Apple Contfidential

Apple. Macintosh Coprocessor

Platform™ Developer’s
Guide

Final Draft
February 20, 1989

G APPLE COMPUTER, INC.

This manual is copyrighted by Apple, with all rights reserved. Under the copyright
laws, this manual may not be copied, in whole or in part, without the written consent
of Apple Computer, Inc. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased may be sold, given or lent to
another person. Under the law, copying includes translating into another language.

© Apple Computer, Inc., 1987, 1988
20525 Mariani Avenue

Cupertino, California 95014

(408) 996-1010

Apple, the Apple logo, AppleTalk, LaserWriter, and Macintosh are registered
trademarks of Apple Computer, Inc. LocalTalk, the Macintosh Coprocessor
Platform, MR-DOS, and MPW are trademarks of Apple Computer, Inc.

AST and AST-ICP are trademarks of AST Research, Inc.
DEC is a trademark of the Digital Equipment Corporation.
EtherTalk is a trademark of ??

Magnetic Resonance Imaging (MRI) -is this trademarked at all, or just an
industry term?

NuBus is a trademark of Texas Instruments.

Open Systems Integration (OSI) - trademark? or any acknowledgement for
this proposed standard

Systems Network Architecture (SNA) is a registered trademark of International
Business Machines Corporation. just the initials or the whole thing?

Simultaneously published in the United States and Canada.

]

Contents

Figures and tables / xx

Preface / i

What Is MCP? / 1-1

The components of MCP / 1-2
The MCP hardware / 1-3
The MCP software / 1-4
MR-DOS / 14
Apple IPC / 16
Developmental diagnostics / 1-6
Developing with MCP / 1-6
Development opportunities and applications / 1-7
Off-loading task processing / 1-8
Parallel processing / 1-8
Interfacing or controlling / 1-8
Data acquisition / 1-9
Internetworking / 1-9
Limitations / 1-9

Getting Started / 2-1

Preparing to use MCP / 2-2
Installing the MCP card / 2-2
Installing MCP software / 2-5
Installing the Apple IPC driver / 2-6
Running a sample program / 2-6
Selecting files for the sample exercise / 2-7
Downloading files to the card / 2-9
Verifying the sample exercise / 2-9
Where do you go from here? / 2-12

Contents

3 Introduction to the MCP Software Interface / 3-1

What is MR-DOS? / 3-2
MR-DOS primitives / 3-2
MR-DOS utilities / 3-3
MR-DOS managers / 3-3
Echo Manager / 34
InterCard Communications Manager (ICCM) / 3-4
Name Manager / 3-5
Print Manager / 3-5
Remote System Manager (RSM) / 3-5
Timer Library and Timer Manager / 3-6
Trace Manager / 36
What is Apple IPC? / 3-7
Apple IPC driver / 3-7
Apple IPClibrary / 3-8
. Apple IPC managers / 3-8
Functions of MCP software / 3-9
Using messages for interprocess communication / 3-9
Message structures / 3-9
Mechanisms for data transfer / 3-14
Message and status codes / 3-14
The dient/server relationship / 3-15
Clients and servers running on a smart card under MR-DOS / 3-15
Clients and servers running on the Macintosh II using Apple IPC / 3-16 -
Using task scheduling in a multitasking environment / 3-18
Task Identifiers / 3-18
Modes in which tasks run / 3-18
Timer services / 3-19
Task scheduling / 3-19
Task initialization / 3-20
Task execution / 3-20
Task termination / 3-20
Memory management / 3-21

4 MR-DOS Primitives / 4-1

Operating system primitives / 4-2
FreeMemQ / 4-3
FreeMsg(/ 4-3
GetMem(Q / 4-4
GetMsg0 / 44
ReceiveQ / 45

Contents

RescheduleQ / 46
Send0 / 49
SplO / 410
StartTaskQ / 4-11
StopTaskO / 4-13

5 MR-DOS Utilities / 5-1

A description of utilities / 5-3
BlockMoveQ / 54
CopyNuBusQ / 5-4
Date2SecsQ / 5-5
GetBSizeQ / 56
GetCardQ / 56
GetDateTimeQ / 5-7
GetETickQ / 5-7
GetgCommon(/ 5-8
GetHeap(/ 58
GetICCTIDO / 59
GetNameTIDQ / 5-9
GetStParmsQ / 5-9
GetTCBO / 5-10
GetTickPSQ / 5-10
GetTIDQ / 5-10
GetTimerTIDQ / 5-11
GetTraceTIDO / 5-11
GetUCountQ / 5-12
IncUCountQ / 5-12
IsLocalQ / 5-13
Lookup_TaskQ / 5-13
MapNuBus() / 5-14
Register_TaskQ / 5-15
Secs2Date() / 5-16
SwapTIDO / 5-17
ToNuBusQ / 5-17
TraceRegQ / 5-18

6 MR-DOS Managers / 6-1

MR-DOS Managers / 6-2
Echo Manager / 6-2

Contents

InterCard Communications Manager / 6-3
ICC_GETCARDS / 6-3
Name Manager / 64
Looking up tasks / 6-7
NM_LOOKUP_NAME / 6-7
NM_LOOKUP_TID / 6-8
Notification of Communications Loss / 6-9
NM_N_SLOT_REQ / 69
NM_N_SLOT_CAN / 69
Notification of Task Termination / 6-9
NM_N_TASK_REQ / 6-11
NM_N_TASK_CAN / 6-11
Registering tasks / 6-11
NM_REG_TASK / 6-12
NM_UNREG_TASK / 6-12
Printing support / 6-12
Print buffer request / 6-14
Remote System Manager / 6-14
RSM_FreeMem / 6-15
RSM_GetMem / 6-15
RSM_StartTask / 6-16
RSM_StopTask / 6-16
Finding the Remote System Manager / 6-17
. Loading remote tasks / 6-17
Timer library and Timer Manager / 6-17
Timer library / 6-18
TLInitTimerQ / 6-18
TLStartTimerQ / 6-18
TLCancelTimerQ) / 6-19
TLActiveTimerQ / 6-19
TLReceiveQ / 6-19
Timer Manager / 6-19
Active Timer Query / 6-21
Cancel Timeout / 6-21
Request One-Shot Timeout / 6-22
Request Periodic Timeout / 6-22
Trace Manager / 6-23
Turn on tracing / 6-24
Turn off tracing / 6-24
Tracing messages / 6-24
DumpTrace / 6-25

Contents

e

Programming Notes for MR-DOS / 7-1

Intercard communications / 7-2
Address mapping / 7-2
Intercard buffer copy / 7-3
Intercard message passing / 7-3

Interrupt handlers / 7-4

Tick Chain / 76

Idle Chain / 7-7

Writing your own download program / 7-8
Findcard subroutine / 7-9
Download subroutine / 7-9
Download errors / 7-10

Developing Smart Card Applications / 8-1

What you will develop / 82
Before you start / 8-2
How to create applications using MCP / 83
Create new code / 8-3
Modify the main program / 8-4
Modifying the makefile / 8-14
MR-DOS include files / 814
MR-DOS libraries / 8-15
Changes to the makefile / 8-15
Compiling and linking your code / 819
Downloading code to the MCP card / 8-20
Calling the Downloader tool / 8-21
Download errors / 8-22
Debugging your code / 823

Apple IPC / 9-1

The Apple IPC software / 9-2

Installing Apple IPC / 9-3

Using Apple IPC / 9-3

Apple IPC services / 94
CoseQueue() / 9-5
CopyNuBusQ / 9-5
FreeMsgQ / 9-6
GetCardQ / 96

Contents

GetETickOQ / 9-7
GetICCTIDQ / 9-7
GetIPCg0 / 9-7
GetMsg0 / 9-8
GetNameTIDQ / 9-8
GetTickPSO / 9-9
GetTIDO / 9-9
Islocal) / 9-9
KillReceiveQ / 9-10
Lookup_Task(/ 9-10
OpenQueue(/ 911
ReceiveQ / 9-12
Results returned / 9-15
Register_TaskQ / 9-16
SendQ / 9-17
SwapTIDO / 9-18

10 Using the Forwarder with Apple IPC / 10-1

What is the Forwarder? / 10-2
How the Forwarder sends messages / 10-3
Initialization / 10-3
Normal processing using the Forwarder / 10-4
Completing communication with the Forwarder / 10-5
Using the Forwarder / 10-6
Installing the Forwarder / 10-6
Messages used by the Forwarder / 10-6
MC_CLOSECONNECT / 10-7
MC_CLOSESERVER / 10-7
MC_ECHO / 10-7
MC_OPENSERVER / 10-8
MC_READDATA / 10-8
MC_SENDDATA / 10-9
Using the Forwarder on the server machine / 10-9
Using the Forwarder from the client machine / 10-15
Message transactions when using the Forwarder / 10-22
Errors returned by the Forwarder / 10-24

Contents

(11 Troubleshooting / 11-1

What happened? / 11-2
Troubleshooting MR-DOS / 11-2
Using dumpcard / 11-3
MR-DOS crashes / 11-10
Using the load map / 11-10
Using MR-DOS error codes / 11-11
eBTHH — Bad Things Have Happened / 11-12
eCAIT — Cannot Allocate Idle Task / 11-13
€CAMS — Cannot Allocate Message Space / 11-13
eCAPR — Cannot Allocate Priority Table / 11-13
eCAPT — Cannot Allocate Process Table / 11-14
eFMSG — Attempt to Free Bad Message / 11-14
eMEMB — Attempt to Free Bad Memory Buffer / 11-15
eNPTR — No Processes to Run / 11-16
eOVFL — Stack Overflow Detected / 11-17
eSMSG — Attempt to Send Bad Message Buffer / 11-17
eSTPI — Stop Task cannot be called from interrupt routine / 11-17
eSTTI — Start Task cannot be called from interrupt routine / 11-17
eTIMQ — Task Not in Timer Queue / 11-18
Task Not Stopped / 11-18
MR-DOS hangs / 11-19 .
S . gMajorTick is not incrementing / 11-2
Determining the cause / 11-20
gMajorTick is incrementing / 11-21
A task may be waiting on a blocking Receive request / 11-22
MR-DOS may have run out of message buffers / 11-22
A task may be running in Block Scheduling Mode / 11-24
A task may be executing in an infinite loop in Slice Scheduling Mode / 11-24
Code on the Idle Chain may be executing in an infinite loop / 11-24
Troubleshooting Apple IPC / 11-25
Apple IPC crashes / 11-27
Crashes during Macintosh II startup / 11-27
Apple IPC INIT31 — Unit Table full / 11-27
Apple IPC INIT31 — No DRVR resource in file / 11-27
Apple IPC INIT31 — Failed to open driver / 11-27
Crashes with improper parameter usage / 11-28
Apple IPC FreeMsg — Bad message pointer / 11-28
Apple IPC Send — Bad message pointer or mFrom / 11-28
Crashes during driver initialization / 11-28

7 Contents

12

13

Apple IPC — Missing resource: Apple IPC entries / 11-29
Apple IPC — Unable to get space from system heap / 11-29
Apple IPC Name Manager — Missing aipn resource: NameManagerentries / 11-29
IPC driver crashes during execution / 11-30
Apple IPC KillReceive/CloseQueue — timeout queue error / 11-30
Apple IPC Send — timeout queue error / 11-30
Apple IPC Periodic processing — timeout queue error / 11-30
Apple IPC Receive — timeout queue error / 11-31
Apple IPC Receive — Interrupt routine did blocking Receive / 11-31
IPC Name Manager crashes during execution / 11-31
Name Manager Receive with Completion / 11-31
Name Manager Receive Request Failure / 11-31
Name Manager Receive Request without Completion / 11-32
IPC glue code crashes / 11-32
Apple IPC hangs / 11-33
Events causing Apple IPC hangs / 11-33
Macintosh 1I 32-bit mode debugger hang / 11-33
Unsatisfied blocking Receive request / 11-33
Examining the Apple IPC global area / 11-34
Finding the Apple IPC global area / 11-34

MCP Card Specifications / 12-1

Introduction to the MCP card / 12-2
Hardware description / 12-3
Processor / 12-3
ROM / 12-3
RAM / 124
Address map / 124
Timer / 12-5
Reset / 12-5
Interrupts / 12-5
NuBus interface / 12-6
NuBus address space / 126
Acquiring the internal 68000 bus / 12-6
Design notes for NuBus / 12-7

Lists for the MCP Card / 13-1

PAL listings / 13-2
PAL equation: arbitration / 13-3
PAL equation: bus driver / 13-4

Contents

14

15

PAL equation: bus master / 13-5
PAL equation: bus master control / 13-6
PAL equation: bus slave / 13-7
PAL equation: decode / 139
PAL equation: DMA example / 13-10
PAL equation: interrupt / 13-11
PAL equation: RAM / 13-12
PAL equation: RAM24 / 13-14
Parts for the MCP card / 13-16

Diagnostics for the MCP Card / 14-1

What does Apple provide? / 14-2
Diagnostic capabilities / 14-3
MCP card declaration ROM / 14-5
Power-up diagnostics / 14-5
68020 primary initialization tests / 146
Dataarea / 147
Error codes / 14-8
Using the MCP_Diagnostic library / 14-9

MCP Sequential Diagnostics / 15-1

An overview / 15-1
NuBus support / 15-1
MCP_Diagnostic main window / 15-1
MCP menu / 154
Slot n / 155
Failure Analysis / 15-6
Run Script... / 156
Run Script Repeatedly... / 15-6
Run Script at Startup... / 15-7
Run Level Three Shell ... / 157
VendorMenu Item / 15-7
Options menu / 15-7
Auto Run is Selected / 15-8
Auto Run is NotSelected / 15-8
Save Configuration / 15-8
Quit / 159
Eject and Reset / 15-9

Contents

10

Debug Aids menu / 15-9
Stop After Pass / 15-9
Enable Micro Stepping / 15-10
Enable One Test Stepping / 15-10
Enable Verbose Data Logging / 15-10
Zero Data Log File / 15-10
(Clear Graph / 15-11
Disable All Logging / 15-11
Display menu / 15-11
Show Controls / 15-11
Testing RAM on the MCP card / 15-12
Testing ROM on the MCP card / 15-13
Testing the 68000 / 15-14
Testing NuBus / 15-15
Reading from Macintosh II system ROM / 15-16
Writing to Macintosh II system RAM / 15-16
Reading from Macintosh II system RAM / 15-16
MCP interprocessor tests / 15-16
Test and set using 68000 memory / 15-16
Test and set using 68020 memory / 15-16
Reset/timer/interrupts / 15-17
Level 1 timer interrupt / 15-17
Level 1 timer speed verification / 15-17
Level 2 NuBus Interrupt / 15-18
The MCP Card interrupts the Macintosh II 68020 / 15-18
Show Bits / 15-18
Show Data Log / 15-18
Show Measurement Log / 15-19
Show Graph / 15-19
Ignore Show Bits / 15-19

16 Adding to MCP / 16-1

Adding code to the ROM / 16-2

The file ApplROM.a / 16-3
Board sResource list / 164
Application-specific driver sResource list / 164

The file ApplPowerOn.a / 16-5

The file ApplPrimarylnita / 16-5

The file Application.h / 16-5

The file ROMbun / 165

Adding required resources in the ROM / 16-6

Contents

1

sMemory resource list / 16-6
sMemory resource list identifier / 16-8
Source files for adding tests / 16-10
Including new tests in the MCP_Diagnostic / 16-10
Adding menu commands to the MCP_Diagnostic / 16-11
Macintosh address mode compatiblity / 16-11
Trapping bus errors / 16-12
The Dial routine / 16-12
The tester script language / 16-13
The control section / 16-13
Conditional tests / 16-14
Examples / 16-15
The message section / 16-16
Comments / 16-16
Error reporting / 16-16
Reserved words / 16-17
The temporary file / 16-17
Script control / 16-17

17 MCP Coprocessor Diagnostics / 17-1

What are coprocessor diagnostics? / 17-2
Entering third-level tests / 17-2
Starting third-level tests / 17-4

Third-level menus / 17-5
File / 17-5

Quit / 1746
Edit / 1746
MCP / 176
Mac II Window / 17-7
Serial A WIndow / 17-7
Serial B Window / 17-7
Serial Setup / 17-8
Disable Verbose Messages / 17-8

Third-level operations / 17-8

Writing coprocessor diagnostics / 17-8
Creating a stack file / 17-10

Operator commands / 17-11
Dumpregs / 17-12
Freemem / 17-12
Getmem / 17-13

Contents

Appendix A

Appendix B

Kill / 17-14
Readmem / 17-15
Run / 17-16
Send / 17-17
Writemem / 17-18
Buffer management / 17-19
Programmer subroutines / 17-22
errprintf() / 17-22
GetCards() / 17-23
GetSlow() / 17-23
GetTimeStamp() / 17-24
HandleSystemTask() / 17-24
HexTostring() / 17-25
InitMessage() / 17-25
KillThisTask() / 17-25
LogErmor() / 17-26
printf() / 17-26
ReadByte() / 17-26
ReadMessage() / 17-27
ReadWord() / 17-27
Reply() / 17-27
SendNextCommand() / 17-28
StringToHex() / 17-28
strlen(), strepy(), and strcat() / 17-29
TickCount() / 17-29
WriteByte() / 17-29
WriteMessage() / 17-29
WriteWord() / 17-31

Files on the MCP Distribution Disks / A-1

What this appendix tells you / A-2
Files on MR-DOS 1 / A-2

Fileson MR-DOS 2 / A-8

Files on MCP Diagnostics / A-12

Where to go for more information / B-1
What this appendix tells you / B-2

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTERS

CHAPTER 6

Figures and Tables

What is MCP?

Figure 1-1 Macintosh Coprocessor Platform in the Macintosh II
Figure1-2 The MCP card
Table1-1 Features of MR-DOS

Getting Started

Figure 2-1 Aligning the card
Figure 2-2 MPW window
Figure 2-3 Select Current Directory window

Introduction to the MCP Software Interface

Figure3-1 Structure of MR-DOS

Figure 3-2 Flow of information between MR-DOS and managers

Figure 3-3 Fixed-length message structure

Figure3-4 Client/server transaction

Figure3-5 Client/server relationship for MR-DOS program modules (NuBus
card-to-NuBus card)

Figure 3-6 Client/server relationship for applications using the Apple IPC
driver (Macintosh II-to-Macintosh II)

Table3-2 Structure for fixed-length messages

Table 3-3 Message and status codes

MR-DOS Primitives

Table 4-1 MR-DOS primitives
Table 4-2 Reschedule options

MR-DOS Utilities
Table 5-1 MR-DOS utilities

MR-DOS Managers

Table 6-1 MR-DOS managers

Table 6-2 Card status

Table6-3 Name Manager message codes
Table 6-4 Printf standard conversion
Table 6-5 Printf nonstandard conversion

CHAPTER7

CHAPTER 8

CHAPTER9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

Programming Notes for MR-DOS

Table 7-1

Error constants for Download

Developing Smart Card Applications

Table 8-1
Table 8-2
Table 8-3
Table 8-4

Apple IIPC

Table 9-1
Table 9-2
Table 9-3

Include files

Link command parameters
Error constants for Download
Dump area format

Apple IPC services
State stable for the Receive call
Errors returned

Using the Forwarder with Apple IIPC

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Table 10-1
Table 10-2

Messages paths using the Forwarder
Initialization process using the Forwarder
Normal processing using the Forwarder
End of processing using the Forwarder
Messages used by the Forwarder

Errors returned by the Forwarder

Troubleshooting Guide

Table 11-1
Table 11-2
Table 11-3
Table 114
Table 11-5
Table 11-6

Crash area forma

Dumpcard cross reference

Error codes for MR-DOS

Error codes for Apple IPC driver

Error messages from the INIT resource

Error messages from the Apple IPC driver/Name Manager

MCP Card Specifications

Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Table 12-1

Table 12-2

MCP card installed in the Macintosh II
MCP card functions

Generation of 20-MHz and 10MHz clocks
A simple NuBus slave design

Read and writing timing cycles

Address map

Interrupt priorities

Lists for the MCP Card

Table 13-1

Parts lists for the MPC card

CHAPTER 14 Diagnostics for the MCP Card

CHAPTER 15

CHAPTER 16

Table 14-1
Table 14-2
Table 14-3
Table 14-4

Diagnostics folders

Levels of MCP diagnostics provided
Data area

Error codes

MCP Sequential Diagnostics

Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15

MCP_Diagnostic main window

MCP menu

Warning dialog box

Menu dialog box (Run Script... command)
Dialog box (Run Script Repeatedly... command)
Options menu

Save Configuration dialog box

Debug Aids menu

Zero Data Log File dialog box

Display menu

Block 1—RAM test blocks

Block 2—ROM test blocks

Block 3—68000 test blocks

Block 4—NuBus test blocks

Block 5—Interrupt test blocks

Figure 15-16 The Data Log window

Table15-1 Tests on-card RAM

Table 15-2 How errors are returned for RAM tests
Adding to MCP

Figure 16-1 sMemory resource list for a generic MCP card
Figure 16-2 SetVar dialog box

Table 161 ROM:MCP files

Table16-2 Resource list entries in the file ApplIROM.a
Table 16-3 Resource list for smart cards

Table 164 Resources required for MR-DOS

Table 16-5 MCP_Diagnostics routine files

Table16-6 Test description parameters

CHAPTER 17

APPENDIX A

APPENDIX B

MCP Coprocessor Diagnostics

Figure 17-1 Third-level diagnostics menu and dialog box
Figure 17-2 Window into a text file

Figure 17-3 File menu for third-level tests

Figure 17-4 Edit menu for third-level tests

Figure 17-5 MCP menu for third-level tests

Figure 17-6 MCP card buffer

Table17-1 Options for third-level Dumpregs command
Table 17-2 Options for third-level Freemem command
Table 17-3 Options for third-level Getmem command
Table174 Options for third-level Kill command
Table17-5 Options for third-level Readmem command
Table17-6 Options for third-level Run command

Table 17-7 Options for third-level Send command
Table17-8 Options for third-level Writemem command
Table17-9 Format of message

Table 17-10 Slots for application

Table 17-11 Returns for SendNextCommandQ

Files on the MCP Distribution

Table A-1 Files on MR-DOS 1
Table A-2 Files on MR-DOS 2
Table A-3 Files on MCP Diagnostics

Where to Go for More Information

Table B-1 List of reference material
Table B-2 Additional references

e

Preface

About This Manual

MCP Developer’s Guide - Final to Production

What this guide tells you

Apple Confidential 2/20/89

This guide is intended to inform and assist you in your efforts to create an interface to
the Macintosh® I bus. Developers may be within Apple Computer, Inc., as well as
third-party developers (such as a VAR channel or a national account) working under a

licensing agreement,

What you should know

You should be familiar with the Macintosh IT computer and NuBus™, Refer to
Appendix B for information on developer tools and reference documents that may

facilitate your development efforts.

The Macintosh Coprocessor Platform™ (MCP) is intended to support applications
written under the Macintosh Programmer’s Workshop™ (MPW) development
environment, which uses Assembler or C. This guide assumes that you are familiar
with MPW and have a working knowledge of MPW C, MPW Assembler, or both.

How to use this guide

This section provides a road map to information on the various components of the

Macintosh Coprocessor Platform.
To find out about:
General information on MCP

What makes up the Macintosh Coprocessor
Platform

Applications or potential uses of MCP

Installing the MCP card and running a
sample program
Specific information on MCP software

MR-DOS™ and Apple IPC software
in the Macintosh II

Task scheduling in the operating system

Interprocess communication between tasks
or processes on the Macintosh I and tasks on
the MCP card

il About This Manual

Look in;
Part I — Getting Started
Chapter 1, “What is MCP?"

Chapter 1
Chapter 2, “Getting Started”

Part II — Software Development

Chapter 3, “An Introduction to the
MCP Software”

Chapter 3

Chapter 3 for general information
(for additional information, see
Chapter 9, “Apple IPC")

g,

MCP Developer’s Guide - Final to Production

Fundamental services of the MR-DOS
operating system

Library routines available to tasks in your
application

Operating-system managers that
provide services to other tasks

Peculiarities of MR-DOS and programming
notes (with examples of code)

How to develop applications using MCP
software (with examples of code)

MR-DOS services provided on the
Macintosh II

Forwarding data on an AppleTalk® network
system using Apple IPC

Troubleshooting MCP software

Information about the MCP card
and NuBus™

MCP card specifications and information
accessing the NuBus

PAL listings and parts lists

Information about diagnostics

The diagnostics provided for
development of the MCP Card

Using MCP diagnostic software

How to customize diagnostics provided
for your application-specific card and
add code to the ROM

Creating new diagnostics for your card

Apple Confidential

Chapter 4, “MR-DOS Primitives”
Chapter 5, “MR-DOS Utilities”
Chapter 6, *MR-DOS Managers”

Chapter 7, “Programming Notes for
MR-DOS”

Chapter 8, “Developing MCP
Applications”

Chapter 9, “Apple IPC”

Chapter 10, “Using the Forwarder
with Apple IPC”

Chapter 11, “Troubleshooting
Guide”

Part IIl — Hardware
Development

Chapter 12, “MCP Card on
Specifications”

Chapter 13, “Lists for the
MCP Card”

Part IV — MCP Diagnostics

Chapter 14, “Diagnostics for the
MCP Card®

Chapter 15, “MCP Sequential
Diagnostics”

Chapter 16, “Adding to MCP”

Chapter 17, “MCP Coprocessor
Diagnostics”

How to use this guide

2/20/89

MCP Developer’s Guide - Final Draft Apple Contidential

a NuBus-compatible Macintosh computer running System 6.0.2
MPW, version 2.0 or later

a

o

O one or more MCP cards

O MCP distribution disks

O MPW C and/or MPW Assembler
O the appropriate debugging tools

Connectors and memory requirements are hardware-specific; refer to Part III, “Hardware Development”,
for more information.

Important safety instructions

You are almost ready to plug in your Macintosh II and get started, but first read these important safety
instructions.

Warning
This equipment is Intended to be electrically grounded.

Your Macintosh |l Is equipped with a three-wire groundlné plug—a plug that has
a third (grounding) pin. This plug will fit only a grounded AC outlet. This Is a safety
feature.

If you are unable to insert the plug into the outlet, contact a licensed electrician
to replace the outlet with a properly grounded outlet.

Do not defeat the purpose of the grounding plug!

For your own safety and that of your equipment, always take the following precautions:

Be sure the power plug is disconnected (disconnect by pulling the plug, not the cord):
O whenever you remove the cover and as long as the cover is off

a if the power cord or plug becomes frayed or otherwise damaged

O if you spill anything into the case

O if your Macintosh II is exposed to rain or any other excess moisture

O if your Macintosh II has been dropped or if the case has been otherwise damaged

O if you suspect that your Macintosh II needs service or repair

O whenever you clean the case (use only the recommended procedure described below)

Be sure that you always do the following:

O Keep your Macintosh II, the MCP card, and distribution disks away from sources of liquids, such as
wash basins, bathtubs, and shower stalls.

O Protect your equipment and materials from dampness or wet weather, such as rain and snow.

Iv About This Manual

2/20/89

MCP Developer’s Guide - Final Draft Apple Confidential 2/20/89

O Read all the installation instructions carefully before you plug your Macintosh II into a wall socket.
O Keep these instructions handy for reference by you and others.
O Follow all instructions and warnings dealing with your system.

Warning

Electrical equipment may be hazardous If misused. Operation of this product, or
similar products, must always be supervised by an adult. Do not allow children
access to the interior of any electrical product and do not permit them to
handle any cables.

To clean the case, do the following:
1. Disconnect the power plug. (Pull the plug, not the cord.)
2. Wipe the surfaces of your Macintosh II lightly with a clean, soft cloth dampened with water.

Conventions

This section provides general information on the conventions used in printing this guide.

Each new term introduced in this book is printed in bold type where it is first defined. That lets you know
that the term has not been defined earlier, and also indicates that there is an entry for it in the glossary.

Any text displayed in Courier typeface is used to represent:

O text that you will see on the screen (such as source code or an example file)
O a command that you enter on the keyboard

O a program or subroutine name

O a parameter or field name

O the name of a file provided on the MCP distribution disks

Any text that is surrounded by colons () refers to the pathname of a particular folder or file. For example,
:MR-DOS:Examples: refers to the folder named “Examples within the folder named “MR-DOS”.

MR-DOS uses C calling conventions, and all registers are preserved except DO, D1, A0, and Al. The
assembly-language macros also adhere to these conventions.

The following words mark special mesages to you:

«» Note: Text set off in this manner presents sidelights or interesting points of information.

Important

Text set off in this manner—with the word Important—presents important
Information or instructions.

Conventions v

MCP Developer’s Guide - Final Draft Apple Confidential 2/20/89

Caution

Text set off In this manner—with the word Caution—indicates potentially serious
problems. Actions could result In system hangs or incompatibility with future
versions.

Warning

Text set off in this manner—with the word Warning—indicates potentiaily
hazardous consequences to you or to your equipment.

Terms

This document refers to processes on the Macintosh II computer, and tasks under MR-DOS and Apple
IPC. A process is an operation or function performed by the Macintosh operating system. A task is a
message-driven transaction process that runs on the MCP card. The behavior of a task depends on the
messages it receives.

User refers to the end user of the hardware or software product that you will develop using the Macintosh
Coprocessor Platform.

Refer to the glossary at the end of this guide for a comprehensive list of terms and an explanation of each.

vi About This Manual

Part |

Getting Started with MCP

Part I, Getting Started with MCP, provides:

)

a

an introduction to and overview of the
Macintosh Coprocessor Platform

descriptions of the hardware, software
interface, and diagnostics

instructions for installing the MCP card,
operating system, and support software

a simple “hands-on” exercise that
demonstrates how the operating system
works with the MCP card

Chapter 1

What Is MCP?

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The Macintosh Coprocessor Platform™ (MCP) is a generic hardware and software
foundation to help developers create add-in cards and software applications for
NuBus-compatible Macintosh® computers.

Apple Computer, Inc. makes this platform available to assist developers in quickly
building Macintosh coprocessor prototypes and to reduce the time-to-market for new
products. The Macintosh Coprocessor Platform is available through Apple
Computer, Inc., under a licensing agreement.

Technical information about the components of MCP is provided in this guide, along
with a discussion of potential applications. Refer to Appendix A for a description of
associated development tools, documents, and references.

The components of MCP

The Macintosh Coprocessor Platform is made up of hardware, software, and
developmental diagnostic software, provided as follows:

O hardware: the MCP card, an intelligent NuBus prototype card (such cards may be
referred to as smart cards)

O software: two distribution disks (labeled MR-DOS 1 and MR-DOS 2) that includes
MR-DOS (Minimal, Real-time, Distributed Operating System) and Apple IPC
(InterProcess Communication) :

MR-DOS is a multitasking operating system for smart cards, such as the MCP card,
and provides an intelligent peripheral-controller interface to NuBus on the
Macintosh 1I.

