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About the Copland I/O Architecture 1

 

This chapter provides an overview of the Copland I/O architecture. The 
Copland I/O architecture is designed to improve the user experience by 
providing superior performance, better responsiveness, and increasingly 
robust systems, and by supporting the advancements inherent in a 
microkernel-based operating system. It improves the developer experience by 
increasing the predictability of I/O responsiveness, by simplifying driver 
development, and by providing an updated 68K driver interface and an 
improved concurrent Device Manager.

You need to understand the framework that the I/O architecture provides for 
innovation and how it affects compatibility with both hardware and software 
products if you are one of the following types of developers:

 

■

 

If you are a Mac OS licensee, you need to understand the I/O architecture to 
be certain that devices you incorporate into your hardware product will 
operate with Copland and to understand how software can be loaded into 
your product when it is turned on.

 

■

 

If you are a hardware vendor who makes NuBus

 



 

 or PCI cards, ADB 
devices, GeoPort

 



 

 pods, or other hardware devices, you need to know how 
to create software that allows access to your product.

 

■

 

If you are a system-extension author who produces software products such 
as network protocol implementations, file system implementations, and 
virtual device drivers to extend the capabilities of the system, or if you 
develop system utilities such as driver installers, hard disk formatting and 
partitioning packages, and emergency repair products, you need to 
understand the I/O architecture to determine if you need to modify your 
software product to run on Copland. 

 

■

 

If you are an application developer whose application writes to or otherwise 
manipulates devices, you need to understand how to take advantage of the 
new features in the Copland I/O architecture and how to enhance your 
application’s compatibility with future versions of Mac OS.

This chapter briefly introduces the Copland I/O architecture. Then it discusses

 

■

 

short- and long-term design goals of the I/O architecture

 

■

 

architectural features, such as the Driver Loader Library, the Driver Services 
Library, booting services, power management, the user activity monitor, and 
support for hot swappable devices

 

■

 

selected aspects of I/O families and plug-ins 
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■

 

family activation models

 

■

 

the Name Registry as it is used by the I/O system

 

■

 

compatibility issues for device driver writers and application developers

You’ll find this chapter easier to understand if you are familiar with certain 
features of Copland, such as its tasking mechanisms, the defined execution 
environments and execution modes, distinct address spaces, and microkernel 
messaging. You can find information about these topics in previous chapters in 
this document and in 

 

Microkernel White Paper

 

.

 

Introduction 1

 

Copland changes how the lowest levels of the Mac OS work. It implements a 
tasking model of process management, with address space protection for tasks 
executing in supervisor mode. Drivers execute in supervisor mode. The 
transition to a microkernel-based, preemptive, multitasking operating system 
has significant implications for developers creating drivers and other I/O 
services for the Mac OS and for applications that use them:

 

■

 

Applications running in user mode and driver software running in 
supervisor mode have no direct access to each other’s data. Drivers are 
protected from applications and vice versa. Access to driver services is 
available only through an I/O family’s programming interface.

 

■

 

I/O devices are not directly accessible to application software, nor is it 
vulnerable to application error. Applications have access to hardware 
services only through an I/O family’s programming interface.

 

■

 

The context within which a driver runs and the method by which it interacts 
with the system are defined by the I/O family to which it belongs.

You can find more information on these topics in the section “Compatibility—
Backward and Forward,” beginning on page 1-34.

The Copland I/O architecture introduces new terminology. An I/O 

 

family

 

 is a 
collection of software pieces that provide a single set of services to the system, 
such as the SCSI family and its SCSI interface modules (SIMs) or the file 
systems family and its installable file systems. Each family defines a family 
programming interface (FPI) designed to meet the particular needs of that 
family. An FPI provides access to a given family’s plug-ins.
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A 

 

plug-in

 

 is a dynamically loaded piece of software that provides an instance 
of the service provided by a family. For example, within the file systems family 
(File Manager), a plug-in implements file-system-specific services. Plug-ins are 
a superset of device drivers—all drivers are plug-ins, but not all plug-ins are 
drivers.

Figure 1-1 illustrates an example of the relationship between an application, 
several I/O families, and their plug-ins. An application requests services 
through an FPI, shown in the figure as the File Manager API. Typically, the 
service requests flow as microkernel messages to FPI servers, shown in the 
figure as gray arrows. 

In this architecture, code that executes in supervisor mode, such as plug-ins, 
family implementations, and the FPI servers, is 

 

trusted

 

. A failure in one of these 
software subsystems can cause complete system failure. However, failure of 
any particular application does not affect the ability of the I/O system and 
other microkernel-level services to continue serving other clients. The I/O 
system is insulated from application error.
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Figure 1-1

 

High-level view of an application, I/O families, and plug-ins 

 

Note that Figure 1-1 shows three I/O families that work together to complete a 
service request. The application makes the service request which then moves 
through the file system family, the block storage family, and the SCSI family. 
However, this does not imply any hierarchical relationship among families. In 
fact, all families are peers of each other. 

In introducing the concepts of family and plug-in, the Copland I/O 
architecture formalizes existing programming practices. For example, when an 
application accesses the services of a video device through the Display 
Manager, it is calling the display family. The Display Manager API is tailored to 
the needs of video devices. Likewise, when an application calls the Sound 
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Manager, it is calling the sound family. The family concept in the Copland I/O 
architecture explicitly acknowledges that devices of similar sorts share many 
characteristics and needs. Therefore, it provides family programming interfaces 
tailored to the needs of specific device families. These specially tuned sets of 
services allow drivers for a given family to be as simple as possible. 

Families and plug-ins are described in more detail in the next two sections. 

 

Families 1

 

The notion of family is fundamental to the Copland I/O architecture. A family 
provides a distinct set of services to the system. For example, the Open 
Transport family and its Data Link Provider Interface (DLPI) device drivers 
provide network services; the block storage family and its block storage drivers 
provide access to a variety of block storage mediums. Often, a family is 
associated with a set of devices that have similar characteristics, such as 
display devices or ADB devices.

Apple will provide the following families in its first release of Copland:

You can create additional I/O families, extending the base system features and 
APIs. Each family provides the following software pieces:

 

■

 

a family programming interface and its associated FPI library or libraries for 
its clients

 

■

 

an FPI server

 

■

 

an activation model

 

■

 

a family expert

Device Manager family Open Transport family 

ADB family Keyboard family

Pointing family Display family

SCSI family Sound family

PRAM family IDE family

Real time clock family PCI family

File systems family PCMCIA family

Block storage family NuBus family
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■

 

a plug-in programming interface for its plug-ins

 

■

 

a family services library for its plug-ins 

Figure 1-2 provides a high-level view of how selected family software pieces 
are related.

