
Preliminary

Developer Press
© Apple Computer, Inc. 1992–1995

Copland I/O Architecture

Draft. Confidential.

 Apple Computer, Inc. 10/23/95

ð

Apple Computer, Inc.

 1992–1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleLink,
AppleScript, AppleShare,
AppleTalk, GeoPort, HyperCard,
ImageWriter, LocalTalk, Macintosh,
MacTCP, OpenDoc, PowerBook,
Power Macintosh, PowerTalk,
QuickTime, TrueType, and
WorldScript are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.

Balloon Help, Chicago, Finder,
Geneva, Mac, and QuickDraw are
trademarks of Apple Computer, Inc.
IBM is a registered trademark of
International Business Machines
Corporation.
MacPaint and MacWrite are
registered trademarks, and
Clarisworks is a trademark, of Claris
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state..

This document was created with FrameMaker 4.0.4

C H A P T E R 1

Contents

1-1

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 About the Copland I/O
Architecture

Introduction 1-4
Families 1-7
Plug-ins 1-10

Design Goals for the Copland I/O Architecture 1-12
Short-Term Design Goals 1-12
Long-Term Design Goals 1-13

Architectural Features 1-15
Driver Loader Library 1-15
Driver Services Library 1-15
Booting Services 1-16
Power Management 1-16
User Activity Monitor 1-17
Support for Hot Swappable Devices 1-18

A Closer Look 1-18
Families 1-18

Family Programming Interfaces 1-19
Family Communications 1-20

Plug-ins 1-21
Extending Family Programming Interfaces 1-21
Sharing Code and Data Between Plug-ins 1-23

Activation Models 1-24
Single-Task Model 1-25
Task-per-Plug-in Model 1-27
Task-per-Request Model 1-30
Family Programming Issues 1-32

Name Registry 1-33

This document was created with FrameMaker 4.0.4

C H A P T E R 1

1-2

Contents

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

Compatibility—Backward and Forward 1-34
If You Develop Device Drivers 1-35

Separation of Application and Device Driver Interfaces 1-37
Common Packaging of Loadable Software 1-37

If You Develop Applications 1-38
Device Manager Compatibility 1-39

C H A P T E R 1

1-3

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

About the Copland I/O Architecture 1

This chapter provides an overview of the Copland I/O architecture. The
Copland I/O architecture is designed to improve the user experience by
providing superior performance, better responsiveness, and increasingly
robust systems, and by supporting the advancements inherent in a
microkernel-based operating system. It improves the developer experience by
increasing the predictability of I/O responsiveness, by simplifying driver
development, and by providing an updated 68K driver interface and an
improved concurrent Device Manager.

You need to understand the framework that the I/O architecture provides for
innovation and how it affects compatibility with both hardware and software
products if you are one of the following types of developers:

■

If you are a Mac OS licensee, you need to understand the I/O architecture to
be certain that devices you incorporate into your hardware product will
operate with Copland and to understand how software can be loaded into
your product when it is turned on.

■

If you are a hardware vendor who makes NuBus

 or PCI cards, ADB
devices, GeoPort

 pods, or other hardware devices, you need to know how
to create software that allows access to your product.

■

If you are a system-extension author who produces software products such
as network protocol implementations, file system implementations, and
virtual device drivers to extend the capabilities of the system, or if you
develop system utilities such as driver installers, hard disk formatting and
partitioning packages, and emergency repair products, you need to
understand the I/O architecture to determine if you need to modify your
software product to run on Copland.

■

If you are an application developer whose application writes to or otherwise
manipulates devices, you need to understand how to take advantage of the
new features in the Copland I/O architecture and how to enhance your
application’s compatibility with future versions of Mac OS.

This chapter briefly introduces the Copland I/O architecture. Then it discusses

■

short- and long-term design goals of the I/O architecture

■

architectural features, such as the Driver Loader Library, the Driver Services
Library, booting services, power management, the user activity monitor, and
support for hot swappable devices

■

selected aspects of I/O families and plug-ins

This document was created with FrameMaker 4.0.4

C H A P T E R 1

About the Copland I/O Architecture

1-4

Introduction

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

■

family activation models

■

the Name Registry as it is used by the I/O system

■

compatibility issues for device driver writers and application developers

You’ll find this chapter easier to understand if you are familiar with certain
features of Copland, such as its tasking mechanisms, the defined execution
environments and execution modes, distinct address spaces, and microkernel
messaging. You can find information about these topics in previous chapters in
this document and in

Microkernel White Paper

.

Introduction 1

Copland changes how the lowest levels of the Mac OS work. It implements a
tasking model of process management, with address space protection for tasks
executing in supervisor mode. Drivers execute in supervisor mode. The
transition to a microkernel-based, preemptive, multitasking operating system
has significant implications for developers creating drivers and other I/O
services for the Mac OS and for applications that use them:

■

Applications running in user mode and driver software running in
supervisor mode have no direct access to each other’s data. Drivers are
protected from applications and vice versa. Access to driver services is
available only through an I/O family’s programming interface.

■

I/O devices are not directly accessible to application software, nor is it
vulnerable to application error. Applications have access to hardware
services only through an I/O family’s programming interface.

■

The context within which a driver runs and the method by which it interacts
with the system are defined by the I/O family to which it belongs.

You can find more information on these topics in the section “Compatibility—
Backward and Forward,” beginning on page 1-34.

The Copland I/O architecture introduces new terminology. An I/O

family

 is a
collection of software pieces that provide a single set of services to the system,
such as the SCSI family and its SCSI interface modules (SIMs) or the file
systems family and its installable file systems. Each family defines a family
programming interface (FPI) designed to meet the particular needs of that
family. An FPI provides access to a given family’s plug-ins.

C H A P T E R 1

About the Copland I/O Architecture

Introduction

1-5

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

A

plug-in

 is a dynamically loaded piece of software that provides an instance
of the service provided by a family. For example, within the file systems family
(File Manager), a plug-in implements file-system-specific services. Plug-ins are
a superset of device drivers—all drivers are plug-ins, but not all plug-ins are
drivers.

Figure 1-1 illustrates an example of the relationship between an application,
several I/O families, and their plug-ins. An application requests services
through an FPI, shown in the figure as the File Manager API. Typically, the
service requests flow as microkernel messages to FPI servers, shown in the
figure as gray arrows.

In this architecture, code that executes in supervisor mode, such as plug-ins,
family implementations, and the FPI servers, is

trusted

. A failure in one of these
software subsystems can cause complete system failure. However, failure of
any particular application does not affect the ability of the I/O system and
other microkernel-level services to continue serving other clients. The I/O
system is insulated from application error.

C H A P T E R 1

About the Copland I/O Architecture

1-6

Introduction

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

Figure 1-1

High-level view of an application, I/O families, and plug-ins

Note that Figure 1-1 shows three I/O families that work together to complete a
service request. The application makes the service request which then moves
through the file system family, the block storage family, and the SCSI family.
However, this does not imply any hierarchical relationship among families. In
fact, all families are peers of each other.

