

K

WWDC Release

May 1996
© Apple Computer, Inc. 1994 - 1996

K

I N S I D E M A C I N T O S H

Microkernel and Core System
Services

Draft. Confidential.

 Apple Computer, Inc. 4/22/96

K

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Macintosh,
and QuickTime are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Mac, NuBus, and QuickDraw are
trademarks of Apple Computer, Inc.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and

may be registered in certain
jurisdictions.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Draft.

 Apple Computer, Inc. 4/19/96

Contents

Chapter 1

About Mac OS 8

1-1

Mac OS 8 Architecture 1-3
Tasks, Processes, and Multithreading 1-6
Program Scheduling and Preemption 1-9

Preemptive Multitasking 1-9
Cooperative Scheduling 1-10

Applications and Server Programs 1-11
Virtual Memory 1-12
Memory Organization and Protection 1-15

Multiple Address Spaces 1-15
Memory Efficiency 1-16
Memory Areas 1-17
Guard Pages 1-19

Synchronization of Tasks and Coordination of Processes 1-20
Synchronizing Access to Code or Data 1-21
Coordinating Tasks and Processes 1-22

Notification Services 1-24
Microkernel Notification and Asynchronous Execution 1-24
System Notification Service 1-25
User Notification Services 1-26

IPC Services 1-26
Microkernel Messages 1-27
Apple Events 1-28

Glossary 1-29

Chapter 2

Tasks Reference

2-1

Tasks Constants and Data Types 2-3
Task Priority 2-3
Set Task Priority Options 2-8
Task Relationship 2-11
Task Options 2-12

iv

Draft.

 Apple Computer, Inc. 4/19/96

Task Name 2-13
Task ID 2-13
The Task Information Structure 2-14
Task Main Entry Point 2-16
Task Storage Index 2-17
Task Storage Value 2-17

Tasks Functions 2-18
Creating and Terminating Tasks 2-18
Getting Information About Tasks 2-26
Changing the Priority of a Task 2-31
Working With Per-Task Static Data 2-32

Tasks Result Codes 2-38

Chapter 3

Dynamic Storage Allocation Service Reference

3-1

Constants and Data Types 3-3
Memory Allocators 3-3

Functions 3-4
Allocating Fixed-Size Pointers 3-4
Allocating Variable-Sized Pointers 3-8
Allocating Handles 3-14

Glossary 3-20

Chapter 4

Virtual Memory Services Reference

4-1

Memory Management Constants and Data Types 4-3
Addresses 4-4
Backing Object Types 4-4
Address Space Management 4-5

The Address Space Information Structure 4-5
Area Management 4-6

Memory Access Level Enumeration 4-6
Area Usage Enumeration 4-7
Area Options Enumeration 4-7
The Area Information Structure 4-9

Page Management 4-11

v

Draft.

 Apple Computer, Inc. 4/19/96

Page State Information Enumeration 4-11
Page Control Operation Enumeration 4-12
The Page Information Structure 4-14

Memory Sharing 4-15
Interspace Copy Options Enumeration 4-15
Reservation Options Enumeration 4-15
The Reservation Information Structure 4-16

Processor Cache Mode Enumeration 4-17
Memory Preparation For I/O 4-18

I/O Preparation Options Enumeration 4-18
I/O Checkpoint Options Enumeration 4-20
The I/O Preparation Table Structure 4-21
The Address Range Structure 4-26
The Multiple Address Range Structure 4-26

Memory Management Functions 4-27
Managing Address Spaces 4-27
Managing Areas 4-33
Obtaining Information About An Area 4-41
Working With Backing Storage 4-45
Managing Pages 4-48
Sharing Memory 4-51
Working With Processor Caches 4-62
Preparing For I/O 4-66
Glossary 4-70

Chapter 5

Server Manager

5-1

Server Manager Constants and Data Types 5-3
Server Main Entry Point 5-3
Server ID 5-4

Server Manager Functions 5-4
Communicating With Servers 5-4
Communicating With Clients 5-10

Server Manager Resources 5-12
The Server Resource 5-12

Server Manager Result Codes 5-15

vi

Draft.

 Apple Computer, Inc. 4/19/96

Chapter 6

Microkernel Queues Reference

6-1

Microkernel Queues Constants and Data Types 6-3
Microkernel Queue Options 6-3
Microkernel Queue ID 6-3

Microkernel Queues Functions 6-4
Creating and Deleting Microkernel Queues 6-4
Working With Microkernel Queues 6-7
Microkernel Queues And Secondary Interrupt Handlers 6-13

Microkernel Queues Result Codes 6-15

Chapter 7

Interrupt Services Reference

7-1

Interrupt Services Reference 7-3
Functions 7-3

Controlling Software Interrupts 7-3
Creating a Software Interrupt 7-5
Sending Software Interrupts 7-8
Querying the Level of Execution 7-9
Deleting a Software Interrupt 7-11
Calling a Secondary Interrupt Handler 7-12
Adjusting the Limit of Secondary Interrupt Handlers 7-15

User-Defined Functions 7-17
Software Interrupt Handlers 7-17
Secondary Interrupt Handler 7-19
Hardware Interrupt Handlers 7-21

Chapter 8

Exception Handling

8-1

Exception Handling Reference 8-3
Constants and Data Types 8-3

Exception Kind Enumeration 8-3
Memory Reference Enumeration 8-6
Exception Information Structure 8-6
Machine Information Structure 8-8
General Purpose Register Information Structure 8-9
Floating Point Information Structure 8-10

vii

Draft.

 Apple Computer, Inc. 4/19/96

Memory Exception Information Structure 8-11
Functions 8-12
User-Defined Routines 8-13

Chapter 9

Messaging Service Reference

9-1

Messaging Service Reference 9-3
Constants and Data Types 9-4

Messaging Service Identifiers 9-4
Message Types 9-4
Message Definition 9-6
Message Information 9-8
Message Object Options 9-10
Port Information and Options 9-11
Send Options 9-14
Receive Options 9-18
Accept Options 9-18
Accept Function 9-19

Messaging Service Functions 9-19
Obtaining Information About Messages 9-19
Creating and Deleting Message Objects 9-21
Locking and Unlocking Message Objects 9-23
Getting and Setting Message Object Information 9-26
Creating and Deleting Message Ports 9-30
Obtaining Information about Ports 9-32
Sending a Message 9-34
Receiving a Message 9-40
Replying to a Message 9-47
Application-Defined Function 9-52

Chapter 10

Timing Services Reference

10-1

Constants and Data Types 10-3
Duration Enumeration 10-3
The Absolute Time Data Type 10-4
The Nanoseconds Data Type 10-5

viii

Draft.

 Apple Computer, Inc. 4/19/96

The Duration Data Type 10-6
Timer ID 10-6

Timing Functions 10-7
Obtaining the Current Absolute Time 10-7
Synchronous Timers 10-10
Asynchronous and Interrupt Timers 10-14
Getting Time Base Information 10-23
Timing Conversion Functions 10-25
AbsoluteTime Arithmetic Functions 10-33
Timing Delta Functions 10-40

Result Codes 10-42
Glossary 10-43

Chapter 11

Debugger Services

11-1

Debugger Services Reference 11-3
Constants and Data Types 11-3

Kernel State Enumeration 11-3
Data Breakpoint Option Enumeration 11-5
Exception Structure 11-6
Task State Structure 11-7
Kernel State Structure 11-8
Data Breakpoint Information Structure 11-8

Functions 11-10
Registering and Unregistering a Debugger 11-10
Handling Exceptions 11-13
Controlling Task Scheduling 11-16
Reading and Modifying Task Memory 11-20
Supporting Data Breakpoints 11-26

Chapter 12

The Patch Manager

12-1

About Patching and the Patch Manager 12-4
Programmatic and Data-Driven Patching 12-5
Patch Scope 12-6
Data-Driven Patching 12-7

ix

Draft.

 Apple Computer, Inc. 4/19/96

The Patch Description Fragment 12-9
Applying Several Patches to the Same Routine 12-10
The Structure of Patch Code 12-12
Order Requirements 12-13
Limitations on Patching 12-14

Compatibility 12-15
Using the Patch Manager 12-16

Creating a Patch 12-16
The Patch Description Header 12-17
The Patch Description Structure 12-18
Specifying Order Requirements 12-22

Creating a Local Patch 12-25
Creating a Global-Effect Patch 12-25
Creating a Patchable Shared Library 12-25
Obtaining Information About Patches 12-26
Using Programmatic Patching 12-27

Patch Manager Reference 12-28
Constants and Data Types 12-28

Option Bits Mask Enumeration 12-28
Wildcard Enumeration 12-29
Ordered Item Enumeration 12-30
Patch Header Flags Enumeration 12-31
Patch Header Tag Enumeration 12-32
Patch Header Structure 12-32
Patch Description Structure 12-33
Ordered Item Name Structure 12-34
Order Requirements Structure 12-35
Patch Information Structure 12-36
Patch Chain Information Structure 12-36

Functions 12-37
Enabling and Disabling Patches 12-37
Obtaining Information About Patch Chains 12-39
Determining Whether a Routine is a Patch 12-42
Obtaining Information About a Patch 12-45

Glossary 12-48

x

Draft.

 Apple Computer, Inc. 4/19/96

C H A P T E R 1

Contents

1-1

Draft.

 Apple Computer, Inc. 4/18/96

Contents

Figure 1-0
Listing 1-0
Table 1-0

1 About Mac OS 8

Mac OS 8 Architecture 1-3
Tasks, Processes, and Multithreading 1-6
Program Scheduling and Preemption 1-9

Preemptive Multitasking 1-9
Cooperative Scheduling 1-10

Applications and Server Programs 1-11
Virtual Memory 1-12
Memory Organization and Protection 1-15

Multiple Address Spaces 1-15
Memory Areas 1-17
Guard Pages 1-19

Synchronization of Tasks and Coordination of Processes 1-20
Synchronizing Access to Code or Data 1-21
Coordinating Tasks and Processes 1-22

Notification Services 1-24
Microkernel Notification and Asynchronous Execution 1-25
System Notification Service 1-25
User Notification Services 1-26

IPC Services 1-26
Microkernel Messages 1-27
Apple Events 1-28

Glossary 1-30

C H A P T E R 1

1-2

Contents

Draft.

 Apple Computer, Inc. 4/18/96

C H A P T E R 1

Mac OS 8 Architecture

1-3

Draft.

 Apple Computer, Inc. 4/18/96

About

Mac OS 8

1

This chapter introduces Mac OS 8 with an emphasis on the microkernel and
core operating system services. This chapter is intended primarily for
experienced programmers who are interested in writing programs to run under
Mac OS 8, but will also be of interest to anyone who wants an architectural
overview of Mac OS 8. To read this chapter you should understand what a
computer operating system is and be familiar with fundamental computer-
related concepts such as memory and I/O.

This chapter starts with a high-level architectural overview of Mac OS 8;
defines and discusses several key concepts such as tasks, processes, program
scheduling, and memory protection; and introduces each of the components of
the microkernel and core system services. The remaining chapters in this part
describe the structure of a program in Mac OS 8 and introduce the chapters in
the rest of the book.

Draft Release Note

The information in this chapter is preliminary and subject
to change. Not all of the chapters planned for this book are
included in this release.

◆

Mac OS 8 Architecture 1

Mac OS 8 is a software package developed by Apple Computer, Inc. Mac OS 8
includes a variety of low-level services to control hardware and to execute
software, many services that simplify your job of providing the graphical
interface and ease of use that users expect from a Mac-compatible computer,
and user interface components such as the Finder.

This book describes those portions of Mac OS 8 that constitute the

microkernel

,
plus some low-level operating system services referred to here as the

core
system services

. An operating system

kernel

 is the heart of the operating system.
Typically, a kernel manages all or most of the operating system services
necessary to control the computer. In a UNIX

®

-based operating system, for
example, the kernel supervises task and file management, device input and
output, and memory allocation. A

microkernel

, by contrast, is a kernel that
operates only a small but critical subset of the computer’s operating system
services.

C H A P T E R 1

About Mac OS 8

1-4

Mac OS 8 Architecture

Draft.

 Apple Computer, Inc. 4/18/96

An operating system architecture based on a microkernel is highly modular.
The microkernel handles all or most of the operations that must be customized
for a particular microprocessor or hardware architecture. All other operating
system services, including fundamental services such as I/O and graphics, are
implemented as modules outside the microkernel. In a microkernel-based
operating system, it should be possible to modify or replace any of these
modules without affecting the others. For example, Apple could implement a
new I/O subsystem without affecting graphics or file handling.

The Mac OS 8 microkernel provides basic task and process control and
management of operating system resources associated with tasks and
processes, such as memory. It also includes basic services such as
synchronization, timing, and low-level messaging. It does not include other
services—such as file management, I/O management, and support for the
Mac OS human interface—that are part of Mac OS 8.

The elements of the Mac OS 8 microkernel occupy memory protected from
most other executing code. Because the microkernel routines operate very
efficiently, calling the microkernel directly is usually the fastest way to perform
an operation. However, the microkernel interface includes only very basic
operations. Higher-level operating system services are generally more
powerful and easier to use. For example, whereas the Microkernel Messaging
Service allows you to send data from one task to another, if you use that service
you must establish your own protocols for exchanging addresses and
interpreting the data. Apple events, by contrast, have established protocols for
addressing and for data interpretation, can send messages over a network, and
are used extensively by other system services. Apple events in Mac OS 8 are
much faster than they were in previous versions of Mac OS. You should use
microkernel services only if you have a specific need that can’t be fulfilled by
higher-level system services.

This book documents the services provided by the microkernel plus several
other low-level operating system services referred to, for the sake of
convenience, as the

core system services

. The chapter “Introduction to
Mac OS 8 Microkernel and Core System Services” (To be provided in a later
release)contains a full list of services offered by the microkernel and the core
system services.

Figure 1-1 shows the major services offered by Mac OS 8 for programmers. In
general, the services at any given level in the figure are, or can be, clients of the
services below them in the figure. In many cases, it is also possible for a given
service or program to skip intervening layers and call low-level services
directly. For example, an application can call the interprocess communications

C H A P T E R 1

About Mac OS 8

Mac OS 8 Architecture

1-5

Draft.