 

Figure 1-2

 

Family software diagram
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The 

 

family programming interface

 

 (

 

FPI

 

) provides access to the family’s 
services to applications, to plug-ins from other families, and to system 
software. The term 

 

family programming interface

 

 distinguishes an I/O family’s 
API from other APIs provided by Copland, such as microkernel APIs or 
high-level Toolbox APIs. Each FPI is designed to provide callers with services 
appropriate to a particular family. 

The FPI library contains the code that passes requests for service to the family 
FPI server. Typically, an FPI library maps FPI function calls into microkernel 
messages and sends them to the family’s FPI server for servicing. To make 
certain optimizations possible, a family may provide two versions of its FPI 
library, one for user-mode clients and one for supervisor-mode clients.

An 

 

FPI server

 

 runs in supervisor mode and responds to service requests from 
family clients. How it responds to a request depends on the family’s activation 
model. For instance, it may put a request in a queue or it may call a plug-in 
directly to service the request. If the FPI library and the FPI server use 
microkernel messaging to communicate, the FPI server supports a message 
port. The choice of microkernel messages as a communication mechanism is 
not visible to family clients. Clients use only the FPI to make requests of the 
family and its plug-ins. This is a change from the existing Mac OS in which 
both high-level and low-level interfaces to components of the operating system 
are available.

An 

 

activation model

 

 provides the runtime environment of the family and its 
plug-ins. For information about activation models, see the section “Activation 
Models,” beginning on page 1-24.

A 

 

family expert

 

 (also referred to as a 

 

high-level expert

 

) is the code within a 
family that maintains knowledge of the set of family plug-ins within the 
system. At system startup, and each time it’s notified of a change in the Name 
Registry, the family expert scans the system’s Name Registry for plug-ins that 
belong to its family. For example, a display family expert looks for display 
device entries. When a family expert finds an entry for a family plug-in, it 
instantiates the plug-in, making it available to clients of the family. The system 
notifies the family expert on an ongoing basis about new and deleted nodes in 
the Name Registry. As a result, the set of plug-ins known to and available 
through the family remains current with changes in system configuration. 

Family experts do not add or alter information in the Name Registry, nor do 
they scan hardware. Families don’t care about how devices are connected to the 
system—they are insulated from knowledge of physical connectivity. To learn 
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how device information gets into the Name Registry, see the section “Name 
Registry,” beginning on page 1-33.

The 

 

plug-in programming interface

 

 (

 

PPI

 

) provides a family-to-plug-in 
interface that defines the entry points a plug-in must support so that it can be 
called and a plug-in-to-family interface that defines the routines plug-ins must 
call when certain events, such as an I/O completion, occur. In addition, a PPI 
defines the path through which the family and its plug-ins exchange data.

A 

 

family services library

 

 is a collection of routines that provide services to the 
family’s plug-ins. The services are specific to a given family and may be 
layered on top of services provided by the microkernel. Within a family, the 
family services library implements the methods by which data is 
communicated, memory is allocated, interrupts are registered and serviced, 
and timing services are provided. Family services libraries also maintain state 
information needed by a family to dispatch and manage requests.

For example, the services library for the display family provides routines that 
deal with vertical blanking because display devices care need them. Likewise, 
because SCSI device drivers must manipulate command blocks, the SCSI 
family services library contains routines to do that easily. A family services 
library that provides commonly needed routines simplifies the development of 
that family’s plug-ins.

 

Plug-ins 1

 

A plug-in is a dynamically loaded piece of software that provides an instance 
of the service provided by a family. For example, within the file systems family, 
a plug-in implements file-system-specific services. The plug-ins understand 
how data is formatted in a particular volume format such as HFS or DOS FAT. 
But file systems family plug-ins don’t understand how to get data from a 
physical device. To do that, a file system family plug-in talks to the block 
storage family. Block storage plug-ins provide both media-specific drivers—
such as a tape driver, a CD-ROM driver, or a hard disk driver—and volume 
plug-ins that represent partitions on a given physical disk.

With the first release of Copland, Apple will provide plug-ins for the families 
listed on page 1-7. Third-party hardware developers are encouraged to develop 
new plug-ins.

All plug-ins share the following characteristics:
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■

 

They must conform to their family activation model.

 

■

 

They cannot call Toolbox routines.

 

■

 

They run in supervisor mode and have access to the microkernel’s protected 
memory space. 

 

■

 

They are packaged as Code Fragment Manager fragments.

 

■

 

They can be written in a high-level language.

 

■

 

They must be written in native PowerPC code. 

 

■

 

They have a layered structure. Most of their work is done in a task. Some 
small amount of work may be done by interrupt handlers. The layered 
structure model for plug-in development allows code to be 
compartmentalized so that it works well within the Copland environment. 

The typical parts of a plug-in include

 

■

 

the main code section that runs as a supervisor-mode task. It is here that the 
plug-in does most of its work.

 

■

 

a hardware interrupt handler that services hardware interrupts if the plug-in 
responds to a physical device. Only essential work that cannot be done in 
the task should be done by the hardware interrupt handler.

All plug-ins must have a main code section, but not all will have a hardware 
interrupt handler. 

Plug-in code executes in supervisor mode and responds to client service 
requests made through the FPI. For example, Device Manager family plug-ins 
(device drivers of family type 

 

'ndrv'

 

) respond to the functions 

 

Open

 

, 

 

Close

 

, 

 

Control

 

, 

 

Prime

 

, and so on. 

Plug-in code should make no assumptions about particular hardware settings 
or configurations. The main code section should never attempt to obtain device 
configuration information directly from APIs such as the Resource Manager or 
the File Manager. A plug-in obtains configuration information in several ways. 
It can read the static configuration information stored in the Name Registry. 
Dynamically changing configuration information is communicated to a plug-in 
through the plug-in programming interface; when a family client uses the 
family’s programming interface to notify the family of a configuration change, 
the family notifies the plug-in. In addition, a plug-in can call another family to 
obtain some types of configuration information. For instance, a video plug-in 
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may call the PRAM family programming interface to obtain video mode 
information stored in PRAM prior to the last system reboot.

The hardware interrupt handler executes in supervisor mode and responds to 
interrupts from a physical device. It should perform only essential functions, 
deferring all other work to the plug-in task or a secondary interrupt handler. 
The plug-in programming interface specifies how interrupts are managed 
within a family.

 

Design Goals for the Copland I/O Architecture 1

 

The next two sections describe the short-term and long-term design goals of the 
Copland I/O architecture.

 

Short-Term Design Goals 1

 

In the first release of Copland, the I/O architecture is targeted to meet the 
following design goals:

 

■

 

End-user flexibility.

