_REG_TASK allows a task to become visible either to tasks on the local card only
or to all tasks in the system. If rt_local_ vis is non-zero, then this task is not
visible to lookup Task ID requests from other.cards. Tasks may only register with the
Name Manager on their own card If the name is already taken, the error
NM_DUPLICATE_NAME isretumedinthemessagefield mStatus.

Theparameterblockfor NM_REG_TASK is

Apple Confidential 2/20/89

struct pb_register_task
{

/* register name param block */

} ;

struct obj_rec rt_on;
struct typ_rec rt_tn;
char rt_local_vis;

/* object name */
I* type name */
/* locally visible only flag */

The message parameters for NM_ REG_ TASK are as follows:

mCode
mDataPtr
mDataSize

NM_UNREG_TASK

NM_REG_TASK
Address of the parameter block
Size of the parameter block

NM_ UNREG _TASK removes all entries in the Name Table for the task issuing the call.
When a task terminates, any names it had will be removed a~tomatically.

The message parameters for NM_ UNREG _TASK are as follows:
mCode NM_UNREG_TASK
mDataPtr 0
mDataSize 0

Printing support
Printing is accomplished by using the library pr int f code and the Print Manager.

Each time pr int f is called and does not know the TIO of the Print Manager, it
searches for a Print Manager starting at slot 0, and continues searching the remaining
slots until a Print Manager is found or all the slots have been searched If print f
knows the TID of the Print Manager and a Print Manager is found, the print f code
sends the text to the Print Manager.

Caution
If the Print Manager Is not found ofter thirty seconds. the text Is discorded with
no lndlcotfon to the colling code.

6-12 MR-DOS Managers

/

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The print f code is linked into the user task; you install the Print Manager on a card
or on the Macintosh II. (Refer to osrnain for an example of using the print manager
on a card; see pr _manager in the Apple IPC example folder for the MacimOsh IO.

After receiving a message from printf, the Print Manager code sends the contents
of the message to the print device, and sends a reply to the requesting task's print f
code when the information in the buffer has been printed The Print Manager call
includes the print buffer request, PRINT_ ME, described next.

Print Manager operates with a single message loop. For each output request message
it receives, Print Manager outputs as specified in the message and sends a reply when
the message has been printed or discarded.

Table 6-4 lists the standard conversion characters that the print f code supports.

Table 6-4
Printf standard conversion

Character

%d

%u

%x

%X

%0

%c

%s

%m.n

%-m.n

%0m.n

%*.*

Standard conversion

decimal conversion

unsigned conversion

hexadecimal conversion

hexadecimal conversion with capital letters

octal conversion

character

string

field width, precision

left adjustment

zero-padding

width and precision taken from arguments

<-Note: Printf doesnotsupport %f, %e, or %g. Itaccepts,butignores,a 'l'
asin %ld, %lo, %lx, and %lu.

Table 6-5 lists the nonstandard conversion characters that print f also supports.

Printing support 6-13

MCP Developer's Gulde - Final to Production

Table 6-S
l?rintf nonstandard conversion

Character

%b

%r

%R

Non-standard conversion

binary conversion

roman numeral conversion

roman numeral conversion with capital letters

The Print Manager registers itself with Object Name "print manager" and Type
Name "print manager". The Print Manager slot is determined by the Start
Parameters specified in osmain.

Print buffer request

The print buffer request allows a task to specify a buJf er that contains data to be
printed. The message parameters for the print buffer request are as follows:

mCode l?RINT_ME
mDatal?tr Pointer to data buffer
mDataSize Length of data (in bytes)

+ Note: Applications do not normally need to directly use Print Manager. The
printf code implements Print Manager interface on behalf of the application."

Remote System Manager
The Remote System Manager (RSM) on a remote card is responsible for executing
system calls on behalf of local tasks. The local task sen~ a message to the Remote
System Manager on a remote card specifying the desired request; the request is
processed and the resuk is returned to the local task.

The Remote System Manager supports the following functions:

o RSM_FreeMem

O RSM_GetMem

o RSM_StartTask

o RSM_StopTask

The Remote System Manager registers itself with Object Name "RSM" and Type
Name "RSM". The Remote System Manager is found by using the Lookup_Task
utility.

6-14 MR-DOS Managers

Apple Confidential 2/20/89

(

··~

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

RSM_FreeMem
RSM_F reeMem returns the memory specified to the free pool. The memory must
have been previously obtained on the destination card by using either the GetMem()
system primitive or the RSM_ GetMem message. The calling parameter mDataPtr
contains the global (NuBus) address of the memory to be released.

The calling parameters for RSM_F reeMem are as follows:

mCode
mDataPtr

RSM E'reeMem
Global (NuBus) address of the memory to be released

The reply parameters for RSM_FreeMem are as follows:

mCode
mDataPtr

mStatus
mStatus

Caution

RSM E'reeMem + 1
Original pointer if mStatus != RSE_NO_ERRORS;
otherwise, 0
RSE NO ERRORS if memory buff er released
RSE_NOT_MEM if not a memory buffer

In most cases. MR-DOS on 'the remote card executes an Illegal Instruction If an
attempt Is made to free a memory buffer that lias not been allocated by MR
DOS.

RSM_GetMem

RSM_GetMem obtains the memory specified from the free pool on the remote card.
Two buffer addresses are returned to the caller if the buffer was allocated The calling
parameter mDataPtr contains the global (NuBus) address of the memory; the
calling parameter mOD at a [0] contains the address of the memory on the remote
card.

The calling parameters for RSM_GetMem are as follows:

mCode
mOData[O]

RSM GetMem
Size in bytes (as in the GetMem primitive)

The reply parameters for RSM_GetMem are as follows:

mCode
mOData[O]

mDataPtr

mStatus

RSM GetMem + 1
Address of buffer (as returned to RSM), or
0 if not allocated
Global (NuBus) address of the buffer, or
0 if not allocated
RSE NO ERRORS

Remote System Manager 6-15

-----·-----

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

RSM_StartTask

RSM_s ta rt Task creates a task and makes it eligible for execution on the remote
card.

The calling parameters for RSM_StartTask are as follows:

mCode
mDataPtr
mDataSize

RSM_StartTask
struct *ST_PB; /* see StartTask primitive*/
sizeof (struct (ST_PB))

The reply parametets for RSM_StartTask are as follows:

mCode
mOData[O)

RSM_StartTask + 1
Task identifier of started Task or zero; if a Task
identifier of zero was returned, an error may have
occurred.

The parameter block for RSM_S ta rt Task is the same as the operating system
primitive Start Task () .

..:. Note: The memory allocated for the code, data, and StartParameter
segmentS must have been previously obtained on the remote card by a call to
RSM_GetMem· or GetMem().

RSM_StopTask

RSM_StopTask stops the task whose task identifier is specified, provided the task is
running on the remote card.

The calling parameters for RSM_StopTask are as follows:

mCode
mOData[O]

RSM_StopTask
Task identifier of task to stop

The reply parameters for RSM_StopTask are as follows:

mCode
mStatus

Warning

RSM_StopTask + 1
RSE_NO_ERRORS

If one task stops another task. that task being stopped will not have the
opportunity to release any message buffers that it Is currently processing.

6-16 MR-DOS Managers

Finding the Remote System Manager
Tasks can detennine the task identifier of a Remote System Manager on another card
by following these steps:

1. Send an ICC_GETCARDS message to ICCM to obtain the task identifiers of the
Name Managers on each of the known cards.

2. Use the Lookup Task utility to each found Name Manager, specifying the Object
Name "RSM" and Type Name "RSM".

Loading remote tasks
Tasks may be loaded, started, and stopped on remote cards using the Remote System
Manager on the remote card. To do so, refer to the ftle Apple
IPC: Examples: RSM_tester. c for annotated code.

+ Note: If errors occur, then any allocated memory must be returned to the card by
sending a F reeMem message with the appropriate buffer to the Remote System
Manager on the remote card

The Remote System Manager processes the RSM_ st a rt Task message, anempts to
start the task, and returns either the task identifier of the started task or zero. If zero is ·
returned or if errors are detected, then any allocated memory must be returned.

Caution
When this example requests memory for the code to be downloaded to the
card. It does not determine the size of this code; this example hos a hard-coded
number. If you develop your code using this RSM tester example. be sure to
change the amount of hard-coded memory that was allocated on the card for
the task to be downloaded.

Timer library and Timer Manager
Both the timer library and the Timer Manager allow user programs to receive "wake
up• calls and also activate timing, cancel timing, set timing, and so forth. Timeouts
are implemented as messages sent to the requesting tasks at specified times.

Timer library and Timer Manager 6-17

MCP Developer's Gulde • Final to Production Apple ContldenHal 2/20/89

Warning
It Is strongly recommended that you use the timer library rather then the Timer
Manager, because the timer library provides greeter performance end allows you
to reliably cancel a timer when en event occurs. The Timer Manager is provided
for compcffbillty with previous releases (primarily for using periodic timers without
canceling timers), end will be rempved In future versions of the software.

Timer library

The timer library is available in the file os • o on the MCP distribution disk, and
provides services similar to the T'uner Manager.

The timer library handles timeouts for time-critical user code, and provides fast timer
cancels and activations. You must use the include file timer library. h in your
code, which def.mes the interface to the calls listed in this section.

TLlnitTimer()

The TLini t Timer () call initializes the timer library, and must be the fll'St call made
to it. The parameter returned from TLini t Timer must be passed in all other timer
library calls.

struct Tmem TOPS;
TOPS *TLinitTimer()

TLStartTimer()

The TLStart Timer () call allows a task to request either a periodic or a one-shot
timer message. The message is not available for use after the call.

+ Note: Timer indication messagesmust be received through a TLRecei ve () call;
they cannot be received by the primitive Receive () call.

char TLStartTimer (topb, rn)
TOPS *topb;
message *m;

The message rn must have been allocated and set up as a periodic or one-shot timer
message as defined for the timer manager. TIS ta rt Timer returns a non-zero value
if the message was valid; otherwise TLS ta rt T irne r returns 0 and the message buffer
may be reused or released by the calling task.

6-18 MR-DOS Managers

(

(

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89

TLCancelTimerC>

The TLCance 1 Timer call allows the calling task to cancel a timer message. The
ti.mer message can be either a periodic or a one-shot timer message.

message *TLCancelTimer (topb, mID)
TOPB *topb;
long rnID;

The canceled message matches the mID specified, unless the mID is zero. If the
mID is zero, the first timer message to expire is canceled.

TLActiveTimer()

The TLActiveTimer () call returns a count of the number of active timer messages.

long TLActiveTimer (topb, mID)
TOPB *topb;
long mID;

If mID is not zero, TLActi veTirner () returns 1; if the message corresponding to
the rnID isactive,TLActiveTimer() returnsO;ifthe mID iszero,
TLActiveTimer () returns the numberoftimer messages.

TLReceive()

TLRecei ve is called to provide receive processing with timeout on behalf of the
application.

message *TLReceive (topb, mID, mFrom, mCode)
TOPS *topb;
unsigned long mID;
tid type mFrom;
unsigned short mCode;

Caution

If you use the timer llbrary. you must use the TLRecei ve () routine Instead of
the primitive Receive () request.

TLRecei ve returns either the message that matches the TLRecei ve criteria or a
timeout indication message (periodic reply or one-shot reply), whichever comes first.

Timer library and Timer Manager 6-19

MCP Developer's Gulde - Final to Production

Timer Manager
The Tuner Manager provides timing services to tasks, and is useful when long timeouts
are needed or where there is an infrequent need to start and cancel timers.

Warning

Apple ConfldenHal 2/20/89

This section describing the Timer Manager Is Included In this document for
historical purposes only. It Is strongly recommended that you use the timer
library. In future releases, the Timer Manager will be removed.

Table 6-6 lists the Tuner Manager calls and funaions.

Table 6-6
Timer Manager calls

Function

Active Tuner Query

Cancel Timeout

Request One-shot Timeout

Requests Periodic Tuneout

DescrlpHon

allows a task to determine if a particular timer is
running or if any timers are running that are associated
wlhthewk

allows a task to cancel either an individual timer or all
of the timers outstanding for the requesting task

allows a task to receive a timeout reply nmajor ticks in
the future

allows a task to receive a periodic timeout reply starting
xmajor ticks from when it is set, and then repeating
every ymajor ticks

The user sends to the Timer Manager the desired timer message. The Tuner Manager
holds onto timeout request mes.sages in its intemal queue. A task may request either
one-shot or periodic notification of timeout events.

o When a one-shot timeout occurs, the request is answered by returning to the user
the original user message, withamessagecodeof TIMER_l_SHOT_REPLY.

o When a periodic timeout occurs, the Tuner Manager gets a message buffer from the
operating system. This message buff er is returned to the user with a message code of
TIMER - p ERI OD I c - REP LY. Any user data in the original message is copied into
the message buffer that the Tuner Manager uses for a reply.

6-20 MR-DOS Managers

'!.-.. _,./

(
MCP Developer's Guide - Final to Production

Outstanding time events may be queried and, optionally, canceled. When the user
requests that a timer be canceled, the original timer message is answered with a
message status of timer canceled, followed by the response to the cancel-timer
message.

•> Note: Users should be careful in their use of message priority. A cancel message of
a higher priority than the original periodic timeout request message could result in
the cancel-timer reply arriving before the canceled timer message.

The number of ticks per second may be determined by calling the routine
GetTickPS ().

The Tuner Manager registers itself with Object Name "timer manager" and Type
Name "timer manager". You can find the task ID of the Timer Manager by calling
GetTimerTID(),orbyusingthe Lookup_Task utility.

Active Timer Query

Active Tl!Ile!' Query allows a task to determine if a particular timer is running or if any
timers are running that are associated with the task.

The message code for the Active Timer Query is as follows:

TIMER_QUERY_REQUEST

The message parameters for the Active Tl!Iler Query are as follows:

Apple Confidential 2/20/89

mOData[O]
mOData[O]

Message ID - if an individual timer is being queried
Zero - if query is for any timer associated with the task

The reply-message code for the Active Timer Query is as follows:

TIMER_QUERY_REPLY

The reply parameters for the Active Timer Query are as follows:

Unchanged mOData[O]
mOData[l] Number of timer messages found

Cancel Timeout

Cancel Tl!Ileout allows a task to cancel either an individual timer or all of the timers
outstanding for the requesting task. All outstanding timer messages are returned to the
requesting task with a TIMER - CANCELED status.

The message code for Cancel Timeout is as follows:

TIMER_CANCEL_REQUEST

The message parameters for Cancel Timeout are as follows:

mOData[O]
mOData[O]

Message ID - if an individual timer is to be canceled
Zero - Cancel all timers associated with the task

llmer library and llmer Manager 6-21

MCP Developer's Guide - Final to Production

The reply message ccxie for Cancel Timeout is as follows:

TIMER_CANCEL_REPLY

The reply message parameters for Cancel Timeout are as follows:

mOData(O]
mOData(l)

Unchanged
Number of timer messages canceled

•:O Note: Users should be careful in their use of message priority. A cancel message of
a higher priority than the original periodic timeout request message could result in
the cancel-timer reply arriving before the canceled timer message.

Request One-Shot Timeout

Request One-Shot Timeout allows a task to receive a timeout reply a specified number
of major ticks in the future.

The message code for Request One-Shot Timeout is as follows:

TIMER_l_SHOT_REQUEST

The message parameter for Request One-Shot Tuneout is as follows:

Apple Confidential 2/20/89

mOData[O) Time to wait in major ticks before replying

The reply message code for Request One-Shot Tuneout is as follows:

TIMER_l_SHOT_REPLY

The reply message parameter for Request One-Shot Timeout is as follows:

rnOData(O) Unchanged

The possible error status for Request One-Shot Timeout is as follows:

TIMER CANCELED

Request Periodic Timeout

Request Periodic Timeout allows a task to receive a periodic timeout reply starting a
specified number of major ticks from when it is set, and then repeating at every
specified interval thereafter.

The message code for Request Periodic Tuneout is as follows:

TIMER_PERIODIC_REQUEST

The message parameters for Request Periodic Timeout are as follows:

rnOData[O]

rnOData(l]

Time to wait in major ticks before first
timeout reply
Periodic interval in major ticks

6-22 MR-DOS Managers

(

(

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

The reply message code for Request Periodic Timeout is as follows:

TIMER_PERIODIC_REPLY

The reply message parameter for Request Periodic Timeout is as follows:

mOData[OJ Message ID of requesting user message

The possible error status for Request Periodic Timeout is as follows

TIMER CANCELED

Trace Manager
The Trace Manager provides tracing services for messages sent between tasks, and
includes calls to turn tracing on or off.

Upon startup, the Trace Manager waits to find a Trace Monitor registered with the
ObjectName "Trace Monitor" andTypeName "Trace Monitor". No
tracing is performed until a Trace Monitor is found that is so registered.

Caution
Once the Trace Manager registers. message throughput Is dramatically reduced.
When sending trace messages to the Trace Monitor, message throughput may
be reduced by a factor of twenty or more. depending on the actions taken by
the Trace Monitor. Even If tracing Is turned off. the Trace Manager Is still
registered with the operating system and ail messages must pass through It.
reducing normal message throughput by more than half.
You cannot trace the Trace Manager.

The Trace Monitor is an MPW tool that works with the Trace Manager to record all
message traffic between tasks. The Trace Monitor relies on Apple !PC to communicate
with the Trace Managers on the cards; the Trace Monitor does little unless there are
active Trace Managers present.

The fonnat of the trace file is simply a sequence of messages. If a message has an
associated data buffer (that is, mDataSize is non-zero), the message is immediately
followed by the data buffer conents of size mDa t as i ze. The syntax of the
TraceMonitor command is

TraceMonitor [file]

where file is the name of the trace file in which to record message traffic. If file is not
supplied, the default trace file name is TraceF ile. The trace file is intended to be
searched and interpreted by the MPW trace file dumping tool, DumpTrace, described
later in this section.

Trace Manager 6-23

MCP Developer's Gulde - Final to Production

Once a Trace Manager detects the presence of a Trace Monitor, the Trace Manager
registers with MR-DOS using a TraceReg call and begins tracing. The MR-DOS
Send primitive forwards all messages to the Trace Manager; the Trace Manager
sends its own trace message to the Trace Monitor with the data pointer pointing to the
traced message, and waits for an acknowledgement The Trace Monitor reeords each
traced message in a data file, along with any associated data, and acknowledges receipt
of the message; the Trace Manager then forwards the original message to its intended
destination. You can stop the Trace Monitor by pressing Command-period.

If the Trace Monitor fails to acknowledge in a reasonable time, the Trace Manager
stops the process of sending trace messages to the Trace Monitor until it receives a
message to tum tracing back on; this ensures that the message flow does not stop
indefinitely. If necessary, the Trace Monitor can control tracing activity through the
use of messages to the Trace Manager that direct it to tum tracing on or off.

Turn on tracing
The message code to turn on tracing is as follows:

TM_ TRACE_ ON

The Trace Manager assumes the request comes from the Trace Monitor, and uses the
TID value of the message mF rom field as the TID of the Trace Monitor for subsequent
tracing.

Turn off tracing
The message code to tum off tracing is as follows:

TM_ TRACE_ OFF

This stops the Trace Manager from sending trace messages to the Trace Monitor until
tracing is turned back on.

Tracing messages
The trace message describes the location of the traced message from the Trace
Manager to the Trace Monitor. The message parameters for a trace message are a.~
follows:

TM TRACE

Apple Confidential 2/20/89

mCode
mDataPtr
mDataSize

Pointer to copy of traced message (and data)
Size of message plus size of data

6-24 MR-DOS Managers

,(

(

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89

The area pointed to by mDataPtr is a copy of the original llle$age, immediately
followed by the contents of the associated message data buffer (if any). The receiving
message then has acces.s to both the message and its data buffer.

The message code for acknowledging the receipt of a trace message to Trace Manager
is as follows:

TM_TRACE+l

OumpTrace
DumpTrace is an MPW tool that searches and interprets llle$age trace files created by
the TraceMonitor tool. DumpTrace dumps the messages from each trace file
specified. If you donotspecifiyafile name, DumpTrace dumps the file TraceFile.
The msessages are dumped to standard output

The syntax of Dump Trace is

DumpTrace [-an] [-en] [-dn] [-fn] [-in] [-ln] [-pn] [-sn] [-tn] [file ...]

where the following values are specified as hexadecimal numbers:

-an dump messages having To or From values of n

-en dump messages having Code value of n

-dn dump messages having Da t aPt r value of n

-fn dump messages having From value of n

-in dump messages having ID value of n

-ln dump messages having Da taSize value of n

-pn dump messages having Priority valueofn

-sn dump messages having Status value of n

-tn dump messages having To value of n

file the name of the trace ftle in which to record message traffic

Messages are dumped selectively based on values specified by the options just listed.
If options are specified, a message is dumped only if its fields match one of the values
specified by each of the options. If no options are specified, all messages are .
dumped Each option can be repeated with different values, as shown in the following
examples.

Example 1:

DumpTrace -fOdOOOOOl -f0d000002 -c64 FileNarnel FileNarne2

Trace Manager 6-25

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

lnthisexampleDumpTracedumpsfrom Fil.eNamel and FileName2 those
messages that have Code values of 100 (64 hex) and that are from task OdOOOOOl (slot
d, task 1) or Od000002 (slot d, task 2).

Example 2:

DumpTrace -a0d000003

In this example, DumpTrace dumps from TraceFile those messages that are either m
or from slot d, task 3.

The following example of DurnpTrace shows output for a message with an associated
data buffer:

To: OdOOOOOl Code: 0097 ID:
From: Od000005 Status: 0000 DataPtr:

fd0009al
0000090c

Priority: 0000 DataSize: 00000040
SData: 00 00 00 00 00 00 00 00 00 00 00 00 0 •••••••••••

OData: 00 00 00 00 fd 00 00 08 00 00 02 6c 1

0000090c 0000 0000 ffff fff f fff f ffff ffff ff if
0000091c ff ff ff ff ff ff fff f ffff ff ff ffff ffff
0000092c ff ff ff ff ff ff ff ff ff ff ff ff ffff ff ff
0000093c OcOO 0001 OdOO 0001 .ffff ff ff ff ff ffff

6-26 MR-DOS Managers

(

(

Chapter 7

Programming Notes for
MR-DOS

MCP Developer's Guide - Final to Production

This chapter describes methods to handle peculiarities of MR-DOS, and includes
some guidelines and brief code examples for the following:

o accessing memory for intercard communications (including address mapping,
interard buffer copying, and intercard message passing)

o calling primitives from interrupt routines

o executing small routines at every major tick (using the Tick Chain)

o using the Idle Chain

o writing your own download program

o loading remote tasks

lntercard communications
Accessing memory that may be off-card introduces special coding considerations on
carck using processors that do not directly support 32-bil addressing (such as the
Motorola 68000). The MCP provides special hardware (page latch) to map off-ca.rd
memory into the processor's address space.

Address mapping
You can use the MapNuBus function to set the hardware page latch and to return the
appropriate local address. The operating system saves and restores the state of the
hardware page latch (the address mapping) when task switching occurs. Interrupt
routines that need to gain access to off-card buffers must also save and restore the state
of the hardware page latch (the address mapping).

The CopyNuBus utility routine copies data from a source to a destination and
handles off-ca.rd buffers. Following is an example that demonstrates a simple case of
copying a buffer from one place to another using CopyNuBus.

message *mptr;

Apple ConfidenHal 2/20/89

mptr = Receive(OS MATCH ALL, OS_MATCH_ALL, OS_MATCH_ALL, 0);
switch (mptr->mCode) -
{

case myCode:
I* Process myCode */
process_myCode(MapNuBus(rnptr->mDataPtr));
break;

<<Other code >>

7-2 Programming Notes for MR-DOS

/

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Caution

It Is recommended that you use CopyNuBus {) rather than MapNuBus () . The
MCP card has a NuBus address space through which access to the NuBus is
made. The hardware page latch that controls this NuBus address space needs to
be changed whenever address boundaries are crossed; tasks which use
MapNuBus may not check for these boundaries. However. CopyNuBus {)
checks for and correctly handles the boundaries.

The function process_myCode processes the buffer associated with the message.
Because MapNuBus was already called, it can simply treat the pointer it receives as
an ordinary pointer, as Jong as the routine does not access any other off-card pointer
or call MapNuBus.

lntercard buffer copy

Any piece of code that manipulates more than one potentially off-card buffer at a time
can be complex. For example, copying between two such buffers results in the
operating system continually calling MapNuBus to adjust the mapping hardware.
This operation may actually be more efficient if the data is copied through an
intermediate local buffer.

CopyNubus{mptrl->mDataPtr,mptr2->mDataPtr,mptrl->mDataSize);

lntercard message passing
Normally, there is no need to be concerned about how messages are moved from one
card to another, since MR-DOS handles these transparently to the use through the use
ofTIDs and ICCMs. However, this section is included to provide more detailed
information about this function.

Communication between peer ICCMs is done by using the communication areas. The
Send() primitive checks the mTo field of each message. If the mTo field specifies
a destination that is not on the sender's card, the Send primitive passes the message
unaltered to ICCM. ICCM then examines the rnTo field to discover the destination of
the message.

ICCM on the sending card first checks that any previous message in the
communication area of the destination card has been processed. ICCM then checks
that a new buffer is available to receive the message; if not, a new buffer is requested.
When a buffer becomes available, ICCM writes into the communication area the
message to be sentto the destination card. ICCM adjusts the mDa taPtr field of the
message, if necessary, to ensure that the pointer is valid across the Nu Bus.

lntercard communications 7-3

MCP Developer's Guide - Final to Production

The receiving ICCM polls the communication area for new messages. When a new
message arrives, it is forwarded to the receiving task. Once the message has been
forwarded, the receiving ICCM clears the sender's communication area on the
receiver's card and supplies a new Receive bu.If er. The new buffer allows the sending
ICCM to again send a message to the receiver's card.

If the destination does not exist, the message is returned to the sender as
undeliverable. If the destination does exist, it is passed to a peer ICCM on the
destination card. The ICCM on the destination card attempts to forward the message
to the task specified. If the task does not exist, the message is returned to the sender as
undeliverable.

Interrupt handlers
This section describes some guidelines for calling primitives from interrupt routines.

When using interrupt routines, do noc call the following primitives since results are
unpredictable:

o Receive()

o Reschedule {)

o Start Task ()

o StopTask ()

All other operating system primitives may be called from interrupt routines.
However, be careful when using the primitives GetMem () , FreeMem () , and
Send () because these primitives execute at the same interrupt level as the caller. This
ensures that device-interrupt interlocks are maintained. Send () can be used to notify
the appropriate task that a message has arrived; however, system performance may be
impacted

Use of MR-DOS primitives at interrupt level should be minimized, because they may
interfere with high-performance communication devices. User tasks should pre
allocate buffers for their interrupt routines, and should also release those buffers when
the interrupt routine has finished with the buffer.

•:• Note: When using GetMsg, MR-DOS always fills in the mFrom field with the TIO
of the current user task. Your interrupt routine must overwrite the mF ram field with
the task ID that will process any reply.

You can see an example of a task that uses interrupt routines to control hardware in tbe
files MR-DOS:Examples:pr_manager.c and :MR-DOS:Examples:ossccint.a. These
files show how to control sees and use them in asynchronous mode.

Apple Confidential 2/20/89

The following is an example of how to install an interrupt routine, along with an example of an interrupt
routine within the code:

7-4 Programming Notes for MR-DOS

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

I Install Proc Export
Import PostRTE
LEA MyAS, AO Get address of location to hold AS
MOVE.L AS, (AO) Put AS there for interrupt routine
LEA LvlS, AO ; Get address of interrupt routine
MOVE.L AO, $74 Put address of routine into vector
RTS

My AS DC.L 0 Holds AS for interrupt routine

* Actual interrupt routine follows.
LvlS MOVEM.L A0-Al/AS/DO-D2, -(A7) Be sure to save

registers

* If the routine is going to access the processes global data,
* AS wi.11 have to be set to provide access.

MOVEA.L MyAS, AS ; Set AS to this process' AS value

<Do whatever you want here>

* If
* do

a possibly off-card buffer is needed,
like this:

access to
something

MOVE.W
MapAddr

gCommon.gPageLatch, -(A7) Save page latch
AO Map address to access

<Access the buffer>
MOVE.W (A7)+, gCommon.gPageLatch ; Restore page
ResetLatch ; Reset mapping hardware to match

leave the interrupt routine. *Now get ready to
MOVEM.L (A7)+, A0-Al/A5/DO-D2 ; Restore registers

; saved on entry
JMP PostRTE ; Return from exception

where:

o gCommon. gPageLatch contains the pagelatch value associated with the
currently-executing task

o ResetLatch resets the hardware page latch based upon the value contained in
gCommon.gPageLatch

o PostRTE provides a common exit routine from interrupt handlers

Interrupt handlers 7-5

;

Tick Chain
The Tick Chain allows you to incorporate very small routines in the code that are
executed at every major tick. For example, a Tick Chain routine might be the
operating system allowing the ICCM to go out and look in buffers. Take care to ensure
that shared data buffers are not touched by code placed in the Tick Chain; Tick Chain
code is scheduled independently of MR-DOS tasks, including those in run-to-block
mode.

The start of the Tick Chain is a location in low memory(gTickChain), which is a
pointer to a subroutine that the timer interrupt code calls every major tick. The
pointer allows the timer interrupt routine to call user-installed time-critical code
routines. The number of ticks per second may be determined by calling the library
routine Get Tick.PS().

Register AS is set up to allow access to MR-DOS global variables.

•:• Note: Any routine not loaded with the MR-DOS operating system that is placed in
the Tick Chain/Idle Chain must use its own AS value.

The routine in the Tick Chain/Idle Chain must preserve the value of AS across the call
and ensure that their routine is using the correct value of AS during its processing. To
do so, follow the steps listed below for the appropriate code:

In the code that inserts a routine into the Tick Chain/Idle Chain:

1. Save the value of AS in the code segment for the routine in the Tick Chain/Idle
Chain.

2. Save the addaress of the routine that is currently in the Tick Chain/Idle Chain.

3. Insert the address into the Tick Chain/Idle Chain.

In the routine in the Tick Chain/Idle Chain:

1. Save the value of AS.

2. Load the AS value saved by your code segment that inserted this routine into the
Tick Chain/Idle Chain.

3. Perform the desired operations.

4. Restore AS to its previous value.

5 . Call the routine that was saved in Step 2 of the first set of instructions (for the code
that inserts the routine).

The following code segment shows how to install and use the Tick Chain mechanism:

7-6 Programming Notes for MR-DOS

(

MCP Developer's Guide - Final to Production

•> Note: Use this mechanism with caution, because it may degrade system
performance unless you install extremely short time-duration code segments. To
ensure that the operating system will reliably execute tasks and not hang the card,
the total time of the routines installed should not exceed the duration set for the
major tick.

void (*ticknextcall) ();
void tickinstall ()
{

void myRoutine ();
extern struct gCommon *GetgCommon ();
short s;
struct gCommon *p;
/* Fetch local of gCommon area */
p = GetgCommon ();
/* disable interrupts */
s = Spl (7) ;
/* Fetch next routine */
/* install myRoutine */
ticknextcall = p -> gTickChain;
p -> gTickChain = myRoutine;
/* restore interrupts */
(void) Spl (s);

void myRoutine ();
{

I* please do something useful */
ticknextcall ();

Idle Chain
The Idle task performs the following functions:

o increments a counter

o calls the Idle Chain

o issues the Reschedule primitive to allow other tasks to run

The Idle task runs in block mode, and is given the lowest priority (priority 0). When no
other task is eligible for execution on the processor, MR-DOS schedules the Idle task.

The start of the Idle Chain is a location in low memory (gidleChain), which is a
pointer to a subroutine that the Idle task calls every time the Idle task is scheduled
(gidleLoop in gCommonArea). The pointer allows the Idle task to call user
installed, noncritical time-code routines. On entry, Register AS is set to allow access
to globals. Register AS must be preserved across this call.

Apple Confidential 2/20/89

Idle Chain 7-7

MCP Developer's Guide · Final to Production

The following code segment shows how to install and use the Idle Chain mechanism.

+ Note: Since the Idle task runs in block mode, use this mechanism with caution. The
Idle Chain does not release control until the task is completed, and therefore can
impact performance. You should install only extremely short time-duration code
segments.

void (*idlenextcall) ();
void idleinstall ()
{

void myRoutine ();
extern struct gCommon *GetgCommon ();
short s;
struct gCommon *p;
* Fetch local of gCommon area */
p • GetgCommon ();
I* disable interrupts */
s • Spl (7);
/* Fetch next routine */
/* install myRoutine */
idlenextcall • p -> gidleChain;
p -> gidleChain • myRoutine;
/* restore interrupts */
(void) Spl (s);

void myRoutine ();
{

Apple Confidential 2/20/89

/* very short time duration n shop rental calculator */
idlenextcall ();

Writing your own download program
If you want to dynamically download tasks to an MCP-based card, you can create your
own download program. MCP provides two subroutines, Findcard and Download, to
help you write your own download program.

Two binary versions of each of the subroutines are provided on the MCP distribution
disk:

o one version for the MCP card, found in the :MR-DOS :MCP :Download-lib. o
library

0 another version for the AST-ICP card, found in the :MR-DOS: AST_ICP:
Download-lib. o library.

7-8 Programming Notes for MR-DOS

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Findcard subroutine
The Findcard subroutine allows your program to locate smart cards in the Macintosh
II, using the following code:

pascal short Findcard(slot, type)
short *slot;
long type;
extern;

where: *slot contains the address of a bit mask indicating which slots are available
for loading

type is the type of card to download

+ Note The type field is designed for use at some future date; currently, type is
unused and should be zero.

In the bit mask, bit 0 is the least significant bit. Bit 9 corresponds to slot 9, and bit 14
corresponds to slot E. Findcard returns DLE_NOERR (no error) if a card of the
correct type is found, or returns D LE EMI? TY if no cards of the correct type are
found.

Download subroutine

The Download subroutine allows you to download a specified file, appropriate
address, slot, and registers into the MR-DOS operating system, using the following
parameters:

pascal short Download(FileName, vRef, slot, loadaddr, initial_load,
registers, type)

char
short
short
long
short
struct
long
extern;

*FileName;
vRef;
*slot;
loadaddr;
initial load;
ST Registers
type;

/* The file name is a C string. */

*registers;

The *F ileName field is a pointer to the filename of a file to load. The filename is a C string.

The vRef field is the volume reference number of a file to load

The *slot field is a bit mask indicating which slots to load Bit 0 is the least
significant bit. Bit 9 corresponds to slot 9. Bit 14 corresponds to slot E. If the bit mask
equals OXFFFF, all cards that are of the correct type will be downloaded.

Writing your own download program 7-9

MCP Developer's Guide - Final to Production

The loadaddr field is the relative address on a smart card to load data and/or
code. The default initial load address of MR-DOS is defllled by the symbol
INIT_LOAD in the file siop. h in the :MR-DOS:includes: folder.

The initial load field is 0 if a non-initial load, non-zero if an initial load. If it is
an initial load, the Card is reset, memory is cleared, and the card is restarted with the
PC from the newly loaded data and/or code for a non-initial load to work. MR-DOS
must already be running on the card. The calling task must have previously obtained
the memory on the card where the code is to be loaded

+ Note It is the responsibility of the calling task to issue a st a rt Task request if the
calling task specified a non-initial load; MR-DOS returns the registers to be passed
to Start Task. It is the responsibility of the calling task to set up all other
parameters to Start Task. Foranexampleof anMPWtool that willdoanon-

Apple Confidential 2/20/89

initial load, see the file :Apple IPC:Examples:RSM_tester on the MCP distribution
disk.

The ST_Registers fieldisapointertoa register area (defllled in the file os. h in
the MR-DOS:includes: folder) where the correct registers are returned for use in a
StartTask request. The Program Counter (PC) and Stack Pointer (SP) used by the
Download subroutine are returned to this area on an initial load

The type field is the type of card to download. This feature is designed for use at
some future date; currently, type is ignored and should be zero.

Download errors
Download errors are indicated by messages to the st de rr file. The state of any card
to be downloaded is undefllled if an error is returned. D LE_ NOERR is a nonnal
retum Table 7-1 lists Download error constants; these constanlS are found in the
include file in the folder :MR-DOS:includes:Download.h.

7-10 Programming Notes for MR-DOS

(

MCP Developer's Guide • Fincl to Production Apple Confidential 2/20/89

Table 7·1
Error constants for Download

Error
Displayed Number Description

DLE NOERR 0 No error

DLE NOJT 1 No jump table found

DLE DATAINIT 2 Bad Data !nit segment

DLE GLOBALF 3 Global-data format error

DLE CODES 4 Code segment error

DLE MAC2 5 Code only runs on Macintosh II

DLE EMPTY 6 No cards found

DLE NOCARD 7 Slot specified is empty

DLE RESFILE 8 Couldn't open resource file

DLE FILEWRONG 9 Download file is wrong type

The include file :MR-DOS :includes :Download.h contains the following
Download constant that may be useful for development:

#define Max_Slots 16 /* Max number of card slots

You can also fmd the routine declarations for Download and Findcard in this include file.

*I

Writing your own download program 7-11

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

7-12 Programming Notes for MR-DOS

(

(

Chapter 8

Developing Smart Card
Applications

MCP Developer's Gulde • Final to Production

This chapter describes how to develop software applications for the MCP smart card,
and includes information on

o how to aeate new applications using MCP

o how to get code running on the MCP card

o where to start debugging the program

What you will develop

You will develop an application on the Macintosh II computer that communicates with
processes on the Macintosh II main logic board, tasks on the MCP card or other smart
cards, or processes and tasks on both.

During software development, you will create the following:

o a program module containing a MR-DOS task that will be downloaded to the smart
card

o an application program to run on the Macintosh II main logic board that
incorporates Apple IPC, the driver that interacts with the MR-DOS task on the smart
card program

Before you start
Before learning how to create these applications, you should have an understanding of
the client/server relationship; refer to Chapter 3 for more information.

The resources and tools you need to develop applications are included on the MCP
distribution disks and described in this chapter. You should already have copied all
the files provided on the MCP distribution disks to a new folder on your hard disk; if
not, do so now by following the instructions in Chapter 3.

Within the MCP folder you created, you should now create another folder for the
application you will be working on. You will use the following files to build a program
module to be downloaded to the MCP card:

o MR-DOS:Examples:osmain.c

o MR-DOS:Examples:makefile

Copy these files, then rename them as appropriate for the application you want to
build.

8-2 Developing Smart Card Applications

Apple ConfldenHal 2/20/89

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Important:
To speed development. you should read and use the Include flies provided on
the distribution disk. You should also read and understand the code provided In
the Examples flies for MR-DOS and Apple IPC.

The examples in this chapter demonstrate haw to build a MR-DOS program module
and download it to an MCP card. Development is similar for building an application
program using Apple IPC that runs on the Macintosh II main logic board.

Development is intended to be carried out under MPW, using Assembler and C; the
examples in this chapter are written in C. Compile and link your code for MR-DOS as
though it were a normal Macintosh application.

You should avoid normal Macintosh run-time libraries; the Macintosh toolbox is not
supported by MR-DOS.

How to create applications using MCP
In otder use MCP to to create applications that run on a smart card, you will need to:

o create original code for the "functions you want an application program to perform

•> Note. You can use one of the example programs provided on the MCP distribution
disks as a starting point for writing your new code, if you prefer.

o modify the main program (osmain.c) by removing any existing code for functions
that you do not want (such as the sample tasks currently included) and adding the
application program containing your new code

o modify the makefile to compile and link the edited code and the new code for your
task(s) with the appropriate MR-DOS library routines

Makefiles are supplied as examples to illustrate the creation of applications for both
MR-DOS and Apple IPC. In the examples of code provided in this chapter, any
characters highlighted in bold show a change to the code (either added, deleted, or in
some way modified).

Create new code
You will need to create new code for the functions you want the program to perform.
For purposes of this example, the following sample code was created under MPW for a
new task to run on an MCP card. This task illustrates how to display message text; this
text can also be printed using standard MPW C print procedures.

How to create appllcatlons using MCP 8-3

MCP Developer's Gulde - Final to Production Apple Confldenflal 2/20/89

/*************************~**/

/*
/*
I*

example NewTask - MR-DOS
*/
*I
*/

/**/

tin elude
New_Task ()
{

"os .h"

short i;

for (i = O; i < 10; i++) /* or it could be 100 or 1000! */
{

printf("My TIO • %x, Times through the loop = ,d, I am here?\n",
Get TIO(), il ;

/**/

Modify t~e main program
The main program initiates both the tasks and MCP software (including MR-DOS and
supporting software services).

The file :MR-DOS :Example :osmain. c provides a main program writteninCas
well as examples of tasks. These examples are typical of the highest level of an
application that runs on a smart card. The purpose of osmain is entirely thr.t of
initialization: to initialize MR-DOS, defint: and start a number of tasks, set the clock
rate, and then pass control to MR-DOS.

The main program you create should consist of:

o a call to osini t () to initialize MR-DOS

•> Note: Your code must make this call first, so that the initiali1.ation required for the
rest of osmain can be done.

o a call to St a rt Task () for each developer-created task that is desired

o a call to Start Task() for each MR-DOS manager task desired

o any other initialization that needs to be done. This initialization may be hardware
dependent or simply appropriate to your application code, such as calling a
function to reset the sec chips after you call o sin it on the AST card.

o finally, a call to osstart () to start the operating system and the tasks

•> Note: After the call to osstart (),control is never returned.

8-4 Developing Smart Card Applications

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

You should have already created a new main program file by copying the
osmain file from the folder :MR-DOS:Examples; you are now ready to begin editing
that file. Modify this new file to use what you need, delete the example tasks you do not
need for your program, and insert code for your own tasks.

For this example, the code for the osmain file is highlighted in bold to show some
tasks that can be deleted. ·

/**/
/*
/*
/*

I*
/*
/*

example os main - MR-DOS

Copyright © 1987,1988 Apple Computer, Inc. All rights reserved.

*/
*/
*/
*/
*/
*/

/**/

it include
it include
it include
it include

"os. h"
"managers.h"
"mrdos.h"
"siop.h"

void osinit () ;

void osstart () ;
void name server () ; -
void sccreset () ;
void time _manager () ;
void time tester () ;
void timeit (} ;
void echo_manager () ;

void echo _example () ;
void trace _manager () ;

#ifdef PRINT
void print_manager ();
#define PRINT_SLOT OxOd
#endif

void tester (};
void ICCM ();
void
void
void

remote_manager ();
MMSVP ();
MMSVPClient ();

pascal void illegal ()
extern Ox4afc;

main ()

struct ST_PB stpb, *pb;

/* default slot for printing */

unsigned short clock_parms, *cp_ptr;

osinit (cMaxMsg, cOSStack);
/* !nit OS with cMaxMsg messages and cStackOS stack */

How to create applications using MCP 8-5

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

pb • &stpb;

if (Gatcard () -- PRINT_SLOT)
accresat () ; /* Be aura sec ia resat. . . *I

/* Start name .server - priority 31, 4k stack, O heap.

pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack • 4096;
pb -> heap • O;
pb -> priority .. 31;
pb -> InitRegs.PC = name_server;
pb -> InitRegs .A_Registers [SJ = GetgCommon () ->
pb -> ParentTID "' GetTID ();

if (StartTask (pb) •= 0)
illegal ();

#ifdaf PRINT
if (GetCard
{

() -- PRINT_ SLOT)

I* Start print manaqer

pb -> CodeSegment • NOLL;
pb -> DataSegment NOLL;

priority

pb -> StartParmSeqment • GetMem (1);

30, 4lc

ginitAS;

ataclc, 0

*/

heap. *I

/*
/*
I*

Sat print
al.l. cards
printing

manager to print from al.ot PRINT_SLOT. Thia al.J.ows

*I

*I

*I

to send their output to one sl.ot for printing. If
is deairad on aach card individual.l.y, then rapl.ace

/* the l.ina bel.ow with the tol.J.owing:

I* *(pb -> StartParmSegment) GatCard ();

* (pb - > StartParmSegmant) PRINT_SLOT;
pb - > stack = 4096;
pb -> haap • O;
pb -> priority = 31;
pb -> InitRaqa.PC • print_managar;
pb -> InitRaqa.A_Regiaters [SJ GetgCommon() ->
pb - > ParentTID .. GetTID ();

it (start Task
illegal

{pb)
() ;

0)

ginitAS;

#andit PRINT

8-6 Developing Smart Card Applications

*I
*I

(

'(

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

/* Start timer manager priority 30, 4k stack, 0 heap.

pb -> Code Segment = NULL;
pb -> Datasegment NULL;
pb -> StartParmSegment NULL;
pb -> stack 4096;
pb -> heap O;
pb -> priority 31;
pb -> InitRegs.PC time _manager;
pb -> InitRegs.A_Registers [5] .. GetgCommon () -> ginitAS;
pb -> Parent TIO

(Start Task
illegal

(pb)
() ;

GetTID () ;

== 0)

/* Start ICC manager - priority 31, 128-byte stack, O heap.

pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 128;
pb -> heap = O;
pb -> priority = 31;
pb -> InitRegs.PC = ICCM;
pb -> InitRegs.A_Registers [SJ
pb -> ParentTID = GetTID ();

GetgCommon () -> ginitAS;

if (StartTask (pb) == 0)
illegal ();

/* Start RSM manager - priority 30, 4k-by~e stack, 0 heap.

pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 4096;
pb -> heap = O;
pb -> priority = 30;
pb -> InitRegs. PC = remote_manager;
pb -> InitRegs.A_Registers [SJ = GetgCommon() ->
pb -> Parent TIO = GetTID ();

if (StartTask
illegal

(pb) == 0)
() ;

ginitAS;

*/

*/

How to create applications using MCP

*I

8-7

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

/* Start echo manager - priority 30, 128 s~ack, O heap.

pb -> CodeSegment = NULL;
pb -> Datasegment - NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 128;
pb -> heap = O;
pb -~ priority = 30;
pb -> InitRegs .PC = echo_manager;
pb -> InitRegs .A_Registers [SJ "' GetgCommon () ->
pb -> ParentTID = GetTID ();

if (StartTask (pb) •• 0)
illegal ();

ginitAS;

I* Start trace manager - priority 30, lk stack, 0 heap.

pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment • NULL;
pb -> stack = 1024;
pb -> heap = O;
pb -> priority = 30;
pb -> InitRegs .PC = trace_manager;
pb -> InitRegs .A_Registers [SJ • GetgCommon <) ->
pb -> ParentTID • GetTID ();

if (StartTask (pb) == 0)
illegal ();

ginitAS;

*I

*I

I* Start echo example priority 30, 128 stack, 0 heap.

pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->

CodeSegment NOLL;
DataSegment NOLL;
StartParmSegment • NOLL;
stack • 128;
heap • O;
priority = 30;
InitRegs.PC • echo_example;
InitRegs.A_Registers [5] • GetgCommon()
ParentTID GetTID ();

it (StartTask
illegal

(pb)
() ;

-· 0)

8·8 Developing Smart Card Appllcatlons

-> ginitAS;

*I
'<o..._ ,./

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

I* Start name tester priority

pb -> Code Segment .. NULL;
pb -> DataSegment .. NULL;
pb -> StartParmSegment NULL;
pb -> stack 4096;
pb -> heap 1024;
pb -> priority .. 10;
pb -> InitRegs.PC tester;
pb -> InitRegs.A_Registers
pb -> Parent TIO

if (StartTask
illegal

(pb)
() ;

I* Start timer

pb -> CodeSegment
pb -> DataSegment

Get TIO

0)

tester

.. NULL;
NULL;

pb -> StartParmSegment
pb -> stack 4096;
pb -> heap O;
pb -> priority 10;
pb -> InitRegs.PC time
pb -> InitRegs.A_Registers
pb -> Parent TIO

if (StartTask
illegal

(pb)
() ;

Get TIO

0)

[S]
() ;

priority

NULL;

tester;
[S]

() ;

10, 4k stack, 1024 heap.

GetgCommon() -> ginitAS;

10, 4k stack, 0 heap.