 Apple Computer, Inc. 4/18/96

(IPC) services near the top of the figure to communicate with other entities in
the system, or it can call the messaging service provided by the microkernel.

Constituents of Mac OS 8 include the following:

■

The microkernel, which provides fundamental services that are used directly
or indirectly by all other parts of Mac OS 8. Examples include creation and
deletion of tasks and processes, task scheduling, low-level memory
management, and low-level messaging services.

■

The core system services, which are clients of the microkernel and which
provide a variety of services for programs and for higher levels of the
Mac OS. Core system services include, among others, the Dynamic Memory
Allocation Service, the Code Fragment Manager, the Process Manager,
System Notification Service, the Mixed Mode Manager, the Cooperative
Thread Manager, the Patch Manager, and a variety of utilities.

■

The I/O subsystem, which includes such constituents as the Device
Manager, the NuBus™ and PCI bus APIs, the SCSI Manager, and the
Display Manager. Also included in the I/O architecture, but treated as
separate topics in the

Inside Macintosh

 book suite, are the File System and the
Open Transport networking services.

■

The graphics subsystem, which includes QuickDraw, QuickDraw GX, and
QuickDraw 3D. All printing in Mac OS 8 uses QuickDraw GX, and all the
graphics subsystems in Mac OS 8 use a common base of code.

■

The multimedia services, including QuickTime and QuickTime VR.

■

The human interface toolbox, which includes system services used by
applications to implement the Mac OS user interface.

■

The text-handling services, which include the functions that applications can
use to display and manipulate text and other services to help you create
world-ready software. Mac OS 8 text-handling services are a client of the
graphics services.

■

The interprocess communication (IPC) services, which include Apple events
and AppleScript. These services are described in more detail in
“Synchronization of Tasks and Coordination of Processes” (page 1-20).

C H A P T E R 1

About Mac OS 8

1-6

Tasks, Processes, and Multithreading

Draft.

 Apple Computer, Inc. 4/18/96

Figure 1-1

Constituents of Mac OS 8

Tasks, Processes, and Multithreading 1

The Mac OS 8 microkernel includes functions to create and delete tasks and
processes. A

task

 is the basic unit of program execution in Mac OS 8. Every
task has its own stack and set of register values.

The actual code executed by a
task might be in memory or on disk. The code might be provided by the
program itself, or it might be part of a shared library used by the program. The
microkernel keeps track of the location of the code. The microkernel schedules

Microkernel

Core system services

I/O File management Networking

MultimediaGraphics

IPC Toolbox Text

C H A P T E R 1

About Mac OS 8

Tasks, Processes, and Multithreading

1-7

Draft.

 Apple Computer, Inc. 4/18/96

tasks, determining when one should stop execution and another begin. The
microkernel services include routines to create and terminate tasks, and to
assign an execution priority to a task. The execution priority is one of the
criteria the microkernel uses to determine which task should be executing.

A

process

 comprises one or more tasks and the memory and other operating
system resources allocated to those tasks. The microkernel uses processes to
track the resources required by tasks and to recover those resources when a
process terminates. Every process has at least one associated task and can have
several tasks. A given task can be associated with only one process, however.

When you write a program, you can write it to execute as one or more tasks.
When Mac OS 8 launches the program, the microkernel and Process Manager
prepare the code to run and associate it with a process. Mac OS 8 uses the
process to allocate, track, and deallocate the system resources needed to run the
program. When first prepared to run, a process has a single task, called the

main task.

 The main task can create other tasks, those tasks can also create
tasks, and so forth. All the tasks created in this way belong to the same process
as the main task.

You can also write a software product that executes as more than one process.
For example, you could write a software product that consists of two
programs: a newswatcher program that monitors a newswire service for
articles that contain specific keywords, and a newsreader program that can be
used to read an article. The newswatcher program might have no human
interface, and would execute as one or more tasks assigned to a single process.
When the newswatcher program found an appropriate article, it could send a
message to the news reader program. The newsreader program would provide
a user interface and could execute as one or more tasks assigned to their own
process. Thus, the newswatcher and newsreader programs could be launched
and run independently; at any given time, either or both programs could be
running on a given computer.

A program can follow a single path of execution through the code, or it can be
written so that more than one path of execution can be running at a time. Each
such path of execution is known as a

thread.

 For example, the newsreader
program could contain one thread to handle user interactions and another to
read a saved news article from disk. By running these threads concurrently,
Mac OS 8 increases the efficiency of the program. User interactions are
normally sporadic; whenever the user is not actually using a pointing device or
pressing keys, the program could be reading in data. The user perceives the
program as reading the data in the background without affecting the

C H A P T E R 1

About Mac OS 8

1-8

Tasks, Processes, and Multithreading

Draft.

 Apple Computer, Inc. 4/18/96

responsiveness of the program. A program that has more than one concurrent
thread is said to be

multithreaded.

In Mac OS 8, you can use any combination of three techniques to multithread
your software: you can create more than one task, you can use the Cooperative
Thread Manager to thread a single task, and you can write your software to
execute as more than one process.

The most efficient means of multithreading is often multitasking. In

multitasking,

 several tasks are in progress at the same time, in the sense that
they all have begun execution. Although (on a single-processor system) only
one task can be executing at a time, Mac OS 8 switches from one task to another
with such rapidity that the user has the impression that the tasks are executing
simultaneously. The microkernel keeps track of the state of the CPU, including
the location of the executing task’s variables, for each task. This information is
known as the task’s

context.

 The microkernel switches the context each time it
preempts one task and gives control to another.

In

cooperative multithreading,

 a single task is divided into more than one
thread of execution by calls to the Cooperative Thread Manager. The use of
cooperative multithreading is restricted to a certain type of task: the main task
of a cooperative program. Cooperative programs are discussed in “Cooperative
Scheduling” (page 1-10).

Writing your software as more than one program, so that each program is
executed as a separate process, is especially useful when the different parts of
your product do not always have to be available for execution at the same time.
In the newswatcher and newsreader example discussed earlier in this section,
for instance, the newswatcher program could run in the background whenever
the computer was turned on, even if the newsreader application had not been
prepared for execution. The newswatcher program could display a dialog box
whenever an article of interest came in, and the user could then start up the
newsreader application to read it.

C H A P T E R 1

About Mac OS 8

Program Scheduling and Preemption

1-9

Draft.

 Apple Computer, Inc. 4/18/96

Terminology note

Although the terms

thread

 and

multithreading

 are in wide
use throughout the computer industry to refer to paths of
execution in general, in Mac OS 8 and the

Inside Macintosh

suite of books these terms are normally used only to refer
to threads created through the Cooperative Thread
Manager. Furthermore, in Mac OS 8, the terms

process

,

task

,
and

thread

 imply a strict hierarchy: processes include tasks,
which can include threads. This usage might not conform
to the use of these terms in other operating systems or in
books other than

Inside Macintosh

.

◆

Program Scheduling and Preemption 1

The microkernel schedules all tasks within the system preemptively according
to their priority and eligibility to execute. If the program is an application—that
is, a program that has a human interface component—the Process Manager
schedules the main task cooperatively. This section discusses the concepts of
preemptive and cooperative scheduling.

Preemptive Multitasking 1

The Mac OS 8 microkernel schedules all tasks preemptively. In

preemptive
multitasking

, the microkernel can interrupt, or preempt, the execution of a task
at any time. Preemptive multitasking allows Mac OS 8 to maximize system
performance and responsiveness to the user. The microkernel can preempt a
running task at any time to allow another task to execute. For example, if a task
is reading in data from a disk and the user presses a key, the microkernel might
preempt the task that’s reading from disk and give control to the task that has
to respond to the user. To the user, the disk would appear to be read in the
background, without degrading the application’s responsiveness.

The exact algorithm used by the microkernel to determine which task should
execute is proprietary and subject to change. In general, however, if a low-
priority task is executing and another task of higher priority becomes eligible,
the microkernel preempts the executing task and passes control to the higher-
priority task. If there are two or more eligible tasks with similar priority, the
microkernel might give each task a specific amount of time (referred to as a

C H A P T E R 1

About Mac OS 8

1-10

Program Scheduling and Preemption

Draft.

 Apple Computer, Inc. 4/18/96

time slice) to execute. When the time slice expires, the microkernel preempts
the running task and passes control to another eligible task. The microkernel
also has special rules to handle tasks whose execution time should not be
restricted to a time slice, such as real-time tasks (for example, those used for
playing movies and animations) and some operating system tasks.

If a task is waiting for some event to occur, such as a keystroke from the user or
an interrupt from an I/O device, then the microkernel considers that task no
longer eligible for execution. The microkernel suspends that task and passes
control to another eligible task. While a task is waiting for an event to occur, the
task is said to be blocked. After that event occurs, the blocked task again
becomes eligible for execution.

Cooperative Scheduling 1

Preemptive multitasking requires no special programming techniques for the
vast majority of code. However, in order for preemptive multitasking to work,
it must be possible for the microkernel to interrupt a task at any time.
Therefore, special provisions must be made for tasks that make calls to non-
reentrant system services. A reentrant service is one that can be interrupted
and then resume execution where it left off, and that can be used concurrently
by several tasks. If a task calls a reentrant service and is preempted, the service
can resume execution when the task resumes control as if the interruption
never happened—even if that service has been called by other tasks in the
meantime. However, if a task calls a non-reentrant service, that service must
not be called again until the current call has completed execution.

To make tasks that call non-reentrant system services work in the preemptive
multitasking environment of Mac OS 8, the Process Manager schedules all such
tasks cooperatively. In cooperative scheduling, the Process Manager blocks the
main tasks of all but one cooperative program from execution at any given
time. A cooperative program is one whose main task calls non-reentrant
system services. Only when that main task voluntarily relinquishes control
does the Process Manager block that task and make another such task eligible
for execution. (These programs are called cooperative because they must
cooperate by voluntarily relinquishing control.) The microkernel can preempt
the main task of a cooperative program, but the Process Manager sees to it that
no other such task is eligible for execution until the one that was executing
relinquishes control.

Because major portions of the human interface toolbox are not reentrant, any
task that makes use of Macintosh human interface elements, such as windows

C H A P T E R 1

About Mac OS 8

Applications and Server Programs 1-11
Draft. Apple Computer, Inc. 4/18/96

and menus, has to be cooperatively scheduled by the Process Manager. You can
use the Cooperative Thread Manager to thread a cooperatively scheduled task.
The threads created by the Cooperative Thread Manager for a particular task
can execute only when that task has been made eligible to execute by the
Process Manager and has been selected for execution by the microkernel. You
can also thread a cooperative program by creating additional tasks; however,
only the main task of such a program can call non-reentrant system services.

Applications and Server Programs 1

Most of the non-reentrant system services in Mac OS 8 are part of the human
interface toolbox. The human interface toolbox is used to provide a program
with the familiar Macintosh graphical user interface (GUI). Any program with
a GUI must therefore be scheduled cooperatively. In this book and other books
of the Inside Macintosh suite, the term application refers specifically to a
program that calls the non-reentrant system services; that is, any program with
a GUI.

Note
Because only cooperatively scheduled tasks can call the
non-reentrant Mac OS 8 services, these services are
sometimes referred to as cooperative system services. ◆

As for all programs, when Mac OS 8 prepares an application for execution, it
creates a single task: the application’s main task. The Process Manager
schedules an application’s main task cooperatively. You must make sure that
your application’s main task strictly follows all programming guidelines for
cooperative software. An application’s main task can create other tasks, but
these tasks can call only reentrant system services; all calls to non-reentrant
system services must be in an application’s main task. Every function
description in Inside Macintosh specifies whether the function is reentrant.

You can also write programs that do not call any non-reentrant services; that is,
that do not have any graphical user interface. None of the tasks in the process,
including the main task, can call non-reentrant services. A program that
doesn’t call non-reentrant services (and that therefore has no graphical user
interface) is called a server program. Server programs can be network or file
servers but can also be any other program that has no GUI. Server programs
can provide services to applications or background services for a user.

C H A P T E R 1

About Mac OS 8

1-12 Virtual Memory

Draft. Apple Computer, Inc. 4/18/96

Virtual Memory 1

Mac OS 8 uses a virtual memory system to provide large amounts of memory
for use by programs. Virtual memory is always enabled. Most kinds of
software need never make a call to the virtual memory system in order to work
with Mac OS 8.

Logical memory in Mac OS 8 is organized into multiple address spaces of 232
bytes (4 GB) each. At least 1 GB of logical addresses are available for program
use in each address space. Because few, if any, Mac-compatible computers
contain several GB of physical RAM, the virtual memory system maps between
the logical addresses assigned to code and data, the physical RAM available in
a particular computer, and locations on disk (or some other storage device).

The Mac OS 8 virtual memory system is demand paged. In demand paging, a
page of code or data is read from disk only when it is actually needed by
software running on the computer. When an executing task needs data or code
that is not in RAM, the hardware generates a page fault, an exception for
which the microkernel provides a handler. The handler resolves the page fault
by calling a backing provider, which makes space in RAM and reads in a set
amount of data (referred to as a page) from a storage device. Mac OS 8
provides a backing provider that uses a hard disk as the storage device. Other
backing providers can be written to use other devices, such as compressed
RAM disk.

There are two ways the backing provider can make space in RAM for the new
page: by writing the data in RAM out to storage, or by simply writing over the
page in RAM.

The area of disk or other storage used to store data paged into and out of RAM
is referred to as backing store. To use as little disk space as possible for backing
store, the Mac OS 8 virtual memory system memory-maps code files on disk. A
memory mapped file is a disk file associated with a memory area so that the
virtual memory system maps logical addresses directly to the file and reads the
information on disk into RAM only as it is needed. Code files are always read-
only; when the backing provider needs the space that program code occupies
in RAM, it simply reads the new code or data from disk and writes over the
page in RAM. Because the program file cannot be modified and is always read
directly from disk (rather than from a scratch file), there is no need to write it
back to disk.

C H A P T E R 1

About Mac OS 8

Virtual Memory 1-13
Draft. Apple Computer, Inc. 4/18/96

Because data can be modified, it is not automatically memory mapped.
However, you can create a memory area that is memory mapped. In that case,
rather than allocating a separate portion of the disk for scratch files, the virtual
memory system reads a page of data directly from a disk file into RAM as it
does for code. Unlike code, however, if data is modified, it cannot simply be
purged from memory. Instead, when it pages memory-mapped data back to
disk, the virtual memory system writes it back directly into the same file from
which it was read.