 

Mac OS provides end users with tremendous value 
that is directly attributed to the flexibility and adaptability of its I/O system. 
For example, its plug-and-play capability and dynamic monitor 
configuration are features that are simply not possible with many I/O 
architectures. The Copland I/O architecture is designed to provide these 
end-user features and to retain the flexibility of the Mac OS. 

 

■

 

Performance.

 

The architecture favors lower-latency responses over higher 
bandwidths to provide greater responsiveness to users. To help achieve this 
goal, all drivers and all their support services are native. Additionally, very 
little code is permitted to run at the hardware-interrupt level. Although the 
architecture does not guarantee the best performance for burst and 
single-stream high-bandwidth clients, the Copland implementation will 
produce much better throughput results than that available in System 7. The 
I/O architecture provides support for the real-time needs of MIDI, Sound, 
GeoPort, and QuickTime and enables implementations that meet or exceed 
the performance of competing platforms.

 

■

 

PCI driver compatibility.

 

The Copland I/O architecture extends the 
architecture for the I/O system on PCI-based Mac-compatible computers. 
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Drivers compliant with the specification for driver development contained 
in the document 

 

Designing PCI Cards and Drivers for Power Macintosh 
Computers

 

 will continue to function well within the Copland I/O model. In 
addition, Copland seeks to provide binary compatibility with PCI 
ROM-based video and network drivers developed in accordance with the 
specification for native drivers described in 

 

Designing PCI Cards and Drivers 
for Power Macintosh Computers

 

.

 

■

 

Reliability, availability, and serviceability.

 

In Copland, the I/O system 
works as expected and continues to work acceptably in the face of failures of 
particular subsystems. For instance, disk I/O continues to work if a failure 
in the serial hardware occurs. When failures do occur, the I/O system 
provides support for analysis and corrective measures by the user and by 
support organizations.

 

■

 

Resource allocation and control.

 

Having limited resources, the 
components of the Copland I/O system distribute those resources in a fair 
and meaningful fashion among themselves. In particular, the first driver 
loaded cannot consume resources such as memory, message ports, timers, 
interrupt latency, or bus bandwidth in a way that prevents subsequent 
drivers from loading or operating correctly. Configurations that cannot work 
because their needs are mutually exclusive are recognized and reported in a 
meaningful way.

 

■

 

Power management.

 

Obviously required for battery-powered systems 
such as PowerBook

 



 

 computers, the need for integrated power 
management is increasing for all systems. The I/O architecture provides an 
infrastructure to enable optimal power management in diverse systems.

 

■

 

Extensibility.

 

The Copland I/O architecture enhances the ability of OEMs 
to create Mac-compatible hardware and peripherals. It is intended that all 
hardware-dependent software fall into one of two categories:

 

n

 

software based on clearly defined hardware invariants such as big-endian 
addressing and the PowerPC 601, 603, and 604 processors 

 

n

 

software that is dynamically loadable at system startup time, such as 
drivers, the SCSI Manager, and SCSI interface modules

 

Long-Term Design Goals 1

 

In subsequent releases of Mac OS, the I/O architecture is targeted to meet these 
additional design goals:
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■

 

Multiprocessor support.

 

High-quality support for a limited number of 
tightly coupled, cache-coherent processors is a long-term goal of the 
architecture. While revisions to the architecture may be desirable for 
multiprocessor systems, conforming I/O components should be compatible 
within multiprocessor versions of the architecture.

 

■

 

Real-time I/O support. The architecture specifies basic support for 
real-time I/O needs, largely as a subset of the resource allocation and control 
mechanisms provided by the architecture. Families and plug-ins are 
prioritized according to their needs to better support real-time clients. 

■ Improved reliability, availability, and serviceability (RAS). RAS is the 
natural successor to the Mac OS plug-and-play capability. The addition of 
RAS to Mac OS provides users, system administrators, and technicians with 
a broad set of tools for maintaining a Mac OS system, resulting in lower 
training and support costs. RAS is one of the mechanisms by which Mac OS 
will maintain its lead as the easiest and most configurable system available. 

■ Visual system administration. Enabling end users, system administrators, 
and support staff to examine and manipulate the configuration of a specific 
system is a natural extension to the benefits of RAS support.

■ Scalable to future technologies. Copland provides sufficient architectural 
integrity to ensure that implementations of technologies that are not quite 
available today are obtainable on desktop platforms. ATM and infrared 
networking and Firewire bus connectivity are examples of such technologies.

■ Distributed computing. As system performance increases, it is 
increasingly reasonable to provide access to devices that are not attached 
directly to the CPU on which an application is running. For example, with 
high-cost, high-speed networks, video capture via a frame-grabbing card 
plugged into a computer in another office is possible today. As networking 
costs decrease, distributed services become feasible on increasing numbers 
of desktop systems. Distribution of I/O subsystems across a suitable 
network is a long-term goal of this architecture. 

■ Universal booting.  A single system image that boots on all hardware 
configurations that support Copland is a goal of the architecture. In 
addition, these systems will support both minimal and third-party 
customized installations of Mac OS. 



C H A P T E R  1

About the Copland I/O Architecture

Architectural Features 1-15
Draft. Preliminary, Confidential.   Apple Computer, Inc. 10/23/95

Architectural Features 1

This section describes several fundamental I/O system services provided by 
the Copland I/O architecture. They are baseline services present in the system. 
They are not specific services for different classes of devices such as serial 
devices or video display monitors.

Driver Loader Library 1

The I/O architecture provides a Driver Loader Library. The Driver Loader 
Library is a set of routines that all I/O families can use to locate and instantiate 
their plug-ins. The routines work with all plug-ins regardless of whether the 
plug-in is a driver and regardless of whether the driver touches hardware. The 
services provided by the Driver Loader Library fall into three categories:

■ routines that provide family experts with an easy way to instantiate 
plug-ins. All plug-ins are packaged as Code Fragment Manager fragments, 
frequently referred to as shared libraries. This set of utility routines serves as 
a wrapper around CFM functions. They hide CFM complexities, giving 
family experts a simple set of functions to access the shared libraries they 
need and load them into memory.

■ driver matching routines that help family experts locate a device driver for a 
given piece of hardware. This makes driver replacement easy and provides 
support to families that manage drivers for hot swappable devices.

■ routines that work with the Device Manager family. They install, remove, 
and replace driver entries in the unit table.

Driver Services Library 1

The Driver Services Library provides basic driver services to families. It 
contains all the base-level generic services needed by families and plug-ins, 
such as interrupt registration, timing facilities, allocation and deallocation of 
memory, and secondary interrupt-handling capabilities. 
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The Interrupt Manager is part of the Driver Services Library. It provides 
routines that allow drivers to install the interrupt handlers that are invoked 
when a device presents an interrupt to the system. 