Apple IPC includes a driver and support software installed in the Macintosh I
computer. Apple IPC allows Macintosh applications to communicate with an
application running under MR-DOS on the MCP card or another computer.

O developmental diagnostic software: one distribution disk (labeled
MCP_Diagnostic) that includes the diagnostic application, support code, and
examples to test various functions of the MCP-based hardware you develop

Figure 1-1 shows the MCP software and hardware components of the Macintosh IT
computer.

1-2 What Is MCP?

Fig.
MCP Deve
Apple Compuier,

JOY

MCP Diagnostics in

[.1-COMP (L1)

Inc.

CE ZAV

[llustrator 88
GEM. VRANA

GEORGE

MR-DOS 1
MR-DOS 2
MCP_Diagnostics

MR-DOS and applica!

tion tasks in RAM

ROM and RAM

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 1-1
Macintosh Coprocessor Platform In the Macintosh i

You can customize each of these components, which are described in this chapter,
for the particular application or product you want to develop. For more detailed
information, refer to Part II on Software Development, Part III on Hardware
Development, and Part IV on Developmental Diagnostics.

The MCP hardware

With approximately 26 square inches of space available, the MCP card is intended as a
vehicle for creating a prototype of the features and interface required for your product
orapplication. Figure 1-2 shows the layout of the MCP card; shading indicates the
primary area available for development.

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 1-2
The MCP card

The components of MCP 1-3

PN

Fig.1-2 -COMP (L2)
MCP Developer’s Guide
Apple Computer, Inc.
" JOYCE ZAVARRO
(lllustrator 88
GEORGE M. VRANA

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The MCP card itself has no input/output (/O) interface, but is a generic master/slave
/O processor. Affiliated /O devices that you develop, such as RS-232 ports or Token
Ring connectors, give the smart card access to the outside world.

The MCP card includes a Motorola 68000 processor operating at 10 megahertz and 512
kilobytes of random access memory (RAM). The NuBus interface provides a bus
master interface to NuBus on the Macintosh II main logic board. The MCP card acts as
a “slot device” to the Macintosh II operating system, freeing the processor on the
Macintosh II to perform other functions.

During development efforts, you may additionally want to use a smart card that is
available commercially, such as the AST-ICP (Intelligent Communications Processor)
smart card from AST Research, Inc., which includes an /O interface through four
serial ports.

The MCP software

Software for the Macintosh Coprocessor Platform consists of MR-DOS, Apple IPC,
and support software (include files, source code examples, and other development
software tools). MCP software was created to take advantage of the common design
features of the MCP card by providing common software services to smart card
application programs.

The code for MR-DOS and Apple IPC includes a collection of traps, interrupt
handlers, and tasks that provide support for task naming, timing services, and
intercard and intracard communications using messages. These routines enable a
smart card to support a multitasking distributed operating environment for
communications and other real-time services on the same card or on other smart
cards installed in the Macintosh IT computer.

< Note: To assist in development efforts, MCP software is released in versions that
support two smart cards: the MCP card and the AST-ICP card.

MR-DOS

MR-DOS provides the operating system and core software services required by MCP
cards for on-board applications software. The design of MR-DOS is sufficiently
general to support a wide variety of software applications on MCP cards, and offers the
functionality described in Table 1-1.

1-4 What Is MCP?

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Table 1-1

Features of MR-DOS

Feature Description

Configurability For maximum flexibility in meeting the needs of a variety of

products, large parts of MR-DOS are configurable. MR-DOS
code that supports services not required by an application
need not be loaded onto the MCP card. To complement
configurability, the MR-DOS kernel is as small as possible.

Intercard Allows communication between tasks on different cards.

services Remote system facilities allow allocating and freeing
memory, as well as starting and stopping tasks, to support
dynamic downloading of tasks on a different smart card in
the same machine.

Interprocess Interprocess communication is accomplished through

communication messages that are fixed-size but flexibly formatted.
MR-DOS allows dynamic name-binding of tasks to support
interprocess communication.

Multitasking Multiple independent tasks share the CPU on the smart
card, under control of MR-DOS. Tasks are always executed
in the user modeon the 68000, while interrupt routines and
the main program are executed in supervisor mode This
process is important because some 68000 instructions
cannot be executed in user mode (such as any instruction

that modifies the status register).
Priority scheduling Priority scheduling is available to control the order in which
and timer services tasks use the CPU. MR-DOS supports time slicing and

processing that cannot be preempted. Tasks may request
one-shot or recurrent notification of time events.

Real-time To deal with the demands of real-time environments,

responsiveness such as communications 1/O, both context switching and
message passing are designed for very high performance.
Memory management is available in an efficient form.

Refer to Part II for more detailed information on MR-DOS and the services it provides.

The components of MCP 1-5

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Apple IPC

Apple IPC is composed of:

O adriver that runs under the Macintosh operating system

O Apple IPC interface code

O library routines (in the file IPCglue.o)

O associated support code, including the Apple IPC Name Manager and Apple IPC
Echo Manager

The Apple IPC driver handles all message passing (interprocess communication)
between processes on the Macintosh II operating system and MCP card tasks on the
NuBus.

Periodically, Apple IPC scans for and processes incoming messages,times out slots
that have become inactive, and processes outgoing messages. The driver receives
messages from and delivers messages to Macintosh II processes.

< Note: Since the Macintosh I computer currently does not implement a multitasking
operating system, the functions are referred to as processes rather than tasks.

Refer to Part II for more detailed information on Apple IPC and the services it
provides.

Developmental diagnostics

Developmental diagnostics are provided in the form of both firmware and software.
The firmware is provided in the declaration ROM on the MCP card, and the software is
provided on the third MCP distribution disks.

These diagnostics are being provided solely as a framework for test verification of
board designs. You can use the basic tests provided on the distribution disk, or
customize the diagnostics for the particular board you are developing. Refer to Part
IV, “MCP Diagnostics”, for more detailed information.

Developing with MCP

MCP provides hardware and software to assist you in creating
O an application-specific smart card

O Macintosh II application software that uses Apple IPC for communication with tasks
on the card

O software that executes under MR-DOS on the card

1-6 What Is MCP?

sadsestt,

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

MCP provides a common design to save time in research, design, and development
efforts, helping you produce greater and more accurate results in a shorter period of
time.

During development, you'll need MPW and standard development tools (linker, C
compiler, Assembler, and so forth). The MCP distribution disks provide source code
files and examples for MR-DOS and Apple IPC, as well as all of the support software.

You will also need a Macintosh I computer with one or more smart cards in the
expansion slots. You could conceivably create applications on a Macintosh II
computer without smart cards installed, and then port it to a Macintosh II computer
with smart cards installed for testing.

Some of the specific concerns you may have in developing your own application may
include the following (refer to the chapters listed for detailed information):

O how to create 2 MR-DOS or Apple IPC application; refer to Chapter 8
O how to create interrupt handlers; refer to Chapter 9
O how toto send data directly to another card; refer to Chapter 5

A few development opportunities and potential applications are discussed in the next
section.

Development opportunities and applications

The communications and networking strategy of Apple Computer is to integrate the
Macintosh II computer into other environments. Some of these environments include
those offered by Digital Equipment Corporation (DEC)™, IBM’s Systems Network
Architecture (SNA), and the proposed standard Open Systems Integration (OSI).

The on-board operating system provided with MCP gives you the capability to

O offload tasks usually performed by the central processor, and thus have faster
response times (computational speed)

O control and arbitrate multiple communications protocols
O control sessions among users

O run applications in the background
Applications developed with MCP may or may not require users to dedicate a
Macintosh I computer for the application, depending on how you customize the

interface on the card. It is possible to create MCP card applications which, once
downloaded, have no dependence on the Macintosh II operating system.

Developing with MCP 1-7

MCP Developer’s Guide - Final to Production

Any application or environment that requires the performance of a Macintosh II
computer can use MCP-developed cards and software. Some of the potential
development opportunities described in this section include off-loading task
processing, parallel processing, interfacing to or controlling other equipment, data
acquisition, and internetworking. ’

Off-loading task processing

With RAM and a processor on the MCP card, you can off-load a task from the main
logic board of the Macintosh II (commonly referred to as the motherboard) and have
MR-DOS handle the interprocess communication. A potential development
opportunity would be a digital signal processor or a high-speed modem.

Parallel processing

With shared data in a Macintosh IT computer, the user may want multiple processors to
work on data simultaneously. Using multiple cards, an application could

1. Load a task that processes the data onto MCP cards.

2. Send messages to the tasks on the cards with instructions and data.
3. Have the tasks compute in parallel,

4. Receive the results.

Data analysis is an example of this type of an application.

Interfacing or controlling

MCP-developed cards and applications are not strictly a communications interface,
but rather a connectivity interface. The product you develop can tie into the
Macintosh II environment, using the power of the Macintosh II to control devices,
collect data, or perform some type of analysis. In this situation, the Macintosh II
computer is dedicated to controlling that device.

Some examples of potential products include

O a numeric controller, machine controller, or any type of device that needs a
computerized controller, such as process control in a factory environment (factory
automation, specialized devices, or robots)

O medical imaging, such as a system console for 2 Magnetic Resonance Imaging
(MRI) machine

1-8 What Is MCP?

Apple Confidential

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential

Data acquisition

By developing a SCSI or EDSI connection on the MCP card, you could connect a drive
from the Macintosh I computer to use it as a database machine distributed over a
network, with connections either to or from a host mainframe or other workstations.
Examples of applications include instrumentation in a lab, medical applications, or
areas in which there is a great deal of testing activity.

Internetworking
The Macintosh Coprocessor Platform offers cost-effective solutions for
internetworking needs, including

O providing an environment in which many different kinds of links are simultaneously
active '

O locally distributing services across networks
O using the intercard communications capability (such as LU 6.2 to EtherTalk)

O using the card as a gateway, bridge, or router into another environment (the other
environment may be a nonmainstream environment or a computer that does not
use standard protocols)

O enabling other AppleTalk-connected machines to use the communication faciities
of the Macintosh II

Limitations

When using MCP to develop a NuBus peripheral interface card and associated
applications, you are limited in just two aspects:

O what you can program on the card in the existing memory space
O what you can physically build onto the board in the remaining real estate

Developing with MCP

2/20/89

1-9

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

1-10 What Is MCP?

Chapter 2

Getting Started

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

This chapter takes you through an exercise using the Macintosh Coprocessor Platform
card and source-code files. This exercise demonstrates a simple function of the
operating system and verifies that the smart card and operating system are working.

This chapter assumes you have already set up your Macintosh I computer, but have
not yet installed any MCP software or hardware.

Preparing to use MCP

Before you proceed, follow these steps to prepare for this exercise.
1. Install MPW software on your hard disk into a new folder called MPW.
2. Install Macsbug into the System Folder of your Macintosh 1.

3. Make a backup copy of the three distribution disks for MCP. When you finish
copying the disks, remember to put the master disks in a safe place.

Two of the MCP distribution disks contain source code and programming examples
you will need for application software development and this exercise; these disks
include MR-DOS, Apple IPC,and the support software for both. The third disk
contains source code and the MCP diagnostics program you will need to create
diagnostic software.

< Note: Please be sure to follow instructions in the section in this chapter, *Installing
MCP software® when copying the contents of the MCP distribution disks to your
hard disk. The source code examples check certain locations in the hierarchical file
structure for any files needed, not only for this exercise but for all software
development efforts.

For a complete guide to the folders and files included on the MCP distribution disk,
refer to Appendix A, “Development Tools and Resources”. (This chapter simply
identifies the folders and files you will need for this exercise.)

Now follow the instructions provided in the next section to install hardware and
software for the Macintosh Coprocessor Platform.

Installing the MCP card

‘This section tells you how to install the MCP card in the Macintosh II. If you are not
familiar with installing cards, refer to the owner’s guide for your Macintosh IT and to
the Preface of this guide for important safety instructions. Follow all instructions and
warnings dealing with your system detailed in the owner’s guide for your Macintosh II.

For your own safety and the safety of your equipment, take the following precautions
before installing the MCP card:

2-2 Getting Started

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

O Do not turn on the computer system until you have completed the entire
installation process.

Warning

Turning on the system at the wrong time could result In electrical shock to you
or cause damage to your computer system’s components.

O Disconnect cables for the monitor, mouse, and keyboard by pulling on the plugs,
not the cords. Leave the power cord plugged in.

Warning

The plugged-in power cord acts as a ground for the system, protecting its
components from static electrical discharge. Do not defeat the purpose of the
grounding plugi

O Touch the power supply case inside the computer to discharge any static electricity
that might be on your clothes or body.

Warning

It's OK to touch the power supply if you've just unpacked it. However, the
power supply can get hot in normal use. If the computer has been on, shut it off
and let it cool down for at least five minutes before you open up the main unit
and touch the power supply.

To install the MCP card, follow these steps:
1. Choose the expansion slot in which you would like to install the MCP card.

For purposes of this exercise, you can use any slot except the fourth to the right of
the video card (slot D).

% Note: The MCP software downloaded in this example assumes that the MCP card in
slot D has an SCC interface; therefore, it is recommended that you use another slot,
such as slot B, for purposes of this exercise.

O Remove the expansion cover shield behind the expansion slot you plan
to use by lifting up until the shield is free of the guideand pin.
O Pushout the plastic hole cover that lines up with the slot you plan to use.
2. Insert the MCP card into the expansion slot.

O Being careful not to touch the pins on the bottom of the card, pick up the MCP
card by the top of the metal bracket and the top of the card's other end.

O The expansion cover shield on the card attaches to the inside of the back panel in
the same way as the shield you removed in step 1. Align the card so that the guide
fits through the lower slot.

Installing the MCP card 2-3

MCP Developer’s Guide - Final to Production Apple Confidential

O Align the connector on the bottom of the card, directly over the slot, as shown in
Figure 2-1.

MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 2-1
Aligning the card

O Place one hand along the top edge of the card, directly over the connector area,
and push down firmly until the connector is fully seated.

Important

Don’t force the card. If you meet a lot of resistance, pull the card out and try
again.

Don’t wiggle the card from side to side when you Iinsert it. Wiggling the card puts
unnecessary stress on the card and the slot., and may break electrical
connections.

You can test to see if the card is properly connected by gently trying to lift the card.
If it resists and stays in place, it is connected.

3. If you have purchased other peripheral devices that require cards, install
them now.

You can use this same method for installing all expansion cards in your Macintosh
ITat any time. Read and follow any instructions that come with other expansion
cards you may have. If you plan to install more cards, see Appendix C in the
owner's guide to your Macintosh II for details on the power available for expansion
slots.

4. Now that the card is installed, reconnect the monitor, the mouse, the
keyboard, and plug in any necessary cables.
If you installed additional cards (such as the AST-ICP smart card) that interface to a
network or some other device, connect those cables at this time.

The owner's guide for your Macintosh II shows different ways to connect Apple
DeskTop Bus™ devices (the keyboard, the mouse, and other devices such as a
graphics tablet, a joystick, or another keyboard). You can either daisy-chain them
1o the keyboard or use one of the back-panel connectors.

2-4 Getting Started

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

< Note: Avoid turning on the power prematurely. The steps are presented in this
order so that the last thing you do is connect the keyboard to a power source. Once
the keyboard has power, you could accidentally press the Power On key and turn on
your computer before it is appropriate.

5. Connect any other equipment you plan to use, such as a printer, external
disk drive, or modem.

You will find instructions for connecting those devices in the manuals that came
with them. If you're using an external device of any kind that uses a SCSI (Small
Computer System Interface) connector, you must connect that device to the one
SCSI port on the back of the Macintosh II.

Warning

Connecting a SCSI device to the wrong port can damage your system. You can
also damage the system If you mistakenly connect a non-SCS! device (with an
RS-232 plug. for example) to this port. Read “Adding SCSI Terminators” In
Appendix A of the owner’s guide to your Macintosh |l for important instructions
about SCSI terminators.

Once you are satisfied that everything is connected properly, arrange the Macintosh II
components conveniently in your work area. Turn the main unit so that it faces you,
and place the monitor where you want it (on top of the main unit is fine). Position the
keyboard and mouse where you can reach them comfortably.

Warning

Always keep your computer's main unit flat, siting on Its rubber feet. Standing
the main unit on edge defeats the cooling design and is likely to make your
computer overheat. A vertical position may eventually damage the main unit.

Installing MCP software

To install MCP software, reboot your Macintosh IT and do the following:

1. Create a new folder called MCP Software on your Macintosh II desktop.

2. Copy the contents of the distribution disks to the new MCP Software folder.
It takes just a couple of minutes to copy all files from the MCP distribution disks.

Installing MCP software 2-5

ety

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Important

Because of naming conventions required by MR-DOS, do not change the names
of any of the files or folders copled from the distribution disks. Of course, you can
create your own names for the hard disk and first-level folder to which you copy
the MCP files and folders.

< Note. The MR-DOS folder and Apple IPC folder must be at same level within the
new folder you just created, because certain items within the Apple IPC file use data
inthe include files in the MR-DOS folder.

Installing the Apple IPC driver

Now that the files and folders for the MCP software are installed on your hard disk, you
will need to install the Apple IPC driver into the System Folder on the Macintosh II.
Here are the steps that you should follow:

1. Select the Apple IPC folder within the new folder you created on the
Macintosh II desktop.

2. Within the Apple IPC folder, open the Examples folder and select the Apple
IPC file. '

3. Copy the Apple IPC file into the System Folder of the Macintosh II.

» Note: You can copy the file in one step by holding down the Option key while
dragging the Apple IPC file into the System Folder.

4. Reboot the Macintosh II.

The Apple IPC driver is loaded into the system heap during system startup by an
INIT31 resource within the Apple IPC file. -

Running a sample program

This section describes how to run a sample program that shows the features and
functions of the MR-DOS operating system on the MCP card.

To execute this exercise, you must first run MPW. To do so:
1. Open the MPW folder.

You can open the folder either by selecting it, then selecting Open from the File
menu, or by double-clicking the MPW folder icon.

2-6 Gefting Started

2. Run MPW by double-clicking on the application called MPW Shell.
An MPW worksheet appears, similar to that shown in Figure 2-2.

SCREEN SHOT

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 2-2
MPW window

Selecting files for the sample exercise

Now you must select the appropriate files to use for the exercise. To do so, first open
the folders in which they are located. Follow these steps:

1. Choose Set Directory... from the Directory menu.
A dialog box appears similar to that shown in Figure 2-3.

¢ Note: The contents of this dialog box will vary depending on the contents of your
hard disk.

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

SCREEN SHOT

Figure 2-3
Select Current Directory window
The box beneath the directory title shows all the items in that folder.

2. Locate and open the folder named MCP Software that you created earlier in
this chapter.

To open the folder, select the file name, then click Open. You can also open
folders and files by double-clicking on the name of the folder you want.

3. Open the folder named MR-DOS.
4. Open the folder named Examples.

Running a sample program

2-7

~

" & File Edit Find Mark Window Directory Build

New Baby:MPW:Worksheet =ie)ee———————————-11=
Figure 2-2
MPY Shell KJ
g\ " & File Edit Find Mark Window Directory Build
P New Baby:MPW:Worksheet
Figure 2-3

l ("select Current Directory:)

¥ < New Baby

O Diagnostics

O HYPERCARD
— MCP software m
O Misc Applications
O MPW B
0O system fFolder

GetFileName K]

]
H

MCP Developer’'s Guide - Final to Production } ' Apple Contidential

5. Select the folder named MCP.
6. Click the Directory button.

To verify the directory (folder) in which you are working, type the MPW command
directory and press Enter. To continue the example in this chapter, you should
see the following lines on the screen:

directory
'New Baby:MCP Software:MR-DOS:Examples:MCP:'

where: directory isthe command you entered

'New Baby:MCP Software:MR-DOS:Examples:MCP:' Iisthe pathname
to the folder

% Note: Your screen will display the pathname and name of the hard disk you are
using instead of the text shown in this example.

To see the name of the files in the MCP Examples folder, type the MPW command
files andpress Enter. You should see the following list of all files in the MCP
Examples folders. :

files

Download
dumpcard
echo.c.o
L3MMSVP.a.o
L3MMSVP.c.0
L3MMSVPClient.c.o
map
name_tester.c.o
osmain.c.o
ossccint.a.o
pr_manager.c.o
printf.c.o

start

timeIt.c.o

timer tester.c.o
trace_manager.c.o
xref

2-8 Getting Started

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

For this exercise, you will use the files named download and start. The
download file contains an MPW tool that loads code from MR-DOS to the card; the
start file is sample code that runs on the smart card. (Refer to Part II for more detailed
information on the download tool.)

Downloading files to the card

To download the file, enter both the command name and the name of the sample file,
as follows:

download start

The start file is now running with the MR-DOS operating system on the MCP smart
card in your Macintosh II. Until you verify that the program is running by using the
process described in the next section, you will not see any activity on the screen.

Verifying the sample exercise

Using an MPW tool provided on the MCP distribution disk called the print manager
(pr_manager), you can verify that
O the card is running the sample program and file

O communication processes between the card and Macintosh are functioning
correctly

The print manager is also designed to run on a card that has an SCC for printingto a
terminal (such as an AST-ICP card).

To verify that the program is running, follow these steps:

1. In the MCP Software folder, find the folder named Apple IPC, then tre
folder named Examples.

Follow the steps listed for “Selecting Files for the Sample Exercise,” given earlier in
this chapter.

2. Verify the directory using the MPW command directory.
You should see the following text displayed on the screen:

directory
'New Baby:MCP Software:Apple IPC:Examples:'’

3. Verify the files in that folder using the MPW command files.
You should see the following listing on the screen:

Running a sample program 2-9

MCP Developer’s Guide - Final to Production

files
:AST_ICP:
:DumpTrace:
:MCP:

'Apple IPC'
‘Apple IPC.r'
echo.c
echo_example
echoglobals.a
Makefile
name_tester
name_tester.c
pr_manager
pr_manager.c
RSM_File.c
RSM_tester.c
TestR
TestR.c
timeit
timeIt.c
trace_monitor.c
TraceMonitor

Notice the file for the print manager (named pr_manager).
3. To view the activity of the card, type pr_manager and press Enter.

You'll see messages similar to the following on the screen; for example, the Task
Identifier (TID) numbers would be different for different slots.

2-10 Getting Started

Apple Confidential

2/20/89

MCP Developer’'s Guide - Final to Production

pr_manager
Print Manager
Starting Main
TID = b00000a

TID = 4
Loop
- echo tid = b000005

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FB0706AC, ID = FB002476

TID = b000008 - From: 0364, To: B000008, mCode = =-32666, mStatus
TID = b00000c - RAM test @$fb064898 passed.

TID = b00000c - Testing Slot B

TID = b000008 - About to send msg = FB0706AC, ID = FB0029AC

TID = b000008 - To: 0464, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FB0708F0, ID = FBO029AC

TID = b000008 - From: 0464, To: B000008, mCode = -32666, mStatus
TID = b000008 - About to send msg = FB070638, ID = FB00239BC

TID = b000008 - To: 0564, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FB0708F0, ID = FBO029BC

TID = b000008 - From: 0564, To: B000008, mCode = -32666, mStatus
TID = b000008 - About to send msg = FB0706AC, ID = FB0029D1

TID = b000008 - To: 0664, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FB0708F0, ID = FB0029D1

TID = b000008 - From: 0664, To: B000008, mCode = -32666, mStatus
TID = b000008 - About to send msg = FB07087C, ID = FB0029E1l

TID = b000008 - To: 0764, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b000008 - Received msg = FB0708F0, ID = FBOO29El

TID = b000008 - From: 0764, To: B000008, mCode = -32666, mStatus
TID = b000008 - About to send msg = FB070638, ID = FBOO29FS

TID = b000008 - To: 0864, mCode = 102, mDataSize = 1144

TID = b000008 - Sent message, waiting for reply ----

TID = b00000c - RAM test @$£fb064dl8 passed.

TID = b000008 - Received msg = FB0708F0, ID = FBOO29F5S

where: pr_manager is the command you entered

Print Manager isthe name of the program that started running
under MR-DOS

TID=4 is the Task Identifier (TID) assigned to that task by MR-DOS
b0000n isatask (Note that there are several tasks running at the same time.)

These messages originate on the MCP card. This activity not only shows that MCP is
functioning correctly, but also displays that multitasking activities are taking place.

Apple Confidential

2/20/89

-32768

-32768

-32768

-32768

-32768

Running a sample program 2-11

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The program continues to execute. To stop the activity, press the Command-period
key combination. MPW stops the program and displays the following message on the
screen:

CloseQueue Called
MPW Shell - pr_manager aborted.

You can direct this output as you would do anything else in MPW, such as saving it to a
temporary file for printing later.

Where do you go from here?

Now that you've been through a sample exercise, it is time to work on your own
applications. Part II, “Software Development”, provides information on software
development using MR-DOS and Apple IPC; Part III, *Hardware Development”,
provides information on hardware development; and Part IV, “MCP Diagnostics”,
provides information on customizing development diagnostics.

2-12 Getting Started

Part I

Software Development

Part II, Software Development, provides

o an introduction to and an overview of
MR-DOS and Apple IPC
a definitions of operating system

primitives, utilities, and managers for
MR-DOS and Apple IPC, along with
examples in both assembly language
and C

O information on how to use the
operating system

o an exercise to modify standard MCP
files to build an application program

o programming guidelines and notes
for MR-DOS, with program listings for
selected examples

a a troubleshooting section for crashes

and hangs with either MR-DOS or
Apple IPC

Chapter 3

Intfroduction to the MCP
Software Interface

MCP Developer’s Guide - Final to Production Apple Confidential

Software for the Macintosh Coprocessor Platform includes MR-DOS, Apple IPC, and
support software (development tools, include files, and examples). This software was
created to take advantage of the common design features of the MCP card by
providing 2 common software environment.

Some of the specific concerns you may have in developing your own application may
include how to:

O create a MR-DOS or Apple IPC application; refer to Chapter 8

O create interrupt handlers; refer to Chapter 9

O send data directly to another card; refer to Chapter 5

This chapter describes the components of MCP software in greater detail.

What is MR-DOS?

MR-DOS (Minimal, Real-time, Distributed Operating System) is a multitasking
operating system for smart card devices, such as the MCP card, and provides an
intelligent peripheral-controller interface to NuBus.

MR-DOS is a kernel operating system that operates in supervisor mode (sometimes
referred to as server mode). The basic part of the kemel is as small as possible, with
the fewest functions necessary to do real work. The design philosophy of the
operating system is to not get in the way of what most people want to do; MR-DOS
makes minimal assumptions about how things operate. MR-DOS provides basic
support services to tasks through system calls (primitives) and library routines
(utilities).

MR-DOS primitives

A primitive is a MR-DOS system call that provides fundamental services; it is part of
the operating system kernel. You must use these services to start and stop tasks, get
and free memory, get and free message buffers, send and receive messages, change
the scheduling parameters of a task, and set the hardware-interrupt priority level.
Refer to Chapter 4 for more detailed information on MR-DOS primitives.

3-2 Introduction to the MCP Software Interface

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

MR-DOS utilities

A utility is the library code needed to make the functional call interface between the
kemel and other code providing higher-level services (such as the MR-DOS managers
or code you develop for other tasks). The utilities allow you to move data, manage
buffers, obtain the operating environment, translate NuBus addresses, and register
and look up task names through the Name Manager. Refer to Chapter 5 for more
information on MR-DOS utilities.

MR-DOS managers

Managers are tasks that carry out higher-level services on behalf of other tasks. MR-
DOS managers extend the kernel to provide services that are not in the kernel, but are
useful for all users of the MR-DOS operating system.

Managers exist on top of the kernel . Because code for the managers is provided on
the MCP distribution disk, you can incorporate desired functions into the application
program you develop using appropriate calls. Both managers and application code
for tasks that you develop operate in user mode (sometimes referred to as client
mode). ’

Figure 3-1 shows the relationship between the MR-DOS kernel, primitives, utilities,
and managers.

MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 3-1
Structure of MR-DOS

Figure 3-2 illustrates the flow of information between MR-DOS and these managers on
an MCP card.

What Is MR-DOS?

3-3

Supervision mode

R
-

.~ ®

. .®
. .
- .
o
.

Message interface

User mode

s
.
S
.

Systez= trap interface

Fig.3-1 -COMP (L3)
MCP Developer’s Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Hlustrator 88

GEORGE M. VRANA

MCP Developer’s Guide - Final to Production

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 3-2
Flow of Information between MR-DOS and managers

This section provides a brief description for each of the MR-DOS managers (refer to
Chapter 6 for more detailed information):

Echo Manager

InterCard Communications Manager
Name Manager

Print Manager

Remote System Manager

Timer Manager and Timer Library
Trace Manager

O 00 o0o0oagao

Echo Manager

The Echo Manager retumns each message it receives to the sender. You can use the
Echo Manager primarily during the early stages of development for

O sending test messages
O determining the time required for a round-trip message response

InterCard Communications Manager (ICCM)

The InterCard Communications Manager (ICCM) is responsible for sending and
receiving all messages between smart cards installed in the same machine. MR-DOS
delivers any messages addressed off-card to Apple IPC or ICCM. ICCM forwards the
message to a peer ICCM on the destination smart card for delivery. ICCM also allows
tasks to request information about other cards; namely, the tasks ask for information
about the existence of a smart card in a given slot and the task identifier of its Name
Manager.

3-4 Intfroduction to the MCP Software Interface

Apple Confidential

2/20/89

MCP card

NuBus interface
User task Macintosh I main logic board
Cther Name
tasks Manager 1ccH User application
X X N
MR-DOS Name Other
manager | | processes
X X :
-Lx-m&nu-m!‘ Other
Apple IPC driver drivers
User task Macintosh O
Other Name
tasks Manager e
M N l |
RO
MR-DOS =xcm Path that a message may take

Second MCP card

Fig.3-2-COMP (L4)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
lllustrator 88

GEORGE M. VRANA

MCP Developer’s Guide - Final to Production Apple Confidential

Name Manager

The Name Manager allows user programs to find the task IDs of other user programs,
given the names of those programs.

To provide these naming services, the Name Manager allows tasks to
O register and unregister their own name with the Name Manager

O look up the task identifier of named tasks

O look up the name of a task corresponding to a given task identifier

O become visible to other tasks on the same card and, optionally, to tasks on the
Macintosh II or other smart cards

The Name Manager supports searching for names using wildcard characters; the Name
Manager also provides for notifying tasks of the loss of communication with a smart
card or the termination of a task.

The Name Manager operates with a single message loop: for each message it receives,
it performs the service specified in the message code. The Name Manager handles
errors by indicating the failure status in the message sent back to the requesting task.

Print Manager

The Print Manager is a diagnostic tool that allows you to put print statements in your
program and get the output printed on a display. The display can be output either on
the Macintosh II or out to a serial port.