If you have data that you know won’t change, you can create a memory area
that is memory mapped and has read-only access. In that case, the virtual
memory system treats the data like it treats code: it purges the data from
memory rather than write it back to disk when it needs the memory for
something else.

Figure 1-2 illustrates the relationships among physical memory, logical
memory, and backing store. Because code files are memory mapped, a file on
disk is mapped to a specific location in logical memory and read into RAM as
needed. The code is never written back out to backing store. Code and data are
read into RAM as needed. For a memory-mapped file, the file on disk is
mapped to a specific area in logical memory. All of the data on disk has
corresponding locations in logical memory, but not all the data need be in
physical memory at any one time.When the space in RAM is needed for
something else, the data is written back to the file on disk. For data that is not
memory mapped, the data in RAM is mapped to logical address space. When
the space in RAM is needed for something else, the data is written to a scratch
area on backing store. It can be read back in from the scratch area when it is
needed. If you want to save the data, you must write it to a file on disk as a
separate operation.

Note
Figure 1-2 is conceptual only and does not show the
structure of the memory. For example, the data in RAM
need not be contiguous or all in the same portion of
memory. The sequence of memory areas in physical and
logical memory need not be the same. Files on disk need
not be contiguous or all stored in the same area of the
disk. ◆

C H A P T E R 1

About Mac OS 8

1-14 Virtual Memory

Draft. Apple Computer, Inc. 4/18/96

Figure 1-2 Virtual Memory

When a task triggers a page fault, that task becomes blocked while it waits for
the data to be paged from disk. The microkernel then passes control to another
task until the page fault is resolved.

Some programs, such as device drivers and games doing real-time animation,
cannot tolerate page faults. Mac OS 8 provides routines that allow such
software to create memory areas that remain resident in physical memory. As
shown in Figure 1-2 a resident memory area has corresponding locations in
physical and logical memory, but it has no backing store. Mac OS 8 also
provides routines that allow you to temporarily lock memory pages as
necessary. A locked memory page has corresponding backing store, but cannot
be paged out of RAM as long as it is locked.

Physical memory

Data in RAM

Data in RAM

Code in RAM

Resident data

Logical address space

Backing store

Scratch data

Resident data

File-mapped
code

File-mapped data Data file

Code

Scratch area

C H A P T E R 1

About Mac OS 8

Memory Organization and Protection 1-15
Draft. Apple Computer, Inc. 4/18/96

Compatibility note
Although virtual memory is always enabled in Mac OS 8,
the Gestalt Manager always tells you that virtual memory
is off. If you make any calls to the System 7 Virtual
Memory Manager, Mac OS 8 does nothing except to return
the noErr result code. Because System 7 applications use
the result returned by the Gestalt Manager to determine
whether to make calls to the System 7 Virtual Memory
Manager, and because in Mac OS 8 those calls do nothing,
a negative result from the Gestalt Manager prevents such
programs from making unnecessary calls. ◆

Memory Organization and Protection 1

The Mac OS 8 logical memory is divided into address spaces of 4 GB each. At
any given time the system can access data in only one address space. Therefore,
a task running in one address space cannot read from or write to memory in
any other address space. This arrangement protects code and data in one
address space from corruption by tasks running in other address spaces, but it
also makes it harder for programs and Mac OS 8 to communicate and to share
data. Several features of the memory organization in Mac OS 8 address this
problem and enhance memory protection.

Multiple Address Spaces 1

To protect programs from corruption by other software, every server program
runs in its own address space. Because the Process Manager must coordinate
the operation of all cooperative programs, which share low memory and a
common system heap, all cooperative programs share a single address space.
Figure 1-3 shows a highly simplified address map illustrating these principles.

C H A P T E R 1

About Mac OS 8

1-16 Memory Organization and Protection

Draft. Apple Computer, Inc. 4/18/96

Figure 1-3 Multiple address spaces

Each address space includes some areas that are also mapped into other
address spaces, such as code, and some data that is mapped to that address
space only, such as the stack used by a server program. When Mac OS 8
preempts a task and switches to one running in another address space, it must
perform an address space switch. By contrast, when Mac OS 8 runs
microkernel code, it does not have to perform an address space switch, because
the microkernel code and data are mapped into all address spaces.

Memory Efficiency 1

Mac OS 8 makes efficient use of physical memory. For example, when the
Process Manager launches an application, it allocates space in the cooperative
program logical address space for all the code and data needed by that
application. However, not all of that code and data are read into physical
memory at once. Instead, Mac OS 8 reads pages of code and data into physical
memory only as they are needed. When that code or data is no longer needed,
the OS can page it out or overwrite it.

Cooperative program
address space

Application

System-wide
memory

Application

Application

Address space 2

System-wide
memory

Server program 1

Address space 2

System-wide
memory

Server program 2

C H A P T E R 1

About Mac OS 8

Memory Organization and Protection 1-17
Draft. Apple Computer, Inc. 4/18/96

Mac OS 8 dynamically increases and reduces backing store as it launches and
terminates programs. In addition, when Mac OS 8 launches programs that are
written to take maximum advantage of Mac OS 8 memory management, it
allocates only as much backing store as it needs for those programs. This
combination of demand-based loading of physical memory and minimal
allocation of backing store results in a highly efficient use of the computer’s
resources.

Memory Areas 1

Each address space can contain both code and data. To minimize address-space
switching, code or data can be mapped into more than one address space. For
example, the code and data of the microkernel are mapped into every address
space, and all code for all processes is generally mapped into every address
space. To control access to specific portions of memory, each address space is
subdivided into memory areas. A memory area is a range of logical addresses
within an address space to which the creator of the area can assign certain
attributes. Memory area attributes specify who (all code or privileged code
only) can read from and write to the area, whether the data in the area can be
paged out or must remain in physical memory, whether the area should be
globally mapped to all address spaces, and other characteristics of the area. The
microkernel code area, for example, is globally mapped but always read-only.
The microkernel data area is globally mapped and can be written to only by
privileged code.

Privileged code
Privileged code is code that is executed while the CPU is
in supervisor mode. Supervisor mode is a state of
operation of the PowerPC processor, enforced by the
internal logic of the processor, that allows access to certain
critical resources, such as all processor instructions and
tables that control memory protection. Certain processor
instructions can be executed only by privileged code, and
memory areas can have different read/write access for
privileged and nonprivileged code. In Mac OS 8, only the
microkernel, portions of device drivers, and certain other
portions of the operating system are privileged. ◆

When Mac OS 8 launches a program, it allocates memory areas for the
program’s code and data. The code memory area is shared across all address
spaces but is read-only. The data memory areas are read/write and are local to

C H A P T E R 1

About Mac OS 8

1-18 Memory Organization and Protection

Draft. Apple Computer, Inc. 4/18/96

a single address space. Each program gets memory areas for its static data and
for dynamic storage, and each task gets its own stack, used during the
execution of certain routines. For a cooperative program not written to take
advantage of Mac OS 8 memory management, the heap is a set size and cannot
grow. For a program that takes advantage of Mac OS 8 memory management,
the heap is the minimum size needed and grows dynamically as the program
allocates memory. You are not restricted to the heap provided at launch time;
any program can request additional memory areas to use for dynamic storage.

If you want to share data with another program, you can request a shared
memory area and specify into which address spaces this area should be
mapped. For a shared memory area, you can specify different access
permissions for each address space into which that area is mapped. For
example, if you want to make data available to a program running in another
address space but don’t want that program to be able to corrupt the data, you
can specify that the memory area be mapped into that program’s address space
but that the area be read-only in that address space.

Figure 1-4 illustrates some of the memory areas in the cooperative address
space. As shown in the figure, a program’s code, heap, and stack are in separate
memory areas and there is no requirement that these memory areas be adjacent
or even in the same region of memory. The microkernel’s code and data are
mapped into every address space. The address space for cooperative programs
also has a system heap, used to maintain compatibility of programs written for
System 7.

All PowerPC native software executing in Mac OS 8 is packaged as code
fragments. A code fragment is a block of executable code and its data,
structured in such a way that the Code Fragment Manager can dynamically
link all references to other code fragments when they prepare the fragment for
execution. Every code fragment is potentially shareable by other code
fragments. A code fragment that is shared by other fragments is called a shared
library. Because shared libraries are dynamically linked to other code at
runtime, they are also referred to as dynamically linked libraries.

If any program in a given address space is linked to a shared library, the
library’s code and data are mapped into that address space. Because the code is
shared, only one copy of the code is mapped into memory, no matter how
many programs call the code. Depending on how the shared library uses its
variables, Mac OS 8 might maintain a separate data area for the shared library
for each program that calls that library, or it might allocate a system-wide
shared memory area for the library’s data.

C H A P T E R 1

About Mac OS 8

Memory Organization and Protection 1-19
Draft. Apple Computer, Inc. 4/18/96

Figure 1-4 Memory areas in the cooperative program address space

Guard Pages 1

Because all cooperative programs share a single address space, some additional
protection is needed for these programs. Mac OS 8 provides a guard page
mechanism to protect specific memory areas. A guard page is a page of logical
memory addresses located just at the beginning or end of a memory area. A
guard page has excluded permission; that is, no software, including privileged
software, can read from or write to the guard page. If a task attempts to access
a location within a guard page, the microprocessor generates an exception. The

Per-process heap of Application 1

System heap

Microkernel code

System-wide
memory areas

For Mac OS 7
compatibility

Stack for the main task of
application 1

Stack for the main task of
application 2

Per-process heap of application 2

Application 1 code

Shared library A code

Application 2 code

1

K

Microkernel dataK

2

2

2

1

1

A

Supervisor mode

r/w=read/write
r=read only

User mode

r r

r r

r r

r r

r r/w

r/w r/w

r/w r/w

r/w r/w

r/w r/w

r r/w

C H A P T E R 1

About Mac OS 8

1-20 Synchronization of Tasks and Coordination of Processes

Draft. Apple Computer, Inc. 4/18/96

guard space at the beginning or end of a memory area can consist of one or
more guard pages.

When the Process Manager launches a cooperative program, it allocates guard
pages around that application’s memory areas. The guard pages prevent one
application’s data from overflowing and overwriting data belonging to another
application. They cannot, however, prevent an error in one application from
causing it to write data directly into the memory area of another application.
Figure 1-5 illustrates a portion of the cooperative program address space,
showing guard pages.

Figure 1-5 Guard pages

Synchronization of Tasks and Coordination of Processes 1

In a preemptively multitasking environment, it is possible for more than one
task to seek access concurrently to the same data or code. The tasks can belong
to the same process, or can be in different processes and different address
spaces, as long as the code or data they share is mapped into their respective

Application 2 stack

Aplication 1 stack

Shared library A data

Accessible area

Guard page

Guard page

Application 2 heap

C H A P T E R 1

About Mac OS 8

Synchronization of Tasks and Coordination of Processes 1-21
Draft. Apple Computer, Inc. 4/18/96

address spaces. Because a task can start to read or write data or execute code
and be preempted before it finishes, it is possible for a second task to start
writing to the same data or executing the same code before the first task
finishes. To prevent such events from causing problems, Mac OS 8 provides
several mechanisms for synchronizing tasks.

If your code uses only local variables and parameters that do not point to
shared data, and calls only reentrant services, then it is reentrant and does not
need to use these synchronization mechanisms. If your task uses data that can
be accessed by other tasks, then to make it reentrant you must call only
reentrant services and you must use the Mac OS 8 synchronization services.
Even if you call non-reentrant system services, it is recommended that you
synchronize access to data so that your code can more easily make the
transition to future, fully reentrant versions of Mac OS. Synchronization
mechanisms that you can use to prevent concurrent access to code or data
include atomic operations, locks, and counting semaphores.

Other types of coordination or synchronization among tasks and processes
might be necessary as well. For example, an application might activate a user
notification or enable some menu items only when a server program notifies it
that some operation is complete; or one task might not be able to start
execution until another task completes execution. Mac OS 8 provides a variety
of services that you can use to coordinate the execution of tasks, including
event flags and groups, microkernel queues, and software interrupts. To send
more complex types of information between tasks, you can use interprocess
communication (IPC) services, including microkernel queues, microkernel
messages, and Apple events, as discussed in “Notification Services” (page 1-24).

Synchronizing Access to Code or Data 1

Atomic operations are the simplest way to synchronize access to specific
memory locations, such as a single word in a data structure. Atomic operations
perform specific, limited operations, such as adding a value to a value in
memory or performing an OR operation on a value you specify and a value in
memory. No other task can write to or read from the memory location being
acted on until the atomic operation is complete. Because atomic operations are
small and very efficient, they execute extremely quickly.

If you need to control access to a block of code—perhaps because it is not
reentrant—or to a block of data larger than can be protected by atomic
operations, you can use locks. Locks are a set of functions that enable you to
implement a synchronization protocol. It is important to understand that

C H A P T E R 1

About Mac OS 8

1-22 Synchronization of Tasks and Coordination of Processes

Draft. Apple Computer, Inc. 4/18/96

Mac OS 8 does not enforce a lock in any way. To lock access to a data structure,
for example, you call a lock function before writing to or reading the data
structure, and call another function to unlock the data when you are through.
Any other task following this synchronization protocol also calls a lock
function before trying to access the data. If one task has already called such a
function (“acquired a lock”), the second task is blocked until the first task
completes (alternatively, you can call a function that returns an error rather
than blocking). However, nothing in the lock services prevents a task from
reading or writing to the data without first calling a lock function, thus
violating the protocol. Such a programming error could be fatal to a program.

You can use locks to prevent all access to a block of code or data, and you can
use read/write locks to allow one task to read from and write to a block of data
while multiple tasks can read it but not write to it.

Counting semaphores is another service you can use to implement a
synchronization protocol. Counting semaphores are especially useful when one
or more tasks (called producer tasks) are producing data or performing services
that are consumed by other tasks (called consumer tasks). You call the
semaphore service to create a semaphore, specifying an initial count (which is
usually, but need not be, 0). The producer task or tasks then signal the
semaphore each time they have performed a specific operation, such as making
data available for the consumer tasks. If no consumer tasks are waiting for the
semaphore, then the semaphore service increments the semaphore count.