Families can extend the base system services in family-appropriate ways by 
adding a family services library to augment the services available from the 
Driver Services Library. In some cases, a family services library will replace the 
Driver Services Library. For example, plug-ins belonging to the Open Transport 
family don’t link to the Driver Services Library, because the Open Transport 
family services library provides all the services they need.

Booting Services 1

The I/O architecture provides a method for loading and launching the system 
software. The Copland microkernel booting architecture maintains the Mac OS 
user experience at system startup. The user should not be required to build a 
system tailored for the hardware that the system will run on. Many users may 
choose to install hardware support for a large class of devices that might be 
connected to their computers. For those users, the system finds the right 
support software at startup time and configures that software into a runnable 
system without user intervention. 

Power Management 1

The I/O architecture provides mechanisms for power state transitions within 
the system, such as bringing the system up the first time, shutting it down 
completely, moving from low to high power, and maintaining a sleep state. It 
provides APIs for power management at the application, plug-in, and system 
levels. 

There are at least three systemwide power states:

■ Full power-on mode. The core system is available for service requests. 
Within this mode, some devices, applications, and services may manage 
their power requirements independent of the system as a whole. Low-power 
mode is a substate of full-power mode, in that it affects only those devices 
that can continue to perform with less power.

■ Sleep mode. The contents of memory are preserved, but active processing 
is halted.
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■ Power-off mode. The entire system is powered down and no processing of 
any sort is possible. 

For the purposes of power management, there are three classes of devices and 
services: 

■ CPUs that have low-power modes in which some processing can still take 
place. 

■ Devices and services with a user interface that are therefore directly tied to 
user actions, such as keyboards, screens, modems, applications, and 
networks.

■ Devices without a user interface, such as hard disks that may be controlled 
independently from user activity.

Given the fuzzy boundaries in the device and service categories and the 
varying nature of each device, the I/O architecture provides mechanisms for 
controlling power state transitions without setting policy for devices or 
services. A centralized power management service provides coordinated 
systemwide power state changes based on input from services and drivers.

The power state and power requirements of each device that is power 
managed is maintained in the centralized power management service. This 
power management service receives input from the User Activity Monitor 
service and individual applications and services. It provides notification to 
applications, drivers, and services, manages systemwide power state 
transitions, and provides centralized administration of device power behavior.

User Activity Monitor 1

Power management requires the ability to detect when the user is doing 
something with the computer. In Copland, the User Activity Monitor provides 
the power management service with information about user activity so that it 
can know when to put the system into sleep mode, turn a monitor down or off, 
and so forth.

Copland uses an activity timer to detect idle periods. Activity is defined as 
mouse motion or keyboard activity. Other events, such as the arrival of data on 
a serial interface, can also be considered activity.

The User Activity Monitor accepts requests for notification from I/O 
subsystems. Subsystems can request to be notified when a specified amount of 
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time elapses during which there is no user activity. Any of the events defined 
as user activity cause the timer to be reset. Subsystems may also be notified 
that activity has occurred. This is useful when subsystems have already 
received notification of inactivity and powered down their hardware. Here are 
some examples of why a subsystem should use the User Activity Monitor:

■ The screen backlight on a PowerBook computer needs to dim after a 
user-controllable amount of time elapses with no activity.

■ The CPU should transition into low-power mode when no compute-bound 
process is running and a user-controllable amount of time elapses with no 
activity.

■ The entire computer needs to transition into sleep mode after a 
user-controllable amount of time elapses with no activity.

The subsystems that can register activity must do so. They must tell the User 
Activity Monitor that activity has occurred, causing it to reset its inactivity 
timer and notify requesters (if any) of the event.

Support for Hot Swappable Devices 1

The Copland I/O architecture provides support for hot swappable devices 
such as PCMCIA cards—that is, it can support dynamic changes in 
connectivity to devices that may appear and disappear at any time. This feature 
allows a user to insert and remove devices such as disk driver card or modem 
card without powering down and restarting the computer. The family expert 
code that locates and instantiates the family plug-ins remains resident for 
families whose plug-ins exhibit dynamic plug-and-play characteristics.

A Closer Look 1

This section consists of selected topics concerning I/O families and plug-ins.

Families 1

The next sections discuss family programming interfaces and family 
communication models.
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Family Programming Interfaces 1

A family provides either a user-mode or a supervisor-mode FPI library, or both, 
to support the family’s FPI. Figure 1-3 illustrates an abstracted view of the 
Copland I/O architecture. Each of the large blocks in the area below the thick 
horizontal line represents an instance of a family. Boxes that share an edge 
represent directly callable interfaces.

In the area above the thick horizontal line, the boxes labeled xlibu and zlibu 
represent the FPI libraries that support the programming interfaces for families 
x and z, and that are available to user-mode clients. In the area below the thick 
horizontal line, the boxes labeled ylibk and zlibk represent the FPI libraries for 
families y and z that are available to supervisor-mode clients. Typically, FPI 
libraries map FPI functions into microkernel messages. 

Both the user-mode and the supervisor-mode versions of the FPI libraries 
present exactly the same interface to clients—a single FPI is the only way 
family services can be accessed. Copland distinguishes between the user-mode 
and supervisor-mode versions to permit optimization of the supervisor-mode 
FPI libraries in some instances. For example, operations that must be 
implemented in the user-mode library, such as copying data across address 
space boundaries, may be unnecessary in the supervisor-mode library. In some 
instances, the user-mode and supervisor-mode versions maybe the same.

An FPI server dispatches requests for services to the family. Typically, it does 
this by receiving a microkernel message, mapping the message back into the 
FPI function called by the client, and then calling the function. There is a 
one-to-one correspondence between the FPI functions called by clients and the 
functions called by FPI servers as a result. Take as an example the x family in 
Figure 1-3. The box labeled x represents the interface presented to the FPI 
server by the x family. It is exactly the same as the FPI available to applications 
or other system software.

The box labeled x family implementation represents the family activation model 
that defines how the request is actually serviced by family code and plug-in 
code.
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Figure 1-3 A closer look at the Copland I/O architecture

Family Communications 1
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The messaging model facilitates the development of families and plug-ins by 
providing a very easy programming model. It is a straightforward interfamily 
communication mechanism that fits well within Copland tasking mechanisms. 
The use of microkernel messaging permits greater independence of family 
activation models.

An added benefit to using microkernel messaging is that improvements in the 
messaging and tasking performance of the microkernel are reflected in 
corresponding performance improvements throughout the I/O system. 

