

K

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

K

I N S I D E M A C I N T O S H

Modular I/O

Draft.

 Apple Computer, Inc. 4/22/96

K

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Geoport,
QuickTime, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
AppleTalk and Mac are trademarks
of Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and

may be registered in certain
jurisdictions.
Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
NuBus is a trademark of Texas
Instruments.
PowerPC is a trademark of
International Business Machines
Corporation, used under license
therefrom.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or

liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Contents

Figures, Tables, and Listings xiii

Chapter 1

About the I/O Architecture

1-1

Introduction 1-4
I/O Families 1-7

Family Client Programming Interface 1-9
User-Mode and Supervisor-Mode Client Libraries 1-9
Connection-Based Services 1-11

Family Plug-in Programming Interface 1-11
Family Servers 1-12

I/O Path Communications 1-12
Administrative Message Ports 1-13

High-Level and Low-Level Families 1-13
I/O Plug-ins 1-14

Extending Client Programming Interfaces 1-16
Sharing Code and Data Between Plug-ins 1-18

Design Goals of the I/O Architecture 1-19
Short-Term Design Goals 1-19
Long-Term Design Goals 1-20

I/O Support Services 1-22
Driver and Family Matching 1-22
Device Notification Service 1-22
Conglomerate Libraries for Plug-ins 1-23
Booting Services 1-23
Power Management 1-24

Activation Models 1-26
Single-Task Model 1-27
Task-per-Plug-in Model 1-29
Task-per-Request Model 1-32
Family Programming Issues 1-33

Name Registry 1-34
Interactions With Experts, DNS, and DFM 1-35

iv

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

I/O Interface 1-36
Compatibility—Backward and Forward 1-37

If You Develop Device Drivers 1-37
Separation of Application and Device Driver Interfaces 1-39
Common Packaging of Loadable Software 1-39

If You Develop Applications 1-40
Device Manager Compatibility 1-41

Glossary 1-42

Chapter 2

Driver and Family Matching

2-1

About the Driver and Family Matching Service 2-3
Device Categories 2-3

Simple Device 2-3
Multiple-Emulation Devices 2-3
Multiple-Plug-in Devices 2-4
Multifunction Cards 2-4
Virtual Devices 2-4

Use of the Name Registry 2-4
Loading Plug-Ins and Family Experts 2-5
Matching Mechanisms 2-6

Standard Matching 2-6
Generic Matching 2-7

Driver and Family Matching Constants and Data Types 2-10
Plug-In Description Structure 2-10
Plug-in Description Signature 2-11
Plug-in Description Version 2-11
Plug-in Type Structure 2-12
Plug-in Runtime Structure 2-12
Runtime Options 2-13
Plug-in Services Structure 2-14
Plug-in Services Information Structure 2-15
Family Constants 2-16
Device Manager Family Types 2-18

v

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Chapter 3

ADB Family Reference

3-1

About the ADB Family 3-5
ADB Client Constants and Data Types 3-8

ADB Connection ID 3-8
ADB Register Contents 3-9
ADB I/O Iterator Data 3-9
ADB Match Strings 3-10

ADB Plug-in-Defined Data Types 3-11
ADB Plug-In Dispatch Table 3-11

ADB Plug-In Header 3-12
ADB Plug-in Defined-Function Types 3-13

ADB Client Functions 3-19
Getting Information about ADB Devices 3-20
Opening and Closing an ADB Connection 3-21
Getting and Setting the ADB Registers 3-23

Getting and Setting Handler IDs 3-27
Getting and Setting ADB Status Bits 3-30

Autopolling 3-34
Flushing the ADB 3-36
Resetting the ADB 3-37

Functions Exported by ADB Family 3-38
ADB Plug-in Defined Functions 3-41

Validating Hardware 3-41
Initializing ADB Plug-ins 3-42
Setting and Getting Autopoll Delay 3-43
Setting and Getting the Autopoll List 3-45
Enabling and Disabling Autopolling 3-46
Resetting the ADB Bus 3-48
Flushing ADB Devices 3-48
Setting and Getting the ADB Plug-in Register 3-49

Setting the Keyboard List 3-51
ADB Result Codes 3-52
Glossary 3-52

Chapter 4

Pointing Family Reference

4-1

About the Pointing Family 4-5

vi

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Constants and Data Types 4-8
Pointing Family Tracker Reference 4-8
Pointing Data Structure 4-9

Pointing Position Structure 4-10
Pointing Button State Type 4-11

Pointing Device Modes Structure 4-11
Data Relation Enumerators 4-12

Pointing Device Capabilities 4-14
Pointing Device Class 4-15
Minimum Pointing Device Data Size 4-17

Pointing Device Identifier 4-18
Pointing Pinning Rectangle List 4-18

Pointing Family Plug-In Data Types 4-19
Pointing Family Device Dispatch Table 4-20

Pointing Family Plug-in Header 4-21
Driver Description Data Structure 4-22
Pointing Family Plug-in Defined Function Types 4-23

Pointing Family Client Functions 4-27
Getting Information About Devices 4-27
Registering With the Pointing Family 4-32
Setting and Retrieving Device Modes 4-34
Maintaining Trackers 4-38
Getting Tracker-Buffered Data 4-40
Checking Tracker State 4-43

Working WithTracker Position 4-45
Working With Tracker Buttons 4-49
Getting and Setting Tracker Data By Offset 4-52

Pointing Family Plug-In-Defined Functions 4-54
Validating Pointing Devices 4-55
Initializing and Terminating Plug-ins 4-56
Controlling Device I/O 4-58
Getting Device Data 4-61
Setting and Getting Device Modes 4-62

Pointing Family Result Codes 4-64
Glossary 4-64

vii

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Chapter 5

PCI Family Reference

5-1

Constants and Data Types 5-5
PCI Assigned-Address Property Structure 5-5

PCI Address Space Flags 5-6
PCIDeviceFunction 5-7
PCIBusNumber 5-7
PCIRegisterNumber 5-8

PCIConfigAddress 5-8
PCIIOAddress 5-8
PCIIOIteratorData Structure 5-9
PCI Plugin Header 5-9
PCI Bridge Descriptor 5-10
PCI Bridge Variables 5-11
PCI Header Interface Version 5-12
PCI Error Codes 5-12
PCI Reg Property Structure 5-12
PCI Bus Range Property Structure 5-13
PCI Device Table Entry Header 5-14
Typedefs for Bridge Plugin Interface 5-15
PCI Device Table Entry 5-15
Typedefs for Plugin Interfaces 5-16
PCI Control Descriptor 5-17
PCI Bridge Plugin Definitions 5-18
General Purpose PCI Masks 5-18
PCI Encoded-Int Structure Constants 5-19
PCI Cycle AccessType 5-21

Byte Swapping Routines 5-21
PCI Kernel Cycle Routines 5-23
PCI I/O Iterator Routines 5-40
PCI Plugin Interface Routines 5-47
PCI Bridge Plug-in Routines 5-68

Chapter 6

About the Nubus Family

6-1

NuBus Expert 6-5
Discovering NuBus Cards 6-6
Establishing Logical Addresses 6-6

viii

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Initializing Its Interrupt Structure 6-6
Advertising Device Information to NuBus Drivers 6-7

“assigned-addresses” Property 6-7
“reg” Property 6-8
“name” Property 6-8
“AAPL,address” Property 6-8
“AAPL,slot” Property 6-8
“driver-ist” Property 6-8
“driver-description” Property 6-9

Advertising NuBus Devices to High-Level Families 6-9
NuBus Server 6-9
NuBus Plug-in 6-9
NuBus Library 6-9
Slot Manager Library 6-10

Chapter 7

Block Storage Family Reference

7-1

About The Block Storage Family 7-10
Stores 7-13
Partitions 7-16
Containers 7-17
Connections 7-17
Plug-ins 7-17

Mapping Plug-ins 7-17
Partitioning Plug-ins 7-19
Container Plug-ins 7-22

Plug-in Discovery and Loading 7-22
Block Storage Family Activation Models 7-23

Activation Model For Mapping Plug-ins 7-24
Activation Model For Partitioning and Container Plug-ins 7-27

Block Storage Client Constants and Data Types 7-27
Block Storage Byte Count Type 7-28
Block Storage ID Types 7-28
Block Storage Reference Types 7-30
Navigation Types 7-33
Store Property Names 7-36
Container Property Names 7-36

ix

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Store Format Types 7-37
Maximum Formats Constant 7-39
Store Component Types 7-39
Accessibility State Type 7-41
Open Options Types 7-42
Store Information Structure 7-44
Container Information Structure 7-47
Partition Descriptor Structure 7-48

Block Storage Plug-in Constants and Data Types 7-49
I/O Constants 7-50
Basic Block Storage Types For Use By Plug-ins 7-50
Block List Descriptor Types 7-51
Confidence Level Types 7-53
Status and Error Types 7-55
Store Component Type 7-57
Store Information Structures 7-57
Container Information Type 7-60
Plug-in Interface Version Constant 7-61
Plug-in Interface Structures 7-61
Mapping Plug-in-Defined Function Types 7-65
Partitioning Plug-in-Defined Function Types 7-70
Container Plug-in-Defined Function Types 7-73

Block Storage Client Functions 7-77
Opening and Closing a Connection to a Store 7-78
Building a Block List 7-80
Reading From a Store 7-86
Writing To a Store 7-92
Setting the Accessibility State For a Store 7-98
Navigating a Store Hierarchy 7-100
Creating and Configuring a Store 7-113
Opening and Closing a Connection to a Container 7-128
Setting the Accessibility State For a Container 7-130
Navigating a Container Hierarchy 7-131
Creating and Configuring a Container 7-139
Working With a Block List Descriptor 7-147

Block Storage Plug-in Functions 7-157
Exported By the Block Storage Family For All Plug-ins 7-158
Exported by the Block Storage Family For Mapping Plug-ins 7-160

x

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Exported by the Block Storage Family For Partitioning Plug-ins 7-172
Exported by the Block Storage Family For Container Plug-ins 7-176
Mapping Plug-in-Defined Functions 7-179
Partitioning Plug-in-Defined Functions 7-192
Container Plug-in-Defined Functions 7-198

Block Storage Result Codes 7-205
Basic Error Types 7-205
Block Storage Error ID 7-206
Block Storage Error Categories 7-206
Block Storage Family Errors 7-206
Block Storage Expert Errors 7-207
Mapping Plug-in Errors 7-207
Partitioning Plug-in Errors 7-208
Container Plug-in Errors 7-208
Block List Errors 7-208

Glossary 7-209

Chapter 8

Device Manager Family

8-1

About the Device Manager Family 8-3
Compatibility with 68K Drivers 8-4
Compatibility with Native Drivers 8-4

Using the Device Manager Family 8-5
Locating a Generic Plug-In 8-5
Opening a Generic Plug-In 8-6
Closing a Generic Plug-In 8-7

Device Manager Reference 8-7
Data Types 8-7

Command Codes 8-7
Command Kinds 8-8
Device Manager Family Iterator Structure 8-9
I/O Command Contents Structure 8-10

Functions 8-11

xi

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

Chapter 9

Booting Services

9-1

About Mac OS 8 Booting Services 9-3
Booting Sequence 9-5

Hardware Self-Test 9-5
ROMs and Boot Blocks 9-5
Open Firmware 9-5
Secondary Loader 9-6
Tertiary Loader 9-6
Invoking the Microkernel 9-8

Booting Services Software 9-8
Boot Blocks 9-8
Disk-Based Open Firmware 9-9
Embedded HFS Package 9-9
Embedded Resource Manager 9-10
Self PEF Loader 9-10
Boot-time Code Fragment Manager 9-10
Device Tree Maintenance Facility 9-11
Driver and Family Matching Service 9-11

Index

IN-1

xii

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

xiii

Draft.

 Apple Computer, Inc. 4/18/96

Figures, Tables, and Listings

Chapter 1

About the I/O Architecture

1-1

Figure 1-1

High-level view of an application, I/O families, and plug-ins 1-6

Figure 1-2

I/O family software diagram 1-8

Figure 1-3

User-mode and supervisor-mode client libraries 1-10

Figure 1-4

Extending a client programming interface 1-17

Figure 1-5

Plug-ins that share code and data 1-18

Figure 1-6

Single-task activation model 1-28

Figure 1-7

Task-per-plug-in model 1-30

Chapter 2

Driver and Family Matching

2-1

Table 2-1

DFM conventions for

name

 property value 2-8

Table 2-2

DFM conventions for

matching

 property values 2-9

Chapter 3

ADB Family Reference

3-1

Figure 3-1

The ADB Family, Its Clients, and Plug-ins 3-7

Figure 3-2

The Status Bits of ADB Register 3 3-31

Chapter 4

Pointing Family Reference

4-1

Figure 4-1

The Pointing Family, Its Clients, and Plug-ins 4-7

Listing 4-1

Plug-In Driver Description Structure 4-22

Chapter 6

About the Nubus Family

6-1

Figure 6-1

Nubus Family Software Diagram 6-4

Chapter 7

Block Storage Family Reference

7-1

Figure 7-1

Relationship of block storage family to other software 7-11

Figure 7-2

Primary and derived stores 7-14

Figure 7-3

RAID store hierarchy 7-16

xiv

Draft.

 Apple Computer, Inc. 4/18/96

Figure 7-4

Mapping plug-ins 7-18

Figure 7-5

Simple partition example 7-20

Figure 7-6

RAID-5 partitioning 7-21

Chapter 8

Device Manager Family

8-1

Table 8-1

Supported I/O command kinds and command codes for
clients 8-14

Chapter 9

Booting Services

9-1

Figure 9-1

Mac OS 8 booting sequence 9-4

C H A P T E R 1

Contents

1-1

Draft.

 Apple Computer, Inc. 4/22/96

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 About the I/O Architecture

Introduction 1-4
I/O Families 1-7

Family Client Programming Interface 1-9
User-Mode and Supervisor-Mode Client Libraries 1-9
Connection-Based Services 1-11

Family Plug-in Programming Interface 1-11
Family Servers 1-12

I/O Path Communications 1-12
Administrative Message Ports 1-13

High-Level and Low-Level Families 1-13
I/O Plug-ins 1-14

Extending Client Programming Interfaces 1-16
Sharing Code and Data Between Plug-ins 1-18

Design Goals of the I/O Architecture 1-19
Short-Term Design Goals 1-19
Long-Term Design Goals 1-20

I/O Support Services 1-22
Driver and Family Matching 1-22
Device Notification Service 1-22
Conglomerate Libraries for Plug-ins 1-23
Booting Services 1-23
Power Management 1-24

Activation Models 1-26
Single-Task Model 1-27
Task-per-Plug-in Model 1-29
Task-per-Request Model 1-32
Family Programming Issues 1-33

C H A P T E R 1

1-2

Contents

Draft.

 Apple Computer, Inc. 4/22/96

Name Registry 1-34
Interactions With Experts, DNS, and DFM 1-35
I/O Interface 1-36

Compatibility—Backward and Forward 1-37
If You Develop Device Drivers 1-37

Separation of Application and Device Driver Interfaces 1-39
Common Packaging of Loadable Software 1-39

If You Develop Applications 1-40
Device Manager Compatibility 1-41

Glossary 1-42

C H A P T E R 1

1-3

Draft.

 Apple Computer, Inc. 4/18/96

About the I/O Architecture 1

This chapter provides an overview of the I/O architecture of Mac OS 8. The
I/O architecture is designed to improve the user experience by providing
superior performance, better responsiveness, and increasingly robust systems,
and by supporting the advancements inherent in a microkernel-based
operating system. It improves the developer experience by increasing the
predictability of I/O responsiveness, by simplifying driver development, by
minimizing and localizing hardware dependencies in software, and by
providing an improved Device Manager.

You need to understand the framework that the I/O architecture provides for
innovation and how it affects compatibility with both hardware and software
products if you are one of the following types of developers:

■

If you are a Mac OS licensee, you need to understand the I/O architecture to
be certain that devices you incorporate into your hardware product will
operate with Mac OS 8 and to understand how software can be loaded into
your product when it is turned on.

■

If you are a hardware vendor who makes NuBus™ or PCI cards, Apple
Desktop Bus (ADB) devices, GeoPort pods, or other hardware devices that
operate with Mac-compatible computers, you need to know how to create
software that allows access to your product.

■

If you produce software products such as network protocol
implementations, file system implementations, or virtual device drivers to
extend the capabilities of Mac OS 8, or if you develop utilities such as driver
installers, hard disk formatting and partitioning packages, or disk recovery
and repair products, you need to understand the I/O architecture to
determine if you need to modify your software product to run on Mac OS 8.

■

If you are an application developer whose application writes to or otherwise
manipulates devices, you need to understand how to take advantage of the
new features in the I/O architecture and how to enhance your application’s
compatibility with future versions of Mac OS.

This chapter briefly introduces the I/O architecture of Mac OS 8. Then it
discusses

■

selected aspects of I/O families and their plug-ins

■

short-term and long-term design goals of the I/O architecture

■

I/O support services in Mac OS 8

■

family activation models

C H A P T E R 1

About the I/O Architecture

1-4

Introduction

Draft.

 Apple Computer, Inc. 4/18/96

■ the name registry and its role in the I/O subsystem

■ compatibility issues for device driver writers and application developers

Before reading this chapter, you should be familiar with the architecture of
Mac OS 8, including tasks and processes, memory organization and protection,
synchronization and notification methods, and microkernel messages. You can
find information about these topics in Microkernel and Core System Services.

Introduction 1

With Mac OS 8, the workings of the lowest levels of the Mac OS change from
what they were in previous versions of system software. The implementation
of a microkernel-based, preemptive, multitasking operating system has
significant implications for developers creating drivers and other I/O services
for the Mac OS and for applications that use them.

■ Software running in user mode and software running in supervisor mode
have no direct access to each other’s data. Because drivers run in supervisor
mode and applications normally run in user mode, drivers are protected
from applications and vice versa. An application gets access to driver
services only through an I/O family’s client programming interface.

■ I/O devices are not directly accessible to applications, nor are they
vulnerable to application error. Applications get access to hardware only
through an I/O family’s client programming interface.

■ The context within which a driver runs and the method by which it interacts
with the system are defined by the I/O family to which it belongs.

The notions of I/O family, client, and I/O plug-in are fundamental to the I/O
architecture of Mac OS 8. An I/O family is a collection of software components
that provide a distinct set of services to the system. For example, the SCSI
family and its SCSI interface modules (SIMs) provide access to devices
connected to SCSI buses; the file systems family and its volume-format
plug-ins provide support for different file systems; the Open Transport family
and its Data Link Provider Interface (DLPI) device drivers provide network
services. Often, a family is associated with a set of devices that have similar
characteristics, such as display devices or ADB devices.

A client of an I/O family is any software that requests services offered by the
family. A family’s clients can include applications, other I/O families and their

C H A P T E R 1

About the I/O Architecture

Introduction 1-5
Draft. Apple Computer, Inc. 4/18/96

plug-ins, server programs, and system software. A given family’s clients and its
plug-ins are mutually exclusive sets of software components. Each family
provides two programming interfaces: one for its clients and one for its
plug-ins.

An I/O plug-in is a dynamically loaded piece of software that provides
particular implementation of the service offered by a family. For example,
within the file systems family, a plug-in implements services particular to a
volume format such as HFS or DOS FAT. You can extend Mac OS 8 by writing
new I/O plug-ins.

I/O plug-ins are a superset of device drivers. A device driver is a software
component that communicates with and controls a hardware device. While all
device drivers are I/O plug-ins, not all I/O plug-ins are drivers. For example,
the partitioning plug-in defined by the block storage family, for example, is not
a device driver.

Note
In documents other than those that describe the I/O
subsystem or some part of it, the term plug-in may refer to
dynamically loaded software that is not related to I/O. For
convenience, the rest of this chapter frequently uses the
simple term plug-in rather than I/O plug-in to refer to an
I/O plug-in. ◆

In Mac OS 8, code that executes in supervisor mode, as families and plug-ins
do, is trusted. A failure in one of these software subsystems can cause complete
system failure. However, failure of any particular application does not affect
the ability of the I/O subsystem and other microkernel-level services to
continue serving other clients. The I/O subsystem is insulated from application
error.

Figure 1-1 illustrates an example of the relationship between an application,
several I/O families, and their plug-ins. An application requests services of an
I/O family through the client programming interface, such as the File Manager.
Typically, the application request is converted to a microkernel message, shown
in the figure as gray arrows, to cross the boundary between the user mode and
supervisor mode environments and be delivered to the family.

C H A P T E R 1

About the I/O Architecture

1-6 Introduction

Draft. Apple Computer, Inc. 4/18/96

Figure 1-1 High-level view of an application, I/O families, and plug-ins

Note that Figure 1-1 shows three I/O families that work together to complete a
service request. The application makes the service request, which then moves
through the file systems family, the block storage family, and the SCSI family.
This particular routing of the request does not imply any hierarchical
relationship among families—all families are peers of each other.

In introducing the concepts of family and plug-in, the I/O architecture of
Mac OS 8 formalizes existing programming practices. For example, when an
application accesses the services of a video device through the Display
Manager, it is calling the display family. The Display Manager is tailored to the

File
Manager

SCSI
family

Block
storage
family

File
system
family

User mode

Supervisor mode

HFS
file

system
plug-in

Disk
Driver
plug-in

SCSI
plug-in
(SIM)

SCSI bus

C H A P T E R 1

About the I/O Architecture

I/O Families 1-7
Draft. Apple Computer, Inc. 4/18/96

needs of video devices. Likewise, when an application calls the Sound
Manager, it is calling the sound family. The family concept in the I/O
architecture explicitly acknowledges that similar devices share many
characteristics and needs. Therefore, it provides programming interfaces
tailored to the needs of specific device families. These specially tuned sets of
services allow drivers for a given family to be as simple as possible.

Apple will provide a number of I/O families in its first release of Mac OS 8,
including, but not necessarily limited to, the following:

With the first release of Mac OS 8, Apple will provide plug-ins for the families
listed above. You are encouraged to develop new plug-ins.

I/O Families 1

An I/O family typically consists of the following software components:

■ a programming interface for the family’s clients

■ a client library that implements the client programming interface and sends
client requests to the family server

■ a programming interface for the family’s plug-ins

■ a family services library that implements the plug-in programming interface
and that, optionally, provides other services to family plug-ins

■ a family server that receives client requests and, usually, calls a plug-in to
process them

ADB family NVRAM family

ATA family Open Transport family

block storage family PC card family

Device Manager family PCI family

display family pointing family

file systems family real-time clock family

keyboard family SCSI family

NuBus family sound family

C H A P T E R 1

About the I/O Architecture

1-8 I/O Families

Draft. Apple Computer, Inc. 4/18/96

■ a family expert that maintains awareness of family-specific devices or
services available on a given computer

■ the set of family plug-ins

Figure 1-2 provides a simplified view of how a family client code library, a
family server, and a plug-in are related to each other; of how user mode
software and supervisor mode software are separated; and of the distinct
programming interfaces that a family provides for its clients and for its
plug-ins.

Figure 1-2 I/O family software diagram

Client
library

Family
server

User mode

Family‘s client
programming
interface

Function call

Microkernel message

Microkernel message

Function call

Family‘s plug-in
programming
interface

Supervisor mode

Plug-in

C H A P T E R 1

About the I/O Architecture

I/O Families 1-9
Draft. Apple Computer, Inc. 4/18/96

Family Client Programming Interface 1

Each family provides a programming interface for its clients. The interface
provides clients with access to services specific to that particular family.

Note
The term family programming interface has been used in the
past to refer to the client programming interface and to
distinguish it from 1) other interfaces available in
Mac OS 8, such as those provided by the microkernel or
the Toolbox, and 2) the family’s plug-in programming
interface. ◆

A family’s client library implements the client programming interface, and
forwards client requests for service to the family server. Typically, it translates
client function calls into microkernel messages and sends the messages to the
family’s server for processing. The structure of the messages and the protocols
governing their use is defined by the family.

User-Mode and Supervisor-Mode Client Libraries 1

To make certain optimizations possible, a family may provide two versions of
its client library, one for user-mode clients and one for supervisor-mode clients,
as illustrated in Figure 1-3.

C H A P T E R 1

About the I/O Architecture

1-10 I/O Families

Draft. Apple Computer, Inc. 4/18/96

Figure 1-3 User-mode and supervisor-mode client libraries

The boxes labeled Xlibuser and Zlibuser represent the libraries that support the
client programming interfaces of the X and Z families for user-mode clients.
The boxes labeled Ylibprivileged and Zlibprivileged represent the Y and Z family
libraries available to supervisor-mode clients. The Z family provides a
user-mode version and a supervisor-mode version of its client library.

(Xlibuser) (Zlibuser)

User mode

Supervisor mode

Plug-in

(Ylibprivileged) (Zlibprivileged)

X family
client library

Y family
client library

Z family
client library

Z family
client library

X family
server

Y family
server

Z family
server

Device

Plug-in

Plug-in

C H A P T E R 1

About the I/O Architecture

I/O Families 1-11
Draft. Apple Computer, Inc. 4/18/96

Both the user-mode and the supervisor-mode versions of the libraries present
the same interface to clients. Mac OS 8 distinguishes between the user-mode
and supervisor-mode versions to permit optimization of the supervisor-mode
libraries in some instances. For example, operations that must be implemented
in the user-mode library, such as copying data across address space
boundaries, may be unnecessary in the supervisor-mode library. In some
instances, the user-mode and supervisor-mode versions may be the same.

Connection-Based Services 1

Programming interfaces for I/O family clients are connection-based. All clients
need a connection ID to get access to services or devices through the family.
Typically, a family provides a function to open a connection to a service or
device specified by a client. The function returns a connection ID. Thereafter,
the client passes the connection ID when calling into the family. Families also
provide a function to close a connection. When a client no longer needs a
service or device, it closes the connection to release any resources held by the
family to support the connection.

Family Plug-in Programming Interface 1

A family’s programming interface for its plug-ins defines two sets of functions
and data structures:

■ the functions and data structures a plug-in exports to the family

■ the functions and data structures a family exports to its plug-ins

A family services library implements the functions and data structures that the
family exports for its plug-ins, and defines the methods by which the family
and its plug-ins exchange data. Functions exported by a family can be
characterized as one of two general types:

1. Functions that a plug-in must call when certain events, such as an I/O
completion, occur. Functions of this type implement communication
between the family and its plug-in. For example, they may use a notification
mechanism to unblock a family task and make it eligible for execution, or
may maintain state information needed by a family to dispatch and manage
requests. All family services libraries contain functions of this type.

2. Functions that provide family-specific services to plug-ins and that require
no task context switch. These functions execute in the context of the plug-in.
Often, they help the plug-in manipulate data. For example, the family

C H A P T E R 1

About the I/O Architecture

1-12 I/O Families

Draft. Apple Computer, Inc. 4/18/96

services library for the display family may provide functions that deal with
vertical blanking. A family services library that provides commonly needed
functions simplifies the development of that family’s plug-ins. Not all family
services libraries contain this type of function.

Family Servers 1

A family server, which always runs in supervisor mode, receives, processes,
and responds to service requests from an I/O family’s clients.

How a server responds to a request depends on the family’s activation model.
The server is, in essence, the implementation of the model. A server, for
instance, may put an incoming request in a queue or call a plug-in directly to
service a request. (For an overview of three basic activation models, see
“Activation Models” (page 1-26).)

Typically, the client library and the family server use microkernel messages to
communicate, and as a result, the server supports a message port. The server
uses an accept function or a task to wait for messages on the message port. The
accept function or task dispatches incoming requests by calling entrypoints in
the family code.

I/O Path Communications 1

Although microkernel messages are the usual method of communicating I/O
requests between the client libraries and the server for a given family, between
different families, and between plug-in x and family z, other communication
mechanisms are possible. The choice is up to the family designer.

The use of microkernel messages facilitates the development of I/O families by
providing a very easy programming model. For family designers, it offers a
straightforward interfamily communication mechanism, very fast and efficient.
In addition, the use of microkernel messages permits greater independence of
family activation models.

When I/O families use microkernel messages, performance improvements in
the messaging service are automatically reflected in the I/O subsystem.

Whatever the communication method, it is completely opaque to a client
requesting a family service. Clients simply use the client programming
interface to make requests of the family and its plug-ins.

C H A P T E R 1

About the I/O Architecture

I/O Families 1-13
Draft. Apple Computer, Inc. 4/18/96

Administrative Message Ports 1

Each I/O family provides an administrative message port (AMP) through
which the family receives all administrative information. An AMP is a standard
microkernel message port. Microkernel messages received at the AMP inform
families of such things as changes in hardware configuration (if the family
supports hot swappable devices), power management requirements, and
access control.

A family designer can choose to receive normal I/O requests and
administrative messages at the same port. In that case, the family must service
administrative messages before I/O requests. (A family using a single message
port defines separate message objects for I/O requests and for administrative
messages and uses message type masks to differentiate between I/O requests
and administrative messages.)

A family must provide a task to process messages received on the AMP.
Families that use an accept function to receive I/O requests need to create a
task to handle administrative messages.

High-Level and Low-Level Families 1

I/O families are characterized as being high level or low level, or both. The
characterization refers to the role the family expert plays at boot time when the
system hardware is being recognized and, after the system is up and running,
when a device is added or removed.

A family expert is the code within a family that maintains knowledge of the set
of family-controllable devices and plug-ins for a given Mac-compatible system.
To do this, the expert uses the Driver and Family Matching (DFM) service,
Device Notification Service (DNS), and the name registry. For a brief look at
these topics, see “Driver and Family Matching” (page 1-22), “Device
Notification Service” (page 1-22), and “Name Registry” (page 1-34).

Although this section discusses the expert’s roles in terms of adding a device to
a running system, the basic ideas apply to the removal of a device and to the
boot process as well.

A low-level family can detect when a device that can be controlled by the
family is added or removed. When a low-level family expert detects a new
device, it creates an entry in the device tree portion of the name registry and
uses DNS to send a notification of the event to DFM.

C H A P T E R 1

About the I/O Architecture

1-14 I/O Plug-ins

Draft. Apple Computer, Inc. 4/18/96

DFM locates plug-ins that match the new device and adds pointers to the
plug-ins to the name registry entry representing the new device. Then DFM
sends a notification to all software that previously registered interest in
receiving such notifications.

A high-level family registers to receive new-device notifications of devices that
the family can control. After receiving such a notification, a high-level family
expert inspects the new name registry entry for the device and examines the
plug-ins located by DFM for the new device. Then it selects the plug-in it
deems most suitable to manage the device.

The cooperation between the experts of low-level and high-level families and
DFM enables Mac OS 8 to respond gracefully to changes in system
configuration. As a result, the set of plug-ins known to and available through a
family remains current with the actual hardware available to a system.

To summarize, the expert of a low-level family knows how devices are
connected to the system, it scans hardware, and it adds and alters entries in the
name registry. The expert for a high-level family does none of these things—it
is insulated from knowledge of physical connectivity. High-level family experts
examine specific entries in the name registry after being notified of events of
interest and select the best plug-in to manage a new device.

A family can be simultaneously high level and low level. Consider this
example: The SCSI family is a low-level family; the SCSI expert can detect
when a device is added to or removed from the SCSI buses it knows about. It
sends notifications when it discovers a new device. Suppose the SCSI expert
registers to receive notifications of new SCSI buses. Further suppose that on a
computer with a PC card bay, a user inserts a PC card with a SCSI controller on
it. The PC card family is the low-level family in this instance. It detects the
newly inserted card and sends a new-device notification. The SCSI family, by
virtue of registering for and receiving the new-device notification, is also a
high-level family.

I/O Plug-ins 1

An I/O plug-in is a dynamically loaded piece of software that provides a
particular implementation of the service provided by an I/O family. For
example, within the file systems family, a plug-in implements
file-system-specific services. The plug-ins understand a particular volume

C H A P T E R 1

About the I/O Architecture

I/O Plug-ins 1-15
Draft. Apple Computer, Inc. 4/18/96

format such as HFS or DOS FAT. But file systems family plug-ins don’t
understand how to get data from a physical device. To read data, a file systems
family plug-in calls the block storage family. The block storage family then calls
one of its plug-ins—a media-specific driver such as a CD-ROM driver or a hard
disk driver—that in turn calls another family, such as the SCSI family, to access
data on a given physical device. (Figure 1-1 (page 1-6) illustrates these
relationships.)

The following statements apply to all I/O plug-ins:

■ They have a layered structure. Most of their work is done at task level. A
small amount of work may be done by interrupt handlers. The layered
structure allows plug-in code to be partitioned so that it works well within
the Mac OS 8 architecture.

■ They can be written in a high-level language.

■ They must be compiled into native PowerPC™ code.

■ They are packaged as Code Fragment Manager fragments.

■ They cannot call Toolbox routines or other non-reentrant services.

■ They must conform to their family’s activation model.

■ They run in supervisor mode and therefore have access to the microkernel’s
protected memory space.

A family calls a plug-in to service a request made by a family client. A plug-in
usually has two parts that do the following:

■ The main code section runs at task level. It is here that the plug-in does most
of its work. All plug-ins must have a main code section.

■ A hardware interrupt handler services hardware interrupts if the plug-in
responds to a physical device. When handling an interrupt, a hardware
interrupt handler should perform only essential functions and defer all other
work to the plug-in’s main code section or a secondary interrupt handler.
The plug-in programming interface specifies how interrupts are managed
within a family. Not all plug-ins need a hardware interrupt handler.

A plug-in should make no assumptions about particular hardware settings or
configurations. However, it should never attempt to obtain device
configuration information directly through programming interfaces, such as
the Resource Manager or the File Manager. A plug-in can obtain configuration
information in several ways.

C H A P T E R 1

About the I/O Architecture

1-16 I/O Plug-ins

Draft. Apple Computer, Inc. 4/18/96

■ To get static configuration information, it can read information stored in the
name registry.

■ When a family client calls the family to report a dynamic configuration
change, the family forwards the information to a plug-in through the plug-in
programming interface.

■ A plug-in can use another family’s client programming interface to obtain
some types of configuration information. For instance, a video plug-in may
call NVRAM family client functions to obtain video mode information
stored in NVRAM prior to the last system reboot.

Family plug-ins must conform to the activation model defined by the family
and provide the code and data exports described by family documentation.
Other chapters in this book describe the required interfaces for specific I/O
families.

Although the activation model and the required code and data exports for each
family are family specific, the packaging for all plug-ins is the same—they are
all Code Fragment Manager fragments.

Note

Complete packaging requirements for plug-ins are not
defined in this Developer Release. For example, currently
each fragment must reside in a separate file. At a later date,
you may be able to store multiple fragments in a single
file. ◆

The standard family and plug-in definitions cover most cases of I/O
component development. However, there are exceptions to the model. The next
sections describe two.

Extending Client Programming Interfaces 1

A plug-in may provide an additional interface specific to itself so that it can
provide services beyond those available through its family’s client
programming interface. This capability is useful in a number of situations.
Take, for example, a block storage plug-in that controls a CD-ROM device.
Many CD-ROM devices provide an interface that allows knowledgeable
application software to control audio volume and to play, pause, stop, and so
forth. The block storage family does not include functions to control audio
volume and playback. Such added capabilities can be provided through a
plug-in-specific programming interface.

C H A P T E R 1

About the I/O Architecture

I/O Plug-ins 1-17
Draft. Apple Computer, Inc. 4/18/96

Most family interfaces provide some level of extensibility to the family’s
plug-ins. For example, the Device Manager allows extensible sets of control
and status selectors that may be used to gain device-specific information and
control. And Open Transport device drivers may receive special calls to extend
the device information and control. This kind of device extension within the
family framework is not changed with the I/O architecture of Mac OS 8. If,
however, a device wishes to export extended services outside the family
framework, it needs to provide a separate message port and an interface library
for that portion of the device driver.

Figure 1-4 illustrates a plug-in that provides an extended programming
interface—it offers features in addition to those available to clients through the
family’s client programming interface.

Figure 1-4 Extending a client programming interface

Z
family
server

(libuser)(Zlibuser)

User mode

Supervisor mode

Plug-in’s
server

Plug-in

Z family
client library

Plug-in’s
client library

C H A P T E R 1

About the I/O Architecture

1-18 I/O Plug-ins

Draft. Apple Computer, Inc. 4/18/96

To make its extra services available, the plug-in must provide the additional
software shown in Figure 1-4:

■ the client library that offers the extended features (libuser)

■ the server with its message port and the code that implements the extra
features

Sharing Code and Data Between Plug-ins 1

Two or more plug-ins can share data or code, or both, regardless of whether the
plug-ins belong to the same family or to different families. Sharing code or data
is desirable when a single device driver wishes to subscribe to two or more
families. Such a driver needs a plug-in for each family. These plug-ins can share
libraries that contain information about the device state and common code.
Figure 1-5 illustrates two plug-ins that belong to separate families and that
share code and data.

Figure 1-5 Plug-ins that share code and data

Plug-ins can share code and data through Code Fragment Manager fragments
(shared libraries). The Code Fragment Manager allows you to instantiate
independently plug-ins that share code or data without encountering problems
related to simultaneous instantiation. The first plug-in to be opened and
initialized gets sole access to the shared libraries. When the second plug-in is
opened and initialized, it establishes a new connection to the shared libraries.
From that time forward, the two plug-ins contend with each other for access to
the shared libraries.

Sharing code or data is desirable in certain special cases. For example, some of
the special-case solutions provided on System 7 use two or more separate
device drivers that use shared data as a communication mechanism. Typically,

Family
A

Family
B

Plug-in
A

Plug-in
B

Shared code
or data or both

C H A P T E R 1

About the I/O Architecture

Design Goals of the I/O Architecture 1-19
Draft. Apple Computer, Inc. 4/18/96

special-case solutions install a set of devices and a set of special drivers. The
closely coupled devices use a high-speed data path to move data between
them. For example, a video input device puts video data in a shared buffer;
subsequently, a video compression device reads and compresses the data it
finds in the shared buffer. Access to the high-speed data path via the shared
buffer is synchronized by solution-specific mechanisms. In Mac OS 8, this type
of solution can be implemented as a vendor-supplied family and its plug-ins.

Design Goals of the I/O Architecture 1

The next two sections describe the short-term and long-term design goals of the
I/O architecture of Mac OS 8.

Short-Term Design Goals 1

In the first release of Mac OS 8, the I/O architecture is targeted to meet the
following design goals:

■ End-user flexibility. Mac OS provides end users with tremendous value
that is directly attributed to the flexibility and adaptability of its I/O
subsystem. For example, its plug-and-play capability and dynamic monitor
configuration are features that are simply not possible with many I/O
architectures. The I/O architecture is designed to provide these end-user
features and to retain this flexibility in Mac OS 8.

■ Performance. The I/O architecture favors lower-latency responses over
higher bandwidths to provide greater responsiveness to users. To help
achieve this goal, all drivers and all their support services are native.
Additionally, very little code is permitted to run at the hardware-interrupt
level. Although the architecture does not guarantee the best performance for
burst and single-stream high-bandwidth clients, the Mac OS 8
implementation will produce much better throughput results than are
available in System 7. The I/O architecture provides support for the
real-time needs of MIDI, sound, GeoPort, and QuickTime and enables
implementations that meet or exceed the performance of competing
platforms.

■ PCI driver compatibility. The I/O architecture accommodates the I/O
system of PCI-based Mac-compatible computers. Drivers compliant with the

C H A P T E R 1

About the I/O Architecture

1-20 Design Goals of the I/O Architecture

Draft. Apple Computer, Inc. 4/18/96

specification for driver development contained in the document Designing
PCI Cards and Drivers for Power Macintosh Computers will continue to function
well within the I/O model of Mac OS 8. In addition, Mac OS 8 seeks to
provide binary compatibility with PCI ROM-based video and network
drivers developed in accordance with the specification for native drivers
described in Designing PCI Cards and Drivers for Power Macintosh Computers.

■ Reliability, availability, and serviceability. In Mac OS 8, the I/O
subsystem works as expected and continues to work acceptably in the face
of failures in particular areas. For instance, disk I/O continues to work if a
failure in the serial hardware occurs. When failures do occur, the architecture
provides support for analysis and corrective measures by the user and by
support organizations.

■ Resource allocation and control. Having limited resources, I/O
components distribute those resources fairly among themselves. In
particular, the first driver loaded cannot consume resources such as memory,
message ports, timers, interrupt latency, or bus bandwidth in a way that
prevents subsequent drivers from loading or operating correctly.
Configurations that cannot work because their needs are mutually exclusive
are recognized and reported in a meaningful way.

■ Power management. Required for battery-powered systems such as
PowerBook computers, the need for integrated power management is
increasing for all systems. The I/O architecture provides an infrastructure to
enable optimal power management in diverse systems.

■ Extensibility. The I/O architecture enhances the ability of OEMs to create
Mac-compatible hardware and peripherals. It is intended that all
hardware-dependent software fall into one of two categories:

n software based on clearly defined hardware invariants, such as
big-endian addressing and the PowerPC 601, 603, and 604 processors

n software that is dynamically loadable at system startup time, such as I/O
families and their plug-ins

Long-Term Design Goals 1

In subsequent releases of the Mac OS, the I/O architecture is targeted to meet
these additional design goals:

■ Multiprocessor support. High-quality support for a limited number of
tightly coupled, cache-coherent processors is a long-term goal of the

C H A P T E R 1

About the I/O Architecture

Design Goals of the I/O Architecture 1-21
Draft. Apple Computer, Inc. 4/18/96

architecture. While revisions to the architecture may be desirable for
multiprocessor systems, conforming I/O components should be compatible
within multiprocessor versions of the architecture.

■ Real-time I/O support. The architecture specifies basic support for
real-time I/O needs, largely as a subset of the resource allocation and control
mechanisms provided by the architecture. Families and plug-ins are
prioritized according to their needs to better support real-time clients.

■ Improved reliability, availability, and serviceability (RAS). RAS is the
natural successor to the Mac OS plug-and-play capability. The addition of
RAS to Mac OS provides users, system administrators, and technicians with
a broad set of tools for maintaining a Mac OS system, resulting in lower
training and support costs. RAS is one of the mechanisms by which Mac OS
will maintain its lead as the easiest and most configurable system available.

■ Visual system administration. Enabling end users, system administrators,
and support staff to examine and manipulate the configuration of a specific
system is a natural extension to the benefits of RAS support.

■ Scalable to future technologies. Mac OS 8 provides sufficient architectural
integrity to ensure that implementations of technologies that are not quite
available today are obtainable on desktop platforms. ATM and infrared
networking and Firewire bus connectivity are examples of such technologies.

■ Distributed computing. As system performance increases, it is
increasingly reasonable to provide access to devices that are not attached
directly to the CPU on which an application is running. For example, with
high-cost, high-speed networks, it is possible today for an application
running on a given computer to capture video via a frame-grabbing card
plugged into another networked computer. As networking costs decrease,
distributed services become feasible on increasing numbers of desktop
systems. Distribution of I/O subsystems across a suitable network is a
long-term goal of this architecture.

■ Universal booting. A single system image that boots on all hardware
configurations that support Mac OS 8 is a goal of the architecture. In
addition, these systems will support both minimal and third-party
customized installations of Mac OS.

C H A P T E R 1

About the I/O Architecture

1-22 I/O Support Services

Draft. Apple Computer, Inc. 4/18/96

I/O Support Services 1

This section briefly describes the I/O support services available in Mac OS 8.
These services are available to all families and plug-ins—that is, they are not
specific services for different classes of devices, such as serial devices or video
display monitors.

Driver and Family Matching 1

The Driver and Family Matching service (DFM) enables Mac OS 8 to respond
to changes in hardware configuration without disturbing the microkernel’s
operation. DFM finds and loads hardware-specific software components, such
as plug-ins and family experts, at system boot time. I/O families and their
plug-ins must export certain data structures that DFM needs to perform its
functions. At boot time, DFM locates the right software components for the
hardware available on a given computer (regardless of whether the
hardware-specific software is stored in ROM, on disk, or both), loads the code
into memory, adds information about the software to the proper entry in the
name registry, and generates notifications to interested parties.

If the hardware configuration changes dynamically after Mac OS 8 is up and
running, DFM interacts with the Device Notification Service and family experts
to locate and make available all software needed to manage the hardware.

See “Driver and Family Matching” (page 2-3) for more information on DFM.

Device Notification Service 1

The Device Notification Service (DNS) provides support for hot swappable
devices such as PC cards. The I/O architecture can support—through family
experts, DFM, and DNS—dynamic changes in connectivity to devices that may
appear and disappear at any time. This feature allows a user to insert and
remove devices such as disk driver card or modem card without powering
down and restarting the computer.

DNS defines a set of event notifications and a programming interface for its
users, referred to as producers and consumers. low-level family experts that
notify DNS about an event are producers. High-level family experts that

C H A P T E R 1

About the I/O Architecture

I/O Support Services 1-23
Draft. Apple Computer, Inc. 4/18/96

register to receive certain types of notifications are consumers. A producer need
not know about the consumers that receive the notifications it produces. DNS
is responsible for sending notifications to registered consumers. A consumer
receives notifications in microkernel messages sent to its administrative
message port.

Conglomerate Libraries for Plug-ins 1

In addition to the family-specific services available from a family services
library, a plug-in may need generic system services such as interrupt
registration, timing facilities, synchronization services, and secondary
interrupt-handling capabilities. Mac OS 8 provides these base-level services in
a number of shared libraries.

Rather than require a plug-in developer to specify many libraries at link time,
each family provides a conglomerate library that contains the family services
library and the generic system services needed by its plug-ins. Thus, at link
time, you simply specify the conglomerate library provided by the family to
which your plug-in belongs.

Following is a list of some of the libraries, in addition to the family services
library, that may be included in a family’s conglomerate library:

Family-provided conglomerate libraries replace the Driver Services Library
provided for the first PCI drivers. Drivers that link to the Driver Services
Library will continue to work in Mac OS 8, provided that they adhere to the
specifications in Designing PCI Cards and Drivers for Power Macintosh Computers.

Booting Services 1

The I/O architecture provides a method for loading and launching the system
software. The microkernel booting architecture maintains the Mac OS user
experience at system startup. The user is not required to build a system tailored
for the hardware that the system will run on. Many users may choose to install
hardware support for a large class of devices that might be connected to their

DeviceManagerSupport Kernel
DriverSupport Synchronization
DriverSynchronization Timing
Interrupts

C H A P T E R 1

About the I/O Architecture

1-24 I/O Support Services

Draft. Apple Computer, Inc. 4/18/96

computers. For those users, the system finds the right support software at
startup time and configures that software into a runnable system without user
intervention. For more information on booting, see “Booting Services”
(page 9-3).

Power Management 1

The I/O architecture provides mechanisms for power state transitions within
the system, such as bringing the system up, shutting it down completely, and
maintaining a sleep state. The power management service in Mac OS 8
coordinates the power needs of individual devices in the system as well the
system as a whole. The same power management service is available on all
computers that run Mac OS 8, both portable and desktop machines.

The power management service supports five system power modes:

■ Power management disabled mode. All devices in the system are turned
on, and the system never automatically enters any power-saving mode.

■ Normal mode. The core system is available for service requests. The power
management service can control the power consumption of individual
devices based on the use of those devices and, in some cases, turn off
devices that are idle for user-selectable periods of time. If the entire system is
idle for a user-selectable period of time, it transitions into a user-selectable
low-power mode.

■ Sleep mode. The contents of memory are preserved, but active processing
is halted. Returning to normal mode is very quick.

■ Hibernate mode. The system state is written to disk, and the computer is
turned off. When the computer is turned on, the saved state is read into
memory, and users can continue where they left off—applications that were
open before going to hibernate mode are again running and documents that
were open are again open. This process takes longer than returning to
normal mode from sleep mode, but is faster than a full reboot.

■ Power-off mode. The entire system is powered down, and no state
information is saved.

The power management service decides when an individual device or the
system as a whole should change its power state. I/O families and plug-ins
never initiate a power state change.

C H A P T E R 1

About the I/O Architecture

I/O Support Services 1-25
Draft. Apple Computer, Inc. 4/18/96

The family’s programming interface for its plug-ins provides mechanisms by
which the family asks its plug-in to provide information about the power state
capabilities of the plug-in and the device it manages, such as

■ the power states that a given device can support

■ the relative power consumption of each state

■ the service that the device can provide in each state

The plug-in programming interface also provides mechanisms by which the
family sends power-state change requests and other power management
events to the plug-in.

The power management service interacts with I/O families to manage the
power consumption of devices in the system. The family provides the power
state capability information it retrieves from its plug-ins to the power
management service.

Families that monitor individual device use—such as the block storage, Open
Transport, keyboard, and pointing families—periodically report the
information to the power management service. Plug-ins provide power
management data as required by their families, rather than actively monitoring
their devices. The family, by directing the plug-in, controls the monitoring.

The power management service maintains information on the power state and
power requirements of each device whose power it can manage. When the
service determines that a device or the system as a whole is idle, it directs the
family (or families) to reduce power consumption. The family, in turn, directs
its plug-in to change the power state of the device.

The power management service seeks to manage the power consumption of
the system at a fine granularity to prolong battery life in portables and to
provide better power savings for desktop machines. Plug-in designers should
keep this in mind and take a device’s power state capabilities into account
when designing their software.

A plug-in should be designed to handle power to its device being turned off
and on and to allow access to the device to continue as if power had never been
turned off. Even though the device may not include the capability of turning
itself off and on, the system as a whole can be turned off and on (in transition
to or from hibernate mode).

C H A P T E R 1

About the I/O Architecture

1-26 Activation Models

Draft. Apple Computer, Inc. 4/18/96

Activation Models 1

A family’s activation model consists of the tasking and communication
implementation choices made by the family designer. An activation model
defines both the implementation of the family software and the environment
within which a family’s plug-ins execute. It defines the relationship between
family code and its plug-ins, including such things as

■ the tasking model that a family uses

■ the opportunities for execution that the family provides to its plug-ins and
the context of those opportunities (for instance, a plug-in might be called at
task level or at secondary interrupt level, or both)

■ the knowledge about states and processes that a family and its plug-ins are
expected to have

■ the portion of the service requested by the client that is performed by the
family and the portion that is performed by the plug-ins

■ the required characteristics of plug-ins, such as whether the plug-in blocks
or returns an error when it encounters resource exhaustion

■ the methods by which data is communicated between the family server and
a plug-in, memory is allocated, interrupts are registered and serviced, and
timing services are provided

If you want to develop a new I/O family, you need to design an activation
model that best suits the needs of your I/O family and then implement the
family server in light of that activation model. If you want to develop a new
plug-in, you need to understand the activation model used by the family to
which your plug-in belongs.

This section describes three basic family activation models used by Mac OS 8
I/O families. Each model provides a distinctly different environment for the
plug-ins to the family, and different implementation options for the family
software. The activation models discussed here are

■ the single-task model

■ the task-per-plug-in model

■ the task-per-request model

C H A P T E R 1

About the I/O Architecture

Activation Models 1-27
Draft. Apple Computer, Inc. 4/18/96

Many variations of and hybrid approaches to the activation models discussed
here are possible. The choice of activation model is left to the family designer.
The selected models are simply examples of how you can implement a family.

To provide the asynchronous or synchronous behavior desired by the family
client, the three activation models discussed here use microkernel messages as
the interface between the client libraries and the family servers. The activation
models require the family to provide a task context for asynchronous I/O
requests from clients.

The family designer’s choice of activation model limits plug-in implementation
options. For example, the activation model defines the interaction between a
driver’s hardware interrupt handler and the family runtime environment in
which the main driver code runs. A plug-in must conform to the activation
model employed by its family. As a result of this well-defined environment,
plug-in development is simplified.

You will find it hard to understand the discussion of activation models without
some understanding of microkernel messages, tasks, and interrupt mechanisms
in Mac OS 8. For information about these topics, see Microkernel and Core System
Services.

Single-Task Model 1

In the single-task activation model, a single monolithic task is fed from above
by a request queue and from below by interrupts delivered by the plug-ins.
The family’s client library sends client requests to an accept function that
queues the request for processing by the family task and wakes the task if it is
sleeping. Queuing, synchronization, and communication mechanisms within
the family follow a well-defined set of rules specified by the family.

Regardless of whether the family client called a function synchronously or
asynchronously, the accept function always queues the request asynchronously
and maintains the set of microkernel message IDs that correspond to messages
to which the accept function has not yet replied.

Consider as an example the Open Transport family. It uses the single-task
activation model, as shown in Figure 1-6. To receive microkernel messages
about client requests, the Open Transport family uses an accept function that
executes in the task context of the calling client via the Open Transport client
library. Because the calling client task can be preempted by another Open
Transport client task making service requests, the accept function must be
reentrant. An accept function does not cause a task switch and can access data

C H A P T E R 1

About the I/O Architecture

1-28 Activation Models

Draft. Apple Computer, Inc. 4/18/96

within the user and microkernel memory areas directly; thus, it is a very
efficient mechanism.

Figure 1-6 Single-task activation model

When an I/O request completes within the Open Transport environment, the
Open Transport stream completion notification trickles upstream until it
reaches the stream head, and from there the Open Transport family server
converts the completion into the appropriate microkernel message ID reply.

Open
Transport

client library

Open
Transport
 accept
function

Open
Transport
streams

world

Protocol

Protocol

Protocol

User mode

Supervisor mode

Network
device
driver

Single
task

C H A P T E R 1

About the I/O Architecture

Activation Models 1-29
Draft. Apple Computer, Inc. 4/18/96

By using the single-task model and an accept function, the Open Transport
Streams implementation is insulated from the microkernel; it has no
knowledge of microkernel structures, IDs, or tasks. On the other hand, the
relationship between the accept function and the Open Transport code is
complex and asynchronous. The accept function and family server have
knowledge of Open Transport data structures and communication mechanisms.

The single-task model is best for families of devices that have either of two
characteristics:

■ Each I/O request requires little CPU effort. This characteristic applies not
only to keyboard and mouse devices but also to direct memory access
(DMA) devices, to the extent that the CPU need only set up the transfer.

■ No more than one I/O request is ever handled at once. This characteristic
might apply to sound, for example, or to any device for which exclusive
access is required. It also applies to families that monitor their own
scheduling for the interleaving of family I/O processing, such as Open
Transport.

Here are the key questions to ask before deciding whether to choose this model:

■ Can the CPU initiate an I/O request rapidly and then not be involved until
the request completes?

■ Do supported devices implicitly allow only one I/O request to be completed
at a time or, alternately, does the family provide for its own I/O scheduling?

If the answer to either question is yes, the single-task model is the right choice.

Task-per-Plug-in Model 1

In the task-per-plug-in activation model, for each plug-in instantiated by the
family, the family creates a task that provides the context within which the
plug-in executes. In Mac OS 8, the Device Manager family uses the
task-per-plug-in model, as illustrated in Figure 1-7.

C H A P T E R 1

About the I/O Architecture

1-30 Activation Models

Draft. Apple Computer, Inc. 4/18/96

Figure 1-7 Task-per-plug-in model

The server receives requests from calling clients and passes those requests to
other family code. The server is responsible for making the data associated
with a request available to the family. Typically with this model, the server is
implemented as a simple loop that waits for microkernel messages on a
message port, or as an accept function. After receiving a message, the server
delivers the request to the right plug-in to service that request. In some
instances, buffers associated with the original request message may need to be
copied or mapped.

When the task associated with a given plug-in gets a request (by whatever
mechanisms the family implementation uses), the task calls its plug-in’s entry
points, waits for the plug-in’s response, and then responds to the request.

The plug-in performs the work to actually service the request. It doesn’t need
to know about the tasking model used by the family or how to respond to

Device
Manager

client library

Device Manager server

User mode

Supervisor mode

Generic
driver
plug-in

Task Task Task

Generic
driver
plug-in

Generic
driver
plug-in

C H A P T E R 1

About the I/O Architecture

Activation Models 1-31
Draft. Apple Computer, Inc. 4/18/96

event queues and other family mechanisms. It just needs to know how to
perform its particular function.

Device Manager family plug-ins can be concurrent or nonconcurrent. The
Device Manager server queues client requests for plug-ins that cannot handle
multiple requests concurrently. It makes no subsequent requests to a
nonconcurrent plug-in’s task until the task signals completion of an earlier I/O
request. For concurrent drivers, all queuing and state information describing
an I/O request is contained within the plug-in code and data and within any
queued requests.

Clients of the Device Manager family can make both synchronous and
asynchronous requests. The Device Manager client library makes sure both
synchronous and asynchronous clients see appropriate behavior. When a client
calls a family function asynchronously, the function causes an asynchronous
microkernel message to be sent to the server and then returns to the caller.
When a client calls a family function synchronously, the function causes a
synchronous microkernel message to be sent to the server and does not return
to the caller until the server replies to the message, thus blocking the caller’s
execution until the I/O request is complete.

Note that when a client is blocked, the plug-in continues to run within its own
task context, permitting other clients to make requests of the plug-in while it is
processing the first client's synchronous request.

Regardless of whether the client makes a synchronous or an asynchronous
request, the behavior of the Device Manager family is the same. For all
incoming requests,

■ if the target plug-in can handle concurrent requests, the server passes it to
the family task associated with the plug-in

■ if the target plug-in cannot handle concurrent requests, the server

n queues the request, if the target plug-in is processing another request

n passes the request to the family task associated with the plug-in, if the
target plug-in is not busy

When a plug-in signals that an I/O operation is complete, the server replies to
the original microkernel message. When the client library receives the reply, it
either returns to the synchronous client, unblocking its execution, or it notifies
the asynchronous client that the I/O is complete.

The task-per-plug-in model is intermediate between the single-task and
task-per-request models in terms of the number of tasks it typically uses. It is

C H A P T E R 1

About the I/O Architecture

1-32 Activation Models

Draft. Apple Computer, Inc. 4/18/96

best used where the processing of I/O requests varies widely among the
plug-ins. In this model, the plug-in runs in a well-defined context and is
insulated from microkernel tasking mechanisms and from synchronization
issues that result from system resource contention and multiple client requests
to a single plug-in.

Task-per-Request Model 1

The task-per-request model shares the following characteristics with the two
activation models already discussed:

■ The communication between the family client library and the family server
provides the synchronous or asynchronous calling behavior requested by
family clients.

■ The client library and server use microkernel messages to communicate with
each other about I/O requests.

In the task-per-request model, the server’s interface to the rest of the family
implementation is completely synchronous.

In this model, one or more tasks created by the family, and, optionally, an
accept function, wait for messages on the family’s message port. An arriving
message containing information describing an I/O request awakens one of the
tasks, which calls a family function to service the request. All state information
necessary to handle the request is maintained in local variables of the task. The
task is blocked until the I/O request completes, at which time it replies to the
microkernel message to indicate the result of the operation. After replying, the
task waits for more messages.

As a consequence of the synchronous nature of the interface between the server
and the family implementation, code calling through this interface must be
running as a blockable task. This calling code is either the task provided by the
family to service the I/O (for asynchronous I/O requests) or the client’s task
(for synchronous requests received by an accept function).

The task-per-request model is best for a family where an I/O request can
require continuous attention from the CPU and multiple I/O requests can be in
progress simultaneously. A family that supports simple, high-bandwidth
devices is a good candidate for this model. (A simple device lacks built-in
intelligence that enables it to support features such as multiple outstanding
requests or reordering of requests.) The Mac OS 8 File Manager uses the
task-per-request model in processing asynchronous I/O requests.

C H A P T E R 1

About the I/O Architecture

Activation Models 1-33
Draft. Apple Computer, Inc. 4/18/96

One problem associated with this activation model is tuning the number of
tasks to permit the desired level of concurrence. Tuning can be done
dynamically: When the family detects that performance could benefit from
more tasks to process more requests concurrently and there are resources to
permit it, new tasks can be created as needed. Similarly, when resources
become scarce or the number of concurrent requests is much smaller than the
number of tasks available to handle them, some tasks can be destroyed, freeing
their resources for other uses.

When a family uses the task-per-request model, the family’s plug-ins must be
reentrant and the family must provide the plug-ins with synchronization
services. In addition, the family designer must provide to plug-in developers a
set of programming rules and guidelines regarding the correct use of the
synchronization services.

Family Programming Issues 1

The choice of activation model is the biggest family programming issue. Each
of the models discussed previously has merit. Within each model, there are
issues to be addressed. The single-task and task-per-plug-in models require
state information to be stored either within the libraries, the plug-ins, or the
family server code, or within some combination of those. The task-per-request
model is the simplest model, but it will probably be the most expensive model
in terms of system overhead. It makes heavy use of microkernel messages and
tasking resources.

Unless there are multiple task switches within a family, the system overhead is
identical within all of the activation models. The shortest task path from
application to I/O is completely synchronous because all code runs in the
context of the caller’s task. For a long I/O path, through multiple families, the
greater the use of synchronous calls, the smaller the number of task switches.
However, using only synchronous calls decreases the responsiveness of the
application making the request— its activity stops pending the completion of
an outstanding I/O request. Providing at least one level of asynchronous call
between an application and an I/O request results in the best responsiveness
from the user perspective. Within the file system, a task switch at the File
Manager allows a user-visible application, such as the Finder, to continue. The
File Manager assigns an I/O request to one of its tasks, and that task might be
used via synchronous calls by the block storage and SCSI families to complete
their part in I/O transaction processing.

C H A P T E R 1

About the I/O Architecture

1-34 Name Registry

Draft. Apple Computer, Inc. 4/18/96

This kind of short-cut communication between families requires a very clear
understanding of the relationships between the families, including the stack
needs of the called family, the activation model of the called family, and the
asynchronous and synchronous paradigms used by the called family. This is
part of the decision-making process in developing each family activation
model.

Name Registry 1

The name registry is a centralized, runtime database that stores system
hardware and software configuration information. Information stored in the
name registry comprises both static and dynamic data maintained by various
components of the system. The name registry is organized as a tree-structured
collection of entries, each of which can contain an arbitrary number of
name-value pairs called properties.

The device portion of the name registry describes the configuration and
connectivity of the hardware in the system. Each entry in the device subtree
has properties that describe the hardware represented by the entry and may
contain a reference to the plug-in that controls the device, as well as related
software configuration information for families and plug-ins.

The name registry supports important features of the I/O architecture of
Mac OS 8, including the following:

■ Effective driver replacement. This capability allows you to release updates
to drivers.

■ Dynamic driver loading and unloading. The name registry provides a
dynamic and flexible environment for identifying devices. This type of
capability is necessary for supporting devices such as hot swappable PC
cards.

■ Simplification of driver writing. The name registry provides a consistent
way to store, locate, and obtain device-specific information for all devices
and device drivers. You won’t need to follow different rules for obtaining
device-specific information for devices located on the main logic board, a
NuBus bus, a PCI bus, a PCMCIA bus, and so forth.

■ Improved portability for device drivers. The name registry provides the
layer of abstraction necessary for driver writers to remove conflicting device

C H A P T E R 1

About the I/O Architecture

Name Registry 1-35
Draft. Apple Computer, Inc. 4/18/96

identification and device information callouts (as occurred previously with
the Slot Manager) that prevented drivers from being portable to new
versions of Macintosh hardware.

Interactions With Experts, DNS, and DFM 1

During the system booting sequence, low-level family experts describe
platform hardware by populating the name registry with device entries. A
low-level family expert has specific knowledge of a piece of hardware such as a
bus. It knows how physical devices are connected to the system, and it installs
and removes that information in the device portion of the name registry. DFM
and high-level family experts later peruse this information to locate and select
the plug-ins available to the family. When devices are connected to or removed
from the system, low-level family experts add and remove information in the
device portion of the name registry. In addition, every computer has a
motherboard expert that understands the main logic board and stores pertinent
information about the CPU and memory in the name registry.

Consider a simplified example of how high-level family experts, low-level
family experts, the name registry, DNS, and DFM work together to stay aware
of dynamic changes in system configuration. Suppose that a Macintosh Duo is
docked. The Duo motherboard expert notices that a new SCSI bus and a new
video device have appeared within the system. The Duo motherboard expert
adds entries for these to the device portion of the name registry and then sends
new-device notifications to DNS. The notifications cause DFM to match one or
more plug-ins with the devices represented by the new entries. DNS in turn
notifies all software that registered to receive new-device notifications (when
the new device is a SCSI bus or a video device).

Once notified of the change in the name registry, the SCSI and video family
experts scan the plug-ins matched with the new entry and select the one that
can best support the new device.

The SCSI expert then probes the new bus for SCSI devices. It adds an entry to
the name registry for each SCSI device that it finds. The SCSI expert knows
nothing about a particular device for which it adds an entry. Let’s suppose it
found one disk drive attached to the bus. After adding an entry, the SCSI expert
sends a new-device notification, which causes DFM to match one or more
plug-ins with the device.The block storage expert gets a notification about the
new device, selects and instantiates the best plug-in to manage it, and then
creates a name registry entry for a new volume. The File Manager receives

C H A P T E R 1

About the I/O Architecture

1-36 Name Registry

Draft. Apple Computer, Inc. 4/18/96

notification of the new volume and notifies the Finder that the volume is
available. The volume then appears as an icon on the user’s desktop.

I/O Interface 1

Clients of I/O families do not directly access the name registry. All families
provide clients with one or more functions that return information about all the
devices or services available through the family. These functions are called
iteration functions.

A family’s iteration function returns an array of data structures called I/O
iterator structures. Each family’s iterator structure has two parts: a part that is
common across all families and a part that is family-specific and that describes
a given device.

The IOCommonInfo data type defines the information that is common to all I/O
families. It consists of a device reference number and a version number.

The device reference number uniquely identifies a device within a family, It
does not necessarily uniquely identify a device across all I/O families. The
version number identifies the version of the family’s iterator structure that is in
use.

struct IODeviceRef {
UInt32 contents[4]; /* family’s unique identifer for a device */

};
typedef struct IODeviceRef IODeviceRef;

typedef UInt32 IteratorDescVersion; /* version of I/O iterator
structure in use by family */

struct IOCommonInfo {
IODeviceRef ref;
IteratorDescVersion versionNumber;

};

typedef struct IOCommonInfo IOCommonInfo;

C H A P T E R 1

About the I/O Architecture

Compatibility—Backward and Forward 1-37
Draft. Apple Computer, Inc. 4/18/96

Compatibility—Backward and Forward 1

The following sections discuss compatibility issues for developers of device
drivers and applications.

If You Develop Device Drivers 1

Mac OS 8 and its I/O architecture introduce a new environment for device
drivers—one that is fundamentally different from that familiar to developers
who have created drivers to run on System 7 and older versions of system
software. Although Mac OS 8 places some restrictions on drivers, it greatly
increases system stability and protects drivers from application error.

The I/O architecture in System 7 is based on resources of type 'DRVR' and on
the Device Manager. Many different types of software use these mechanisms.
Some types are affected by the changes introduced by Mac OS 8, and some are
not.

Mac OS 8 employs a more restricted concept of driver software. In the I/O
architecture of Mac OS 8, a driver is the native code that controls a physical
device or that manages a system service. (Code that controls a virtual device
such as a RAM disk may also be considered a driver in Mac OS 8.) Software
that controls a physical device or manages a system service is affected by the
new I/O architecture in Mac OS 8. Examples of this type of software include

■ serial drivers (.AIn, .BOut)

■ protocol stacks (.MPP, .IPP)

■ network drivers (.ENET, ADEVs, MDEVs)

■ video drivers (.Display)

■ SCSI interface modules (SIMs)

For backward compatibility, Mac OS 8 supports, through the Device Manager,
emulated drivers of type 'DRVR' that do not touch hardware. An emulated
driver ('DRVR'), such as a print driver, is not a plug-in. An emulated driver runs
in user mode outside the I/O subsystem and it can exist only in the traditional
application environment that makes use of the WaitNextEvent function or Apple
event dispatching mechanisms and that allows full access to the Toolbox.

C H A P T E R 1

About the I/O Architecture

1-38 Compatibility—Backward and Forward

Draft. Apple Computer, Inc. 4/18/96

The I/O subsystem of Mac OS 8 is the first complete implementation of the I/O
architecture described in this chapter. A subset of the I/O architecture is
implemented to support PCI devices on some Power Macintosh models. The
document Designing PCI Cards and Drivers for Power Macintosh Computers
describes the capabilities provided to driver writers for the first PCI-based
Power Macintosh computers. If you write a PCI driver according to the
specifications there, PCI cards with ROM-based drivers will work unchanged
on subsequent PCI-based hardware platforms running Mac OS 8.

The Mac OS 8 driver environment differs from the System 7 driver
environment in several ways:

■ Mac OS 8 distinguishes between software that runs in user mode and in
supervisor mode. In System 7, drivers run in the same environment as
applications in a single address space. In Mac OS 8, drivers run in
supervisor mode and have access to the microkernel’s protected memory
space. Applications can’t touch the hardware or the driver code or data
directly.

■ Drivers are packaged as Code Fragment Manager fragments (shared
libraries).

■ Distinct execution environments are defined in which different sets of
services are available. Because drivers execute in supervisor mode and are
not made eligible for execution by the Process Manager, they cannot call
Toolbox routines. On the other hand, by executing in supervisor mode,
drivers gain a fine granularity of control over devices and overall system
responsiveness. Drivers use microkernel, driver, and family service libraries
as appropriate. Families and their plug-ins are expected to adhere to the
rules appropriate to their execution environment.

■ Mac OS 8 employs new tasking and messaging mechanisms that allow
prioritizing of I/O processing and that make I/O latency predictable. These
mechanisms are the foundation for preemptive multitasking and memory
protection.

■ Drivers exist as plug-ins to a particular I/O family and must conform to the
activation model employed by that family. Therefore, when writing your
driver, you need to adhere to the plug-in programming interface and the
family’s implementation guidelines. An I/O family may provide libraries of
commonly needed routines, thus simplifying your development effort.

C H A P T E R 1

About the I/O Architecture

Compatibility—Backward and Forward 1-39
Draft. Apple Computer, Inc. 4/18/96

■ Drivers that touch hardware must be written in native PowerPC code. As a
result, Mac OS 8 will deliver superior I/O performance. Emulated 68K
microprocessor drivers that directly access hardware are not supported.

As a result of these changes, you need to change the way you write a device
driver. With the exception of drivers written according to specifications for
PCI-based Macintosh computers, System 7 drivers that access hardware will
not run on Mac OS 8.

The next two sections give more information on the separation of application
and device driver interfaces and the packaging of driver software, and they
describe benefits that result from these changes.

Separation of Application and Device Driver Interfaces 1

In System 7, all public programming interfaces are available to all varieties of
software. Mac OS 8 distinguishes between programming interfaces available to
applications and those available to device drivers. Programming contexts
become increasingly specialized in Mac OS 8.

In Mac OS 8, drivers have available to them plug-in programming interfaces
specifically tuned to the needs of different types of devices, such as display
devices or SCSI devices. The plug-in programming interfaces provide control
over operating system facilities such as paging and interrupts. Use of plug-in
programming interfaces is essential to your driver’s portability in future Mac
OS releases. These interfaces are guaranteed to be common across Mac OS
releases.

Drivers operate outside the application software context in Mac OS 8. As a
result, they do not have access to non-reentrant services available to
applications.

Common Packaging of Loadable Software 1

In Mac OS 8, all drivers are created as Code Fragment Manager (CFM)
fragments (shared libraries). Each CFM fragment must export a driver
description structure that the system uses to locate, load, and initialize the
driver.

Mac OS 8 drivers, therefore, are packaged differently from previous Macintosh
device drivers. Because they are CFM fragments, they are allowed to have
specific static data storage, and they can be written in a high-level language
without assembly-language headers. Each instance of a single driver has

C H A P T E R 1

About the I/O Architecture

1-40 Compatibility—Backward and Forward

Draft. Apple Computer, Inc. 4/18/96

private static data and shares code with every other instance of that driver. A
device driver no longer locates its private data by means of a field in a Device
Unit Table entry.

One consequence of drivers as CFM fragments is that a single device driver no
longer controls multiple devices. Normally there is a driver instance for each
device, although only one copy of the driver’s code is loaded into memory.

If You Develop Applications 1

Adjusting to the architectural shift in the I/O subsystem should be relatively
easy for the application developer. For compatibility with System 7
applications, the Mac OS 8 Device Manager supports all of the functions
described in the chapter “Device Manager” of Inside Macintosh: Devices.
However, a smaller set of devices will be available through the Device
Manager; for them, the system supports a compatibility layer that converts old
function calls to new ones. Thus, if your application calls the Device Manager,
it will continue to run on Mac OS 8, but it will incur a performance penalty
going through the compatibility layer.

For better performance and for access to services well suited to a given class of
devices, you should update your application. Instead of the Device Manager,
you should use the programming interface provided by the family to which the
device belongs. For example, if your application uses the Display Manager, you
benefit from a set of routines tuned to work with display devices.