From the consumer point of view, a consumer task calls the counting
semaphores service to find out if a semaphore has been signaled. If the
semaphore count is 1 or greater, the service decrements the count and the task
continues to execute. If the semaphore count is 0 or negative, the task blocks
until the producing tasks have incremented the semaphore to 1. If two or more
consumer tasks are waiting for the semaphore, the task that has been waiting
longest is unblocked.

The counting semaphores service does not pass any data. You must implement
your own protocol to obtain the data or interpret the meaning of a semaphore
signal.

Coordinating Tasks and Processes 1

The microkernel provides a fundamental mechanism for coordinating tasks,
based on sets of flags called event flags. To use the event-flag mechanism, one
task calls a microkernel function to create a set of 32 event flags, called an event

C H A P T E R 1

About Mac OS 8

Synchronization of Tasks and Coordination of Processes 1-23
Draft. Apple Computer, Inc. 4/18/96

group. The microkernel returns an event-group ID. It is up to you to decide the
meaning of each flag for your program. Any task can clear or set any of the
flags in an event group, and any task can wait for an event or set of events to
occur. A task that is waiting for events is blocked. The task can specify whether
one or some combination of event flags must be set before that task becomes
unblocked. You could use event flags, for example, to implement a state
machine involving several tasks. Each task would become eligible for execution
only when certain other tasks had set the appropriate flag.

Event flags are useful when a task must wait until one or some combination of
events occurs before the task executes, and the task does not need to receive
any data with notification of the occurrence of the events. Event flags do not
distinguish between one occurrence of an event and several; thus if you must
queue several similar events and act on each one in turn, or if you must pass
data with an event, you should use one of the other coordination mechanisms,
such as microkernel queues.

Like event flags, microkernel queues also allow a task to wait for an event;
however, in the case of microkernel queues the event is the placing of an entry
in the queue. When a task places into a queue an entry for which one or more
tasks are waiting, the microkernel unblocks the task that has been waiting
longest. The queue entry can contain three words of data; it is up to you to
decide the meaning of that data. For example, the first word could specify the
type of event that occurred and the other two words could convey specific
information about the event. Because notifications are queued, your task can
distinguish among multiple occurrences of the same event. Unlike event flags,
however, which can unblock any number of tasks, the arrival of an entry in a
microkernel queue unblocks only the single task that has been waiting longest.

Microkernel queues are slower and require more resources than event flags.
However, whereas event flags are limited to 32 distinguishing events, the data
passed by microkernel queues allows them to distinguish among an unlimited
number of types of events, or among multiple occurrences of the same event.
Microkernel queues provide an efficient, low-level mechanism for coordinating
and ordering tasks, and allow you to pass limited amounts of data.

Both event flags and microkernel queues block a task until an event occurs. If
you do not want to create a separate task to wait for an event, you can use a
software interrupt instead. A software interrupt, as its name implies, is an
interrupt generated by software and used to interrupt a task. A software
interrupt can be originated by any task. To receive software interrupts, you
write a software interrupt handler and call a microkernel function to specify
the task with which it is to be associated; the microkernel returns a software

C H A P T E R 1

About Mac OS 8

1-24 Notification Services

Draft. Apple Computer, Inc. 4/18/96

interrupt ID. You can pass that ID to any task in any address space, and that
task can then send a software interrupt to your task at any time.

A software interrupt executes in the context of the task to which it is sent.
When a task receives a software interrupt, the task’s execution is interrupted
and the software interrupt handler executes. When the handler completes, the
task resumes. Receiving a software interrupt does not change a task’s execution
priority. However, if the task is waiting for execution, or if the task has disabled
its ability to receive software interrupts, the software interrupt is queued and
executes as soon as the task can receive it. Because software interrupts execute
in a task’s context, they have access to the task’s data (which you should access
only with care). Like other interrupt handlers, however, a software interrupt
handler must never call non-reentrant system services, even if it is okay for the
interrupted task to do so.

Notification Services 1

Mac OS 8 provides several ways for the system to communicate with tasks and
for tasks to communicate with each other or with the user. When the
communication is simply an indication that some event has occurred, the
service is called a notification. When the purpose of the communication is to
pass information between tasks or from the system to a task, the service is
called interprocess communication (IPC).

You can use notification services to coordinate the activities of tasks and
processes, to provide feedback to users when some event occurs, and to
coordinate your program with events that have taken place elsewhere in the
system. Notification services include microkernel notification, the System
Notification Service, and the Notification Manager. You can use IPC services to
send information from one task to another. IPC services include microkernel
queues, microkernel messages, and Apple events. In many cases, you might
wish to send data along with notification that an event has occurred; therefore,
the functions and purposes of the various notification and IPC services overlap
somewhat.

Microkernel Notification and Asynchronous Execution 1

The Mac OS 8 APIs include many functions that you can call asynchronously;
that is, they return control to your task immediately and then send notification

C H A P T E R 1

About Mac OS 8

Notification Services 1-25
Draft. Apple Computer, Inc. 4/18/96

to the calling task when they complete. When you call an asynchronous
function, you provide a microkernel notification structure. This structure lets
you specify that you want to use any combination of three notification
mechanisms: microkernel queues, event flags, or software interrupts. In
addition, you can use a special microkernel notification structure to use Apple
events as the notification mechanism.

The preferred notification and interprocess communication mechanism in
Mac OS 8 is Apple events. To use Apple events with asynchronous functions,
you call an Apple event routine that creates a microkernel notification structure
for you. When you pass that microkernel notification structure to an
asynchronous function, Mac OS 8 sends an Apple event to notify you when the
routine completes. Apple events are discussed further in “IPC Services”
(page 1-26). If you have specific needs not fulfilled by Apple events, you can
use one of the other, lower-level notification services.

Microkernel queues and event flags are simple and efficient. Both of these
mechanisms require that you either check periodically to see if the event has
occurred, or wait for the event, causing your task to block while waiting. By
contrast, you can use software interrupts to receive notifications without
polling for events or causing your task to block. To use software interrupts,
however, you have to provide a software interrupt handler. Both microkernel
queues and software interrupts pass a limited amount of data along with
notification and include the function result of the routine you called
asynchronously. Event flags don’t pass any data beyond the values of the flags
themselves. All three of these notification mechanisms are discussed in
“Coordinating Tasks and Processes” (page 1-22).

System Notification Service 1

The System Notification Service provides a mechanism for Mac OS 8 and other
service providers, such as third-party server programs, to broadcast to tasks
notification of specific events. Any task can register to receive notification for
specific types of events. The service that provides notification is called a
notification provider, and the task that receives the notification is called a
consumer. To receive events, you must know beforehand for what types of
events notification is available. Types of events currently available include the
death of a process or task and changes in files and file directories.

The System Notification Service provides synchronous and asynchronous
functions that you can use to receive and process (“consume”) a notification.
These functions return the type of event that occurred and data associated with

C H A P T E R 1

About Mac OS 8

1-26 IPC Services

Draft. Apple Computer, Inc. 4/18/96

the event, such as the old and new names of a file in the case of a filename
change. Because the System Notification Service informs you when an event
has occurred, you do not have to poll to get this information. For example, if
you need to know whether the user has changed the name of a file that your
application has open, you can register with the System Notification Service and
call the consume function to receive that information. Without the System
Notification Service, you would have to poll the File Manager periodically to
get the current name of the file.

User Notification Services 1

Whereas you can use the System Notification Service to receive notification of
system events, you can use the Notification Manager to inform users of events
of interest to them. The Notification Manager is a reentrant service that can be
used both by applications and server programs to inform the user that
something has happened. You can cause an icon to blink in the menu bar, the
Sound Manager to play an alert sound, an alert box to appear on the screen, or
any combination of these. If you use the Notification Manager to display an
alert box, you can include a brief message informing the user of the event that
has occurred or asking the use to perform some action, such as bringing your
application to the front. The Notification Manager does not return any
information to the task that called it, except that you can determine whether
the user has responded to the alert box by clicking the OK button.

IPC Services 1

There are several ways that tasks can communicate with other tasks both in the
same process and in other processes. Any task can send or receive microkernel
queues and software interrupts, and both carry limited amounts of data. They
are described in “Coordinating Tasks and Processes” (page 1-22). There are two
primary methods of sending larger amounts of data: microkernel messages and
Apple events. Microkernel messages are a low-level service provided by the
microkernel. Apple events are a high-level service widely used by applications
and server programs for a variety of purposes.

C H A P T E R 1

About Mac OS 8

IPC Services 1-27
Draft. Apple Computer, Inc. 4/18/96

Microkernel Messages 1

The Microkernel Messaging Service provides for delivery of data from one task
to another, or to a special function called an accept function. An accept function
is privileged software. Messages sent to accept functions never cause an
address-space switch and never cause data to be copied from one address
space to another. Therefore, such messages are very efficient. However, because
an accept function executes in supervisor mode and has access to the operating
system’s data, it can potentially corrupt critical resources and crash the system.
You should use privileged software only when absolutely necessary. The
sending task does not know or need to know whether the entity receiving the
message is a task or an accept function.

The receiving task or accept function must respond to each message it receives;
the message and its reply form a transaction between the sender and receiver.
The messaging service does not interpret the message data. It is entirely up to
the sending task and the receiving task or accept function to determine the
protocol by which the message is interpreted. If you are writing a shared
software library or a server program for which you are providing an API, you
should not expose the Microkernel Messaging Service to your clients. If you
use microkernel messages, you should keep the details private and provide a
high-level API for your clients.

You send a message to a message object rather than to the actual task or accept
function that will process the message. A message object is an address
associated with a message port. A message port is a message destination
maintained by the Microkernel Messaging Service. A port can have multiple
objects associated with it. When you send a message to a message object, the
messaging service delivers the message to the port associated with that object.
The receiving task or accept function retrieves the message from the port; the
object to which the message was sent is included in the information the
receiver gets. Message objects can be used in any way that makes sense to the
program that creates them. For example, a file server can create a message
object for each file that it opens. Then the sending task indicates which file it
wants to read from or write to by sending the message to the message object for
that file. In this example, the message’s data would indicate the action to take
(read or write) and would include the data to write or the location in the file
from which to read.

The reply to a message can also carry data. In the file server example, the reply
to a request to read data from a file could include the data that was read.

C H A P T E R 1

About Mac OS 8

1-28 IPC Services

Draft. Apple Computer, Inc. 4/18/96

You can send the data in a message by reference or by value. If you send the
data by reference, the data is mapped into the address space of the receiver.
Then, if the receiver modifies the data, the sender’s data is modified as well.
You can use this method when it is necessary for the data used by the receiver
and the sender to remain identical, especially if the receiver needs to examine
or modify only a few values in a large block of data. By contrast, if you send
the data by value, the data is copied into the address space of the receiver. In
this case, if the receiver modifies the data, it modifies its copy only. You can use
this method when you do not want the sender’s data modified or corrupted by
the receiver. You can also let the messaging service choose the fastest method.

The Microkernel Messaging Service is very fast and efficient. However, it is a
very low-level operating system service; it has no standard data format. You
can’t use it to send data across a network from one computer to another.
Because the programs using the messaging service must devise their own
protocol for exchanging object IDs and other information needed to interpret
the message, the messaging service is not suitable for sending messages from
one program to another, unrelated program. If you need any of these high-level
capabilities in an IPC messaging service, you should use Apple events.

Apple Events 1

Apple events are a high-level messaging service that allow a task to send
messages to any other task, whether on the same computer or over a network.
In addition, Mac OS 8 uses Apple events to send messages and notifications to
tasks. Programs can use Apple events to send messages to themselves; in fact,
doing so is essential if you want to make your application scriptable.

There is a standard set of Apple events that every application should handle so
that it can respond to messages sent by other applications and by Mac OS 8.
You can also define your own Apple events.

Apple events have a well-documented format; they’re standardized and easy
to incorporate in your code. They can be used both by applications and server
programs, and they are used widely by Mac OS 8 system services. Apple
events in Mac OS 8 are much faster than they were in previous versions of
Mac OS. For these reasons, Apple events are the standard preferred method of
interprocess communication in Mac OS 8.

Because Apple events are a high-level service, they are not described in this
book. See Apple Events in Mac OS 8 for more information about Apple events.

C H A P T E R 1

About Mac OS 8

Glossary 1-29
Draft. Apple Computer, Inc. 4/18/96

Glossary 1

accept function A special function that receives microkernel messages. An
accept function is privileged software and runs in the privileged software
memory area. There can be only one accept function for each microkernel
messaging port.

address space The maximum number of address locations that can be
physically addressed by the CPU. At any given time the system can access data
in only one address space. Mac OS 8 provides multiple address spaces, each 4
GB in size. See also memory area.

application A stand-alone program with a graphical user interface. See also
cooperative program, part editor.

atomic operations A set of specific, limited functions performed by the
microkernel, such as adding a value to a value in memory or performing an OR
operation on a value you specify and a value in memory. No other task can
write to or read from the memory location being acted on until the atomic
operation is complete. Atomic operations are small and very efficient.

backing provider Code responsible for managing pages of physical memory
and transferring data (typically between backing store and physical memory)
in response to page faults.

backing store A repository—typically a file on a paging device such as a hard
disk—for pages of memory that aren’t currently in physical memory.

blocked task A task that is not eligible for execution until a certain event
occurs, such as the completion of a synchronous I/O operation.

code fragment A block of executable code and its data, structured in such a
way that the Code Fragment Manager and Process Manager can dynamically
link all references to other code fragments when they load and launch the
fragment. See also shared library.

consumer A task that has registered with the System Notification Service to
receive information about changes in the state of the system. See also
notification provider.