Plug-ins 1

Family plug-ins must operate within the activation model mandated by the 
family and provide the code and data exports described by family 
documentation. For example, Designing PCI Cards and Drivers for Power 
Macintosh Computers contains descriptions of the required interfaces and 
activation models for networking and video plug-ins. The required code and 
data exports and the activation model for each of these two families of drivers 
is family specific and different. The packaging for the two family driver types 
is the same.

The standard family and plug-in definitions cover most cases of I/O 
component development. However, there are exceptions to the model. The next 
sections describe two; there may be more.

Extending Family Programming Interfaces 1

A plug-in may provide a plug-in-specific interface that extends its functionality 
beyond that provided by its family. This feature is useful in a number of 
situations. Take, for example, a block storage plug-in for a CD-ROM device. In 
addition to the block storage plug-in interface required of the CD-ROM device, 
many CD-ROM devices also present an interface that allows knowledgeable 
application software to control audio volume and to play, pause, stop, and so 
forth. Such added capabilities require a plug-in-specific API.

Most family interfaces provide some level of extensibility to the family’s 
plug-ins. For example, the Device Manager allows extensible sets of control 
and status selectors that may be used to gain device-specific information and 
control. And Open Transport device drivers may receive special calls to extend 
the device information and control. This kind of device extension within the 
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family framework is not changed with the Copland I/O architecture. If, 
however, a device wishes to export extended functionality outside the family 
framework, it needs to provide a separate message port and an interface library 
for that portion of the device driver, as shown in Figure 1-4. 

Figure 1-4 illustrates a plug-in module labeled z plug-in that extends beyond 
the z family boundary. z plug-in is a plug-in with an extended API—it offers 
features in addition to those available to clients through it’s family’s 
programming interface. To make its extra services available, the plug-in must 
provide the additional software shown in Figure 1-4: 

■ dlibu: the interface library

■ d FPI server: the message port code 

■ d: the code that implements the extra features 

Figure 1-4 Extending a family programming interface
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Sharing Code and Data Between Plug-ins 1

Two or more plug-ins can share data or code or both, regardless of whether the 
plug-ins belong to the same family or to different families. Sharing code or data 
is desirable when a single device driver wishes to subscribe to two or more 
families. Such a driver needs a plug-in for each family. These plug-ins can share 
libraries that contain information about the device state and common code. 
Figure 1-5 illustrates two plug-ins that belong to separate families and that 
share code and data.

Figure 1-5 Plug-ins that share code and data
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vendor-supplied family, and its plug-ins are the device drivers that come with 
the solution. 

Activation Models 1

A family’s activation model defines how the family software is implemented 
and the environment within which a family’s plug-ins execute. It defines the 
relationship between family code and its plug-ins, including such things as

■ the tasking model a family uses 

■ the opportunities the family plug-ins have to execute and the context of 
those opportunities (for instance, are the plug-ins called at task level? at 
secondary interrupt level? and so forth)

■ the knowledge about states and processes that a family and its plug-ins are 
expected to have

■ the portion of the service requested by the client that is performed by the 
family and the portion that is performed by the plug-ins 

■ the required characteristics of plug-ins, such as whether the plug-in blocks 
or returns an error when it encounters resource exhaustion

If you want to develop a new I/O family, you need to design and implement 
an activation model that best suits the needs of your I/O family. If you want to 
develop a new plug-in, you need to understand the activation model used by 
the family to which your plug-in belongs.

This section describes three family activation models used in the Copland I/O 
system. Each model provides a distinctly different environment for the plug-ins 
to the family, and different implementation options for the family software. The 
activation models discussed are

■ the single-task model

■ the task-per-plug-in model

■ the task-per-request model

Many variations of (and hybrid approaches to) the activation models discussed 
here are possible and to be expected. The choice of activation model is left to 
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the family designer. The selected models are simply examples of how you can 
implement a family. 

To provide the asynchronous or synchronous behavior desired by the family 
client, the three activation models discussed here use microkernel messaging as 
the interface between the FPI libraries that family clients link to and the FPI 
servers. Within all activation models, asynchronous I/O requests are provided 
a task context. In all cases, the implementation of the FPI server depends on the 
family activation model. 

The choice of activation model limits the plug-in implementation choices. For 
example, the activation model defines the interaction between a driver’s 
hardware interrupt handler and the family environment in which the main 
driver code runs. A plug-in must conform to the activation model employed by 
its family.

You cannot understand the discussion of activation models without some 
understanding of Copland’s messaging system and the tasking and interrupt 
mechanisms that define the environments in which software executes. You can 
find information about these topics in earlier chapters in this document and in 
Microkernel White Paper.

Single-Task Model 1

In the single-task activation model, the family runs as a single monolithic task 
that is fed from above by a request queue and from below by interrupts 
delivered by the plug-ins. Requests are delivered from the FPI library to an 
accept function that queues the request for processing by the family’s 
processing task and wakes the task if it is sleeping. Queuing, synchronization, 
and communication mechanisms within the family follow a well-defined set of 
rules specified by the family. 

The interface between an FPI server and a family implementation using the 
single-task model must be asynchronous. Regardless of whether the family 
client called a function synchronously or asynchronously, the FPI server always 
calls the family code asynchronously. The FPI server must maintain the set of 
microkernel message IDs that correspond to messages to which the FPI server 
has not yet replied. 

Consider as an example the Open Transport family, which uses the single-task 
activation model, shown in Figure 1-6. The Open Transport FPI server is an 
accept function that executes on the thread of the calling client via the FPI 
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library. An accept function, unlike message-receive-based microkernel tasks, is 
able to access data within the user and microkernel bands directly. The accept 
function messaging model requires that the Open Transport FPI server be 
reentrant because the calling client task may be preempted by another Open 
Transport client task making service requests.

Figure 1-6 Single-task activation model
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When an I/O request completes within the Open Transport environment, the 
Open Transport stream’s completion notification trickles upstream until it 
reaches the stream head and from there the Open Transport family’s FPI server 
converts the completion into the appropriate microkernel message ID reply. 
The Open Transport family implementation is insulated from the microkernel; 
it has no microkernel structures, IDs, or tasking knowledge. On the other hand, 
the relationship between the FPI server and the Open Transport family code is 
rich, asynchronous, and has internal knowledge of Open Transport data 
structures and communication mechanisms. 

The single-task model is best for families of devices that have either of two 
characteristics:

■ Each I/O request requires little CPU effort. This characteristic applies not 
only to keyboard and mouse devices but also to DMA devices to the extent 
that the CPU need only set up the transfer. 

■ No more than one I/O request is ever handled at once. This characteristic 
might apply to sound, for example, or to any device for which exclusive 
access is required. It also applies to families that monitor their own 
scheduling for the interleaving of family I/O processing, such as Open 
Transport.

Here are the key questions to ask before deciding whether to choose this model:

■ Can the CPU initiate an I/O request rapidly and then not be involved until 
the request completes?