Remote System Manager (RSM)

The Remote System Manager (RSM) provides a mechanism for supporting dynamic
downloading of tasks to another smart card in the same machine. RSM provides two
types of services:

O getting and freeing memory

O starting and stopping tasks

RSM operates with a single message loop; for each message it receives, it performs the
service specified in the message code. For each kind of request message, RSM on the
remote (destination) card executes the applicable MR-DOS primitive on behalf of the

requesting task. RSM handles errors by indicating the failure status in the message sent
back to the requesting task.

What Is MR-DOS?

2/20/89

3-5

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Timer Library and Timer Manager

The timer library allows user programs to receive “wake-up” calls and activates timing,
cancels timing, sets timing, and so forth. Use the timer library when you want to use
periodic timers, for high-performance timers, and when you want to cancel a timer
reliably when an event occurs.

The timer library is available in the file os.o on the MCP distribution disk. The
timer library provides three types of timing services to tasks:

O time-event notification

O time-event query

O time-event cancellation

The user task can request two types of time events:

O one-shot, in which only one time-event notification message is sent

O periodic, in which time-event notifications are sent at specified intervals

The Timer Manager is provided with this version of the MR-DOS software for historical
purposes.

Trace Manager

The Trace Manager provides a way to dynamically trace all the message exchanges in
the operating system. The Trace Manager can be an extremely useful debugging
facility; when all else fails, you can trace messages and slow the process down in order
to see things you could not see before. The Trace Manager traces everything except
itself: every message that is sent is put ina log file.

Caution

A limitation of using the Trace Manager is that it alters time where a program is
concerned, and therefore may affect the operation of a task If fiming is a factor,
Therefore, some operations work while others do not when the Trace Manager s
running.

For example, the Trace Manager may Impact programs that control high-speed
1/O devices. Because messages are fraced, they may not return fast enough to
activate the device, or the timing may be altered. This results In errors that are
fime-dependent.

3-6 Introduction to the MCP Software Interface

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

What is Apple IPC?

Apple IPC (InterProcess Communication) is a combination of a driver and support
software found in the Apple IPC file in the Apple IPC folder on the MCP distribution
disk.

Apple IPC provides message-passing and naming services for communications from
the Macintosh II to other tasks on the Macintosh I and to tasks on smart cards.
Interprocess communication is accomplished through messages that are fixed-size but
flexibly formatted. (Apple IPC is similar to the InterCard Communications Manager
on MR-DOS.)

%+ Note: This document refers to processes on the Macintosh II, and zasks under MR-
DOS and Apple IPC.

An application that uses Apple IPC must have an initial call to OpenQueue to
establish its use of Apple IPC. Messages are sent and received via the Send and
Receive calls, much like tasks under MR-DOS. Several source-language examples of
applications are provided in the Apple IPC folder on the MCP distribution disk. Refer

to Chapter 9 for a more detailed description of the services provided by Apple IPC.

Apple IPC driver

Apple IPC services are handled by the Apple IPC driver, which handles all message-
passing between processes on the Macintosh Il operating system and MR-DOS tasks on
the smart card over the NuBus. Using calls to the Apple IPC drive, the Macintosh II
process sends messages to and receives messages from tasks on the smart card
processes and on the Macintosh II. In addition, Apple IPC allows communication
between two or more processes running on the same Macintosh I main logic board.

The Apple IPC file is placed in the System Folder; routines contained in the file are
installed by the INIT31 mechanism during system startup. (Refer to Chapter 2,
“Getting Started,” for installation instructions.)

During initialization, the driver sets up a communication area, and then searches
NuBus slots for the ICCM communication areas of smart cards installed in the
Macintosh II, much as the MR-DOS ICCM does. For each valid ICCM communication
area found, the driver stores the address of the Apple IPC communication area in a
vector in the ICCM's communication area.

Periodically, Apple IPC scans for Receive operations that have timed out,
incoming messages, active slots that have timed out, and outgoing messages. The
driver receives messages from and delivers messages to the Macintosh II processes.

What is Apple IPC? 3-7

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Apple IPC library

The interface between a Macintosh application and the Apple IPC driver is made
through the object routines, or glue code, in the Apple IPC library. These routines
provide for opening and closing the message queue to the driver, getting and freeing
message buffers, and sending and receiving messages.

In addition, the Apple IPC library provides access to many of the same utilities as
provided by MR-DOS, such as moving data, obtaining the operating environment,
and registering and looking up task names through the Apple IPC Name Manager.
These routines are located in the file Apple IPCIPCGlue.o on the MCP distribution
disks. (All of these routines use the C calling sequence.)

Apple IPC managers

The managers for Apple IPC are the Echo Manager and the Name Manager. These
Apple IPC managers perform functions identical to and have the same message
interface as those of their MR-DOS counterparts; minor differences are due to the
slightly different interface to Apple [PC.

The Apple IPC managers are processes that carry out higher-level services on behalf of
applications on the Macintosh IT computer. These managers are often referred to as
slot 0 managers, and the Macintosh itself is sometimes referred to as the slot 0
card.

% Note: The slot 0 card is not to be confused with the Slot Manager in the Macintosh I
(part of the Macintosh operating system).

3-8 Introduction to the MCP Software Interface

Functions of MCP software

The operation of MCP software is described in terms of the following functions:
O using messages for interprocess communication

O using the client/server relationship as a mechanism for data transfer

O using task scheduling in the MR-DOS multitasking environment

O managing memory under MR-DOS

Using messages for interprocess communication

Messages are the fundamental means for communication between tasks for MR-DOS
and Apple IPC. Message structures are allocated from and returned to a special area of
memory dedicated to holding messages. Intracard messaging is accomplished
through the operating-system kerel; intercard messaging is handled by ICCM.

Message structures

A message is a fixed-length data structure that is sent between tasks. Some of the
fields in 2 message include

O adestination address, which is the identifier of the task to which the message is
directed

a source address, which is the identifier of the task that sent the message
a message code specified by the user
three long words of data for the receiver

three long words of data that should be returned untouched by the receiver ina
response

a pointer to a data buffer
the size of the data buffer
a message identifier (ID)

O o oo

the message priority

O oo aao

the message status

Functions of MCP software

MCP Developer’'s Guide - Final to Production

Some of the fields in a message structure in C are:

long
short
short
unsigned
tid type
tid_type
unsigned
unsigned
long

char

short

long
long

mId;
mCode:;
mStatus;
mPriority;
mFrom;
mTo;
mSData (3]
mOData[3]:;
mDataSize;

*mDataPtzr;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Message
Message
Message
Message
Message
Message

Apple Confidential 2/20/89

ID */

code */

return status */
priority */
source */
destination */

Sender’s private data */
Sender's shared data */

Size of

data buffer */

in bytes */

Address

of data */

Figure 3-3 illustrates the fields contained in fixed-length messages for MR-DOS and

Apple IPC.

MSC NNNN
ART: NN x 17 pi

20.5 pi text to FN b/b

Figure 3-3

Fixed-length message structure

Table 3-1 describes some of the fields in the message structure and provides a brief

description of each.

% Note: Always use the message structure as defined inthe includes file.

3-10 Introduction to the MCP Software Interface

I mid E
— mCode —
— mStatus —
— mFrom]
S
Tt
— mSData —_—
_— —
= om
_— mDataSize]
— mDataPte —

Fig.3-3 -COMP (LS)

MCP Developer’s Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Hlustrator 88

GEORGE M. VRANA

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Table 3-1

Structure for fixed-length messages

Field Name Field Size Description/Usage

mId long a statistically-unique, 32-bit number to identify

the message, used when a message is obtained
from MR-DOS or the Apple IPC driver by way of a
GetMsg () request

mCode short a 16-bit message code understood only
by the sender and receiver of a message

By convention, aneven mCode is a request
message, and an odd mCode is a reply message.
You can find examples of this convention in the

files :MR-DOS:includes:managers.a and
:MR-DOS:includes:managers.h. For example, the
ICCM request code ICC_GETCARDS (150) is
even; the ICCM reply code

ICC_GETCARDS+1 (151) isodd. The Name
Manager request code NM_REG_TASK (100) s
even; the Name Manager reply code
NM_REG_TASK+1 isodd.

The MR-DOS operating system, the Apple IPC

driver, the managers (Name Manager, ICCM, and
others) set the high bit of the mCode in a message

if the mCode is not recognized or the message is
undeliverable. The file managers.a andthefile
managers.h inthe folder :MR-DOS: includes:
list the mCodes known by MR-DOS, the Apple IPC
driver, and the managers.

mStatus short 1 16-bit status code, with the upper 8 bits of mStatus
designated as a MR-DOS system status code and the
lower 8 bits of mStatus designated as a user status
code. The mStatus values used by MR-DOS, Apple
IPC, and the managers are found in the files
managers.a and managers.h inthefolder
:MR-DOS:includes:.

Functions of MCP software 3-11

MCP Developer’s Guide - Final to Production

mPriority unsigned

short
mF rom long
mTo long
mSData 3 long words

For any message that is undeliverable, MR-DOS and
Apple IPC change the entire mStatus wordtoa
value of $8000. If a message withmStatus already
set to $8000 is found to be undeliverable, MR-DOS
and Apple IPC discard the message.

a 16-bit ﬁnsigned word representing the priority of
the message (0 is the lowest priority).

a source address (the task that sent the message)

By convention, mF rom is the TaskID (TID) of the
task sending the message. MR-DOS automatically

fills inthe mFrom field to that of the current TID.
when a message is obtainedbya GetMsg ()

request. A task receiving a message should swap the
mFrom and mTo fields before sending a message
in reply.

To declare the TID number, use tid_type
TYPEDEF described later in this chapter. Do not
assume anything about the format of fields in the
TID. For example, the slot number may not always
appear in the same location of the TID.

a destination address (the task to which the message
is directed)

The mTo field is the TaskID (TID) of the task to
which you want to send a message. This field must
be filled in before doinga Send request.

To declare the TID number, use tid_type
TYPEDEF . Do not assume anything about the
format of fields in the TID. For example, the slot
number may not always appear in the same location
of the TID.

12 bytes of data defined by the sender, associated
with the message, that should be returned
untouched by the receiver in a response. This field
contains internal context information meaningful
only to the requesting task.

3-12 Introduction to the MCP Software Interface

Apple Confidential

2/20/89

MCP Developer’s Guide - Final to Production

mOData

mDataSize

mDataPtr

3 long words

long

long

Apple Confidential

By convention within MR-DOS, a task receiving a
Request message copies the three mSData words
from the requesttothe mSData words of the reply
message. The task receiving the request should not
otherwise manipulate this mSData.

12 bytes of data defined by the receiver, associated
with the message.

By convention, these 3 long words are meant to be
used between the requesting task and the replying
task for passing information.

the size of an associated data buffer pointed to by
mDataPt r. Thissize is in 8-bit bytes.

a pointer to an associated data buffer. MR-DOS
assumes that this pointer is the address of the
associated data buffer as seen from the Macintosh II
NuBus.

For example, suppose there is an associated data
buffer on a card in slot C at address 1234; the
mDataPt r should have the value FC001234, which
is the NuBus address.

Messages are obtained bya Receive request in the following order:

1. The message must fit any match criteria that was specified onthe Receive

request.

2. The highest mPriority message fitting the match criteria is obtained.

«»Note: 1f two or more messages fitting the match criteria have the highest
mPriority, the first one received and queued for the task is obtained (as in a
First-In/First-Out, or FIFO, queue).

Functions of MCP software

2/20/89

3-13

prny

MCP Developer’s Guide - Final o Production Apple Confidential 2/20/89

Mechanisms for data transfer

Data is transferred between tasks by one of three mechanisms: in the message code, in
three long words in the message, or in a data buffer. A task may use all three
mechanisms simultaneously when sending a message. Here is a description of these
three mechanisms:

O the message code

Through bilateral agreement between cooperating processes, the message code
alone may convey the entire meaning of the message.

O three long words in the message

The second mechanism allows a task to pass three long words of data in the message
(mOData (0], mOData[l], and mOData [2]) whose meaning is specified by
the receiving task (refer to the Timer Manager on the MCP distribution disk for an

example).

In addition, the task may pass another three long words of data in the message
(mSData (0], mSData[l], and mSData [2]) that the receiver returns
untouched. The mSData long words are private to the sending task; these words
are not altered by the receiving task and should be returned to the requesting task
unchanged. This feature allows tasks to pass context and other information, such as
return addresses for processing, for the task’s private use within the messaging
mechanism.

< Note: This is a convention; it is not enforced by the MR-DOS operating system.
O adata buffer

The third mechanism involves passing a data buffer address and its size (that is, the
length in bytes) in the message to the receiving process for it to use. The address of
the buffer is placed in mDataPtr, and the size of the buffer is placed in
mDataSize.

In an environment that includes intercard communications, mDataPtr could be
pointing to an off-card buffer. The MCP card supports 32-bit accesses; however,

with some other smart cards, all reads and writes to off-card buffers from a 32-bit

CPU must be made with 16-bit accesses or less (for example, accessing the NuBus

using the AST-ICP card).

In addition, the buffer address must be mapped to a local address with the function
MapNuBus, described in Chapter 12. MapNuBus sets up any required latch
registers on hardware that requires it, such as on 68000-based cards, and returns the
local address to be used for the access. The operating system automatically saves
and restores the address mapping for each task.

Message and status codes

Table 3-2 lists message and status codes, with a brief description.

3-14 Introduction to the MCP Software Interface

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Table 3-2

Message and status codes

Field Size Description/Comments
mCode 16-bit message code field

 use an even number to request services
¢ use an odd number for replies

mStatus 16-bit message status field
e use the upper 8 bits for passing operating system
status
o use the lower 8 bits used passing user status

Thereply mCode to a request for service is the original mCode, plus 1.

The Receive system call uses message code 0 to indicate a match of any value.
Therefore, you should not use message code 0 inthe mCode field, as the field cannot
be explicitly matched. By convention, the message code 0xFFFF (-1) is not used.

When a message cannot be delivered, the operating system changes the message code
and message status as follows:

O the message code bit 1<<15 is set (mCode | 0x8000)

O the message status is assigned a value of 0x8000

If the operating system is unable to return the message to the sender (that is, if the

sender has stopped or does not exist), the operating system frees the message but not
any buffer associated with the message (pointed to by mDataPtr).

A task that receives a message it does not recognize must check if (mCode & 0x8000) is
true (bit 1 << 15 s set).

O Iftrue, the message should be released via FreeMsg (). Any buffer associated with
the message must not be released. This requirement ensures that messages will not
loop and shared buffers are not freed.

O Iffalse, mCode should be modified by setting bit 1<< 15 (mCode | 0x8000). The
message status, mStatus, shouldbesetto OS_UNKNOWN_MESSAGE. The task
should then return the message to the sender.

Functions of MCP software 3-15

e,

The client/server relationship

The life of a typical message buffer begins in the message buffer pool. This message
buffer pool is available to any task that may request a message buffer from the system.

When a task sends a message, i either utilizes a message buffer it owns (usually the
message buffer it just received) or requests a message buffer from the system using a
GetMsg () call. After filling the message with required addressing information and
data, the task sends the message to its destination witha Send system call. The
sending task has then lost rights to the message buffer, and it should not read from or
write into the message buffer (or otherwise use the message buffer).

Upon receipt, the destination task either re-utilizes the message buffer for an outgoing
message, o returns it to the message buffer pool usinga FreeMsg () call.

Figure 34 illustrates the normal sequence of actions between dlients and servers. This
sequence is similar for clients and servers that run either on the MCP card under MR-
DOS or on a Macintosh I using the Apple IPC driver. The client can be on a different
slot than the server; that is, one could be on one MCP card, and the other could be on
a different MCP card or slot 0 (the Macintosh II, for example).

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 3-4
Client/server relationship

Clients and servers running on a smart card under MR-DOS

This section provides an example of a client and server running on a smart card under
MR-DOS. You can find the source code for this example in the folder

:MR-DOS: Examples. The client is a timing test found in the timeit.c fie;the
server is the Echo Manager (similar to the echo example found inthe echo.c file).
(Seethe file MakeFile inthe folder :MR-DOS:Examples for making the echo.c
and timeit .c examples.)

Both tasks are started within osmain, the main program, during MR-DOS
initialization. The server first uses the subroutine Register Task toregisterits
name so that clients can find it. The server then enters its main loop and issues a
Receive request, waiting for messages from clients.

Functions of MCP software

3-15

Typical dient/server transaction

Client task

Fig.3-4(L6)

MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Hlustrator 88

GEORGE M. VRANA

Server task

g

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

A client locates the server it wants to communicate with, using Lookup_Task o
obtain the TID of the server. The client next obtains a message buffer, stores the TID
of the server intothe mTo field of the message buffer, sets the desired mCode
request in the message buffer, and usesthe Send request to send the message buffer
to the server. Next, the clientissuesa Receive to wait for a reply from the server.

The server receives the message, takes any action that is required of it, swaps the

contents of the mFrom and mTo fields of the message, sets an appropriate mCode
reply in the message buffer, and usesthe Send request to send the message buffer to

the client. The server next issuesa Receive request to wait for another message

from a client.

The client receives the reply from the server and takes appropriate action.

Figure 3-5 illustrates this process for program modules containing MR-DOS running
on the MCP card.

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 3-5
Client/server relationship for MR-DOS program modules

Clients and servers running on the Macintosh Il using Apple IPC

The sequence of actions needed for clients and servers running on the Macintosh II
using Apple IPC is similar to that described above. This section also describes some
of the differences between an application program running on the Macintosh IT and
program modules running under MR-DOS on the MCP card.

A server and client process using the Apple IPC driver on the Macintosh 11 is different
from a server and client process running under MR-DOS due to the differences
between MR-DOS and the Macintosh II operating system; that is, MR-DOS is a
multitasking operating system, and the Macintosh II operating system assumes that
there is a single application.

The source code for the example discussed in this section is found in the file
MakeFile in folder :MR-DOS:Apple IPC:Examples, as follows:

O For the dlient, source code for a timing example, found inthe timeit.c file
(Timeit is an MPW tool)

O For the server, source code for the Echo Manager can be found inthe os.o fie

The Echo Manager is started during INIT31 resource processing.

3-16 Introduction to the MCP Software Interface

NuBus card - to - NuBus card

Y

Y

MR-DOS on
Client task MCP card Server task
Initialize Initialize
CT_tid = GetTID ()
ST_tid = GetTID ()
NM_tid = GetNameTID ()
ok = Register Task ("Example”,
NM _tid == 0 ? "Server®™, FALSE)
ST_tid = Lookup_Task ("Example”, ok == 0 2
"Server”, NM_tid, &index) .
ST_tid == 0 2
Remove
msg = GetMsg () Message
from
msg == 0 ? Pool
mid = msg->mId
Formulate Request
msg->mTo = ST_tid
msg=>mFrom = CT_tid
msg->mCode = code
send (msg) Forward msg = Receive (OS_MATCH_ALL,
Message OS_MATCH_ALL, OS_MATCH_ALL,
0S_NO_TIMEOUT)
Perform Service
Formulate Response
msg->mTo = msg->mFrom
msg->mFrom = ST_tid
msg->mCode++
msg = Receive (mid, Forward Send (msqg)
OS_MATCH_ALL, OS_MATCH_ALL, Message
0S_NO_TIMEOUT)
Process Response
Done ?
Add
FreeMsg (msg) Message
to
Pool

A

A

Fig.3-5 (L7)
MCP Developer's Guide

Apple Computer, Inc.

JOYCE ZAVARRO
lllustrator 88
GEORGE M. VRANA

i,

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

A server or client running under MR-DOS automatically has a TID associated with it; a
server or client using the Apple IPC driver on the Macintosh II must first make itself
known to the driver by issuingan OpenQueue () request. The OpenQueue ()
request makes the task known to the driver and assigns the requesting task a TID. The
server in this example registers its name with the Name Manager as it did under MR-

DOS so that clients can find it.

Under MR-DOS, both the server and the client can issue a blocking Receive
request. MR-DOS has separate stacks for each task and saves each task’s registers when
switching between tasks. Using Apple IPC on the Macintosh II, only one process at a

time (either the server or the client) can issue a blocking Receive request. Since the
Macintosh II operating system assumes that there is a single application, it will not
switch to another application while one application is waiting for something to finish.

Using the Apple IPC driver on the Macintosh I, the Receive request hasan extra
parameter. This parameter is the address of a completion routine to be called when
the Apple IPC driver receives a message that satisfiesthe Receive request. Atask
not using a completion routine to receive messages and not blocking must periodically
issue a nonblocking Receive request to determine if there are any messages for it.

The server issuesa Receive request with a completion routine specified. The code
following the Receive request exits the server; effectively, the server is no longer
running. The server becomes a dangling piece of code tucked away in memory, called
by the Apple IPC driver when the driver receives a message satisfying its Receive
request.

% Note. The echo.c file hasno AS references within it. An assembly language
routine is used to access echo.c globals.

The client locates the server it wants to communicate with, using Lookup_Task o
obtain the TID of the server. The client next obtains a message buffer, sets the TID of

the server into the mTo field of the message buffer, sets the desired mCode request in

the message buffer, and usesthe Send request to send the message to the server. The
client then issuesa Receive request to wait for a reply from the server.

The Apple IPC driver calls the server at the server’s completion routine address,
passing the message to the server. The server takes any action required of i, swaps the
contents of the mFrom and mTo fields of the message, sets an appropriate mCode
reply in the message buffer, and usesthe Send request to send the message buffer to
the client. The server must be careful in what it does in the completion routine, since
the completion routine may be called from an interrupt.

The client receives the reply from the server and takes appropriate action. The client
then issuesa CloseQueue request to notify the Apple IPC driver that the client is
finished talking to the [PC driver.

Functions of MCP software 3-17

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Figure 3-6 illustrates the process between the client/server relationship for
applications using the Apple IPC driver. The first Receive request in the completion
routine processes all messages in the queue. When there are no more messages, the
second Receive request specifies a completion routine so that the completion routine
will be called when there is ancther message.

€ Note: Two Receive requests are specified so that the stack will not be overrun.

MSC NNNN
ART: NN x 17 pi
20.5 pl text to FN b/b

Figure 3-6
The client/server relationship for applications using the Apple IPC driver

Using task scheduling in a multitasking environment
This section discusses the elements of task scheduling in 2 multitasking environment.

A task is a message-driven transaction processor that runs on the MCP card. The
behavior of a task depends on the messages it receives.

Tasks includethe 1dle Task; managers such as the ICCM, Name Manager, Print
Manager, Remote System Manager, Timer Manager, Trace Manager; and any
developer-written tasks.

Task ldentitiers

Tasks are known by and referred to MR-DOS by task identifiers. These identifiers are
for internal use and are automatically assigned by MR-DOS when it starts a task .

Modes in which tasks run

There are two modes in which tasks run:
O Run-to-block mode (also referred to as block mode)
O Slice mode

In run-to-block mode, a task has control of the CPU until the task explicitly releases it,
either by changing its scheduling parameters (usinga Reschedule call), or by
waiting to receive a message (usinga Receive call) or by using a MR-DOS library
routine that waits for a response to a message (print £, Lookup_Task, and so
forth). The purpose of run-to-block mode is to guarantee uninterrupted use of the
CPU to tasks that need it; an example of a place where you should use run-to-block
mode is in critical sections of code.

3-18 Introduction to the MCP Software Interface

Macintosh II to Macintosh I

Client task Applke IPC Server task
Initialize Initialize
E ok = OpenQueue (0) ok = OpenQueue ()
ok == 0 2 ok == 0 2
CT_tid = GetTID () ok = Register_Task ("Example”,
"Server”, FALSE)
NM_tid = GetNameTID ()
ok == 0 ?
NM_tid == 0 ?
Receive (OS_MATCH_ALL,
= ST_tid = Lookup_Task ("Example®, OS_MATCH_ALL, OS_MATCH_ALL,
"Server”, NM_tid, &index) 0S_NO_TIMEOUT, completion)
ST_tid == 0 ?
Remove
msg = GetMsg () -¢ Message
from
msg == 0 ? Pool
mid = msg->mId
P Formulate Request Completion routine
msg->mTo = ST_tid
msg->mFrom = CT_tid
msg->mCode = code completion (msg)
Send (msgq) o Forward
Message
Perform Service
ST_tid = GetTID ()
Formulate Response
msg->mTo = msg->afFrom
msg->mFrom = ST_tid
msg->mCode++
msg = Receive (mid, - Forward |- Send (msg)
OS_MATCH_ALL, OS_MATCH_ALL, Message
0S_NO_TIMEOUT, 0) msg = Receive (CS_MATCH_ALL,
OS_MATCH_ALL, CS_MATCH_ALL,
-1, 0)
Process Response
msg > 0 ?
Done ? Add Recelve (OS_MATCH_ALL,
P Message OS_MATCH_ALL, OS_MATCH_ALL,
FreeMsg (msg) to OS_NO_TIMEOUT, completion)
- Pool
CloseQueue ()
Fig.3-6 (L8)
MCP Developer's Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Hlustrator 88

GEORGE M. VRANA

MCP Developer’'s Guide - Final o Production Apple Confidential

¢ Note: Do not confuse run-to-block mode with the blocking receive operation in
which a message is awaited. The name “run-to-block” captures the idea that the task
holds onto the processor until it performs a blocking receive. A blocked task is
one that waits for a message, having performed a blocking Receive.

In slice mode, the task can be time-sliced; that }s, the operating system temporarily
suspends execution of the task to allow tasks of equal or higher priority to run.

A task can change its running mode as necessary by using the MR-DOS primitive
Reschedule ().

Timer services

You can schedule tasks using timer services provided on the MCP distribution disk.
For timer services and message reception done with a timeout, time is specified in
major ticks. A major tick is the smallest time unit recognized by tasks in the operating
system, This value is specified in all blocking Rece i ve and timing operations.

Warning

All code segments that have been installed in the Tick chain run when a major
clock tick is detected by the operating system. These segments are executed
even If the curmrent task is in run-to-block mode. Refer to Chapter 7 for more
Information about the Tick chain.

Task scheduling

Tasks are scheduled in round-robin fashion in each priority ring. There are 32
priorities, ranging from O (lowest) to 31 (highest). The operating system scans the
priority table, beginning at the highest priority, for a task that is eligible to run. Tasks
with the same priority are scheduled on a first-come, first-served basis. Over time,
this scheduling allows all tasks in a priority ring to be given an equal opportunity to
execute. Tasks of equal priority therefore share the processor.

A task of higher priority can indefinitely keep a lower priority task from executing, but
in common practice, a task always does a blocking Receive that permits lower priority
tasks to execute. Obviously, priorities of tasks must be chosen carefully, so that the
most critical tasks have the highest priorities. A task may change its scheduling mode
byusinga Reschedule call.

Scheduling decisions are made at every major tick of the system clock.

O If the current task is in slice mode, it can be preempted; that is, another task with a
higher priority can take precedence over the task running in slice mode. If a high-
priority task is available (not blocked), that task will be scheduled before the lower-
priority task running in slice mode.

O If the current task is in run-to-block mode, it is always allowed to continue.

Functions of MCP software

2/20/89

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Task initialization

During initialization, a task performs whatever functions may be necessary for its
execution. Every task has different needs, but typical functions include

O setting its scheduling mode as necessary

O getting its own task identifier

O waiting for other required tasks to begin

O registering its name with the Name Manager

The choice of scheduling mode depends on the function the task performs:

O Slice mode is used for tasks that are pre-emptible. Time-slicing of such processes
permits other tasks to share the CPU.

O Run-o-block mode is for tasks that, because of time constraints or the need to be
protected during critical sections of code, cannot give up the CPU for other tasks.

% Note: Tasks can take exclusive control of the CPU only in situations where other
tasks do not need to execute; if other tasks are ever to execute, the task must change
its scheduling mode orperform a blocking receive to free the CPU.

In response to its needs, a task can change its scheduling mode as it executes.

MR-DOS always creates one task during its initialization; that task is the Idle task. The
Idle task is one that increments a counter, calls the Idle Chain, and issues the
Reschedule primitive to allow tasks to run. The Idle task runs in block mode, and is
given the lowest priority (priority 0). When no other task is eligible for execution on

the processor, MR-DOS schedules the Idle task. Code segments can be run when MR-
DOS is idle by installing them in the Idle Chain (refer to Chapter 7 for more
information). ’

Warning

The Idle task must always be eligible for execution. The system halts if it can find
no tasks to schedule; hence a StopTask should not be performed on the Idle task.

Task execution

The bulk of a task is 2 message loop in which a message is waited for, received, and
processed. Actually, a message is both waited for and received through the Receive
primitive.

Task termination

If a task must terminate, it notifies the operating systemviaa StopTask call.
StartTask initializes a task such that, if the main routine returns,a StopTask is
automatically issued.

3-20 Introduction to the MCP Software Interface

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Memory management

A distinction is made between using general-purpose memory and using message
buffers to increase performance of the MR-DOS operating system.

For general-purpose memory, the available pool of memory is initialized as the last

address in which the operating-system code is loaded, up to the system stack area that
occupies the last cOSStack bytes of RAM. The system stack occupies the last portion

of RAM and is of a size you specify. Therefore, the amount of memory available in the

pool depends on the sizes of the code and data space. You can allocate and free
general-purpose memory to tasks using the GetMem and FreeMem calls, described
in Chapter 4.

For message buffers, during initialization the operating system sets aside a block of
memory large enough to hold a maximum number of messages that you specified.

This block of memory is then linked together to form the free list of messages.

Messages can be quickly allocated and released from this list. You specify the number

of messages allocated to the operating system inthe callto osinit () in main<().

Functions of MCP software 3-21

Chapter 4

MR-DOS Primitives

MCP Developer’'s Guide - Final to Production

This chapter describes the operating-system primitives used for MR-DOS. A primitive
is similar to a system call, in that a primitive provides fundamental services from the
operating system. Primitives are invoked as hardware traps and thus operate in
supervisor mode.

Table 4-1 lists the primitives provided by MR-DOS operating system and gives a brief
description of each.

Apple Contfidential

Table 4-1

MR-DOS primitives

Name Description

FreeMem() Frees a block of memory
FreeMsg () Frees a message buffer
GetMem() Allocates a block of memory
GetMsg () Allocates 2 message buffer
Receive () Receives a message
Reschedule () Reschedules a task for a later time
Send () Sends a message

Spl() Sets the hardware-priority level
StartTask() Initiates a task

StopTask () Stops a task

These primitives are calls that are made for a variety of processes in the MR-DOS.
Some primitives are used in main (), the program that executes before anything else
starts. You can modify main () for whatever application you are doing.

% Note: MR-DOS uses C calling conventions, and all registers are preserved except
DO, D1, A0,and Al. The assembly-language macros also adhere to these
conventions.