C H A P T E R 1

About Mac OS 8

1-30 Glossary

Draft. Apple Computer, Inc. 4/18/96

context The state of the CPU while a specific task is executing, including the
location of the executing task’s variables. The microkernel switches the context
each time it preempts one task and gives control to another.

context switch The suspension of a currently executing task and resumption
of a different task from the point at which it was blocked. During a context
switch, the microkernel saves the context of the suspended task and restores
the context of the task about to resume execution.

cooperative multithreading A form of multithreading in which a single task
is divided into more than one thread of execution. The use of cooperative
multithreading is restricted to a certain type of task: the main task of a
cooperative program. You must use the Cooperative Thread Manager to
incorporate cooperative multithreading in your program. Compare preemptive
multitasking.

cooperative program A program whose main task calls non-reentrant system
services to present a graphical user interface. A cooperative program
cooperates with other programs by voluntarily relinquishing control of the
CPU. Cooperative programs are cooperatively scheduled by the Process
Manager. See also application, part editor. Compare server program.

cooperative scheduling A policy for scheduling access to Mac OS 8 non-
reentrant services implemented by the Process Manager. The Process Manager
blocks the main tasks of all but one cooperative program from execution at any
given time, thus ensuring that each call to a non-reentrant function can execute
to completion without being preempted. See also cooperative program, main
task.

cooperative system services Non-reentrant system services. These services
support the Macintosh graphical user interface and can be called only by
cooperative programs.

core system services Low-level system services outside of the microkernel.
The core system services include some of the memory management services,
the Process Manager, the Code Fragment Manager, the Cooperative Thread
Manager, the Mixed Mode Manager, debugger services, the Component
Manager, and a variety of utilities and other services.

counting semaphores A service used to implement a synchronization
protocol. Counting semaphores are most useful when one or more tasks are
producing data or performing services that are consumed by other tasks. The
producer tasks signal the semaphore each time they have performed a specific
operation, such as making data available for the consumer tasks. If no

C H A P T E R 1

About Mac OS 8

Glossary 1-31
Draft. Apple Computer, Inc. 4/18/96

consumer tasks are waiting for the semaphore, then the semaphore service
increments the semaphore count. However, if one or more consumer tasks are
waiting for the semaphore, the task that has been waiting longest is unblocked
instead. If a consumer task calls a semaphore and the semaphore count is 1 or
greater, the service decrements the count and the task continues to execute. If a
consumer task calls a semaphore and the semaphore count is 0 or negative, the
task blocks until the producing tasks have incremented the semaphore to 1.

demand paging A type of virtual memory in which a page of code or data is
read from backing store into memory only when actually needed by software
running on the computer.

dynamically linked library (DLL) See shared library.

event flags The individual bits in an event group.

event group A set of 32 event flags that can be used as a fundamental
mechanism for coordinating tasks. Any task can clear or set any of the flags in
an event group, and any task can block until one or more flags are set. It is up
to the participating tasks to agree on the meanings of the flags in an event
group.

file mapping See memory-mapped file.

guard page A page of memory given excluded permission, so that no tasks
can read from or write to the page. Guard pages can be placed at the beginning
and end of a memory area to protect it from corruption. If a programming error
causes a task to attempt to reference a guard page, the CPU generates an
exception. The guard space at the beginning or end of a memory area can
consist of one or more guard pages.

kernel A program that manages all or most of the operating system services
necessary to control a computer. In a UNIX-based operating system, for
example, the kernel is a program that supervises task and file management,
device input and output, and memory allocation. Compare microkernel.

locks A service used to implement a synchronization protocol. To lock access
to a data structure, you call a lock function before writing to or reading the data
structure, and call another function to unlock the data when you are through.
Any other task following this synchronization protocol also calls a lock
function before trying to access the data. If one task has already called such a
function (“acquired a lock”), the second task is blocked until the first task
completes (alternatively, you can call a function that returns an error rather
than blocking).

C H A P T E R 1

About Mac OS 8

1-32 Glossary

Draft. Apple Computer, Inc. 4/18/96

Mac OS 8 system services All of the services provided by Mac OS 8,
including the operating system services, the I/O system, the graphics system,
text, and the human interface toolbox.

main task The first task created by Mac OS 8 for a process. The main task can
create other tasks, those tasks can also create tasks, and so forth. The main tasks
for cooperative programs can safely use Mac OS 8 non-reentrant services,
whereas all other tasks in Mac OS 8 must use only reentrant services.

memory area A range of logical addresses within an address space to which
the creator of the area can assign certain attributes.

memory mapped file The association of a disk file with a memory area so
that the file’s data is paged between physical memory and the file’s permanent
location on disk. Thus, the disk version of the file (instead of a separate scratch
file) serves as backing store for the file’s representation in memory.

message See microkernel message.

message object An address associated with a message port. You send a
microkernel message to a message object rather than to the actual task or accept
function that will process the message.

message port A message destination maintained by the Microkernel
Messaging Service, but belonging to a specific process. When you send a
message to a message object, the messaging service delivers the message to the
port associated with that object. The receiving task or accept function retrieves
the message from the port; the object to which the message was sent is
included in the information the receiver gets. See also message port.

microkernel A program that manages a small but critical subset of the
operating services necessary to control a computer. The Mac OS 8 microkernel,
for instance, manages processes, their attendant tasks, and other operating
system resources associated with tasks, such as memory, synchronization,
timing, and messaging. Other operating system services, such as the file
system, the I/O system, and the human interface toolbox, are implemented
separately from the microkernel. Compare kernel.

microkernel message A message sent by the Microkernel Messaging Service.

Microkernel Messaging Service A microkernel service that provides for
delivery of a string of bytes from one task to another, or to a special function
called an accept function. The receiving task or accept function must reply to a
message.

C H A P T E R 1

About Mac OS 8

Glossary 1-33
Draft. Apple Computer, Inc. 4/18/96

microkernel queue A mechanism by which one or more tasks notify another
task of some event. The task waiting for notification blocks until the event
occurs. When a task places an entry into a queue for which one or more tasks
are waiting, the microkernel unblocks the task that has been waiting longest for
the queue. The queue entry can contain three words of data; it is up to the
communicating tasks to decide the meaning of that data.

multitasking The situation in which several tasks are in progress at the same
time, in the sense that they all have begun execution. Although (on a single-
processor system) only one task can be executing at a time, Mac OS 8 switches
from one task to another with such rapidity that the user has the impression
that the tasks are executing simultaneously. See also multithreaded.

multithreaded Having more than one concurrent path of execution. For
instance, one thread in a multithreaded program might handle user
interactions, another thread might perform calculations, and yet a third might
perform I/O. See also thread.

notification provider A service that uses the System Notification Service to
provide notification of changes in the state of the system. See also consumer.

OpenDoc A multiplatform technology, implemented as a set of shared
libraries, that facilitates the construction and sharing of compound documents.
See also part.

operating system services Any services provided by Mac OS 8. Compare
core system services, microkernel.

page (1) A unit, measured in bytes, of the information that may be read from
and written to an I/O device. (2) To transfer pages between physical memory
and backing store.

page fault An exception that causes a page of data or code needed by a
program to be read from backing store into physical memory.

part A portion of an OpenDoc compound document. A part consists of
document content, plus—at execution time—a part editor that manipulates
that content. The document content is data of a given structure or type, such as
text, graphics, or video. In programming terms, a part is an object, an
instantiation of a subclass of the class ODPart. To a user, a part is a single set of
information displayed and manipulated in one or more frames or windows.

part editor An OpenDoc component that can display and change the data of
a part. It is the executable code that provides the behavior for the part. An
OpenDoc part editor’s main task can call non-reentrant system services to

C H A P T E R 1

About Mac OS 8

1-34 Glossary

Draft. Apple Computer, Inc. 4/18/96

present a graphical user interface. Like other cooperative programs, an
OpenDoc part editor that calls non-reentrant services must cooperate with
other programs by voluntarily relinquishing control of the CPU. Cooperative
programs are cooperatively scheduled by the Process Manager. Compare
application, server program.

preemptive multitasking A policy for allocating access to the CPU and other
operating system services among multiple tasks. The preemptive multitasking
environment of Mac OS 8 uses a set of well-defined rules to determine which
task should execute. Following these rules, the microkernel can interrupt, or
preempt, the execution of a task at any time and resume the execution of
another. Compare cooperative multithreading.

privileged code is code that is executed while the CPU is in supervisor mode.
Certain processor instructions can be executed only by privileged code, and
memory areas can have different read/write access for privileged and
nonprivileged code. In Mac OS 8, only the microkernel, portions of device
drivers, and certain other portions of the operating system are privileged.

process An instance of a program at execution time. A process comprises one
or more tasks and the memory and other operating system resources allocated
to those tasks. The microkernel uses processes to track the resources required
by tasks, and to recover those resources when a task completes execution.
Every process has at least one associated task, and can have several tasks. A
given task can be associated with only one process, however.

Process Manager A Mac OS 8 service that launches, manages, and terminates
processes. On behalf of programs using non-reentrant system services, the
Process Manager also synchronizes use of these services.

reentrant Code that can interleave multiple requests for service and process
these requests in any order. For example, a reentrant function can begin
responding to one call, become interrupted by other calls, and complete them
all with the same results as if the function had received and completed each call
serially.

server program In Mac OS 8, a program that calls no non-reentrant services
(and that therefore has no graphical user interface). A server program runs in
its own protected address space. Server programs typically provide services to
other programs. Compare cooperative program.

shared library A code fragment exporting a set of routines that can be called
by multiple programs. Because they are prepared for use dynamically—that is,

C H A P T E R 1

About Mac OS 8

Glossary 1-35
Draft. Apple Computer, Inc. 4/18/96

at program execution time instead of at program generation time—shared
libraries are also called dynamically linked libraries.

software interrupt An interrupt generated by software and used to interrupt
a task. A software interrupt can be originated by any task. To receive software
interrupts, you write a software interrupt handler routine and call a
microkernel function to specify the task with which it is to be associated; the
microkernel returns a software interrupt ID. You can pass that ID to any task in
any address space, and that task can then send a software interrupt to your
task at any time.

supervisor mode A state of operation of the PowerPC processor, enforced by
the internal logic of the processor, that allows access to certain critical
resources, such as all processor instructions and tables that control memory
protection. See also privileged code, user mode.

System Notification Service A microkernel service that provides a
mechanism for Mac OS 8 and other service providers, such as device drivers, to
broadcast notification of specific events to tasks. Any task can register to
receive notification for specific types of events. See also consumer, notification
provider.

task The basic unit of program execution in Mac OS 8. Preemptively
scheduled and assigned a priority by the microkernel, every task has its own
stack and set of registers. The microkernel uses processes to track the resources
required by tasks, so that every process is associated with at least one task, and
several tasks can be associated with a single process. See also main task.

thread (1) A path of execution through a program. For example, one thread in
a program might handle user interactions, another might perform calculations,
and a third might perform I/O. (2) To design software with more than one path
of execution. Mac OS 8 developers can thread products using one or a
combination of three different approaches. That is, developers can divide
operations so that they are performed by more than one process, by more than
one task in a single process, or by more than one cooperatively scheduled
thread within a single task.

time slice An interval of time during which a task is given access to the CPU.
Under certain circumstances, if there are two or more tasks eligible to run, the
microkernel gives each task a specific amount of time (referred to as a time
slice) to execute. When the time slice expires, the microkernel preempts the
running task and passes control to another eligible task.

C H A P T E R 1

About Mac OS 8

1-36 Glossary

Draft. Apple Computer, Inc. 4/18/96

C H A P T E R 2

Contents 2-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 2-0
Listing 2-0
Table 2-0

2 Tasks Reference

Tasks Constants and Data Types 2-3
Task Priority 2-3
Set Task Priority Options 2-8
Task Relationship 2-11
Task Options 2-12
Task Name 2-13
Task ID 2-13
The Task Information Structure 2-14
Task Main Entry Point 2-16
Task Storage Index 2-17
Task Storage Value 2-17

Tasks Functions 2-18
Creating and Terminating Tasks 2-18

CreateTask 2-18
ExitTask 2-22
TerminateTask 2-24

Getting Information About Tasks 2-26
GetTaskInformation 2-26
GetTasksInKernelProcess 2-28
CurrentTaskID 2-30
RemainingStackSpace 2-30

Changing the Priority of a Task 2-31
SetTaskPriority 2-31

Working With Per-Task Static Data 2-32
AllocateTaskStorageIndex 2-33
DeallocateTaskStorageIndex 2-34
SetTaskStorageValue 2-35

C H A P T E R 2

2-2 Contents

Draft. Apple Computer, Inc. 4/19/96

GetTaskStorageValue 2-37
Tasks Result Codes 2-38

C H A P T E R 2

Tasks Constants and Data Types 2-3
Draft. Apple Computer, Inc. 4/19/96

Tasks Reference 2

Tasks Constants and Data Types 2

Task Priority 2

The microkernel uses task priorities to schedule the execution of tasks. When
multiple tasks are eligible to execute, the microkernel gives preference to those
with higher priorities. Once a task with a real time priority (page 2-8) begins
executing, the microkernel allows that task to continue executing until it blocks
or until a task with a higher real time priority becomes eligible to execute. Once
a task with a lower than real time priority begins executing, the microkernel
may preempt it after it has executed for a specific amount of time or when a
higher priority task becomes eligible to execute.

When you create a task using the CreateTask function (page 2-18), you specify
its priority using either a numeric value or a category that represents the
intended purpose of the task (the microkernel determines the appropriate
numeric value corresponding to each category). In general, you should specify
the priority of a task using a category because it ensures that your task will be
scheduled appropriately relative to other tasks in various categories. However,
if you need to specify a numeric priority for a task, you must specify a value
between 1 and 30 (the microkernel reserves priorities 0 and 31 for its own use).
Once you create a task, you can use the SetTaskPriority function (page 2-31)
anytime you want to increase or decrease its priority.

When you use the CreateTask or SetTaskPriority functions, you should always
specify the lowest task priority that is practical for your purposes. Smaller
values indicate lower priorities. The categories defined in the task priority data
type are listed, from top to bottom, in order of increasing priority.

Although you can choose the priority of your tasks, you should not rely on the
relative priorities of tasks to provide implicit synchronization. For example,
when a higher priority task page faults, it may enable a lower priority task to
execute.

You use task priority constants to set the desired bits in the options parameters
you pass to the CreateTask or SetTaskPriority functions. Also, you can use any
of the constants to interpret values supplied on output in the task information
structure (page 2-14) parameter of the GetTaskInformation function (page 2-26).