In many cases, Mac OS 8 interfaces will be the same as or very similar to
existing programming interfaces, such as those provided in System 7 by the
Display Manager and Open Transport. If your application uses these
higher-level programming interfaces, it is insulated from underlying changes
in the I/O architecture and device drivers and you shouldn’t have to change
your application so it works with Mac OS 8.

In addition to benefiting from the more effective services available through
Mac OS 8 interfaces, adopting the new interfaces now facilitates subsequent
development for versions of the Mac OS beyond Mac OS 8. Programming
interfaces that Mac OS 8 maintains for backward compatibility with System 7
may not be available with versions of the Mac OS beyond Mac OS 8. For
example, the networking paradigm for the Mac OS is changing to Open
Transport. Although Mac OS 8 will support System 7 AppleTalk interfaces,
later versions of the Mac OS will not. Versions of the Mac OS beyond Mac OS 8
will require you to use the Open Transport programming interface.

C H A P T E R 1

About the I/O Architecture

Compatibility—Backward and Forward 1-41
Draft. Apple Computer, Inc. 4/18/96

If your application ignores public programming interfaces and instead uses
nonstandard methods to access a device, you’ll need to change your
application. In Mac OS 8, attempts by applications to touch hardware will
result in access violations. Devices and drivers are not directly accessible to an
application. The only access to their services is through an I/O family’s client
programming interface or an interface maintained for compatibility.

Device Manager Compatibility 1

In Mac OS 8, the Device Manager functions described in the chapter “Device
Manager” of Inside Macintosh: Devices are supported. Drivers that provide their
services through the Device Manager belong to the Device Manager family and
are called generic drivers. The Device Manager functions constitute the
programming interface for the Device Manager family. The family has its own
activation model and set of services, but it is not tuned to the needs of a given
type of device.

Although the Device Manager interface is more limiting than those provided
by other family interfaces, the Device Manager family offers a migration path
to driver developers who implement the basic changes required by Mac OS 8
without totally converting to the I/O architecture in Mac OS 8.

If no family for a device exists, the Device Manager offers a way to use it in
Mac OS 8. Consider, for example, a PCI card that receives data, encrypts it, and
sends it back. An encryption family doesn’t currently exist. By writing the
driver according to the rules for drivers of family type 'ndrv' described in
Designing PCI Cards and Drivers for Power Macintosh Computers, the card is
supported in Mac OS 8 as a plug-in to the Device Manager family.

To summarize, the Device Manager in Mac OS 8 supports drivers that have
been revised to run in Mac OS 8 but that have not taken advantage of the
enhanced driver services available through I/O families, or for which no
family exists. As a result, the Device Manager family’s plug-ins are likely to
differ quite a bit among themselves, rather than belonging to a general class of
devices such as video monitors. For example, Device Manager family plug-ins
may include drivers for instrumentation bus adapters, graphics devices,
encryption hardware, and so forth. Typically, plug-ins in the Device Manager
family are drivers that talk to hardware, but they can also talk to virtual
devices such as a RAM disk or loopback software.

For more information on the Device Manager, see “Device Manager Family”
(page 8-3).

C H A P T E R 1

About the I/O Architecture

1-42 Glossary

Draft. Apple Computer, Inc. 4/18/96

Glossary 1

activation model The set of tasking and communication implementation
choices made by a family designer that defines both the implementation of the
I/O family software and the environment within which a family’s plug-ins
execute.

consists of the tasking and communication implementation choices made by
the family designer. An activation model defines both the implementation of
the family software and the environment within which a family’s plug-ins
execute.

client Any piece of software—including applications, other I/O families and
their plug-ins, server programs, and system software—that requests services
from an I/O family through the family’s programming interface for clients.
Compare plug-in.

conglomerate library For I/O plug-ins, a family-specific library containing
the family-specific services and the generic system services needed by the
plug-in. At link time, a plug-in developer specifies the single conglomerate
library provided by the family to which the plug-in belongs.

Driver and Family Matching (DFM) service System software that matches
hardware-specific software with the I/O devices available in a given
Mac-compatible computer.

expert See family expert.

family A collection of software pieces that provide a distinct set of I/O
services to the system, such as the SCSI family and its SCSI interface modules
(SIMs) or the file systems family and its volume format plug-ins. Often, a
family is associated with a set of devices that have similar characteristics, such
as display devices or ADB devices.

family expert Code within a family that maintains knowledge of the set of
family-controllable devices and plug-ins for a given Mac-compatible system.

family server Family software that receives, processes, and responds to
service requests from family clients.

family services library A family-specific code library that implements the
programming interface for a family’s plug-ins. It can optionally provide other

C H A P T E R 1

About the I/O Architecture

Glossary 1-43
Draft. Apple Computer, Inc. 4/18/96

services to the family’s plug-ins, such as routines that help the plug-in
manipulate data structures or perform tasks central to the service the family
provides.

high-level expert See high-level family.

high-level family A family whose expert registers to receive notifications
about devices that can be controlled by the family. After receiving a
notification, the expert inspects the relevant name registry entry(s) and takes
appropriate action, such as selecting a plug-in to manage the new device, thus
keeping the set of family plug-ins coordinated with changes in the system’s
hardware configuration.

I/O plug-in A dynamically loaded piece of software that provides to family
clients a particular implementation of the service offered by an I/O family.
Within the file systems family, for example, a volume-format plug-in
implements file system services for a specific volume format.

low-level expert See low-level family.

low-level family A family whose expert has specific knowledge of a piece of
hardware, such as a bus or a main logic board. The expert knows how physical
devices are connected to the system, and can detect when a device that can be
controlled by the family is added or removed. When such events occur, the
expert adds or removes information in the device tree portion of the name
registry and sends notifications to the Driver and Family Matching service.

plug-in See I/O plug-in.

C H A P T E R 1

About the I/O Architecture

1-44 Glossary

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 2

Contents 2-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Driver and Family Matching

About the Driver and Family Matching Service 2-3
Device Categories 2-3

Simple Device 2-3
Multiple-Emulation Devices 2-3
Multiple-Plug-in Devices 2-4
Multifunction Cards 2-4
Virtual Devices 2-4

Use of the Name Registry 2-4
Loading Plug-Ins and Family Experts 2-5
Matching Mechanisms 2-6

Standard Matching 2-6
Generic Matching 2-7

Driver and Family Matching Constants and Data Types 2-10
Plug-In Description Structure 2-10
Plug-in Description Signature 2-11
Plug-in Description Version 2-11
Plug-in Type Structure 2-12
Plug-in Runtime Structure 2-12
Runtime Options 2-13
Plug-in Services Structure 2-14
Plug-in Services Information Structure 2-15
Family Constants 2-16
Device Manager Family Types 2-18

C H A P T E R 2

2-2 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 2

About the Driver and Family Matching Service 2-3
Draft. Apple Computer, Inc. 4/18/96

Driver and Family Matching 2

The Driver and Family Matching (DFM) service matches hardware-specific
software with the I/O devices in the system. This chapter describes the types of
devices the DFM service handles, the way it works, and the data structures I/O
device plug-ins and family experts must export.

About the Driver and Family Matching Service 2

The DFM service enables the Mac OS 8 kernel to be significantly hardware
independent. It accomplishes this by loading hardware-specific software
components, such as device driver plug-ins and family experts, at system
initialization time. The hardware-specific software can be stored in ROM, on
disk, or in both places. The DFM service is responsible for

■ locating the correct hardware-specific software for each device in the system,

■ loading plug-in code into memory,

■ generating notifications to clients of the device, and

■ installing a pointer to the plug-in at the proper place in the Name Registry.

Device Categories 2

For device and family matching, I/O devices can be categorized into the five
groups described in this section.

Simple Device 2

A simple device is one that matches only a single device-specific plug-in.
Although the DFM service may return pointers to more than one version of the
plug-in—for example, one in ROM and multiple versions on mass storage
media—the family expert can simply select the one on the mass storage media
with the highest version number. A SCSI device is a good example of a simple
device: every SCSI controller has a controller-specific plug-in.

Multiple-Emulation Devices 2

Multiple-emulation devices can operate in multiple modes or emulations; they
can have a separate plug-in for each emulation. For example, a serial port

C H A P T E R 2

Driver and Family Matching

2-4 About the Driver and Family Matching Service

Draft. Apple Computer, Inc. 4/18/96

controller can use a serial plug-in to communicate with a modem or printer
and an AppleTalk plug-in to communicate over the network. The DFM service
finds all the relevant plug-ins during the matching process. The family expert
then decides which plug-in to load, based on the use to which the device is
applied, as specified by the user and stored in a preferences file. If the plug-ins
located by the DFM service belong to more than one family, all the relevant
family experts are instantiated.

Multiple-Plug-in Devices 2

Multiple-plug-in devices have more than one associated plug-in, but only one
of them provides the best performance. For example, a joystick connected to
the Apple Desktop Bus port matches both the Apple mouse plug-in and a
vendor-specific plug-in. In this case, the pointing family expert must determine
which plug-in is best suited to the device, using family-specific algorithms.

Multifunction Cards 2

Multifunction cards are devices that support more than one function, such as
some NuBus™ and PCMCIA cards. Such a device can have a single plug-in to
support all of its functions, or it can have a separate plug-in for each of its
functions. Multifunction cards fall into one of the categories described
previously, depending on how they are represented in the Name Registry.

Virtual Devices 2

A virtual device is software that provides I/O capability independently of any
specific piece of hardware. Virtual devices are typically associated with high-
level families. For example, a disk partition is a virtual device that belongs to
the block storage family. The DFM service does not make any distinction
between virtual and real devices.

Use of the Name Registry 2

The Name Registry is a data structure, maintained by the Mac OS, that stores
hardware and plug-in configuration information for the I/O subsystem, in
addition to other data used by other parts of the system. The Name Registry
contains a set of name entries, each of which has an arbitrary-size set of
properties. Each property has a name and a value describing configuration
information pertinent to the name entry.

C H A P T E R 2

Driver and Family Matching

About the Driver and Family Matching Service 2-5
Draft. Apple Computer, Inc. 4/18/96

During the Mac OS 8 boot sequence, the DFM service imports I/O device data
from the device tree provided by the Open Firmware standard booting code.
The DFM service places this information into the Mac OS 8 Name Registry,
after pruning away information about device drivers belonging to other
operating systems. This data creates the hardware subtree within the Name
Registry that describes the I/O devices available within the current system
configuration.

Name entries are installed in and removed from the Name Registry by low-
level expert software whenever devices are connected or disconnected from the
system. The DFM service stores and maintains descriptions and pointers to
plug-ins in the Name Registry.

Loading Plug-Ins and Family Experts 2

Generally, applications, plug-ins, and family experts avoid invoking the DFM
service directly. Every plug-in and family expert must export a data structure
to be used for matching. The DFM service uses these data structures to locate
plug-in and family expert code. This mechanism enables the DFM service to
load only the required code, thereby reducing the memory footprint of the
system.

For users, installing a plug-in involves simply copying the plug-in file into the
Hardware Support folder (inside the Mac OS folder) where the DFM service
will find it and notify the family. Families are also installed this way. Plug-ins
are instantiated multiple times—once for each device to which the plug-in is
matched. Although each instance of a plug-in has its own data, only one copy
of the plug-in’s executable code exists in memory and is shared by all
instances. Family experts are instantiated only once.

The DFM service is automatically invoked during the boot sequence. For each
name entry in the device portion of the Name Registry, the DFM service locates
all the matching plug-ins and family experts using information in the matching
data structures exported by each plug-in and family expert. See “Driver and
Family Matching Constants and Data Types” (page 2-10) for descriptions of the
matching data structures.

After locating all the family experts and plug-ins associated with a device, the
DFM creates driver-ptr and driver-description properties for those with
entries in the device subtree of the Name Registry. The driver-ptr property is
an array of pointers to the available plug-ins. The driver-description property
is an array of the matching data structures belonging to the available plug-ins.

C H A P T E R 2

Driver and Family Matching

2-6 About the Driver and Family Matching Service

Draft. Apple Computer, Inc. 4/18/96

The DFM service also loads the required family experts into memory, if not
previously loaded, and calls their main (initialization) entry point. When called
at their initialization entry point, family experts are required to set up their
internal data structures and register their service category with the Device
Notification Service.

After the boot sequence is complete, the DFM service notifies family experts of
every device that they can control whenever such devices are discovered. The
family expert is responsible for selecting the most suitable plug-in,
instantiating it, and deleting the other plug-ins from memory (unless they are
likely to be required in the future). When a family expert is notified about a
new device, it scans the driver-description array to find the most suitable plug-
in for its device family (also called service category). Then the family expert
locates the driver-ptr property associated with the selected plug-in and
invokes the DFM service (which invokes the Code Fragment Manager) to load
the plug-in into memory. The DFM service ensures that plug-ins already
present in memory are not loaded again.

The DFM service provides a programming interface for family experts to use to
unload unnecessary plug-ins. After selecting the set of most suitable plug-ins,
the family expert invokes DFM service functions to remove all other plug-ins
from memory.

Matching Mechanisms 2

The DFM service uses the algorithm described in this section to find the
matching plug-ins and families for a given device entry in the Name Registry.
See “Driver and Family Matching Constants and Data Types” (page 2-10) for
descriptions of the fields and structures named in this section.

The DFM service implements two matching mechanisms: a standard
mechanism by which a single plug-in is matched with a single device, and a
generic mechanism by which a single plug-in can be matched with any of a set
of devices.

Standard Matching 2

For a given Name Registry device entry, the DFM service uses the nameInfoStr
field of the DriverType structure to locate all the plug-ins in the Hardware
Support folder with a file type of 'ndrv'. Once a set of plug-ins is located, the
DFM service uses the serviceCategory field of the DriverServiceInfo structure

C H A P T E R 2

Driver and Family Matching

About the Driver and Family Matching Service 2-7
Draft. Apple Computer, Inc. 4/18/96

to locate the associated families. All of these structures are contained within the
DriverDescriptor structure.

If no plug-in is found for a given Name Registry entry, the DFM service
searches for the matching low-level expert in a predefined folder with a file
type of 'expt'. The DFM service uses the DeviceName array in the
FamilyDescriptor structure to locate the low-level expert.

Generic Matching 2

The DFM service provides a generic matching mechanism by which a
developer can specify a level of compatibility for a plug-in, ranging from
generic to specific. A single generic plug-in can drive a set of devices. For
example, a disk vendor could develop a single driver for all compatible models
or for only a specific revision. Or a third-party developer could develop a plug-
in to match hardware produced by several other companies.

To use the generic matching capability of the DFM service, family experts
create a matching property with multiple values for device entries in the Name
Registry, based on the information available when the expert scans for devices.
The DFM service matches this information with the nameInfoStr value exported
by plug-ins. The values of these properties are built from four pieces of
information associated with devices:

■ manufacturer

■ product number

■ revision number

■ function performed by the device

When a low-level expert discovers a device added to the system after boot
time, the low-level expert creates a new entry in the device subtree of the Name
Registry with the appropriate name and matching property values, using the
hardware information available from the device. If hardware probing does not
provide enough device-specific information, the family expert may need to
invoke all matching plug-ins before selecting the most suitable one.

The DFM service can match a single plug-in to a set of products using multiple
matching property values created according to the conventions described in the
following paragraphs. The fields should be separated by the $ character (ASCII
value 36). Numeric values should be expressed by four ASCII characters, left-
padded with zeroes, representing hexadecimal notation (for example, the
hexadecimal value 0x99 should be represented by the ASCII string '0099').

C H A P T E R 2

Driver and Family Matching

2-8 About the Driver and Family Matching Service

Draft. Apple Computer, Inc. 4/18/96

Name Property 2

To match a single plug-in to a particular product revision level, families define
the device name property in the sequences shown in Table 2-1.

Table 2-1 DFM conventions for name property value

Matching Property 2

To match a single plug-in to multiple products, the family defines the values of
the matching property in the sequences shown in Table 2-2.

Family String sequence for name property value

NuBus <vendor ID or NULL>$<function category>$<function subcategory>$<board
ID>

PCI or PC <name created by Open Firmware> or
<name exported by hardware device> or
<vendor ID (11 bytes maximum)>$<product part number (9 bytes
maximum)>$<product revision (10 bytes maximum)>

SCSI <vendor ID (11 bytes maximum)>$<product part number (9 bytes
maximum)>$<product revision (10 bytes maximum)>

IDE <model number>
ADB adb$<bus address>$<handler ID>

C H A P T E R 2

Driver and Family Matching

About the Driver and Family Matching Service 2-9
Draft. Apple Computer, Inc. 4/18/96

Table 2-2 DFM conventions for matching property values

Note
The generic matching mechanism just described works
well after low-level family experts are running and have
updated the device subtree in the Name Registry with
their correct matching property. However, boot devices
cannot use this approach because their name and matching
properties are created by Open Firmware (the industry-
standard booting code used by Mac OS 8), which may not
follow these conventions.

* Value 1 matches all revisions of a product.
† Value 2 matches products from a single vendor with the same function and bus type.
‡ Value 3 matches products from a single vendor with the same function.
§ Value 4 matches all products from a single vendor.
¶ Value 5 matchesplug-ins that export only one name, which determines how many devices it can match.
For block storage devices and card enablers.
** For other devices such as modems and networking devices.

Value Family String sequence

1* NuBus, IDE, or ADB No value
1 PCI, PC, or SCSI <vendor ID>$<product part number>
2† NuBus, IDE, or ADB No value
2 PCI, PC, or SCSI <vendor ID>$<function ID>$<bus type>
3‡ IDE No value
3 NuBus <vendor ID or NULL>$<function category>$<function

subcategory>
3 PCI, PC, or SCSI <vendor ID>$<function ID>
3 ADB adb$<bus address>
4§ NuBus or IDE No value
4 PCI, PC, or SCSI <vendor ID>
4 ADB adb

5¶ ADB No value
5 NuBus, PCI, PC,

SCSI, or IDE
<function ID>$<bus type# or chip set name**>

C H A P T E R 2

Driver and Family Matching

2-10 Driver and Family Matching Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Driver and Family Matching Constants and Data Types 2

Plug-In Description Structure 2

The plug-in description structure is defined by the DriverDescription data
type. This structure is equivalent to the driver description structure described
in Designing PCI Cards and Drivers for Power Macintosh Computers, although
some of its fields have been overloaded with interpretations specific to
Mac OS 8. The DFM service uses the DriverDescription structure to match
plug-ins with family experts and set up the plug-in’s runtime environment.

struct DriverDescription {
OSType driverDescSignature;
DriverDescVersion driverDescVersion;
DriverType driverType;
DriverOSRuntime driverOSRuntimeInfo;
DriverOSService driverServices;

};

typedef struct DriverDescription DriverDescription;
typedef struct DriverDescription *DriverDescriptionPtr;

Field Descriptions

driverDescSignature
Signature of this DriverDescription structure. You should
supply this field with the value
kDriverDescriptionSignature as defined in the plug-in
description signature enumeration (page 2-11).

driverDescVersion Version of this driver description structure. You should
supply this field with the value
kVersionOneDriverDescriptor as enumerated for the
DriverDescVersion data type (page 2-11).

driverType Structure that contains plug-in name and version,
described in “Plug-in Type Structure” (page 2-12).

C H A P T E R 2

Driver and Family Matching

Driver and Family Matching Constants and Data Types 2-11
Draft. Apple Computer, Inc. 4/18/96

driverOSRuntimeInfo
Structure that contains bit flags specifying options and
other information to define the plug-in runtime
environment, described in “Plug-in Runtime Structure”
(page 2-12).

driverServices Structure used to declare the plug-in’s device family (or
service category) and service type (subcategory), described
in “Plug-in Services Information Structure” (page 2-15).

Plug-in Description Signature 2

The plug-in description signature is defined by the following enumerated
values, which are used in the driverDescSignature field of the plug-in
description structure (page 2-10).

enum {
kTheDescriptionSignature = 'mtej',
kDriverDescriptionSignature = 'pdes'

};

Enumerator descriptions

kTheDescriptionSignature
Plug-in is for Device Manager family ('ndrv').

kDriverDescriptionSignature
Plug-in is Mac OS 8 version.

Plug-in Description Version 2

The plug-in description version is defined by the DriverDescVersion data type
and its enumerated values, which are used in the driverDescVersion field of the
plug-in description structure (page 2-10). The version differentiates plug-in
description structures having the same driverDescSignature value.

typedef UInt32 DriverDescVersion;
enum {

kInitialDriverDescriptor = 0,
kVersionOneDriverDescriptor = 1

};

C H A P T E R 2

Driver and Family Matching

2-12 Driver and Family Matching Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Enumerator descriptions

kInitialDriverDescriptor
Plug-in description structure is for Device Manager family
('ndrv').

kVersionOneDriverDescriptor
Plug-in description structure is Mac OS 8 version.

Plug-in Type Structure 2

The DriverType data type defines the plug-in type structure, which contains
plug-in name and version information used to match the plug-in to a specific
device. The DriverType structure is used in the driverType field of the plug-in
description structure (page 2-10).

struct DriverType {
Str31 nameInfoStr;
NumVersion version;

}

typedef struct DriverType DriverType;
typedef DriverType *DriverTypePtr;

Field Descriptions

nameInfoStr Name used to identify the plug-in and distinguish among
versions of the plug-in when the DFM service is searching
for plug-ins. This string of type Str31 is used to match the
name and matching properties in the Name Registry.

version Version number used to obtain the newest plug-in when
several identically named plug-ins (that is, plug-ins with
the same value of nameInfoStr) are available on disk.

Plug-in Runtime Structure 2

The plug-in runtime structure, represented by the DriverOSRuntime data type,
contains information used to set up and maintain the plug-in’s runtime
environment. The plug-in runtime structure is used in the driverOSRuntimeInfo
field of the plug-in description structure (page 2-10).

C H A P T E R 2

Driver and Family Matching

Driver and Family Matching Constants and Data Types 2-13
Draft. Apple Computer, Inc. 4/18/96

struct DriverOSRuntime {
RuntimeOptions driverRuntime;
Str31 driverName;
UInt32 driverDescReserved[8];

};

typedef struct DriverOSRuntime DriverOSRuntime;
typedef struct DriverOSRuntime *DriverOSRuntimePtr;

Field Descriptions

driverRuntime Options used to determine runtime behavior of the plug-
in. You can supply this field with one of the values defined
in the runtime options enumeration (page 2-13).

driverName Driver name used by Mac OS if the plug-in family is
'ndrv'. This field is unused for other plug-in families.

driverDescReserved
Reserved for future use.

Runtime Options 2

Runtime options are defined by the RunTimeOptions data type, which is used in
the plug-in runtime structure (page 2-12) to specify the runtime behavior of the
plug-in. The runtime options are mutually exclusive.

typedef OptionBits RuntimeOptions;
enum {

kDriverIsLoadedUponDiscovery = 0x00000001,
kDriverIsOpenedUponLoad = 0x00000002,
kDriverIsUnderExpertControl = 0x00000004,
kDriverIsConcurrent = 0x00000008,
kDriverQueuesIOPB = 0x00000010,
kDriverIsLoadedAtBoot = 0x00000020,
kDriverIsForVirtualDevice = 0x00000040

};

Enumerator descriptions

kDriverIsLoadedUponDiscovery
The bit indicating that the family expert loads the plug-in
when hardware requiring the plug-in is discovered.

C H A P T E R 2

Driver and Family Matching

2-14 Driver and Family Matching Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

kDriverIsOpenedUponLoad
The bit indicating that the system opens the plug-in when
it is loaded. This option is supported for backward
compatibility only; it is not used in Mac OS 8.

kDriverIsUnderExpertControl
The bit indicating that the family expert handles plug-in
load and open requests. For Mac OS 8 this bit should
always be set.

kDriverIsConcurrent
The bit indicating that the plug-in is capable of handling
concurrent requests. This option is supported for
backward compatibility only; it is not used in Mac OS 8.

kDriverQueuesIOPB The bit indicating that the Device Manager does not queue
the IOPB to the DCE request before calling the plug-in.
This option is supported for backward compatibility only;
it is not used in Mac OS 8.

kDriverIsLoadedAtBoot
The bit indicating that the plug-in is loaded at boot time.

kDriverIsForVirtualDevice
The bit indicating that the plug-in is for a virtual device.
the DFM service will create an entry in the Name Registry
for this plug-in.

Plug-in Services Structure 2

The plug-in services structure, represented by the DriverOSService data type, is
used in the driverServices field of the plug-in description structure (page 2-
10). The DriverOSService data type describes the families required for this plug-
in to work correctly. A plug-in can belong to more than one family, although it
is not recommended for plug-ins designed for Mac OS 8. In such cases,
however, nServices should indicate the number of different families that the
plug-in supports.

struct DriverOSService {
ServiceCount nServices;
DriverServiceInfo service[1];

};

C H A P T E R 2

Driver and Family Matching

Driver and Family Matching Constants and Data Types 2-15
Draft. Apple Computer, Inc. 4/18/96

typedef UInt32 ServiceCount;
typedef struct DriverOSService DriverOSService;
typedef DriverOSService *DriverOSServicePtr;

Field Descriptions

nServices The number of families supported by this plug-in. This
field determines the size of the service array that follows.

service An array of DriverServiceInfo structures that specify the
supported family programming interface sets.

Plug-in Services Information Structure 2

The plug-in services information structure, represented by the
DriverServiceInfo data type, is used in the plug-in services structure (page 2-
14). The plug-in services information structure describes the device family
(service category) and service type (subcategory) of the family programming
interfaces a plug-in supports.

struct DriverServiceInfo {
OSType serviceCategory;
OSType serviceType;
NumVersion serviceVersion;

};

typedef struct DriverServiceInfo DriverServiceInfo;
typedef DriverServiceInfo *DriverServiceInfoPtr;

Field Descriptions

serviceCategory Specifies the device family supported by the plug-in. You
can supply this field with one of the values defined in the
family constants enumeration (page 2-16).

serviceType The DFM service does not use this field. The serviceType
field is used by families to fine tune plug-in matching. For
example, the keyboard and mouse plug-ins could use this
field to specify the kind of hardware (serial or ADB) they
support or which ADB commands they support.
The generic native device family ('ndrv') uses this field to
specify the specific type of device a plug-in supports, using

C H A P T E R 2

Driver and Family Matching

2-16 Driver and Family Matching Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

values defined in the native device family types
enumeration (page 2-18).

serviceVersion Version ('vers'). The DFM service does not use this field.

Family Constants 2

The following enumerated values are used to represent known I/O device
families in the serviceCategory field of the plug-in services information
structure (page 2-15).

enum {
kServiceCategoryDisplay = 'disp',
kServiceCategoryOpenTransport = 'otan',
kServiceCategoryBlockStorage = 'blok',
kServiceCategoryNdrvDriver = 'ndrv',
kServiceCategoryScsiSIM = 'scsi',
kServiceCategoryFileManager = 'file',
kServiceCategoryIDE = 'ide-',
kServiceCategoryADB = 'adb-',
kServiceCategoryPCI = 'pci-',
kServiceCategoryPCMCIA = 'pcmc',
kServiceCategoryDFM = 'dfm-',
kServiceCategoryMotherBoard = 'mrbd',
kServiceCategoryKeyboard = 'kybd',
kServiceCategoryPointing = 'poit',
kServiceCategoryRTC = 'rtc-',
kServiceCategoryNVRAM = 'nram',
kServiceCategorySound = 'sond',
kServiceCategoryPowerMgt = 'pgmt',
kServiceCategoryGeneric = 'genr'

};

Enumerator Descriptions

kServiceCategoryDisplay
Display Manager family.

kServiceCategoryOpenTransport
Open transport family.

kServiceCategoryBlockStorage
Block storage family.

C H A P T E R 2

Driver and Family Matching

Driver and Family Matching Constants and Data Types 2-17
Draft. Apple Computer, Inc. 4/18/96

kServiceCategoryNdrvDriver
Device Manager family.

kServiceCategoryScsiSIM
SCSI interface module family.

kServiceCategoryFileManager
File systems family.

kServiceCategoryIDE
ATA family.

kServiceCategoryADB
ADB family.

kServiceCategoryPCI
PCI family.

kServiceCategoryPCMCIA
PC card family.

kServiceCategoryDFM
DFM service.

kServiceCategoryMotherBoard
Motherboard family.

kServiceCategoryKeyboard
Keyboard family.

kServiceCategoryPointing
Pointing family.

kServiceCategoryRTC
Real time clock family.

kServiceCategoryNVRAM
Nonvolatile RAM family.

kServiceCategorySound
Sound family.

kServiceCategoryPowerMgt
Power management service.

kServiceCategoryGeneric
Reserved.

C H A P T E R 2

Driver and Family Matching

2-18 Driver and Family Matching Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Device Manager Family Types 2

The following enumerated values are used to represent known I/O device
families in the serviceVersion field of the plug-in services information
structure (page 2-15) to specify the specific type of device a plug-in supports
within the Device Manager family ('ndrv').

enum {
kNdrvTypeIsGeneric = 'genr',
kNdrvTypeIsVideo = 'vido',
kNdrvTypeIsBlockStorage = 'blok',
kNdrvTypeIsNetworking = 'netw',
kNdrvTypeIsSerial = 'serl',
kNdrvTypeIsSound = 'sond',
kNdrvTypeIsBusBridge = 'brdg'

};

Enumerator Descriptions

kNdrvTypeIsGeneric
Generic device type.

kNdrvTypeIsVideo
Video device type.

kNdrvTypeIsBlockStorage
Block storage device type.

kNdrvTypeIsNetworking
Networking device type.

kNdrvTypeIsSerial
Serial device type.

kNdrvTypeIsSound
Sound device type.

kNdrvTypeIsBusBridge
Bus bridge device type.

C H A P T E R 3

Contents 3-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 ADB Family Reference

About the ADB Family 3-5
ADB Client Constants and Data Types 3-8

ADB Connection ID 3-8
ADB Register Contents 3-9
ADB I/O Iterator Data 3-9
ADB Match Strings 3-10

ADB Plug-in-Defined Data Types 3-11
ADB Plug-In Dispatch Table 3-11

ADB Plug-In Header 3-12
ADB Plug-in Defined-Function Types 3-13

ADBPluginValidateHardwareProc 3-13
ADBPluginInitProc 3-14
ADBPluginSetAutopollDelayProc 3-14
ADBPluginGetAutopollDelayProc 3-15
ADBPluginSetAutopollListProc 3-15
ADBPluginGetAutopollListProc 3-16
ADBPluginAutopollEnableProc 3-16
ADBPluginAutopollDisableProc 3-16
ADBPluginResetBusProc 3-17
ADBPluginFlushProc 3-17
ADBPluginSetRegisterProc 3-18
ADBPluginGetRegisterProc 3-18
ADBPluginSetKeyboardListProc 3-18

ADB Client Functions 3-19
Getting Information about ADB Devices 3-20

ADBGetDeviceData 3-20
Opening and Closing an ADB Connection 3-21

C H A P T E R 3

3-2 Contents

Draft. Apple Computer, Inc. 4/18/96

ADBOpen 3-21
ADBClose 3-23

Getting and Setting the ADB Registers 3-23
ADBGetRegister 3-24
ADBSetRegister 3-26

Getting and Setting Handler IDs 3-27
ADBGetHandlerID 3-28
ADBSetHandlerID 3-29

Getting and Setting ADB Status Bits 3-30
ADBGetStatusBits 3-31
ADBSetStatusBits 3-33

Autopolling 3-34
ADBGetNextAutopoll 3-34

Flushing the ADB 3-36
ADBFlush 3-36

Resetting the ADB 3-37
ADBResetBus 3-37

Functions Exported by ADB Family 3-38
ADBFamRequestComplete 3-39
ADBFamAutopollArrived 3-40

ADB Plug-in Defined Functions 3-41
Validating Hardware 3-41

MyADBPluginValidateHardwareProc 3-41
Initializing ADB Plug-ins 3-42

MyADBPluginInitProc 3-42
Setting and Getting Autopoll Delay 3-43

MyADBPluginSetAutopollDelayProc 3-43
MyADBPluginGetAutopollDelayProc 3-44

Setting and Getting the Autopoll List 3-45
MyADBPluginSetAutopollList 3-45
MyADBPluginGetAutopollListProc 3-46

Enabling and Disabling Autopolling 3-46
MyADBPluginAutopollEnableProc 3-47
MyADBPluginAutopollDisableProc 3-47

Resetting the ADB Bus 3-48
MyADBPluginResetBusProc 3-48

Flushing ADB Devices 3-48
MyADBPluginFlushProc 3-48

C H A P T E R 3

Contents 3-3
Draft. Apple Computer, Inc. 4/18/96

Setting and Getting the ADB Plug-in Register 3-49
MyADBPluginSetRegisterProc 3-49
MyADBPluginGetRegisterProc 3-50

Setting the Keyboard List 3-51
MyADBPluginSetKeyboardList 3-51

ADB Result Codes 3-52
Glossary 3-52

C H A P T E R 3

3-4 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 3

About the ADB Family 3-5
Draft. Apple Computer, Inc. 4/18/96

ADB Family Reference 3

This chapter describes the ADB family, which allows clients to get information
about and communicate with hardware devices attached to the Apple Desktop
Bus (ADB).

Mac OS 8 contains standard keyboard and mouse-handling functions that
automatically take care of all required ADB access operations. Most
applications typically receive keyboard and mouse input by calling the Apple
Event Manager, not by calling the ADB family. For complete information about
receiving and interpreting keyboard and mouse input, see Apple Events in
Mac OS 8.

The ADB family presents ADB services to ADB clients, software such as the
keyboard and pointing families as well as indirectly to applications that run in
user space and to ADB plug-ins software modules, also called drivers, for
specific families of computers, such as the 6100, 7100, 8100; the 7500, 8500, 9500;
or the Powerbook 5300. Whereas the ADB family provides services to clients,
the ADB plug-ins actually implement requests for services. For more
information on the pointing family, see “Pointing Family Reference” (page 4-5).

About the ADB Family 3

The Apple Desktop Bus (ADB) is an open-collector, low-speed serial bus that
connects user-input devices such as keyboards, mice, graphics tablets, and
joysticks to the Apple Desktop Bus Controller, the microcontroller that resides
in a host computer or in other hardware equipment. Macintosh computers
come equipped with one or two ADB connectors. Although a particular model
might include two ADB connectors, all models come with only one ADB,
which is Apple Computer’s standard interface for input peripherals such as
keyboards and mouse devices.

An ADB device is any peripheral that can connect to the ADB and meets the
design requirements described in the “Apple Desktop Bus Controller” chapter
of Macintosh Technology in the Common Hardware Reference Platform, published by
Morgan Kaufman. If you are planning on implementing an ADB device, you
should also read the Apple Desktop Bus Specification and the Macintosh technical
note ADB–The Untold Story: Space Aliens Ate My Mouse.

Figure 3-1 illustrates how the ADB programming interface, the ADB server, and
the ADB plug-ins allows clients to get information about ADB devices.

C H A P T E R 3

ADB Family Reference

3-6 About the ADB Family

Draft. Apple Computer, Inc. 4/18/96

■ If you need to write a plug-in for your input device or if you are a
manufacturer of an ADB peripheral, you can call the ADB family
programming interface described in “ADB Client Functions” (page 3-19).
(All the ADB client functions begin with the prefix ADB.)

■ Typically, an application does not need the services provided by the ADB
family. However, if you are an application that talks directly to an ADB
device, you may call the pointing family programming interface, described
in “Pointing Family Reference” (page 4-5) as well as the ADB family
programming interface, described in “ADB Client Functions” (page 3-19).

■ If you are designing a new computer that has a different Apple Desktop Bus
Controller, you need to write a new ADB plug-in that communicates directly
with that hardware and to implement the ADB plug-in programming
interface described in “ADB Plug-in Defined Functions” (page 3-41). (All the
ADB plug-in-defined functions begin with the prefix MyADBPlugin.) The
ADB family calls the plug-in-defined functions. ADB plug-ins use the ADB
family programming interface described in “Functions Exported by ADB
Family” (page 3-38). These functions have been implemented by the ADB
family for ADB plug-ins to communicate with the family. (All the functions
exported by the ADB family begin with the prefix ADBFam.)

C H A P T E R 3

ADB Family Reference

About the ADB Family 3-7
Draft. Apple Computer, Inc. 4/18/96

Figure 3-1 The ADB Family, Its Clients, and Plug-ins

Note
In subsequent developer releases of Mac OS 8, the
keyboard and pointing families will most likely become
part of an input devices family. ◆

IMPORTANT

Apple Computer, Inc. owns patents on the Apple Desktop
Bus. If you want to manufacture a device that works with
the ADB software, you must obtain a license and device
handler ID from Apple Computer, Inc. Write to this
address:

Apple Software Licensing
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014

Client Application

PT Family

ADB

ADB Family

Apple Event Manager

Client Application

PT Family

ADB

ADB Family

Apple Event Manager

PT
Plug in

Client Application

PT Family

ADB
Plug in

ADB Family

Apple Desktop
Bus controller

Apple Event Manager

C H A P T E R 3

ADB Family Reference

3-8 ADB Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

A license includes a copy of the Apple Desktop Bus Specification. ▲

ADB Client Constants and Data Types 3

This section describes the data types and constants in the ADB family’s client
programming interface. A client uses the services of the ADB family and its
plug-ins to manage data generated by ADB devices.

ADB Connection ID 3

All the functions in the ADB family programming interface except ADBResetBus
(page 3-37) require an ADB connection ID. An ADB connection is a logical
path to an ADB device and serves to control access to the device. Clients can
obtain an ID for an ADB connection by calling the ADBOpen function (page 3-21).

Clients pass an ADB connection ID to close an ADB connection with the
ADBClose function (page 3-23) and to retrieve the next autopoll event with the
ADBGetNextAutopoll function (page 3-34).

Clients also pass an ADB connection ID to obtain and set

■ the contents of an ADB register with the ADBGetRegister (page 3-24) and
ADBSetRegister (page 3-26) functions. For more on the ADB registers, see
“ADB Register Contents” (page 3-9) and “Getting and Setting the ADB
Registers” (page 3-23).

■ a handler ID for an ADB connection with the ADBGetHandlerID (page 3-28)
and ADBSetHandlerID (page 3-29) functions respectively. For details on
handler IDs, see “Getting and Setting Handler IDs” (page 3-27).

■ the status bits for ADB register 3 with the ADBGetStatusBits (page 3-31) and
ADBSetStatusBits (page 3-33) functions respectively. For an illustration of the
status bits for ADB register 3, see Figure 3-2 (page 3-31).

Furthermore, clients pass the ADB connection ID to flush an ADB device using
the ADBFlush function (page 3-36).

The ADB family defines the ADBConnectionID data type, an unsigned 32-bit
integer that identifies an ADB connection.

typedef UInt32 ADBConnectionID;

C H A P T E R 3

ADB Family Reference

ADB Client Constants and Data Types 3-9
Draft. Apple Computer, Inc. 4/18/96

Note
The ADB connection type will probably change in future
developer releases of Mac OS 8. ◆

ADB Register Contents 3

Each device connected to the Apple Desktop Bus may provide up to four
registers for storing data. These registers are referred to as ADB device
registers. An ADB device can implement these registers as it chooses; that is, an
ADB register does not have to correspond to an actual hardware register on the
ADB device. Clients gain access to an ADB device over the ADB by reading
from or writing to these registers. Each ADB device register may store up to 8
bytes of data.

The ADB family defines the ADBRegisterContents data type to provide
information about the contents of an ADB register. The ADB Register contents
data structure is used in the ADB client functions ADBSetRegister (page 3-26),
ADBGetRegister (page 3-24), and ADBGetNextAutopoll (page 3-34).

typedef struct ADBRegisterContents ADBRegisterContents;

struct ADBRegisterContents {
Byte data[8]; /* ADB register data */
ByteCount length; /* ADB register length */

};

Field descriptions
data Up to 8 bytes of data contained in the ADB register. This

value specifies the information in the ADB register.
length A byte count that specifies the number of bytes of the data

field that are valid.

ADB I/O Iterator Data 3

The ADB I/O iterator data structure provides a device reference, a structure
version number, a default address, and a default handler ID for each of the
peripherals present. The ADB I/O iterator data structure is defined by the
ADBIOIteratorData type.

C H A P T E R 3

ADB Family Reference

3-10 ADB Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

struct ADBIOIteratorData {
IOCommonInfo IOCI; /* I/O common information

structure */
Byte currentAddress /* current address of device */
Byte defaultAddress; /* default addresses */
Byte defaultHandlerID; /* default handler IDs */

};

typedef struct ADBIOIteratorData ADBIOIteratorData;

Field descriptions
IOCI An I/O common information structure, which defined by

the IOCommonInfo data type. This structure contains the I/O
device reference in its contents field. For more on the I/O
Common Information data type and the I/O device
reference, see “About the I/O Architecture” (page 1-3)

currentAddress A byte that contains the current address of the device.
defaultAddress A byte that contains the default address for the current

device referred to by this structure.
defaultHandlerID A byte that contains the default handler ID for the device

referred to by this structure (for example, the address the
device has on power-up and bus reset).

ADB Match Strings 3

If you are writing a plug-in for an ADB device that plugs into a higher layer
family, such as the pointing family, you’ll need to use ADB match strings. All
modular I/O families must define match strings for use by the plug-in
description data structure. For details on this data structure, also called the
driver description data structure, see “Driver and Family Matching” (page 2-3)

For instance, ADB search strings would appear in the driver description data
structure of a pointing family plug-in. (For more on the pointing family, see
“Pointing Family Reference” (page 4-5).) The order of ADB search strings must
always be from the most to the least specific as follows:

3. ADB-X-YY where X = the default address of the device, and YY = its default
handler ID. Both strings appear in uppercase hexadecimal.

4. ADB-X where X = the default address of the device.

C H A P T E R 3

ADB Family Reference

ADB Plug-in-Defined Data Types 3-11
Draft. Apple Computer, Inc. 4/18/96

5. ADB

ADB Plug-in-Defined Data Types 3

This section describes constants and data types in the ADB family’s
programming interface for its plug-ins.

ADB Plug-In Dispatch Table 3

Each ADB family plug-in must export an ADB plug-in dispatch table, so the
ADB family can find the functions it contains. The ADB family calls the Driver
and Family Matching Software (DFM) to load each plug-in. For more on DFM,
see “Driver and Family Matching” (page 2-3). Subsequently, the DFM returns a
pointer to the plug-in dispatch table.

The ADB plug-in dispatch table is defined by the ADBPluginDispatchTable data
type.

struct ADBPluginDispatchTable {
ADBPluginHeader header; /* header */
ADBPluginValidateHardwarePtr ValidateHardware /* validate hardware */
ADBPluginInitProc Init; /* initialize function*/
ADBPluginSetAutopollDelayProc SetAutopollDelay; /* set autopoll delay */
ADBPluginGetAutopollDelayProc GetAutopollDelay; /* get autopoll delay */
ADBPluginSetAutopollListProc SetAutopollList; /* set autopoll list */
ADBPluginGetAutopollListProc GetAutopollList; /* get autopoll list */
ADBPluginAutopollEnableProc AutopollEnable; /* autopoll enable function */
ADBPluginAutopollDisableProc AutopollDisable; /* autopoll disable function */
ADBPluginResetBusProc ResetBus; /* reset bus function */
ADBPluginFlushProc Flush; /* flush function */
ADBPluginSetRegisterProc SetRegister; /* set register function */
ADBPluginGetRegisterProc GetRegister; /* get register function */
ADBPluginSetKeyboardListProc SetKeyboardList; /* get register function */

};

typedef struct ADBPluginDispatchTable ADBPluginDispatchTable;

C H A P T E R 3

ADB Family Reference

3-12 ADB Plug-in-Defined Data Types

Draft. Apple Computer, Inc. 4/18/96

Field descriptions
header The ADB plug-in header, defined by the ADBPluginHeader

data type (page 3-12).
ValidateHardware The ADB plug-in defined validate hardware function

(page 3-41).
Init The ADB plug-in defined initialization function (page 3-42).
SetAutopollDelay The ADB plug-in defined set autopoll delay function

(page 3-43).
GetAutopollDelay The ADB plug-in defined get autopoll delay function

(page 3-44).
SetAutopollList The ADB plug-in defined set autopoll list function

(page 3-45).
GetAutopollList The ADB plug-in defined get autopoll list function

(page 3-46).
AutopollEnable The ADB plug-in defined autopoll enable function

(page 3-47).
AutopollDisable The ADB plug-in defined autopoll disable function

(page 3-47).
ResetBus The ADB plug-in defined reset bus function (page 3-48).
Flush The ADB plug-in defined flush function (page 3-48).
SetRegister The ADB plug-in defined set register function (page 3-49).
GetRegister The ADB plug-in defined get register function (page 3-50).
SetKeyboardList The ADB plug-in defined set keyboard list function

(page 3-51).

ADB Plug-In Header 3

The ADB plug-in header is defined by the ADBPluginHeader data type. Plug-ins
use the ADB plug-in header in the header field of the ADB plug-in dispatch
table (page 3-11).

struct ADBPluginHeader {
UInt32 version; /* version number formatted like a number

version */
UInt32 reserved1; /* reserved for use by Apple */

C H A P T E R 3

ADB Family Reference

ADB Plug-in-Defined Data Types 3-13
Draft. Apple Computer, Inc. 4/18/96

UInt32 reserved2; /* reserved for use by Apple */
UInt32 reserved3; /* reserved for use by Apple */

};

typedef struct ADBPluginHeader ADBPluginHeader;

Field descriptions
version An unsigned 32-bit integer that specifies the version of the

ADB plug-in header. Set this field to the enumerator
kADBPluginCurrentVersion (page 3-13).

reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.

ADB Plug-in Version 3

The ADB plug-in version enumerator describes the version number of a
specific ADB plug-in. The version number appears in the version field of the
ADB plug-in header data structure, which is defined by the ADBPluginHeader
data type (page 3-12).

enum {
kADBPluginCurrentVersion /* ADB plug-in version enumerator*/

};

ADB Plug-in Defined-Function Types 3

This section describes the function pointer types defined by the ADB plug-in
programming interface.

ADBPluginValidateHardwareProc 3

Before the ADB family calls a plug-in’s init function, the ADB family calls the
validate hardware function provided by the plug-in. The plug-in determines
whether the I/O device reference is the device expected by the plug-in.

C H A P T E R 3

ADB Family Reference

3-14 ADB Plug-in-Defined Data Types

Draft. Apple Computer, Inc. 4/18/96

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBValidateHardwareProc) (IODeviceRef *device,
Boolean *isMyDevice);

For information about creating your own validate hardware function, see the
description of the MyADBValidateHardwareProc function (page 3-41).

ADBPluginInitProc 3

When the ADB family selects an ADB plug-in, it calls the initialization function
provided by the plug-in. The plug-in then performs appropriate initialization.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginInitProc) (IODeviceRef *device);

For information about creating your own initialization function, see the
description of the MyADBPluginInitProc function (page 3-42).

ADBPluginSetAutopollDelayProc 3

When the ADB family wants to set the interval between autopoll operations
(that is, the autopoll delay), it calls the set autopoll delay function provided by
the plug-in. The plug-in sets the delay in a device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginSetAutopollDelayProc)(Duration delay);

For information about creating your own set autopoll delay function, see the
description of the MyADBPluginSetAutopollDelayProc (page 3-43).

C H A P T E R 3

ADB Family Reference

ADB Plug-in-Defined Data Types 3-15
Draft. Apple Computer, Inc. 4/18/96

ADBPluginGetAutopollDelayProc 3

When the ADB family wants to find out the autopoll delay (that is, the current
interval between autopoll operations), it calls the get autopoll delay function
provided by the plug-in. The plug-in then retrieves the autopoll delay in a
device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginGetAutopollDelayProc)(Duration *delay);

For information about creating your own set autopoll delay function, see the
description of the MyADBPluginGetAutopollDelayProc (page 3-44).

ADBPluginSetAutopollListProc 3

An autopoll list is a group of addresses polled during the autopoll mechanism.
(These addresses are the group to poll first when trying to clear a service
request.) Typically, the autopoll list consists of all the devices that have been
opened using the ADBOpen function (page 3-21). For more detailed information
on autopoll lists, see Macintosh Technology in the Common Hardware Reference
Platform.

When the ADB family wants to set all the entries in the autopoll list, it calls the
set autopoll list function provided by the plug-in. The plug-in then sets the
autopoll list in a device-specific manner.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginSetAutopollListProc) (UInt16 addressMask);

For information about creating your own set autopoll list function, see the
description of the MyADBPluginSetAutopollListProc (page 3-45).

C H A P T E R 3

ADB Family Reference

3-16 ADB Plug-in-Defined Data Types

Draft. Apple Computer, Inc. 4/18/96

ADBPluginGetAutopollListProc 3

When the ADB family wants to obtain the group of addresses polled during the
autopoll mechanism, it calls the get autopoll list function provided by the
plug-in. Typically, the autopoll list consists of all the devices that have been
opened using the ADBOpen function (page 3-21).The plug-in then retrieves the
autopoll list in a device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginGetAutopollListProc)(UInt16 *addressMask);

For information about creating your own get autopoll list function, see the
description of the MyADBPluginGetAutopollListProc function (page 3-46).

ADBPluginAutopollEnableProc 3

When the ADB family wants to enable autopolling, it calls the autopoll enable
function provided by the plug-in. The plug-in then translates this autopoll
enabling request in a device-specific fashion. A plug-in must not call the
ADBFamAutopollArrived function (page 3-40) until the plug-in’s autopoll enable
function has been called.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginAutopollEnableProc)(void);

For information about creating your own autopoll enable function, see the
description of the MyADBPluginAutopollEnableProc function (page 3-47).

ADBPluginAutopollDisableProc 3

When the ADB family wants to disable autopolling (that is, turn off the
hardware interrupt on autopoll operations), it calls the autopoll disable
function provided by the plug-in. The plug-in then translates this autopoll

C H A P T E R 3

ADB Family Reference

ADB Plug-in-Defined Data Types 3-17
Draft. Apple Computer, Inc. 4/18/96

disabling request in a device-specific fashion. While autopolling is disabled, the
ADBFamAutopollArrived function (page 3-40) must not be called.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginAutopollDisableProc)(void);

For information about creating your own autopoll disable function, see the
description of the MyADBPluginAutopollDisableProc function (page 3-47).

ADBPluginResetBusProc 3

When the ADB family wants to send a reset signal over the bus, it calls the reset
bus function provided by the plug-in. (The reset bus function is equivalent to a
power-up reset.) The plug-in then translates the reset signal request in a
device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginResetBusProc)(void);

For information about creating your own reset bus function, see the description
of the MyADBPluginResetBusProc function (page 3-48).

ADBPluginFlushProc 3

When the ADB family wants to send a flush command, it calls the flush
function provided by the plug-in. The plug-in then translates the command in a
device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginFlushProc)(Byte deviceAddress);

For information about creating your own flush function, see the description of
the MyADBPluginFlushProc function (page 3-48).

C H A P T E R 3

ADB Family Reference

3-18 ADB Plug-in-Defined Data Types

Draft. Apple Computer, Inc. 4/18/96

ADBPluginSetRegisterProc 3

When the ADB family wants to set the contents of any of the ADB registers, it
calls the set register function provided by the plug-in. The plug-in then
translates the request in a device-specific manner.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginSetRegisterProc) (Byte deviceAddress,
Byte registerNumber,
const ADBRegisterContents *contents);

For information about creating your own set register function, see the
description of the MyADBPluginSetRegisterProc function (page 3-49).

ADBPluginGetRegisterProc 3

When the ADB family wants to obtain the contents of any of the ADB registers,
it calls the get register function provided by the plug-in. The plug-in then
translates the command in a device-specific fashion.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginGetRegisterProc) (Byte deviceAddress,
Byte registerNumber,
ADBRegisterContents *contents);

For information about creating your own get register function, see the
description of the MyADBPluginGetRegisterProc function (page 3-50).

ADBPluginSetKeyboardListProc 3

When the ADB family wants to tell the plug-in the addresses that have
keyboards, called the ADB keyboard list, so that it can detect command-power
and command-control-power, it calls the set keyboard list function provided by
the plug-in. The plug-in then translates the command in a device-specific
fashion. For more information about keyboard-specific support, see the chapter

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-19
Draft. Apple Computer, Inc. 4/18/96

“Apple Desktop Bus Controller” in the document Macintosh Technology In the
Common Hardware Reference Platform.

The function pointer is defined by the ADB family as follows:

typedef OSStatus (*ADBPluginSetKeyboardListProc) (UInt16 addressMask);

For information about creating your own set keyboard list function, see the
description of the MyADBPluginSetKeyboardListProc function (page 3-51).

ADB Client Functions 3

This section describes the functions used by ADB family clients. Typical clients
use the ADB family functions to perform the following actions:

■ obtain data about an ADB device including its default address and default
handler ID using the ADBGetDeviceData function (page 3-20)

■ open an ADB connection via the ADBOpen function (page 3-21)

■ close the ADB connection with the ADBClose function (page 3-23)

■ obtain notification of an autopoll event by calling the ADBGetNextAutopoll
function (page 3-34) each time they are waiting for the user to perform an
action

■ obtain the contents of any of the ADB registers using the ADBGetRegister
function (page 3-24)

■ set the contents of ADB registers 0, 1, and 2 via the ADBSetRegister function
(page 3-26)

■ get or change the handler ID fields of register 3 via the ADBGetHandlerID
(page 3-28) and ADBSetHandlerID (page 3-29) functions

■ get or change the status bit fields of register 3 using the ADBGetStatusBits
(page 3-31) and ADBSetStatusBits (page 3-33) functions

■ send a flush command over the bus with the ADBFlush function (page 3-36)

■ send a reset command over the bus using the ADBResetBus function
(page 3-37)

C H A P T E R 3

ADB Family Reference

3-20 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

Getting Information about ADB Devices 3

Before opening an ADB connection to a device, clients need to obtain data
about devices including data size, default address, and default handler ID. The
ADB device address is a 4-bit bus address that identifies devices of the same
type.The ADB handler ID is an ADB device-specific 8-bit value. Taken
together, a device’s default address and handler ID uniquely identify the
particular data protocol the device uses for communication.

ADBGetDeviceData 3

Obtains data about all ADB devices known to the ADB family. Such data
includes data size, default address, and default handler ID information.

OSStatus ADBGetDeviceData(
ItemCount requestCount,
ItemCount *totalCount,
ADBIOIteratorData *deviceData);

requestCount An item count that indicates the number of iterator structs in
the array pointed to by the deviceData parameter.

totalCount A pointer to an item count. On output, the ADBGetDeviceData
function indicates how many ADB devices there are.

deviceData On input, a pointer to an array or empty iterator structs. On
output, the ADBGetDeviceData function fills in the fields for each
device it finds up to the number specified in the requestCount
parameter. For more on the ADB I/O iterator data structure,
defined by the ADBIOIteratorData type, see “ADB I/O Iterator
Data” (page 3-9).

function result An operating system status code. See “ADB Result Codes”
(page 3-52) for a list of result codes the ADB family can return.

DISCUSSION

Since there can be a maximum of 16 ADB devices, the deviceData parameter
should be allocated as 16 iterator structs. In this way, if you pass in the

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-21
Draft. Apple Computer, Inc. 4/18/96

requestCount parameter as 16, you are guaranteed to obtain all the information
you need with one call.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBGetDeviceData function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For a discussion of default device addresses and default handler IDs, see
“Getting Information about ADB Devices” (page 3-20).

Opening and Closing an ADB Connection 3

In order to open an ADB connection, clients need to use the ADBOpen function
(page 3-21) to obtain an ADB connection ID. This ADB connection ID creates a
logical path to an ADB device specified via an I/O device reference and serves
to control access to the device. Once the connection has been opened, the ADB
family buffers the data from a small number of autopoll events. To close the
connection, clients can use the ADBClose function (page 3-23).

ADBOpen 3

Opens an ADB connection.

OSStatus ADBOpen (const IODeviceRef *ref,
ADBConnectionID *connection);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-22 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

ref On input, a pointer to the I/O device reference, defined by the
IODeviceRef data type, of the device whose connection you
want to open. (For more on I/O device references, see “About
the I/O Architecture” (page 1-3).) Clients obtain this reference
via the ADBGetDeviceData function (page 3-20).

connection A pointer to an ADB connection ID. On output, the ADBOpen
function provides the new connection ID. This value of type
ADBConnectionID (page 3-8) identifies the ADB connection that
the ADB family has opened.

function result An operating system status code. Your request to open an ADB
connection can fail if the connection is already open or if the
I/O device ID is invalid. If the connection is already open,
ADBOpen returns the adbDeviceBusyErr result code. If the I/O
device ID is incorrectly specified, ADBOpen returns the paramErr
result code. See “ADB Result Codes” (page 3-52) for a list of
result codes the ADB family can return.

DISCUSSION

Once the ADB connection has been opened, the ADB family buffers the data
from a small number of autopoll events.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBOpen function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To close an ADB connection, you use the ADBClose function (page 3-23).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-23
Draft. Apple Computer, Inc. 4/18/96

ADBClose 3

Closes an ADB connection.

OSStatus ADBClose (ADBConnectionID connection);

connection A pointer to an ADB connection ID. This value of type
ADBConnectionID (page 3-8) identifies the ADB connection you
want the ADB family to close. Clients obtain this connection ID
via the ADBOpen function (page 3-21).

function result An operating system status code. Your request to close an ADB
connection can fail if the connection has already been closed. If
you incorrectly specify the connection ID of the ADB
connection, ADBClose returns the adbInvalidConnectionIDErr
result code. See “ADB Result Codes” (page 3-52) for a list of the
result codes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBClose function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To open an ADB connection, you use the ADBOpen function (page 3-21).

Getting and Setting the ADB Registers 3

An ADB device has four ADB logical registers each of which contains up to 8
bytes of data. Clients can get or set the contents of any one register at a time.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-24 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

■ Register 0 contains the autopoll data. For example, on a mouse, register 0
contains the relative offset since the last time it was read.

■ Register 1 and 2 are device-specific.

■ Known as the ADB control register, register 3 is two bytes long. It stores the
device address, handler ID, and four ADB status bits. The ADB Specification
describes the protocol for changing these fields. All ADB devices must
follow this protocol to ensure that dynamic address assignment and address
resolution work.

The ADBGetRegister function works on all four registers (0, 1, 2, and 3). The
ADBSetRegister function only works on ADB registers 0, 1, and 2.

To change the contents of register 3, you need to use the ADB family functions
that get and set its individual fields. The ADBGetHandlerID and ADBSetHandlerID
functions, described in “Getting and Setting Handler IDs” (page 3-27) work
only on register 3 as do the ADBGetStatusBits and ADBSetStatusBits functions
described in “Getting and Setting ADB Status Bits” (page 3-30).

ADBGetRegister 3

Retrieves the contents of an ADB register.

OSStatus ADBGetRegister (
ADBConnectionID connection,
Byte registerNumber,
ADBRegisterContents *contents,
AbsoluteTime *timestamp);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose register contents you want to retrieve.

registerNumber
A byte that you set to describe the register (0, 1, 2, or 3) whose
contents you want to obtain.

contents A pointer to a structure of type ADBRegisterContents (page 3-9).
On output, the ADBGetRegister function sets the structure to the
contents of the register specified by the registerNumber
parameter.

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-25
Draft. Apple Computer, Inc. 4/18/96

timestamp A pointer to an absolute time value. On output, the
ADBGetRegister function specifies when the contents of the
register were retrieved taken at hardware interrupt time.

function result An operating system status code. If you have specified a
register number incorrectly, ADBGetRegister returns the
paramErr result code. If you have specified an ADB connection
ID incorrectly, the function returns the
adbInvalidConnectionIDErr result code. If the specified device
doesn’t respond, the function returns the adbDeviceTimeoutErr
result code. See “ADB Result Codes” (page 3-52) for a list of
possible result codes.

DISCUSSION

Clients who are familiar with the System 7 Talk command, defined in the ADB
Specification may want to know that a call to the ADBGetRegister function is the
equivalent of sending a Talk command over the wire. A Talk command fetches
user input or other data from an ADB device and requests that the specified
device send the contents of a specified register over the bus.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBGetRegister function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To set ADB register 0, 1, or 2, you use the ADBSetRegister function (page 3-26).
For an overview of the ADB registers, see “Getting and Setting the ADB
Registers” (page 3-23). To set the contents of register 3, you need to use the
ADB client functions for changing the individual fields described in “Getting

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-26 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

and Setting Handler IDs” (page 3-27) and “Getting and Setting ADB Status
Bits” (page 3-30).

ADBSetRegister 3

Sets the contents of ADB registers 0, 1, or 2.

OSStatus ADBSetRegister (
ADBConnectionID connection,
Byte registerNumber,
const ADBRegisterContents *contents);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose register contents you want to retrieve.

registerNumber
A byte that you set to describes the register (0, 1, or 2) whose
contents you want to change.

contents A pointer to a structure of type ADBRegisterContents (page 3-9).
On output, the ADBSetRegister function fills in this structure to
describe the contents of the ADB register specified in the
registerNumber parameter as well as its length and data fields.

function result An operating system status code. If you have specified a
register number incorrectly, ADBSetRegister returns the
paramErr status code. If you have specified the ADB connection
ID incorrectly, the function returns the
adbInvalidConnectionIDErr result code. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

DISCUSSION

Those clients who are familiar with the System 7 Listen command may want to
know that a call to ADBSetRegister is the equivalent of sending a Listen
command over the wire. A Listen command (defined in the ADB Specification)
instructs a device to prepare to receive additional data.

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-27
Draft. Apple Computer, Inc. 4/18/96

Note
ADBSetRegister only sets registers 0, 1, and 2. Use the
functions described in “Getting and Setting Handler IDs”
(page 3-27) and “Getting and Setting ADB Status Bits”
(page 3-30) to set individual fields of register 3. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBSetRegister function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To retrieve the contents of any ADB register, you use the ADBGetRegister
function (page 3-24). For an overview of the ADB registers, see “Getting and
Setting the ADB Registers” (page 3-23).

To set the individual fields of the contents of register 3, you can use the
ADBSetHandlerID function (page 3-29) and the ADBSetStatusBits function
(page 3-33).

Getting and Setting Handler IDs 3

The ADB handler ID is an ADB device-specific 8-bit value. Taken together, an
ADB device’s default address and handler ID uniquely identify the particular
data protocol the device uses for communication. Devices may support more
than one protocol. Changing a device’s handler ID may change its protocol.

The handler ID for a device occupies the second byte of ADB register 3. You can
use the ADBGetHandlerID (page 3-28) and ADBSetHandlerID (page 3-29) functions,
respectively, to obtain and set the handler IDs.

For an illustration of the contents of device register 3, see Figure 3-2 (page 3-31).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-28 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

Note
The upper 4 bits of register 3 contain the status bits. To get
and set these bits, you use the ADBGetStatusBits and
ADBSetStatusBits functions described in “Getting and
Setting ADB Status Bits” (page 3-30). The next 4 bits
contain the device’s address, which cannot be changed via
a programming interface. ◆

ADBGetHandlerID 3

Obtains a handler ID for an ADB connection.

OSStatus ADBGetHandlerID (
ADBConnectionID connection,
Byte *handlerID);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose handler ID you wish to retrieve.

handlerID A pointer to a byte. On output, the ADBGetHandlerID function
uses this byte to describe the handler ID for ADB register 3.

function result An operating system status code. If you specify an incorrect
connection ID, ADBGetHandlerID returns the
adbInvalidConnectionIDErr status code. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBGetHandlerID function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-29
Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

To retrieve the contents of any ADB register, you use the ADBGetRegister
function (page 3-24). To set the contents of ADB registers 0, 1, and 2, you use
the ADBSetRegister function (page 3-26). For an overview of the ADB registers,
see “Flushing the ADB” (page 3-36).

To set the handler ID for an ADB register, you can use the ADBSetHandlerID
function (page 3-29). To set the ADBSetStatusBits function (page 3-33). For a
discussion of handler IDs, see “Getting and Setting Handler IDs” (page 3-27).

ADBSetHandlerID 3

Sets the handler ID for an ADB connection.

OSStatus ADBSetHandlerID (
ADBConnectionID connection,
Byte handlerID);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose handler ID you wish to retrieve.

handlerID A byte that describes the handler ID for ADB register 3.

function result An operating system status code. Some handler IDs (for
instance 00, FF, FE, and FD) are reserved by the ADB Specification
for special functions. ADBSetHandlerID returns the
adbReservedHandlerIDErr result code if it is unable to set the
handler ID specified. If the device does not support the handler
ID you have specified, ADBSetHandlerID returns the
adbInvalidHandlerIDErr result code. If you have incorrectly
specified the ADB connection ID, the function returns the
adbInvalidConnectionIDErr result code. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

DISCUSSION

ADBSetHandlerID calls the ADBGetHandlerID function (page 3-28) to verify that
the handler ID you have specified is supported.

C H A P T E R 3

ADB Family Reference

3-30 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

IMPORTANT

Changing a device’s handler ID may change that device’s
protocol. ▲

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBSetHandlerID function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To retrieve the contents of any ADB register, you use the ADBGetRegister
function (page 3-24). To set the contents of ADB registers 0, 1, and 2, you use
the ADBSetRegister function (page 3-26). For an overview of the ADB registers,
see “Getting and Setting the ADB Registers” (page 3-23).

To obtain the handler ID for an ADB register, you can use the ADGetHandlerID
function (page 3-28). For a detailed discussion of handler IDs, see “Getting and
Setting Handler IDs” (page 3-27).

To set the status bits in register 3, you can use the ADBSetStatusBits function
(page 3-33). To retrieve the status bits in register 3, you can use the
ADBGetStatusBits function (page 3-31). For a detailed discussion of status bits,
see “Getting and Setting ADB Status Bits” (page 3-30)

Getting and Setting ADB Status Bits 3

The ADBGetStatusBits and ADBSetStatusBits functions get and set the status
bits, which are the 4 most significant bits of the control register (also called
ADB register 3).

The upper four bits of ADB register 3 contain

■ a reserved bit,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-31
Draft. Apple Computer, Inc. 4/18/96

■ an exceptional event field,

■ a service request enable field, and

■ a reserved bit.

Figure 3-2 shows the status bits of ADB register 3.

Figure 3-2 The Status Bits of ADB Register 3

The next four bits contain the ADB device address, which you cannot change
via a programming interface. The device address is a 4-bit bus address.

The second byte of register 3 contains the ADB device handler ID. The device
handler ID is an 8-bit value that identifies the specific device type or its mode
of operation. For example, an Apple Standard keyboard has a device handler
ID of 1, while an Apple Extended keyboard has a device handler ID of 2.

ADBGetStatusBits 3

Obtains the status bits of device register 3.

OSStatus ADBGetStatusBits (
ADBConnectionID connection,
Byte *bits);

1234567 0815

Exceptional
event

91011121314

Service
request enable

Device addressStatus bits

1234567 0815

Exceptional
event

91011121314

Service
request enable

Device handler ID

00

C H A P T E R 3

ADB Family Reference

3-32 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose register 3 status bits you wish to retrieve.

bits A pointer to a byte. On output, the ADBGetStatusBits function
supplies the byte that contains the 4 most significant bits of the
first byte of device register 3.

function result An operating system status code. If you specify an incorrect
connection ID, ADBGetStatusBits returns the
adbInvalidConnectionIDErr status code. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBGetStatusBits function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For a thorough discussion of status bits, see “Getting and Setting ADB Status
Bits” (page 3-30).

To set the status bits in register 3, you can use the ADBSetStatusBits function
(page 3-33).

To retrieve the contents of any ADB register, you use the ADBGetRegister
function (page 3-24). To set the contents of ADB registers 0, 1, and 2, you use
the ADBSetRegister function (page 3-26). For an overview of the ADB registers,
see “Getting and Setting the ADB Registers” (page 3-23).

To set the handler ID for ADB register 3, you can use the ADBSetHandlerID
function (page 3-29). To obtain the handler ID for register 3, you can use the
ADBGetHandlerID function (page 3-28). For a discussion of handler IDs, see
“Getting and Setting Handler IDs” (page 3-27).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-33
Draft. Apple Computer, Inc. 4/18/96

ADBSetStatusBits 3

Sets the status bits in ADB register 3.

OSStatus ADBSetStatusBits (
ADBConnectionID connection,
Byte bits);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection
whose register 3 status bits you wish to set.

bits A byte that contains the 4 most significant bits of the first byte
of device register 3.

function result An operating system status code. If you specify an incorrect
connection ID, ADBSetStatusBits returns the
adbInvalidConnectionIDErr status code. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBSetStatusBits function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For a thorough discussion of status bits, see “Getting and Setting ADB Status
Bits” (page 3-30).

To obtain the status bits in register 3, you can use the ADBGetStatusBits
function (page 3-31).

To retrieve the contents of any ADB register, you use the ADBGetRegister
function (page 3-24). To set the contents of ADB registers 0, 1, and 2, you use

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-34 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

the ADBSetRegister function (page 3-26). For an overview of the ADB registers,
see “Getting and Setting the ADB Registers” (page 3-23).

To set the handler ID for ADB register 3, you can use the ADBSetHandlerID
function (page 3-29). To obtain the handler ID for register 3, you can use the
ADBGetHandlerID function (page 3-28). For a discussion of handler IDs, see
“Getting and Setting Handler IDs” (page 3-27)

Autopolling 3

Autopolling is the primary method the host computer uses to fetch data from
ADB devices. Devices cannot initiate transactions; they can only respond to
commands from the host. When a device has new data to transmit, it must wait
until a command is issued to some ADB device. Then it should assert a service
request.

The host then begins polling the addresses that have ADB devices, asking each
in turn to send the contents of register 0, until the service request is no longer
asserted. For details on register 0, see “Getting and Setting the ADB Registers”
(page 3-23).

This section discusses the ADBGetNextAutopoll function (page 3-34), which
clients call each time they are waiting for the user to perform an action.

Note
Autopolling on a specific device can be disabled. To
disable the service request, you should set bit 13 of register
3 to 0. For more on register 3, see “Getting and Setting
ADB Status Bits” (page 3-30) ◆

ADBGetNextAutopoll 3

Returns the next autopoll event.

OSStatus ADBGetNextAutopoll (
ADBConnectionID connection,
Duration timeOut
ADBRegisterContents *contents,
AbsoluteTime *timestamp,);

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-35
Draft. Apple Computer, Inc. 4/18/96

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection for
which you want the ADB family to return the next autopoll.
event.

timeOut A duration value (expressed in milliseconds). You set this value
to indicate how long you are willing to wait before an autopoll
event occurs. (If you specify an invalid duration in this
parameter, the ADBGetNextAutopoll function returns a
kernelTimeoutErr result code in its function result.)

contents A pointer to a structure of type ADBRegisterContents (page 3-9).
On output, the ADBGetNextAutopoll function sets the structure to
the contents of register 0 as specified in the length and data
fields of the ADB Register Contents data structure. For details
on register 0, see “Getting and Setting the ADB Registers”
(page 3-23).

timestamp A pointer to an absolute time value. On output, the
ADBGetNextAutopoll function specifies the time at which the
data arrived (taken at hardware interrupt time).

function result An operating system status code. Your request to retrieve the
next autopoll event can fail if the autopoll has already been
terminated, if an invalid connection ID has been specified, or if
an invalid duration has been specified. If a client called the
ADBClose function (page 3-23) while ADBGetNextAutopoll is
pending (for example, using another thread), the function
returns the adbConnectionTerminatedErr status code. If you
specify a connection ID incorrectly, ADBGetNextAutopoll returns
the adbInvalidConnectionIDErr result code. If the duration
specified in the timeout parameter expires before the autopoll
event happens, ADBGetNextAutopoll returns a kernelTimeoutErr
result code. See “ADB Result Codes” (page 3-52) for a list of the
result codes the ADB family can return.

DISCUSSION

You call the ADBGetNextAutopoll function to wait for the user to do something,
(such as press a mouse button). ADBGetNextAutopoll doesn’t return the contents
of the autopoll event until the user performs an action. Since, theoretically, it
may be forever until the user does something, the timeOut parameter allows

C H A P T E R 3

ADB Family Reference

3-36 ADB Client Functions

Draft. Apple Computer, Inc. 4/18/96

you to specify how long you are willing to wait until ADBGetNextAutopoll
retrieves the next autopoll event.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBGetNextAutopoll function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For an overview of the autopolling process, see “Autopolling” (page 3-34).

Flushing the ADB 3

ADBFlush 3

Flushes an ADB device.

OSStatus ADBFlush (ADBConnectionID connection);

connection An ADB connection ID. You set this value of type
ADBConnectionID (page 3-8) to identify the ADB connection you
wish to flush.

function result An operating system status code. If you specify an incorrect
connection ID, ADBFlush returns the adbinvalidConnectionIDErr
status code. See “ADB Result Codes” (page 3-52) for a list of
possible result codes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

ADB Client Functions 3-37
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

Those clients familiar with the System 7 Flush command may want to know
that a call to ADBFlush is the equivalent of sending a flush command over the
bus. What this Flush command does is device specific. (See the ADB
Specification for details on the Flush command.)