In introducing the concepts of family and plug-in, the Copland I/O
architecture formalizes existing programming practices. For example, when an
application accesses the services of a video device through the Display
Manager, it is calling the display family. The Display Manager API is tailored to
the needs of video devices. Likewise, when an application calls the Sound

File
Manager

API

SCSI
Manager

FPI server

Block
Storage

FPI server

File
Manager

FPI server

SCSI
Manager

family

Block
storage
family

File
Manager

family

User mode

Supervisor mode

HFS
file

system

Disk
Driver SIM

C H A P T E R 1

About the Copland I/O Architecture

Introduction

1-7

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

Manager, it is calling the sound family. The family concept in the Copland I/O
architecture explicitly acknowledges that devices of similar sorts share many
characteristics and needs. Therefore, it provides family programming interfaces
tailored to the needs of specific device families. These specially tuned sets of
services allow drivers for a given family to be as simple as possible.

Families and plug-ins are described in more detail in the next two sections.

Families 1

The notion of family is fundamental to the Copland I/O architecture. A family
provides a distinct set of services to the system. For example, the Open
Transport family and its Data Link Provider Interface (DLPI) device drivers
provide network services; the block storage family and its block storage drivers
provide access to a variety of block storage mediums. Often, a family is
associated with a set of devices that have similar characteristics, such as
display devices or ADB devices.

Apple will provide the following families in its first release of Copland:

You can create additional I/O families, extending the base system features and
APIs. Each family provides the following software pieces:

■

a family programming interface and its associated FPI library or libraries for
its clients

■

an FPI server

■

an activation model

■

a family expert

Device Manager family Open Transport family

ADB family Keyboard family

Pointing family Display family

SCSI family Sound family

PRAM family IDE family

Real time clock family PCI family

File systems family PCMCIA family

Block storage family NuBus family

C H A P T E R 1

About the Copland I/O Architecture

1-8

Introduction

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

■

a plug-in programming interface for its plug-ins

■

a family services library for its plug-ins

Figure 1-2 provides a high-level view of how selected family software pieces
are related.

Figure 1-2

Family software diagram

FPI
library

FPI server

Family

User mode

Family
programming
interface

Family
programming
interface

Function call

Kernel message

Kernel message

Function call

Function call

Plug-in
programming
interface

Supervisor mode

Plug-in

Application

C H A P T E R 1

About the Copland I/O Architecture

Introduction

1-9

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

The

family programming interface

 (

FPI

) provides access to the family’s
services to applications, to plug-ins from other families, and to system
software. The term

family programming interface

 distinguishes an I/O family’s
API from other APIs provided by Copland, such as microkernel APIs or
high-level Toolbox APIs. Each FPI is designed to provide callers with services
appropriate to a particular family.

The FPI library contains the code that passes requests for service to the family
FPI server. Typically, an FPI library maps FPI function calls into microkernel
messages and sends them to the family’s FPI server for servicing. To make
certain optimizations possible, a family may provide two versions of its FPI
library, one for user-mode clients and one for supervisor-mode clients.

An

FPI server

 runs in supervisor mode and responds to service requests from
family clients. How it responds to a request depends on the family’s activation
model. For instance, it may put a request in a queue or it may call a plug-in
directly to service the request. If the FPI library and the FPI server use
microkernel messaging to communicate, the FPI server supports a message
port. The choice of microkernel messages as a communication mechanism is
not visible to family clients. Clients use only the FPI to make requests of the
family and its plug-ins. This is a change from the existing Mac OS in which
both high-level and low-level interfaces to components of the operating system
are available.

An

activation model

 provides the runtime environment of the family and its
plug-ins. For information about activation models, see the section “Activation
Models,” beginning on page 1-24.

A

family expert

 (also referred to as a

high-level expert

) is the code within a
family that maintains knowledge of the set of family plug-ins within the
system. At system startup, and each time it’s notified of a change in the Name
Registry, the family expert scans the system’s Name Registry for plug-ins that
belong to its family. For example, a display family expert looks for display
device entries. When a family expert finds an entry for a family plug-in, it
instantiates the plug-in, making it available to clients of the family. The system
notifies the family expert on an ongoing basis about new and deleted nodes in
the Name Registry. As a result, the set of plug-ins known to and available
through the family remains current with changes in system configuration.

Family experts do not add or alter information in the Name Registry, nor do
they scan hardware. Families don’t care about how devices are connected to the
system—they are insulated from knowledge of physical connectivity. To learn

C H A P T E R 1

About the Copland I/O Architecture

1-10

Introduction

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

how device information gets into the Name Registry, see the section “Name
Registry,” beginning on page 1-33.

The

plug-in programming interface

 (

PPI

) provides a family-to-plug-in
interface that defines the entry points a plug-in must support so that it can be
called and a plug-in-to-family interface that defines the routines plug-ins must
call when certain events, such as an I/O completion, occur. In addition, a PPI
defines the path through which the family and its plug-ins exchange data.

A

family services library

 is a collection of routines that provide services to the
family’s plug-ins. The services are specific to a given family and may be
layered on top of services provided by the microkernel. Within a family, the
family services library implements the methods by which data is
communicated, memory is allocated, interrupts are registered and serviced,
and timing services are provided. Family services libraries also maintain state
information needed by a family to dispatch and manage requests.

For example, the services library for the display family provides routines that
deal with vertical blanking because display devices care need them. Likewise,
because SCSI device drivers must manipulate command blocks, the SCSI
family services library contains routines to do that easily. A family services
library that provides commonly needed routines simplifies the development of
that family’s plug-ins.

Plug-ins 1

A plug-in is a dynamically loaded piece of software that provides an instance
of the service provided by a family. For example, within the file systems family,
a plug-in implements file-system-specific services. The plug-ins understand
how data is formatted in a particular volume format such as HFS or DOS FAT.
But file systems family plug-ins don’t understand how to get data from a
physical device. To do that, a file system family plug-in talks to the block
storage family. Block storage plug-ins provide both media-specific drivers—
such as a tape driver, a CD-ROM driver, or a hard disk driver—and volume
plug-ins that represent partitions on a given physical disk.

With the first release of Copland, Apple will provide plug-ins for the families
listed on page 1-7. Third-party hardware developers are encouraged to develop
new plug-ins.

All plug-ins share the following characteristics:

C H A P T E R 1

About the Copland I/O Architecture

Introduction

1-11

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

■

They must conform to their family activation model.

■

They cannot call Toolbox routines.

■

They run in supervisor mode and have access to the microkernel’s protected
memory space.

■

They are packaged as Code Fragment Manager fragments.

■

They can be written in a high-level language.

■

They must be written in native PowerPC code.

■

They have a layered structure. Most of their work is done in a task. Some
small amount of work may be done by interrupt handlers. The layered
structure model for plug-in development allows code to be
compartmentalized so that it works well within the Copland environment.

The typical parts of a plug-in include

■

the main code section that runs as a supervisor-mode task. It is here that the
plug-in does most of its work.

■

a hardware interrupt handler that services hardware interrupts if the plug-in
responds to a physical device. Only essential work that cannot be done in
the task should be done by the hardware interrupt handler.

All plug-ins must have a main code section, but not all will have a hardware
interrupt handler.

Plug-in code executes in supervisor mode and responds to client service
requests made through the FPI. For example, Device Manager family plug-ins
(device drivers of family type

'ndrv'

) respond to the functions

Open

,

Close

,

Control

,

Prime

, and so on.

Plug-in code should make no assumptions about particular hardware settings
or configurations. The main code section should never attempt to obtain device
configuration information directly from APIs such as the Resource Manager or
the File Manager. A plug-in obtains configuration information in several ways.
It can read the static configuration information stored in the Name Registry.
Dynamically changing configuration information is communicated to a plug-in
through the plug-in programming interface; when a family client uses the
family’s programming interface to notify the family of a configuration change,
the family notifies the plug-in. In addition, a plug-in can call another family to
obtain some types of configuration information. For instance, a video plug-in

C H A P T E R 1

About the Copland I/O Architecture

1-12

Design Goals for the Copland I/O Architecture

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

may call the PRAM family programming interface to obtain video mode
information stored in PRAM prior to the last system reboot.