Operating system primitives

This section describes each of the operating system primitives and provides examples
of how to call primitives from both C and assembler. Both types of calls take
arguments and use similar data structures.

4-2 MR-DOS Primitives

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

FreeMem()

FreeMem () frees a block of memory that was acquired earlier bya callto GetMem().
MR-DOS decrements the usage count associated with the buffer. If the resulting usage

count is zero, the memory is returned to the free pool; if the usage count is non-zero,

the memory is not released.

The C declaration of FreeMem () is

void FreeMem(ptr)

char *ptr; /* pointer to memory buffer to free */
The form for the FreeMem macro is as follows, where P1 is the address of the
memory block to be freed:

[Label] FreeMem Pl

P1 can be specified as a register (AO-A6, DO0-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

Caution

In most cases, MR-DOS will execute an illegal instruction if an aftempt Is made to
free a memory buffer that has not been allocated by MR-DOS.

FreeMsg()
FreeMsg () frees a message buffer that was acquired earlier by a callto GetMsg().

The operating system distinguishes between messages and memory in order to speed
up the acquisition and disposal of messages. The number of messages initially
available depends upon the number requested in the call to osinit () from
main () .

The C declarationof FreeMsg () is

void FreeMsg(mptr)

message *mptr; /* pointer to message buffer to free */
The form for the FreeMsg macro is as follows, where P1 is the address of the message
buffer to be freed:

[Label] FreeMsg Pl

P1 can be specified as a register (A0-A6, D0-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

Q

Operating system primitives 4

3

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Caution

In most cases, MR-DOS will execute an lllegal instruction if an attempt is made to

free a message after it has been sent and when a message buffer that has not
been allocated by MR-DOS is freed using FreeMsg().

GetMem()

GetMem () requests a block of memory from the free memory pool. The size of the
free memory pool size depends upon the size of the program or code space loaded
. and the amount of memory installed on the card.

GetMem() retumns either a pointer to the allocated block of memory or zero. A call to
FreeMem() releasesthe memory. The returned message block is initialized to 0 by
GetMem () if the number of bytes requested is greater than 0; otherwise, the memory is
not initialized. For example, GetMem (~10) returns a pointer to a block of 10 bytes.
GetMem (10) returns a pointer to a block of 10 bytes that have been initialized to zero.
The usage count associated with the buffer is set to 1. (See MR-DOS library routines
GetUCount and IncUCount inChapter5.)

The C declaration of GetMem () is

char *GetMem(size)

long size; /* size of block to allocate */
The form for the GetMem macro is as follows, where P1 is the size of the memory
block to be allocated:

[Label] GetMem Pl

P1 can be specified as a register (A0~A6, DO~D7), or an immediate value (#<abs
expr>), or can use any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word holding the desired block size. The address of the allocated
block is returnedin DO unless the block could not be allocated, in which case 0 is
returned in DO.

GetMsg(

GetMsg () requests a message buffer from the free message pool. GetMsg () either
returns a pointer to the allocated message or zero. A callto FreeMsg () releases the
message.

4-4 MR-DOS Primitives

MCP Developer’s Guide - Final to Production Apple Confidential

MR-DOS clears all fields in the message, except Message ID and From address, before
the pointer to the message is returned. Message ID (mID) is set to a number that is
statistically unique to the field. From address (mF rom) is set to the current task
identifier.

The C declaration of GetMsg () is
message *GetMsg ()

The form for the GetMsg macro is
[Label] GetMsg

The address of the allocated message buffer is retuned in DO unless no buffer was
available. In that case, 0 is returned in DO.

Receive()

Receive () retums the highest priority message from the task’s message queue that
matches the specified criteria. Like the Reschedule primitive, Receive may be
used to enable the CPU to run other tasks. Unlke Reschedule, Receive allows
tasks of lower priority to run.

The C declaration of Receive () is

message *Receive (mID, mFrom, mCode, timeout)

unsigned long mID; /* Unique message ID to wait on
tid_type mFrom; /* Sender address to wait on
unsigned short mCode:; /* Message code to wait on
long timeout; /* Time to wait in major ticks

/* before giving up

The first three criteria (mID, mFrom, and mCode) may be set to match either a
specific value (by specifying the value), or to match any value (by specifying the
symbol OS_MATCH_ALL), or to no value (by specifying the symbol
OS_MATCH_NONE).

The timeout parameter in major ticks takes one of the three values described here:

O A value of timeout < 0 requests a nonblocking Receive. A nonblocking
Receive returns control immediately to the task, regardless of whether a message
matching the criteria was found or not. If no message was found, zero is returned.

Any negative value can be used.

a A value of timeout = 0 requests a blocking Receive withnotimeout. This
Receive returns control only when a message matching the criteria is found.

O A value of timeout > 0 requests a blocking Receive withatimeout. This
Receive returns when either the timeout parameter expires or a message
matching the criteria is received, whichever occurs first. A timeout retumns zero.

*/

*/
*/
*/

Operating system primitives

2/20/89

*/

4-5

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The form for the Receive macro is as follows, where P1 is the message ID match
code, P2 isthe sender address match code, P3 is the message code match code,
and P4 is the timeout code:

[Label] Receive Pl1, P2, P3, P4

P1 through P4 can each be specified as a register (A0-A6, D0-D7) or an immediate
(#<abs-expr>) or it can use any 68000 addressing mode valid in an LEA instruction to
specify the location of a long word containing the desired value. The address of the
returned message buffer is returned in DO unless no message was available. In that
case, 0 is returned in DO.

The following example shows how touse the Receive primitive in your code
segment 10 delay a task for five seconds:

Receive (OS_MATCH_NONE, OS_MATCH_NONE, OS_MATCH_NONE,
5*GetTickPS()) ;

The Receive criteria for message ID, sender’s address, and message code must
never be satisfied in order to delay for a specified period of time, After every five
seconds, MR-DOS causes the task to be eligible for execution. To implement a delay,
youcanusea Receive with matching criteria that can match no message.

Important

Take care using the mCode selector iIn Receive requests. The operating
system will set bit 15 of mCode (mCode | Ox8000) when a message cannot be
dellvered. If g task does a Receive and waits on mCode, Receive will never
see its message criteria matched If the message Is undeliverable; hence the
program will never get what it's waiting for. It's better to wait on mID, because
the operating system does not change this field.

Reschedule()

The Reschedule () primitive is used to give tasks of the same or higher priority a
chance to run before scheduling the task that issues the Reschedule call
Reschedule () never causes tasks of lower priority to run.

Reschedule () selects the operating mode of the task, which can be any one of the
options listed in Table 4-2. Block mode differs from slice mode only in that the task

will not give up the CPU until the task is explicitly blocked by Receive () or executes
another callto Reschedule().

4-6 MR-DOS Primitives

MCP Developer’s Guide - Final lo Production Apple Confidential

Table 4-2

Reschedule options

Option New scheduling Schedule a higher-or equal priority task
mode before returning to the task that issued

the Reschedule request?

0S_SLICE_MCDE Slice Yes
0S_BLOCK_MODE Block Yes
0S_SLICE_IMMED Slice No
0S_BLOCK_IMMED Block No
OS_RTN_MODE Does not change Yes
OS_RTN_IMMED Does not change No

OS_SLICE_MODE changes the scheduling mode of the task to time-slice scheduling,
and allows any higher-priority or equal-priority task to execute before this task
executes again.

OS_BLOCK_MODE changes the scheduling mode of the task to run-to-block scheduling
mode, and allows any higher-priority or equal-priority task to execute before this task
executes again.

OS_SLICE_IMMED changes the scheduling mode of the task to time-slice scheduling
mode, and continues execution of this task until the next time-slice interval, when
normal task scheduling occurs.

OS_BLOCK_IMMED changes the scheduling mode of the task to run-to-block mode,
and continues execution of this task until the task blocks itself by doing another
Reschedule orablocking Receive request.

OS_RTN_MODE returns the current scheduling mode of the task without changing the
schedulmg mode, and allows any higher-priority or equal-priority task to execute
before this task executes again.

OS_RTN_IMMED retums the current scheduling mode of the task, and continues
execution of the current task without attempting to schedule any other higher-priority
or equal-priority task.

The C declaration of Reschedule() is

short Reschedule (mode)
short mode ; /* Scheduling mode */

Reschedule returns the previous scheduling mode.

Operating system primitives

2/20/89

4-7

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The form for the Reschedule macrois as follows, where P1 specifies the new
operating mode of the task:

[Label] Resched Pl

P1 can be specified as a register (A0~A6, DO ~D7), an immediate value (#<abs-
expr>), or use any 68000 addressing mode valid in an LEA instruction to specify the
location of a long word containing the desired operating mode. The previous
scheduling mode is returned in DO.

Reschedule may be useful when combined with a nonblocking Receive request
to give other tasks a chance to run, as shown in the following example.

This example describes how to use Reschedule for two tasks implementing two different
layers of the X.25 protocol. Suppose one task implements X.25 Level 2; the other task
implements X.25 Level 3. In this example, both tasks execute with the same scheduling
priority. The Level 2 task is operating in block scheduling mode; the Level 3 task is
operating in either time slice or block scheduling mode and should not depend on
what the Level 2 layer is doing.

Accordingly, a portion of the Level 2 task might look like the following:

{
message *m;

m = Receive (OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, -1);
/* See if data present from Level 3 */
Send (m) ; /* Send data to Level 3 task */

if (m == 0) /* If nothing from Level 3 yet */
{
Reschedule (0OS_BLOCK_MODE) ; /* Let Level 3 task execute */
m = Receive (OS_MATCH_ALL, OS_MATCH_ALL, OS_MATCH_ALL, -1);
/* Try to get data from Level 3 */
}

/* Three cases exist:
* 1. No information was available; m = 0
* 2. Information was previously available from Level 3 before we
* did the Send; m = address of message
* 3. Level 3 task had enough time to provide information after
* we did the send; m = address of message
*/

4-8 MR-DOS Primitives

MCP Developer’s Guide - Final to Production Apple Confidential

if (m != 0)

{
/* If Level 3 task has information to be sent, */
/* send I frame message with information. */

/* If Level 3 did not have information to be sent, */
/* send RR frame. */

The Level 2 task gives up the CPU by way of the Reschedule request in order to allow
the Level 3 task to execute. In the case of an X.25 implementation, this could allow
Level 2 acknowledgements to be piggy-backed with data from Level 3.

Send()

Send () places a message on the task’s queue specified by the message field, mTo.
The message is placed in the queue in priority order (from highest to lowest).

Caution

In most cases, MR-DOS executes an lllegal Instruction if an attempt Is made to
send a message that Is not available to a task for sending. For example, do not
send the same maessage twice: also, do not send a message and then free |t.

The C declaration of Send () is

void Send(mptr)
message *mptr; /* pointer to message buffer */

If a message is undeliverable, it will be returned to the sender with the message status
(mStatus) set to 0x8000 and the message code (mCode) having bit 15 set.

< Note: Send () assumes that all fields have been filled in (mFrom, mTo, mCode,
and so forth) when this call is made.

The form for the Send macro is as follows, where P1 s the address of the message
buffer to be sent: -

[{Label] Send Pl

P 1 can be specified as a register (A0-A6, DO~D7) or use any 68000 addressing mode
valid in an LEA instruction to specify the location containing the address of the
message buffer to be sent.

Operating system primitives

2/20/89

4-9

SplO

Programmers modify the status register to temporarily disable interrupts; MR-DOS
provides the Spl () system call to allow user-mode tasks to set the hardware interrupt-
priority level.

Tasks are always executed in the 68000's user mode, while interrupt routines and
main () are executed in supervisor mode. This process is important because some
68000 instructions cannot be executed in user mode (such as any instruction that
explicitly modifies the status register).

While a task is running with an elevated (non-zero) interrupt priority, it temporarily
behaves as if it is in run-to-block mode.

Warning

Depending upon the elevated priority, Interrupt handlers may still execute.

In addition, if the task calls Receive and blocks with an elevated priority level, the
priority level of the hardware is changed to the priority level of the next task that MR-
DOS schedules. Therefore, you should not call Receive with an elevated priority
level.

Spl () expectsan integer from 0 to 7, and returns the previous priority as an integer
from 0 to 7 (0 is the lowest interrupt priority and 7 is the highest interrupt priority).

The C declaration of Spl () is

short Spl(npr)
short npr; /* New interrupt priority */
The form for the SIL macro is as follows, where P1 specifies the new interrupt priority

Owo?):
[Label] SIL P1l; not Spl

Caution

The name of the macro is SIL, not the 48000 instruction Spl to avold any conflict
with the 68000 Instruction.

P1 can be specified as a register (AO~A6, DO-D7), an immediate value (#<abs-
expr>), o can use any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word containing the desired interrupt priority level. The
previous interrupt priority level is reuned in DO.

4-10 MR-DOS Primitives

MCP Developer’s Guide - Final to Production

Apple Confidential 2/20/89

StartTask ()

StartTask () isusedto create a task and make it eligible for execution.
StartTask () returns either the task identifier of the created task, or 0 if the task
could not be created. The new task is initially started in slice mode.

The C declaration of StartTask () is

tid_type StartTask(STpb)
struct ST_PB *STpb;

The format of the parameter block referenced by *STpb is shown next.

struct ST _PB
{

char *CodeSegment ; /* memory region on card for code */
char *DataSegment; /* memory region on card for */

/* global data */
char *StartParmSegment; /* memory region on card for */

/* start parameters */
struct ST_Registers InitRegs; /* initial register set for */

/* starting task */
long stack; /* initial stack size (in bytes) */
long heap; /* initial heap size (in bytes) */
short return_code; /* error code if task not started */

/* (Tid = 0) */
unsigned char priority: /* priority of task */

tid type ParentTID; /* TID of Parent on Network/Host */
bi
struct ST_Registers
{
long D_Registers ([81]; /* DO - D7 */
long A_Registers [8]; /* A0 - A7 Note: A7 not used */
long PC; /* Program Counter */

Operating-system primitives 4-11

MCP Developer’s Guide - Final fo Production) Apple Confidential 2/20/89

These parameters include the following:

O priority, which is the scheduling priority at which the task will run. There is
currently no way to change this priority once a task is created. Priority 0 is the
lowest; priority 31 is the highest.

O stack, which is the size of the task’s stack in bytes. There is no way to change this
size after executionof StartTask ().

O heap, which is the amount of heap storage in bytes that the task will need to start up.
Using heap prevents tasks from coming up and not being able to run due to lack of
memory. The pointer to this storage is accessible via GetHeap ().

O ParentTID, the task ID of the task that is designated as the parent of the running
task; use GetTID () toobtain the TID to be used for the parent TID.

The parameter block contains pointers to up to three memory segments that must have
been previously allocated by callsto GetMem ().

Inall cases, CodeSegment and DataSegment must be zero if the task being started
was linked into the operating system.

If the task was not linked into the operating system, you must issuea GetMem () oran
RSMGetMem() request to reserve the space for the code segment. The
CodeSegment parameter must be set to the value retumed by GetMem (). Ifthe task
was linked to the operating system, set the CodeSegment parameter to zero.

A GetMem request must be issued to reserve space forthe DataSegment, if the
DataSegment ispresent. The DataSegment must be setto the value returned by
GetMem(), orzeroifthe DataSegment isnot present.

If there are parameters,a GetMem request must be issued to get memory for the
StartParmSegment. StartParmSegment issetto zero if there are no start
parameters to pass to the task; otherwise, the StartParmSegment must be settothe
value retuned by GetMem().

The registers hold the initial values of the registers when the task is started. The value
specified for Register A7 is not used; the value is replaced by the pointer to the stack
when the task is started. The program counter contains the absolute address of the start
code,.

The task is initially started in slice mode. If the task was not started (if it returns 0), the
return code specifies the reason, as shown here:

STE_NO_ERRORS /* The start task functions */
/* successfully */
STE_NO_TCB /* No room in task table or */

/* no memory available for stack */
/* or heap */

4-12 MR-DOS Primitives

MCP Developer’'s Guide - Final to Production Apple Confidential

Warning

FreeMem() must not be called by your application to release the memory
dllocated for CodeSegment, DataSegment, oOf StartParmSegment,because
releasing memory is done automatically by StopTask (). Refer to the section
later in this chapter on StopTask () for more information.

The form forthe StartTask macroisas follows, where P1 is the address of a
StartTask parameter block:

[Label] StartTask Pl

P1 can be specified as a register (A0 -A6, DO-D7), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an LEA instruction to specify the location of a

long word containing the address of the parameter block. The task ID of the started

task is returned in DO unless the task could not be started, in which case 0 is returned

in DO.

To start a task on a different smart card that is also running MR-DOS, send a message
to the Remote System Manager on the other card to reserve memory for the task;
download the task to the card; then send messages to the Remote System Manager to
start executing the task.

StopTask()

StopTask () kills a currently executing task. StopTask () is automatically called to
kill the task when the task fails or returns from the task’s main ().

If the task was started withany CodeSegment, DataSegment,or
StartParmSegment, StopTask () calls FreeMem() to release each memory
buffer.

The C declarationof StopTask () is

void StopTask(tid)

tid type tid; /* Task ID to kill */
The form forthe StopTask macro is as follows, where P1 specifies the task ID of
the task to stop:

[Label] StopTask Pl

P1 can be specified as a register (A0-A6, DO=D7) oras an immediate value (#<abs-
expr>) or it can use any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word containing the desired task ID.

Operating-system primitives

2/20/89

4-13

MCP Developer’s Guide - Final to Production Apple Confidential

The task identifier specified must not be that of the idle task (TID = (), and it must be a
task running on the requester’s card.

% Note:Ifatask calls StopTask () and specifies its own task identifier, the task will
kill itself and stop your program. To stop a task on a different smart card that is also
running MR-DOS, send a message to the Remote System Manager on the other
card.

Warning

If one task stops another task, that task being stopped will not have the
opportunity to release any message buffers that It Is currently processing.

4-14 MR-DOS Primitives

2/20/89

Chapter 5

MR-DOS Utilities

MCP Developer’s Guide - Final to Production

This chapter describes the operating system utilities available with MR-DOS. A utility
is a library code segment linked with your application. Table 5-1 lists the MR-DOS
utilities, and provides a brief description of each.

Apple Confidential

Table 5-1

MR-DOS utilities

Name Description

BlockMove () Copies a block of data from the source address to the destination

CopyNuBus ()

Date2Secs ()

GetBSize ()
GetCard()

GetDateTime ()

GetETick()

GetgCommon ()
GetHeap ()
GetICCTID ()

GetNameTID ()
GetStParms ()
GetTCB ()
GetTickPS ()
GetTID()
GetTimerTID ()
GetTraceTID ()
GetUCount ()
IncUCount ()
IsLocal(()

address on the same card

Copies a block of data from the source address to the destination
address between on-card and off-card buffers

Calculates and returns the number of seconds given a specific
date and time

Returns the size of a memory buffer in bytes

Returns the NuBus slot number of the card on which the calling
process or task is running

Returns the number of seconds between midnight, January 1,
1904, and the time that the function was called

Retuns the number of major ticks since the operating system
started

Returns the address of the gCommon operating system data area
Retumns the address of the heap area allocated to the task

Returns the task identifier of the InterCard Communication
Manager

Returns the task identifier of the Name Manager

Retumns the address of the calling task’s Start Parameters
Returns the address of the calling task’s Task Control Block
Returns the number of major ticks in 1 second

Returns the task identifier of the calling task

Returns the task identifier of the Timer Manager

Returns the task identifier of the Trace Manager

Returns the usage count associated with the buffer

Returns the incremented usage count of the buffer

Returns an indication of whether or not an address is local

5-2 MR-DOS Utilities

2/20/89

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

MR-DOS utilities (continued)

Name Description

Lookup_Task () Returns the task identifier of the task that matches the Object
Name and the Type Name specified

MapNuBus () Translates a pointer that may contain a global address

(NuBus address) to a local pointer
Register_Task() Registers a task with the Object Name and the Type Name

specified

Secs2Date () Calculates and returns the corresponding date and time
record, given a number of seconds

SwapTID () Swapsthe mFrom and mTo fields in a message buffer

ToNuBus () Translates a local pointer to a global address (NuBus
address)

TraceReg () Registers the current task as the Trace Manager

A description of utilities

This section describes each of the operating system utilities and provides examples of
“the C declarations for each utility. This section also describes the assembler macros;
these macros have a one-to-one relationship to the calls and require the same number
of parameters. MR-DOS uses C calling conventions, and all registers are preserved
except DO, D1, AO, and Al. MR-DOS macros adhere to this convention.

» Note: The routines MapNuBus and ToNuBus are hardware dependent. Code
written in C that uses these calls may not be portable. Code written in Assembler
that makes calls to MapNuBus and ToNuBus will 7ot be portable.

Three date- and time-related routines are provided with MR-DOS; the calling

sequences and structures for these routines are defined inthe fle os.h inthe folder
:MR-DOS: includes :. These routines are identical to the routines

GetDateTime (), Date2Secs(), and Secs2Date () withinthe Macintosh II
operating system.

A description of utllities 5-3

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

BlockMove()

BlockMove () doesa simple move of bytes from the source to the destination,
without checking for overlapping source and destination addresses. The number of
bytes is specified in count. The source and destination addresses must both be on
the same card, otherwise use CopyNuBus ().

Caution

Overlapping the source and destination blocks could cause partial overwriting of
the destination block.

The C declaration for BlockMove () is

'void BlockMove (source, destination, count)

char *source;
char *destination;
unsigned short count;

The following example shows how to call BlockMove in assembly language.
MOVE.L #Count, - (A7)

PEA Destination
PEA Source
JSR BlockMove

ADD.L #12,47

CopyNuBus()

CopyNuBus () copies a block of data from the source to the destination across the
NuBus, without checking for overlapping source and destination addresses. The
source address, destination address, or both may be main memory of the Macintosh
IT or memory on a smart card. The number of bytes is specified in count. The file
:Apple IPC:Examples:pr_manager.c contains a sample program that uses
CopyNuBus.

Caution

This routine deals with the complexity of potential 32-bit NuBus addresses for the
source, the destination, or both, but does not deal with the possibility of
overlapping buffers. Therefore, overlapping the source and destination blocks
could cause partial overwriting of the destination block.

5-4 MR-DOS Utilities

MCP Developer’s Guide - Final to Production

The C declaration for CopyNuBus () is
void CopyNuBus (source, destination, count)

char *source;

Apple Confidential

/* Address of source buffer */

char *destination; /* Address of destination buffer */

unsigned short count; /* Byte count */

The following example shows how to call CopyNuBus in assembly language:

MOVE.L #Count, - (A7)

PEA Destination

PEA Source

JSR CopyNuBus

ADD.L #12,A7
Date2Secs()

Date2Secs () takes the given date/time record, converts it to the corresponding
number of seconds elapsed since midnight, January 1, 1904, and returns the result in
the secs parameter.

The C declaration for Date2Secs () is

pascal void Date2Secs (Date, secs)
DateTimeRec Date;
long *secs;
extern;

The following example program shows how to use all three date/time utilities.

#include "os.h"

main ()

{
unsigned long secs;
DateTimeRec dtrec;
unsigned long newsecs;

GetDateTime (&secs) ;
Secs2Date (secs, &dtrec);
Date2Secs (dtrec, &newsecs):;

printf (" Date = %d/%d/%d, Time = %d:%d:%d\n"
dtrec.year, dtrec.month, dtrec.day,

4

dtrec.hour, dtrec.minute, dtrec.second):;

printf ("Secs = %4,
secs, dtrec.dayOfWeek, newsecs);

Day of week = %d, New secs = %d\n",

A description of utllities

2/20/89

5-5

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The following example shows howtocall Date2Secs inassembly language:

PEA Date ; Address of Date/time record
PEA secs ; Address for result
JSR Date2Secs

GetBSize()

The inputto GetBSize () isa pointer to a memory data buffer. The pointer was
obainedbyacallto GetMem (). Theoutput ffom GetBSize () is either the size of
the buffer in bytes or 0, Each buffer has an associated buffer header that is not

included in the value retumed by GetBSize ().

GetBSize () accepts 0 as input and returns 0 as output. GetBSize () does not check
the input pointer for validity. The C declaration for GetBSize () is

unsigned long GetBSize (buffer)
char *buffer; /*pointer to buffer */

The following example shows howto call GetBSize inassembly language:

; buffer pointer in A4

MOVE.L A4,- (A7) ; move buffer address onto stack
JSR GetBSize ; get the buffer size

ADD.L #4,A7- ; pop the stack

TST.L DO ; DO has the size

BEQ.S XXX ; bad buffer

» Note: If a pointer to the buffer is givento GetBSize () which was not obtained
through the GetMem () call, the return results are not predictable.

GetCard()
GetCard() returns the NuBus slot number of the card on which the calling task is
running.
The C declaration for GetCard () is
char GetCard ():
The following example shows howtocall GetCard inassembly language:
JSR GetCard

Upon return, DO contains the slot number. For the slot number, get the value of
location gSlotNum inthe gCommon data area.

5-6 MR-DOS Utilities

e

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

GetDateTime()

GetDateTime () retumns the number of seconds between midnight, January 1, 1904,
and the time that the function was called.

The C declaration for GetDateTime () is
pascal void GetDateTime (secs)

long *secs;
extern;

The following example shows how tocall GetDateTime inassembly language:

PEA secs ; Address for result
JSR GetDateTime
Refer to the utility Date2Secs () earlier in this chapter for an example program that,
shows how to use each date/time utility.
GetETick()

GetETick () returns the number of major ticks—that is, the elapsed time in
ticks—since the operating system started.

The C declaration for GetETick () is
unsigned long GetETick ()

The following example shows how tocall GetETick inassembly language. To
return the number of major ticks, get the value of location gMajorTick inthe
gCommon data area.

JSR GetETick

Upon return, DO contains the number of major ticks since the operating system
started.

A description of utilities 5-7

MCP Developer’s Guide - Final to Production Apple Contidential

GetgCommon()

GetgCommon () returns the address of the MR-DOS operating system data area,
gCommon. Referto the include files on your distribution disk for the structure of
gCommon.

The C declaration for Get gCommon () is

struct gCommon *GetgCommon() ;

The following example shows howtocall GetgCommon in assembly language. To
returnthe gCommon address, get the value of the constant gCommon.

JSR GetgCommon
MOVE.L DO =-> A0 /* A0 contains the beginning */
/* address of the gCommon data area*/
GetHeap()

GetHeap () retumns the address of the heap area allocated to the task. If no heap area
has been allocated, GetHeap returns zero. The heap size is specified on the call to
StartTask.

The C declaration for GetHeap () is

char *GetHeap () ;
The following example shows howto call GetHeap inassembly language:

JSR GetHeap ; on return, DO has pointer to heap
TST.L DO ; check 1f heap present
BEQ.S XXX ; jump if no heap

Warning

FreeMem () must not be called by your gpplication to release the heap area
allocated, as this process Is done automatically by StopTask ().

5-8 MR-DOS Utilities

2/20/89

=N

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

GetICCTID()

Get ICCTID () returns the task identifier of the InterCard Communication Manager. If
there is no ICCM registered, Get ICCTID returns zero. The C declaration for
GetICCTID() is

tid_type GetICCTID ();

The following example shows howto call Get ICCTID inassembly language. To get
the task identifier of the InterCard Communication Manager, get the value of the
location gIccTask inthe gCommon data area.

JSR GetICCTID
Upon return, DO contains the task identifier of the ICCM.

GetNameTID()

GetNameTID () returns the task identifier of the Name Manager. The C declaration
for GetNameTID () is

tid_type GetNameTID ():

The following example shows howto call GetNameTID inassembly language. To get
the task identifier of the Name Manager, get the value of the location gNameTask in
the gCommon data area.

JSR GetNameTID
Upon return, DO contains the task identifier of the Name Manager.

GetStParms()

GetStParms () returns the address of the calling task’s Start Parameters. Ifthe
callingtask hasno StartParameter, GetStParms retums zero. The C
declaration for Get StParms () is

char *GetStParms ()

The following example shows how tocall GetStParms inassembly language:

JSR GetStParms ; on return, D0 has poiater to
; Start Parameters
TST.L DO ; check if Start Parameters present
BEQ.S XXX ; jump if no Start Parameters
A description of utilities 5-9

Warning

Your application must not call FreeMem () to release the memory allocated for
Its start parameters; this process is done automatically by StopTask ().

GetTCB()

GetTCB () returns the address of the calling task’s Task Control Block (TCB). The C
include files contain information on the TCB structure. The C declaration for
GetTCB() is

struct pTaskSave *GetTCB ()

The following example shows howto call GetTCB in assembly language. For the
address of the calling task’s Task Control Block, get the value of the location
gCurrTask inthe gCommon data area.

JSR GetTCB

GelTickPS()

GetTickPS () returns the number of major ticks in one second. The C declaration
for GetTickPS() is

unsigned short GetTickPS ();

The following example shows howto call GetTickPS inassembly language. Forthe
number of major ticks in 1 second, get the value of the location gTickPerSec inthe
gCommon data area.

JSR GetTickPS

GetTID()
Get TID () returns the task identifier of the calling task.
The C declaration for GetTID () is

tid type GetTID ()

The following example shows how tocall GetTID inassemblylanguage. For the task
identifier of the calling task, get the value of the location gTID inthe gCommon data
area.

JSR GetTID

5-10 MR-DOS Utilities

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

GeltTimerTID()

GetTimerTID () retumns the task identifier of the Timer Manager. If there is no Timer
Manager registered, GetTimer retuins zero.

The C declaration for Get TimerTID () is

tid_type GetTimerTID ();

The following example shows how tocall GetTimerTID inassembly language. For
the task identifier of the Timer Manager, get the value of the location gTimerTask
inthe gCommon data area.

JSR GetTimerTID

GetTraceTID(

GetTraceTID () retumns the task identifier of the Trace Manager. If there is no Trace
Manager registered, then GetTraceTID retums zero.

. The C declaration for GetTraceTID () is

tid_type GetTraceTID ();

The following example shows howtocall GetTraceTID inassembly language. For
the task identifier of the Trace Manager, get the value of the location gTraceTask in
the gCommon data area.

JSR GetTraceTID

A description of utilities 5-11

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

GetUCount()

GetUCount () provides information when one task is sending information to many
tasks; that is, when there are multiple tasks sharing a buffer. Get UCount () returns the
usage count associated with the buffer. The buffer must have been allocated by a call to
GetMem (). The usage count starts at 1 and increases. A return value of 0 indicates that
the pointer passed was 0.

The C declaration for GetUCount () is

unsigned char GetUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows howto call GetUCount from assembly language:

MOVE.L AQ, - (A7) ; push buffer address
JSR GetUCount ; usage count is returned in DO
ADD.L #4,A7 ; pop the stack

« Note: Ifa pointer to the buffer not obtained through the GetMem () call is givento
GetUCount () , the return results are not predictable.