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBFlush function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

Resetting the ADB 3

If the ADB family detects a device being added to the ADB, the ADB family
performs a bus reset by calling the ADBResetBus function (page 3-37), which
destroys all existing connections. Subsequently, new connections need to be
made.

ADBResetBus 3

Destroys all existing ADB connections.

OSStatus ADBResetBus (void);

function result An operating system status code. See “ADB Result Codes”
(page 3-52) for a list of possible result codes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

3-38 Functions Exported by ADB Family

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

When a bus reset occurs, the ADB family performs the following sequence of
actions:

1. sends a device-removed notification to other parts of the I/O system for
all known devices,

2. sends a reset signal over the ADB bus,
3. scans for all ADB devices and performs address resolution so that each

address has at most one device, and
4. posts device added notifications for each ADB device found.

Note
ADBResetBus occurs automatically at start-up. Clients don’t
typically need to use ADBResetBus. ◆

Those clients familiar with the System 7 SendReset command may want to
know that a call to ADBResetBus is the equivalent of sending a SendReset
command over the bus. For details on SendReset, see the ADB Specification.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBResetBus function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

Functions Exported by ADB Family 3

The functions described in this function are implemented and exported by the
ADB family for use only by plug-ins; each function begins with the prefix
ADBFam.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

ADB Family Reference

Functions Exported by ADB Family 3-39
Draft. Apple Computer, Inc. 4/18/96

▲ W A R N I N G

The functions described in this section are only to be called
by plug-ins to the ADB Family. If any other clients use
these functions, the system will crash! ▲

Communication between the ADB family and its plug-ins occurs in the
following sequence:

1. The ADB family calls one of plug-in functions requesting some information.

2. A plug-in starts an operation and returns.

3. Later, when an operation is complete, a plug-in calls the
ADBFamRequestComplete function (page 3-39) to notify the family.

In some circumstances, a client does not ask for information; however, the user
initiates an event. Consequently, an interrupt occurs, and the plug-in calls the
ADBFamAutopollArrived function (page 3-40).

ADBFamRequestComplete 3

Indicates that an ADB family I/O operation has been completed.

void ADBFamRequestComplete (OSStatus theStatus);

theStatus An operating system status message that indicates the status of
the request that is completing. ADBFamRequestComplete returns
the noErr result code if the request has been successfully
completed or the ioErr result code if there has been an I/O
problem. If the device has timed out, the function returns the
adbDeviceTimeoutErr result code. See “ADB Result Codes”
(page 3-52) for a list of possible result codes.

DISCUSSION

The plug-in must always call the ADBFamRequestComplete function when I/O is
complete. Moreover, the plug-in must call the ADBFamRequestComplete function
even if the I/O operation is done immediately or in the interrupt service
routine that occurs when I/O is complete. The ADB family only permits one
outstanding request at a time.

C H A P T E R 3

ADB Family Reference

3-40 Functions Exported by ADB Family

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBFamRequestComplete function is only called by ADB family plug-ins. If
anyone else calls this function, the system will crash.

ADBFamAutopollArrived 3

Indicates that an ADB family autopoll event has arrived.

void ADBFamAutopollArrived (
Byte deviceAddress,
const ADBRegisterContents *contents);

deviceAddress A byte that specifies the address of the device from which the
autopoll event has arrived.

contents A pointer to a data structure defined by type
ADBRegisterContents (page 3-9). This structure describes the
contents of ADB register 0.

DISCUSSION

A plug-in uses the ADBFamAutopollArrived function to inform the ADB family
that an autopoll event has arrived. Examples of an autopoll events would
include mouse movement information or keyboard data that arrives when the
user moves the mouse.

IMPORTANT

An ADB plug-in must not call ADBFamAutopollArrived until
it has called MyADBPluginAutopollEnabled (page 3-47).
Furthermore, while autopolling is disabled, a plug-in must
not call ADBFamAutopollArrived. ▲

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-41
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The ADBFamAutopollArrived function is only called by ADB family plug-ins. If
any other clients calls this function, the system will crash.

ADB Plug-in Defined Functions 3

All ADB plug-ins must implement these functions (which all begin with
MyADBPlugin) for the ADB family to call. The ADB family provides a flexible
interface, which allows plug-ins to generate, and clients to receive,
device-specific data.

Validating Hardware 3

The ADB family can instruct a plug-in to validate an ADB device using the
MyADBPluginValidateHardwareProc function (page 3-41). When a plug-in
validates hardware, it determines if it can manage a specified Apple Desktop
Bus controller.

MyADBPluginValidateHardwareProc 3

Instructs the plug-in to verify that the Apple Desktop Bus specified by the I/O
device reference is the piece of hardware expected.

OSStatus MyADBPluginValidateHardwareProc
(IODeviceRef *device,
Boolean *isMyDevice);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 3

ADB Family Reference

3-42 ADB Plug-in Defined Functions

Draft. Apple Computer, Inc. 4/18/96

device A pointer to an I/O device reference, defined by the
IODeviceRef data type, that identifies the plug-in whose
associated Apple Desktop Bus is to be validated. For details on
I/O device references, see “About the I/O Architecture”
(page 1-3)

isMyDevice A pointer to a Boolean value. On output, the plug-in sets the
value to true if the Apple Desktop Bus identified by the I/O
device reference in the device parameter is the one that is
expected. Otherwise, the plug-in sets this parameter to false.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its validate hardware
function has been successful. If an error occurs, it should return
an appropriate result code, for instance, the paramErr result
code if an invalid I/O device reference has been specified. See
“ADB Result Codes” (page 3-52) for a list of the result codes the
pointing family can return.

DISCUSSION

The ADB family calls the MyADBPluginValidateHardwareProc function before
calling the plug-in’s init function.

SEE ALSO

The ADBPluginValidateHardwareProc type (page 3-13) defines an ADB family
plug-in’s validate hardware function.

Initializing ADB Plug-ins 3

MyADBPluginInitProc 3

Instructs the plug-in code to initialize both its software structures and its Apple
Desktop Bus controller.

OSStatus MyADBPluginInitProc (IODeviceRef *device);

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-43
Draft. Apple Computer, Inc. 4/18/96

device A pointer to the I/O device reference that identifies the Apple
Desktop Bus controller to be initialized. For more on I/O device
references, see “About the I/O Architecture” (page 1-3)

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that the init function has been
successful. See “ADB Result Codes” (page 3-52) for a list of
possible result codes.

DISCUSSION

The ADB family calls MyADBPluginValidateHardwareProc (page 3-41) before it
makes any other calls to the plug-in. At initialization, the plug-in should
initialize any autopolling delay to approximately 1/100 second as well as
disable autopolling and empty the autopoll list.

SEE ALSO

The ADBPluginInitProc type (page 3-14) defines the MyADBPluginInitProc
function.

Setting and Getting Autopoll Delay 3

The autopoll delay is the interval between autopoll commands from the Apple
Desktop Bus controller. When the ADB family sets autopolling delay using the
MyADBPluginSetAutopollDelayProc function (page 3-43), the plug-in uses the
closest value supported by the hardware, never greater than 16.625
milliseconds. The ADB family calls the MyADBPluginGetAutopollDelayProc
function (page 3-44) to obtain the actual value.

MyADBPluginSetAutopollDelayProc 3

Instructs the plug-in code to set the autopoll delay.

OSStatus MyADBPluginSetAutopollDelayProc (Duration delay);

C H A P T E R 3

ADB Family Reference

3-44 ADB Plug-in Defined Functions

Draft. Apple Computer, Inc. 4/18/96

delay A duration value that specifies the autopoll interval, that is, the
closest value for delay supported by the Apple Desktop Bus
controller. To obtain this value, call the function
MyADBPluginGetAutopollDelayProc (page 3-44).

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that the set autopoll delay
function has been successful. If an error occurs, it should return
an appropriate result code, for instance, the paramErr result
code if the ADB family has specified an invalid duration. If an
I/O error has occurred, the function should return ioErr. See
“ADB Result Codes” (page 3-52) for a list of possible result
codes.

SEE ALSO

The ADBPluginSetAutopollDelayProc type (page 3-15) defines the ADB plug-in
set autopoll delay function.

To instruct a plug-in to obtain an autopoll delay, the ADB family can use the
MyADBPluginGetAutopollDelayProc function (page 3-44). For details on autopoll
delay, see “Setting and Getting Autopoll Delay” (page 3-43).

MyADBPluginGetAutopollDelayProc 3

Instructs the plug-in to obtain an actual autopoll delay.

OSStatus MyADBPluginGetAutopollDelayProc (Duration *delay);

delay A pointer to a duration value. On output, the plug-in sets value
to the closest value for autopoll delay supported by the Apple
Desktop Bus controller.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its get autopoll delay
function has been successful. If an error occurs, it should return
an appropriate result code, for instance, the paramErr result
code if the ADB family has specified an invalid duration. See
“ADB Result Codes” (page 3-52) for a list of possible result
codes.

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-45
Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

The ADBPluginGetAutopollDelayProc type (page 3-15) defines the ADB plug-in
get autopoll delay function.

To instruct a plug-in to set an autopoll delay, the ADB family can use the
MyADBPluginSetAutopollDelayProc function (page 3-43). For details on autopoll
delay, see “Setting and Getting Autopoll Delay” (page 3-43).

Setting and Getting the Autopoll List 3

The autopoll list consists of group of addresses polled during autopoll
operations. Typically, the autopoll list consists of all the devices that have been
opened using the ADBOpen function (page 3-21). The ADB family can use the
MyADBPluginSetAutopollList (page 3-45) and MyADBPluginGetAutopollList
(page 3-46) functions to instruct a plug-in to set and obtain the autopoll list
respectively.

MyADBPluginSetAutopollList 3

Instructs the plug-in to set the autopoll list.

OSStatus MyADBPluginSetAutopollList (UInt16 addressMask);

addressMask An unsigned 16-bit integer that represents an address mask.
Each bit of the address mask describes an ADB address with the
least significant bit at address 0 and the most significant bit at
address 15. There is one bit per address and 16 possible
addresses.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its set autopoll list function
has been successful. If an I/O error has occurred, the function
should return the ioErr result code. See “ADB Result Codes”
(page 3-52) for a list of possible result codes.

C H A P T E R 3

ADB Family Reference

3-46 ADB Plug-in Defined Functions

Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

The ADBPluginSetAutopollListProc type (page 3-15) defines the ADB plug-in set
autopoll list function.

To instruct a plug-in to obtain an autopoll list, the ADB family can use the
MyADBPluginGetAutopollListProc function (page 3-46).

MyADBPluginGetAutopollListProc 3

Instructs the plug-in to obtain the autopoll list.

OSStatus MyADBPluginGetAutopollListProc (UInt16 *addressMask);

addressMask A pointer to an unsigned 16-bit integer that represents an
address mask. On output, the plug-in sets each bit of the
parameter to describe an ADB address with the least significant
bit at address 0 and the most significant bit at address 15. There
is one bit per address and 16 possible addresses.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its get autopoll list
function has been successful. If an error occurs, it should return
an appropriate result code, for instance, paramErr. See “ADB
Result Codes” (page 3-52) for a list of possible result codes.

SEE ALSO

The ADBPluginGetAutopollListProc type (page 3-16) defines the ADB plug-in
get autopoll list function.

To instruct a plug-in to set an autopoll list, the ADB family can use the
MyADBPluginSetAutopollListProc function (page 3-45).

Enabling and Disabling Autopolling 3

The ADB family calls the MyADBPluginAutopollEnableProc (page 3-47) and
MyADBPluginAutopollDisableProc (page 3-47) functions to instruct the plug-in to
turn autopolling on and off respectively.

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-47
Draft. Apple Computer, Inc. 4/18/96

MyADBPluginAutopollEnableProc 3

Instructs the plug-in to turn on autopolling

OSStatus MyADBPluginAutopollEnableProc (void);

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its autopoll enable
function has been successful. See “ADB Result Codes”
(page 3-52) for a list of possible result codes.

SEE ALSO

The ADBPluginAutopollEnableProc type (page 3-16) defines the ADB plug-in
enable autopolling function.

To instruct a plug-in to turnoff autopolling, the ADB family can use the
MyADBPluginAutopollDisableProc function (page 3-47).

MyADBPluginAutopollDisableProc 3

Instructs the plug-in to turn off autopolling.

OSStatus MyADBPluginAutopollDisableProc (void);

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its autopoll disable
function has been successfully activated. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

SEE ALSO

To instruct a plug-in to turn on autopolling, the ADB family can use the
MyADBPluginAutopollEnable function (page 3-47).

The ADBPluginAutopollDisableProc type (page 3-16) defines the ADB plug-in
disable autopolling function.

C H A P T E R 3

ADB Family Reference

3-48 ADB Plug-in Defined Functions

Draft. Apple Computer, Inc. 4/18/96

Resetting the ADB Bus 3

MyADBPluginResetBusProc 3

Instructs the plug-in to reset the ADB bus.

OSStatus MyADBPluginResetBus (void);

function result An operating system status code. An operating system status
code. Your plug-in should return the result code noErr to
indicate that its flush function has been successful. See “ADB
Result Codes” (page 3-52) for a list of possible result codes.

SEE ALSO

The ADBPluginResetBusProc type (page 3-17) defines the ADB plug-in reset bus
function.

For a description of resetting the ADB, see “Resetting the ADB” (page 3-37).

Flushing ADB Devices 3

MyADBPluginFlushProc 3

Instructs a plug-in to flush an ADB device.

OSStatus MyADBPluginFlushProc (Byte deviceAddress);

deviceAddress A byte that indicates the address of the device the ADB family
wants to flush.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its flush function has been
successful. If an error occurs, it should return an appropriate

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-49
Draft. Apple Computer, Inc. 4/18/96

result code, for instance, the paramErr result code if the ADB
family has specified an invalid device address. See “ADB Result
Codes” (page 3-52) for a list of possible result codes.

SEE ALSO

The ADBPluginFlushProc type (page 3-17) defines the ADB plug-in flush
function.

Setting and Getting the ADB Plug-in Register 3

The ADB family calls the MyADBPluginSetRegisterProc and
MyADBPluginGetRegisterProc functions to instruct a plug-in to set and get the
contents of a register on an ADB device. For details on the ADB registers, see
“Getting and Setting the ADB Registers” (page 3-23).

MyADBPluginSetRegisterProc 3

Instructs the plug-in to set the contents of any of the ADB registers.

OSStatus MyADBPluginSetRegisterProc (
Byte deviceAddress,
Byte registerNumber,
const ADBRegisterContents *contents);

deviceAddress A byte that indicates the address of the device whose register
the ADB family wants to set.

registerNumber
A byte that describes the register whose contents the ADB
family wants to set.

contents A pointer to a structure of type ADBRegisterContents (page 3-9).
The structure describes the contents of the data to be set in the
ADB register specified in the registerNumber parameter.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its set register function has
been successful. If an error occurs, it should return an

C H A P T E R 3

ADB Family Reference

3-50 ADB Plug-in Defined Functions

Draft. Apple Computer, Inc. 4/18/96

appropriate result code, for instance, the paramErr result code if
the ADB family has specified an invalid device address or
register number. See “ADB Result Codes” (page 3-52) for a list
of possible result codes.

SEE ALSO

The ADBPluginSetRegisterProc type (page 3-18) defines the ADB plug-in set
register function.

To instruct a plug-in to obtain the contents of a specified register on a particular
ADB device, the ADB family calls MyADBPluginGetRegisterProc (page 3-50).

MyADBPluginGetRegisterProc 3

Instructs the plug-in to retrieve the contents of an ADB register for a specified
device.

OSStatus MyADBPluginGetRegisterProc (
Byte deviceAddress,
Byte registerNumber,
ADBRegisterContents *contents);

deviceAddress A byte that indicates the address of the device whose register
the ADB family wants to get.

registerNumber
A byte that describes the register whose contents the ADB
family wants to get.

contents A pointer to a structure of type ADBRegisterContents (page 3-9).
On output, the plug-in provides in the structure the contents of
the ADB register specified in the registerNumber parameter.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its get register function has
been successful. If an error occurs, it should return an
appropriate result code, for instance, the paramErr result code if
the ADB family has specified an invalid device address or
register number. If there is no response from the specified

C H A P T E R 3

ADB Family Reference

ADB Plug-in Defined Functions 3-51
Draft. Apple Computer, Inc. 4/18/96

device address, your plug-in should return the
adbDeviceTimeoutErr result code. See “ADB Result Codes”
(page 3-52) for a list of possible result codes.

SEE ALSO

The ADBPluginGetRegisterProc type (page 3-18) defines the ADB plug-in get
register function.

To instruct a plug-in to set the contents of a specified register on a particular
ADB device, the ADB family calls MyADBPluginSetRegisterProc (page 3-49).

Setting the Keyboard List 3

The MyADBPluginSetKeyboardList function instructs the plug-in to tell the Apple
Desktop Bus controller which device addresses are keyboards. For more on
keyboard lists, see “ADBPluginSetAutopollListProc” (page 3-15).

MyADBPluginSetKeyboardList 3

Instructs the plug-in to set a keyboard list.

OSStatus MyADBPluginSetKeyboardList (UInt16 addressMask);

addressMask An unsigned 16-bit integer that represents an address mask.
Each bit of the parameter describes an ADB address with the
least significant bit at address 0, the most significant bit at
address 15. The mask describes 1 bit per address and 16
possible addresses.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its set keyboard list
function has been successful. If an error occurs, it should return
an appropriate result code, for instance, the paramErr result
code if the ADB family has specified an invalid address mask.
See “ADB Result Codes” (page 3-52) for a list of possible result
codes.

C H A P T E R 3

ADB Family Reference

3-52 ADB Result Codes

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

When the ADB family wants to create a list of the ADB addresses that are
keyboards, it calls MyADBPluginSetKeybordListProc.

SEE ALSO

The ADBPluginSetKeyboardListProc type (page 3-18) defines the ADB plug-in set
keyboard list function.

See “Setting the Keyboard List” (page 3-51) for a definition of the ADB
keyboard list and details on its use.

ADB Result Codes 3

Many ADB family functions return result codes. The various result codes
specific to the ADB family are listed here.

Glossary 3

ADB clients Software receiving services from the ADB family (for instance,
the keyboard and pointing families as well as applications running in user
space)

ADB connection A logical path to an ADB device and serves to control
access to the device. Clients can obtain an ID for an ADB connection by calling
the ADBOpen function (page 3-21).

adbDeviceBusyErr -30279 ADB device has already been
opened.

adbInvalidConnectionIDErr -30278 ADB connection ID has been
incorrectly specified.

adbConnectionTerminatedErr -30277 ADB device has been closed or
unplugged during the call.

adbDeviceTimeoutErr -30276 ADB device has timed out.
adbReservedHandlerIDErr -30275 Specified ADB handler ID has

already been reserved.
adbInvalidHandlerIDErr -30274 ADB handler ID has been

incorrectly specified.

C H A P T E R 3

ADB Family Reference

Glossary 3-53
Draft. Apple Computer, Inc. 4/18/96

ADB control register The name for ADB register 3. Two bytes in length, the
control register stores the device address, handler ID, and four status bits. The
ADB Specification describes the protocol for changing these fields. See also ADB
device address, ADB handler ID, and ADB status bits.

ADB device Any peripheral that can connect to the ADB and meets the
design requirements described in the “Apple Desktop Bus Controller” chapter
of Macintosh Technology in the Common Hardware Reference Platform, published by
Morgan Kaufman.

ADB device address The second two bits of the ADB control register (ADB
register 3). You cannot change the ADB device address via a programming
interface. This 4-bit bus address uniquely identifies devices of the same type.
See also ADB control register.

ADB device registers Up to four registers for storing data provided to each
device connected to the Apple Desktop Bus. An ADB device can implement
these registers as it chooses; that is, an ADB register does not have to
correspond to an actual hardware register on the ADB device. An ADB device
is accessed over the ADB by reading from or writing to these registers. Each
ADB device register may store between 2 and 8 bytes of data. The ADB family
defines the ADBRegisterContents data type (page 3-9) to provide information
about the contents of an ADB register.

ADB family Software that allows clients to get information about and
communicate with hardware devices attached to the Apple Desktop Bus (ADB).

ADB handler ID An ADB device-specific 8-bit value in the control register.
Taken together, a device’s default address and handler ID uniquely identify the
particular data protocol the device uses for communication. Devices may
support more than one protocol. The handler ID for a device occupies the
second byte of the control register (ADB register 3). You can use the
ADBGetHandlerID (page 3-28) and ADBSetHandlerID (page 3-29) functions,
respectively, to obtain and set the handler IDs. See also ADB device address
and ADB control register.

ADB keyboard list A list of the ADB addresses that have keyboards. When
the ADB family wants to set a keyboard list, it calls the set keyboard list
function (page 3-51) provided by the plug-in.

ADB plug-ins Software modules, such as drivers for specific families of
computers, such as the 6100, 7100, 8100; the 7500, 8500, 9500; or the Powerbook
5300. Whereas the ADB family provides services to clients, the ADB plug-ins
actually implement the request for services

C H A P T E R 3

ADB Family Reference

3-54 Glossary

Draft. Apple Computer, Inc. 4/18/96

ADB status bits The 4 most significant bits of the control register (also called
ADB register 3). The upper four bits of ADB register 3 contain the status bits,
which consist of a service request enable field, an exceptional event field, and
several reserved bits. The ADBGetStatusBits (page 3-31) and ADBSetStatusBits
(page 3-33) functions get and set the status bits. For an illustration of the ADB
status bits, see Figure 3-2 (page 3-31).

Apple Desktop Bus (ADB) An open-collector, low-speed serial bus that
connects user input peripherals such as keyboards, mice, graphics tablets, and
joysticks to a host computer or to other hardware equipment. Macintosh
computers come equipped with one or two ADB connectors. Although a
particular model might include two ADB connectors, all models come with
only one Apple Desktop Bus. The ADB is Apple Computer’s standard interface
for input devices such as keyboards and mouse devices.

Apple Desktop Bus controller Usually a microcontroller in the host
computer that actually performs the communication of the bus to the ADB
devices.

autopolling The primary method the ADB hardware uses to fetch data from
ADB devices. Devices cannot initiate transactions; they can only respond to
commands from Apple Desktop Bus controller.

autopoll delay The interval between autopoll commands performed by the
Apple Desktop Bus controller. When the ADB family sets autopolling delay
using the MyADBPluginSetAutopollDelayProc function (page 3-43), the plug-in
uses the closest value supported by the Apple Desktop Bus controller, never
greater than 16.625 milliseconds. The ADB family calls the
MyADBPluginGetAutopollDelayProc function (page 3-44) to return the actual
value.

autopoll list A group of addresses that are polled during autopoll
operations. Typically, the autopoll list consists of all the devices that have been
opened using the ADBOpen function (page 3-21). When the ADB family wants to
set the autopoll list, it calls the set autopoll list function (page 3-45) provided by
the plug-in.

Listen command A command from the Apple Desktop Bus controller that
instructs a device to prepare to receive additional data. When a client calls the
ADBSetRegister function (page 3-26), it is the equivalent of the Apple Desktop
Bus controller’s issuing a Listen command to the device.

Talk command A command from the Apple Desktop Bus controller that
fetches user input or other data from an ADB device. A talk command requests

C H A P T E R 3

ADB Family Reference

Glossary 3-55
Draft. Apple Computer, Inc. 4/18/96

that the specified device send the contents of a specified device register across
the bus. When clients call the ADBGetRegister function (page 3-24), it is the
equivalent of the Apple Desktop Bus controller’s issuing a talk command to the
device.

C H A P T E R 3

ADB Family Reference

3-56 Glossary

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 4

Contents 4-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Pointing Family Reference

About the Pointing Family 4-5
Constants and Data Types 4-8

Pointing Family Tracker Reference 4-8
Pointing Data Structure 4-9

Pointing Position Structure 4-10
Pointing Button State Type 4-11

Pointing Device Modes Structure 4-11
Data Relation Enumerators 4-12

Pointing Device Capabilities 4-14
Pointing Device Class 4-15
Minimum Pointing Device Data Size 4-17

Pointing Device Identifier 4-18
Pointing Pinning Rectangle List 4-18

Pointing Family Plug-In Data Types 4-19
Pointing Family Device Dispatch Table 4-20

Pointing Family Plug-in Header 4-21
Driver Description Data Structure 4-22
Pointing Family Plug-in Defined Function Types 4-23

PTPluginValidateHardwarePtr 4-23
PTPluginInitializePtr 4-24
PTPluginTerminatePtr 4-24
PTPluginStartIOPtr 4-25
PTPluginStopIOPtr 4-25
PTPluginGetNextDataPtr 4-25
PTPluginGetDeviceModesPtr 4-26
PTPluginSetDeviceModesPtr 4-26

Pointing Family Client Functions 4-27

C H A P T E R 4

4-2 Contents

Draft. Apple Computer, Inc. 4/18/96

Getting Information About Devices 4-27
PTGetNextDevice 4-28
PTGetDeviceCapabilities 4-29
PTGetDeviceIdentification 4-31

Registering With the Pointing Family 4-32
PTRegisterNewTracker 4-33

Setting and Retrieving Device Modes 4-34
PTSetDeviceModes 4-35
PTGetDeviceModes 4-36

Maintaining Trackers 4-38
PTSetPinningRects 4-39

Getting Tracker-Buffered Data 4-40
PTGetTrackerData 4-40
PTFlushTrackerBuffer 4-42

Checking Tracker State 4-43
PTGetTrackerState 4-43
PTSetTrackerState 4-44

Working WithTracker Position 4-45
PTGetPosition 4-46
PTSetPosition 4-47
PTMovePosition 4-48

Working With Tracker Buttons 4-49
PTGetButtons 4-49
PTSetButtons 4-50

Getting and Setting Tracker Data By Offset 4-52
PTGetTrackerDataByOffset 4-52
PTSetTrackerDataByOffset 4-53

Pointing Family Plug-In-Defined Functions 4-54
Validating Pointing Devices 4-55

MyPTPluginValidateHardwarePtr 4-55
Initializing and Terminating Plug-ins 4-56

MyPTPluginInitializePtr 4-56
MyPTPluginTerminatePtr 4-58

Controlling Device I/O 4-58
MyPTPluginStartIOPtr 4-59
MyPTPluginStopIOPtr 4-60

Getting Device Data 4-61
MyPTPluginGetNextDataPtr 4-61

C H A P T E R 4

Contents 4-3
Draft. Apple Computer, Inc. 4/18/96

Setting and Getting Device Modes 4-62
MyPTPluginGetDeviceModesPtr 4-62
MyPTPluginSetDeviceModesPtr 4-63

Pointing Family Result Codes 4-64
Glossary 4-64

C H A P T E R 4

4-4 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 4

About the Pointing Family 4-5
Draft. Apple Computer, Inc. 4/18/96

Pointing Family Reference 4

This chapter describes the pointing family, which provides support for
pointing devices in Mac OS 8. Pointing devices are user-input peripherals
(such as mice, tablets, and joysticks) that indicate position and orientation and
facilitate movement through the user interface. Pointing devices are commonly
used to control cursors and to control objects in space.

Note
In subsequent developer releases of Mac OS 8, the
keyboard and pointing families will probably become part
of an input devices family. ◆

Most applications use the Apple Event Manager to obtain rudimentary
information about the mouse and the system cursor, which is adequate
pointing data for most clients. For complete information about receiving and
interpreting mouse input, see Apple Events in Mac OS 8. Any applications that
require more complicated data from pointing devices other than the mouse and
the system cursor can use the functions described in “Pointing Family Client
Functions” (page 4-27).

Pointing family clients include applications, such as graphics and paint
programs and games that often take advantage of the special capabilities of
pointing devices. In addition, system software, for instance, the Apple Event
Manager and graphics systems such as QuickDraw are clients of the pointing
family. Moreover, applications that provide control panels sometimes specify
the behavior of pointing devices. If you are a pointing family client, you will
find most of the information of interest in“Pointing Family Client Functions”
(page 4-27).

Pointing family plug-ins are drivers that control the pointing devices
themselves (such as mice, tablets, joysticks, and 3D trackballs). If you are
implementing a pointing device driver, most of the information of interest is in
“Pointing Family Plug-In-Defined Functions” (page 4-54).

About the Pointing Family 4

The pointing family supports pointing devices by

■ distributing data from pointing devices to system software and application
clients

C H A P T E R 4

Pointing Family Reference

4-6 About the Pointing Family

Draft. Apple Computer, Inc. 4/18/96

■ providing clients with a common interface to all pointing devices.

■ applying standard manipulations of pointing data before providing data to
clients

■ keeping track of state or buffered data, according to client preferences

■ allowing users to attach multiple pointing devices to their computers

■ permitting applications to register for control of pointing devices and set
device modes

Figure 4-1 illustrates how a client can use the pointing family and its plug-ins
to get information about pointing devices.

■ If you are a pointing family client application, you can call the pointing
family programming interface described in “Pointing Family Client
Functions” (page 4-27). (All the pointing family client functions begin with
the prefix PT.) In certain situations, clients can call the ADB family
programming interface. (For details on the ADB family interface, see “ADB
Family Reference” (page 3-5).)

■ If you are designing a new pointing device, you need to write a pointing
family plug-in that communicates with the device and to implement the
pointing family plug-in programming interface described in “Pointing
Family Plug-In-Defined Functions” (page 4-54). (All the pointing family
plug-in defined functions begin with the prefix MyPTPlugin.) The pointing
family calls these functions. If your device is an ADB peripheral, your
pointing family plug-in can call the ADB family programming interface,
which, in turn, communicates with the ADB family and the Apple Desktop
Bus controller. For more information on the Apple Desktop Bus controller,
see “ADB Family Reference” (page 3-5).

C H A P T E R 4

Pointing Family Reference

About the Pointing Family 4-7
Draft. Apple Computer, Inc. 4/18/96

Figure 4-1 The Pointing Family, Its Clients, and Plug-ins

PT
Plug in

Client Application

PT Family

ADB
Plug in

ADB Family

Apple Desktop
Bus controller

Apple Event Manager

C H A P T E R 4

Pointing Family Reference

4-8 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Note
In System 7, whatever pointing device you use affects the
system cursor. For this developer release of Mac OS 8 only,
any device that is a mouse device class drives the system
cursor. See “Pointing Device Class” (page 4-15) for details
on pointing device classes. ◆

If you want to test another pointing device besides the
mouse, you must write a plug-in for the device and then
write an application client that registers information for
that device using the PTRegisterNewTracker function
(page 4-33).

If you want to test another pointing device that registers as
a mouse and you want to obtain data, you must obtain that
information through the Apple Event Manager. (For more
on the Apple Event Manager, see Apple Events in Mac OS 8.)

Note
In subsequent developer releases of Mac OS 8, applications
can determine whether or not a device controls the system
cursor all the time or some of the time. ◆

Constants and Data Types 4

This section describes the data types and constants used in the pointing family
programming interface and in the plug-in interface. A client, generally an
application or system software, uses the services of the pointing family and its
plug-ins to manage data generated by pointing devices.

Pointing Family Tracker Reference 4

Pointing family trackers represent connections between pointing devices and
clients. Each tracker stores information (for instance, the state and buffer of the
tracker currently associated with the plug-in’s controller) about what kind of
data the client wants and how the client would like to receive it.The pointing
family defines a unique reference for trackers. Clients can use the tracker

C H A P T E R 4

Pointing Family Reference

Constants and Data Types 4-9
Draft. Apple Computer, Inc. 4/18/96

reference to specify a device in many pointing family functions. A tracker
reference is specified by the PTTrackerRef data type.

typedef struct OpaquePTTrackerRef* PTTrackerRef;

Pointing Data Structure 4

Pointing devices generate widely divergent kinds of information. Most devices
provide the two-dimensional mouse location and the up and down notification
of one button. Other classes of devices share other sorts of data. For instance,
tablets generate pressure and tilt, joysticks generate data to emulate controls
like throttles and brakes, and 3D-trackballs generate z-axis data. In addition,
particular devices may generate unique device-specific information. To support
this set of highly variable data, the pointing family provides the pointing data
structure (defined by the PTData type).

Each pointing data structure represents a piece of data from a pointing device.
The pointing family carries this information from each plug-in through the
family to the clients.

The pointing data structure is a variable-length structure with a
uniqueDeviceData field, which lets the pointing family pass device-specific
information to clients that request it.

Note
Future developer releases of Mac OS 8 will probably
contain better support for an application client’s
understanding of device data. Future versions of the
operating system will most likely define different kinds of
data that different devices generate, so applications can
understand, for example, generic tablet data, rather than
only having access to a specific manufacturer’s description
of that data. ◆

struct PTData {
AbsoluteTime sequencingTag; /* sequencing tag */
PTPosition position; /* position */
PTButtonState buttons; /* buttons */
void * uniqueDeviceData; /* variable-length unique

device data */
};

C H A P T E R 4

Pointing Family Reference

4-10 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

typedef struct PTData PTData;

typedef PTData *PTDataPtr;

Field descriptions
sequencingTag An absolute time value that specifies the time that the data

was generated. This value is used for sequencing data.
position The pointing position data structure defined by the

PTPosition data type (page 4-10). This structure identifies
the coordinates of the position of the device.

buttons The 32 bits of a PTButtonState type (page 4-11) represent
the state of 32 buttons. Bits are set to indicate that the
corresponding button is pressed.

Note
For this developer release of Mac OS 8, if any of the bits in
a PTButtonState type are set, it is considered to be a
mouse-up. Otherwise, it is considered to be a
mouse-down. ◆

uniqueDeviceData Variable-length, device-specific information for the
pointing family to pass to clients that request it.

Pointing Position Structure 4

The pointing position structure is defined by the PTPosition data type. The
pointing position structure represents the three-dimensional position of a
pointing device. Clients can use the pointing position data type in the position
field of the pointing data structure (page 4-9).

struct PTPosition {
signed long x; /* x-coordinate */
signed long y; /* y-coordinate */
signed long z; /* z-coordinate */

};

typedef struct PTPosition PTPosition;

typedef PTPosition *PTPositionPtr;

C H A P T E R 4

Pointing Family Reference

Constants and Data Types 4-11
Draft. Apple Computer, Inc. 4/18/96

Field descriptions
x The value specifying the x-coordinate of a pointing device.
y The value specifying the y-coordinate of a pointing device.
z The value specifying the z-coordinate of a pointing device.

Pointing Button State Type 4

The pointing button state, defined by the PTButtonState data type, an unsigned
long integer, represents the state of 32 buttons. Clients can use the pointing
button state structure in the buttons field of the pointing data structure
(page 4-9) to indicate which button is pressed. The Apple Event Manager
assumes the first bit is the mouse button. Most devices do not require 32
buttons.

typedef unsigned long PTButtonState;

typedef PTButtonState *PTButtonStatePtr;

Pointing Device Modes Structure 4

Pointing devices differ in the kinds of mode information they have. Device
mode data is the kind of information that pointing family clients pass to a
pointing device, usually to set a mode on the device. Examples of device
modes include tactile feedback for steering wheels, absolute versus relative
mode for tablets, and LED displays. The pointing family supports device mode
data with the pointing device modes structure, which is defined by the
PTDeviceModes data type.

The plug-in maintains its own modes based on information it may obtain from
clients and data it may get from its device. At start-up, plug-ins notify the
pointing family of the size of the device mode data in the pointing device
capabilities structure, defined by the PTDeviceCapabilities data type
(page 4-14).

A pointing device modes structure contains all the mode information for a
device. Clients typically set device modes. This structure is of variable length.

C H A P T E R 4

Pointing Family Reference

4-12 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

struct PTDeviceModes {
PTDataRelation relation; /* data relation constant */
void * uniqueDeviceModes; /* unique device modes */

};

typedef struct PTDeviceModes PTDeviceModes;

typedef PTDeviceModes *PTDeviceModesPtr;

Field descriptions
relation A data relation enumerator defined by the PTDataRelation

data type (page 4-12). These enumerators indicate if the
data clients pass back to the device can be absolute,
relative, or either absolute or relative.

uniqueDeviceModes
A variable-length field of device-specific mode data.
Plug-ins need to let applications know to leave enough
space here for device data. Device-specific modes should
be stored following the pointing device modes structure.
Plug-ins with more modes should define structures of their
own that contain PTDeviceModes data types (page 4-11).

Data Relation Enumerators 4

At initialization, a pointing device indicates in its pointing device capabilities
structure, defined by the PTDeviceCapabilities data type (page 4-14), whether
it generates absolute data, relative data, or either kind of information. It also
indicates whether its default data is absolute or relative. A device sets up its
modes and puts the default kind of data in its device modes structure, defined
by the PTDeviceModes data type (page 4-11).

To find out what kind of data a device can generate, clients can use the
PTGetDeviceCapabilities function (page 4-29). To determine what kind of data
a device is currently generating, clients can use the PTGetDeviceModes function
(page 4-36). If the device can generate either absolute or relative data, clients
can change the kind of data currently being generated by using the
PTSetDeviceModes function (page 4-35).

The data relation enumerators define whether a device generates absolute data,
relative data, or either kind of data. This information is especially relevant for
tablets.

C H A P T E R 4

Pointing Family Reference

Constants and Data Types 4-13
Draft. Apple Computer, Inc. 4/18/96

Absolute data is position information sent to the pointing family by a plug-in
that generates the actual coordinates of a pointing device, for instance, (10, 20).
Relative data is position information sent to the pointing family by a plug-in
that describes how far the pointing device moved from an already established
coordinate. For instance, if the coordinate was (10, 20), it might have changed
to (11, 21). In this case, the data (1,1) would be generated.

Note
The pointing family handles position information
differently for absolute and relative data. When it updates
the state of absolute data, it replaces what was there
before. When it updates the state of relative data, it adds
that information to the pre-existing coordinates. ◆

The data relation enumerators are defined in the PTDataRelation type, an
unsigned 16-bit integer. Clients use the data relation enumerators in the
relation field of the pointing device mode structure (page 4-11) to define what
kind of data they want, and devices use them to define what they are capable
of generating in the device capabilities structure (page 4-14). Some devices can
generate either, depending on what the client wants.

typedef UInt16 PTDataRelation;

enum {
kAbsoluteData = 1, /* absolute data */
kRelativeData = 2, /* relative data */
kAbsoluteOrRelativeData = 3 /* absolute or relative data */

};

Enumerator descriptions

kAbsoluteData The absolute data enumerator. Use this enumerator in the
relation field of the pointing device modes structure
(page 4-11) to indicate that the kind of information that the
device generates is absolute.

kRelativeData The relative data enumerator. Use this enumerator in the
relation field of the pointing device modes structure
(page 4-11) to indicate that kind of information the device
generates is relative.

kAbsoluteOrRelativeData
The absolute or relative enumerator. Use this enumerator
in the relation field of the pointing device modes structure

C H A P T E R 4

Pointing Family Reference

4-14 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

(page 4-11) to indicate that kind of information that the
device generates can be either absolute or relative.

Pointing Device Capabilities 4

A pointing device capabilities structure, defined by the PTDeviceCapabilities
data type, describes a particular pointing device. At initialization, a plug-in fills
in a pointing device capabilities structure.

Clients can check the pointing device capabilities structure in the capabilities
parameter of the PTGetDeviceCapabilities function (page 4-29) to find out
specifics about the capabilities of a specified device.

The plug-in provides a pointer to its MyPTPluginInitialize function
(page 4-56). When the pointing family calls the plug-in’s
MyPTPluginInitializePtr function (page 4-56), the family provides a pointer to
the pointing device capabilities structure. Then the plug-in fills in the fields of
the structure.

struct PTDeviceCapabilities {
PTDeviceClass deviceClass; /* device class */
ByteCount dataSize; /* data size */
ByteCount modeDataSize; /* device mode data size */
PTDataRelation availableDataRelations; /* available data relations */
PTDataRelation defaultDataRelation; /* default data relations */
long latency; /* latency */
Boolean imitatesMouse; /* Does device imitate a mouse? */

};

typedef struct PTDeviceCapabilities PTDeviceCapabilities;

typedef PTDeviceCapabilities *PTDeviceCapabilitiesPtr;

Field descriptions
deviceClass The device class of a particular pointing device. This value

of type PTDeviceClass (page 4-15) describes the class of a
particular device, for instance, a mouse, tablet, joystick,
trackball, trackpad, or 3D trackball.

C H A P T E R 4

Pointing Family Reference

Constants and Data Types 4-15
Draft. Apple Computer, Inc. 4/18/96

dataSize A byte count that specifies the size of the data generated
by the particular pointing device and corresponds to the
variable-size pointing data structure (page 4-9).

modeDataSize A byte count that specifies the size of the device’s device
mode data. For more on device mode data, see “Pointing
Device Modes Structure” (page 4-11).

availableDataRelations
A pointing device data relations constant from the
PTDataRelation enumeration (page 4-12) that specifies
whether the available data is absolute, relative, or can be
either absolute or relative.

defaultDataRelation
A pointing device data relations constant from the
PTDataRelation enumeration (page 4-12) that specifies
whether the default data is absolute, relative, or can be
either absolute or relative.

latency A long integer that specifies the latency of a particular
device (that is, the time it takes a plug-in to gather up data
generated by the device and send it to the pointing family)
in microseconds.

imitatesMouse A Boolean value that specifies whether the pointing device
imitates a mouse. Set this value to true if the device
imitates a mouse; otherwise, set this value to false.

Pointing Device Class 4

The pointing device class defined by the PTDeviceClass type indicates the
category of a device, such as mouse, tablet, joystick, trackball, trackpad, or 3D
trackball. The pointing family defines the device classes, which are OS types.
Plug-ins indicate their pointing device class at initialization when they fill in
the deviceClass field of the pointing device capabilities structure, defined by
the PTDeviceCapabilities data type (page 4-14). Clients can check a device’s
class by using the PTGetDeviceCapabilities function (page 4-29) to obtain the
device capabilities structure. They also use the PTDeviceClass types (page 4-15)
to filter through a list of pointing devices in the filter parameter of the
PTGetNextDevice function (page 4-28).

typedef OSType PTDeviceClass;

C H A P T E R 4

Pointing Family Reference

4-16 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

enum {
kAnyDeviceClass = 'anyp' /* any device class */
kMouseDeviceClass = 'mous', /* mouse device class */
kTabletDeviceClass = 'tblt', /* tablet device class */
kJoystickDeviceClass = 'joys', /* joystick device class */
kTrackballDeviceClass = 'trkb',, /* trackball device class */
kTrackpadDeviceClass = 'trkp', /* trackball device class */
k3DTrackballDeviceClass = '3dtb' /* 3D trackball device class */

Enumerator descriptions

kAnyDeviceClass The next device class enumerator. If you don’t want to
specify what kind of device you want, that is, you want to
iterate over all devices, use this enumerator in the filter
parameter of the PTGetNextDevice function (page 4-28).

kMouseDeviceClass The mouse device class enumerator. Use this enumerator
to indicate a mouse in the deviceClass field of the pointing
device capabilities structure defined by the
PTDeviceCapabilities data type (page 4-14) or in the
filter parameter of the PTGetNextDevice function
(page 4-28).

kTabletDeviceClass
The tablet device class enumerator. Use this enumerator to
indicate a tablet in the deviceClass field of the pointing
device capabilities structure defined by the
PTDeviceCapabilities data type (page 4-14) or in the
filter parameter of the PTGetNextDevice function
(page 4-28).

kJoystickDeviceClass
The joystick device class enumerator. Use this enumerator
to indicate a joystick in the deviceClass field of the
pointing device capabilities structure defined by the
PTDeviceCapabilities data type (page 4-14) or in the
filter parameter of the PTGetNextDevice function
(page 4-28).

kTrackballDeviceClass
The trackball device class enumerator. Use this
enumerator to indicate a trackball in the deviceClass field
of the pointing device capabilities structure defined by the
PTDeviceCapabilities data type (page 4-14) or in the

C H A P T E R 4

Pointing Family Reference

Constants and Data Types 4-17
Draft. Apple Computer, Inc. 4/18/96

filter parameter of the PTGetNextDevice function
(page 4-28).

kTrackpadDeviceClass
The trackpad device class enumerator. Use this
enumerator to indicate a trackpad in the deviceClass field
of the pointing device capabilities structure defined by the
PTDeviceCapabilities data type (page 4-14) or in the
filter parameter of the PTGetDeviceCapabilities function
(page 4-28).

k3DTrackballDeviceClass
The 3D-trackball device class enumerator. Use this
enumerator to indicate a 3D-trackball in the deviceClass
field of the pointing device capabilities structure defined
by the PTDeviceCapabilities data type (page 4-14) or in the
filter parameter of the PTGetNextDevice (page 4-28) or the
PTGetDeviceCapabilities function (page 4-28).

Minimum Pointing Device Data Size 4

Plug-ins can use the minimum pointing device data size constant
kMinPTDataSize as in the dataSize field of their pointing device capabilities
structure (page 4-14) if they only generate the basic mouse data and position
buttons. For example, a mouse usually generates 24 bytes of data, that is, the
size of its sequencing tag, its position, and its buttons. On the other hand, a
tablet might generate pressure and tilt in addition to a sequencing tag, position,
and button data, so a plug-in would need to build an internal data structure to
reflect the size of such data, then pass that size in the dataSize field of its
pointing device capabilities structure.

enum {
kMinPTDataSize = 24 /* minimum size of data generated by

a plug-in */
};

Enumerator description

Field descriptions
kMinPTDataSize The minimum pointing device data size constant. Plug-ins

specify this constant in the dataSize field of the pointing

C H A P T E R 4

Pointing Family Reference

4-18 Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

device capabilities structure to specify a value of 24 bytes.
Otherwise, they need to provide their own data structures.

Pointing Device Identifier 4

The pointing device identifier, defined by the PTDeviceIdentifier type,
uniquely identifies the brand and model of a device. The identifier is a pointer
to a NULL-terminated C string defined by the manufacturer in a way that makes
sense for the product line. To obtain the device identifier for a pointing device,
you can use the PTGetDeviceIdentification function (page 4-31). The device
identifier is returned in the function’s identification parameter.

struct PTDeviceIdentifier {
char identifier[255]; /* pointing device identifier */

typedef struct PTDeviceIdentifier PTDeviceIdentifier;

typedef PTDeviceIdentifier *PTDeviceIdentifierPtr;

Field description

identifier A fixed-length string that uniquely identifies a pointing
device (typically, its brand and model).

Pointing Pinning Rectangle List 4

Clients can specify and retrieve pinning rectangles for pointing family
trackers. Pinning rectangles restrict a position to within their boundaries, no
matter how far a device may move. A tracker’s static position does not extend
beyond a pinning rectangle. If a tracker has more than 1 pinning rectangle, the
position can be inside any of them, but not outside all of them. When a
pointing device sends data that is outside the tracker’s pinning rectangles in 1
dimension, that dimension does not change. For example, the tracker that
represents the system cursor has pinning rectangles that correspond to the
screens. In this way, the cursor stops at the edge of the screen even if the user
keeps moving the mouse in 1 direction for a long time.

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In Data Types 4-19
Draft. Apple Computer, Inc. 4/18/96

Note
The pointing family only pins data from relative devices.
See “Data Relation Enumerators” (page 4-12) for more on
relative and absolute devices. ◆

The pointing pinning rectangle list is defined by the PTPinningRectList data
type. Clients use this structure in the rectList parameter of the
PTSetPinningRects (page 4-39) function.

struct PTPinningRectList {
short numRects; /* number of rectangles in list */
Rect * pinningRect; /* pointer to a list of rectangles */

/* rectangles must be in global
coordinates, in pixels */

};

typedef struct PTPinningRectList PTPinningRectList;

typedef PTPinningRectList *PTPinningRectListPtr;

Field descriptions
numRects A short integer that specifies the number of rectangles in

the pointing pinning rectangle list structure.
pinningRect A pointer to an array of rectangles. The rectangles must be

described in global coordinates and in pixels.

Note
In this developer release of Mac OS 8, you may only
specify one pinning rectangle. ◆

Pointing Family Plug-In Data Types 4

This section describes the data types in the pointing family plug-in
programming interface.

C H A P T E R 4

Pointing Family Reference

4-20 Pointing Family Plug-In Data Types

Draft. Apple Computer, Inc. 4/18/96

Pointing Family Device Dispatch Table 4

Each pointing family plug-in must export a pointing family device dispatch
table, so the pointing family can find the functions it contains. The pointing
family calls the Driver and Family Matching Software (DFM) to load each
plug-in. Subsequently, the DFM returns a pointer to the dispatch table. For
more on the DFM, see “Driver and Family Matching” (page 2-3).

The pointing family device dispatch table is defined by the
PTDeviceDispatchTable data type.

struct PTDeviceDispatchTable {
PTPluginHeader header; /* pointing family plug-in

header */
PTPluginValidateHardwarePtr PTPluginValidateHardware /* validate hardware

function */
PTPluginInitializePtr PTPluginInitialize; /* initialization

function */
PTPluginTerminatePtr PTPluginTerminate; /* terminate function */
PTPluginStartIOPtr PTPluginStartIO; /* start I/O function */
PTPluginStopIOPtr PTPluginStopIO; /* stop I/O function */
PTPluginGetNextDataPtr PTPluginGetNextData; /* get next data

function */
PTPluginGetDeviceModesPtr PTPluginGetDeviceModes /* get device modes

function */
PTPluginSetDeviceModesPtr PTPluginSetDeviceModes /* set device modes

function */
};

typedef struct PTDeviceDispatchTable PTDeviceDispatchTable;

typedef PtrDeviceDispatchTable *PTDeviceDispatchTablePtr;

Field descriptions
header The pointing family plug-in header, defined by the

PTPluginHeader data type (page 4-21).
PTPluginValidateHardware

A pointer to the plug-in defined validate hardware
function.

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In Data Types 4-21
Draft. Apple Computer, Inc. 4/18/96

PTPluginInitialize
A pointer to the plug-in defined initialize function
(page 4-56).

PTPluginTerminate
A pointer to the plug-in defined terminate function
(page 4-58).

PTPluginStartIO A pointer to the plug-in defined start I/O function
(page 4-59).

PTPluginStopIO A pointer to the plug-in defined stop I/O function
(page 4-60).

PTPluginGetNextData
A pointer to the plug-in defined get next data function
(page 4-61).

PTPluginGetDeviceModes
A pointer to the plug-in defined get device modes function
(page 4-62).

PTPluginSetDeviceModes
A pointer to the plug-in defined set device modes function
(page 4-63).

Pointing Family Plug-in Header 4

You use the pointing family plug-in header, defined by the PTPluginHeader data
type in the header field of the pointing family device dispatch table (page 4-20).

struct PTPluginHeader
{

UInt32 version; /* version of the plug-in interface */
UInt32 reserved1; /* reserved for use by Apple */
UInt32 reserved2; /* reserved for use by Apple */
UInt32 reserved3; /* reserved for use by Apple */

};

typedef struct PTPluginHeader PTPluginHeader;

Field descriptions
version An unsigned 32-bit integer that specifies the version of the

pointing family plug-in interface to which the plug-in
adheres. This version number is defined by the pointing

C H A P T E R 4

Pointing Family Reference

4-22 Pointing Family Plug-In Data Types

Draft. Apple Computer, Inc. 4/18/96

family plug-in programming interface. Set this field to
kCoplandPTPluginVersion (page 4-22).

reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.

Pointing Device Plug-in Version 4

The pointing family plug-in version enumerator describes versions of the
pointing family plug-in interface to which a plug-in might adhere. Currently,
there is only one version. The version number appears in the version field of
the pointing family plug-in header data structure, which is defined by the
PTPluginHeader data type (page 4-21).

enum
{

kCoplandPTPluginVersion = 0x0000001
};

Driver Description Data Structure 4

Each plug-in also must contain a plug-in description data structure, also called
a driver description data structure, which is shown in Listing 4-1 (page 4-22).
For more on this structure, see “Driver and Family Matching” (page 2-3).

Listing 4-1 Plug-In Driver Description Structure

DriverDescription TheDriverDescription =
{

kDriverDescriptionSignature,
kCoplandlDriverDescriptor,
{

"\pADB-3-01",
1,0,0,0

},
{

kDriverIsUnderExpertControl,
"\pmouse",

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In Data Types 4-23
Draft. Apple Computer, Inc. 4/18/96

{0,0,0,0,0,0,0,0}
},
{

1,
{

kServiceCategoryPointing,
kNdrvTypeIsGeneric,
0,0,0,0

}
}

};

■ To indicate that your plug-in uses the pointing family plug-in interface, use
the kServiceCategoryPointing constant.

■ If a pointing family plug-in is an ADB device, you use an ADB match string
(for instance, ADB-3-01) to describe it.

■ "\pmouse" indicates that your plug-in controls a mouse and should be
loaded into memory very early in the boot process.

For details on ADB match strings and their search order, see “ADB Family
Reference” (page 3-5).

Pointing Family Plug-in Defined Function Types 4

This section describes the function pointer types defined by the pointing family
plug-in programming interface.

PTPluginValidateHardwarePtr 4

Before the pointing family calls the initialize function provided by the plug-in
(page 4-24), it calls the plug-in defined validate hardware function. The plug-in
then confirms that the registered entry reference specified is the device that it
knows how to control. (If it is not that device, the function sets the isMyDevice
parameter to false.) The family uses this function to match plug-ins with
devices.

C H A P T E R 4

Pointing Family Reference

4-24 Pointing Family Plug-In Data Types

Draft. Apple Computer, Inc. 4/18/96

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginValidateHardwarePtr) (RegEntryRef *device,
Boolean *isMyDevice);

For information about creating your own validate hardware function, see the
description of the MyPTPluginValidateHardwarePtr function (page 4-55).

PTPluginInitializePtr 4

Once the pointing family matches a plug-in to a device, it calls the initialize
function provided by the plug-in. The plug-in then fills out the device
capabilities structure, which is defined by the PTDeviceCapabilities data type
(page 4-14), and the device identifier structure, which is defined by the
PTDeviceIdentifier data type (page 4-18), and performs any other initialization
tasks.

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginInitializePtr)(
RegEntryRef *mouseRegistryEntryPtr
PTDeviceCapabilities *mouseCapabilities,
PTDeviceIdentifier *mouseIdentification;

For information about creating your own initialization function, see the
description of the MyPTPluginInitializePtr function (page 4-56).

PTPluginTerminatePtr 4

When the pointing family discovers that a pointing device is no longer present
(for example, a tablet is no longer attached), it calls the terminate function
provided by the plug-in. The plug-in then performs any necessary clean-up
operations, such as tearing down state, releasing memory, and so forth.

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginTerminatePtr)(void);

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In Data Types 4-25
Draft. Apple Computer, Inc. 4/18/96

For information about creating your own terminate function, see the
description of the MyPTPluginTerminatePtr function (page 4-58).

PTPluginStartIOPtr 4

When a client indicates via the PTRegisterNewTracker function (page 4-33) that
it wants to use a pointing device, the pointing family calls the start I/O
function provided by the plug-in. The plug-in then prepares for I/O operations
in a device-specific fashion.

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginStartIOPtr)(void);

For information about creating your own start I/O function, see the description
of the MyPTPluginStartIOPtr function (page 4-59).

PTPluginStopIOPtr 4

When a client indicates that it wants to discontinue the use of a pointing
device, the pointing family calls the stop I/O function provided by the plug-in.
The plug-in then terminates I/O operations in a device-specific fashion.

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginStopIOPtr)(void);

For information about creating your own stop I/O function, see the description
of the MyPTPluginStopIOPtr function (page 4-60).

PTPluginGetNextDataPtr 4

When the pointing family needs the next piece of data to be passed to a client,
it calls the get next data function, and the plug-in fills in the pointing device
data structure, which is defined by the PTData data type (page 4-9).

C H A P T E R 4

Pointing Family Reference

4-26 Pointing Family Plug-In Data Types

Draft. Apple Computer, Inc. 4/18/96

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginGetNextDataPtr)(PTData *newData);

For information about creating your own get next data function, see the
description of the MyPTPluginGetNextDataPtr function (page 4-61).

PTPluginGetDeviceModesPtr 4

When the client calls the PTGetDeviceModes function (page 4-36), the pointing
family calls the plug-in defined get device modes function, and the plug-in fills
in the pointing device modes structure, which is defined by the PTDeviceModes
data type (page 4-11).

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginGetDeviceModesPtr) (ByteCount offset,
ByteCount numBytes, PTDeviceModes *modes);

For information about creating your own get device modes function, see the
description of the MyPTPluginGetDeviceModesPtr function (page 4-62).

PTPluginSetDeviceModesPtr 4

When the client calls the PTSetDeviceModes function (page 4-35), the pointing
family calls the plug-in defined set device modes function, and the plug-in
changes the modes in the pointing device modes structure, which is defined by
the PTDeviceModes data type (page 4-11).

The function pointer is defined by the pointing family as follows:

typedef OSStatus (*PTPluginSetDeviceModesPtr) (ByteCount offset,
ByteCount numBytes, PTDeviceModes *modes);

For information about creating your own set device modes function, see the
description of the MyPTPluginSetDeviceModesPtr function (page 4-63).

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-27
Draft. Apple Computer, Inc. 4/18/96

Pointing Family Client Functions 4

This section describes the functions used by pointing family clients.Typical
clients use pointing family functions to perform the following actions:

4. determine which pointing devices are available using the PTGetNextDevice
function (page 4-28)

5. obtain information about the device capabilities and manufacturer via the
PTGetDeviceCapabilities (page 4-29) and PTGetDeviceIdentification
(page 4-31) functions in order to figure out which device is of interest

6. register interest in that device by calling the PTRegisterNewTracker function
(page 4-33)

7. determine or set device modes information with the PTSetDeviceModes
(page 4-35) and PTGetDeviceModes (page 4-36) functions

8. set the properties of a tracker using the functions PTSetPosition (page 4-47),
PTSetTrackerState (page 4-44), PTSetTrackerDataByOffset (page 4-52), and
PTSetButtons (page 4-50).

9. maintain tracker data using the PTSetPinningRects function (page 4-39)

10. obtain data from a tracker via the functions PTGetTrackerData (page 4-40),
PTGetTrackerDataByOffset, PTGetTrackerState (page 4-43), PTGetButtons
(page 4-49), and PTSetButtons (page 4-50).

Getting Information About Devices 4

Clients use the PTGetNextDevice function (page 4-28) to iterate through the list
of available pointing devices. They use the functions PTGetDeviceCapabilities
(page 4-29) and PTGetDeviceIdentification (page 4-31) to check the
characteristics of each device they find to determine which, if any, they are
interested in.

C H A P T E R 4

Pointing Family Reference

4-28 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

PTGetNextDevice 4

Retrieves the registered entry reference of the next device after the current
device in the list of available pointing devices.

OSStatus PTGetNextDevice (
RegEntryRef *currentDevice, |
PTDeviceClass filter,
RegEntryRef **nextDevice);

currentDevice A pointer to a registry entry reference that identifies the current
pointing device after which the next device is to be retrieved. If
this parameter is NULL, PTGetNextDevice returns the first device
in the list. For more on registry entry references, see “About the
I/O Architecture” (page 1-3).

filter A pointing device class from the PTDeviceClass enumeration
(page 4-15), which allows you to iterate through the list of
available pointing devices, for instance, asking for all devices
that are identified as mice. You can use any defined pointing
family device class or you can use a device class defined by a
plug-in. Use the kAnyDeviceClass enumerator (page 4-15) if you
want the next device no matter what class it is.

nextDevice A pointer to a registered entry reference. On output, the
PTGetNextDevice function provides a new registered entry
reference that identifies the next device in the list of available
pointing devices. If the current device specified in the
currentDevice parameter is the last device in the list,
PTGetNextDevice returns NULL in this parameter.

function result An operating system status code. If the client has passed in an
unknown pointing device, PTGetNextDevice returns the result
code kPTUnknownRegEntryRef. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-29
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetNextDevice function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To obtain the device capabilities for a pointing device, you can use the
PTGetDeviceCapabilities function (page 4-29). To obtain unique device
identification for a device, you can use the PTGetDeviceIdentification function
(page 4-31).

PTGetDeviceCapabilities 4

Obtains the pointing device capabilities associated with a device.

OSStatus PTGetDeviceCapabilities (
RegEntryRef *device,
PTDeviceCapabilities *capabilities);

device A pointer to a registry entry reference returned by the
PTGetNextDevice function (page 4-28). You set this registry entry
reference to identify the pointing device whose capabilities are
sought. For more on registry entry references, see “About the
I/O Architecture” (page 1-3).

capabilities A pointer to a pointing device capabilities structure. On
output, the PTGetDeviceCapabilities function provides the
structure, which is defined by the PTDeviceCapabilities data
type (page 4-14). The pointing device capabilities structure lists
several capabilities associated with a device.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-30 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

function result An operating system status code. If the client has passed in an
unknown pointing device, PTGetDeviceCapabilities returns the
result code kPTUnknownRegEntryRef. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

Once a client has identified a device via a registry entry reference,
PTGetDeviceCapabilities returns a pointer to the device’s associated device
capabilities structure (or structures), defined by the PTDeviceCapabilities data
type (page 4-14). Clients can then peruse the device’s capacities.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetDeviceCapabilities function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To iterate through a list of available pointing devices, you can also use the
PTGetNextDevice function (page 4-28). To obtain a unique pointing device
identifier associated with a specific device, you can use the
PTGetDeviceIdentification function (page 4-31).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-31
Draft. Apple Computer, Inc. 4/18/96

PTGetDeviceIdentification 4

Gets the unique pointing device identifier associated with a device.

OSStatus PTGetDeviceIdentification (
RegEntryRef *device,
PTDeviceIdentifier *identification);

device A pointer to a registry entry reference returned by the
PTGetNextDevice function (page 4-28). You set this registry entry
reference to identify the pointing device whose identification is
sought. For more on registry entry references, see “About the
I/O Architecture” (page 1-3).

identification
A pointer to a pointing device identifier. On output, the
PTGetDeviceIdentification function provides this value of type
PTDeviceIdentifier (page 4-18), which describes a pointing
device’s unique identification, which has been defined by the
manufacturer.

function result An operating system status code. If the client has passed in an
unknown pointing device, PTGetDeviceIdentification returns
the result code kPTUnknownRegEntryRef. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

Once a client has identified a device via a registry entry reference,
PTGetDeviceIdentification returns a pointer to the device’s associated pointing
device identifier, defined by the PTDeviceIdentifier data type (page 4-18).
Clients can then peruse the device’s manufacturer information.

C H A P T E R 4

Pointing Family Reference

4-32 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetDeviceIdentification function cannot be called by hardware
interrupt handlers or secondary interrupt handlers.

SEE ALSO

To iterate through a list of available pointing devices, you can also use the
PTGetNextDevice function (page 4-28). To retrieve a list of the capabilities
associated with a specific pointing device, you can use the
PTGetDeviceCapabilities function (page 4-29).

Registering With the Pointing Family 4

The PTRegisterNewTracker function (page 4-33) allows clients to indicate that
they want to register and establish a connection with the pointing family.

Upon tracker registration, the pointing family provides two ways to obtain
pointing data:

■ buffered data for those clients who want to receive all their information from a
specified tracker in a continuous stream. The pointing family keeps such
data in a buffer so that when the client asks for the next piece of data (such
as buffered mouse data), it is ready with the first piece of data from the
buffer to pass to the client. In the PTRegisterNewTracker function (page 4-33),
buffered data is indicated in the bufferedData parameter.

■ static data for those clients who want the pointing family to add the tracker
data together as it comes in and maintain the current state of the tracker.
Such clients check with the pointing family to find out where the tracker is.
In the PTRegisterNewTracker function (page 4-33), static data is indicated in
the stateData parameter.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-33
Draft. Apple Computer, Inc. 4/18/96

PTRegisterNewTracker 4

Registers a client to establish a connection with the pointing family.

OSStatus PTRegisterNewTracker (
RegEntryRef *device,
Boolean bufferedData,
Boolean stateData,
PTTrackerRef *tracker
ByteCount *dataSize);

device A pointer to a registry entry reference returned by the
PTGetNextDevice function (page 4-28). This registry entry
reference identifies the pointing device with which the client
wants to establish a connection. For more on registry entry
references, see “About the I/O Architecture” (page 1-3).

bufferedData A Boolean value that indicates whether the client wants the
pointing family to buffer data. The client specifies true if
buffered data is desired; otherwise, the client specifies false.

stateData A Boolean value that indicates whether the client wants the
pointing family to provide state data. The client specifies true if
state data is desired; otherwise, the client specifies false.

tracker A pointer to a pointing device tracker reference. On output, the
PTRegisterNewTracker function provides a value of type
PTTrackerRef (page 4-8) that represents the client’s connection
to the device. The client must use this connection in all future
communications with the pointing family.

dataSize A pointer to a byte count. On output, the PTRegisterNewTracker
function supplies the count that describes the size of the
pointing data structure, defined by the PTData type (page 4-9),
that the specified device generates.

function result An operating system status code. If the client has passed in an
unknown pointing device, PTRegisterNewTracker returns the
result code kPTUnknownRegEntryRef. If the specified device is not
available or has already been registered for, the function returns
the result code kPointerFamilyError. If the internal pointing
family memory allocation has failed, the function returns the

C H A P T E R 4

Pointing Family Reference

4-34 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

result code kPointerFamilyError. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

Clients use PTRegisterNewTracker to indicate a desire to receive data from a
specified device.

Note
In this developer release of Mac OS 8 only, once someone
registers for a certain device, no one else can register for
that device. In future developer releases of Mac OS 8, a
more flexible scheme for sharing and unregistering devices
will most likely be provided. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTRegisterNewTracker function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

See “Registering With the Pointing Family” (page 4-32) for details on buffered
and static data).

Setting and Retrieving Device Modes 4

Clients can use the PTSetDeviceModes (page 4-35) and PTGetDeviceModes
(page 4-36) functions to set and retrieve device mode data, which is the kind of
information that pointing family clients pass back to pointing device, usually to

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-35
Draft. Apple Computer, Inc. 4/18/96

set a mode on the device. Examples of device modes include tactile feedback
for steering wheels, absolute versus relative mode for tablets, and LED displays.

Note
Because the modes available vary between device classes
and devices, clients must understand the mode data
structure of the device they are working with. ▲

PTSetDeviceModes 4

Sets the modes on a device.

OSStatus PTSetDeviceModes
(RegEntryRef *device,
ByteCount offset,
ByteCount numBytes
PTDeviceModes *modes);

device A pointer to a registry entry reference returned by the
PTGetNextDevice function (page 4-28). You set this registry entry
reference to identify the pointing device whose device modes
are to be set. For more on registry entry references, see “About
the I/O Architecture” (page 1-3).

offset A byte count that describes the offset into the device mode
structure (page 4-11) of the device mode you want to set.

numBytes A byte count that describes the number of bytes of device mode
data to be updated.

modes A pointer to a pointing device modes structure, defined by the
PTDeviceModes data type (page 4-11). This structure contains the
new device mode data as indicated by the offset and numBytes
parameters.

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client
has passed in an unknown device, the function returns

C H A P T E R 4

Pointing Family Reference

4-36 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

kPTUnknownRegEntryRef. See “Pointing Family Result Codes”
(page 4-64) for a list of the result codes the pointing family can
return.

DISCUSSION

When the client calls PTSetDeviceModes, the pointing family calls the
MyPTPluginSetDeviceModesPtr function (page 4-63) since the plug-in keeps this
information.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetDeviceModes function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To retrieve the device modes for a given device, you can use the
PTGetDeviceModes function (page 4-36). For more on device modes, see
“Pointing Device Modes Structure” (page 4-11) and “Setting and Retrieving
Device Modes” (page 4-34).

PTGetDeviceModes 4

Retrieves the mode on a device.

OSStatus PTGetDeviceModes (
RegEntryRef *device,
ByteCount offset,
ByteCount numBytes
PTDeviceModes *modes);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-37
Draft. Apple Computer, Inc. 4/18/96

device A pointer to a registry entry reference returned by the
PTGetNextDevice function (page 4-28). You set this registry entry
reference to identify the device whose device mode you want to
retrieve. For more on registry entry references, see “About the
I/O Architecture” (page 1-3).

offset A byte count that describes the offset into the pointing device
modes structure (page 4-11) of the device mode data you want
to get.

numBytes A byte count that describes the number of bytes of data you
want, beginning at the offset.

modes A pointer to a pointing device modes structure, defined by the
PTDeviceModes data type (page 4-11). On output, the family fills
in the structure with the amount of data specified in the
numBytes parameter, beginning at the offset indicated in the
offset parameter.

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client
has passed in an unknown device, the function returns
kPTUnknownRegEntryRef. See “Pointing Family Result Codes”
(page 4-64) for a list of the result codes the pointing family can
return.

DISCUSSION

When the client calls PTGetDeviceModes, the pointing family calls the
MyPTPluginGetDeviceModesPtr function (page 4-62) since the plug-in keeps this
information.

C H A P T E R 4

Pointing Family Reference

4-38 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetDeviceModes function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To set the device mode for a given device, you can use the PTSetDeviceModes
function (page 4-35). For more on device modes, see “Pointing Device Modes
Structure” (page 4-11) and “Setting and Retrieving Device Modes” (page 4-34).

Maintaining Trackers 4

In order for clients to instruct the pointing family to pin a tracker’s static
position, they must provide pinning rectangles. Such rectangles restrict a
tracker’s position to within their boundaries, no matter how far the device
moves. For example, the system cursor always stays inside the pinning
rectangles defined by the main screen.

Note
In this developer release of Mac OS 8 only, there is support
for one pinning rectangle per tracker. In subsequent
developer releases of Mac OS 8, multiple pinning
rectangles will most likely be supported ◆

The graphics system (for instance, QuickDraw) sets the pinning rectangles on
the system cursor’s tracker. Other clients may want to use pinning rectangles
for other purposes, for instance, to pin the tracker inside a window. If a tracker
has no pinning rectangles, the pointing family does not pin its position.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-39
Draft. Apple Computer, Inc. 4/18/96

PTSetPinningRects 4

Sets pinning rectangles for a tracker.

OSStatus PTSetPinningRects (
PTTrackerRef tracker,
PTPinningRectList *rectList);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose pinning
rectangles you want to set.

rectList A pointer to a list of pinning rectangles. This list is described by
the PTPinningRectList (page 4-18) structure. To stop pinning,
clients can set this parameter to NULL.

Note
In this developer release of Mac OS 8, there can only be
one pinning rectangle in the list. ◆

function result An operating system status code. If the pointing family internal
memory allocation has failed, PTSetPinningRects returns the
kPointerFamilyError result code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPTInvalidTrackerRef result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

PTSetPinningRects sets the pinning rectangles for a tracker to those pointed to
by the rectList parameter.

C H A P T E R 4

Pointing Family Reference

4-40 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetPinningRects function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For details on pinning rectangles, see “Maintaining Trackers” (page 4-38).

Getting Tracker-Buffered Data 4

Clients can obtain data from a pointing family tracker by retrieving the next
piece of pointing family information from the buffer using the
PTGetTrackerData function (page 4-40) or by clearing the tracker’s buffer and
starting fresh using the PTFlushTrackerBuffer function (page 4-42).

PTGetTrackerData 4

Retrieves the next piece of pointing data from a tracker’s buffer.

OSStatus PTGetTrackerData (
PTTrackerRef tracker,
ByteCount dataSize
PTData *dataPtr,);

tracker A pointing family tracker reference returned by the
PTRegisterNewTracker function (page 4-33). This value of type
PTTrackerRef (page 4-8) specifies the tracker whose buffer
pointing data is being retrieved.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-41
Draft. Apple Computer, Inc. 4/18/96

dataSize A byte count that describes the size of the data in the pointing
data structure pointed to by the dataPtr parameter. This size is
returned in the dataSize parameter of the PTRegisterNewTracker
function (page 4-33). Because the size of the pointing data
structure is variable, the client needs to inform the pointing
family of the data’s expected size.

dataPtr A pointer to the pointing data structure. On output, the
PTGetTrackerData function provides the structure defined by the
PTData (page 4-9) type describes the pointing data that has been
retrieved. The client must allocate a structure big enough to
hold the amount of data specified in the dataSize parameter
and pass a pointer to that memory in this parameter.

function result An operating system status code. If the pointing family’s
internal memory allocation failed, PTGetTrackerData returns the
result code kPTMemoryAllocationFailed. If the client has
specified an invalid pointing family tracker reference, the
function returns the kPTInvalidTrackerRef result code. See
“Pointing Family Result Codes” (page 4-64) for a list of the
result codes the pointing family can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetTrackerData function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For details on obtaining tracker data, see “Getting Tracker-Buffered Data”
(page 4-40).

To clear out a buffer so you can receive all tracker data from that point on, use
the PTFlushTrackerBuffer function (page 4-42).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-42 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

PTFlushTrackerBuffer 4

Flushes the buffer associated with a tracker.