The hardware interrupt handler executes in supervisor mode and responds to
interrupts from a physical device. It should perform only essential functions,
deferring all other work to the plug-in task or a secondary interrupt handler.
The plug-in programming interface specifies how interrupts are managed
within a family.

Design Goals for the Copland I/O Architecture 1

The next two sections describe the short-term and long-term design goals of the
Copland I/O architecture.

Short-Term Design Goals 1

In the first release of Copland, the I/O architecture is targeted to meet the
following design goals:

■

End-user flexibility.

Mac OS provides end users with tremendous value
that is directly attributed to the flexibility and adaptability of its I/O system.
For example, its plug-and-play capability and dynamic monitor
configuration are features that are simply not possible with many I/O
architectures. The Copland I/O architecture is designed to provide these
end-user features and to retain the flexibility of the Mac OS.

■

Performance.

The architecture favors lower-latency responses over higher
bandwidths to provide greater responsiveness to users. To help achieve this
goal, all drivers and all their support services are native. Additionally, very
little code is permitted to run at the hardware-interrupt level. Although the
architecture does not guarantee the best performance for burst and
single-stream high-bandwidth clients, the Copland implementation will
produce much better throughput results than that available in System 7. The
I/O architecture provides support for the real-time needs of MIDI, Sound,
GeoPort, and QuickTime and enables implementations that meet or exceed
the performance of competing platforms.

■

PCI driver compatibility.

The Copland I/O architecture extends the
architecture for the I/O system on PCI-based Mac-compatible computers.

C H A P T E R 1

About the Copland I/O Architecture

Design Goals for the Copland I/O Architecture

1-13

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

Drivers compliant with the specification for driver development contained
in the document

Designing PCI Cards and Drivers for Power Macintosh
Computers

 will continue to function well within the Copland I/O model. In
addition, Copland seeks to provide binary compatibility with PCI
ROM-based video and network drivers developed in accordance with the
specification for native drivers described in

Designing PCI Cards and Drivers
for Power Macintosh Computers

.

■

Reliability, availability, and serviceability.

In Copland, the I/O system
works as expected and continues to work acceptably in the face of failures of
particular subsystems. For instance, disk I/O continues to work if a failure
in the serial hardware occurs. When failures do occur, the I/O system
provides support for analysis and corrective measures by the user and by
support organizations.

■

Resource allocation and control.

Having limited resources, the
components of the Copland I/O system distribute those resources in a fair
and meaningful fashion among themselves. In particular, the first driver
loaded cannot consume resources such as memory, message ports, timers,
interrupt latency, or bus bandwidth in a way that prevents subsequent
drivers from loading or operating correctly. Configurations that cannot work
because their needs are mutually exclusive are recognized and reported in a
meaningful way.

■

Power management.

Obviously required for battery-powered systems
such as PowerBook

 computers, the need for integrated power
management is increasing for all systems. The I/O architecture provides an
infrastructure to enable optimal power management in diverse systems.

■

Extensibility.

The Copland I/O architecture enhances the ability of OEMs
to create Mac-compatible hardware and peripherals. It is intended that all
hardware-dependent software fall into one of two categories:

n

software based on clearly defined hardware invariants such as big-endian
addressing and the PowerPC 601, 603, and 604 processors

n

software that is dynamically loadable at system startup time, such as
drivers, the SCSI Manager, and SCSI interface modules

Long-Term Design Goals 1

In subsequent releases of Mac OS, the I/O architecture is targeted to meet these
additional design goals:

C H A P T E R 1

About the Copland I/O Architecture

1-14

Design Goals for the Copland I/O Architecture

Draft. Preliminary, Confidential.

 Apple Computer, Inc. 10/23/95

■

Multiprocessor support.

High-quality support for a limited number of
tightly coupled, cache-coherent processors is a long-term goal of the
architecture. While revisions to the architecture may be desirable for
multiprocessor systems, conforming I/O components should be compatible
within multiprocessor versions of the architecture.

■

Real-time I/O support. The architecture specifies basic support for
real-time I/O needs, largely as a subset of the resource allocation and control
mechanisms provided by the architecture. Families and plug-ins are
prioritized according to their needs to better support real-time clients.

■ Improved reliability, availability, and serviceability (RAS). RAS is the
natural successor to the Mac OS plug-and-play capability. The addition of
RAS to Mac OS provides users, system administrators, and technicians with
a broad set of tools for maintaining a Mac OS system, resulting in lower
training and support costs. RAS is one of the mechanisms by which Mac OS
will maintain its lead as the easiest and most configurable system available.

■ Visual system administration. Enabling end users, system administrators,
and support staff to examine and manipulate the configuration of a specific
system is a natural extension to the benefits of RAS support.

■ Scalable to future technologies. Copland provides sufficient architectural
integrity to ensure that implementations of technologies that are not quite
available today are obtainable on desktop platforms. ATM and infrared
networking and Firewire bus connectivity are examples of such technologies.

■ Distributed computing. As system performance increases, it is
increasingly reasonable to provide access to devices that are not attached
directly to the CPU on which an application is running. For example, with
high-cost, high-speed networks, video capture via a frame-grabbing card
plugged into a computer in another office is possible today. As networking
costs decrease, distributed services become feasible on increasing numbers
of desktop systems. Distribution of I/O subsystems across a suitable
network is a long-term goal of this architecture.

■ Universal booting. A single system image that boots on all hardware
configurations that support Copland is a goal of the architecture. In
addition, these systems will support both minimal and third-party
customized installations of Mac OS.

C H A P T E R 1

About the Copland I/O Architecture

Architectural Features 1-15
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Architectural Features 1

This section describes several fundamental I/O system services provided by
the Copland I/O architecture. They are baseline services present in the system.
They are not specific services for different classes of devices such as serial
devices or video display monitors.

Driver Loader Library 1

The I/O architecture provides a Driver Loader Library. The Driver Loader
Library is a set of routines that all I/O families can use to locate and instantiate
their plug-ins. The routines work with all plug-ins regardless of whether the
plug-in is a driver and regardless of whether the driver touches hardware. The
services provided by the Driver Loader Library fall into three categories:

■ routines that provide family experts with an easy way to instantiate
plug-ins. All plug-ins are packaged as Code Fragment Manager fragments,
frequently referred to as shared libraries. This set of utility routines serves as
a wrapper around CFM functions. They hide CFM complexities, giving
family experts a simple set of functions to access the shared libraries they
need and load them into memory.

■ driver matching routines that help family experts locate a device driver for a
given piece of hardware. This makes driver replacement easy and provides
support to families that manage drivers for hot swappable devices.

■ routines that work with the Device Manager family. They install, remove,
and replace driver entries in the unit table.

Driver Services Library 1

The Driver Services Library provides basic driver services to families. It
contains all the base-level generic services needed by families and plug-ins,
such as interrupt registration, timing facilities, allocation and deallocation of
memory, and secondary interrupt-handling capabilities.

C H A P T E R 1

About the Copland I/O Architecture

1-16 Architectural Features

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

The Interrupt Manager is part of the Driver Services Library. It provides
routines that allow drivers to install the interrupt handlers that are invoked
when a device presents an interrupt to the system.