C H A P T E R 2

Tasks Reference

2-4 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

The constants for these task priorities are defined in the TaskPriority data type.
The constant kTaskPriorityMask is used to mask a priority value. The constants
kTaskPriorityIsAbsolute and kTaskPriorityIsSymbolic are used in combination
with a priority value. The remaining constants represent categories and are
listed in order from the lowest priority (kTaskBackgroundPriority) to the
highest priority (kTaskRealTimePriority16).

typedef OptionBits TaskPriority; /* task priorities */
enum {

kTaskPriorityMask = 0x0000001F, /* priority value */

kTaskPriorityIsAbsolute = 0x00000100, /* is numeric */
kTaskPriorityIsSymbolic = 0x00002000, /* is a category */

kTaskBackgroundPriority = 0x00002001, /* lowest category */
kTaskAppCPUBoundPriority = 0x00002002, /* CPU-bound*/
kTaskAppNonUIPriority = 0x00002003, /* secondary to UI */
kTaskAppPriority = 0x00002004, /* user inteface * /
kTaskUIHelperPriority = 0x00002005, /* toolbox helpers */
kTaskLowServerPriority = 0x00002006, /* lowest servers */
kTaskServerPriority = 0x00002007, /* servers */
kTaskHighServerPriority = 0x00002008, /* highest servers */
kTaskLowDriverPriority = 0x00002009, /* lowest drivers*/
kTaskDriverPriority = 0x0000200A, /* drivers */
kTaskHighDriverPriority = 0x0000200B, /* highest drivers */
kTaskRealTimePriority1 = 0x0000200C, /* lowest real time */
kTaskRealTimePriority2 = 0x0000200D, /* real time */
kTaskRealTimePriority3 = 0x0000200E, /* real time */
kTaskRealTimePriority4 = 0x0000200F, /* real time */
kTaskRealTimePriority5 = 0x00002010, /* real time */
kTaskRealTimePriority6 = 0x00002011, /* real time */
kTaskRealTimePriority7 = 0x00002012, /* real time */
kTaskRealTimePriority8 = 0x00002013, /* real time */
kTaskRealTimePriority9 = 0x00002014, /* real time */
kTaskRealTimePriority10 = 0x00002015, /* real time */
kTaskRealTimePriority11 = 0x00002016, /* real time */
kTaskRealTimePriority12 = 0x00002017, /* real time */
kTaskRealTimePriority13 = 0x00002018, /* real time */
kTaskRealTimePriority14 = 0x00002019, /* real time */

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-5
Draft. Apple Computer, Inc. 4/19/96

kTaskRealTimePriority15 = 0x0000201A, /* real time */
kTaskRealTimePriority16 = 0x0000201B /* highest category */

};

Field descriptions
kTaskPriorityMask A bit mask for determining the value of a numeric priority

or priority category. When you wish to determine the
current numeric priority of an existing task, call the
GetTaskInformation function, inspect the priority field of
the taskInfo parameter that is supplied on output, and
mask the bits indicated by this constant. When you wish to
determine the options used to create an existing task, call
the GetTaskInformation function, inspect the options field
of the taskInfo parameter that is supplied on output, and
mask the bits indicated by this constant, the
kTaskPriorityIsAbsolute constant, and the
kTaskPriorityIsSymbolic constant. The resulting priority
value should be interpreted as a numeric priority if the
kTaskPriorityIsAbsolute bit of the options field is also set
or it should be interpreted as a category if the
kTaskPriorityIsSymbolic bit of the options field is also set.

kTaskPriorityIsAbsolute
The bit indicating whether the priority value should be
treated as a numeric priority. If this bit is set, the priority of
a task is specified in numeric terms. When you supply a
numeric priority value in the options parameter of the
CreateTask or SetTaskPriority functions, you must set this
bit as well. In general, you should supply a priority
category rather than a numeric priority.
When you call the GetTaskInformation function for an
existing task and you wish to determine if the task was
created using a numeric priority, inspect the value
supplied on output in the options field of the taskInfo
parameter and examine the bit indicated by this constant.
If this bit is set, a numeric priority (the value of which can
be obtained by using the kTaskPriorityMask constant) was
supplied for this task.

kTaskPriorityIsSymbolic
The bit indicating whether the priority value should be
treated as a priority category. If this bit is set, the priority

C H A P T E R 2

Tasks Reference

2-6 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

of a task is specified in terms of the intended purpose of
the task. This bit is set implicitly when you supply a
category value in the options parameter of the CreateTask
or SetTaskPriority functions.
When you call the GetTaskInformation function for an
existing task and you wish to determine if the task was
created using a priority category, inspect the value
supplied on output in the options field of the taskInfo
parameter and examine the bit indicated by this constant.
If this bit is set, a priority category (the value of which can
be obtained by using the kTaskPriorityMask constant) was
supplied for this task.

kTaskBackgroundPriority
The value indicating the category for tasks that should
execute only when the CPU is idle. This is the lowest
priority category. For example, if your task’s primary
purpose is to compress files or perform full text indexing,
set this value in the options parameter you pass to the
CreateTask or SetTaskPriority functions.

kTaskAppCPUBoundPriority
The value indicating the category for CPU-bound tasks. If
your task’s primary purpose is to perform operations that
do not block implicitly (such as arithmetic operations), set
this value in the options parameter you pass to the
CreateTask or SetTaskPriority functions.

kTaskAppNonUIPriority
The value indicating the category for tasks of a slightly
lower priority than the task handling user interaction. For
example, if your task’s primary purpose is to repaginate
changes to a document or recalculate changes to a
spreadsheet, set this value in the options parameter you
pass to the CreateTask or SetTaskPriority functions.

kTaskAppPriority The value indicating the category for tasks handling the
user interaction aspects of an application. In general, this
category applies to application tasks that are not intended
for execution in the background. If your task’s primary
purpose is to handle the user interaction aspects of an
application, set this value in the options parameter you
pass to the CreateTask or SetTaskPriority functions.

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-7
Draft. Apple Computer, Inc. 4/19/96

kTaskUIHelperPriority
The value indicating the category for I/O-bound tasks and
tasks that the toolbox depends upon to implement the user
interface of the system. If your task is I/O-bound or its
primary purpose is to help implement the user interface of
the system, set this value in the options parameter you
pass to the CreateTask or SetTaskPriority functions.

kTaskLowServerPriority
The value indicating the category for server tasks. The
kTaskLowServerPriority constant represents a slightly
lower priority than the kTaskServerPriority constant.

kTaskServerPriority
The value indicating the category for server tasks. This
category applies to most system services. If your task’s
primary purpose is to perform system services, you can set
this value in the options parameter you pass to the
CreateTask or SetTaskPriority functions.

kTaskHighServerPriority
The value indicating the category for server tasks. The
kTaskHighServerPriority constant represents a slightly
higher priority than the kTaskServerPriority constant.

kTaskLowDriverPriority
The value indicating the category for device drivers. The
kTaskLowDriverPriority constant represents a slightly
lower priority than the kTaskDriverPriority constant.

kTaskDriverPriority
The value indicating the category for device drivers. If
your task’s primary purpose is to function as a device
driver, set this value in the options parameter you pass to
the CreateTask or SetTaskPriority functions.
The priority represented by the device driver category is
higher than that of any other category except the real time
task categories. This is because a device driver needs to be
highly responsive when an I/O request occurs.

kTaskHighDriverPriority
The value indicating the category for device drivers. The
kTaskHighDriverPriority constant represents a slightly
higher priority than the kTaskDriverPriority constant.

C H A P T E R 2

Tasks Reference

2-8 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

kTaskRealTimePriority1—kTaskRealTimePriority16
The values indicating the categories for real time tasks.
There are 16 levels of real time categories. Real time
categories should be used for tasks that perform real time
operations such as digital signal processing for telephony,
audio, and video. If your task’s primary purpose is to
perform real time operations, set one of these values in the
options parameter you pass to the CreateTask or
SetTaskPriority functions.
A higher real time priority task that becomes eligible to
execute always preempts the currently executing task if the
currently executing task has a lower real time or other type
of priority. Unless a higher real time priority task becomes
eligible to execute, a task with a real time priority executes
until it blocks.

Set Task Priority Options 2

You can change the priority of an existing task by calling the SetTaskPriority
function (page 2-31) and specifying either a particular task priority (page 2-3)
or a relative change to the priority. You can set the priority of a task no higher
than 30 and no lower than 1 (the microkernel reserves priorities 0 and 31 for its
own use). When you use the set task priority options to specify a relative
change to an existing task, you use them in conjunction with the task priority
constants to specify the amount of the relative change as a numeric value or as
a priority category. In general, you should specify the change using a priority
category (which is possible only when you use the
kTaskRaisePriorityToAtLeast or kTaskLowerPriorityToAtMost constants). You
use the set task priority options only when you are changing the priority of an
existing task, not when you are creating a new task.

The constants for all set task priority options are defined in the
SetTaskPriorityOptions data type.

typedef OptionBits SetTaskPriorityOptions; /* priority change */
enum(

kTaskRaisePriorityBy = 0x00000200, /* raise priority *(/
kTaskLowerPriorityBy = 0x00000400, /* lower priority */

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-9
Draft. Apple Computer, Inc. 4/19/96

kTaskRaisePriorityToAtLeast = 0x00000800, /* maximum */
kTaskLowerPriorityToAtMost = 0x00001000, /* minimum */

);

Field descriptions
kTaskRaisePriorityBy

The bit indicating that the current priority of the task
should be raised. When you call the SetTaskPriority
function to increment the current priority of a task, set this
bit in the options parameter, specify the numeric increase
in the bits of the options parameter indicated by the
kTaskPriorityMask constant, and set the bit in the options
parameter indicated by the kTaskPriorityIsAbsolute
constant. Even if the new value computed by adding the
specified amount to the current priority exceeds 30, the
microkernel will set the new priority no higher than 30. In
general, you should use the kTaskRaisePriorityToAtLeast
constant with a priority category instead of using the
kTaskRaisePriorityBy constant.

The microkernel always saves the new computed value so
that it can compute subsequent increases or decreases
relative to this value. For example, if the current priority is
29 and you attempt to raise the priority by 2, the
microkernel will save 31 but raise the actual priority to
only 30. If you subsequently decrease the priority by 2, the
microkernel will apply the decrease to the saved value for
a result of 29 and set the new priority of the task to 29.

kTaskLowerPriorityBy
The bit indicating that the current priority of the task
should be lowered. When you call the SetTaskPriority
function to decrement the current priority of a task, set this
bit in the options parameter, specify the numeric decrease
in the bits of the options parameter indicated by the
kTaskPriorityMask constant, and set the bit in the options
parameter indicated by the kTaskPriorityIsAbsolute
constant. Even if the new value computed by subtracting
the specified amount from the current priority is less than
1, the microkernel will set the new priority no lower than
1. In general, you should use the
kTaskLowerPriorityToAtMost constant with a priority

C H A P T E R 2

Tasks Reference

2-10 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

category instead of using the kTaskLowerPriorityBy
constant.
The microkernel always saves the new computed value so
that it can compute subsequent increases or decreases
relative to this value. For example, if the current priority is
2 and you attempt to decrease the priority by 2, the
microkernel will save 0 but lower the actual priority to
only 1. If you subsequently increase the priority by 2, the
microkernel will apply the increase to the saved value for a
result of 2 and set the new priority of the task to 2.

kTaskRaisePriorityToAtLeast
The bit indicating that the new priority should be
increased to the greater of the specified priority and the
current priority. The microkernel will set the new priority
no higher than 30. If the current priority of the task is
greater than the specified priority, the priority remains
unchanged. You may specify a numeric priority, but in
general, you should specify a priority category instead.
When you call the SetTaskPriority function to
conditionally increase the priority of a task, set this bit in
the options parameter, specify the numeric value or
category in the bits of the options parameter indicated by
the kTaskPriorityMask constant, and, if you are specifying
a numeric value, set the bit in the options parameter
indicated by the kTaskPriorityIsAbsolute constant.

kTaskLowerPriorityToAtMost
The bit indicating that the new priority should be
decreased to the lower of the specified priority and the
current priority. The microkernel will set the new priority
no lower than 1. If the current priority of the task is lower
than the specified priority, the priority remains unchanged.
You may specify a numeric priority, but in general, you
should specify a priority category instead. When you call
the SetTaskPriority function to conditionally decrease the
priority of a task, set this bit in the options parameter,
specify the numeric value or category in the bits of the
options parameter indicated by the kTaskPriorityMask
constant, and, if you are specifying a numeric value, set the
bit in the options parameter indicated by the
kTaskPriorityIsAbsolute constant.

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-11
Draft. Apple Computer, Inc. 4/19/96

Task Relationship 2

The tasks created within a single process (described in the chapter ‘Process
Manager Reference’ to be provided at a later date) are arranged in one or more
tree structures that define their relationships. The task that resides at the root of
a task tree is an orphan task. The child tasks of that orphan task reside in the
same task tree.

You pass a task relationship to the SetTaskPriority function (page 2-31) and
the TerminateTask function (page 2-24) to specify whether those functions
should act upon a single task or a family of tasks. The microkernel does not
define the order in which these functions will act on the tasks within a family.

The constants for all task relationships are defined in the TaskRelationship data
type.

typedef UInt32 TaskRelationship; /* scope of operation*/
enum {

kTaskOnly = 0, /* specified task, only */
kTaskAndChildren = 1, /* task and all descendents *
kTaskFamily = 2, /* entire task tree */
kTaskKernelProcess = 3 /* all tasks within process */

};

Field descriptions
kTaskOnly The value indicating that the operation should apply only

to the specified task. When you want the SetTaskPriority
function or the TerminateTask function to operate only on
the specified task, pass this value in the scope parameter of
those functions.

kTaskAndChildren The value indicating that the operation should apply to the
specified task as well as its direct and indirect descendents.
When you want the SetTaskPriority function or the
TerminateTask function to operate on the specified task and
its descendents, pass this value in the scope parameter of
those functions.

kTaskFamily The value indicating that the operation should apply to the
entire family of the specified task. The microkernel
identifies the root task of the specified task’s tree, and then
it applies the operation to the root of the task tree as well
as the root’s direct and indirect descendents. When you

C H A P T E R 2

Tasks Reference

2-12 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

want the SetTaskPriority function or the TerminateTask
function to operate on the entire task tree that includes the
specified task, pass this value in the scope parameter of
those functions.

kTaskKernelProcess
The value indicating that the operation should apply to all
tasks within the same process as the specified task. When
you want the SetTaskPriority function or the
TerminateTask function to operate on all tasks within the
same process as the specified task, pass this value in the
scope parameter of those functions.