OSStatus PTFlushTrackerBuffer (PTTrackerRef tracker);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose buffer data
is being flushed.

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPTInvalidTrackerRef result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

As a pointing device moves, a tracker’s buffer fills up. A client may want to ask
for all the information from the present time forward. You can use
PTFlushTrackerBuffer to clear out a tracker's buffer.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTFlushTrackerBuffer function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For details on obtaining tracker data, see “Getting Tracker-Buffered Data”
(page 4-40).

To remove the next piece of data from a tracker’s buffer, you can use the
PTGetTrackerData function (page 4-40).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-43
Draft. Apple Computer, Inc. 4/18/96

Checking Tracker State 4

This section describes the functions clients can use to check and change the
state of a pointing family tracker: PTGetTrackerState (page 4-43), PTGetPosition
(page 4-46), PTGetButtons (page 4-49), and PTGetTrackerDataByOffset
(page 4-52). In these functions, the pointing family maintains state,
accumulates position, and replaces all other fields (such as buttons,
device-specific data) every time new data comes from the device.

PTGetTrackerState 4

Obtains the current state of a tracker.

OSStatus PTGetTrackerState
(PTTrackerRef tracker,
ByteCount dataSize
PTData *data);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose current state
you want to retrieve.

dataSize A byte count that describes the size of the data in the pointing
data structure pointed to by the data parameter. This size is
returned in the dataSize parameter of the PTRegisterNewTracker
function (page 4-33). Because the size of the pointing data
structure is variable, the client needs to inform the pointing
family of the data’s expected size.

data A pointer to the pointing data structure. On output, the
PTGetTrackerState function provides the structure, defined by
the PTData (page 4-9) type, describes the state of the specified
tracker including its buttons, position, and any device-specific
data. The client must allocate a structure big enough to hold the
amount of data specified in the dataSize parameter and pass a
pointer to that memory in this parameter.

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client

C H A P T E R 4

Pointing Family Reference

4-44 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

has specified an invalid pointing family tracker reference, the
function returns the result code kPTInvalidTrackerRef. See
“Pointing Family Result Codes” (page 4-64) for a list of the
result codes the pointing family can return.

DISCUSSION

Most application clients only need to obtain a tracker’s state and do not need to
set or change this information. However, some clients may want to initialize
and set their tracker’s state.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetTrackerState function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

For details on tracker states, see “Checking Tracker State” (page 4-43). To set
the state of a tracker, you can use the PTSetTrackerState function (page 4-44).

PTSetTrackerState 4

Sets the state of a tracker.

OSStatus PTSetTrackerState (
PTTrackerRef tracker,
ByteCount dataSize,
PTData *data);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-45
Draft. Apple Computer, Inc. 4/18/96

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose current state
you want to set.

dataSize A byte count that describes the size of the data in the pointing
data structure (page 4-9) pointed to by the data parameter.

data On input, a pointer to the pointing data structure. This
structure, defined by the PTData (page 4-9) type, describes the
state of the specified tracker.

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client
has specified an invalid pointing family tracker reference, the
function returns the kPTInvalidTrackerRef result code. See
“Pointing Family Result Codes” (page 4-64) for a list of the
result codes the pointing family can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetTrackerState function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To obtain the state of a tracker, you can use the PTGetTrackerState function
(page 4-43).

Working WithTracker Position 4

The PTGetPosition (page 4-46) and PTSetPosition (page 4-47) functions
described in this section are subsets of the PTGetTrackerState (page 4-43) and
PTSetTrackerState (page 4-44) functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-46 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

PTGetPosition 4

Retrieves a tracker’s position.

OSStatus PTGetPosition (
PTTrackerRef tracker,
PTPosition *position);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose position you
want to obtain.

position A pointer to a position structure. On output, the PTGetPosition
function provides this structure, defined by the PTPosition
(page 4-10) type, to describe the position of the tracker.

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPTInvalidTrackerRef result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

Instead of allocating an entire pointing data structure, the PTGetPosition
function lets you obtain a tracker’s position separately.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetPosition function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-47
Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

To set a tracker’s position, you can use the PTSetPosition function (page 4-47).
To move a tracker’s position, you can use the PTMovePosition function
(page 4-48).

PTSetPosition 4

Replaces a tracker’s current position with a specified position.

OSStatus PTSetPosition (
PTTrackerRef tracker,
PTPosition *position);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose position you
want to set.

position A pointer to a pointing position structure. This structure,
defined by the PTPosition (page 4-10) data type, describes the
new position of the tracker.

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPTInvalidTrackerRef result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

Instead of passing an entire pointing data structure, the PTSetPosition function
lets you manipulate a tracker’s position separately.

C H A P T E R 4

Pointing Family Reference

4-48 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetPosition function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To obtain a tracker’s position, you can use the PTGetPosition function
(page 4-46). To move a tracker’s position, you can use the PTMovePosition
function (page 4-48).

PTMovePosition 4

Adds a specified position to an existing position.

OSStatus PTMovePosition (
PTTrackerRef tracker,
PTPosition *position);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose position you
want to move.

position A pointer to a pointing position structure. This structure,
defined by the PTPosition (page 4-10) data type describes a
position to be added to the existing tracker position.

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPTInvalidTrackerRef result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-49
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTMovePosition function cannot be called by hardware interrupt handlers
or secondary interrupt handlers.

SEE ALSO

To set a tracker’s position, you can use the PTSetPosition function (page 4-47).
To get a tracker’s position, you can use the PTGetPosition function (page 4-46).

Working With Tracker Buttons 4

The PTGetButtons (page 4-49) and PTSetButtons (page 4-50) functions described
in this section are subsets of the PTGetTrackerState (page 4-43) and
PTSetTrackerState (page 4-44) functions.

PTGetButtons 4

Obtains the button state of a tracker.

OSStatus PTGetButtons (
PTTrackerRef tracker,
PTButtonState *buttons);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose buttons you
want to obtain.

position A pointer to a button state. On output, the PTGetButtons
function supplies the PTButtonState (page 4-11) data type,
which describes the button state of the tracker.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-50 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPointerFamilyError result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

Instead of getting an entire pointing data structure, the PTGetButtons function
lets you obtain information about a tracker’s buttons separately.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetButtons function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To set the button state of a tracker, you can use the PTSetButtons function
(page 4-50).

PTSetButtons 4

Sets the button state of a tracker.

OSStatus PTSetButtons (
PTTrackerRef tracker,
PTButtonState buttons);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-51
Draft. Apple Computer, Inc. 4/18/96

tracker A pointing device tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose buttons you
want to set.

position A button state structure. The PTButtonState (page 4-11) data
type describes the desired button state of the tracker.

function result An operating system status code. If the client has specified an
invalid pointing family tracker reference, the function returns
the kPointerFamilyError result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

Instead of passing an entire pointing data structure, the PTSetButtons function
lets you manipulate a tracker’s buttons separately.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetButtons function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

SEE ALSO

To get the button state of a tracker, you can use the PTGetButtons function
(page 4-49). For a discussion of the relationship of this function to be
PTGetTrackerState (page 4-43) and PTSetTrackerState (page 4-44) functions, see
“Checking Tracker State” (page 4-43).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-52 Pointing Family Client Functions

Draft. Apple Computer, Inc. 4/18/96

Getting and Setting Tracker Data By Offset 4

This section describes the PTGetTrackerDataByOffset (page 4-52) and
PTSetTrackerDataByOffset (page 4-53) functions, subsets of the
PTGetTrackerState (page 4-43) and PTSetTrackerState (page 4-44) functions.
PTGetTrackerDataByOffset and PTSetTrackerDataByOffset are designed to allow
clients to get and set any subset of the pointing data structure, which is defined
by the PTData type (page 4-9).

PTGetTrackerDataByOffset 4

Obtains any subset of a tracker’s state.

OSStatus PTGetTrackerDataByOffset (
PTTrackerRef tracker,
ByteCount offset,
ByteCount numBytes,
void *buffer);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose data you
want to access.

offset A byte count that describes the offset into a pointing data
structure, defined by the PTData type (page 4-9), of the data you
want to obtain.

numBytes A byte count of the data you want to access.

buffer A pointer to a buffer where the family, on output, is to put the
amount of data specified in the numBytes parameter.

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client
has specified an invalid pointing family tracker reference, the
function returns the kPTInvalidTrackerRef result code. See
“Pointing Family Result Codes” (page 4-64) for a list of the
result codes the pointing family can return.

C H A P T E R 4

Pointing Family Reference

Pointing Family Client Functions 4-53
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTGetTrackerDataByOffset function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To set the individual fields of data associated with a tracker, you can use the
PTSetTrackerDataByOffset function (page 4-53).

PTSetTrackerDataByOffset 4

Sets individual fields of data associated with a tracker.

OSStatus PTSetTrackerDataByOffset (
PTTrackerRef tracker,
ByteCount offset,
ByteCount numBytes,
void *buffer);

tracker A pointing family tracker reference. This value of type
PTTrackerRef (page 4-8) specifies the tracker whose data you
want to set.

offset A byte count that describes the offset into a pointing data
structure, defined by the PTData type (page 4-9), of the data you
want to set.

numBytes A byte count that describes the number of bytes of data.

buffer A pointer to a buffer containing the amount of data specified in
the numBytes parameter.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

4-54 Pointing Family Plug-In-Defined Functions

Draft. Apple Computer, Inc. 4/18/96

function result An operating system status code. If the internal memory
allocation for the pointing family has failed, the function
returns the kPTMemoryAllocationFailed result code. If the client
has specified an invalid pointing family tracker reference, the
function returns the kPTInvalidTrackerRef result code. See
“Pointing Family Result Codes” (page 4-64) for a list of the
result codes the pointing family can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

The PTSetTrackerDataByOffset function cannot be called by hardware interrupt
handlers or secondary interrupt handlers.

SEE ALSO

To retrieve the individual fields of data associated with a tracker, you can use
the PTGetTrackerDataByOffset function (page 4-52).

Pointing Family Plug-In-Defined Functions 4

Any pointing family plug-in must implement these calls for the pointing family
to use. The pointing family provides a flexible interface which allows plug-ins
to generate, and clients to receive, device-specific data.

Note
A driver developer may develop a separate library that
exports a set of functions more specific to its data and
easier for clients to use. See “About the I/O Architecture”
(page 1-3) for details. ◆

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In-Defined Functions 4-55
Draft. Apple Computer, Inc. 4/18/96

Validating Pointing Devices 4

When the I/O system discovers a pointing device, the pointing family must
determine which plug-in goes with the device. It does this by calling the
MyPTPluginValidateHardwarePtr function (page 4-55) for each possible plug-in
until one of the plug-ins indicates it owns the device.

MyPTPluginValidateHardwarePtr 4

Instructs the plug-in to indicate whether or not the pointing device specified by
the registry entry reference is the piece of hardware expected by the plug-in.

OSStatus MyPTPluginValidateHardwarePtr
(RegEntryRef *device,
Boolean *isMyDevice);

device A pointer to a registry entry reference, defined by the
RegEntryRef data type. This reference identifies the device to be
tested. For more on registry entry references, see “About the
I/O Architecture” (page 1-3).

isMyDevice A pointer to a Boolean value. On output, the plug-in sets this
parameter to true to indicate that the pointing device identified
by the registry entry reference in the device parameter belongs
to the plug-in. Otherwise, the plug-in sets this parameter to
false.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its validate hardware
function has been successful. If an error occurs, it should return
the kPointerFamilyError result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

A plug-in should attempt to talk to its device during this call. However, the
device may not be there any longer. The plug-in should do whatever else is
necessary to determine if the device belongs to it.

C H A P T E R 4

Pointing Family Reference

4-56 Pointing Family Plug-In-Defined Functions

Draft. Apple Computer, Inc. 4/18/96

Within MyPTPluginValidateHardwarePtr, the plug-in must:

1. Set up any state required to execute the validate hardware function.

2. Test to see if it owns the device. If the device is an ADB device, the plug-in
must read from the device to make sure it is actually present. If the read
times out, the plug-in must return false to the pointing family. If the device
is a virtual device (that is, a plug-in that is not actually associated with the
hardware), the plug-in must return true.

3. Tear down all state, since the plug-in is may be unloaded.

The pointing family then loads and calls the initialize function for the plug-in
associated with the specified device.

The PTPluginValidateHardwarePtr type (page 4-23) defines a pointing family
plug-in’s validate hardware function.

SEE ALSO

For general information about implementing your own plug-in defined
functions, see “Pointing Family Plug-In-Defined Functions” (page 4-54).

Initializing and Terminating Plug-ins 4

The pointing family calls the MyPTPluginInitializePtr function (page 4-56) as
soon as a device is matched to a plug-in and the MyPTPluginTerminatePtr
function (page 4-58) when it receives notification that the device is no longer
present.

MyPTPluginInitializePtr 4

Instructs the plug-in to fill out the device capabilities data structure, defined by
the PTDeviceCapabilities data type (page 4-14), and the pointing device

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In-Defined Functions 4-57
Draft. Apple Computer, Inc. 4/18/96

identifier structure, defined by the PTDeviceIdentifier data type (page 4-18),
and then performs any necessary initialization operations.

OSStatus MyPTPluginInitializePtr (
RegEntryRef *device,
PTDeviceCapabilities *deviceCapabilities,
PTDeviceIdentifier *deviceIdentification);

device A pointer to a registry entry reference, defined by the
RegEntryRef data type. This reference identifies the device to be
initialized. For more on registry entry references, see “About
the I/O Architecture” (page 1-3).

deviceCapabilities
A pointer to a pointing device capabilities structure, which is
defined by the PTDeviceCapabilities data type (page 4-14).

deviceIdentification
A pointer to a pointing device identifier structure, defined by
the PTDeviceIdentifier data type (page 4-18). This structure
identifies the brand and model of the pointing device identified
in the device parameter.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its initialize function has
been successful. If an error occurs, it should return the
kPointerFamilyError result code. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

The MyPTPluginInitializePtr type (page 4-24) defines a pointing family
plug-in’s initialize function.

SEE ALSO

To terminate a plug-in, the pointing family calls the MyPTPluginTerminatePtr
function (page 4-58).

For general information about implementing your own plug-in defined
functions, see “Pointing Family Plug-In-Defined Functions” (page 4-54).

C H A P T E R 4

Pointing Family Reference

4-58 Pointing Family Plug-In-Defined Functions

Draft. Apple Computer, Inc. 4/18/96

MyPTPluginTerminatePtr 4

Instructs the plug-in to perform necessary clean-up operations.

OSStatus MyPTPluginTerminatePtr (void);

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its terminate function has
been successful. If an error occurs, it should return a the
kPointerFamilyError result code. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

The pointing family calls the MyPTPluginTerminate function when it finds out
the device is no longer present.

The MyPTPluginTerminatePtr type (page 4-24) defines a pointing family
plug-in’s terminate function.

SEE ALSO

To initialize a plug-in, the pointing family calls the MyPTPluginInitializePtr
function (page 4-24).

For general information about implementing plug-in defined functions, see
“Pointing Family Plug-In-Defined Functions” (page 4-54).

Controlling Device I/O 4

The pointing family uses the MyPTPluginStartIOPtr function(page 4-59) to
notify the plug-in that it wants to start getting data. When the pointing family
no longer needs to gather data from a device, it uses the MyPTPluginStopIOPtr
function (page 4-60) to notify the plug-in to perform the corresponding cleanup.

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In-Defined Functions 4-59
Draft. Apple Computer, Inc. 4/18/96

MyPTPluginStartIOPtr 4

Instructs the plug-in to perform necessary preparations for I/O operations.

OSStatus MyPTPluginStartIOPtr (void);

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its start I/O function has
been successful. If an error occurs, it should return a the
kPointerFamilyError result code. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

The pointing family calls the MyPTPluginStartIOPtr function when a client
registers interest in a pointing device and its information. A mouse or another
ADB plug-in typically would then call ADBOpen as part of their implementation
of the start I/O function. For details on the ADBOpen function, see “ADB Family
Reference” (page 3-5).

The MyPTPluginStartIOPtr type (page 4-25) defines a pointing family plug-in’s
start I/O function.

SEE ALSO

For a general discussion of creating plug-in defined functions, see “Pointing
Family Plug-In-Defined Functions” (page 4-54).

For more on notifying the plug-in that data is forthcoming, see “Controlling
Device I/O” (page 4-58).

To notify the plug-in that it no longer wants data from a device, the pointing
family calls MyPTPluginStopIOPtr (page 4-60).

C H A P T E R 4

Pointing Family Reference

4-60 Pointing Family Plug-In-Defined Functions

Draft. Apple Computer, Inc. 4/18/96

MyPTPluginStopIOPtr 4

Instructs the plug-in to perform appropriate clean-up operations needed when
the pointing family has stopped gathering data.

OSStatus MyPTPluginStopIOPtr (void);

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its stop I/O function has
been successful. If an error occurs, it should return a the
kPointerFamilyError result code. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

The pointing family calls MyPTPluginStopIOPtr when clients indicate that they
no longer want a connection and are no longer interested in the plug-in’s data.
For example, an ADB device would call the ADBClose function here. For details
on the ADB client functions, see “ADB Family Reference” (page 3-5).

However, the plug-in does not need to dismantle all state data. Another client
may want data, so using this function saves the plug-in the trouble of
reinitializing.

The MyPTPluginStopIOPtr type (page 4-25) defines a pointing family plug-in’s
stop I/O function.

SEE ALSO

For details on the ADBClose function, see “ADB Family Reference” (page 3-5).

For a general discussion of creating plug-in defined functions, see “Pointing
Family Plug-In-Defined Functions” (page 4-54).

For more on notifying the plug-in that data has stopped, see “Controlling
Device I/O” (page 4-58).

To notify the plug-in to that a device has been discovered, the pointing family
calls MyPTPluginStartIOPtr (page 4-59).

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In-Defined Functions 4-61
Draft. Apple Computer, Inc. 4/18/96

Getting Device Data 4

The pointing family calls the MyPTPluginGetNextDataPtr function (page 4-61)
every time a client wants another piece of data. The plug-in gets the data from
the device and manipulates it to fit into the pointing data structure, defined by
the PTData type (page 4-9).

MyPTPluginGetNextDataPtr 4

Instructs the plug-in to fill in data that client is awaiting.

OSStatus MyPTPluginGetNextDataPtr (
PTData *newData);

newData A pointer to the pointing data structure defined by the PTData
data type (page 4-9). On output, the plug-in fills in the structure.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its get next data function
has been successful. If an error occurs, it should return a the
kPointerFamilyError result code. See “Pointing Family Result
Codes” (page 4-64) for a list of the result codes the pointing
family can return.

DISCUSSION

MyPTPluginGetNextDataPtr blocks until the device has data available and can fill
in the theMouseData parameter with the new information.

The PTPluginGetNextDataPtr type (page 4-25) defines a pointing family
plug-in’s get next data function.

SEE ALSO

For a general discussion of creating plug-in defined functions, see “Pointing
Family Plug-In-Defined Functions” (page 4-54).

C H A P T E R 4

Pointing Family Reference

4-62 Pointing Family Plug-In-Defined Functions

Draft. Apple Computer, Inc. 4/18/96

Setting and Getting Device Modes 4

MyPTPluginGetDeviceModesPtr 4

Instructs the plug-in to retrieve the contents of the pointing device modes
structure.

OSStatus MyPTPluginGetDeviceModesPtr (
ByteCount offset,
ByteCount numBytes,
PTDeviceModes *modes);

offset A byte count that describes the offset into the pointing device
modes structure, defined by the PTDeviceModes data type
(page 4-11), that the plug-in is to retrieve.

numBytes A byte count that describes the number of bytes (starting at the
offset specified in the offset parameter) of expected data in the
device modes structure, defined by the PTDeviceModes data type
(page 4-11), that the plug-in is to retrieve.

modes A pointer to a pointing device modes structure, defined by the
PTDeviceModes data type (page 4-11), that the family has
allocated for the plug-in, on output, to fill in with the amount of
data specified in the numBytes parameter.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its get device modes
function has been successful. If an error occurs, it should return
a the kPointerFamilyError result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

DISCUSSION

The PTPluginGetDeviceModesPtr type (page 4-26) defines a pointing family
plug-in’s get device modes function.

C H A P T E R 4

Pointing Family Reference

Pointing Family Plug-In-Defined Functions 4-63
Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

For a general discussion of creating plug-in defined functions, see “Pointing
Family Plug-In-Defined Functions” (page 4-54).

To instruct a plug-in to change the contents of the pointing device modes
structure, the pointing family calls the MyPTPluginSetDeviceModes function
(page 4-63).

MyPTPluginSetDeviceModesPtr 4

Instructs the plug-in to change the contents of its pointing device modes
structure.

OSStatus MyPTPluginGetDeviceModesPtr (
ByteCount offset,
ByteCount numBytes,
PTDeviceModes *modes);

offset A byte count that describes the offset into the pointing device
modes structure, defined by the PTDeviceModes data type
(page 4-11), that the plug-in is to set.

numBytes A byte count that describes the number of bytes of expected
data in the device modes structure, defined by the
PTDeviceModes data type (page 4-11), that the plug-in is to
replace.

modes A pointer to a pointing device modes structure, defined by the
PTDeviceModes data type (page 4-11), that contains the new
mode data, starting at the offset into the pointing modes
structure specified in the offset parameter.

function result An operating system status code. Your plug-in should return
the result code noErr to indicate that its set device modes
function has been successful. If an error occurs, it should return
a the kPointerFamilyError result code. See “Pointing Family
Result Codes” (page 4-64) for a list of the result codes the
pointing family can return.

C H A P T E R 4

Pointing Family Reference

4-64 Pointing Family Result Codes

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The PTPluginGetDeviceModesPtr type (page 4-26) defines a pointing family
plug-in’s get device modes function.

SEE ALSO

For a general discussion of creating plug-in defined functions, see “Pointing
Family Plug-In-Defined Functions” (page 4-54).

To instruct a plug-in to fill out the pointing device modes structure, the
pointing family calls the MyPTPluginSetDeviceModes function (page 4-63).

Pointing Family Result Codes 4

Many pointing family functions return result codes. The various result codes
specific to the pointing family are listed here.

Glossary 4

absolute data Position information sent to the pointing family by a plug-in
that generates the actual coordinates of a pointing device, for instance (10, 20).

device mode data The kind of information that pointing family clients pass
to a pointing device, usually to set a mode on the device. Examples of device
modes include tactile feedback for steering wheels, absolute versus relative
mode for tablets, and LED displays. The pointing family supports device mode
data with the pointing device modes structure, which is defined by the
PTDeviceModes data type (page 4-11).

latency The time it takes a plug-in to gather up data generated by the device
and send it to the pointing family (in microseconds).

kPointerFamilyError -1 Pointing family error
kPTUnknownRegEntryRef -2 Registry entry reference is unknown.
kPTInvalidTrackerRef -3 Tracker reference is invalid.
KPTMemoryAllocationFailed -4 Memory allocation has failed.

C H A P T E R 4

Pointing Family Reference

Glossary 4-65
Draft. Apple Computer, Inc. 4/18/96

pinning rectangles Rectangles that restrict a position to within their
boundaries, no matter how far a device may move. A tracker’s static position
does not extend beyond a pinning rectangle. If a tracker has more than 1
pinning rectangle, the position can be inside any of them, but not outside all of
them. When a pointing device sends data that is outside the tracker’s pinning
rectangles in 1 dimension, that dimension does not change.

pointing devices User-input mechanisms (such as mice, tablets, and
joysticks) that indicate position and orientation and facilitate movement
through the user interface. Pointing devices are commonly used to control
cursors and to view objects in space.

pointing family That element of the I/O system that provides support for
pointing devices in Mac OS 8. The pointing family distributes data from
pointing devices to application clients (for instance, graphics and paint
applications, games, and device control panels) and to system software. It
provides clients with a common interface to all pointing devices. Furthermore,
the pointing family applies standard manipulations of pointing data before
providing data to clients.

pointing family clients Software that wants to obtain data from pointing
devices, including applications such as graphics and paint programs as well as
games that often take advantage of the special capabilities of pointing devices.
Control panel applications sometimes specify the behavior of pointing devices.
Finally, system software, for instance the Apple Event Manager and the
graphics system, such as QuickDraw, may want to obtain data from pointing
devices.

pointing family plug-ins Software modules, also called drivers, that get data
from the pointing devices themselves (such as mice, tablets, joysticks, and 3D
trackballs) and pass it up to the pointing family.

pointing family trackers Representations of connections between devices
and clients of the pointing family. Each tracker stores information about what
kind of information the client wants and how the client would like to receive
that data.

relative data Position information sent to the pointing family by a plug-in
that describes how far the pointing device moved from an already established
coordinate, for instance, if the coordinate was (10, 20), it might have changed to
(11, 21). In this case, the data (1,1) would be generated.

C H A P T E R 4

Pointing Family Reference

4-66 Glossary

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 5

Contents 5-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 PCI Family Reference

Constants and Data Types 5-5
PCI Assigned-Address Property Structure 5-5

PCI Address Space Flags 5-6
PCIDeviceFunction 5-7
PCIBusNumber 5-7
PCIRegisterNumber 5-8

PCIConfigAddress 5-8
PCIIOAddress 5-8
PCIIOIteratorData Structure 5-9
PCI Plugin Header 5-9
PCI Bridge Descriptor 5-10
PCI Bridge Variables 5-11
PCI Header Interface Version 5-12
PCI Error Codes 5-12
PCI Reg Property Structure 5-12
PCI Bus Range Property Structure 5-13
PCI Device Table Entry Header 5-14
Typedefs for Bridge Plugin Interface 5-15
PCI Device Table Entry 5-15
Typedefs for Plugin Interfaces 5-16
PCI Control Descriptor 5-17
PCI Bridge Plugin Definitions 5-18
General Purpose PCI Masks 5-18
PCI Encoded-Int Structure Constants 5-19
PCI Cycle AccessType 5-21

Byte Swapping Routines 5-21
EndianSwap16Bit 5-22

C H A P T E R 5

5-2 Contents

Draft. Apple Computer, Inc. 4/18/96

EndianSwap32Bit 5-22
PCI Kernel Cycle Routines 5-23

PCIConfigReadByte 5-23
PCIConfigReadWord 5-25
PCIConfigReadLong 5-26
PCIConfigWriteByte 5-27
PCIConfigWriteWord 5-28
PCIConfigWriteLong 5-29
PCIIOReadByte 5-30
PCIIOReadWord 5-31
PCIIOReadLong 5-32
PCIIOWriteByte 5-33
PCIIOWriteWord 5-34
PCIIOWriteLong 5-35
PCIIntAckReadByte 5-36
PCIIntAckReadWord 5-37
PCIIntAckReadLong 5-38
PCISpecialCycleWriteLong 5-39
PCISpecialCycleBroadcastLong 5-40

PCI I/O Iterator Routines 5-40
PCIGetDeviceData 5-41
PCINameGetDeviceData 5-42
PCIDomainGetDeviceData 5-43
PCIBusNumberGetDeviceData 5-44
PCIConfigAddressGetDeviceData 5-46

PCI Plugin Interface Routines 5-47
PCIPluginInitialize 5-47
PCIPluginConfigReadByte 5-48
PCIPluginConfigReadWord 5-49
PCIPluginConfigReadLong 5-50
PCIPluginConfigWriteByte 5-52
PCIPluginConfigWriteWord 5-53
PCIPluginConfigWriteLong 5-54
PCIPluginIOReadByte 5-55
PCIPluginIOReadWord 5-56
PCIPluginIOReadLong 5-57
PCIPluginIOWriteByte 5-58
PCIPluginIOWriteWord 5-59

C H A P T E R 5

Contents 5-3
Draft. Apple Computer, Inc. 4/18/96

PCIPluginIOWriteLong 5-60
PCIPluginIntAckReadByte 5-61
PCIPluginIntAckReadWord 5-62
PCIPluginIntAckReadLong 5-63
PCIPluginSpecialCycleWriteLong 5-64
PCIPluginInitDeviceEntry 5-65
PCIPluginGetIOBase 5-66
PCIPluginFinalize 5-67

PCI Bridge Plug-in Routines 5-68
PCIBridgePluginInitialize 5-68
DefaultBridgeEnabler 5-69
DefaultBridgeDisabler 5-70
DefaultBridgeDispatcher 5-71
PCIBridgePluginFinalize 5-72

C H A P T E R 5

5-4 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 5

Constants and Data Types 5-5
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Family Reference 5

Constants and Data Types 5

PCI Assigned-Address Property Structure 5

This structure is used for accessing the PCI assigned-address property.

struct PCIAssignedAddress {

PCIAddressSpaceFlags addressSpaceFlags;

PCIBusNumber busNumber;

PCIDeviceFunction deviceFunctionNumber;

PCIRegisterNumber registerNumber;

UnsignedWide address;

UnsignedWide size;

};

typedef PCIAssignedAddress *PCIAssignedAddressPtr;

typedef struct PCIAssignedAddress PCIAssignedAddress;

Field descriptions
addressSpaceFlags The I/O information common to all devices.
busNumber The number that identifies the bus. This is a value in the 0

through 255 range.
deviceFunctionNumber

The number that identifies the function.It can be a number
in the range 0 through 7.

registerNumber The number that identifies the configuration register
number.

address Physical base address for adress space.
size Size of the address space.

C H A P T E R 5

PCI Family Reference

5-6 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Address Space Flags 5

The PCI family provides the PCIAddressSpaceFlags data type and enumerated
values for defining PCI address space. A value of type PCIAddressSpaceFlagsis
part of the the PCIAssignedAddress structure (page 5-5).

enum {

kPCIRelocatableSpace = 0x80,

kPCIPrefetchableSpace = 0x40,

kPCIAliasedSpace = 0x20,

kPCIAddressTypeCodeMask= 0x03,

kPCIConfigSpace = 0,

kPCIIOSpace = 1,

kPCI32BitMemorySpace = 2,

kPCI64BitMemorySpace = 3

};

typedef UInt8 PCIAddressSpaceFlags;

Enumerator descriptions

kPCIRelocatableSpace
The physically accessible memory space may be relocated
within defined memory space or I/O space.

kPCIPrefetchableSpace
The address space can be read ahead in a FIFO scheme
without disturbing the operation of the device.

kPCIAliasedSpace The address space can be duplicated an readdressed.
kPCIAddressTypeCodeMask

The address space can be identified as one of four region
types.

kPCIConfigSpace The address space is Configuration space. This value fits in
kPCIAddressTypeCodeMask

kPCIIOSpace The address space is I/O space. This value fits in
kPCIAddressTypeCodeMask.

kPCI32BitMemorySpace
The address space is 32-bit memory space. This value fits
in kPCIAddressTypeCodeMask.

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-7
Draft. Preliminary. Apple Computer, Inc. 4/18/96

kPCI64BitMemorySpace
The address space is 64-bit memory space. This value fits
in kPCIAddressTypeCodeMask.

PCIDeviceFunction 5

The PCI family defines the PCIDeviceFunction data type and enumerated
values for device function types. The PCIDeviceFunction type is used in the
structure type PCIAssignedAddress (page 5-5).

enum {
kPCIDeviceNumberMask= 0x1F,
kPCIFunctionNumberMask= 0x07

};

typedef UInt8 PCIDeviceFunction;

Enumerator descriptions

kPCIDeviceNumberMask
The bit mask field that identifies a device. Each bus can
support a maximum of 32 devices.

kPCIFunctionNumberMask
The bit mask field that identifies the function. It can be a
value 0 through 7.

PCIBusNumber 5

The PCI family defines the PCIBusNumber data type. This data type defines the
number of a specific PCI bus. The bus can be one of 256 architectural buses. The
PCIBusNumber type is used in the structure type PCIAssignedAddress (page 5-5).

typedef UInt8 PCIBusNumber;

C H A P T E R 5

PCI Family Reference

5-8 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIRegisterNumber 5

The PCI family defines the PCIRegisterNumber data type. This data type defines
the number of a specific configuration register. The register can be one of 256
registers. The PCIRegisterNumber type is used in the structure type
PCIAssignedAddress (page 5-5)

typedef UInt8 PCIRegisterNumber;

PCIConfigAddress 5

The PCI family defines the PCIConfigAddress data type. This data type defines
the offset into the configuration space registers. This register is used when the
driver needs to access configuration space. The PCIConfigAddress type is used
in the configuration space cycle functions described in “PCI Kernel Cycle
Routines” (page 5-23) and the PCIConfigAddressGetDeviceData function
(page 5-46).

typedef LogicalAddress PCIConfigAddress;

PCIIOAddress 5

The PCI family defines the PCIIOAddress data type. This data type defines the
offset into the PCI I/O space. This register is used when the driver needs to
accessPCI I/O space. The PCIIOAddress type is used in the I/O space cycle
functions described in “PCI Kernel Cycle Routines” (page 5-23).

typedef LogicalAddress PCIIOAddress;

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-9
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOIteratorData Structure 5

The PCI family defines the PCIIOIteratorData data type to provide information
about the devices known to the PCI family.

struct PCIIOIteratorData {
IOCommonInfo IOCI;
char Name[32];
UInt32 Domain;
UInt32 BusNumber;
UInt32 ConfigAddress;
};

typedef struct PCIIOIteratorData PCIIOIteratorData;

Field descriptions
IOCI The I/O information common to all devices.
Name The size of the store, expressed in bytes.
Domain The number that identifies an electrically separate PCI

bus. A domain can support up to 256 buses.
BusNumber The number that identifies the bus. This is a value in the 0

through 255 range.
ConfigAddress Phyical base address for Configuration space.

PCI Plugin Header 5
struct PCIPluginHeader {

UInt32 version;

UInt32 reserved1;

UInt32 reserved2;

UInt32 reserved3;

PluginLoadID thisPluginLoadID;

};

typedef PCIPluginHeader *PCIPluginHeaderPtr;

typedef struct PCIPluginHeader PCIPluginHeader;

C H A P T E R 5

PCI Family Reference

5-10 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

Field descriptions
version The interface version. This value must be statically

initialized with the PCI header interface version
(page 5-12).

reserved1 Reserved for future use.
reserved2 Reserved for future use.
reserved3 Reserved for future use.
thisPluginLoadId The load ID for the plug-in that has been loaded and

initialized. The PCI family stores the load ID for the
plug-in in this field.

PCI Bridge Descriptor 5

The PCI bridge descriptor definition defines the template that should be used
when developing a driver to be plugged-in to the PCI family. The table that
uses this structure must be exported and it must be called the
PluginDispatchTable for the PCI family.

struct PCIBridgeDescriptor {

PCIPluginHeader InterfaceHeader;

DriverDescription * TheDomainDriverDescription;

InitializeFuncPtr InitializeFunc;

DefaultEnablerFuncPtr DefaultBridgeEnablerFunc;

DefaultDisablerFuncPtr DefaultBridgeDisablerFunc;

DefaultDispatcherFuncPtr DefaultBridgeDispatcherFunc;

FinalizeFuncPtr FinalizeFunc;

};

typedef PCIBridgeDescriptor *PCIBridgeDescriptorPtr;

typedef struct PCIBridgeDescriptor PCIBridgeDescriptor;

Field descriptions
InterfaceHeader The interface version. This value must be statically

initialized with the PCI header interface version
(page 5-12).

TheDomainDriverDescription
The defined structure used by the driver family.

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-11
Draft. Preliminary. Apple Computer, Inc. 4/18/96

InitializeFunc Function called to initialize the device and bring it to a
known state. See PCIBridgePluginInitialize function
(page 5-68).

DefaultBridgeEnablerFunc
Function called to invoke the bridge interrupt enabler
function. See the DefaultBridgeEnabler function (page 5-69)

DefaultBridgeDisablerFunc
Function called to invoke the bridge interrupt disabler
function. See the DefaultBridgeDisabler function
(page 5-70)

DefaultBridgeDispatcherFunc
Function called to invoke the transversal interrupt service
routine. See the DefaultBridgeDispatcher function
(page 5-71)

FinalizeFunc Function called to shut down plug-in bridge devices.t See
PCIBridgePluginFinalize function (page 5-72).

PCI Bridge Variables 5

The PCI family defines the DefaultBridgeVariables data type to be used for
interrupt dispatching. The interrupt handling is provided by a bridge plug-in
or multifunction plug-in.

struct DefaultBridgeVariables {

UInt32 lastEntryIntCount;

InterruptMemberNumber lastServicedMember;

UInt32 totalMembersScanned;

UInt32 totalMemberCount;

UInt8 * memberEnableFlags;

};

typedef DefaultBridgeVariables *DefaultBridgeVariablesPtr;

C H A P T E R 5

PCI Family Reference

5-12 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

typedef struct DefaultBridgeVariables DefaultBridgeVariables;

Field descriptions
lastEntryIntCount To be provided later.
lastServiceMember To be provided later.
totalMembersScanned

To be provided later.
totalMemberCount To be provided later.
memberEnableFlags To be provided later.

PCI Header Interface Version 5

The PCI family defines a constant for tracking the PCI family interface release.
The plug-in will use this value to indicate the functionality that it supports. As
versions of the PCI family are released, the number of enumerated values will
increase. Currently, only one release has been made and therefore, this
enumerator indicates that this is the initiali release.

enum {

kPCIPluginVersion1000= 0x01000000

};

PCI Error Codes 5

Not available at this time.

PCI Reg Property Structure 5

The PCI family defines PCIRegProperty structure as subordinate PCI device
tree 'reg' property structure definition. It is used in conjunction with the Name
Registry property found in RegEntryRef. For more information about the “reg”
property, refer to the IEEE 1275-1994 specification on PCI Bus Binding.

struct PCIRegProperty {

UInt32 physicalHigh;

UInt32 physicalMiddle;

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-13
Draft. Preliminary. Apple Computer, Inc. 4/18/96

UInt32 physicalLow;

UInt32 propAddress;

UInt32 propLength;

};

typedef PCIRegProperty *PCIRegPropertyPtr;

typedef struct PCIRegProperty PCIRegProperty;

Field descriptions
physicalHigh See “PCI Encoded-Int Structure Constants” (page 5-19) for

possible values.
physicalMiddle To be provided later.
physicalLow To be provided later.
propAddress To be provided later.
propLength To be provided later.

PCI Bus Range Property Structure 5

The PCi family defines the PCIBusRangeProperty structure to describe existing
buses on a particular domain. This definition conforms to IEEE 1275-1994
Specification for PCI Bus Binding.

struct PCIBusRangeProperty {

UInt32 lowBus;

UInt32 highBus;

};

typedef PCIBusRangeProperty *PCIBusRangePropertyPtr;

typedef struct PCIBusRangeProperty PCIBusRangeProperty;

Field descriptions
lowBus To be provided later.
highBus To be provided later.

C H A P T E R 5

PCI Family Reference

5-14 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Device Table Entry Header 5

PCI family defines PCIDeviceTableEntryHeader structure which is used by the
PCI family for probing. This strucutre may also be passed in to a plug-in to
separate cycles.

struct PCIDeviceTableEntryHeader {

RegEntryRef entry;

char name[32];

UInt32 pciDomain;

UInt32 pciBusNumber;

UInt32 pciSecondBusNumber;

UInt32 accessType;

PCIRegPropertyPtr regProperty;

ByteCount regPropertyCount;

IOAddress ioBase;

LogicalAddress rangeBase;

};

typedef PCIDeviceTableEntryHeader *PCIDeviceTableEntryHeaderPtr;

typedef struct PCIDeviceTableEntryHeader PCIDeviceTableEntryHeader;

Field descriptions
entry The device-specific identifier.
name[32] The device name.
pciDomain The domain to which the device belongs.
pciBusNumber The bus number.
pciSecondBusNumber In case of a bridge device, identifies the subordinate bus

number.
accessType Specifies whether the access is forwarded or not fowarded

configuration cycles.
regProperty Pointer to the “reg” property.
regPropertyCount The number of “reg” properties associated with the device.

A maximum of six properties can be supported.
ioBase PCI base I/O address.
rangeBase Device base I/O address.

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-15
Draft. Preliminary. Apple Computer, Inc. 4/18/96

Typedefs for Bridge Plugin Interface 5

The PCI provides type definitions that must be used for bridge plug-in
prototyping.

typedef OSStatus (*InitializeFuncPtr)(void);

typedef void (*DefaultBridgeEnablerFuncPtr)(InterruptSetMember
setIDMember, void *refCon);

typedef InterruptSourceState
(*DefaultBridgeDisablerFuncPtr)(InterruptSetMember setIDMember, void
*refCon);

typedef InterruptMemberNumber
(*DefaultBridgeDispatcherFuncPtr)(InterruptSetMember setIDMember, void
*refCon, UInt32 theIntCount);

typedef OSStatus (*FinalizeFuncPtr)(void);

PCI Device Table Entry 5

The PCi family provides a subordinate PCI device description table entry
structure definition in which the plug-in can store specific information.

struct PCIDeviceTableEntry {

struct PCIDeviceTableEntry *nextDeviceEntry;

PCIDeviceTableEntryHeader header;

PCIBridgeDescriptorPtr BridgePlugin;

UInt32 pluginSpecificStuff[16];

};

typedef PCIDeviceTableEntry *PCIDeviceTableEntryPtr;

typedef struct PCIDeviceTableEntry PCIDeviceTableEntry;

Field descriptions
nextDeviceEntry Pointer to the next device-specific identifier.
header The device table entry header used by the PCI family for

probing.
BridgePlugin Pointer to the bridge plug-in.
pluginSpecificStuff

Location where the plug-in can store specific information.

C H A P T E R 5

PCI Family Reference

5-16 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

Typedefs for Plugin Interfaces 5

The PCI family provides type definitions that can be used for plug-in interfaces.

typedef OSStatus (*ConfigReadByteFuncPtr)(ConfigAddress configAddr,
UInt8 *value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*ConfigReadWordFuncPtr)(ConfigAddress configAddr,
UInt16 *value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*ConfigReadLongFuncPtr)(ConfigAddress configAddr,
UInt32 *value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*ConfigWriteByteFuncPtr)(ConfigAddress configAddr,
UInt8 value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*ConfigWriteWordFuncPtr)(ConfigAddress configAddr,
UInt16 value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*ConfigWriteLongFuncPtr)(ConfigAddress configAddr,
UInt32 value, PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOReadByteFuncPtr)(IOAddress ioAddr, UInt8 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOReadWordFuncPtr)(IOAddress ioAddr, UInt16 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOReadLongFuncPtr)(IOAddress ioAddr, UInt32 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOWriteByteFuncPtr)(IOAddress ioAddr, UInt8 value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOWriteWordFuncPtr)(IOAddress ioAddr, UInt16 value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IOWriteLongFuncPtr)(IOAddress ioAddr, UInt32 value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IntAckReadByteFuncPtr)(UInt8 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IntAckReadWordFuncPtr)(UInt16 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*IntAckReadLongFuncPtr)(UInt32 *value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*SpecialCycleWriteLongFuncPtr)(UInt32 value,
PCIDeviceTableEntryPtr pciDeviceHead);

typedef OSStatus (*InitDeviceEntryFuncPtr)(PCIDeviceTableEntryPtr
deviceDescriptor);

typedef OSStatus (*GetIOBaseFuncPtr)(PCIDeviceTableEntryPtr
deviceDescriptor, IOAddress *ioBase);

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-17
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Control Descriptor 5

The PCI family provides a template for the regular Dispatch table that can be
used by plug-ins.

struct PCIControlDescriptor {

PCIPluginHeader InterfaceHeader;

PCIDeviceTableEntry PCIDeviceDescriptor;

DriverDescription *TheDomainDriverDescription;

InitializeFuncPtr InitializeFunc;

ConfigReadByteFuncPtr ConfigReadByteFunc;

ConfigReadWordFuncPtr ConfigReadWordFunc;

ConfigReadLongFuncPtr ConfigReadLongFunc;

ConfigWriteByteFuncPtr ConfigWriteByteFunc;

ConfigWriteWordFuncPtr ConfigWriteWordFunc;

ConfigWriteLongFuncPtr ConfigWriteLongFunc;

IOReadByteFuncPtr IOReadByteFunc;

IOReadWordFuncPtr IOReadWordFunc;

IOReadLongFuncPtr IOReadLongFunc;

IOWriteByteFuncPtr IOWriteByteFunc;

IOWriteWordFuncPtr IOWriteWordFunc;

IOWriteLongFuncPtr IOWriteLongFunc;

IntAckReadByteFuncPtr IntAckReadByteFunc;

IntAckReadWordFuncPtr IntAckReadWordFunc;

IntAckReadLongFuncPtr IntAckReadLongFunc;

SpecialCycleWriteLongFuncPtr SpecialCycleWriteLongFunc;

InitDeviceEntryFuncPtr InitDeviceEntryFunc;

GetIOBaseFuncPtr GetIOBaseFunc;

FinalizeFuncPtr FinalizeFunc;

};

typedef struct PCIControlDescriptor PCIControlDescriptor;

typedef PCIControlDescriptor *PCIControlDescriptorPtr;

C H A P T E R 5

PCI Family Reference

5-18 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Bridge Plugin Definitions 5
typedef void (*DefaultEnablerFuncPtr)(InterruptSetMember
setIDMember,void *refCon);

typedef InterruptSourceState
(*DefaultDisablerFuncPtr)(InterruptSetMember setIDMember, void *refCon);

typedef InterruptMemberNumber
(*DefaultDispatcherFuncPtr)(InterruptSetMember setIDMember, void *info,
UInt32 theIntCount);

typedef OSStatus (*InitializeFuncPtr)(RegEntryRef *entry);

typedef OSStatus (*FinalizeFuncPtr)(RegEntryRef *entry);

General Purpose PCI Masks 5

The PCI family provides enumerated values that can be used to check values in
the configuration address.

enum {

kPCIconfigAddrReservedValue= 0x00000000,

kPCIconfigAddrReservedMask= 0xFF000000,

kPCIconfigAddrBusNumberMask= 0x00FF0000,

kPCIconfigAddrDeviceNumberMask = 0x0000F800,

kPCIconfigAddrFunctionNumberMask = 0x00000700,

kPCIconfigAddrRegisterNumberMask = 0x000000FC,

kPCIconfigAddrAccessTypeMask = 0x00000001,

kPCIregisterByteMask= 0x00000003,

kPCIregisterNotByteMask= 0xFFFFFFFC,

kPCIregisterWordMask= 0x00000002

};

C H A P T E R 5

PCI Family Reference

Constants and Data Types 5-19
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Encoded-Int Structure Constants 5

The PCI family provides enumerated values that describe the contents of the
physicalHigh field in the PCI “reg” property structure.

enum {

kPCIPhysicalHighRelocatableMask = 0x80000000,

kPCIPhysicalHighRelocatable= 0x80000000,

kPCIPhysicalHighPrefetchableMask = 0x40000000,

kPCIPhysicalHighPrefetchable = 0x40000000,

kPCIPhysicalHighAliasedMask= 0x20000000,

kPCIPhysicalHighAliased= 0x20000000,

kPCIPhysicalHighSpaceCodeMask = 0x03000000,

kPCIPhysicalHighSpaceCodeConfig = 0x00000000,

kPCIPhysicalHighSpaceCodeIO= 0x01000000,

kPCIPhysicalHighSpaceCodeMemory = 0x02000000,

kPCIPhysicalHighSpaceCode64Bit = 0x03000000,

kPCIPhysicalHighBusMask= 0x00FF0000,

kPCIPhysicalHighDeviceMask= 0x0000F800,

kPCIPhysicalHighDevice0= 0x00000000,

kPCIPhysicalHighDevice1= 0x00000800,

kPCIPhysicalHighDevice2= 0x00001000,

kPCIPhysicalHighDevice3= 0x00001800,

kPCIPhysicalHighDevice4= 0x00002000,

kPCIPhysicalHighDevice5= 0x00002800,

kPCIPhysicalHighDevice6= 0x00003000,

kPCIPhysicalHighDevice7= 0x00003800,

kPCIPhysicalHighDevice8= 0x00004000,

kPCIPhysicalHighDevice9= 0x00004800,

kPCIPhysicalHighDevice10= 0x00005000,

kPCIPhysicalHighDevice11= 0x00005800,

kPCIPhysicalHighDevice12= 0x00006000,

kPCIPhysicalHighDevice13= 0x00006800,

kPCIPhysicalHighDevice14= 0x00007000,

kPCIPhysicalHighDevice15= 0x00007800,

C H A P T E R 5

PCI Family Reference

5-20 Constants and Data Types

Draft. Preliminary. Apple Computer, Inc. 4/18/96

kPCIPhysicalHighDevice16= 0x00008000,

kPCIPhysicalHighDevice17= 0x00008800,

kPCIPhysicalHighDevice18= 0x00009000,

kPCIPhysicalHighDevice19= 0x00009800,

kPCIPhysicalHighDevice20= 0x0000A000,

kPCIPhysicalHighDevice21= 0x0000A800,

kPCIPhysicalHighDevice22= 0x0000B000,

kPCIPhysicalHighDevice23= 0x0000B800,

kPCIPhysicalHighDevice24= 0x0000C000,

kPCIPhysicalHighDevice25= 0x0000C800,

kPCIPhysicalHighDevice26= 0x0000D000,

kPCIPhysicalHighDevice27= 0x0000D800,

kPCIPhysicalHighDevice28= 0x0000E000,

kPCIPhysicalHighDevice29= 0x0000E800,

kPCIPhysicalHighDevice30= 0x0000F000,

kPCIPhysicalHighDevice31= 0x0000F800,

kPCIPhysicalHighFunctionMask = 0x00000700,

kPCIPhysicalHighFunction0= 0x00000000,

kPCIPhysicalHighFunction1= 0x00000100,

kPCIPhysicalHighFunction2= 0x00000200,

kPCIPhysicalHighFunction3= 0x00000300,

kPCIPhysicalHighFunction4= 0x00000400,

kPCIPhysicalHighFunction5= 0x00000500,

kPCIPhysicalHighFunction6= 0x00000600,

kPCIPhysicalHighFunction7= 0x00000700,

kPCIPhysicalHighRegisterMask = 0x000000FF,

kPCIPhysicalHighRegisterVendorID = 0x00000000,

kPCIPhysicalHighRegisterDeviceID = 0x00000002,

kPCIPhysicalHighRegisterCommand = 0x00000004,

kPCIPhysicalHighRegisterRevisionID = 0x00000008,

kPCIPhysicalHighRegisterCacheLineSIze = 0x0000000C,

kPCIPhysicalHighRegisterHeaderType = 0x0000000E,

kPCIPhysicalHighRegisterBaseAddress = 0x00000010,

C H A P T E R 5

PCI Family Reference

Byte Swapping Routines 5-21
Draft. Preliminary. Apple Computer, Inc. 4/18/96

kPCIPhysicalHighRegisterBridgeBusInfo = 0x00000018,

kPCIPhysicalHighRegisterCardbusCIS = 0x00000028,

kPCIPhysicalHighRegisterSubsystemVendorID = 0x0000002C,

kPCIPhysicalHighRegisterExpansionROMBase = 0x00000030,

kPCIPhysicalHighRegisterInterruptLine = 0x0000003C

};

PCI Cycle AccessType 5

These access types are used for forwarding (0) or not fowarding (1)
configuration cycles.

enum {

kPCIaccessType0= 0,

kPCIaccessType1= 1

};

Byte Swapping Routines 5

The Macintosh system firmware provides two routines that can be used to
swap bytes between big-endian an little-endian data formats. The routines are
as follows:

■ EndianSwap16Bit

■ EndianSwap32Bit

These routines are defined in the PCI.h file.

C H A P T E R 5

PCI Family Reference

5-22 Byte Swapping Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

EndianSwap16Bit 5

Swaps bytes between big-endian and little-endian format.

extern pascal UInt16 EndianSwap16Bit (UInt16 data16)

data16 2-byte input

DISCUSSION

EndianSwap16Bit returns a byte swapped version of its input values and in this
way, converts big-endian data to or from little-endian data.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space, user space, and interrupt level.

EndianSwap32Bit 5

Swaps bytes between big-endian and little-endian format.

extern pascal UInt32 EndianSwap32Bit (UInt32 data32)

data32 4-byte input

DISCUSSION

EndianSwap32Bit returns a byte swapped version of its input values and in this
way, converts big-endian data to or from little-endian data.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-23
Draft. Preliminary. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space, user space, and interrupt level.

PCI Kernel Cycle Routines 5

The Some PCI cards may require PCI cycles other than ordinary memory access
cycles. The Expansion Bus Manager provide routines that create other PCI
cycle types such as the following:

The PCI Kernel routines provide the same functionality as the Expansion Bus
Manager routines. These routines create PCI cycle types other than the
ordinary memory access cycles. These cycle types are

■ Configuration space cycles

■ I/O space cycles

■ Interrupt acknowledge cycles

■ Special cycles

These routines are defined in the PCIKernel.h file.

PCIConfigReadByte 5

Reads a byte value at a specific address in PCI configuration space.

extern OSStatus PCIConfigReadByte(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt8 *value);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-24 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the returned value.

function result A result code. The result code noerr indicates that
PCIConfigReadByte successfully read the byte value at the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node is not
in the device tree.

DISCUSSION

The PCIConfigReadByte function reads the byte at the address in PCI
configuration space for the device node specified by entry. The byte in PCI
configuration space that is to be read is determined by the offset specified by
configAddr. The byte value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-25
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigReadWord 5

Reads a word value at a specific address in PCI configuration space.

extern OSStatus PCIConfigReadWord(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt16 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the returned 16-bit value as it would appear on the
PCI bus. The function peforms the necessary byte swapping.

function result A result code. The result code noerr indicates that
PCIConfigReadWord successfully read the word value at the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node is not
in the device tree.

DISCUSSION

The PCIConfigReadWord function reads the word at the address in PCI
configuration space for the device node specified by entry. The word in PCI
configuration space that is to be read is determined by the offset specified by
configAddr. The word value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-26 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigReadLong 5

Reads a long word value at a specific address in PCI configuration space.

extern OSStatus PCIConfigReadLong(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt32 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the returned 32-bit value as it would appear on the
PCI bus. The function peforms the necessary byte swapping.

function result A result code. The result code noerr indicates that
PCIConfigReadLong successfully read the long word value at the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node is not
in the device tree.

DISCUSSION

The PCIConfigReadLong function reads the long word at the address in PCI
configuration space for the device node specified by entry. The long word in
PCI configuration space that is to be read is determined by the offset specified
by configAddr. The long word value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-27
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigWriteByte 5

Writes a byte to a specific address in PCI configuration space.

extern OSStatus PCIConfigWriteByte(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt8 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value The 8-bit value.

function result A result code. The result code noerr indicates that
PCIConfigWriteByte successfully wrote the 8-bit value to the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIConfigWriteByte function writes an 8-bit value to an address in PCI
configuration space for the device node specified by entry. The address in PCI
configuration space that is to be written to is determined by the offset specified
by configAddr. The 8-bit value that is written is specified by value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-28 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigWriteWord 5

Writes a word to a specific address in PCI configuration space.

extern OSStatus PCIConfigWriteWord(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt16 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value The 16-bit value. The function performs the necessary byte
swapping.

function result A result code. The result code noerr indicates that
PCIConfigWriteWord successfully wrote the 16-bit value to the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIConfigWriteWord function writes a 16-bit value to an address in PCI
configuration space for the device node specified by entry. The address in PCI
configuration space that is to be written to is determined by the offset specified
by configAddr. The 16-bit value that is written is specified by value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-29
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigWriteLong 5

Writes a long word to a specific address in PCI configuration space.

extern OSStatus PCIConfigWriteLong(
RegEntryRef *entry,
PCIConfigAddress configAddr,
UInt32 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

configAddr The configuration address offset. It can be a value between 0
and 255.

value The 32-bit value. The function performs the necessary byte
swapping.

function result A result code. The result code noerr indicates that
PCIConfigWriteLong successfully wrote the 32-bit value to the
specified address in PCI configuration space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIConfigWriteLong function writes a 32-bit value to an address in PCI
configuration space for the device node specified by entry. The address in PCI
configuration space that is to be written to is determined by the offset specified
by configAddr. The 32-bit value that is written is specified by value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-30 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOReadByte 5

Reads a byte value at a specific address in PCI I/O space.

extern OSStatus PCIIOReadByte(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt8 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value Pointer to the returned 8-bit value.

function result A result code. The result code noerr indicates that
PCIIOReadByte successfully read the 8-bit value at the specified
address in PCI I/O space. The result code nrInvalidNodeErr
indicates that the specified device node identifier is not in the
device tree.

DISCUSSION

The PCIIOReadByte function reads an 8-bit value at an address in PCI I/O space
for the device node pointed to by entry. The address in PCI I/O space that is to
be read is the sum of the assigned-addresses base address of the device and the
offset to the I/O address specified by ioAddr. The 8-bit value that is read is
returned in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-31
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOReadWord 5

Reads a word value at a specific address in PCI I/O space.

extern OSStatus PCIIOReadWord(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt16 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value Pointer to the returned 16-bit value.

function result A result code. The result code noerr indicates that
PCIIOReadWord successfully read the 16-bit value at the specified
address in PCI I/O space. The result code nrInvalidNodeErr
indicates that the specified device node identifier is not in the
device tree.

DISCUSSION

The PCIIOReadWord function reads a 16-bit value at an address in PCI I/O space
for the device node pointed to by entry. The address in PCI I/O space that is to
be read is the sum of the assigned-addresses base address of the device and the
offset to the I/O address specified by ioAddr. The 16-bit value that is read is
returned in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-32 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOReadLong 5

Reads a long word value at a specific address in PCI I/O space.

extern OSStatus PCIIOReadLong(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt32 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value Pointer to the returned 32-bit value.

function result A result code. The result code noerr indicates that
PCIIOReadLong successfully read the 32-bit value at the specified
address in PCI I/O space. The result code nrInvalidNodeErr
indicates that the specified device node identifier is not in the
device tree.

DISCUSSION

The PCIIOReadLong function reads a 32-bit value at an address in PCI I/O space
for the device node pointed to by entry. The address in PCI I/O space that is to
be read is the sum of the assigned-addresses base address of the device and the
offset to the I/O address specified by ioAddr. The 32-bit value that is read is
returned in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-33
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOWriteByte 5

Writes a byte value to a specific address in PCI I/O space.

extern OSStatus PCIIOWriteByte(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt8 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value The 8-bit value to be written.

function result A result code. The result code noerr indicates that
PCIIOWriteByte successfully wrote the 8-bit value to the
specified address in PCI I/O space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIIOWriteByte function writes an 8-bit value to an address in PCI I/O
space for the device node pointed to by entry. The address in PCI I/O space
that is to be written to is the sum of the assigned-addresses base address of the
device and the offset to the I/O address specified by ioAddr. The 8-bit value
that is to be written is specified in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-34 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOWriteWord 5

Writes a word value to a specific address in PCI I/O space.

extern OSStatus PCIIOWriteWord(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt16 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value The 16-bit value to be written as it would appear on the PCI
bus. THe function performs the necessary byte swapping.

function result A result code. The result code noerr indicates that
PCIIOWriteWord successfully wrote the 16-bit value to the
specified address in PCI I/O space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIIOWriteWord function writes a 16-bit value to an address in PCI I/O
space for the device node pointed to by entry. The address in PCI I/O space
that is to be written to is the sum of the assigned-addresses base address of the
device and the offset to the I/O address specified by ioAddr. The 16-bit value
that is to written is specified in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-35
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIOWriteLong 5

Writes a long word value to a specific address in PCI I/O space.

extern OSStatus PCIIOWriteLong(
RegEntryRef *entry,
PCIIOAddress ioAddr,
UInt32 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

ioAddr The I/O address offset.

value The 32-bit value to be written as it would appear on the PCI
bus. The function performs the necessary byte swapping.

function result A result code. The result code noerr indicates that
PCIIOWriteLong successfully wrote the 32-bit value to the
specified address in PCI I/O space. The result code
nrInvalidNodeErr indicates that the specified device node
identifier is not in the device tree.

DISCUSSION

The PCIIOWriteLong function writes a 32-bit value to an address in PCI I/O
space for the device node pointed to by entry. The address in PCI I/O space
that is to be written to is the sum of the assigned-addresses base address of the
device and the offset to the I/O address specified by ioAddr. The 32-bit value
that is to written is specified in value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-36 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIntAckReadByte 5

Reads a byte value that resulted from a PCI interrupt acknowledge cycle.

extern OSStatus PCIIntAckReadByte(
RegEntryRef *entry,
UInt8 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

value Pointer to a buffer that will hold the 8-bit value read.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-37
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIntAckReadWord 5

Reads a word value that resulted from a PCI interrupt acknowledge cycle.

extern OSStatus PCIIntAckReadWord(
RegEntryRef *entry,
UInt16 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

value Pointer to a buffer that will hold the 16-bit value read.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-38 PCI Kernel Cycle Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIIntAckReadLong 5

Reads a long word value that resulted from a PCI interrupt acknowledge cycle.

extern OSStatus PCIIntAckReadLong(
RegEntryRef *entry,
UInt32 *value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

value Pointer to a buffer that will hold the 32-bit value read.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI Kernel Cycle Routines 5-39
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCISpecialCycleWriteLong 5

Writes a long word value to the PCI bus that contains the specified device node.

extern OSStatus PCISpecialCycleWriteLong(
RegEntryRef *entry,
UInt32 value);

entry Pointer to an identifier that identifies a device node in the
Name Registry.

value 32-bit value to be written.

DISCUSSION

Typically, computers running Mac OS 8 that implement a PCI bus do not use
special cycles. Special cycle functionality is usually provided to maintain
microprocessor cache coherency across the PCI bus.

Special cycles on the PCI bus are always long word write actions.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

5-40 PCI I/O Iterator Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCISpecialCycleBroadcastLong 5

Writes a long word value to all the PCI buses in the system.

extern OSStatus PCISpecialCycleBroadcastLong (UInt32 value);

value The 32-bit value to be written.

DISCUSSION

Typically, computers running Mac OS 8 that implement a PCI bus do not use
special cycles. Special cycle functionality is usually provided to maintain
microprocessor cache coherency across the PCI bus.

Special cycles on the PCI bus are always long word write actions.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

PCI I/O Iterator Routines 5

These routines are used to use the PCIIOIterator data structure to get devices
known to the PCI family.

These routines are defined in the PCIKernel. h file.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 5

PCI Family Reference

PCI I/O Iterator Routines 5-41
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIGetDeviceData 5

Returns a list of descriptions for all devices known to the PCI family.

extern OSStatus PCIGetDeviceData(
ItemCount requestItemCount,
ItemCount *totalItemCountPtr,
PCIIOIteratorData *List);

requestItemCount
The number of device descriptions that can be entered into the
buffer that was provided by the client.

totalItemCountPtr
The number of device descriptions found and placed into the
buffer that was provided by the client. If the value is zero, no
devices are known to the PCI family.

List Pointer to the buffer that was provided by the client. This buffer
is to be filled with device description information.

function result A result code. The result code noerr indicates that
PCIGetDeviceData successfully returned a list of device
descriptions into the client provided buffer.

DISCUSSION

The PCIGetDeviceData function returns a list of descriptions of all devices
known to the PCI family. The descriptions are placed in a client provided
buffer pointed to by List. Each device description is contained in a
PCIOIteratorData structure. For information about this data structure, see
“PCIIOIteratorData Structure” (page 5-9).

C H A P T E R 5

PCI Family Reference

5-42 PCI I/O Iterator Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and user space.

PCINameGetDeviceData 5

Returns a list of descriptions for all devices with the specified name known to
the PCI family .

extern OSStatus PCINameGetDeviceData(
char *Name,
ItemCount reqeustItemCount,
ItemCount *totalItemCountPtr,
PCIIOIteratorData *List);

Name A pointer to the C-string that represents the name of the device
for which the PCI family is to be searched.

requestItemCount
The number of device descriptions that can be entered into the
buffer that was provided by the client.

totalItemCountPtr
The number of device descriptions found and placed into the
buffer that was provided by the client. If the value is zero, no
devices of the specified name are known to the PCI family.

List Pointer to the buffer that was provided by the client. This buffer
is to be filled with device description information meeting the
name search criterion.

function result A result code. The result code noerr indicates that
PCINameGetDeviceData successfully returned a list of device
descriptions into the client provided buffer.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

PCI I/O Iterator Routines 5-43
Draft. Preliminary. Apple Computer, Inc. 4/18/96

DISCUSSION

The PCINameGetDeviceData function returns a list of descriptions of all devices
with the specified name known to the PCI family. The descriptions are placed
in the client provided buffere pointed to by List. Each device description is
contained in a PCIOIteratorData structure. For information about this data
structure, see “PCIIOIteratorData Structure” (page 5-9).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and user space.

PCIDomainGetDeviceData 5

Returns a list of descriptions for all devices from the specified domain known
to the PCI family .

extern OSStatus PCIDomainGetDeviceData(
UInt32 Domain,
ItemCount reqeustItemCount,
ItemCount *totalItemCountPtr,
PCIIOIteratorData *List);

Domain A value representing an electrically separate set of PCI busses.

requestItemCount
The number of device descriptions that can be entered into the
buffer that was provided by the client.

totalItemCountPtr
The number of device descriptions found and placed into the
buffer that was provided by the client. If the value is zero, no
devices from the specified domain are known to the PCI family.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

5-44 PCI I/O Iterator Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

List Pointer to the buffer that was provided by the client. This buffer
is to be filled with device description information meeting the
domain search criterion.

function result A result code. The result code noerr indicates that
PCIDomainGetDeviceData successfully returned a list of device
descriptions into the client provided buffer.

DISCUSSION

The PCIDomainGetDeviceData function returns a list of descriptions of all
devices from the specified domain known to the PCI family. The descriptions
are placed in the client provided buffere pointed to by List. Each device
description is contained in a PCIOIteratorData structure. For information about
this data structure, see “PCIIOIteratorData Structure” (page 5-9).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and user space.

PCIBusNumberGetDeviceData 5

Returns a list of descriptions for all devices from the specified PCI bus known
to the PCI family .

extern OSStatus PCIBusNumberGetDeviceData(
UInt32 BusNumber,
ItemCount reqeustItemCount,
ItemCount *totalItemCountPtr,
PCIIOIteratorData *List);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

PCI I/O Iterator Routines 5-45
Draft. Preliminary. Apple Computer, Inc. 4/18/96

BusNumber A value representing a unique PCI bus.

requestItemCount
The number of device descriptions that can be entered into the
buffer that was provided by the client.

totalItemCountPtr
The number of device descriptions found and placed into the
buffer that was provided by the client. If the value is zero, no
devices from the specified PCI bus are known to the PCI family.

List Pointer to the buffer that was provided by the client. This buffer
is to be filled with device description information meeting the
bus number search criterion.

function result A result code. The result code noerr indicates that
PCIBusNumberGetDeviceData successfully returned a list of
device descriptions into the client provided buffer.

DISCUSSION

The PCIBusNumberGetDeviceData function returns a list of descriptions of all
devices from the specified PCI bus known to the PCI family. The descriptions
are placed in the client provided buffer pointed to by List. Each device
description is contained in a PCIOIteratorData structure. For information about
this data structure, see “PCIIOIteratorData Structure” (page 5-9).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and user space.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

5-46 PCI I/O Iterator Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIConfigAddressGetDeviceData 5

Returns a description of the device at the specified PCI configuration address.

extern OSStatus PCIConfigAddressGetDeviceData(
PCIConfigAddress ConfigAddress,
ItemCount requestItemCount,
ItemCount *totalItemCountPtr,
PCIIOIteratorData *List);

ConfigAddress
A value representing a unique PCI configuration address. This
address must be made up of the bus number, device function
number, and register number as defined in the
PCIAssigedAddress structure. For information about this data
structure, see “PCIIOIteratorData Structure” (page 5-9)

requestItemCount
The number of device descriptions that can be entered into the
buffer that was provided by the client.

totalItemCountPtr
The number of device descriptions found and placed into the
buffer that was provided by the client. This value should never
be greater than one. If the value is zero, no devices at the
specified address are known to the PCI family.

List Pointer to the buffer that was provided by the client. This buffer
is to be filled with device description information meeting the
configuration address search criterion.

function result A result code. The result code noerr indicates that
PCIConfigAddressGetDeviceData successfully returned a device
description into the client provided buffer.

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-47
Draft. Preliminary. Apple Computer, Inc. 4/18/96

DISCUSSION

The PCIConfigAddressGetDeviceData function returns a description of the
devices at the specified PCI configuration address known to the PCI family.
The description is placed in the client provided buffer pointed to by List. The
device description is contained in a PCIOIteratorData structure. For
information about this data structure, see “PCIIOIteratorData Structure”
(page 5-9).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and user space.

PCI Plugin Interface Routines 5

The PCI plugin interface routines can be used to interface between a PCI plugin
and the PCI family expert.

PCIPluginInitialize 5

Initializes the PCI host bridge device.

extern OSStatus PCIPluginInitialize (RegEntryRef *entry);

function result A result code. The result code noerr indicates that
PCIPluginInitialize successfully initialized the host bridge
device.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

5-48 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

DISCUSSION

This function is always the first function called within this plugin. If this
function is called and the PCI bridge device has been initialized already, the
function may be empty. If however, the PCI device has not been initiliazed by
this function, be sure to clear any prior state of the PCI bridge device. In
addition, upon completion of the call, the PCI bridge device must be in a
known state of device operation.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space, and interrupt level, but must not block.

PCIPluginConfigReadByte 5

Generates a configuration read byte cycle addressed to a device.

extern OSStatus PCIPluginConfigReadByte(
ConfigAddress configAddr,
UInt8 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the location in which to return the read value.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-49
Draft. Preliminary. Apple Computer, Inc. 4/18/96

function result A result code. The result code noerr indicates that
PCIPluginConfigReadByte successfully read the byte value at the
specified address in the device configuration space. The result
code nrInvalidNodeErr indicates that the specified device was
not found.

DISCUSSION

The PCIPluginConfigReadByte function generates a read byte cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The byte value that is read is returned in
*value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

PCIPluginConfigReadWord 5

Generates a configuration read word cycle addressed to a device.

extern OSStatus PCIPluginConfigReadWord(
ConfigAddress configAddr,
UInt16 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the location in which to return the read value.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-50 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginConfigReadWord successfully read the word value at
the specified address in the device configuration space. The
result code nrInvalidNodeErr indicates that the specified device
was not found.

DISCUSSION

The PCIPluginConfigReadWord function generates a read word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The word value that is read is returned in
*value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

PCIPluginConfigReadLong 5

Generates a configuration read long word cycle addressed to a device.

extern OSStatus PCIPluginConfigReadLong(
ConfigAddress configAddr,
UInt32 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-51
Draft. Preliminary. Apple Computer, Inc. 4/18/96

configAddr The configuration address offset. It can be a value between 0
and 255.

value Pointer to the location in which to return the read value.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginConfigReadLong successfully read the long word value
at the specified address in the device configuration space. The
result code nrInvalidNodeErr indicates that the specified device
was not found.

DISCUSSION

The PCIPluginConfigReadLong function generates a read long word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The long word value that is read is
returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-52 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginConfigWriteByte 5

Generates a configuration write byte cycle addressed to a device.

extern OSStatus PCIPluginConfigWriteByte(
ConfigAddress configAddr,
UInt8 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

configAddr The configuration address offset. It can be a value between 0
and 255.

value The value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginConfigWriteByte successfully writes the byte value at
the specified address in the device configuration space. The
result code nrInvalidNodeErr indicates that the specified device
was not found.

DISCUSSION

The PCIPluginConfigWriteByte function generates a write byte cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The byte value that is written is value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-53
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginConfigWriteWord 5

Generates a configuration write word cycle addressed to a device.

extern OSStatus PCIPluginConfigWriteWord(
ConfigAddress configAddr,
UInt16 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

configAddr The configuration address offset. It can be a value between 0
and 255.

value The word value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginConfigWriteWord successfully writes the word value
at the specified address in the device configuration space. The
result code nrInvalidNodeErr indicates that the specified device
was not found.

DISCUSSION

The PCIPluginConfigWriteWord function generates a write word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The word value that is written is value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-54 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginConfigWriteLong 5

Generates a configuration write long word cycle addressed to a device.

extern OSStatus PCIPluginConfigWriteLong(
ConfigAddress configAddr,
UInt32 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

configAddr The configuration address offset. It can be a value between 0
and 255.

value The 32-bit value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginConfigWriteLong successfully writes the long word
value found at the specified address in the device configuration
space. The result code nrInvalidNodeErr indicates that the
specified device was not found.