Families can extend the base system services in family-appropriate ways by
adding a family services library to augment the services available from the
Driver Services Library. In some cases, a family services library will replace the
Driver Services Library. For example, plug-ins belonging to the Open Transport
family don’t link to the Driver Services Library, because the Open Transport
family services library provides all the services they need.

Booting Services 1

The I/O architecture provides a method for loading and launching the system
software. The Copland microkernel booting architecture maintains the Mac OS
user experience at system startup. The user should not be required to build a
system tailored for the hardware that the system will run on. Many users may
choose to install hardware support for a large class of devices that might be
connected to their computers. For those users, the system finds the right
support software at startup time and configures that software into a runnable
system without user intervention.

Power Management 1

The I/O architecture provides mechanisms for power state transitions within
the system, such as bringing the system up the first time, shutting it down
completely, moving from low to high power, and maintaining a sleep state. It
provides APIs for power management at the application, plug-in, and system
levels.

There are at least three systemwide power states:

■ Full power-on mode. The core system is available for service requests.
Within this mode, some devices, applications, and services may manage
their power requirements independent of the system as a whole. Low-power
mode is a substate of full-power mode, in that it affects only those devices
that can continue to perform with less power.

■ Sleep mode. The contents of memory are preserved, but active processing
is halted.

C H A P T E R 1

About the Copland I/O Architecture

Architectural Features 1-17
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

■ Power-off mode. The entire system is powered down and no processing of
any sort is possible.

For the purposes of power management, there are three classes of devices and
services:

■ CPUs that have low-power modes in which some processing can still take
place.

■ Devices and services with a user interface that are therefore directly tied to
user actions, such as keyboards, screens, modems, applications, and
networks.

■ Devices without a user interface, such as hard disks that may be controlled
independently from user activity.

Given the fuzzy boundaries in the device and service categories and the
varying nature of each device, the I/O architecture provides mechanisms for
controlling power state transitions without setting policy for devices or
services. A centralized power management service provides coordinated
systemwide power state changes based on input from services and drivers.

The power state and power requirements of each device that is power
managed is maintained in the centralized power management service. This
power management service receives input from the User Activity Monitor
service and individual applications and services. It provides notification to
applications, drivers, and services, manages systemwide power state
transitions, and provides centralized administration of device power behavior.

User Activity Monitor 1

Power management requires the ability to detect when the user is doing
something with the computer. In Copland, the User Activity Monitor provides
the power management service with information about user activity so that it
can know when to put the system into sleep mode, turn a monitor down or off,
and so forth.

Copland uses an activity timer to detect idle periods. Activity is defined as
mouse motion or keyboard activity. Other events, such as the arrival of data on
a serial interface, can also be considered activity.

The User Activity Monitor accepts requests for notification from I/O
subsystems. Subsystems can request to be notified when a specified amount of

C H A P T E R 1

About the Copland I/O Architecture

1-18 A Closer Look

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

time elapses during which there is no user activity. Any of the events defined
as user activity cause the timer to be reset. Subsystems may also be notified
that activity has occurred. This is useful when subsystems have already
received notification of inactivity and powered down their hardware. Here are
some examples of why a subsystem should use the User Activity Monitor:

■ The screen backlight on a PowerBook computer needs to dim after a
user-controllable amount of time elapses with no activity.

■ The CPU should transition into low-power mode when no compute-bound
process is running and a user-controllable amount of time elapses with no
activity.

■ The entire computer needs to transition into sleep mode after a
user-controllable amount of time elapses with no activity.

The subsystems that can register activity must do so. They must tell the User
Activity Monitor that activity has occurred, causing it to reset its inactivity
timer and notify requesters (if any) of the event.

Support for Hot Swappable Devices 1

The Copland I/O architecture provides support for hot swappable devices
such as PCMCIA cards—that is, it can support dynamic changes in
connectivity to devices that may appear and disappear at any time. This feature
allows a user to insert and remove devices such as disk driver card or modem
card without powering down and restarting the computer. The family expert
code that locates and instantiates the family plug-ins remains resident for
families whose plug-ins exhibit dynamic plug-and-play characteristics.

A Closer Look 1

This section consists of selected topics concerning I/O families and plug-ins.

Families 1

The next sections discuss family programming interfaces and family
communication models.

C H A P T E R 1

About the Copland I/O Architecture

A Closer Look 1-19
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Family Programming Interfaces 1

A family provides either a user-mode or a supervisor-mode FPI library, or both,
to support the family’s FPI. Figure 1-3 illustrates an abstracted view of the
Copland I/O architecture. Each of the large blocks in the area below the thick
horizontal line represents an instance of a family. Boxes that share an edge
represent directly callable interfaces.

In the area above the thick horizontal line, the boxes labeled xlibu and zlibu
represent the FPI libraries that support the programming interfaces for families
x and z, and that are available to user-mode clients. In the area below the thick
horizontal line, the boxes labeled ylibk and zlibk represent the FPI libraries for
families y and z that are available to supervisor-mode clients. Typically, FPI
libraries map FPI functions into microkernel messages.

Both the user-mode and the supervisor-mode versions of the FPI libraries
present exactly the same interface to clients—a single FPI is the only way
family services can be accessed. Copland distinguishes between the user-mode
and supervisor-mode versions to permit optimization of the supervisor-mode
FPI libraries in some instances. For example, operations that must be
implemented in the user-mode library, such as copying data across address
space boundaries, may be unnecessary in the supervisor-mode library. In some
instances, the user-mode and supervisor-mode versions maybe the same.

An FPI server dispatches requests for services to the family. Typically, it does
this by receiving a microkernel message, mapping the message back into the
FPI function called by the client, and then calling the function. There is a
one-to-one correspondence between the FPI functions called by clients and the
functions called by FPI servers as a result. Take as an example the x family in
Figure 1-3. The box labeled x represents the interface presented to the FPI
server by the x family. It is exactly the same as the FPI available to applications
or other system software.

The box labeled x family implementation represents the family activation model
that defines how the request is actually serviced by family code and plug-in
code.

C H A P T E R 1

About the Copland I/O Architecture

1-20 A Closer Look

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Figure 1-3 A closer look at the Copland I/O architecture

Family Communications 1

Microkernel messaging is assumed to be the normal communication method
for I/O families—between the FPI libraries and the FPI server for a given
family, between different families, and between plug-in x and family z. That
doesn’t preclude the possibility of other communication mechanisms. The
choice is up to the family. Whatever the communication method, it is
completely opaque to a client requesting a family service.

Xlibu

z
FPI

server

y
FPI

server

x
FPI

server

z family
implem-
entation

y family
implem-
entation

x family
implem-
entation

Zlibu

User mode

Supervisor mode

x
Plug in

y
Plug in

z
Plug in

x y z

Ylibk Zlibk

C H A P T E R 1

About the Copland I/O Architecture

A Closer Look 1-21
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

The messaging model facilitates the development of families and plug-ins by
providing a very easy programming model. It is a straightforward interfamily
communication mechanism that fits well within Copland tasking mechanisms.
The use of microkernel messaging permits greater independence of family
activation models.

An added benefit to using microkernel messaging is that improvements in the
messaging and tasking performance of the microkernel are reflected in
corresponding performance improvements throughout the I/O system.