GetgCommon () -> ginitAS;

I* Start timerit priority 10, 4k &tack, O heap. */

pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->
pb ->

Code Segment
DataSegment
StartParmSegment
stack 4096;
heap O;
priority 10;

NULL;
NULL;

NULL;

InitRegs.PC timeit;
InitRegs.A_Registers [5]
ParentTID = GetTID ();

if (StartTask
illegal

(pb)
() ;

== 0)

GetgCommon() -> ginitAS;

How to create applications using MCP

*/

*/

8-9

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89

I*
I*

pb
pb
pb
pb
pb
pb
pb
pb
pb

if

I*
I*

pb
pb
pb
pb
pb
pb
pb
pb
pb

/*

WBJW: Start MMSVP priority 10, 4k stack,
Thia is provided for diagnostic purposes.

-> Code Segment - NOLL;
-> DataSegment - NOLL;
-> StartParmSeqment - NOLL;
-> stack .. 4096;
-> heap - O;
-> priority - 10;
-> InitRega.PC - MMSVP;
-> InitReqa.A_Reqiatera
-> Parent TIO -
(Start Task

il.l.eqal.
(pb)
() ;

GetTID

-- 0)

[SJ
();

GetqCommon () ->

0 heap. */
*I

qinitAS;

WBJW: Start MMSVP
0 heap. Thia is

client. task
provided for

priority 11, 4k stack,
diagnostic purposes.*/

->
->
->
->
->
->
->
->
->

CodeSeqment • NOLL;
DataSeqment • NOLL;
StartParmSeqment • NOLL;
stack • 4096;
heap • O;
priority • 11;
InitReqa.PC • MMSVPClient;
InitReqa.A_Reqiatera [SJ • Getg~ommon()
ParentTID • GetTID ();

(Start Task
il.l.eqal

(pb)
() ;

-- 0)

Start operating system.

-> qinitAS;

*/

#ifdef AST ICP
*I

*I

/* setup VIA to interrupt us
clock_parms • VIA_TICK_RATE;
cp_ptr • &cl.ock_parms;

every 10 milliseconds
I* clock rate for 10 ms tick

#endif AST_ICP

#ifdef MCP
cp ptr - NOLL;

#endif MCP

osstart
illegal ();

(TICK_MIN_MAJ, TICKS_PS, cp_ptr); I* start things up */
/* should nflVer get here *I

/**/

8- l 0 Developing Smart Card Appllcatlons

*I

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Next edit the file to remove the tasks highlighted, and then insert code for the new task
(named NewTask). The main program file for this example should now look like
this:

/**/
/*
I*
/*
/*
/*
/*

example os main - MR-DOS

Copyright © 198 7, 198 8 Apple Computer, Inc. All rights reserved.

*/
*/
*/
*/

*/
*/

/**/

#include "os.h"
#include "managers.h"
#include "mrdos.h"
#'include "siop.h"

void
void
void
void
void
void
void
·void

osinit ();
osstart () ;
name server () ;
echo_manager ();
trace_manager (};
ICCM ();
remote_manager (};
New Task () ;

pascal void illegal () extern

main ()

struct ST_PB stpb, *pb;

Ox4afc;

unsigned short clock_parms, *cp_ptr;

osinit (cMaxMsg, cOSStack);
/* Init OS with cMaxMsg messages and cStackOS stack */

pb &stpb;

/* Start name server - priority 31, 4k stack, 0 heap. */

pb
pb
pb
pb
pb
pb
pb
pb
pb

if

-> CodeSegment = NOLL;
-> Datasegment = NOLL;
-> StartParmSegment =

-> stack = 4096;
-> heap = O;
-> priority = 31;
-> InitRegs.PC = name
-> InitRegs.A_Registers
-> Parent TIO = Get TIO

(Start Task
illegal

(pb)
() ;

== 0)

NOLL;

server;
[5 J GetgCommon() -> ginitAS;

() ;

How to create applications using MCP 8-11

MCP Developer's Guide - Flnal to Production Apple Confidential 2/20/89

I* Start ICC manager - priority 31, 128-by':.e stack, 0 heap.

pb -> CodeSeqment • NULL;
pb -> DataSegment = NULL;
pb -> StartParmSeqment • NULL;
pb -> stack = 128;
pb -> heap = O;
pb -> priority = 31;
pb -> InitRegs.PC = ICCM;
pb -> InitRegs .A_Registers [5] • GetgCommon () ->
pb -> ParentTID - GetTID ();

if (StartTask (pb) •= 0)
illegal (l;

qinitAS;

/* Start RSM manager - priority 30, 4k-byte stack, 0 heap.

pb -> CodeSegment = NULL;
pb -> DataSegment ;.. NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 4096;
pb -> heap = O;
pb -> priority .. 30;
pb -> InitRegs .PC = remote_manager;
pb -> InitRegs .A_Reqisters [SJ • GetqCommon () ->
pb -> ParentTID = GetTID ();

if (StartTask (pb) •• 0)
illegal ();

qinitAS;

/* Start echo manager - priority 30, 128 stack, O heap.

pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 128;
pb -> heap = O;
pb -> priority .. 30;
pb -> InitRegs .PC = echo_manager;
pb -> InitRegs.A_Registers [SJ = GetqCommon() ->
pb -> ParentTID = GetTID ();

if (StartTask (pbl == 0)
illegal ();

8-12 Developing Smart Card Applications

ginitAS;

*I

*I

*I

(
MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

/* Start trace manager - priority 30, lk stack, 0 heap.

pb -> CodeSegment NULL;
pb -> DataSegment .. NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 1024;
pb -> heap .. O;
pb -> priority = 30;
pb -> InitRegs.PC = trace_manager;
pb -> InitRegs.A_Registers [SJ = GetgCommon() ->
pb -> Parent TIO = Get TIO

if (StartTask (pb) == 0)
illegal ();

() ;

/* Start New_'?aslc priority

pb -> CodeSagment - NOLL;
pb -> Data.Segment - NOLL;
pb -> StartParmSegment - NOLL;
pb -> staclc 4096;
pb -> heap - O;
pb -> priority 20;
pb -> InitRegs.PC - New '?ask;
pb -> InitRegs.A_Registers
pb -> Par.ant TIO .. ~et'?ID

if (StartTaslc
1118gal

(pb)
() ;

-- 0)

/* Start operating system.

cp_ptr NULL;

[S]
() ;

20, 4Jc staclc,

GetgCommon ()

*/

ginitAS;

0 heap. */

-> ginitAS;

*/

osstart
illegal ();

(TICK_MIN MAJ, TICKS_PS, cp_ptrl; /* start things up */
/* should never get here */

/**/

How to cru1.1te applications using MCP 8-13

MCP Developer's Guide • Final to Production

Modifying the makefile
Now that you have modified osmain to include the code for your new task, next you
will modify the makefile. You should have already copied the makefile from the folder
:MR-OOS:Examples, and are now ready to modify that new me. Using the makefile,
you can:
o compile the inilialization software (osmain. c) and application tasks

o link the desired MR-DOS libraries with the application tasks and initialization
software to build the program to be downloaded to the smart card

Compile and link this code as though it were a normal Macintosh application. You
should not use normal Macintosh run-time libraries; the MR-DOS operating system
does not support the Macintosh toolbox.

MR-DOS include files

Table 8-1 lists the include mes available and briefly describes each ftle. These include
mes are located in the folder ·MR-DOS: includes: on the MCP distribution disks.
You will also use these files to compile and link your code using the makefile.

Table 8·1
Include files

Assembly C Language
Filename Filename Description of File

Apple Confidential 2/20/89

as.a os.h Defines the operating-system message structure,
commonly used constants, and externally
visible system library routines.

managers.a managers.h

mrdos.a mrdos.h

Contains the structures and constants used
when accessing the Name Manager, Tune Manager,
and InterCard Communications Manager.

Contains constants and structures for the
operating-system tables.

In addition, there are four include ftles similar to those listed in Table 8-1 specificatly
forusewiththeAST-ICPcard;thesemesarenamed sec.a, scc.h, siop.a,
and siop. h and are located in the MR-DOS:includes: folder on the distribution
disks. These files are useful if any sec hardware is to be used.

8· 14 Developing Smart Card Appllcatlons

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

MR-DOS libraries

The file :MR-DOS :MCP: os. o is the library containing MR-DOS operating system
routines for the MCP card. The file :MR-DOS :MCP: osglue. o is the glue
(interface) library containing code to allow tasks to use MR·DOS utility routines.
(Equivalent files for the AST-ICP card are :MR-DOS :AST_ICP: os. o and
:MR-DOS :AST_ICP :osglue.o.)

•> Note. Do not use the standard C library cruntime. o; the osglue. o file that is
provided on the MCP distribution disks contains run-time library routines.

You must link your code with these files using the MPW Llnk command

Important
To avoid conflicts In the MPW linker with duplicate names. you should prefix all
nonvlslble and externally Invisible C function and subroutine names with
static. Doing this reduces the possiblllty that routines with the same names
from different object flies will Interact to produce linker errors.

Changes to the makefile
The following code from the new file (the sample file that you.copied) is highlighted in
bold to show the tasks that changed or were deleted from the makefile. Compare this
file with the one following to determine the code that has been changed, added, or
deleted.

•!• Note. {Card} represents a string that you will replace.

/**/
/* */
/* Makel: ile for example download. */
/* */

/* *I
/* Copyright © 1987, 198_8 Apple Computer, Inc. All rights reserved. */
/* */
/***/

Makefile for test download.

please type #

To invoke this makefile
make -d Card=MCP
make -d Card=AST ICP

for generating code for the MCP card or
for generating code for the ast card

Modifying the makefile 8-15

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

CI
LinkOpts

AOptions

: : includes:
-1 -x :"{Card}":xref > :"{Card}":map

-d &Card=o'{Card}o' -i ::includes:,::"{Card}": -1 -font Courier,a
7 -pagesize

COptions
115,124 -print Data,Obj,Lits,NoMDir

-D"{Card}" -DPRINT -g -i {CI}
CSources

AsmLists
Targets

: " {Card l ":

all

f

f

: : incl.udes: ace. h echo. c trace manaqer. c pr manaqer. ca
printf.c name_teater.c timer teater.c osmain:-c timeit.c o
l.3oamain. c L3MMSVP. c L3MMSVPCJ.ient. c
oaaccint.a.J.at IOPNub.a.lst L3MMSVP.a.lst

•,o •.lst start

: : includes:

:"{Card}":atart

:"{Card}":start f :"{Card}":osmain.c.o :"{Card}":osaccint.a.oo
: : "{Card}" :OS.o : : "{Card}" :osglue .o : {Card}: pr manaqer. c. o o
: "{Card}" :printf. c. o : "{Card}": name_ tester. c-. o o
: "(Card}" :timer_ tester. c.o : "(Card} "L3MMSVP. c .o o
: "(Card}": L3MMSVPClient. c. o : "(Card}": L3MMSVP. a. o o
: .. (Card} II :timeit .c. 0 : II (Card} .. :echo .c.o a
:"(Card}":trace_manager.c.o

If "{Card}" •• "HCP"
Link -t 'GMSC' -c 'RWM I -o :"{Card}":start a

: .. (Card} "oamain. c. 0 : II {Card} .. : oaaccint. a. 0 : :"{Card}":OS.o a
::"{Card}":osglue.o :"{Card}":pr manaqer.c.o :"{Card}":printf.c.o o
:"{Card}":name teater.c.o :"{Card}":timer tester.c.o o
:"(Card}":timelt.c.o :"{Card}":echo.c.o d-
: II {Card} .. trace_manager.c.o : .. {Card} .. : L3MMSVP. c. 0 a
: "{Card}": L3MMSVPClient. c. o : "{Card}": L3MMSVP. a. o { LinkOpt s}

El.se
Link -t 'GMSC' -c 'RWM -o :"{Card}":start d

:"{Card}"oama.in.c.o :"{Card}":oaacc.int.a.o : :"{Card}":OS.o o
: : "{Card}": osqlue. o : "{Card}" :pr_manaqer. c. o o

: .. {Card} II :printf. c. 0 : .. {Card} II :nama_teater. c. 0 a
: .. {Card} II :timer taster. c. 0 : .. {Card} .. :timeit. c.o a
:"{Card}":echo.~.o "{Card}":trace manager.c.o d
: II {Card} II: L3MMSVP. c. 0 : .. {Card} .. :·LJMMSVPClient. c. 0 a
:"{Card}":L3MMSVP.a.o {L.inkOpta}

End

:"{Card}":osmain.c.of {CI}os .h {CI)managers .h !CI }mrdos .h {CI} siop.h

:"{Card}":ossccint.a.o f ::"{Card}":OSDefa.d

:"{Card)":printf.c.o f {CI}os.h {CI)managers.h

:"{Card}":acho.c.o f {CI}os.h

:"(Card)":trace_manager.c.o f {CI)scc.h {CI}siop.h {CI)os.h {CI)managers.h

:"{Card}":name_teater.c.o f "(CI}"oa.h "(CI}manaqera.h (CI}mrdoa.h

8-16 Developing Smart Card Appllcatlons

/

(-

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

:"{Card}":timar_tastar.c.o f "{CI}"os.h "{CI}manaqars.h

:"{Card}":timait.c.o f "{CI}"os.h "{CI}manaqars.h

:"{Card}":L3MMSVP.c.o f "{CI} "os. h {CI }diaqs. h

:"{Card}":L3MMSVP.a.o f "{CI}"MRDOS.a "{CI}oa.a {CI}diaqs.a {CI}aiop.a

: " {Card}": L3MMSVPCliant. c. o f "{CI}"os.h {CI} diaqa.h "{CI}manaqars.h

Special targets.

Listings - Print changed files.

Listings ff (AsmLists}
Print -f Courier -s 7 -ls 0.70 -r {NewerDeps}

Listings ff (CSources}
Print -f Courier -s 7 -ls 0.70 -r -hf Courier -hs 9 -h -n {NewerDeps}
echo "Last listings made ·Date· • " > Listings

Clean - Remove all targets.

Clean f {Targets}
Delete -i {Targets}

/**~********~**************/

The resulting makefile should look as follows:

/***/
/ /

/*
/*
/*
/*
/*

Edited Makefile for download example. */
*/
*I

Copyright © 1987, 1988 Apple Computer, Inc. All rights reserved. */
*/

/***/

Since we are building a program for the MCP smart card, hardcode
Card to be 'MCP •

= MCP Card
Points to the new MCP folder on your hard disk.

MRDOS
CI
LIBDIR
LinkOpts

: : MCP Software :MR-DOS:
{MRDOS}includes:
{MRDOS}MCP:
-1 -x xref > map

AOptions
-page size

captions
ExampleBins

-d &Card=d'(Card}d' -i "{CI}","(LIBDIR}" -1 -font Courier,? a
115, 124 -print Data, Obj, Lits, NoMDir

-D"{Card}" -DPRINT -g -i "{CI}"
{MRDOS}Examples:{Card}:

Modifying the makefile 8-17

MCP Developer's Gulde - Final to Production

CSources
AsmLists
Targets

f

all f

oamain.c NewTaak.c

•,o •.lst start

"{MRDOSJ"includes: "{ExampleBins}"

a tart

Apple Confidential 2/20/89

start f oamain.c.o "{LIBDIRJ"OS.o "(LIBDIR}"osglue.o d
" { ExampleBins l "printf. c. o "I ExampleBins J "trace_manager. c. o d
NewTaak.c.o

link -t 'GMSC' -c 1 ???? 1 -o start d
osmain.c.o "(LIBDIRJ"OS.o d
" { LIBDIR I "osglue. o d
"{ExampleBins}"printf .c.o d
" { ExampleBins l "trace_manager. c. o d
NevTaak. c. o {LinkOpts}

oamain. c. o f "(CI}"oa.h "{CI}"manaqera.h

NevTaak.c.o f "{CI}"oa.h

"{C}"mrdoa.h "{CI}"aiop.h

"{ExampleBinsl"printf.c.o f
"{CI}"managers.h

•(MRDOSJ{:Examples:printf.c "ICI}"os.h

"{ExampleBins}"trace_manager.c.o f

t Special targets.

t Listings - Print changed files.

Listings ff {AsmListsJ

"{MRDOSJ":Examples:trace.manager.c d
"(CI}"scc.h "ICIJ"siop.h "{CI}"os.h d
"{CIJ"managers.h

Print -f Courier -s 7 -ls 0.70 -r {NewerDeps}

Listings ff {CSources}
Print -f Courier -s 7 -ls 0.70 -r -hf Courier -hs 9 -h -n {NewerDepsJ
echo "Last listings made "Date"." > Listings

i Clean - Remove all targets.

Clean f {Targets}
Delete -i {Targets}

8-18 Developing Smart Card Applications

(

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Compiling and linking your code

You will next use the makefile to generate the co~ th31 will compile and link your code together.
To do so, enter the MPW command Make •

The commands produced are:

C -o "MCP" -D PRINT -i "::MCP Software:MR-DOS:"includes: osmain.c -o osmain.c.o
C -D "MCP" -D PRINT -i "::MCP Software:MR-DOS:"includes: NewTask.c o

-o newTask. c. o
Link -t 'GMSC' -c 1 ???? 1 -o start o

osmain.c.o "::MCP Software:HR-DOS:MCP:"OS.o o
"::HCP Software:HR-DOS:HCP:"osqlue.o o
"::HCP Software:HR-DOS:Examples:HCP:"printf.c.o o
"::HCP Software:MR-DOS:Examples:MCP:"trace_manaqer.c.o o
NewTask.c.o -l -x xref > map

+ Note. {MR-DOS} is the pathname of the MR-DOS folder under MPW. You must
set this up when using MPW; otherwise, you must substitute the full pathname for
{MR-DOS}.

Table Fr2 defires the parameters to the Link command, shown in the example
above.

Table 8-2
Unk command parameters

Parameter

-t

GMSC

-c

''?'???'

-o sta:c:t

oamain.c.o

oa.o

Descrlptton

The type offile that Link command is going to
generate

The file type that the Downloader application looks for

If you use the AST-IQ> card during development instead
of the MQ> card, you must replace GMSC with KARO.

The creator

Enter any appropriate creator name

The output file from the linker; the file st art will be
created in your directory

The initialization routine that you modified

File that contains MR-DOS operating system

Compiling and linking your code 8-19

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 8-2 (continued)

Parameter Description

osglue. o File containing glue code

printf. c. o Printing subroutine source code for MR-DOS; equivalent
tothe printf routineinstandardC

trace_manager. c. o Tracing tool for MR-DOS

NewTask. c. o The name of the main program containing your task

<Go Note. Only the globally-visible name of the task should be the task's main
program. The task's main routine should not be called "main" but must be given
another name, because your code is sharing space with the entire operating

system, and the name osmain is always visible.

Select the entire section listed above to enter and execute these commands; this
creates the application that you will download to an MCP card.

Downloadingcode to the MCP card
Download is an MPW tool that downloads smart card application files to smart cards.
For development effons, a version of Download is provided on the distribution disk
for the MCP card and for the AST-ICP smart card. The makefile in :MR
DOS:Examples produces two executable files for downloading; these files are:

o :MR-DOS: Examples :MCP: start, code to be downloaded to the MCP card

D :MR-DOS: Examples :AST_ICP: start, code to be downloaded to theAST-ICP
card

The file prcxiuced depends upon the -d option used with the make command in
:MR-DOS: Examples:. This section first discusses the Download tool, then presents
information to help you create your own download application.

8-20 Developing Smart Card Applications

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Calling the Downloader tool
The name of the file to be downloaded and the destination slot number or numbers
are provlied as parameters. The calling sequence for the Download tool is

Download Filename [-Sl ... -Sn]

where: Filename specifies the name of the program file to be downloaded to the card, and
Sn is the slot where the card is found.

Slots are numbered in hex from 9 to E Geft to right); two examples might be -9 or -A.
You can specify muhiple slots. If you oo not specify a slot number, the default for
Download is all slots containing smart cards of the kind matching the Download tool.

After Vllidating these parameters, Download does the following:

o perl'anm the download for each of the slots selected

o copies the resources of the object file (including Jump Table, Data Initialization,
and Segments) into RAM of the selected smart cards

o starts each card when Download sets the program counter to the appropriate
addres.s

You will now download the compiled and linked code to the smart card for execution,
using the Download tool provided on the MCP distribution disk.

To continue the example from the makefile presented earlier in this chapter, follow
the steps described next. To download the sample application to the card, enter

"::MCP Software:mr-dos:Examples:mcp:Download" s~art

Next, enter the following comand:

directory "::MCP Software:Apple IPC:Examples:"
pr_manager

This command starts up the MPW Print Manager tool. Using this tool, you can check if
the downloaded card is running and able to send messages to tasks running on the
Macintosh II, and then display results on the screen (similar to the example shown
next).

Downloading code to the MCP card 8-21

MCP Developer'• Gulde - Final to Production

Print Manager TID = 4
Starting Main Loop
TID bOS: Trace Manager: Starting.
My TID - b06, Times through the loop • o, I am here
My TID - b06, Times through the loop • l, I am here
My TID - b06, Times through the loop ,. 2, I am here
My TID - b06, Times through the loop • 3, I am here
My TID - b06, Times through the loop = 4, I am here
My TID - b06, Times through the loop • 5, I am here
My TID - b06, Times through the loop - 6, I am here
My TID - b06, Times through the loop • 7, I am here
My TID - b06, Times through the loop - 8, I am here
My TID - b06, Times through the loop • 9, I am here
My TID - b06, Times through the loop • 10, I am here

To stop using the MPW print manager tool, press Command·.(period); the screen
displays CloseQueue Called.

Download errors
Download en'Ors are indicated by messages to the stderr file. The state of any cards
to be downloaded is undefined if an error is returned. DLE NOERR is a normal
return. Table 8-3 lists Download error constants; these constants are found in the
folder :MR-DOS:includes:Download.h.

Table 8-3
Error constants for Download

Error
Displayed Number OescrtpHon

DLE NOERR 0 No error

DLE NOJT No jump table foun j

DLE DATAINIT 2 Bad Data Jnit segment

DLE GLOBALF 3 Global data-format error

DLE CODES 4 Code segment error

Apple Confldentlcl 2/20/89

DLE MAC2 5 Code only runs on Macintosh Il

DLE EMPTY 6 No cards found

DLE NOCARD 7 Slot specified is empty

DLE RESFILE 8 Couldn't open resource file

DLE FILEWRONG 9 Download file is wrong type

8·22 Developing Smart Card Appllcatlons

(~-

MCP Developer's Gulde - Final to Production

Debugging· your code
You can use any debugger for the Macintosh II to examine or change data or code in
your application. For this example, a subset of Macsbug is used to debug the
application in memory on the MCP card

The high-order nibble in the address specifies the card that is to be examined. For
example, if you want to dump memory from the MCP card installed in slot B at
location 400, type:

dm b00400

After detecting an illegal condition (via the exception 68000 vectors or hardware
interrupt), a MR-DOS handler dumps the current register set to an area of card
memory. This area of memory starts at Oxo600 on the MCP card where the
exception/interrupt occurred. Table 8-4 lists the format of the dump area.

Table 8-4
Dump area format

Memory Loc:atlon +O +4

Oxo600 DO D1

Oxo610 04 05

Oxo620 AO Al

Oxo630 A4 A5

OxC640 SR l?C USP

Oxo650 trap number

where SSP is the Supervisor StackPointer

SR is the Status Register at the time of the error

PC is the Program Counter at the time of the error

USP is the User Slack Pointer at the time of the error

+8

02

06

A2

A6

Flag

+C

03

07

A3

SSP

Flag is a byte that starts at address Oxo64A. It contaiils the value OxFF when
an error has occurred.

trap number is the 68000 exception ID

Examine the F 1 ag byte at OxC64A. If it contains OxFF, the system has crashed. Ref er
to Chapter 11 for more complete information on how to track system crashes and
hangs.

Apple Confidential 2/20/89

Debugging your code 8-23

MCP Developer's Gulde • Final to Production

When Flag is 0, this area of memory has no meaning. Specifically, this area of
memory does not show the current registers or state of anything when this Flag is 0.
Oearing this byte causes the registers to be reloaded with the saved registers and the
system to be restarted

+ Note: This format is accurate only if IOPNub. a is not being used. IOPNub. a
also dumps registers to area 0x0600, but in a differeru format.

You can also force your code to crash by using the ILLEGAL assembler operator.
Th.is defines the C function i 11 eg al C) , which when called generates an illegal
instruction.

pascal void illegal ()
extern Ox4afc;

Next, enter the following sequence at the location chosen in your code:

if (condition •• want to crash)
illegal ();

8-24 Developing Smart Card Applications

Apple Confidential 2/20/89

(

(

Chapter 9

Apple IPC

MCP Developer's Gulde • Final to Production

As described in Chapter 3, Apple !PC provides services to Macintosh II programs or
processes that are used to communicate with other processes on the Macinro,,h II or on
one or more smart cards. Apple IPC includes MR-DOS mes.sage passing, task naming,
and edl? services; it is not another operating system for the Macintosh computer.

This chapter desaibes where to find Apple IPC on the MCP distribution disks, how to
install and use Apple IPC, and how to make specific calls to Apple IPC.

The Apple IPC software
Apple IPC software consists of the Apple IPC driver, development tools, include mes,
and examples. The MCP distribution disks contains a folder named :Apple IPC: that
contains the following:

Cl a file named IPCGlue. o that contains the Apple !PC library, providing object
routines (glue code) for interfacing to the Apple IPC driver, as well as glue code that
allows C programs running under the Macintosh II operating system to make calls to

the driver

Cl a file named Apple IPC, which contains

Cl the Apple !PC driver, which runs under the Macintosh II operating system

Cl an INIT31 resource, which installs the driver and managers at system start-up

Cl the Name Manager, which is provided for the Macintosh Il main logic board

Cl the Echo Manager, which is provided for the Macinto,,h II main logic board

o a folder named :Examples:, which contains

o an Apple IPC file that contains everything just described for the Apple !PC file,
plus the Echo example.

•> Note: The Echo example is almost identical to the Echo Manager, and is provided
to show how you can add a manager to the Apple IPC file.

o a makefile that shows how IPCGlue. o is used in linking

o Example files that contain source code examples of Macintosh II programs that
use the Apple IPC driver

Each of these components is desaibed in this chapter in the section on Apple IPC
services, along with examples of C and assembly-language macros for each Apple IPC
call.

9·2 Apple IPC

Apple Confidential 2/20/89

"~.'

(
MCP Developer's Guide • Final to Production Apple Confldentlcl 2/20/89

Installing Apple IPC
As described in Chapter 2, here are the steps that you should follow to install Apple
IPC into your Macintosh II.

•:• Note: It is not necessary to repeat these steps if you have already followed the
instructions in Chapter 2.

1. Open the :'Apple lPC': folder in the new MCP Software folder you created
on the Macintosh II desktop.

2. Open the :Examples: folder and select the 'Apple lPC' file.

3. Copy the 'Apple lPC' file into the System Folder of the Macintosh II.

<-Note: To make th.is example as easy as possible, you can copy the file in one step
as follows: hold down the Option key while dragging the 'Apple IPC' file into
the System Folder.

4. Reboot the Macintosh II.

The Apple IPC driver is loaded into the system heap during system start-up by an
INIT31 resource within the Apple IPC file.

Using Apple IPC
An application that uses Apple IPC must make an initial call to OpenQueue to
establish its use of IPC. Each process that uses Apple IPC requests that a queue be
opened by calling OpenQueue.

Messages are sent and received through Apple IPC using Send and Receive.

o When the Apple IPC driver gets a Receive request and no completion routine is
specified, the message queue is searched for a message matching the criteria
specified. If a matching message is found, it is returned to the process. If no
matching message is found, the driver either returns immediately or, depending on
the timeout specified, blocks the process until a matching message arrives
(indefinitely if the timeout is 0, or until the timeout is reached).

However, the Receive request behaves differently when a completion routine is
specified. Refer to information on the Receive call in the next section of th.is
chapter for more details.

o If a Send request is destined for a process on the Macintosh II, the destination
process is unblocked, if waiting for the message that has arrived, or the message is
placed in its queue. If the message is destined for a task on a smart card, the
message is transferred to the ICCM on that slot for delivery to the task.

Using Apple IPC 9-3

MCP Developer's Gulde - Final to Production

Apple IPC services
This section describes the Apple IPC services and provides examples of how to call
primitives and utilities from both C and Assembler. These services are provided to
support features similar to those of MR-DOS for applications running on the
Macintosh II computer.

+ Note: As with MR-DOS, Apple IPC uses C calling conventions, and all registers are
preserved except DO, DI, AO, and Al. Calls in both C and Assembler take
argumentS and use similar data structures.

Table 9-1 lists the services provided by Apple IPC, with a brief description of each.

Table 9-1
Apple IPC services

Name Description

Coses an Apple IPC queue

Apple Confidential 2/20/89

CloseQueue ()

CopyNuBus () Copies a block of data from the source address to the destination
address

FreeMsg()

GetCard()

GetICCTID ()

GetIPCg ()

GetMsg ()

GetNameT ID ()

GetTickPS ()

GetTID ()

IsLocal ()

KillReceive ()

Lookup_Task()

OpenQueue ()

Receive()

9-4 Apple IPC

Frees a message buffer

Returns the NuBus slot number on which the callin~ process is
running

Returns the task identifier of the InterCard Communication
Manager

Returns the address of the global data area within the Apple IPC
driver

Gets a message buffer

Returns the task identifier of the Name Manager

Returns the number of major ticks in one second

Returns the task identifier of the calling process

Returns an indication of the locality of an address

Cancels an outstanding receive request

Returns the task ideruifier of the process or task that matches the
Object Name and Type Name specified

Opens an Apple IPC queue

Receives a message

1
{

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 9-1 (continued)

Name Description

Register_Task() Allows a process to register itself with the Object Name and Type
Name specified

Send ()

SwapTID ()

CloseQueue()

Sends a message

Swaps the mF rorn and rnTo fields in a message buffer

CloseQueue () closes a queue that was previously opened. This IPC call should be
the last one made before an entity tenninates.

The C declaration for CloseQueue () is

void CloseQueue();

The following example shows how to call CloseQueue using assembly language:

JSR CloseQueue

CopyNuBus()
CopyNuBus () copies a block of data from the source to the destination, without
checking for overlapping source and destination addresses. The number of bytes is
specified in count. The source address and/or destination address may be Macintosh
main memory or memory on a smart card.

Caution
This routine deals with the complexl1y of potential 32-blt NuBus addresses for the
source and/or the destination. but does not deal with the posslblll1y of
overlapping buffers. Therefore. do not overlap the source and destination blocks.
because doing so could cause partial overwriting of the destination block.

The C declaration for CopyNuBus () is

void CopyNuBus (source, destination, count)

char *source;
char *destination;
unsigned short count;

/* Address of source buffer */
/* Address of destination buffer */
I* Byte count */

The following example shows how to call CopyNuBus using assembly language.

Apple IPC services 9-5

MCP Developer's Guide • Final to Production

MOVE.L #Count,-(A7)
PEA Destination
PEA Source
JSR CopyNuBus
ADD.L U2,A7

FreeMsg()
FreeMsg () frees a message bufferthatwasacquiredearlier bya call to GetMsg ().

The number of messages initially available depen~ upon the number requested in the
named Apple IPC resource entries of type a i pn found in the Apple IPC driver file.

The C declaration of FreeMsg () is

void FreeMsg(mptr

Apple Confidential 2/20/89

message *mptr; /* pointer to message buffer to free */

The form for the F reeMsg macro is as follows, where Pl is the address of the
message buffer to be freed:

[Label] FreeMsg Pl

Pl can be specified as a register (AO-A6; D0-07), or use any 68000 addres.sing mode
valid in an LEA instruction to specify the l_ocation containing the desired address.

GetCard()
Get Ca rd () returns the NuBus slot number of the card on which the calling proces.s is
running. For the Maciruo.5h II computer, the number returned is always zero.

The C declaration for Get Card () is

char GetCard ();

The following example shows how to call Get Card using assembly language. Upon
return, DO contains the NuBus slot number on which the calling proces.s is running.

JSR Get Card

9-6 Apple IPC

' /

(

r(

MCP Developer's G\Jlde - Final to Production

GetETick()
GetETick () returns the number of major ticks-that is, the elapsed time in
ticks-since the operating system started

The C declaration fot GetETick () is

unsigned long GetETick () ;

The following example shows the how to call GetET ick using assembly language.
To return the number of major ticks, get the value of location gMa jorTick in the
gComrnon data area.

JSR GetETick

•> Note: A tick on the Macintosh II is of a different duration than that on an MCP card.

GetlCCTID()
Get ICCT ID () returns the task identifier of the InterCard Communication Manager.

The c declaration for Get ICCT ID () is

tid_type GetICCTID ();

The following example shows the how to call Get ICCTID using assembly !at1guage.
Upon return, DO contains the task identifier of the InterCard Communication
Manager.

JSR GetICCTID

•> Note: Slot 0 has an implicit ICCM, since the ICCM is built into the Apple IPC driver
that is configured into the System File.

GetlPCg()
Get IP Cg () returns the address of the data area of the Apple !PC driver. This routine
is provided as an aid for debugging purposes. Refer to the include files on the MCP
distribution disks for the structure of IPCg.

The C declaration for Get IP Cg () is

struct IPCg *GetIPCg();

Warning

Use this call at your own rlskl Subject to change with no notice.

Apple Confidential 2/20/89

Apple IPC services 9-7

MCP Developer's Guide • Final to Production

The following example shows how to call GetIPCg using assembly language. Upon
return, DO contains the address of the data area of the Apple IPC driver.

JSR GetIPCg

+ Note: If you use this routine in Assembler, the routine returns the beginning of the
driver's area; you must change the address by an offset defined in IPCgdef s • a
in order to use the record for this data area.

GetMsg()
GetMsg () requests a message buffer from the free-message pool. GetMsg () either
returns zero indicating failure to obtain a message buffer, or a pointer to the allocated
message. A call to F reeMsg () releases the message.

All fields in the message, except message ID (mID) and the From address (mFrom),
are cleared before the pointer to the message is returned. Message ID is set to a
number that is statistically unique to the field; the From address is set to the current
task identifier.

The C declaration of GetMsg () is

message *GetMsg();

The form for the GetMsg maao is

[Label] GetMsg

The address of the allocated message buffer is returned in DO unless no buffer was
available. In that case, 0 is returned in DO.

GetNomeTID()
GetNameTID () returns the task identifier of the Name Manager.

The C declaration for GetNameTID () is

tid_type GetNameTID ();

The following example shows how to call GetN ameT ID using assembly language.
Upon return, DO is the task identifier of the Name Manager.

JSR GetNameTID

9-8 Apple IPC

Apple Confidential 2/20/89

(

(

MCP Developer's Guide - Final to Production

GetTic kPS()

Get T ickP S () returns the number of major ticks in 1 second.

The C declaration for GetTickPS () is

unsigned short GetTickPS ();

The following example provides how to call Get T ickP s using assembly language.
Upon return, DO is the number of major ticks in 1 second.

JSR GetTickPS

GetTID()

Get T ID () returm the task identifier of the calling task.

The C declaration for Get T ID () is

tid_type GetTID ();

The following example shows how to call Get T ID
return, DO is the task identifier of the calling process.

JSR GetTID

ls Local()

using assembly language. Upon

Is Local () returns a true or false indication of whether or not an address is local.

The C declaration for Is Local() is

short
char

IsLocal(address)
address; / address to test. */

Is Local() returns true (non-zero) if the address passed is local. Is Local() returns
false (zero) if the address passed is a remote NuBus address.

The fonn for the Is Local macro is as follows, where P 1 is the address to examine:

[Label] Is Local Pl

P 1 can be specified as a register (AO·A6, D0-07), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an I.EA instruction to specify the location of a
long word containing the desired value.

Apple Confidential 2/20/89

Apple IPC services 9-9

MCP Developer's Gulde • Final to Production

KillReceive()
KillRecei ve () cancels any outstanding Receive request for this process.
Messages. destined for this process are not discarded

TheCdeclarationfor KillReceive ()is

void KillReceive();

The following example shows how to call Ki llRecei ve using assembly language:

JSR KillReceive

Lookup_ Task()
Lookup _Task () returns the task identifier of the process or task that matches the
Object Name and Type Name specified, or 0 if no matching process or task is found
The wildcard character"=" is allowed. Initially, the index should be set to O; on
sub.sequent calls, it should be left unchanged.

+ Note: Lookup_Task () modifies the variable index. The variable index allows
Lookup_ Task () to fmd any additional entries that may match the criteria in
subsequent calls.

The C declaration for Lookup_Task () is

tid_type Lookup_Task (object,
char object [];
char type [J;

type, nm_TID, index)
/* Object Name */
/* Type Name */

Apple Confldenflal 2/20/89

tid type nm_TID;
unsigned short *index;

/* Name Manager Task Identifier */
I* Index */

The task identifier of the Name Manager is nm_ T ID, and may be obtained by using
GetNameTID (> for Name Managers on the Macintosh Il, or by sending an
ICC_ Get Cards message to the ICCM for Name Managers on NuBus cards.
Lookup_Task () returns the task identifier of the first process or task that matches the
criteria.

The following code shows how to look up all processes on the 'main logic board of the
Macintosh II computer:

short index;
tid_type tid;

index = O;
while ((tid = Lookup_Task ("=", "=", GetName'rID (), &index)) > 0)

printf ("TID %x Found \n", tid);

9· l 0 Apple IPC

/

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

The following example shows how to call Lookup_ Task from assembly language:

MOVE.W #0,INDEX initialize index
PEA INDEX address of index
MOVE.L TID,DO value of tid on stack
MOVE.L D0,-(A7) place on stack
PEA TYPE NAME address of type name
PEA OBJECT NAME address of object name
JSR Lookup_Task
ADDQ.W U6,A7 pop the stack
TST.W DO check if found
BNE.S 00,XXX jump if found

Open Queue()
Open Queue () assigns an IPC queue and returns the TID of the process that called
Open Queue, or zero if no queue could be assigned. This method allows you to set up
your own procedure to determine what to do while wailing on a blocking Receive; if
you do not want to use this mechanism, use a parameter of zero. This method also lets
you decide whether to cancel the outstanding Receive request or discontinue
communication with Apple IPC; that is, it is a way of letting you check for operator
termination.

This function must be called before any other call to IPC can be made. You can issue
either

D an AppleIPC CloseQueue request, or

o a KillRecei ve request

If the procedure issues an AppleIPC CloseQueue request and returns to the Apple
IPC driver, then the driver returns to the outstanding Receive request with a value
ofO. Issuinga KillReceive requestreturnsOtothe Receive request(no
message).

The C declaration for OpenQueue () is

tid_type OpenQueue(procedure)
void (*procedure) ();/*Procedure to execute while waiting*/

/* for blocking receive to complete. */

•:• Note: This parameter is required; use 0 if you do not want to call the procedure.

The form for the Open Queue macro is as follows, where P 1 is the address of the
procedure to execute while waiting for a blocking receive to complete:

[Label] Open Queue Pl

Apple IPC services 9-11

MCP Developer's Gulde - Final to Production

Pl can be specified as aregister(AO-A6, DO-D7), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an LEA instruction to specify the location of a
long word containing the desired value.

Receive()
Receive () returns the highest priority message from the message queue of the
process that matches the specified criteria.

TheCdeclarationof Receive() is

Apple Confidential 2/20/89

message *Receive(mID, mFrom, mCode, timeou~, compl)
unsigned long mID; /* Unique message ID to wait on */
tid_type mFrom; /* Sender address to wait on *I
unsigned short mCode; /* Message code to wait on */
long timeout; /* Time to wait in major ticks *I

/* before giving up */
void compl () ; I* Address of a completion routine *I

The first three parameters (mID, mFrom, and mCode) are selection criteria used to
receive a specific kind of message. These parameters may be set to match either a
specific value, to match any value (by specifying OS_ MATCH_ ALL), or to match no
value (by specifying OS - MATCH_ NONE) ..

The fourth.parameter is the timeout value. A timeout value of 0 waits forever for a
satisfying message. A negative value returns either a satisfying message or 0
immediately, and a positive value waits that many ticks for a satisfying message to
arrive.

•!• Note: If a completion routine is not specified, the !PC Receive performs in
exactly the same way as the MR-DOS Receive primitive.

The fifth parameter is the address of a C completion routine. This parameter ls
required for Apple IPC, and changes the way the Receive request performs. This
fifth parameter must be either the address of a completion routine or zero, if no
completion routine is desired. When this completion routine parameter is non-zero,
the call to Receive always returns immediately with a result of 0.

The completion routine will be called with a parameter of type 'message *'. If the
completion routine is passed a pointer of zero, a timeout occurred.

•!• Note: It is possible for the completion routine to be called before the Receive
actually returns. The purpose of the completion routine is to provide a mechanism
by which the Macintosh II application can continue to execute without having to wait
for a message. This is necessary because the current version of the Macintosh II
operating system is not a multitasking operating system; therefore, the application
cannot cease to process events. Under MR-DOS, a process can do a blocking
Receive and permit other processes to execute.

9-12 Apple IPC

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

(

Table 9-2 describes the results from various settings of the timeout parameter in major
ticks for the Receive call. The results column describes what is returned to the
Receive request and completion routine, as well as when the completion routine is
called.

Table 9-2
State table for the Receive call

Time- Comple- Message Immediate Subsequent
out ti on available results results
value routine

<O No(O) No Returns 0 to the Receive None
request

No(O) Yes Returns message to None
Receive request

Yes No The Apple !PC driver returns None
0 to the Receive request;
the completion routine is
not called

, Yes Yes The Apple !PC driver calls None

t ,,
the completion routine with
the message, after which
the driver returns 0 to the
Receive request

=O No(O) No Waits until it gets a message, Waits for a message;
then returns a message to the OpenQueue routine is
Receive request called continuously.

No(O) Yes When a message arrives, None
returns a message to the
Receive request

Yes No Returns 0 to the Receive None
request

When a message arrives, the
driver calls the completion
routine with the message

Yes Yes Returns a message to the None
completion routine and
returns 0 to the Receive
request

Apple IPC services 9-13

MCP Developer's Guide • Final to Production Apple Confidential 2/20/89

Table 9-2 (continued)

Time- Comple- Message Immediate Subsequent
out tlon available results results
value routine

>O No(O) No Wails for a message OpenQueue routine is
does not arrive called continuously

If the time interval that you
specify expires, then it returns
0 to the Receive request

No(O) Yes Message returns to the None
Receive request

Yes No Immediately returns 0 to the None
Receive request and the
task continues executing

When a message comes in,
the driver calls the completion
routine with the message

If the timeout expires, the
driver calls the completion
routine with 0

Yes Yes Returns a message to the None
completion routine; returns
0 to the Receive request

When using completion routine, you should observe the following guidelines:

o Never use a blocking Receive in a completion routine.

o Be cautious about starting the next asynchronous Receive within a completion
routine, as recursion can be deadly.

o Remember that completion routines might sometimes be called as the result of an
interrupt; anticipate the unexpected!

Only one Receive may be outstanding on a given queue at a time; attempted
additional Receive routines will return errors. Receive returns a 0 in the event of
one of the following:

o no message is available (either timeout or non-blocking)

o a negative error code in the case of an error

o or a positive pointer to the received message buffer

9-14 Apple IPC

(
MCP . Developer's Gulde - Final to Production

+ Note: You must exercise caution when testing the pointer returned by Receive
for a negative value to ensure that thC test is valid

The form for the Receive macro is:

[Label] Receive Pl, P2, P3, P4, PS

where P 1 is the message ID match code, as follows:

P 2 = the sender address match code
P 3 = the message code match code
P 4 = the timeout code
P s = the completion routine address

Pl through PS can each be specified as a register(A0-A6, D0-07), an immediate
(#<abs-expr>), or any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word containing the desired value.

Results returned

Whenever you call the Receive request on Apple IPC, you get one of three results
returned from the IPC driver:

0 0

o message

o negative number (indicating an error)

Table 9-3 lists the two errors only that can be returned when a Receive request is
made to Apple IPC.

Table 9-3
Errors returned

Error

NoQueueErr

Number Description

-64 Error code for no more queues or bad queue

Apple Confidential 2/20/89

QueueBusy -6S If Receive is already outstanding on queue

Error~ (NoQueueErr) is returned if the queue number (110) of the task doing the
Receive request is bad. A queue number is bad if it is not within the range oflegal
queue numbers or is not open (either OpenQueue was not done or CloseQueue
was done).

Error -05 (QueueBusy) is returned if an attempt is made to do a Receive rt-quest
for a particular queue number (110) when a request is already outstanding. Refer to
the section earlier in this chapter on OpenQueue for more information.

Apple IPC services 9-15

MCP Developer's Guide • Final to Production

To check for an error in the message pointer returned by a Receive request in C
language, you must cast the message pointer to long before checking to see if the
pointer is negative.

Warning

Failure to do so will result In a system crash.

The following code checks the message pointer to see if an error code was returned:

message *msqptr;

msqptr •Receive (0, O, 0, O, 0);

if ((long) msqptr < 0)

/* Process error code */

else

/* No error, process message */

Register_Tosk()

Reqister_Task () allows a process to register itself with the Object Name and Type
Name specified, using the Name Manager. If the process should be visible only to
other processes on the Macintosh II main logic board, local_ only is set non-zero.
If the process should be seen by tasks on other cards, then 1 oc al_ only should be
set toO. Reqister_Task () returns a non-zero value if the process was registered; if
not, 0 is returned.

The C declaration for Register_ Task() is

typedef boolean short;
char Reqister_Task (object, type, local_only);
char object (]; /*Object Name*/
char type (] ; I* Type Name *I

Apple Confidential 2/20/89

boolean local_only; /* If Local Visibility Only */

9-16 Apple IPC

(

(_

MCP Developer's Gulde - Final to Production

The following code provides an example of how to register a process:

if (!Register_Task ("my_name", "my_type", 0))
printf("Could not Register Process");

The following example shows how t~ call Register_ Task from assembly language:

MOVE.L #:LOCAL, -(A7) value of local on stack
PEA TYPE NAME address of type name
PEA OBJECT_NAME address of object name
JSR Register_Task
ADDQ.W U2,A7 pop the stack
TST.B DO check if register ok
BNE.S OK jump if OK

Send()
Send () allows you to send a message to the destination address specified in the
message. send () places a message on the queue of the process specified by the
message field, mTo. The message is placed in the queue in priority order (from
highest to lowest). It is assumed that all fields have been filled in (mFrom, mTo,
mCode, and so forth) when this call is made.

The C declaration of Send () is

void Send(mptr

Apple Confidential 2/20/89

message *mptr; /* pointer to message buffer */

If a message is undeliverable, it is returned to the sender with the message status,
mStatus, setto0x8000andthe message code, mCode, having bit 1<<15 set.

The assembly-language form for the Send macro is as follows, where Pl is the
address of the message buffer to be sent:

[Label] Send Pl

P 1 can be specified as a register (AO-A6, D0-07), or can use any 680oo addressing
mode valid in an LEA instruction to specify the location containing the address of t11e
message buffer to be sent.

Apple IPC services 9-17

MCP Developer's Gulde - Final to Production

Swap TIO()

SwapTID ()swaps the mFrom and mTo fieldsofamessagebuffer.

The C declaration of. SwapTID () is

void SwapTID(mptr)

Apple Confidential 2/20/89

message *mptr; /* pointer to message buffer */

The assembly-language form for the SwapTID macro is as follows, where !? l is the
address of the message buffer:

[Label] SwapTID Pl

Pl can be specified as a register (AO-A6, D0-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

9-18 Apple IPC

(

Chapter 10

Using the Forwarder with
Apple IPC

MCP Developer's Guide • Final to Production

This chapter describes the Forwarder, tells how the Forwarder sends messages in
conjunction with Apple IPC, provides instructions on installing the Forwarder, lists
the messages and errors ccx:ies used by the Forwarder, and provides example code.

What is the Forwarder?
The Forwarder is a mechanism for the interchange of messages between tasks running
on MCP-based cards under MR-DOS and applications over the AppleTalk network
system; the Forwarder communicates via the AppleTalk Data Stream Protocol
(ADSP). (For more information on ADSP and other AppleTalk protocols, refer to
Inside AppleTalk.) Both multiple server tasks and requests from multiple client
applications can be hand.led by the Forwarder.