DISCUSSION

The PCIPluginConfigWriteLong function generates a write long word cycle for
the device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The configAddr is an offset
into the device configuration space. The long word value that is written is
value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-55
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOReadByte 5

Generates an I/O read byte cycle addressed to a device.

extern OSStatus PCIPluginIOReadByte(
IOAddress ioAddr,
UInt8 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value Pointer to the location in which to return the read value.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOReadByte successfully read the byte value at the
specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOReadByte function generates a I/O read byte cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The byte value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-56 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOReadWord 5

Generates an I/O read word cycle addressed to a device.

extern OSStatus PCIPluginIOReadWord(
IOAddress ioAddr,
UInt16 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value Pointer to the location in which to return the 16-bit read value.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOReadWord successfully read the word value at the
specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOReadWord function generates a I/O read word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The word value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-57
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOReadLong 5

Generates an I/O read long word cycle addressed to a device.

extern OSStatus PCIPluginIOReadLong(
IOAddress ioAddr,
UInt32 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value Pointer to the location in which to return the 32-bit read value.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOReadLong successfully read the long word value at
the specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOReadLong function generates a I/O read long word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The long word value that is read is returned in *value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-58 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOWriteByte 5

Generates an I/O write byte cycle addressed to a device.

extern OSStatus PCIPluginIOWriteByte(
IOAddress ioAddr,
UInt8 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value The byte value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOWriteByte successfully wrote the byte value to the
specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOWriteByte function generates a I/O write byte cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The byte value that is to be written is value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-59
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOWriteWord 5

Generates an I/O write word cycle addressed to a device.

extern OSStatusPCIPluginIOWriteWord(
IOAddress ioAddr,
UInt16 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value The 16-bit value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOWriteWord successfully wrote the word value to the
specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOWriteWord function generates a I/O write word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The word value that is to be written is value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-60 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIOWriteLong 5

Generates an I/O write long word cycle addressed to a device.

extern OSStatus PCIPluginIOWriteLong(
IOAddress ioAddr,
UInt32 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

ioAddr The I/O address offset. It can be a value between 0 and 255.

value The 32-bit value to be written.

pciDeviceEntry
Pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginIOWriteLong successfully wrote the long word value to
the specified address in the device I/O space. The result code
nrInvalidNodeErr indicates that the specified device was not
found.

DISCUSSION

The PCIPluginIOWritelong function generates an I/O write word cycle for the
device described by pciDeviceEntry. For more information about this data
structure, see “PCI Device Table Entry” (page 5-15). The IOAddr is an offset into
the device I/O space. The long word value that is to be written is value.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-61
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIntAckReadByte 5

Generates a PCI interrupt acknowledge read byte cycle addressed to the
specified device domain.

extern OSStatus PCIPluginIntAckReadByte(
UInt8 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

value Pointer to alocation at which to return the 8-bit value.

pciDeviceEntry
Pointer to a PCI specific device description data structure.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt leve, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-62 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIntAckReadWord 5

Generates a PCI interrupt acknowledge read word cycle addressed to the
specified device domain.

extern OSStatus PCIPluginIntAckReadWord(
UInt16 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

value Pointer to alocation at which to return the 16-bit value.

pciDeviceEntry
Pointer to a PCI specific device description data structure.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-63
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginIntAckReadLong 5

Generates a PCI interrupt acknowledge read long word cycle addressed to the
specified device domain.

extern OSStatus PCIPluginIntAckReadLong(
UInt32 *value,
PCIDeviceTableEntryPtr pciDeviceEntry);

value Pointer to a location at which to return the 32-bit value.

pciDeviceEntry
Pointer to a PCI specific device description data structure.

DISCUSSION

Mac OS 8 does not use PCI interrupt acknowledge cycles. This functionality is
provided to allow a driver to create a cycle for a PCI device, such as an
8259-style interrupt controller, which requires such a cycle.

Interrupt acknowledge cylces for PCI are always read actions. The target device
node must be a single node capable of responding to interrupt acknowledge
cycles.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-64 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginSpecialCycleWriteLong 5

Generates a special cycle write long word value to the device domain.

extern OSStatus PCIPluginSpecialCycleWriteLong(
UInt32 value,
PCIDeviceTableEntryPtr pciDeviceEntry);

value The 32-bit value that is to be written onto the PCI bus.

pciDeviceEntry
Pointer to a PCI specific device description data structure.

DISCUSSION

Typically, computers running Mac OS 8 that implement a PCI bus do not use
special cycles. Special cycle functionality is usually provided to maintain
microprocessor cache coherency across the PCI bus.

Special cycles on the PCI bus are always long word write actions.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-65
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginInitDeviceEntry 5

Initializes a PCI specific device description data structure.

extern OSStatus PCIPluginInitDeviceEntry (PCIDeviceTableEntryPtr
deviceDescriptor);

deviceDescriptor
A pointer to the PCI specific device description data structure.

function result A result code. The result code noerr indicates that
PCIPluginInitDeviceEntry successfully initialized the device
description data structure.

DISCUSSION

This function is always the first function called on the device description data
structure with this same device descriptor.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space or itnerrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-66 PCI Plugin Interface Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginGetIOBase 5

Returns the I/O space base address for the device domain.

extern OSStatus PCIPluginGetIOBase(
PCIDeviceTableEntryPtr deviceDescriptor,
IOAddress *ioBase);

deviceDescriptor
Pointer to the PCI specific device description data structure.

ioBase Pointer to the location where the I/O base address of this
domain is to be returned.

function result A result code. The result code noerr indicates that
PCIPluginGetIOBase successfully retrieves the I/O base address
for the device domain. .

DISCUSSION

This function communicates to the PCI family where I/O space begins.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Plugin Interface Routines 5-67
Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIPluginFinalize 5

Disables the PCI host bridge device.

extern OSStatus PCIPluginFinalize (void);

function result A result code. The result code noerr indicates that
PCIPluginFinalize successfully disabled the host bridge device.

DISCUSSION

Upon completion, this function must disable the PCI host bridge device. If the
PCI host bridge device does not need to be disabled, that is, it has already been
disabled, this function may be empty. If however, the PCI device has not been
disabled by this function, the device must not assume the state in which the
device was left prior to the calling of this function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level, but must not block.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-68 PCI Bridge Plug-in Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCI Bridge Plug-in Routines 5

The PCI bridge plug-in routines can be used by a bridge plug-in to interface to
the PCI expert. The bridge plugin provides functionality for PCI-to-PCI
configurations that use for PCI bridge devices.

PCIBridgePluginInitialize 5

Initializes PCI bridge devices.

extern OSStatus PCIBridgePluginInitialize (RegEntryRef * entry);

function result A result code. The result code noerr indicates that
PCIBridgePluginGetInitialize successfully enabled the PCI
bridge devices.

DISCUSSION

This function enables PCI bridge devices which allow comunication across a
PCI bridge.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space only.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

PCI Family Reference

PCI Bridge Plug-in Routines 5-69
Draft. Preliminary. Apple Computer, Inc. 4/18/96

DefaultBridgeEnabler 5

Invokes the bridge interrupt enabler routine.

extern void DefaultBridgeEnabler(
InterruptSetMember setIDMember,
void *refCon);

setIDMember Member set ID of the interrupt source tree (IST) member
requesting service. The IST member is retrieved from the Name
Registry..

refCon 32-bit reference constant registered with the IST member.

DISCUSSION

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-70 PCI Bridge Plug-in Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

DefaultBridgeDisabler 5

Invokes the bridge disabler routine.

extern InterruptSourceState DefaultBridgeDisabler(
InterruptSetMember setIDMember,
void *refCon);

setIDMember Member set ID of the interrupt source tree (IST) member
requesting service. The IST member is retrieved from the Name
Registry.

refCon 32-bit reference constant registered with the IST member.

DISCUSSION

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

PCI Bridge Plug-in Routines 5-71
Draft. Preliminary. Apple Computer, Inc. 4/18/96

DefaultBridgeDispatcher 5

Invokes transversal interrupt service routine (ISR).

extern InterruptMemberNumber DefaultBridgeDispatcher(
InterruptSetMember setIDMember,
void *refCon,
UInt32 theIntCount);

setIDMember Member set ID of the IST member requesting service.

refCon 32-bit reference constant registered with the IST member.

theIntCount Count of the number of interrupts processed, including the
current one.

DISCUSSION

This function does not handle the actual interrupt but routes interrupts that are
to be serviced.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space and hardware interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No Yes

C H A P T E R 5

PCI Family Reference

5-72 PCI Bridge Plug-in Routines

Draft. Preliminary. Apple Computer, Inc. 4/18/96

PCIBridgePluginFinalize 5

Shuts down PCI bridge devices.

extern OSStatus PCIBridgePluginFinalize (RegEntryRef * entry);

function result A result code. The result code noerr indicates that
PCIBridgePluginFinalize successfully shut down the PCI
bridge devices.

DISCUSSION

This function shuts down PCI bridge devices and disables communication
across a PCI bridge.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Can be called from kernel space only.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 6

Contents 6-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 About the Nubus Family

NuBus Expert 6-5
Discovering NuBus Cards 6-6
Establishing Logical Addresses 6-6
Initializing Its Interrupt Structure 6-6
Advertising Device Information to NuBus Drivers 6-7

“assigned-addresses” Property 6-7
“reg” Property 6-8
“name” Property 6-8
“AAPL,address” Property 6-8
“AAPL,slot” Property 6-8
“driver-ist” Property 6-8
“driver-description” Property 6-9

Advertising NuBus Devices to High-Level Families 6-9
NuBus Server 6-9
NuBus Plug-in 6-9
NuBus Library 6-9
Slot Manager Library 6-10

C H A P T E R 6

6-2 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 6

6-3
Draft. Apple Computer, Inc. 4/18/96

About the Nubus Family 6

This chapter introduces the NuBus family. It describes the NuBus family
architecture and it software components. This chapter is intended for
developers who will be writing NuBus plug-ins or applications that control
NuBus devices.

The NuBus family provides driver management services for NuBus devices
running in the Mac OS 8 environment. The NuBus family is a low-level family
that conforms to the I/O architecture requirements by providing the following
software components:

■ NuBus expert

■ NuBus server

■ NuBus Library (Not available in this release)

■ Slot Manager Application Library, called Slots (Not available in this release)

The NuBus family implements the single-task activation model. In this
activation model, the NuBus family receives requests placed into queues by the
NuBus library or Slot Manager library in user space and receives interrupts
from the plug-ins in kernel space. For more information about the single-task
activation model, see “About the I/O Architecture” (page 1-3).

Figure 6-1 shows the Nubus family architecture.

C H A P T E R 6

About the Nubus Family

6-4
Draft. Apple Computer, Inc. 4/18/96

Figure 6-1 Nubus Family Software Diagram

NuBus
expert

NuBus
server

User mode

Function call

Microkernel message

Function call

Function call

Function call

Supervisor mode

NuBus
library

ApplicationLegacy
application

NuBus
plug-in

Slot
Manager

library

C H A P T E R 6

About the Nubus Family

NuBus Expert 6-5
Draft. Apple Computer, Inc. 4/18/96

NuBus Expert 6

The NuBus expert manages physical NuBus devices within Mac OS 8 on a
particular bus. The NuBus expert conforms to the Macintosh native driver
model which defines a packaging format for generic and family drivers. The
driver package for NuBus is a CFM code fragment that resides in Macintosh
ROM.

NuBus is a static bus. As a result, the NuBus expert characteristics are
established at start-up and do not change until the next time the system is
started.

Once the NuBus expert successfully initializes or updates the NuBus
environment, the NuBus expert terminates. However, while the NuBus expert
exists, it is does the following:

■ Discovers NuBus cards at start-up

■ Establishes logical addresses for standard slot and super slot addresses

■ Initializes its interrupt structure

■ Advertises device information to NuBus drivers through Name Registry
properties

■ Advertises NuBus devices to High-Level families through Name Registry
RegEntryRefs entries

■ Matches file-system based NuBus drivers to NuBus devices

C H A P T E R 6

About the Nubus Family

6-6 NuBus Expert

Draft. Apple Computer, Inc. 4/18/96

Discovering NuBus Cards 6

The NuBus expert attempts to discover all installed cards. The NuBus expert
checks whether a Slot ROM exists at a particular slot base address. If a slot
ROM is discovered, the NuBus checks for the following two slot resources:

■ BoardId

■ sRsrcType

If the NuBus expert cannot locate both of these resources for a card, the NuBus
expert ignores the card because the Mac OS 8 environment will not recognize
the card. The NuBus expert logs a message, indicating an incompatible card, to
the System Logging Manager.

Establishing Logical Addresses 6

After the NuBus expert discovers a card, it negotiates address mappings for its
slots, the NuBus expert discovers NuBus cards. The NuBus expert establishes
logical addresses for standard slot and super slot addresses. The NuBus expert
allocates address mapping for its particular bus implementation. The NuBus
expert then requests a logical to physical address mapping from the memory
allocator for each slot space address range. Every NuBus card found is
allocated 16 MB of logical addresses for standard slot space and 256 MB for
super slot space. These assignments can be found in the “AAPL,address”
property of the card’s RegEntryRef entry.

If a mapping request fails for either a standard slot or super slot, a fatal
hardware configuration error is logged to the System Logging Manager.

Logical address assignments for NuBus may be different from its physical
address assignments. Do not attempt to construct a logical address by using a
card’s slot number. Always obtain your card’s logical address using the
“AAPL,address” property.

Initializing Its Interrupt Structure 6

Once the NuBus expert negotiates address mappings for it slots, the NuBus
expert creates an interrupt set by calling the CreateInterruptSet function. By
creating an interrupt set, the NuBus family can handle a bus hardware
interrupt structure specific to its implementation.

C H A P T E R 6

About the Nubus Family

NuBus Expert 6-7
Draft. Apple Computer, Inc. 4/18/96

During the probe process, that is, while the NuBus expert uses its IOIterator to
discover all NuBus cards, the NuBus expert creates an InterruptSetMember
element for each NuBus card discovered. After all cards are discovered, the
NuBus expert installs its interrupt handler into the InterruptSetMember
element passed in the “driver-ist” property. This master interrupt handler is
represented by the NuBus InterruptSet.

Advertising Device Information to NuBus Drivers 6

If the NuBus expert locates a card with the BoardId and sRsrcType resource, the
NuBus expert creates a RegEntryRef entry for the card within the device tree in
the Name Registry.

Note
The NuBus expert creates the RegEntryRef entry as a child
of the RegEntryRef entry it was passed.

The NuBus expert attaches specific device information properties to the
RegEntryRef entry before making it available to the system. The specific device
information properties that describe the device are as follows:

■ “assigned-addresses”

■ “reg”

■ “name”

■ “AAPL,address”

■ “AAPL,slot”

■ “driver-ist”

■ “driver-description”

Once the NuBus expert constructs the RegEntryRef entry and attaches the
device properties, it installs the RegEntryRef entry into the device tree of the
Name Registry. Once installed, the NuBus family advertises the existence of the
card to other families.

“assigned-addresses” Property 6

The “assigned-addresses” property contains the physical slot address
assignment for a NuBus card. The physical address might not be the same as
the logical address.

C H A P T E R 6

About the Nubus Family

6-8 NuBus Expert

Draft. Apple Computer, Inc. 4/18/96

“reg” Property 6

The “reg” property contains the physical slot address assignments which are
identical to the “assigned-addresses” property.

“name” Property 6

The “name” property is used to match NuBus devices to the appropriate
plug-in. The value of the “name” property is derived from the Nubus board ID.
This board ID is the Slot ROM board ID value that is one of two minimum
required slot resources that must be present in order for the NuBus expert to
consider the NuBus card compatible.

The format for this property is:

“AAPL,nubus-boardXXXX”

where XXXX is your card’s BoardId value represented as 4-digit hexadecimal
ASCII that is, leading zeroes and lowercase hexadecimal digits.

“AAPL,address” Property 6

The “AAPL, address” property contains the logical slot address assignment for
a NuBus card. The logical address might not be the same as the physical
address. You should use the “assigned-addresses” property to obtain the
physical address for a NuBus card.

“AAPL,slot” Property 6

The “AAPL, slot” property contains the physical slot number into which the
NuBus card has been installed. The valid value is in the range 0x9 through 0xE.
This value can be used to compute the physical slot address but not the logical
slot assignment.

“driver-ist” Property 6

The “driver-ist” property contains the Interrupt Source Tree (IST) member and
set value used to install interrupts. This property provides the NuBus driver an
InterruptSetMember structure used to install the card’s interrupt handler.

C H A P T E R 6

About the Nubus Family

NuBus Server 6-9
Draft. Apple Computer, Inc. 4/18/96

“driver-description” Property 6

The “driver-description” property contains the driver description structure.
This property is used to match drivers with device, set-up and maintain a
driver’s run-time environment, and declare a driver’s supported services. The
structure contains the nameInfoStr element. This element is used to match the
name property in the Name Registry.

Advertising NuBus Devices to High-Level Families 6

The NuBus expert also advertises the NuBus devices it has found to high-level
families. The NuBus expert does this by placing a RegEntryRef entry in the
Name Registry device tree for each card it has found. The high-level families,
such as the Open Transport family, can then access these NuBus devices.

NuBus Server 6

The NuBus server services client requests for access to slot ROM information.
The NuBus server does this on behalf of applications via the Slot Manager
application Library (called Slots) and on behalf of plug-ins via NuBus Library.

NuBus Plug-in 6

Not available in this release.

NuBus Library 6

Not available in this release.

C H A P T E R 6

About the Nubus Family

6-10 Slot Manager Library

Draft. Apple Computer, Inc. 4/18/96

Slot Manager Library 6

The Slot Manager library is provided for compatibility reasons only. These
functions will be called by applications. Because the I/O architecture provides
address protection for tasks running in kernel space, the Slot Manager library
no longer supports some functions previously supported in the Slot Manager.
The Slot Manager functions are only a subset of the ones Slot Manager
provides for earlier releases.

These routines are defined in the Slots.h file.

Note
This is not currently implemented.

C H A P T E R 7

Contents 7-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Block Storage Family Reference

About The Block Storage Family 7-10
Stores 7-13
Partitions 7-16
Containers 7-17
Connections 7-17
Plug-ins 7-17

Mapping Plug-ins 7-17
Partitioning Plug-ins 7-19
Container Plug-ins 7-22

Plug-in Discovery and Loading 7-22
Block Storage Family Activation Models 7-23

Activation Model For Mapping Plug-ins 7-24
Activation Model For Partitioning and Container Plug-ins 7-27

Block Storage Client Constants and Data Types 7-27
Block Storage Byte Count Type 7-28

BSByteCount 7-28
Block Storage ID Types 7-28

BSStoreID 7-28
BSStoreConnID 7-29
BSContainerID 7-29
BSContainerConnID 7-29

Block Storage Reference Types 7-30
BSStoreRef 7-30
BSContainerRef 7-30
BSMappingPlugInRef 7-30
BSPartitioningPlugInRef 7-31
BSContainerPlugInRef 7-31

C H A P T E R 7

7-2 Contents

Draft. Apple Computer, Inc. 4/18/96

BSBlockListRef 7-31
BSBlockListDescriptorRef 7-32

Navigation Types 7-33
BSStoreGetSelector 7-33
BSStoreIOIteratorData 7-34
BSStoreIteratorID 7-34
BSStorePropertyInstance 7-35
BSContainerIteratorID 7-35
BSContainerPropertyInstance 7-35

Store Property Names 7-36
Container Property Names 7-36
Store Format Types 7-37

BSStoreFormatType 7-37
BSFormatIndex 7-38
BSStoreFormatInfo 7-38

Maximum Formats Constant 7-39
Store Component Types 7-39

BSComponentType 7-39
BSStoreComponent 7-40

Accessibility State Type 7-41
BSAccessibilityState 7-41

Open Options Types 7-42
BSStoreOpenOptions 7-42
BSContainerOpenOptions 7-43

Store Information Structure 7-44
BSStoreInfo 7-44

Container Information Structure 7-47
BSContainerInfo 7-47

Partition Descriptor Structure 7-48
BSPartitionDescriptor 7-48

Block Storage Plug-in Constants and Data Types 7-49
I/O Constants 7-50
Basic Block Storage Types For Use By Plug-ins 7-50

BSStorePtr 7-50
BSContainerPtr 7-50
BSIORequestBlockPtr 7-50

Block List Descriptor Types 7-51
BSBlockListDescriptorInfo 7-51

C H A P T E R 7

Contents 7-3
Draft. Apple Computer, Inc. 4/18/96

BSBlockListWhence 7-52
Confidence Level Types 7-53

BSMPIConfidenceLevel 7-53
BSCPIConfidenceLevel 7-54

Status and Error Types 7-55
BSIOStatus 7-55
BSIOErrors 7-56
BSErrorList 7-56

Store Component Type 7-57
BSStoreMPIComponent 7-57

Store Information Structures 7-57
BSStoreMPIInfo 7-58
BSStorePPIInfo 7-59

Container Information Type 7-60
BSContainerPIInfo 7-60

Plug-in Interface Version Constant 7-61
Plug-in Interface Structures 7-61

BlockStoragePlugInInfo 7-61
BSStoreMappingOps 7-62
BSStorePartitioningOps 7-63
BSContainerPolicyOps 7-64

Mapping Plug-in-Defined Function Types 7-65
BSMappingPIExamine 7-65
BSMappingPIInit 7-66
BSMappingPICleanup 7-66
BSMappingPIIO 7-66
BSMappingIOCompletion 7-67
BSMappingPIFlush 7-67
BSMappingPIAddComponent 7-68
BSMappingPIGoToState 7-68
BSMappingPIFormatMedia 7-69
BSMappingPIGetInfo 7-69
BSMPIBackgroundTask 7-70

Partitioning Plug-in-Defined Function Types 7-70
BSPartitioningPIExamine 7-70
BSPartitioningPIInit 7-71
BSPartitioningPICleanup 7-71
BSPartitioningPIInitializeMap 7-72

C H A P T E R 7

7-4 Contents

Draft. Apple Computer, Inc. 4/18/96

BSPartitioningPIGetInfo 7-72
BSPartitioningPIGetEntry 7-72
BSPartitioningPISetEntry 7-73

Container Plug-in-Defined Function Types 7-73
BSContainerPIExamine 7-74
BSContainerPIInit 7-74
BSContainerPICleanup 7-75
BSContainerPIAddContainer 7-75
BSContainerPIGoToState 7-75
BSContainerPIGetInfo 7-76
BSContainerPIBackgroundTask 7-76
BSCPIBackgroundTask 7-77

Block Storage Client Functions 7-77
Opening and Closing a Connection to a Store 7-78

BSStoreOpen 7-78
BSStoreConnClose 7-80

Building a Block List 7-80
BSBlockListCreate 7-81
BSBlockListAddRange 7-82
BSBlockListFinalize 7-84
BSBlockListDelete 7-85

Reading From a Store 7-86
BSStoreConnRead 7-86
BSStoreConnReadAsync 7-88
BSStoreConnReadSG 7-89
BSStoreConnReadSGAsync 7-91

Writing To a Store 7-92
BSStoreConnWrite 7-92
BSStoreConnWriteAsync 7-93
BSStoreConnWriteSG 7-95
BSStoreConnWriteSGAsync 7-96
BSStoreConnFlush 7-98

Setting the Accessibility State For a Store 7-98
BSStoreConnGoToAccessibilityState 7-99

Navigating a Store Hierarchy 7-100
BSStoreGetDeviceData 7-100
BSStoreIteratorCreate 7-101
BSStoreIteratorDispose 7-102

C H A P T E R 7

Contents 7-5
Draft. Apple Computer, Inc. 4/18/96

BSStoreIteratorEnter 7-103
BSStoreIteratorExit 7-104
BSStoreIteratorRestartChildren 7-105
BSStoreIteratorRestartParent 7-106
BSStoreIteratorNextChild 7-107
BSStoreIteratorNextParent 7-109
BSStoreGetPropertySize 7-110
BSStoreGetProperty 7-111
BSStoreFindByID 7-112

Creating and Configuring a Store 7-113
BSStoreCreate 7-114
BSStoreConnDeleteAndClose 7-115
BSStoreConnAssociateMappingPlugin 7-116
BSStoreConnAssociatePartitioningPlugin 7-117
BSStoreConnSetPartitionInfo 7-118
BSStoreConnGetPartitionInfo 7-119
BSStoreConnMapPartition 7-120
BSStoreConnMapDevice 7-122
BSStoreConnGetInfo 7-123
BSStoreConnGetComponents 7-124
BSStoreConnFormat 7-125
BSStoreConnPublish 7-126
BSStoreConnUnpublish 7-127

Opening and Closing a Connection to a Container 7-128
BSContainerOpen 7-128
BSContainerConnClose 7-129

Setting the Accessibility State For a Container 7-130
BSContainerConnGoToAccessibilityState 7-130

Navigating a Container Hierarchy 7-131
BSContainerIteratorCreate 7-131
BSContainerIteratorDispose 7-132
BSContainerIteratorEnter 7-133
BSContainerIteratorExit 7-134
BSContainerIteratorRestartChildren 7-135
BSContainerIteratorNextChild 7-136
BSContainerGetPropertySize 7-137
BSContainerGetProperty 7-138

Creating and Configuring a Container 7-139

C H A P T E R 7

7-6 Contents

Draft. Apple Computer, Inc. 4/18/96

BSContainerCreate 7-140
BSContainerConnDeleteAndClose 7-141
BSContainerConnGetInfo 7-142
BSContainerConnInsertContainer 7-143
BSContainerConnSetDevice 7-143
BSContainerConnAssociatePlugIn 7-144
BSContainerConnPublish 7-145
BSContainerConnUnpublish 7-146

Working With a Block List Descriptor 7-147
BSBlockListDescriptorGetInfo 7-147
BSBlockListDescriptorGetExtent 7-148
BSBlockListAddSimpleDescriptor 7-150
BSBlockListDescriptorCheckBlockSizes 7-153
BSBlockListDescriptorCheckBounds 7-154
BSBlockListDescriptorSeek 7-155
BSBlockListDescriptorDelete 7-156

Block Storage Plug-in Functions 7-157
Exported By the Block Storage Family For All Plug-ins 7-158

BSStoreGetAccessibilityState 7-158
BSStoreGetMPIInfo 7-159
BSStoreGetPPIInfo 7-160

Exported by the Block Storage Family For Mapping Plug-ins 7-160
BSStoreRW 7-161
BSTrackOtherFamilyRequest 7-162
BSStoreFlush 7-164
BSMPIStartBackgroundTask 7-165
BSGetMappingPIPrivateData 7-166
BSSetMappingPIPrivateData 7-167
BSMPINotifyFamilyStoreChangedState 7-168
BSMPIRequestStoreStateChange 7-169
BSStoreGetNumComponents 7-170
BSStoreGetComponent 7-171

Exported by the Block Storage Family For Partitioning Plug-ins 7-172
BSStoreSetNumPartitions 7-172
BSGetPartitioningPIPrivateData 7-173
BSSetPartitioningPIPrivateData 7-174
BSStoreGetPPIConnection 7-174

Exported by the Block Storage Family For Container Plug-ins 7-176

C H A P T E R 7

Contents 7-7
Draft. Apple Computer, Inc. 4/18/96

BSCPIStartBackgroundTask 7-176
BSCPINotifyFamilyContainerChangedState 7-177
BSCPIRequestContainerStateChange 7-178

Mapping Plug-in-Defined Functions 7-179
MyBSMappingPIExamineFunc 7-179
MyBSMappingPIInitFunc 7-181
MyBSMappingPICleanupFunc 7-182
MyBSMappingPIIOFunc 7-183
MyBSMappingIOCompletionFunc 7-185
MyBSMappingPIFlushFunc 7-186
MyBSMappingPIAddComponentFunc 7-187
MyBSMappingPIGoToStateFunc 7-188
MyBSMappingPIFormatMediaFunc 7-189
MyBSMappingPIGetInfoFunc 7-190
MyBSMPIBackgroundTaskFunc 7-191

Partitioning Plug-in-Defined Functions 7-192
MyBSPartitioningPIExamineFunc 7-192
MyBSPartitioningPIInitFunc 7-193
MyBSPartitioningPICleanupFunc 7-193
MyBSPartitioningPIInitializeMapFunc 7-194
MyBSPartitioningPIGetInfoFunc 7-195
MyBSPartitioningPIGetEntryFunc 7-196
MyBSPartitioningPISetEntryFunc 7-197

Container Plug-in-Defined Functions 7-198
MyBSContainerPIExamineFunc 7-198
MyBSContainerPIInitFunc 7-199
MyBSContainerPICleanupFunc 7-200
MyBSContainerPIGoToStateFunc 7-201
MyBSContainerPIGetInfoFunc 7-202
MyBSContainerPIAddContainerFunc 7-203
MyBSContainerPIBackgroundTaskFunc 7-203
MyBSCPIBackgroundTaskFunc 7-204

Block Storage Result Codes 7-205
Basic Error Types 7-205
Block Storage Error ID 7-206
Block Storage Error Categories 7-206
Block Storage Family Errors 7-206
Block Storage Expert Errors 7-207

C H A P T E R 7

7-8 Contents

Draft. Apple Computer, Inc. 4/18/96

Mapping Plug-in Errors 7-207
Partitioning Plug-in Errors 7-208
Container Plug-in Errors 7-208
Block List Errors 7-208

Glossary 7-209

C H A P T E R 7

7-9
Draft. Apple Computer, Inc. 4/18/96

Block Storage Family Reference 7

This chapter briefly describes basic block storage family concepts and provides
a complete reference to its client and plug-in programming interfaces. The
block storage family is the part of Mac OS 8 that abstracts the characteristics of,
and operations on, large-capacity random-access physical storage devices such
as hard disk drives, CR-ROM drives, floppy disk drives, and so forth. Its
interface frees clients from needing specific information about individual
devices. The block storage family is new in Mac OS 8—it has no direct
counterpart in previous versions of Mac system software.

The block storage family mediates between clients seeking to access or
configure random-access physical storage devices on the one hand, and the
block storage plug-ins and other I/O families that actually control the devices
on the other. The block storage family itself does not directly configure or
access physical devices—it translates the client requests into calls to the
appropriate block storage plug-in.

The chief clients of the block storage family are the file systems family and its
plug-ins, which read and write data in files located on storage devices such as
hard disks. Other clients include applications such as disk utility programs that
configure storage devices. Any software—be it an application, another I/O
family, or a server program—that requests a service from the block storage
family is by definition a client.

If you develop client software, you need to understand the programming
interfaces provided by the block storage family for its clients, described in
“Block Storage Client Constants and Data Types” (page 7-27) and “Block
Storage Client Functions” (page 7-77).

Block storage plug-ins are the software modules that actually provide the
services requested by clients. Some block storage plug-ins know how to
manipulate a given physical device or set of devices. Device drivers for hard
disks connected via a SCSI bus are one example of this type of block storage
plug-in—they send read and write commands to a disk; drivers for RAID
devices are another. Other block storage plug-ins understand partitioning
formats and carry out requests to format a block storage device in specific ways.

Apple provides a base set of block storage plug-ins. You can develop additional
plug-ins that extend the set of devices and partitioning formats that can be
supported through the block storage family.

If you want to develop a block storage plug-in, you need to understand the
programming interfaces provided by the block storage family for its plug-ins,
described in “Block Storage Plug-in Constants and Data Types” (page 7-49) and

C H A P T E R 7

Block Storage Family Reference

7-10 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

“Block Storage Plug-in Functions” (page 7-157). Typically, you also need to
know the client programming interface of another I/O family, such as SCSI or
ATA, because the device that your plug-in manages is connected to the system
by a particular bus technology. You can find information about different I/O
families in other chapters in this book.

This chapter assumes that you are familiar with the architecture of the
Mac OS 8 microkernel and the I/O subsystem. For information on the
Mac OS 8 microkernel, see Microkernel and Core System Services. For information
on the I/O architecture, see “About the I/O Architecture” (page 1-3).

About The Block Storage Family 7

The block storage family supports distributed storage system configuration in
Mac OS 8—a given device contains all information about how it or its media
fits into the storage system. This approach enables "plug and play" as well as
"unplug and play"—that is, when attaching or removing a device, a user need
not modify a system configuration file.

Most applications won’t communicate directly with the block storage family;
instead they call the file systems family to read and write data in files stored on
random-access storage devices. Specialized applications like disk configuration
utilities, however, do call the block storage family directly. Figure 7-1 shows the
relationship of an application to the block storage family, other system software
components, and devices accessible through the block storage family.

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-11
Draft. Apple Computer, Inc. 4/18/96

Figure 7-1 Relationship of block storage family to other software

Application

File system family

SCSI
family

DOS
plug-in

HFS
plug-in

Block storage family

CD-ROM
plug-in

HD
plug-in

User mode software

SCI
plug-in
(SIM)

ATA
family

ATA
plug-in

Hardware

Hard diskCD-ROM drive

Supervisor mode software

C H A P T E R 7

Block Storage Family Reference

7-12 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

To understand a little more of the relationship between an application, the
block storage family, other software components of the I/O subsystem, and
system hardware, consider the following example and refer to Figure 7-1. An
application calls a File Manager function to read data from a file. The file is
stored on a CD-ROM disc formatted as an HFS volume. The disc is loaded in a
CD-ROM drive attached to the computer by a SCSI bus.

The File Manager forwards the application’s read request to the file systems
family. The file systems family calls one of its plug-ins—the one that
understands the HFS volume format.

The selected file systems plug-in calls a block storage function to read the data.
The block storage family forwards the request to one of its plug-ins—the one
that understands how to read data from the CD-ROM disc on which the file is
stored. The block storage plug-in is the device driver for the CD-ROM drive.

The block storage plug-in calls a SCSI family function to read the data. The
SCSI family forwards the request to one of its plug-ins—the one that controls
the SCSI bus to which the CD-ROM drive is connected. The SCSI plug-in is a
SCSI Interface Module (SIM). It carries the read request to the CD-ROM drive.

Once the data on the CD-ROM disc is accessed, it is returned to the application
along a reverse path through the families and plug-ins just described. As you
can see, the path of an I/O request can travel through several software
components. Each component offers well-defined services through its
programming interfaces.

To make good use of the programming interfaces provided by the block storage
family, you should understand the following:

■ stores

■ partitions

■ containers

■ connection-based services

Plug-in developers also need to know about the different types of plug-ins
defined by the block storage family, how plug-ins are discovered by Mac OS 8,
and the block storage activation model.

All of these topics are introduced the sections that follow.

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-13
Draft. Apple Computer, Inc. 4/18/96

Stores 7

A store is an abstraction for a physical storage device. A store can represent up
to 264 linearly addressable bytes of data, starting from address 0, that can be
randomly accessed on a physical device. Each store has its own read and write
block sizes. For a given store, the read and write block sizes can be different.

The addresses belonging to a store (0 to 264 or some part thereof) correspond to
addresses valid for a given physical device or another store. The relationship
between two stores or between a store and a physical device is called a
mapping—it defines what byte of data a store returns when it is asked for a
specific byte. The process of translating addresses between two stores or
between a store and a physical device is also called a mapping (or sometimes a
mapping operation).

A primary store maps to a physical device, such as a hard disk, that is beyond
the awareness and control of the block storage family. A derived store maps to
a primary store or another derived store. A store from which no other stores are
derived is referred to as a leaf store or a terminal store.

Derived stores can be nested. Figure 7-2 illustrates the relationship between a
primary store and two levels of derived stores. The block storage family
supports several levels of stores. A series of nested derived stores ends in a
primary store that maps to a physical device on which the data is actually
stored.

C H A P T E R 7

Block Storage Family Reference

7-14 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

Figure 7-2 Primary and derived stores

The block storage family automatically creates and maintains the store
hierarchy. You can programtically extend and modify the hierarchy.

The store hierarchy consists of nodes connected together in a general graph
structure, starting with a origin point called the root. All nodes in the hierarchy
can be described by a path through the hierarchy starting from the root.

Nodes directly connected to the root are children of the root. A child node can
in turn can have its own children, in which case it is also simultaneously a
parent node. Nodes that have no children are leaf nodes.

Each node in the store hierarchy, with the exception of the root, represents a
specific store. All nodes representing primary stores are children of the root. A
node representing a derived store is always a child node. It can also be a parent
node if other derived stores are created from it.

Each node has a set of properties, consisting of a property name and a property
value, that provide information about the store.

SCSI
family

Derived
store

Primary
store

Derived
store

Derived
store

Derived
store

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-15
Draft. Apple Computer, Inc. 4/18/96

A node is a member of a set. Members of a given set exist at the same level in
the hierarchy and share a relationship to another designated node or nodes.
The children of a given node constitute a set of sibling nodes. Unlike a strict
tree structure, in the store hierarchy a child node can have more than one
parent node. As a result, the set that includes the parent nodes for a given child
can have more than one member.

Further discussion in this chapter refers to parent stores and child stores. The
terms parent store and child store are relative to a given I/O request that flows
from one store to another. The terms are a shorthand way of referring to the
work performed by the mapping plug-ins for the two stores in processing the
I/O request.

A child store is the store whose mapping plug-in performs the address
translation for an I/O request and forwards the request to another store. The
mapping plug-in translates addresses that are valid in the store it manages (the
child store) into addresses that are valid in the store to which the mapping
plug-in forwards the I/O request (the parent store).

A parent store is the store whose mapping plug-in receives the forwarded I/O
request.

The condition of being a child store or a parent store is transient. If an I/O
request flows through several layers of stores, a store can be characterized as

■ a parent store when its mapping plug-in receives the request

■ a child store when its mapping plug-in translates the addresses in the I/O
and forwards the request to the next store

Because it maps to a physical device rather than another store, a primary store
cannot be a child store.

(Don’t confuse parent store and child store with the terms parent node and child
node, which refer to the relationhip between given nodes in the store hierarchy.)

If a derived store could have only a 1-to-1 mapping of bytes to its parent store,
derived stores would not be very interesting. However, a store can be mapped
to a portion of another store. Furthermore, multiple stores can be aggregated
together and mapped into a single store, allowing for software implementation
of devices like RAID. Figure 7-3 shows a store hierarchy resulting from a RAID
device. The two derived stores at the top of the figure each correspond to a
portion of the RAID store. The three primary stores at the bottom of the figure
are aggregated to form a single store—the RAID store.

C H A P T E R 7

Block Storage Family Reference

7-16 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

Figure 7-3 RAID store hierarchy

Partitions 7

A physical device has one or more partitions. A partition is a portion of a
device that can be treated as if it were a separate and distinct physical device—
in other words, a virtual device. Partitions are typically allocated for an
operating system, a file system, or a device driver. A partition map describes
how the device is split up (partitioned) into virtual devices.

In the block storage world, each store has one or more partitions. Because the
block storage family allows stores to be both subdivided and aggregated, the
relationship between stores is referred to as a mapping, but the place where the
mapping information is persistently stored is still referred to as a partition map.

Not all stores have partition maps. Only stores from which other stores are
derived contain a partition map. You can think of an entry in a partition map as

RAID
store

 Derived
store

SCSI
family

Primary
store

SCSI
family

Primary
store

SCSI
family

Primary
store

 Derived
store

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-17
Draft. Apple Computer, Inc. 4/18/96

a blueprint for a new derived store. Leaf stores consist of a single partition and
do not contain a partition map.

Most operating systems, in creating virtual devices corresponding to the
partitions described in a partition map, allow only a two-level hierarchy of
physical devices and virtual devices. The block storage family allows any store
to contain a partition map, resulting in a multilevel hierarchy of stores.

A given partitioning format is usually closely tied to a specific operating
system—few support multiple partitioning formats. The block storage family
eliminates this restriction. Using partitioning plug-ins, it can accomodate
multiple partitioning formats, each treated equally.

Containers 7

•••To be provided•••

Connections 7

A connection is the mechanism by which the block storage family provides
access to a store or a container. All operations that modify a store or a container
require a connection. You get a connection ID when you open a store or a
container.

You can open a connection for exclusive access. In that case, the block storage
family does not allow another connection until you close the exclusive
connection.

Plug-ins 7

The block storage family defines 3 types of plug-ins to provide services to block
storage clients: mapping plug-ins, partitioning plug-ins, and container plug-ins.

Mapping Plug-ins 7

Each store has one mapping plug-in, a sofware module that implements the
mapping between the store and its parent store or physical device. Figure 7-4
shows mapping plug-ins attached to stores.

C H A P T E R 7

Block Storage Family Reference

7-18 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

Figure 7-4 Mapping plug-ins

Mapping plug-ins, on getting an I/O request, translate the store addresses in
the I/O request into the corresponding addresses in the parent store or the
device.

A primary store mapping plug-in is typically more complex than a derived
store mapping plug-in. A primary store mapping plug-in is actually the device
driver for the physical device. It knows how to translate addresses in an I/O
request into operations on the physical device. For example, a SCSI hard-disk
mapping plug-in knows how to create a SCSI Command Descriptor Block and

SCSI
family

Derived
store

Primary
store

Mapping
plug-in

Mapping
plug-in

Mapping
plug-in

Mapping
plug-in

Mapping
plug-in

Derived
store

Derived
store

Derived
store

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-19
Draft. Apple Computer, Inc. 4/18/96

pass it in a function call to the SCSI family. A primary store mapping plug-in is
responsible for all interactions with other I/O families (if any).

Apple provides a derived store mapping plug-in that performs the address
translation needed in passing an I/O request to a parent store. You can provide
additional derived store mapping plug-ins to implement more elaborate
storage systems, such as RAID.

All mapping plug-ins have the same interface, described in “Block Storage
Plug-in Constants and Data Types” (page 7-49) and “Block Storage Plug-in
Functions” (page 7-157).

Partitioning Plug-ins 7

Partitioning plug-ins create, maintain, and extract information from a store’s
partition map.

Both primary and derived stores can have a partition map, and hence a
partitioning plug-in, associated with them. Leaf stores consist of a single
partition, do not contain a partition map, and do not have a partitioning
plug-in associated with them.

As an example, assume you have a SCSI hard disk partitioned into Mac OS and
DOS virtual devices. Figure 7-5 illustrates this example.

C H A P T E R 7

Block Storage Family Reference

7-20 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

Figure 7-5 Simple partition example

The bottom-most store in the figure is the primary store that maps to the SCSI
hard disk. It has a SCSI hard disk mapping plug-in associated with it. The
plug-in talks to the hard disk through the SCSI family. Because the store
contains a Mac format partition map, the Apple-provided Mac partitioning
plug-in is associated with it.

The two derived stores have the Apple-provided derived store mapping
plug-in associated with them. Neither has a partitioning plug-in since both are
leaf stores and neither has a partition map of its own.

Another interesting example is a software RAID-5 implementation. Figure 7-6
shows what the store hierarchy for such a device could look like:

SCSI
family

Derived store
(HFS Partition)

Primary
store

Mapping
plug-in

SCSI
hard
disk

mapping
plug-in

Mac
Partitioning

plug-in

Mapping
plug-in

Derived store
(DOS Partition)

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-21
Draft. Apple Computer, Inc. 4/18/96

Figure 7-6 RAID-5 partitioning

The RAID-5 driver is implemented as a mapping plug-in and is used at the
derived store level. A RAID-aware partitioning plug-in stores the information
needed by RAID-5 about its devices. The RAID-5 store is partitioned using the
standard Mac partitioning format and contains an HFS and a DOS FAT
partition, each of which results in a derived store.

Partitioning plug-ins are essential to Mac OS 8’s auto-configuration. At system
boot time, if a partitioning plug-in is associated with an existing store, the block

RAID-5
store

Derived store
(HFS)

Mapping
plug-in

Mapping
plug-in

RAID-5
Mapping
plug-in

SCSI
family

Primary
store

Mapping
plug-in

SCSI
family

Primary
store

Mapping
plug-in

RAID-aware
Partitioning

plug-in

RAID-aware
Partitioning

plug-in

SCSI
family

Primary
store

Mapping
plug-in

Mac
Partitioning

plug-in

Derived store
(DOS FAT)

RAID-aware
Partitioning

plug-in

C H A P T E R 7

Block Storage Family Reference

7-22 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

storage expert calls it to get information from the store’s partition map and
create a derived store for each partition. In this way, the expert automatically
builds the entire store hierarchy.

Container Plug-ins 7

•••To be provided•••

Plug-in Discovery and Loading 7

Like all I/O plug-ins, block storage plug-ins must export a data structure of
type DriverDescription named TheDriverDescription. The system needs this
structure to find plug-ins, and match them to real and virtual devices. See
“Driver and Family Matching” (page 2-3) for more information on how this
process works and on the driver description structure.

The code for a mapping plug-in can be stored either in a folder named
Hardware Support in the Mac OS Folder or in a Mac OS 8 mapping plug-in
partition on a device. A plug-in located in a Mac OS 8 mapping plug-in
partition on a device is always selected over a mapping plug-in in the folder.
Drivers in a pre-Mac OS 8 driver partition are ignored.

Partitioning plug-ins and container plug-ins always reside in the Hardware
Support folder.

The block storage expert works with Driver and Family Matching (DFM)
software to recognize the presence of new devices and new CD-ROM discs,
floppy disks, and other removable media, and to instantiate stores and
containers. For more information on DFM, see “Driver and Family Matching”
(page 2-3).

When a new block storage device is discovered, a low-level family expert
creates a new node in the name registry with the following properties: the
device type, the manufacturer name, and the version of the device. DFM
matches plug-ins against these properties and adds to the device’s node a list of
pointers to the plug-ins that match. Then it notifies interested parties of the
new device.

The block storage expert registers interest in new block storage device events.
When it receives a new device notification, the expert creates a store, loads and
initializes the correct mapping plug-in (and a partitioning plug-in if required),
and initializes the store.

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-23
Draft. Apple Computer, Inc. 4/18/96

The block storage expert gives each matching mapping plug-in an opportunity
to examine the device and read the media. Each plug-in reports a value that
indicates how well it can support the device, based on the number of factors it
recognizes. The higher the value, the better the match:

The expert selects the mapping plug-in reporting the highest value to manage
the device.

If two or more plug-ins report the same value, then information in the
driverType field in the plug-ins’ driver description structures is used to select
one.

The driverType field contains a DriverType structure. If two or more plug-ins
have the same name in the nameInfoStr field of the DriverType structure, then
the one with the latest version in the version field of the DriverType structure is
selected. Otherwise, the values in the nameInfoStr field are sorted in ASCII
order and the first one is selected.

Partitioning plug-in selection works differently from mapping plug-in
selection. Instead of reporting defined levels of certainty, when a partitioning
plug-in is given the opportunity to examine the store, it returns an integer. If
the plug-in does not recognize the store’s format, it should return 0. If it
recognises the format, it returns the number of bytes it read from the store in
determining that it recognises the format. The plug-in reading the greatest
number of bytes is selected. If two plug-ins tie, the tie-breaking mechanism is
the same as that described for mapping plug-ins.

Block Storage Family Activation Models 7

The block storage family activation models define the relationship between the
family and its plug-ins—the mechanisms and conditions under which the
plug-ins get called and what the plug-in’s responses should be. The
information in this section is of interest to plug-in developers. If you develop
client software, you can read about it for general interest, but it should have no
impact on how you write your code.

If the plug-in recognizes The plug-in reports

the device type 1
the device manufacturer 2
the device version 3
the media 4

C H A P T E R 7

Block Storage Family Reference

7-24 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

Activation Model For Mapping Plug-ins 7

The block storage family keeps track of a client’s request, even if it is handled
by several mapping plug-ins and utilizes several different devices and families.
To help the family do this, mapping plug-ins must observe block storage family
conventions related to requests and completion notifications.

When the block storage family gets a client I/O request, it calls the I/O
function (page 7-66) of the mapping plug-in responsible for the target store and
passes in a token that identifies the I/O request. That request is referred to as
the parent request.

Note
Do not confuse multiple uses of the term parent. A parent
request is not a request to a parent store. ◆

A mapping plug-in frequently needs to generate several I/O requests to
another family or store in response to a single request that the plug-in gets
from the block storage family. For example, assume a device can read or write a
maximum of 512 bytes at a time.When the mapping plug-in for that device gets
a request to read a larger number of bytes, it needs to break it up into a series of
512-byte requests.

Mapping plug-ins that manage primary stores call the
BSTrackOtherFamilyRequest function (page 7-162) before calling another I/O
family to handle an I/O request. A mapping plug-in passes these parameters to
BSTrackOtherFamilyRequest:

■ the token that identifies the parent request. The token enables the block
storage family to call the correct plug-in’s completion routine when the
other I/O family signals that the request is complete. (Note that when a
mapping plug-in makes several I/O requests in response to a single parent
request, it passes the same token on each call to BSTrackOtherFamilyRequest
for those I/O requests.)

■ the plug-in’s private data value. The block storage family passes this same
value back to the plug-in when it calls the plug-in’s completion routine for
this I/O request.

■ a pointer to a KernelNotification structure. The function fills in the structure
to specify how the block storage family wants to be notified when the I/O
request completes. The plug-in passes the KernelNotification structure to
the I/O family that the plug-in calls to handle the I/O request.

C H A P T E R 7

Block Storage Family Reference

About The Block Storage Family 7-25
Draft. Apple Computer, Inc. 4/18/96

After calling BSTrackOtherFamilyRequest, the plug-in can call another I/O
family to service the request. Then, when it exits its I/O function, it should
return the kBSIOContinuing result code.

Mapping plug-ins that manage derived stores call the BSStoreRW function
(page 7-161) to make an I/O request to another plug-in. A mapping plug-in
passes these parameters to BSStoreRW:

■ the token that identifies the parent request

■ the plug-in’s private data value. The block storage family passes this same
value back to the plug-in when it calls the plug-in’s completion routine for
this I/O request.

The block storage family then calls the I/O function of the mapping plug-in
responsible for the target store and passes it the token.

A mapping plug-in’s I/O completion routine is called once for each request it
makes to another family or store. When all of the requests issued to satisfy a
parent request are complete, the plug-in should return the kBSIOCompleted
result code from its I/O completion routine for the parent request. That causes
the block storage family to call the plug-in’s I/O completion routine for the
parent request.

A mapping plug-in does not care if the original client request was made
synchronously or asynchronously. The block storage family uses an accept
function to receive synchronous I/O requests from clients. As a result, a
mapping plug-in executes in the client's context and can be executing in several
contexts simultaneously. For more information on accept functions, see
Microkernel and Core System Services.

To receive asynchronous I/O requests from clients, the block storage family
creates a set of tasks when it initializes itself. A client’s asynchronous request
results in a microkernel message to the family. On receiving the message, the
plug-in dispatches the request to one of its tasks. From that point, the request is
handled inside the family in exactly the same way as a synchronous request.

The activation model for block storage mapping plug-ins results in the
following requirments and guidelines.

■ A mapping plug-in must be fully re-entrant and able to handle multiple
pending I/O requests because it can be executing in several contexts
simultaneously.

■ Although a mapping plug-in can block while waiting on an event or
acquiring a lock, it must avoid a deadlock situation. When it takes an action

C H A P T E R 7

Block Storage Family Reference

7-26 About The Block Storage Family

Draft. Apple Computer, Inc. 4/18/96

that might cause it to be suspended, it must be certain that it will be
reactivated. Allocating memory outside of the plug-in’s initialization
function is not recommended. Because a mapping plug-in is on the page
fault path, it can cause deadlock if, to service a page fault, it causes a page
fault.

■ A mapping plug-in should be divided into two parts: a main code section
that executes when it gets a request, and an I/O completion routine. This
structure allows all of the main code sections involved in a request to start
their I/O requests before any of the requests complete.

■ A mapping plug-in should maintain one request queue per device. When it
receives a request, the plug-in should dispatch it asynchronously to another
family or store, or put it on the request queue. When the plug-in’s
completion routine is called for the request, it should dispatch the next
request from the queue and return to block storage.

Note
Rather than simply adding a new request to the end of the
queue, a plug-in can try to increase device throughput by
inserting a new request at a spot in the queue that’s
optimal for the device. For example, by ordering requests
based on a hard disk’s tracks and sectors, a plug-in can
reduce the mechanical head movement back and forth and
get better performance from the device. ◆

The activation model for block storage mapping plug-ins described so far
assumes the plug-in operates asynchronously—it starts an I/O request and
returns to the block storage family, which in turn calls the plug-in’s completion
routine when the I/O is complete. However, synchronous operation may make
more sense for a plug-in in some cases.

For example, if a mapping plug-in for a primary store does not use another
family—such as if the store’s data resides on a RAM disk—the plug-in should
return the kBSIOCompleted result code from its I/O function. Because the
plug-in can immediately move data between the RAM disk and a buffer in
memory, there is nothing to wait on and no need for a completion routine.

When a mapping plug-in calls another plug-in (with the BSStoreRW function), it
does not need to know if the called plug-in operates synchronously or
asynchronously. It should assume an asynchronous plug-in. The block storage
family manages things so that they work correctly, regardless of whether the
plug-in in fact operates synchronously or asynchronously.

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-27
Draft. Apple Computer, Inc. 4/18/96

Note
Some developers might want to write synchronous
mapping plug-ins that bypass the block storage
mechanisms in an attempt to improve performance. Such a
plug-in gets an I/O request and returns to block storage
only when the request is complete. It must provide its own
mechanisms for tracking multiple I/O requests when it
splits one request into many, as well as the resulting
notifications and completions. In essense, this design
recreates within the plug-in much of the block storage
family infrastructure. You should carefully consider the
tradeoffs before making such a choice. Although it is often
possible to get a small speed boost this way, you lose
flexibility. If you bypass the block storage family tracking
mechanisms, you can no longer freely mix and match your
plug-in with others. For example, a synchronous
RAID-aware mapping plug-in won’t automatically work
with another vendor’s SCSI disk driver. In addition, the
plug-in code becomes more complex and harder to test. ◆

Activation Model For Partitioning and Container Plug-ins 7

The model for partitioning and container plug-ins is simpler than that for
mapping plug-ins, because partitioning and container plug-ins are not on the
I/O path.

Partitioning and container plug-ins are always called synchronously in a task
context and they are allowed to block.

Partitioning plug-ins call block storage client functions, such as
BSStoreConnRead or BSStoreConnWrite, to make I/O requests to the family.

Block Storage Client Constants and Data Types 7

This section describes the data types and constants in the programming
interface that the block storage family provides for its clients. A client,
generally a file systems plug-in or a disk utility program, uses the block storage
family to configure and access data on devices abstracted by the block storage
programming interface.

C H A P T E R 7

Block Storage Family Reference

7-28 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Block Storage Byte Count Type 7

The block storage byte count data type provides a larger alternative to the
system-wide defined type ByteCount that specifies a 32-bit value.

BSByteCount 7

The block storage family defines the BSByteCount data type to specify a 64-bit
byte count integer. The Math64 library provides many support functions that
you can use to manipulate values of type BSByteCount.

typedef UInt64 BSByteCount;

Block Storage ID Types 7

The data types in this section define persistent IDs. An ID is a unique value
generated by Mac OS 8 that identifies a thing for as long as the thing exists,
including across boots of Mac OS 8.

An ID can identify such things as a store, a container, or a connection to a store
or a container.

BSStoreID 7

The BSStoreCreate function (page 7-114) returns a store ID. You can use the ID
to get a reference to a store by calling the BSStoreFindByID function (page 7-112).

The block storage family defines the BSStoreID data type for a store ID.

typedef char BSStoreID[12];

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-29
Draft. Apple Computer, Inc. 4/18/96

BSStoreConnID 7

A connection is a logical path to a store and serves to control access to the
store. Most clients obtain a connection to a store by calling the BSStoreOpen
function (page 7-78). The function returns a connection ID which you can then
pass to block storage functions to read and write to the store and to close it.
This type of connection is called an I/O connection because it permits I/O to
the store.

If your software creates and configures stores, you can obtain a connection ID
for a store by calling the BSStoreCreate function (page 7-114). The function
returns a connection ID which you can then pass to block storage functions to
configure the store. This type of connection is called a control connection
because it allows you to configure the store and to change its accessibility state,
but it does not permit I/O to the store.

The block storage family defines the BSStoreConnID data type for a store
connection ID.

typedef ObjectID BSStoreConnID;

BSContainerID 7

The block storage family defines the BSContainerID data type for a container ID.

typedef char BSContainerID[12];

BSContainerConnID 7

The block storage family defines the BSContainerConnID data type for a
container connection ID.

typedef ObjectID BSContainerConnID;

C H A P T E R 7

Block Storage Family Reference

7-30 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Block Storage Reference Types 7

This section describes the run-time reference types defined by the block storage
family. A reference is a unique identifier generated at run time. Unlike an ID, a
reference cannot persist across boots of Mac OS 8.

BSStoreRef 7

You need a store reference to open a store and get a connection ID.

You can get a reference to a store by calling any of several store hierarchy
navigation functions. See “Navigating a Store Hierarchy” (page 7-100) for more
information.

The block storage family defines the BSStoreRef data type for a store run-time
reference.

typedef RegEntryRef BSStoreRef;

BSContainerRef 7

The block storage family defines the BSContainerRef data type for a container
run-time reference.

typedef RegEntryRef BSContainerRef;

BSMappingPlugInRef 7

The block storage family defines the BSMappingPlugInRef data type for a
mapping plug-in run-time reference.

Plug-in code may be instantiated multiple times by the Code Fragment
Manager, once for each store the plug-in is asked to support. The mapping
plug-in reference identifies the plug-in code itself, not a particular instance of it.

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-31
Draft. Apple Computer, Inc. 4/18/96

typedef struct OpaqueBSMappingPlugInRef *BSMappingPlugInRef;

BSPartitioningPlugInRef 7

The block storage family defines the BSPartitioningPlugInRef data type for a
partitioning plug-in run-time reference.

Plug-in code may be instantiated multiple times by the Code Fragment
Manager, once for each store the plug-in is asked to support. The partitioning
plug-in reference identifies the plug-in code itself, not a particular instance of it.

typedef struct OpaqueBSPartitioningPlugInRef *BSPartitioningPlugInRef;

BSContainerPlugInRef 7

The block storage family defines the BSContainerPlugInRef data type for a
container plug-in run-time reference.

Plug-in code may be instantiated multiple times by the Code Fragment
Manager, once for each store the plug-in is asked to support. The container
plug-in reference identifies the plug-in code itself, not a particular instance of it.

typedef struct OpaqueBSContainerPlugInRef *BSContainerPlugInRef;

BSBlockListRef 7

A block list is an opaque data structure that specifies the address ranges in a
store for a given I/O transfer. A single block list can accomodate a transfer of
up to 4 gigabytes.

When you call the BSBlockListCreate function (page 7-81), it returns a reference
to a new empty block list. To build and complete a block list, you pass the
reference to the BSBlockListAddRange (page 7-82) and BSBlockListFinalize
(page 7-84) functions. The block storage family defines the BSBlockListRef data
type for a block list run-time reference.

C H A P T E R 7

Block Storage Family Reference

7-32 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

typedef struct OpaqueBSBlockListRef *BSBlockListRef;

BSBlockListDescriptorRef 7

A block list descriptor is an opaque data structure that specifies a view of a
block list.

When you call the BSBlockListFinalize (page 7-84) function, it returns a
reference to a newly created block list descriptor. You use the descriptor when
calling the following functions to read or write data: BSStoreConnReadSG
(page 7-89), BSStoreConnReadSGAsync (page 7-91), BSStoreConnWriteSG
(page 7-95), and BSStoreConnWriteSGAsync (page 7-96).

The block storage family defines the BSBlockListDescriptorRef data type for a
block list descriptor run-time reference.

typedef struct OpaqueBSBlockListDescriptorRef *BSBlockListDescriptorRef;

Note
Mapping plug-ins use block list descriptor references
extensively. A descriptor contains a bias and a set of
address ranges. The bias is a value that is applied to the
addresses in the descriptor to get the corresponding
addresses in a given store.

If an I/O request must pass through more than one store,
the mapping plug-ins can create additional descriptors,
based on a specified existing descriptor. Descriptors
eliminate the need to copy the block list itself and adjust
the addresses it contains. Because you can create any
number of descriptors for a single block list, it’s also easy,
in effect, to split a single block list into sublists by creating
multiple descriptors.

For information about the functions mapping plug-in use
with block list descriptors, see “Working With a Block List
Descriptor” (page 7-147). ◆

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-33
Draft. Apple Computer, Inc. 4/18/96

Navigation Types 7

The block storage family maintains a hierarchy of stores and of containers. For
information on the store hierarchy, see “Stores” (page 7-13).

The block storage family provides functions, described in “Navigating a Store
Hierarchy” (page 7-100) and “Navigating a Container Hierarchy” (page 7-131),
that allow you to navigate a store and container hierarchies and retrieve
properties.

The navigation functions use the data types described in this section.

BSStoreGetSelector 7

When you call the BSStoreGetDeviceData function (page 7-100), you indicate the
set of stores about which you want information.

The block storage family defines the BSStoreGetSelector data type and its
enumerated values for store set selectors.

typedef UInt32 BSStoreGetSelector;

enum {
kBSStoreGetLeafStores = 1,
kBSStoreGetAllStores = 2,
kBSStoreGetPrimaryStores =3

};

Enumerator descriptions

kBSStoreGetLeafStores
Returns information on all leaf stores.

kBSStoreGetAllStores
Returns information on all stores.

kBSStoreGetPrimaryStores
Returns information on all primary stores.

C H A P T E R 7

Block Storage Family Reference

7-34 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSStoreIOIteratorData 7

When you call the BSStoreGetDeviceData function (page 7-100), the function
returns information about one or more stores.

The block storage family defines the BSStoreIOIteratorData structure to contain
the store information that BSStoreGetDeviceData can return.

struct BSStoreIOIteratorData {
IOCommonInfo IOCI;
BSStoreInfo info;

};

Field descriptions
IOCI A structure of type IOCommonInfo. It contains a reference

number that, within the block storage family, uniquely
identifies the store described by the info field. It also
contains the version of this BSStoreIOIteratorData
structure. See “About the I/O Architecture” (page 1-3) for
information on the IOCommonInfo type.

info A store information structure (page 7-44).

BSStoreIteratorID 7

To browse a store hierarchy, you need an iterator—an opaque value that points
to a node in the hierarchy. It defines the point from which a navigation of the
hierarchy begins.

You create an iterator with the BSStoreIteratorCreate function (page 7-101)
and then use it with the functions described in “Navigating a Store Hierarchy”
(page 7-100).

The block storage family defines the BSStoreIteratorID data type for a store
hierarchy iterator.

typedef struct opaque BSStoreIteratorID;

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-35
Draft. Apple Computer, Inc. 4/18/96

BSStorePropertyInstance 7

An instance value for a property is assigned by the block storage family when
the instance is created. An instance value distinguishes a property instance
from other instances of properties with the same name. It is unique and it
persists for the life of the property or until the system is shut down. (New
instance values are assigned to restored persistent properties at system startup.

Store property instances start at 0 and increment by 1. You can use the instance
value to get the size and actual value of the property by calling the
BSStoreGetPropertySize (page 7-110) and BSStoreGetProperty (page 7-111)
functions .

The block storage family defines the BSStorePropertyInstance data type for a
store property instance value.

typedef RegPropertyInstance BSStorePropertyInstance;

BSContainerIteratorID 7

To browse a container hierarchy, you need an iterator—an opaque value that
points to a node in the hierarchy. It defines the point from which a navigation
of the hierarchy begins.

You create an iterator with the BSContainerIteratorCreate function
(page 7-131) and then use it with the functions described in “Navigating a
Container Hierarchy” (page 7-131).

The block storage family defines the BSContainerIteratorID data type for a
container hierarchy iterator.

typedef ObjectID BSContainerIteratorID;

BSContainerPropertyInstance 7

An instance value for a property is assigned by the block storage family when
the instance is created. An instance value distinguishes a property instance

C H A P T E R 7

Block Storage Family Reference

7-36 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

from other instances of properties with the same name. It is unique and it
persists for the life of the property or until the system is shut down. (New
instance values are assigned to restored persistent properties at system startup.

Container property instances start at 0 and increment by 1. You can use the
instance value to get the size and actual value of the property by calling the
BSContainerGetPropertySize (page 7-137) and BSContainerGetProperty
(page 7-138) functions .

The block storage family defines the BSContainerPropertyInstance data type for
a container property instance value.

typedef RegPropertyInstance BSContainerPropertyInstance;

Store Property Names 7

You provide a store property name to identify the property of interest when
you call the BSStoreGetPropertySize (page 7-110) and BSStoreGetProperty
(page 7-111) functions. The following store property names are defined:

#define kBlockStorageStoreID "Id"
#define kBlockStorageStoreSize "BSStoreSize"
#define kBlockStorageStoreReadBlockSize "BSStoreReadBlockSize"
#define kBlockStorageStoreWriteBlockSize "BSStoreWriteBlockSize"
#define kBlockStorageStoreContainer "BSStoreContainer"
#define kBlockStorageStoreParent "BSStoreParent"
#define kBlockStorageStoreType "BSStoreType"
#define kBlockStorageStoreDevice "BSStoreDevice"
#define kBlockStorageEjectable "BSStoreEjectable"
#define kBlockStorageBootDevice "BSStoreBootDevice"
#define kBlockStorageWritable "BSStoreWritable"
#define kBlockStorageMappingPlugIn "BSStoreMappingPlugIn"
#define kBlockStoragePartitioningPlugIn "BSStorePartitioningPlugIn"

Container Property Names 7

You provide a container property name to identify the property of interest
when you call the BSContainerGetPropertySize (page 7-137) and
BSContainerGetProperty (page 7-138) functions. The following container
property names are defined:

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-37
Draft. Apple Computer, Inc. 4/18/96

#define kBlockStorageContainerParent "BSStoreParent"
#define kBlockStorageContainerType "BSStoreType"
#define kBlockStorageEjectable "BSStoreEjectable"
#define kBlockStorageContainerPlugIn "BSStoreContainerPlugIn"

Store Format Types 7

The data types described in this section provide information about the format
of a store.

BSStoreFormatType 7

The block storage family defines the BSStoreFormatType data type and its
enumerated values to designate the format type of a store’s media. The format
types describe broad categories.

The BSStoreFormatType type is used in the structure type BSStoreFormatInfo
(page 7-38).

typedef OSType BSStoreFormatType;

enum {
kBSFormatFloppyGCR = 'gcr ',
kBSFormatFloppyMFM = 'mfm ',
kBSFormatSCSI = 'scsi',
kBSFormatATA = 'ata ',
kBSNotFormatable = 'none',

};

Enumerator descriptions

kBSFormatFloppyGCR The Group Code Recording format used on 800 KB 3.5
inch floppy disks.

kBSFormatFloppyMFM The Modified Frequency Modulation format used on 1.44
MB 3.5 inch floppy disks.

kBSFormatSCSI The format used on SCSI hard disks.
kBSFormatATA The format used on ATA hard disks.

C H A P T E R 7

Block Storage Family Reference

7-38 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

kBSNotFormatable The media cannot be formatted (for example, a CD-ROM
disc).

BSFormatIndex 7

Clients who configure stores can call the BSStoreConnFormat function
(page 7-125) to format a store. The block storage family defines the
BSFormatIndex data type to identify the format to be used.

Values of type BSFormatIndex are specific to a given mapping plug-in; they do
not intrinsically identify a particular format. Rather, they associate a specific
format type (identified by BSStoreFormatType (page 7-37)) with an index value
specific to the plug-in. Index values start at 0.

The BSFormatIndex type also forms part of the structure type BSStoreFormatInfo
(page 7-38).

typedef ItemCount BSFormatIndex;

BSStoreFormatInfo 7

The block storage family defines the BSStoreFormatInfo data type to provide
information about a format that can be supported by a mapping plug-in. A
BSStoreFormatInfo structure forms part of the structure type BSStoreInfo
(page 7-44).

struct BSStoreFormatInfo {
BSStoreFormatType formatType;
BSByteCount formatSize;
BSFormatIndex formatNum;

};

Field descriptions
formatType A value of type BSStoreFormatType (page 7-37) that

specifies a format type.
formatSize The number of bytes that are available for I/O with this

format type. This value distinguishes subtypes within a

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-39
Draft. Apple Computer, Inc. 4/18/96

given format type. For example, format type
kBSFormatFloppyMFM indicates a 1.44 MB floppy disk. Such a
disk can be one of several subtypes, differing in the
number of bytes available for I/O on the disk, such as 1.44
MB, 1 MB, and so forth. If a given format type has no
subtypes or if the formatType field is set to
kBSNotFormatable, this field contains 0.

formatNum An index value, specific to the mapping plug-in associated
with a given store, that identifies the format.

Maximum Formats Constant 7

The possibleFormats field of the BSStoreInfo structure (page 7-44) contains an
array of BSStoreFormatInfo structures (page 7-38). The maximum size of the
array is defined by the kBSMaxFormats constant.

enum { kBSMaxFormats = 8 };

Store Component Types 7

A component is a piece of a store, either a device, another store, or a partition
of a store. Most stores have only one component. Some stores may have
multiple components.

The data types in this section define components.

BSComponentType 7

The block storage family defines the BSComponentType data type and
enumerated values for types of components.

The BSComponentType type is part of the BSStoreComponent structure type
(page 7-40).

typedef UInt32 BSComponentType;

C H A P T E R 7

Block Storage Family Reference

7-40 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

enum { /* values of BSComponentType */
kBSExternalDeviceComponent = 1, /* physical device */
kBSStoreComponent = 2 /* virtual device */

};

Enumerator descriptions

kBSExternalDeviceComponent
The component is a physical device or a portion of a
physical device.

kBSStoreComponent The component is another store.

BSStoreComponent 7

When you call the BSStoreConnGetComponents (page 7-124) function, the block
storage family returns information about the components of a store in a store
component structure, defined by the BSStoreComponent data type.

struct BSStoreComponent {
BSComponentType componentType; /* physical or logical */
BSByteCount startingOffset;
RegEntryRef sourceNode; /* for physical components */
BSStoreRef srcStore; /* for logical components */
BSPartitionDescriptor partitionInfo; /* for logical components */

};

typedef BSStoreComponent *BSStoreComponentPtr;

Field descriptions
componentType A value that indicates whether the component is a physical

device or another store (virtual device). See
“BSComponentType” (page 7-39) for a listing of
component types.

startingOffset The number of bytes into the store at which this
component begins. A store always begins at byte 0.

sourceNode If the componentType field contains
kBSExternalDeviceComponent, this field contains a reference

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-41
Draft. Apple Computer, Inc. 4/18/96

to the name registry entry that identifies a physical device.
Otherwise, this field contains 0.

srcStore If the componentType field contains kBSStoreComponent, this
field contains a reference to the store that is the logical
component. Otherwise, this field contains 0.

partitionInfo If the componentType field contains kBSStoreComponent, this
field contains a BSPartitionDescriptor structure
(page 7-48) that provides information about the partition
map of this component. Otherwise, this field contains 0.

Note
The BSStoreMPIComponent data type (page 7-57) used by
mapping plug-ins has the same definition as the
BSStoreComponent data type. ◆

Accessibility State Type 7

•••To be provided•••

BSAccessibilityState 7

An accessibility state indicates how readily a block storage container or store
can be accessed. You can change the accessibility state of containers and stores
with the BSContainerConnGoToAccessibilityState (page 7-130) and
BSStoreConnGoToAccessibilityState (page 7-99) functions. To specify an
accessibility state, the block storage family defines the BSAccessibilityState
data type and its enumerated values.

typedef UInt32 BSAccessibilityState;

enum {
kBSOnline = 0x0FFFFFFF,
kBSPowerSave = 0x0A000000,
kBSOutOfDrive = 0x01000000,
kBSOffline = 0,

};

C H A P T E R 7

Block Storage Family Reference

7-42 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Constant descriptions

kBSOnline The container or store is immediately available.
kBSPowerSave The container or store is not immediately available because

the device it maps to is in a power-save mode. A container
or store in this state is more accessible than one in the
kBSOutOfDrive state.

kBSOutOfDrive The container or store is not immediately available because
the media is not in a drive, although it remains under
programmatic control. A container or store in this state (for
example, a CD disc in a CD-ROM autochanger) is less
accessible than one in the kBSPowerSave state.

kBSOffline The container or store is not available because the device it
maps to is no longer under programmatic control. This is
the least accessible state. When you put a container or store
into this state, the block storage family deletes it from the
store hierarchy and causes the mapping plug-in to eject the
corresponding media from the device.

Open Options Types 7

•••To be provided•••

BSStoreOpenOptions 7

When you open a connection to a store with the BSStoreOpen function
(page 7-78), you supply options that define the type of connection you want. If
the function returns with no error, you have a connection with the
characteristics you requested. Connection types are described in
“BSStoreConnID” (page 7-29).