IncUCount()

IncUCount () isuseful where buffers are shared between different tasks and a
mechanism is needed to ensure orderly release of the buffers. IncUCount () retums
the incremented usage count (when it has a value of 2 or greater) of the buffer, or 0. A
return value of 0 indicates that the pointer passed was 0 or that the usage count has not
been incremented because an overflow of the usage count field would have resulted.

The buffer must have been allocated witha callto GetMem () . The usage count is
decremented when the buffer is freed using FreeMem ().

The C declaration for IncUCount () is

unsigned char IncUCount (buffer)
char *buffer; /* pointer to buffer */

The following example shows howto call IncUCount in assembly language:

MOVE.L A4,- (A7) ; push buffer address
JSR IncUCount ; usage count is returned in DO
ADD.L #4,A7 ; pop the stack

< Note: Ifa pointer to the buffer not obtained through the GetMem () call is givento
IncUCount (), the return results are not predictable.

5-12 MR-DOS Utilities

e

MCP Developer’s Guide - Final to Production Apple Contidential 2/20/89

IsLocal()
IsLocal () retumns a true or false indication of whether or not an address is local.
The C declaration for IsLocal () is

short IsLocal (address)
char *address; /* address to test. */

IsLocal () returns true (non-zero) if the address passed islocal. IsLocal () retums
false (zero) if the address passed is a remote Nubus address.

The form for the IsLocal macro is as follows, where P1 is the address to examine:

[Label] IsLocal Pl

P1 canbespecifiedasa register (A0-A6,D0-D7) or an immediate (#<abs-expr>) or it
can use any 68000 addressing mode valid in an LEA instruction to specify the location
of 2 long word containing the desired value.

Lookup_Task()

Lookup_Task () retums either the task identifier of the task that matches the Object
Name and Type Name specified, or 0 if no matching task is found. The wildcard

character = is allowed. Initially, the index must be set to 0; on subsequent calls, it

should be left unchanged. Lookup_Task () modifies the variable index; this index
allows Lookup_Task () tofind any additional entries that may match the criteria in
subsequent calls.

*» Note: Lookup_Task () communicates with the Name Manager and issues a
blocking Receive; therefore, the task gives up control of the CPU during this call.

The C declaration for Lookup_Task () is

tid _type Lookup_Task (object, type, nm TID, index)
char object[];

char typell;

tid type nm TID;

unsigned short *index;

The task identifier of a Name Manager is nm_TID, and may be obtained by using
GetNameTID () or by sending the message ICC_GetCards tothe ICCM.
Lookup_Task () returns the task identifier of the first task that matches the criteria.

A description of utilities 5-13

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The following code provides an example of how to look up all tasks on the current
card:

short index ;
tid_type tid:;

index = 0 ;
while ((tid = Lookup_Task ("=", "=", GetNameTID (), &index)) > 0)
printf ("TID %x Found \015\012", tid);

The following example shows howto call LookupTask inassembly language:

MOVE.W #0, INDEX ; initialize index

PEA INDEX ; address of index
MOVE.L TID,DO ; value of tid on stack
MOVE.L D0, - (A7) ; place on stack

PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME; address of object name
JSR Lookup_Task

ADD.W #16,A7 ; pop the stack

TST.L DO ; check if found

BNE.S DO, XXX ; jump if found

MapNuBus()

MapNuBus () translates a pointer that may contain a global address (a NuBus address)
to a local pointer. This local pointer is used by the calling task to access the associated
data. MapNuBus () also sets up any address mapping hardware required for the
access.

¢ Note: The local pointer is hardware specific. See Part Il for details on the numeric
value or the bounds on the value.

MapNuBus () passes through 0 and local addresses without modifying them. You
should assume that only a single off-card mapping may be active at any given time on
each card; each call to MapNuBus () invalidates any mapping established by
previous calls to MapNuBus ().

The C declaration for MapNuBus () is

char *MapNuBus (ptr)
char *ptr;

The following example shows how tocall MapNuBus in assembly language. The
MapNuBus macro generates code in-line; only the register supplied is modified. The
address may be specified by an A register or a D register. The mapped address is
returned in the register supplied.

MapNuBus A0

5-14 MR-DOS Utllities

MCP Developer's Guide - Final to Production Apple Confidential

The file :MR-DOS:Examples:pr_manager.c contains a sample program that uses
MapNuBus.

Caution

To move data across the NuBus, use CopyNuBus () . Tasks that use
MapNuBus () must assume the responsibility for checking NuBus boundaries.
Some hardware cards, including the MCP card, have a NuBus address space
through which NuBus accesses are made. The hardware page latch that
controls this NuBus address space needs to be changed whenever address
boundaries are crossed. CopyNuBus () checks for and correctly handles these
boundaries.

Register_Task()

Register_Task () allowsa task to register itself with the object and type names
specified, using the Name Manager. The object and type names must not exceed 32
characters. If the task should be visible only to other tasks on the same card,

local_only is set non-zero. If the task should be seen by other tasks on other cards,

then local_only issetto 0. Register_Task () retums a non-zero value if the task was
registered; otherwise, 0 is returned.

$» Note: Register_Task () communicates with the Name Manager and issues a
blocking Receive; therefore, the application gives up control of the CPU during
this call.

The C declaration for Register_Task () is
typedef boolean short;

char Register_Task (object, type, local_only)
char object []:
char type (]

boolean local_only;
The following code provides an example of how to register a task:

if (!Register_ Task ("my_name", "my type", 0))
printf ("Could not Register Task"):

A description of utilitles

2/20/89

5-15

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The following example shows how to call the Register_Task routine inassembly

language:
MOVE.L #LOCAL, -(A7) ; value of local on stack
PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME ; address of object name
JSR Register_Task
ADDQ.W #12,A7 ; pop the stack
TST.B DO ; check if register ok
BNE.S OK ; jump if OK
Secs2Date()

Secs2Date () takes the number of seconds elapsed since midnight, January 1, 1904,
as specified by the seconds parameter, converts it to the corresponding date and
time, and returns the corresponding date/time record in the date parameter.

The C declaration for Secs2Date () is

pascal void Secs2Date (secs, Date)

long secs;
DateTimeRec *Date;
extern;

The following example shows howtocall Secs2Date from assembly language:

Move.L secs, -(A7) ; number of seconds
PEA Date ; Address for result -

; date/time record
JSR Secs2Date

Refer to the utility Date2Secs () earier in this chapter for an example program that
shows how to use each date/time request.

5-16 MR-DOS Utilitles

it

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

SwapTID()

SwapTID () swapsthe mFrom and mTo fields of a message buffer.
The C declaration of SwapTID () is

void SwapTID(mptr):;

message *mptr; /* pointer to message buffer */
The form for the SwapTID macro is as follows, where P1 is the address of the message
buffer:
[Label] SwapTID Pl

P1 can be specified as a register (A0-A6, DO-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

ToNuBus()

ToNuBus () translates the pointer into a format suitable for passing to processes that
may be on other cards. The pointer may contain a local address, which is translated to
a NuBus address. ToNuBus () passes through 0 and NuBus addresses without
modification.

% Note: Addresses on the MCP card are already in NuBus address form. This call is
included to provide functionality for future releases.

The C declaration for ToNuBus () is

char *ToNuBus (ptr)
char *ptr;

The following example shows how tocall ToNuBus from assembly language. The
ToNuBus macro generates code in-line; no registers are destroyed, except the
specified registers. The NuBus address may be specified by an A register or a D
register, or through any other 68000-addressing mode (other than auto-increment or
auto-decrement). The NuBus address is returned in the register or location supplied.

ToNuBus A0

A description of utllities 5-17

MCP Developer’s Guide - Final to Production

Apple Confidential

TraceReg()

TraceReg () is used to register the current task as the Trace Manager. For more
information, refer to the section on the Trace Manager in Chapter 46.

The C declaration for TraceReg () is

void TraceReg ()

The following example shows howtocall TraceReg () inassembly language:

JSR TraceReg

5-18 MR-DOS Utilities

2/20/89

Chapter 6

MR-DOS Managers

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

This chapter describes the operating system managers provided with MR-DOS. A
manager is a task that provides a set of services to other tasks; each manager is specific
t0 a certain function.

MR-DOS Managers

Table 6-1 lists the managers provided with the MR-DOS operating system and a brief

description of each.

Table 6-1

MR-DOS managers

Name Description

Echo Manager Returns messages sent to it. Useful for diagnostic
purposes, and as a mechanism to time messages
between cards or between machines

InterCard Communications Responsible for intercard message delivery and

Manager transport (sending and receiving all messages between
cards)

Name Manager Provides naming services to tasks

Print Manager Provides a means to print and to display information
and debugging messages

Remote Systems Manager Executes system calls on behalf of tasks on other cards

Timer library Provides timing services to tasks

% Note: The Timer Manager is provided in this version of the MR-DOS software for
historical purposes; it will not appear in the next version.

Trace Manager Sends copies of all messages to a Trace Monitor (if
available) for debugging purposes

Echo Manager

The Echo Manager returns each message it receives to the sender. The Echo Manager
is primarily used in the early stages of development for:

O test messaging

O determining how long the IPC takes to send a message round-trip to a card or the
Macintosh II

6-2 MR-DOS Managers

e,

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The Echo Manager operates with a single message loop. For each message it receives,
it first checks if the received message is marked as undeliverable. If so, it is a message
the Echo Manager already attempted to send the message and it is discarded. If not,
Echo Manager increments the message code, sets the message destination to the
previous source of the message, sets the message source to the TID of the Echo
Manager, and sends the message.

InterCard Communications Manager

The InterCard Communications Manager (ICCM) sends and receives all messages
between cards and provides a mechanism tasks use to find out which other cards are
configured on the NuBus.

¢ Note: Slot 0 has an implicit ICCM, since the ICCM is built into the Apple IPC driver
that is configured into the System File of the Macintosh I,

At initialization time, the ICCM on a smart card registers itself with the operating
system; the task identifier of ICCM may be found by using Get ICCTID (), described
in Chapter 5.

ICCM then attempts to discover if any other smart card installed (including slot 0) has
an ICCM running by searching the RAM of the card for the ICCM area. If it is found,
the ICCM area writes the NuBus address of its own communication area to the
corresponding ICCM. This action makes the receiving ICCM aware of the startup of a
new ICCM on the other card that it missed at its own initialization time.

ICC_GETCARDS

ICC_GETCARDS isa message code to the ICCM that allows a task to find out which
other cards are known by ICCM on the NuBus. Conditionally, ICC_GETCARDS also
allows a task to find the TID of the Name Manager on each of the configured cards.

The ICC_GETCARDS message is passed with a buffer of the size indicated in
struct ra_GetCards. Bachentry is filled in by ICCM, with the status of the card
installed in the corresponding slot and, optionally, with the TID of the Name Manzger

on that card. The buffer contains one entry per slot number.

The message parameters for ICC_GETCARDS are as follows:

mCode ICC_GETCARDS
mDataPtr Pointer to a data buffer
mDataSize Length of data buffer

InterCard Communications Manager 6-3

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Remember, the convention within MR-DOS is that an even mCode is a request and

anodd mCode isareply. Forexample, the ICCM request code

ICC_GETCARDS (150) isevenithe ICCM reply code ICC_GETCARDS+1(151) is
odd. The Name Manager request code NM_REG_TASK (100) is even; the Name

Manager reply code NM_REG_TASK+1 is odd.

The data buffer format for ICC_GETCARDS is
#define IC_MaxCards 16; /* Maximum NuBus Cards */

struct ra_GetCards
{
tid type tid [IC_maxcards];
}i
Eachentryinthe tid array corresponds to a NuBus slot number (£ id [0] isslot 0,
tid[1] isslot 1, and so on). ICCM fills in each entry with the information shown in

Table 6-2.
Table 6-2
Card status
Value of the entry Card status
<0 Either does not exist or has no functioning ICCM
=(Exists, and has an ICCM but no Name Manager
>0 Exists, and has an ICCM; this value is the Name Manager's TID

The returned TID may be used inthe mTo field of a message to send a message to the
Name Manager on the card corresponding to the entry.

Name Manager

The Name Manager performs functions similar to those of the Name Binding Protocol
(NBP) in AppleTalk. Tasks can register and unregister their names, look up the task
identifiers of named tasks, and look up the name of a task corresponding to a given task
identifier. The Name Manager allows tasks to become visible to other tasks on the same
card and, optionally, to tasks on other cards.

The messages passed to the Name Manager are listed and described in Table 6-3.

6-4 MR-DOS Managers

G,

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Table 6-3

Name Manager message codes

Name Description

NM_LOOKUP_NAME Looks up all object and type names for specified tasks

NM_LOOKUP_TID Looks up the task identifiers for specified Type Names
and Object Names

NM_N_SLOT_REQ Provides notification of communications loss

NM_N_SLOT_CAN Cancels the request for notification of
communications loss

NM_N_TASK_REQ Provides notification of task termination

NM_N_TASK_CAN Cancels the request for notification of task termination

NM_REG_TASK Registers the task name

NM_UNREG_TASK Unregisters the task name

A task has two names: a Type Name and an Object Name. Each name is a maximum of
32 characters long. (For more detailed information on Type Names and Object
Names, refer to Inside AppleTalk.)

“ Note: Any character may be used; however, the equal sign (=), a wildcard
character, should be avoided since it is not possible to match it explicitly.

The parameters in the message request to look up names, look up task identifiers, and
register tasks are passed in a buffer associated with the message. The address of the

buffer is placed in the message field mDataPt r, and the size of the buffer is placed in
the message field mDataSize. The message to unregister a task contains in the

mF rom field the task identifier of the task to unregister.

Name Manager 6-5

MCP Developer’s Guide - Final to Production Apple Confldential 2/20/89

The following structures (defined in the fle managers.h) are used when calling the

Name Manager:

struct obj_rec /* object name record */

{
utiny o_len; /* length of object name */
char o_name [NM_Obj_Size Max]: /* object name */

}:

struct typ_rec /* type name record */

{
utiny t_len; /* length of object name */

char t_name [NM _Type_Size Max]; /* type name */
}i

struct pb_register_task /* register name param block */
{

struct obj_rec rt_on; /* object name */

struct typ_rec rt_tn; /* type name */

char rt_local_vis; /* locally visible only flag */
b:
struct ra_ltid /* return area for lookup tid */
{

struct obj_rec ra_on; /* object name */

struct typ_rec ra_tn; /* type name */

tid_type ra_tid; /* task id */
}:
struct pb_lookup_tid /* lookup task id parameter block */
{

struct obj_rec ltid on; /* object name */

struct typ_rec ltid_tn; /* type name */

unsigned short 1ltid_index; /* index */

unsigned short 1ltid RAsize; /* size of return area */

struct ra_ltid ltid ra [1]:; /* return area (OUTPUT) */
}bi
struct ra_lnm /* return area for lookup name */
{

struct obj_rec ra_on; /* object name */

struct typ_rec ra_tn; /* type name */

}:

6-6 MR-DOS Managers

MCP Developer’s Guide - Final to Production Apple Confidential

struct pb_lookup_ name
{

tid_type lnm_tid; /* task id */

unsigned short lnm_index; /* index (INPUT/OUTPUT) */
unsigned short lnm RAsize; /* size of return area */
struct ra_lnm lnm ra ([1]; /* return area (CUTPUT) */

}

The Name Manager registers itself with Object Name "name manager" andType
Name "name manager”. The Name Manager is found by calling GetNameTID (),
or by sending ICCM an ICC_GETCARDS message.

Looking up tasks

You can look up tasks by the names or task identifier using two Name Manager
messages:

O NM_LOOKUP_NAME
O NM_LOCKUP_TID

NM_LOOKUP_NAME

NM_LOOKUP_NAME returns all Object Names and Type Names for the specified task
identifier, If no task identifier was found, then the size of Object Name will be set to

zero. The index parameter (in the parameter block) on the initial call must be set to

zero.

The parameter block for NM_LOOKUP_NAME is as follows:

struct pb_lookup name
{
tid_type lnm_tid: /* task id */
unsigned short lnm_index; /* index (INPUT/QUTPUT) */
unsigned short lnm RAsize; /* size of return area */
struct ra_lnm lnm ra [l]; /* return area (OUTPUT) */
}i

The return area specified will be filled with zero, or with one or more entries of the
following form:

struct ra_lnm /* return area for lookup name */
{

struct obj_rec ra_on; /* object name */

struct typ_rec ra_tn; /* type name */

}2

Name Manager

2/20/89

6-7

MCP Developer’s Guide - Final to Production Apple Confidential

The last entry plus one (entry+1) in the return area has the length of Object Name set to

zero to indicate that there are no more entries to follow. If the return area is not large

enough to hold all entries that could be returned, the index is set to a non-zero value.
Asubsequent NM_LOOKUP_NAME message must be sent to retrieve these entries, with
the value of index set to the returned value of the previous NM_LOOKUP_NAME
message.

The minimum size of the return area must be large enough to hold at least one entry
plus the size of Object Name. To return more information, increase the size enough to
hold the number of entries that the requesting task requests to process.

The parameter block for NM_LOOKUP_NAME is as follows:

struct pb_lookup_ name
{
tid_type lnm_tid; /* task id */
unsigned short lnm_index; /* index (INPUT/OUTPUT) */
unsigned short lnm_RAsize; /* size of return area */
struct ra_lnm 1lnm _ra [1]; /* return area (OUTPUT) */
b:

The message parameters for NM_LOOKUP_NAME are as follows:

mCode NM_LOOKUP_NAME
mDataPtr Address of the parameter block
mDataSize Size of the parameter block

NM_LOOKUP_TID

NM_LOOKUP_TID looks up the task identifiers of all tasks that match the Type Name
and the Object Name specified. Use the equal sign (=), a wildcard character, to match
all names. The index parameter on the initial call must be set to zero.

The parameter block for NM_LOOKUP_TID is as follows:

2/20/89

struct pb_lookup_tid /* lookup task id parameter block */

{
struct obj_rec 1ltid_on; /* object name */
struct typ_rec ltid_tn; /* type name */
unsigned short ltid_index; '/* index */
unsigned short ltid RAsize; /* size of return area */
struct ra_ltid 1ltid ra [1]; /* return area (QUTPUT)*/
bi

6-8 MR-DOS Managers

o

MCP Developer’s Guide - Final to Production Apple Confidential

The retum area specified will be filled with zero or with one or more entries of the

form:
struct ra_ltid /* return area for lookup tid */
{

struct obj_rec ra_on; /* object name */

struct typ_rec ra_tn; /* type name */

tid_type ra_tid; /* task id */

}i

The last entry plus one (entry+1) in the return area has the length of Object Name set to
zero to indicate that there are no more entries to follow. If the retumn area is not large
enough to hold all entries that could be returned, MR-DOS sets the index to a non-

zero value. You must make a subsequent NM_LOOKUP_TID message (o retrieve these
entries with the value of index set to the returned value of the previous
NM_LOOKUP_TID message.

The return area must be large enough to hold at least one entry, plus the size of Object
Name. For more information to be retumed, the size should be increased to hold the
number of entries that the requesting task attempts to process.

The message parameters for NM_LOOKUP_TID are as follows:

mCode NM_LOOKUP_TID
mDataPtr Address of the parameter block
mDataSize Size of the parameter block

Notification of Communications Loss

A task can request that the Name Manager notify it when a card in a slot changes its
communications status. The Name Manager immediately replies to the request,
indicating whether the card in the slot is up or down. The card is defined to be up if
MR-DOS is running on that card. The Name Manager continues to notify the task
whenever the status of the card in the slot changes until the task either

O stops running, or

O issues a request to the Name Manager to cancel notification of communications
status for that card slot

Name Manager

2/20/89

NM_N_SLOT_REQ

The notification of communications loss request must be sent to the Name Manager on
the card where the requesting task is running. The message parameters for Notification
of Communications Loss are as follows:

mCode NM_N_SLOT_REQ
mOData[0] Card slot number. Slots are numbered from
0x00 through 0x0f.

» Note: The Macintosh II currently supports slot 0, as well as slots 0x09 through Ox0e.
The reply parameters for Notification of Communications Loss are as follows:

mCode NM _N_SLOT_REQ+1
mStatus NM_NO_ERRORS if the card in the slot is up
NM_SLOT_NOT_UP if the card in the slot is down
NM_N_SLOT_CAN
The message parameters for Canceling Notification of Communications Loss are as
follows: :
mCode NM N_SLOT_CAN

mOData[0] Card slot number. Slots are numbered from 0x09
through 0x0e.

*» Note: The Macintosh II currently supports slot 0, as well as slots 0x09 through 0x0e;
the value -1 specifies all slots.

The reply parameters for Canceling Notification of Communications Loss are as

follows:
mCode NM N_SLOT_CAN+1
mStatus NM_NO_ERRORS Request processed.

NM_NO_ENTRY_ FOUND The task has no communications
loss requests.

Notification of Task Termination

A local task can request that a remote Name Manager notify it when a task on the Name
Manager’s card terminates. The Name Manager immediately replies to the request,
indicating whether the remote task is currently running or not. The remote task is
considered to be terminating if it stops or if it issuesan NM_UNREG_TASK request.

% Note: The Name Manager must be running on the slots of both the remote task and
the local task.

6-10 - MR-DOS Managers

it

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

NM_N_TASK_REQ

The message parameters for Notification of Task Termination are as follows:

mEFrom TID

mCode NM _N_TASK_REQ
mOData (0] TID

Task Identifier of the requesting or
local task

Task Identifier of the remote task
to monitor

The reply parameters for Notification of Task Termination are as follows:

mCode NM_N_TASK_REQ+1

mStatus NM_NO_ERRORS
NM_TASK_NOT_EXIST
NM_NAME_NOT_REG

NM_N_TASK_CAN

if the remote task is currently running
if the remote task is not running

if there is no Name Manager on the card
where the local task is running

The message parameters for Canceling Notification of Task Termination are as follows:

mErom TID
mCode NM_N_TASK_CAN
mOData[0] TID

Task Identifier of the local task

Task Identifier of the remote task to
monitor. The value of -1 specifies that
all notification of task termination
requests by this local task be
cancelled.

The reply parameters for Canceling Notification of Task Termination are as follows:

mCode NM_N_TASK_CAN+1
mStatus NM_NO_ERRORS
NM_NO_ENTRY_FOUND

Request processed.

The local task had no outstanding request
for notification of termination of the
remote task.

Registering tasks

You can register and unregister tasks using two Name Manager messages:

O NM_REG_TASK
O NM_UNREG_TASK

Name Managers 6-11

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

NM_REG_TASK

NM_REG_TASK allows a task to become visible either to tasks on the local card only
orto all tasks in the system. If rt_local_vis is non-zero, then this task is not
visible to Lookup Task ID requests from other cards. Tasks may only register with the
Name Manager on their own card. If the name is already taken, the error
NM_DUPLICATE_NAME isreturned in the message field mStatus.

The parameter block for NM_REG_TASK is

struct pb_register_ task /* register name param block */
{ :

struct obj_rec rt_on; /* object name */

struct typ_rec rt_tn; /* type name */

char rt_local_vis; /* locally visible only flag */

}:
The message parameters for NM_REG_TASK are as follows:

mCode NM_REG_TASK
mDataPtr Address of the parameter block
mDataSize Size of the parameter block

NM_UNREG_TASK

NM_UNREG_TASK removes all entries in the Name Table for the task issuing the call.
When a task terminates, any names it had will be removed automatically.

The message parameters for NM_UNREG_TASK are as follows:

mCode NM_UNREG_TASK
mDataPtr 0
mDataSize 0

Printing support
Printing is accomplished by using the library printf code and the Print Manager.

Eachtime printfis called and does not know the TID of the Print Manager, it
searches for a Print Manager starting at slot 0, and continues searching the remaining
slots until a Print Manager is found or all the slots have been searched. If printf
knows the TID of the Print Manager and a Print Manager is found, the printf code
sends the text to the Print Manager.

Caution

If the Print Manager Is not found after thirty seconds, the text Is discarded with
no indication to the calling code.

6-12 MR-DOS Managers

MCP Developer’s Guide - Final to Production Apple Confidential

The printf code islinked into the user task; you install the Print Manager on a card
or on the Macintosh II. (Referto osmain for an example of using the print manager
onacard;see pr_manager inthe Apple IPC example folder for the Macintosh II).

After receiving a message from printf£, the Print Manager code sends the contents
of the message to the print device, and sends a reply to the requesting task’s printf
code when the information in the buffer has been printed. The Print Manager call
includes the print buffer request, PRINT_ME, described next.

Print Manager operates with a single message loop. For each output request message
it receives, Print Manager outputs as specified in the message and sends a reply when
the message has been printed or discarded.

Table 64 lists the standard conversion characters that the printf code supports.

Table 6-4
Printf standard conversion
Character Standard conversion
$d decimal conversion
$u unsigned conversion
$x hexadecimal conversion
$X . hexadecimal conversion with capital letters
%0 octal conversion
%c character
%s string
$m.n field width, precision
%-m.n left adjustment
$0m.n zero-padding
§x % width and precision taken from arguments

% Note: Printf doesnotsuppot $f, %e, or %g. Itaccepts, but ignores,a *1*
asin $1d, %lo, %1lx, and %1lu.

Table 6-5 lists the nonstandard conversion characters that print £ also supports.

Printing support

2/20/89

6-13

MCP Developer’s Guide - Final to Production

Apple Confidential

Table 6-5
Printf nonstandard conversion
Character Non-standard conversion
$b binary conversion
$r roman numeral conversion
%R roman numeral conversion with capital letters

The Print Manager registers itself with Object Name "print manager™ and Type
Name "print manager". The Print Manager slot is determined by the Start
Parameters specified in osmain.

Print buffer request

The print buffer request allows a task to specify a buffer that contains data to be
printed. The message parameters for the print buffer request are as follows:

mCode PRINT ME
mDataPtr Pointer to data buffer
mDataSize Length of data (in bytes)

< Note: Applications do not normally need to directly use Print Manager. The
printf code implements Print Manager interface on behalf of the application.’

Remote System Manager

The Remote System Manager (RSM) on a remote card is responsible for executing
system calls on behalf of local tasks. The local task sends a message to the Remote
System Manager on a remote card specifying the desired request; the request is
processed and the result is returned to the local task.

The Remote System Manager supports the following functions:
O RSM_FreeMem

O RSM_GetMem

O RSM_StartTask

0O RSM_StopTask

The Remote System Manager registers itself with Object Name "RSM" and Type
Name "RSM". The Remote System Manager is found by using the Lookup_Task
utility.

6-14 MR-DOS Managers

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential

RSM_FreeMem

RSM_FreeMem returns the memory specified to the free pool. The memory must

have been previously obtained on the destination card by using either the GetMem()
system primitive or the RSM_GetMem message. The calling parameter mDataPtr
contains the global (NuBus) address of the memory to be released.

The calling parameters for RSM_FreeMem are as follows:

mCode RSM_FreeMem
mDataPtr Global (NuBus) address of the memory to be released

The reply parameters for RSM_FreeMem are as follows:

mCode RSM_FreeMem + 1
mDataPtr Original pointer if mStatus != RSE_NO_ERRORS;
otherwise, 0 .
mStatus RSE_NO_ERRORS if memory buffer released
mStatus RSE_NOT_MEM if not a memory buffer
Caution

In most cases. MR-DOS on the remote card executes an lilegal instruction if an
attempt Is made to free a memory buffer that has not been allocated by MR-
DOs.

RSM_GetMem

RSM_GetMem obtains the memory specified from the free pool on the remote card.
Two buffer addresses are returned to the caller if the buffer was allocated. The calling
parameter mDataPtr contains the global (NuBus) address of the memory; the
calling parameter mOData [0] contains the address of the memory on the remote
card.

The calling parameters for RSM_GetMem are as follows:

mCode RSM_GetMem
mOData [0] Size in bytes (as in the GetMem primitive)

The reply parameters for RSM_GetMem are as follows:

mCode RSM_GetMem + 1

mOData [0] Address of buffer (as returned to RSM), or
0 if not allocated

mDataPtr Global (NuBus) address of the buffer, or
0 if not allocated

mStatus RSE_NO_ERRORS

Remote System Manager

2/20/89

6-18

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

RSM_StartTask

RSM_StartTask creates a task and makes it eligible for execution on the remote
card.

The calling parameters for RSM_StartTask are as follows:

mCode RSM_StartTask
mDataPtr struct *ST_PB; /* see StartTask primitivex*/
mDataSize sizeof (struct (ST_PB))

The reply parameters for RSM_StartTask are as follows:

mCode RSM_StartTask + 1

mOData 0] Task identifier of started Task or zero; if a Task
identifier of zero was returned, an error may have
occurred.

The parameter block for RSM_StartTask is the same as the operating system
primitive StartTask ().

% Note: The memory allocated for the code, data, and StartParameter
segments must have been previously obtained on the remote card by a call to
RSM_GetMem- or GetMem().

RSM_StopTask

RSM_StopTask stops the task whose task identifier is specified, provided the task is
running on the remote card.

The calling parameters for RSM_StopTask are as follows:

mCode RSM_StopTask
mOData [0] Task identifier of task to stop

The reply parameters for RSM_StopTask are as follows:

mCode RSM_StopTask + 1
mStatus RSE_NO_ERRORS
Warning

If one task stops another task, that task being stopped will not have the
opportunity to release any message buffers that it Is currently processing.

6-16 MR-DOS Managers

e

Finding the Remote System Manager
Tasks can determine the task identifier of a2 Remote System Manager on another card
by following these steps:

1. Sendan ICC_GETCARDS message to ICCM to obtain the task identifiers of the
Name Managers on each of the known cards.

2, Use the Lookup Task utility to each found Name Manager, specifying the Object
Name "RSM" and Type Name “RSM".

Loading remote tasks

Tasks may be loaded, started, and stopped on remote cards using the Remote System
Manager on the remote card. To do so, refertothe file Apple
IPC:Examples:RSM_tester.c forannotated code.

% Note: If errors occur, then any allocated memory must be returned to the card by
sendinga FreeMem message with the appropriate buffer to the Remote System
Manager on the remote card.

The Remote System Manager processes the RSM_StartTask message, atempts to
start the task, and retumns either the task identifier of the started task or zero. Ifzerois
returned or if errors are detected, then any allocated memory must be retumed.

Caution

When this example requests memory for the code to be downloaded to the
card, It does not determine the size of this code: this example has a hard-coded
number. If you develop your code using this RSM_tester example, be sure to
change the amount of hard-coded memory that was allocated on the card for
the task to be downlocaded.

Timer library and Timer Manager

Both the timer library and the Timer Manager allow user programs to receive “wake-
up” calls and also activate timing, cancel timing, set timing, and so forth. Timeouts
are implemented as messages sent to the requesting tasks at specified times.