The Forwarder functions as a gateway, converting ADSP messages to MR-DOS
messages. Figure 10-1 shows the message path when a client machine sends data over
the AppleTalk network system to the server. A server is a NuBus-compatible
Macintosh computer with an MCP-based smart card installed. A client machine is
any Macintosh computer that incorporates code in its application to use the
Forwarder. Both the server and client are part of the AppleTalk network system.

The data travels over the Apple Talk network system though the main logic board on
the Macintosh II to communicate with the task running on the MCP card.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 10-1
Message paths using the Forwarder

10-2 Using the Forwarder with Apple IPC

Apple Confidential 2/20/89

(

Task ruc:iing
in serve:- mode
on MCP .:::ud

Main log:.: board----

Apple IPC
plus Forwarder

Fig.JO-I -COMP (LIO)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

Apple Talk D
network system

----;10 ~

ID

_o
-----;o

ID

0

AppleTalk application
usingADSP

MCP Developer's Gulde • Final to Production

How the Forwarder sends messages
The Forw.arder sends messages when:

o a task running under MR-DOS on an MCP card wants to send data to an application
on another machine over the AppleTalk network system

o an application running on a machine on the AppleTalk network system wants to.
send data to a task running under MR-DOS

The following figures show the processing sequence using the Forwarder when an
application running on a client machine wants to send a message to an MCP card (the
server) over the AppleTalk netWork system.

Within the file FWD are two resources that can be used for configuring the Forwarder:

o svcn, which tells the Forwarder how much memory to preallocate for the server
and for communications. The Forwarder will attempt to call for this number of free
services and free (validate?) communication memory available.

o sys z, which can be changed to inaease the size of the system heap. For more
information, refer to the section about the !NIT Resource 31 in Inside Macintosh,
Volume 5, "System Startup Information•.

Initialization

Figure 10-2 lists the initialization process for the Forwarder, the server, and the client
respectively.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 10-2
Initialization process using the Forwarder

Apple Confidential 2/20/89

How the Forwarder sends messages 10-3

··'"/

(

Initialimiou process
using the Forwarder

Server
MR-DOS on
theMCPCatd

Forwarder
on the Macintosh ll

I
I MJC ll boots up;

E.::id of FOCW3tder
initiali1.ation

: Forw31der registets
: name with MR-DOS
1 Name Manager

-------------~---------------
MCP wd gets loaded;
server starts executing
on card

Uses Name Manager
Lookup_Task ()

IO request to
find Forwarder

Sends
MC OPENSERVER
IO Forwarder to
register name
on Apple Talk

I End of Server
initiali:r.ation - -------------~---------------!

Server open 1

for busines.s l
I
I
I
I
I
I
I
I
I

End of Client
initialization - -------------~---------------

FigJ0-2 -COMP (Ll6)
MCP Developer's Guide
App:e Computer, Inc.
101-CE ZAVARRO
llbJ.s::rator 88
GEORGE M. VRANA

Oieot
on the AppleTalk
necwork system

Issues an NBP Look Up
for servers on the -
AppleTalk netWork system

Opens an ADSP oonnection
to the Forwarder via
ADSP driver request

nomud processingfo/Joro; ...

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

The Forwarder registers its name with the Name Manager using the
Register _Task() routine using the Object Name "Forwarder" and Type Name
"ADSP ". The server task issues a MR-DOS Name Manager Lookup_Task () request
to find the TID of the Forwarder .

The server task then registers its name with the Forwarder with an MC_ OPENSERVER
call, which the Forwarder acknowledges. The Forwarder then registers the server's
name using the Name Binding Protocol (NBP) Look_ Up call (refer to Inside
AppleTalk for more information). The application on a client machine finds the
Forwarder also using the NPB Look_Up call.

Normal processing using the Forwarder

Figure 10-3 illustrates normal processing using the Forwarder. This set of messages are
repeated as long as the server and client want to communicate with each other.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 10·3
Normal processing using the Forwarder

The application on a client machine on the network initiates a connection to the
Forwarder using ADSP; the application then sends a message (or messages) to the
Forwarder. The Forwarder generates a Connection lD to identify the ADSP
connection when the connection is established

The Forwarder then sends the message to the server using the MC_ READO AT A
message code and wails for a reply from the server. At this point, the server knows t..1e
Connection ID (which identifies the client application).

•!• Note: Messages are sent one at a time in either direction. Before a second message
can be sent, the sender must wait for an acknowledgement. There can be one
MC_ READ DATA and one MC_ SENDDATA outstanding per connectio:i at any one
time.

10-4 Using the Forwarder with Apple IPC

(

Normal processing
using the Fonvarder

Server
MR-DOS on
theMCP Card

Server sends data
to client via
the Forwatder using
MC_SENDDATA

Server sends
acknowledgement
of receiving data from
the Forwatder
MC_READDATA+l

FigJ0-3 -COMP (U6)
MCP Developer's Gu.ide
Apple CompUler, /nc.
JOYCEZAVAR.RO
/lbutra1or 88
GEORGE M. VRANA

Forwarder
on the Macintosh II

Sends dara to server
: using MC_READDATA
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Forwarder sends
the data to the
client via ADSP

Forwarder sends reply
to server using
MC_SENDDATA+l

Cliatt
on the AppleTalk
network system

Client sends data via
ADSP to the Forwarder

Oient receives dara

end of processingfollo1J.6. · ·

MCP Developer's Guide - Final to Production

The server prepares a reply and sends it back to the Forwarder in an MC_ SENDDATA
~ge code, after which the Forwarder sends MC_SENDDATA+l to reply to the
server. The Forwarder then sends the message over the AppleTalk network system to
the requesting application on the client machine.

Apple Confidential 2/20/89

+ Note: The server can send data acknowledgement (MC_ READ DATA+ 1) either before
or after the server sends data using MC_ SENDDATA, depending on how code for
the server and client is written.

Completing communication with the Forwarder
Figure 104 shows how the client completes communication and terminates the
connection.

+ Note: In actuality, the server and Forwarder wait continuously for more connections
from other clients.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 10·4
End of processing using the Forwarder

The client closes the ADSP connection; the Forwarder sends MC_ CLOSECONNECT to
the server; the Server sends a reply to the Forwarder using MC_ CLOSECONNECT+ 1.
The server and Forwarder wait for another connection to be requested.

At any point, the server can discontinue its availability by sending an
MC_ CLOSESERVER messageto the Forwarder. The server acknowledges that ne
server has closed down, and closes any or all ADSP connections from a client that are
associated with this server.

Using the Forwarder 10-5

(

(

(

End of processing
using the F-orwarder

Server
MR-DOS on
theMCPCard

I
I
I

Server sends reply 1

to the Forwarder using :
MC CLOSECONNECT+ 1 I

- I

Forwarder
on the Macintosh II

Fo!Wllrder sen~
MC CLOSECONNECT
to the server

71ie server and f 01WfJrrier wail /or
anolher amnec:Jion ID be requested

- --------------,-----------------
Server shuts down ' I
operation using :
MC CLOSESERVER I

Fi.g.104 -COMP (ll6)
MCP Di!Yeloper's Guide
Ar-'"'J'le Computer, Inc.
JOYCE Z4VARRO
ll~traJor 88
GEORGE M. VRANA

I
.I
I
I
I
I

Fo!W2.rder sen~ negative
reply that the server has
closed down using
'MC_CLOSESERVER+8000
(hex)

The Fo1W2.rder doses any
or all ADSP connections
from a client associated
with this server

Oieot
on the AppleTalk
network system

Qient closes the
ADSP connection

MCP Developer's Guide - Final to Production

Using the Forwarder
This section describes how to install the Forwarder, lists the messages you need to use
the Forwarder, and provides examples of code to use the Forwarder for both the client
machine and server machine in the transaction.

This section also describes the errors returned by the Forwarder.

Installing the Forwarder
The Forwarder is code that resides in memory on the Macintosh II above Buf Pt r.
This code is provided on the MCP distribution disk inthe file : Forwarder: FWD. The
Forwarder is installed by an INIT31 resource On the same manner as the Apple IPC
driver) during start-up of the Macintosh.

To install the Forwarder:

1. Move the file FWD into the System Folder of the Macintosh II.

2. The Forwarder uses both the Apple IPC driver and ADSP, an Init file. Place both of
these files in the System Folder of your Macintosh II at this time, if you have not
already done so.

3. Reboot.

Messages used by the Forwarder
Table 10-1 lists the messages used by the Forwarder, and the direction in which the
message is sent Each of these messages is more fully described after the table.

Table 10-1
Messages used by the Forwarder

Name Direction of message

MC_CLOSECONNECT Forwarder to the server

MC_CLOSESERVER Server to the Forwarder

MC ECHO Forwarder to the server

MC OPENSERVER Server to the Forwarder

MC READDATA Forwarder to the server

MC_SENDDATA Server to the Forwarder

10-6 Using the Forwarder with Apple IPC

Apple Confidential 2/20/89

(

(

MCP Developer's Gulde - Final to Production

MC_CLOSECONNECT

The Forwarder uses the MC_ CLOSECONNECT message to tell the server task that the
specified client has closed the connection with the server.

The message parameters for MC_ CLOSECONNECT are as follows:

mCode
mOData[O]
mOData[l]

MC CLOSECONNECT
Connection Identifier
Reason connection closed
= 1 (if connection failed)
• 0 (if connnection closed normally)

The reply parameter for MC_ CLOSECONNECT is as follows:

mCode MC_CLOSECONNECT + l

MC_CLOSESERVER

The MC - CLOSE SERVER message is sent by the server task to the Forwarder to tell the
Forwarder that the server is shutting down. The Forwarder closes all connections and
unregisters the server's name on the Appletalk network system.

The message parameter for MC_ CLOSE SERVER is as follows:

mCode MC_CLOSESERVER

The reply parameter for MC_CLOSESERVER is as follows:

mCode MC_CLOSESERVER + l

MC_ECHO

The MC_ ECHO message is sent from the Forwarder to all server tasks every 30 seconds
to test if the servers are still running. Each server must reply to the message to let the
Forwarder know it is active.

The message parameter for MC_ ECHO is as follows:

mCode MC ECHO

The reply parameter for MC ECHO is as follows:

mCode MC ECHO + l

Apple Confldentlal 2/20/89

Using the Forwarder 10-7

MCP Developer's Guide - Final to Production

MC_ OPENSERVER

The MC OPENSERVER message is sent from a server to the Forwarder to tell the
Forwarder to register iis name on the Appletalk network system begin accepting ADSP
connections on the server's behalf.

The message parameters for MC OPEN SERVER are as follows:

mCode

mFrom

mDataPtr

mDataSize

MC OPENSERVER

Server's task ID (used by Forwarder to
uniquely identify the servers)

Pointer to NBP EntityName structure with
type, object, and zone filled in

size of EntityName structure

The reply parameters for MC_ OPEN SERVER are as follows:

mCode

mStatus

MC_READDATA

MC OPENSERVER + 1

Result

The MC_READDATA message is sent by the Forwarder to the server task when data is
received from a client. The data is not copied onto the server's card. The server must
use CopyNuBus to access the data. The server must reply to this message to free up
the Forwarder's data space and receive further messages.

•:• Note: The connection ID is first given to the server using MC_READDATA. When
the server gets a connection ID that it does not recognize, the server knows it is a
new connection and should do any connection initialization necessary (for
example, adding the ID to a list of open connections).

The message parameters for MC READDATA are as follows:

mCode

mFrom

mDataPtr

mDataSize

mOData[OJ

mOData[l]

MC READDATA

Forwarder's task ID

Pointer to data

Length of data

Connection ID

End-of-message flag
= 1 (if end of message)
=O (not end of message)

•:• Note: Refer to ADSP documentation for more information on the end-of-mc.ssage
flag.

10-8 Using the Forwarder with Apple IPC

Apple Confidential 2/20/89

MCP Developer's Guide • Final to Production

The reply parameters for MC_READDATA are as follows:

mCode MC READDATA + l

MOData[O] Connection ID

MC_SENOOATA

· The MC_SENDDATA message is sent by the server to send data toADSP clients. The
Forwarder will send a reply to this message when it is able to accept more data from the
server.

The message parameters for MC_SENDDATA are as follows:

mCode

mFrom

MC SENDDATA

Server's task ID

Pointer to data

Apple Confidential 2/20/89

mDataPtr

mDataSize Length of data Oimited to DATA_BUFFER, which is
580 bytes)

mOData[O] Connection ID

mOData[l] End-of-message flag
=1 (if end of message)
=O (not end of message)

•:• Note: Refer to ADSP documentation for more information on the end-of-message
flag.

The reply parameters for MC_SENDDATA are as follows:

mCode

mOData[O]

mStatus

MC SENDDATA + l

Connection ID

Result

Using the Forwarder on the server machine
Following is an example of a task that gets downloaded to the MCP card; this example
shows how the server establishes a server task and uses the Forwarder. The task must
send the MC_ OPEN SERVER message to the Forwarder; the server uses the Tyoe Name
and Object Name to register its name on the AppleTalk network system.

•!• Note: On the lines highlighted in bold, you should use your own Type Name and
Object Name.

Using the Forwarder l 0-9

MCP Developer's Guide • Final to Production Apple Confidential 2/20/89

I*
*
*

FWDExample.c MR-DOS forwarder example.

* Copyright © 1988, 1989 Apple Computer, Inc. All rights reserved.

* * In this example, the server receives data from a client. The
* server changes uppercase letters to lowercase letters, and lowercase
* letters to uppercase letters, then sends the data back to the client
* using the Forwarder.
*I

#include "os.h"
#include "managers.h"
#include "mrdos.h"
#include "siop.h"
#include "AppleTalk.h"
#include "ADSl?.h"
#include "FWD.h"

pascal void illegal()
extern Ox4afc;

tid_type fwd_tid;

FWDExample ()
{

message
long
short
EntityName
long

*msg;
finish;
done;
ent;
mid;

printf("FWD Example starting.\n");

fwd_tid • GetFWDTID();

if (! fwd_tid)
{

/* Get ~he forwarder task ID

printf("Couldn't find forwarder.\n");
StopTask(GetTID());

10-10 Using the Forwarder with Apple IPC

*I

/

(
MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

/* Fill in NBP entity structure */

ent.objStr.length = 4;
BlockMove("TYPE", ent.objStr.text, 5);

I* Enter your Type Name *I
ent.typeStr.length = 7;
BlockMove("OBJECT", ent.typeStr.text, 8

I* Enter your
) ;

Object Name *I

ent.zoneStr.length = 1;
BlockMove("*", ent.zoneStr.text, 2) ;

/* Send OPENSERVER request to forwarder

msg GetMsg();
msg->mTo = fwd_tid;
msg->mCode = MC_OPENSERVER;
msg->rnDataPtr = &ent;
msg->rnDataSize = sizeof{EntityName);
mid = msg->mid;
Send(msg) ;
msg = Receive(0, O, MC_OPENSERVER+l, 0) :
if (msg->mStatus)
{

printf("MC_OPENSERVER failed.status
msg->mStatus);
FreeMsg(msg);
StopTask(GetTID{));

FreeMsg(msg) ;

finish GetETick() + 5 * 60 * GetTickPS();

*/

%x\n",

/* Stick Around for 5 minutes
done = O;
while (! done)
{

msg =Receive(0, 0, 0, finish - GetETick()) ;
/* Wait for message or timeout */

if (msg)
switch(msg->mCode)
{

case MC CLOSECONNECT:
/*- Connection Failed/Closed */
printit{ "CLOSECONNECT", msg) ;
Reply(msg, 0) ;
break;

*/

case MC READDATA: /* Received data from
/* client via FWD*/

printit ("READDATA", msg) ;

Using the Forwarder 10-11

MCP Developer's Guide • Final to Production Apple Confldentlcl 2/20/89

}

else /*
{

dosomething(msg);
Reply(msg, 0) ; /* Let forwarder know */

/* we've read the data */
break;

case MC SENDDATA+l: /* write data(from the */
- /* server to the client) */

printit("SENDDATA (Reply)", msg) ;
FreeMem(msg->mDataPtr); /* Forwarder*/

/* is done with buffers; free them */
FreeMsg (msg) ;
break;

case MC ECHO: /* Tickle Message */
printit("ECHO", msg);
Reply(msg, 0) ; /* Let forwarder know */

/* we are alive */
break;

default:
print it ("BAD", msg) ;
Reply(msg, Ox8000);
break;

if timeout */

msg GetMsg();
msg->mTo = fwd_tid;
msg->mCode = MC_CLOSESERVER;
Send(msg) ;
done = l;

printf ("FWD example finished! \n");

I* This example was adapted from GetPrintTID in printf.c */

static tid_type GetFWDTID ()
{

10-12

tid_type
struct ra GetCards
message
short
short

FWDTID = 0;

if (GetICCTID (T != 0)
{

FWDTID;
get_cards;
*msgptr;
index;
s;

if ((msgptr = GetMsg ())
return (FWDTID);

Using the Forwarder with Apple IPC

NULL)

(

MCP Developer's Gulde - Fincl to Production Apple Confidential 2/20/89

else
{

msgptr -> mCode = ICC_GETCARDS;
msgptr -> mDataPtr = &get_cards;
msgptr -> mDataSize = sizeof (struct ra_GetCards);
msgptr -> mTo = GetICCTID ();
Send (msgptr);

msgptr = Receive (OS_MATCH ALL, OS_MATCH_ALL, ICC_GETCARDS+l,
OS_NO_TIMEOUT) ;

if (msgptr -> mStatus == 0)
{

for (S = 0; (S < IC_MAXCARDS) && (FWDTID == 0); s++)
{

if (get_cards.tid[s) > 0)
{

index = 0;
FWDTID = Lookup_Task ("Forwarder", "ADSP",

get cards.tid[s], &index);
printf("FWDTID=%x; NMTID=%x\n", FWDTID,

get_cards.tid[s]) ;

FreeMsg (msgptr);

index = 0;
FWDTID =Lookup Task ("Forwarder", "ADSP", GetNameTID (),

&index); -
printf("Local: FWDTID=%x; NMTID=%x\n", FWDTID, GetNameTID()) ;

return (FWDTID);

printit(what, msg
char *what;
message *msg;
{

printf("---- %s\n", what);
printf(

mid= %08.8X mCode = %04.4X mStatus = %04.4X
mPriority = %04.4X\n",
msg->mPriority) ;

printf(" mFrom = %08.8X
mDataSize = %08.8X\n",
msg->mDataSize);

msg->mid, -:nsg->mCode, msg->mStatus,

mTo = ~08.8X mDataPtr = %08.8X
msg->mFrom, msg->mTo, msg->mDataPtr,

Using the Forwarder 10-13

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

printf(" mSData[O] = %08.8X mSData[lJ = %08.8X
mSData[2] = %08.8X\n", msg->mSData[O], msg->mSData[l],
msg->mSData[2J) ;

printf(" mOData[O] = %08.8X mOData[l) = %08.SX
mOData[2] = %08.SX\n", msg->mOData[O], msg->mOData[l],
msg->mOData[2]);

/* Replace the following with your code to process data */

dosomething(msg)
message *msg;
{

void

char
message
short i;

buffer[100];
*m;

CopyNuBus(msg->mDataPtr, buffer, msg->mDataSize+l) ;

printf("---- Data Received: %s\n", buffer) ;

for(i=O; i < msg->mDataSize; i++)
if ((buffer[i] >= 'a') && (buffer[i] <= 'z'))

buffer[i] = buffer[i] - 'a' + 'A';
else if ((buffer[i] >= 'A') && (buffer[i] <= 'Z'))

buffer[i] = buffer[i] - 'A' + 'a';

printf("---- Data Sent: %s\n", buffer) ;

I* Send processed data to client */

m = GetMsg();
m->mTo = fwd tid;
m->mDataPtr = GetMem(msg->mDataSize);
m->mDataSize = msg->mDataSize;
BlockMove (buffer, m->mDataPtr, msg->mDat.3Size+l) ;
m->mCode = MC_SENDDATA;
m->mOData[O] = msg->mOData[O];
m->mOData[l] = l; /* EOM flag */
Send (m l;

Reply(m, stat)
message *m;
unsigned short stat;
{

tid_type temp;

10-14 Using the Forwarder with Apple IPC

(

(

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Hf def

if (m)
{

if (m->mStatus == Ox8000)
FreeMsg (m) ;

else
{

DEBUG

temp = m->mFrom;
rn->mFrorn = rn->rnTo;
rn->mTo = temp;
rn->mStatus = stat;
if (m->mStatus Ox8000)

m->mCode I= Ox8000;
else

m->mCode I= 1;

printf("Sending reply (%x) to %x, status = %x\n",
m->rnCode, m->rnTo, rn->rnStatus);

#endif DEBUG
Send(rn);

Using the Forwarder from the client machine

The following is an example of MPW code that you can put in your client application. The first line
shows the command to run the code; the second two lines show the output on a client machine on the
network.

FWDExarnple TYPE OBJECT "ThIS is ThE FiRSt EXarnpLe"

Sending 'ThIS is ThE FiRSt EXampLe'
Received 'tHis IS tHe firsT exAMPlE'

Using the Forwarder 10-15

MCP Developer's Guide - Final to Production Apple Confldentlal 2/20/89

The following code shows the source code for the MPW tool to access the server on an MCP card (I'his
code is currently not on the MCP distribution disks.)

/*
*
*

FWDExample.c MPW Tool to access "server" on MCP card.

* Copyright <O 1988, Apple Computer, Inc. All rights reserved.

*
* The tool is accessed by:

*
* FWDExample TYPE OBJECT "MESSAGE"

*
* TYPE is the NBP type that the server has registered as.
* OBJECT is the NBP object that the server has registered as.
* MESSAGE is the data that the server is to act upon.

*
*/

#include
#include
#include
#include
#include

"Types.h"
"stdio.h"
"Memory.h"
"ADSP .h"
"AppleTalk.h"

"# FWDExample type object \"message\"\n"
200 /* Size of our ADSP queues */

#define
#define
#define

USAGE
Q_SIZE
WEIRD_SIZE 200 /* NBP wants big buffer for some reason

short
EntityName
char
short
TPCCB
Ptr
DSPPBPtr
DSPParamBlock
short

dspRefNum; /* ADSP ref. num. from OpenDriver
ent; /* NBP entity name */
adr[WEIRD SIZE]; /* AddrBlock buffer
count; - /* Number of nodes found by NBP
ccb; /* ADSP Connection Control Block
sendQ, recvQ, attn; /* ADSP queues */
openPB; /* Open parameter block */
pb; /* Param block for ADSP requests
re; /* Place to put result codes */

*/

*/
*I

*/

*/

char buffer[200]; /* Buffer for processed data *I

main(argc,argv)
int argc;
char *argv[];
{

10-16

short MyLookupNarne();

if (argc < 3)
{

fprintf(stderr, "##Not enough pararneters.\n");
fprintf(stderr, USAGE);

Using the Forwarder with Apple IPC

*I /

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

exit (1);

if ({strlen(argv[l]) < 1) II (strlen(argv[l]) > 30)) /* TYPE */
{

fprintf{ stderr, "## \"type\" must be from 1 to 30 characters
in length. \n") ;

fprintf(stderr, USAGE) ;
exit{l);

}

if {(strlen(argv[2]) < 1) 11 (strlen(argv[2]) > 30)) /* OBJECT */
{

fprintf(stderr, "## \"object\" must be from 1 to 30 characters
in length.\n");

fprintf(stderr, USAGE);
exit(l);

}

if ((strlen{argv[3]) < 1) I I (strlen(argv[3]) > 100))
/* MESSAGE */

fprintf(stderr, "#:it \"message\" must be from 1 to 100
characters in length.\n");

fprintf(stderr, USAGE);
exit(l);

/* open MPP first */

if ((re= MPPOpen()) != noErr)
{

fprintf(stderr, "MPP Open failed. err=%d\n", re);
fprintf(stderr, USAGE) ;
exit{l);

/* open ADSP */

if ((re "" OpenDriver (" .DSP", &dspRefNum)) != noErr)
{

fprintf(stderr, "ADSP Open failed. err=%d\n",rc);
fprintf(stderr, USAGE) ;
exit(l);

/* allocate ADSP pointers */

sendQ = NewPtr(Q SIZE);
if (sendQ == OL)-
{

fprintf (stderr, "Memory failed. \n") ;

Using the Forwarder 10-17

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

10-18

fprintf(stderr, USAGE) ;
exit (1);

recvQ = NewPtr(Q_SIZE);
if (recvQ == OL)
{

fprintf(stderr, "Memory failed.\n");
fprintf(stderr, USAGE) ;
exit(l);

attn= NewPtr(attnBufSize);
if (attn == OL)
{

fprintf (stderr, "Memory failed. \n");
fprintf(stderr, USAGE);
exit(l);

ccb = (TPCCB)NewPtr(sizeof(TRCCB));
if (ccb == OL)
{

fprintf (stderr, "Memory failed. \n");
fprintf(stderr, USAGE) ;
exit(l);

openPB = (DSPPBPtr)NewPtr(sizeof(DSPPararnhlock));
if (openPB == OL)
{

fprintf (stderr, "Memory failed. \n");
fprintf(stderr, USAGE);
exit(l);

I* Fill in Entity block to be passed to NBPLookup */

ent.objStr.length = strlen (argv[l]);
BlockMove(argv[l], ent.objStr.text, ent.objStr.length+l);
ent.typeStr.length = strlen(argv[2]);
BlockMove(argv[2), ent.typeStr.text, ent.typeStr.length+l);
ent.zoneStr.length = l;
BlockMove("*", ent.zoneStr.text, ent.zoneStr.length+l);
count = 0;

if (!MyLookupName(&ent, adr, 10, 5, &count))
I* Find our server */

Using the Forwarder with Apple IPC

(

(

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

fprintf(stderr, "##Lookup failed.\n");
fprintf(stderr, USAGE);
exit(l);

if (count < 1)
{

/* If none found */

fprintf(stderr, "##Couldn't find the server.\n");
fprintf(stderr, USAGE);
exit(l);

/* Initialize connection end */

pb.ioCompletion = OL;
pb.ioVRefNum = 0;
pb.ioCRefNum = dspRefNum;
pb.csCode • dspinit;
pb.u.initParams.ccbPtr = ccb;
pb.u.initParams.userRoutine = OL;
pb.u.initParams.sendQSize = Q_SIZE;
pb.u.initParams.sendQueue = sendQ;
pb.u.initParams.recvQSize = Q_SIZE;
pb.u.initParams.recvQueue = recvQ;
pb.u.initParams.attnPtr = attn;
pb.u.initParams.localSocket = O;
re= PBControl(&pb, false);
if (re != noErr)
{

fprintf(stderr, "## ADSP Init failed.\n err•%d", re);
fprintf(stderr, USAGE);
exit(l);

I* Request a connection */

openPB->ioCompletion = OL;
openPB->ioVRefNum = 0;
openPB->ioCRefNum = dspRefNumr
openPB->csCode = dspOpen;
openPB->ccbRefNum = ccb->refNum;
(openPB->u.openParams.remoteAddress) .aNet = ((AddrBlock *)adr)->aNet;
(openPB->u.openParams.remoteAddress) .aNode =

((AddrBlock *)adr)->aNode;
(openPB->u.openParams.remoteAddress) .aSocket

((AddrBlock *)adr)->aSocket;
(openPB->u.openParams.filterAddress) .aNet = O;
(openPB->u.openParams.filterAddress) .aNode = OxOO;
(openPB->u.openParams.filterAddress) .aSocket = OxOO;

Using the Forwarder 10· 19

MCP Developer's Guide • Final to Production Apple Confldenflal 2/20/89

10-20

openPB->u.openParams.ocMode = ocRequest;
openPB->u.openParams.ocinterval = 4;
openPB->u.openParams.ocMaximum • 4;
re= PBControl(openPB, false);
if (re != noErr)
{

fprintf(stderr, "## ADSP Open failed. err ... %d\n", re);
fprintf(stderr, USAGE);
exit(l);

fprintf(stderr, "Sending '%s'\n", arqv(3]);

/* Send data to server */

pb.ioCompletion = OL;
pb.ioVRefNum • 0;
pb.ioCRefNum • dspRefNum;
pb.csCode a dspWrite;
pb.u.ioParams.reqCount • strlen(arqv(3]) ·t- l;
pb.u.ioParams.dataPtr • argv[3);
pb.u.ioParams.eom "" 1;
pb.u.ioParams.flush = l; /* flush now */
re• PBControl(&pb, false);
if (re != noErr)
{

fprintf(stderr, "## ADSP Write failed. err=%d\n", re);
fprintf(stderr, USAGE);
exit(l);

/* Read processed data from server */

pb.ioCompletion = OL;
pb.ioVRefNum = 0;
pb.ioCRefNum - dspRefNum;
pb.csCode • dspRead;
pb.ccbRefNum = ccb->refNum;
pb.u.ioParams.reqCount = 101;
pb.u.ioParams.dataPtr = buffer;
re"" PBControl(&pb, false);
if (re != noErr)
{

fprintf(stderr, "## ADSP Read failed. err=%d\n", re);
fprintf(stderr, USAGE);
exit(l);

Using the Forwarder with Apple IPC

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

short

fprintf (stderr, "Received '%s '\n", buffer) ;

/* Close ADSP connection */

pb.ioCompletion = OL;
pb.ioVRefNum = 0;
pb.ioCRefNum = dspRefNum;
pb.csCode = dspRemove;
pb.ccbRefNum = ccb->refNum;
re= PBControl(&pb, false);
if (re ! • noErr)
{

fprintf(stderr, "## ADSP Remove failed. err== %d\n", re);
fprintf(stderr, USAGE);
exit(l); /*arbitrary exit code*/

/* deallocate ADSP pointers */

DisposPtr(sendQ);
DisposPtr(recvQ);
DisposPtr(attn);
DisposPtr(openPB);
DisposPtr(ccb);

/* close ADSP driver */

if (CloseDriver(dspRefNum) !• noErr)
{

fprintf(stderr, "## ADSP Close failed. err= %d\n", re);
fprintf(stderr, USAGE);
exit(l);

exit(O);

,.

MyLookupName(srvrEnt, adrBufPtr, interval, count, numgotten)
EntityName *srvrEnt;
char *adrBufPtr;
short interval, count;
short *numgotten;
{

NBPparms
char
OSErr

nbp;
entBufPtr[200];
re;

/* set up entity */

Using the Forwarder 10-21

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

NBPSetEntity(entBufPtr, &(srvrEnt->objStr),
&(srvrEnt->typeStr), &(srvrEnt->zoneStr));

/* look for specified server */
nbp.interval = interval;
nbp.count = count;
nbp.parm.Lookup.retBuffPtr = adrBufPtr;
nbp.parm.Lookup.retBuffSize = WEIRD_SIZE;
nbp.parm.Lookup.rnaxToGet = 1;
nbp.NBPPtrs.entityPtr = entBufPtr;

re= PLookupNarne(&nbp, false);
if (re != noErr)
{

fprintf (stderr, "Lookup failed. err=%d\n", .re);
fprintf(stderr, USAGE);
return(false);

/* return number found */

*nurngotten a nbp.parm.Lookup.nurnGotten;

return (true) ;

Message transactions when using the Forwarder

The following shows the flow of MR-DOS messages between a typcial server and the Forwarder before,
during, and after the transaction.

FWD Example starting.
FWDTID=4; NMTID=2

ECHO
rnid = 00005SF7 mCode = 2002 rnStat.us =

mDataPtr
00000000
00000000

0000 rnPriority = 0000
mFrorn = 00000004 rnTo = 0B000003
mDataSize 00000000 rnSData[O]
rnSData[2] = 00000000 rnOData[O]
rnOData [2] 00000000
ECHO
rnid = OOOOSSFB rnCode = 2002
mFrorn = 00000004 mTo 08000003
mDataSize 00000000 rnSData[O]
rnSData[2] 00000000 mOData(O]
rnOData (2) 00000000

10-22 Using the Forwarder with Apple IPC

= 00000000
mSData{l] = 00000000
mOData[l] = 00000000

mStatus = 0000 rnPriority = 0000
mDataPtr = 00000000
00000000 mSData[l]
00000000 rnOData[l]

00000000
00000000

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

(

READ DATA
mid = 000058FC mCode = 1006 mStatus = 0000 mPriority = 0000
mFrom = 00000004 rnTo 08000003 mData?tr = 00026AAO
mDataSize OOOOOOlA rnSData[O] = 00000000 mSData[l] 00000000
rnSData[2] = 00000000 mOData[O] 00000002 rnOData(l] = 00000001
rn0Data[2] = 00000000
Data Received: ThIS is ThE FiRSt EXampLe
Data Sent: tHis IS tHe firsT exAMPlE
SENDDATA (Reply)
mid = FB00003A mCode = 1009 mStatus = 0000 mPriority = 0000
mFrom = 00000004 mTo 08000003 mDataPtr = F806DF18
mDataSize = OOOOOOlA rnSData(O] 00000000 mSData[l] 00000000
mSData[2] = 00000000 mOData[O] 00000002 mOData(l] = 00000001
mOData[2] = 00000000
CLOSECONNECT
mid = OOOOSBFD rnCode = 1004 rnStatus = 0000 mPriority = 0000
mFrom = 00000004 mTo 08000003 mDataPtr = 00000000
mDataSize 00000000 mSData[O] 00000000 mSData[l] = 00000000
rnSData[2] 00000000 mOData[O] 00000002 mOData[l] 00000000
m0Data[2] = 00000000
ECHO
mid = 00005C01 mCode = 2002 mStatus = 0000 mPriority = 0000
mFrom = 00000004 rnTo 08000003 mDat.: •. ~ tr = 00000000

.r.:. mDataSize 00000000 rnSData[O] 00000000 rnSData [1] 00000000 l rnSData[2] = 00000000 mOData[O] 00000000 rnOData[l] = 00000000
rn0Data[2] = 00000000
ECHO
mid = 00005C05 rnCode = 2002 rnSta·:us = 0000 mPriority = 0000
mFrom = 00000004 rnTo 08000003 mDat:i.-·tr = 00000000
mDataSize 00000000 rnSData[O] 00000J00 rnSData[l] 00000000
rnSData[2] = 00000000 rnOData[O] 00000000 rnOData [1] 00000000
rn0Data[2] = 00000000
ECHO
rnid = 00005C09 mCode = 2002 rnStatus = 0000 mPriority = 0000
mFrorn = 00000004 rnTo 08000003 mDataPtr = 00000000
mDataSize 00000000 rnSData[O] = 00000000 rnSData(l] 00000000
mSData[2] = 00000000 rnOData[O] 00000000 mOData[l] = 00000000
rn0Data[2] = 00000000
ECHO
rnid = OOOOSCOD rnCode = 2002 rnStatus = 0000 mPriority = 0000
mFrorn = 00000004 rnTo 08000003 mDataPtr = 00000000
mDataSize 00000000 mSData[O] 00000000 rnSData[l] 00000000
rnSData(2] 00000000 mOData[O] OOOOGJOO mOData(l] = 00000000
m0Data[2] 00000000

(' Using the Forwarder 10-23

MCP Developer's Gulde • Final to Production

ECHO
mid • 00005Cll mCode = 2002
mFrom = 00000004 mTo = 08000003
mDataSize = 00000000 mSData[OJ
mSData[2] = 00000000 mOData[OJ
m0Data[2) = 00000000
ECHO
mid = OOOOSClS mCode = 2002
mFrom = 00000004 mTo = 08000003
mDataSize = 00000000 mSData[OJ
mSData[2] = 00000000 mOData[O]
m0Data[2) = 00000000
ECHO
mid • OOOOSC19 mCode = 2002
mFrom = 00000004 mTo • 0B000003
mDataSize = 00000000 mSData[O]
mSData[2] = 00000000 mOData[OJ
m0Data[2) = 00000000
ECHO
mid = OOOOSClD mCode = 2002
mFrom = 00000004 mTo = 08000003
mDataSize = 00000000 mSData[O]
mSData[2) = 00000000 mOData[OJ
mOData[2) = 00000000

FWD example finished!

Errors returned by the Forwarder

Apple Confidential 2/20/89

mStatus = 0000 mPriority = 0000
mDataPtr = 00000000
00000000 mSData[l] = 00000000

= 00000000 mOData[l] = 00000000

mStatus = 0000 mPriority = 0000
mDataPtr = 00000000

= 00000000 mSData(l] = 00000000
= 00000000 mOData[l] = 00000000

mStatus = 0000 mPriority = 0000
mDataPtr = 00000000

= 00000000 mSData[l] = 00000000
= 00000000 mOData[lJ = 00000000

mStatus = 0000 mPriority = 0000
mDataPtr = 00000000

= 00000000 mSData[l] 00000000
= 0000<'000 mOData[l] = 00000000

Table 10-2 lists the errors returned by the Forwarder, and briefly describes each.

10-24 Using the Forwarder with Apple IPC

(
MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

Table 10·2
Errors returned by the Forwarder

Error

FWE_DupServer

FWE_NoServer

FWE_Write

FWE_NoConnect

FWE_Overf low

FWE_NoSMemory

FWE_NoSListen

FWE_NoReqister

Description

Only one server can be opened per MR-DOS task.
(Attempted to open more than one.)

Forwarder did not find a server registered under the current
task ID.

Attempted to issue an MC_ SENDDATA before the Forwarder
was flllished processing the previously issued MC_ s END DATA
for this connection.

The connection ID specified was not found.

The maximum data size of 580 byteS (DATA_BUFFER) was
exceededby MC_SENDDATA. -

Could not get memory on the Macintosh II to open server.

The ADSP listener failed.

The NBP name registration failed. (This error most likely
occurred due to a duplicate server name, or impro1erly
filled in EntityName structure.)

Using the Forwarder 10-25

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89

10-26 Using the Forwarder with Apple IPC

(

Chapter 11

Troubleshooting Guide

MCP Developer's Gulde - Final to Production

This chapter describes the illegal instructions and debugger calls that can occur when
using MR-DOS and the Apple IPC driver, and lists error codes and messages that may
be returned for both MR-DOS and the Apple IPC driver.

-

•> Note: This chapter assumes you have a working knowledge of the M68000
microprocessor architecture and instruction set.

What happened?
During development, you will likely encounter crashes or hangs from time to time.
Here's what to do when either of those situations occur:

o To determine the possible cause of a system crash, look at the load map ofthe code
executing on the card, or ac the supervisor stack for the Macintosh II.

o When the system hangs, you must "hunt and discover" to find where there is a
possible problem in the code. On a smart card, check the task control blocks; on
the Macintosh II, check the supervisor stack.

•:• Note: To fmd the task control blocks, check the pointer named gTaskTable in
the array within gCommon.

The sections that follow may help you determine what has occurred and provide
direction for correcting the problem.

Troubleshooting MR-DOS
If the operating system code on the MCP smart card appears to have stopped running,
MR-DOS may have crashed or may be in a hung state.

Apple Confidential 2/20/89

Where do you start troubleshooting.' The value gCommon. gMa j orT ick provides an
indication of whether or not the MR-DOS kernel is still functioning. The value
gCommon • gMa j o rT ick is the major tick counter within MR-DOS, and is
incremented at the beginning of every major tick cycle.

If gCommon. gMa jorTick is incrementing, the system has not crashed, but may be
hung. Go to the section in MR-DOS Hangs called "gCommon.gMajorTick Is
Incrementing•.

If gCommon. gMa jorTick is not incrementing, MR-DOS may either be hung,
detected a problem and intentionally crashed by executing an illegal instruction, or
crashed due to an exception (such as a bus error). The following information will help
determine if MR-DOS has crashed.

On execution of an exception or hardware error interrupt, a MR-DOS handler dumps
the current register set to the "crash area", a portion of card memory starting at Ox0600
on the smart card. Table 11-1 lists the format of the crash area.

11-2 Troubleshooting Gulde

(

(

MCP Developer's Gulde - Final to Production

Table 11-1
Crash area format

Memory Location +0 +4

Oxo600 DO Dl

Oxo610 D4 D5

Oxo620 AO Al

Oxo630 A4 A5

Oxo640 SR PC

Oxo650 trap number

where S SP is the Supervisor Stack Pointer

SR is the Status Register

PC is the Program Counter

USP is the User Stack Pointer

tB?

+8 +C

D2 D3

D6 D7

A2 A3

A6 SSP

E1a;J

Flag is a byte that starts at address Ox064A that contains the value OxFF when
an error has occurred. Clearing this byte causes the registers to be reloaded
with the saved registers and the system restarted.

trap number is the 68000 exception ID

Examine the Fl a g byte at 0x064A. If it contains an OxFF, the system has crashed; go
to the section on MR-DOS Crashes. Otherwise, the system is hung; go to the section
on MR-DOS Hangs to determine the cause of the hang.

•:• Note: When Flag is 0, this area of memory has no meaning. Specifically, this
area of memory does not show the current registers or state of anything when
this Flag is 0.

Using dumpcard
To assist in troubleshooting during your development efforts, you can use the MPW
tool dumpcard to display a list of values within the MR-DOS operating system.

Dumpcard dumps the card and formats the output to the standard output you specify
in MPW. There are two versions of dumpcard; the version for the MCP smart card is
found in the file :MR-DOS:Examples:MCP:. The version for the AST card is found in
the folder :MR-DOS:Examples:AST_ICP.

Apple Confidential 2/20/89

Using dumpcard 11-3

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The syntax of the dwnpcard tool is

dumpcard(-d fwa lwa) [-e] [-h) [-m] [-p] [-r) [-s sl s2 .. . sn] [-t] (-v]

where -d fwa lwa dumps the context of card memory from •fwa" to
"lwa" {fwa/lwa in hex)

-e

-h

-m

-r

-s sl s2 .. . sn

-t

-v

do not display 68000 exception vectors

try to halt processor (if not already halted)

do not display the task's message queue

do not display registers (if processor halted)

dump only the cards in the specified slots (the default
is all cards found).

do not dump task tables

display version infonnation

The following example shows how to dump the contents of an MCP smart card in slot
B. Use the MPW tool dumpcard in the folder :MR-DOS:Examples:MCP and enter the
following string in the MPW worksheet:

dumpcard -s b -e

. In this example, the following information would be sent to the standard output you
specify in MPW (such as the Macintosh II screen).

***** Slot #B
Unable to display registers - processor running

Initial AS value FB00807C
Memory buffer list ptr .. FB01CF48
Slot address FBOOOOOO
Slot number OBOOOOOO
Time Base A014801C
Major Tick 00001265
CAP (Magic Number) 1CCA1940
CAP (Pointer) FB0009CC
CAP (Checksum) 17CA230C
Free message list FB0706E6
Unique Counter FB000037
Tick Chain FB00BB32
Idle Chain FB00BB38
Current Task Pointer FB07EAA8
Idle Loop Counter 0011E562
Task Table Pointer FB07EAF8
Error status 00000000

11-4 Troubleshooting Gulde

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Timeout queue FB070508
Priority Table Pointer .. FB07EFOO
Priority List FB07EFF8
Name Unregister pointer.FB0080C6
FWA of message area FB0705CO
LWA of message area FB07E850
Initial PC FB00C83E
FWA of initial code FB0086A8
LWA of initial code FB01CF48
Minor Tick Counter 00000000
Debugger Pointer 00000000
Debugger Comm Area 00000000
Release version 0100
Current Task ID OBOOOOOO
Minor I Major Cycle 0008
Ticks per Second 0013
Major Cycles defered OE02
Major Cycles skipped 0000
Page Latch FBOO
Name Task TID OBOOOOOl
ICC Task TID OB000003
Trace Task TID 00000000
Timer Task 0 TID Oa000002
Messages discarded 00
Major Flag ~ 00
Time Queue Flag 00
Debugger Flag 00

Task Table dump

** Task #0 (TCB = FB07EAA8)
Next Task (priority) ... FB07EAA8
Next Task (timeout) 00000000
Stack Buffer FB07E858
Heap Buffer 00000000
Program Counter FB0086AE
Stack Pointer FB07EA60
Code Segment 00000000
Data Segment 00000000
Start Parameters 00000000
Parent TID 00000000
Status Register 0004
Page Latch FBOO
Priority 00
Status 00
Task ID 0000
Message Q Head 00000000

Using dumpcard 11-5

MCP Developer's Guide • Final to Production

Message Q Tail •.••••••• 00000000
Blocked Timeout Value •• 00000000
Blocked Message ID •••.• 00000000
Blocked Message From •.• 00000000
Blocked Message Code ••. 00000000
----Stack (TOS 100 bytes)

FB07EA60: 00 00 00 01 00 00 00 01 00 00 FF FF 00 00
FB07EA70: FF 00 00 00 00 00 12 77 00 00 FF FF 00 00
FB07EA80: FB 07 EA A8 FB 00 09 E6 00 AE BF 20 FB 00
FB07EA90: FB 00 09 CC FB 00 BO 7C 00 00 00 00 FB 00
FB07EAA0: FB 07 EA FO 01 00 00 OA FB 07 EA A8 00 00
FB07EAB0: FB 07 EB SB 00 00 00 00 FB 00 B6 AE FB 07
FB07EAC0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FB07EADO: 00 04 FB 00 00 00 00 00 00 00 00 00 00 00
FB07EAE0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FB07EAFO: FB 07 EE FB 01 00 00 Bl FB 07 EA AS FB 07
FB07EB00: FB 06 F4 00 FB 06 E2 F8 FB 06 El 70 FB 06
FB07EB10: FB 06 CE EO FB 06 B9 DO 00 00 00 00 00 00
FB07EB20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FB07EB30: 00 00 00 00 00 00 00 00 00 00 00 00 cc. 00
FS07EB40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00
FS07EB50 :. 00 00 00 00 00 00 00 00 00 00 00 00 00 00

lbe above sequence is repeated for each active Task Control Block.

Ill this example, the current task ID string shows the value of OBO 0 O 0 0 0, which i:.. the
11D of the currently-running task. Refer to Table 11-2 to detennine the field name
imwhich this value was obtained by checking the name of the string(Current
hsk ID), then looking in the structure indicated (gCommon) in the file listed
IJ:dos. h) to determine the actual location (gTID).

11-6 Troubleshooting Guide

Apple Confidential 2/20/89

00 00
00 OD ••••••• w ••••••••
OA 90
BC 2C •••••.• I•. ,
00 00
EA 60 . . . x
00 00
00 00 • 0 ••••••••••••••

00 00
05 08
DO 68 ••••••••••• p ••• h
00 00
00 00
00 00
00 00
00 00

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 11-2 shows a cross reference to the field names, listed in alphabetical order to
the locations, structures, and include files in which the dumpcard fields are found

Warning
These structures may change in future versions; therefore. do not hard code
addresses for these locations.