The block storage family defines the BSStoreOpenOptions data type and its
enumerated values for open options.

typedef UInt32 BSStoreOpenOptions;

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-43
Draft. Apple Computer, Inc. 4/18/96

enum {
kBSStoreRead = 0x00000001L, /* allow reading */
kBSStoreWrite = 0x00000002L, /* allow writing */
kBSStoreExclusiveIO = 0x00000004L, /* don't allow another I/O connection */
kBSStoreExclusiveCntrl = 0x00000008L, /* don't allow more control connections */
kBSStoreResizeOK = 0x00000010L, /* reserved */
kBSStoreControl = 0x00000020L, /* allow control of the store */

};

Constant descriptions

kBSStoreRead An I/O connection that allows reads from the store.
kBSStoreWrite An I/O connection that allows writes to the store.
kBSStoreExclusiveIO

An exclusive I/O connection. If granted, other I/O
connection requests to the store are denied until this
connection is closed.

kBSStoreExclusiveCntrl
An exclusive control connection. If granted, other control
connection requests to the store are denied until this
connection is closed.

kBSStoreResizeOK Reserved. Always 0.
kBSStoreControl A control connection that allows the store to be configured.
The kBSStoreRead, kBSStoreWrite, and kBSStoreControl options each specify a
limited and mutually exclusive set of operations that can be performed on a
store once the connection is granted. For example, if you specify only the
kBSStoreRead option, you can read the store, but you cannot write to it or
configure it. However, You can OR the enumerated option values together in
any combination to specify connection types such as read/write,
control/exlusive, and so on.

BSContainerOpenOptions 7

When you open a connection to a container with the BSContainerOpen function
(page 7-128), you supply options that define the access you wish to allow to the
container.

C H A P T E R 7

Block Storage Family Reference

7-44 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

The block storage family defines the BSContainerOpenOptions data type and an
enumerated value.

typedef UInt32 BSContainerOpenOptions;

enum {
kBSContainerExclusiveCntrl = 0x00000001,

};

Constant description

kBSContainerExclusiveCntrl
Don't allow another connection to be opened to the
container.

Store Information Structure 7

•••To be provided•••

BSStoreInfo 7

When you call the BSStoreConnGetInfo function (page 7-123), the block storage
family returns information about a store in a store information structure,
defined by the BSStoreInfo data type.

A store information structure is also part of the BSStoreIOIteratorData type
(page 7-34).

struct BSStoreInfo {
BSStoreID storeID; /* store ID */
BSByteCount storeSize; /* number of bytes in the store */
BSByteCount readBlockSize; /* minimum read size & granularity */
BSByteCount writeBlockSize; /* minimum write size & granularity */
BSContainerRef container; /* the container containing this store */
ItemCount numChildren; /* number of stores derived from this store */
ItemCount numParents; /* number of parent stores */
ItemCount numPartitions; /* number of partitions in use */
ItemCount maxPartitions; /* maximum number of partitions possible */
Boolean isPartitioned; /* is partitioning plug-in associated with

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-45
Draft. Apple Computer, Inc. 4/18/96

store? */
Boolean isEjectable;
Boolean isBootDevice;
Boolean isWriteable;
Boolean hasAutoEjectHardware;
Boolean isFormattable;
Boolean isPartitionable;
Boolean isFilesystem;
BSMappingPlugInRef mappingPlugIn;
BSPartitioningPlugInRef partitioningPlugIn;
BSStoreFormatInfo curFormat;
BSStoreFormatInfo possibleFormats [kBSMaxFormats];
Str255 name; /* name of store */
Str32 typeName; /* name of partition type */

};

typedef BSStoreInfo *BSStoreInfoPtr;

Field descriptions
storeID The ID of the store. The ID is a unique value generated by

Mac OS 8 that identifies the store for as long as it exists,
even across system restarts.

storeSize The size of the store, in bytes.
readBlockSize The minimum size, in bytes, of a read request to the store.

All read requests to the store must use a multiple of the
read block size.

writeBlockSize The minimum size, in bytes, of a write request to the store.
All write requests to the store must use a multiple of the
write block size.

container A reference to the container that contains the store.
numChildren The number of stores derived from this store.
numParents The number of parent stores to which this store maps. For

primary stores, this field contains 0.
numPartitions The number of partitions defined for this store.
maxPartitions The maximum number of partitions it is possible to define

for this store.
isPartitioned A Boolean value. The value true indicates that a

partitioning plug-in is associated with this store.

C H A P T E R 7

Block Storage Family Reference

7-46 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

isEjectable A Boolean value. The value true indicates that this store
maps to media that can be ejected.

isBootDevice A Boolean value. The value true indicates that this store
maps to the boot device.

isWriteable A Boolean value. The value true indicates that this store
allows write operations.

hasAutoEjectHardware
A Boolean value. The value true indicates that this store
maps to a device with auto-eject hardware, such as some
types of floppy disk drives.

isFormattable A Boolean value. The value true indicates that this store
allows formatting operations.

isPartitionable A Boolean value that provides a hint to the block storage
expert. The value true indicates that the expert should
attempt to match a partitioning plug-in with this store.

isFilesystem A Boolean value that provides a hint to the block storage
expert. The value true indicates that the File Manager
should be notified to attempt to match a file system
plug-in with this store

mappingPlugIn A reference to the mapping plug-in associated with this
store.

partitioningPlugIn A reference to the partitioning plug-in associated with this
store.

curFormat A BSStoreFormatInfo structure (page 7-38) containing
information about the format currently in use for this store.

possibleFormats An array of BSStoreFormatInfo structures (page 7-38)
containing information about the formats that the
mapping plug-in for this store can support.

name A pointer to a null-terminated string of ASCII characters
that specify the user-readable name of this store. For
derived stores, this is the name of the partition it maps to
in the parent store. The block storage family provides the
names for primary stores.

typeName A pointer to a null-terminated string of ASCII characters
that specify the partition type of this store—for example,
“Apple_HFS”.

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Constants and Data Types 7-47
Draft. Apple Computer, Inc. 4/18/96

Note
A mapping plug-in’s add component function (page 7-187)
updates the information in a store information structure.
◆

Container Information Structure 7

•••To be provided•••

BSContainerInfo 7

The block storage family returns information about a container in a container
information structure when you call the BSContainerConnGetInfo function
(page 7-142). A container information structure is defined by the
BSContainerInfo data type.

struct BSContainerInfo {
RegEntryRef device;
ItemCount numChildren;
Boolean ejectable;

};

typedef BSContainerInfo *BSContainerInfoPtr;

Field descriptions
device The name registry reference for the device that this

container represents.
numChildren The number of name registry child nodes that belong to

this container.
ejectable A Boolean value. The value true indicates that the device

is ejectable.

C H A P T E R 7

Block Storage Family Reference

7-48 Block Storage Client Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Partition Descriptor Structure 7

A partition is a portion of a store that is allocated to a particular operating
system, file system, or device driver. Each store contains one or more partitions.

A partition descriptor structure contains basic information about a partition. It
is used by formatting software when configuring stores.

BSPartitionDescriptor 7

When you call the BSStoreConnGetPartitionInfo function (page 7-119), the
function returns information about a partition in a partition descriptor
structure. When you call the BSStoreConnSetPartitionInfo function
(page 7-118), you supply basic partition information.

The block storage family defines the BSPartitionDescriptor structure to contain
basic partition information that is typically available, regardless of the partition
format.

struct BSPartitionDescriptor {
ItemCount entryNum; /* mandatory */
BSByteCount start; /* mandatory */
BSByteCount len; /* mandatory */
BSStoreID destStoreID; /* optional */
Boolean isPartitionable;
Boolean isFilesystem;
Boolean reserved1;
Boolean reserved2;
Str255 name; /* optional */
Str32 typeName; /* optional */

};

typedef BSPartitionDescriptor *BSPartitionDescriptorPtr;

Field descriptions
entryNum The ordinal number of the partition. The first partition is

numbered 0, the second partition is numbered 1, and so on.
start The byte address within the store at which the partition

starts. Stores addresses start at 0.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-49
Draft. Apple Computer, Inc. 4/18/96

len The size of the partition, in bytes.
destStoreID The ID of the store that corresponds to this partition. This

field contains 0 if the corresponding store has not yet been
created and configured.

isPartitionable A Boolean value that provides a hint to the block storage
expert. The value true indicates that the expert should
attempt to match a partitioning plug-in with the derived
store that is based on this partition.

isFilesystem A Boolean value that provides a hint to the block storage
expert. The value true indicates that the File Manager
should be notified to attempt to match a file system
plug-in with the store that is based on this partition.

reserved1 Reserved.
reserved2 Reserved.
name A pointer to a null-terminated string of ASCII characters

that specify the user-readable name of the partition. If the
name is not available, this field contains 0.

typeName A pointer to a null-terminated string of ASCII characters
that specify the user-readable type of the partition, for
example, Apple HFS. If the type is not available, this field
contains 0

Block Storage Plug-in Constants and Data Types 7

This section describes the data types and constants in the programming
interface that the block storage family provides for its plug-ins. The block
storage family defines 3 types of plug-ins:

■ mapping plug-ins

■ partitioning plug-ins

■ container plug-ins

Some elements of the plug-in programming interface are common to all plug-in
types and some are specific to a given type. The description of a data type
indicates the type of plug-in it applies to.

C H A P T E R 7

Block Storage Family Reference

7-50 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

I/O Constants 7

The block storage family defines the following constants for specifying a read
or write operation. They are used in the options parameter of a mapping
plug-in’s I/O function (page 7-183) and of the BSStoreRW function (page 7-161).

enum {
kBSRead = 0,
kBSWrite = 1

};

Basic Block Storage Types For Use By Plug-ins 7

The data types in this section all point to opaque data types.

BSStorePtr 7

The block storage family uses an opaque data type to implement a store and
defines the BSStorePtr data type to point to it.

typedef void *BSStorePtr;

BSContainerPtr 7

The block storage family uses an opaque data type to implement a container
and defines the BSContainerPtr data type to point to it.

typedef void *BSContainerPtr;

BSIORequestBlockPtr 7

The block storage family defines the BSIORequestBlockPtr data type to point to
a token that identifies an I/O request.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-51
Draft. Apple Computer, Inc. 4/18/96

typedef void *BSIORequestBlockPtr;

Block List Descriptor Types 7

The data types in this section provide information about block list descriptors.
A client that needs to read or write to a store creates a block list and gets a
block list descriptor reference to pass with its I/O request. A mapping plug-in
uses a block list descriptor reference when implementing an I/O request. See
“Building a Block List” (page 7-80) and “Working With a Block List Descriptor”
(page 7-147) for additional information.

BSBlockListDescriptorInfo 7

When you call the BSBlockListDescriptorGetInfo (page 7-147) function, the
block storage family returns information about a block list descriptor. A block
list descriptor information structure is defined by the
BSBlockListDescriptorInfo data type.

struct BSBlockListDescriptorInfo {
BSByteCount bias;
BSByteCount start;
UInt32 length;
BSBlockListDescriptorRef parentDescriptor;
BSBlockListRef parentList;

};

typedef BSBlockListDescriptorInfo *BSBlockListDescriptorInfoPtr;

Field descriptions
bias The number of bytes the addresses in this descriptor are

shifted from the addresses in the parent descriptor. If there
is no parent descriptor, this field contains 0. Once a
descriptor is created, the bias never changes. A negative
bias is not valid.

start The number of bytes into the parent descriptor at which
this descriptor begins. If there is no parent descriptor, this
field contains 0.

C H A P T E R 7

Block Storage Family Reference

7-52 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

length The number of bytes described by this descriptor.
parentDescriptor A reference to the parent block list descriptor (page 7-32).

If there is no parent descriptor, this field contains null.
parentList A reference to the block list (page 7-31) that this descriptor

describes.

BSBlockListWhence 7

When you call the BSBlockListDescriptorSeek (page 7-155) function to change
the offset within a block list descriptor, you specify the method to be used
when computing the new offset. The block storage family defines the
BSBlockListWhence data type and its enumerated values for seek methods.

typedef UInt32 BSBlockListWhence;

enum {
kBSBlockListSeekByteAbsolute = 1,
kBSBlockListSeekByteRelative = 2,
kBSBlockListSeekExtentAbsolute = 3,
kBSBlockListSeekExtentRelative = 4,
kBSBlockListSeekBlockAbsolute = 5,
kBSBlockListSeekBlockRelative = 6

};

Enumerator descriptions

kBSBlockListSeekByteAbsolute
Set the offset to the address specified in the
BSBlockListDescriptorSeek function’s offset parameter. A
negative address is not valid.

kBSBlockListSeekByteRelative
Compute the offset by adding the value in the
BSBlockListDescriptorSeek function’s offset parameter to
the current offset.

kBSBlockListSeekExtentAbsolute
Set the offset to the beginning of the nth extent in the
descriptor. Extent numbering starts at 0. The value n

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-53
Draft. Apple Computer, Inc. 4/18/96

specified in the offset parameter is interpreted as an
ordinal. A negative n is not valid.

kBSBlockListSeekExtentAbsolute
Compute the offset by adding the value in the offset
parameter to the ordinal value of the extext at the current
offset.

kBSBlockListSeekBlockAbsolute
•••To be provided•••

kBSBlockListSeekBlockRelative
•••To be provided•••

Confidence Level Types 7

A confidence level indicates the degreee of confidence a plug-in has in its
ability to support a given store.

BSMPIConfidenceLevel 7

When its examine function (page 7-179) is called, a mapping plug-in returns a
confidence level that indicates how well it can support a given store. See
“Plug-in Discovery and Loading” (page 7-22) for more information.

The block storage family defines the BSMPIConfidenceLevel data type and its
enumerated values for mapping plug-in confidence levels.

typedef UInt32 BSMPIConfidenceLevel;

enum {
kBSMPIDeviceNotSupported = 0,
kBSMPIDeviceTypeRecognized = 1,
kBSMPIDeviceMfrRecognized = 2,
kBSMPIDeviceModelRecognized = 3,
kBSMPIDeviceMediaRecognized = 4,

};

C H A P T E R 7

Block Storage Family Reference

7-54 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Enumerator descriptions

kBSMPIDeviceNotSupported
The mapping plug-in does not recognize the store, and
thererfore cannot support it.

kBSMPIDeviceTypeRecognized
The mapping plug-in recognizes the type of device.

kBSMPIDeviceMfrRecognized
The mapping plug-in recognizes the type of device and its
manufacturer.

kBSMPIDeviceModelRecognized
The mapping plug-in recognizes the type of device, its
manufacturer, and the device model.

kBSMPIDeviceMediaRecognized
The mapping plug-in recognizes the type of device, its
manufacturer and device model, and the media used by
the device. This is the highest level of confidence that a
plug-in can report about its ability to support a given
device.

BSCPIConfidenceLevel 7

A container plug-in returns a confidence level when its examine function
(page 7-198) is called. The block storage family defines the
BSCPIConfidenceLevel data type and its enumerated values for container
plug-in confidence levels.

typedef UInt32 BSCPIConfidenceLevel;

enum {
kBSCPIDeviceNotSupported = 0,
kBSCPIDeviceTypeRecognized = 1,
kBSCPIDeviceMfrRecognized = 2,
kBSCPIDeviceModelRecognized = 3,

};

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-55
Draft. Apple Computer, Inc. 4/18/96

Enumerator descriptions

kBSCPIDeviceNotSupported
The container plug-in does not support the device.

kBSCPIDeviceTypeRecognized
The container plug-in recognizes the type of device and
can support it.

kBSCPIDeviceMfrRecognized
The container plug-in recognizes the type of device and its
manufacturer.

kBSCPIDeviceModelRecognized
The container plug-in recognizes the type of device, its
manufacturer, and the device model.

Status and Error Types 7

•••To be provided•••

BSIOStatus 7

The BSStoreRW function (page 7-161) and a mapping plug-in’s I/O function
(page 7-183) return an I/O status code. The block storage family defines the
BSIOStatus data type and its enumerated values for I/O status codes.

typedef UInt32 BSIOStatus;

enum {
kBSIOCompleted = 1,
kBSIOContinuing = 2,
kBSIOFailed = 3,
kBSIONotStarted = 4,

};

Enumerator descriptions

kBSIOCompleted The I/O request is complete. No further action is necessary.

C H A P T E R 7

Block Storage Family Reference

7-56 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

kBSIOContinuing The I/O request has started successfully. The block storage
family will call the associated I/O completion routine
when the request has completed.

kBSIOFailed The I/O request failed.
kBSIONotStarted The I/O request could not be started.

BSIOErrors 7

The block storage family defines the BSIOErrors data type for reporting an error
on executing an I/O request.

The BSIOErrors type forms part of the structure type BSErrorList (page 7-56).

typedef OSStatus BSIOErrors;

BSErrorList 7

The block storage family defines the BSErrorList structure for reporting an
error on executing an I/O request.

When a mapping plug-in needs to generate more than one I/O request to
service a single I/O request that it gets from block storage, the error list allows
a mapping plug-in to keep track of the current state of each I/O request it
made. When a request completes successfully, a mapping plug-in’s I/O
completion routine is called with a nil error list pointer. However, if an error
occurs, the completion routine gets one or more BSErrorList structures in a
linked list, specifying the exact state of each transfer request.

struct BSErrorList {
BSByteCount startingBlock;
BSByteCount length;
UInt32 status;
BSIOErrors error;
ItemCount xferID;
BSErrorList *next;

};

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-57
Draft. Apple Computer, Inc. 4/18/96

typedef BSErrorList *BSErrorListPtr;

Field descriptions
startingBlock The initial transfer byte of this fragment of the request.
length The number of bytes to be transfered, including the

starting byte.
status A value indicating the final state of the transfer.
error The exact error, if any.
xferID An index representing which request of a multiple-request

I/O this error applies to.
next A pointer to the next error list structure.

Store Component Type 7

•••To be provided•••

BSStoreMPIComponent 7

When a mapping plug-in calls the BSStoreGetComponent function (page 7-171) or
when its add component function (page 7-187) is called, a BSStoreMPIComponent
structure is passed as a parameter.

The BSStoreMPIComponent structure has the same definition as the
BSStoreComponent structure (page 7-40).

Store Information Structures 7

The structures in this section each describe certain characteristics of a store. The
type of information provided varies with the type of plug-in providing it.

C H A P T E R 7

Block Storage Family Reference

7-58 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSStoreMPIInfo 7

When a mapping plug-in calls the BSStoreGetMPIInfo function (page 7-159) or
when its information function (page 7-190) is called, a BSStoreMPIInfo structure
is passed as a parameter.

The BSStoreMPIInfo structure has many of the same fields as the BSStoreInfo
structure (page 7-44).

struct BSStoreMPIInfo {
BSAccessibilityState curState;
BSByteCount storeSize;
BSByteCount readBlockSize;
BSByteCount writeBlockSize;
Boolean isEjectable;
Boolean isWriteable;
Boolean hasAutoEjectHardware;
Boolean isFormattable;
Boolean isPartitionable;
Boolean isFilesystem;
Boolean reserved1;
Boolean reserved2;
BSStoreFormatInfo curFormat;
BSStoreFormatInfo possibleFormats [kBSMaxFormats];
char name [kRegMaxEntryNameLength + 1];

};

typedef BSStoreMPIInfo *BSStoreMPIInfoPtr;

Field descriptions
curState The current accessibility state of the store.
storeSize The size of the store, in bytes.
readBlockSize The minimum size, in bytes, of a read request to the store.

All read requests to the store must use a multiple of the
read block size.

writeBlockSize The minimum size, in bytes, of a write request to the store.
All write requests to the store must use a multiple of the
write block size.

isEjectable A Boolean value. The value true indicates that this store
maps to media that can be ejected.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-59
Draft. Apple Computer, Inc. 4/18/96

isBootDevice A Boolean value. The value true indicates that this store
maps to the boot device.

isWriteable A Boolean value. The value true indicates that this store
allows write operations.

hasAutoEjectHardware
A Boolean value. The value true indicates that this store
maps to a device with auto-eject hardwaree, such as some
types of floppy disk drives.

isFormattable A Boolean value. The value true indicates that this store
allows formatting operations.

isPartitionable A Boolean value that provides a hint to the block storage
expert. The value true indicates that the expert should
attempt to match a partitioning plug-in with this store.

isFilesystem A Boolean value that provides a hint to the block storage
expert. The value true indicates that the File Manager
should be notified to attempt to match a file system
plug-in with this store

reserved1 Reserved.
reserved2 Reserved.
curFormat A BSStoreFormatInfo structure (page 7-38) containing

information about the format currently in use for this store.
possibleFormats An array of BSStoreFormatInfo structures (page 7-38)

containing information about the formats that the
mapping plug-in for this store supports.

name An arrary of ASCII characters that specify the
user-readable name of this store.

BSStorePPIInfo 7

When a partitioning plug-in calls the BSStoreGetPPIInfo function (page 7-160)
or when its information function (page 7-195) is called, a BSStorePPIInfo
structure is passed as a parameter.

C H A P T E R 7

Block Storage Family Reference

7-60 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

struct BSStorePPIInfo {
ItemCount numPartitions;
ItemCount maxPartitions;

};

typedef BSStorePPIInfo *BSStorePPIInfoPtr;

Field descriptions
numPartitions The number of partitions currently configured for a store.
maxPartitions The maximum number of partitions the store can support.

Container Information Type 7

•••To be provided•••

BSContainerPIInfo 7

A container plug-in’s information function (page 7-202) returns information
about a container in a BSContainerPIInfo structure.

struct BSContainerPIInfo {
ItemCount numChildren;
Boolean isEjectable;

};

typedef BSContainerPIInfo *BSContainerPIInfoPtr;

Field descriptions
numChildren •••To be provided•••
isEjectable •••To be provided•••

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-61
Draft. Apple Computer, Inc. 4/18/96

Plug-in Interface Version Constant 7

The kBSPlugInInterfaceVersion constant indicates the version of the block
storage plug-in interface used by a plug-in. A plug-in sets the version field of
its BlockStoragePlugInInfo structure (page 7-61) at compile time.

enum {kBSPlugInInterfaceVersion = 0x02011996};

Plug-in Interface Structures 7

The structures in this section are the means by which a block storage plug-in
provides the block storage family with the entrypoints to its functions.

BlockStoragePlugInInfo 7

A BlockStoragePlugInInfo structure contains the version of the block storage
plug-in interface used by a plug-in.

It is a substructure in the BSStoreMappingOps (page 7-62),
BSStorePartitioningOps (page 7-63), and BSContainerPolicyOps (page 7-64)
structures.

struct BlockStoragePlugInInfo {
UInt32 version;
UInt32 reserved1;
UInt32 reserved2;
UInt32 reserved3;

};

Field descriptions
version The version of the block storage plug-in interface used by

this plug-in. Set this field to the constant
kBSPlugInInterfaceVersion, described in “Plug-in Interface
Version Constant” (page 7-61).

reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.

C H A P T E R 7

Block Storage Family Reference

7-62 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSStoreMappingOps 7

A BSStoreMappingOps structure contains the entrypoints of the functions a
mapping plug-in provides to the block storage family.

A mapping plug-in must export a structure of type BSStoreMappingOps named
BlockStorageMappingPIOps to the block storage family.

struct BSStoreMappingOps {
BlockStoragePlugInInfo header;
BSMappingPIExamine DeviceExamine;
BSMappingPIInit Init;
BSMappingPICleanup Cleanup;
BSMappingPIIO IO;
BSMappingPIFlush Flush;
BSMappingPIAddComponent AddComponent;
BSMappingPIGoToState GotoState;
BSMappingPIFormatMedia Format;
BSMappingPIGetInfo GetInfo;
BSMappingIOCompletion ioCompletion;

};

typedef BSStoreMappingOps *BSStoreMappingOpsPtr;

Field descriptions
header A BlockStoragePlugInInfo structure (page 7-61) that

contains the version of the block storage plug-in interface
used by this plug-in.

DeviceExamine The entrypoint of the mapping plug-in’s examine function
(page 7-65).

Init The entrypoint of the mapping plug-in’s initialization
function (page 7-66).

Cleanup The entrypoint of the mapping plug-in’s clean up function
(page 7-66).

IO The entrypoint of the mapping plug-in’s I/O function
(page 7-66).

Flush The entrypoint of the mapping plug-in’s flush function
(page 7-67).

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-63
Draft. Apple Computer, Inc. 4/18/96

AddComponent The entrypoint of the mapping plug-in’s add component
function (page 7-68).

GotoState The entrypoint of the mapping plug-in’s accessibility state
function (page 7-68).

Format The entrypoint of the mapping plug-in’s format media
function (page 7-69).

GetInfo The entrypoint of the mapping plug-in’s information
function (page 7-69).

ioCompletion The entrypoint of the mapping plug-in’s I/O completion
routine (page 7-67).

BSStorePartitioningOps 7

A BSStorePartitioningOps structure contains the entrypoints of the functions a
partitioning plug-in provides to the block storage family.

A partitioning plug-in must export a structure of type BSStorePartitioningOps
named BlockStoragePartitioningPIOps to the block storage family.

struct BSStorePartitioningOps {
BlockStoragePlugInInfo header;
BSPartitioningPIExamine Examine;
BSPartitioningPIInit Init;
BSPartitioningPICleanup Cleanup;
BSPartitioningPIInitializeMap InitializeMap;
BSPartitioningPIGetInfo GetInfo;
BSPartitioningPIGetEntry GetEntry;
BSPartitioningPISetEntry SetEntry;

};

typedef BSStorePartitioningOps *BSStorePartitioningOpsPtr;

Field descriptions
header A BlockStoragePlugInInfo structure (page 7-61) that

contains the version of the block storage plug-in interface
used by this plug-in.

Examine The entrypoint of the partitioning plug-in’s examine
function (page 7-70).

C H A P T E R 7

Block Storage Family Reference

7-64 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

Init The entrypoint of the partitioning plug-in’s initialization
function (page 7-71).

Cleanup The entrypoint of the partitioning plug-in’s clean up
function (page 7-71).

InitializeMap The entrypoint of the partitioning plug-in’s initialize map
function (page 7-72).

GetInfo The entrypoint of the partitioning plug-in’s information
function (page 7-72).

GetEntry The entrypoint of the partitioning plug-in’s get entry
function (page 7-72).

SetEntry The entrypoint of the partitioning plug-in’s set entry
function (page 7-73).

BSContainerPolicyOps 7

A BSContainerPolicyOps structure contains the entrypoints of the functions a
container plug-in provides to the block storage family.

A container plug-in must export a structure of type BSContainerPolicyOps
named BlockStorageContainerPIOps to the block storage family.

struct BSContainerPolicyOps {
BlockStoragePlugInInfo header;
BSContainerPIExamine Examine;
BSContainerPIInit Init;
BSContainerPICleanup Cleanup;
BSContainerPIGoToState GoToState;
BSContainerPIAddContainer AddContainer;
BSContainerPIGetInfo GetInfo;
BSContainerPIBackgroundTask BackgroundTask;

};

typedef BSContainerPolicyOps *BSContainerPolicyOpsPtr;

Field descriptions
header A BlockStoragePlugInInfo structure (page 7-61) that

contains the version of the block storage plug-in interface
used by this plug-in.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-65
Draft. Apple Computer, Inc. 4/18/96

Examine The entrypoint of the container plug-in’s examine function
(page 7-74).

Init The entrypoint of the container plug-in’s initialization
function (page 7-74).

Cleanup The entrypoint of the container plug-in’s clean up function
(page 7-75).

GoToState The entrypoint of the container plug-in’s accessibility state
function (page 7-75).

AddContainer The entrypoint of the container plug-in’s add container
function (page 7-75).

GetInfo The entrypoint of the container plug-in’s information
function (page 7-76).

BackgroundTask The entrypoint of the container plug-in’s initialization
background task function (page 7-76).

Mapping Plug-in-Defined Function Types 7

This section describes the function types that a mapping plug-in exports to the
block storage family.

BSMappingPIExamine 7

Prior to selecting a mapping plug-in to manage a given store, the block storage
expert calls the examine function of each mapping plug-in. A mapping plug-in
examines the store and then returns an indication of how well it can support it.

A mapping plug-in exports a pointer to its examine function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPIExamine)(
BSStorePtr examineStore,
BSMPIConfidenceLevel *confidence);

For information about creating your own examine function, see the description
of the MyBSMappingPIExamineFunc function (page 7-179).

C H A P T E R 7

Block Storage Family Reference

7-66 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSMappingPIInit 7

When the block storage expert selects a mapping plug-in to manage a given
store, it calls the initialization function provided by the plug-in. The plug-in
then prepares itself to handle requests to that store.

A mapping plug-in exports a pointer to its initialization function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPIInit)(BSStorePtr initStore);

For information about creating your own initialization function, see the
description of the MyBSMappingPIInitFunc function (page 7-181).

BSMappingPICleanup 7

Before the block storage family deletes a store, it calls the clean up function
provided by the mapping plug-in that manages that store. The plug-in then
completes processing and release resources associated with the store.

A mapping plug-in exports a pointer to its clean up function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPICleanup)(BSStorePtr cleanupStore);

For information about creating your own clean up function, see the description
of the MyBSMappingPICleanupFunc function (page 7-182).

BSMappingPIIO 7

When the block storage family gets an I/O request for a given store, it calls the
I/O function provided by the mapping plug-in that manages the store. The
plug-in then processes the request.

A mapping plug-in exports a pointer to its I/O function. The function pointer
is defined by the block storage family as follows:

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-67
Draft. Apple Computer, Inc. 4/18/96

typedef extern BSIOStatus (*BSMappingPIIO)(
BSStorePtr ioStore,
BSBlockListDescriptorRef blocks,
MemListDescriptorRef memory,
BSIORequestBlockPtr parentRequest,
OptionBits options,
BSErrorList **errors);

For information about creating your own I/O function, see the description of
the MyBSMappingPIIOFunc function (page 7-183).

BSMappingIOCompletion 7

When the block storage family gets a notification that an I/O request inititated
by a mapping plug-in has completed, it calls the I/O completion routine
provided by the mapping plug-in that initiated the request.

A mapping plug-in exports a pointer to its I/O completion routine. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingIOCompletion)(
BSStorePtr theStore,
void *finishedPrivateData,
BSErrorListPtr returnedBSErrorList,
OSStatus returnedStatus,
BSErrorListPtr *errorListPtrPtr);

For information about creating your own I/O completion routine, see the
description of the MyBSMappingIOCompletionFunc function (page 7-185).

BSMappingPIFlush 7

When the block storage family gets a request to flush a store’s cache, it calls the
flush function provided by the mapping plug-in that manages the store. The
plug-in then processes the request.

C H A P T E R 7

Block Storage Family Reference

7-68 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

A mapping plug-in exports a pointer to its flush function. The function pointer
is defined by the block storage family as follows:

typedef extern BSIOStatus (*BSMappingPIFlush)(
BSStorePtr ioStore,
BSIORequestBlockPtr parentRequest,
BSErrorList **errors);

For information about creating your own flush function, see the description of
the MyBSMappingPIFlushFunc function (page 7-186).

BSMappingPIAddComponent 7

After the block storage family selects a mapping plug-in to manage a given
store and has called the plug-in’s initialization function, if a new component is
added to the store, the family calls the add component function provided by
the plug-in. The plug-in then processes the request.

A mapping plug-in exports a pointer to its add component function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPIAddComponent)(
BSStorePtr destStore,
BSStoreMPIComponent *newComponent,
BSStoreInfo *storeNewInfo);

For information about creating your own add component function, see the
description of the MyBSMappingPIAddComponentFunc function (page 7-187).

BSMappingPIGoToState 7

When the block storage family receives a request to change the accessibility
state of a store, it calls the accessibility state function provided by the mapping
plug-in that manages the store. The plug-in then processes the request.

A mapping plug-in exports a pointer to its accessibility state function. The
function pointer is defined by the block storage family as follows:

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-69
Draft. Apple Computer, Inc. 4/18/96

typedef extern OSStatus (*BSMappingPIGoToState)(
BSStorePtr theStore,
BSAccessibilityState gotoState);

For information about creating your own accessibility state function, see the
description of the MyBSMappingPIGoToStateFunc function (page 7-188).

BSMappingPIFormatMedia 7

When the block storage family gets a format request for a given store, it calls
the format media function provided by the mapping plug-in associated with
that store. The plug-in then processes the request.

A mapping plug-in exports a pointer to its format media function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPIFormatMedia)(
BSStorePtr formatStore,
BSFormatIndex formatType);

For information about creating your own format media function, see the
description of the MyBSMappingPIFormatMediaFunc function (page 7-189).

BSMappingPIGetInfo 7

When the block storage family gets a request for information about a given
store, it calls the information function provided by the mapping plug-in that
manages that store. The plug-in then processes the request.

A mapping plug-in exports a pointer to its information function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSMappingPIGetInfo)(
BSStorePtr infoStore,
BSStoreMPIInfo *info);

C H A P T E R 7

Block Storage Family Reference

7-70 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

For information about creating your own information function, see the
description of the MyBSMappingPIGetInfoFunc function (page 7-190).

BSMPIBackgroundTask 7

When a mapping plug-in calls the BSMPIStartBackgroundTask function
(page 7-165), it provides a pointer to a background task function. The block
storage family responds by calling the plug-in’s background task function.

The background task function pointer is defined by the block storage family as
follows:

typedef extern OSStatus (*BSMPIBackgroundTask)(void *theArg);

For information about creating your own background task function, see the
description of the MyBSMPIBackgroundTaskFunc function (page 7-191).

Partitioning Plug-in-Defined Function Types 7

This section describes the function types that a partitioning plug-in exports to
the block storage family.

BSPartitioningPIExamine 7

Prior to selecting a partitioning plug-in for a given store, the block storage
expert calls the examine function of each partitioning plug-in. A partitioning
plug-in examines the store and reports if it recognizes the partition map format.

A partitioning plug-in exports a pointer to its examine function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPIExamine)(
BSStoreConnID readStoreConn,
UInt32 *certainty);

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-71
Draft. Apple Computer, Inc. 4/18/96

For information about creating your own examine function, see the description
of the MyBSPartitioningPIExamineFunc function (page 7-192).

BSPartitioningPIInit 7

When the block storage expert selects a partitioning plug-in for a store, it calls
the initialization function provided by the plug-in. The partitioning plug-in
then prepares itself to handle requests pertaining to that store.

A partitioning plug-in exports a pointer to its initialization function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPIInit)(
BSStorePtr initStore);

For information about creating your own initialization function, see the
description of the MyBSPartitioningPIInitFunc function (page 7-193).

BSPartitioningPICleanup 7

Before the block storage family deletes a given store, it calls the clean up
function provided by the partitioning plug-in associated with that store. The
plug-in then releases resources associated with the store.

A partitioning plug-in exports a pointer to its clean up function. The function
pointer is defined by the block storage family as follows:

typedef extern void (*BSPartitioningPICleanup)(
BSStorePtr cleanupStore);

For information about creating your own clean up function, see the description
of the MyBSPartitioningPICleanupFunc function (page 7-193).

C H A P T E R 7

Block Storage Family Reference

7-72 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSPartitioningPIInitializeMap 7

When a partition map needs to be initialized, the block storage family calls the
initialize map function provided by the partitioning plug-in associated with it.

A partitioning plug-in exports a pointer to its initialize map function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPIInitializeMap)(
BSStorePtr initStore);

For information about creating your own initialize map function, see the
description of the MyBSPartitioningPIInitializeMapFunc function (page 7-194).

BSPartitioningPIGetInfo 7

When the block storage family receives a request for information about a given
store, it calls the information function provided by the partitioning plug-in
associated with that store. The plug-in then processes the request.

A partitioning plug-in exports a pointer to its information function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPIGetInfo)(
BSStorePtr store,
BSStorePPIInfo *info);

For information about creating your own information function, see the
description of the MyBSPartitioningPIGetInfoFunc function (page 7-195).

BSPartitioningPIGetEntry 7

The block storage family calls the get entry function provided by the
partitioning plug-in associated with a store. The plug-in then processes the
request.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-73
Draft. Apple Computer, Inc. 4/18/96

Typically, this function is called during boot time and in response to requests
for information from disk setup applications.

A partitioning plug-in exports a pointer to its get entry function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPIGetEntry)(
BSStorePtr readStore,
ItemCount entryNum,
BSPartitionDescriptor *retEntry));

For information about creating your own get entry function, see the description
of the MyBSPartitioningPIGetEntryFunc function (page 7-196).

BSPartitioningPISetEntry 7

To define a partition, the block storage family calls the set entry function
provided by the partitioning plug-in associated with a store. The plug-in then
processes the request.

A partitioning plug-in exports a pointer to its set entry function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSPartitioningPISetEntry)(
BSStorePtr store,
ItemCount partitionNum,
BSPartitionDescriptor *partitionInfo));

For information about creating your own set entry function, see the description
of the MyBSPartitioningPISetEntryFunc function (page 7-197).

Container Plug-in-Defined Function Types 7

This section describes the function types that a container plug-in exports to the
block storage family.

C H A P T E R 7

Block Storage Family Reference

7-74 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

BSContainerPIExamine 7

Prior to selecting a container plug-in for a container, the block storage expert
calls the examine function of each container plug-in. A container plug-in
examines the container and return an indication of how well it can support it.

A container plug-in exports a pointer to its examine function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIExamine)(
BSContainerPtr initContainer,
BSCPIConfidenceLevel *levelOfConfidence);

For information about creating your own examine function, see the description
of the MyBSContainerPIExamineFunc function (page 7-198).

BSContainerPIInit 7

When the block storage expert selects a container plug-in for a container, it calls
the initialization function provided by the plug-in. The plug-in then prepares
itself to handle requests related to that container.

A container plug-in exports a pointer to its initialization function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIInit)(
BSContainerPtr initContainer,
BSContainerPIInfo *info,
Boolean *backgroundTask);

For information about creating your own initialization function, see the
description of the MyBSContainerPIInitFunc function (page 7-199).

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Constants and Data Types 7-75
Draft. Apple Computer, Inc. 4/18/96

BSContainerPICleanup 7

Before the block storage family deletes a given container, it calls the clean up
function provided by the container plug-in for that container. The plug-in then
completes processing and release resources associated with the container.

A container plug-in exports a pointer to its clean up function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPICleanup)(
BSContainerPtr container);

For information about creating your own clean up function, see the description
of the MyBSContainerPICleanupFunc function (page 7-200).

BSContainerPIAddContainer 7

The block storage family calls a container plug-in’s add container function to
inform it that another container is being inserted into the plug-in’s container.

A container plug-in exports a pointer to its add container function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIAddContainer)(
BSContainerPtr destContainer,
BSContainerPtr addedContainer);

For information about creating your own add container function, see the
description of the MyBSContainerPIAddContainerFunc function (page 7-203).

BSContainerPIGoToState 7

When the block storage family receives a request to change the accessibility
state for a given container, it calls the accessibility state function provided by
the container plug-in for that container. The plug-in then processes the request.

C H A P T E R 7

Block Storage Family Reference

7-76 Block Storage Plug-in Constants and Data Types

Draft. Apple Computer, Inc. 4/18/96

A container plug-in exports a pointer to its accessibility state function. The
function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIGoToState)(
BSContainerPtr container,
UInt32 accessState);

For information about creating your own accessibility state function, see the
description of the MyBSContainerPIGoToStateFunc function (page 7-201).

BSContainerPIGetInfo 7

The block storage family calls the information function provided by a container
plug-in to get information about a container. The plug-in then processes the
request.

A container plug-in exports a pointer to its information function. The function
pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIGetInfo)(
BSContainerPtr infoContainer,
BSContainerPIInfo *info);

For information about creating your own information function, see the
description of the MyBSContainerPIGetInfoFunc function (page 7-202).

BSContainerPIBackgroundTask 7

Container plug-ins have two types of background tasks that differ in their
interface and when they are called.

If the backgroundTask flag is set on exit from a container plug-in's initialization
function (page 7-199), the block storage family calls the plug-in’s initialization
background task function at that time.

See “BSCPIBackgroundTask” (page 7-77) for information about the standard
type of background task.

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-77
Draft. Apple Computer, Inc. 4/18/96

A container plug-in exports a pointer to its initialization background task
function. The function pointer is defined by the block storage family as follows:

typedef extern OSStatus (*BSContainerPIBackgroundTask)(
BSContainerPtr container);

For information about creating your own initialization background task
function, see the description of the MyBSContainerPIBackgroundTaskFunc
function (page 7-203).

BSCPIBackgroundTask 7

Container plug-ins have two types of background tasks that differ in their
interface and when they are called.

When a container plug-in calls the BSCPIStartBackgroundTask function
(page 7-176), it provides a pointer to a standard background task function,
which the block storage family then calls.

See “BSContainerPIBackgroundTask” (page 7-76) for information about the
initialization type of background task.

The standard background task function pointer is defined by the block storage
family as follows:

typedef extern OSStatus (*BSCPIBackgroundTask)(
BSContainerPtr theContainer,
void *theArg);

For information about creating your own standard background task function,
see the description of the MyBSCPIBackgroundTaskFunc function (page 7-204).

Block Storage Client Functions 7

This section describes the functions in the programming interface that the block
storage family provides for its clients.

Clients who make I/O requests of existing stores use the functions described in

C H A P T E R 7

Block Storage Family Reference

7-78 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

■ “Opening and Closing a Connection to a Store” (page 7-78)

■ “Building a Block List” (page 7-80)

■ “Reading From a Store” (page 7-86)

■ “Writing To a Store” (page 7-92)

Such clients might also need the functions described in “Setting the
Accessibility State For a Store” (page 7-98) and “Navigating a Store Hierarchy”
(page 7-100).

Clients who create and configure new and existing stores need the functions
described in “Creating and Configuring a Store” (page 7-113).

Note
Although the functions in “Working With a Block List
Descriptor” (page 7-147) are available to block storage
clients, they are not typically used by clients. Usually,
mapping plug-ins call them to manipulate block list
descriptors in servicing an I/O request. ◆

Opening and Closing a Connection to a Store 7

•••To be provided•••

BSStoreOpen 7

Opens a store.

extern OSStatus BSStoreOpen (
BSStoreRef *store,
BSStoreOpenOptions options,
BSStoreConnID *newConnection);

store On input, a pointer to a reference to the store that you want to
open. You can get a store reference from a new block storage
device notification, if you subscribe to such notifications. You
can also get a reference from several navigation functions
decribed in “Navigating a Store Hierarchy” (page 7-100).

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-79
Draft. Apple Computer, Inc. 4/18/96

options The type of connection you are requesting. See
“BSStoreOpenOptions” (page 7-42) for a description of
connection types.

newConnection A pointer to a connection ID. On output, the function provides
an ID for the newly created connection. You use the ID with
other functions to read and write to the store and otherwise
manipulate the store.

function result A result code. Your request to open a store can fail if resources
for the connection cannot be allocated or if the access options
you specify are incompatible with the store or with existing
connections. If a store has already granted an exclusive
connection, all new connection requests fail with the
E_BSStoreInUse result code. The function also returns
E_BSStoreInUse if you request an exclusive connection to a store
that has another connection open. If you request write access to
a read-only store, the function returns the
E_BSStoreWriteProtected result code. See “Block Storage Result
Codes” (page 7-205) for a list of the result codes the block
storage family can return.

DISCUSSION

You cannot read or write to a store until you open it and get a connection ID.

You can open a store after it is published in the name registry.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-80 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSStoreConnClose 7

Closes a connection to a store.

extern OSStatus BSStoreConnClose (BSStoreConnID connection);

connection The connection ID for the connection you want to close.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Building a Block List 7

When you request an I/O transfer involving more than one range of bytes on a
store, you need to build a block list. A block list specifies the address ranges in
the store to be read or written. You use the functions in this section to create an
empty block list, add address ranges to it, and signal that the block list is
complete. As a result, you get a reference to a block list descriptor which you
can pass to read and write functions described in “Reading From a Store”
(page 7-86) and “Writing To a Store” (page 7-92).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-81
Draft. Apple Computer, Inc. 4/18/96

BSBlockListCreate 7

Creates an empty block list.

extern OSStatus BSBlockListCreate (
ItemCount numAnticipatedRanges,
BSBlockListRef *newList);

numAnticipatedRanges
A hint to the block storage family about the number of address
ranges you expect to add to the block list. (You can add more
ranges than you specify here.)

newList A pointer to a block list reference (page 7-31). On output, the
function supplies a reference to the new block list.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

If an I/O transfer involves more than one address range, you need a build a
block list that contains the starting address and lengths of each range of bytes
to be read or written to a store.

After you create an empty block list with the BSBlockListCreate function, call
the BSBlockListAddRange function (page 7-82) to add address ranges to it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-82 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSBlockListAddRange 7

Appends an address range to a block list.

extern OSStatus BSBlockListAddRange (
BSBlockListRef appendList,
BSByteCount startingOffset,
BSByteCount length);

appendList A reference to the block list to which you want to add an
address range. You get a block list reference (page 7-31) from
the BSBlockListCreate function (page 7-81).

startingOffset
The offset, in bytes, of the first byte of the range you are adding,
from the starting address on the store of interest. Store
addresses start at 0.

length The length, in bytes, of the address range you are adding.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can call the BSBlockListAddRange function to add an address range to a
block list any time after calling the BSBlockListCreate function (page 7-81) to
create the block list and before calling the BSBlockListFinalize function
(page 7-84) to signal its completion. An address range is defined by a starting
address and a length. It specifies a location on a store where data will be read
or written. You can add as many ranges as are needed for an I/O transfer.

For example, when an application calls the file systems family to read data
from a file, the data in the file is typically scattered across the disk in
discontiguous chunks. Before calling the BSStoreConnReadSGAsync function
(page 7-91), the file systems family needs to build a block list that specifies each
discontinuous area (range) on the disk that is to be read from.

Assume that the file systems family calls BSBlockListAddRange 4 times to add
the following ranges:

■ 2048 bytes starting at address 8000

■ 6144 bytes starting at address 200

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-83
Draft. Apple Computer, Inc. 4/18/96

■ 2560 bytes starting at address 30000

■ 5120 bytes starting at address 16000

The total number of bytes to be read is 15,872. Conceptually, what the series of
calls to BSBlockListAddRange does is it creates 2 linear arrays, each consisting of
15,872 elements. The first array consists of the bytes to be read. It is referred to
as the transfer space. The second array consists of the addresses of the
corresponding bytes in the transfer space.

The order in which you add ranges to a block list is crucial—it determines how
the addresses in the transfer space relate to addresses on a device.

To continue the example, the block list information is eventually used to read
the data from a device. Suppose the disk has a maximum read block size of
4096 bytes. The disk driver issues the following requests to the device:

■ read 2048 bytes starting at address 8000

■ read 4096 bytes starting at address 200

■ read 2048 bytes starting at address 4296

■ read 2560 bytes starting at address 30000

■ read 4096 bytes starting at address 16000

■ read 1024 bytes starting at address 20096

(The example ignores the fact that typically the addresses provided in the
initial I/O are not actual device addresses and need to be mapped to
corresponding device addresses.)

When you are done building your block list, you must signal that all address
ranges have been added by calling the BSBlockListFinalize function
(page 7-84).

C H A P T E R 7

Block Storage Family Reference

7-84 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSBlockListFinalize 7

Completes a block list and creates a block list descriptor.

extern OSStatus BSBlockListFinalize (
BSBlockListRef finalizeList,
BSBlockListDescriptorRef *newDescriptor);

finalizeList The block list reference (page 7-31) that identifies the block list
of interest. You get a block list reference from the
BSBlockListCreate function (page 7-81).

newDescriptor A pointer to a block list descriptor reference. On output, the
function supplies a reference to the newly created block list
descriptor.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

After building a block list with the BSBlockListAddRange function (page 7-81),
you call the BSBlockListFinalize function to signal that you are done adding
address ranges to the block list.

The BSBlockListFinalize function builds a block list descriptor, an opaque
structure that specifies a given view of the block list itself, and returns a
reference to it. You pass the reference to block storage read and write functions,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-85
Draft. Apple Computer, Inc. 4/18/96

described in “Reading From a Store” (page 7-86) and “Writing To a Store”
(page 7-92).

After calling BSBlockListFinalize, you cannot call BSBlockListAddRange again
to add another range to the list.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSBlockListDelete 7

Disposes of a block list.

extern OSStatus BSBlockListDelete (BSBlockListRef deleteList);

deleteList The block list reference (page 7-31) that identifies the block list
you want to dispose of.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

Under normal circumstances, you do not need to call the BSBlockListDelete
function. Rather, you call the BSBlockListDescriptorDelete function
(page 7-156) to dispose of a block list descriptor and free the associated block
list.

Use BSBlockListDelete to dispose of a block list in an abnormal situation when
proper disposal of block list descriptors cannot be guaranteed. It relinquishes

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-86 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

all resources associated with the block list, including all its block list
descriptors.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reading From a Store 7

You use the functions in this section to read data from a store. To read data
from a single address range, you can call either the BSStoreConnRead (page 7-86)
or the BSStoreConnReadAsync (page 7-88) function. To read data from more than
one address range, use the BSStoreConnReadSG (page 7-89) or the
BSStoreConnReadSGAsync (page 7-91) function.

BSStoreConnRead 7

Reads a single range of data from a store.

extern OSStatus BSStoreConnRead (
BSStoreConnID readConnection,
BSByteCount startingOffset,
BSByteCount bytesToRead,
void *buffer);

readConnection
Your connection ID for the store from which you want to read.
You get a connection ID from the BSStoreOpen function
(page 7-78).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-87
Draft. Apple Computer, Inc. 4/18/96

startingOffset
The offset, in bytes, from the beginning of the store at which to
start reading. Byte numbering within a store always starts at 0.

bytesToRead The number of bytes that you want to read.

buffer A pointer to your buffer. On output, the function puts the data
from the store into your buffer.

function result A result code. If the range request exceeds the boundaries of the
store, the function returns the E_BSMPIOutOfStoreBounds result
code. The function returns E_BSMPIMemoryAccessFault if the
destination memory is not accessible. If the store maps to media
that is not available, the function returns the
E_BSMPIMediaRemoved result code. See “Block Storage Result
Codes” (page 7-205) for a list of the result codes the block
storage family can return.

DISCUSSION

You use the BSStoreConnRead function when you need to read data
synchronously from a single address range on a store.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To read data asynchronously from a single address range, use the
BSStoreConnReadAsync function (page 7-88).

To read data from multiple address ranges, use the BSStoreConnReadSG
(page 7-89) and BSStoreConnReadSGAsync (page 7-91) functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-88 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSStoreConnReadAsync 7

Reads a single range of data from a store asynchronously.

extern OSStatus BSStoreConnReadAsync (
BSStoreConnID readConnection,
BSByteCount startingOffset,
BSByteCount bytesToRead,
KernelNotification *notification,
void *buffer);

readConnection
Your connection ID for the store from which you want to read.
You get a connection ID from the BSStoreOpen function
(page 7-78).

startingOffset
The offset, in bytes, from the beginning of the store at which to
start reading. Byte numbering within a store always starts at 0.

bytesToRead The number of bytes that you want to read.

notification On input, a pointer to a kernel notification structure that
specifies how you wish to be notified when the read operation
completes. For information on kernel notification structures, see
Microkernel and Core System Services.

buffer A pointer to your buffer. On output, the function puts the data
it read from the store into your buffer.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-89
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To read data synchronously from a single address range, use the
BSStoreConnRead function (page 7-86).

To read data from multiple address ranges, use the BSStoreConnReadSG
(page 7-89) and BSStoreConnReadSGAsync (page 7-91) functions.

BSStoreConnReadSG 7

Reads multiple ranges of data from a store synchronously.

extern OSStatus BSStoreConnReadSG (
BSStoreConnID readConnection,
BSBlockListDescriptorRef srcBlocks,
MemListDescriptorRef destMemory);

readConnection
Your connection ID for the store from which you want to read.
You get a connection ID from the BSStoreOpen function
(page 7-78).

srcBlocks A reference to a block list descriptor (page 7-32) that specifies
the address ranges that you want to read. For information on
how to get a block list descriptor, see “Building a Block List”
(page 7-80).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-90 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

destMemory A reference to a memory list descriptor that specifies where in
memory to put the data read from the store. For information on
memory lists, see “Memory Lists”, a chapter to be provided in a
later Developer Release.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To read data asynchronously from multiple address ranges, use the
BSStoreConnReadSGAsync (page 7-91) function.

To read data froma single address range, use the BSStoreConnRead (page 7-86)
and BSStoreConnReadAsync (page 7-88) functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-91
Draft. Apple Computer, Inc. 4/18/96

BSStoreConnReadSGAsync 7

Reads multiple ranges of data from a store asynchronously.

extern OSStatus BSStoreConnReadSGAsync (
BSStoreConnID readConnection,
BSBlockListDescriptorRef srcBlocks,
MemListDescriptorRef destMemory,
KernelNotification *notification);

readConnection
Your connection ID for the store from which you want to read.
You get a connection ID from the BSStoreOpen function
(page 7-78).

srcBlocks A reference to a block list descriptor (page 7-32) that specifies
the address ranges that you want to read. For information on
how to get a block list descriptor, see “Building a Block List”
(page 7-80).

destMemory A reference to a memory list descriptor that specifies where in
memory to put the data read from the store. For information on
memory lists, see “Memory Lists”, a chapter to be provided in a
later Developer Release.

notification On input, a pointer to kernel notification structure that specifies
how you wish to be notified when the read operation
completes. For information on kernel notification structures, see
Microkernel and Core System Services.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You must not deallocate or modify the block list and memory list structures,
nor modify the contents of the memory locations specified by the memory list
or free that memory, until after the I/O request completes.

C H A P T E R 7

Block Storage Family Reference

7-92 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Writing To a Store 7

You use the functions in this section to write data to a store. To write data to a
single address range, you can call either the BSStoreConnWrite (page 7-92) or the
BSStoreConnWriteAsync (page 7-93) function. To write data to more than one
address range, use the BSStoreConnWriteSG (page 7-95) or the
BSStoreConnWriteSGAsync (page 7-96) function.

BSStoreConnWrite 7

Writes a single range of data to a store.

extern OSStatus BSStoreConnWrite (
BSStoreConnID writeConnection,
BSByteCount startingOffset,
ByteCount bytesToWrite,
void *buffer);

writeConnection
Your connection ID for the store to which you want to write.
You get a connection ID from the BSStoreOpen function
(page 7-78).

startingOffset
The offset, in bytes, from the beginning of the store at which to
start writing. Byte numbering within a store always starts at 0.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-93
Draft. Apple Computer, Inc. 4/18/96

bytesToWrite The number of bytes that you want to write.

buffer On input, a pointer to your buffer containing the data to write.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To write data asynchronously to a single address range, use the
BSStoreConnWriteAsync function (page 7-93).

To write data to multiple address ranges, use the BSStoreConnWriteSG
(page 7-95) and BSStoreConnWriteSGAsync (page 7-96) functions.

BSStoreConnWriteAsync 7

Writes a single range of data to a store asynchronously.

extern OSStatus BSStoreConnWriteAsync (
BSStoreConnID writeConnection,
BSByteCount startingOffset,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-94 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

ByteCount bytesToWrite,
KernelNotification *notification,
void *buffer);

writeConnection
Your connection ID for the store to which you want to write.
You get a connection ID from the BSStoreOpen function
(page 7-78).

startingOffset
The offset, in bytes, from the beginning of the store at which to
start writing. Byte numbering within a store always starts at 0.

bytesToWrite The number of bytes that you want to write.

notification On input, a pointer to kernel notification structure that specifies
how you wish to be notified when the write operation
completes. For information on kernel notification structures, see
Microkernel and Core System Services.

buffer On input, a pointer to your buffer containing the data to write.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-95
Draft. Apple Computer, Inc. 4/18/96

SEE ALSO

To write data synchronously to a single address range, use the
BSStoreConnWrite function (page 7-92).

To write data to multiple address ranges, use the BSStoreConnWriteSG
(page 7-95) and BSStoreConnWriteSGAsync (page 7-96) functions.

BSStoreConnWriteSG 7

Writes multiple ranges of data to a store synchronously.

extern OSStatus BSStoreConnWriteSG (
BSStoreConnID writeConnection,
MemListDescriptorRef srcMemory,
BSBlockListDescriptorRef destBlocks);

writeConnection
Your connection ID for the store to which you want to write.
You get a connection ID from the BSStoreOpen function
(page 7-78).

srcMemory A reference to a memory list descriptor that tells the function
where in memory to find the data that you want to write. For
information on memory lists, see “Memory Lists”, a chapter to
be provided in a later Developer Release.

destBlocks A reference to a block list descriptor that specifies the address
ranges on the store where you want to write the data. See
“Building a Block List” (page 7-80) for information on getting a
block list descriptor.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

C H A P T E R 7

Block Storage Family Reference

7-96 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To write data asynchronously to multiple address ranges, use the
BSStoreConnWriteSGAsync function (page 7-96).

To write data to a single address range, use the BSStoreConnWrite (page 7-92)
and BSStoreConnWriteAsync (page 7-93) functions.

BSStoreConnWriteSGAsync 7

Writes multiple ranges of data to a store asynchronously.

extern OSStatus BSStoreConnwriteSGAsync (
BSStoreConnID writeConnection,
MemListDescriptorRef srcMemory,
BSBlockListDescriptorRef destBlocks,
KernelNotification *notification);

writeConnection
Your connection ID for the store to which you want to write.
You get a connection ID from the BSStoreOpen function
(page 7-78).

srcMemory A reference to a memory list descriptor that tells the function
where in memory to find the data that you want to write. For
information on memory lists, see “Memory Lists”, a chapter to
be provided in a later Developer Release.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-97
Draft. Apple Computer, Inc. 4/18/96

destBlocks A reference to a block list descriptor that specifies the address
ranges on the store where you want to write the data. See
“Building a Block List” (page 7-80) for information on getting a
block list descriptor.

notification On input, a pointer to kernel notification structure that specifies
how you wish to be notified when the write operation
completes. For information on kernel notification structures, see
Microkernel and Core System Services.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You must not deallocate or modify the block list and memory list structures,
nor modify the contents of the memory locations specified by the memory list
or free that memory, until after the I/O request completes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To write data synchronously to multiple address ranges, use the
BSStoreConnWriteSG function (page 7-95).

To write data to a single address range, use the BSStoreConnWrite (page 7-92)
and BSStoreConnWriteAsync (page 7-93) functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-98 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSStoreConnFlush 7

Flushes caches in a store and any stores from which the store is derived.

extern OSStatus BSStoreConnFlush (BSStoreConnID flushConnection);

flushConnection
Your connection ID for the store that you want to flush. You get
a connection ID from the BSStoreOpen function (page 7-78).

function result A result code.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Setting the Accessibility State For a Store 7

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-99
Draft. Apple Computer, Inc. 4/18/96

BSStoreConnGoToAccessibilityState 7

Sets the accessibility state for a store.

extern OSStatus BSStoreConnGoToAccessibilityState (
BSStoreConnID connection,
BSAccessibilityState newState);

connection The connection ID for the store whose state you want to set.

newState The new accessibility state that you want to set. See
“Accessibility State Type” (page 7-41) for descriptions of the
defined states.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

If the new state is kBSOffline and the store maps to a device or media that is
ejectable, the block storage family deletes the store from the store hierarchy and
closes the connection.

Furthermore, if the store of interest is a leaf store and none of the stores to
which it maps is in use, the action is repeated through the related stores so that
an entire branch in the store hierarchy is deleted.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-100 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

Navigating a Store Hierarchy 7

The functions in this section allow you to browse a hierarchy of stores and
retrieve properties of a given store. They are useful primarily to disk
configuration utility software.

See “Navigation Types” (page 7-33) for information on the data types defined
for store navigation.

You do not need a store connection ID to use the navigation functions.

You can get a store reference, which you need to open a store and get a
connection to it, by calling any of these functions: BSStoreIteratorEnter,
BSStoreIteratorExit, BSStoreIteratorRestartChildren,
BSStoreIteratorRestartParent, BSStoreIteratorNextChild and
BSStoreIteratorNextParent. If you know the ID of a store, the BSStoreFindByID
function also returns a store reference.

BSStoreGetDeviceData 7

Retrieves information about all stores, leaf stores, or primary stores.

extern OSStatus BSStoreGetDeviceData(
BSStoreGetSelector selector,
ItemCount requestItemCount,
ItemCount *totalItemCount,
BSStoreIOIteratorData *iteratorData);

selector A value that indicates the set of stores about which you want
information. “BSStoreGetSelector” (page 7-33) contains
descriptions of the values you can use here.

requestItemCount
The number of empty BSStoreIOIteratorData structures in the
array pointed to by the iteratorData parameter.

totalItemCount
A pointer to an ItemCount value. On output, the function sets
this parameter to the number of stores of the type you specified

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-101
Draft. Apple Computer, Inc. 4/18/96

for which information is available. This value can be more than
the number of BSStoreIOIteratorData structures in your array.
In that case, the function fills in every structure in the array.

iteratorData On input, a pointer to an array of empty BSStoreIOIteratorData
structures (page 7-34). On output, the function fills in the fields
of a structure for each store it finds or until it reaches the end of
the array.

function result A result code.

DISCUSSION

Although the BSStoreGetDeviceData function name refers to a device (due to
I/O family naming conventions), the function returns information about stores.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorCreate 7

Creates an iterator that you can use to navigate a store hierarchy.

extern OSStatus BSStoreIteratorCreate (
BSStoreRef *startingStore,
BSStoreIteratorID *newIterator);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-102 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

startingStore On input, a pointer to the store reference for the new iterator’s
starting store (the store at which it will begin an iteration). If
you set this parameter to nil, the iterator points at the root of
the block storage store hierarchy.

newIterator A pointer to an iterator (page 7-34). On output, the function
supplies a new iterator.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

If you set the startingStore parameter to nil to start at the root of the store
hierarchy, you can call the BSStoreIteratorNextChild function (page 7-107)
repeatedly to discover the child nodes of the root.

When you are done browsing the hierarchy, call the BSStoreIteratorDispose
function (page 7-102) to dispose of the iterator and any resources associated
with it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorDispose 7

Disposes of an iterator, freeing all resources associated with it.

extern OSStatus BSStoreIteratorDispose (
BSStoreIteratorID disposeIterator);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-103
Draft. Apple Computer, Inc. 4/18/96

disposeIterator
The iterator you want to dispose of.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You need to call this function for each iterator that you create with the
BSStoreIteratorCreate function (page 7-101).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorEnter 7

Updates an iterator to point to the first child of the current node and retrieves a
reference to the store it represents.

extern OSStatus BSStoreIteratorEnter (
BSStoreIteratorID iterator,
BSStoreRef *newStore);

iterator An iterator that you provide. The function updates the iterator
to point to the current node’s first child. If the function returns
an error, the iterator is unchanged.

newStore A pointer to a store reference. On output, the function sets the
reference to the store the updated iterator points to. If no child
node exists, the function sets the pointer to nil.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-104 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

function result A result code. If no child node exists, the function returns the
E_BSStoreNotFound result code. See “Block Storage Result
Codes” (page 7-205) for a list of the result codes the block
storage family can return.

DISCUSSION

When you call the BSStoreIteratorEnter function, the iterator points to the
current node. As a result of successful execution, the iterator enters a new level
of the hierarchy—it moves down a level and points to the first child of the node
it previously pointed to.

You can use the function to begin an iteration through the children of a node.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorExit 7

Updates an iterator to point to the first parent of the current node and retrieves
a reference to the store it represents.

extern OSStatus BSStoreIteratorExit (
BSStoreIteratorID iterator,
BSStoreRef *newStore);

iterator An iterator that you provide. The function updates the iterator
to point to the current node’s first parent. If the function returns
an error, the iterator is unchanged.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-105
Draft. Apple Computer, Inc. 4/18/96

newStore A pointer to a store reference. On output, the function sets the
reference to the store the updated iterator points to. If no parent
node exists, the function sets the pointer to nil.

function result A result code. If no parent node exists, the function returns the
E_BSStoreNotFound result code. See “Block Storage Result
Codes” (page 7-205) for a list of the result codes the block
storage family can return.

DISCUSSION

When you call the BSStoreIteratorExit function, the iterator points to the
current node. As a result of successful execution, the iterator enters a new level
of the hierarchy—it moves up a level and points to the first parent of the node
it previously pointed to.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorRestartChildren 7

Updates an iterator to point to the first child in the set of child nodes it is
currently in and retrieves a reference to the store it represents.

extern OSStatus BSStoreIteratorRestartChildren (
BSStoreIteratorID iterator,
BSStoreRef *newChild);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-106 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

iterator An iterator that you provide. The function updates the iterator
to point to the first child in the current set of sibling nodes.

newChild A pointer to a store reference. On output, the function sets the
reference to the store the updated iterator points to.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The child nodes of a given node constitute a set of sibling nodes. The
BSStoreIteratorRestartChildren function sets an iterator to the first child in the
sibling set.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorRestartParent 7

Updates an iterator to point to the first parent in the current set and retrieves a
reference to the store it represents.

extern OSStatus BSStoreIteratorRestartParent (
BSStoreIteratorID iterator,
BSStoreRef *newParent);

iterator An iterator that you provide. The function updates the iterator
to point to the first parent in the current set of parent nodes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-107
Draft. Apple Computer, Inc. 4/18/96

newParent A pointer to a store reference. On output, the function sets the
reference to the store the updated iterator points to.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The parent nodes of a given node constitute a set of nodes. The
BSStoreIteratorRestartParent function sets an iterator to the first node in the
current set of parent nodes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreIteratorNextChild 7

Updates an iterator to point to the next child in the current sibling set and
retrieves a reference to the store it represents.

extern OSStatus BSStoreIteratorNextChild (
BSStoreIteratorID iterator,
BSStoreRef *newChild,
Boolean *changed);

iterator An iterator that you provide. The function updates the iterator
to point to the next child in the current sibling set.

newChild A pointer to a store reference. On output, the function sets the
reference to refer to the store the updated iterator points to.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-108 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

changed A pointer to a Boolean variable. On output, the function sets the
variable to true if a parent or a child was added to or deleted
from the node the iterator pointed to before the function
updated it. See the Discussion for more information.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can use the BSStoreIteratorNextChild function move through all the
children in the current sibling set.

The block storage family tracks changes in the store hierarchy and uses the
changed parameter to notify you of some changes. Specifically, it reports a
change if a node was added or deleted since the last time either the
BSStoreIteratorNextChild or BSStoreIteratorNextParent (page 7-109) function
was called using the same iterator. However, it reports local changes only, not a
change anywhere in the hierarchy. That is, it reports changes to the node that
was current when you called the function. As a result, you know if the part of
the hierarchy is changing, more or less simultaneously, as you examine it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-109
Draft. Apple Computer, Inc. 4/18/96

BSStoreIteratorNextParent 7

Updates an iterator to point to the next parent in the current set of nodes and
retrieves a reference to the store it represents.

extern OSStatus BSStoreIteratorNextParent (
BSStoreIteratorID iterator,
BSStoreRef *newParent,
Boolean *changed);

iterator An iterator that you provide. The function updates the iterator
to point to the next parent in the current set.

newParent A pointer to a store reference. On output, the function sets the
reference to the store the updated iterator points to.

changed A pointer to a Boolean variable. On output, the function sets the
variable to true if a parent or a child was added to or deleted
from the node the iterator pointed to before the function
updated it. See the Discussion for more information.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can use the BSStoreIteratorNextParent function move through all the
nodes in the current set.

The block storage family tracks changes in the store hierarchy and uses the
changed parameter to notify you of some changes. Specifically, it reports a
change if a node was added or deleted since the last time either the
BSStoreIteratorNextChild (page 7-107) or BSStoreIteratorNextParent function
was called using the same iterator. However, it reports local changes only, not a
change anywhere in the hierarchy. That is, it reports changes to the node that
was current when you called the function. As a result, you know if the part of
the hierarchy is changing, more or less simultaneously, as you examine it.

C H A P T E R 7

Block Storage Family Reference

7-110 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreGetPropertySize 7

Retrieves the size of a store property.

extern OSStatus BSStoreGetPropertySize (
BSStoreRef *store,
char *propertyName,
BSStorePropertyInstance propertyInstance,
ByteCount *propertySize);

store On input, a pointer to the store reference for the store of interest.

propertyName On input, a pointer to a C string containing the name of the
property of interest. See “Store Property Names” (page 7-36) for
a list of property names.

propertyInstance
The instance of the named property of interest. Property
instances start at 0 and increment by 1 for each additional
instance. You provide this value.

propertySize A pointer to a 32-bit value. On output, the function returns the
size, in bytes, of the property specified by the propertyName and
propertyInstance parameters.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-111
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

You can call the BSStoreGetPropertySize function before calling the
BSStoreGetProperty function (page 7-111) to find out how large a buffer you
should provide to BSStoreGetProperty.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreGetProperty 7

Retrieves the value of a store property.

extern OSStatus BSStoreGetProperty (
BSStoreRef *store,
char *propertyName,
BSStorePropertyInstance propertyInstance,
void *propertyValue,
ByteCount *propertySize);

store On input, a pointer to the store reference for the store of interest.

propertyName On input, a pointer to a C string containing the name of the
property of interest. See “Store Property Names” (page 7-36) for
a list of property names.

propertyInstance
The instance of the named property of interest. Property
instances start at 0 and increment by 1 for each additional
instance. You provide this value.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-112 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

propertyValue A pointer to your buffer. On output, the function places the
property value in your buffer.

propertySize On input, a pointer to a value specifying the size of your buffer
in bytes. You can call the BSStoreGetPropertySize function
(page 7-110) to find out how large a buffer you should provide.
On output, the function returns the number of bytes of data it
placed in your buffer.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreFindByID 7

Given the ID of a store, returns a reference to it.

extern OSStatus BSStoreFindByID (
BSStoreID storeID,
BSStoreRef *foundStore);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-113
Draft. Apple Computer, Inc. 4/18/96

storeID The ID of the store of interest. You get an ID when you create a
store (BSStoreCreate (page 7-114)). You can also get an ID by
locating the store in the store hierarchy and calling the
BSStoreGetProperty function (page 7-111) to retrieve the ID
property.

foundStore A pointer to a store reference. On output, the function returns a
reference to the store of interest.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating and Configuring a Store 7

You use the functions in this section to create a new store, configure it, and
make it available for I/O. If you write disk utilities or disk formatting software,
you need to understand how to use these functions. If you simply want to use a
store for I/O, you do not use these functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-114 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSStoreCreate 7

Creates a new store and opens an exclusive connection to it.

extern OSStatus BSStoreCreate (
BSStoreID *newStore,
BSStoreConnID *newStoreConnection);

newStore A pointer to a store ID. On output, the function returns the
store ID for the new store.

newStoreConnection
A pointer to a connection ID. On output, the function provides
an ID for a connection to the newly created store. You use the
ID with other functions to configure the store. The new
connection has exclusive access to the store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

After creating a store, you configure it and make it available for use by other
clients by calling the following functions:

■ BSStoreConnAssociatePartitioningPlugin (page 7-117) and
BSStoreConnAssociateMappingPlugin (page 7-116) to associate a partitioning
and a mapping plug-in with the store

■ BSStoreConnMapDevice (page 7-122) or BSStoreConnMapPartition (page 7-120)
to map the store to a device or another store

■ BSStoreConnPublish (page 7-126) to publish the store inthe name registry

■ BSStoreConnClose (page 7-80) to close your connection to the store. No other
connection to the store can be granted until you close yours.

A client using stores for I/O does not need to call the BSStoreCreate function.
This function is called by disk utility and disk formatting software.

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-115
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnDeleteAndClose 7

Deletes a store.

extern OSStatus BSStoreConnDeleteAndClose (BSStoreConnID connection);

connection The connection ID for the store you want to delete.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can delete a store when the following conditions are met:

■ the store is not published in the name registry. (To remove a store from the
name registry, call the BSStoreConnUnpublish function (page 7-127)).

■ there are no stores existing that map to the store to be deleted. (To find out,
call BSStoreConnGetInfo (page 7-123) and check the numChildren field in the
returned store information structure.)