Timer library and Timer Manager

6-17

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Warning

It Is strongly recommended that you use the timer library rather than the Timer
Manager, because the timer library provides greater performance and allows you
to reliably cancel a timer when an event occurs. The Timer Manager Is provided
for compatibility with previous releases (primarily for using periodic timers without
canceling timers), and will be removed in future versions of the software.

Timer library

The timer library is available in the file os .o on the MCP distribution disk, and
provides services similar to the Timer Manager.

The timer library handles timeouts for time-critical user code, and provides fast timer
cancels and activations. You must use the include fle timerlibrary.h inyour
code, which defines the interface to the calls listed in this section.

TLInitTimer()

The TLInitTimer () call initializes the timer library, and must be the first call made
to it. The parameter returned from TLInitTimer mustbe passed in all other timer
library calls.

struct Tmem TOPB;
TOPB *TLInitTimer ()

TLStartTimer()

The TLStartTimer () call allows atask to request either a periodic or a one-shot
timer message. The message is not available for use after the call.

% Note: Timer indication messagesmust be received through a TLReceive () aall;
they cannot be received by the primitive Receive () call

char TLStartTimer (topb, m)
TOPB *topb;
message *m;

The message m must have been allocated and set up as a periodic or one-shot timer
message as defined for the timer manager. TLStartTimer retumns a non-zero value
if the message was valid; otherwise TLStartTimer retums(and the message buffer
may be reused or released by the calling task.

6-18 MR-DOS Managers

MCP Developer’s Guide - Final to Production Apple Confidential

TLCancelTimer()

The TLCancelTimer call allows the callingtask to cancel a timer message. The
timer message can be either a periodic or a one-shot timer message.

message *TLCancelTimer (topb, mID)
TOPB *topb;
long mID;

The canceled message matches the mID specified, unless the mID is zero. Ifthe
mID is zero, the first timer message to expire is canceled.

TLActiveTimer()
The TLActiveTimer () call returns a count of the number of active timer messages.

long TLActiveTimer (topb, mID)
TOPB *topb:;
long mID;

If mID isnotzero, TLActiveTimer () retums 1;if the message corresponding to
the mID isactive, TLActiveTimer () retums(;ifthe mID iszero,
TLActiveTimer () returnsthe number of timer messages.

TLReceive()

TLReceive is called to provide receive processing with timeout on behaif of the
application.

message *TLReceive (topb, mID, mFrom, mCode)
TOPB *topb;

unsigned long mID;

tid_type mF rom;

unsigned short mCode;
Caution

If you use the fimer library, you must use the TLReceive () routine instead of
the primitive Receive () request.

TLReceive retums either the message that matchesthe TLReceive criteriaora
timeout indication message (periodic reply or one-shot reply), whichever comes first.

Timer library and Timer Manager

2/20/89

6-19

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Timer Manager

The Timer Manager provides timing services to tasks, and is useful when long timeouts
are needed or where there is an infrequent need to start and cancel timers.

Warning

This section describing the Timer Manager is included in this document for
historical purposes only. It Is strongly recommended that you use the timer
library. In future releases, the Timer Manager will be removed.

Table 6-6 lists the Timer Manager calls and functions.

Table 6-6

Timer Manager calls

Function Description

Active Timer Query allows a task to determine if a particular timer is
running or if any timers are running that are associated
with the task

Cancel Timeout allows a task to cancel either an individual timer or all
of the timers outstanding for the requesting task

Request One-Shot Timeout allows a task to receive a timeout reply 72 major ticks in
the future

Requests Periodic Timeout allows a task to receive a periodic timeout reply starting
xmajor ticks from when it is set, and then repeating
every y major ticks

The user sends to the Timer Manager the desired timer message. The Timer Manager
holds onto timeout request messages in its internal queue. A task may request either
one-shot or periodic notification of timeout events.

O When a one-shot timeout occurs, the request is answered by returning to the user
the original user message, with a message code of TIMER_1_SHOT_REPLY.

O When a periodic timeout occurs, the Timer Manager gets a message buffer from the
operating system. This message buffer is returned to the user with a message code of
TIMER_PERIODIC_REPLY. Any userdata in the original message is copied into
the message buffer that the Timer Manager uses for a reply.

6-20 MR-DOS Managers

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89
Outstanding time events may be queried and, optionally, canceled. When the user
requests that a timer be canceled, the original timer message is answered with a
message status of timer canceled, followed by the response to the cancel-timer
message.
< Note: Users should be careful in their use of message priority. A cancel message of
a higher priority than the original periodic timeout request message could result in
the cancel-timer reply arriving before the canceled timer message.
The number of ticks per second may be determined by calling the routine
GetTickPS ().
The Timer Manager registers itself with Object Name "timer manager™ and Type
Name "timer manager™. You can find the task ID of the Timer Manager by calling
GetTimerTID (),orbyusingthe Lookup_Task utility.
Active Timer Query
Active Timer Query allows a task to determine if a particular timer is running or if any
timers are running that are associated with the task.
The message code for the Active Timer Query is as follows:
TIMER QUERY_REQUEST
The message parameters for the Active Timer Query are as follows:
mOData[0] Message ID - if an individual timer is being queried
mOData [0] Zero - if query is for any timer associated with the task
The reply-message code for the Active Timer Query is as follows:
TIMER_QUERY REPLY
The reply parameters for the Active Timer Query are as follows:
mOData [0] Unchanged
mOData[1l] Number of timer messages found
Cancel Timeout
Cancel Timeout allows a task to cancel either an individual timer or all of the timers
outstanding for the requesting task. All outstanding timer messages are returned to the
requesting task witha TIMER_CANCELED status.
The message code for Cancel Timeout is as follows:
TIMER_CANCEL_REQUEST
The message parameters for Cancel Timeout are as follows:
mOData [0] Message ID - if an individual timer is to be canceled
mOData (0] Zero - Cancel all timers associated with the task
Timer library and Timer Manager 6-21

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The reply message code for Cancel Timeout is as follows:
TIMER_CANCEL_REPLY
The reply message parameters for Cancel Timeout are as follows:

mOData [0] Unchanged
mOData[1] Number of timer messages canceled

% Note: Users should be careful in their use of message priority. A cancel message of
a higher priority than the original periodic timeout request message could result in
the cancel-timer reply arriving before the canceled timer message.

Request One-Shot Timeout

Request One-Shot Timeout allows a task to receive a timeout reply a specified number
of major ticks in the future.

The message code for Request One-Shot Timeout is as follows:
TIMER_1_SHOT_REQUEST
The message parameter for Request One-Shot Timeout is as follows:
mOData [0] Time to wait in major ticks before replying
The reply message code for Request One-Shot Timeout is as follows:
TIMER_1_SHOT_REPLY
The reply message parameter for Request One-Shot Timeout is as follows:
mOData [0] Unchanged
The possible error status for Request One-Shot Timeout is as follows:

TIMER_CANCELED

Request Periodic Timeout

Request Periodic Timeout allows a task to receive a periodic timeout reply starting a
specified number of major ticks from when it is set, and then repeating at every
specified interval thereafter.

The message code for Request Periodic Timeout is as follows:
TIMER_PERIODIC_REQUEST

The message parameters for Request Periodic Timeout are as follows:

mOData (0] Time to wait in major ticks before first
timeout reply
mOData([l] Periodic interval in major ticks

6-22 MR-DCS Managers

MCP Developer’s Guide - Final to Production Apple Contidential

The reply message code for Request Periodic Timeout is as follows:
TIMER_PERIODIC_REPLY
The reply message parameter for Request Periodic Timeout is as follows:
mOData [0] Message ID of requesting user message
The possible error status for Request Periodic Timeout is as follows

TIMER_CANCELED

Trace Manager

The Trace Manager provides tracing services for messages sent between tasks, and
includes calls to turn tracing on or off.

Upon startup, the Trace Manager waits to find a Trace Monitor registered with the
ObjectName "Trace Monitor" andTypeName "Trace Monitor™. No
tracing is performed until a Trace Monitor is found that is so registered.

Caution

Once the Trace Manager registers, message throughput is dramatically reduced.
When sending trace messages to the Trace Monitor, message throughput may
be reduced by a factor of twenty or more, depending on the actions taken by
the Trace Monitor. Even If tracing Is turned off, the Trace Manager s still
registered with the operating system and all messages must pass through it,
reducing normal message throughput by more than half.

You cannot frace the Trace Manager.

The Trace Monitor is an MPW tool that works with the Trace Manager to record all
message traffic between tasks. The Trace Monitor relies on Apple IPC to communicate
with the Trace Managers on the cards; the Trace Monitor does little unless there are
active Trace Managers present.

The format of the trace file is simply a sequence of messages. If 2 message has an

associated data buffer (that is, mDataSize is non-zero), the message is inmediately
followed by the data buffer conents of size mDataSize. The syntax of the
TraceMonitor command is

TraceMonitor [file]

where fileis the name of the trace file in which to record message traffic. If fileis not
supplied, the default trace file name is TraceFile. The trace file is intended to be
searched and interpreted by the MPW trace file dumping tool, DumpTrace, described
later in this section.

Trace Manager

2/20/89

6-23

MCP Developer’s Guide - Final to Production

Once a Trace Manager detects the presence of a Trace Monitor, the Trace Manager
registers with MR-DOS using a TraceReg call and begins tracing. The MR-DOS
Send primitive forwards all messages to the Trace Manager; the Trace Manager
sends its own trace message to the Trace Monitor with the data pointer pointing to the
traced message, and waits for an acknowledgement. The Trace Monitor records each
traced message in a data file, along with any associated data, and acknowledges receipt
of the message; the Trace Manager then forwards the original message to its intended
destination. You can stop the Trace Monitor by pressing Command-period.

If the Trace Monitor fails to acknowledge in a reasonable time, the Trace Manager
stops the process of sending trace messages to the Trace Monitor until it receives a
message to turn tracing back on; this ensures that the message flow does not stop
indefinitely. If necessary, the Trace Monitor can control tracing activity through the
use of messages to the Trace Manager that direct it to turn tracing on or off.

Apple Confidential

Turn on tracing
The message code to tum on tracing is as follows:
TM_TRACE_ON

The Trace Manager assumes the request comes from the Trace Monitor, and uses the
TID value of the message mFrom field as the TID of the Trace Monitor for subsequent
tracing.

Turn off tracing
The message code to tumn off tracing is as follows:
TM_TRACE_OFF

This stops the Trace Manager from sending trace messages to the Trace Monitor until
tracing is turned back on.

Tracing messages

The trace message describes the location of the traced message from the Trace
Manager to the Trace Monitor. The message parameters for a trace message are as
follows:

mCode TM_TRACE
mDataPtr Pointer to copy of traced message
mDataSize Size of message plus size of data

6-24 MR-DOS Managers

(and data)

2/20/89

s :

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The area pointed to by mDataPtr isa copy of the original message, immediately
followed by the contents of the associated message data buffer (if any). The receiving
message then has access to both the message and its data buffer.

The message code for acknowledging the receipt of a trace message to Trace Manager
is as follows:

TM_TRACE+1

DumpTrace

DumpTrace is an MPW tool that searches and interprets message trace files created by
the TraceMonitor tool. DumpTrace dumps the messages from each trace file

specified. If you do not specifiy a file name, DumpTrace dumps the file TraceFile.
The msessages are dumped to standard output.

The syntax of DumpTrace is
DumpTrace [-an] [-cn][-dn][(-fn]([-in]([(-1n][-pn][-8n] (-tn][file ...]
where the following values are specified as hexadecimal numbers:
-an dump messages having To or From valuesof n
-cn dump messages having Code valueof n
-dn dump messages having DataPtr value of
-fn dump messages having From value of n
-in dump messageshaving ID valueof n
-1n dumpmessages having DataSize valueof n
-pn dump messages having Priority valueof n
-3n dump messages having Status valueof 7
-tn dump messageshaving To valueof n
file the name of the trace file in which to record message traffic

Messages are dumped selectively based on values specified by the options just listed.
If options are specified, a message is dumped only if its fields match one of the values
specified by each of the options. If no options are specified, all messagesare |
dumped. Each option can be repeated with different values, as shown in the following
examples.

Example 1:
DumpTrace -£04000001 -£04000002 -c64 FileNamel FileName2

Trace Manager 6-25

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

In this example DumpTrace dumps from FileNamel and FileName2 those
messages thathave Code values of 100 (64 hex) and that are from task 04000001 (slot
d, task 1) or 04000002 (slot d, task 2).

Example 2:
DumpTrace -a0d000003

In this example, DumpTrace dumps from TraceFile those messages that are either o
or from slot d, task 3.

The following example of DumpTrace shows output for a message with an associated

data buffer:

To: 04000001 Code: 0097 ID: £40009al

From: 04000005 Status: 0000 DataPtr: 0000090c
Priority: 0000 DataSize: 00000040

SData: 00 00 00 00 00 00 00 00 00 00 00 00covevn.

OData: 00 00 00 00 £fd 00 00 08 00 00 02 6C ...veveenn. 1

0000090c 0000 0000 f£fff ffff £fff £££ff ££f£f ££f£f
0000091c ffff £fff £f£ff f£f£ff £££f £££f £££ff ££££f
0000092c ffff ffff ffff £fff f£££ff £f£f ££f£ff £fff
0000093c 0c00 0001 0400 0001 . ffff ffff ££f£ff ££f££f

6-26 MR-DOS Managers

Chapter 7

Programming Notes for
MR-DOS

MCP Developer’s Guide - Final to Production

This chapter describes methods to handle peculiarities of MR-DOS, and includes
some guidelines and brief code examples for the following:

O accessing memory for intercard communications (including address mapping,
intercard buffer copying, and intercard message passing)

calling primitives from interrupt routines

executing small routines at every major tick (using the Tick Chain)
using the Idle Chain

writing your own download program

loading remote tasks

O 0 oo o

Intercard communications

Accessing memory that may be off-card introduces special coding considerations on
cards using processors that do not directly support 32-bit addressing (such as the
Motorola 68000). The MCP provides special hardware (page latch) to map off-card
memory into the processor's address space.

Apple Confidential

Address mapping

You canuse the MapNuBus function to set the hardware page latch and to return the
appropriate local address. The operating system saves and restores the state of the
hardware page latch (the address mapping) when task switching occurs. Interrupt
routines that need to gain access to off<card buffers must also save and restore the state
of the hardware page latch (the address mapping).

The CopyNuBus utility routine copies data from a source to a destination and
handles off-card buffers. Following is an example that demonstrates a simple case of
copying a buffer from one place to another using CopyNuBus.

message *mptr;

mptr = Receive (OS_MATCH_ALL, OS_MATCH_ ALL, OS_MATCH_ALL, 0);

switch (mptr->mCode)
{
case myCode:
/* Process myCode */

process_myCode (MapNuBus (mptr->mDataPtx));

break;
<<Other code >>

7-2 Programming Notes for MR-DOS

2/20/89

/{«'

MCP Developer’s Guide - Final to Production Apple Confidential

Caution

It Is recommended that you use CopyNuBus () rather than MapNuBus (). The
MCP card has a NuBus address space through which access to the NuBus Is
made. The hardware page latch that confrols this NuBus address space needs to
be changed whenever address boundaries are crossed; tasks which use
MapNuBus may not check for these boundaries. However, CopyNuBus ()
checks for and correctly handles the boundaries.

The function process_myCode processes the buffer associated with the message.
Because MapNuBus was already called, it can simply treat the pointer it receives as
an ordinary pointer, as long as the routine does not access any other off-card pointer
orcall MapNuBus.

Intercard buffer copy

Any piece of code that manipulates more than one potentially off-card buffer at a time
can be complex. For example, copying between two such buffers results in the
operating system continually calling MapNuBus to adjust the mapping hardware.
This operation may actually be more efficient if the data is copied through an
intermediate local buffer.

CopyNubus (mptrl->mDataPtr, mptr2->mDataPtr, mptrl->mDataSize) ;

Intercard message passing

Normally, there is no need to be concerned about how messages are moved from one
card to another, since MR-DOS handles these transparently to the use through the use
of TIDs and ICCMs. However, this section is included to provide more detailed
information about this function.

Communication between peer ICCMs is done by using the communication areas. The
Send () primitive checks the mTo field of each message. Ifthe mTo field specifies
a destination that is not on the sender's card, the Send primitive passes the message
unaltered to ICCM. ICCM then examines the mTo field to discover the destination of
the message.

ICCM on the sending card first checks that any previous message in the

communication area of the destination card has been processed. ICCM then checks
that a new buffer is available to receive the message; if not, a new buffer is requested.
When a buffer becomes available, ICCM writes into the communication area the
message 1o be sent to the destination card. ICCM adjusts the mDataPtr fieldof the
message, if necessary, to ensure that the pointer is valid across the NuBus.

Intercard communications

2/20/89

7-3

MCP Developer’'s Guide - Final to Production Apple Confidential

The receiving ICCM polls the communication area for new messages. When a new
message arrives, it is forwarded to the receiving task. Once the message has been
forwarded, the receiving ICCM clears the sender's communication area on the
receiver's card and supplies a new Receive buffer. The new buffer allows the sending
ICCM to again send a message to the receiver's card.

If the destination does not exist, the message is returned to the sender as
undeliverable, If the destination does exist, it is passed to a peer ICCM on the
destination card. The ICCM on the destination card attempts to forward the message
to the task specified. If the task does not exist, the message is returned to the sender as
undeliverable.

Interrupt handlers
This section describes some guidelines for calling primitives from interrupt routines.

When using interrupt routines, do not call the following primitives since results are
unpredictable:

O Receive()

O Reschedule()
O StartTask()
O StopTask()

All other operating system primitives may be called from interrupt routines.

However, be careful when using the primitives GetMem (), FreeMem() , and
Send () because these primitives execute at the same interrupt level as the caller. This
ensures that device-interrupt interlocks are maintained. Send () can be used to notify
the appropriate task that a message has arrived; however, system performance may be
impacted

Use of MR-DOS primitives at interrupt level should be minimized, because they may
interfere with high-performance communication devices. User tasks should pre-
allocate buffers for their interrupt routines, and should also release those buffers when
the interrupt routine has finished with the buffer.

< Note: When lising GetMsg, MR-DOS always fills inthe mFrom field with the TID
of the current user task. Your interrupt routine must overwrite the mFrom field with
the task ID that will process any reply.

You can see an example of a task that uses interrupt routines to control hardware in the

files MR-DOS:Examples:pr_manager.c and :MR-DOS:Examples:ossccint.a. These

files show how to control SCCs and use them in asynchronous mode.

The following is an example of how to install an interrupt routine, along with an example of an interrupt
routine within the code:

7-4 Programming Notes for MR-DOS

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential
IInstall Proc Export
Import PostRTE
LEA MyA5, A0 ; Get address of location to hold AS
MOVE.L A5, (A0) ; Put A5 there for interrupt routine
LEA Lv1l5, A0 ; Get address of interrupt routine
MOVE.L A0, $74 ; Put address of routine into vector
RTS
MyA5 DC.L 0 ; Holds AS for interrupt routine
* Actual interrupt routine follows.
Lvl5 MOVEM.L AQ-Al1/AS5/D0-D2, =-(A7) ; Be sure to save
; registers
* If the routine is going to access the processes global data,
* A5 will have to be set to provide access.
MOVEA.L MyAS, AS ; Set AS to this process' A5 value
<Do whatever you want here>
* If access to a possibly off-card buffer is needed,
* do something like this:
MOVE .W gCommon .gPagelLatch, - (A7) ; Save page latch
MapAddr A0 ; Map address to access
<Access the buffer>
MOVE.W (A7) +, gCommon.gPagelatch ; Restore page
ResetLatch ; Reset mapping hardware to match
*Now get ready to leave the interrupt routine.
MOVEM.L (A7)+, A0-Al/A5/D0-D2 ; Restore registers
; saved on entry
JMP PostRTE ; Return from exception
where:
O gCommon.gPageLatch contains the pagelatch value associated with the
currently-executing task
O ResetLatch resetsthe hardware page latch based upon the value contained in
gCommon .gPagelatch
O PostRTE providesa common exit routine from interrupt handlers
Interrupt handlers

2/20/89

7-5

Tick Chain

The Tick Chain allows you to incorporate very small routines in the code that are
executed at every major tick. For example, a Tick Chain routine might be the
operating system allowing the ICCM to go out and look in buffers. Take care to ensure
that shared data buffers are not touched by code placed in the Tick Chain; Tick Chain
code is scheduled independently of MR-DOS tasks, including those in run-to-block
mode.

The start of the Tick Chain is a location in low memory (gTickChain), whichisa
pointer to a subroutine that the timer interrupt code calls every major tick. The
pointer allows the timer interrupt routine to call user-installed time-critical code
routines. 'The number of ticks per second may be determined by calling the library
routine GetTickPS ().

Register A5 is set up to allow access to MR-DOS global variables.

< Note: Any routine not loaded with the MR-DOS operating system that is placed in
the Tick Chain/Idle Chain must use its own A5 value.

The routine in the Tick Chain/Idle Chain must preserve the value of A5 across the call
and ensure that their routine is using the correct value of AS during its processing. To
do so, follow the steps listed below for the appropriate code:

In the code that inserts a routine into the Tick Chain/Idle Chain:

1. Save the value of A5 in the code segment for the routine in the Tick Chain/Idle
Chain.

2. Save the addaress of the routine that is currently in the Tick Chain/Idle Chain,
3. Insert the address into the Tick Chain/Idle Chain.

In the routine in the Tick Chain/Idle Chain:

1. Save the value of AS.

2. Load the AS value saved by your code segment that inserted this routine into the
Tick Chain/Idle Chain.

3, Perform the desired operations.
4. Restore A5 to its previous value.

5. Call the routine that was saved in Step 2 of the first set of instructions (for the code
that inserts the routine).

The following code segment shows how to install and use the Tick Chain mechanism:

7-6 Programming Notes for MR-DOS

e

MCP Developer’s Guide - Final to Production

% Note: Use this mechanism with caution, because it may degrade system

void

performance unless you install extremely short time-duration code segments. To
ensure that the operating system will reliably execute tasks and not hang the card,
the total time of the routines installed should not exceed the duration set for the
major tick.

(*ticknextcall) ();

void tickinstall ()

{

}

void myRoutine ();

extern struct gCommon *GetgCommon () ;
short s;

struct gCommon *p;

/* Fetch local of gCommon area */

p = GetgCommon ()
/* disable interrupts */

s = Spl (7);

/* Fetch next routine */

/* install myRoutine */
ticknextcall = p -> gTickChain;
p -> gTickChain = myRoutine;

/* restore interrupts */

(void) Spl (s);

void myRoutine ();

{

/* please do something useful */

}

ticknextcall ():

Idle Chain

The Idle task performs the following functions:

O increments a counter
O calls the Idle Chain
O issuesthe Reschedule primitive to allow other tasks to run

The Idle task runs in block mode, and is given the lowest priority (priority 0). When no
other task is eligible for execution on the processor, MR-DOS schedules the Idle task.

The start of the Idle Chain is a location in low memory (gIdleChain), whichisa
pointer to a subroutine that the Idle task calls every time the Idle task is scheduled
(gIdleLoop in gCommonArea). The pointer allows the Idle task to call user-
installed, noncritical time-code routines. On entry, Register AS is set to allow access
to globals. Register A5 must be preserved across this call.

Apple Confidential

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The following code segment shows how to install and use the Idle Chain mechanism.

< Note: Since the Idle task runs in block mode, use this mechanism with caution. The
Idle Chain does not release control until the task is completed, and therefore can
impact performance. You should install only extremely short time-duration code
segments.

void (*idlenextcall) ():
void idleinstall ()
{

void myRoutine ()

extern struct gCommon *GetgCommon ()
short s;
struct gCommon *p;

* Fetch local of gCommon area */
p = GetgCommon ():
/* disable interrupts */
s = Spl (7):
/* Fetch next routine */
/* install myRoutine */
idlenextcall = p -> gIdleChain;
p -> gIdleChain = myRoutine;
/* restore interrupts */

: (void) Spl (s);

}

void myRoutine ();

{

/* very short time duration m shop rental calculator */
idlenextcall ():

}

Writing your own download program

If you want to dynamically download tasks to an MCP-based card, you can create your
own download program. MCP provides two subroutines, Findcard and Download, to
help you write your own download program.

Two binary versions of each of the subroutines are provided on the MCP distribution
disk:

O one version for the MCP card, found in the : MR-DOS :MCP :Download~lib.o
library

O another version for the AST-ICP card, found inthe :MR-DOS :AST_ICP:
Download-1lib.o library.

7-8 Programming Notes for MR-DOS

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Findcard subroutine

The Findcard subroutine allows your program to locate smart cards in the Macintosh
11, using the following code:

pascal short Findcard(slot, type)

short *slot;
long type;
extern;

where: *slot contains the address of a bit mask indicating which slots are available
for loading

type isthetype of card to download

% Note The type field is designed for use at some future date; currently, t ype is
unused and should be zero.

In the bit mask, bit 0 is the least significant bit. Bit 9 corresponds to slot 9, and bit 14
corresponds to slot E. Findcard returns DLE_NOERR (no error) if a card of the
correct type is found, or returns DLE_EMPTY if no cards of the correct type are
found.

Download subroutine

The Download subroutine allows you to download a specified file, appropriate
address, slot, and registers into the MR-DOS operating system, using the following
parameters:

pascal short Download(FileName, vRef, slot, loadaddr, initial_load,
registers, type)

char *FileName; /* The file name is a C string. */
short vRef;

short *slot;

long loadaddr;

short initial_ load;

struct -~ ST_Registers *registers;

long type:

extern;

The *FileName field s a pointer to the filename of a file to load. The filename is a C string.
The vRef field isthe volume reference number of a file to load.

The *slot field isa bit mask indicating which slots to load. Bit 0 is the least
significant bit. Bit 9 corresponds to slot 9. Bit 14 corresponds to slot E. If the bit mask
equals OXFFFF, all cards that are of the correct type will be downloaded.

Writing your own download program 7-9

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The loadaddr field is the relative address on a smart card to load data and/or
code. The default initial load address of MR-DOS is defined by the symbol
INIT_LOAD inthefile siop.h in the :MR-DOS:includes: folder.

The initial_load field is 0 if a non-initial load, non-zero if an initial load. Kitis
an initial load, the card is reset, memory is cleared, and the card is restarted with the

PC from the newly loaded data and/or code for a non-initial load to work. MR-DOS

must already be running on the card. The calling task must have previously obtained

the memory on the card where the code is to be loaded.

< Note It is the responsibility of the calling task to issuea StartTask request if the
calling task specified a non-initial load; MR-DOS returns the registers to be passed
to StartTask. Itisthe responsibility of the calling task to set up all other
parametersto StartTask. Foranexample of an MPW tool that will do a non-
initial load, see the file :Apple IPC:Examples:RSM_tester on the MCP distribution
disk.
The ST_Registers fieldisa pointertoa register area (defined inthe file os.h in
the MR-DOS:includes: folder) where the correct registers are returned for use ina
StartTask request. The Program Counter (PC) and Stack Pointer (SP) used by the
Download subroutine are returned to this area on an initial load.

The type field is the type of card to download. This feature is designed for use at
some future date; currently, type is ignored and should be zero.

Download errors

Download errors are indicated by messages to the stderr file. The state of any card
to be downloaded is undefined if an error is retumned. DLE_NOERR is a normal
return, Table 7-1 lists Download error constants; these constants are found in the
include file in the folder :MR-DOS:includes:Download.h.

7-10 Programming Notes for MR-DOS

MCP Developer’s Guide - Final to Production

Apple Confidential

Table 7-1

Error constants for Download

Error

Displayed Number Description
DLE_NOERR 0 No error

DLE_NOJT 1 No jump table found
DLE_DATAINIT 2 Bad Data Init segment
DLE_GLOBALF 3 Global-data format error
DLE_CODES 4 Code segment error
DLE_MAC2 5 Code only runs on Macintosh II
DLE_EMPTY 6 No cards found
DLE_NOCARD 7 Slot specified is empty
DLE_RESFILE 8 Couldn't open resource file
DLE_FILEWRONG 9 Download file is wrong type

The include file :MR-DOS : includes :Download.h contzmsthefollowmg

Download constant that may be useful for development:

#define Max_Slots

16

/* Max number of card slots

You can also find the routine declarations for Download and Findcard in this include file.

Writing your own download program

*/

2/20/89

7-11

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

7-12 Programming Notes for MR-DOS

Chapter 8

Developing Smart Card
Applications

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

This chapter describes how to develop software applications for the MCP smart card,
and includes information on

O how to create new applications using MCP
O how to get code running on the MCP card
O where to start debugging the program

What you will develop

You will develop an application on the Macintosh I computer that communicates with
processes on the Macintosh II main logic board, tasks on the MCP card or other smart
cards, or processes and tasks on both.

During software development, you will create the following:

O a program module containing a MR-DOS task that will be downloaded to the smart
card

O anapplication program to run on the Macintosh II main logic board that
incorporates Apple IPC, the driver that interacts with the MR-DOS task on the smart

card program

Before you start

Before learning how to create these applications, you should have an understanding of
the client/server relationship; refer to Chapter 3 for more information.

The resources and tools you need to develop applications are included on the MCP
distribution disks and described in this chapter. You should already have copied all
the files provided on the MCP distribution disks to a new folder on your hard disk; if
not, do so now by following the instructions in Chapter 3.

Within the MCP folder you created, you should now create another folder for the
application you will be working on. You will use the following files to build a progmm
module to be downloaded to the MCP card:

O MR-DOS:Examples: osman.n c
0 MR-DOS:Examples:makefile

Copy these files, then rename them as appropriate for the application you want to
build.

8-2 Developing Smart Card Applications

MCP Developer’s Guide - Final to Production Apple Contidential 2/20/89

Important:

To speed development, you should read and use the Include flles provided on
the distribution disk. You should also read and understand the code provided In
the Examples files for MR-DOS and Apple IPC.

The examples in this chapter demonstrate how to build a MR-DOS program module
and download it to an MCP card. Development is similar for building an application
program using Apple IPC that runs on the Macintosh II main logic board.

Development is intended to be carried out under MPW, using Assembler and C; the
examples in this chapter are written in C. Compile and link your code for MR-DOS as
though it were a normal Macintosh application.

You should avoid normal Macintosh run-time libraries; the Macintosh toolbox is not
supported by MR-DOS.

How to create applications using MCP

In order use MCP to to create applications that run on a smart card, you will need to:
O create original code for the functions you want an application program to perform

«» Note You can use one of the example programs provided on the MCP distribution
disks as a starting point for writing your new code, if you prefer.

O modify the main program (osmain.c) by removing any existing code for functions
that you do not want (such as the sample tasks currently included) and adding the
application program containing your new code

O modify the makefile to compile and link the edited code and the new code for your
task(s) with the appropriate MR-DOS library routines

Makefiles are supplied as examples to illustrate the creation of applications for both
MR-DOS and Apple IPC. In the examples of code provided in this chapter, any
characters highlighted in bold show a change to the code (either added, deleted, or in
some way modified).