Plug-ins 1

Family plug-ins must operate within the activation model mandated by the
family and provide the code and data exports described by family
documentation. For example, Designing PCI Cards and Drivers for Power
Macintosh Computers contains descriptions of the required interfaces and
activation models for networking and video plug-ins. The required code and
data exports and the activation model for each of these two families of drivers
is family specific and different. The packaging for the two family driver types
is the same.

The standard family and plug-in definitions cover most cases of I/O
component development. However, there are exceptions to the model. The next
sections describe two; there may be more.

Extending Family Programming Interfaces 1

A plug-in may provide a plug-in-specific interface that extends its functionality
beyond that provided by its family. This feature is useful in a number of
situations. Take, for example, a block storage plug-in for a CD-ROM device. In
addition to the block storage plug-in interface required of the CD-ROM device,
many CD-ROM devices also present an interface that allows knowledgeable
application software to control audio volume and to play, pause, stop, and so
forth. Such added capabilities require a plug-in-specific API.

Most family interfaces provide some level of extensibility to the family’s
plug-ins. For example, the Device Manager allows extensible sets of control
and status selectors that may be used to gain device-specific information and
control. And Open Transport device drivers may receive special calls to extend
the device information and control. This kind of device extension within the

C H A P T E R 1

About the Copland I/O Architecture

1-22 A Closer Look

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

family framework is not changed with the Copland I/O architecture. If,
however, a device wishes to export extended functionality outside the family
framework, it needs to provide a separate message port and an interface library
for that portion of the device driver, as shown in Figure 1-4.

Figure 1-4 illustrates a plug-in module labeled z plug-in that extends beyond
the z family boundary. z plug-in is a plug-in with an extended API—it offers
features in addition to those available to clients through it’s family’s
programming interface. To make its extra services available, the plug-in must
provide the additional software shown in Figure 1-4:

■ dlibu: the interface library

■ d FPI server: the message port code

■ d: the code that implements the extra features

Figure 1-4 Extending a family programming interface

z
FPI

server

z family
implem-
entation

dlibu

User mode

Supervisor mode

d

d FPI
server

z

z
Plug in

C H A P T E R 1

About the Copland I/O Architecture

A Closer Look 1-23
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Sharing Code and Data Between Plug-ins 1

Two or more plug-ins can share data or code or both, regardless of whether the
plug-ins belong to the same family or to different families. Sharing code or data
is desirable when a single device driver wishes to subscribe to two or more
families. Such a driver needs a plug-in for each family. These plug-ins can share
libraries that contain information about the device state and common code.
Figure 1-5 illustrates two plug-ins that belong to separate families and that
share code and data.

Figure 1-5 Plug-ins that share code and data

Plug-ins can share code and data through Code Fragment Manager fragments,
(shared libraries). The Code Fragment Manager allows you to instantiate
independently plug-ins that share code or data without encountering problems
related to simultaneous instantiation. The first plug-in to be opened and
initialized gets access to the shared libraries, but it does not share access at that
point. When the second plug-in is opened and initialized, it establishes a new
connection to the shared libraries. From that point, the two plug-ins contend
with each other for access to the shared libraries.

Sharing code or data is also desirable in certain special cases. Some of the
special-case solutions provided on System 7 use two or more separate device
drivers that use shared data as a communication mechanism. Typically, special
case solutions install a set of devices and a set of special drivers. The closely
coupled devices use a high-speed data path to move data between them. For
example, a video input device puts video data in a shared buffer; subsequently,
a video compression device reads and compresses the data it finds in the
shared buffer. Access to the high-speed data path via the shared buffer is
synchronized by solution specific mechanisms. In essence, this solution is a

Family
a

Family
b

Plug-in
a

Plug-in
b

Shared code
and/or data

C H A P T E R 1

About the Copland I/O Architecture

1-24 Activation Models

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

vendor-supplied family, and its plug-ins are the device drivers that come with
the solution.

Activation Models 1

A family’s activation model defines how the family software is implemented
and the environment within which a family’s plug-ins execute. It defines the
relationship between family code and its plug-ins, including such things as

■ the tasking model a family uses

■ the opportunities the family plug-ins have to execute and the context of
those opportunities (for instance, are the plug-ins called at task level? at
secondary interrupt level? and so forth)

■ the knowledge about states and processes that a family and its plug-ins are
expected to have

■ the portion of the service requested by the client that is performed by the
family and the portion that is performed by the plug-ins

■ the required characteristics of plug-ins, such as whether the plug-in blocks
or returns an error when it encounters resource exhaustion

If you want to develop a new I/O family, you need to design and implement
an activation model that best suits the needs of your I/O family. If you want to
develop a new plug-in, you need to understand the activation model used by
the family to which your plug-in belongs.

This section describes three family activation models used in the Copland I/O
system. Each model provides a distinctly different environment for the plug-ins
to the family, and different implementation options for the family software. The
activation models discussed are

■ the single-task model

■ the task-per-plug-in model

■ the task-per-request model

Many variations of (and hybrid approaches to) the activation models discussed
here are possible and to be expected. The choice of activation model is left to

C H A P T E R 1

About the Copland I/O Architecture

Activation Models 1-25
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

the family designer. The selected models are simply examples of how you can
implement a family.

To provide the asynchronous or synchronous behavior desired by the family
client, the three activation models discussed here use microkernel messaging as
the interface between the FPI libraries that family clients link to and the FPI
servers. Within all activation models, asynchronous I/O requests are provided
a task context. In all cases, the implementation of the FPI server depends on the
family activation model.

The choice of activation model limits the plug-in implementation choices. For
example, the activation model defines the interaction between a driver’s
hardware interrupt handler and the family environment in which the main
driver code runs. A plug-in must conform to the activation model employed by
its family.

You cannot understand the discussion of activation models without some
understanding of Copland’s messaging system and the tasking and interrupt
mechanisms that define the environments in which software executes. You can
find information about these topics in earlier chapters in this document and in
Microkernel White Paper.

Single-Task Model 1

In the single-task activation model, the family runs as a single monolithic task
that is fed from above by a request queue and from below by interrupts
delivered by the plug-ins. Requests are delivered from the FPI library to an
accept function that queues the request for processing by the family’s
processing task and wakes the task if it is sleeping. Queuing, synchronization,
and communication mechanisms within the family follow a well-defined set of
rules specified by the family.

The interface between an FPI server and a family implementation using the
single-task model must be asynchronous. Regardless of whether the family
client called a function synchronously or asynchronously, the FPI server always
calls the family code asynchronously. The FPI server must maintain the set of
microkernel message IDs that correspond to messages to which the FPI server
has not yet replied.

Consider as an example the Open Transport family, which uses the single-task
activation model, shown in Figure 1-6. The Open Transport FPI server is an
accept function that executes on the thread of the calling client via the FPI

C H A P T E R 1

About the Copland I/O Architecture

1-26 Activation Models

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

library. An accept function, unlike message-receive-based microkernel tasks, is
able to access data within the user and microkernel bands directly. The accept
function messaging model requires that the Open Transport FPI server be
reentrant because the calling client task may be preempted by another Open
Transport client task making service requests.

Figure 1-6 Single-task activation model

Open
Transport

APIs

Open
Transport
FPI server

Open
Transport
streams

world

Protocol

Protocol

Protocol

User mode

Supervisor mode

Network
device
driver

Application

Accept
function

Single
task

C H A P T E R 1

About the Copland I/O Architecture

Activation Models 1-27
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

When an I/O request completes within the Open Transport environment, the
Open Transport stream’s completion notification trickles upstream until it
reaches the stream head and from there the Open Transport family’s FPI server
converts the completion into the appropriate microkernel message ID reply.
The Open Transport family implementation is insulated from the microkernel;
it has no microkernel structures, IDs, or tasking knowledge. On the other hand,
the relationship between the FPI server and the Open Transport family code is
rich, asynchronous, and has internal knowledge of Open Transport data
structures and communication mechanisms.