Table 11-2
Dumpccrd cross reference

Dumpcard field name Location Structure Rlename

Blocked Message Code pQMagCode pTaskSave oa.h

Blocked Message From pQMagFrom pTaskSave oa.h

Blocked Message ID pQMsgID pTaskSave oa.h

Blocked TllileOUt Value pQTimeout pTaskSave oa.h

CAP (Checksum) gCAP.iCkaum gCommon mrdoa.h

t CAP (Magic Number) gCAP.iMagic gCommon mrdoa.h

CAP (Pointer) gCAP.iPointer gCommon mrdoa.h

Code mCode mMeaaage oa.h

Code Segment pCodeSeg pTaskSave os.h

Current Task ID gTID gCommon mrdoa.h

Current Task Pointer gCurrTask gCommon mrdos.h

Data Pointer mDataPtr mMeasage os.h

Data Segment pDataSeg pTaskSave os.h

Data Size mDataSize mMessage oa.h

Debugger Comm Area gDebugCom gCommon mrdoa.h

Debugger Flag gDebugOn gCommon mrdos.h

Debugger Pointer gDebugTemp gCommon mrdoa.h

Error status gError gCommon mrdos.h

Free message list gMsgFree gCommon mrdos.h

FW A of initial code gFwaCode gCommon mrdoa.h

FWA of message area gFwaMess gCommon mrdos.h

From mFrom mMessage os.h

(, Using dumpcard 11-7

MCP Developer's Gulde • Final to Production Apple ConfldenHal 2/20/89

",

Heap Buffer pHeapBuf pTaskSar.ve os.h

ICCTaskTID giccTask gCommon mrdos.h

ID mid mMessage os.h

Idle Chain gidleChain gCommon mrdos.h

Idle Loop Counter gidleLoop gCommon mrdos.h

Initial A5 value ginitAS gCommon mrdos.h

Initial PC ginitPC gCommon mrdos.h

LWA of initial code gLwaCode gCommon mrdos.h

LWA of message area gLwaMess gCommon mrdos.h

Major Cycles defered gMajorDefer gCommcn mrdos.h

Major Cycles skipped gMajorSkip gCommon mrdos.h

Major Flag gMajorFlag gCommon mrdos.h

Major Tick gMajorTick gCommc'n mrdos.h

Memory buffer list ptr gBuffList gCommon mrdos.h

Message Q Head pQHead pTaskSave os.h

Message Q Tail pQ~ail pTaskSave os.h

Messages discarded gMsgBucket gCommon mrdos.h

Minor I Major Cycle gMinPerMaj gCommon mrdos.h

Minor Tick Counter gMinorTick gCommon mrdos.h

Name Task TIO gNameTask gCommon mrdos.h

Name Unregister pointer gUnregTask gCommon mrdos.h

Nen mNext mMessage os.h

Next Task (priority) pNextTask pTaskSave os.h

Next Task (timeout) pNextTime pTaskSave os.h

Other Data mOData[O] rnMessage os.h
mOData[l] rnMess;;ige os.h
m0Data[2] rnMes!'age os.h

Page Latch gPageLatch gCommon mrdos.h

Page Latch pl?ageLatch pTaskSave os.h

Parent TID pl?arentTID pTaskSave os.h

Priority ml?riority rnMessage os.h

11-8 Troubleshooting Guide

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

Priority pPriority pTasJ...Save os.h

Priority List gPriList gCommon mrdos.h

Priority Table Pointer gPriTable gCommon mrdos.h

Program Counter pPcSave pTaskSave os.h

Release version gRelease gCommon mrdos.h

Sender Data mSData[O] mMessage os.h
mSData[l] mMessage os.h
mSData[2] mMessage os.h

Slot address gSlotAdd gConunon mrdos.h

Slot number gSlotNum gComrnon mrdos.h

Stack Buff er pStackBuf pTaskSave os.h

Stack Pointer pSpSave pTaskSave os.h

Start Parameters pStartParm pTasJ:.3ave os.h

Status mStatus mMess...ige os.h

Status pStatus pTaskSave os.h

Status Register pSrSave pTaskSave os.h

Task ID pTID pTaskSave os.h

Task Table Pointer gTaskTable gCommon mrdos.h

Tick Chain gTickChain gComrnon mrdos.h

Ticks per Second gTickPerSec gConunon mrdos.h

Time Base gTimeBase gCommon mrdos.h

Timeout queue gTimeout gCommon mrdos.h

Tme Queue flag gTQFlag gConunon mrdos.h

T mer Task TID gTimerTask gCommon mrdos.h

To mTo mMessage os.h

Trace Task TID gTraceTask gCommon mrdos.h

Unique Counter gUnique gCorrunon mrdos.h

Using dumpcard 11-9

MCP Developer's Guide - Final to Production

MR-DOS crashes
The following steps will help you determine if MR-DOS has crashed and aid in finding
the error:

1. First check location $64A to make sure that Flag is non-zero; that means MR
DOS has crashed

2. If MR-DOS has crashed (Flag is non-zero), then examine PC located at location
$642 and look at the address to which PC points.

•> Note: The long word at location $650 is the exception number, which caused the
68000 to crash. This number is valid only if Flag at $64A is non-zero.

If MR-DOS does not detect an error, use the loap map (described in the next section)
to determine what code was executing at the time of the error. If MR-DOS does detect
an error, it executes code that changes the error code to a symbolic name (described
in the section following that).

Using the load map
You can use the load map produced when building your download file to examine
locations on the card. Given a routine name in the load map, you can fmd where th.'!
routine actually exists on a smart card.

The starting addresses of the routines in MR-DOS in the load map are produced by the
linker (refer to makefile in the file MCP:Examples:MR-DOS: for an example).
The location gComrnon. gFwaCode contains the first word address of the code
containing the MR-DOS operating system that was downloaded to the card.

•> Note: The location 0 xO 0 0 0 0 0 on the MCP card contains the initial stack pointer.
The initial stack is at the high end of memory.

You can calculate the address of a routine within the load map in two ways. The first
method calculates the code loaded that contains MR-DOS, as follows:

Address of routine on the card

= gCommon.gFwaCode

+ length of each previously loaded code segment

+ 4 • number of previously loaded code segments

11-1 O Troubleshootlng Gulde

Apple Confidential 2/20/89

(
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

The second method of calculation works whether the downloaded code contains the
MR-DOS operating system or was dynamically downloaded, assuming that register AS
points to the Jump Table of the task. The second method calculates the code loaded to
a smart card running MR-DOS, as follows:

Address of routine on the card

... value at location 4(A5)

+4

+ length of each previously-loaded code segment

+ 4 • number of previously-loaded code segments

This second method of calculation assumes that 4(A5) is approximately the address of
the first code segment; this assumptbn may notalways be the case.

Using MR-DOS error codes
If the MR-DOS operating system detects an error, it executes the following code (the
PC at location $642 poitns to this code):

MOVE.L

illegal

terror code, gError

Within the common error-handling routines, MR-DOS changes the error code at
location gError to the symbolic name eBTHH, and the processor executes a tight
loop. Table 11-3 lists the symbolic names of the error codes found in the files
:MR-DOS:includes:mrdos.a and :MR-DOS:includes:mrdos.h.

Table 11-3
Error codes for MR-DOS

Value Symbolic Location Explanation
Name

$80000004 eBTHH hwbuserr (osinit) Bad thir.gs have happened

orhwerr (osinit) Bad things have happened

$80000002 eCAIT osinit Cannot allocate idle task

$80000005 eCAMS osinit Cannot allocate message
space

$80000006 eCAPR osinit Cannot allocate priority
table

$80000001 eCAPT osinit Cannot allocate process
table

MR-DOS crashes 11-11

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

$80000009 eFMSG tfreemsg (ostrap) Attempt to free bad message
buffer

$80000008 eMEMB tfreemem (ostrap) Attempt to free bad memory
buffer

$80000003 eNPTR pickTask (ostask) No processes to run

$80000007 eOVFL saveTask (ostask) Stack overflow detected

$8000000A eSMSG tsend (ostrap) Attempt to send bad
message buffer

$80000000 eSTPI tstoptask (ostrap) StopTask cannot be called
from interrrupt

$8000000C eSTil tstarttask (ostrap) StartTask cannot be called
from interrupt

$80000008 eTIMQ tsend (ostrap) Task not in timer queue

The symbolic names desaibed below Qisted in alphabetical order) match the error
code returned, desaibe potential problems, and suggest how to fmd a solution.

eBTHH - Bad Things Have Happened

Description: Eitherahardwareerror (hwerr) orhardwarebuserror (hwbuserr)
has occurred.

Solution: When the MR-DOS operating system encounters an error, it executes the
following code:

MOVE.L terrorcode, gError

illegal

To check the hardware error, examine the PC at location $642 on the MCP card to
see what code was being executed at the time of the problem. To check the hardware
bus error, examine location $650 on the MCP card to see what hardware trap
occurred.

•:• Note: Executing the illegal instruction causes the h we r r routine to be entered
The hwerr routine overwrites location gError with the error code t:!BTHH.

11-12 Troubleshooting Gulde

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

eCAIT - Cannot Allocate Idle Task

Description: The routine o s ini t executes an illegal instruction if it cannot allocate
a Task Control Block for the Idle task.

The main routine calls the osini t routine to initialize MR-DOS. The routine
osinit causes a crash if osinit cannot allocate enough memory for system data
structure. This crash indicates a serious shortage of memory.

Solution:

o Checktheparameterssentto osinit in osmain.c (stacksizeandnumberof
message buffers) and reduce as necessary.

o Make sure that the size of code is not too large for available memory. If necessary,
rewrite to reduce the size of the code.

o Make sure that the initial stack pointer value in card location OxOOOO is valid. If
invalid, download again. If still invalid after trying again, contact Apple Developer
Services.

eCAMS - Cannot Allocate Message Spece

Description: The routine osinit executes an illegal instruction if it cannot allocate
the MR-DOS message buffer pool.

The main routine calls the os ini t routine to initialize MR-DOS. The routine
osinit crashes if it cannot allocate enough memory for system data structures. This
crash indicates a serious shortage of memory.

Solution:

o Check the parameters sent to osinit in osmain. c (stack size and number of
message buffers) and reduce as necessary.

o Make sure that the size of code is not too large for available memory. If necessary,
rewrite to reduce the size of the code.

o Make sure that the initial stack pointer value in card location OxOOOO is valid. If
invalid, download again. If still invalid after trying again, conract Apple Developer
Services.

eCAPR - Cannot Allocate Priority Table

Description: The routine as init executes an illegal instruction if it cannot
allocate the MR-DOS Priority Table.

The main routine calls the osinit routine to initialize MR-DOS. The routine
osinit crashes if it cannotallocateenoughmemoryforsystemdata
structures. This crash indicates a serious shortage of memory.

MR-DOS crashes 11-13

MCP Developer's Gulde - Final to Production

Solution:
CJ Check the parameters sent to os ini t in osmain . c (stack size and number of

message buffers) and reduce as necessary.

CJ Make sure that the size of code is not too large for available memory. If necessary,
rewrite to reduce the size of the code.

CJ Make sure that the initial stack pointer value in card location OxOOOO is valid. If
invalid, download again. If still invalid after trying again, contact Apple Developer
Services.

eCAPT - Cannot Allocate Process Table

Apple Confidential 2/20/89

Description: IThe routine osinit executes an illegal instruction if it cannot allocate
the MR-DOS process table.

The main routine calls the o s ini t routine to initialize MR-DOS. The routine
osinit crashes if it cannot allocate enough memory for system data structures. Any
of these crashes indicates a serious shortage of memory.

Solution:

CJ Check the parameters sent to osinit in osmain. c (stack size and number of
message buffers) and reduce as necessary.

CJ Make sure that the size of code is not too large for available memory. If necessary,
rewrite to reduce the size of the code.

CJ Make sure that the initial stack pointer value in card location OxOOOO is valid. If
invalid, download again. If still invalid after trying again, contact Apple Developer
Services.

eFMSG - Attempt to Free Bad Message

Description: The routine t f re ems g is a kernel trap routine that performs the work
ofa FreeMsg request The tfreemsg routine executes an illegal instruction if it
determines that the pointer to the message it is attempting to free is invalid or the
message is not in use.

11-14 Troubleshooting Gulde

(

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Solution: Verify that the pointer passed to F reeMsg points to a valid, in-use
message buffer:

The message buffer is preceded by a four-byte header indicating whether the message
buffer is in use or available. The first three bytes contain the characters MSG. The
fourth byte contains one of the following:

o OxF s (where s is the slot number) ifthe message buffer is in use

o O x2 O (space) if the message buff er has never been used

o Ox 0 0 if the message buffer has been used but is now available for reuse

o 0 xFF if ICCM has obtained a message for internal use

o 0 xsF (where s is the slot number) if message is on the internal MR-DOS queue

<• Note: If the fourth byte is 0 x 0 0, the application code may be attempting to free a
particular message multiple times.

Diagnose and correct the user code.

eMEMB - Attempt to Free Bad Memory Buffer

Description: The t f reemem routine is a kernel trap routine that performs ·.he work
of a F reeMem request The t f reemem routine executes an illegal instruction if it is
invoked with a bad memory buffer pointer; that is, the pointer does not point to an
area of memory that was allocated by a previous GetMem request or an attempt was
made to free a memory buffer that was already freed. .

Solution: Check the pointer passed to the F reeMem request. Verify that it points to a
valid memory buffer.

The buffer address must be equal to or greater than the address stored in
gCommon. gBuffList. The eight bytes in front of the buffer area pointed to should
contain a memory buff er header of the form:

bHeader
bNext DS.L
bUsage DS.B
bSize DS.B
ENDR

RECORD 0
1
1
3

pointer to next header (32-bit NuBus form)
usage count : O=free; nonzero=allocated
Size of block in 8-byte chunks

If the buffer header is invalid, determine where in the user code the buffer header has
been corrupted and correct the code. If the buffer header appears to be valid, the
buffer pool links may be corrupted. Verify the buffer pool links as follows:

1. Get the pointer to the buffer pool area (gCommon . gBuf fLis t). This points to the
first buffer header (bHeader).

MR-DOS crashes 11-15

MCP Developer's Gulde • Final to Production

2. Get the pointer to the next memory block head.er from bHeader. bNext. This
pointer can also be determined by the following equation (except for the last buffer,
whichhasa bHeader .bNext pointer of zero):

bHeader.bNext = bHeader.bSize * 8 + bHeader

If bHeader • bNext does not equal the result of the calculation, a buffer header
has been corrupted.

Check bHeader .bUsage to determine if the buffer is free orallocated(see
header). There should not be multiple free adjacent buffers.

3. Repeat 2 until bHeader. bNext is zero, indicating that this is the last buffer, or a
buffer pool corruptk>n is discovered.

If a buffer pool corruption has caused the crash, diagnme and correct the user code
that caused the corruption. Otherwise, call Apple Developer Services.

eNPTR - No Processes to Run

Description: The pick Task routine chooses the next task to schedule when the
current task gives up the CPU. The pickTask routine executes an illegal instruction
if there is no task available for execution The Idle task should always be available for
execution.

Solution:

o Ensure that the Idle task is available for execution (no routine on the Idle Chain
should invoke a Receive reqliest). If a routine on the Idle Chain invokes
Receive, correct the code.

The MPW tool dumpcard can be used to determine the state of the Idle task at the
time of the crash.

1. Run dumpcard -e -r under MPW.

2. Locate the task control block for Task 0.

3. Check the Status line. Iftheword (Blocked) appears,theidletaskis
blocked from execution by a Receive request.

o If the Idle task appears to be available for execution, call Apple Developer Services
for help.

11-16 Troubleshootlng Gulde

Apple ConfldenHal 2/20/89

,/,.

(

(

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89

eOVFL - Stack Overflow Detected

Description: The s a veT ask routine stores the context of the current task when the
current task gives up the CPU. The saveTask routine executes an illegal instruction
if it detects an apparent overflow condition in the user's stack area.

The system inserts the string OVFL at the end of the user stack at user task startup time.
The task saveTask checks for this string to detennine if the user stack is corrupted;
pStackBuf within pTaskSave points to the OVFL string. The pStackBuf
pointer is a single element within pTaskSave, located in the me os. a and the me
os.h.

Corruption of MR-DOS global data structures can also cause this crash.

Solutlon: Correct the user code that causes the stack overflow. If a condition that
causes a stack overflow cannot be found, use the MPW dumpcard tool to display the
MR-DOS data structures and investigate for inconsistencies. Verify that:

o Current Task ID (gCommon. gTID) is valid

o Current Task Pointer (gCommon. gCurrTask) points to the Task Control Block
(TCB) of the currently-executing task

D TCB of current task is valid

eSMSG - Attempt to Send Bad Message Buffer

Description: The tsend routine is a kernel trap routine that performs the work of a
Send request. If ts end detennines that the pointer to the message it is attempting
to send is invalid or the message is not in use, t send executes an illegal instruction
and causes a crash.

Solution: Verify that the pointer passed to Send points to a valid, in-use message
buffer (refer to eFMSG for the crash solution). Diagnose and correct the user code

eSTPI - Stop Task cannot be called from interrupt routine

Description: The tstoptask routine checks that StopTask is not called from an
interrupt routine.

Solution: Correct the code that issued the StopTask request.

eSTTI - Start Task cannot be called from interrupt routine

Description: The tstart task routine checks that Start Task is not called from
an interrupt routine.

Solution: Correct the code that issued the Start Task request.

MR-DOS crashes 11-17

MCP Developer's Gulde - Final to Production

eTIMQ - Task Not in Timer Queue

Description: The tsend routine is a kernel trap routine that performs the work of a
Send request If the message being sent can satisfy an outstanding Receive
request, or the Receive request has specified a timeout value but ts end could
not locate the receiving task in the MR-DOS timeout queue, then t send executes an
illegal instruction. This crash indicates a corruption of the timeout queue.

Solution: Use the MPW Dumpcard tool to ~play the MR-DOS data structures and
investigate for MR-DOS timeout queue corruption:

1. Execute dumpcard -e -m -r from MPW.

2. Get the address ofTuneout queue. This is the address of the first Task Control Block
(TCB) on the timeout queue.

3 . Search for a TCB that is located at the timeout queue address

4. Get the address of the next TCB in the queue from the Next Task (timeout)
entry in the TCB.

5 . Search for the next TCB in the queue.

Apple Confidential 2/20/89

6. Repeat4 and5 until either Next Task (timeout) is 000 0 0000, indicating the
end of the timeout queue chain, or it points to a value that is not a valid TCB,
indicating a corruption of the timeout queue.

If the timeout queue is corrupted, locate the code that caused the corruption, and fix
it

Task Not Stopped

•:• Note: There is no associated error code for this problem.

Description: The dead.Man routine executes when a user task runs to completion.
dead.Man executes an illegal instruction if it cannot stop the task that has just
completed This crash indicates a problem in the MR-DOS kernel. The global area
gCommon may have been corrupted or the task control block for a particular user task
may have been corrupted.

SoluHon: If user code has not corrupted memory, call Apple Developer Services.

11-18 Troubleshooting Guide

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

MR-DOS hangs

If your system appears to be nonfunctional but you have detennined that your code
has not aashed, then your system may be hung; that is, the CPU may still execute
instructions, but the section of code being executed will never give up control of the
CPU.

Determining the cause of a hang can be a difficult process. This section provides
information and guidelines to use in investigating hangs. It does not cover all possible
problems.

When the system is healthy, a hardware timer routinely activates a timer interrupt
routine. The interrupt routine decrements a counter, gCommon. gMinorTick, each
time the routine is executed. Every ntb time the timer interrupt routine executes
(where n is a configuration parameter), the interrupt routine increments a counter,
gCommon. gMa j orT ick. Thus, gCommon. gMa j orT ick increments every ntb
decrement of gCommon .gMinorTick.

During major tick processing (whenever gCommon. gMajorTick increments), the
timer interrupt routine perfor~ the following:

o sets gCommon • gMa j o rF lag to non-zero to indicate major tick processing in
progress

o resets gCommon.gMinorTick

o executes any routines on the 1ick Chain are executed

o if the current task is running in slice mode, the system task scheduling mechanism
schedules a new task

o sets gMa j orF lag to zero to indicate the end of major tick processing

The health of the major and minor tick counters provides an indication of the state of
the system. First, examine the gMa j o rT i ck counter: if it is incrementing, go to the
section titled "gMajor1ick is incrementing"; otherwise, go to the section titled
"gMajor1ick is not incrementing".

MR-DOS hangs 11-19

MCP Developer's Guide - Final to Production

gMajorTick is not incrementing
The following sections are provided to help the user diagnose why the gMa j o rT ick
counter is not incrementing.

Any of the following events could stop the timer routine from incrementing
gCommon .• gMa j o rT ick (assuming the system has not crashed). These events are
referred to by letters for later reference to each event.

A . A piece of code disables interrupts and goes into an infinite loop (never exits).

B . Interrupt code servicing an interrupt of higher priority than the timer interrupt goes
into an infinite loop.

C . Interrupt code servicing an interrupt of higher priority than the timer interrupt may
not properly clear the interrupt, which then appears as a continuously-
generated interrupt.

D . A routine on the Tick Chain is infinitely looping.

E . A routine on the Tick Chain corrupts the system stack during tick chain processing.

F. A programmable hardware timer may have been improperly set up or accidentally
changed.

Determining the cause

To identify the cause of the problem, follow the steps listed below to detennine why
gMajorTick is not incrementing:

1. Examine the gCommon. gMinorT ick counter to see if it is changing.

o If it is not changing, the problem could be (A), (B), (C) or (F) of the above list.

o If it is changing, the problem could be (D) or (E).

2. Try each interrupt level once. Starting at the lowest interrupt level , change each
interrupt autovector to the value 0 x 0 0 0 0 O_ 0 0 1.

If an interrupt is continuously generated, an address error exception occurs at the
address of the autovector associated with that interrupt. Examine the Ox0600 area to
see if an address error exception occurred

The problem is (C) above if the code to clear the interrupt is wrong. Examine the
code to determine its correctness.

The problem is (B) above if the code to process an interrupt of lower priority than
the interrupt priority executing at the time the machine hangs is infinitely looping
(that is, never executing an RTE). Examine the supervisor stack for other interrupt
routine addresses to detennine if other interrupt code is currently being processed

11-20 Troubleshooting Gulde

Apple Confidential 2/20/89

(

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

Warning

Be sure to save your flies before trying the next step; the 68000 processor on the
smart card may crash the Macintosh II computer during this operation.

4 . If all else fails, execute the MPW Dumpcard tool to halt the smart card.

o Type dumpcard -h to halt the 68000 processor on the smart card

o Examine the PC stored in area Ox0600 to detennine what code was being executed
at the time of the halt.

o Examine the SR stored in area 0x0600 to detennine what interrupt level and state
(user/supervisor) the 68000 processor was in .

o Examine the appropriate stack (user/supervisor) and analyze the information
found to detennine the cause of the hang.

gMojorTick is incrementing
If gComrnon. gMajorTick is incrementing properly, the MR-DOS kernel is not
hung; that is, everything appears healthy from the point of view of the operating
system. However, one or more user tasks may be hung. Use the MPW tool Dumpcard
to examine the state of the hung system.

The following events that can cause one or roore tasks to appear hung. These events
are listed in the order of greatest probability of happening; check each cause in turn.

•:• Note: This list is not complete, and cannot be. The events listed here are provided
as guidelines for commonly-found problems.

1. A task has invoked a blocking Receive request for a message, but never receives a
message to satisfy the request; the task is never rescheduled for execution.

2. MR-DOS runs out of message buffers and a task loops on a GetMsg call, waiting
for a buffer.

3. A task may be running continuously in block mode without executing a blocking
Receive or a Reschedule; othertasks never get a chance to execute.

4. A task of high priority may be running in slice mode and not doing a blocking
Receive to relinquish the CPU; lower-priority tasks running in slice mode never
have a chance to execute.

5 . Code on the Idle Chain may be executing in an infinite loop.

Each of these are described more fully in this section.

MR·DOS hangs 11-21

MCP Developer's Guide • Final to Production

A task may be waiting on a blocking Receive request

If tasks appear to be behaving properly, but the task just refuses to do anything useful,
· check the following: Is this task doing a blocking Receive request with bad
matching aiteria? Is the task wailing for a reply that will never be received?

o Examinethe Current Task ID togetthenumberofthecurrently-executing
task.

Apple Confidential 2/20/89

o Examinetheblt psBlock in pTaskSave.pStatus. Thisbitissetifthetaskis
doing a blocking Receive request.

o Examine pTaskSave. pl?cSave. This is the PC where the task will begin execution
when its blocking Receive request is satisfied. The PC may be in the Receive
code in the glue library. The stack for this task should also be examined to
determine what routine the Receive code in the glue library will retum to.

o Examine pTaskSave. pSpSave. This is the saved user stack pointer. The user
stack has the following format when the task is not currently executing:

The top of the stack contains the registers for this task in the following order:
00-07, AO-A6, followed by the rest of the stack.

o Examine the code that the task is currently executing to determine what message the
task should be waiting for.

o Examinethebit psMAny in pTaskSave.pStatus. Thisbitisclearandthebit
psBlock is set if the task is waiting for a message with specific matching crileria.

o Examinethe pTaskSave.pqMsgID, pTaskSave.pQMsgFrom, and
pTaskSave. pQMsgCode fields. These rields are the specific matching criteria
fields when the bit psMAny is clear. Ensure that the matching criteria makes sense
given what message the task should be waiting for.

o Examine pTaskSave. pQHead. This pointer points at the first message buffer on
the task's Receive message queue. The pointer is zero if no message is waiting
on the task's Receive message queue.

o Examine any waiting messages for this task. Determine if any wailing message is the
message that the task should be waiting for. Detennine if any waiting message
signifies an error condition that indicates that the task will not receive the message it
is wailing for.

o If the task is waiting for a message that is from a task on another card, ensure that the
other card has not crashed or hung. Ensure that the other card has enough message
buffers. Ensure that the sending task on the other card is not itself hung.

o If the task is waiting for a message that is from a task on another card, attempt to
determine if intercard communication between the two cards is occurring.

11 ·22 Troubleshootlng Gulde

\ ,,'./

(
MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

The symbol gCommon. gCAP. Cal? tr points at the local intercard
communications area on this card. Use this pointer to find the intercard
communications area. The files :'MR-DOS IPC':iccmDefs.a and
:'MR-DOS IPC':iccrnDefs.h describe the intercard <;:ommunications area. These
files are for debugging purposes only.

The structure ca_Rec is the intercard communications area.

Thearrays ca_Rec.IFlags, ca_Rec.Addrs, and ca_Rec.l?trs are
indexed by the slot number of the card. The Macintosh II is treated as slot 0.

ca_ Rec • Addr s is an array of pointers to other intercard communications areas
that the local card knows about Make sure that both the local and the remote
intercard communications areas know about each other. lntercard
communications have been lost should the respective ca_Rec. Addrs field in
either card be zero.

ca _Rec. £>trs is an array of pointers to message bulfers. When two cards are
communicating, the respective ca_Rec. £>trs should contain the addresses of
message buffers. If they do not, a card may have run out of message buffers.

MR-OOS may have run out of message buffers

Check the pointer gCommon . gMsgF ree. This pointer is zero if no free message buffer
is available. Tasks cannot communicate with each other if MR-DOS runs out of
message buffers.

The following are po.ssible causes for running out of message buffers:

o An insufficient number of message buffers may have been specified as a parameter
to osinit.

o The message buffer free list pointed to by gCommon _ gMsgF ree has been
corrupted .

o A task is allocating message buffers but not freeing them with Fr eeMs g .

o The message buffers are accumulating on a task's Receive message queue and not
being processed by the task.

The following should be checked to determine the cause (see the previous descripti')n
of a message header):

o The symbol gCommon. gFwaMess points at the first byte of the message buffer
area. Look and see what is in the message buffers that are in use.

o Check the header of each message buffer to see if any are free. Any free message
buffer should be linked to the gCommon. gMsgFree message buffer list.

o Look at the task control blocks of the tasks to see if any task has a large number of
message buffers on ils Receive message queue.

MR-DOS hangs 11-23

MCP Developer's Gulde • Final to Production

A task may be running in Block Scheduling Mode

A task running in block scheduling mode must periodically do either a blocking
Receive request or a Reschedule request to let other tasks execute. A blocking
Receive request is a request with a ~itive or zero timeout value.

No odler task will be able to run if a task running in blodc scheduling axxle does not do
a blocking Receive request or a Reschedule request

In pazticular, the ICCM is responsible for forwarding messages to other car~. It runs
as a user task and will never execute if a task rum in blodc mode and never exeo.ites a
blocking Receive request ora Reschedule request

a Determine which task is currently executing.

o Examine its ccxie to ensure that it is periodically doing either a blocking Receive
or a Reschedule request to allow other tasks to execute.

Apple Contldentlal 2/20/89

A task may be executing in an infinite loop in Slice Scheduling Mode

A task running in slice mcxie must periodically execute a blocking Receive request
to allow lower-priority tasks to be scheduled for execution. Tasks of equal or higher
priority than the infinitely looping task will continue to run. Tasks of lower priority will
not execute.

Determine what tasks are currently executing. Examine the code for the .currently
·executing tasks to ensure that they are periodically doing a blocking Receive
request to allow the scheduling lower-priority tasks .

Code on the Idle Chain may be executing in an infinite loop

The Idle task executes the Idle Chain while in block scheduling mode.

o Determine which task is currently executing. If it is the Idle task, examine the code
on the Idle Chain to ensure that the code is not executing in an infinite loop.

Warning
Be sure to save your files before trying the following step; the 68000 processor on
the smart card may crash the Macintosh II computer during this operation.

o From MPW, type dumpc a rd -h to try to halt the 68oOO processor on the card.

o Once halted, examine the PC stored in area Ox<XiOO to determine the code that v.as
being executed.

11-24 Troubleshooting Guide

/

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Troubleshooting Apple I PC
This section describes the following events that can occur during Apple !PC
processing:

o illegal instructions

o DebugStr a-line trap calls that are executed

o hang conditions

To assist in troubleshooting during your development efforts, both error codes and
error messages have been integrated into the code for the Apple !PC driver. Error
messages are displayed on the screen when you use a debugger; error codes are not
displayed. A positive number indicates a message pointer; zero indicates no message
or error code; and a negative number indicates an error code.

Two types of errors can occur when calling the Apple !PC driver. The first type is more
informative and provides error codes or messages Gisted in the following tables).
When the Apple IPC driver detects a serious error, however, it executes the following
instructions:

!?EA
_DebugStr

MsgAddress Address of error message
Call Debug A-Trap

Table 11-4 lists the Apple IPC driver error codes returned from an Apple IPC
Receive request. F.ach of these codes is described, along with a potential solution.

Table 11-4
Error codes for Apple IPC driver

Value Name Explanation

-64 NoQueueErr No more queues available

-65 QueueBusy Receive already outstanding on queue

Table 11-5 lists the possible error messages from the !NIT resource that installs the
Apple IPC driver. F.ach of these messages is described in this section, along with a
potential solution.

, 1.?'\

MCP Developer's Guide - Final to Production

Table 11-5
Error messages from the INIT resource

Error message string

Apple IPC INIT31 - Unit Table full

Apple IPC INIT31 - No DRVR resource in file

Apple IPC INIT31 - Failed to open driver

Table 11-6 lists the possible error messages from the Apple !PC driver or Name
Manager. Each of these messages is described in this secrion, along with a potential
solution.

Table 11-6
Error messages from the Apple IPC driver/Name Manager

Error message string

Apple IPC Freemsg - Bad message pointer

Apple IPC Send - Bad message pointer or mFrom

Apple IPC

Apple IPC

Apple IPC

Missing resource: Apple IPC Entries

Unable to get space from system heap

Name Manager - Missing aipn resource:
NameManagerEntries

Apple Confidential 2/20/89

Apple IPC KillReceive/CloseQueue - timeout queue error

Apple IPC Send - timeout queue error

Apple IPC Periodic processing - timeout queue error

timeout queue error Apple IPC Receive

Apple IPC Receive Interrupt routine did blocking Receive

11-26 Troubleshooting Guide

(

(

MCP Developer's Gulde • Final to Production

Apple IPC crashes
This section describes the crashes that can occur with Apple IPC because of improper
parameter usage; corruption of either the Apple IPC driver or its internal data
structures; corruption of the Apple IPC internal data structures during request
execution or periodic processing; or during invocation of the Apple !PC driver or the
Apple IPC Name Manager.

Crashes during Macintosh II startup
During Macintosh n startup, an INIT31 resource found in the Apple IPC file installs the
Apple IPC driver and the Apple IPC Name Manager. The INIT31 resource may crash
by executing a Debugs tr call if it detects a serious problem These potential
problems are described in the following sections.

Apple IPC INIT31 - Unit Table full

Description: INIT31 executes a DebugStr call if there is no empty slot in the driver
Unit Table pointed to by UTableBase, indicating that there are too many drivers
configured in the Macintosh II system. (Refer to Inside Macintosh for more
information on the Unit Table.)

Solution: Boot from another system disk and either remove the Apple IPC file or
remove another driver.

Apple IPC INIT31 - No DRVR resource in file

Description: INIT31 executes a DebugStr call if it does not find a driver of resource
type 'DRVR' and resource name ' • IPC' in the Apple IPC file. This indicates that
the Apple IPC file is in error (due to improper file generation or data corruption).

Solution: Boot from another system disk and replace the 'Apple IPC' file.

Apple IPC INIT31 - Failed to open driver

Description: INIT31 executes a. Debugs tr call if the Apple !PC driver cannot be
opened successfully. This indicates there is a serious problem either with the Apple
!PC driver or with the Macintosh II operating system.

Solution: Boot from another system disk and replace the 'Apple !PC' file.

Apple Confidential 2/20/89

Apple IPC crashes 11-27

MCP Developer's Gulde - Final to Production

Crashes with improper parameter usage
This section desaibes the events relating to improper parameter usage that can cause
the Apple IPC driver to crash. These crashes occur when the Apple IPC driver detects
a bad message pointer passed as a parameter to a driver request.

The Apple IPC driver considers a message buffer pointer to be bad if it either does not
point to a message buffer or the message buffer pointed to is not in use.

Every message buffer is preceded by a four-byte header, indicating whether the
message buffer is in use or available. The flfSt three byces are the characters MSG. The
fourth byte is one of the following:

o 0 x2 0 (a space) if the message buffer has never been used

o OxO 0 if the message buffer has been used but is now available for re-use

o OxFO ifthemessagebufferisinuse

o Ox OF ifthe message is currently on an internal Apple IPC queue

o OxFF ifICCM has obtained a message for internal use

Apple IPC FreeMsg - Bad message pointer

Description: The Apple IPC driver executes a Debugs tr ·call if user code invokes a
F reeMsq request with a bad message pointer.

Solution: Diagnose problem, correct code, and retry.

Apple IPC Send - Bad message pointer or mFrom

DescrlpHon: The Apple IPC driver executes a Debug St r call if user code invokes a
send request with a bad message pointer.

Solution: Diagnose problem, correct code, and retry.

Crashes during driver initialization
The Apple IPC driver and the Apple IPC Name Manager can cause a crash due to
detection of data corruption during their initialization sequences.

11-28 Troubleshooting Gulde

Apple ConfldenHal 2/20/89

'·I·;·.
'I~

\

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Apple IPC - Missing resource: Apple IPC entries

Description: The Apple IPC driver executes a DebugScr call if it does not find a
resource of type 'aipn' and name 'Apple IPC Entries' in the Apple IPC file,
indicating that the Apple IPC file was either improperly generated or corrupted after
generation.

Solution: Boot from another system disk and either replace the Apple IPC file or add
the missing resource to the Apple IPC file using ResEdit. The resource consists of two
16-bit words as follows:

o The first 16-bit word is the stack size in bytes of the stack to be used when completion
routines are called (initial value is OxlOOO).

o The second 16-bit word is the number of message buffers to be permanently
allocated (initial value is Ox0064).

Apple IPC - Unable to get space from system heap

Description: At startup, the Apple !PC driver executes a Debugs tr call if it cannot
allocate a 12-byte non-relocatable block from the system heap. Either the Macintosh
has insuff'icient memory or used all of the available system heap.

Solution: This crash indicates a serious system problem (such as configured in the
System Folder or in the System file). Diagriose and correct the problem and retry.
You may need to reduce the number of applications, or remove or file the driver or
Init3 l resource.

Apple IPC Name Manager - Missing aipn resource: NameManagerentries

Description: The Apple IPC Name Manager executes a DebugStr call if it does not
find a resource of type 'aipn' and name 'NameManagerEntries' in the Apple
IPC file, indicating that the Apple IPC file was either improperly generated or
corrupted after generation.

The Pascal string 'NameManagerEntries' immediately follows the illeg-tl
instruction. This string can be used to verify that the crash is, in fact, the Name
Manager 'Missing .Resource' crash.

Solution: To correct the problem, add the missing resource co the Apple IPC file using
ResEdit The resource consists of a 16-bit word indicating the number of entries
allowed in the Name Manager's tables (the initial value is OxO 012).

Apple IPC crashes 11-29

MCP Developer's Gulde • Final to Production

IPC driver crashes during execution
The following events. cause a crash if the Apple IPC driver detects corruption of its
internal data structures during request execution or periodic processing:

Cl invocation of a KillRecei ve or a CloseQueue request

Cl receipt of a message that satisfies a previous Send or Receive with timeout
request

o a Receive request with a positive timeout

Cl interrupt routine did a blocking Receive

Apple IPC KillReceive/CloseQueue - Hmeout queue error

Descrfptton: The Apple IPC driver executes a Debugs tr call if there is an a

Apple Confldenttal 2/20/89

outstanding 'Receive with timeout' requestandeithera KillReceive ora
CloseQueue request is invoked, but the driver detects internal data corruption
during processing of the request.

Solution: Report the problem to Apple Developer Services.

Apple IPC Send - timeout queue error

Description: Theremaybesituationinwhicha 'Receive with timeout'
request is outstanding and a message that satisfies the Send request becomes
available. If the driver detects internal data corruption during processing of the Send
request, the Apple IPC driver executes a DeBugStr call.

Solution: Report the problem to Apple Developer Services.

Apple IPC Periodic processing - timeout queue error

Description: The Apple IPC driver executes a DebugStr call if a 'Receive with
timeout' request times out, but the driver detects internal data corruption during
processing of the timeout.

Following this call to DebugStr, the Apple IPC driver immediately and
unconditionally branches back to the code that called DebugStr. This can be used
to verify that the crash is, in fact, a timed-out Receive request crash.

Solution: Report the problem to Apple Developer Services.

11-30 Troubleshootlng Guide

(

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Apple IPC Receive - timeout queue error

Description: The Apple !PC driver executes a DebugStr call if a 'Receive with
timeout' request is outstanding and a message that satisfies the Receive request
becomes available, but the driver detects internal data corruption during processing
of the message.

Solution: Report the problem to Apple Developer Services.

Apple IPC Receive - Interrupt routine did blocking Receive

Description: The Apple IPC driver executes a DebugStr call if it detects an interrupt
routine that does a blocking Receive request. (lnlerrupt routines may not do a
blocking Receive request.)

Solution: Change your interrupt routine.

IPC Name Manager crashes during execution
The Name Manager executes an illegal instruction when it detects an internal problem.
Thesedonotcallthe DebugStr routine.

Name Manager Receive with Completion

Description: If the Apple IPC Name Manager issues a Receive request with a
completion routine specified and the request fails, the Name Manager executes an
illegal instruction.

Solution: Report the problem to Apple Developer Services.

Name Manager Receive Request Failure

Description: If the Apple !PC driver invokes a Name Manager Receive request with
a completion routine specified and provides an error indication instead of a valid
message buffer pointer, the Name Manager executes an illegal instruction.

Solution: Report the problem to Apple Developer Services.

Apple IPC crashes 11-31

MCP Developer's Gulde • Final to Production

Name Manager Receive Request without Completion

Description: Tf the Apple IPC Name Manager issues a nonblocking Receive
request with no completion routine specified and the request returns an error
indication instead of a valid message buffer pointer, the Name Manager executes an
illegal instruction.

Solution: Report the problem to Apple Developer Services.

IPC glue code crashes
This section describes troubleshooting guidelines for Macintosh II applications using
the Apple IPC driver.

Requests to the Apple IPC driver are made through a glue library. The glue library
provides an interface between the calling code and driver code, allowing future driver
changes to be made transparent to the user.

The glue library initializes on invocation of the first driver request (with a command
suchas GetMsg, Send, Receive, GetTid, andsoforth). Thegluelibrary
executes an illegal instruction if the Apple IPC driver could not be opened
successfully, or the glue library could not be properly initialized.

A glue library illegal crash is surrounded on either or both sides by multiple instances
of the following instructions:

LEA LocBlock, AO

JSR SetJmpT

illegal

Important

Apple Confidential 2/20/89

For crashes of this type. you must report the problem to Apple Developer
Services.

Detection of these instructions can be used to verify that the crash is, in fact, a glue
library crash.

11-32 Troubleshooting Gulde

(
MCP Developer's Guide - Final to Production

Apple IPC hangs
The Macintosh II may appear to be hung while executing Apple IPC request code.

Events causing Apple IPC hangs

The following sections describe two of the most common events that could result in
this condition.

Macintosh II 32-bit mode debugger hang

Description: The Apple !PC driver accesses the smart card's memory in 32-bit
memory mode. Older versions of some debuggers cannot handle bus errors; if the
Macintosh II is running in 32-bit mode, the debugger can freeze the Macintosh II.

The following events can cause a hang while the Macintosh II is in 32-bit mode:

o Invoking CopyNuBus with invalid source or destination addresses.

o A smart card hardware problem resulting in a bus error.

Solution: Be sure that your debugger can handle 32-bit mode, and reboot.

Unsatisfied blocking Receive request

Description: The Macintosh II will appear to hang if a task issues a blocking Receive
request for which no message is available.

Solution: The following are two possible solutions:

1. The Apple IPC driver periodically calls the routine specified in the OpenQueue
request while processing a blocking Receive request. This routine could issue a
KillRecei ve or CloseQueue request to cancel the blocking Receive
request.

2. A positive timeout value can be specified for the blocking Receive request. The
Apple IPC driver returns a zero message pointer should the time specified elapse.

Apple Confidential 2/20/89

Apple IPC hangs 11-33

MCP Developer's Guide - Final to Production

Examining the Apple IPC global area

You can examine the Apple IPC global area to determine the state of a task on the
Macintosh II that is using the Apple IPC driver. You'll want to examine the global area
when the Macintosh II does not appear to be hung and the task appears to be doing
nothing (rather than what it's supposed to be doing). Il?Cg is the global area,
described in the includes files Il?CgDef s. a or Il?CgDef s • h in the 'Apple IPC'
folder.

Examine the Apple IPC global area to determine if there

o is a task waiting for a message

o are any matching criteria that must be met for the task to receive a message

o are any messages currently queued waiting to be received by the task

o are any free message buffers

Finding the Apple IPC global area

There are many ways to find the Apple IPC global area; these methods get
progressively more complicated, but yield the same results. Therefore, only two of
these methods are discussed here.

The first method is the most simple and easiest to use. Simply issue a Get Il?Cg
request to the Apple !PC driver. The driver returns the starting address of the Apple
IPC global area.

11-34 Troubleshooting Gulde

Apple Confidential 2/20/89

(

Part Ill

Hardware Development

Part III, Hardware Development,provides:

o an introduction to the MCP card

o descriptions of the hardware
specifications

o overview of NuBus on the MCP card,
with functional examples

(

Chapter 12

MCP Card Specifications

MCP Developer's Guide • Final to Production

This chapter describes the hardware portion of the Macintosh Coprocessor Platform
and provides descriptions of the components of the MCP card.

Introduction to the MCP card
Apple Computer has developed a generic master/slave VO processor card. This
smart card has a full NuBus master/slave interface with a 68000 processor on board.
The 68000 can access any device on NuBus, and the memory and VO of the 68000 can
be accessed by any device on NuBus.

Figure 12-1 shows the MCP card being installed in a Macintosh II computer.

MSCNNNN
ART: NN x 8.5 pi
11 pi text to FN b/b

Figure 12~1
MCP cord

12-2 MCP Cord Specifications

Apple Confidential 2/20/89

(

(
Fig. 12-1 -COMP (LI I)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

MCP Developer's Gulde • Final to Production

Hardware description
There are approximately 26 square inches of prototyping space on a standard size
MCP card. This area is provided for developing an interface logic to connect to the
communications link of the developer's choice.

Electrically, the interface is the 16-bit 68000 processor bus. The added interface logic
should decode the 4000-9FFF address space for all accesses. Refer to the information
in the section describing the address map for additional details.

This section provides detailed desaiptions of the following elements of the MCP card:

o The .functional components, including processor, ROM, and RAM

o Address map

o Timer

o Reset

o Interrupts

o NuBus interface

Processor
The 1/0 Processor utilizes a 10 Megahertz 68ooo processor with no wait states for access
to onboard RAM. The 10 MHz clock is derived from the 10 MHz NuBus clock. All
access by the 68000 is implemented by a 16-bit data bus, with byte mode also
supported.

ROM

The 16-bit-wide ROM is implemented with two 256-Kilobit ROMS, yielding a 64-
Kilobyte ROM space. The ROM:

o serves as power-up code for the 68ooo
o provides a place for user firmware

o stores the NuBus ID data for the card

The ROM inserts one wait state when accessed by the on-board 68000. To the NuBus
interface, ROM appears as a full 32-bit-wide device, supporting 8-bit, 16-bic, and 32-
bit bus reads.

~ Note: Refer to the appropriate sections in Chapter 16 for information on requll'ed
resources for the MCP card and adding code to the ROM.

Apple Confidential 2/20/89

Hardware description 12-3

(,

,,
('·

(

MCP Developer's Guide - Final to Production

RAM
The card contains 1/2 megabyte of 16-bit-wide dynamic RAM. RAM is accessed by the
68ooo and NuBus. When any device is accessed via NuBus, the 68000 is locked out
from all access. RAM starts at location 000000, with the current 1/2 MB of RAM; the
last RAM address is 07FFFF. When the 68000 accesses onboard RAM, no wait states are
inserted.

To the NuBus interface, RAM appears as a full 32-bit wide device. RAM on the MCP
card supports 8-bit, 16-bit, and 32-bit bus operations.

The operating system requires approximately 15 Kb of memory on the MCP card.

Address map

Table 12-1 lists the various functions for the address spaces on the MCP card.

Table 12-1
Address map

Address Function

FFOOOO-FFFFFF ROM (with two 256-Kbit ROMs, 64 KB)

FOOOOO Write - Place 68000 in RFSET

EOOOOO-EFFFFF Test ROM (off card)

COOOOA Read -Set Interrupt !OP request

C00008 Read- Oear Interrupt !OP request

C00006 Read - Set Interrupt Host request

C00004 Read - Oear Interrupt Host request

C00002 Read-Oear Timer Interrupt

cooooo Read - Oear RFSET

cooooo Write - NuBus Extension Register

AOOOOO-BFFFFF NuBus

800000-9FFFFF 1/0 Interface Logic

400000-7FFFFF 1/0 Interface Logic

080000-3FFFFF Future RAM

000000-07FFFF RAM (with 1/2 MB of RAM)

12-4 MCP Card Specifications

Apple Confidential 2/20/89

MCP Developer's Gulde - Final to Production

Timer
The MCP card provides an internal 6.5536 millisecond timer. Every 6.5536 ms, a
le\ieI 1 interrupt occurs. This interrupt is cleared by reading location c 0 0 O 0 2.

+Note: If this interrupt is ignored for 3 ms, the next interrupt may not occur and a
clock tick will be at

Reset
The IOP can be placed in RFSET by writing location F 0 0 0 0 0 and placed out of reset
by reading CO 0 00 0. Any write to FXXXXX will place the 68000 in RFSET, and any
access to CXXXXX will take the 68000 out of RFSET.

+Note: When NuBus resets, the 68000 comes out of RFSET.

On power-on reset (NuBus reset), the first four accesses are fetched from the fJtSt four
R0M locations (that is, the execution address and the stack pointer). Under
"programmed• RESET, the aeidress and stack pointer are fetched from RAM, starting
at location 000000.

The start-up address vector in location 2 of the ROM must point to ROM address space
(FOOOOO-FFFFF).

Interrupts
Three interrupts are provided in the basic design: one for the timer, one for the
NuBus interface, and one for the 1/0 interface. Table 12-2 lists the interrupt priorities
and provides a brief description of each:

Table 12·2
Interrupt priorities

Interrupt

Timer

Nu Bus

Level Description

1 The 1/0 interface interrupt must remain asserted until the
software resets this interrupt request.

2 The !OP can interrupt the host by reading location Coooo6;
this interrupt is cleared by the host reading location C00004.

Apple Confldentlal 2/20/89

1/0 Interface 3 The !OP is interrupted by the host reading location COOOOA;
this interrupt is cleared by the 68000 reading location C00008.

Hardware description 12-5

,/

(

MCP Developer's Guide - Final to Production

NuBus interface
The NuBus interface provides for either master or slave operation. In mas~r mode,
the 680oo simply gains access to NuBus address space, and wairs until the operation is
complete .. In slave mode, the 68000 is "removed" from the internal bus while the
NuBus access is taking place.

Since the 68000 has an internal 16-bit bus, all bus cycles originating from the 68000 can
be either 8-bit or 16-bit operations. This includes NuBus operations, where the 68000
is the NuBus master and both 8-bit and 16-bit operations are supported

Special hardware has been included so that 32-bit access coming from NuBus will
function correctly. The hardware perfonns two 16-bit bus operations on the 68000 bus
whenever NuBus requests a 32-bit operation. Ma result, the card supports 8-bit, 16-
bit, and 32-bit NuBus transfers.