Task Options 2

When you use the CreateTask function, you can specify various task options.
One task option allows you to specify that the newly created task should be an
orphan. Unless you specify this option, a task created within the process of its
creator will be a child of its creator (a task created within a different process
than that of its creator will be an orphan implicitly). The second task option lets
you specify whether the microkernel should create a stack for the task that
cannot be paged out of memory (but you should avoid specifying this option).

Creating an orphan task affects the conditions under which the orphan
terminates. For example, if the TerminateTask function (page 2-24) is applied to
a specified task and its descendents, the orphans of the specified task will not
terminate unless the entire process terminates.

In general, you should not force the microkernel to create a stack that cannot be
paged out of memory. However, it may be necessary for you to request this if,
for example, you have to ensure that a task’s stack will be accessible to
hardware interrupt handlers and secondary interrupt handlers.

The constants for all task options are defined in the TaskOptions data type.

typedef OptionBits TaskOptions; /* orphans and stacks */
enum (

kTaskIsOrphan = 0x00400000, /* orphan */
kTaskIsResident = 0x00004000, /* resident */

);

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-13
Draft. Apple Computer, Inc. 4/19/96

Field descriptions
kTaskIsOrphan The value indicating that a task created within the process

of its creator should be an orphan. When a task is creating
another task within the same process and it wants the
newly created task to be an orphan, set this value in the
options parameter of the CreateTask function.

kTaskIsResident The value indicating that the microkernel should create a
stack for the task that cannot be paged out of memory. In
general, you should not specify this option. When you
must force the creation of a stack that cannot be paged out
of memory, set this value in the options parameter. Setting
this value does not affect the code, heap, or static data of
the task. For related information, see the
ControlPagingForRange function described in the chapter
‘Virtual Memory Services Reference.’

Task Name 2

A task name is a 4-character value that you can use for debugging. You
associate a task name with a task by specifying the name when you call the
CreateTask function. The microkernel stores the name you specify, but it does
not use the name for any purpose. You can obtain the task name for an existing
task by calling the GetTaskInformation function (page 2-26).

The TaskName data type defines a task name.

typedef OSType TaskName; /* 4-character task name */

Task ID 2

You use a task ID to refer to a task. You must use an ID to refer to a task
because you cannot refer directly to the underlying data structure of a task.

When you create a task using the CreateTask function, it generates a task ID for
the newly created task. An existing task can call the CurrentTaskID function
(page 2-30) to get its own task ID. You must supply this ID when you wish to
operate upon this task using the other functions described in this chapter.

The TaskID data type defines a task ID.

C H A P T E R 2

Tasks Reference

2-14 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

typedef struct OpaqueTaskID* TaskID;

The Task Information Structure 2

The task information structure contains information about a task. You obtain a
task information structure by calling the GetTaskInformation function
(page 2-26). The task information structure you obtain reflects the state of the
task when you called the GetTaskInformation function. Because the microkernel
uses a preemptive scheduling mechanism, the information supplied by the task
information structure may be obsolete by the time the GetTaskInformation
function returns.

The TaskInformation data type defines a task information structure.

struct TaskInformation { /* task information structure */
TaskName name; /* task name*/
KernelProcessID owningKernelProcess; /* task’s process */
TaskOptions options; /* creation options */
TaskPriority priority; /* current priority */
SchedulerState taskState; /* task state */
SchedulerState swiState; /* software interrupts */
Boolean isTerminating; /* is terminating */
Boolean reserved2[3]; /* reserved */
ItemCount softwareInterrupts; /* quantity processed */
LogicalAddress stackLimit; /* stack address */
ByteCount stackSize; /* stack size */
AbsoluteTime creationTime; /* task creation time */
AbsoluteTime cpuTime; /* CPU time consumed */
void *reserved; /* reserved */

};
typedef struct TaskInformation TaskInformation, *TaskInformationPtr;

Field descriptions
name The 4-character task name (page 2-13) passed in the name

parameter of the CreateTask function (page 2-18) when this
task was created.

owningKernelProcess
The process ID (described in the chapter ‘Process Manager
Reference’ to be provided at a later date) passed in the

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-15
Draft. Apple Computer, Inc. 4/19/96

owningKernelProcess parameter of the CreateTask function
when this task was created.

options The combination of task priority (page 2-3) and task
options (page 2-12) set as a result of calling the CreateTask
function.

priority The current numeric task priority. This field specifies a
numeric priority even if a priority category was specified
in the options parameter passed to the CreateTask function.

taskState A 4-character abbreviation of the scheduler state of the
task. This field is for debugging purposes. See the chapter
‘Debugging Services Reference’ for information on the
scheduler state enumerators.

swiState A 4-character abbreviation of the scheduler state of the
software interrupts (described in the chapter ‘Interrupt
Services Reference’) associated with the task. This field is
for debugging purposes. See the chapter ‘Debugging
Services Reference’ for information on the scheduler state
enumerators.

isTerminating A Boolean value indicating whether the task is in the
process of terminating. This field is true if the task is
terminating.

softwareInterrupts
The number of software interrupts sent to this task that
have been processed. The value in this field does not
include any software interrupts that are pending execution
by the task.

stackLimit The logical address of the base of the stack for this task. If
the creator of the task supplied a stack for this task, then
the value in this field is the address the creator specified in
the stackBase parameter of the CreateTask function. If the
creator of the task did not supply a stack, then the value in
this field is the base of the stack the microkernel created for
this task.

stackSize The size of the stack for this task. If the creator of the task
supplied a stack size for this task, then the value in this
field is the number of bytes the creator specified in the
stackSize parameter of the CreateTask function. If the
creator of the task did not supply a stack and stack size,

C H A P T E R 2

Tasks Reference

2-16 Tasks Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

then the value in this field is the size of the stack the
microkernel created for this task.

creationTime The time at which the task was created. You can compute
the time that has passed since the creation of the task in
absolute time units by subtracting the value in this field
from the value returned by the UpTime function (described
in the chapter ‘Timing Services Reference’).

cpuTime The amount of CPU time the task has consumed. The
value in this field includes time consumed by microkernel
execution, by processing software interrupts, and by
processing hardware and secondary interrupts that
occurred while the task was executing.

When you call the GetTaskInformation function, you must supply a version for
the task information structure you pass in the taskInfo parameter. The task
information version enables your software to remain compatible with future
releases of the microkernel. The task information version is defined by the
kTaskInformationVersion constant. It represents the only version of the task
information structure available at this time.

enum {
kTaskInformationVersion = 1

};

Task Main Entry Point 2

When you call the CreateTask function (page 2-18) to create a task, you pass a
pointer to the main entry point at which the task will begin executing. If it does
not terminate explicitly using the ExitTask function (page 2-22) or the
TerminateTask function (page 2-24), the task terminates implicitly when the
main entry point function returns.

The main entry point you specify must conform to the declaration of a task
main entry point. The declaration of a task main entry point requires you to
specify a main entry point function that takes a single parameter and returns a
result code. The parameter allows you to pass any type of initial data to the
main entry point when you create the task. The result code represents the
completion status of the main entry point function upon its return. This
completion status is returned to the creator of the task if the creator requested
notification of the task’s termination.

C H A P T E R 2

Tasks Reference

Tasks Constants and Data Types 2-17
Draft. Apple Computer, Inc. 4/19/96

The TaskProc data type defines a pointer to a task main entry point.

typedef OSStatus (*TaskProc)(void *parameter); /* main entry point */

Task Storage Index 2

Each task within a process has access to the local data on its stack and to static
data that is shared globally among all tasks within the same process. Sharing
static data can be useful in many cases. For example, a function could use a
static lock to synchronize access to a resource. Because all tasks calling that
function would attempt to acquire the same static lock, the function could
guarantee that only one task would be modifying the resource at any time.

In some cases, however, you may wish to provide static data on a per-task
rather than a shared basis. For example, a shared library might need to
preserve unique state information for each task using the shared library. To
support the per-task static data mechanism, the microkernel provides a task
storage index, a task storage value (page 2-17), and several functions that
operate upon these data types.

A task storage index is an identifier for a particular per-task static variable.
Typically, a shared library calls the AllocateTaskStorageIndex function
(page 2-33) once to allocate a unique per-task static variable for every task
within a process. The AllocateTaskStorageIndex function returns a single task
storage index that identifies a unique per-task static variable for every task
within the process (as well as any tasks created subsequently within the
process). Each task has its own per-task static variable and can assign a value to
it by passing the task storage index and a task storage value (page 2-17) to the
SetTaskStorageValue function (page 2-35). A task retrieves the value assigned to
its per-task static variable by passing the task storage index to the
GetTaskStorageValue function (page 2-37).

The TaskStorageIndex data type defines a task storage index.

typedef UInt32 TaskStorageIndex; /* task storage index */

Task Storage Value 2

A task uses a task storage value to assign a unique value to its per-task static
variable. Typically, a task storage value represents a reference to a block of data.

C H A P T E R 2

Tasks Reference

2-18 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

A task assigns a task storage value to its per-task static variable by calling the
SetTaskStorageValue function (page 2-35) and passing the value along with the
task storage index (page 2-17) that identifies the per-task static variable. A task
gets the task storage value assigned to its per-task static variable by calling the
GetTaskStorageValue (page 2-37) function.

The TaskStorageValue data type defines a task storage value.

typedef void *TaskStorageValue; /* task storage value */

Tasks Functions 2

Creating and Terminating Tasks 2

In general, you can rely on high level services to create and terminate tasks for
you. However, when you need to create and terminate tasks yourself, you can
use the CreateTask function (page 2-18), the ExitTask function (page 2-22), and
the TerminateTask function (page 2-24).

CreateTask 2

Creates a task.

OSStatus CreateTask (TaskName name,
KernelProcessID owningKernelProcess,
TaskProc entryPoint,
void *parameter,
LogicalAddress stackBase,
ByteCount stackSize,
const KernelNotification *notification,
TaskOptions options,
TaskID *theTask);

C H A P T E R 2

Tasks Reference

Tasks Functions 2-19
Draft. Apple Computer, Inc. 4/19/96

name A 4-character task name (page 2-13). You supply a name to use
for debugging purposes. You can obtain this task name by
calling GetTaskInformation function (page 2-26) once the task is
created.

owningKernelProcess
A process ID. You supply the process ID to which the newly
created task should belong. You can obtain the process ID of the
current task by calling the CurrentKernelProcessID function
(described in the chapter ‘Process Manager Reference’ to be
provided at a later date). If the current task supplies its own
process ID in this parameter and the bit indicated by the
kTaskIsOrphan constant is not set in the options parameter, the
newly created task will be a child of the current task. If the
current task specifies a different process ID than its own, the
newly created task will be an orphan task within the specified
process. Note that the microkernel will not permit a
nonprivileged task to create a task within a process that
contains privileged tasks. You can obtain this process ID by
calling GetTaskInformation function (page 2-26) once the task is
created. See the chapter ‘Process Manager Reference’ (to be
provided at a later date) for more detailed information on
processes.

entryPoint A pointer to the main entry point at which you want the task to
begin executing. The address of the main entry point must be
within the address space of the process you supply in the
owningKernelProcess parameter. You must specify a pointer to a
function that conforms to the declaration of a task main entry
point (page 2-16). You specify the initial data you want to pass
to this main entry point in parameter. The return of the main
entry point function will cause the task to terminate with the
completion status returned by the main entry point function.

parameter A 32-bit word of data you want the microkernel to pass to the
function you specified in the entryPoint parameter when the
task begins executing. You can supply any type of initial data in
this parameter. You can supply null if there is no information
you wish to convey to the main entry point at which the task
begins executing.

C H A P T E R 2

Tasks Reference

2-20 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

stackBase The logical address of the base of the stack you are supplying
for this task. In general, you should specify null and allow the
microkernel to create the stack for you (in which case it also
creates guard pages for your stack). If you are supplying a
stack, you must specify the size of the stack you are supplying
in the stackSize parameter. You can obtain the actual stack base
by calling GetTaskInformation function (page 2-26) once the task
is created. See the chapters ‘Dynamic Storage Allocation
Services Reference’ and ‘Virtual Memory Services Reference’ for
more detailed information on memory.

stackSize The size you want the stack to be for this task. If you are
providing a stack in the stackBase parameter, you must supply
the size of the stack you are providing in this parameter. If you
are allowing the microkernel to create the stack, you can either
supply a particular size you want the stack to be or specify 0 if
you want the stack to be the default size (in either case, the
microkernel allocates additional space for guard pages). You
can obtain the actual stack size by calling GetTaskInformation
function (page 2-26) once the task is created. A task that needs
to perform its own stack checking can use the
RemainingStackSpace function (page 2-30).

notification A pointer to a microkernel notification structure (described in
the chapter ‘Microkernel Notification Reference’ to be provided
at a later date) you supply to specify the mechanism by which
the microkernel should notify the creator of the task when the
task terminates. A task can terminate explicitly by calling the
ExitTask function (page 2-22) or implicitly when the main entry
point function passed in the entryPoint parameter returns.
Specify null if you do not want delivery of notification to the
creator of the task.

options The options that specify the attributes of the task. You supply a
value in which you have set the desired combination of bits
indicated by the task priority constants (page 2-3) and task
options constants (page 2-12) or you supply null if you want
the new task to inherit the options used to create its parent. You
can obtain the options you specified when you created the task
as well as its actual current priority by calling
GetTaskInformation function (page 2-26) once the task is created.

C H A P T E R 2

Tasks Reference

Tasks Functions 2-21
Draft. Apple Computer, Inc. 4/19/96

theTask A pointer to a task ID (page 2-13). On output, CreateTask
supplies an ID for the newly created task. You use this ID to
refer to this task in other task functions. Once a task has been
created, it can call the CurrentTaskID function (page 2-30) to get
its own task ID.

function result
A result code. The result code noErr indicates that CreateTask
successfully created a task. The result code kernelPrivilegeErr
indicates that a nonprivileged task attempted to create a task
within a process containing privileged tasks. The CreateTask
function returns result code paramErr if you attempt to set the
priority of the task to 0 or 31. See “Tasks Result Codes”
(page 2-38) for a description of other result codes that
CreateTask may return.