The single-task model is best for families of devices that have either of two
characteristics:

■ Each I/O request requires little CPU effort. This characteristic applies not
only to keyboard and mouse devices but also to DMA devices to the extent
that the CPU need only set up the transfer.

■ No more than one I/O request is ever handled at once. This characteristic
might apply to sound, for example, or to any device for which exclusive
access is required. It also applies to families that monitor their own
scheduling for the interleaving of family I/O processing, such as Open
Transport.

Here are the key questions to ask before deciding whether to choose this model:

■ Can the CPU initiate an I/O request rapidly and then not be involved until
the request completes?

■ Do supported devices implicitly allow only one I/O request to be completed
at a time or does the family provide for its own I/O scheduling?

If the answer to either question is yes, the single-task model is the right choice.

Task-per-Plug-in Model 1

In the task-per-plug-in activation model, for each plug-in instantiated by the
family, the family creates a task that provides the context within which the
plug-in operates. In Copland, the Device Manager family uses the
task-per-plug-in activation model. Figure 1-7 illustrates the task-per-plug-in
model using the Device Manager family as the representative family,

Typically with this model, the FPI server is a simple task-based
message-receive loop or an accept function that presents data to an event-based

C H A P T E R 1

About the Copland I/O Architecture

1-28 Activation Models

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

task loop. The FPI server receives requests from calling clients and passes those
requests to the family plug-ins. The FPI server is responsible for making the
data associated with a request available to the family, which in turn makes it
available to the plug-in that services the request. In some instances, buffers
associated with the original request message may need to be copied or mapped
once.

The family code consists in part of one or more tasks, one for each family
plug-in. The tasks act as wrappers for the family plug-ins—all tasking
knowledge is located in the family code.

When a plug-in’s task receives a service request (by whatever mechanisms the
family implementation uses), the task calls its plug-in’s entry points, waits for
the plug-in’s response, and then responds to the service request.

The plug-in performs the work to actually service the request. It doesn’t need
to know about the tasking model used by the family or how to respond to
event queues and other family mechanisms. It just needs to know how to
perform its particular function.

C H A P T E R 1

About the Copland I/O Architecture

Activation Models 1-29
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Figure 1-7 Task-per-plug-in model

For concurrent drivers, all queuing and state information describing an I/O
request is contained within the plug-in code and data and within any queued
requests. The FPI library forwards all requests regardless of the status of
outstanding I/O requests to the FPI server. When the client makes a
synchronous service request, the FPI library sends a synchronous microkernel
message. This message blocks the requesting client, but the plug-in’s task
continues to run within its own task context, permitting clients to make

Device
Manager

API

Device
Manager

FPI server

Device
Manager

family

User Mode

Supervisor Mode

Generic
driver

Wrapper
task

Application

C H A P T E R 1

About the Copland I/O Architecture

1-30 Activation Models

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

requests of this plug-in even while another client's synchronous request is
being processed.

For the Device Manager family, generic drivers can be either concurrent or
nonconcurrent; clients of the Device Manager family can make both
synchronous and asynchronous requests. The Device Manager FPI server
knows that nonconcurrent drivers cannot handle multiple requests
concurrently. Therefore, it provides a mechanism to queue client requests. It
makes no subsequent requests to a plug-in’s task until the task signals
completion of an earlier I/O request.

The FPI library makes sure both synchronous and asynchronous clients see
appropriate behavior. When a client calls a family function asynchronously, the
FPI library sends an asynchronous microkernel message to the FPI server and
returns to the caller. When a client calls a family function synchronously, the
FPI library sends a synchronous microkernel message to the FPI server and
does not return to the caller until the FPI server replies to the message, thus
blocking the caller’s execution until the I/O request is complete.

In either case, the behavior of the Device Manager FPI server is exactly the
same: for all incoming requests, it either queues the request or passes it to a
family task, depending on whether the target plug-in is busy. When the plug-in
signals that the I/O operation is complete, the FPI server replies to the original
microkernel message. When the FPI library receives the reply, it either returns
to the synchronous client, unblocking its execution, or it calls the asynchronous
client’s I/O completion routine.

The task-per-plug-in model is intermediate between the single-task and
task-per-request models in terms of the number of tasks it typically uses. It is
best used where the processing of I/O requests varies widely among the
plug-ins. In this model, the plug-in is insulated from microkernel tasking
mechanisms and from synchronization issues that result from system resource
contention and multiple client requests to a single plug-in.

Task-per-Request Model 1

The task-per-request model shares the following characteristics with the two
activation models already discussed:

■ The FPI library to FPI server communication provides the synchronous or
asynchronous calling behavior requested by family clients.

C H A P T E R 1

About the Copland I/O Architecture

Activation Models 1-31
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

■ The FPI library and FPI server use microkernel messages to communicate
I/O requests between themselves.

In the task-per-request model, the FPI server’s interface to the family
implementation is completely synchronous.

In this model, one or more internal family request server tasks, and, optionally,
an accept function, wait for messages on the family message port. An arriving
message containing information describing an I/O request awakens one of the
request server tasks, which calls a family function to service the request. All
state information necessary to handle the request is maintained in local
variables on the thread of execution of the request server task. The request
server task is blocked until the I/O request completes, at which time it replies
to the microkernel message from the FPI library to indicate the result of the
operation. After replying, the request server task waits for more messages from
the FPI library.

As a consequence of the synchronous nature of the interface between the FPI
server and the family implementation, code calling through this interface must
be running as a blockable task. This calling code is either the request server
task provided by the family to service the I/O (for asynchronous I/O requests)
or the task of the requester of the I/O (for certain optimized synchronous
requests).

The task-per-request model is best for a family where an I/O request can
require continuous attention from the CPU and multiple I/O requests can be in
progress simultaneously. A family that supports dumb, high-bandwidth
devices is a good candidate for this model. The Copland File Manager uses the
task-per-request model.

One problem associated with this activation model is tuning the number of
request server tasks to permit the desired level of concurrence. Tuning can be
done dynamically: When the family detects that performance could benefit
from more request server tasks to process more requests concurrently and there
are resources to permit it, new tasks can be created as needed. Similarly, when
resources become scarce or the number of concurrent requests is much smaller
than the number of request server tasks available to handle them, some tasks
can be destroyed, freeing their resources for other uses. This programming
model requires the family plug-in code to have microkernel tasking knowledge
and to use microkernel facilities to synchronize multiple threads of execution
contending for family and system resources.

C H A P T E R 1

About the Copland I/O Architecture

1-32 Activation Models

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Family Programming Issues 1

The choice of activation model is the biggest family programming issue. Each
of the models discussed previously has merit. Within each model, there are
issues to be addressed. The single-task and task-per-plug-in models require
state information to be stored either within the FPI libraries, the plug-ins, or the
family activation code, or within some combination of those. The
task-per-request model is the simplest model, but it will probably be the most
expensive model in terms of system overhead. It makes heavy use of
microkernel messaging and tasking resources.