■ the store has no connections to it other than the one you use when calling
the BSStoreConnDeleteAndClose function. That connection is closed as a result
of successful execution. If another connection exists, the function returns the
E_BSStoreInUse result code.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-116 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnAssociateMappingPlugin 7

Associates a mapping plug-in with a store.

extern OSStatus BSStoreConnAssociateMappingPlugin (
BSStoreConnID connection,
BSMappingPlugInRef mappingPlugin);

connection The connection ID for the store.

mappingPlugin A reference to the mapping plug-in you want to attach.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You use this function to override automatic plug-in selection. The function
returns the E_BSEPlugInNotFound result code if the plug-in can't be found.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-117
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnAssociatePartitioningPlugin 7

Associates a partitioning plug-in with a store.

extern OSStatus BSStoreConnAssociatePartitioningPlugin (
BSStoreConnID connection,
BSPartitioningPlugInRef partitioningPlugin);

connection A connection ID for the store.

partitioningPlugin
A reference to the plug-in you want to associate with the store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You use this function to override automatic plug-in selection. The function
returns the E_BSEPlugInNotFound result code if the plug-in can't be found.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-118 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnSetPartitionInfo 7

Creates or modifies a partition in a store.

extern OSStatus BSStoreConnSetPartitionInfo (
BSStoreConnID storeConnection,
ItemCount partitionNum,
BSPartitionDescriptor *partitionInfo);

storeConnection
The connection ID for the store that does or will contain the
partition of interest.

partitionNum The ordinal number of the partition you want to create or
modify. Partition numbering starts at 0.

partitionInfo On input, a pointer to a BSPartitionDescriptor structure
(page 7-48) containing the partition information you want to set.

function result A result code. If the store does not have a partitioning plug-in,
the function returns the E_BSPPINoPlugIn result code. If the
BSPartitionDescriptor structure you provide describes a
partition that overlaps an existing partition, the function
returns the E_BSPPIOverlappingPartition result code. If the new
partition extends beyond the boundaries of the store, the
function returns the E_BSPPIOutOfStoreBounds result code. See
“Block Storage Result Codes” (page 7-205) for a list of the result
codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-119
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

You typically call the BSStoreConnSetPartitionInfo function to create a new
partition in an existing store. The function doesn’t automatically create a new
store whose limits are defined by the new partition—it simply creates a
partition map entry in the existing store.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnGetPartitionInfo 7

Retrieves information about a partition.

extern OSStatus BSStoreConnGetPartitionInfo (
BSStoreConnID connection,
ItemCount partitionNum,
BSPartitionDescriptor *partitionInfo);

connection The connection ID for the store containing the partition of
interest.

partitionNum The ordinal number that identifies the partition about which
you want information. Partition numbering starts at 0.

partitionInfo A pointer to a BSPartitionDescriptor structure (page 7-48). On
output, the function returns partition information in the
structure.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-120 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

function result A result code. If the store does not have a partitioning plug-in,
the function returns the E_BSPPINoPlugIn result code. See “Block
Storage Result Codes” (page 7-205) for a list of the result codes
the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnMapPartition 7

Maps a partition from a source store into a destination store.

extern OSStatus BSStoreConnMapPartition (
BSStoreConnID srcConnection,
ItemCount partitionNum,
BSStoreConnID destConnection,
BSByteCount startingByte);

srcConnection The connection ID for the source store containing the partition
to be mapped.

partitionNum The ordinal number, in the source store, of the partition to be
mapped.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-121
Draft. Apple Computer, Inc. 4/18/96

destConnection
The connection ID for the destination store into which the
partition is to be mapped.

startingByte
The byte offset in the destination store where you want to place
the partition.

function result A result code. If the source store does not have a partitioning
plug-in, the function returns the E_BSPPINoPlugIn result code. If
the mapping is not supported by either store, the function
returns the E_BSPPIMappingNotSupported result code. The
function returns E_BSPPIPartitionNonExistant if the source
partition doesn't exist. If your request would create too many
levels in the store hierarchy, the function returns the
E_BSEHierarchyTooDeep result code. See “Block Storage Result
Codes” (page 7-205) for a list of the result codes the block
storage family can return.

DISCUSSION

Normally, when Mac OS 8 boots, the store hierarchy is built automatically. The
BSStoreConnMapPartition function offers a programmatic way to add stores to
the hierarchy by associating a newly created store with a store already in the
hierarchy. By definition, all stores added by BSStoreConnMapPartition become
derived stores.

You need to call this function if you develop disk utility software. Suppose, for
example, that a user adds a uninitialized disk to a Mac-compatible system and
wants to split it into 3 virtual disks. You should perform the following actions.

4. Call BSStoreCreate (page 7-114) to create a new store, call
BSStoreConnAssociateMappingPlugin (page 7-116) to associate a mapping
plug-in with it, call BSStoreConnMapDevice (page 7-122) to map the new disk
into the store, and call BSStoreConnAssociatePartitioningPlugin
(page 7-117) to associate a partitioning plug-in with the store. At this point,
you’ve added a new primary store to the hierarchy.

5. Call BSStoreConnSetPartitionInfo (page 7-118) to create the first partition in
the primary store.

6. Create a new store, associate a mapping plug-in with it, and call
BSStoreConnMapPartition to map the first partition from the primary store

C H A P T E R 7

Block Storage Family Reference

7-122 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

into the new store. As a result, the new store is added to the store hierarchy
as a derived store.

7. Repeat steps 2 and 3 for the second and third partitions.

The hierarchy with one new primary store and three new derived stores is
automatically rebuilt when Mac OS 8 is rebooted.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnMapDevice 7

Maps a device into a store.

extern OSStatus BSStoreConnMapDevice (
RegEntryRef srcDevice,
BSStoreConnID destConnection);

srcDevice The name registry reference to the device of interest.

destConnection
The connection ID for the destination store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You call the BSStoreConnMapDevice function if you need to configure a primary
store. (Typically, primary stores are automatically configured by the system.)

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-123
Draft. Apple Computer, Inc. 4/18/96

After the store is created and a mapping plug-in associated with it, you call
BSStoreConnMapDevice to map the device into the store. The mapping plug-in
must know how to interact with the family that controls the device and do
whatever is necessary to map the device.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnGetInfo 7

Gets information about a store.

extern OSStatus BSStoreConnGetInfo (
BSStoreConnID infoConnection,
BSStoreInfo *infoBuffer);

infoConnection
The connection ID for the store about which you want
information.

infoBuffer A pointer to a BSStoreInfo structure (page 7-44). On output, the
function uses the structure to return information about the store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-124 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnGetComponents 7

Gets the components of a store.

extern OSStatus BSStoreConnGetComponents (
BSStoreConnID connection,
ItemCount tableSize,
BSStoreComponent *componentInfo);

connection The connection ID for the store of interest.

tableSize The number of elements in your array pointed to by the
componentInfo parameter.

componentInfo A pointer to your array of BSStoreComponentInfo structures
(page 7-40). On output, the function uses the structures to
supply information about the components of a store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-125
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnFormat 7

Formats a store using a format that you specify.

extern OSStatus BSStoreConnFormat (
BSStoreConnID connection,
BSFormatIndex formatType);

connection The connection ID for the store that you want to format.

formatType The indentifier of the format type you want to use. You can get
a format identifier by calling the BSStoreConnGetInfo function
(page 7-123). That function returns a BSStoreInfo structure
(page 7-44) from whose possibleFormats array you can get a
format identifier.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-126 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnPublish 7

Makes a store available for general use.

extern OSStatus BSStoreConnPublish (BSStoreConnID connection);

connection A connection ID for a store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The BSStoreConnPublish function adds an entry for a store to the block storage
hierarchy in the name registry if the store has a mapping plug-in associated
with it and a size greater than 0.

If the store’s parent stores have not been published, the function also publishes
them if they meet the preceding criteria.

If any store in the hierarchy cannot be published, none of the stores is
published.

As a result of successful execution, a new store device notification message is
sent to all interested parties.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-127
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreConnUnpublish 7

Removes a store from general use.

extern OSStatus BSStoreConnUnpublish (BSStoreConnID connection);

connection A connection ID for a store.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The BSStoreConnUnpublish function removes a store from the block storage
hierarchy in the name registry.

You can remove a store if the store does not have any connections to it other
than the one you use when calling BSStoreConnUnpublish. If another connection
exists, the function returns the E_BSStoreInUse result code.

The BSStoreConnUnpublish function does not delete the store. To do that, call the
BSStoreConnDeleteAndClose function (page 7-115) after BSStoreConnUnpublish
returns successfully.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-128 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Opening and Closing a Connection to a Container 7

•••To be provided•••

BSContainerOpen 7

Opens a container.

extern OSStatus BSContainerOpen (
BSContainerRef *container,
ContainerOpenOptions options,
BSContainerConnID *newConnection);

container On input, a pointer to the container reference for the container
you want to open.

options The type of access you are requesting for the connection. See
“BSContainerOpenOptions” (page 7-43) for a description of the
options.

newConnection A pointer to a connection ID. On output, the function returns an
ID for the newly created connection. You use the ID with other
functions to configure the container and change its accessibility
state.

function result A result code. Your request to open a container can fail if
resources for the connection cannot be allocated or if the
options you specify are incompatible with existing connections.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-129
Draft. Apple Computer, Inc. 4/18/96

If a container has already granted an exclusive connection, all
new connection requests fail with the E_BSContainerInUse result
code. The function also returns E_BSContainerInUse if you
request an exclusive connection to a container that has another
connection open. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can open a container only after it is published in the name registry.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerConnClose 7

Closes a connection to a container.

extern OSStatus BSContainerConnClose (BSContainerConnID connection);

connection The connection ID for the connection you want to close.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-130 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Setting the Accessibility State For a Container 7

•••To be provided•••

BSContainerConnGoToAccessibilityState 7

Sets the accessibility state for a container.

extern OSStatus BSStoreConnGoToAccessibilityState (
BSContainerConnID connection,
BSAccessibilityState newState);

connection The connection ID for the container whose state you want to set.

newState The new accessibility state that you want to set. See
“Accessibility State Type” (page 7-41) for descriptions of the
defined states.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-131
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Navigating a Container Hierarchy 7

The functions in this section allow you to browse a hierarchy of containers and
retrieve properties of a given container.

BSContainerIteratorCreate 7

Creates an iterator that you can use to navigate a container hierarchy.

extern OSStatus BSContainerIteratorCreate (
BSContainerRef *startingContainer,
BSContainerIteratorID *newIterator);

startingContainer
On input, a pointer to the container reference for the new
iterator’s starting container (the container at which it will begin
an iteration). If you set this parameter to nil, the iterator points
at the root of the block storage container hierarchy.

newIterator A pointer to a container iterator (page 7-35). On output, the
function supplies a new iterator.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-132 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

If you set the startingContainer parameter to nil to start at the root of the
container hierarchy, you can call the BSContainerIteratorNextChild function
(page 7-136) repeatedly to discover the child nodes of the root.

When you are done browsing the hierarchy, call the
BSContainerIteratorDispose function (page 7-132) to dispose of the iterator
and any resources associated with it.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerIteratorDispose 7

Disposes of an iterator, freeing all resources associated with it.

extern OSStatus BSContainerIteratorDispose (
BSContainerIteratorID disposeIterator);

disposeIterator
The iterator you want to dispose of.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You need to call this function for each iterator that you create with the
BSContainerIteratorCreate function (page 7-131).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-133
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerIteratorEnter 7

Updates an iterator to point to the first child of the current node and retrieves a
reference to the container it represents.

extern OSStatus BSContainerIteratorEnter (
BSContainerIteratorID iterator,
BSContainerRef *newContainer);

iterator An iterator that you provide. The function updates the iterator
to point to the current node’s first child. If the function returns
an error, the iterator is unchanged.

newContainer A pointer to a container reference. On output, the function sets
the reference to the container the updated iterator points to. If
no child node exists, the function sets the pointer to nil.

function result A result code. If no child node exists, the function returns an
error. See “Block Storage Result Codes” (page 7-205) for a list of
the result codes the block storage family can return.

DISCUSSION

When you call the BSContainerIteratorEnter function, the iterator points to the
current node. As a result of successful execution, the iterator enters a new level
of the hierarchy—it moves down a level and points to the first child of the node
it previously pointed to.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-134 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

You can use the function to begin an iteration through the children of a node.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerIteratorExit 7

Updates an iterator to point to the parent of the current node and retrieves a
reference to the container it represents.

extern OSStatus BSContainerIteratorExit (
BSContainerIteratorID iterator,
BSContainerRef *newContainer);

iterator An iterator that you provide. The function updates the iterator
to point to the current node’s parent. If the function returns an
error, the iterator is unchanged.

newContainer A pointer to a container reference. On output, the function sets
the reference to the container the updated iterator points to. If
the parent node does not exist, the function sets the pointer to
nil.

function result A result code. If the parent node does not exist, the function
returns an error. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-135
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

When you call the BSContainerIteratorExit function, the iterator points to the
current node. As a result of successful execution, the iterator enters a new level
of the hierarchy—it moves up a level and points to the parent of the node it
previously pointed to.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerIteratorRestartChildren 7

Updates an iterator to point to the first child in the set of child nodes it is
currently in and retrieves a reference to the container it represents.

extern OSStatus BSContainerIteratorRestartChildren (
BSContainerIteratorID iterator,
BSContainerRef *newChild);

iterator An iterator that you provide. The function updates the iterator
to point to the first child in the current set of sibling nodes.

newChild A pointer to a container reference. On output, the function sets
the reference to the container the updated iterator points to.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-136 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The child nodes of a given node constitute a set of sibling nodes. The
BSContainerIteratorRestartChildren function sets an iterator to the first child
in the current sibling set.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerIteratorNextChild 7

Updates an iterator to point to the next child in the current sibling set and
retrieves a reference to the container it represents.

extern OSStatus BSContainerIteratorNextChild (
BSContainerIteratorID iterator,
BSContainerRef *newChild);

iterator An iterator that you provide. The function updates the iterator
to point to the next child in the current sibling set.

newChild A pointer to a container reference. On output, the function sets
the reference to refer to the container the updated iterator
points to.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-137
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

You can use the BSContainerIteratorNextChild function move through all the
children in the current sibling set.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerGetPropertySize 7

Retrieves the size of a container property.

extern OSStatus BSContainerGetPropertySize (
BSContainerRef *container,
char *propertyName,
BSContainerPropertyInstance propertyInstance,
ByteCount *propertySize);

container On input, a pointer to the container reference for the container
of interest.

propertyName On input, a pointer to a C string containing the name of the
property of interest. See “Container Property Names”
(page 7-36) for a list of property names.

propertyInstance
The instance of the named property of interest. Property
instances start at 0 and increment by 1 for each additional
instance.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-138 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

propertySize A pointer to a 32-bit value. On output, the function returns the
size, in bytes, of the property specified in the propertyName and
propertyInstance parameters.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can call the BSContainerGetPropertySize function before calling the
BSContainerGetProperty function (page 7-138) to find out how large a buffer
you should provide to BSContainerGetProperty.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerGetProperty 7

Retrieves the value of a container property.

extern OSStatus BSContainerGetProperty (
BSContainerRef *container,
char *propertyName,
BSContainerPropertyInstance propertyInstance,
void *propertyValue,
ByteCount *propertySize);

container On input, a pointer to the container reference for the container
of interest.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-139
Draft. Apple Computer, Inc. 4/18/96

propertyName On input, a pointer to a C string containing the name of the
property of interest. See “Store Property Names” (page 7-36) for
a list of property names.

propertyInstance
The instance of the named property of interest. Property
instances start at 0 and increment by 1 for each additional
instance.

propertyValue A pointer to your buffer. On output, the function places the
property value in your buffer.

propertySize On input, a pointer to a value specifying the size of your buffer.
You can call the BSContainerGetPropertySize function
(page 7-137) to find out how large a buffer you should provide.
On output, the function returns the number of bytes of data it
placed in your buffer.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating and Configuring a Container 7

You use the functions in this section to create and configure a new container.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-140 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSContainerCreate 7

Creates a new container and opens a connection to it.

extern OSStatus BSContainerCreate (BSContainerConnID *newContainer);

newContainer A pointer to a connection ID. On output, the function provides
an ID for a connection to the newly created container. You use
the ID with other functions to configure the container. The new
connection has exclusive access to the container.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

After creating a container, you need to configure it and make it available for
use by other clients by calling the following functions:

■ BSContainerConnAssociatePlugin (page 7-144) to associate a container
plug-in with the container

■ BSContainerConnPublish (page 7-145) to publish the container in the name
registry

■ BSContainerConnClose (page 7-129) to close your connection to the container

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-141
Draft. Apple Computer, Inc. 4/18/96

BSContainerConnDeleteAndClose 7

Deletes a container.

extern OSStatus BSContainerConnDeleteAndClose (
BSContainerConnID deleteContainer);

deleteContainerThe connection ID for the container you want to delete.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You can delete a container when the following conditions are met:

■ the container is not published in the name registry. (To remove a container
from the name registry, call the BSContainerConnUnpublish function
(page 7-146)).

■ there are no containers existing that map to the container to be deleted. (To
find out, call BSContainerConnGetInfo (page 7-142) and check the numChildren
field in the returned container information structure.)

■ the container has no connections to it other than the one you use when
calling the BSContainerConnDeleteAndClose function. That connection is
closed as a result of successful execution. If another connection exists, the
function returns the E_BSContainerInUse result code.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-142 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

BSContainerConnGetInfo 7

Gets information about a container.

extern OSStatus BSContainerConnGetInfo (
BSContainerConnID infoConnection,
BSContainerInfo *infoBuffer);

infoConnection
The connection ID for the container of interest.

infoBuffer A pointer to a BSContainerInfo structure (page 7-47). On output,
the function uses the structure to return information about the
container.

function result A result code.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-143
Draft. Apple Computer, Inc. 4/18/96

BSContainerConnInsertContainer 7

Inserts a container into another container.

extern OSStatus BSContainerConnInsertContainer (
BSContainerConnID destContainer,
BSContainerConnID putContainer);

destContainer The connection ID for the container into which you want to
insert another container.

putContainer The connection ID for the container to be inserted.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerConnSetDevice 7

Specifies the physical device a container represents.

extern OSStatus BSContainerConnSetDevice (
BSContainerConnID connection,
RegEntryRef deviceNode);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-144 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

connection The connection ID for the container of interest.

deviceNode The name registry reference for the device that this container
represents. You provide the reference.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

If a container does not yet have a device associated with it, you should call this
function before calling the BSContainerConnAssociatePlugIn function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerConnAssociatePlugIn 7

Associates a container plug-in with a container.

extern OSStatus BSContainerConnAssociatePlugIn (
BSContainerConnID connection,
BSContainerPlugInRef plugIn);

connection The connection ID for the container.

plugIn A reference to the container plug-in you want to attach.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-145
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

You use this function to override automatic plug-in selection. The function
returns the E_BSEPlugInNotFound result code if the plug-in can't be found.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerConnPublish 7

Makes a container available for general use.

extern OSStatus BSContainerConnPublish (
BSContainerConnID publishContainer);

publishContainer
The connection ID for the container of interest.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The BSContainerConnPublish function adds an entry for a container to the block
storage hierarchy in the name registry if the container has a container plug-in
associated with it .

If the container’s parent container has not been published, the function
publishes it if it meets the preceding criteria.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-146 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

If any container in the hierarchy cannot be published, none of the containers is
published.

As a result of successful execution, a notification is sent to all interested parties.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSContainerConnUnpublish 7

Removes a container from general use.

extern OSStatus BSContainerConnUnpublish (
BSContainerConnID unpublishContainer);

unpublishContainer
The connection ID for the container.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

The BSContainerConnUnpublish function removes a container from the block
storage hierarchy in the name registry.

You can remove a container if the container does not have any connections to it
other than the one you use when calling BSContainerConnUnpublish and if the
container does not have any published children. If another connection exists,
the function returns an error.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-147
Draft. Apple Computer, Inc. 4/18/96

The BSContainerConnUnpublish function does not delete the container. To do
that, call the BSContainerConnDeleteAndClose function (page 7-141) after
BSContainerConnUnpublish returns successfully.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Working With a Block List Descriptor 7

The functions in this section allow you to manipulate block list descriptors.
Although these functions are available to block storage clients, a client does not
typically use them.

However, mapping plug-ins usually need to manipulate block list descriptors
and as a result, they are the primary users of the functions described here.

BSBlockListDescriptorGetInfo 7

Returns information about a block list descriptor.

extern OSStatus BSBlockListDescriptorGetInfo (
BSBlockListDescriptorRef infoDescriptor,
BSBlockListDescriptorInfo *info);

infoDescriptor
A reference to the block list descriptor (page 7-32) about which
you want information.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-148 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

info A pointer to a BSBlockListDescriptorGetInfo structure
(page 7-51). On output, the function returns information about
the block list descriptor in the structure.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

BSBlockListDescriptorGetExtent 7

Retrieves the address and length of the next extent in a descriptor, relative to
the offset.

extern OSStatus BSBlockListDescriptorGetExtent (
BSBlockListDescriptorRef srcDescriptor,
ByteCount requestedLen,
BSByteCount *startingByte,
ByteCount *extentLen);

srcDescriptor A reference to the block list descriptor (page 7-32) from which
you want extent information.

requestedLen The maximum number of bytes you can transfer to or from a
device. To specify an unlimited number, set this parameter to 0.
If the next extent exceeds your maximum, the function splits
the extent into two or more extents and returns your maximum
in the extentLen parameter.

startingByte A pointer to a 64-bit value. On output, the function returns the
starting address of the next extent.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-149
Draft. Apple Computer, Inc. 4/18/96

extentLen A pointer to a 32-bit value. On output, the function returns the
length of the extent specified in the startingByte parameter, in
bytes.

function result A result code. If the function has already returned information
on all the extents in a descriptor, it returns the E_BSBLEndOfList
result code. See “Block Storage Result Codes” (page 7-205) for a
list of the result codes the block storage family can return.

DISCUSSION

The BSBlockListDescriptorGetExtent function is used by mapping plug-ins that
manage primary stores. When making an I/O request to a device, you typically
want to transfer as many bytes as possible. Often, the device requires that

■ the number of bytes transfered be equal to or less than a device-specific
maximum

■ all bytes transferred have contiguous addresses

A block list descriptor for an I/O transfer can contain any number of extents—
variable-length sets of contiguous addresses. You call
BSBlockListDescriptorGetExtent to get the address and length of an extent
from the block list, subject to a maximum length that you specify.

You can then specify the returned extent information (starting device address
and length) in the I/O request you send to the device, usually through another
I/O family.

By calling BSBlockListDescriptorGetExtent repeatedly, you can get all of the
extents specified in a block list descriptor. On the first call, the function returns
the starting address and length of the first extent, and updates the offset, a
private pointer into the descriptor that it maintains. On each subsequent call to
BSBlockListDescriptorGetExtent, the function returns the starting address and
length of the next extent, and updates the offset.

This method returns extents sequentially from the descriptor. To access an
arbitrary point in the descriptor, you can call the BSBlockListDescriptorSeek
function (page 7-155) and set the offset to a value you specify, and then call
BSBlockListDescriptorGetExtent.

C H A P T E R 7

Block Storage Family Reference

7-150 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

BSBlockListAddSimpleDescriptor 7

Creates a new descriptor for a block list.

extern OSStatus BSBlockListAddSimpleDescriptor (
BSBlockListDescriptorRef srcDescriptor,
BSByteCount length,
BSByteCount bias,
BSBlockListDescriptorRef *newDescriptor);

srcDescriptor A reference to the block list descriptor (page 7-32) on which the
new descriptor will be based. You provide the reference.

length The number of bytes to be described by the new descriptor. The
function creates a new descriptor for the number of bytes you
specify here, starting from the offset. (The offset is a private
pointer into the descriptor maintained by the block storage
family.) To specify the same number of bytes as in the source
descriptor, set this parameter to 0. In that case, the offset is
irrelevant.

bias The value to add to the addresses in the source descriptor. You
provide the value. The function adds the bias to the source
addresses. A bias is always positive.

newDescriptor A pointer to a block list descriptor reference (page 7-32). On
output, the function supplies a reference to the new block list
descriptor.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-151
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The BSBlockListAddSimpleDescriptor function is of central importance to a
mapping plug-in that manages a derived store. The plug-in’s main function is
to map addresses associated with an I/O request from addresses valid in its
store to addresses valid in the store to which the plug-in will forward the I/O
request. It does this in its I/O function by calling
BSBlockListAddSimpleDescriptor.

The BSBlockListAddSimpleDescriptor function creates a new descriptor and
shifts the addresses by the amount you specify in the bias parameter. If you
want to shift all of the addresses covered in the source descriptor, you set the
length parameter to 0.

You can create a new descriptor that covers a portion of the addresses from the
source descriptor by setting the length parameter to the number of bytes you
want included in the new descriptor. The function shifts the addresses of the
number of bytes you specified, starting at the current offset, and then updates
the offset.

For example, suppose the source descriptor contains 2 ranges, with starting
addresses of 1800 and 3000 and a total length of 1024. Then suppose you call
BSBlockListAddSimpleDescriptor and set bias to 400 and length to 0. The
function returns a reference to a new descriptor. The new descriptor contains 2
ranges, with starting addresses of 2200 and 3400 and a total length of 1024.

At times, you may need to split an I/O request—for example, perhaps the next
store cannot accept I/O requests of more than 512 bytes. For simplicity’s sake,
assume that the 2 ranges in the example source descriptor are each 512 bytes in
length. In this scenario, you can call BSBlockListAddSimpleDescriptor twice to
create 2 descriptors, each describing a 512-byte transfer. Each time, you set bias
to 400 and length to 512. The first new descriptor contains a single range, with
a starting address of 2200 and a length of 512. The second new descriptor
contains a single range, with a starting address of 3400 and a length of 512.

When you specify a length other than the total length of the source descriptor,
the new descriptor begins at the current offset into the source descriptor. The
block storage family maintains the offset. After a call to
BSBlockListAddSimpleDescriptor, the offset points at the first byte after the end
of those described by the new descriptor. In the example, after the first call to
BSBlockListAddSimpleDescriptor, the offset was 512, which in effect was
address 3400.

C H A P T E R 7

Block Storage Family Reference

7-152 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

Although not shown in the example, splitting a source descriptor into can
result in a range being split into two ranges—the last range on one descriptor
and the first one on the next descriptor.

Note
A mapping plug-in can also map addresses by creating a
new block list and descriptor.

Mapping plug-ins that manage primary stores create
device-specific structures that contain the mapped
addresses. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can change the offset into a descriptor with the BSBlockListDescriptorSeek
function (page 7-155).

To create a new block list and descriptor, use the BSBlockListCreate (page 7-81),
BSBlockListAddRange (page 7-82), and BSBlockListFinalize (page 7-84)
functions.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-153
Draft. Apple Computer, Inc. 4/18/96

BSBlockListDescriptorCheckBlockSizes 7

Given a block size, checks that the extents specified by a descriptor have valid
starting addresses and lengths.

extern OSStatus BSBlockListDescriptorCheckBlockSizes (
BSBlockListDescriptorRef checkDescriptor,
UInt32 blockSize);

checkDescriptor
A reference to the block list descriptor (page 7-32) of interest.

blockSize The block size, in bytes.

function result A result code. If any extent is misaligned, the function returns
the E_BSBlockListBadBlockSize result code. See “Block Storage
Result Codes” (page 7-205) for a list of the result codes the
block storage family can return.

DISCUSSION

Each store defines its own block size and all I/O requests to a store must use a
multiple of the block size. A mapping plug-in’s I/O function (page 7-183) can
call the BSBlockListDescriptorCheckBlockSizes function to confirm that the
extents specified by a block list descriptor are valid before it processes the I/O
request.

The function checks that each extent’s starting address and length are even
multiples of the block size you provide in the blockSize parameter.

C H A P T E R 7

Block Storage Family Reference

7-154 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

BSBlockListDescriptorCheckBounds 7

Checks that the extents specified by a descriptor do not extend beyond an
address that you specify.

extern OSStatus BSBlockListDescriptorCheckBounds (
BSBlockListDescriptorRef checkDescriptor,
BSByteCount bound);

checkDescriptor
A reference to the block list descriptor (page 7-32) of interest.

bound A 64-bit value that specified the highest valid address in a store.

function result A result code. If any extent is misaligned, the function returns
the E_BSBlockListBadBlockSize result code. See “Block Storage
Result Codes” (page 7-205) for a list of the result codes the
block storage family can return.

DISCUSSION

A mapping plug-in’s I/O function (page 7-183) typically calls the
BSBlockListDescriptorCheckBounds function before it processes an I/O request.
The function confirms that no address covered by the block list descriptor is
greater than the highest address in the store managed by the mapping plug-in.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Client Functions 7-155
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

BSBlockListDescriptorSeek 7

Sets the offset within a block list descriptor.

extern OSStatus BSBlockListDescriptorSeek (
BSBlockListDescriptorRef seekDescriptor,
BSBlockListWhence whence,
SInt64 offset,
BSByteCount *newOffset);

seekDescriptor
A reference to the block list descriptor (page 7-32) of interest.

whence A value of type BSBlockListWhence (page 7-52) that indicates the
method to be used in computing the new offset.

offset A number you provide that is used by the function to compute
the new offset according to the method you specified in the
whence parameter. See the description of the BSBlockListWhence
type for guidance in setting this parameter.

newOffset A pointer to a 64-bit value. On output, the function returns the
new offset, expressed as a byte address.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

When you call the BSBlockListDescriptorGetExtent function (page 7-148) to get
an extent or the BSBlockListAddSimpleDescriptor function (page 7-150) to create
a new block list descriptor, the results of the function depend on the current
offset into the block list descriptor. The block storage family maintains the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-156 Block Storage Client Functions

Draft. Apple Computer, Inc. 4/18/96

offset into a block list descriptor. However, you can use the
BSBlockListDescriptorSeek function to explicitly set the offset.

For example, in retrieving information about the extents in a descriptor, the
usual case is to do it sequentially by calling BSBlockListDescriptorGetExtent
repeatedly. The offset is automatically updated after each call so that the next
call returns the next extent.

If you want to get an extent in a random-access manner, however, you can use
the BSBlockListDescriptorSeek function to set the offset. Then, you can call
BSBlockListDescriptorGetExtent to get a specific extext within a descriptor.

EXECUTION ENVIRONMENT

BSBlockListDescriptorDelete 7

Disposes of a block list descriptor.

extern OSStatus BSBlockListDescriptorDelete (
BSBlockListDescriptorRef deleteDescriptor);

deleteDescriptor
A reference to the block list descriptor (page 7-32) that you
want to delete.

function result A result code. See “Block Storage Result Codes” (page 7-205)
for a list of the result codes the block storage family can return.

DISCUSSION

You call the BSBlockListDescriptorDelete function when you have finished
processing the I/O request with which the block list descriptor is associated.
The function releases all resources associated with a block list descriptor,
including memory. If no block list descriptors remain for a block list,
BSBlockListDescriptorDelete disposes of the block list also.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-157
Draft. Apple Computer, Inc. 4/18/96

The client who makes an I/O request deletes the original descriptor. Mapping
plug-ins that create a new descriptor based on an original descriptor delete
those that they create.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers and secondary
interrupt handlers.

SEE ALSO

The BSBlockListDelete function (page 7-85) also deletes a block list.

Block Storage Plug-in Functions 7

The functions in this section are those that the block storage family provides to
its plug-ins and those that block storage plug-ins make available to the block
storage family.

Some functions in the client interface are also called by plug-ins.

■ Mapping plug-ins call the functions described in “Working With a Block List
Descriptor” (page 7-147).

■ Partitioning plug-ins call the I/O functions described in “Reading From a
Store” (page 7-86) and “Writing To a Store” (page 7-92) to access partition
maps.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-158 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

Exported By the Block Storage Family For All Plug-ins 7

The block storage family provides the function described in this section for all
its plug-ins, regardless of type.

BSStoreGetAccessibilityState 7

Returns the accessibility state of a store.

extern BSAccessibilityState BSStoreGetAccessibilityState (
BSStorePtr accessStore);

accessStore On input, a pointer to the store of interest.

function result The store’s accessibility state. See “Accessibility State Type”
(page 7-41) for descriptions of the defined states.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage plug-ins call this function. They can be any type—mapping,
partition, or container plug-ins.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-159
Draft. Apple Computer, Inc. 4/18/96

BSStoreGetMPIInfo 7

Gets information from a mapping plug-in about a store that you specify.

extern OSStatus BSStoreGetMPIInfo(
BSStorePtr accessStore,
BSStoreMPIInfo *info);

accessStore On input, a pointer to the store about which you want
information.

info A pointer to a BSStoreMPIInfo structure (page 7-58) that you
provide. On output, the function fills in the fields of the
structure.

function result A result code.

DISCUSSION

When you call the BSStoreGetMPIInfo function, the block storage family calls
the information function (page 7-190) of the mapping plug-in associated with
the store you specify.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage plug-ins call this function. They can be any type—mapping,
partition, or container plug-ins.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-160 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

BSStoreGetPPIInfo 7

Gets information from a partitioning plug-in about a store that you specify.

extern OSStatus BSStoreGetPPIInfo(
BSStorePtr accessStore,
BSStorePPIInfo *info);

accessStore On input, a pointer to the store about which you want
information.

info A pointer to a BSStorePPIInfo structure (page 7-59) that you
provide. On output, the function fills in the fields of the
structure.

function result A result code.

DISCUSSION

When you call the BSStoreGetPPIInfo function, the block storage family calls
the information function (page 7-190) of the partitioning plug-in associated
with the store you specify.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage plug-ins call this function. They can be any type—mapping,
partition, or container plug-ins.

Exported by the Block Storage Family For Mapping Plug-ins 7

The block storage family provides the functions described in this section for its
mapping plug-ins.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-161
Draft. Apple Computer, Inc. 4/18/96

BSStoreRW 7

Makes an I/O request of another store.

extern BSIOStatus BSStoreRW (
BSStorePtr rwStore,
BSBlockListDescriptorRef blocks,
MemListDescriptorRef memory,
BSIORequestBlockPtr parentRequest,
void *privateData,
OptionBits options,
BSErrorListPtr *errors);

rwStore On input, a pointer to the store that is the target of the I/O
request.

blocks A reference to a block list descriptor (page 7-32) that specifies
the blocks you want to use in the I/O transfer.

memory A reference to a memory list descriptor that specifies the
memory locations you want to use in the I/O transfer. For
information on memory lists, see “Memory Lists”, a chapter to
be provided in a later Developer Release.

parentRequest A token that identifies the I/O request. You get the token from
the block storage family when it calls your I/O function
(MyBSMappingPIIOFunc (page 7-183)). Pass that token in this
parameter.

privateData Reserved for your use. The value you provide is passed to your
completion routine (MyBSMappingIOCompletionFunc (page 7-185))
when it is called.

options A constant you use to indicate whether the I/O request is a
read or a write. The constants are defined in “I/O Constants”
(page 7-50).

errors The address of a pointer to a BSErrorList structure (page 7-55).
On output, the function uses the structure to return error
information if an error occurs.

function result A value of type BSIOStatus (page 7-55). The function returns the
I/O status code provided by the I/O function of the plug-in
that manages the store specified in the rwStore parameter.

C H A P T E R 7

Block Storage Family Reference

7-162 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

A mapping plug-in that manages a derived store calls the BSStoreRW function to
forward an I/O request to another mapping plug-in.

Typically, it first calls the BSBlockListDescriptorCheckBlockSizes (page 7-153),
BSBlockListDescriptorCheckBounds (page 7-154) , and
BSBlockListAddSimpleDescriptor (page 7-150) functions to validate and adjust
the store addresses used in the I/O request.

Mapping plug-ins that manage primary stores do not call BSStoreRW. Rather,
they call into another I/O family to handle the I/O request.

The BSStoreRW function is asynchronous. The plug-in’s completion routine is
called when the I/O request completes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins that manage derived stores call this
function. It cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSTrackOtherFamilyRequest 7

Sets up the conditions that enable the block storage family to match an I/O
completion notification from another I/O family with the mapping plug-in that
made the I/O request.

extern OSStatus BSTrackOtherFamilyRequest (
BSStorePtr ioStore,
BSIORequestBlockPtr curRequest,
void *privateData,
KernelNotificationPtr retNotify);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-163
Draft. Apple Computer, Inc. 4/18/96

ioStore On input, a pointer to the store that is the target of the I/O
request. You get the pointer from the block storage family when
it calls your I/O function (MyBSMappingPIIOFunc (page 7-183)).
Pass that pointer in this parameter.

curRequest A token that identifies the I/O request to be tracked. You get
the token from the block storage family when it calls your I/O
function (MyBSMappingPIIOFunc (page 7-183)). Pass that token in
this parameter.

privateData Reserved for your use. The value you provide here is passed to
your completion routine (MyBSMappingIOCompletionFunc
(page 7-185)) when it is called.

retNotify A pointer to a kernel notification structure. On output, the
function supplies a filled-in structure that specifies how the
block storage family wants to be notified when your I/O
request is complete. You pass it on your asynchronous call to
another I/O family.

function result A result code.

DISCUSSION

Mapping plug-ins that manage primary stores call the
BSTrackOtherFamilyRequest function before calling outside the block storage
family to satisfy an I/O request.

Because asynchronous calls to other I/O families are beyond the knowledge
and control of the block storage family, block storage uses
BSTrackOtherFamilyRequest to set up an environment in which it can match an
I/O completion notification from another I/O family with the mapping plug-in
that initiated the I/O request.

When the block storage family is notified that a request is complete, it matches
the request to the mapping plug-in that initiated it and calls the plug-in’s
completion routine.

C H A P T E R 7

Block Storage Family Reference

7-164 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins that manage primary stores call this
function. It cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

BSStoreFlush 7

Flushes a store’s caches.

extern BSIOStatus BSStoreFlush(
BSStorePtr flushStore,
BSIORequestBlockPtr parentRequest,
void *privateData,
BSErrorListPtr *errors);

flushStore On input, a pointer to the store that is the target of the flush
request.

parentRequest
A token that identifies the I/O request whose data is to be
flushed. You get the token from the block storage family when
it calls either your I/O function (MyBSMappingPIIOFunc
(page 7-183)) or your flush function (MyBSMappingPIFlushFunc
(page 7-186)). Pass that token in this parameter

privateData Reserved for your use. The value you provide is passed to your
completion routine (MyBSMappingIOCompletionFunc (page 7-185))
when it is called.

errors The address of a pointer to a BSErrorList structure (page 7-55).
On output, the function uses the structure to return error
information if an error occurs.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-165
Draft. Apple Computer, Inc. 4/18/96

function result The I/O status code provided by the flush function of the
plug-in that manages the store specified in the flushStore
parameter.

DISCUSSION

A mapping plug-in that manages a derived store calls the BSStoreFlush
function to forward a flush request to another mapping plug-in.

When the flush request completes, the block storage family calls the plug-in’s
completion routine.

Mapping plug-ins that manage primary stores do not call BSStoreFlush. Rather,
they call into another I/O family to handle the flush request.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins that manage derived stores call this
function. This function cannot be called by hardware interrupt handlers or
secondary interrupt handlers.

BSMPIStartBackgroundTask 7

Starts a mapping plug-in’s background task.

extern OSStatus BSMPIStartBackgroundTask (
BSStorePtr store,
BSMPIBackgroundTask backgroundTask,
void *arg,
TaskID *taskID);

store On input, a pointer to the store managed by this plug-in.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-166 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

backgroundTask
The entrypoint of the background task you want to start.
(page 7-191).

arg Reserved for your use. Whatever value you provide here is
passed to the background task when it is started.

taskID A pointer to a task ID. On output, the function returns the task
ID of the new task.

function result A result code.

DISCUSSION

The task started by calling the BSMPIStartBackgroundTask function is terminated
after the block storage family calls the plug-in’s clean up function (page 7-182)
for the store specified in the store parameter.

A mapping plug-in can start any number of background tasks.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function. It cannot be called by
hardware interrupt handlers or secondary interrupt handlers.

BSGetMappingPIPrivateData 7

Retrieves a mapping plug-in's private data.

extern void * BSGetMappingPIPrivateData (BSStorePtr accessStore);

accessStore On input, a pointer to the store managed by this plug-in.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-167
Draft. Apple Computer, Inc. 4/18/96

function result A pointer to your private data.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function.

BSSetMappingPIPrivateData 7

Writes a mapping plug-in's private data to a store.

extern void BSSetMappingPIPrivateData (
BSStorePtr accessStore,
void *privateData);

accessStore On input, a pointer to the store managed by this plug-in.

privateData On input, a pointer to your private data.

function result None.

DISCUSSION

A mapping plug-in might use private data to keep track of the pieces of an I/O
request. Because it consumes physically resident memory, you should keep
private data to a minimum.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-168 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function.

BSMPINotifyFamilyStoreChangedState 7

Informs the block storage family of an unexpected change in the accessibility
state of a store.

extern OSStatus BSMPINotifyFamilyStoreChangedState (
BSStorePtr changedStore,
BSAccessibilityState newState);

changedStore On input, a pointer to the store managed by this plug-in.

newState The new accessibility state of the store.

function result A result code.

DISCUSSION

A mapping plug-in typically calls this function from its background task.
Unexpected accessibility state changes can occur when media is removed or a
disk spins down.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-169
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function. It cannot be called by
hardware interrupt handlers or secondary interrupt handlers.

BSMPIRequestStoreStateChange 7

Requests that the accessibility state of a store be allowed to change.

extern OSStatus BSMPIRequestStoreStateChange (
BSStorePtr changeStore,
BSAccessibilityState requestedState,
Boolean *permission);

changeStore On input, a pointer to the store managed by this plug-in.

requestedState
The accessibility state that you want the store to go to.

permission A pointer to a Boolean value. On output, the function sets the
value to true if permission was granted and the store
successfully went to the state requested. Otherwise, it sets it to
false.

function result A result code.

DISCUSSION

If a device has an eject button that can be monitored by a mapping plug-in,
then when the eject button is pressed, the plug-in should call the
BSMPIRequestStoreStateChange function to notify the block storage family. The
family can then notify its clients that an eject has been requested and see that
data is flushed to the media properly.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-170 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

The BSMPIRequestStoreStateChange function waits until permission is granted
or denied by the block storage expert.

If permission is granted, the block storage family calls the plug-in’s
accessibility state function (BSMappingPIGoToState (page 7-188)) before
BSMPIRequestStoreStateChange returns.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function. It cannot be called by
hardware interrupt handlers or secondary interrupt handlers.

BSStoreGetNumComponents 7

Returns the number of component stores or devices that make up a store that
you specify.

extern ItemCount BSStoreGetNumComponents (BSStorePtr accessStore);

accessStore A pointer to the store managed by this plug-in.

function result The number of components in the store.

DISCUSSION

A component is a constituent part of a store, the thing on which a given store is
based. A component of a primary store is a device controlled by another I/O
family. A component of a derived store is another store or a partition of a store.

Although most stores have only one component, some have multiple
components. For example, a store representing a RAID system has multiple
components.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-171
Draft. Apple Computer, Inc. 4/18/96

Once you know the number of components in a store, you can call the
BSStoreGetComponent function (page 7-171) as many times as necessary to get
information about each component.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function.

BSStoreGetComponent 7

Gets information about a component of a store.

extern OSStatus BSStoreGetComponent (
BSStorePtr accessStore,
ItemCount componentNum,
BSStoreMPIComponentPtr component);

accessStore On input, a pointer to the store managed by this plug-in.

componentNum The sequence number of the component about which you want
information. Component numbering starts at 0. You can get
information about all components in a store by calling the
BSStoreGetNumComponents function (page 7-170) to get the total
number of components in a store and then calling this function
for each component. Set the componentNum parameter to 0 on the
first call and increment it by 1 on each subsequent call.

component A pointer to a BSStoreMPIComponent structure (page 7-57). On
output, the function fills in information about the component.

function result A result code.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-172 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage mapping plug-ins call this function.

Exported by the Block Storage Family For Partitioning Plug-ins 7

The block storage family provides the functions described in this section for its
partitioning plug-ins.

BSStoreSetNumPartitions 7

Sets the number of partitions in a store.

extern void BSStoreSetNumPartitions (
BSStorePtr accessStore,
ItemCount numPartitions);

accessStore On input, a pointer to the store whose number of partitions you
want to set.

numPartitions The number of partitions to set.

function result None.

DISCUSSION

•••To be provided•••

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-173
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage partitioning plug-ins call this function.

BSGetPartitioningPIPrivateData 7

Retrieves a partitioning plug-in's private data from a store.

extern void * BSGetPartitioningPIPrivateData (BSStorePtr accessStore);

accessStore On input, a pointer to the store from which you want to retrieve
your private data.

function result Your private data.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage partitioning plug-ins call this function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-174 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

BSSetPartitioningPIPrivateData 7

Sets a partitioning plug-in's private data for a store.

extern void BSSetPartitioningPIPrivateData (
BSStorePtr accessStore,
void *privateData);

accessStore On input, a pointer to the store for which you want to set your
private data.

privateData On input, a pointer to your private data.

function result None.

DISCUSSION

•••To be provided•••

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage partitioning plug-ins call this function.

BSStoreGetPPIConnection 7

Returns a connection ID for a store.

extern BSStoreConnID BSStoreGetPPIConnection (BSStorePtr accessStore);

accessStore On input, a pointer to the store of interest.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-175
Draft. Apple Computer, Inc. 4/18/96

function result A connection ID. If the function fails to get a connection ID, it
returns the value kInvalidID.

DISCUSSION

When a client calls the BSStoreConnAssociatePartitioningPlugin function, an
exclusive I/O connection to the store is opened for the partitioning plug-in so
that it can read and write the partition map.

The plug-in retrieves the connection ID by calling BSStoreGetPPIConnection.
Then it can call the functions described in “Reading From a Store” (page 7-86)
and “Writing To a Store” (page 7-92) to read and write to the store.

(Note that a partitioning plug-in calls read and write functions in the client
programming interface. It does not call the BSStoreRW function (page 7-161) for
I/O as mapping plug-ins do.)

The connection stays open as long as the store exists.

Note
Block storage clients can read or write only to leaf stores. A
store from which other stores are derived has a
partitioning plug-in associated with it. The partitioning
plug-in has an exclusive connection to the store.

Mapping plug-in, on the other hand, do not need
connection IDs to access stores—they can write anywhere
on any store. They are trusted to preserve the partition
map and observe partition boundaries. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage partitioning plug-ins call this function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Block Storage Family Reference

7-176 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

Exported by the Block Storage Family For Container Plug-ins 7

The block storage family provides the functions described in this section for its
container plug-ins.

BSCPIStartBackgroundTask 7

Starts a standard background task for a container plug-in.

extern OSStatus BSCPIStartBackgroundTask(
BSContainerPtr container,
BSCPIBackgroundTask backgroundTask,
void *arg,
TaskID *taskID);

container On input, a pointer to the container for which the background
task is being started.

backgroundTask
The entrypoint of the standard background task you want to
start (page 7-204).

arg Reserved for your use. Whatever value you provide here is
passed to the background task when it is started.

taskID A pointer to a task ID. On output, the function returns the task
ID of the new task.

function result A result code.

DISCUSSION

The task is automatically terminated after the block storage family calls the
plug-in’s cleanup function (page 7-200) for the container specified in the
container parameter.

A container plug-in can start any number of standard background tasks.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-177
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage container plug-ins call this function.

BSCPINotifyFamilyContainerChangedState 7

Informs the block storage family of a change in the accessibility state of a
container.

extern OSStatus BSCPINotifyFamilyContainerChangedState(
BSContainerPtr changedContainer,
BSAccessibilityState newState);

changedContainer
On input, a pointer to the container whose state has changed.

newState The current accessibility state of the container.

function result A result code.

DISCUSSION

A container plug-in typically calls this function from its background task.
Accessibility state changes can occur when media is removed or a disk spins
down.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-178 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage container plug-ins call this function.

BSCPIRequestContainerStateChange 7

Requests that the accessibility state of a container be allowed to change.

extern OSStatus BSCPIRequestContainerStateChange(
BSStorePtr changeContainer,
BSAccessibilityState requestedState,
Boolean *permission);

changeContainer
On input, a pointer to the container of interest.

requestedState
The accessibility state that you want the container to go to.

permission A pointer to a Boolean value. On output, the function sets the
value to true if permission was granted and the container
successfully went to the state requested. Otherwise, it sets it to
false.

function result A result code.

DISCUSSION

If a device has an eject button that can be monitored by a container plug-in,
then when the eject button is pressed, the plug-in should call the
BSCPIRequestStoreStateChange function to notify the block storage family. The
family can then notify its clients that an eject has been requested and see that
data is flushed to the media properly.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-179
Draft. Apple Computer, Inc. 4/18/96

The BSCPIRequestStoreStateChange function does not return until permission is
granted or denied by the block storage expert.

If permission is granted, the block storage family calls the plug-in’s
accessibility state function (BSContainerPIGoToState (page 7-201)) before
BSCPIRequestStoreStateChange returns.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

Only block storage container plug-ins call this function.

Mapping Plug-in-Defined Functions 7

A mapping plug-in provides the functions described in this section. The
functions are called only by the block storage family or the block storage
expert.

MyBSMappingPIExamineFunc 7

Queries a mapping plug-in about its ability to support a given store.

extern OSStatus MyBSMappingPIExamineFunc (
BSStorePtr examineStore,
BSMPIConfidenceLevel *confidence);

examineStore On input, a pointer to the store that the plug-in is to examine.
This store is sometimes referered to as an in-process store—it is in
the process of being configured by the block storage expert and
is not yet published in the name registry and available for use.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Block Storage Family Reference

7-180 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

confidence A pointer to a value of type BSMPIConfidenceLevel. On output,
the plug-in returns a value indicating its level of confidence that
it can support the store. See “BSMPIConfidenceLevel”
(page 7-53) for a description of the confidence level values you
can return here.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. Successful execution includes the
plug-in determining that it cannot support the store. If an error
occurs, it should return an appropriate result code. For
example, if a mapping plug-in for a hard disk on a SCSI bus
encounters an error while querying a device, it should return
the result code it gets from the SCSI family.

DISCUSSION

When the block storage expert receives a notification of a new block storage
entry in the name registry, it creates a new store and calls the examine function
of each mapping plug-in to find out how well the plug-ins can support the
store.

When this function is called, the mapping plug-in should examine the store
specified in the examineStore parameter by

■ calling the BSStoreGetNumComponents function (page 7-170) to find out how
many components the store has

■ calling the BSStoreGetComponent function (page 7-171) for each component to
get information about the component

■ examining each component. The plug-in can look at the information in the
name registry, try an I/O operation with a physical component, or take
whatever action it deems appropriate to assess its ability to support the
component.

Then the plug-in decides on its level of confidence that it can support the store
and returns that information in the confidence parameter.

Before returning, your examine function must free any resources it allocates.
The block storage expert selects the plug-in that offers the highest level of
support. If the expert selects a different plug-in to manage the store, your
plug-in does not get another chance to free resources.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-181
Draft. Apple Computer, Inc. 4/18/96

Note
The following example may be helpful in understanding
the circumstances under which the examine function is
called.

Suppose the SCSI expert probes a SCSI bus and finds a
disk drive. It adds an entry for the device to the name
registry and sends a new device notification. The system
matches the device to block storage plug-ins and sends a
new block storage device notification. The block storage
expert responds by preparing a new store and calling the
examine routine of each mapping plug-in. The plug-in
reports how well it can support the device. The expert
selects a plug-in to manage the store, configures the store,
publishes it in the name registry, and calls the initialization
function of the mapping plug-in it selected. Once the
plug-in’s initialization function returns with no error, the
store is available to block storage clients for I/O. ◆

The BSMappingPIExamine type (page 7-65) defines the mapping plug-in examine
function.

SPECIAL CONSIDERATIONS

Only the block storage expert calls this function.

MyBSMappingPIInitFunc 7

Initializes a mapping plug-in.

extern OSStatus MyBSMappingPIInitFunc (
BSStorePtr initStore);

initStore On input, a pointer to the store that the mapping plug-in is to
manage.

C H A P T E R 7

Block Storage Family Reference

7-182 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Mapping Plug-in Errors”
(page 7-207) for a list of the result codes a mapping plug-in can
return.

DISCUSSION

The block storage family calls a mapping plug-in's initialization function after
it selects the plug-in to manage a store. Your plug-in should perform whatever
setup work is necessary, such as initializing a device, connecting to another I/O
family, or allocating memory.

The BSMappingPIInit type (page 7-66) defines the mapping plug-in
initialization function.

SEE ALSO

Any resources that you acquire during initialization should be released in your
clean up function(page 7-182).

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPICleanupFunc 7

Completes processing and releases resources for a store.

extern OSStatus MyBSMappingPICleanupFunc (
BSStorePtr cleanupStore);

cleanupStore On input, a pointer to the store managed by this plug-in.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Mapping Plug-in Errors”
(page 7-207) for a list of the result codes a mapping plug-in can
return.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-183
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The block storage family calls a mapping plug-in's clean up function prior to
disposing of a store. Your plug-in should perform whatever work is necessary,
such as disposing of memory and data structures related to the store and
completing all I/O requests still outstanding.

Be sure to release any resources that you acquired in your initialization
function (page 7-181).

The BSMappingPICleanup type (page 7-66) defines the mapping plug-in clean up
function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIIOFunc 7

Processes an I/O request.

extern BSIOStatus MyBSMappingPIIO (
BSStorePtr ioStore,
BSBlockListDescriptorRef blocks,
MemListDescriptorRef memory,
BSIORequestBlockPtr parentRequest,
OptionBits options,
BSErrorList **errors);

ioStore On input, a pointer to the store managed by this plug-in.

blocks A reference to a block list descriptor (page 7-32) that specifies
the address ranges in the store to be read from or written to.

memory A reference to a memory list descriptor that specifies the byte
addresses in memory to be read from or written to. For
information on memory lists, see “Memory Lists”, a chapter to
be provided in a later Developer Release.

C H A P T E R 7

Block Storage Family Reference

7-184 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

parentRequest A token provided by the block storage family that identifies this
I/O request. You pass the token to the BSStoreRW (page 7-161) or
BSTrackOtherFamilyRequest (page 7-162) function as you process
the I/O request.

options A constant that specifies whether the I/O request is a read or a
write request. The constants are defined in “I/O Constants”
(page 7-50).

errors The address of a pointer to an BSErrorList structure (page 7-55).

function result An I/O status code. “BSIOStatus” (page 7-55) describes defined
status codes.

DISCUSSION

The I/O function of a mapping plug-in is responsible for satisfying an I/O
request presented to it by the block storage family.

If the plug-in manages a derived store, it needs to map the address ranges
associated with the request into corresponding ranges on a parent store and
then call the BSStoreRW function (page 7-161) to forward the request. Address
ranges for the I/O are specified in the block list descriptor referenced by the
blocks parameter.

If the plug-in manages a primary store, it first needs to call the
BSTrackOtherFamilyRequest function (page 7-162). That allows the block storage
family to associate a future I/O completion notification with the plug-in.

Then, the plug-in needs to convert the request into a form valid to the next
target software entity and then call that entity. For example, if a mapping
plug-in for a primary store is a SCSI disk driver, it sets up a SCSI family
function call and calls the SCSI family with its I/O request.

At the time your I/O function is called, the memory specified by the memory
list descriptor is already prepared for I/O.

The BSMappingPIIO type (page 7-66) defines the mapping plug-in I/O function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-185
Draft. Apple Computer, Inc. 4/18/96

MyBSMappingIOCompletionFunc 7

Activates a mapping plug-in’s I/O completion routine.

extern OSStatus MyBSMappingIOCompletionFunc (
BSStorePtr theStore,
void *finishedPrivateData,
BSErrorListPtr returnedBSErrorList,
OSStatus returnedStatus,
BSErrorListPtr *errorListPtrPtr);

theStore On input, a pointer to the store managed by this plug-in.

finishedPrivateData
On input, a pointer to the mapping plug-in’s private data for
this I/O request.

returnedBSErrorList
On input, if the I/O request was signaled by another block
storage plug-in and an error occurred, a pointer to a
BSErrorList structure (page 7-56). Otherwise, this parameter
contains nil.

returnedStatus
The OSStatus value returned by the I/O family or the block
storage plug-in that serviced the I/O request. If this parameter
contains a block storage family result code other than
E_BSSuccess, the returnedBSErrorList parameter contains a
pointer to more specific error information.

errorListPtrPtr
A pointer to a pointer to a BSErrorList structure. If the I/O
request failed, the plug-in allocates the error list structure and,
on output, fills it in. The block storage family releases the
memory taken for the error list structure.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If a system-level error occurs,
such as running out of memory or a failure to send a message, it
should return an appropriate result code.

C H A P T E R 7

Block Storage Family Reference

7-186 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The block storage family calls your completion routine when it is notified that
an I/O request is complete. You start an I/O request to another store by calling
the BSStoreRW function (page 7-161). If you are a primary store plug-in, the
method for starting an I/O request is defined by another I/O family or the
device itself. In any case, the block storage family is notified when the request
completes and calls your completion routine.

The BSMappingIOCompletion type (page 7-67) defines a mapping plug-in’s I/O
completion routine.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIFlushFunc 7

Flushes a mapping plug-in's cached data.

extern BSIOStatus MyBSMappingPIFlushFunc(
BSStorePtr ioStore,
BSIORequestBlockPtr parentRequest,
BSErrorList **errors);

ioStore On input, a pointer to the store of interest.

parentRequest A token provided by the block storage family that identifies the
I/O request whose data is to be flushed. If, as you process the
flush request, you call the BSStoreRW (page 7-161) or the BSFlush
(page 7-164) function, you pass those functions the token
provided here,

errors A pointer to a pointer to a BSErrorList structure. If the flush
request fails, the plug-in allocates the error list structure and, on
output, fills it in. The block storage family releases the memory
used by the error list structure.

function result A result code.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-187
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The block storage family calls a mapping plug-in's flush function when a client
or another mapping plug-in has requested that the store be flushed.

The BSMappingPIFlush type (page 7-67) defines the mapping plug-in flush
function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIAddComponentFunc 7

Adds a component to a store.

extern OSStatus MyBSMappingPIAddComponentFunc (
BSStorePtr destStore,
BSStoreMPIComponent *newComponent,
BSStoreInfo *storeNewInfo);

destStore On input, a pointer to the store managed by this plug-in.

newComponent On input, a pointer to a store component structure (page 7-57)
containing information about the component to be added.

storeNewInfo A pointer to a BSStoreInfo structure (page 7-44). On output, the
plug-in supplies updated information about the store in the
structure.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If it cannot add a component or if
it has already added the maximum number of components that
it can support, it should return the E_BSMPITooManyMappings
result code. If the starting address of the new component would
cause a gap in the addresses within a store, it should return the
E_BSMPIOutOfStoreBounds result code.

C H A P T E R 7

Block Storage Family Reference

7-188 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

This function allows a mapping plug-in to add a component to an existing
store. For example, a RAID mapping plug-in might be able to integrate a new
device into the RAID system. Or a plug-in might have the ability to concatenate
a new device to an existing store, such as when a user connects a new drive to a
system.

Not all plug-ins support this ability.

The BSMappingPIAddComponent type (page 7-68) defines the mapping plug-in add
component function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIGoToStateFunc 7

Takes a store to a specified accessibility state.

extern OSStatus MyBSMappingPIGoToStateFunc (
BSStorePtr theStore,
BSAccessibilityState gotoState);

theStore On input, a pointer to the store managed by this plug-in.

gotoState The new accessibility state to be applied to the store.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution.

DISCUSSION

Typically, the block storage family calls this function after the mapping plug-in
has called the BSMPIRequestStoreStateChange function (page 7-169) and
permission to change the accessibility state is granted by the block storage
family expert.

The BSMappingPIGoToState type (page 7-68) defines the mapping plug-in
accessibility state function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-189
Draft. Apple Computer, Inc. 4/18/96

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIFormatMediaFunc 7

Formats the media of a store.

extern OSStatus MyBSMappingPIFormatMediaFunc (
BSStorePtr formatStore,
BSFormatIndex formatType);

formatStore On input, a pointer to the store managed by this plug-in.

formatType A value that identifies the format to be applied.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Mapping Plug-in Errors”
(page 7-207) for a list of the result codes a mapping plug-in can
return.

DISCUSSION

When the format media function is called, the plug-in should do whatever is
necessary to accomplish the formatting—a SCSI disk driver might issue the
SCSI format command, a floppy disk driver might initialize the disk and set
track and sector information on it, and so forth.

Although the preceding examples featured plug-ins for primary stores,
plug-ins managing derived stores might also need to do something in their
format media functions. For example, a RAID driver might need to set parity
information on each of the components in the store it manages. In most cases,
however, plug-ins managing derived stores would simply return with the
E_BSSuccess result code.

The block storage family calls this function when a client calls the
BSStoreConnFormat function (page 7-125).

The BSMappingPIFormatMedia type (page 7-69) defines the mapping plug-in
format media function.

C H A P T E R 7

Block Storage Family Reference

7-190 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSMappingPIGetInfoFunc 7

Returns information about a store and its associated mapping plug-in.

extern OSStatus MyBSMappingPIGetInfoFunc (
BSStorePtr infoStore,
BSStoreMPIInfo *info);

infoStore On input, a pointer to the store managed by the plug-in.

info A pointer to a BSStoreMPIInfo structure (page 7-58). On output,
the plug-in provides information about the store in the
structure.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Mapping Plug-in Errors”
(page 7-207) for a list of the result codes a mapping plug-in can
return.

DISCUSSION

The plug-in can call the BSStoreGetMPIInfo function (page 7-159) to get
information on a parent store if necessary.

The BSMappingPIGetInfo type (page 7-69) defines the mapping plug-in
information function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-191
Draft. Apple Computer, Inc. 4/18/96

MyBSMPIBackgroundTaskFunc 7

Activates a mapping plug-in’s background task.

extern OSStatus MyBSMPIBackgroundTaskFunc (
BSStorePtr theStore,
void *theArg);

theStore On input, a pointer to the store managed by the plug-in.

theArg Reserved for your use. The block storage family sets this
parameter to the value that you provided when you called the
BSMPIStartBackgroundTask function.

function result A result code. The plug-in is not notified if the function
terminates with an error. However, the block storage family
logs the result code with the system logging service.

DISCUSSION

When a mapping plug-in calls the BSMPIStartBackgroundTask function
(page 7-165), the block storage family in turn calls the specified background
task function.

The task is automatically terminated after the plug-in’s clean up function is
executed.

Because the plug-in is not notified if the background task terminates with an
error, the background task should not terminate with an error, but rather do its
own error handling.

Typically, you use a background task to monitor device states and to notify the
block storage family of unexpected changes in accessibility state. Some plug-ins
may have other uses for background tasks. For example, a RAID plug-in might
use a background task to rebuild parity on a disk that was swapped into a disk
array.

A plug-in can start any number of background tasks.

The BSMPIBackgroundTask type (page 7-70) defines a mapping plug-in’s
background task function.

C H A P T E R 7

Block Storage Family Reference

7-192 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

Partitioning Plug-in-Defined Functions 7

A partitioning plug-in provides the functions described in this section. The
functions are called only by the block storage family or the block storage expert.

MyBSPartitioningPIExamineFunc 7

Queries a partitioning plug-in about its ability to support a given store.

extern OSStatus MyBSPartitioningPIExamineFunc (
BSStoreConnID readStoreConn,
UInt32 *certainty);

readStoreConn The connection ID for the store to be examined.

certainty A pointer to a 32-bit value. On output, the plug-in returns 0 if it
does not recognize the partition map format. Otherwise, it
returns the number of bytes of the partition map that it read to
make its determination. The block storage expert interprets
higher values to indicate greater ability to support a store,
relative to lower values.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Partitioning Plug-in Errors”
(page 7-208) for a list of the result codes a partitioning plug-in
can return.

DISCUSSION

The BSPartitioningPIExamine type (page 7-70) defines a partitioning plug-in’s
examine function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-193
Draft. Apple Computer, Inc. 4/18/96

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSPartitioningPIInitFunc 7

Initializes a partitioning plug-in.

extern OSStatus MyBSPartitioningPIInit (
BSStorePtr initStore);

initStore On input, a pointer to the store that the partitioning plug-in is
to is to be associated with.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Partitioning Plug-in Errors”
(page 7-208) for a list of the result codes a partitioning plug-in
can return.

DISCUSSION

The block storage family calls a partitioning plug-in's initialization function
when it selects the plug-in for a store. Your plug-in should perform whatever
work is necessary, such as allocating memory.

The BSPartitioningPIInit type (page 7-71) defines the partitioning plug-in
initialization function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSPartitioningPICleanupFunc 7

Releases resources and flushes the partition map for a store.

extern void MyBSPartitioningPICleanupFunc (BSStorePtr cleanupStore);

C H A P T E R 7

Block Storage Family Reference

7-194 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

cleanupStore A pointer to the store being disposed of.

function result None.

DISCUSSION

The block storage family calls a partitioning plug-in's clean up function prior to
disposing of a store. Your plug-in should perform whatever work it deems
necessary, such as disposing of memory and data structures related to the store
and flushing the partition map.

The BSPartitioningPICleanup type (page 7-71) defines the partitioning plug-in
clean up function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSPartitioningPIInitializeMapFunc 7

Creates a new partition map for a store.

extern OSStatus BSPartitioningPIInitializeMap (BSStorePtr initStore);

initStore On input, a pointer to the store of interest.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Partitioning Plug-in Errors”
(page 7-208) for a list of the result codes a partitioning plug-in
can return.

DISCUSSION

The block storage family calls a partitioning plug-in's initialize map function
after calling the plug-in’s initialization function. It gives the plug-in an
opportunity to overwrite an existing partition map and to use a new
partitioning format for the store.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-195
Draft. Apple Computer, Inc. 4/18/96

The BSPartitioningPIInitializeMap type (page 7-72) defines the partitioning
plug-in initialize map function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSPartitioningPIGetInfoFunc 7

Retrieves information about a partition map and the associated partitioning
plug-in.

extern OSStatus MyBSPartitioningPIGetInfoFunc (
BSStorePtr store,
BSStorePPIInfo *info);

store On input, a pointer to the store of interest.

info A pointer to a BSStorePPIInfo structure (page 7-59). On output,
the plug-in provides in the structure information about the
store’s partition map.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Partitioning Plug-in Errors”
(page 7-208) for a list of the result codes a partitioning plug-in
can return.

DISCUSSION

The BSPartitioningPIGetInfo type (page 7-72) defines the partitioning plug-in
information function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

7-196 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

MyBSPartitioningPIGetEntryFunc 7

Retrieves a specified partition map entry.

extern OSStatus MyBSPartitioningPIGetEntryFunc (
BSStorePtr readStore,
ItemCount entryNum,
BSPartitionDescriptor *retEntry);

readStore On input, a pointer to the store of interest.

entryNum The ordinal number of the partition map entry to be read.
Partition map entry numbering starts at 0.

retEntry A pointer to a BSPartitionDescriptor structure (page 7-48). On
output, the plug-in fills in the structure.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. For example, if the specified entry
does not exist. return the E_BSPPIPartitionNonExistant result
code.

DISCUSSION

The BSPartitioningPIGetEntry type (page 7-72) defines the partitioning plug-in
get entry function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-197
Draft. Apple Computer, Inc. 4/18/96

MyBSPartitioningPISetEntryFunc 7

Creates or modifies a partition map entry and the corresponding partition.

extern OSStatus MyBSPartitioningPISetEntryFunc (
BSStorePtr store,
ItemCount partitionNum,
BSPartitionDescriptor *partitionInfo);

store On input, a pointer to the store of interest.

partitionNum The ordinal number of the partition to be created or modified.
Partition numbering starts at 0. A partition is defined by a
partition map entry with the same ordinal number.

partitionInfo On input, a pointer to a BSPartitionDescriptor structure
(page 7-48) that describes the partition.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Partitioning Plug-in Errors”
(page 7-208) for a list of the result codes a partitioning plug-in
can return.

DISCUSSION

A partitioning plug-in defines or modifies a partition by writing information in
a partition map entry.

When a disk setup application calls the BSStoreConnSetPartitionInfo function
(page 7-118), the block storage family responds by calling the set entry function
of the appropriate partitioning plug-in to define the partition.

The BSPartitioningPISetEntry type (page 7-73) defines the partitioning plug-in
set entry function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

7-198 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

Container Plug-in-Defined Functions 7

A container plug-in provides the functions described in this section. The
functions are called only by the block storage family or the block storage expert.

MyBSContainerPIExamineFunc 7

Queries a container plug-in about its ability to support a given container.

extern OSStatus MyBSContainerPIExamineFunc (
BSContainerPtr initContainer,
BSCPIConfidenceLevel *confidence);

initContainer On input, a pointer to the container that the plug-in is to
examine. This container is sometimes referered to as an
in-process container—it is in the process of being configured by
the block storage expert and is not yet published in the name
registry and available for use.

confidence A pointer to a value of type BSCPIConfidenceLevel. On output,
the plug-in returns a value indicating its level of confidence that
it can support the device. See “BSCPIConfidenceLevel”
(page 7-54) for a description of the confidence level values you
can return here.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Container Plug-in Errors”
(page 7-208) for a list of the result codes a container plug-in can
return.

DISCUSSION

When the block storage expert receives a notification of a new block storage
container entry in the name registry, it creates a new container and calls the
examine function of each container plug-in to find out how well the plug-ins
can support the container.

When this function is called, the container plug-in should examine the
container specified in the initContainer parameter.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-199
Draft. Apple Computer, Inc. 4/18/96

Then the plug-in decides on its level of confidence that it can support the
container and returns that information in the confidence parameter.

Before returning, your examine function must free any resources it allocates.
The block storage expert selects the plug-in that offers the highest level of
support. If the expert selects a different plug-in to manage the container, your
plug-in does not get another chance to free resources.

The BSContainerPIExamine type (page 7-74) defines the container plug-in
examine function.

SPECIAL CONSIDERATIONS

Only the block storage expert calls this function.

MyBSContainerPIInitFunc 7

Initializes a container plug-in.

extern OSStatus MyBSContainerPIInitFunc (
BSContainerPtr initContainer
BSContainerPIInfo *info,
Boolean *backgroundTask);

initContainer On input, a pointer to the container that the container plug-in is
to manage.

info A pointer to a container information structure (page 7-60). On
output, the plug-in uses the structure to supply information
about the container.

backgroundTask
A pointer to a Boolean value. On output, the plug-in sets the
valueto true if it wants the block storage family to call its
initialization background task function (page 7-76). Otherwise,
it sets the value to false.

C H A P T E R 7

Block Storage Family Reference

7-200 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Container Plug-in Errors”
(page 7-208) for a list of the result codes a container plug-in can
return.

DISCUSSION

The block storage family calls a container plug-in's initialization function after
it selects the plug-in to manage a container. Your plug-in should perform
whatever setup work is necessary, such as allocating memory.

The BSContainerPIInit type (page 7-74) defines the container plug-in
initialization function.

SEE ALSO

Any resources that you acquire during initialization should be released in your
clean up function (page 7-75).

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSContainerPICleanupFunc 7

Completes processing and releases resources for a container.

extern OSStatus MyBSContainerPICleanupFunc (
BSContainerPtr container);

container On input, a pointer to the container managed by this plug-in.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Container Plug-in Errors”
(page 7-208) for a list of the result codes a container plug-in can
return.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-201
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

The block storage family calls a container plug-in's clean up function prior to
disposing of a container. Your plug-in should perform whatever work is
necessary, such as disposing of memory and data structures related to the
container.

Be sure to release any resources that you acquired in your initialization
function (page 7-199).

The BSContainerPICleanup type (page 7-75) defines a container plug-in clean up
function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSContainerPIGoToStateFunc 7

Takes a container to a specified accessibility state.

extern OSStatus MyBSContainerPIGoToStateFunc (
BSContainerPtr container,
UInt32 accessState);

container On input, a pointer to the container managed by this plug-in.

accessState The new accessibility state to be applied to the container.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution.

DISCUSSION

Typically, the block storage family calls this function after the container plug-in
has called the BSCPIRequestContainerStateChange function (page 7-178) and
permission to change the accessibility state is granted by the block storage
family expert.

The BSContainerPIGoToState type (page 7-75) defines a container plug-in
accessibility state function.

C H A P T E R 7

Block Storage Family Reference

7-202 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSContainerPIGetInfoFunc 7

Returns information about a container and its associated container plug-in.

extern OSStatus MyBSContainerPIGetInfoFunc (
BSContainerPtr infoContainer,
BSContainerPIInfo *info);

infoContainer On input, a pointer to the container managed by the plug-in.

info A pointer to a BSContainerPIInfo structure (page 7-60). On
output, the plug-in provides information about the container in
the structure.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution. If an error occurs, it should return
an appropriate result code. See “Container Plug-in Errors”
(page 7-208) for a list of the result codes a container plug-in can
return.

DISCUSSION

The BSContainerPIGetInfo type (page 7-76) defines a container plug-in
information function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

C H A P T E R 7

Block Storage Family Reference

Block Storage Plug-in Functions 7-203
Draft. Apple Computer, Inc. 4/18/96

MyBSContainerPIAddContainerFunc 7

Adds a container to another container.

extern OSStatus MyBSContainerPIAddContainerFunc (
BSContainerPtr destContainer,
BSContainerPtr addedContainer);

destContainer
On input, a pointer to the container to which a container is
being added.

addedContainer
On input, a pointer to the container to be added.

function result Your plug-in should return the result code E_BSSuccess to
indicate successful execution

DISCUSSION

This function allows a container plug-in to add a container to an existing
container.

Not all plug-ins support this ability.

The BSContainerPIAddContainer type (page 7-75) defines the container plug-in
add container function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSContainerPIBackgroundTaskFunc 7

Activates a container plug-in’s initialization background task.

extern OSStatus MyBSContainerPIBackgroundTaskFunc (
BSContainerPtr theContainer);

theContainer On input, a pointer to the container managed by the plug-in.

C H A P T E R 7

Block Storage Family Reference

7-204 Block Storage Plug-in Functions

Draft. Apple Computer, Inc. 4/18/96

function result A result code. The plug-in is not notified if the function
terminates with an error. However, the block storage family
logs the result code with the system logging service.