Important

Apple Confidential 2/20/89

Two 68000 bus cycles are required for a 32-bit NuBus operation. Therefore, you
should avoid using a 32-bit operation when only 16-bits are required, because of
the increased amount of time required for the extra 68000 bus cycle.

If the NuBus access cannot be completed, a bus error to the 68000 is reported

NuBus address space
Access to the 32-bit NuBus address space is provided by a 12-bit address extension
register. The most significant 12 birs of the NuBus address should be placed in this
register before accessing the NuBus address space. This write-only register is located
at location COOOOOO.

In addition, the hardware uses A20 in the address field (not used for address
calculation) to perfonn a read-modify-write cycle. Whenever a test-and-set
instruction is executed, A20 must be set true. A20 should be set false for all other
operations.

Acquiring the internal 68000 bus

An VO front-end can insert itself in the BR/BG/BGACK daisy chain between the
NuBus interface and the 68ooo. The VO front-end can take over the 68000 bus and
thus have full access to the resources on the card and Nu Bus. This gives the front-end
the ability to talk to anything in the system that is on NuBus.

12-6 MCP Card Specifications

MCP Developer's Guide • Final to Production

There is nothing in particular that the front-end must do the acquire NuBus; however,
if the front-end does not provide its own extension register, the NuBus extension
register must be loaded with the upper 12 address bits for any NuBus access. If the
front-end provides its own dedicated NuBus extension register, there will not be any
contention for the otherwise shared extension register.

+ Note: The Programmable Array Logic (PAL) listing "OMA Examplen in the next
chapter is provided as an example for developers who may want to include OMA
devices on the 68000 bus.

Design notes for NuBus
The following illustrations are provided to assist in your development efforts. Por
more details concerning NuBus, refer to Designing Cards and Drivers.

Important

Apple Confidential 2/20/89

These examples do not pertain specifically to the MCP card. but are provided to
assist you In designing your own NuBus Interface.

Figure 12-2 shows the function of various components, including arbitrating NuBus,
generating the 68000 cycle when NuBus owns the local bus, decoding the slot, and so
forth. ·

Figure 12-3 shows the gene.ration of 20MHz and lOMHz clocks from the Nu Bus clock.
Note that there is an equal delay from the NuBus clock for each of these cycles.

Figure 12-4 shows an example of a simple NuBus slave design, with explanatory notes.

Figure 12-5 shows the read and write liming cycles for the simple NuBus slave design
shown in Figure 12-4.

NuBus Interface 12-7

(_

(.

- 1
"ARBCYC- 2

"PARK- 3
- 4
- 5

10.r- 6
ID2'- 7
101· - 8
!DO' - 9
~ 10

lOM- l
AC'r- 2

NJ- 3
"DTACK- 4
"BGACK- 5

TMl"- 6
TMO"- 7
ADl"- 8

"SLOT- 9
~ 10

Arbltl'3don +5

20 J
0 19 - GRANT

VO 18 -
VO 17 -
VO 16 -
VO 15 - ARB3"
VO 14 - ARB2"
VO 13 - ARBl"
0 12 - AROO"
I 11 - AROO"

16L8B -
NuBus arbitration

BUii master control +5

CK 20 j
I R 19. - Al
I R 18 - "BYTE
I R 17 - "AS

R 16 - •uos
R 15 - "I.Il5
R 14 - RF.AD
R 13 - (°Int)
R 12 - "LONG

OE 11 - "BGACK

16R8B
Generate 68000 cycle

(byte/word/double word)
when NuBus owns local bu.

lOM- l
READ- 2

GRANT- 3
'NUBUS- 4

A20- 5
"RST- 6
"AS- 7

"GAS- 8
AC'r- 9

..& 10

BusSlave

CK
I
I
I
I
I
I

VO
R
R
R
R
R
R

VO
OE

16R6B

+5

20 J
19 - RQS'r
18 - ('arbdn)
17 - "ARBCYC
16 - "STCYC
15 - 'OWN
14 - "PARK
13 - "BUSY
12 - START'

11 i
Card going to NuBus

(68000 cycle to NuBus)

Fig. 12- 2 -COMP (Ll3)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

lOM- 1
"ARBCYC- 2

STAR,. - 3
"OWN- 4

"BG- 5
"GAS- 6

"DTACK- 7
"SLOT- 8

•RST- 9
Acr- 10

"LONG - 11

.& 12

BusMaster

CK
I

R
R
R
R
R
R
R
R
I

OE

20R8B

23 - n.10"
22 - (RD)
21 - "BDTA
20 - "ACKCYC
19 - 'BR
18 - 'BGACK
17 - (•lock)
16 - 'BERK
15 - "RLQ
14 - n.11"

13 i
NuBus coming into card

AD31"- 17
AD30'- 15
AD29"- 13
AD28"- 11
AD27"- 8
JiD26• - 6
AD25"- 4
AD24"- 2

gnd- 18
gnd- 16
gnd- 14
gnd- 12
103· - 9
10r- 1
101·- 5
IDO"- .3

·uos- 1
"IDS- 2

"BGACK- 3
"ACKCYC- 4

•STCYc- 5
'OWN- 6

'ARBCYC- 7
"BUSY- 8
READ- 9

.& 10

IJ.Blt ldendty Comp

P7
P6 P-Q 19 - "SLOT
P5
P4 Gl 1 - START"
P3
P2
Pl
PO
Q7
Q6
Q5
Qoi
Q3
Q2
Ql 10-gnd
Q0 ZO-Vcc

Al.5521
Slot decode

BusDrlver

0
VO
VO
VO
VO
VO
VO
0
I

16l.8B

+5

20 J
19 - NBDIEH
18 - "NBDIE
17 - (•tmen)
16 - ACK'
15 - n.10"
14 - n.11"
13 - NBDIEL
12 - ("nbdoe)
11 - Al

Misc/NuBus amtrol drivers

/

____ :::::: t:---

=~
F.qual delay from -----<
NuBusdock

~~
:~:::14:;:::::.::: ::::\ lOns 13 -

CLK' - 1 \\:::::::;:::~ :::::::~~:::::::::::T-2():::::::::::::::::::::::.::·:,::::

~7

Fig. 12-3 -COMP (L)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA VARRO
Illustrator 88
GEORGE M. VRANA

DLlOO

40ns 4 -
50ns 11 -
60ns 5 -
70ns 10 - 170--
SOns 6 -
90ns 9 -
lOOns 8 -

74ASOO

/

(

(

AD31" - 17 P7
AD30' - 15 P6
AD29' - 13 P5
AD28" - 11 P4
AD27'- 8 P3
AD26" - 6 P2
AD25" - 4 Pl
AD24" - 2 PO

gnd- 18 Q7
gnd- 16 Q6
gnd- 14 Q5
gnd- 12 Q4
ID3" - 9 Q3
ID2"- 7 Q2
!DI" - 5 Ql
!DO' - 3 QO

P-Q

Gl

10-gnd
20-Vcc

19 - "SLOT Ctr- 1
ctr- 2

1 - START' START'- 3
'SLOT- 4

RF..5E'J- - 5
- 6
- 7
- 8
- 9

J" 10

Note: Run START in here
if you are not
using it anywhere else L =,,

Be sure to put pullups on ID lines

Note: Be sure your logic ends in a valid state
if you oo not generate ACK (i.e., bus error)

NuBus AIJ' Lines

NuBus AIJ' Unes

Fig. 12-4 (L-14)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZA. VARRO
Illustrator 88
GEORGE M. VRANA

Q LATCHED ADDRESS LINF.S

LS564s

READ atob 'SEL

A DATA BUS.

1.5640

Bus.Slave +5

ex 20 J
I VO 19 - TMO"
I J/0 18 - TM!"

R 17 - ackcyc•
R 16 - SEL"
R 15 - RF.AD
R 14 -

VO 13 - ACK'
VO 12 - AIC
OE

11 i
16R4B

*IF(ackcyc)TMO•l
IF(ackcyc)TMl•l
IF(ackcyc)ACK•l
SEL:•SLOT*/ACK

+SEL*/ACK*/RESET
/READ:•SLOT*/ACK*TMl

+/READ*/ACK*/RESET
ackcyc: •SEL* /ackcyc J
/AIC•START+CLK

Nole: Remember to power-on/
reset into a valid state

READ
Cycle timing

READ

•SEL

Note: Remember to stop driving NuBus

Cavlion: Back-to-back Cycles will happen

READ:TMl•O
ACK:TM0-1

T.Ml•l

LJ

Cll{* -----u
SfARI'* -----.

LJ

LJ WRll'E
Cycle timing_ __ __

LJ LJ LJ

LJ LJ LJ

ACK* ---------....,.--.,.......,

READ

*SEL

Note: The Mac II does no1 supply-5v to NuBus ---

Note: Be sure ACK is FAJ.5E -------
when deaxiing ADDRESS cycles

WRITE: T.Ml=l
ACK:TMO=l

TMl=l

Fig. 12-5 -COMP (L-15)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Illustrator 88
GEORGE M. VRANA

data bus enabled

(

Chapter 13

Lists for the MCP Card

MCP Developer's Guide - Final to Production

This chapter provides listings tor the PAL equations and a parts list for the MCP card.

+ Note: The latest schematics tor the MCP card.arc enclosed as separate pages aL the
back of this document.

PAL listings
This section lists the equations for the PAL devices on the MCP card These listinf,~
include equations for the following:

CJ Arbitration

CJ Bus driver

CJ Bus master

CJ Bus master control

CJ Dus slave

CJ Decode

CJ OMA example

+ Note: This PAL listing is provided as an example for developers who may want to
include OMA devic~ on the 68000 bus.

CJ Interrupts

CJ RAM (one row of RAM)

CJ RAM24 (two rows of RAM)

+ Note: Use either RAM or RAM24, depending on your requiremerus for one o: t ro
rows of DRAM.

Each of these equations is more fully described in the next sections.

13-2 Lists tor the MCP Card

Apple Confidential 2/20/89

(
MCP Developer's Gulde - Final to Production

PAL equation: arbitration
The PAL equation for arbitration on the MCP card is listed below.

.!DENT PAL16L8 Arb

DATE: 7/7/87
VERSION: lA

.NAMES
nel /AEl /AE2 ne4

/ARBOi /ARBOo /ARBl /ARB2

.EQUATIONS

. if [AEl * AE2 * !03)
ARB3 = Vee

/arb2oe • /ID3 * ARB3

neS
/ARB3

.if[AEl * AE2 * ID2 * arb2oe]
ARB2 = Vee

/arbloe =- /ID3 * ARB3
+ /ID2 * ARB2

. if [AEl * AE2 * IDl * arbloe]
ARBl =- Vee

/arbOoe • /!03 * ARB3
+ /ID2 * ARB2
+ /IDl * ARBl

. if [AEl * AE2 * IDO * arbOoe]
ARBOo • Vee

/GRANT • /ID3 * ARB3
+ /ID2 * ARB2
+ /IDl * ARBl
+ /IDO * ARBOi

.END

{53E2}

/ID3
arbOoe

Apple Confidential 2/20/89

/

/ID2 /IDl /IDO GND
arbloe arb2oe GRANT vcc

PAL listings 13-3

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

PAL equation: bus driver
The PAL equation for the bus driver on the MCP card is listed below.

.IOENT PAL16L8 BusDvr {6F25J

DATE: 5/18/88
VERSION: B

.NAMES
/ODS /LOS /BGACK /ACKCYC /STCYC /OWN /ARBON /BUSY READ GND

Al /NB DOE NBD I EL /TMl /TMO /ACK /tmen /n.bdie NBD I EH vcc

.EQUATIONS
tmen .. ACKCYC (enable TMx and ACK .buffers}

+ STCYC {delay th/ tmen drives lines inactive}

.IF tmen
ACK • ACKCYC

+ STCYC * BUSY {LOCK or UNLOCK}
{STCYC prevents glitch}

.IF (tmen }

TMO • ACKCYC
+ STCYC * BUSY {LOCK or TJNLOCK}
+ STCYC * /ARBON *
+ STCYC * /ARBON *

ODS * /LOS {START - byte mode operation}
IUDS * LOS {START · - byte mode operation}

.IF (tmen)
TMl • ACKCYC

+ STCYC * /ARBON * BUSY
+ STCYC * /ARBON * /READ

NBDOE OWN ... /STCYC * /READ
+ READ ... ACKCYC

n.bdie OWN * READ * /STCYC
+ n.bdie *
+ n.bdie *
+ BGACK *

/NBD I EH =- /n.bdie +

/NBD I EL • /n.bdie +

.NOTES
STCYC definitions:

BUSY ARBON
0 0
0 1
1 0
1 1

.END

ODS
LOS

/READ

/Al

Al

Function
START
IDLE
UNLOCK
LOCK

13-4 Usts for the MCP Card

{UNLOCK}
(START - w:ite operation}

* BUSY {enable for master write}
{enable for slave read}

(we own nubus - master read}
(hold until DSs qo away}
{hold until OSs qo away}
(.bus owns us - slave write}

{hiqh word}

{low word}

(

(

MCP Developer's Guide • Final to Production Apple ConfldenHal 2/20/89

PAL equation: bus master
The PAL equation for the bus master on the MCP card is listed below.

.!DENT PAL20R8

DATE:
VERSION:

,NAMES

BusMas

9/19/88
c

{7A87}

lOM /NUBUS /START /OWN /BG /GAS /DTACK /SLOT /RST /ACK /LONG GND
en /TMO /RLQ /BERR /lock /BGACK /BR /ACKCYC /BDTA /rb /TMl VCC

.EQUATIONS

rb :- RST
+ OWN * START * /ACK
+ OWN * rb * /ACK

lock := /TMl * START * TMO *
+ /RST * lock * /TMO
+ /RST * lock * /TMl
+ /RST * lock * /START
+ /RST * lock * /ACK

BR :• SLOT * /ACK * /RST
+ BR * /BGACK * /RST

BG ACK :- /DTACK * BR * BG
+ BGACK * /rb * lock
+ BGACK * /rb * lock
+ BGACK * /rb * lock
+ BGACK * /rb * lock

ACK

* /GAS * /OWN

* /START

* /TMO

* /TMl

* /ACK

{reset delayed for ICE}
{busy for our mastership}
{hold until ACK or null/attn}

{LOCK from NuBus}
{hold until UNLOCK . . }

{START cycle to our slot}
{hold until BGACK}

{wait 'til everyone's done, own
{if locked, hold until UNLOCK}
tif locked, hold until UNLOCK}
{if locked, hold until UNLOCK}
{if locked, hold until UNLOCK}

/

for rmw}

+ BGACK * /rb * /lock * /ACK * /ACKCYC {if not locked, hold until any ACKCYC}
+ BG ACK * /rb * /lock * START * /ACKCYC {if not locked, hold until any ACKCYC}
+ RST {if 68K reset, we own bus}

ACKCYC :- DTACK * BGACK * GAS * /LONG * /ACKCYC {when we get DTACK}

RLQ :• BR * NUB US * GAS * /DTACK * /RLQ ! we want NuBus, NuBus wants US}

+ RLQ * BERR {hold one elk past BERR(drvs halt)}

BERR :- BR * NUBUS * GAS * /DTACK * /RLQ {we want NuBus, NuBus wants US}

+ ACK * /START * OWN * /TMO {TMO & TMl both asserted for OK op}
+ ACK * /START * OWN * /TMl {TMO & TMl both asserted for OK op}
+ BERR * /RST * GAS

BDTA := OWN * ACK * /START * TMO * TMl '::lTACK pulse for master operation}
+ BDTA * GAS * /RST
;

.END

PAL llstlngs 13·5

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

PAL equation: bus master control
The PAL equation for bus master control on the MCP card is listed below.

.!DENT PAL16R8

DATE:
VERSION:

.NAMES
lOM
en

/ACK AO
/LONG /int

.EQUATIONS

byte :- SLOT *
+ byte *
+ /byte ...

/READ :- SLOT *
+ /READ ...

BMCtl

9/30/87
lA

/DTACK /BGACK
READ /LOS

TMO ... /ACK
/AS

int ... DTACK *

TMl ... /ACK
/SLOT

{6303)

/TMl
/ODS

AS

/TMO /ADl
/AS /byte

/SLOT
Al

GND
vcc

{save byte/word mode for awhile)
{and hold until AS}
{used as 2nd internal state}

{set R/W from TMll
(save until next access}

AS := /AS ... /int ... BGACK {start AS after BGACK-lst time, /int nth time}

UDS

LOS

int

/Al

LONG

.END

13-6

+ AS * /int {and hold it ••. }
+ AS ... int * /byte {remove AS one state after DTACK}

:- READ ... /byte ... /int * BGACK {word read}
+ READ ... byte ... /int ... BGACK ... /AO {byte read}
+ AS ... /byte * /int {word write}
+ AS * byte * /int * /AO {byte write}
+ ODS ... /byte * int {hold}

:- READ ... /byte * /int * BGACK
+ READ ... byte ... /int * BGACK * AO
+ AS * /byte * /int
+ AS * byte * /int ... AO
+ LOS * /byte * int

:• /int ... AS {internal state}
+ int ... /LONG * BGACK * /SLOT {if we keep 68K bus, hold int until
+ int * /LONG * BGACK * ACK { ••. w/out ACK .. addr eye.le}
+ int ... LONG * /byte {first access of 32-bit operation}

:= SLOT * /ADl {set Al at START cycle}
+ /SLOT ... /Al * /LONG {hold until next SLOT or until. •• l
+ /SLOT ... /Al * /byte { .•• last access of 32-bit access}

·= AS
+ /AS *
+ int *

* /int
LONG
LONG

* /byte * /AO * /Al {set foe 32-bit NuBus operation}
{hold until 2nd access starts}
{hold until 2nd access starts}

Usfs for the MCP Card

SLOT}

'· ,,,r'

MCP Developer's Gulde - Final to Production

(

PAL equation: bus slave
The PAL equation for the bus slave on the MCP card is listed below.

.IDENT PAL16R6 BusSlv
DATE: 2/22/88
VERSION: A

.NAMES
lOM READ GRANT /NUB US A20 /RST /AS /GAS
en /START /BUSY /PARK /OWN /STCYC /ARBCY /arbdn

.EQUATIONS
ARBCY :- AS * /GAS * NUBUS * /PARK

+ AS * /GAS * NUBUS * RQST
+ AS * /GAS * NUBUS * A20
+ GAS * /PARK * ARB CY
+ /RST * PARK * ARBCY * /STCYC
+ /RST * GAS * NUBUS * A20 *

PARK * ARB CY * /BUSY * STCYC
+ /RST * ARBCY * STCYC * arbdn

PARK :- AS * /GAS * NUBUS * /PARK * /RQST
+ AS * /GAS * NUBUS * A20 * /RQST
+ ARBCY * /ROST

'(
+ PARK * /RQST * /RST
+ PARK * ARBCY * /RST

OWN :- ARBCY * GRANT * arbdn * /OWN * /BUSY
+ ARBCY * GRANT * arbdn * /OWN * ACK
+ AS * /GAS * NUBUS * /A20 * /RQST *
+ ARBCY * OWN * /RST
+ /ARBCY * OWN * /ACK * /RST * /arbdn

STCYC :•· ARB CY * GRANT * arbdn * /OWN * /BUSY
+ ARBCY * GRANT * arbdn * /OWN * ACK
+ /GAS * AS * /A20 * NUBUS * /OWN * /RQST *
+ STCYC * BUSY * arbdn
+ GAS * A20 * /READ * OWN * /STCYC *
+ ARBCY * ACK * /READ * OWN * /START
+ STCYC * BUSY * /arbdn
+ /STCYC * OWN * /GAS * /AS

BUSY := /BUSY * /ACK * START
+ BUSY * /ACK * /RST
+ ARBCY * ACK * /READ * OWN * /START
+ arbdn * GRANT * /OWN * GAS * NUBUS *
+ arbdn * GRANT * /OWN * ACK * /GAS
+ arbdn * GRANT * /OWN * ACK * /NU BUS
+ /STCYC * OWN * /GAS * /AS

(

Apple Confidential 2/20/89

{ 93BF}

/ACK
/RQST

PARK

PARK

/BUSY

A20

GND
vcc

!if don't own}
{if PARK qoinq away next cycle res
{if RmW force rearb}
{hold while others arb}
{hold until STCYC or UNLOCK}

{hold during START for rmw}
{hold during LOCK for rmw

{if don't own}
{if RmW}

{if someone else arbing wait for I

{hold as long as no other RQS!sl
{hold as long as ARBCY}

{always take after arb}
{always take after ack}
{norm parked}
{hold if we buslock, until UNLOCK}
{if not rmw, OWN goes away with AC

{always take after arb}
{always take after ack}
{norm parked}
{take after LOCK (read of RmW) }

{write of RmW}
{UNLOCK of rmw)
{after UNLOCK do IDLE}
{UNLOCK if OWN w/out GAS,rmw faile

{start on START cycle)
{hold 'til ACK}
{UNLOCK of rmw}
{LOCK if rmw still there}
{UNLOCK if GAS gone}
{UNLOCK if NUBUS gone}

(UNLOCK if OWN w/out GAS,rmw faile

PAL listings 13-7

MCP Developer's Gulde - Final to Production

arbdn :• /arbdn * ARBCY * PARK * /OWN *
+ arbdn * GRANT * BUSY * /ACK
+ arbdn * GRANT * /OWN * GAS *
+ /arbdn * STCYC * BUSY * GAS *
+ /arbdn * STCYC * BUSY * /NUBUS .
+ /arbdn * STCYC * BUSY * /GAS

.IF (OWN START STCYC * BUSY
+ STCYC * /arbdn

.IF (ARBCY * PARK { * /STCYC }) RQST

.END

13-8 Lists for the MCP Card

/START

NUBUS * A20
NUB US " A20

Vee

Apple Confidential 2/20/89

{hold if busy, release on ACK}
{LOCK if rmw still there}
{goto IDLE from UNLOCK after rmw}
{goto IDLE from UNLOCK if no nubus

{else c

{Driv~ START while we own bus}
{assert during STCYC except IDLE c

(hold RQST until start cycle}

.',-'

l

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89

PAL equation: decode
The PAL equation for decoding on the MCP card is listed below.

. IDENT PAL2 OR4 Decode {80F7}

DATE: 1/6/88
VERSION: 2A

.NAMES
lOM A23 A22 A21 A20 /AS READ /RESET /GAS FCl FCO GND
en /RFCYC /CR /NU BUS WAL /LRST /setup /DDTA /VPA /ROM nc23 VCC

.EQUATION

ROM A23 * A22 * A2l * A20 * AS * READ * /VPA (ROM space decode}
{ROM at setup}

CR

/WAL

setup

LRST

DDTA

.IF
VPA

NUB US

.END

+ /A23 * /A22 * AS * READ * setup

A23 * A22 * /A21 * /A20 *

:= /A23 + /A22 + A21 + A20 +

:= RESET
+ setup * /AS
+ setup * /A23

:- A23 * A22 * A21 * A20 *
+ LRST * /CR * /RESET

:- GAS * A23 * A22 * A21
+ GAS * /A23 * /A22 * . setup
+ AS * A23 * A22 * /A21
+ GAS * DDTA * A23
+ AS * /A23 * /A22 * /setup
+ GAS * DDTA * /RFCYC

GAS * FCO * FCl { * /NBACK)
AS

A23 * /A22 * A21

AS * READ

/AS + READ

AS * /READ

* /VPA

* /A20

* /RFCYC

{ctl reg read - CXXXXX}

{write addr latch}

{as long as in low 8mb}

{set RST w/ write to FOOOOO}
{clear reset w/ CR read}

{EOOOOO-FFFFFF - ROMs}
{000000-JFFFFF - ROM w/ setup}
{COOOOO-CFFFFF - ctl reg}
(good hold, not RAM}
!000000-3FFFFF - RAM}
{good hold, RAM, for rmw}

{NuBus = AOOOOO-BFFFFF}

Lists for the MCP Card 13-9

MCP Developer's Guide - Final to Production Apple ConfldenHal 2/20/89

PAL equation: OMA example

An eDmple of a PAL equation for providing DMA on the MCP card is listed below.

DATE:
VERSION:

.NAMES

2/22/88
1.1

/BG /NBACK /XBACK /NBR SRE /XBR /STCYC /XDE A22 GND
/RST /XBG /NBG /nbn /BR /BGACK /STCYO /STCYl ncl9 VCC

.EQUATIONS
STCYO .. STCYC * NBACK * /SRE

+ STCYC * SRE * /A22

STCYl "' STCYC * /NBACK * /SRE
+ STCYC * SRE * A22

.IF XDE)
XBG • BG * /nbn * /NBACK * /NBG

+ XBG * BG * XDE

NBG - nbn * BG * /XBACK
+ nbn * BG * /XDE
+NBG* BG

nbn • NBR * /BG
+ nbn * /NBG * /RST

BR • NBR
+ XBR * XDE

BGACK • NBACK
+ XBACK * XDE

.NOTES

{internal, normal AB}
{int/ext, seperate AB)

{external, normal AB}
{int/ext, seperate DE}

{*if XDE dissabled}

This PAL can be placed between the MCP loqic and the 68000 and adds external OMA
arbitration loqic:

. END

13-10

BR, BG, & BGACK qo to 68000
NBR, NBR, & NBACK qo to MCP loqic
XBR, XBG, & XBACK go to external loqic
STCYO & STCYl are used if a second NuBus extension register is added •

Usts for the MCP Card

/

/
/

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

PAL equation: interrupt
The PAL equation for interrupts on the MCP card is listed below.

. IDENT PAL16R4

DATE:
VERSION:

.NAMES

Int

7/15/87
lA

{50A6}

lOM /CR A3 A2 Al /RST /IOIR TMR MUX GND
/EN /IPLO /IPLl /TMRIR /IOPIR /HSTIR /tmrdly /RAO /NMR VCC

.EQUATIONS

IPLO IOIR
+ TMRIR * /IOPIR

IPLl IOIR
+ IOPIR

.IF HST IR
NMR Vee

tmrdly ·= TMR

RAO MUX * A2
+ /MUX * Al

TMRIR := TMR * /tmrdly
+ /CR * TMRIR
+ A3 * TMRIR
+ A2 * TMRIR
+ /Al * TMRIR

HST IR ·= /A3 * A2
+ /CR * HST IR
+ A3 * HST IR
+ /A2 * HST IR

I OP IR ·= A3 * /A2
+ /CR * I OP IR
+ /A3 IOPIR
+ A2 * IOPIR

.END

* /RST
* /RST
* /RST
* /RST
* /RST

* Al *
* /RST
* /RST
* /RST

* Al *
* /RST
* /RST
* /RST

CR *

CR *

(timer
{NuBus
{I/0

/RST

/RST

level 1)
level 2)
level 3)

1Addr=2 clr, set by timer}

(Addr=4 clr, 6 set}

{Addr-B clr, A set)

Lists for the MCP Card 13-11

MCP Developer's Guide - Final to Production Apple ConfldenHal · 2/20/89

PAL equation: RAM
The PAL equation for RAM on the MCP card is listed below.

.IDENT PAL16R6 RAM

DATE:
VERSION:

9/20/88
D

.NAMES
20M
en

.EQUATIONS

lOM
A23

A22
/rfd

GAS :- /lOM * AS
+ /lOM * ODS
+ /lOM * LOS
+ GAS * ODS
+ GAS * LOS
+ GAS * AS

{C} + GAS * AS
+ /lOM * GAS

RAS • /rfcyc *
+ MOX

/AS
/GAS

IUDS
/rfcyc

* /READ

* /A23
* /READ

AS * /A23

{99A9)

/LOS
/CASH

READ
/CASL

13us
/MOX

/SETUP
/RAS

{first time write, w/ AS)
{first time read, w/ DS)
{first time read, w/ DS)
{hold with DS, for RmW to
{hold with OS, for RmW to

{hold with AS, for

GND
vcc

8-F,
8-F,

RAM
{hold with A~, for for write}
{aways hold on •this edge}

* /A22 * /CASL * /CASH * /SETUP

2
2

to

MOX :- /rfcyc * /lOM * /CASL * /CASH * AS * /A23 * /A22 * /SETUP *
{D) + /rfcyc * MUX * /CASL * /CASH * GAS {GAS added rev D)

+ /rfcyc * MUX * /lOM

GAS}
GAS)
0-7,

/MUX

+ rfcyc * /rfd * CASL {CAS•MUX during refresh}
+ rfcyc * lOM * MOX

CASL : .. /rfcyc * LOS * MOX * READ {CAS on read early)
+ /rf cyc * LOS * MOX * /lOM {CAS on write late}
+ /rfcyc * CASL * MOX
+ /rfcyc * CASL * /lOM

{D} + /rfcyc * CASL * LOS
+ rfcyc * rfd * /lOM {refresh)
+ rfcyc * /rfd * lOM * CASL

CASH :- /rfcyc * ODS * MUX * READ {:AS on read early}
+ /rfcyc * ODS * MOX * /lOM {CAS on write late}
+ /rfcyc * CASH * MOX
+ /rfcyc * CASH * /lOM

{0} +· /rfcyc * CASH * ODS
+ rfcyc * rfd * /lOM {r<!fresh}
+ rfcyc * /rfd * lOM * CASH

13-12 Lists for the MCP Card

1 GAS}

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89

(

rfd : ,. 13us * /rfcyc {rfcyc for RMW only}
+ rfd * /rf cyc
+ rfd * lOM
+ /rfcyc * CASH * IUDS * /LOS * AS * lOM {RMW force refresh cycle}
+ /rfcyc * CASL * IUDS * /LOS * AS * lOM {in b/twn r&w to add delay}

rfcyc := /13us * rfd * /lOM * /AS * /GAS {to meet SU in both dirs}
+ /13us * rfd * /lOM * AS * A23 {Ok if not RAM access}
+ /13us * rfd * /lOM * AS * A22 {Ok if not RAM access}
+ rfcyc * lOM
+ rfcyc * rf d
+ rfcyc * MUX
+ /rfcyc * CASH * IUDS * /LOS * AS * lOM {RMW force refresh cycle}
+ /rfcyc * CASL * IUDS * /LOS * AS * lOM {in b/twn r&w to add delay}

.END

(' Lists for the MCP Card 13-13

MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89

PAL equation: RAM24
The PAL equation for RAM24 on the MCP card is listed below.

.!DENT PAL20R6 RAM24
9/20/88

{D5DA)
DATE:
VERSION: D

.NAMES
20M
en

.EQUATIONS
GAS

{C}

lOM
Al9

ncJ
/RASH

/AS /UDS
/rfcyc /GAS

/LOS
/rfd

: .. /lOM * /GAS * AS * /READ
+ /lOM * /GAS * UDS
+ /lOM * /GAS * LOS
+ lOM * GAS * UDS
+ lOM * GAS * LOS
+ lOM * GAS * AS * /A23
+ lOM * GAS * AS * /READ

+ /lOM * GAS

READ
/CASH

13us
/CASL

/SETUP
/MUX

A23
/RASL

A22
nc23

{first time write, w/ AS}
{first time read, w/ OS}
{first time read, w/ DS}
(hold with OS, for RmW to 8-F, 2
(hold with OS, for RmW to B-F, 2
{hold with AS, for RAM to 0-7, 1
(hold with AS, for for write}
{aways hold on this edqe)

GND
vcc

GAS}
GAS}
GAS}

RASH • /rfcyc * AS
+ /rfcyc * MUX
+ rfcyc * MUX

* /A23
* Al9

* /A22 * Al9 * /CASL * /CASH * /SETUP

RASL - /rfcyc * AS
+ /rfcyc * MUX
+ rfcyc * MUX

* /A23
* /Al9

* /A22 * /Al9

MUX :• /rfcyc * /lOM * /CASL * /CASH * AS *
{D} + /rfcyc * MUX * /CASL * /CASH * GAS

.+ /rf cyc * MUX * /lOM
+ rfcyc * /rfd * CASL
+ rfcyc * lOM * MUX

CASL := /rfcyc * LOS * MUX * READ
+ /rfcyc * LOS * MUX * /lOM
+ /rf cyc * CASL * MUX
+ /rfcyc * CASL * /lOM

{DJ + /rfcyc * CASL * LDS
+ rf cyc * rfd * /lOM
+ rfcyc * /rfd * lOM * CASL

CASH :- /rfcyc * ODS * MUX * READ
+ /rfcyc * ODS * MOX * /lOM
+ /rf cyc * CASH * MUX
+ /rfcyc * CASH * /lOM

{D} + /rfcyc * CASH * ODS
+ rfcyc * rfd * /lOM
+ rfcyc * /rfd * lOM * CASH

13-14 Usts for the MCP Card

* /CASL * /CASH * /SETUP

/A23 * /A22 * /SETUP * /MUX
{GAS added rev DJ

{CAS .. MUX during refresh)

{CAS on read early)
{CAS on write late}

{refresh}

{CAS on read early}
{CAS on write late}

(r<'!fresh)

/

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

rfd := 13us .. /rfcyc (rfcyc for RMW only}
+ rfd .. /rfcyc
+ rfd .. lOM
+ /rfcyc .. CASH .. /UDS .. /LDS .. AS * '..vM (RMW force refresh cycle}
+ /rfcyc .. CASL .. IUDS .. /LDS * AS * lOM (in b/twn r&w to add delay}

rfcyc := /13us .. rfd .. /lOM .. /AS * /GAS {to meet SU in both dirs}
+ /13us * rfd .. /lOM .. AS * A23 {ok if not RAM access)
+ /13us * rfd * /lOM .. AS .. A22 {ok if not RAM access)
+ rfcyc .. lOM
+ rf cyc .. rfd
+ rfcyc .. MUX
+ /rfcyc .. CASH .. IUDS * /LDS .. AS .. lOM (RMW force ref re sh cycle}
+ /rfcyc .. CASL * IUDS * /LDS .. AS .. lOM (in b/twn r&w to add delay}

.END

(Lists for the MCP Card 13-15

MCP Developer's Gulde - Final to Production

Parts for the MCP card

Table 13-2 lists the parts required for the MCP smart card, along with the quantity
required and a brief description of each part.

Table 13-2
Ports fist tor the MCP card

Quantity Name Description

1 Capacitor Electrolytic,10 UP 16V

30 Capacitor Ceramic, Axial .OlUP 20% 50V

Apple ConfldenHal 2/20/89

1 Connector Header, Right Angle, Euro DIN 3-Row 96-Pin

1 Delay line 24P, 20TAP Delays lOONS

4 IC 44C256 (DIP Package)

1 IC 68o00, CPU, 12.5 MHz

1 IC 74AIS02

1 IC 74AL5o9 Quad 2-Input

1 IC 74AL.5521, 8-bit Identity Comp

1 IC 74AIS563, Octal D-Type

1 IC 74AIS564, Octal D-Type

6 IC 74AIS651

1 IC 74AI.S880, Dual 4-Bit D-Type

1 IC 74AFOO, Quad 2-Input Nand Gate

2 IC 74AIS258

2 IC 74IS590, 8-bit Binary Counter

2 IC EPROM, 32K x 8, 250NS

5 Resistor lKB OHM 1/4W 5%

3 Resistor Pale 47 OHM, 10 POS

1 Resistor Pale Network 9 x 3.3K OHM 5%

(continued)

13-16 MCP Smart Card Lists

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89

(

Table 13-2 (cont'd)

Quantity Name Description

10 Socket IC, 20-Pin

2 Socket IC, 24-Pin

1 Socket IC, 64-Pin

2 Socket PLCC, 28-Pin

1 Switch KeyType

1 PAL 161.8B (Arbit.ration)

1 PAL 16L8B (Bus driver)

1 PAL 16R4A (Interrupt)

1 PAL 20R4B (Decode)

1 PAL 16R6B (RAM)

1 PAL 16R6B (Bus slave)

1 PAL 16R8B (Bus master control)

--
1 PAL 20R8B (Bus master)

(I'\ uts for the MCP card 13-17

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

13-18 MCP Smart Card Lists

(

(

Part IV

MCP Diagnostics

Part IV, MCP Diagnostics, describes:

o the three levels of diagnostics provided
for use with the MCP card

0

0

the menus for the MCP _Diagnostics
application and a description of each
test available in the application

the commands and routines used to
create a customized diagnostic
application

./

Chapter 14

Diagnostics for the MCP Card

MCP Developer's Gulde • Final to Production

This chapter provides an overview of the diagnmtic software provided for the
Macintosh Coprocessor Platform card, and desaibes the resources provided on the
MCP distribution disk. This chapter also describes the initial power-up diagnostic
tests.

Warning

Apple Confldentlal 2/20/89

Some of the user Interface and menus will change In future versions. However.
any hardware tests you write that use the MCP _Diagnostic application should
remain compatible. Please refer to the file :Sequencer:Errata on the
MCP _Diagnostics disk for more information.

What does Apple provide?
Apple Computer provides both firmware and software. The software is provided on
the MCP diagnostics distribution disk, and the firmware is provided both on the MCP
card declaration ROM and the distribution disk.

The diagnostic tools are supplied with the card; you can create additional diagnostic
tools using the information provided in this guide and on the distribution disk.

+ Note: Apple Computer provides these diagnmtics solely as a framework for test
verification of board designs, and does not guarantee these tests to be exhaustive.

As this diagnostic is software based, some aspects of hardware verification cannot be
assured in an office environment. For example, adding test equipment such as a
logic analyzer and an in-circuit emulator may cause marginal cards to fail by loading
data, address, and state lines. Heat conditions close to the upper heat limit have
also produced failures in otherwise working boards.

The MCP distribution disk provides a libraries of functions as well as a working sample
that you can change. Table 14-1 describes the folders provided on the MCP
Diagnostics distribution disk.

14-2 Diagnostics for the MCP Card

(

(

MCP Developer's Gulde - Final to Production

Table 14·1
Diagnostics folders

Name of folder

Sequencer

MCP

Level 3 Examples

DiagTool

Description of contents

Source code and makefile necessary to create sequencer;
include files necessary for building all levels of test
diagnostics ·

The application MCP _Diagnostic, used for both second
and third-level tests, as well as the source code, libraries,
and instructions to create your application-specific
diagnostic

Sample source code and makefile to create standalone
applications that can be downloaded and executed by the
68ooo on the MCP card

Source code to an MPW diagnostic tool

+ Note: Refer to Appendix A for a complete description of all files and folders on the
MCP distribution disks.

Diagnostic capabilities
There are three levels of diagnostics provided for the MCP card. The first two levels
run tests between the Macintosh II and the MCP-based card; the third level is for on
card testing that is reported on the Macintosh II screen. You can use the fll'St two
levels of tests as provided, running generic tests for the MCP card, or you can
customize the second- and third-level diagnostic tests as applications to be run on
the Macintosh II computer. ·

There is also a sample MPW diagnostic tool named MCPdiagtool on the
distribution disk to show how to use the diagnostic tests provided in the library
diaglib.o.

Table 14-2 describes the three levels of diagnostics provided for the MCP carci.

Apple Confldentlal 2/20/89

Diagnostic capabilities 14-3

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 14-2
Levels of MCP diagnostics provided

Level Description

1 ROM diagnostic

Functtons provided

Tests basic card functionality, runs from the
on-board ROM automatically at power-up
and NuBus reset

Recums Good/No Good status to the Slot
Manager

+Note: If a specific test fails, the remaining tests are not executed

2

3

Sequential diagnostic
application

Concurrent diagnostic

Provides more extensive testing than in the
power-up tests

Returns locations and descriptions of
failures

Provides hooks and a Macintosh user
interface for developer-specific testing

Downloads and executes non-toolbox
calling test applications to MCP-based
smart cards

Provides an environment for concurrent
card testing and data logging

Provides MulitFinder background task
compatibility

+ Note: Power-on and primary initialization tests indicate what failed by the error
code shown in Table 14-4. Because of some dependencies in the diagnostic
application, if power-on or primary initialization tests fail, spurious error messages
may occur from the diagnostics.

The first diagnostic tool is described in greater detail in this chapter. See Chapter 15
for the second-level (sequential) tests and infoanation on adding code to the ROM
for your card-specific application, and Chapter 16 for third-level (concurrent) tests.

14-4 Diagnostics for the MCP Card

MCP Developer's Guide - Final to Production

MCP card declaration ROM
The .MCP card declaration ROM is divided into several parts:

o the on-card power-up tests

o the primary initialization code (run by the Macintosh n system at boot time)

o the application-specific resources

o the application-specific drivers

You can use the hooks available in the power-up and initialization sec.tiom of the RO.M
to insert your own application-specific code into the test sequence.

Power-up diagnostics
When power reaches the card (or upon a software reset), the on-board 68000 power-up
tests automatically begin execution. Before execution, all interrupts are disabled by
the MCP hardware. The tests

o verify the 68000 data and address lines

o check CRC of the Declaration ROM

o check critical functionality of on-board RAM

o clear RAM memory from $180 to $7FFFE (that is, the last half-megabyte)

The tests are implemented so that, if a test crashes as a result of hardware problems,
the failure is still reported in low memory and to the Slot Manager.

If these tests pass, the 68000 exception vector table is initialized and the on-board
RAM size is stored in low memory (currently $11C-F). The timer interrupt Qevel 1)

vector points to a routine that increments a 32-bit counter at location $118 every
6.5536 milliseconds. The Non-Maskable Interrupts (NMO, wired to the button on the
prototype MCP card, are vectored to a routine that restarts the power-up code by
simulating a reset You can change these default interrupts using the file
ApplPowerOn. a _(described in the next section).

Next, the level 1-7 auto vector interrupts are enabled to the routines defined in the file
ApplPowerOn. a. Then the code executes a tesc reserved for the application you
develop. Currently, this is a stub function named Vendo rPowe rUp in the file
ApplPowerOn. a. If you insert any code here, i1 must signal success or failure by
returning a bit flag into the test status location.

Apple Confldentlal 2/20/89

MCP card declaration ROM 14-5

MCP Developer's Guide - Final to Production

All testS have an associated bit flag. These flags are kept in a word at location $102. At
the start of the power-up code, all bits in the flag word are set To indicate succes,,, the
bit flag associated with that test is cleared. In the case of the developer test, bit 4 (the
.$0010 bit) is the associated bit. Any code you insert here should not take more than
600 milliseconds, because a software reset causes the 68020 to execute an abbreviated
memory test, thereby shortening the time between reset and 68020 primary
initialization.

When the power-up code is finished, a wait flag is cleared at word location $100. Next,
the 68oOO executes a STOP instruction with intenupts enabled to wait for the primary
initialization tests.

68020 primary initialization tests
The primary initiali7.ation code is run by the Macint~h II operating system at the time
of system initialization. The code is read off of the declaration ROM and executed on
the card across Nubus.

+ Note: Any application code that you add must take this into account.

The primary initialization code tests Nubus and the interrupt system for the MCP card.
The code begins by getting the results of the power-up tests. If these have passed, the
primary initialization c~ then tests

o a Write acrossNubustothecard'sRAM

o the ability of the Macintosh II to reset the 68000

D the timer interrupt

o the ability of the Macintosh II to intenupt the on-board processor via a Nubus
interrupt.

After this, any routines you supply are executed Currently, there is a stub routine Ill
the file ApplPrimaryinit. a, but any application-specific initialization should
either be done here or during the device driver Open function.

lmport~nt

Apple ConfidenHal 2/20/89

The primary lnltlallzatlon code must currently reside at the very end of the
declaration ROM before the format/header block. in the current version. some of
the test subroutines reside at specific addresses and must not be moved.

If you want to put your own code inthe Vendorinit routine, you must be sure to
indicate whether the routine has passed or failed. The primary initialization code
expects the D 1 register to return $00 if the test has passed and -1 if it has failed The A2,
A3, and DO registers must be preserved.

14-6 Diagnostics for the MCP Card

.,r'

(

(.

MCP Developer's Gulde - Final to Production

Data area
The power-up and primary initialization code have a data area in the on-board RAM
that starts at location $100 and extendS to $150.

+ Note: If any application uses this area of memory (such as MR-DOS), these values
are destroyed

Locations $100 through $14F are reserved for existing code; locations $150 through
$180 are reserved for developers. c.ertain locations are reserved for use by the
application-specific code on the ROM. Table 14-3 identifies the data areas and briefly
describes each.

Warning

Apple Confidential 2/20/89

The ROMs provided on the MCP cc rd will overwrite these locctlons. However,
this will not occur when you build your own ROMs. since the source code
provided on the distribution disk that you will use to build your own ROM hes
fixed this problem.

Table 14-3
Date crec

Location

$102-$103

$108-$109

$10E-$111

$118-$118

$11C- $11F

$134-$137

$138- $13B

$13C- $13F

Description

Tests status bit flags. ~word holm the bit flags used to track tile
power-up code. A-32 in this location means that all power-on tests
have passed The first five error codes listed in Table 14-4 are found
in this location.

Signals a soft reset ~word is set to $FFFF when the primary
initialiution code has finished

Contains the CRC checksum calculated by the power-on RON:.

Used as a timer tick counter and is incremented every 6.5536
milliseconds.

Contains the amount of RAM on the card in bytes.

Used by vendor to pass back Worrnation about power-on test
other than PASS or FAIL.

Used by vendor to pass back more Worrnation about primary··
initialization test other than PASS or FAIL.

Stores the 68000 Program Counter here after any hardware
exception.

MCP card declarctlon ROM 14-7

MCP Developer's Guide - Final to Production

$140- $143

$150-$180

Error codes

Stores the address that the 68000 was trying to access, when a
hardware exception occurs.

Reserved for developers.

Table 14-4 lists the codes returned to the Slot Manager by the primary initialization
code. At the end of the primary initialization code, if any test has failed, the bit flags
are returned as a negative number. The Slot Manager stores this number in an array.

To fmd the error code, use the Macintosh toolbox call SReadinfo (refer to the
chapter on the Slot Manager in Instde Macintosh, Volume .5); the value of the error
code for the MCP _Diagnostic is returned in the sinitStatusV field.

•:• Note: These error codes are applicable only for Revision D ROMs.

Table 14-4
Error codes

Error code Description

0 All tests passed

-1 Data Llne test failed

-2 ROM test pattern not found

<) CRC test failed

-14 RAM test failed

-16 Vendor power-up test failed

-32 Nubus data line test failed

-6i IOP interrupt test failed (Level 2)

-3J> Host reset test failed

-38i Tuner interrupt test failed (Level 1)

-512 Vendor initialization test failed

•!• Note: Since interrupts cannot be enabled during primary initialization, the NMRQ
(card-to-Macintosh interupt) cannot be tested during power-up.

14-8 Diagnostics for the MCP Card

Apple Confidential 2/20/89

(

MCP Developer's Guide - Final to Production

Using the MCP _Diagnostic library
An example MPW tool named MCPD iagTool. c has been created to introduce the
use of the MCP diagnostic application and support routines. This tool exercises most
of the routines provided in the MCP diagnostic library.

To use this MPW tool:

1. Open the folder named DiagTool on the MCP Diagnostics distribution disk.

2. Open the MPW file MCPDiagTool. c.

3. Enter the following command string:

where

MCPDiagTool [-(9-E)] [-i Numiterations] [-v]

9-E

-i

allows the operator to select specific slots. If you do not specify any
slot options, all Macintosh II slots are searched for MCP cards and
then tested For example, to test MCP-based cards in slots A and E,
you would enter:

MCPDiagTool -a -e

sets the number of iterations through the test sequence. Valid
iteration counts range from 1 to 65000. The default number of
iterations is once throught the entire test sequence.

-v prints the name and slot of each test run, and the pass or fail status.
The default is to print information on test failures only.

The following listing of the code (from the file MCPD iagToo l . c) illustrates how to
use many of the routines contained in the MCP diagnostic library. This commented
source code also shows how these Pascal and assembler diagnostic library routines can
be called from the C language.

Apple Confidential 2/20/89

Using the MCP _Diagnostic library 14-9

MCP Developer's Guide c Final to Production Apple Confidential 2/20/89

/**/
/* Copyright © 1988 Apple Computer, Inc. All rights reserved */
/* *I
/* An MPW tool that executes many of the discrete PAL MCP diagnostic routines * /
I* in the DiagLib.o library (currently compiled with MPW C 2 .O. l */

Routines requiring slot lf expect 0 for slot 9; 5 for slot E
/*
I*
/*
/*
/*

Warning: This diagnostic is still under development.