Unless there are multiple task switches within a family, the tasking overhead is
identical within all of the activation models. The shortest task path from
application to I/O is completely synchronous because all code runs on the
caller’s task thread. For a long I/O path, through multiple families, the greater
the use of synchronous calls, the smaller the number of task switches.
However, using only synchronous calls decreases the responsiveness of the
application making the request— its activity stops pending the completion of
an outstanding I/O request. Providing at least one level of asynchronous call
between an application and an I/O request results in the best latency results
from the user perspective. Within the file system, the application task is not
used as the thread of completion for I/O. A task switch at the File Manager API
level allows a user-visible application, such as the Finder, to continue. The File
Manager creates an I/O task thread to handle the I/O request, and that task
might be used via synchronous calls by the block storage and SCSI families to
complete their part in I/O transaction processing.

This kind of short-cut communication between families requires a very clear
understanding of the relationships between the families, including the stack
needs of the called family, the activation model of the called family, and the
asynchronous and synchronous paradigms used by the called family. This is
part of the decision-making process in developing each family activation
model.

C H A P T E R 1

About the Copland I/O Architecture

Name Registry 1-33
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

Name Registry 1

The Name Registry is a high-level Mac OS naming service that stores system
information. It is key to implementing several important features in the
Copland I/O architecture:

■ Effective driver replacement and overloading capability. This capability
allows you to release updates to drivers.

■ Dynamic driver loading and unloading. The Name Registry provides a
dynamic and flexible environment for identifying devices. This type of
capability is necessary for supporting devices such as hot swappable
PCMCIA cards.

■ Simplification of driver writing. You won’t need to follow different rules
for writing device drivers located on the main logic board, NuBus, the PCI
bus, or the PCMCIA bus.

■ Hardware-independent device drivers. The Name Registry provides the
layer of abstraction necessary for driver writers to remove conflicting device
identification and device information callouts (as occurred previously with
the Slot Manager) that prevented drivers from being portable to new
versions of Macintosh hardware.

The Name Registry is a tree-structured collection of entries, each of which can
contain an arbitrary number of name-value pairs called properties. Family
experts peruse the Name Registry to locate devices or plug-ins available to the
family. Low-level experts, described later in this section, describe platform
hardware by populating the Name Registry with device nodes.

The Name Registry contains a subtree pertinent to the I/O architecture: the
device portion of the Name Registry describes the configuration and
connectivity of the hardware in the system. Each entry in the device subtree
has properties that describe the hardware represented by the entry and may
contain a reference to the driver in control of the device.

A low-level expert, sometimes referred to as a bus expert or motherboard expert,
has specific knowledge of a piece of hardware such as a bus or a main logic
board. It knows how physical devices are connected to the system and it
installs and removes that information in the device portion of the Name
Registry.

C H A P T E R 1

About the Copland I/O Architecture

1-34 Compatibility—Backward and Forward

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

For example, a SCSI bus expert scans a SCSI bus for devices and installs an
entry into the device portion of the Name Registry for each device that it finds.
The SCSI bus expert knows nothing about a particular device for which it
installs an entry. As part of the installation, the SCSI bus expert invokes the
driver matching routines in the Driver Loader Library to associate a driver
with the entry. The driver knows the capabilities of the device and specifies
that the device belongs to a given family.

Low-level experts and family experts use the Name Registry notification
mechanism to recognize changes in the system configuration and to take
family-specific action in response to those changes.

Here’s an example of how family experts, low-level experts, and the Name
Registry service work together to stay aware of dynamic changes in system
configuration. Suppose that a Macintosh Duo is docked. The Duo motherboard
expert notices that a new bus, a new network interface, and a new video device
have appeared within the system. The Duo motherboard expert adds a bus
node, a network node, and a video node to the device portion of the Name
Registry. The Name Registry service notifies all software that registered to
receive notifications of these events.

Once notified that changes have occurred in the Name Registry, the networking
and video family experts scan the Name Registry and notice the new entry
belonging to their family type. Each instantiates the new entry within the
family.

The SCSI bus expert notices an additional bus, and probes for SCSI devices. It
adds a node to the Name Registry for each SCSI device that it finds. New SCSI
devices in the Name Registry result in perusal of the Registry by the block
storage family expert. The block storage expert notices the new SCSI devices
and loads the appropriate drivers, and then creates the appropriate volume
Registry entries to make these volumes available to the File Manager. The File
Manager receives notification of changes to the block storage family portion of
the Registry, and notifies the Finder that volumes are available. Those volumes
then appear on the user’s desktop.

Compatibility—Backward and Forward 1

The following sections discuss Copland compatibility issues for developers of
device drivers and applications.

C H A P T E R 1

About the Copland I/O Architecture

Compatibility—Backward and Forward 1-35
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

If You Develop Device Drivers 1

Copland and its I/O architecture introduce a new environment for device
drivers—one that is fundamentally different from that familiar to current
Macintosh driver developers. Although Copland places some restrictions on
drivers, it greatly increases system stability and protects drivers from
application error.

The System 7 I/O architecture is based on resources of type 'DRVR' and on the
Device Manager API. Many different types of software use these mechanisms.
Some types are affected by the changes introduced by Copland I/O and some
are not.

Copland employs a more restricted concept of driver software. In the Copland
I/O architecture, a driver is the native code that controls a physical device or
that manages a system service. (Code that controls a virtual device such as a
RAM disk may also be considered a driver in Copland.) This type of software
(that controls a physical device or manages a system service) is affected by the
new I/O architecture in Copland. Example of this type of software include

■ serial drivers (.AIn, .BOut)

■ protocol stacks (.MPP, .IPP)

■ network drivers (.ENET, ADEVs, MDEVs)

■ video drivers (.Display)

■ SCSI interface modules (SIMs)

Software that uses the 'DRVR' resource type and the Device Manager API to
provide application-level functionality is not directly affected by Copland I/O
changes. Examples of this type of software include:

■ desk accessories

■ print drivers

For backward compatibility, Copland supports, through the Device Manager,
emulated drivers of type 'DRVR' that do not touch hardware. Such software is
not a plug-in. It runs in user mode outside the I/O system and can exist only in
the traditional application environment that uses the WaitNextEvent
function and that has full access to the Toolbox.

The Copland I/O system is the first complete implementation of the I/O
architecture described in this chapter. A subset of the I/O architecture is

C H A P T E R 1

About the Copland I/O Architecture

1-36 Compatibility—Backward and Forward

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

implemented to support PCI devices on upcoming Power Macintosh models.
The document Designing PCI Cards and Drivers for Power Macintosh Computers
describes the capabilities provided to driver writers for the first PCI-based
Power Macintosh computers. If you write a PCI driver according to the
specifications there, PCI cards with ROM-based drivers will work unchanged
between the version of Mac OS delivered on upcoming PCI-based Power
Macintosh models and subsequent PCI-based hardware platforms running
Copland.

The Copland driver environment differs from the System 7 driver environment
in several ways:

■ The system distinguishes between software that runs in user mode or in
supervisor mode. In System 7, drivers run in the same environment as
applications in a single address space. In Copland, drivers run in supervisor
mode and have access to the microkernel’s protected memory space.
Applications can’t touch the hardware or the driver code or data directly.

■ Drivers are packaged as Code Fragment Manager fragments (shared
libraries).

■ Distinct execution environments are defined in which different sets of
services are available. Because drivers execute in supervisor mode, they
cannot call Mac OS Toolbox routines. On the other hand, by executing in
supervisor mode, drivers gain a fine granularity of control over devices and
overall system responsiveness. Drivers use microkernel, driver, and family
service libraries as appropriate. Families and their plug-ins are expected to
adhere to the rules appropriate to their execution environment.