■ Do supported devices implicitly allow only one I/O request to be completed 
at a time or does the family provide for its own I/O scheduling? 

If the answer to either question is yes, the single-task model is the right choice.

Task-per-Plug-in Model 1

In the task-per-plug-in activation model, for each plug-in instantiated by the 
family, the family creates a task that provides the context within which the 
plug-in operates. In Copland, the Device Manager family uses the 
task-per-plug-in activation model. Figure 1-7 illustrates the task-per-plug-in 
model using the Device Manager family as the representative family,

Typically with this model, the FPI server is a simple task-based 
message-receive loop or an accept function that presents data to an event-based 



C H A P T E R  1  

About the Copland I/O Architecture

1-28 Activation Models

Draft. Preliminary, Confidential.   Apple Computer, Inc. 10/23/95

task loop. The FPI server receives requests from calling clients and passes those 
requests to the family plug-ins. The FPI server is responsible for making the 
data associated with a request available to the family, which in turn makes it 
available to the plug-in that services the request. In some instances, buffers 
associated with the original request message may need to be copied or mapped 
once. 

The family code consists in part of one or more tasks, one for each family 
plug-in. The tasks act as wrappers for the family plug-ins—all tasking 
knowledge is located in the family code. 

When a plug-in’s task receives a service request (by whatever mechanisms the 
family implementation uses), the task calls its plug-in’s entry points, waits for 
the plug-in’s response, and then responds to the service request. 

The plug-in performs the work to actually service the request. It doesn’t need 
to know about the tasking model used by the family or how to respond to 
event queues and other family mechanisms. It just needs to know how to 
perform its particular function. 
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Figure 1-7 Task-per-plug-in model
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requests of this plug-in even while another client's synchronous request is 
being processed.

For the Device Manager family, generic drivers can be either concurrent or 
nonconcurrent; clients of the Device Manager family can make both 
synchronous and asynchronous requests. The Device Manager FPI server 
knows that nonconcurrent drivers cannot handle multiple requests 
concurrently. Therefore, it provides a mechanism to queue client requests. It 
makes no subsequent requests to a plug-in’s task until the task signals 
completion of an earlier I/O request. 

The FPI library makes sure both synchronous and asynchronous clients see 
appropriate behavior. When a client calls a family function asynchronously, the 
FPI library sends an asynchronous microkernel message to the FPI server and 
returns to the caller. When a client calls a family function synchronously, the 
FPI library sends a synchronous microkernel message to the FPI server and 
does not return to the caller until the FPI server replies to the message, thus 
blocking the caller’s execution until the I/O request is complete.

In either case, the behavior of the Device Manager FPI server is exactly the 
same: for all incoming requests, it either queues the request or passes it to a 
family task, depending on whether the target plug-in is busy. When the plug-in 
signals that the I/O operation is complete, the FPI server replies to the original 
microkernel message. When the FPI library receives the reply, it either returns 
to the synchronous client, unblocking its execution, or it calls the asynchronous 
client’s I/O completion routine.

The task-per-plug-in model is intermediate between the single-task and 
task-per-request models in terms of the number of tasks it typically uses. It is 
best used where the processing of I/O requests varies widely among the 
plug-ins. In this model, the plug-in is insulated from microkernel tasking 
mechanisms and from synchronization issues that result from system resource 
contention and multiple client requests to a single plug-in.

Task-per-Request Model 1

The task-per-request model shares the following characteristics with the two 
activation models already discussed:

■ The FPI library to FPI server communication provides the synchronous or 
asynchronous calling behavior requested by family clients. 



C H A P T E R  1

About the Copland I/O Architecture

Activation Models 1-31
Draft. Preliminary, Confidential.   Apple Computer, Inc. 10/23/95

■ The FPI library and FPI server use microkernel messages to communicate 
I/O requests between themselves. 

In the task-per-request model, the FPI server’s interface to the family 
implementation is completely synchronous.

In this model, one or more internal family request server tasks, and, optionally, 
an accept function, wait for messages on the family message port. An arriving 
message containing information describing an I/O request awakens one of the 
request server tasks, which calls a family function to service the request. All 
state information necessary to handle the request is maintained in local 
variables on the thread of execution of the request server task. The request 
server task is blocked until the I/O request completes, at which time it replies 
to the microkernel message from the FPI library to indicate the result of the 
operation. After replying, the request server task waits for more messages from 
the FPI library.

As a consequence of the synchronous nature of the interface between the FPI 
server and the family implementation, code calling through this interface must 
be running as a blockable task. This calling code is either the request server 
task provided by the family to service the I/O (for asynchronous I/O requests) 
or the task of the requester of the I/O (for certain optimized synchronous 
requests).

The task-per-request model is best for a family where an I/O request can 
require continuous attention from the CPU and multiple I/O requests can be in 
progress simultaneously. A family that supports dumb, high-bandwidth 
devices is a good candidate for this model. The Copland File Manager uses the 
task-per-request model. 

One problem associated with this activation model is tuning the number of 
request server tasks to permit the desired level of concurrence. Tuning can be 
done dynamically: When the family detects that performance could benefit 
from more request server tasks to process more requests concurrently and there 
are resources to permit it, new tasks can be created as needed. Similarly, when 
resources become scarce or the number of concurrent requests is much smaller 
than the number of request server tasks available to handle them, some tasks 
can be destroyed, freeing their resources for other uses. This programming 
model requires the family plug-in code to have microkernel tasking knowledge 
and to use microkernel facilities to synchronize multiple threads of execution 
contending for family and system resources.
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Family Programming Issues 1

The choice of activation model is the biggest family programming issue. Each 
of the models discussed previously has merit. Within each model, there are 
issues to be addressed. The single-task and task-per-plug-in models require 
state information to be stored either within the FPI libraries, the plug-ins, or the 
family activation code, or within some combination of those. The 
task-per-request model is the simplest model, but it will probably be the most 
expensive model in terms of system overhead. It makes heavy use of 
microkernel messaging and tasking resources. 

Unless there are multiple task switches within a family, the tasking overhead is 
identical within all of the activation models. The shortest task path from 
application to I/O is completely synchronous because all code runs on the 
caller’s task thread. For a long I/O path, through multiple families, the greater 
the use of synchronous calls, the smaller the number of task switches. 
However, using only synchronous calls decreases the responsiveness of the 
application making the request— its activity stops pending the completion of 
an outstanding I/O request. Providing at least one level of asynchronous call 
between an application and an I/O request results in the best latency results 
from the user perspective. Within the file system, the application task is not 
used as the thread of completion for I/O. A task switch at the File Manager API 
level allows a user-visible application, such as the Finder, to continue. The File 
Manager creates an I/O task thread to handle the I/O request, and that task 
might be used via synchronous calls by the block storage and SCSI families to 
complete their part in I/O transaction processing.