*/
*/
*/
*/
*/

/**/

Unclude
#include
lfinclude

<stdio.h>
<signal.h>
<Types.h>

pascal long TickCount ()
extern Oxa97 5;

pascal void RotateCursor (tick)
long tick;
extern;

pascal void SpinCursor (tick)
short tick;
extern;

t define
t define

CURSORFORWARD
CURSORBACKWARD

(32)
(-32)

/* Rotates cursor using given counter */

/* Rotates cursor using internal counter*/

/* Tell RotateCursor to go forward.
/* Tell RotateCursor to go backward.

*/
*/

pascal short GetCPU () ; I* returns 0 fo 68000, 1 2 68010, 2•68020, 3-68030 */
extern;

pascal void InstallMyErrV ()
extern;

pascal void InstallOldV ()
extern;

/* install bus erro1 handling vector which calls *I
/* BusErrDialog, a routine found below */
/* reinstalls origL1al bus error vector *I

pascal void SetBusErrRetry (count) /* number of bus errors before
/* terminating diagnostic */

*/

short count;
extern;

pascal short GetBusErrRetry ()
extern;

pascal short CheckCRC(slot) /*
short slot;
extern;

pascal short GetApplID (slot) /*
short slot; /*

extern; /*
pascal long GetRAMSize(slot) /*

short slot;
extern;

14-10 Diagnostics for the MCP Card

/* if result ! = count from above, lf of */
/* Bus errors = GetBusErrRetry () - count *I

returns 0 if calculated checksum matches */
/* longword found in declaration ROM */

returns word at card ROM address OxFFFFE8 */
a way to determine card app without */

/* slot manager */
useful in mac II w/ Rev A ROMs */
returns size of card ram ,in bytes */

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

pascal short TestAndSet (slot, which) /* cycles card and mac processors */
/* through repeated TAS cycles * /

short slot;
short which;

/* reports error if card & system obtain access on any cycle */
/* 0 performs TAS on card memory, 1 = system board */

extern;
pascal short TimeVerify (slot)

short slot;
extern;

/* verifies speed of card's timer interrupt
/* +/- 10 %

*/
*/

pascal short InterComm (mSlot, sSlot) I* does ROM read, RAM modify/read from */
/* mSlot to sSlot */

short mSlot, sSlot;
extern;

pascal int GetVPUS (slot)

short slot;
extern;

pascal int Get VP IS (slot)
short slot;
extern;

/* Vendor Power Up status defined on
/* powerup vendor fail
/* returns value from card RAM $134

*I
*/
*/

/* Vendor Primary Initialization status */

/* returns value from card RAM $138 *I
I* initiates card ROM powerup code *I pascal void powerup(slot)

short slot; /* status returned 1 sec later by GetPowerUpStatus */
extern;

pascal short GetPowerUpStatus (slot) /* returns card power up code */
/ short slot; / see code below for status interpretation

extern;
pascal short Lvllinit (slot)

short slot;
'extern;

pascal short IsCommCard (slot)
short slot; /*
extern; /*

/* Note:

pascal void RAMTest (testNum,
short testNum;

/* executes & returns card primary init status */
/* see code below for status interpretation *I

/* returns -1 if $C3D2 @ ROM location $FFFFEA */
returns 1 if $C3D2 is not @ ROM location $FFFFEA *I
returns 0 if bus error occurred accessing $FFFFEA */

InstallMyErrV must be called before using routine */

beginAddr, lastAddr, pa.soi, failAddr, expected, actual)
/* controls which test is run (see code below)*/

/* 32 bit card address of start and end *I long beginAddr, lastAddr;

short *pass;

long *failAddr;

long *expected;
long *actual;
extern;

pascal short PrimeWrite (slot)
short slot;
extern;

pascal short WriteMacLong (slot)
short slot;

extern;
pascal short Timer (slot)

short slot;
extern;

/* of RAM under test */
/* if non-zero, the following fields */
/* are returned */
/* address of failure (not all RAM tests */
/* return this value) */
/* expected value */
/* actual value */

/* write & read/verify a word to card RAM */
/* (not as comprehHnsive as data line test)

/* write & read/vei • fy a long from card */
/* to Mac RAM (not .;omprehensive) */

/* test the card's level 1 interrupt *I
/* assumes level 2 interrupt works *I

Using the MCP _Diagnostic library

*/

14-11

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

pascal short test IOP (slot)
short slot;
extern;

pascal short NMRQ (slot)
short slot;
extern;

pascal void Debug (l
extern Oxa9ff;

/* Macintosh-to-card interrupt test */

/* Card-to-Macintosh interrupt test */
/* assumes level 2 interrupt works *I

/* br~ak into macsbugs */

tdefine NumTests 12 /* byte inversion not run as it takes soo long */

short test [6]; /*
short verbose = O; /*
short iterations l; /*
char *progName; I*
short icount; I*
short busErrV; /*

array of slots to be tested
print pass/fail J nfo for every test
default t of ti:nes each test executed
Name of this program.
iterations completed count
bus error vector installed flag

*/
*/
*I
*/
*I
*I

main(argc,argv)
int argc;
char
(

14-12

**argv;

unsigned
short
int
int
char

long wait;
i;
j, slot;

status;
testStr[255];

long beg inAddr, lastAddr, failAddr, expected, actual;
/* RAM test vars *I

SignalMap sigMap;

ParseArgs (argc, argv);
if (GetCPU() < 2)

ParamDie ("This tool incompatible with 68000 or 68010
processors .. ", 11 ");

setbuf(stdout, (char *) 0); /* don't buffer output */

InstallMyErrV (); /* set up bus error handler/find card routine */
if (!test[O] && !test[l] && !test[2J && !test[3] && !test[4] && !test[S])

for Ci=O; i<6; ++i) (
/* find all cards· with $C3D2 @ ROM location $FsFFFFEA */

if (IsCommCard(i) == -ll
test [i] = l;
fprintf(stderr, "Testing slot %X\n", i+9);

InstallOldV (); /* remove special bus err vector *I

SetBusErrRetry(2); /* exit diagnostic o.fter 2nd bus error Cl retry) */

Diagnostics for the MCP . Card

(

(

MCP Developer's Guide • Final to Production Apple Confidential 2/20/89

for (i=O; i<iterations; ++i)
fprintf(stderr, "Starting pass %d of %d ... \n", i+l, iterations);
for (j=O; j < NumTests; ++j)

for (slot=O; slot<6; ++slot)
if (test [slot])

RotateCursor(CURSORFORWARD);
sigMap = sighold(SIGALLSIGS);

/* disable cmd-. while in 32 bit mode *I
InstallMyErrV();

/* set up bus error handler/find card routine */
switch (j) (

case 0: /* CRC test c;n card ROM *I
strcpy(testStr, "CRC check");
status = CheckCRC(slut);
break;

case 1: I* run powerup code from ROM on the card *I
strcpy (testStr, "Power-on");
powerup(slot);
for (wait= (unsigned l:·r.g) TickCount ()+SO;

wait > (unsigned long) TickCount ();)
/* wait for test to complete */

status = GetPowerUpStatus (slot);
if (status == -32) stat.us = O;

/* all tests passed */
switch (status) (

case 0: strcat (testStr,
case 5: strcat (testStr,

comple~e:"); break;

" ROM tests"); break;
" test didn • t

case -1: strcat (testStr, " data lines test");
break;

case -14: strcat(testStr,
case -2: strcat (testStr,

" RAM
11 test

test"); break;
pattern read") ;

break;
case -6: strcat (t.estStr, " CRC test"); break;
case -16: strcat ltestStr, " card application

specific tect");
status = GetVPUS (slot);

/* Vendor Power Up Status */
if (1 status) strcat (" returned

failure status O, has NOT");
break;

default: strcat (t<estStr, " undefined error");

break;
case 2: /* run primary ici.t test */

strcpy (testStr, "Prif!'.ary initialization");

status Lvllinit(slot);
switch (status) {

case 0: strcat (testStr, " ROM tests");
break;

case 1: strcat(testStr, " Nubus Write/Read");
break;

Using) he MCP _Diagnostic library 14-13

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89

14-14

case 2: strcat(testStr, " card reset test");
break;

case 4: strcat (testStr, " card level 1 interrupt
test");

break;
case 8: strcat(testStr, " card level 2 interrupt

test");
break;

case 16: strcat (testStr, " card application
specific test");

status = Get VP IS (slot);
/* vendor Primary Init status */

if (!status) strcat (" returned failure status O,
has NOT");

break;
default: strcat (testStr, " undefined error");
}

break;
case 3:

strcpy (testStr, "Cara to Macintosh (NMRQ) interrupt
test");

status = NMRQ(slot);
break;

case 4:
strcpy(testStr, "Test&Set
status = TestAndSet(slot,

on Macintosh RAM contest");
1);

break;
case 5:

case

case

case

case

case

case

case

strcpy (testStr, "Test&Set on card RAM contest");
status = TestAndSet (slot, 0);
break;
6: strcpy(testStr, "RAM data -lines test");

goto common;
7: strcpy (test St r, "RAM stuck cell test");

goto common;
8: strcpy(testStr, "RAM address lines test");

goto common;
9: strcpy(testStr, "RAM fixed pattern test");

goto common;
10: strcpy(testStr, "RAM marching ones test 1");

goto common;
11: strcpy (testStr, "'-AM marching ones test 2 ..);

goto common;
12: strcpy(testStr, "FZ\M byte inversion test");

common:
beginAddr = OxF900000_0 + slot*OxlOOOOOO;

/* 32 bit addressing */
lastAddr = beginAddr + GetRAMSize(slot);
RAMTest ((short) j-5, beginAddr, lastAddr, &status,

&failAddr, &expected, &actual);

if (status)
fprintf (stderr, "Expected 'lslX, found 'lslX at

address 'lslX;", expected, actual, failAddr);

Diagnostics for the MCP Card

,/

(
MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

printf("%d

break;
default:

fprintf (stderr, "Te.r.·l. #%d called, but is not
defined\n", j);

break;
/* switch (j) */

InstallOldV () ; /* remove special bus err vector *I
sigrelease (S!GALLSIGS, sigMapl; /* allow cmd-. abort *I
if (status) {

. fprintf(stderr, "Slot %X: %s FAILED, ID•%d\n", slot+9,
testStr, status);

if (j==l II j=•2l
fprintf (stderr, "Warning: further error output may

be caused by the above problem(s). \n");

else if (verbose)
printf("Slot %X: %s passed.\n", slot+9, testStr);

/* if (test(slot]) */
I* for (slot•O; slot<6; i +slot) *I
I* for (j•O; j < NumTests; ++j) */
I* for (i=-0; i<iterations: ++i) */

pass%scompleted.\n", ~, (i==l)?" ": es ..) ;

ParseArgs(argc, argv)
int argc;
cha·r *argv (J;
{

progName = argv (0] ;
++argv;
--argc;

for (argc > O; -~argc, ++argv)
if (argv (0] [O] == • - 1) {

switch (argv(OJ (l]
case 191:
case 'a':
case 'b':
case 'c':
case 'd':
case. 'e':
case 'p':

verbose
break;

case Ii I:

case
case
case
case
case

= l;

/*. Count of command arguments.
/* Command argument strings.

/* parse program name

/* flags

'A':
'B':
'C':
'D':
'E':

test[OJ
test [11
test(2l
test(3]
test[4]
test[SJ

*/

l;
l;
l;

= 1;
l;

/* Pr::..nt verbose
l;
info.

break;
break;
break;
break;
break;
break;
*/

if (--argc <= O)

*/
*I

*/

ParamDie ("Mis:.ing iteration count after ",
argv[OJ);

++argv;
iterations (short) atoi(argv[OJ);

Using the MCP _Diagnostic library 14-15

MCP Developer's Gulde • Final to Production Apple ConfldenHal 2/20/89

break;
default:

fprintf(stderr, "iU tJsaqe: h [- SlotNum(9-E) J
(-i Numiterationsl [-proqress] \n", proqName);

fprintf(stderr, "tti ts aborted.\n", proqName);
exit(l);

·1
else

/* switch (argv(OJ (l]) •'
/* if (arqv(Ol [OJ .. ,. •-• */

fprintf(stderr, "Ui Osage: h [·· SlotNum(9-El]
(-i NumiterationsI [-pre.~: ess] \n", proqName);

fprintf (stderr, "iii ts aborted. \n", progNamel;
exit(l);

/* for (argc > 0; --ar1:-, ++arqv l */

ParamDie(descl, · desc2)
char
char
(

*descl;
*desc2;

fprintf (stderr,
fprintf(stderr,
exit(l);

/* lsc half of problem description.
/* 2nd half of problem description.

"iHi ts - tsts\n", progName, aescl, desc2l;
"itt ts aborted. \n", progName);

pascal void '3usErrDialog (coc;l.eLoc, mode, access Loe)
long code Loe;

*/
*/

short moder /* special status reqist.e~ from exception stack frame */
long accessLoc;
(

14-16

fprintf (stderr, "\nitt A bus error occurred e...:ecuting code at or before
$tlX\n", codeLoc);

if (mode & Ox40).
fprintf(stderr, "iii Program attempted a read to location

$tlX\n", accessLoc);
else fprintf (stderr, "iii Program attempted ' write to location StlX\n",

accessLoc);
fprintf(st.derr, "iii Warning: Further MPW aper.it.ions may fail. Quit Ml?W &

restart to reset environment. \n"l;
fprint.f (st.derr, "iii ts aborted. \n", progName1;
InstallOldV(); /* remove bu~ error handler */
exit.(3);

Diagnostics for the MCP Cord

'·"· _,,/

(

Chapter 15

MCP Sequential Diagnostics

(

MCP Developer's Guide - Final to Production

This chapter describes the second level of diagnostics for the MCP card and describes
how to include application-specific tests as part of the diagnostic. This chapter
assumes that you have installed the MCP card and copied to your hard disk the MCP
diagnostic software provided on the distribution disk.

An overview
The application called MCP _Diagnostic provides a standard diagnostic user interface
and a set of routines that interface the Macintosh II to the core diagnostics of the MCP
card's hardware application. This application includes all of the power-up tests
described in Chapter 14, but the tests are more extensive. It also provides testing of
other generic functions of the MCP card. The second-level tests return the locations
and descriptions of failures, described in Table 14-4.

MCP _Diagnostic may be set as the start-up application on a boot disk or started like
any other application. This application is wriuen in MPW Pascal, MPW C, and MPW
Assembler. Samples included on the distribution disk are wriuen in MPW Pascal; it is
recommended that you use the file VendorBlocks.p written in MPW Pascal to interface
your Assembler diagnostic routines to the MCP _Diagnostic application.

NuBus support
Several extensions are included with the basic MCP _Diagnostic routines to suppon
the NuBus environment, including routines to

o Trap bus errors (caused by accessing nonexistent memory locations or by bad
NuBus cards), provide information on the location of the problem, and return
control to the application

o Provide general access to dialog boxes and dial controls

o Run scripted tests

MCP _Diognostic moin window
To best understand the user interface for this application, you should first run the
MCP _Diagnostic application provided on the distribution disk and explore the
various menus and commands. Each of these commands is described in the following
sections of this chapter.

l 5-2 MCP Sequential Diagnostics

Apple Confidential 2/20/89

(
MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

To run the second-level diagnostics for the MCP card:

1. Open the folder named MCP _Diagnostic.

2. Double-click on the application named MCP _Diagnostic. (The icon for this
application is shown below.)

MCP -Dfagnostic

Figure 15-1 shows the main window that is displayed.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15-1
MCP _Diagnostic main window

The main window conr.ains oversized buttons to the left of the screen and two sets of bit
rectangles located at the bottom of the screen.

Clicking the Start Test button runs through the entire suite of currently enabled
diagnostic tests.

Clicking the Reset Test button stops and aborts the current test sequence.

Clicking the Pause button stops the diagnostic at the next possible break point and
provides the message Paused Press Continue when Ready. These break
points are determined by a call to the routine WaitStep {),described later in this
section.

MCP _Diagnostic main window 15-3

r- tS MCP Options Debug Rids mspsay
lll MCP _Diognostic

Reset Test

~1 <111~r. Ir.s11

(Con1in11c 1
@ErrPouse

O ErrEnd

O Errloop
31 28 24 20 16 15 12 8 4 0

DODO DODO DDOO DODO DODO 0000 DDDO DODO $00000000
DODO DODO 0000 DODO ODOO ODOO DODO ODDO $00000000

J 6~ I

..,

(

(

MCP Developer's Guide - Final to Production

Clicking the Continue button starts the diagnostic (when paused) at the next test in the
sequence.

The radio buttons located in the lower-left section of the window determine the action
co be taken when a failure occurs during this sequence. The default is set to pause after
a failure. You can change it by clicking on the buttons in the window, then saving using
the Save Configuration option under the Options menu.

In a separate section on the main window, the Logger routine reports errors to the
window and logs the errors co disk on the defauk drive.

The area at the bottom of the window is used co graphically show bit-level failures,
which are displayed as actual bit rectangles versus expecced bit rectangles. To set the
expected bit levels, use the routine ShowResul ts (),described later in this chapter.

•> Note: While running the current version of MCP _Diagnostic, it may take a while
before operator input is acted upon, because user interface routines are called only
between the 32-bit addressing tests. Some tescs take up to five minutes to complete
(such as the byte-inversion RAM test).

During RAM testing, you may see how this display is used to report bit errors, with the
position of bit differences indicating which RAM chips failed.

The next section describes the commands presented by the MCP _Diagnostic
application. You'll see the following menus when you run the application:

o MCP

o Options

o DebugAids

o Display

The features and functions of each of these menus are described next. To determine
the version date of the MCP _Diagnostics application, choose the "About MCP .. ."
command under the Apple menu.

MCP menu
The MCP menu, shown in Figure 15-2, defines the card slots you want to test and the
scripting controls. This menu is reserved for testing the MCP card.

·> Note: Other expansion cards or smart cards, such as the AST card, are not
recognized by MCP_Diagnostic.

15-4 MCP Sequential Diagnostics

Apple Confldentlal 2/20/89

MCP Developer's Guide • Flnal to Production

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15·2
MCP menu

Slot n
When you first run the application, MCP _Diagnostic automatically looks for MCP
cards and adds a check mark beside any slot in which an MCP card is found. All
available slots in the Macintosh ll computer at startup are listed in this menu. For
example, if an MCP catd is installed in Slot D, MCP _Diagnostic adds a check mark to
the Slot D menu item. MCP _Diagnostic determines that a card is an MCP card if the
application fmds the value $C3D2 at the card ROM offset $FFFFEA.

Before any sequential tests are actually executed, MCP _Diagnostic checks the slots
that are marked under the MCP menu to verify that memory exists in the ROM address
space. If there is no catd installed or the MCP _Diagnostic finds neither ROM nor the
MCP ROM identifier, the warning dialog box shown in Figure 15-3 is displayed.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15·3
Warning dialog box

If the board is not an MCP catd, you can deselect it for testing by clicking the cancel
button in the warning dialog box; to continue testing the selected cards,click OK.

Apple Confidential 2/20/89

MCP menu 15-5

O,.'\ '

t

(

Options Debug Aids Display

Slot 9~----.,_,;~l~c!P~D~ia~g~n~o~s~ti~c]~~~~~~~~~~~
Slot R

...ISlot B
Slot C
Slot D
Slot E

Failure Analysis
(~J. ···················-·······-··················· .. ··································
(<ll Run Script •.•

Run Script Repeatedly •••
(c(Run Script at Startup ••• . l

Start Leuel Three Shell ...

UendorMenu I tern

- ii • - ;;; ;;; -ii iii = = =
;;; - • -= - ii = = ii

~ ""II
"ti ~ ~ ~ :;

- ::.- - --ii ~ -== ~ 9111 -.. 3! -= :.. I; --.. IC .. - ; -- - ... i!! ._ = - -=

rr. ~ ~ ~ ~ ~
~ ~ t;,. Ii'- ~ ~, ..

-----=
-
~
-
~ ----
~
~

-- - iiii -· - -= -= = - = -!! - !! - iii - ii !!!!! !! -

- ii - - = i ~ ;;; - - ii ;;; -- = = = - -- -- • -= 3 - iiii

= - - -- - -- - ;;; - - !!!!
iiiii ii - .ii ::: - -

~ ·-1: Y: 'If.: 1t 1'! f'~ ~ ,
L• ".l "' •• ~ II .. •• - = -

=
.. = --

== - .. -= -= !: .. :i ~ ;i .. !!!"" =i
._ -- :;.

~ !; - !: =- iC =-:i :I - .. - R:: ~ ~ iii -- IC ...

~
""II ~ ~ ~ :; ' ~ ·~

i ~
0,:

~ ~ ~ ~ ~-N -

• -!
,_

.... ~,

:.!

!!
~

Y:

~

,. s MCP Options Debug Rids Display

Reset Test

Pause Test

Continue

MCP _Diagnostic

f.\ Slot $000C

ill Card not found or card is missing-ROMS.

Hit OK to test this slot, Cancel to ignore slot.

(OK) (Cancel)

(i-J-3

(

MCP Developer's Guide - Final to Production

Failure Analysis
Use the Failure Analysis command to show the number of failures and the number of
iterations of each test after tests have been run. This information can also be found by
choosing the Show Data log command.

Run Script ...
Use the Run Script... command to compile a specific script file and execute it one time
only. This command presents a menu dialog box, shown in Figure 15-4.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15-4
Menu dialog box

Select the name of the desired script using the scroll bar. When invoked,
MCP _Diagnostic loads and compiles the desired script. If MCP _Diagnostic detects
compile errors, it displays messages in the scrolling text window. If compilation is
successful, MCP _Diagnostic executes the script.

Run Script Repeatedly ...
The Run Script Repeatedly ... command allows you to choose how many times you
want to execute the script you selected using the Run Script ... command just
described. You may enter a number or select uninterrupted repetition (that is, run
the test until you tum off the computer) in the dialog box shown in Figure 15-5.

15-6 MCP Sequential Diagnostics

Apple Confidential 2/20/89

, . • Options Debug Rids Display

Reset Test

I' "" Pause Test
\. ~

/ "
Continue

\.. -"'

MCP _Diagnostic

I) Generate_MCP :!1
[) Measlog
[) Testlog
[) Uendor.a
D Uendor.r
[) UendorBlocks.p
[) Uendordefs.p

c:>New Baby

(E !<-!< t)
([h·h•e)
--····---.. ··------··
(Open)

(Cancel)

® ErrPause 1'-====================::::!.I
O ErrEnd
0 Errloop
0 ErrCont

31 28 24 20 16 15 12 8 4 0
DODD DODD 0000 ODDO 0000 DODO DODD DODD $00000000 actual

DODD 0000 DODD ODDO ODDO DODD DODD DODD $00000000 expected

(

MCP Developer's Gulde - Final to Production

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15-5
Run Script Repeatedly dialog box

Run Script at Startup •••

The Run Script at Startup ... command allows you to select a script to be automatically
executed when the MCP _Diagnostic is started Execution begins after the test last
completed.

Run Level Three Shell .••
Use the Run Level Three Shell ... command to invoke third-level menus and tests.
Refer to Chapter 16 for complete information on these diagnostics.

VendorMenu Item
Use the VendorMenu Item command to extend the MCP menu by adding menu
commands you create. To add commands, use the files provided on the MCP
Diagnostics distribution disk and described in Chapter 16. The scripting conunands
used with this menu item are also explained in detail in Olapter 16.

Options menu
The Options Menu, shown in Figure 15-6, is used to select test startup configuration, to
quit the application, or to restart the Macintosh II.

Apple Confidential 2/20/89

Options menu 15-7

,.. .
·- Options Debug Rids ms, .

Reset Test

Pouse Test

Continue

@ErrPouse

O ErrEnd

O Errloop

MCP _maignosUc

Set the number of script repetitions:
3
1¢ 1 1mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmlll OJ

(Endless) (oK) [cancel ·)

31 28 24 20 16 15 12 8 4 0
0000 DOUD ODDO 0000 ODDO 0000 DODD ODDO $00000000 actual
IOOU 0000 0000 0000 HOO 0000 DODD 0000 $00000000

..,

()

(

MCP Developer's Guide - Final to Production

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15-6
Options menu

Auto Run is Selected
Use the Auto Run is Selected command to execute selected tests immediately at
startup. Use the Save Configuration command to save this option.

Auto Run is NotSelected
Use the Auto Run is Not Selected command to disable the Auto Run function described
above.

Save Configuration
Use the Save Configuration command to save the current configuration of the
diagnostics. This command presents a dialog menu box similar to that shown in
Figure 15-7 that asks for the name of a file where you want to save test data. The Default
for this file is Options. OPTN.

MSCNNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 15-7
Save Configuration dialog box

15-8 MCP Sequential Diagnostics

Apple Confidential 2/20/89

Debug Aids Display
Auto Run is Selected Diagnostic

----,.1Auto Run Not Selected
Saue Configuration

st a rt Tes ... ·---·"-·"-.. '-"'"""'"""-....... - -
Quit
Eject and Reset

Reset Tes

= = = = - - - :;
!!! iii -!!!! • - ii = -- = - - • !!! !! !! - • • - -- - = !! I - iiiii - = -- - iii - - !!! !!!! !! - a = -... = - = ~ - = = !i - = = !! = = ;;; - - • - = !! - = !! iiiii - • - = ii ii

;;; = iii = - - - ii - = -
=

~ 4:4 ~ ~ ~ :; ~ ~ A~

-ti L• ..; - -- =- - - - -- -
== - :.. - • ;:: -= ;;; • !!IJll 5- .. :! - .iii r' -= ii:! I: ~ -.. - :::: - -- - :i :I - - ==

II:: i! -- -- = - -
,; ~ ~ ~ ~ ~ :! ~

.q

~ ~ ~ ~ r;o. l!' I lit, ..

(; .. ~

- iii - - = -• -= - - = -= ii - - = i • = iii !i - :: -= - = -• - = = • - - I - = iiiii ! - -- = - = - = iii - ... = - -- = = - - = iiiii = - ii !!! - = -
,/

V: 1': 1fl 1'! 'r~ ~ , i' ,/ .: •• IC

-
!!: .;;;; = -- == iiiii .. -= ... ;I ~ :i !! ~ - - == - :;. i! !!!; E !!: .. :Ii !'! . .. = - It:'" i! - .. -- - - -- -
~ ~ ::j :; ' ~ ·~ V:

~ -= ~ ~ ~ ~ ~ ~· ,.,. - ·-

I

r
/''

:f
~.

r C MCP

Start Test

Reset Test

. .I

Options Debug Aids Display

MCP _Diagnostic

I a MCP _Diagnostics I
l",j El ui ld Hi<l ~J Elin<l 1·y
D Di<1gl.ib,t>
CJ DiagTool
[.j MCP H<~l<~<l~t:o No1 <~~
~ MCP Hi<l~JnO~ tit;
CJ ROM

Saue Test Data as:

I Options.OPTN

c:::> New Baby

([jt:-.:1)

(Dril•<~ J

[Saue]

j
=

MCP Developer's Guide • Final to Production

Quit

Use the Quit command to exit to the desktop.

Eject and Reset
Use the Eject and Reset command to eject any disks in the Macintosh II and reboot the
computer.

Debug Aids menu
The Debug Aids menu, shown in Figure 15-8, is used to control various options
available while running the tests.

MSCNNNN
ART: NN x 17 pi
20.5 pl text to FN b/b

Figure 15·8
Debug Aids menu

Stop After Pass
Use the Stop After Pass command to run through the sequence of selected tests only
once. This menu item is already checked; if you deselect this command, these tests
will run continuously.

Apple Confidential 2/20/89

Debug Aids menu 15-9

(

·~.