Create new code

You will need to create new code for the functions you want the program to perform.
For purposes of this example, the following sample code was created under MPW for a
new task to run onan MCP card. This task illustrates how to display message text; this
text can also be printed using standard MPW C print procedures.

How to create applications using MCP 8-3

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

/***i’**************/

/* */
/* example NewTask - MR-DOS . */
/* */

/**'ﬁi**********************/

#include "os.h"
New_Task ()

{
short 1i;

for (i = 0; i < 10; i++) /* or it could be 100 or 1000! */
{
printf("My TID = %x, Times through the loop = %d, I am here?\n",
GetTID(), 1):;

}

/**t*******/

Modity the main program

The main program initiates both the tasks and MCP software (including MR-DOS and
supporting software services).

The file :MR-DOS:Example:osmain.c providesa main program wriiten in C as
well as examples of tasks. These examples are typical of the highest level of an

application that runs on a smart card. The purpose of osmain is entirely that of
initialization: to initialize MR-DOS, definc and start a number of tasks, set the clock

rate, and then pass control to MR-DOS.

The main program you create should consist of:

O acallto osinit () to initialize MR-DOS

» Note: Your code must make this call first, so that the initialization required for the
restof osmain can be done.

O acallto StartTask () foreach developer-created task that is desired
O acalto StartTask () foreach MR-DOS manager task desired

O any other initialization that needs to be done. This initialization may be hardware
dependent or simply appropriate to your application code, such as calling a
function to reset the SCC chips after you call osinit onthe AST card.

O finally,acallto osstart () tostart the operating system and the tasks
% Note: Afterthe callto osstart (), control is never returned.

8-4 Developing Smart Card Applications

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

You should have already created a new main program file by copying the

osmain file from the folder :MR-DOS:Examples; you are now ready to begin editing
that file. Modify this new file to use what you need, delete the example tasks you do not
need for your program, and insert code for your own tasks.

For this example, the code forthe osmain fileis bighlighted in bold to show some

tasks that can be deleted.

/**********************t**********i********i***i*t**t*********t****t*******/
/* */
/* example os main - MR-DOS . */
/* */
/* *x/
/* Copyright © 1987,1988 Apple Computer, Inc. All rights reserved. */
/* */

/**i**t****t*****************/

#include "os.h"
#include "managers.h"
#include "mrdos.h"
#include "siop.h"

void osinit ();

void osstart ();

vold name_server ():
volid sccresat (O
void time_manager ()
void time_taester 0
void timeit ()

void echo_manager ();
void echo_example ()
void trace_manager ();

#ifdef PRINT

void print_manager (),

#define PRINT_SLOT 0x0d /* default slot for printing */
$endif

void tester ()

void ICCM ();

void remote_manager ();
void MMsvVP ()

void MMSVPClient (O

pascal void illegal ()
extern Ox4afc;
main ()
{
struct ST_PB stpb, =*pb;

unsigned short clock_parms, *cp_ptr;

osinit (cMaxMsg, cOSStack);
/* Init OS with cMaxMsg messages and cStackOS stack */

How to create applications using MCP 8-5

N

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89
pb = &stpb;
if (GetCard () == PRINT_SLOT)
sccreset () /* Be sure SCC is reset... * /
/* Start name .server - priority 31, 4k stack, O heap. */
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 4096;
pb -> heap = 0;
pb -> priority = 31;
pb -> InitRegs.PC = name_server;
pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAS5;
pb -> ParentTID = GetTID ();
if (StartTask (pb) == 0)
illegal ():
#ifdef PRINT
if (GetCard () == PRINT_SLOT)
{
/* Start print manager - priority 30, 4k stack, O heap. * /
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = GetMem (1);
/* Set print manager to print from slot PRINT_SLOT. This allows */
/* all cards to send their output to one slot for printing. It */

/* printing is desired on aeach card individually, then replace

*/

/* the 1line below with tha following:
*/

/* *(pb <-> StartParmSegment) = GatCard ();
*/

* (pb -> StartParmSegment) = PRINT_SLOT;

Ppb =-> stack = 4096;

Pb =-> heap = 0;

pb -> priority = 31;

pb -> InitRegs.PC = print_manager;

pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAS;
pb -> ParentTID = GetTID();

if (startTask (pb) == 0)
illegal (),

#endif PRINT

8-6 Developing Smart Card Applications

e

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

/*

pb
pb
pb
pb
pb
pb
pb
pb
pb

if

/-ﬁ

pb
pb
pb
pb
pb
pb
pb
pb
pb

if

->
->
->
->
->
->
->
->
->

Start timer manager - priority 30, 4k stack, 0 heap. * /

CodeSagment = NULL;
DataSegment = NULL;
StartParmSegment = NULL;
stack = 4096;

heap = 0;
priority = 31;
InitRegs.PC = time_manager;

InitRegs.A_Registers [S] = GetgCommon() -> gInitas;
ParentTID = GetTID (),

(StartTask (pb) == 0)

->
->
->
->
->
->
->
->
->

illegal ();

Start ICC manager - priority 31, 128-byte stack, 0 heap. */

CodeSegment = NULL;
DataSegment = NULL;
StartParmSegment = NULL;
stack = 128;
heap = 0;
priority = 31;
InitRegs.PC = ICCM;

InitRegs.A_Registers [S5] = GetgCommon() =-> gInitAS5;
ParentTID = GetTID ():

(StartTask (pb) == 0)

->
->
->
->
->
->
->
-2

illegal ():

Start RSM manager - priority 30, 4k-byte stack, O heap. */

CodeSegment = NULL;
DataSegment = NULL;
StartParmSegment = NULL;
stack = 4096;
heap = 0;
priority = 30;
InitRegs.PC = remote_manager;

InitRegs.A_Registers (5] = GetgCommon() -> gInitAS;

-> ParentTID = GetTID ();
(StartTask (pb) == 0)
illegal ():

How to create applications using MCP 8-7

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89
/* Start echo manager - priority 30, 128 stack, O heap. */
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb -> stack = 128;
pb -> heap = 0;
pb => priority = 30;
pb -> InitRegs.PC = echo_manager;
pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAS;
pb -> ParentTID = GetTID ():
if (StartTask (pb) == 0)

illegal ():
/* Start trace manager - priority 30, 1k stack, O heap. */
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
pb => stack = 1024;
pb -> heap = 0;
pb -> priority = 30;
pb ~> InitRegs.PC = trace_manager;
pb -> InitRegs.A_Registers (5] = GetgCommon()-> gInitASs;
pb =-> ParentTID = GetTID ();
if (StartTask (pb) == 0)
illegal ();
/* Start echo example - priority 30, 128 stack, O heap. * /
pb -> CodeSegment = NULL;
pb -> DataSegment = NULL;
pb -> StartParmSegment = NULL;
Pb -> stack = 128;
pb -> heap = 0;
pPb -> priority = 30;
Pb =-> InitRegs.PC = acho_example;
Pb -> InitRegs.A_Raegisters [S] = GaetgCommon() -> gInitas;
pb -> ParentTID = GetTID ().
if (StartTask (pb) == 0)

illegal ():;

8-8 Developing Smart Card Applications

Ry,

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

->
->
->
->
->
->
->
->
->

Start name tester - priority 10, 4k stack, 1024 heap. */

CodeSegment = NULL;

DataSegment = NULL;

StartParmSegment = NULL;

stack = 4096;

heap = 1024;

priority = 10;

InitRegs.PC = tester;

InitRegs.A_Registers [5] = GetgCommon() -> gInitASs;
ParentTID = GetTID ()

(StartTask (pb) == 0)

->
->
->
->
->
->
->
->
->

illegal ()
Start timer tester - priority 10, 4k stack, O heap.) */

CodeSaegment = NULL;

DataSegment = NULL;

StartParmSaegment = NUOLL;

stack = 4096;

heap = 0;

priority = 10;

InitRegs.PC = tima_testar;

InitRegs.A_Registaers [S] = GaetgCommon () -> gInithAs;
ParentTID = GetTID ()

(StartTask (pb) == 0)

illagal ():

Start timerit - priority 10, 4k stack, O heap. * /
-> CodeSegment = NULL;
-> DataSegment = NULL;
-> StartParmSagment = NULL;
-> stack = 409s6;
-> heap = 0;
-> priority = 10;
-> InitRegs.PC = timeit;
-> InitRegs.A_Registers [S] = GetgCommon() -> gInitaAs;
-> ParaentTID = GetTID ();
(StartTask (pb) == 0)

illegal ()

How to create applications using MCP 8-9

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

/* WHJW: Start MMSVP - priority 10, 4k stack, 0 heap. */
/* This is provided for diagnostic purposes. * /
pb -> CodeSegment = NULL;

pb -> DataSaegment = NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 4096;

pb =-> heap = 0;

pb =-> priority = 10;

Pb -> InitRegs.PC = MMSVP;

Pb -> InitRegs.A_Registers [S] = GaetgCommon() -> gInitas;
pb -> ParentTID = GetTID ();

if (StartTask (pb) == 0)
illegal ():

/* WHJW: Start MMSVP client task - priority 11, 4k stack, */
/* 0 heap. This 1s provided for diagnostic purposaes.*/

pPb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

Pb -> StartParmSegment = NULL;

pb -> stack = 4096;

pb =-> heap = 0;

Pb =-> priority = 11;

Pb -> InitRegs.PC = MMSVPCliant;

pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAs;
pb -> ParentTID = GetTID () ’

if (StartTask (pb) == 0)
illegal ():

/* Start operating system. */

#ifdef AST_ICP

/* saetup VIA to dinterrupt us aevery 10 milliseconds * /
clock_parms = VIA_TICK_RATE; /* clock rate for 10 ms tick */
cp_ptr = &clock_parms;

#endif AST_ICP
#ifdef MCP
cp_ptr = NULL;
#endif MCP
osstart (TICK_MIN_MAJ, TICKS_PS, cp_ptr); /* start things up */

illegal (): /* should never get here */
}

/**t****t*********t***********************'k********t***********************/

8-10 Developing Smart Card Applications

MCP Developer’s Guide - Final to Production

Next edit the file to remove the tasks highlighted, and then insert code for the new task
(mamed NewTask). The main program file for this example should now look like
this:

/********************t**i******'k*****i***************************t****i****/

/*
/* example os main - MR-DOS
/t
/ir

/* Copyright © 1987,1988 Apple Computer, Inc. All rights reserved.

/*

/*************************************'A'**'*****'k********t***t**************/

#include "os.h"
#include "managers.h"
#include "mrdos.h"
#include "siop.h"

void osinit ();

void osstart ();

void name_server ();
void echo_manager ();
void trace_manager ();

void IceMm ()
void remote_manager ():

void Naew_Task ()

pascal void illegal () extern Ox4afc;

main ()
{
struct ST_PB stpb, *pb;

unsigned short clock_parms, *cp_ptr;

osinit (cMaxMsg, cOSStack):

Apple Confidential

/* Init OS with cMaxMsg messages and cStackOS stack

pPb = &stpb;
/* Start name server - priority 31, 4k stack,

pb -> CodeSegment NULL;

pb -> DataSegment = NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 4096;

pb -> heap = 0;

pb -> priority = 31;

pb -> InitRegs.PC = name_server;

pb -> InitRegs.A_Registers [5] = GetgCommon() ->
pb -> ParentTID = GetTID ();

if (StartTask (pb) == 0)
illegal ();

How to create applications using MCP

0 heap.

gInitAs;

*/
*/
*/
*/
*/
*/

*/

*/

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

/* Start ICC manager - priority 31, 128-byte stack, 0 heap. */

pb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 128;

pb -> heap = 0;

pb -> priority = 31;

pb -> InitRegs.PC = ICCM;

pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAS;
pb -> ParentTID = GetTID ();

if (StartTask (pb) == 0)
illegal ();

/* Start RSM manager - priority 30, 4k-byte stack, 0 heap. */

pb -> CodeSegment = NULL;

pb ~-> DataSegment NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 4096;

pb -> heap = 0;

pb =-> priority = 30;

pb -> InitRegs.PC = remote_manager;

pb -> InitRegs.A_Registers [5] = GetgCommon() -> gInitAS;
pb => ParentTID = GetTID ();

if (StartTask (pb) == 0)
illegal ()
/* Start echo manager - priority 30, 128 stack, O heap. ' */

pb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 128;

pb -> heap = 0;

pb -> priority = 30;

pb -> InitRegs.PC = echo_manager;

pb -> InitRegs.A_Registers [5] = GetgCommon() -> glnitASs;
pb -> ParentTID = GetTID ():

if (StartTask (pb) == 0)
illegal ();

8-12 Developing Smart Card Applications

MCP Developer’'s Guide - Final o Production Apple Confidential 2/20/89

/*

}

Start trace manager - priority 30, 1lk stack, O heap. */

pb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

pb -> StartParmSegment = NULL;
pb -> stack = 1024;
pb -> heap = 0;

pb -> priority = 30;
pp -> InitRegs.PC = trace_manager;

pb -> InitRegs.A_Registers (5] = GetgCommon() -> gInitAS;
pb -> ParentTID = GetTID ();

if (StartTask (pb) == 0)
illegal ():

/* Start New_Task - priority 20, 4k stack, O heap. * /

pb -> CodeSegment = NULL;

pb -> DataSegment = NULL;

pb -> StartParmSegment = NULL;

pb -> stack = 4096;

pPb -> heap = 0;

pb -> priority = 20;

pb -> InitRegs.PC = New_Task;

Pb -> InitRegs.A_Registers [5] = GaetgCommon() -> gInitaAS5;
pb -> ParentTID = GatTID (),

if (StartTask (pb) == 0)
illegal ();

/* Start operating system. */
cp_ptr = NULL;

osstart (TICK_MIN_MAJ, TICKS_PS, cp_ptr); /* start things up */
illegal (): /* should never get here */

/*******************t***i/

How to create applications using MCP 8-13

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Modifying the makefile

Now that you have modified osmain to include the code for your new task, next you
will modify the makefile. You should have already copied the makefile from the folder
:MR-DOS:Examples, and are now ready to modify that new file. Using the makefile,
you can:

O compile the initialization software (o sma in . c) and application tasks

O link the desired MR-DOS libraries with the application tasks and initialization
software to build the program to be downloaded to the smart card

Compile and link this code as though it were a normal Macintosh application. You
should not use normal Macintosh run-time libraries; the MR-DOS operating system
does not support the Macintosh toolbox.

MR-DOS include files

Table 8-1 lists the include files available and briefly describes each file. These include
files are located in the folder -MR-DOS :includes: on the MCP distribution disks.
You will also use these files to compile and link your code using the makefile,

Table 8-1

Include files

Assembly C Language

Filename Filename Description of File

o0s.a os.h Defines the operating-system message structure,
commonly used constants, and externally
visible system library routines.

managers.a managers.h Contains the structures and constants used
when accessing the Name Manager, Time Manager,
and InterCard Communications Manager.

mrdos.a mrdos.h Contains constants and structures for the

operating-system tables.

In addition, there are four include files similar to those listed in Table 8-1 specificaily

for use with the AST-ICP card; these files are named scc.a, scc.h, siop.a,
and siop.h and are located in the MR-DOS:includes: folder on the distribution
disks. These files are useful if any SCC hardware is to be used.

8-14 Developing Smart Card Applications

’”"753‘

MCP Developer's Guide - Final to Production

Apple Confidential

MR-DOS libraries

The file :MR-DOS:MCP:0s.o isthe library containing MR-DOS operating system
routines for the MCP card. Thefile :MR-DOS:MCP:osglue.o istheglue
(interface) library containing code to allow tasks to use MR-DOS utility routines.

(Equivalent files for the AST-ICP card are

:MR-DOS :AST_ICP :0sglue.o.)

:MR-DOS:AST_ICP:0s.0 and

*» Note Do not use the standard C library crunt ime . o;the osglue.o filethatis
provided on the MCP distribution disks contains run-time library routines.

You must link your code with these files using the MPW Link command.

Important

To avoid conflicts in the MPW linker with duplicate names. you should prefix all
nonvisible and externally invisible C function and subroutine names with

static.

Doing this reduces the possibility that routines with the same names

from different object files will interact to produce linker errors.

Changes to the makefile

The following code from the new file (the sample file that you.copied) is highlighted in
bold to show the tasks that changed or were deleted from the makefile. Compare this
file with the one following to determine the code that has been changed, added, or

deleted.

%+ Note {Card} represents a string that you will replace.

/***t************************/

/*
/*
/*
/*
/*
/*

*/

Makefile for example download. . */

*/
*/

Copyright © 1987, 1988 Apple Computer, Inc. All rights reserved. */

*/

2/20/89

/*********‘A‘****i*************************'k**********************************/

3 H I

Make

To
make
make

file

invoke

for test download.

this makefile

-d Card=MCP

-d

Card=AST_ICP

please
for
for

type
generating code for the MCP
generating code for the ast

Modifying the makefile

card or
card

8-15

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

CI = ::includes:

LinkOpts = -1 -x :"{Card}":xref > :"{Card}":map

AOptions = -d &Card=9'{Card}d* -i ::includes:,::"{Card}"™: -1 -font Courier,d
7 -pagesize 115,124 -print Data,Obj,Lits,NoMDir

COptions = -D"{Card}" -DPRINT -g =-i (CI}

CSources = ::includes:scc.h aecho.c trace_manager.c pr_manager.cd

printf.c name_tester.c timer_tester.c osmain.c timelt.c 9d
l3o0smain.c L3MMSVP.c L3MMSVPClient.c

AsmLists = ossccint.a.lst IOPNub.a.lst L3MMSVP.a.lst

Targets = =,0 =,1lst start

;" {Card}": f : ::includes:

all f :"{Card}":start

:"{Card}":start f :"{Card}"”:osmain.c.o0 :"{Card}":0ssccint.a.09d
::"{Card}":0S.0 ::"{Card}":osglue.c :{Card}:pr_manaqer.c.oa
:"{Card}":printf.c.0 :"{Card}":name_tester.c.od
:"{Card}":timer_tester.c.o :"{Card}"L3MMSVP.c.o 4
:"{Card}":L3MMSVPClient.c.o0 :"{Card}":L3MMSVP.a.o)
:"{Card}":timelIt.c.o :"{Card}":aecho.c.0 9

:"{Card}":trace_manager.c.o
If "{Card}" == "MCP"

Link -t 'GMSC' -c 'RWM ' -0 :"{Card}":start 9
:"{Card}"osmain.c.o :"{Card}":o0ssccint.a.o0 ::"{Card}":0S.0 9
::"{Card}":0sglue.o0 :"{Card}":pr_manager.c.o :"{Card}":printf.c.o P
:"{Card}":name_taster.c.o :"{Card}":timer_tester.c.o 2
:"{Card}":timelIt.c.0o :*{Card}":echo.c.0 9
:"{Card}" trace_manager.c.o :"{Card}":L3MMSVP.c.o0)
:"{Card}":L3MMSVPClient.c.o :*{Card}":L3MMSVP.a.o {LinkOpts}
Elsa
Link -t 'GMSC' -¢ 'RWM ' -0 :"{Card}":start 9
:"{Card}"osmain.c.o :"{Card}":08s8ccint.a.o ::"{Card}":0S.0 @
::"{Card}":08glue.o0 :"{Card}":pr_manager.c.o)
:"{Card}":printf.c.o :"{Card}":nama_taestaer.c.o 0
:"{Card}":timer_taster.c.o :"{Card}":timeIt.c.o0 9
:"{Card}":echo.c.0o "{Card}":trace_manager.c.o d
:"{Card}":L3MMSVP.c.o :*{Card}" +L3MMSVPCliaent.c.o0 9
:"{Card}":L3MMSVP . .a.o {LinkOpts}
End
:"{Card}":osmain.c.of {CI}os.h ({CI}managers.h (CI}mrdos.h ({CI}siop.h
:"{Card}":088ccint.a.o f ::1"{Card}":08SDefs.d
1" {Card}":printf.c.o f {CI}os.h (CI}managers.h
:"{Card}":echo.c.o f {CI)os.h
:"{Card}":trace_manager.c.o f {CI}scc.h ({CI}siop.h {CI}os.h {CI}managers.h
:"{Card}":name_tester.c.o f “{CI}"os.h "{CI}managers.h {CI}mrdos.h

8-16 Developing Smart Card Applications

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

:"{Card}":timer_taester.c.o f "{CI}"os.h "{CI}managers.h
:"{Card}":timeIt.c.o f "{CI}"os.h "{CI)managers.h
:"{Card}":L3MMSVP.c.o f "{CI}"os.h {CI}diags.h
:"{Card}":L3MMSVP.a.0o f "{CI}"MRDOS.a "{CI}os.a (CI})diags.a ({CI}siop.a
:"{Card}":L3MMSVPClient.c.0 f "{CI}"os.h {CI} diags.h "{CI}managers.h

Special targets.

Listings - Print changed files.

Listings ff {AsmLists}

Print ~f Courier =-s 7 =1ls 0.70 -r {NewerDeps}

Listings ff {CSources}
Print -f Courier -s 7 -1s 0.70 -r -hf Courier -hs 9 -h -n ({NewerDeps}
echo "Last listings made ‘Date’." > Listings

Clean - Remove all targets.

Clean f (Targets}
Delete -i {Targets}

/*****i*****************************t**************tt*tt*t********tt**!*t*t/

The resulting makefile should look as follows:

/****‘A‘**'k***************************/

/* */
/* Edited Makefile for download example. */
/* */
/* */
/* Copyright © 1987, 1988 Apple Computer, Inc. All rights reserved. */
/* */

/***ti*********************t***************************************i’********/

Since we are building a program for the MCP smart card, hardcode

Card to be 'MCP'

Card = MCP

Points to the new MCP folder on your hard disk.

MRDOS = ::MCP Software:MR-DOS:

CcIl = {MRDOS}includes:

LIBDIR = {MRDOS}MCP:

LinkOpts = -1 -x xref > map

AOptions = -d §Card=d'{Card}d' -i "{CI}","{LIBDIR}" -1 -font Courier,7 d
-pagesize 115,124 -print Data,Obj,Lits,NoMDir

COptions = -D"{Card}" -DPRINT -g -1 "(CI}"

ExampleBins = {MRDOS}Examples: {(Card}:

Modifying the makefile 8-17

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

CSources = osmain.c NewTask.c

AsmLists =

Targets = =,0 =, 1lst start

: f : "{MRDOS}"includes: " (ExampleBins}"

all f start

start f osmain.c.o0 "{LIBDIR}"OS.o "{LIBDIR}"osglue.o 0

"{ExampleBins}"printf.c.o "{ExampleBins)"trace_manager.c.o 0
NewTask.c.o
link =t 'GMSC' =-c '?2?2?' =-o start 4

osmain.c.o "{(LIBDIR}"OS.o 0

" {LIBDIR}"osglue.o 9

“(ExampleBins}"printf.c.o d

"{ExampleBins)"trace_manager.c.o 4@

NewTask.c.o {(LinkOpts}

osmain.c.o f "{CI}"es.h "{CIl}"managers.h "{C}"mrdos.h "{CI}"siop.h
NewTask.c.o f "{CI}"os.h
" {ExampleBins}"printf.c.o f “{MRDOS} {:Examples:printf.c "{(CI}"os.h

"“{CI})"managers.h

"{ExampleBins}"trace_manager.c.o f "{MRDOS})}":Examples:trace.manager.c 9
"{CI}"scc.h "{CI})"siop.h "{(CI})"os.h]
"{CI}"managers.h

Ed Special targets.
Listings - Print changed files,
Listings ff {AsmLists)

Print -f Courier =-s 7 =-ls 0.70 -r {NewerDeps}

Listings ff {CSources}
Print -f Courier =-s 7 =1s 0.70 =-r =-hf Courier =-hs 9 -h -n {NewerDeps)
echo "Last listings made "Date’."™ > Listings

Clean - Remove all targets.

Clean f {Targets}
Delete =-i ({Targets}

/‘.*ti’*‘k*!f**i’***t*t***tt'l*****'ﬁi"lttttl‘*t‘lt**'ktt***t!t****!t'i*tt**t**tt**t’

8-18 Developing Smart Card Applications

MCP Developer’'s Guide - Final to Production

Compiling and linking your code

You will next use the makefile to generate the commands that will compile and link your code together.

To do so, enter the MPW command Make.

The commands produced are:

C =D "™MCP"™ -D PRINT -1 "::MCP Software:MR-DOS:"includes:
C =D "MCP" -D PRINT =-i "::MCP Software:MR-DOS:"includes:

-o newTask.c.o
Link -t 'GMSC' -c '222??' -o start @

osmain.c.o "::MCP Software:MR-DOS:MCP:"0S.o 9

"::MCP Software:MR-DOS:MCP:"osglue.o 4

"::MCP Software:MR-DOS:Examples:MCP:"printf.c.o 9
"::MCP Software:MR-DOS:Examples:MCP:"trace_manager.c.o)

NewTask.c.o =1 -x xref > map

¢ Note {MR-DOS} isthe pathname of the MR-DOS folder under MPW. You must
set this up when using MPW; otherwise, you must substitute the full pathname for

Apple Confidential

osmain.c =-o osmain.c.o
NewTask.c 9

{MR-DOS}.
Table 82 defines the parameterstothe Link command, shown in the example
above.
Table 8-2
Lnk command parameters
Parameter Description
-t Thetypeoffilethat Link command is going to
generate
GMSC The file type that the Downloader application looks for

If you use the AST-ICP card during development instead
of the MCP card, you must replace GMSC with KARD.

-c The creator

2227 Enter any appropriate creator name

-0 start The cutput file from the linker; the file start willbe
created in your directory

osmain.c.o The initialization routine that you modified

0s.0 File that contains MR-DOS operating system

Compilling and linking your code

2/20/89

8-19

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Table 8-2 (continued)

Parameter Description

osglue.o File containing glue code

printf.c.o Printing subroutine source code for MR-DOS; equivalent
tothe printf routine in standard C

trace_manager.c.o Tracing tool for MR-DOS

NewTask.c.o The name of the main program containing your task

< Note Only the globally-visible name of the task should be the task’s main
program. The task’s main routine should not be called *main” but must be given
another name, because your code is sharing space with the entire operating
system, and the name osmain is always visible.

Select the entire section listed above to enter and execute these commands; this
creates the application that you will download to an MCP card.

Downloadingcode to the MCP card

Download is an MPW tool that downloads smart card application files to smart cards.
For development efforts, a version of Download is provided on the distribution disk
for the MCP card and for the AST-ICP smart card. The makefile in :MR-
DOS:Examples produces two executable files for downloading; these files are:

O :MR-DOS:Examples:MCP:start, code to be downloaded to the MCP card
O :MR-DOS:Examples:AST_ICP:start,code to be downloaded to the AST-ICP
card

The file produced depends upon the -d option used with the make command in
:MR-DOS :Examples :. This section first discusses the Download tool, then presents
information to help you create your own download application.

8-20 Developing Smart Card Applications

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

Calling the Downloader tool

The name of the file to be downloaded and the destination slot number or numbers
are provided as parameters. The calling sequence for the Download tool is

Download Filename [-S1 ... =-Sn]

where: Filename specifies the name of the program file to be downloaded to the card, and
Sn is the slot where the card is found.

Slots are numbered in hex from 9 to E (left to right); two examples might be -9 or -A.
You can specify multiple slots. If you do not specify a slot number, the default for
Download is all slots containing smart cards of the kind matching the Download tool.

After validating these parameters, Download does the following:
O performs the download for each of the slots selected

O copies the resources of the object file (including Jump Table, Data Initialization,
and Segments) into RAM of the selected smart cards

O starts each card when Download sets the program counter to the appropriate
address

You will now download the compiled and linked code to the smart card for execution,
using the Download tool provided on the MCP distribution disk.

To continue the example from the makefile presented earlier in this chapter, follow

the steps described next. To download the sample application to the card, enter
"::MCP Software:mr-dos:Examples:mcp:Download" start
Next, enter the following comand:

directory "::MCP Software:Apple IPC:Examples:”
pPr_manager

This command starts up the MPW Print Manager tool. Using this tool, you can check if
the downloaded card is running and able to send messages to tasks running on the
Macintosh I, and then display results on the screen (similar to the example shown
next).

Downloading code to the MCP card 8-21

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

Print Manager TID = 4
Starting Main Loop
TID b0S5: Trace Manager: Starting.

My TID = b06, Times through the loop = 0, I am here
My TID = b06, Times through the loop = 1, I am here
My TID = b06, Times through the loop = 2, I am here
My TID = b06, Times through the loop = 3, I am here
My TID = b06, Times through the loop = 4, I am here
My TID = b06, Times through the loop = 5, I am here
My TID = b06, Times through the loop = 6, I am here
My TID = b06, Times through the loop = 7, I am here
My TID = b06, Times through the loop = 8, I am here
My TID = b06, Times through the loop = 9, I am here
My TID = b06, Times through the loop = 10, I am here

To stop using the MPW print manager tool, press Command-.(period); the screen
displays CloseQueue Called.

Download errors

Download errors are indicated by messages to the st derx file. The state of any cards
to be downloaded is undefined if an error is returned. DLE_NOERR s a normal
return. Table 8-3 lists Download error constants; these constants are found in the
folder :MR-DOS:includes:Download.h. '

Tabie 8-3

Error constants for Download

Error

Displayed Number Description
DLE_NOERR 0 No error

DLE_NOJT 1 No jump table founi
DLE_DATAINIT 2 Bad Data Init segment
DLE_GLOBALF 3 Global data-format error
DLE_CODES 4 Code segment error
DLE_MAC2 5 Code only runs on Macintosh II
DLE_EMPTY 6 No cards found
DLE_NOCARD 7 Slot specified is empty
DLE_RESFILE 8 Couldn't open resource file
DLE_FILEWRONG 9 Download file is wrong type

8-22 Developing Smart Card Applications

MCP Developer’'s Guide - Final to Production Apple Confidential

Debugging your code

You can use any debugger for the Macintosh 11 to examine or change data or code in
your application. For this example, a subset of Macsbug is used to debug the
application in memory on the MCP card.

The high-order nibble in the address specifies the card that is to be examined. For
example, if you want to dump memory from the MCP card installed in slot B at
location 400, type:

dm b00400

After detecting an illegal condition (via the exception 68000 vectors or hardware
interrupt), a MR-DOS handler dumps the current register set to an area of card
memory. This area of memory starts at 0x0600 on the MCP card where the
exception/interrupt occurred. Table 84 lists the format of the dump area.