This kind of short-cut communication between families requires a very clear 
understanding of the relationships between the families, including the stack 
needs of the called family, the activation model of the called family, and the 
asynchronous and synchronous paradigms used by the called family. This is 
part of the decision-making process in developing each family activation 
model. 
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Name Registry 1

The Name Registry is a high-level Mac OS naming service that stores system 
information. It is key to implementing several important features in the 
Copland I/O architecture:

■ Effective driver replacement and overloading capability. This capability 
allows you to release updates to drivers. 

■ Dynamic driver loading and unloading. The Name Registry provides a 
dynamic and flexible environment for identifying devices. This type of 
capability is necessary for supporting devices such as hot swappable 
PCMCIA cards.

■ Simplification of driver writing. You won’t need to follow different rules 
for writing device drivers located on the main logic board, NuBus, the PCI 
bus, or the PCMCIA bus.

■ Hardware-independent device drivers. The Name Registry provides the 
layer of abstraction necessary for driver writers to remove conflicting device 
identification and device information callouts (as occurred previously with 
the Slot Manager) that prevented drivers from being portable to new 
versions of Macintosh hardware.

The Name Registry is a tree-structured collection of entries, each of which can 
contain an arbitrary number of name-value pairs called properties. Family 
experts peruse the Name Registry to locate devices or plug-ins available to the 
family. Low-level experts, described later in this section, describe platform 
hardware by populating the Name Registry with device nodes. 

The Name Registry contains a subtree pertinent to the I/O architecture: the 
device portion of the Name Registry describes the configuration and 
connectivity of the hardware in the system. Each entry in the device subtree 
has properties that describe the hardware represented by the entry and may 
contain a reference to the driver in control of the device. 

A low-level expert, sometimes referred to as a bus expert or motherboard expert, 
has specific knowledge of a piece of hardware such as a bus or a main logic 
board. It knows how physical devices are connected to the system and it 
installs and removes that information in the device portion of the Name 
Registry. 
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For example, a SCSI bus expert scans a SCSI bus for devices and installs an 
entry into the device portion of the Name Registry for each device that it finds. 
The SCSI bus expert knows nothing about a particular device for which it 
installs an entry. As part of the installation, the SCSI bus expert invokes the 
driver matching routines in the Driver Loader Library to associate a driver 
with the entry. The driver knows the capabilities of the device and specifies 
that the device belongs to a given family. 

Low-level experts and family experts use the Name Registry notification 
mechanism to recognize changes in the system configuration and to take 
family-specific action in response to those changes. 

Here’s an example of how family experts, low-level experts, and the Name 
Registry service work together to stay aware of dynamic changes in system 
configuration. Suppose that a Macintosh Duo is docked. The Duo motherboard 
expert notices that a new bus, a new network interface, and a new video device 
have appeared within the system. The Duo motherboard expert adds a bus 
node, a network node, and a video node to the device portion of the Name 
Registry. The Name Registry service notifies all software that registered to 
receive notifications of these events. 

Once notified that changes have occurred in the Name Registry, the networking 
and video family experts scan the Name Registry and notice the new entry 
belonging to their family type. Each instantiates the new entry within the 
family. 

The SCSI bus expert notices an additional bus, and probes for SCSI devices. It 
adds a node to the Name Registry for each SCSI device that it finds. New SCSI 
devices in the Name Registry result in perusal of the Registry by the block 
storage family expert. The block storage expert notices the new SCSI devices 
and loads the appropriate drivers, and then creates the appropriate volume 
Registry entries to make these volumes available to the File Manager. The File 
Manager receives notification of changes to the block storage family portion of 
the Registry, and notifies the Finder that volumes are available. Those volumes 
then appear on the user’s desktop. 

Compatibility—Backward and Forward 1

The following sections discuss Copland compatibility issues for developers of 
device drivers and applications.
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If You Develop Device Drivers 1

Copland and its I/O architecture introduce a new environment for device 
drivers—one that is fundamentally different from that familiar to current 
Macintosh driver developers. Although Copland places some restrictions on 
drivers, it greatly increases system stability and protects drivers from 
application error. 

The System 7 I/O architecture is based on resources of type 'DRVR' and on the 
Device Manager API. Many different types of software use these mechanisms. 
Some types are affected by the changes introduced by Copland I/O and some 
are not. 

Copland employs a more restricted concept of driver software. In the Copland 
I/O architecture, a driver is the native code that controls a physical device or 
that manages a system service. (Code that controls a virtual device such as a 
RAM disk may also be considered a driver in Copland.) This type of software 
(that controls a physical device or manages a system service) is affected by the 
new I/O architecture in Copland. Example of this type of software include

■ serial drivers (.AIn, .BOut)

■ protocol stacks (.MPP, .IPP)

■ network drivers (.ENET, ADEVs, MDEVs)

■ video drivers (.Display)

■ SCSI interface modules (SIMs)

Software that uses the 'DRVR' resource type and the Device Manager API to 
provide application-level functionality is not directly affected by Copland I/O 
changes. Examples of this type of software include: 

■  desk accessories

■  print drivers

For backward compatibility, Copland supports, through the Device Manager, 
emulated drivers of type 'DRVR' that do not touch hardware. Such software is 
not a plug-in. It runs in user mode outside the I/O system and can exist only in 
the traditional application environment that uses the WaitNextEvent 
function and that has full access to the Toolbox. 

The Copland I/O system is the first complete implementation of the I/O 
architecture described in this chapter. A subset of the I/O architecture is 
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implemented to support PCI devices on upcoming Power Macintosh  models. 
The document Designing PCI Cards and Drivers for Power Macintosh Computers 
describes the capabilities provided to driver writers for the first PCI-based 
Power Macintosh computers. If you write a PCI driver according to the 
specifications there, PCI cards with ROM-based drivers will work unchanged 
between the version of Mac OS delivered on upcoming PCI-based Power 
Macintosh models and subsequent PCI-based hardware platforms running 
Copland. 

The Copland driver environment differs from the System 7 driver environment 
in several ways:

■ The system distinguishes between software that runs in user mode or in 
supervisor mode. In System 7, drivers run in the same environment as 
applications in a single address space. In Copland, drivers run in supervisor 
mode and have access to the microkernel’s protected memory space. 
Applications can’t touch the hardware or the driver code or data directly. 

■ Drivers are packaged as Code Fragment Manager fragments (shared 
libraries).