(

.,. S MCP Display

~~~~~~~~~~S~t:op~R~f~te~r~P~a~s~sF~~~~~~~~~~~~~~ 
Enable Micro Stepping 
Enable One Test Stepping 

Reset Test 

-- -- • !! -!!! !!! = !! -!!! ;; I -!!! !!! - -• =:! - -!! ;; = --- -ii iiii == --
~ ~ 

-ti ~ ~ 

- - -
ii ;. - ;: 

II: :.. I; .. c: ~ -- - - II:: ... =:! - -= 
ry; ~ ~ ~ 
~ ~ ~ !:? ... ., .. 

~Enable Uerbose Data Logging 
Zero Data Log File 
Clear Graph 
Disable All Logging 

-- iii -iiii =: - 3 - -• -• • -- - -;;;; - = !!!! ~ 
!! - ii - = - -- -!! - = iiii 

= == - • !!! !!! -• - -::; - -ii = iiii ii -
-

~ SJ ~ ~ ·~ Y: 
L• -.: "' - -

::: - - ~ :s; """' ;: :;; - -= .. 3! - .. ~ 

~ - ; - .... - =ii :I !! - -- -
~ !t ~ ~ 

~ ~ ~ ii' ~ e;. ~ 

.-: 

/ 1 , 

iiii - - = -- - - -
ii = - - i - = !!! ;;;; ;;;; -!! == - -- 3 ! - iiiii = -- = - - ;;;; =:! 

~ = - = 

'If.: ~ 111! ~~ ~ , 
I• .. .. .. .. 

- = ... = == --!: - :i ~ ;i -- -- =- i! !; !!!:: =- c =-- .. t: ;;.. - .. --= - .-

~ ~ SJ ' ~ ·~ 

~ "' t;-; ~ ~ ~-
N ..... 

• -I 
--
i 

!! 
~ 

'Y: 

~ 



MCP Developer's Gulde • Final to Production 

Enable Micro Stepping 
Use the Enable Miao Stepping conunand to pause between the testing of each MCP 
card. When testing is paused, a MiaoStep button on the left side of the main window 
appears. Every test is performed sequentially on each selected card before staning the 
next test in the sequence. 

When you stop a test by clicking the Miao.Step button and want to continue testing 
after a pause, click the MicroStep button on the left side of the main window. 

Enable One Test Stepping 
The Enable One Test Stepping command perfonns each test once on all MCP cards 
before pausing. 

Enable Verbose Data Logging 
The Enable Ver~ Data Logging command stamps each test with the date and logs 
each test as it begins to test both the log fde and the data log window (desaibed later in 
this chapter). When this command ~ unchecked, only errors are logged; as a result, 
testing runs quite a bit faster. 

Zero Data Log File 
Use the Zero Data Log File command to clear the log fde of information pertaining to 
previously run tests. A dialog box appears to confum the zero data log, shown in 
Figure 15-9. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-9 
Zero Data Log File dialog box 

15-10 MCP Sequential Diagnostics 

Apple ConfldenHal 2/20/89 

/ 



.,,._., 

r ti MCP Options Debug Aids , msph:.y 

Reset Test 

Pouse Test 

Continue 

@ErrPouse 

O ErrEnd 

O Errloop 

MCP _Diagnostic 

A\ Are you certain you want to 
ill erase the date 1 og? 

( oK J (-c8nc!fl 

31 28 24 20 16 15 12 8 4 0 
0000 0000 DODO 0000 0000 0000 ODDO 0000 $00000000 actual 
8000 DODD 0000 0000 DODD DODD 0000 0000 $00000000 

r) ·1 
'~ 

, 

'~ 



MCP Developer's Gulde - Final to Production 

Clear Graph 
The Clear Graph command is not implemented in this version. 

Disable All Logging 
Use the Disable All Logging command to run selected tests without reporting errors or 
comments to the disk file. This command is then dimmed (grayed) in the menu. 

Display menu 
The Display menu, shown in Figure 15-10, is used to display information about the 
tests being run and the resulting status. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-1 O 
Display menu 

Show Controls 
The Show Controls command displays the complete list of MCP card tests. The 
generic MCP tests provided on the MCP Diagnostic disk cover the following: 

o RAM 

o ROM 

0 600oo 
o NuBus 

o Interrupts 

Apple Confldenflal 2/20/89 

/ 

Display menu 15-11 



r- s MCP Options 

Start Test 

Reset Test 

( 

Show connfitrrco~lss~~~~~~~~~~~ 
Show Bits 
Show Data Log 
Show Measurement Log 
Show Graph 
Ignore Show Bits 

/\ 
.l !...) 



MCP Developer's Gulde - Final to Production 

Related tests are usually grouped together in blocks (such as the RAM test block). You 
may use as many individual tests or blocks of tests as necessary to structure the tests. for 
the smart card you create. You enable or disable tests by selecting check boxes in the 
list of tests for each test block, shown in the figures for each test block that follow. 

+ Note: Except for RAM testing, you need a current version of the MCP declaration 
ROM (Revision D) to successfully run through the test sequence. 

Testing RAM on the MCP card 

This series of tests comprehensively checks the card's available RAM for data and 
address enors. Figure 15-11 shows Block 1-RAM testing. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-11 
RAM test blocks 

Table 15-1 describes the tests performed on RAM for the MCP card. 

Table 15-1 
Tests on-card RAM 

Test type 

Datallnes 

Stuck Cell 

Address Line 

Fixed Patterns 

Marching Ones 

Byte Inversion 

Descrlptton of test 

Cycles all data values through one location 

Zeros memory, and then sets 

Writes an incrementing pattern to memory and verifies 

Writes a set of ten 128-bit patterns to RAM and verifies 

Cycles bits through each RAM location 

Tests the ability of RAM to invert data patterns in each RAM 
location 

+ Note. Byte Inversion is the longest of all tests, requiring about three minutes to 
complete for a 1/2 megabyte of RAM. 

15-12 MCP Sequential Diagnostics 

Apple Confldentlal 2/20/89 



,,_..., 

,- a MCP Options Debug Rids msplay 

MCP _Diagnostic 

Block & Test Switches 

181 Block 1 - RHM Testing 

Reset Test 11 l'A'l 181 Test 1 - Check Doto Lines 
181 Test 2 - Stuck Cell Test 

i!!l!l 181 Test 3 - Check RHM Hddress Lines 
Pouse Test 111m!~! 181 Test 4 - FiHed Potterns 

1!jl1i 181 Test 5 - Forword Morchinq 1 's 
mm 181 Test 6 - Reuerse Morchinq 1 's 

Continue I I Imm ~Test 7 - Bqte I nuersion 

@ErrPouse 

O ErrEnd 

O Errloop 

I~ [\ 

.., 

,......, 



MCP Developer's Gulde - Rnal to Production 

Bit errors are reported in the section of the screen that displays the expected bit 
rectangles versus actual bit rectangles, located at the bottom of the main window. 
Table 15-2 shows how errors are returned for each of the tests just listed 

Table 15·2 
How errors are returned for RAM tests 

Test type 

Data Lines 

Stucke.ell 

Address Line 

Fixed Patterns 

Marching Ones 

Byte Inversion 

How errors are returned 

Returns bit failures in lower portion of main window 

Accumulates and displays error bits in the main window 

ReportS address and bit field discrepancies on an e:-ror 

Returns bit field discrepancies on an error 

Retu.ms both error address and value dicrepancies 
in the main window 

Sets and inverts each byte, reporting errors if any bit does 
not set or clear 

+ Note: Power-on and primary initialization tests indicate what failed by the error 
code shown in Table 14-4. Because of dependencies in the diagnostic application, 
if power-on or primary initialization tests fail, spurious error messags may occur 
for remaining tests. 

To avoid losing the initial board information created by the power-up tests, the 
memory in the fJtSt 512 byteS of RAM is saved before and restored after the tests. 

•:• Note: Since each board uses a different labeling system for its RAM, you must either 
replace all RAM chips or consult the hardware specifications for identifying a faulty 
chip. 

Testing ROM on the MCP card 

The test constructs the Cyclic Redundancy Check (CRC) word for the ROM, and tesis 
this word against what is found in the card's information block located near the top of 
ROM space. 

Figure 15-12 shows Block 2- ROM testing. 

Apple Confidential 2/20/89 

MCP Tests 15-13 



( 

r c MCP Options Debug Aids Display 

Start Test 

Reset Test 

Con1irnrn 

® ErrPause 

O ErrEnd 

O Errloop 

0 ErrCont 

MCP _Diagnostic 

Block & Test Switches 

181 Block 2 - ROM Testing 

181 Test 1 - CRC Test 
181 Test 2 - Slot Manaqer Uerification 



MCP Developer's Guide - Final to Production 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-12 
ROM test blocks 

If this test fails, it returns a number; refer to the information on Status Results for the 
Slot Manager in Inside Macintosh, Volume 5. More information about this :est can 
be found in the power-up source code on the MCP _Diagnostic distribution disk. 

Testing the 68000 
The Macintosh II triggers the initial power-up and primary initialization tests. Figure 
15-13 shows Block 3-68ooo testing. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-13 
68000 test blocks 

The results are placed in the RAM of the MCP card and control is returned to the 68020 
on the Macintosh II to interpret the returned status. 

15-14 MCP Sequential Diagnostics 

Apple Confldentlal 2/20/89 



r s MCP Options Debug Aids Display 

Start Test 

Reset Test 

Continue~ 

® ErrPause 

O ErrEnd 

O Errloop 

MCP _Diagnostic 

Block & Test sw;tches 

t8:I Block 3 - 68000 Testing 

t8:I Test 1 - EHecute Power-on Tests 
t8:I Test 2 - EHecute Primar'-J I nititialization Tests 



MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89 

The ROM power-up status failure can be stored in long word location $134 (hex). The 
application calls the routine VendorPowerUpStatus () in the fde Vcndorblocks.p 
to interpret the failure of the Vendor Power-up Test.. You can store the primary 
initialization status failure in long word location $138. Use the routine 
VendorPrimaryinitStatus () to interpret the failure of the Vendor Primary Init 
Status test 

+ Note: Power-on and primary initialization tests indicate what failed by the error 
code shown in Table 14-4. Because of dependencies in the diagnostic application, 
if power-on or primary initialization tests fail, spurious error messags may occur 
for remaining tests. 

Testing NuBus 
Nubus tests can be performed when NuBus is used in the following operations: 

o reading from Macintmh II system ROM 

o writing to Macintosh II system RAM 

o reading from Macintosh II system RAM 

o using MCP interprocessor tests 

o test and set using 68oOO memory 

o test and set using 68o20 memory 

Figure 15-14 shows Block 4-NuBus testing. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Rgure 15·14 
NuBus test blocks 

•> Note: Power-on and primary initiali1.ation tests indicate what failed py the enor 
code shown in Table 14-4. Because of dependencies in the diagnostic application, 
if power-on or primary initialization tests fail, spurious error messages may occur 
from the diagnostics for NuBus tests. 

MCP Tests 15-15 



. ..._..,. 

,. s MCP Options Debug nids Display 

Reset Test 

Pause Test 

Continue 

® ErrPause 

O ErrEnd 

O Errloop 

MCP _Diagnostic 

Block & Test Switches 

181 Block 4 - NuBus Tests 

181 Test 1 - Reod from Moc 11 S'-lstem ROM 
181 Test 2 - Reod from M.oc 11 S'-lstem RRM 

Hilli 181 Test 3 - Write to Moc 11 S'-IStem RRM 
mm 181 Test 4 - 32 Bit Moc 11 S'-IStem RAM R/W 
!i!i!I 181 Test 5 - Write/Read to Caliente cord RRM 
m!il 181 Test 6 - Test & Set on Caliente RRM 
mm 181 Test 7 - Test & Set on Moc 11 S'-IStem RAM 
mi!I 181 Test 8 - Caliente-Caliente I nterProcessor 

1t) ~ 11 
~ 

, 

..._,., 



MCP Developer's Gulde - Final to Production 

Reading from Macintosh II system ROM 

The MCP Sequencer reads and verifies a specific value from the ROM address $800008 
(Mactlntosh ID) in the System ROM that has a value of $01. 

Writing to Macintosh II system RAM 

There are two versions of this test; you select the version using the Show Controls 
command in the Display menu. 

o The first version writes a byte to the application saatchpad and reads it back. If the 
byte readback is the same as the byte that was sent, the test succeeds. 

o The second version of the test verifies that a long value (four bytes) is written and 
read correctly. 

Reading from Macintosh II system RAM 

The MCP _Diagnostic checks the address $000000 for a value of $40 in the System 
RAM. 

Warning 

Apple ConfldenHal 2/20/89 

If this test fells, It may be because some other application or the MultiFinder hes 
changed the location. Try running this cppllcctlon without using MultiFinder. 

MCP interprocessor tests 

This test performs reads and writes from an MCP card to any other MCP card or cards 
that are imtalled on the Macintosh II main logic board (motherboard). If only one 
MCP card is imtalled on the Macintosh II main logic board, this test exits without 
error. 

Test and set using 68000 memory 

This test examines the ability of the two processors (one on the MCP card, the other 
on the Macintosh II main logic board) to gain access to the same memory block. The 
card and the main logic board processor attempt many test-and-sets to the same 
memory location. This test fails if both processors show that they have gained access 
to the location for any one test cycle. 

Test and set using 68020 memory 

This test is functionally equivalent to the one just described, except that the memory 
block resides in 68o20 system memory. 

15-16 MCP Sequential Diagnostics . 

-- ----------~ ---



( 
MCP Developer's Guide - Final to Production 

Reset/timer /interrupts 
The MCP Sequencer performs several tests to check the reset, timer, and interrupts 
performance of the MCP card and includes the following: 

o Level 1 timer interrupt 

o Level 1 timer speed verification 

o Level 2 NuBus interrupt 

o the MCP card interrupts the Macintosh II 68020 

Figure 15-15 shows Block 5 - Interrupt testing. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-15 
Interrupt test blocks 

•:• Note: Power-on and primary initialization tests indicate what failed by the error 
code shown in Table 14-4. Because of dependencies in the diagnostic application, 
if power-on or primary initialization tests fail, spurious error messages may occur 
from the diagnostics for NuBus tests. 

Level 1 timer interrupt 

This test perfonns checks if timer interrupts are processed by the card. A test routine is 
loaded into the card. Its address is placed in the timer interrupt slot in the card's 
exception table, and a test is triggered. If the routine executes, the test passes. 

Level 1 timer speed verification 

This test checks the average speed of the 68000 timer interrupt, normally firing onre 
every 6.5536 milliseconds. If this interrupt is much faster or slower than the 
specification, the failure is reported to the main window and recorded to disk. 

Apple Confidential 2/20/89 

MCP Tests 15-17 



" & MCP Options Debug Rids Oisploy 

Stort Test 

Reset Test 

Pouse Test 

Continue 

@ErrPouse 

O ErrEnd 

O Errloop 

~D 

MCP _Diagnostic 

Block & Test Switches 

1:8] Block 5 - Interrupt Testing 

1:8] Test 1 - Timer Interrupt 
1:8] Test 2 - Timer Interrupt Speed Uerificotion 
1:8] Test 3 - NuOus Interrupt 
1:8] Test 4 - 1/0 Processor Interrupt 

flJ' 15' 

, 

\, 



MCP Developer's Guide - Final to Production 

Level 2 NuBus Interrupt 

This tests the ability of the 68020 to interrupt the card's 68000 processor. A test routine 
is downloaded to the card and triggered. This test passes if NuBus interrupts are 
correctly processed by the card. 

The MCP Card interrupts the Macintosh II 68020 

This test uses the NuBus NMRQ line to trigger a slot interrupt, which is then processed 
by the Device Manager on the Macintosh II. If the interrupt is triggered, the test · 
passes. 

Show Bits 
Use the Show Bits command in the Display menu to update the bit rectangles at the 
bottom oft.he main window. Currently, only the RAM tests use the bit rectangles to 
show which RAM data bits failed. 

Show Data Log 
The Show Data Log conunand displays all errors that have occurred since the Zero 
Data Log command was last used. These errors are displayed in the Data Log window 
to allow the user to view the data log within the MCP _Diagnostic. Figure 15-16 shows 
an example of how a a Data Log window displays infonnation after tests have been run. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 15-16 
The Data Log window 

If you have not yet run any tests and then dick on Show Data log, a dialog box is 
displayedthattellsyou Data Log File is Empty. Click OK. 

15-18 MCP Sequential Diagnostics 

Apple Confidential 2/20/89 



,.- \, _/ 
Cit MCP Options Debug Rids msphiY 

-o Doto Log 
Upda~ed: 10/25/88 3:45 PM Started: 10/18/98 4:24 PM 
Iterations Since Last Zero Data Log: 2, Errors Since Last Zero Data log: 0 

Failed Slot/Block/Test/• of Errors Since Bootup 

10/18/88,4:25PM,Pass:O,Blk:1,Test: 1,Slot:B:test 1<begun test> 
10/18/88,4:25 PM,Pass:O,B k: 1,Test:2,Slot:B:test 2<begun test> 
10/18/88,4:25 PM,Pass:O,B k: 1, Test:3,Slot:B:test 3<begun test> 
10/18/88,4:25 PM,Pass:O,B k: 1,Test:4,Slot:B:test 4<be9un test> 
10/18/88,4:25 PM,Pass:O,B k: 1,Test:5,Slot:B:test S<be9un test> 
10/18/88,4:25 PM,Pass:O,B k: 1,Test:6,Slot:B:test 6(begun test> 
10/18/88,4:25 PM,Pass:O,B k: 1,Test:7,Slot:B:test 7<begun test> 
10/18/88,4:27 PM,Pass:O,B k:2, Test: 1,Slot:B:CRC test<be9un test> 
10/18/88,4:27 PM,Pass:O~B k:3,Test: 1,Slot:B:<power up><begun test> 
10/18/88,4:Z7 PM,Pass:O,B k:3,Test:2,Slot:B:Primary init testCbegun test> 
10/18/88,4:27 PM,Pass:O,B k:4,Test:1,Slot:B:Mac II ROM Read(be9un test> 
10/18/88,4:27 PM,Pass:O,B k:4, Test:2,Slot:B:Mac 11 RAM Read<begun test> 
10/18/88,4:27 PM,Pass:O,B k:4,Test:3,Slot:B:Mac II RAM write(begun test> 
10/18/88,4:27 PM,Pass:O,B k:4, Test:4,Slot:B:Long Mac 11 RAM wrl teCbegun test> 

;CS~ (ft 

.., 



( 

MCP Developer's Gulde - Final to Production 

Show Measurement Log 
The Show Measurement log command is not implemented in this version. 

Show Graph 
The Show Graph command displays an empty graph; this command is not 
implememed in this version. 

Ignore Show Bits 
The Ignore Show Bits command is not implemented in this version. 

Apple Confldentlal 2/20/89 

MCP Tests 15-19 



MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89 

15-20 MCP Sequential Diagnostics 



\t 

Chapter 16 

Adding to MCP 



~~- ·-------·-·-· ---------~- ---

MCP Developer's Guide • Final to Production 

This chapter describes how to add resources and application-specific tests to the ROM 
on MCP-based smart cards as well as menu commands to the MCP _Diagnostic 
application using routines provided on the MCP Diagnostics distribution disk. The 
sections in this chapter pertain to sequential tests only; see Chapter 17 for information 
on coprocessor testing. 

The MCP _Diagnostic application is written in MPW Pascal, MPW C, and MPW 
Assembler. Therefore, any tests you create should also be written using MPW. This 
section assumes you have working knowledge of MPW Pascal, MPW C, MPW 
Assembler, or all three. 

Apple Confidential 2/20/89 

+ Note: While it is possible to use C for writing tests, you must exercise care in string 
conversions between Pascal, toolbox calls, and C. All toolbox calls from C must be 
declared pascal () extern, as the Pascal libraries are used f1rst during the link 
phase. Toolbox calls requiring strings must pass Pascal strings. 

Adding code to the ROM 
The MCP _Diagnostic application provides hooks and a user interface that you can use 
to customize the files; this code is provided in the MCP folder on the MCP Diagnostics 
distribution disk. 

You must write your own code for the parameters _and device drivers for your specific 
card application. Hooks are set up for them in the ROM's resource directories. Refer 
to Destgntng Cards and Drivers for more information. 

To add your own code to the ROM on the MCP card, be aware that 

o The Slot Manager requires that resources on the ROM be created as specified in 
Destgning Cards and Drivers. 

o Both the generic power-on code and the primary-initiali1.ation code have hooks 
where you may add code for your own tests. 

The MCP Diagnostics distribution disk provides a set of folders and stub files that are 
set up to make development easier. The ROM files are in the folder named ROM. 
Inside the folder are several files.and a folder named MCP. 

Table 16-1 provides a list of the files in the MCP folder and a brief description of each. 
Each of these files is described in greater detail in the following seccions in this 
chapter. 

16-2 Adding to MCP 



( 

( 

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89 

Tobie 16-1 
ROM:MCP files 

Name 

ApplROM.a 

ApplPowerOn.a 

ApplPrirnaryinit.a 

Application.h 

ROM burn instructions 

Warning 

Description 

Defines the slot resource tables 

Used to indude your tests into the power-on 
sequence 

Used to add tests into the primary initialization 
sequence 

Contains the constants required for your code 

Contains information for downloading and burning 
your code into ROM 

Do not make any changes to the flies PowerOn.a or Primarylnit.a contained in 
the ROM folder. because these flies may be replaced or modified In the future. 

Duplicate the :ROM:MCP: folder and rename it for your project. The name of this 
new folder should not contain any spaces or special characters, as it is used to locate 
your code for the ROM makefile. 

The file ApplROM.a 
The file ApplROM. a contains slot resource lists, listed in Table 16-2. For a more 
complete description of MCP card resources, consult Designing Cards and Drivers. 

Tobie 16-2 
Resource list entries in the file ApplROM.a 

Name 

Board sResource list 

CPU sResource list 

Application drivers 
sResource list 

Description 

Holds pointers to the MCP card resources, as well as 
the vendor identification 

Holds information describing the CPU and memory 
map of the MCP card architecture 

Holds any drivers that will be loaded at startup; also 
holds the category and type information for your 
card's specific use 

•> Note: Consult Apple Developer Services for the latest values for categories and 
types. 

Adding code to the ROM 16-3 



MCP Developer's Gulde - Final to Production 

Board sResource list 

1he resource list holds pointers to the MCP card.resources sRsrc_Board and 
Vendor Info. 

1he sRsrc_Board list contains the name and identification number for the MCP. 
card. 1he parameters include: 

o 1he _Board.Name, the official card name you designate 

o CommBoardID, the Board ID designated for the application by Apple Developer 
Technical Support 

Important 

Apple Confidential 2/20/89 

You must apply to Apple Developer Technical Support for an official Board ID. 
Once this Board ID Is received. change the constant (declared In the file 
Appllcatlon.h) to the given value. 

1he Vendor Info record contains three fields. These fiel~ are optional to the Slot 
Manager. 

o _vendor ID, the name of the developing company 

+ Note: You may want to include a copyright statement in this field, which is limited 
to 254 characters. 

o _RevLevel, the current revision number you designate (less than 9) 

o _ P artNum, the part number you designate (according to your numbering system) 

Application-specific driver sResource list 

1he driver directory is used to hold any drivers that will be loaded at startup. Refer to 
the sample code in Chapter 8 of .Destgning Cards and Drivers. 

VendID resides immediately before the Format Header Block and is used by 
MCP _Diagnostics routines to recognize the card's specific application. 

+ Note: VendID is defined in the me Application. h. Until such time as Apple 
Technical Support supplies you with a Board ID number, you should define your 
own code and connect this into the second level of diagnostics, using the function 
IsVendorCard () in me VendorBlocks. p. If IsVendorCa rd returns false, 
your application-specific tests will not be executed. 

16-4 Adding to MCP 

'"' - / 



( 

MCP Developer's Gulde - Final to Production 

The file ApplPowerOn.a 

The file ApplPowerOn. a is used for two purposes. The first is to include tests in the 
power-on or soft reset code, which is run by the on-board 68000. Do not put any time- · 
intensive tests here, as any tests you develop must not take more than 600 milliseconds 
to execute (in a worst-case scenario). 

The second purpose is to defme the routines to service the interrupt vectors. This file 
allows you to add your own routines. 

The power-on code recognizes a Pass or Fail status when the test bit flag (bit 4 at card 
location $102) is cleared or set. The current stub code clears the bit, indicating a Pass. 
For failure, leave the bit set. A long word in card RAM at location $134 is reserved for 
storing the failure status of any developer-created tests for later analysis. 

The file ApplPrimarylnit.a 

The file ApplP rimaryini t. a is used to include your test in the primary 
initialization code, which is then run by the Slot Manager. Tests placed here should 
take less than 200 milliseconds to perfonn. 

If the card must be initialized, it should be done during primary initialization. The 
card should be left in a known state in which it is ready to be used by an application. A 
long word at $138 has been reserved to store any test failure codes for later analysis. 

The file Application.h 

The file Application. h contains many constants required for your code. 
Currently, the constants provided by Apple Developer Technical Support for slot 
resources are defined in this file; these constants are used in the file AppleRom. a. 

The file ROMburn 

This file provides the information necessary to take the ROM application file and 
download it to a data I/O PROM burner. 

Apple Confidentlal 2/20/89 

Adding code to the ROM 16-5 



MCP Developer's Gulde - Final to Production 

Adding required resources in the ROM 

This section describes a resource list called the sMemory resource that is provided in 
ROM on smart NuBus cards capable of being NuBus masters. A smart card for 
purposes of this discussion is any card with a CPU capable of being a NuBus master and 
providing memory-like access to its RAM. 

+ Note: An example of an implementation of the sMemory resource list can be found 
in the file ApplROM. a in the ROM folder on the MCP Diagnostic distribution 
disk. 

This resource list provides information on the address ranges on MCP-bascd cards 
used for RAM, ROM, and/or device registers. This information is used by MR-DOS 
software to allow intelligent cards in the NuBus to corrununicate as peers. The 
Macintosh Coprocessor Platform and cards built upon this architecture implement 
this resource list 

+ Note: It is strongly recommended that the NuBus interfaces on intelligent cards 
fully support all modes of Nu Bus access, even if multiple local bus cycles are 
required to complete them. Supplying this resource list on cards that do not meet 
all of these criteria is also acceptable. 

sMemory resource list 
The sMemory slot resource list is currently defined as a second-level slot resource list 
as part of the first level CPU slot resource list. The implication is that they are not 
visible to the the primary Slot Manager calls SNextsRsrc () and 
SN ext TypeSRs re ( ) , but are accessible by use of the advanced level Slot Manager 
toolbox calls. 

The identifier for the sMemory resource list is the Apple-reserved ID $6C. 

In MCP-based cards, these resource lists are located as an offset from the CPU 
resource list Figure 16-1 illustrates what could be the sMemory resource list for a 
generic MCP card 

16-6 Adding to MCP 

Apple Confidential 2/20/89 

j 



MCP Developer's Gulde • Flncl to Production Apple Confldentlcl 2/20/89 

( 

CatBoard ($1) 

i, TypeBoard ($0) 
DrvrSW ($0) 

DrvrHW ($0) 

Board Type C Str ("Apple MCP Ns•j 

Board Name 
MCP Board ID ($0) i---.....-' Primary Init Block I 
Primary Init i------' !'@ 

=""· 
c Str 1988 Apple Compute 

Vendor Info Vendor ID 

Rav Laval I c Str ("ROM rev. c•) J 
Part Number r--_._I C Str (•to be defined•) =i 
CatCPU ($A) 

Type68000 ($1) 

Board sResource DrSWNotThere ($FFFF) 

CPU sResource DrHWMCP ($0) 

Developer Supplied 

~. sResource I C Str ("CPU 68000 NotinROM_AppleMCP•> I 

I $00000000 I 
CPU Type y '"-=" "'' :--1 
CPU Name vi $01000000 I Type ($1) j MinorBaseOS DrSWNotThere ($FFFF) 

MinorLength . DrHWAMCP ($1) 

sMemory List ($6C) sMamory Type 
sMemory Name I C Str ( • sMemory") ~] 
MinorRAMAddr 

~I MinorROMAddr MinorRAMBlock length ($C) 

MinorOeviceAddr Length ($00400000) 

MajorRAMAddr Offset ($00000000) 

MojorROMAddr 

MajorOeviceAddr MinorROMBlock length CSCl 

c Length ($00010000) 

'I 
Offset ($00FF0000) 

MinorOeviceBlock length ($24) 

Length ($00400000) 

Offset ( $00 400000) 
Length ($00200000) 

Offset ($00800000) 
Length ($00200000) 

Offset ($00A00000) 
Length ($0000000B) 

Figure 16· 1 Offset ($00C00000) 
sMemory resource list for a generic MCP card 

Adding require<:' resources In the ROM 16-7 



MCP Developer's Gulde • Final to Production 

sMemory resource list identifier 
The sMemory resource list contains the required sRs re_ Type (that identifies the 
list), the required sRs rc _Name resource, and one or more of the· following 
resources listed in Table 16-3. 

Table 16·3 
Resource list for smart cards 

ID 

128 

129 

130 

131 

132 

133 

Description 

Minor RAM address ranges 

Major RAM address ranges (not supported on the MCP card) 

Minor ROM address ranges 

Major ROM address ranges (not supponed on the MCP card) 

Minor device register address ranges 

Major device register address ranges (not supponed on the MCP 
card) 

Apple Confldentlal 2/20/89 

+ Note: A major address range corresponds to what is def med in Designing Cards and 
Drivers as the super slot space allocated for the card; however, the MCP card does 
not support the super slot space. A minor address range is the normal slot 16 MB 
space (such as where an MCP card resides) and is supported. 

In each case, the upper 8 bits holds the ID and the lower 24 bits provides an offset to a 
block. The first long word of the block concaw the length of the block, followed by 
pairs of entries. The first long word of each pair has the length of this address range in 
bytes. The second long word has the offset from the major or minor base address for 
this space, as appropriate. 

It is acceptable for the resource list to describe the architected memory structure of the 
card; it need not reflect the actual memory present For example, if 512 KB of RAM is 
provided for but only 128 KB of RAM is present, it is acceptable for the resource to 
indicate 512 KB of RAM space even though the remaining 384 KB of address space 
may either mirror the first 128 KB or cause a bus error when acces.5ed. This means that 
the declaration ROM need not change when memory is expanded. 

The card must return either a bus error or a data acknowledgement for any memo,-y 
access within the architected memory range. 

Table 16-4 lists the resources required for use with MR-DOS on an MCP-based sman 
card. This table includes the resource identifier and a brief description of each. 

16·8 Adding to MCP 



( 

MCP Developer's Guide - Final to Production 

Table 16·4 
Resources required for MR-DOS 

ID Resource Name Description 

1 sMemory Type pointstotheeight-byte sRsrc_Type that 
identifies this list 

Apple Confidential 2/20/89 

2 sMemo ry Name points to the required s Rs r c _Name string by 
convention, sMemo ry 

128 Mino rRAMAddr points to the range list for minor RAM space. In this 
case, up to 4 MB of RAM starting at 0 from .he 
minor base address 

130 MinorROMAddr points to the range list for minor ROM space. In 
this case, 64 KB ofROM starting at $FFOOOO from the 
minor base address 

132 MinorDeviceAddr points to the range list for device space. In this 
case: 

4 MB of space for VO interface logic (decode 
and DTACK provided) starting at $400000 
from the minor base address 

4 MB of space for VO interface logic (no 
decOde or DTACK provided) starting aL 5800000 
from the minor base address 

2 MB of space for Nu Bus addressing starting 
at $AOOOOO from the minor base address 

12 bytes of space for MCP control adresses starting 
at $COOOOO from the minor base address 

Adding required resources In the ROM 16-9 



MCP Developer's Guide - Final to Production Apple Confldenttaf 2/20/89 

Source files for adding tests 
MCP _Diagnostic routines are provided as object files compatible with the MPW 2.0 
linker. Table 16-5 lists the MCP _Diagnostic files available for you to use in adding 
application-specific tests and provides a brief description of each. 

Table 16·5 
MCP _Diagnostic routine flies 

File Nam• 

Generate_MCl? 

VendorDefs.p 

VendorBlocks.p 

Vendor.a 

Vendor.r 

Description 

Includes a sample compile and link format that can be used to 
generate a working version of the MCP _Diagnostic. Any 
additional developer files created for testing should be 
included in this existing MPW script ftle 

Is used for defining developer-specific constants, 
variables, and functions that are to be used globally (that is, 
in more than one file) 

Contains stubs of the test routines that implement your Pascal 
application-specific tests on the MCP card. Tests needing to 
access addres5 space above the 1-MB card space are 
written in Assembler (this is explained in a later section) 

Used for creating application-specific Assembler routines 

Contains vendor-specific resources necessary to the vendor
defined tests. This file includes the names of the tests to be 
run, along with any dialog or alert boxes for these same tests 

You should create new tests as separate files and link them together using the model 
foundintheftle Generate_MCl?. 

Including new tests in the MCP _Diagnostic 

Tests you create become part of the MCP _Diagnostic by 

o including the names of the tests to be added into the file Vendor. r 

o initializing the test routines using MkNewBlock () and MakeNewTes t () in the 
ftle VendorBlocks.p 

o calling the test routines from the routine VendorExecTest () in the file 
VendorBlocks.p 

The stub tests in the file VendorBlocks. p provide an example of how this is done. 

16-l 0 Adding to MCP 



( 
MCP Developer's Gulde • Final to Production 

Code that must run before each start of a test sequence should be placed in the routine 
VendorStart Test(), and code to berunaftereachtestsequence is complete 
should reside in the routine VendorEndTes t () . Any code to be executed once 
upon startup of the application should be located in the routine Vendors tart up (), 
and code to be run right before the close of the application should reside in the 
routine Ven do rExi t ( ) . Stubs to these routines are also found in the file 
VendorBlocks. p. 

The tests log errors and present information to the operator via the MCP _Diagnostic 
interface routines. Each test should be (or look as if it is) a Pascal function returning a 
16-bit integer indicating success (zero value) or failure (non-zero error status value). 
An example is provided in the routine VendorExecTest () in the file 
VendorBlocks. p. 

Apple Confidential 2/20/89 

In order for MCP _Diagnostic to recognize different board applications built on the 
MCPcard,youmustusetheroutine IsVendorCard(slott) toretum TRUE ifthe 
slot contains your application board; otherwise, it should return FALSE. This routine 
is used to prevent MCP _Diagnostic from running the your application-specific tests 
on generic MCP cards. This stub resides in the file Vendor Blocks. p. 

Adding menu commands to the MCP _Diagnostic 
Y~u can add menu commands by extending the MCP menu. This is accomplished by 

o extending the menu resource found in the file Vendor . r 

o putting the code that supports these commands into the routine VendorMenu () 
in the file VendorBlocks . p 

+ Note: The parameters for all vendor routines are described in the file 
VendorBlocks. p. 

Macintosh address mode compatiblity 
To remain compatible with Macintosh 68ooo applications, th,e 68020 Macintosh II 
normally runs in 24-bit mode. 

In 24-bit mode, only the first megabyte of each card's slot space can be seen by the 
application. Because of this, the MCP's control space and ROM cannot be accessed 
in 24-bit mode. 

In order to access this space, you must call the Macintosh II ROM trap _ swapmmu 
with the value not zero in register DO to switch to 32-bit mode. As the 
MCP _Diagnostic user interface runs in 24-bit mode, the tests must reset the 24-bit 
mode upon completion of any 32-bit mode testing. 

Source. files for adding tests 16-11 



MCP Developer's Gulde - Final to Production 

Trapping bus errors 

When you ac~ the NuBus address space on the Macintosh II, bus errors frequently 
develop if you address a nonexistent or nonresponding memory address. The 

Apple ConfldenHal 2/20/89 

routines InstallMyErrV, InstallOldV, and BusErrDialog areprovided 
on the MCP _Diagnostic library to automatically trap this error and provide 
infonnation about the cause of this error. 

The routine returns the addre~ of the offending location and the code location that 
called it; this information is helpful in determining the cause of the bus error. Usually 
the error is caused by specifying a NuBus address that does not contain an MCP card 
or does not have ROM imt.alled. The location reporting the error is of the fonn 
F nXXXXXX, where n is the slot number of the bus error, and XXXXXX is the offset into 
the card's memory map. 

Currently, the diagnostic returns to the main menu, but future versions may exit the 
application at this point because the program stack contains data left over from the 
state of the machine before the bus error occurred. 

The Dial routine 
The Dial routine facilitates receiving information between you and the diagnostic. 
This routine is used to "dial• a value for a variable. Use the command RunScript 
Repeatedly ... under the MCP menu to bring up the window for the dialog. 

The Dial routine (Function SetVar) found in the MCP_Diagnostic library returns 
an integer COiresponding to one of three buttons selected in the dialog box. The 
format for the Dial routine is: 

Function SetVar(var current:Integer; min,max:Integer; 
msgl,bPrompt:str255): Integer; 

where msg 1 is a prompt describing the actions of the dial (msg l should be less than 
48 characters in length). 

The variable current passes in the default location of the scroll bar indicator and 
returns the indicator controls value, which is between minimum and maximum in 
value. 

If butt onMsg is not an empty string, a button appears with this string inside and the 
function returns -1 if clicked. The OK button returns 0, and the Cancel button returns 
+lifp~ 

16-12 Adding to MCP 



( 

( 

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89 

The tester script language 
The MCP card testing application has the capability of being driven by a saipt file. 
The file you create must be an ASCII text file, which you can generate in a text editor. 
The ftle consists of two parts, described in the following sections: 

o a section that contains script control statements 

o a section that contains an optional set of messages 

+ Note: The message section must follow the control section. 

The control section 
The control section consists of test descriptions, conditional statements, labels, and 
comments. As these are delimited by special characters, you can spread any element 
over several text lines; the script is case-sensitive. The control section is terminated 
by an END statement. 

The testing application lets you build sets of tests called blocks. Each block is given a 
two-digit number; individual tests within the block are also identified by two-digit 
numbers. The block and test numbers form the TestID. 

Using this ID, form a test description using the following format: 

Test ID [-q [e] [u] [t 14: 10] [o] [n #]] [-s n ... ] [-m #] * 
Table 16~ describes each of the parameters in the format in the test decription. 

The tester script language 16-13 



MCP Developer's Gulde - Final to Production 

Table 16-6 
Test description parameters 

Parameter 

Test ID 

-qe 

-qu 

-qo 

-qn 

Description 

a four-digit number. The fust two digits are the block number; the 
second two digits are the test number 

termination mode. The default is to run the test once. A test runs 
until its termination mode occurs, and returns a failed status if it fails 
at least once 

terminate on error 

user terminate 

run test once 

run test n number of times 

-qt xx: xx termination time in 24-hour mode 

-s 

-rn 

* 

card slot(s). This is followed by one or more slot numbers in the 
range 9 - E. If no number is specified, the slot that was chosen from 
the menu is used If no slot has been chosen, a dialog box prompts 
the user for a slot rrumber. 

the number of a message that is printed on the screen if the test fails. 
The message must be present in the message section of the script 

the terminator character 

Conditional tests 

The script language has a limited set of conditional tests. These tests can be strung 
together to form more complex conditiom. 

Unlike most conditional tests, the conditional branch is only taken if the invoked test 
fails. If the invoked test passes, the flow of control jumps to the next distinct test 
description in order. Thus, if a test description comists of three chained conditionals 
and the first one passes, the second and third tests will be skipped 

16-14 Adding to MCP 

Apple Confldenflal 2/20/89 



( 

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89 

The fonnat for conditional tests is as follows: 

IF (TestID) THEN (TestID) * 

IF (TestID) GOTO label * 

label 

If the given test fails, run the following test. 

If the given test fails, jump to the label and 
continue. The label must stand alone on the 
line preceding the destination test and is 
limited to ten characters. The colon is 
required but is not counted as one of the ten. 
The flI'St character of the label must be 
non-numeric. 

Test ID GOTO label * Unconditionally jump to the label. This case 
is distinguished from the conditional GOTO 
by the fact that the Test ID is not within 
parentheses and that the line does not start 
withan IF. 

IF (TestID) THEN IF (TestID) * 

String together a set of conditionals; the conditional must be terminated by an asterisk 
( *) • 

Examples 

A complete example of a conditional test is 

IF (0102 -qt 14:20 -s 9 AB) THEN (0203 -qo -s 9) * 

This example shows that if test 2ofblock1 fails (which terminates at 14:20 and checks 
slots 9, A, and B), then execute test 3 of block 2 once on slot 9. 

To create an IF . . . THEN . . . ELSE construction, use the following format: 

IF (0102) GOTO testl* 

0205 .... GOTO test2 * 

testl: 

0304 * 
test2: 

0109 ... * 
This example shows that, if test 0102 fails, then execution continues with test 0304. If 
test 0102 passes, then test 0205 is executed. Finally, test 0109 is run. 

The tester script language 16-15 



MCP Developer's Gulde - Final to Production 

The message section 
The optional mes.5age section consists of a set of mes.5ages that can be printed when a 
test fails. Only one one-line mes.5age can be printed for each script line. Messages are 
numbered from 1 to 256; all mes.5ages are delimited by the symbol /, as shown in the 
following example: 

/RAM test failed/ 

Apple Confidential 2/20/89 

/This message is about the maximum size for the message dialog box/ 

/This message is illegal 

because it is on two lines/ 

Comments 

Comments may be placed at any point in the control section, and are started by a 
semicolon. Any characters following a semicolon up to the end of the text line are 
ignored by the compiler. For multiline comments, each line must be preceded by a 
semicolon. Comments must not be inserted inside of messages. 

Error reporting 

You are informed if the compiler encounters any errors. The MCP Sequencer opens a 
saolling text window and displays mes.5ages in it. When processing end.5, the window 
is highlighted. The user may then saoll through the mes.sages or exit by clicking the 
close box. Messages have the format 

Offending line 

? 

Error message 

The question mark points to the error point. 

The compiler is a two-~ compiler followed by a link phase. The first ~ checks 
labels for validity and build.5 a symbol table. The second pass builds the script table. 
Because of this, the same line of script may engender two messages at different points. 

You may have the errors send to a text file on disk. To do so, include the command 
#DISK at the beginning of the script file. When the compiler sees this command, it 
opens the standard save file dialog box for you to specify the destination directory 
and file name. If you cancel the operation, the disk save is canceled 

16-16 Adding to MCP 



( 

MCP Developer's Guide • Final to Production 

Reserved words 

The reserved words of the saipt language are 

IF 

THEN 

GOTO 

END 

#DISK 

The reserved characters are 

(, ), ;, /, :, 

The temporary file 

t, and * 

When the saipt starts u execution, it opens a temporary file on disk. A8 each test is 
started, the Test ID is saved in this file. When the test has completed, the results of 
the test are appended to the ftle. When the script has flllished, or if the operator 
cancels the saipt, the temporary file is deleted. In the case of power l~ or system 
reset, the file will be left on the disk. 

In the CWren1 version of MCP _Diagnostic, you cannot activate the temporary ftle. 

Script control 

The testing application has several menu items. Each of these are described in the 
section on the MCP Menus in Chapter 15. 

Apple Confidential 2/20/89 

The tester script language 16-17 



MCP Developer's Gulde - Final to Production Apple Confldenflal 2/20/89 

16-18 Adding to MCP 



( 

( 

( 

Chapter 17 

MCP Coprocessor 
Diagnostics 



MCP Developer's Guide - Final to Production 

'lb.is chapter describes the third level of MCP Diagnostics. These tests allow the 68000 
processor on the MCP to run concurrently with other 68ooo-based MCP cw and the 
68020 on the Macinto&l II. 'lb.is chapter tells you how to start the coprocessor 
diagnostic tests, and provides additional infonnation you need to customize an 
application for the board you create (based on the MCP card). 

Warning 

Apple Confidential 2/20/89 

Some operator commands for customizing your own diagnostics will change In 
future versions. Specifically. the GetMem() and FreeMem() routines may not be 
supported In future MR-DOS compatible versions of the Level 3 shell. Future 
versions may use MR-DOS memory routines to provide the same functionality. 

What are coprocessor diagnostics? 
Coprocessor diagnostics are standalone programs written to run on an MCP-based 
card. Coprocessor diagnostics are controlled by the MCP _Diagnostic application, 
which provides a command language from a dedicated window for each NuBus slot 
contairung an MCP-based card. The MCP _Diagnostic application provides 
communication and logging facilities for each card. 

The next sections describe the third-level window and commands, as well as how to 

start coprocessor tests. 

Entering third-level tests 
To enter coprocessor tests, select Start Level Three Shell ... from the MCP menu in the 
main window. The MCP _Diagnostic application creates a new screen and menu bar 
for third-level tests, and then displays a dialog box that allows you to select the 
destination directory for log files, as shown in Figure 17-1. 

17-2 MCP Coprocessor Diagnostics 



( 
MCP Developer's Gulde - Final to Production 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text tq FN b/b 

Figure 17-1 
Third-level menu and dialog box 

Select the desired directory and click Save. Clicking the Cancel button disables 
logging to a file. 

The MCP _Diagnostic application next queries each slot to determine which slots 
contain valid MCP cards. For every valid card, the MCP _Diagnostic application 
aeates 
o an active slot table entry 

o a window into a text file (shown in Figure 17-2) 

o an associated log output file, which you can optionally cancel 

Apple Confidential 2/20/89 

What are coprocessor diagnostics? 17-3 



., 

0 
z = r-"! CD 

I e - -· -· ~ 
":: - = 'I 

~ ..... 
CD 
=-<C 



MCP Developer's Guide - Final to Production 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 17-2 
Window Into a text file 

When you click in the desired window, that window and the slot represented become 
the active slot. The third level of the MCP _Diagnostic application can accept 
commands only from a window that is active. The output from coprocessor 
diagnostics is reported to each window, regardless of whether the window for that test 
is active. 

Starting third-level tests 

To start a third-level coprocessor application, follow these steps: 

1 . Move the cursor into the window representing the appropriate slot. 

2 . Click the mouse button. 

3 . Place the cursor after the last unoccupied caret. 

4 . Enter Run < >. Include the name of the file you created 

As a result of the command entered, MCP _Diagnostic application downloads a third
level coprocessor program or MR-DOS diagnostic program to the specified card and 
begins program execution on the card. 

For example, enter 

Run <echo> 

This runs the sample level three task on the card to which the window belongs. 

17-4 MCP Coprocessor Diagnostics 

Apple Confidential 2/20/89 



r -'-., File Edit MCP 

SlotB SlotC 
> > 

SlotD 

> > 



( 
MCP Developer's Gulde - Final to Production 

Third-level menus 
The menu commands for third-level coprocessor diagnostics let ·you use this window 
as a mini text editor. There are a number of limitations, in that the text buffer can not 
exceed 32 KB. If you attempt to load in a file that exceeds this memory capability, 
only the last part of the file will be loaded. 

You cannot use the Open command to open a window, but may use it to load a file into 
an already existing window. However, you may use the Oose crimmand to clo.5e the 
window. 

File 

The File commands operate on the window currently active. These commands allow 
you to enter the basic text editing commands, and operate in the standard Macintosh 
interface. For more infonnation on each of these commands, refer to your owner's 
guide for the Macintosh II computer. The File menu is shown in Figure 17-3. 

File 

Open ••• 
Close 
saue 
Saue as .•• 
Print Setup 
Print 
Quit 

Figure 17-3 
File menu for third-level tests 

Quit 

If logging was disabled upon entry into the third-level tests and messages have been 
sent to the windows, you are asked if you want to save the window contents. If you do, 
then the standard document Save window is shown for each window with text in it. 

Apple Confidential 2/20/89 

Third-level menus 17-5 



MCP Developer's Gulde - Final to Production 

Edit 

The Edit commands operate on the window currently active. These commands allow 
you to enter the basic text editing commands and operate in the standard Macintosh 
interface. The Edit menu is shown in Figure 17-4. 

Edit 

Cut/H HH 
Copy/C HC 
Paste/U HU 
Clear 
Select All/R HA 

Show Clipboard 

Figure 17-4 
Edit menu for third-level tesfs 

Apple Confidential 2/20/89 

For more infonnation on each of these commands, refer to the Mactntosb ll Owner's 
Gutde. 

MCP 

The commands in the MCP menu allow you to open a window to execute Macintosh II 
background tasks, open serial port windows (related to serial port interfaces you create 
on the MCP-based card), and control the verbosity of coprocessor diagnostic output. 
The MCP menu includes the commands shown in Figure 17-5. 

17-6 MCP Coprocessor Diagnostics 



( 
MCP Developer's Gulde • Final to Production 

MCP 

Mac 11 Window 

Serial R Window 
Serial B Window 
Serial Setup 

Disable Uerbose Messages 

Figure 17·5 
MCP menu for third-level tests 

Mac II Window 

The Macintosh II Window command is a background task that operates under 
MultiFinder; if MultiFinder is not enabled, this command is disabled (dimmed). This 
command allows you to run a background diagnostic task on the Macintosh II while 
running third-level diagnostics. 

+ Note: This command cannot be used to start a MR-DOS task in the Macintosh II task 
window. 

To use this conunand to run a background task, you need at least two megabytes of 
RAM and MultiFinder installed in your Macintosh II computer, in which case the 
Macintosh II task acts just like any other third-level application. However, the linking. 
of the Macintosh II diagnostic background application to the third-level application 
libraries is slight! y different. 

The correct way to generate these background tasks are specified in the makefile 
examples in the Level 3 Examples folder on the distribution disk. 

Serial A Window 

This command allows you to open a window to correspond to a Macintosh II serial 
port. 

•:• Note: This corrunand is currently not implemented. 

Serial B Window 

This command allows you to open a window to correspond to a Macintosh II serial 
port. 

+ Note: This command is currently not implemented. 

Apple Confidential 2/20/89 

Third-level menus 17-7 



MCP Developer's Gulde • Final to Production 

Serial Setup 

This command allows the user to set the serial port parameters for the two previous 
commands. 

Disable Verbose Messages 

If you do not want to display all of the commands and messages on the screen or send 
them to the log file, you must fll'St choose Disable Verbose Messages. Only output 

Apple Confldenttal 2/20/89 

specified by card tasks using errprintf () or LogError O will beseenifyouselect 
Disable Verbose Messages. 

Third-level operations 
In normal operation, you will use the MCP _Diagnostic main window to download a 
coprocessor application to the MCP card and run it (as described in the next section). 
The coprocessor application retrieves commands from the interactive window, 
performs the appropriate action, and reports the result back to that window. All input 
to the coprocessor application from the interactive window, as well as output from a 
coprocessor application to the interactive window, is logged to the file associated with 
the slot containing the card. 

You can also create a stack file to stack conunands to be sent to a coprocessor · 
application. When you use this mode, commands to the coprocessor application are 
retrieved by the MCP _Diagnostic and transmitted to the coprocessor application 
upon a request to the third-level window. You can route output from the coprocessor 
application to a log file to be examined at a later time. 

Coprocessor applications can be terminated by the MCP _Diagnostic application, or 
coprocessor applications themselves may request termination. A coprocessor 
application can communicate with other coprocessor applications that are currently 
residing on other MCP cards in the Macintosh II, or cause itself to terminate. In 
addition, a coprocessor application may send commands that cause another 
coprocessor application on another card in the Macintosh II to start, process, 
communicate, or terminate. 

Writing coprocessor diagnostics 
The coprocessor standalone application tasks you write communicate with the 
associated MCP _Diagnostic window to receive parameters that guide its execution. 
However, you must first link the cornmuriication code module provided in the Level 3 
Examples folder on the distribution disk. 

17-8 MCP Coprocessor Diagnostics 



( 
MCP Developer's Gulde - Final to Production 

Example code written in MPW Assembler and MPW C is provided on the MCP 
distribution disks. Refer to the example files echo. c and makefile in the folder 
Sequential:Level3 Example:MCP. For more detailed information on makefiles, refer 
to the •Advanced Topics" chapter in the MPW reference manual. 

Third-level commands that are accepted from a coprocessor application include only 
the ReadMessage and WriteMessage commands. However, the following 
commands can be embedded in the ReadMessage and WriteMessage 
commands: 

o DumpRegs 

o Getmem 

o Freemem 

D Kill 

o Reaclmem 

o Run 

o Send 

o Writemem 

Each of these commands is described in sections that follow. 

When you enter the command Send into the active window of the MCP _Diagnostic 
application, you will send ReadMes sage input to a coprocessor application. 

You must incorporate the Wri teMessage command in your diagnostic application 
running on the coprocessor on the MCP card to send information to the Macintosh II 
interface, and the ReadMessage command to read any data sent to the application 
from the Macintosh II user or another diagnostic application. The coprocessor 
application may output WriteMessage data only to the log file or to both the 
MCP _Diagnostic window and the log file. You can see an example of these 
commands in the example files stackexecute. c and echo. c in the Level 3 
Examples folder. 

Sending WriteMessage data to or from the application is handled by the 
MCP _Diagnostic application, acting for the interactive user or diagnostic 
application. All ASCII text characters and hexadecimal bytes are permissable. 

Level 2 through level 7 interrupt vectors on the card must be handled either by MR
DOS or the diagnostic application as appropriate (refer to Part II of this guide). 

The messages and responses sent to or received from the coprocessor application 
must conform to the third-level message format. Normal termination of a third-level 
diagnostic occurs when the diagnostic requests that it be terminated, or when an 
MCP _Diagnostic application command requests cancellation of a coprocessor 
diagnostic. 

Apple Confidential 2/20/89 

Writing coprocessor diagnostics 17-9 



MCP Developer's Guide • Final to Production 

Creating a stack file 
When you use the Run conunand for a coprocessor diagnostic test, the diagnostic 
can receive its commands and parameters from an input file instead of from its active 
winOOw. 

The MCP _Diagnostic application starts the application and waits for a 
WriteMessage commandthatrequestsinput. Afterthis WriteMessage is 
logged, the application retrieves and executes the next conunand in the stack ftle. 

All commands except Send are echoed to the control window and the log ftle, then 
executed. If the next command is a Send, then the data of Send is sent to the 
coprocessor application (the Send command is also echoed and logged, but is not 
executed). 

If the conunand execution is successful, the MCP _Diagnostic application places a 
one-character message of $00 into the third-level application's input buffer to be 
retrieved by a following ReadMessage. If the command is unsuccessful, the 
MCP _Diagnostic application places a one-character message of $FF into the third
level application's input buffer to be retrieved by a following ReadMessage. At 
End-of-Pile on the input stack file, the MCP _Diagnostic application places a one
character message of value $10 into the coprocessor application's input buffer to be 
retrieved by a following ReadMessage. 

+ Note: There are no boolean operators in the initial implementation to allow the 
MCP _Diagnostic application to skip or delete commands. 

When a stack file is exhausted, the MCP _Diagnostic application returns to the active 
window to process commands for the diagnostic on the card in this slot You can use 
a Kill command as the last command in a stack file. 

+ Note: You must terminate third-level commands in a stack file with an asterisk(•). 

The file stackexecute in the Level 3 Examples folder shows an example for 
executing a stack of commands. 

17 -10 MCP Coprocessor Diagnostics 

Apple ConfldenHal 2/20/89 

/ 



( 
MCP Developer's Gulde - Final to Production 

Operator commands 
The third-level communications shell. includes operator comands for controlling tasks 
in the coprocessor diagnostic; the section on Programmer Subroutines provides 
functions used by a programmer to write or build tasks for a coprocessor diagnootic. 
Use the following operator commands for starting, controlling, and stopping tasks 
running on one or more MCP cards: 

0 Dump regs 

0 Freemem 

0 Getmem 

0 Kill 

0 Readmem 

0 Run 

0 Send 

0 Writemem 