DISCUSSION

If a container plug-in returns from its initialization function (page 7-199) with
the backgroundTask flag set, the block storage family calls its initialization
background task function.

The task is automatically terminated after the plug-in’s clean up function is
executed.

Because the plug-in is not notified if the task terminates with an error, the task
should not terminate with an error, but rather do its own error handling.

The BSContainerPIBackgroundTask type (page 7-76) defines a container plug-in’s
initialization background task function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

MyBSCPIBackgroundTaskFunc 7

Activates a container plug-in’s standard background task.

extern OSStatus MyBSCPIBackgroundTaskFunc (
BSContainerPtr theContainer,
void *theArg);

theContainer On input, a pointer to the container for which the background
task is being started.

theArg Reserved for your use. The block storage family sets this
parameter to the value that you provided when you called the
BSCPIStartBackgroundTask function (page 7-176).

function result A result code. The plug-in is not notified if the function
terminates with an error. However, the block storage family
logs the result code with the system logging service.

C H A P T E R 7

Block Storage Family Reference

Block Storage Result Codes 7-205
Draft. Apple Computer, Inc. 4/18/96

DISCUSSION

If a container plug-in calls the BSCPIStartBackgroundTask function, the block
storage family responds by calling the standard background task function the
plug-in specified. The task is automatically terminated after the plug-in’s clean
up function is executed.

Because the plug-in is not notified if the standard background task terminates
with an error, the task should not terminate with an error, but rather do its own
error handling.

A plug-in can start any number of standard background tasks.

The BSCPIBackgroundTask type (page 7-77) defines a container plug-in’s
standard background task function.

SPECIAL CONSIDERATIONS

Only the block storage family calls this function.

Block Storage Result Codes 7

•••To be provided•••

Basic Error Types 7

•••To be provided•••

enum {
E_Success = 0x00000000,
E_LoopTermination = 0x08000000,
E_Underflow = 0x10000000,
E_Overflow = 0x18000000,
E_AlreadyExists = 0x20000000,
E_NotFound = 0x28000000,
E_AccessViolation = 0x30000000,
E_Busy = 0x38000000,
E_VersionMismatch = 0x40000000,
E_Canceled = 0x48000000,

C H A P T E R 7

Block Storage Family Reference

7-206 Block Storage Result Codes

Draft. Apple Computer, Inc. 4/18/96

E_OutOfResources = 0x50000000,
E_Timeout = 0x58000000,
E_ParameterError = 0x60000000,
E_Fatal = 0x68000000,
E_Unknown = 0xF8000000

};

Block Storage Error ID 7

•••To be provided•••

enum {
E_BlockStorageBias = 0x04F00000

};

Block Storage Error Categories 7

•••To be provided•••

enum {
E_BSFamilyError = 0x00000000 | E_BlockStorageBias,
E_BSExpertError = 0x00008000 | E_BlockStorageBias,
E_BSMappingPlugInError = 0x00010000 | E_BlockStorageBias,
E_BSPartitioningPlugInError = 0x00018000 | E_BlockStorageBias,
E_BSContainerPlugInError = 0x00020000 | E_BlockStorageBias,
E_BSBlockListError = 0x00028000 | E_BlockStorageBias,
E_BSSuccess = E_Success

};

Block Storage Family Errors 7

•••To be provided•••

enum {
E_BSOutOfResources = 0x00000001 | E_OutOfResources | E_BSFamilyError,
E_BSStoreInUse = 0x00000001 | E_AccessViolation | E_BSFamilyError,
E_BSStoreWriteProtected = 0x00000002 | E_AccessViolation | E_BSFamilyError,
E_BSStoreNotFound = 0x00000001 | E_NotFound | E_BSFamilyError,

C H A P T E R 7

Block Storage Family Reference

Block Storage Result Codes 7-207
Draft. Apple Computer, Inc. 4/18/96

E_BSBadMessage = 0x00000001 | E_ParameterError | E_BSFamilyError,
E_BSBadConnection = 0x00000002 | E_ParameterError | E_BSFamilyError,
E_BSTableTooSmall = 0x00000003 | E_ParameterError | E_BSFamilyError,
E_BSNullParameters = 0x00000004 | E_ParameterError | E_BSFamilyError,
E_BSParameterError = 0x00000005 | E_ParameterError | E_BSFamilyError,
E_BSUnimplemented = 0x00000001 | E_VersionMismatch | E_BSFamilyError

};

Block Storage Expert Errors 7

•••To be provided•••

enum {
E_BSEPlugInNotFound = 0x00000001 | E_NotFound | E_BSExpertError,
E_BSENoPlugInMatch = 0x00000002 | E_NotFound | E_BSExpertError,
E_BSENoMoreStores = 0x00000001 | E_OutOfResources | E_BSExpertError,
E_BSEHierarchyTooDeep = 0x00000002 | E_OutOfResources | E_BSExpertError,
E_BSEOutOfResources = 0x00000003 | E_OutOfResources | E_BSExpertError

};

Mapping Plug-in Errors 7

•••To be provided•••

enum {
E_BSMPIOutOfStoreBounds = 0x00000001 | E_ParameterError | E_BSMappingPlugInError,
E_BSMPITooManyMappings = 0x00000002 | E_ParameterError | E_BSMappingPlugInError,
E_BSMPIBadMappingParams = 0x00000003 | E_ParameterError | E_BSMappingPlugInError,
E_BSMPIMappingNotSupported

= 0x00000004 | E_ParameterError | E_BSMappingPlugInError,
E_BSMPIStateNotSupported

= 0x00000005 | E_ParameterError | E_BSMappingPlugInError,
E_BSMPIWriteProtected = 0x00000001 | E_AccessViolation | E_BSMappingPlugInError,
E_BSMPICannotGoToState = 0x00000002 | E_AccessViolation | E_BSMappingPlugInError,
E_BSMPIUnitNotResponding

= 0x00000001 | E_Fatal | E_BSMappingPlugInError,
E_BSMPITransferError = 0x00000002 | E_Fatal | E_BSMappingPlugInError,
E_BSMPIMemoryAccessFault

= 0x00000003 | E_Fatal | E_BSMappingPlugInError,

C H A P T E R 7

Block Storage Family Reference

7-208 Block Storage Result Codes

Draft. Apple Computer, Inc. 4/18/96

E_BSMPINoPlugIn = 0x00000004 | E_Fatal | E_BSMappingPlugInError,
E_BSMPIMediaRemoved = 0x00000005 | E_Fatal | E_BSMappingPlugInError,
E_BSMPIOutOfResources = 0x00000001 | E_OutOfResources | E_BSMappingPlugInError

};

Partitioning Plug-in Errors 7

•••To be provided•••

enum {
E_BSPPIMappingNotSupported

= 0x00000001 | E_ParameterError | E_BSPartitioningPlugInError,
E_BSPPIOverlappingPartition

= 0x00000002 | E_ParameterError | E_BSPartitioningPlugInError,
E_BSPPIOutOfStoreBounds

= 0x00000003 | E_ParameterError | E_BSPartitioningPlugInError,
E_BSPPIPartitionNonExistant

= 0x00000004 | E_ParameterError | E_BSPartitioningPlugInError,
E_BSPPITooManyPartitions

= 0x00000005 | E_ParameterError | E_BSPartitioningPlugInError,
E_BSPPINoPlugIn = 0x00000001 | E_Fatal | E_BSPartitioningPlugInError,
E_BSPPIOutOfResources

= 0x00000002 | E_OutOfResources | E_BSPartitioningPlugInError
};

Container Plug-in Errors 7

•••To be provided•••

Block List Errors 7

•••To be provided•••

enum {
E_BSBLEndOfList = 0x00000001 | E_Underflow | E_BSBlockListError,
E_BSBLParameterError = 0x00000001 | E_ParameterError | E_BSBlockListError,
E_BSBLBadBlockList = 0x00000002 | E_ParameterError | E_BSBlockListError,
E_BSBLBadBlock = 0x00000003 | E_ParameterError | E_BSBlockListError,

C H A P T E R 7

Block Storage Family Reference

Glossary 7-209
Draft. Apple Computer, Inc. 4/18/96

E_BSBLAlreadyFinalized = 0x00000001 | E_AlreadyExists | E_BSBlockListError,
E_BSBLOutOfResources = 0x00000001 | E_OutOfResources | E_BSBlockListError,

};

Glossary 7

accessibility state A condition that indicates how readily a block storage
container or store can be accessed. Accessibility states range from fully
accessible (online) to completely inaccessible (offline). More time is needed to
access a container or store in a less accessible state, such as a disk drive in
power-saving mode, than to access one in a more accessible state.

bias The positive value added to an address on a store to translate it to the
equivalent address on another store.

block The minimum unit of I/O for a store. A fixed-length contiguous set of
bytes within a store. See also block size.

block list An opaque data structure that specifies the address ranges on a
store to be used for a given I/O transfer.

block list descriptor An opaque data structure that specifies a view of a block
list. A view of a block list consists of a bias and a set of addresses. A single
block list can have many descriptors with different biases and address ranges.

block size The number of bytes in a block. A store defines its read block size
and write block size, which typically are the same, but may be different.

block storage family That part of the I/O system that abstracts the
characteristics of, and operations on, large-capacity random access physical
storage devices to provide a single and consistent interface to virtual storage
devices. The block storage family keeps track of media and devices that can be
controlled directly by Mac OS 8. The interfaces it provides include those to
partition and aggregate physical storage devices into virtual devices, to mount
and dismount volumes, and to control automated volume changers and
ejectable media.

block storage plug-in See container plug-in, mapping plug-in, partitioning
plug-in.

child store Relative to a given I/O request flowing between two stores, the
store whose mapping plug-in translates addresses in order to read from or

C H A P T E R 7

Block Storage Family Reference

7-210 Glossary

Draft. Apple Computer, Inc. 4/18/96

write data to a parent store, and then forwards the request to the parent store.
Compare parent store.

component A constituent part of a store, the thing on which a given store is
based. A component of a primary store is a device controlled by another I/O
family. A component of a derived store is another store or a partition of a store.
A store may have more than one component, as a store representing a RAID
system does.

connection A logical path to a store or a container. A connection serves to
control access to a store or container and it is allocated as a result of opening a
container or store. All operations that modify a store or a container require a
connection. See also control connection, I/O connection.

connection ID A value that uniquely identifies a connection. It is assigned by
Mac OS 8 when a new connection is created.

container An abstraction for hardware under the control of the block storage
family. A container may represent a piece of media (such as a CD-ROM disk), a
media holder (such as a CD-ROM cassette), or a physical device (such as a
ejectable floppy drive). Containers describe the physical hierarchy of storage
devices and media available to Mac OS 8.

container policy An algorithm to manage changes in the accessibility state of
a container.

container plug-in A software module that implements a container policy.

control connection A type of connection to a store or a container that allows
you to configure the store or container and to change its accessibility state. (A
connection to a container is always a control connection.) See also connection,
I/O connection.

derived store A store that maps to another derived store or to a primary store.

extent A variable-length contiguous set of bytes within a store.

I/O connection A type of connection to a store that allows you to read and/or
write to the store. See also connection, control connection.

leaf store A store from which no other stores are derived. Sometimes referred
to as a terminal store.

mapping (1) The relationship of addresses on two different stores or on a
store and a physical device. (2) The process of translating addresses between
two stores or between a store and a physical device.

C H A P T E R 7

Block Storage Family Reference

Glossary 7-211
Draft. Apple Computer, Inc. 4/18/96

mapping plug-in A software module that translates addresses between a
child store and its parent store(s) or between a primary store and a physical
device. The mapping plug-in for a primary store is a device driver. Each store
has one mapping plug-in.

offset A pointer maintained by the block storage family into a block list
descriptor. The value of the offset affects the results of operations performed
using that block list descriptor.

parent store Relative to a given I/O request flowing between two stores, the
store whose mapping plug-in receives the forwarded request. Compare child
store.

partition A portion of a device or a store that can be treated as if it were a
separate and distinct physical device. Partitions of physical devices are often
allocated to a particular operating system, file system, or device driver. Each
device or store contains one or more partitions.

partition map 1) Information stored with a device that describes how the
device is partitioned into virtual devices. 2) Information stored with a store that
describes how the store is partitioned or aggregated into other stores. A
physical device always contains a partition map. A virtual device may or may
not. A partition map consists of one or more partition map entries.

partition map entry That part of a partition map that describes a single
partition, including such things as the starting address of the partition and its
length.

partitioning plug-in A software module that creates and maintains a
partition map and that makes the information available to the block storage
family.

primary store A store that maps to an entity, almost always a physical device,
that is beyond the awareness and control of the block storage family.

RAID Redundant array of independent disks.

RAID-5 A type of RAID system.

store A virtual device, an abstraction for a linearly addressable set of any
number of blocks. The blocks in a store can reside on a physical device or
another store. Each store is associated with one mapping plug-in.

terminal store See leaf store.

C H A P T E R 7

Block Storage Family Reference

7-212 Glossary

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 8

Contents 8-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 Device Manager Family

About the Device Manager Family 8-3
Compatibility with 68K Drivers 8-4
Compatibility with Native Drivers 8-4

Using the Device Manager Family 8-5
Locating a Generic Plug-In 8-5
Opening a Generic Plug-In 8-6
Closing a Generic Plug-In 8-7

Device Manager Reference 8-7
Data Types 8-7

Command Codes 8-7
Command Kinds 8-8
Device Manager Family Iterator Structure 8-9
I/O Command Contents Structure 8-10

Functions 8-11
DeviceManagerGetDeviceData 8-11
DoDeviceManagerIO 8-12

C H A P T E R 8

8-2 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 8

About the Device Manager Family 8-3
Draft. Apple Computer, Inc. 4/18/96

Device Manager Family 8

This chapter describes the Mac OS 8 Device Manager family. The Device
Manager family provides a transitional interface for existing device drivers and
the applications that interact with them. You should read this chapter if you
need to support or maintain System 7 style device drivers.

If you are developing a new device driver you should design it as a plug-in for
an existing I/O family, or create your own family if necessary. Drivers written
expressly for Mac OS 8 do not need to use the Device Manager.

About the Device Manager Family 8

The Mac OS 8 Device Manager family is a generic driver service provider that
trades performance for compatibility with the System 7 device driver model.
Unlike other I/O family services, the Device Manager family is not designed to
support any particular driver type. Rather, it provides a compatibility layer for
existing drivers and applications that cannot be easily modified or do not
require the performance improvements offered by other I/O family services.
For example, an expansion card whose driver code resides in ROM, or an
application that accesses a driver through the System 7 unit table, can continue
to function without modification, but with comparatively lower performance
than software that has been redesigned for the Mac OS 8 I/O architecture.

The Device Manager supports generic 'DRVR' and 'ndrv' drivers that conform
to the restrictions described in this chapter. In general, the Device Manager
provides compatibility with the API defined in Inside Macintosh: Devices and
Designing PCI Cards and Drivers for Power Macintosh Computers. However, the
I/O architecture of Mac OS 8 imposes restrictions on certain unsupported but
previously allowable practices:

■ Resizing parameter blocks or using restricted fields.
Drivers that increase the size of the Device Manager parameter block or use
restricted fields must be redesigned to use standard parameter blocks. The
ParamBlockRec data type is defined in Inside Macintosh: Devices.

■ Using private pointers for data transfer operations.
Drivers must use the PBRead and PBWrite functions to transfer any data that
does not fit within the fields of a standard I/O parameter block. For data
transfer operations the Device Manager copies or maps only the memory
pointed to by the pb.ioBuffer field, for the size of pb.ioReqCount. Drivers
that use the PBControl or PBStatus functions to transfer data using private

C H A P T E R 8

Device Manager Family

8-4 About the Device Manager Family

Draft. Apple Computer, Inc. 4/18/96

pointers are not supported because the Device Manager cannot ensure the
proper memory context across mode changes. The PBRead and PBWrite
functions are described in Inside Macintosh: Devices.

Drivers that do not conform to these restrictions must be redesigned,
preferably as family plug-ins.

Compatibility with 68K Drivers 8

Except for the restrictions discussed in this chapter, existing 68K code resources
of type 'DRVR' can operate within the Mac OS 8 cooperative program address
space provided

■ the driver conforms to the standards defined in Inside Macintosh: Devices

■ the driver is not a desk accessory

■ the driver does not directly interact with hardware devices

Code that interacts directly with hardware devices must be rewritten as a
family plug-in or generic native driver. Desk accessories are not supported, and
should be redesigned as applications.

Compatibility with Native Drivers 8

Existing PowerPC native drivers of type 'ndrv' will operate in the Mac OS 8
environment provided they adhere to the specifications described in Designing
PCI Cards and Drivers for Power Macintosh Computers.

IMPORTANT

Mac OS 8 allows only one driver per file of type 'ndrv'.
Combining multiple drivers in a single file is not
supported. ▲

System 7 style native drivers are installed as generic plug-ins to the Device
Manager family and can continue to use the System 7 Device Manager API for
communicating with clients in the cooperative program address space. If your
driver and it’s clients follow the guidelines described in this chapter, they will
operate without modification. However, by relying on the Device Manager to
provide compatibility, native drivers will experience reduced performance due
to the overhead imposed by task wrappers and multiple task switches.

C H A P T E R 8

Device Manager Family

Using the Device Manager Family 8-5
Draft. Apple Computer, Inc. 4/18/96

By rewriting your driver and its client applications to use the family and
plug-in architecture, you gain more control over I/O processing and
performance tuning. If you create your own family you can design the most
efficient interface between your plug-in and its clients—bypassing the Device
Manager entirely.

Using the Device Manager Family 8

This section describes how to use the Device Manager to locate, open, and close
generic 'ndrv' plug-ins.

Locating a Generic Plug-In 8

The following example demonstrates how to use the
DeviceManagerGetDeviceData function to locate and get information about a
generic plug-in. The MyLookupGenericPlugIn function returns the plug-in
number of a plug-in you specify by name.

Boolean MyLookupGenericPlugIn (StringPtr myNdrvName, int *pluginNumber)
{

OSStatus status;
ItemCount returnCount;
DeviceManagerIteratorData *dataArray;

status = DeviceManagerGetDeviceData(0, &returnCount, nil);
if (status == noErr) {

status = MemNewFixed(xDefaultAllocator,
(returnCount * sizeof(DeviceManagerIteratorData)),
&dataArray);

if (status == noErr) {
status = DeviceManagerGetDeviceData(returnCount,

&returnCount,
&dataArray);

if (status == noErr) {
int index;
for (index = 0; index < returnCount ; index ++) {

if (EqualStrings(
dataArray[index].desc.runtimeOptions.driverName,

C H A P T E R 8

Device Manager Family

8-6 Using the Device Manager Family

Draft. Apple Computer, Inc. 4/18/96

myNdrvName,
true,
true)) {

*pluginNumber = dataArray[index].pluginNumber;
MemDisposeFixed(xDefaultAllocator,

(returnCount * sizeof(DeviceManagerIteratorData)),
& dataArray);

return true; // found the driver
}

} // end for
}

}
}
return false;

}

Opening a Generic Plug-In 8

The example below shows how you can open a plug-in using the
DoDeviceManagerIO function.

OSStatus MyOpenGenericPlugIn (short *pluginNumber)
{

ParamBlockRec pb;
OSStatus st;

BlockZero(&pb, sizeof(pb));
pb.ioParam.ioNamePtr = kMyDriverName;
contents.pb = &pb;
st = DoDeviceManagerIO(nil,

contents,
kOpenCommand,
kImmediateIOCommandKind,
nil);

if (st == noErr) {
*pluginNumber = pb.ioParam.ioRefNum;

}
return st;

}

C H A P T E R 8

Device Manager Family

Device Manager Reference 8-7
Draft. Apple Computer, Inc. 4/18/96

Closing a Generic Plug-In 8

The following example shows how you can close a plug-in using the
DoDeviceManagerIO function.

OSStatus MyCloseGenericPlugIn (short pluginNumber)
{

ParamBlockRec pb;
OSStatus st;

BlockZero(&pb, sizeof(pb));
pb.ioParam.ioRefNum = pluginNumber;
contents.pb = &pb;
st = DoDeviceManagerIO(nil,

contents,
kCloseCommand,
kImmediateIOCommandKind,
nil);

return st;
}

Device Manager Reference 8

This section describes the constants, data types, and functions provided by the
Device Manager family to support generic native drivers. The data types and
functions that provide compatibility with the System 7 Device Manager API are
documented in Inside Macintosh: Devices and Designing PCI Cards and Drivers for
Power Macintosh Computers.

Data Types 8

Command Codes 8

The Device Manager family defines the following constants for specifying
command codes to a driver.

C H A P T E R 8

Device Manager Family

8-8 Device Manager Reference

Draft. Apple Computer, Inc. 4/18/96

/* command codes */
enum {

kOpenCommand = 0, /* open */
kCloseCommand = 1, /* close */
kReadCommand = 2, /* read */
kWriteCommand = 3, /* write */
kControlCommand = 4, /* control */
kStatusCommand = 5, /* status */
kKillIOCommand = 6, /* kill I/O */
kInitializeCommand = 7, /* initialize */
kFinalizeCommand = 8, /* finalize */
kReplaceCommand = 9, /* replace */
kSupersededCommand = 10 /* superseded */

};

See Designing PCI Cards and Drivers for Power Macintosh Computers for
information about how these constants are used by native drivers.

Command Kinds 8

The Device Manager family defines the following constants for specifying
command kinds to a driver.

/* command kinds */
enum {

kSynchronousIOCommandKind = 0x00000001, /* synchronous */
kAsynchronousIOCommandKind = 0x00000002, /* asynchronous */
kImmediateIOCommandKind = 0x00000004 /* immediate */

};

See Designing PCI Cards and Drivers for Power Macintosh Computers for
information about how these constants are used by native drivers.

C H A P T E R 8

Device Manager Family

Device Manager Reference 8-9
Draft. Apple Computer, Inc. 4/18/96

Device Manager Family Iterator Structure 8

The DeviceManagerGetDeviceData function returns information about a selected
plug-in in the DeviceManagerIOIteratorData structure.

struct DeviceManagerIOIteratorData {
IOCommonInfo ioCI;
short pluginNumber;
short refNum;
DriverDescription desc;

};
typedef struct DeviceManagerIOIteratorData DeviceManagerIOIteratorData;

ioCI A structure of type IOCommonInfo. It contains the device
reference number from the Name Registry, and the version
number of the family’s iterator structure. For more information
about the IOCommonInfo structure, see “About the I/O
Architecture” (page 1-3)

pluginNumber A unique identifier assigned by the Device Manager to each
generic plug-in. You use this identifier to specify a plug-in
when using the DoDeviceManagerIO function. Plug-in numbers
are in the range 1 to 128.

refNum A unique identifier used by applications in the cooperative
program address space for identifying a driver in the unit table.
Mac OS 8-savvy applications should use the pluginNumber
parameter and set refNum to 0. See Inside Macintosh: Devices for
information about driver reference numbers and the unit table.

desc The driver description exported by the driver. The
DriverDescription structure is used to compare a driver’s
functionality with a device’s needs. See Designing PCI Cards and
Drivers for Power Macintosh Computers for more information
about this structure.

C H A P T E R 8

Device Manager Family

8-10 Device Manager Reference

Draft. Apple Computer, Inc. 4/18/96

I/O Command Contents Structure 8

You pass commands to the DoDeviceManagerIO function in a structure of type
IOCommandContents. This structure encapsulates the System 7 Device Manager
parameter block along with additional information for native drivers.

union IOCommandContents {
ParmBlkPtr pb;
DriverInitInfoPtr initialInfo;
DriverFinalInfoPtr finalInfo;
DriverReplaceInfoPtr replaceInfo;
DriverSupersededInfoPtr supersededInfo;

};
typedef union IOCommandContents IOCommandContents;

ParmBlkPtr A pointer to a Device Manager parameter block (a structure of
type ParamBlockRec). See Inside Macintosh: Devices for
information about this structure.

DriverInitInfoPtr
A pointer to a DriverInitInfo structure. See Designing PCI Cards
and Drivers for Power Macintosh Computers for information about
this structure.

DriverFinalInfoPtr
A pointer to a DriverFinalInfo structure. See Designing PCI
Cards and Drivers for Power Macintosh Computers for information
about this structure.

DriverReplaceInfoPtr
A pointer to a DriverReplaceInfo structure. See Designing PCI
Cards and Drivers for Power Macintosh Computers for information
about this structure.

DriverSupersededInfoPtr
A pointer to a DriverSupersededInfo structure. See Designing
PCI Cards and Drivers for Power Macintosh Computers for
information about this structure.

C H A P T E R 8

Device Manager Family

Device Manager Reference 8-11
Draft. Apple Computer, Inc. 4/18/96

Functions 8

DeviceManagerGetDeviceData 8

Returns information about generic 'ndrv' plug-ins.

OSStatus DeviceManagerGetDeviceData(
ItemCount requestItemCount,
ItemCount *totalItemCount,
DeviceManagerIOIteratorData **dataArray);

requestItemCount
The number of DeviceManagerIOIteratorData structures you
have allocated to the dataArray parameter. Set to 0 if you do not
want the function to return information in the dataArray
parameter.

totalItemCount
A pointer to an item count. On output, the number of installed
plug-ins reported by the Device Manager.

dataArray A pointer to an area of memory to hold an array of
DeviceManagerIOIteratorData structures. You must allocate
enough memory to hold the requested number of structures.
On output, the Device Manager returns the requested number
of DeviceManagerIOIteratorData structures. Set to nil if you do
not want the function to return this information.

function result A result code.

DISCUSSION

This function returns information maintained by the Device Manager for each
installed plug-in. You request the information by providing an array of Device
Manager family iterator structures, and the function returns the latest
information in this array.

The totalItemCount parameter returns the number of installed plug-ins. You
can use this value to determine how much memory to allocate for the
dataArray parameter. If requestItemCount is 0 and dataArray is nil, the function

C H A P T E R 8

Device Manager Family

8-12 Device Manager Reference

Draft. Apple Computer, Inc. 4/18/96

returns the number of installed plug-ins without returning information about
them.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

DoDeviceManagerIO 8

Sends a command to a generic 'ndrv' plug-in.

OSStatus DoDeviceManagerIO(
IOCommandID commandID,
IOCommandContents contents,
IOCommandCode code,
IOCommandKind kind,
KernelNotification *notify);

commandID Reserved for Device Manager internal use. Set to nil.

contents A pointer to an IOCommandContents data structure. See “I/O
Command Contents Structure” (page 8-10) for the definition of
the IOCommandContents data structure.

code A command code constant, such as kOpenCommand or
kCloseCommand, that describes the type of action to be
performed. See the “Command Codes” (page 8-7) section for
the definition of the command code constants.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 8

Device Manager Family

Device Manager Reference 8-13
Draft. Apple Computer, Inc. 4/18/96

kind A command kind constant, such as kAsynchronousIOCommandKind,
that specifies how the Device Manager should process the
request. See the “Command Kinds” (page 8-8) section for the
definition of the command kind constants.

notify A pointer to a microkernel notification structure you create to
indicate how you want your application to be notified when the
I/O command is completed. The Device Manager uses the
specified notification method when the plug-in calls the
IOCommandIsComplete function. This field is required for
asynchronous I/O commands, and ignored for others. See
Inside Macintosh: Microkernel and Core System Services for
information about microkernel notification.

function result A result code.

DISCUSSION

The DoDeviceManagerIO function sends commands and I/O requests to a
plug-in. The contents, code, and kind parameters are passed directly to the
plug-in’s DoDriverIO entry point. See Designing PCI Cards and Drivers for Power
Macintosh Computers for information about the DoDriverIO entry point.

There are two methods for identifying the plug-in you are sending a request to.
Applications in the cooperative program address space can use the reference
number derived from the driver’s position in the unit table, a value in the
range -1 to -128. Mac OS 8-savvy applications will use the plug-in number
returned by the DeviceManagerGetDeviceData function, a value in the range 1 to
128. In either case, the value is stored in the pb.ioRefNum field of the
IOCommandContents structure.

If the kind parameter is set to kImmediateIOCommandKind, the Device Manager
passes the command directly to the plug-in, bypassing the request queue and
without causing a task switch. Other kinds of commands are queued for later

C H A P T E R 8

Device Manager Family

8-14 Device Manager Reference

Draft. Apple Computer, Inc. 4/18/96

processing by the plug-in. Table 8-1 shows the command kinds that a client
may specify for a given command code.

The kInitializeCommand and kFinalizeCommand codes are issued only by the
Device Manager, and cannot be used by clients. If you are developing a
plug-in, it must be able to accept the command kinds and codes listed in Table
8-1, even if it cannot process them in the requested manner. Your plug-in must
return an appropriate error result code if it cannot process the request as
specified. In addition, your plug-in must support immediate requests from the
Device Manager for the kInitializeCommand and kFinalizeCommand codes.

As documented in Designing PCI Cards and Drivers for Power Macintosh
Computers, your driver should complete immediate I/O requests using a
normal function return, not by calling the IOCommandIsComplete function.
Synchronous and asynchronous requests must return through
IOCommandIsComplete.

See Designing PCI Cards and Drivers for Power Macintosh Computers for detailed
information about writing generic native drivers.

Table 8-1 Supported I/O command kinds and command codes for clients

Immediate Synchronous Asynchronous

kOpenCommand • •

kCloseCommand • •

kReadCommand • • •

kWriteCommand • • •

kControlCommand • • •

kStatusCommand • • •

kKillIOCommand • •

kInitializeCommand

kFinalizeCommand

kReplaceCommand • •

kSupersededCommand • •

C H A P T E R 8

Device Manager Family

Device Manager Reference 8-15
Draft. Apple Computer, Inc. 4/18/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 8

Device Manager Family

8-16 Device Manager Reference

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 9

Contents 9-1
Draft. Apple Computer, Inc. 4/18/96

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Booting Services

About Mac OS 8 Booting Services 9-3
Booting Sequence 9-5

Hardware Self-Test 9-5
ROMs and Boot Blocks 9-5
Open Firmware 9-5
Secondary Loader 9-6
Tertiary Loader 9-6
Invoking the Microkernel 9-8

Booting Services Software 9-8
Boot Blocks 9-8
Disk-Based Open Firmware 9-9
Embedded HFS Package 9-9
Embedded Resource Manager 9-10
Self PEF Loader 9-10
Boot-time Code Fragment Manager 9-10
Device Tree Maintenance Facility 9-11
Driver and Family Matching Service 9-11

C H A P T E R 9

9-2 Contents

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 9

About Mac OS 8 Booting Services 9-3
Draft. Apple Computer, Inc. 4/18/96

Booting Services 9

Booting, also called bootstrapping, is the process by which a computer system
initializes and configures itself after its power is turned on. This chapter
describes the Mac OS 8 booting sequence and the software components that
provide those services.

About Mac OS 8 Booting Services 9

The booting subsystem prepares the environment in which the microkernel is
to execute, loads the microkernel and its ancillary system-specific software, and
transfers control to the microkernel’s main entry point.

Booting services in Mac OS 8 are provided by the following software
components

■ boot blocks (on the booting media, typically a hard disk or CD-ROM)

■ primary bootstrap loader (either ROM-based Open Firmware or System 7
ROMs with a disk-based Open Firmware)

■ secondary bootstrap loader (from the boot media or network connection)

■ tertiary bootstrap loader (in the Mac OS folder)

The Mac OS 8 booting process can proceed along either of two paths: one for
machines containing Open Firmware ROMs, and another for machines
containing only System 7 ROMs. Open Firmware is the primary loader for
machines containing Open Firmware ROMs. The primary loader for machines
containing only System 7 ROMs is a disk-based Open Firmware
implementation loaded by modified System 7 boot blocks. The two paths
converge at the secondary loader; from that point forward, the booting code is
the same for all platforms (except for plug-ins to support hardware variations).
Figure 9-1 illustrates the Mac OS 8 booting sequence.

C H A P T E R 9

Booting Services

9-4 About Mac OS 8 Booting Services

Draft. Apple Computer, Inc. 4/18/96

Figure 9-1 Mac OS 8 booting sequence

Power On Self Test

System 7 ROM initializes hardware and loads
and executes boot device boot blocks

Open Firmware ROM initializes hardware

Boot blocks load Open Firmware from disk

Tertiary loader turns on MMU and invokes microkernel main entry point

Microkernel initializes itself

Open Firmware unavailable

Open Firmware available

Secondary loader finds, loads, and executes tertiary loader

Tertiary loader mounts boot disk and loads and concatenates microkernel boot image

DFM finds and loads device driver plug-ins and family experts

Tertiary loader builds microkernel boot closure and memory descriptor table

Open Firmware loads secondary bootstrap loader from boot disk partition

Mac OS 8 available

Disk-based Open Firmware ROM-based Open Firmware

C H A P T E R 9

Booting Services

Booting Sequence 9-5
Draft. Apple Computer, Inc. 4/18/96

Booting Sequence 9

This section describes the sequence of operations that execute to complete the
Mac OS 8 booting process. The initial steps vary, depending on whether or not
the machine contains Open Firmware ROMs.

Hardware Self-Test 9

The first action of the system is always a system hardware self-test, which is
also called a Power-on Self-Test, or POST. The POST tests the system’s RAM
configuration and determines the amount of RAM available. At this time the
system determines the presence or absence of optional hardware devices. As a
result of the hardware self-test, the system firmware—code residing in ROM—
has knowledge of the basic hardware present in the machine.

ROMs and Boot Blocks 9

Mac OS 8 is designed to run on machines that boot from either Mac OS
System 7 ROMs or ROM-based Open Firmware (booting code conforming to
the IEEE standard 1275-1994).

On machines containing only System 7 ROMs, the system’s first action
following the hardware self-test is to load the boot blocks from the boot volume
and begin their execution. The boot blocks determine whether the machine is
configured to run Mac OS 8 or some version of System 7. If the system software
is Mac OS 8, the boot blocks load a disk-based copy of Open Firmware from a
file in the Mac OS folder and begin its execution.

Once Open Firmware is running, whether it resides in ROM or was loaded
into RAM by the modified System 7 boot blocks, the Mac OS 8 booting
sequence is virtually identical for either system.

Open Firmware 9

As soon as Open Firmware begins running, the specified Open Firmware
booting sequence begins. Open Firmware determines the boot device by
examining the /options device tree system node, which is initialized at startup

C H A P T E R 9

Booting Services

9-6 Booting Sequence

Draft. Apple Computer, Inc. 4/18/96

from data stored in nonvolatile RAM. This node contains properties that define
the boot device and the boot operation’s optional parameters. It also defines the
properties specifying the device (or devices) through which the Open
Firmware user interface should perform I/O.

Open Firmware then executes the boot-command string which finds the first
secondary loader partition on the boot disk, loads its contents into memory,
and jumps to its entry point.

Secondary Loader 9

The secondary loader can be loaded from an easily found partition present on
the boot media or in a file read through a network connection. The secondary
loader uses its rudimentary file system support to load and execute the tertiary
loader.

As the Mac OS 8 secondary loader begins execution, one or more I/O function
wrappers can optionally be invoked to execute in sequence. These function
wrappers are found initially by the first stage of the secondary loader. After
any such function wrappers finish execution, the final Mac OS 8 booting
subsystem’s secondary loader continues. The secondary loader’s main purpose
is to find and load the tertiary loader.

Once the secondary loader has begun executing, machine-specific and
ROM-specific code can be accessed through the Open Firmware client
interface. Then the secondary and tertiary loaders can make machine-specific
calls to perform I/O and determine hardware configuration.

Tertiary Loader 9

The tertiary loader contains the remainder of the booting software. It loads two
kinds of software. First, the tertiary loader loads the microkernel and its
required dynamically linked code fragments (such as the file system and Name
Registry). Second, the tertiary loader loads I/O family experts and appropriate
device plug-ins, providing access to the boot media and basic user-interaction
facilities.

The tertiary loader identifies within the Mac OS folder hierarchy a collection of
files required in the microkernel’s boot image. Each of these files has a filetype
of 'maxb' and contains one or more PEF (preferred executable format) code
fragments. These fragments contain the microkernel itself and needed
subsystems, such as the file system and Name Registry. For each fragment, the

C H A P T E R 9

Booting Services

Booting Sequence 9-7
Draft. Apple Computer, Inc. 4/18/96

tertiary loader uses the Open Firmware client interface to allocate memory and
loads the fragment.

Among the code fragments comprising the microkernel boot image, only the
microkernel’s initialization plug-in has a filetype of 'krnl' and a usage field
stating that its fragment type is an application (kIsApp). The tertiary loader
invokes this processor-dependent fragment’s entry point when it has finished
preparing the microkernel for execution. The tertiary loader also takes special
care to align the first byte of this fragment’s code section to a page boundary so
that the PowerPC alignment exception handler can function properly.

The tertiary loader includes a subset of the driver and family matching (DFM)
service to locate software needed to access I/O devices required during
booting. The DFM service walks the Open Firmware device tree and, for each
device node, locates the plug-ins and family experts associated with that
device, unless previously loaded from ROM by Open Firmware. For each
device, the DFM service creates an entry in the Name Registry with properties
for a pointer to its plug-in and its plug-in description data structure. The DFM
service then loads the family expert associated with each required device, and
the family expert selects and loads the most suitable driver plug-in for each
device. Boot devices include those for the boot disk, real-time clock, primary
display, nonvolatile RAM, and mouse and keyboard. The mouse and keyboard
devices are for user interaction if a problem occurs during booting. See “Driver
and Family Matching Service” (page 9-11) for more information about the DFM
service.

The tertiary loader then identifies the low-level expert for the motherboard of
the running system and places a pointer to it on the
driver-reg,AAPL,MacOS,PowerPC property of the device tree root node.

At this point, the tertiary loader invokes its built-in, boot-time version of the
Code Fragment Manager to build the microkernel boot closure. This process
includes allocating and setting up expanded static data areas required by each
code fragment in the closure and performing relocations required for the
fragments to execute in their final base addresses.

The tertiary loader then builds a data structure describing the memory areas in
the system to facilitate initialization of the microkernel’s memory management
tables. The tertiary loader builds an exportable representation of the Open
Firmware device tree. All code and data structures passed into the microkernel
are then copied to their proper kernel runtime logical addresses, so that the
microkernel’s memory address mappings will be correct.

C H A P T E R 9

Booting Services

9-8 Booting Services Software

Draft. Apple Computer, Inc. 4/18/96

Additional details of tertiary loader facilities are provided in “Booting Services
Software” (page 9-8).

Invoking the Microkernel 9

Finally, the tertiary loader invokes the microkernel at its main entry point,
passing in parameters containing all the boot-time information it previously
constructed. The microkernel’s processor-dependent code module then
prepares its memory management tables and initializes the processor’s
memory management unit (MMU). The MMU performs the address
translations defined in the memory area description tables passed in from the
tertiary loader. The microkernel then initializes its remaining subsystems so
that other components of the system can use its entire API as they initialize
themselves.

When the microkernel is ready to run the rest of the system, the motherboard
expert is prepared and executed from its location in the
driver-reg,APPL,MacOS,PowerPC property of the device tree’s root node. The
motherboard expert works with the DFM service to initialize any I/O device
plug-ins and low-level experts required to inform the user of the booting
sequence progress and to perform the I/O operations required to get the file
system running.

Booting Services Software 9

This section presents additional details of certain components of the Mac OS 8
booting subsystem.

Boot Blocks 9

Boot blocks are the first two 512-byte blocks on a bootable HFS-formatted
volume. System 7 ROMs execute the code contained in the boot blocks of the
boot volume, specified in the machine’s nonvolatile RAM, as soon as they
complete their initial power-on tests. System 7 boot blocks contain less than
1024 bytes of 68K code and some localization and configuration parameter
data. This code opens the System File and executes the contents of one of its
resources.

C H A P T E R 9

Booting Services

Booting Services Software 9-9
Draft. Apple Computer, Inc. 4/18/96

To boot Mac OS 8 system efficiently on machines with System 7 ROMs, the
System 7 booting sequence must be interrupted very early, and the first
opportunity to do so is afforded by the boot blocks. Mac OS 8 provides
modified boot blocks that introduce the Mac OS 8 booting sequence when they
execute. The Mac OS 8 boot blocks contain additional 68K code and data,
which are necessary to permit the system to determine the user’s preference for
Mac OS 8 and to load a disk-based version of Open Firmware.

Disk-Based Open Firmware 9

During the Mac OS 8 booting sequence, as executed on a machine with Mac OS
System 7 ROMs, modified boot blocks load and begin execution of a disk-based
version of Open Firmware. This disk-based Open Firmware (DBOF)
implements the entire IEEE standard 1275-1994 for the System 7 CPU platform.

When it begins to execute, the DBOF assumes control of the machine precisely
as if it were running from the Mac OS 8 boot ROM. DBOF supports all devices
supported by the Open Firmware standard and any additional devices for
which Open Firmware Forth or Mac OS 8-style drivers have been constructed.
All main logic board devices that must participate in the booting sequence
must have trivial device drivers built into DBOF in the form of Forth code.

Note
Subsequent releases of Mac OS 8 will support a facility for
loading boot-time drivers using System 7’s file system to
support booting from devices that contain no Open
Firmware ROM code.

Embedded HFS Package 9

The embedded HFS package, which is part of the tertiary loader, contains a
complete, read-only implementation of the Mac OS hierarchical file system
(HFS), including extended support for volumes exceeding 4 GB. This
implementation includes the ability to mount HFS-formatted disk volumes,
determine the Mac OS folder’s location on the volume, enumerate the contents
of folders relative to any fixed point, obtain file type and creator (Finder)
information, and read information from both the data and resource forks of any
files found.

C H A P T E R 9

Booting Services

9-10 Booting Services Software

Draft. Apple Computer, Inc. 4/18/96

Embedded Resource Manager 9

The embedded resource manager, which is part of the tertiary loader,
implements a read-only Mac OS resource extraction facility. The Mac OS 8
booting sequence uses this capability to extract localizable strings, graphics,
and 'cfrg' resources from the resource forks of embedded HFS files.

Self PEF Loader 9

The self PEF loader, which is part of the tertiary loader, relocates in place a PEF
(preferred executable format) container into memory and prepares it for
execution. A PEF container is a storage object encompassing a code fragment in
Apple’s standard format for use by the Code Fragment Manager.

The function of the self PEF loader in the booting sequence is to prepare the
tertiary loader for execution. The self PEF loader expands in place all static
data, performs relocations of data references to relocatable code and data
objects, and identifies the TOC and entry point of the PEF container to its caller.
Because the tertiary loader forms a complete closure with no imports, simply
loading its PEF container and preparing its static data, including its TOC, is
sufficient to prepare it for execution.

Boot-time Code Fragment Manager 9

The boot-time code fragment manager (CFM) is part of the tertiary bootstrap
loader. The boot-time CFM resolves all the import and export
interdependencies among the code fragments comprising the microkernel boot
image, and it relocates any references to addresses that are contained in the
static data areas of the fragments. For example, the boot-time CFM relocates the
pointers in a fragment’s table of contents (TOC) to refer properly to their final
address ranges. The boot-time CFM supports only code fragments resident in
memory.

The boot-time CFM includes a PEF module transitive closure calculator. This
facility determines the complete set of all libraries imported by a root PEF
container, including additional libraries to which the imported libraries refer.
That is, all of the code fragments in the microkernel boot image must be able to
bind to each import library referred to in their TOCs. To do so, the addresses of
the referents of each code fragment’s imports must be placed in its TOC. This
software finds the set of all import libraries needed to prepare every PEF

C H A P T E R 9

Booting Services

Booting Services Software 9-11
Draft. Apple Computer, Inc. 4/18/96

container required by the boot image. Each of these import libraries must be
present in the boot image or the device tree to satisfy all import requirements.

Device Tree Maintenance Facility 9

The device tree maintenance facility is used by the tertiary loader to transform
the contents of the Open Firmware client interface’s device tree. The facility
puts the data into a compact form that can be conveniently passed as a
parameter by the tertiary loader when it invokes the microkernel. To
accomplish this, the structure of the data is copied into an exportable form
which is not position-dependent. This data structure is used subsequently by
the driver and family matching service.

Driver and Family Matching Service 9

The tertiary loader contains a subset of the Mac OS 8 driver and family
matching (DFM) service, which locates all the plug-ins and family experts
required to boot the machine. First, the DFM service traverses the
position-independent Open Firmware device tree and copies the data into the
actual Name Registry device subtree using the Name Registry APIs. For the
required name entries in the device portion of the Name Registry, the DFM
service locates, loads, and instantiates the plug-in and family expert best suited
to support the given device. The booting subsystem does not require
disk-based plug-ins for devices already exporting ROM-based plug-ins.

See Chapter 2, “Driver and Family Matching,” for more information about the
driver and family matching service.

C H A P T E R 9

Booting Services

9-12 Booting Services Software

Draft. Apple Computer, Inc. 4/18/96

IN-1
Draft. Apple Computer, Inc. 4/18/96

Index

A

ADBClose function 3-23
ADBConnectionID type 3-8
ADBFamAutopollArrived function 3-40
ADBFamRequestComplete function 3-39
ADBFlush function 3-36
ADBGetDeviceData function 3-20
ADBGetHandlerID function 3-28
ADBGetNextAutopoll function 3-34
ADBGetRegister function 3-24
ADBGetStatusBits function 3-31
ADBIOIteratorData type 3-10
ADBOpen function 3-21
ADBPluginAutopollDisableProc type 3-17
ADBPluginAutopollEnableProc type 3-16
ADBPluginDispatchTable type 3-11
ADBPluginFlushProc type 3-17
ADBPluginGetAutopollDelayProc type 3-15
ADBPluginGetAutopollListProc type 3-16
ADBPluginGetRegisterProc type 3-18
ADBPluginHeader type 3-12, 3-13
ADBPluginInitProc type 3-14
ADBPluginResetBusProc type 3-17
ADBPluginSetAutopollDelayProc type 3-14
ADBPluginSetAutopollListProc type 3-15
ADBPluginSetKeyboardListProc type 3-19
ADBPluginSetRegisterProc type 3-18
ADBRegisterContents type 3-9
ADBResetBus function 3-37
ADBSetHandlerID function 3-29
ADBSetRegister function 3-26
ADBSetStatusBits function 3-33
ADBValidateHardwareProc type 3-14

B

BlockStoragePlugInInfo type 7-61
BSAccessibilityState type 7-41
BSBlockListAddRange function 7-82
BSBlockListAddSimpleDescriptor

function 7-150
BSBlockListCreate function 7-81
BSBlockListDelete function 7-85
BSBlockListDescriptorCheckBlockSizes

function 7-153
BSBlockListDescriptorCheckBounds

function 7-154
BSBlockListDescriptorDelete function 7-156
BSBlockListDescriptorGetExtent

function 7-148
BSBlockListDescriptorGetInfo function 7-147
BSBlockListDescriptorInfoPtr type 7-51
BSBlockListDescriptorInfo type 7-51
BSBlockListDescriptorRef type 7-32
BSBlockListDescriptorSeek function 7-155
BSBlockListFinalize function 7-84
BSBlockListRef type 7-32
BSBlockListWhence type 7-52
BSByteCount type 7-28
BSComponentType type 7-39
BSContainerConnAssociatePlugIn

function 7-144
BSContainerConnClose function 7-129
BSContainerConnDeleteAndClose

function 7-141
BSContainerConnGetInfo function 7-142
BSContainerConnGoToAccessibilityState

function 7-130
BSContainerConnID type 7-29
BSContainerConnInsertContainer

function 7-143
BSContainerConnPublish function 7-145
BSContainerConnSetDevice function 7-143

I N D E X

IN-2
Draft. Apple Computer, Inc. 4/18/96

BSContainerConnUnpublish function 7-146
BSContainerCreate function 7-140
BSContainerGetProperty function 7-138
BSContainerGetPropertySize function 7-137
BSContainerID type 7-29
BSContainerInfoPtr type 7-47
BSContainerInfo type 7-47
BSContainerIteratorCreate function 7-131
BSContainerIteratorDispose function 7-132
BSContainerIteratorEnter function 7-133
BSContainerIteratorExit function 7-134
BSContainerIteratorID type 7-35
BSContainerIteratorNextChild function 7-136
BSContainerIteratorRestartChildren

function 7-135
BSContainerOpen function 7-128
BSContainerOpenOptions type 7-44
BSContainerPIAddContainer type 7-75
BSContainerPIBackgroundTask type 7-77
BSContainerPICleanup type 7-75
BSContainerPIExamine type 7-74
BSContainerPIGetInfo type 7-76
BSContainerPIGoToState type 7-76
BSContainerPIInfoPtr type 7-60
BSContainerPIInfo type 7-60
BSContainerPIInit type 7-74
BSContainerPlugInRef type 7-31
BSContainerPolicyOpsPtr type 7-64
BSContainerPolicyOps type 7-64
BSContainerPropertyInstance type 7-36
BSContainerPtr type 7-50
BSContainerRef type 7-30
BSCPIBackgroundTask type 7-77
BSCPIConfidenceLevel type 7-54
BSCPINotifyFamilyContainerChangedState

function 7-177
BSCPIRequestContainerStateChange

function 7-178
BSCPIStartBackgroundTask function 7-176
BSErrorListPtr type 7-57
BSErrorList type 7-56
BSFormatIndex type 7-38
BSGetMappingPIPrivateData function 7-166
BSGetPartitioningPIPrivateData

function 7-173

BSIOErrors type 7-56
BSIORequestBlockPtr type 7-51
BSIOStatus type 7-55
BSMappingIOCompletion type 7-67
BSMappingPIAddComponent type 7-68
BSMappingPICleanup type 7-66
BSMappingPIExamine type 7-65
BSMappingPIFlush function 7-186
BSMappingPIFlush type 7-68
BSMappingPIFormatMedia type 7-69
BSMappingPIGetInfo type 7-69
BSMappingPIGoToState type 7-69
BSMappingPIInit type 7-66
BSMappingPIIO type 7-67
BSMappingPlugInRef type 7-31
BSMPIBackgroundTask type 7-70
BSMPIConfidenceLevel type 7-53
BSMPINotifyFamilyStoreChangedState

function 7-168
BSMPIRequestStoreStateChange function 7-169
BSMPIStartBackgroundTask function 7-165
BSPartitionDescriptorPtr type 7-48
BSPartitionDescriptor type 7-48
BSPartitioningPICleanup type 7-71
BSPartitioningPIExamine type 7-70
BSPartitioningPIGetEntry type 7-73
BSPartitioningPIGetInfo type 7-72
BSPartitioningPIInitializeMap type 7-72
BSPartitioningPIInit type 7-71
BSPartitioningPISetEntry type 7-73
BSPartitioningPlugInRef type 7-31
BSSetMappingPIPrivateData function 7-167
BSSetPartitioningPIPrivateData

function 7-174
BSStoreComponentPtr type 7-40
BSStoreComponent type 7-40
BSStoreConnAssociateMappingPlugin

function 7-116
BSStoreConnAssociatePartitioningPlugin

function 7-117
BSStoreConnClose function 7-80
BSStoreConnDeleteAndClose function 7-115
BSStoreConnFlush function 7-98
BSStoreConnFormat function 7-125
BSStoreConnGetComponents function 7-124

I N D E X

IN-3
Draft. Apple Computer, Inc. 4/18/96

BSStoreConnGetInfo function 7-123
BSStoreConnGetPartitionInfo function 7-119
BSStoreConnGoToAccessibilityState

function 7-99
BSStoreConnID type 7-29
BSStoreConnMapDevice function 7-122
BSStoreConnMapPartition function 7-120
BSStoreConnPublish function 7-126
BSStoreConnReadAsync function 7-88
BSStoreConnRead function 7-86
BSStoreConnReadSGAsync function 7-91
BSStoreConnReadSG function 7-89
BSStoreConnSetPartitionInfo function 7-118
BSStoreConnUnpublish function 7-127
BSStoreConnWriteAsync function 7-93
BSStoreConnWrite function 7-92
BSStoreConnWriteSGAsync function 7-96
BSStoreConnWriteSG function 7-95
BSStoreCreate function 7-114
BSStoreFindByID function 7-112
BSStoreFlush function 7-164
BSStoreFormatInfo type 7-38
BSStoreFormatType type 7-37
BSStoreGetAccessibilityState function 7-158
BSStoreGetComponent function 7-171
BSStoreGetDeviceData function 7-100
BSStoreGetMPIInfo function 7-159
BSStoreGetNumComponents function 7-170
BSStoreGetPPIConnection function 7-174
BSStoreGetPPIInfo function 7-160
BSStoreGetProperty function 7-111
BSStoreGetPropertySize function 7-110
BSStoreGetSelector type 7-33
BSStoreID type 7-28
BSStoreInfoPtr type 7-45
BSStoreInfo type 7-44
BSStoreIOIteratorData type 7-34
BSStoreIteratorCreate function 7-101
BSStoreIteratorDispose function 7-102
BSStoreIteratorEnter function 7-103
BSStoreIteratorExit function 7-104
BSStoreIteratorID type 7-34
BSStoreIteratorNextChild function 7-107
BSStoreIteratorNextParent function 7-109

BSStoreIteratorRestartChildren
function 7-105

BSStoreIteratorRestartParent function 7-106
BSStoreMappingOpsPtr type 7-62
BSStoreMappingOps type 7-62
BSStoreMPIComponent type 7-57
BSStoreMPIInfoPtr type 7-58
BSStoreMPIInfo type 7-58
BSStoreOpen function 7-78
BSStoreOpenOptions type 7-42
BSStorePartitioningOpsPtr type 7-63
BSStorePartitioningOps type 7-63
BSStorePPIInfoPtr type 7-60
BSStorePPIInfo type 7-60
BSStorePropertyInstance type 7-35
BSStoreRef type 7-30
BSStoreRW function 7-161
BSStoreSetNumPartitions function 7-172
BSTrackOtherFamilyRequest function 7-162

D

DefaultBridgeDisabler function 5-70
DefaultBridgeDispatcher function 5-71
DefaultBridgeEnabler function 5-69
DefaultBridgeVariables type 5-11
DeviceManagerGetDeviceData function 8-11
DoDeviceManagerIO function 8-12
DriverDescriptionPtr type 2-10
DriverDescription type 2-10
DriverDescVersion type 2-11
DriverOSRuntimePtr type 2-13
DriverOSRuntime type 2-13
DriverOSServicePtr type 2-15
DriverOSService type 2-15
DriverServiceInfoPtr type 2-15
DriverServiceInfo type 2-15
DriverTypePtr type 2-12
DriverType type 2-12

I N D E X

IN-4
Draft. Apple Computer, Inc. 4/18/96

E

EndianSwap16Bit function 5-22
EndianSwap32Bit function 5-22

I

IOCommonInfo type 1-36
IODeviceRef type 1-36
IteratorDescVersion type 1-36

K

k3DTrackballDeviceClass constant 4-17
kAbsoluteData constant 4-13
kAbsoluteOrRelativeData constant 4-13
kADBPluginCurrentVersion constant 3-13
kAnyDeviceClass constant 4-16
kBlockStorageBootDevice constant 7-36
kBlockStorageContainerParent constant 7-37
kBlockStorageContainerPlugIn constant 7-37
kBlockStorageContainerType constant 7-37
kBlockStorageEjectable constant 7-36, 7-37
kBlockStorageMappingPlugIn constant 7-36
kBlockStoragePartitioningPlugIn

constant 7-36
kBlockStorageStoreContainer constant 7-36
kBlockStorageStoreDevice constant 7-36
kBlockStorageStoreID constant 7-36
kBlockStorageStoreParent constant 7-36
kBlockStorageStoreReadBlockSize

constant 7-36
kBlockStorageStoreSize constant 7-36
kBlockStorageStoreType constant 7-36
kBlockStorageStoreWriteBlockSize

constant 7-36
kBlockStorageWritable constant 7-36
kBSBlockListSeekBlockAbsolute constant 7-53
kBSBlockListSeekBlockRelative constant 7-53
kBSBlockListSeekByteAbsolute constant 7-52
kBSBlockListSeekByteRelative constant 7-52

kBSBlockListSeekExtentAbsolute
constant 7-52, 7-53

kBSContainerExclusiveCntrl constant 7-44
kBSCPIDeviceMfrRecognized constant 7-55
kBSCPIDeviceModelRecognized constant 7-55
kBSCPIDeviceNotSupported constant 7-55
kBSCPIDeviceTypeRecognized constant 7-55
kBSExternalDeviceComponent constant 7-40
kBSFormatATA constant 7-37
kBSFormatFloppyGCR constant 7-37
kBSFormatFloppyMFM constant 7-37
kBSFormatSCSI constant 7-37
kBSIOCompleted constant 7-55
kBSIOContinuing constant 7-56
kBSIOFailed constant 7-56
kBSIONotStarted constant 7-56
kBSMaxFormats constant 7-39
kBSMPIDeviceMediaRecognized constant 7-54
kBSMPIDeviceMfrRecognized constant 7-54
kBSMPIDeviceModelRecognized constant 7-54
kBSMPIDeviceNotSupported constant 7-54
kBSMPIDeviceTypeRecognized constant 7-54
kBSNotFormatable constant 7-38
kBSOffline constant 7-42
kBSOnline constant 7-42
kBSOutOfDrive constant 7-42
kBSPlugInInterfaceVersion constant 7-61
kBSPowerSave constant 7-42
kBSRead constant 7-50
kBSStoreComponent constant 7-40
kBSStoreControl constant 7-43
kBSStoreExclusiveCntrl constant 7-43
kBSStoreExclusiveIO constant 7-43
kBSStoreGetAllStores constant 7-33
kBSStoreGetLeafStores constant 7-33
kBSStoreGetPrimaryStores constant 7-33
kBSStoreRead constant 7-43
kBSStoreResizeOK constant 7-43
kBSStoreWrite constant 7-43
kBSWrite constant 7-50
kCoplandPTPluginVersion constant 4-22
kDriverDescriptionSignature constant 2-11
kDriverIsConcurrent constant 2-14
kDriverIsForVirtualDevice constant 2-14
kDriverIsLoadedAtBoot constant 2-14

I N D E X

IN-5
Draft. Apple Computer, Inc. 4/18/96

kDriverIsLoadedUponDiscovery constant 2-13
kDriverIsOpenedUponLoad constant 2-14
kDriverIsUnderExpertControl constant 2-14
kDriverQueuesIOPB constant 2-14
kInitialDriverDescriptor constant 2-12
kJoystickDeviceClass constant 4-16
kMinPTDataSize constant 4-17
kMouseDeviceClass constant 4-16
kNdrvTypeIsBlockStorage constant 2-18
kNdrvTypeIsBusBridge constant 2-18
kNdrvTypeIsGeneric constant 2-18
kNdrvTypeIsNetworking constant 2-18
kNdrvTypeIsSerial constant 2-18
kNdrvTypeIsSound constant 2-18
kNdrvTypeIsVideo constant 2-18
kPCI32BitMemorySpace constant 5-6
kPCI64BitMemorySpace constant 5-7
kPCIaccessType0 constant 5-21
kPCIaccessType1 constant 5-21
kPCIAddressTypeCodeMask constant 5-6
kPCIAliasedSpace constant 5-6
kPCIconfigAddrAccessTypeMask constant 5-18
kPCIconfigAddrBusNumberMask constant 5-18
kPCIconfigAddrDeviceNumberMask

constant 5-18
kPCIconfigAddrFunctionNumberMask

constant 5-18
kPCIconfigAddrRegisterNumberMask

constant 5-18
kPCIconfigAddrReservedMask constant 5-18
kPCIconfigAddrReservedValue constant 5-18
kPCIConfigSpace constant 5-6
kPCIDeviceNumberMask constant 5-7
kPCIFunctionNumberMask constant 5-7
kPCIIOSpace constant 5-6
kPCIPhysicalHighAliasedMask constant 5-19
kPCIPhysicalHighBusMask constant 5-19
kPCIPhysicalHighDeviceMask constant 5-19
kPCIPhysicalHighFunctionMask constant 5-20
kPCIPhysicalHighPrefetchableMask

constant 5-19
kPCIPhysicalHighRegisterMask constant 5-20
kPCIPhysicalHighRelocatableMask

constant 5-19
kPCIPhysicalHighSpaceCodeMask constant 5-19

kPCIPluginVersion1000 constant 5-12
kPCIPrefetchableSpace constant 5-6
kPCIregisterByteMask constant 5-18
kPCIregisterNotByteMask constant 5-18
kPCIregisterWordMask constant 5-18
kPCIRelocatableSpace constant 5-6
kRelativeData constant 4-13
kServiceCategoryADB constant 2-17
kServiceCategoryBlockStorage constant 2-16
kServiceCategoryDFM constant 2-17
kServiceCategoryDisplay constant 2-16
kServiceCategoryFileManager constant 2-17
kServiceCategoryGeneric constant 2-17
kServiceCategoryIDE constant 2-17
kServiceCategoryKeyboard constant 2-17
kServiceCategoryMotherBoard constant 2-17
kServiceCategoryNdrvDriver constant 2-17
kServiceCategoryNVRAM constant 2-17
kServiceCategoryOpenTransport constant 2-16
kServiceCategoryPCI constant 2-17
kServiceCategoryPCMCIA constant 2-17
kServiceCategoryPointing constant 2-17, 4-23
kServiceCategoryPowerMgt constant 2-17
kServiceCategoryRTC constant 2-17
kServiceCategoryScsiSIM constant 2-17
kServiceCategorySound constant 2-17
kTabletDeviceClass constant 4-16
kTheDescriptionSignature constant 2-11
kTrackballDeviceClass constant 4-16
kTrackpadDeviceClass constant 4-17
kVersionOneDriverDescriptor constant 2-12

M

MyADBPluginAutopollDisableProc
function 3-47

MyADBPluginAutopollEnableProc function 3-47
MyADBPluginFlushProc function 3-48
MyADBPluginGetAutopollDelayPRoc

function 3-44
MyADBPluginGetAutopollDelayProc

function 3-44

I N D E X

IN-6
Draft. Apple Computer, Inc. 4/18/96

MyADBPluginGetAutopollListProc
function 3-46

MyADBPluginGetRegisterProc function 3-50
MyADBPluginInitProc function 3-42
MyADBPluginResetBus function 3-48
MyADBPluginSetAutopollDelayProc

function 3-43
MyADBPluginSetAutopollList function 3-45
MyADBPluginSetKeyboardList function 3-51
MyADBPluginSetRegisterProc function 3-49
MyADBPluginValidateHardwareProc

function 3-41
MyADBPluginValidateHardwarePtr

function 3-41
MyBSContainerPIAddContainerFunc

function 7-203
MyBSContainerPIBackgroundTaskFunc

function 7-203, 7-204
MyBSContainerPICleanupFunc function 7-200
MyBSContainerPIExamineFunc function 7-198
MyBSContainerPIGetInfoFunc function 7-202
MyBSContainerPIGoToStateFunc function 7-201
MyBSContainerPIInitFunc function 7-199
MyBSMappingIOCompletionFunc function 7-185
MyBSMappingPIAddComponentFunc

function 7-187
MyBSMappingPICleanupFunc function 7-182
MyBSMappingPIExamineFunc function 7-179
MyBSMappingPIFormatMediaFunc function 7-189
MyBSMappingPIGetInfoFunc function 7-190
MyBSMappingPIGoToStateFunc function 7-188
MyBSMappingPIInitFunc function 7-181
MyBSMappingPIIOFunc function 7-183
MyBSMPIBackgroundTaskFunc function 7-191
MyBSPartitioningPICleanupFunc

function 7-193
MyBSPartitioningPIExamineFunc

function 7-192
MyBSPartitioningPIGetEntryFunc

function 7-196
MyBSPartitioningPIGetInfoFunc

function 7-195
MyBSPartitioningPIInitFunc function 7-193
MyBSPartitioningPIInitializeMapFunc

function 7-194

MyBSPartitioningPISetEntryFunc
function 7-197

MyPTPluginGetDeviceModesPtr function 4-62,
4-63

MyPTPluginGetNextDataPtr function 4-61
MyPTPluginInitializePtr function 4-57
MyPTPluginStartIOPtr function 4-59
MyPTPluginStopIOPtr function 4-60
MyPTPluginTerminatePtr function 4-58
MyPTPluginValidateHardwarePtr function 4-55

P

PCIAddressSpaceFlags type 5-6
PCIAssignedAddress type 5-5
PCIBridgeDescriptor type 5-10
PCIBridgePluginFinalize function 5-72
PCIBridgePluginInitialize function 5-68
PCIBusNumberGetDeviceData function 5-44
PCIBusNumber type 5-7
PCIBusRangeProperty type 5-13
PCIConfigAddressGetDeviceData function 5-46
PCIConfigAddress type 5-8
PCIConfigReadByte function 5-23
PCIConfigReadLong function 5-26
PCIConfigReadWord function 5-25
PCIConfigWriteByte function 5-27
PCIConfigWriteLong function 5-29
PCIConfigWriteWord function 5-28
PCIControlDescriptor type 5-17
PCIDeviceFunction type 5-7
PCIDeviceTableEntryHeader type 5-14
PCIDeviceTableEntry type 5-15
PCIDomainGetDeviceData function 5-43
PCIGetDeviceData function 5-41
PCIIntAckReadByte function 5-36
PCIIntAckReadLong function 5-38
PCIIntAckReadWord function 5-37
PCIIOAddress type 5-8
PCIIOIteratorData type 5-9
PCIIOReadByte function 5-30
PCIIOReadLong function 5-32
PCIIOReadWord function 5-31

I N D E X

IN-7
Draft. Apple Computer, Inc. 4/18/96

PCIIOWriteByte function 5-33
PCIIOWriteLong function 5-35
PCIIOWriteWord function 5-34
PCINameGetDeviceData function 5-42
PCIPluginConfigReadByte function 5-48
PCIPluginConfigReadLong function 5-50
PCIPluginConfigReadWord function 5-49
PCIPluginConfigWriteByte function 5-52
PCIPluginConfigWriteLong function 5-54
PCIPluginConfigWriteWord function 5-53
PCIPluginFinalize function 5-67
PCIPluginGetIOBase function 5-66
PCIPluginHeader type 5-9
PCIPluginInitDeviceEntry function 5-65
PCIPluginInitialize function 5-47
PCIPluginIntAckReadByte function 5-61
PCIPluginIntAckReadLong function 5-63
PCIPluginIntAckReadWord function 5-62
PCIPluginIOReadByte function 5-55
PCIPluginIOReadLong function 5-57
PCIPluginIOReadWord function 5-56
PCIPluginIOWriteByte function 5-58
PCIPluginIOWriteLong function 5-60
PCIPluginIOWriteWord function 5-59
PCIPluginSpecialCycleWriteLong

function 5-64
PCIRegisterNumber type 5-8
PCIRegProperty type 5-12
PCISpecialCycleBroadcastLong function 5-40
PCISpecialCycleWriteLong function 5-39
PTButtonStatePtr type 4-11
PTButtonState type 4-11
PTDataPtr type 4-10
PTDataRelation type 4-13
PTData type 4-10
PTDeviceCapabilitiesPtr type 4-14
PTDeviceCapabilities type 4-14
PTDeviceClass type 4-15
PTDeviceDispatchTablePtr type 4-20
PTDeviceDispatchTable type 4-20
PTDeviceIdentifierPtr type 4-18
PTDeviceIdentifier type 4-18
PTDeviceModesPtr type 4-12
PTDeviceModes type 4-12
PTFlushTrackerBuffer function 4-42

PTGetButtons function 4-49
PTGetDeviceCapabilities function 4-29
PTGetDeviceIdentification function 4-31
PTGetDeviceModes function 4-36
PTGetNextDevice function 4-28
PTGetTrackerDataByOffset function 4-52
PTGetTrackerData function 4-40
PTGetTrackerState function 4-43
PTMovePosition function 4-48
PTPinningRectListPtr type 4-19
PTPinningRectList type 4-19
PTPluginGetDeviceModesPtr type 4-26
PTPluginGetNextDataPtr type 4-26
PTPluginHeader type 4-21
PTPluginInitializePtr type 4-24
PTPluginStartIOPtr type 4-25
PTPluginStopIOPtr type 4-25
PTPluginTerminatePtr type 4-24
PTPluginValidateHardwarePtr type 4-24
PTPositionPtr type 4-10
PTPosition type 4-10
PtrDeviceDispatchTable type 4-20
PTRegisterNewTracker function 4-33
PTSetButtons function 4-50
PTSetDeviceModes function 4-35
PTSetPinningRects function 4-39
PTSetPosition function 4-47
PTSetTrackerDataByOffset function 4-53
PTTrackerRef type 4-9

R

RuntimeOptions type 2-13

S

ServiceCount type 2-15

I N D E X

IN-8
Draft. Apple Computer, Inc. 4/18/96

	Modular I/O
	Contents
	Figures, Tables, and Listings
	About the I/O Architecture
	Introduction
	I/O Families
	Family Client Programming Interface
	User-Mode and Supervisor-Mode Client Libraries
	Connection-Based Services

	Family Plug-in Programming Interface
	Family Servers
	I/O Path Communications
	Administrative Message Ports

	High-Level and Low-Level Families

	I/O Plug-ins
	Extending Client Programming Interfaces
	Sharing Code and Data Between Plug-ins

	Design Goals of the I/O Architecture
	Short-Term Design Goals
	Long-Term Design Goals

	I/O Support Services
	Driver and Family Matching
	Device Notification Service
	Conglomerate Libraries for Plug-ins
	Booting Services
	Power Management

	Activation Models
	Single-Task Model
	Task-per-Plug-in Model
	Task-per-Request Model
	Family Programming Issues

	Name Registry
	Interactions With Experts, DNS, and DFM
	I/O Interface

	Compatibility—Backward and Forward
	If You Develop Device Drivers
	Separation of Application and Device Driver Interf...
	Common Packaging of Loadable Software

	If You Develop Applications
	Device Manager Compatibility

	Glossary

	Driver and Family Matching
	About the Driver and Family Matching Service
	Device Categories
	Simple Device
	Multiple-Emulation Devices
	Multiple-Plug-in Devices
	Multifunction Cards
	Virtual Devices

	Use of the Name Registry
	Loading Plug-Ins and Family Experts
	Matching Mechanisms
	Standard Matching
	Generic Matching

	Driver and Family Matching Constants and Data Type...

	ADB Family Reference
	About the ADB Family
	ADB Client Constants and Data Types
	ADB Plug-in-Defined Data Types
	ADB Client Functions
	Functions Exported by ADB Family
	ADB Plug-in Defined Functions
	ADB Result Codes
	Glossary

	Pointing Family Reference
	About the Pointing Family
	Constants and Data Types
	Pointing Family Plug-In Data Types
	Pointing Family Client Functions
	Pointing Family Plug-In-Defined Functions
	Pointing Family Result Codes
	Glossary

	PCI Family Reference
	Constants and Data Types
	Byte Swapping Routines
	PCI Kernel Cycle Routines
	PCI I/O Iterator Routines
	PCI Plugin Interface Routines
	PCI Bridge Plug-in Routines

	About the Nubus Family
	NuBus Expert
	Discovering NuBus Cards
	Establishing Logical Addresses
	Initializing Its Interrupt Structure
	Advertising Device Information to NuBus Drivers
	“assigned-addresses” Property
	“reg” Property
	“name” Property
	“AAPL,address” Property
	“AAPL,slot” Property
	“driver-ist” Property
	“driver-description” Property

	Advertising NuBus Devices to High-Level Families

	NuBus Server
	NuBus Plug-in
	NuBus Library
	Slot Manager Library

	Block Storage Family Reference
	About The Block Storage Family
	Stores
	Partitions
	Containers
	Connections
	Plug-ins
	Mapping Plug-ins
	Partitioning Plug-ins
	Container Plug-ins

	Plug-in Discovery and Loading
	Block Storage Family Activation Models
	Activation Model For Mapping Plug-ins
	Activation Model For Partitioning and Container Pl...

	Block Storage Client Constants and Data Types
	Block Storage Plug-in Constants and Data Types
	Block Storage Client Functions
	Block Storage Plug-in Functions
	Block Storage Result Codes
	Glossary

	Device Manager Family
	About the Device Manager Family
	Compatibility with 68K Drivers
	Compatibility with Native Drivers

	Using the Device Manager Family
	Locating a Generic Plug-In
	Opening a Generic Plug-In
	Closing a Generic Plug-In

	Device Manager Reference
	Data Types
	Command Codes
	Command Kinds
	Device Manager Family Iterator Structure
	I/O Command Contents Structure

	Functions

	Booting Services
	About Mac�OS�8 Booting Services
	Booting Sequence
	Hardware Self-Test
	ROMs and Boot Blocks
	Open Firmware
	Secondary Loader
	Tertiary Loader
	Invoking the Microkernel

	Booting Services Software
	Boot Blocks
	Disk-Based Open Firmware
	Embedded HFS Package
	Embedded Resource Manager
	Self PEF Loader
	Boot-time Code Fragment Manager
	Device Tree Maintenance Facility
	Driver and Family Matching Service

	Index