■ Distinct execution environments are defined in which different sets of 
services are available. Because drivers execute in supervisor mode, they 
cannot call Mac OS Toolbox routines. On the other hand, by executing in 
supervisor mode, drivers gain a fine granularity of control over devices and 
overall system responsiveness. Drivers use microkernel, driver, and family 
service libraries as appropriate. Families and their plug-ins are expected to 
adhere to the rules appropriate to their execution environment.

■ The system employs new tasking and messaging mechanisms that allow 
prioritizing of I/O processing and that make I/O latency predictable. These 
mechanisms are the foundation for preemptive multitasking and memory 
protection.

■ Drivers exist as plug-ins to a particular I/O family and must conform to the 
activation model employed by that family. Therefore, when writing your 
driver, you need to adhere to the plug-in programming interface and the 
family’s implementation guidelines. I/O family provide libraries of 
commonly needed routines, thus simplifying your development effort.

■ Drivers that touch hardware must be written in native PowerPC code. As a 
result, Copland will deliver superior I/O performance. Emulated 68K 
drivers that directly access hardware are not supported. 
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As a result of these changes, you need to change the way you write a device 
driver. With the exception of drivers written according to specifications for 
PCI-based Macintosh computers, System 7 drivers that access hardware will 
not run under Copland. 

The next two sections give more information on the separation of application 
and device driver interfaces and the packaging of driver software and they 
describe benefits that result from these changes.

Separation of Application and Device Driver Interfaces 1

In System 7 there is only one kind of programming interface: the application 
programming interface (API). This makes all Mac OS services available to all 
varieties of software. Copland distinguishes between programming interfaces 
available to applications and those available to device drivers. Programming 
contexts become increasingly specialized in Copland. 

In Copland, drivers have available to them plug-in programming interfaces 
specifically tuned to the needs of different types of devices, such as display 
devices or SCSI devices. The plug-in programming interfaces provide a fine 
level of control over core operating system facilities such as paging and 
interrupts. Use of plug-in programming interfaces is essential to your driver’s 
portability in future Mac OS releases. These interfaces are guaranteed to be 
common across OS releases. 

Because drivers operate outside the application software context in Copland, 
they do not have access to the rich set of APIs available to applications. If you 
find that a service you depend on has been removed from the plug-in 
programming interface for your driver, you should contact Apple at the 
AppleLink address NEW.IO or new.io@applelink.apple.com. 

Common Packaging of Loadable Software 1

In Copland, all drivers are created as Code Fragment Manager (CFM) 
fragments (shared libraries). Each CFM fragment must export a driver 
description structure that the system uses to locate, load, and initialize the 
driver.

Copland drivers, therefore, are packaged differently from previous Macintosh 
device drivers. Because they are CFM fragments, they are allowed to have 
specific static data storage, and they can be written in a high-level language 
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without assembly-language headers. Each instance of a single driver has 
private static data and shares code with every other instance of that driver. A 
device driver no longer locates its private data by means of a field in its Device 
Unit Table entry. 

One consequence of drivers as CFM fragments is that a single device driver no 
longer controls multiple devices. Normally there is a driver instance for each 
device, although only one copy of the driver’s code is loaded into memory.

If You Develop Applications 1

Adjusting to the architectural shift in the I/O system should be relatively easy 
for the application developer. For compatibility with System 7 applications, the 
Copland Device Manager supports all of the functions described in the chapter 
“Device Manager” of Inside Macintosh: Devices. However, a smaller set of 
devices will be available through the Device Manager; for them, the system 
supports a compatibility layer that converts old function calls to new ones. 
Thus, if your application calls the Device Manager, it will continue to run on 
Copland, but it will incur a performance penalty going through the 
compatibility layer. 

For better performance and for access to services well suited to a given class of 
device, you should update your application to use the FPI for that device rather 
than the Device Manager. For example, if your application uses the Display 
Manager, you benefit from a set of routines tuned to work with display devices.

In most cases, Copland FPIs will be the same as or very similar to existing 
APIs, such as those provided by the File Manager, the Display Manager, and 
Open Transport. If your application uses these higher-level APIs, it is insulated 
from underlying changes in the Copland I/O architecture and Copland device 
drivers and you shouldn’t have to change it to work with Copland.

In addition to benefiting from the more effective services available through 
Copland FPIs, adopting the new FPIs now facilitates subsequent development 
for versions of the Mac OS beyond Copland. APIs that Copland maintains for 
compatibility may not be available with versions of the Mac OS beyond 
Copland. For example, the networking paradigm for the Mac OS is changing, 
moving in the direction of Open Transport. Although Copland will support 
System 7 AppleTalk interfaces, later versions of the Mac OS will not. Versions 
of the Mac OS beyond Copland will require you to use the Open Transport FPI. 



C H A P T E R  1

About the Copland I/O Architecture

Compatibility—Backward and Forward 1-39
Draft. Preliminary, Confidential.   Apple Computer, Inc. 10/23/95

If your application ignores public APIs and instead uses nonstandard methods 
to access a device, you’ll need to change your application. In Copland, 
hardware is not mapped into application address space and attempts to touch 
hardware will result in access violations. Devices and drivers are not directly 
accessible to an application. The only access to their services is through a 
family programming interface or an API maintained for compatibility.

Device Manager Compatibility 1

In Copland, the Device Manager functions described in the chapter “Device 
Manager” of Inside Macintosh: Devices are supported. Drivers that provide their 
services through the Device Manager API belong to the Device Manager family 
and are called generic drivers. The Device Manager functions constitute the 
FPI for the Device Manager family. The family has its own activation model 
and set of services, but it is not tuned to the needs of a given type of device.

Although the Device Manager API is more limiting than that provided by 
family FPIs, the Device Manager family offers a migration path to driver 
developers who implement the basic changes required by Copland without 
totally converting to the Copland I/O architecture.

If no family for a device exists, the Device Manager offers a way to use it in 
Copland. Consider, for example, a PCI card that receives data, encrypts it, and 
sends it back. An encryption family doesn’t currently exist. By writing the 
driver according to the rules for drivers of family type 'ndrv' described in 
Designing PCI Cards and Drivers for Power Macintosh Computers, the card is 
supported in Copland as a plug-in to the Device Manager family.

To summarize, the Copland Device Manager supports drivers that have been 
revised to run in Copland but that have not taken advantage of the enhanced 
driver services available through Copland I/O families, or for which no family 
exists. As a result, the Device Manager family’s plug-ins are likely to differ 
quite a bit among themselves, rather than belonging to a general class of 
devices such as video monitors. For example, Device Manager family plug-ins 
may include drivers for instrumentation bus adapters, graphics devices, 
encryption hardware, and so forth. Typically, plug-ins in the Device Manager 
family are drivers that talk to hardware, but they can also talk to virtual 
devices such as a RAM disk or loopback software.
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