In second-level diagnostics, the Macintosh II runs all programs; in the third level, the 
diagnootics are run by the MCP card, with the Macintosh II handling input, output, 
and control from the user and the cards. You can emer third-level commands either 
on the command line, or as part of a stack file. 

For some commands, you must specify the name of a coprocessor diagnostic, a stack 
file, or a log file. The name of a coprocessor diagnostic or a stack file or a log file may 
be any valid ASCII characters except <, >, [ , ], {, } , \, (, ), and blank. Names are 
limited to 32 characters and may include the pathname. 

•) Note: Operator commands are not case sensitive; that is, you may enter getmem, 
GETMEM, or GetMem, each with the same results. Use the colon only to designate 
pathnames. 

Apple Confldentlal 2/20/89 

Operator commands 17-11 



MCP Developer's Gulde - Final to Production 

Dump regs 
The Dumpregs command displays the registers, Program Counter, and Status 
Register for the requesting window or card. The format for the Dump regs command 
is 

Dumpreqs [ -c n l 

Table 17-1 lists the options for mm command. 

Table 17·1 
Options for third-level Dumpregs command 

Option 

-C n 

Description 

n is the address of the receiver if other than the active window's slot. 
Slot numbers include 9, A, B, C, D, E, and M 

+ Note: True slot numbers are 9, A, B, C, D and E; Mis the Macintosh n task. 

Freemem 
The F reemem command frees a memory block that has been allocated by a 
Getmem command. The format for the Freemem command is 

Freemem -s xxxxxx -L xxxxxx [-C nJ 

Table 17-2 lists the options for mm comlnand. 

Table 17-2 
Options for third-level Freemem command 

Option 

-s xxxxxx 

-L xxxxxx 

-c n 

Description 

Starting address for card memory in 24-bit Hex "xxxxxx". This 
address is specified in hexadecimal 

length of card memory expressed as 24-bit Hex value "xxxxxx". 
This address is specified in hexadecimal 

n is the address of !he receiver if other than !he active window's slot. 
Slot numbers include 9, A, B, C, D, E, and M 

+ Note: Hexadecimal data is shown in !he log file and on the screen window as hex, 
and is hex for the third-level application program data of WriteMessage and 
ReadMes sage. All hex digits must be provided, and each byte must have two 

digits. 

17-12 MCP Coprocessor Diagnostics 

Apple Confidential 2/20/89 



lf 
1 

( 

MCP Developer's Guide - Final to Production 

Getmem 
The Getmem command assigns a block of memory on the requesting window or 
card. The format for the Getmem command is 

Getmem -s xxxxxx -L xxxxxx [-C n] [-E] 

Table 17-3 lists the options for this command. 

Table 17-3 
Options for third-level Getmem commend 

Option 

-s xxxxxx 

-L xxxxxx 

-C n 

-E 

Description 

Starting address for card memory in 24-bit Hex "xxxxxx". This 
address is specified in text hex 

Length of card memory expressed as 24-bit Hex value "xxxxxx". 
This address is specified in text hex 

n is the address of the receiver if other than the active window's slot 
Slot numbers include 9, A, B, C, D, E, and M 

Requests exclusive use of memory 

If you specify the - E option, the assigned chunk of memory will not be assigned to 
any other requestor until after a F reemem command is issued against the same 
block. 

If you do not specify the - E option, request is for shared use of memory. Shared 
memory may be assigned to more than one requester, CPU, or card 

Apple Confidential 2/20/89 

Operator commends 17-13 



MCP Developer's Guide - Final to Production 

Kil 
The Kill command terminates execution of a specified coprocessor diagnostic 
running on this window's slot/card. The format for the Kill command is 

Kill <Level 3 diag name> [-C n] [-ORI [-Yl 

The coprocessor test name must be specified first, but all following options may be 
entered in any sequence. Table 17-4 lists the options for this command. 

Table 17-4 
Options for third-level Kiii command 

Option 

-C n 

-Y 

-DR 

-A 

Description 

n is the address of the receiver if other than the active window's slot; 
slot numbers include 9, A, B, C, D, E, and M 

Indicates Yes, that any previous diagnostic running on this slot may 
be canceled without interactive agreement from the user 

Displays register contents at time of tennination 

Kills all diagnostics on all cards 

17-14 MCP Coprocessor Diagnostics 

Apple Confldentlal 2/20/89 



( 

MCP Developer's Guide - Final to Production 

Readmem 
The Readmem command displays a block of memory on the requesting window or 
card. This command reads a section of memory and displays it on the screen in the 
format 

1000 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

1010 xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx 

The format for the Readmem command is 

Readmem -s xxxxxx -L xxxxxx [-C n l 

Table 17-5 lists the options for this command. 

Table 17-5 
Options for third-level Readmem command 

Option 

-s xxxxxx 

-L xxxxxx 

-C n 

Description 

Starting address for card memory in 24-bit Hex "xxxxxx"; this 
address is specified in text hex. Each byte must have two digits 

Length of card memory expressed as 24-bit Hex value "xxxxxx"; 
this address is specified in text hex. Each byte must have two digits 

n is the address of the receiver if other than the active window's slot; 
slot numbers include 9, A, B, C, D, E, and M 

Apple Confidential 2/20/89 

Operator commands 17-15 



MCP Developer's Guide - Final to Production 

Run 
The Run command runs a standalone coprocessor diagnostic on the active window's 
card. The format for the Run command is 

Apple Confidential 2/20/89 

Run <Level 3 diag name> [-C n] [-S <name>] (-0 <name>] [-Y] [-L xxxxxx] 

+ Note: Any tasks already running on this window's card requires operator 
acknowlegment to be killed before running the coprocessor diagnostic. The 
MCP _Diagnostic application calls to your attention any standalone program 
executing on this window's card before being killed. 

The coprocessor test name must be specified first, but all following options may be 
entered in any sequence. Table 17-6 lists the options for this command. 

Table 17-6 
Options for third-level Run command 

Option 

-C n 

-s <name> 

-o <name> 

-Y 

-L xxxxxx 

Description 

n is the address of the receiver if other than the active window's slot; 
slot numbers include 9, A, B, C, D, E, and M. 

File that contains the input stack of commands for this third-level 
diagnostic; stack files may not be shared between cards 

Directs output from this diagnostic to file <name> 

Indicates Yes, that any previous diagnostic running on this slot may 
be canceled without interactive agreement from the user 

Loads diagnostic code onto card memory starting at 24-bit hex 
address xxxxxx. This address is specified in text hex, and is shown in 
the log file and on the screen window as text hex; however, it is 
internal hex for the third-level application program data of 
WriteMessage and ReadMessage. Allhexdigitsmustbe 
provided, and each byte must have two digits. 

17-16 MCP Coprocessor Diagnostics 



MCP Developer's Guide - Final to Production Apple Confidential 2/20/89 

Send 
The Send command sends the data between the slot or card The format for the 
Send command is 

Send [<Level 3 diag name>] (-C n] "Any ASCII data between double quotes" 

You must specify the coprocessor test name must first, but you can enter all following 
options in any sequence. Table 17-7 lists the options for this command. 

Table 17-7 
Options for third-level Send command 

Option 

-C n 

Text 

Description 

n is the address of the receiver if other than the active 
window's slot; slot numbers include 9, A, B, C, D, E, and M 

any ASCII data enclosed between double quotation marks 

Hexadecimal data sent embedded in backslashes; for example, \xx xx xx xx\ 
Text 

Text data is specified in text hex, and is shown in the log file and on the screen window 
as text hex; however, it is interflal hex for-the coprocessor application program data of 
Writ eMe s sage and ReadMe s sage. All hex digits must be provided, and each byte 
must have two digits. 

Two double quotation marks in a row sends one double quotation mark as part of the 
message. For example, if you enter the following statement 

SEND "Hello ""World""." 

The message actually sent is 

Hello "World". 

Operator commands 17-17 



MCP Developer's Guide - Final to Production 

Writemem 
The Wri temem command writes data to card memory on the requesting window or 
card. The format for the Wr i temem command is 

Writemem -s xxxxxx [-C n] \xxxxxxxxxxxxxxxxxxx\ 

Table 17-8 lists the options for this command. 

Table 17·8 
Options for third-level Writemem command 

Option Description 

-s xxxxxx Starting address for card memory in 24-bit Hex "xxxxxx"; this 
address is specified in text hex 

-C n n is the address of the receiver if other than the active window's slot; 
slot numbers include 9, A, B, C, D, E, and M 

\ xxxxxx \ Hex value to be stored in card memory. This value is specified in 
text hex. Each byte must have two digits. 

17-18 MCP Coprocessor Diagnostics 

Apple ConfidenHal 2/20/89 

·."-



''··. \~ 

( ·~. 

MCP Developer's Gulde - Final to Production 

Buffer management 
Initialization allocates two buffers in Macintosh II memory used for input to the 
coprocessor diagnostic (output from the MCP _Diagnostic application) and output 
from the coprocessor diagnostic (input to the MCP _Diagnostic application). The 
library taskcomrnands. c. o provides routines to initialize, read, and write 
messages from a diagnostic application on the window's card. 

Figure 17-6 illustrates the MCP card communications buffer. Both buffers have head 
and tail pointers. 

MSCNNNN 
ART: NN x 17 pi 
20.5 pi text to FN b/b 

Figure 17-6 
MCP cord buffer 

StartPtr points to the start of the buffer and is never modified. 

Head.Ptr points to the current head of the buffer and is maintained by the sender. 

TailPtr points to the current tail of the buffer and is updated by the receiver. 

Length is the length of the buffer and is never modified. 

The address of the buffers allocated to a coprocessor diagnostic is placed into the card 
memory at absolute locations Fn00081E (buffer to the coprocessor diagnostic from 
the MCP _Diagnostic application) and Frll00810 (buffer from the coprocessor 
diagnostic to the MCP _Diagnostic application). 

Apple Confidential 2/20/89 

Buffer management 17-19 



MCP Developer's Gulde - Final to Production 

The supplied routines follow the convention that the head pointer is updated after new 
data is placed into the buffer by the sender. The routines increment the head pointer 
by the number of bytes added to the buffer. 

The sender is responsible for: 

o checking that the data to be placed into the buffer will fit before overrunning the tail 
pointer 

o wrapping around to the start when the end of buffer is encountered 

The receiver is responsible for 

o updating the tail pointer after retrieving the data from the buffer 

If the head pointer is equal to the tail pointer, then the buffer is empty. If the head 
pointer is one less than the tail pointer, then the buffer is full and cannot receive any 
new data. These functions are provided in the task command library using the 
ReadMessage and WriteMessage functions. 

The parameters of a message in the Input/Output buffers is as follows: 

Byte 1, Byte 2, Byte 3 

Refer to the file L3 c . h for an example. Table 17-9 lists the format of a message in 
the Input/Output buffers for coproces.ror diagnostic test applications. 

17-20 MCP Coprocessor Diagnostics 

Apple ConfldenHal 2/20/89 



( 
MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89 

Table 17-9 
Format of message 

Byte Function 

1 Length 

2 Control 

3ron Data 

Response 
Message 

Getinfo 
Request 

Description 

The length of all the messages, including the length byte, 
the command byte, and the data 

x'80' Message contains an embedded command 

x'40' Application requests new input 

x'20' Information request 

x'lO' The Message contains a one-byte response (such as 
successful completion, EOF on stack file, and so 
forth) 

x'04' Message is to be logged only; does not appear on 
screen of the MCP _Diagnostic application 

x'02' Message is a Wri teMes sage to the 
MCP _Diagnostic application from a card. It prints 
the message to the screen even if "Verbose data 
logging" is suppressed 

x'Ol' Message is a Send to a card (third-level 
application) 

x'OO' Null command, message ignored 

Used for data (messages and requests), where n cannot 
exceed255 

$00 Successful execution of a command (except a Send 
command) from the stack file 

$10 End of file on the stack file 

$FF Unsuccessful execution of a command (except a 
Send command) from the stack file 

$01 Send date/time 

$02 Send current slot 

$03 Send slots with MCP cards in them 

Buffer management 17-21 



MCP Developer's Gulde • Final to Production 

Programmer subroutines 
The following functions are provided for software running on the MCP to 

communicate with the coprocessor application. These routines are provided for a 
programmer who wants to build tasks for a coprocessor diagnostic, and include 

o errprintf () 

o GetCards C) 

o GetSlot () 

o GetTimeStamp () 

o HandleSystemTask() 

o HexToStrinq () 

o InitMessaqe () 

o Kill This Task() 

o LogError () 

o Read.Byte C) 

o ReadMessaqe () 

o ReadWord () 

D Reply() 

D Send.NextCommand() 

D StringToHex () 

o strlen () ,strcpy C), and strcat () 

o TickCount () 

o WriteByte C) 

o WriteMessage C) 

O WriteWord () 

These functions may be used for either the stand-alone task running on the card, or in 
the Macintosh II background diagnostic task. For more information, see the makefile 
in the Level 3 Examples folder on the distribution disk. 

errprintf ( ) 
The function is the same as the pr int f function, but the result is output to the slot's 
window,regardlessofthe Verbose Disabled commandsetting. Seeanexample 
in the source file echo. c in the Level 3 Examples folder. 

17-22 MCP Coprocessor Diagnostics 

Apple ConfldenHal 2/20/89 



( 
MCP Developer's Guide - Final to Production 

GetCards() 
Use the Get Cards () command to return a short word (16-bit) that corresponds to a 
set of bit flags (bit numbers 9 through 14) showing which slots have MCP cards in 
them. 

The C format for GetCards () is 

short GetCards () 

The Pascal declaration for Get Cards () is 

Function Get Cards: Integer; C; External; 

GetSlot( > 

Use the Get slot ( ) conunand to return an integer indicating the slot on which the 
application is running, listed in Table 17-10. 

Table 17-10 
Slots for application 

Slot Number 

9throughE 

7 

-1 

Description 

Application card slot number (slot 9 = 9, slot E = 14) 

Macintosh task 

Error 

The C format for Get S lot () is 

Get Slot () 

The Pascal declaration for Gets lot () is 

Function Get Slot: Long Int; C; External; 

Apple Confidential 2/20/89 

Programmer subroutines 17-23 



MCP Developer's Gulde - Final to Production 

GetTimeStamp( ) 
Use the Get T imeStamp ( ) command to return the date and time from the 
Macintosh n memory. This message is returned in a message in the C string format 

Apple Confidential 2/20/89 

mm/ dd/ yy at hh. mm. s s, where mm is the month, dd is the day, yy is the year, 
hh is the hour, mm is the minute, and s s is the second. 

+ Note. Using this command continuously results in very slow performance. It is 
recommended that you use the TickCount command if speed is critical to the 
performance of your application. You must allocate space for the string before 
calling this routine. 

TheCformatfor GetTimeStamp () is 
GetTimeStamp (message) 

char message ( J ; 

The Pascal declaration for GetTimeStamp () is 

Procedure GetTimeStamp (Var message:str255) ;C;External; 

HandleSystemTask( ) 
Occasionally call the HandleSystemTask () command to let the application 
upclite internal buffers, as well as to let the shell know that your application iS still 
running. 

The C format for HandleSystemTask () is 

HandleSystemTask(); 

The Pascal declaration for HandleSystemTask () is 

Procedure HandleSystemTask;C;External; 

17-24 MCP Coprocessor Diagnostics 



( 

MCP Developer's Gulde - Final to Production Apple Confldentlal 2/20/89 

HexToString( ) 
Use the HexToString () conunand to convert a binary long number to a text hex 
string of length digits. The result is placed in memory pointed to by strPtr. The 
length starts from the least significant nibble. 

TheCformatfor HexToString() is 
HexToString (number, length, strPtr) 

long number; 

int length; 

char *strPtr; 

The Pascal declaration for HexToString () is: 

Procedure HexToString (number:Longint; lenqth:Longint; strPtr:Ptr); C; 
External; 

lnitMessoge( ) 
Use the Ini tMessage () routine before any other to initialize the card to the 
Macintosh II communicatons buffer. 

TheCformatfor InitMessage() is 

InitMessage(message); 

The Pascal declaration for InitMessage () is 

Procedure InitMessage;C;External; 

KillThisTosk() 
Call the Kill This Task () routine when the card diagnostic has comple~ed 
execution. 

The C format for KillThisTas·k o is 

KillThisTask (message) 

The Pascal declaration for KillThisTask () is 

Procedure KillThisTask;C;External; 

Programmer subroutines 17-25 



MCP Developer's Gulde - Final to Production 

LogError() 
Use the LogError () command to send a message to the screen. This message 
overrides the data logging suppreMion and should be used to send messages that will 
always be logged. 

The C format for LogError () is 
LogError (message) 

char message [ 1 ; 

The Pascal declaration for LogError () is 

Procedure LogError (message:str25); C;External; 

+Note. Message is expected to be a C-formatted string. 

printf() 
This function is the same as defined in the MPW C reference manual, except that it 
supports only formatted characters, strings, and long integers. To output a character 
or a short integer, first typecase the integer to long. An example of this can be found 
in the source file echo • c in the Level 3 Examples folder. 

ReadByte( ) 

Use the ReadByte ( ) command to get a 24-bit address byte from Macintosh II 
memory. 

The C format for ReadByte () is 
char ReadByte (address) 

char *address; 

The Pascal declaration for ReadByte() is 

Function ReadByte (address: Ptr): char; C: External; 

17-26 MCP Coprocessor Diagnostics 

Apple ConfldenHal 2/20/89 



( 

(" 

MCP Developer's Guide - Final to Production 

ReadMessage( ) 
Use the ReadMessage ( ) command to read the next input message from the input 
buffer for this diagnostic application, then place that data into the program buffer 
Message. Data read is only the data that was sent between the double quotation 
marks, plus the two control bytes. It is the responsibility of the coprocessor diagnostic 
to allocate space for the message. 

The C fonnat for ReadMessage () is 

ReadMessage (Message) 

char *Message; 

The Pascal declaration for ReadMessage () is 

procedure ReadMessage(aString:str255): Integer;C;External; 

ReadWord( ) 
Use the ReadWord () command to get a 16-bit value from an even address on the 
Macintosh II. The C format for ReadWord () is 

abort 

ReadWord (address) 

short *address; 

The Pascal declaration for ReadWord () is 

Function ReadWord (address: Ptr): Integer; C: External; 

Reply() 

Use the Reply ( ) command to send a message to the slot's window. This mess:age 
does not override the data logging suppression and should be used to send messages 
that are helpful but not essential. 

The C format for Reply () is 

Reply (Message) 

char *Mess age; 

The Pascal declaration for Reply () is 

Procedure Reply (aString: str255 l : Integer; C; External; 

To print a quote, preceed it with a backslash. For example, to send the message 
"Hello, world" to the operator's window in C, enter 

Reply ("\"Hello, world\" "l; 

Apple Confidential 2/20/89 

Programmer subroutines 17-27 



MCP Developer's Gulde • Final to Production Apple Confidential 2/20/89 

SendNextCommand( ) 
Use the Send.Next Command () to request that Level 3 read the next command from a 
third-level stack file. If the command is a Send, the contents of the Send are 
returned in message. If not, there are three possible returns, listed in Table 17-11. 

Table 17·11 
Returns for SendNextCommand( ) 

Return 

Tablet ext 

END OF FILE 

DISK_ERROR 

COMMAND_EXECUTED 

Value Description 

0 The message variable contains the 
text sent by the operator or stack 
command 

-1 The stack file is finished and closed 

-2 A disk error ocurred; stack file 
processing is disabled 

-3 A stack command ocher than a 
Send was executed (that is, 
GetMem, FreeMern, and DumpRegs 
commands) 

The C fonnat for Send.Next Command () is 
SendNextCommand (message) 

char message []; 

The Pascal declaration for Send.NextCommand () is 

Function SendNextCommand (message:str255) :Longint;C;External; 

StringToHex( ) 
Use the StringToHex () command to convert a text hex string into a binary long. 

The C format for StringToHex () is 
long Str ingToHex ( strPtr) 

char *strPtr; 

The Pascal declaration for StringToHex { l is 

Function StringToHex (strPtr:Str255): Lonqint; C; External; 

17-28 MCP Coprocessor Diagnostics 



( 

( 

MCP Developer's Guide • Final to Production 

strlen( ), strcpy( ), and street( ) 

These commands duplicate the standard C string functions, as defined in the MPW C 
reference manual. 

TickCount( ) 

TheCformatfor TickCount() is 

long TickCount(); 

The Pascal declaration for T ickCount () is 

Function TickCount: long Int; C; External; 

You should not use this command continuously as part of a wait loop, because this will 
lock up the Macintosh II NuBus. 

WriteByte( ) 

Use the Wr i teByte () command to write a byte to the 24-bit address of the 
Macintosh II memory. 

TheCformatfor WriteByte () is 
WriteByte (aByte, address) 

char aByte; 

char *address; 

The Pascal declaration for Wr i teByte () is 

Procedure WriteByte (aByte:char; address: Ptr) C; External; 

WriteMessage( ) 

Use the Wr i teMessage () command to write a message from the coprocessor 
diagnostic to lhe Macintosh interface window. 

The C format for WriteMessage () is 

WriteMessage (Message); 

Any ASCII message will be shown in the window corresponding to this card. You must 
allocate space for this string before using the function. 

Apple Confidential 2/20/89 

Programmer subroutines 17-29 



MCP Developer's Guide - Final to Production 

The Pascal declaration for WriteMessage () is 

procedure WriteMessaqe(aStrinq:str255) :Inteqer;C;External; 

.) Note: This text expects a < format string. 

Text hex (ASCII representation of hex) data is sent embedded in backslashes; for 
example, \xx xx xx xx\. This data is shown in the log file and upon the screen window 
as text hex, but is internal hex for the third-level application program data of 

Apple Confidential 2/20/89 

WriteMessage and ReadMessage. !fa WriteMessage contains an embedded 
Send that contains hex data, that hex data must be in text hex format. F.ach byte must 
have two digits. 

Wri teMessages may contain the following as embedded commands: 

o Run 

O Start 

o Send 

0 Kill 

o Memory Commands 

o DumpRegs 

Writ eMe s sages may also contain commands to other slot's diagnostics using the 
MCP _Diagnostic application. Set the embedded command bit as shown in the 
following example: 

Buffer data from Slot 9 : 

WriteMessaqe ("\101 \202"Run <Levl3Token> -c C -5 <TokenCStack> -0 <SlotCOutput> ") 

The \ 101 indicates that the total buffer data is of length 65 decimal (101 octal = 65 
decimal; 202 octal = $82 decimal.) The 8 or $82 specifies a bit telling that the message 
contains an embedded command The 2 of $82 means the message will be displayed 
to the operator window, even if VerboseMessages are suppressed 

The above command embedded in a WriteMessage to the MCP _Diagnostic 
application from Slot 1 causes the application to 

o run the coprocessor application named Levl3Token on the card in slot C; 

o feed the application with commands from the file Token3Stack; and 

o direct all WriteMessages to the Slot C screen, as well as to the file SlotCOutput. 

All commands sent to the application would be echoed to the S lotCOutput file. 

The MCP _Diagnostic application accepts commands for other cards from the 
interactive screen. The embedded Run command is displayed upon the Slot 9 
screen as Wr i teMessage data and upon the Slot C screen as a Run command for 
that slot. 

17-30 MCP Coprocessor Diagnostics 



( 

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89 

WriteWordC ) 
Use the WriteWord () command to put a wordac an even address of the Macintosh 
II memory. 

The C format for WriteWord () is 

WriteWord (aWord,addressl 

short aWord; 

short *address; 

The Pascal declaration for WriteWord () is 

Procedure WriteWord (a Word: Integer; address: Ptrl; C; External 

Programmer subrouttnes 17-31 



MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89 

17-32 MCP Coprocessor Diagnostics 



( 

Appendix A 

Files on the MCP Distribution 
Disks 



MCP Developer's Guide - Final to Production 

What this appendix tells you 
For your information, this appendix provides a list of folders and files on the MCP 
distribution disks. Any instructions or references in this guide to files and folders 
usually include the use for that information in the appropriate chapter; this appendix 
is for reference and information only. Be sure to check the actual distribution disks for 
accurate, up-to-the-minute listings of files and folders. 

There are currently three distribution disks provided for Version 1.0 of the Macintosh 
Coprocessor Platform: 

o MR-DOS™ 1 

O MR-DOSTM 2 

o MCP Diagnostics 

The contents of each disk are described in the following sections. 

Files on MR-DOS™ 1 
Table A-l lists the folders and files found on the distribution disk named MR-DQSTM 1 
and provides a brief description of each. 

•) Note: The folder name provides a complete description of the pathname to the file. 

Table A·l 
Flies on MR-DOS 1 

Fii• name Description 

FOLDER: MR-DOS l:MR-DOS: 

:AST ICP: 

:Examples: 

:includes: 

:MCP: 

Folder containing files and folders tailored to the AST-ICP 
card 

Folder containing example mes and folders 

Folder containing includes files 

Folder containing files and folders tailored to the MCP card 

FOLDER: MR-DOS l:MR-DOS:AST_ICP 

Download-lib. o library containing Download and Findcard subroutines 
tailored to code to the AST-ICP card 

OS . o Library containing MR-DOS operating system and utility 
routines tailored to run on the AST-ICP card 

A-2 Appendix A: Flies on the MCP Distribution Disks 

Apple Confidential 2/20/89 



( 

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89 

OSDefs.d 

osglue.o 

Assembler symbol table ftle of mrdos. a, os. a, 
managers. a, and siop. a containing constants and 
macros tailored to the version of the MR-DOS operating 
system that runs on the AST-ICP card 

library containing glue code and the iopruntime routines 
for programs that run on the AST-ICP card 

FOWER: MR-DOS l:MR-DOS:Examples: 

:AST ICP: 

echo.c 

L3MMSVP.a 

L3MMSVP.c 

a folder containing example ftles for the AST-ICP card 

The source 'of an example program of a very simple server task 
designed to echo messages 

The source of assembler routines comprising part of the 
hardware diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

The source of C routines comprising part of the hardware 
diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

L3MMSVPClient. c The source of the task, L3MMSVPClient, designed to control 
the hardware diagnostic task MMSVP 

Makefile 

:MCP: 

name tester.c 

osmain.c 

ossccint.a 

printf.c 

Warning: Diagnostic code is still under development. 

Makefile makes all examples and test tasks found within the 
:MR-DOS:Examples: folder 

a folder containing example files for the MCP card 

The source of the test task designed to test the Name Manager 

The source of the initialization routine that makes calls to 
initialize MR·DOS, initializes any hardware that needs 
initialization before any tasks start executing, specifies tasks to 
be initially started when MR-DOS starts executing, and starts 
MR-DOS executing 

The source of a set of example interrupt handler routines. 
These interrupt handler routines handle interrupts from an 
SCC chip. Please see the pr_ manager . c example 

The source of the subroutine that performs the text formatting 
functions of the standard C print f routine (this subroutine 
also looks for a print manager and requests that the Print 
Manager print the text that it has formatted) 

Flies on MR-DOS™ 1 A-3 



MCP Developer's Gulde • Final to Production Apple ConfldenHal 2/20/89 

pr _manager . c The source of a task that controls an sec chip running in an 
asynchronous mode. This task receives a message from 
another task requesting that text be printed and sends a reply to 
the requesting task when the text is printed. This task uses 
interrupt handler routines found in ossccint . a 

time It . c The source of a test program that measures the amount of time 
it takes for messages to be sent between itself and a echo 
manager. The Echo Manager may be on the same card as this 
test program, on a different card, or in the Macintosh II (slot 
0). 

timer_tester. c Thesourceofa testprogramdesignedtotest the Tuner 
Manager 

trace _manager. c The solllte of a software diagnostic program that can be used to 
trace messages sent between tasks 

FOLDER: MR-DOS l:MR-DOS:Examples:AST_ICP: 

Download 

dumpcard 

echo.c.o 

L3MMSVP.a.o 

L3MMSVP.c.o 

An MPW tool designed to download a module to the AST-ICP 
card. This module contains the MR-DOS operating system 
and any tasks or managers that are to be downloaded with the 
MR-DOS operating system. 

An MPW tool designed to dump information about an AST-ICP 
card that is or was running MR-DOS. This tool is meant to 
assist in trouble-shooting problems. It dumps the global 
common area of MR-DOS, task control block infonnation for 
the tasks running under MR-DOS, and other info~mation. 

This is the object file of the echo. c routine compiled to run 
on the AST-ICP card 

The object file of assembler routines comprising part of the 
hardware diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

The object file of C routines comprising part of the hardware 
diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

L3MMSVPClient. c. 0 The object file of the task, L3MMSVPClie~t. designed to 
control the hardware diagnostic task MMSVP 

map 

Warning: Diagnostic code is still under development. 

This is the map produced by Link during the building of the 
start module for the AST-ICP card 

A·4 Appendix A: Flies on the MCP Distribution Disks 



MCP Developer's Gulde - Final to Production 

name tester. c. o This is the object file of the name_tester. c routine 
compiled to run on the AST-ICP card 

Apple Confidential 2/20/89 

osmain. c. o This is the object file of the osmain. c routine compiled to 
run on the AST-ICP card 

ossccint. a. o This is the object file of the ossccint. a routine compiled 
to run on the AST-ICP card 

print f. c. o This is the object file of the printf. c routine compiled to 
run on the AST-ICP card. 

pr_manaqer.c.o Thisistheobjectfileofthe pr_manager.c routine 
compiled to run on the AST-ICP card 

st a rt This nxxlule is produced by Link during the use of the MakeFile 
in folder :MR-DOS:Examples: for building an example to be 
downloaded to the AST-ICP card. This module contains the 
initialization routine osmain. c, the version of MR-DOS 
designed to run on the AST-ICP card, and numerous test tasks. 

timeit.c.o This is the object file of the time It . c routine compiled to 
run on the AST-ICP card 

timer_tester .c. o This is the object file of the timer_tester. c routine 
compiled to run on the AST-ICP card 

trace_manager. c. o This istheobjectfileofthe trace_manager. c routine 
compiled to run on the AST-ICP card 

xref This is the aoss reference produced by Link during the 
building of the start module for the AST-ICP card 

FOLDER: MR-DOS l:MR-DOS:Examples:MCP: 

Download An MPW tool designed to download a module to th:: MCP 
card. This module contains the MR-DOS operating system 
and any tasks or managers that are to be downloaded with the 
MR-DOS operating system. 

dumpc a rd An MPW tool designed to dump information about an MCP 
card that is or was running MR-DOS. This tool is meant to 
assist in trouble-shooting problems. It dumps the global 
common area of MR-DOS, task control block information for 
the tasks running under MR-DOS, and other information. 

echo . c . a The object file of the echo . c routine compiled to run on the 
MCP card 

Flies on MR-DOS™ 1 A-5 



MCP Developer's Guide - Final to Production 

L3MMSVP.a.o 

L3MMSVP.c.o 

The object file of assembler routines comprising part of the 
hardware diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

The object file of C routines comprising part of the hardware 
diagnostic task MMSVP 

Warning: Diagnostic code is still under development. 

Apple Confidential 2/20/89 

· L3MMSVPClient. c. o The object file of the task, L3MMSVPClient, designed to 
control the hardware diagnostic task MMSVP 

map 

Warning: Diagnostic code is still under development. 

The map produced by Link during the building of the start 
module for the MCP card 

name tester.c.o Theobjectftleofthe name_tester.c routinecompiledto 
run on the MCP card 

osmain. c. o The object file of the osmain. c routine compiled to run on 
the MCP card 

ossccint.a.o Theobjectfileofthe ossccint.a routinecompiledtorun 
on the MCP card 

print f . c . o The object ftle of the print f . c routine compiled to run on 
the MCP card 

pr_manager. c. o The object file of the pr_manager. c routine compiled to 
run on the MCP card 

st a rt The module produced by Link during the use of the Makefile in 
folder :MR-DOS:Examples: for building an example to be 
downloaded to the MCP card; this module contains the 
initialization routine osmain. c, the version of MR-DOS 
designed to run on the MCP card, and numerous test tasks 

time It. c. o The object file of the time It. c routine compiled to run on 
the MCP card 

tirner_tester. c. o The object file of the timer_tester. c routine compiled 
to run on the MCP card 

trace_rnanager. c. o The object file of the trace_manager. c routine 
compiled to run on the MCP card 

xre f The cross reference produced by Link during the building of 
the start module for the MCP card 

A-6 Appendix A: Flies on the MCP Distribution Disks 



( 

( 

MCP Developer's Gulde - Final to Production 

FOLDER: MR-DOS l:MR-DOS:includes 

Apple Confidential 2/20/89 

clister.h 

diags.a 

diags.h 

Download. h· 

iccrnDefs.a 

iccrnDefs .h 

managers.a 

managers.h 

mrdos.a 

mrdos.h 

as.a 

os.h 

sec.a 

Include file that defines dummy macros for a program clister 

Include file that contains constants used by the hardware 
diagnostic programs MMSVP and MMSVPClient 

Include file that contains constants used by the hardware 
diagnostic programs MMSVP and MMSVPClient 

Include file that contains constants and defmitions used when 
calling the Download and Findcard subroutines 

Include file provided for debugging purposes only that 
contains constants and definitions used by ICCM 

Include file provided for debugging purposes only that 
contains constants and def mitions used by ICCM 

Include file that contains constants and defmitions used when 
sending message requests to the.MR-DOS managers (such as 
ICCM, Name Manager, and others) 

Include file that contains constants and defmitions used when 
sending message requests to the MR-DOS rnanagers(such as 
ICCM, Name Manager, and others) 

Include file that contains constants and defmitions used by the 
MR-DOS operating system, as well as the deflllition of the 
global common area 

Include file that contains constants and defmitions used by the 
MR-DOS operating system, as well as the deflllition of the 
global common area 

Include file that contains constants and defmitions and macros 
used when invoking MR-DOS primitives (those functions within 
MR-DOS invoked by instruction traps and include GetMsg, 
GetMem, Send, Reschedule, and others) 

Include file that contains constants and definitions and 
external routine declarations used when calling MR-DOS 
primitives and utility routines (primitives are those functions 
within MR-DOS invoked by instruction traps and include 
GetMsg, GetMem, Send, Reschedule, and others; utility 
routines include GetTID, GetCard, Lookup_Task, and 
others) 

Include file that contains the definition of the intc rru pt handler 
table used by the routines in :MR-DOS:Examples: that makes 
use ofSCCs 

Flies on MR-DOS™ 1 A-7 



MCP Developer's Guide - Final to Production Apple ConfldenHal 2/20/89 

sec . h Include file that contains the defmition of the interrupt handler 
table used by the routines in :MR-DOS:Examples: that makes 
useofSCCs 

s iop . a Include file that contains constants used to describe hardware 
on the card including control register locations and some of 
the values that can be stored into those locations 

s i op • h Include file that contains constants used to describe hardware 
on the card including control register locations and some of 
the values that can be stored into those locations 

timer library. a Include file that contains the constants and definitions needed 
to use the timer library 

timer library • h This include file contains the constants and deflllitions needed 
to use the timer library 

FOWER: MR-DOS l:MR-DOS:MCP: 

Download-lib. o library containing Download and Findcard subroutines 
tailored to code to the MCP card 

OS • o library containing MR-DOS operating system and utility 
routines tailored to run on the MCP card. 

OSDefs. d Assembler symbol table file ofmrdos. a, os. a, 
managers.a, and siop.a containingconstantsand 
.tnaCI'O.$ tailored to the version of the MR-DOS operating 

osglue.o 

system that runs on the MCP card 

library containing glue code and the iopruntime routines 
for programs that run on the MCP card 

Files on MR-DOS 2 
Table A-2 lists the folders and fdes found on the distribution disk named MR-DOS 2 
and provides a brief description of each. 

Table A-2 
Flies on MR-DOS 2 

Fiie name Description 

FOLDER: MR-DOS 2:Apple IPC 

: 'Apple IPC': 

:Forwarder: 

Folder containing folders and files for Apple !PC 

Folder containing the Forwarder application and files 

A-8 Appendix A: Flies on the MCP Distribution Disks 



f 

( 

MCP Developer's Gulde - Final to Production Apple ConfldenHal 2/20/89 

FOLDER: MR-DOS 2:Apple IPC 

'Apple IPC' 

'Apple IPC.r' 

Copydriver 

:Examples: 

ipcGDefs.a 

ipcGDefs.h 

IPCGlue.o 

Contains a driver and code to provide some of the MR-DOS 
features to applications running on the Macintosh II that is 
placed in the System Folder and the Macintosh II restarted. 
This file contains an INIT resource for installing the Apple IPC 
driver, the Apple !PC driver, the Name Manager, and the Echo 
Manager (ICCM is built into the Apple !PC driver) 

The Re z file used in the creation of the Apple !PC file that 
provides certain resources used within the Apple IPC fde for 
configuration purposes. This fde is provided as a quick 
reference to see the. names and formats of those resources. 
Accesses to these reSources are by name during initialization. 
These resources are not accessed by resource ID. 

The script that copies the Apple !PC file to the System Folder 

Folder of example files using Apple !PC 

Include fde provided for debugging purposes only that 
contains the format of the Apple !PC driver's global data area 

Include file provided for debugging puiposes only that 
contains the format of the Apple IPC driver's global data area 

library file that contains the glue interface routines necessary 
for using the Apple IPC driver 

FOLDER: MR-DOS 2:Apple IPC:Examples 

'Apple IPC' Contains everything the Apple !PC file in folder :Apple IPC: 
contains plus an Echo Example task. The Makefile shows how 
this file is created; the purpose of this file is to show how to add 
a new manager or task to the Apple IPC file. 

'Apple IPC. r' This is the Rez ftle used in the creation of the Apple IPC file 
in the Examples folder (this Re z file is different than the Re z 
file found in the Apple IPC folder) 

: AST ICP : Folder of examples for the AST_ICP card 

: DumpT race: Folder for DumpTrace tool and examples 

echo. c The source of the Echo Example task 

echo_ example The linked Echo Example task (the MakcFile shows how this ftle 
is created and used) 

echoglobals. a The source of assembler routines used within the Echo 
Example task 

Appendix A: Files on the MCP Distribution Disks A-9 



MCP Developer's Guide - Final to Production 

Makefile 

:MCP: 

name_tester 

name tester.c 

pr_manager 

pr_manager.c 

RSM_File.c 

RSM_tester.c 

TestR 

TestR.c 

time it 

timeit .c 

TraceMonitor 

Used by Make to create all of the programs and tasks within the 
:Examples: folder 

Folder of examples for the MCP card 

An MPW tool designed to test the Name Manager 

The source of the test task designed to test the Name Manager 

This MPW tool is a Print Manager task. The print f 
subr6utine will look for a Print Manager, and request that a 
Print Manager print formatted text 

This is the source of the pr_manager MPW tool. 

This is the source ofa test task RSM File which is to be 
dynamically downloaded to a card running MR-DOS. 

The source of a MPW tool that dynamically downloads a task to 
a smart card running MR-DOS 

This MPW tool tests the Apple !PC driver 

The source of a MPW tool that tests the Apple !PC driver 

This MPW tool measures the time required to exchange 
messages between itself and a Echo Manager 

The source of the MPW tool which measures the time required 
to exchange messages between itself and a Echo Manager 

This MPW tool receives messages from Trace Managers and 
records them in a trace file 

trace monitor. c The source of the TraceMonitor MPW tool 

FOLDER: MR-DOS 2:Apple IPC:Examples:AST_ICP 

RSM File 

RSM tester 

An example of a module built to be dynamically downloaded 
to the AST-ICP card 

This MPW tool dynamically downloads a module to the AST
ICP card 

FOLDER: MR-DOS 2:Apple IPC:Examples:DumpTrace 

DumpTrace This MPW tool analyzes a trace file created by the 
TraceMonitor and dump selected messages from the '.race file 

dump_ 16 _bytes. c The source of one of the subroutines comprising the 

dump_line.c 

DumpTrace MPW tool 

The source of one of the subroutines comprising the 
DumpTrace MPW tool 

A-1 O Appendix A: Flies on the MCP Distribution Disks 

Apple Confidential 2/20/89 



MCP Developer's Gulde - Final to Production 

dump_ memory. c The source of one of the subroutines comprising the 
DumpTrace MPW tool 

dump_rnessage. c The source ofone of the subroutines comprising the 
DumpTrace MPW tool 

dump_trace_file. c The source of one of the subroutines comprising the 
DumpTrace MPW tool 

init.c 

is_selected.c 

rnain.c 

Makefile 

The source of one of the subroutines comprising the 
DumpTrace MPW tool 

The source of one of the subroutines comprising the 
DumpTrace MPW tool 

The source of the main routine comprising the Dump Trace 
MPW tool 

The Makefile used when building the DumpTrace MPW tool 

FOLDER: MR-DOS 2:Apple IPC:E.,;amples:MCP 

RSM File 

RSM_ tester 

An example of a module built to be dynamically downloaded 
to the MCP card 

This MPW tool dynamically downloads a module to the MCP 
card. 

FOLDER: MR-DOS 2:Forwarder 

FWD 

fwd.h 

fwd.r 

Contains the ADSP forwarder used within MacAPPC, along 
with an INIT resource that installs the forwarder 

Include file that contains constants and definitions used by 
applications using the ADSP forwarder 

The Rez file used in the creation of the FWD file (certain 
resources are used within the FWD ftle for configuration 
purposes; this file is provided as a quick reference to see the 
names and formats of those resources. Accesses to these 
resources are by name during initialization. These resources 
are not accessed by resource ID) 

Apple Confidential 2/20/89 

Appendix A: Files on the MCP Distribution Disks A-11 



MCP Developer's Guide • Final to Production 

Files on MCP Diagnostics 
Table A-3 lists the folders and files found on the distribution disk named MCP 
Diagnostics and provides a brief description of each. 

Table A-3 
Flies on MCP Diagnostics 

File Name Description 

FOLDER: MCP Diagnostics:MCP _Diagnostics 

Build_ D iag_ Binary MPW Script to build all applications in all folders 

DiagLib. o Diagnostic Library used in MCPDiagTool and 
MCP_Diagnostic 

: DiagTool: Contains MPW diagnostic tool and source code 

MCP _Diagnostic The diagnostic application provided for MCP-based cards 

: ROM: Contains ROM build files and source code 

: Sequencer: Contains user-level diagnostic application and stub files for 
adding tests 

FOLDER: MCP Diagnostics:MCP _Diagnostics:DiagTool: 

'DiagLib Notes' Describes implementation of DiagLib library 

makefile 

MCPDiagTool.c 

Make file to generate MCP D iagToo l 

SourcetoMPW DiagTool 

FOLDER: MCP Diagnostics:MCP _Diagnostics:ROM: 

:MCP: Folder containing the ROM source code 

+ Note: Duplicate this folder and rename for your project 
before making changes to the contents of this folder. 

Apple Confidential 2/20/89 

gang MPW tool to download RO~ application to PROM burner (see 
the file 'ROM Burn Instructions' foruseofthistooi) 

GetSinf o 

makefile 

Poweron.a 

Rudimentary application to look for slot manager info 

Makefile to build the MCP ROM application for PROM 
downloading 

Generic MCP power-on testing source code; use 
ApplPoweron. a to add vendor specific power-on tests 

A-12 Appendix A: Files on the MCP Distribution Disks 



( 
MCP Developer's Gulde • Final to Production 

l?rimaryinit.a Generic MCP Primary !nit testing source code; use the file 
App ll? r ima ry In it . a to add vendor specific primary 
initialization tests 

FOLDER: MCP Diagnostics:MCP _Diagnostics:ROM:MCP: 

application.h 

Appll?o1verOn. a 

Vendor-specfic globals and constants 

Used to add on-board vendor power on tests 

Appll?rimaryinit.a 

Used to add vendor on-board primary initilization tests 

ApplROM.a Main line source for ROM code 

'ROM Burn Instructions' 

Instructions for taking the ROM application and downloading 
to a Data I/O PROM Burner 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer : 

:includes: Directory for includes files 

' : Level 3 Examples : ' Example test code to download and execute programs 
on the card's 68ooo or Mac background task 

:MCP: MCP _Diagnostic application folder 

•> Note: Copy folder and rename for your own version 
before making changes. 

'Sequencer Errata' 

Bugs found in the current release 

SequencerLib. o MCP _Diagnostic object library 

Apple Confidential 2/20/89 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer:includes: 

Commdeclr.h 

DeclROMEqu.a 

L3c.h 

SlotMgrEqu.a 

Miscelleaneous constants needed for assembler code 

Declares ROM equates for ROM diagnostics 

Used for using Pascal routines using C 

Declares slot equates for ROM diagnostics 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer:'Level 3 Examples': 

:MAC ICP : Contains example task to run as a level 3 background task 

: MCl? : Contains task to run as a level 3 card task 

Files on MCP Diagnostics A-13 



MCP Developer's Guide - Final to Production 

echo • c Example thac tests the functionality of the task commands 
library 

makefile Creates applications for card and background examples 

st ackexecute . c Example for executing a set oflevel 3 commands from a file 

Apple Confidential 2/20/89 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer:'Level 3 Examples': 
MAC_ICP: 

Warning 

The background task has been tested using version 6.0.2 of the System file; any 
other system file may cause the system to crash. 

echo 

echo.c.o 

echo.r.o 

map 

printf.c.o 

stackexecute 

Tue echo background application 

Object f'Jle for the echo background application 

Compiled resources for the background task application 

Map of link 

Print library (same as MR-DOS version) 

Tue background stackexecute application 

stackexecute. c. o. Object file for the background stackexecute application 

stackexecute. r. o. Compiled resource file for stackexecute 

task.r Resources required for building a background task 

TaskComrnands. c. o Messaging library 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer:'Level 3 Examples': 
MCP: 

echo The echo card task application 

hwexceptions. a. o Used for infonninglevel 3 shell of hardware exceptions 

IOPRun time. a. o lnitilization library for board task 

map Map of link 

printf.c.o 

stacke:·:ecute 

Print library (same as MR-DOS version) 

The card task stackexecute application 

TaskCominands. c. o Initialization and messaging library 

FOLDER: MCP Diagnostics:MCP _Diagnostics:Sequencer :MCP: 

Generate MCP An MPW script used to build the sample MCP diagnostic 

A-14 Appendix A: Flies on the MCP Distribution Disks 



( 

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89 

Sarnprez.r.o The MCP diagnostic resource library 

Werning 
Although the Samprez.r.o file appears as an application. do not run It or your 
system will crash. 

Vendor. a A stub file for adding in vendor-specific assembler tests 

Vendor. r A stub file for adding in vendor-specific resources 

Vendor B 1 o c ks . p A stub file for adding in vendor-specific Pascal tests 

Vendo rde f s . p A stub file for adding in vendor-specific global variables and 
constants 

Files on MCP Diagnostics A-15 



MCP Developer's Gulde • Final to Production Apple Confldentlal 2/20/89 

A-16 Appendix A: Flies on the MCP Distribution Disks 



Appendix B 

Where to go for more 
information 



MCP Developer's Gulde • Final to Production Apple ConfldenHal 2/20/89 

What this appendix tells you 
In addition to the books about the Macintosh II itself, there are books on related 
subjecrs. Table B-1 lists ci reference materials that you might find helpful. 

Table B·l 
List of reference material 

Name 

Inside Macintosh, 
Volumes 1-V 

Macintosh Programmer's 
Workshop (MPW) 
Reference 

MPW C Language 
Manual 

MPW Assembly Language 
Manual 

Destgntng Cards and 
Drivers for Macintosh II 
and Macintosh SE 

8·2 Appendix B 

D•scrlptlon 

Provides a complete reference to the Macinlmh 
Toolbox and Operating System for the original 64 KB 
Macintosh, Macintosh Plus (128 KB ROM), Macintosh 
SE, and Macintmh ll (256 KB ROM) 

Describes the software programming environment 
for the Macintosh computer. This manual includes a 
combined editor and command interpreter, 68000 
family membler, linker, debugger, Macintosh ROM 
interfaces, resource editor, resource compiler and 
decompiler, and a variety ci utility programs. (Version 
2.0 contains complete interfaces to both the Macintosh 
SE and Macintosh n ROMS, improved structured maao 
processing from the assembler, editor markers, 
performance enhancements, ease-of-use features, and 
a variety ci new commands.) 

Describes a native Macintosh C compiler, the standard 
C library, Macintosh interface libraries, and offers 
sample progmm (Version 2.0 contains full interfaces 
to both the Macintosh SE and Macintosh II ROMs) 

Tells you how to prepare sowt:e files to be ~ed by 
MPW Assembler (Version 2.0 also contains interfaces 
to both the Macinlosh SE and Macintosh n ROMs) 

Contains the hardware and software requirements for 
developing cards and driveis for the Macintmh n and 
the Macintosh SE (this document covers Apple's 
implementation of the NuBus interface in the Macintosh 
ll and the Apple's SE-Bus interface in the Macintosh SE) 

r' ·--,, 



( 

( 

MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89 

Ust of reference material (continued) 

Name Description 

Human Interface 
Guideltnes: 1be Apple 
Desktop Interface 

Detailed guidelines for developers implementing the 
Macinlosh user interface 

Technical Introduction Introduction to the Macinlosh software and hardware to 
the Macinlosh Family for all Macinlosh computers: the 
original Macinlosh, the Macinlosh Plus, the Macinlosh 
SE, and the Macinlosh 11 

These documents are available to inlernal Apple developers through the Engineering 
Support Library, or to third-party developers through the Apple Programmer's and 
Developer's Association (APDA nl). 

APDA T11 provides a wide range of technical products a00 documentation, from Apple 
and other suppliers, for programmers and developers who work on Apple equipment. 
For information about APDA, contact 

Apple Programmers and Developers Association 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 33-G 
Cupertino, CA 95014-6299 

(800) 282-APDA, or (800) 282-2732 
Fax: 408-562-3971 
Telex: 171-576 
AppleLlnk: APDA 

If you plan to develop hardware or software products for sale through retail channels, 
you can get valuable support from Apple Developer Programs. Write to 

Apple Developer Programs 
Apple Computer, Inc. 
20525 Mariani Avenue, Mailstop 51-W 
Cupertino, CA 95014-6299 

\¥."lat this appendix tells you B-3 



MCP Developer's Gulde - Final to Production Apple Confidential 2/20/89 

In addition, you may find the references listed in Table B-2 available through your 
local book.store or computer dealer to be helpful. 

Table B-2 
Additional references 

Name 

Motorola M68000 8-116-132-Bit 
Microprocessors Programmer's 
Reference Manual 

B-4 Appendix B 

Description 

Describes the latest infonnation to aid in the 
completion of software systam using the 
M68ooo family of microprocessors. This 
manual also covers the MC68008 8-bil data bus 
device, the MC68olO virtual memory 
processor, and the Mc68o12 extended virtual 
memory processor. 



.-. 

. .) 

..., 

- :-'· ~ 

.... ;·:· §~ ' •• ,. ,, - 2 

I "'" '·' 
'" ' ..... : ' 
"' -•· O> ..... I ...... O•.' • I • 2'JiE Ir. -li'I 

.-Wih JI" i 
•C 

' NC 

• ..!.£..•!'' 
AO• !!1 _Ml•,., 
~ll...· 17' 

U •D•!fl 

~ 
~ 
~ 
I• At'•l 7' 
f'i! "D• Iii' 
~ &0•1211 

' .!Q.•ill' 
II .!J?.• li!!I' 
fi"£ 40:: .. m· 
[!!: AD• ill' 
~ ,, 

~11•1 
~!__1:!1 

lo.-fil 
..J.2!••· 

~•!IV 

~l2Y 
L...J 

~ .... 
~ 

rt~~11111 
At'<11 If' 

__M!_!IT~; 
.!.Dli-i•? '°" lfil 
A •I ' 

AD• I ' 
A •U' 

AD•IHI 
.t.D• l~i1 
..!fl!'li• 1 

~i2ei 
.!0• 12•' 
.t.D•IU' 

f•C.Ue•1r 
i .... ,. .... ,. 

I:! :s: '.:. 
f:: ..... 

L..J 

.•. . 
.;. 

atl••f .H· 
-~· 

' __ 2. J 

•~11,;lt~= 
0'""'U7F1 !'""'Lili£" ru-iE1 Ul8 1 rY?f.l ~ 

.--+----i';-i-.:"'se~ Zl "1vn •D•fil1 1~ 20-;.ssa!. ii o !11 •D• iz•! 12 : 596! If o 1a1 o •• !I• 19 lillll az• !12 a 12?1 i lsT•RT• a I c:-•• 1 
•D•••, 2,1 ~;: Iii!!: 17 ~1!£ "fzo..~ 203 ~ : ~ :: 1it1 D :;~~' 1 :: 1: W~ :' ; A •I I 2 P 

&t'•', 1 i:i.,. :!J!:: I I AD•I f' li =• = -1l.J• a• -71 I :: : 0'11• 1.lr. ::: :::•& A [i[ A •I 7
1 -+ P 

~:-~. 6 &!I• IS:& :,' ~~ =iE1Q:• lD•ff- :m~ "::ili : Qll o:fill:: ht: Dt~ At8:!= :: : : : I::£: 
~1-11 I:;: =~ !!:: UJ1 &C•' • ::::Ii !:: :~ • a!ll • •!1 1 1 ~: : ?~•u1 1~· :• :!~ e al,, a: ~ !. P 

:~:::; ~:~: ~{f II ili~ 1-:~:· :!II ~ •'' 1 : :: ~II~~-· ~ 'r, :::~ :,; &• E: :;: 
aO•I •' u &I• U t. E? IC 2\: l• •• L-.....J DI&' Dl au •2 a • a• P P-Qm 

19 •SL,QT CJ 2 

•:a:' Is .. &aA~ ' ts• as·~ ~ • m a13 • 1 " 1131 rt- o 
l-.--1 .;. L--..l _J_ •:: ID! ::~~ :Pif ID•l?I tr: 

~ l"LJ"9F 
I c!"S6~ i! •8Ylf .!Jl'!...11..?I I M.$56• 12 • 12?1 r •D• 1231 

2
.' :;: ~ !!._ ...RJ I ~ I : :: !! }filt 

!Q!...!.ilJ... 5 Ai• e1'.!!:: :RJ. ~l:ilj 6 Qll 15 -illil: 
~1 I..,. e!I:: :::JiJ 1 :!D:• 111 Ia Qlla n:r 
.t.D•lll.i ••• JM 1 Oil I lD!.]ijl • D Qll I .\J.il.! 

~ tlE -f ::: :i [§: :IJ' 1
: ~ llL _±Jo °"Bl ill!. 

~ 71 JI:..,,. 11 14 :=u I CU. E• 
~ti£ 11 •I• U 1- .=:iJ I rr 

2 S&I SU~ U I 
.______. -! 

• +!!V 

R3 

rus;r-- ~ llH 

H-Hl---~'-1c.:-56~ ll •llYTl 1 c:se~•G'>=-'-~6.+1 
H~=~-''"41 GA.• 68 ? 2' G .. • GB - ~!I-

E: :~: :i::: :!~ ', ::::: • :!: :~ ::1: 
:~::~: 6 ~= ::; :.1 :::~ ::: ::!l; ::;:; 
&0• I 11 5 ..... I!'" Hi I • .• ' ' Al• I'=(!!_ •II I 

~' "!.a. .i'!! rh : ::~ I Aitl Ii!; illi' 
ft•' I II ::: =~ l- I • 1 1:• tl ::: :: 1'! A tai 

I - DI Ail l!!_ A l.!l} ID• ( ....!... Q 

ci.i 4 l &I if : :1: i-il D 
Al JD a 11 JD• 21 +--ii Q 

...+-------;•,.,!, _. :! 3• & 161 ID• Ill l : _____ _,~ .. :~ .... ~,. :: I ~ -=- ~ 

.------]!;;;: ""':;'"~. :: ~ : ::; 
~---•fH,Q..11, Al 2• & UI 

21 ••• r-:'DtACll.• Bli• tl • • 2 
VMI ti NC AE• 

H IPi..itl 
l9i..l• 
IA..1• 

!-c .!!j. 

A/W• •U 2. 3 

~= •LQS CJ~:: 
FC2 NC FC1 

~~: .. 
&$111 ~ .,V ~ -t-!!iV +~V RI .... 

~ 
.. ·- ·::. .... .... .... "' -, .... .,. 

~ lill~L .,. -I ·= ., ...... __ J ~. ;; -¥::; : :; •;:;; _ _l_ _l_ I . "' "~ 23 •12 05 17 Dll?' I T lli1.. ):;:!3 
•!ii! .. ... .. •• ..... Cl• 'fW .. Aal 03 [!!: D •ill •DTAC• 

•.Il! ""Hl'' 02 • "'"' .... ),.. 2 • • T .. •• .. om •• s.<• '" •" .... 'fili; ...... . i,]ii T.. •H'Ll •.• 

•.ill ... "'"'' •••• ' 
• • -,- •• CS•~ OiG•c~ • 

ruaE'I I ::Hf : :: VPP ~.... =~~ ~ • ....... • w:: .. vcc • •••• •. ' 

u .. ~ - e ' • _.,,_, ~ • ~· .,... . - .. ... ~ . _,,. ~· ~ ::; ::: :Ii!: : ::. "!: • .;:;,: a: 
iili •;· ::: : ~ : .:: I ·:::' 8: ... .. .. . . .,,.. 111111 ..... : 0• 

2 5A8 _...(!I A II ~ ,-!-SAi 58&~ '--- n ' I '---- .,. 

:;!'ii' ' :. ::: : ':!" ::.:. ~~: 13: ' 
TTI''' II !3 •Io• ~•. 1 

~SAi SIA~ 

~ APPLE COMPUTER .... 
~ .... 

PCB SCHfM&TIC . 

MCP Card 

SH l OF ,J 

fll1-02. I 





~ 

) ( 

( 

a: 
w 
t-

JO j JQO 
% , .. 

WO 
UOO 

zw 0 . , 

-- MM• " - ......... .., " :J 

J( 000 Q Q( IOOQQ J( Cl. 
:::;: 

~:;;~! --~ •u 0 

~~ 
. JUo- .J .. u u ...... ,.. " • u 

~rJ . .. . . 
w 
...J 
Cl. 
Cl. 
<( 

'-,-1----++-t--H"-t 

Jk!b 
·~ 

t::: 

' 

iii . 
~-"V'Y-'-~ HH-+++++----++-1+++-H-----H------' 

Q UUOUUO( JO( .......................... 
..; .. ..; - ..; 

JOO( JOO( 

"" 1 + 

Ill.klmmmmm~1w , 
I~ I 

) 

.. . ... 
oO 
N;. 
~= 

"O 

" "' u 

"' ~ 



·"·· j 



J 

,.....___,., ,-, ~ 

*"'':'I L ~: 

... "'" 'w . •1..f'':'i 

. ' •PST" 

' 
•fh .. C 

•t·u,LT 

... 
•AS 
oiucc; 
•LOS 

: IU"•[) 

"'" ' ' ALSl?9 

I 

I. ,, , I "" ~==F{"'; . ::c. 
':" e e 

·' " : ; ' ~~ : 
: ; : ~: :~ ; yLl2 

~ ' 

TI 
1 U2E 

..Si:!:il' 

rl' ". '., 
*1; ... 
13,B 

~ 
_'l'J 

R.t.C 

"'" I~· .. , 

... 
~ 
~ 
~ 
~ 
Ril2i 
~ 
R"!tl ... 
PF 1111 • 

1..r---

~ 
-+ki:i1 
' ~ 

_lf 
L 
'-L-

--

.r-

' ~ 
_i_ 

L-

'" • 
ct"IJ 0'1 
pC:IC, C 1 

'"''': '1'1 
""f" 011 1 
CIC ( ~ 

""!2 
pi;: El 

q"f'l' 

P"ie• 

0 1111 
D 'Jtll 

D 191 
o ca~ 

Fl"" t1 0 .,, If' OPI 
po: If' O:? l_.:o 0 (£1 

"'" ·~ o.:: " 0 !51 
Rf:" IA' Ol I D 141 :: ;~: ~= """' ---+-++i 
'l"'I' 
q"1e· 

ILJ2H ""' I : 6 ~~ 
14 G• OF 5 NC 

!~ RC : ; =~ 
QC 2 NC 
OS I NC 

RC~: 195 NC 

L__ 

'---

; :;;:·· I :;:: 11111 
I .: ~:11F 

INT 

+511 +~\/ ~~= ! :!~~f<:J 
f>PA "15 A I :3 

Jiall? 0 lql )51 

!lR':l 1~:i"' tron11na1 NHl'I~ 

''--' 

1lES~~::;~ ~ LC~ " 

N!:::.!: 4 

•Pe 6 

0131 
0 l2l 
0111 
011111 

~:~J '" I rn I rn l :. 1 ''" 1 " I " I " I " I cu I rn I m I w l '" I "' I w 1 
16V illL"' Ill'"" IHI.FT hL"'- Ill.FT 11~ llL'" illUF IHJf lltUFT l1L'FT hUF ttlF fll.Jf" 

" l " l "' l '" I ,,, 1, .. 1 "' 1 " 1 "' I w I '" I "' I " I ,,, l ," I m I "' I 
111.'F llll'..'F t1-"' lillL..-T 2!"~ tuFT illL"'" lt-''°T JtUf ttlJF 11l1" !Ill.If ltlF 111.."'T 'ZIL<F 11UF ltUF 

.._.' 

APPLE COMPUTER 
Pee SCHEM•TIC 

HCP Card 

r,R (/Ofl.(!S l)rD 1y'a7 

5'1 _; QIO 3 

11 •i·ol_ 