■ The system employs new tasking and messaging mechanisms that allow
prioritizing of I/O processing and that make I/O latency predictable. These
mechanisms are the foundation for preemptive multitasking and memory
protection.

■ Drivers exist as plug-ins to a particular I/O family and must conform to the
activation model employed by that family. Therefore, when writing your
driver, you need to adhere to the plug-in programming interface and the
family’s implementation guidelines. I/O family provide libraries of
commonly needed routines, thus simplifying your development effort.

■ Drivers that touch hardware must be written in native PowerPC code. As a
result, Copland will deliver superior I/O performance. Emulated 68K
drivers that directly access hardware are not supported.

C H A P T E R 1

About the Copland I/O Architecture

Compatibility—Backward and Forward 1-37
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

As a result of these changes, you need to change the way you write a device
driver. With the exception of drivers written according to specifications for
PCI-based Macintosh computers, System 7 drivers that access hardware will
not run under Copland.

The next two sections give more information on the separation of application
and device driver interfaces and the packaging of driver software and they
describe benefits that result from these changes.

Separation of Application and Device Driver Interfaces 1

In System 7 there is only one kind of programming interface: the application
programming interface (API). This makes all Mac OS services available to all
varieties of software. Copland distinguishes between programming interfaces
available to applications and those available to device drivers. Programming
contexts become increasingly specialized in Copland.

In Copland, drivers have available to them plug-in programming interfaces
specifically tuned to the needs of different types of devices, such as display
devices or SCSI devices. The plug-in programming interfaces provide a fine
level of control over core operating system facilities such as paging and
interrupts. Use of plug-in programming interfaces is essential to your driver’s
portability in future Mac OS releases. These interfaces are guaranteed to be
common across OS releases.

Because drivers operate outside the application software context in Copland,
they do not have access to the rich set of APIs available to applications. If you
find that a service you depend on has been removed from the plug-in
programming interface for your driver, you should contact Apple at the
AppleLink address NEW.IO or new.io@applelink.apple.com.

Common Packaging of Loadable Software 1

In Copland, all drivers are created as Code Fragment Manager (CFM)
fragments (shared libraries). Each CFM fragment must export a driver
description structure that the system uses to locate, load, and initialize the
driver.

Copland drivers, therefore, are packaged differently from previous Macintosh
device drivers. Because they are CFM fragments, they are allowed to have
specific static data storage, and they can be written in a high-level language

C H A P T E R 1

About the Copland I/O Architecture

1-38 Compatibility—Backward and Forward

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

without assembly-language headers. Each instance of a single driver has
private static data and shares code with every other instance of that driver. A
device driver no longer locates its private data by means of a field in its Device
Unit Table entry.

One consequence of drivers as CFM fragments is that a single device driver no
longer controls multiple devices. Normally there is a driver instance for each
device, although only one copy of the driver’s code is loaded into memory.

If You Develop Applications 1

Adjusting to the architectural shift in the I/O system should be relatively easy
for the application developer. For compatibility with System 7 applications, the
Copland Device Manager supports all of the functions described in the chapter
“Device Manager” of Inside Macintosh: Devices. However, a smaller set of
devices will be available through the Device Manager; for them, the system
supports a compatibility layer that converts old function calls to new ones.
Thus, if your application calls the Device Manager, it will continue to run on
Copland, but it will incur a performance penalty going through the
compatibility layer.

For better performance and for access to services well suited to a given class of
device, you should update your application to use the FPI for that device rather
than the Device Manager. For example, if your application uses the Display
Manager, you benefit from a set of routines tuned to work with display devices.

In most cases, Copland FPIs will be the same as or very similar to existing
APIs, such as those provided by the File Manager, the Display Manager, and
Open Transport. If your application uses these higher-level APIs, it is insulated
from underlying changes in the Copland I/O architecture and Copland device
drivers and you shouldn’t have to change it to work with Copland.

In addition to benefiting from the more effective services available through
Copland FPIs, adopting the new FPIs now facilitates subsequent development
for versions of the Mac OS beyond Copland. APIs that Copland maintains for
compatibility may not be available with versions of the Mac OS beyond
Copland. For example, the networking paradigm for the Mac OS is changing,
moving in the direction of Open Transport. Although Copland will support
System 7 AppleTalk interfaces, later versions of the Mac OS will not. Versions
of the Mac OS beyond Copland will require you to use the Open Transport FPI.

C H A P T E R 1

About the Copland I/O Architecture

Compatibility—Backward and Forward 1-39
Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

If your application ignores public APIs and instead uses nonstandard methods
to access a device, you’ll need to change your application. In Copland,
hardware is not mapped into application address space and attempts to touch
hardware will result in access violations. Devices and drivers are not directly
accessible to an application. The only access to their services is through a
family programming interface or an API maintained for compatibility.

Device Manager Compatibility 1

In Copland, the Device Manager functions described in the chapter “Device
Manager” of Inside Macintosh: Devices are supported. Drivers that provide their
services through the Device Manager API belong to the Device Manager family
and are called generic drivers. The Device Manager functions constitute the
FPI for the Device Manager family. The family has its own activation model
and set of services, but it is not tuned to the needs of a given type of device.

Although the Device Manager API is more limiting than that provided by
family FPIs, the Device Manager family offers a migration path to driver
developers who implement the basic changes required by Copland without
totally converting to the Copland I/O architecture.

If no family for a device exists, the Device Manager offers a way to use it in
Copland. Consider, for example, a PCI card that receives data, encrypts it, and
sends it back. An encryption family doesn’t currently exist. By writing the
driver according to the rules for drivers of family type 'ndrv' described in
Designing PCI Cards and Drivers for Power Macintosh Computers, the card is
supported in Copland as a plug-in to the Device Manager family.

To summarize, the Copland Device Manager supports drivers that have been
revised to run in Copland but that have not taken advantage of the enhanced
driver services available through Copland I/O families, or for which no family
exists. As a result, the Device Manager family’s plug-ins are likely to differ
quite a bit among themselves, rather than belonging to a general class of
devices such as video monitors. For example, Device Manager family plug-ins
may include drivers for instrumentation bus adapters, graphics devices,
encryption hardware, and so forth. Typically, plug-ins in the Device Manager
family are drivers that talk to hardware, but they can also talk to virtual
devices such as a RAM disk or loopback software.

C H A P T E R 1

About the Copland I/O Architecture

1-40 Compatibility—Backward and Forward

Draft. Preliminary, Confidential. Apple Computer, Inc. 10/23/95

	Copland I/O Architecture
	About the Copland I/O Architecture
	Introduction
	Families
	Plug- ins

	Design Goals for the Copland I/O Architecture
	Short-Term Design Goals
	Long-Term Design Goals

	Architectural Features
	Driver Loader Library
	Driver Services Library
	Booting Services
	Power Management
	User Activity Monitor
	Support for Hot Swappable Devices

	A Closer Look
	Families
	Family Programming Interfaces
	Family Communications

	Plug-ins
	Extending Family Programming Interfaces
	Sharing Code and Data Between Plug-ins

	Activation Models
	Single-Task Model
	Task-per-Plug-in Model
	Task-per-Request Model
	Family Programming Issues

	Name Registry
	Compatibility-Backward and Forward
	If You Develop Device Drivers
	Separation of Application and Device Driver Interfaces
	Common Packaging of Loadable Software

	If You Develop Applications
	Device Manager Compatibility