Table 8-4

Dump area format

Memory Location +0 +4 +8 +C
0x0600 DO D1 D2 D3
0x0610 D4 D5 D6 D7
0x0620 A0 Al A2 A3
0x0630 A4 AS Ab SSP
0x0640 SR EC usp Flag
0x0650 trap number

where SSP s the Supervisor StackPointer
SR is the Status Register at the time of the error
PC is the Program Counter at the time of the error
USP s the User Stack Pointer at the time of the error

Flag isa byte that starts at address 0x064A. It contains the value O0xFF when
an error has occurred.

trap number isthe 68000 cxception ID

Examinethe Flag byte at 0x064A. If it contains OxFF, the system has crashed. Refer
to Chapter 11 for more complete information on how to track system crashes and
hangs.

Debugging your code

2/20/89

8-23

MCP Developer’'s Guide - Final to Production

When Flag is O, this area of memory has 70 meaning. Specifically, this area of
memory does not show the current registers or state of anything whenthis Flag is0.
Clearing this byte causes the registers to be reloaded with the saved registers and the
system to be restarted.

< Note: This format is accurate only if IOPNub.a isnot beingused. IOPNub.a
also dumps registers to area 0x0600, but in a different format.

You can also force your code to crash by usingthe ILLEGAL assembler operator.
This defines the C function illegal (), which when called generates an illegal
instruction.

pascal void illegal ()
extern Oxdafc;

Next, enter the following sequence at the location chosen in your code:

if (condition == want to crash)
illegal ();

8-24 Developing Smart Card Applications

Apple Confidential

2/20/89

Chapter 9

Apple IPC

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

As described in Chapter 3, Apple IPC provides services to Macintosh II programs or
processes that are used to communicate with other processes on the Macintosh II or on
one or more smart cards. Apple IPC includes MR-DOS message passing, task naming,
and echo services; it is 720t another operating system for the Macintosh computer.

This chapter describes where to find Apple IPC on the MCP distribution disks, how to
install and use Apple IPC, and how to make specific calls to Apple IPC.

The Apple IPC software

Apple IPC software consists of the Apple IPC driver, development tools, include files,
and examples. The MCP distribution disks contains a folder named :Apple IPC: that
contains the following:

O a file pamed IPCGlue.o that contains the Apple IPC library, providing object
routines (glue code) for interfacing to the Apple IPC driver, as well as glue code that
allows C programs running under the Macintosh II operating system to make calls to
the driver

O a file named Apple IPC, which contains
O the Apple IPC driver, which runs under the Macintosh II operating system
O an INIT31 resource, which installs the driver and managers at system start-up -
O the Name Manager, which is provided for the Macintosh II main logic board
O the Echo Manager, which is provided for the Macintosh I main logic board
O a folder named :Examples:, which contains

O an Apple IPC file that contains everything just described for the Apple IPC file,
plus the Echo example.
< Note: The Echo example is almost identical to the Echo Manager, and is provided
to show how you can add a manager to the Apple IPC file.
O a makefile that shows how IPCGlue.o isused in linking
O Example files that contain source code examples of Macintosh II programs that
use the Apple IPC driver

Each of these components is described in this chapter in the section on Apple IPC
services, along with examples of C and assembly-language macros for each Apple IPC
call.

9-2 Apple IPC

MCP Developer's Guide - Final to Production Apple Confidential

Installing Apple IPC

As described in Chapter 2, here are the steps that you should follow to install Apple
IPC into your Macintosh II.

< Note: Itis not necessary to repeat these steps if you have already followed the
instructions in Chapter 2.

1. Open the :'Apple IPC" folder in the new MCP Software folder you created
on the Macintosh II desktop.

2. Open the :Examples: folder and select the 'Apple IPC' file.
3. Copy the 'Apple IPC' file into the System Folder of the Macintosh II.

«+Note: To make this example as easy as possible, you can copy the file in one step
as follows: hold down the Option key while draggingthe 'Apple IPC' fileinto
the System Folder.

4. Reboot the Macintosh II.

The Apple IPC driver is loaded into the system heap during system start-up by an
INIT31 resource within the Apple IPC file.

Using Apple IPC

An application that uses Apple IPC must make an initial call to OpenQueue to
establish its use of IPC. Each process that uses Apple IPC requests that a queue be
opened by calling OpenQueue.

Messages are sent and received through Apple IPC using Send and Receive.

O When the Apple IPC driver getsa Receive requestand no completion routine is
specified, the message queue is searched for a message matching the criteria
specified. If a matching message is found, it is returned to the process. If no
matching message is found, the driver either returns immediately or, depending on
the timeout specified, blocks the process until 2 matching message arrives
(indefinitely if the timeout is 0, or until the timeout is reached).

However, the Receive request behaves differently when a completion routine is
specified. Refer to information onthe Receive call in the next section of this
chapter for more details.

O Ifa Send request is destined for a process on the Macintosh II, the destination
process is unblocked, if waiting for the message that has arrived, or the message is
placed in its queue. If the message is destined for a task on a smart card, the
message is transferred to the ICCM on that slot for delivery to the task.

Using Apple IPC

2/20/89

MCP Developer’s Guide - Final o Production Apple Confidential 2/20/89

Apple IPC services

This section describes the Apple IPC services and provides examples of how to call
primitives and utilities from both C and Assembler. These services are provided to
support features similar to those of MR-DOS for applications running on the
Macintosh I computer.

“ Note: As with MR-DOS, Apple IPC uses C calling conventions, and all registers are
preserved except DO, D1, A0, and Al. Calls in both C and Assembler take
arguments and use similar data structures.

Table 9-1 lists the services provided by Apple IPC, with a brief description of each.

Table 9-1

Apple IPC services

Name Description

CloseQueue () Closes an Apple IPC queue

CopyNuBus () Copies a block of data from the source address to the destination
address .

FreeMsg () Frees a message buffer

GetCard() Returns the NuBus slot number on which the calling process is
running :

GetICCTID () Returns the task identifier of the InterCard Communication
Manager

GetIPCg() Returns the address of the global data area within the Apple IPC
driver

GetMsg () Gets a message buffer

GetNameTID ()
GetTickPS ()
éetTID 9]
IsLocal()
KillReceive ()

Lookup_Task ()

OpenQueue ()

Receive ()

9-4 Apple IPC

Returns the task identifier of the Name Manager
Returns the number of major ticks in one second
Returns the task identifier of the calling process
Returns an indication of the locality of an address
Cancels an outstanding receive request

Returns the task identifier of the process or task that matches the
Object Name and Type Name specified

Opens an Apple IPC queue

Receives a message

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Table 9-1 (continued)

Name Description

Register_Task () Allows a process to register itself with the Object Name and Type

Name specified
Send() Sends a message
SwapTID () Swapsthe mFrom and mTo fields ina message buffer

CloseQueue()

CloseQueue () closesa queue that was previously opened. This IPC call should be
the last one made before an entity terminates.

The C declaration for CloseQueue () is
void CloseQueue() ;

The following example shows how tocall CloseQueue using assembly language:
JSR CloseQueue

CopyNuBus()

CopyNuBus () copies a block of data from the source to the destination, without
checking for overlapping source and destination addresses. The number of bytes is
specified in count. The source address and/or destination address may be Macintosh
main memory of memory on a smart card.

Caution

This routine deals with the complexity of potential 32-bit NuBus addresses for the
source and/or the destination, but does not deal with the possibility of
overlapping buffers. Therefore, do not overlap the source and destination blocks.
because doing so could cause partial overwriting of the destination block.

The C declaration for CopyNuBus () is

void CopyNuBus (source, destination, count)

char . *source; /* Address of source buffer */
char *destination; /* Address of destination buffer */
unsigned short count; /* Byte count */

The following example shows how to call CopyNuBus using assembly language.

Apple IPC services 9-5

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

MOVE.L #Count, - (A7)

PEA Destination

PEA Source

JSR CopyNuBus

ADD.L #12,A7
FreeMsg()

FreeMsg () frees a message buffer that was acquired earlier by a callto GetMsg ().

The number of messages initially available depends upon the number requested in the
named Apple IPC resource entries of type aipn found in the Apple IPC driver file.

The C declaration of FreeMsg () is

void FreeMsg(mptr)
message *mptr; /* pointer to message buffer to free */
The form forthe FreeMsg macro is as follows, where P1 is the address of the
message buffer to be freed:
[Label] FreeMsg Pl

P1 can be specified as a register (A0-A6, D0-D7), or use any 68000 addressing mode
valid in an LEA instruction to specify the location containing the desired address.

GetCard(

GetCard () returns the NuBus slot number of the card on which the calling process is
running. For the Macintosh I computer, the number returned is always zero.

The C declaration for GetCard() is

char GetCard ()

The following example shows how tocall GetCard usingassembly language. Upon
return, DO contains the NuBus slot number on which the calling process is running,

JSR GetCard

9-6 Apple IPC

MCP Developer’s Guide - Final to Production Apple Confidential

GetETick()

GetETick () returns the number of major ticks—that is, the elapsed time in
ticks—since the operating system started.

The C declaration for GetETick () is

unsigned long GetETick();

The following example shows the howto call GetETick using assembly language.
To return the number of major ticks, get the value of location gMajorTick inthe
gCommon data area.

JSR GetETick

«» Note: Atick on the Macintosh 11 is of a different duration than that on an MCP card.

GetlCCTID()
GetICCTID () returns the task identifier of the InterCard Communication Manager.
The C declaration for Get ICCTID () is

tid_type GetICCTID ():

The following example shows the howtocall Get ICCTID using assembly language.
Upon return, DO contains the task identifier of the InterCard Communication
Manager.

JSR GetICCTID

+» Note: Slot 0 has an implicit ICCM, since the ICCM is built into the Apple IPC driver
that is configured into the System File.

GetIPCg()

GetIPCg () retumns the address of the data area of the Apple IPC driver. This routine
is provided as an aid for debugging purposes. Refer to the include files on the MCP
distribution disks for the structure of IPCg.

The C declaration for GetIPCg () is

struct IPCg *GetIPCg():

Warning

Use this call at your own riskl Subject to change with no notice.

Apple IPC services

2/20/89

9-7

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

The following example shows how to call GetIPCg usingassembly language. Upon
return, DO contains the address of the data area of the Apple IPC driver.

JSR GetIPCg

% Note: If you use this routine in Assembler, the routine returns the beginning of the
driver's area; you must change the address by an offset definedin IPCgdefs.a
in order to use the record for this data area.

GetMsg()

GetMsg () requests a message buffer from the free-message pool. GetMsg () either
returns zero indicating failure to obtain a message buffer, or a pointer to the allocated
message. Acallto FreeMsg () releases the message.

All fields in the message, except message ID (mID) and the From address (mF rom) ,
are cleared before the pointer to the message is returned. Message ID is settoa
number that is statistically unique to the field; the From address is set to the current
task identifier.

The C declaration of GetMsg () is
message *GetMsg () ;

The form for the GetMsg macrois
[Label] GetMsg

The address of the allocated message buffer is returned in DO unless no buffer was
available. Inthat case, 0 is returned in DO.

GetNameTID()

GetNameTID () returns the task identifier of the Name Manager.
The C declaration for GetNameTID () is

tid_type GetNameTID ();

The following example shows howtocall GetNameTID usingassembly language.
Upon return, DO is the task identifier of the Name Manager.

JSR GetNameTID

9-8 Apple IPC

e

MCP Developer's Guide - Final to Production Apple Confidential 2/20/89

GetTickPS()
GetTickPS () retumns the number of major ticks in 1 second.
The C declaration for GetTickPS () is

unsigned short GetTickPS ()

The following example provides how tocall GetTickPS usingassembly language.
Upon return, DO is the number of major ticks in 1 second.

JSR GetTickPS

GetTID()
Get TID () returns the task identifier of the calling task.
The C declaration for GetTID () is

tid_type GetTID ()

The following example shows howtocall GetTID using assembly language. Upon
return, DO is the task identifier of the calling process.

JSR GetTID

IsLocal()
IsLocal () returns a true or false indication of whether or not an address is local.
The C declaration for IsLocal() is

short IsLocal (address)
char *address; /* address to test. */

IsLocal () returns true (non-zero) if the address passed is local. IsLocal () retumns
false (zero) if the address passed is a remote NuBus address.

The form forthe IsLocal macro is as follows, where P1 is the address to examine:

[(Label] IsLocal Pl

P1 can be specified as a register (A0-A6, D0-D7), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an LEA instruction to specify the location of a
long word containing the desired value.

Apple IPC services 9-9

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

KillReceive()

KillReceive () cancels any outstanding Receive request for this process.
Messages.destined for this process are not discarded.

The C declaration for KillReceive () is

void KillReceive():;
The following example shows howtocall KillReceive usingassembly language:

JSR KillReceive

Lookup_Task()

Lookup_Task () retums the task identifier of the process or task that matches the
Object Name and Type Name specified, or 0 if no matching process or task is found.
The wildcard character “=" is allowed. Initially, the index should be set to 0; on
subsequent calls, it should be left unchanged.

% Note: Lookup_Task () modifies the variable index. The variable index allows
Lookup_Task () to find any additional entries that may match the criteria in
subsequent calls.

The C declaration for Lookup_Task () is

tid_type Lookup_Task (object, type, nm_TID, index)

char object [1: /* Object Name */

char type [1; /* Type Name */

tid _type nm_TID; /* Name Manager Task Identifier */
unsigned short *index; /* Index */

The task identifier of the Name Manager is nm_TID, and may be obtained by using
GetNameTID () for Name Managers on the Macintosh II, or by sending an
ICC_GetCards message tothe ICCM for Name Managers on NuBus cards .
Lookup_Task () returns the task identifier of the first process or task that matches the
criteria.

The following code shows how to look up all processes on the main logic board of the
Macintosh II computer:

short index:;
tid_type tid;

index = 0;
while ((tid = Lookup_Task ("=", "=", GetNameTID (), &index)) > 0)
printf ("TID %$x Found \n", tid);

9-10 Apple IPC

MCP Developer’s Guide - Final to Production Apple Confidential

The following example shows how tocall Lookup_Task fromassembly language:

MOVE.W #0, INDEX ; initialize index

PEA INDEX ; address of index

MOVE.L TID,DO ; value of tid on stack

MOVE.L DO, - (A7) ; place on stack

PEA TYPE_NAME ; address of type name

PEA OBJECT_NAME ; address of object name

JSR Lookup_Task

ADDQ.W #16,A7 ; pop the stack

TST.W = DO ; check if found

BNE.S DO, XXX ; jump if found
OpenQueue()

OpenQueue () assigns an IPC queue and returns the TID of the process that called
OpenQueue, or zero if no queue could be assigned. This method allows you to set up
your own procedure to determine what to do while waiting on a blocking Receive; if
you do not want to use this mechanism, use a parameter of zero. This method also lets
you decide whether to cancel the outstanding Receive request or discontinue
communication with Apple IPC; that is, it is a way of letting you check for operator
termination. .

This function must be called before any other call to [PC can be made. You can issue
either

O an ApplelPC CloseQueue request, or
O a KillReceive request

If the procedure issues an ApplelPC CloseQueue request and returns to the Apple
IPC driver, then the driver returns to the outstanding Receive request witha value
of 0. Issuinga KillReceive requestretums(Qtothe Receive request(no
message).

The C declaration for OpenQueue () is

tid_type OpenQueue (procedure)
void (*procedure) (); /* Procedure to execute while waiting */
/* for blocking receive to complete. */

* Note: This parameter is required; use 0 if you do not want to call the procedure.

The form for the OpenQueue macro is as follows, where P1 s the address of the
procedure to execute while waiting for a blocking receive to complete:

{Labell] OpenQueue Pl

Apple IPC services

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

P1 can be specified as a register (A0-A6, D0O-D7), an immediate (#<abs-expr>), or
use any 68000 addressing mode valid in an LEA instruction to specify the location of a

long word containing the desired value.

Receive()

Receive () retumns the highest priority message from the message queue of the

process that matches the specified criteria.
The C declaration of Receive () is

message *Receive(mID, mFrom, mCode, timeoutr, compl)
unsigned long mID; /* Unique message ID to wait on */
tid_type mFrom; /* Sender address to wait on = */
unsigned short mCode; /* Message code to wait on */
long timeout; /* Time to wait in major ticks */
/* before giving up */
void compl () ; /* Address of a completion routine */

The first three parameters (mID, mFrom, and mCode) are selection criteria usedto
receive a specific kind of message. These parameters may be set to match eithera

specific value, to match any value (by specifying 0S
value (by specifying OS_MATCH_NONE).

_MATCH_ALL), or to match no

The fourth parameter is the timeout value. A timeout value of 0 waits forever for a
satisfying message. A negative value returns either a satisfying message or 0
immediately, and a positive value waits that many ticks for a satisfying message to

arrive,

+ Note: If a completion routine is not specified, the IPC Receive performs in
exactly the same way as the MR-DOS Receive primitive. ~

The fifth parameter is the address of a C completion routine. This parameter is
required for Apple IPC, and changes the way the Receive request performs. This
fifth parameter must be either the address of a completion routine or zero, if no
completion routine is desired. When this completion routine parameter is non-zcro,
thecallto Receive always returns immediately with a result of 0.

The completion routine will be called with a parameter of type 'message *'. Ifthe
completion routine is passed a pointer of zero, a timeout occurred.

» Note: Itis possible for the completion routine to be called before the Receive
actually returns. The purpose of the completion routine is to provide a mechanism
by which the Macintosh II application can continue to execute without having to wait
for a message. This is necessary because the current version of the Macintosh II
operating system is not a multitasking operating system; therefore, the application
cannot cease to process events. Under MR-DOS, a process can do a blocking
Receive and permit other processes (o execule.

9-12 Apple IPC

MCP Developer’s Guide - Final to Production

Apple Contfidential

Table 9-2 describes the results from various settings of the timeout parameter in major
ticks forthe Receive call. The results column describes what is returned to the
Receive requestand completion routine, as well as when the completion routine is

called.
Table 9-2
State table for the Receive call
Time- Comple- Message Immediate Subsequent
out tion available results results
value routine
<0 No(No Retumns Otothe Receive None
request
No (0) Yes Returns message to None
Receive request
Yes No The Apple IPC driver returns None
Otothe Receive request;
the completion routine is
not called
Yes Yes The Apple IPC driver calls None
the completion routine with
the message, after which
the driver returns 0 to the
Receive request
=0 No(0) No Waits until it gets a message, Waits for a message;

then returns a message tothe OpenQueue routine is

Receive request

No (0) Yes When a message arrives,
returns a message to the
Receive request
Yes No Returns Otothe Receive
" request

When a message arrives, the
driver calls the completion
routine with the message

Yes Yes Returns a message to the
completion routine and
retuns 0to the Receive
request

called continuously.

None

None

None

Apple IPC services

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential 2/20/89

Table 9-2 (continued)

Time- Comple- Message Immediate Subsequent
out tion available results results
value routine

>0 No(0) No Waits for a message OpenQueue routine is
does not arrive called continuously
If the time interval that you

specify expires, then it returns
Otothe Receive request

No (® Yes Message returns to the None
Receive request

Yes No Immediately returns 0 to the None
Receive requestand the
task continues executing

When a message comes in,
the driver calls the completion
routine with the message

If the timeout expires, the
driver calls the completion
routine with 0
Yes Yes Returns a message to the None
completion routine; returns
Otothe Receive request

When using completion routine, you should observe the following guidelines:
O Neveruse a blocking Receive ina completion routine.

O Be cautious about starting the next asynchronous Receive within a completion
routine, as recursion can be deadly.

O Remember that completion routines might sometimes be called as the result of an
interrupt; anticipate the unexpected!

Onlyone Receive may be outstanding ona given queue at a time; attempted
additional Receive routines will return errors, Receive retumns a0 in the event of
one of the following:

O no message is available (either timeout or non-blocking)
O a negative error code in the case of an error
O ora positive pointer to the received message buffer

9-14 Apple IPC

MCP Developer’'s Guide - Final to Production Apple Contidential

% Note: You must exercise caution when testing the pointer retumed by Receive
for a negative value to ensure that the test is valid.

The form for the Receive macro is:

[Label] Receive pPl, P2, P3, P4, PS5
where P1 isthe message ID match code, as follows:

P2 = the sender address match code
P3 = the message code match code
P4 = the timeout code

P5 = the completion routine address

P1 through P5 can each be specified as a register (A0-A6, D0-D7), an immediate
(#<abs-expr>), or any 68000 addressing mode valid in an LEA instruction to specify
the location of a long word containing the desired value.

Results returned

Whenever you call the Receive request on Apple IPC, you get one of three results
retuned from the IPC driver:

oo
O message
O negative number (indicating an error)

Table 9-3 lists the two errors only that can be returned whena Receive requestis

made to Apple IPC.

Table 9-3

Errors returned

Error Number Description

NoQueueErr -64 Error code for no more queues or bad queue
QueueBusy -65 If Receive isalready outstanding on queue

Error 64 (NoQueueErr) is retumed if the queue number (TID) of the task doing the
Receive requestis bad. A queue number is bad if it is not within the range of legal
queue numbers or is not open (either OpenQueue was not done or CloseQueue
was done).

Error 65 (QueueBusy) is retumned if an attempt is made todoa Receive request
for a particular queue number (TID) when a request is already outstanding. Referto
the section earlier in this chapter on OpenQueue for more information.

Apple IPC services

2/20/89

9-15

MCP Developer’s Guide - Final to Production

To check for an error in the message pointer returned bya Receive requestin C
language, you muust cast the message pointer to long before checking to see if the
pointer is negative. -

Apple Confidential

Warning
Faillure to do so will result In a system crash.

The following code checks the message pointer to see if an error code was returned:
message *msgptr;

msgptr = Receive (0, 0, 0, 0, 0);

if ((long) msgptr < 0)

{

/* Process error code */

else

/* No error, process message */

Register_Task()

Register_Task () allowsa process o register itself with the Object Name and Type

Name specified, using the Name Manager. If the process should be visible only to

other processes on the Macintosh II main logic board, local_only is set non-zero.
If the process should be seen by tasks on other cards, then local_only should be
setto0. Register_Task () returnsa non-zero value if the process was registered; if

not, 0 is returned.
The C declaration for Register_Task () is

typedef boolean short:;
char Register_ Task (object, type, local_only):
char object []; /* Object Name */
char type []: /* Type Name */

boolean local_only; /* If Local Visibility Only */

9-16 Apple IPC

2/20/89

MCP Developer’s Guide - Final to Production Apple Confidential

The following code provides an example of how to register a process:

if (!Register_Task ("my_name", "my_type"”, 0))
printf ("Could not Register Process");

The following example shows howtocall Register_Task fromassembly language:

MOVE.L #LOCAL, =-(A7) :; wvalue of local on stack
PEA TYPE_NAME ; address of type name
PEA OBJECT_NAME ; address of object name
JSR Register Task
ADDQ.W #12,A47 ; pop the stack
TST.B DO ; check if register ok
BNE.S OK ; jump if OK

Send()

Send () allows you to send a message to the destination address specified in the
message. Send () places a message on the queue of the process specified by the
message field, mTo. The message is placed in the queue in priority order (from
highest to lowest). It is assumed that all fields have been filled in (mF rom, mTo,
mCode, and so forth) when this call is made.

The C declaration of Send () is

void Send(mptr)
message *mptr; /* pointer to message buffer */

If a message is undeliverable, it is returned to the sender with the message status,
mStatus, setto0x8000 and the message code, mCode, having bit 1 << 15 set.

The assembly-language form for the Send macro is as follows, where P1 isthe
address of the message buffer to be sent:

[Label] Send Pl

P1 can be specified as a register (A0-A6, D0-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the address of the
message buffer to be sent.

Apple IPC services

2/20/89

MCP Developer’s Guide - Final to Production Apple Contidential 2/20/89

SwapTID()

SwapTID () swapsthe mFrom and mTo fieldsof a message buffer.
The C declaration of, SwapTID () is

void SwapTID(mptr)

message *mptr; /* pointer to message buffer */
The assembly-language form for the SwapTID macro is as follows, where P1 isthe
address of the message buffer:
[Label] SwapTID Pl

P1 can be specified as a register (A0-A6, D0O-D7), or can use any 68000 addressing
mode valid in an LEA instruction to specify the location containing the desired
address.

9-18 Apple IPC

Chapter 10

Using the Forwarder with
Apple IPC

MCP Developer’'s Guide - Final to Production Apple Confidential

This chapter describes the Forwarder, tells how the Forwarder sends messages in
conjunction with Apple IPC, provides instructions on installing the Forwarder, lists
the messages and errors codes used by the Forwarder, and provides example code.

What is the Forwarder?

The Forwarder is a mechanism for the interchange of messages between tasks running
on MCP-based cards under MR-DOS and applications over the AppleTalk network
system; the Forwarder communicates via the AppleTalk Data Stream Protocol
(ADSP). (For more information on ADSP and other AppleTalk protocols, refer to
Inside AppleTalk) Both multiple server tasks and requests from multiple client
applications can be handled by the Forwarder.

The Forwarder functions as a gateway, converting ADSP messages to MR-DOS

messages. Figure 10-1 shows the message path when a client machine sends data over

the AppleTalk network system to the server. A server is a NuBus-compatible
Macintosh computer with an MCP-based smart card installed. A client machine is
any Macintosh computer that incorporates code in its application to use the

~ Forwarder. Both the server and client are part of the AppleTalk network system.

The data travels over the AppleTalk network system though the main logic board on
the Macintosh IT to communicate with the task running on the MCP card.

MSC NNNN
ART:NNx 17 pi
20.5 pitext to FN b/b

Figure 10-1
Message paths using the Forwarder

10-2 Using the Forwarder with Apple IPC

2/20/89

Task rurming
in server mode

on MCP =rd

7

—— 7(_____.....---

Main log:c board

Apple IPC
plus Forwarder

Fig.10-1 -COMP (L10)
MCP Developer’s Guide
Apple Computer, Inc.
JOYCE ZAVARRO
Hllustrator 88

GEORGE M. VRANA

~

AppleTalk
network system

cumssssnana’

L
.

AppleTalk application
using ADSP

MCP Developer’s Guide - Final to Production Apple Contidential 2/20/89

How the Forwarder sends messages

The Forwarder sends messages when:

O atask running under MR-DOS on an MCP card wants to send data to an application
on another machine over the AppleTalk network system

O anapplication running on a machine on the AppleTalk network system wants to.
send data to a task running under MR-DOS

The following figures show the processing sequence using the Forwarder when an
application running on a client machine wants to send a message to an MCP card (the
server) over the AppleTalk network system.

Within the file FWD are two resources that can be used for configuring the Forwarder:

O svcn, which tells the Forwarder how much memory to preallocate for the server
and for communications. The Forwarder will attempt to call for this number of free
services and free (validate?) communication memory available.

O sysz, which can be changed to increase the size of the system heap. For more

information, refer to the section about the INIT Resource 31 in nside Macintosh,
Volume 5, “System Startup Information”.

Initialization
Figure 10-2 lists the initialization process for the Forwarder, the server, and the client
respectively.

MSC NNNN
ART: NN x 17 pi
20.5 pitext to FN b/b

Figure 10-2
Initialization process using the Forwarder

How the Forwarder sends messages 10-3

Initialization process
using the Forwarder

Ead of Forwarder _
initialization

End of Server
initialization -

End of Client
initialization -

Fig 10-2 -COMP (L16)
MCP Developer’s Guide
Aprle Computer, Inc.

JOYCE ZAVARRO
llluszrator 88

GEORGE M. VRANA

=
Server | Forwarder Client
MR-DOS on | onthe Madintosh I on the AppleTalk
the MCP Card B network system
| Mac I boots up;
| Forwarder registers
| name with MR-DOS
_} Name Manager
_____________ e B et
MCP card gets loaded; |
server starts executing
on card :
Uses Name Manager |
Lookup_Task () :
0 request to :
find Forwarder !
Sends |
MC_OPENSERVER |
to Forwarder to I
register name !
on AppleTalk !
Wait !
______________ EGELLETEEES § EERPEEEEEEEEE
Server open : Issues an NBP Look _Up
for business] for servers on the
' AppleTalk network system
I
: Opens an ADSP connection
] to the Forwarder via
: ADSP driver request
______________ Ao]
1
normal processing follous....

MCP Developer’'s Guide - Final to Production Apple Confidential 2/20/89

The Forwarder registers its name with the Name Manager using the

Register_Task () routine using the Object Name "Forwarder™ and Type Name
"ADSP". The server task issues a MR-DOS Name Manager Lookup_Task () request

to find the TID of the Forwarder .

The server task then registers its name with the Forwarder withan MC_OPENSERVER
call, which the Forwarder acknowledges. The Forwarder then registers the server's
name using the Name Binding Protocol (NBP) Look_Up call (refer to Inside
AppleTalk for more information). The application on a client machine finds the
Forwarder also using the NPB Look_Up call.

Normal processing using the Forwarder

Figure 10-3 illustrates normal processing using the Forwarder. This set of messages are
repeated as long as the server and client want to communicate with each other.

MSC NNNN
ART: NN x 17 pi
20.5 pi text to FN b/b

Figure 10-3
Normal processing using the Forwarder

The application on a client machine on the network initiates a connection to the
Forwarder using ADSP; the application then sends a message (or messages) to the
Forwarder. The Forwarder generates a Connection ID to identify the ADSP
connection when the connection is established.

The Forwarder then sends the message to the server using the MC_READDATA
message code and waits for a reply from the server. At this point, the server knows the
Connection ID (which identifies the client application).

«» Note: Messages are sent one at a time in either direction. Before a second message
can be sent, the sender must wait for an acknowledgement. There can be one
MC_READDATA andone MC_SENDDATA outstanding per connection at any one
time.

10-4 Using the Forwarder with Apple IPC

Normal processing
using the Forwarder

==
Server | Forwarder Client
MR-DOS on | on the Macintosh II on the AppleTalk
the MCP Card ! network system
I
|
! Client sends data via
| ADSP to the Forwarder
i
: Sends data to server
| using MC_READDATA
|
Server sends data |
to dient via :
the Forwarder using |
MC_SENDDATA !
[
Server sends :
acknowledgement !
of receiving data from 1
the Forwarder |
MC_READDATA+1 !
: Forwarder sends
| thedatatothe
| client via ADSP
] Client receives data
| Forwarder sends reply
| toserver using
| MC_SENDDATA+1
1
end of processing folous. ..

Fig 10-3 -COMP (L16)
MCP Developer’s Guide
Apple Computer, Inc.
JOYCE ZAVARRO

Nllustrator 88

GEORGE M. VRANA

MCP Developer’s Guide - Final to Production Apple Confidential

The server prepares a reply and sends it back to the Forwarderinan MC_SENDDATA
message code, after which the Forwarder sends MC_SENDDATA+1 toreplytothe
server. The Forwarder then sends the message over the AppleTalk network system to

the requesting application on the client machine.

% Note: The server can send data acknowledgement (MC_READDATA+1) either before
or after the server sends data using MC_ SENDDATA, depen<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>