DISCUSSION

In most cases, you can rely on high level services to create tasks for you.
Launching an application automatically invokes the Process Manager
(described in the chapter ‘Process Manager Reference’ to be provided at a later
date), which creates the process and main task for the application. Launching a
server automatically invokes the Server Manager (described in the chapter
‘Server Manager Reference’), which creates the process and main task for a
server.

The tasks within a process are all privileged or they are all nonprivileged.
Whether a task is privileged or nonprivileged depends upon the process in
which it is created. A task is privileged when it is created within a process
containing privileged tasks and it is nonprivileged when it is created within a
process containing nonprivileged tasks. Although a task can create another task
within a different process, the microkernel does not permit a nonprivileged
task to create a task within a process containing privileged tasks. All
applications, as well as most other types of software, should use nonprivileged
tasks.

When you create a task, you should specify its priority using a category and
you should always specify the lowest priority that is practical for your
purposes.

C H A P T E R 2

Tasks Reference

2-22 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

In most cases, you can rely on the Process Manager and Server Manager to
terminate tasks and processes for you. However, if you need to terminate a task
directly, see the descriptions for the TerminateTask function (page 2-24) and the
ExitTask function (page 2-22), both of which force a task to terminate before its
main entry point function returns.

ExitTask 2

Terminates the calling task.

void ExitTask (TerminateOptions options,
OSStatus exitStatus);

options The termination options. You must specify kNilOptions for this
parameter.

exitStatus The completion status you are supplying for your termination.
If the creator of the task requested notification (described in the
chapter ‘Microkernel Notification Reference’ to be provided at a
later date) of your termination and it specified a notification
mechanism that would convey the completion status, the
microkernel will include the completion status you supply
when it notifies the creator.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-23
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

Although you can rely on the Process Manager and Server Manager to
terminate most tasks and processes for you, a task can use ExitTask, which
terminates a task before its main entry point function returns, to terminate itself
directly.

A task terminating itself using ExitTask will discontinue execution as soon as
termination begins. If a terminated task has children, the microkernel delays
reclaiming its stack until its children have terminated. This allows any child
task that references its parent’s stack to continue normal execution.

Once a task terminates, the microkernel delivers termination notification to the
task’s creator if the creator requested termination notification when it created
the task. If no more tasks exist within the process that contained the calling task
or the calling task is the main task within the process, the microkernel calls the
ExitKernelProcess function (described in the chapter ‘Process Manager
Reference’ to be provided at a later date) to terminate the task’s process, which
allows the Code Fragment Manager (described in the chapter ‘Code Fragment
Manager Reference’ to be provided at a later date) to execute any termination
routines for shared libraries the process was using.

Although the TerminateTask function (page 2-24) is similar to ExitTask, its effect
on processes is different and it does not allow the Code Fragment Manager to
execute termination routines. Using ExitTask is usually preferable to using the
TerminateTask function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

2-24 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

TerminateTask 2

Terminates the specified task.

OSStatus TerminateTask (
TaskID theTask,
TaskRelationship scope,
TerminateOptions options,
OSStatus status);

theTask The task ID (page 2-13) for the task you want to terminate. You
supply the task ID that the CreateTask function (page 2-18)
generated. A task can call the CurrentTaskID function
(page 2-30) to get its own task ID

scope The task relationship constant (page 2-11) you supply to specify
which other related tasks (if any) this operation should affect.

options The termination options. You must specify kNilOptions for this
parameter.

status The completion status you are supplying for this termination. If
the creator of the task (or creators, if you specified additional
tasks to terminate in the scope parameter) requested notification
(described in the chapter ‘Microkernel Notification Reference’
to be provided at a later date) of this task’s termination and it
specified a notification mechanism that would convey the
completion status, the microkernel will include the completion
status you supply when it notifies the creator.

function result
A result code. The result code noErr indicates that
TerminateTask successfully terminated the specified tasks. The
TerminateTask function returns no result code if it terminated
the calling task. See “Tasks Result Codes” (page 2-38) for a
description of other result codes that TerminateTask may return.

DISCUSSION

Although you can rely on the Process Manager and Server Manager to
terminate most tasks and processes for you, you can use TerminateTask, which

C H A P T E R 2

Tasks Reference

Tasks Functions 2-25
Draft. Apple Computer, Inc. 4/19/96

terminates a task before its main entry point function returns, to terminate any
specified task directly.

A task you terminate using TerminateTask will discontinue execution as soon as
termination begins. If you terminate a blocked task, the microkernel will force
it to unblock (this implies that you must be prepared to handle the unexpected
termination of tasks).

If a terminated task has children and you did not specify that they should
terminate as well, the microkernel delays reclaiming its stack until its children
have terminated. This allows any child task that references its parent’s stack to
continue normal execution.

Once a task terminates, the microkernel delivers termination notification to the
task’s creator if the creator requested termination notification when it created
the task. If no more tasks exist within the process that contained the terminated
task, the microkernel calls the DeleteKernelProcess function (described in the
chapter ‘Process Manager Reference’ to be provided at a later date) to delete
the process. Because it calls the DeleteKernelProcess function, the Code
Fragment Manager (described in the chapter ‘Code Fragment Manager
Reference’ to be provided at a later date) is not allowed to execute termination
routines.

The ExitTask function (page 2-22), which a task uses to terminate itself, is
similar to TerminateTask, but it has a different effect on processes and it allows
the Code Fragment Manager to execute termination routines when a process
terminates. When the ExitTask function results in the termination of a process,
the ExitKernelProcess function (described in the chapter ‘Process Manager
Reference’ to be provided at a later date) is called. Furthermore, the ExitTask
function causes the task’s process to terminate if the calling task is the main
task within a process. You should use TerminateTask if you do not care about
the execution of termination routines and you want to terminate the main task
within a process without causing the process to terminate as well.

C H A P T E R 2

Tasks Reference

2-26 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Getting Information About Tasks 2

You can obtain information about any existing task by calling the
GetTaskInformation function (page 2-26). You can obtain the task IDs of all
tasks within a process by calling the GetTasksInKernelProcess function
(page 2-28).

A task can obtain its own task ID by calling the CurrentTaskID function
(page 2-30) and it can determine how much space remains on its stack by
calling the RemainingStackSpace function (page 2-30).

GetTaskInformation 2

Obtains information about the specified task.

OSStatus GetTaskInformation (
TaskID theTask,
PBVersion version,
TaskInformation *taskInfo);

theTask A task ID (page 2-13). You supply the task ID that the
CreateTask function (page 2-18) generated. A task can call the
CurrentTaskID function (page 2-30) to get its own task ID

version The version (described in the chapter ‘Systemwide Constants
and Data Types Reference’ to be provided at a later date) of the
task information structure (page 2-14) you are supplying. This

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-27
Draft. Apple Computer, Inc. 4/19/96

parameter enables your software to remain compatible with
future releases of the microkernel. You must specify
kTaskInformationVersion (page 2-16) for this parameter.

taskInfo A pointer to a task information structure (page 2-14). On
output, GetTaskInformation supplies this structure with
information about the task that you specify in the theTask
parameter. When finished with this structure, you are
responsible for releasing its memory.

function result
A result code. The result code noErr indicates that
GetTaskInformation successfully supplied information for the
specified task. See “Tasks Result Codes” (page 2-38) for a
description of other result codes that GetTaskInformation may
return.

DISCUSSION

The task information you obtain reflects the state of the task at the time you
called GetTaskInformation. Because the microkernel uses a preemptive
scheduling mechanism, the information supplied by the task information
structure may be obsolete by the time the GetTaskInformation function returns.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

2-28 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

GetTasksInKernelProcess 2

Provides the task IDs of all tasks within the specified process.

OSStatus GetTasksInKernelProcess (
KernelProcessID kernelProcess,
ItemCount requestedTasks,
ItemCount *totalTasks,
TaskID *theTasks);

kernelProcess
A process ID that you supply. You can obtain the process ID of
the current task by calling the CurrentKernelProcessID function
(described in the chapter ‘Process Manager Reference’ to be
provided at a later date). You can obtain the process ID of any
existing task by calling the GetTaskInformation function
(page 2-26).

requestedTasks
The maximum number of IDs that you are prepared to receive
from GetTasksInKernelProcess. You supply in this parameter
the number of entries available at the location specified by the
theTasks parameter.

totalTasks A pointer to the total number of tasks within the specified
process. On output, GetTasksInKernelProcess supplies this
value. If this value is less than or equal to the value you
specified in the requestedTasks parameter, then task IDs for all
tasks in the specified process were supplied on output at the
location specified by the theTasks parameter. If this value is
greater than the value you specified in the requestedTasks
parameter, then you did not provide enough entries to
accommodate all task IDs. If you did not provide enough
entries, you should allocate the number of entries specified by
the totalTasks parameter and call GetTasksInKernelProcess
again.

theTasks A pointer to a memory area into which
GetTasksInKernelProcess should copy the task IDs of the tasks
in the specified process. You are responsible for allocating
enough memory to hold the number of task IDs you requested
in the requestedTasks parameter. Specify null in this parameter

C H A P T E R 2

Tasks Reference

Tasks Functions 2-29
Draft. Apple Computer, Inc. 4/19/96

and specify 0 in the requestedTasks parameter if you want
GetTasksInKernelProcess to supply a value on output for the
totalTasks parameter, but you do not wish to obtain the task
IDs. On output, GetTasksInKernelProcess copies the requested
number of task IDs into the specified memory area until it runs
out of entries or copies all the task IDs.

function result
A result code. The result code noErr indicates that the specified
process exists, but it does not indicate whether all task IDs were
supplied on output. See “Tasks Result Codes” (page 2-38) for a
description of other result codes that GetTasksInKernelProcess
may return.

DISCUSSION

The information you obtain from this function reflects which tasks existed
within the specified process at the time you called GetTasksInKernelProcess.
Because tasks can be created or terminated at any time, this information may
be obsolete by the time GetTasksInKernelProcess returns.

In general, you should call GetTasksInKernelProcess in a loop until you have
provided enough entries to accommodate all the task IDs. Because new tasks
may be created within the specified process while you are calling
GetTasksInKernelProcess, you may have to call it and allocate additional
entries multiple times.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

2-30 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

CurrentTaskID 2

Returns the ID of the calling task.

TaskID CurrentTaskID(void);

function result
The task ID (page 2-13) of the calling task.

DISCUSSION

The CurrentTaskID function returns the task ID that the CreateTask function
(page 2-18) generated for the current task.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

RemainingStackSpace 2

Returns the amount of space remaining in the current stack for the calling task.

ByteCount RemainingStackSpace (void);

function result
The amount of space in bytes remaining in the current stack for
the calling task.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-31
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

A stack overflow causes an exception if the microkernel created guard pages
for the stack. The microkernel creates the stack (and its guard pages) for a task
if you pass null in the stackBase parameter of the CreateTask function
(page 2-18).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function has no calling restrictions.

Changing the Priority of a Task 2

You can change the priority of any existing task or set of related tasks within a
process by calling the SetTaskPriority function (page 2-31).

SetTaskPriority 2

Sets the priority of a task.

OSStatus SetTaskPriority (
TaskID theTask,
TaskRelationship scope,
SetTaskPriorityOptions options);

theTask The task ID (page 2-13) for the task whose priority you are
changing. You supply the task ID that the CreateTask function
(page 2-18) generated. A task can call the CurrentTaskID
function (page 2-30) to get its own task ID

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 2

Tasks Reference

2-32 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

scope The task relationship constant (page 2-11) you supply to specify
which other related tasks (if any) this operation should affect.

options The options that specify the new priority of the task or tasks.
You supply a value in which you have set the desired
combination of bits indicated by the task priority constants
(page 2-3) and set task priority constants (page 2-8).

function result
A result code. The result code noErr indicates that
SetTaskPriority successfully set the specified priority in the
specified task or tasks. The SetTaskPriority returns result code
paramErr if you attempt to set the priority of the task to 0 or 31.
See “Tasks Result Codes” (page 2-38) for a description of other
result codes that TerminateTask may return.

DISCUSSION

When you set the priority of a task, you should use a priority category and you
should always specify the lowest priority that is practical for your purposes.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Working With Per-Task Static Data 2

In general, static data is shared globally among all tasks within a process.
However, it is useful in some cases to provide separate static data for each task
in a process. The functions described in this section support the microkernel’s
per-task static data mechanism.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-33
Draft. Apple Computer, Inc. 4/19/96

AllocateTaskStorageIndex 2

Allocates a task storage index that identifies a different per-task static variable
for every task within a process.

OSStatus AllocateTaskStorageIndex (TaskStorageIndex *theIndex);

theIndex A pointer to a task storage index (page 2-17). On output,
AllocateTaskStorageIndex supplies a newly created index that
identifies a separate static variable for each task that uses it.
Typically, you assign this index to a global static variable that
all tasks using the shared library can access. To assign a value to
its per-task static variable, a task passes this index and a task
storage value (page 2-17) to the SetTaskStorageValue function
(page 2-35). To read the value of its per-task static variable, a
task passes this index to the GetTaskStorageValue function
(page 2-37).

function result
A result code. The result code noErr indicates that
AllocateTaskStorageIndex successfully created a task storage
index. See “Tasks Result Codes” (page 2-38) for a description of
other result codes that AllocateTaskStorageIndex may return.

DISCUSSION

Calling AllocateTaskStorageIndex generates a task storage index and allocates
a unique per-task static variable for every task within a process. A unique
per-task static variable is allocated as well for each task created subsequently
within this process. This single task storage index identifies a different per-task
static variable for every task.

During its initialization, a library should call AllocateTaskStorageIndex and
store the newly created index in a global static variable. For each task in the
process, an initial value of null is assigned to the per-task static variable
identified by this index.

Because the microkernel supplies only a small quantity of task storage indices,
each library should allocate no more than one. Typically, each task uses that
one per-task static variable to refer to a larger block of data allocated in a
memory area.

C H A P T E R 2

Tasks Reference

2-34 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See the DeallocateTaskStorageIndex function (page 2-34) for information on
destroying a task storage index.

DeallocateTaskStorageIndex 2

Deallocates the specified task storage index.

OSStatus DeallocateTaskStorageIndex(TaskStorageIndex theIndex);

theIndex A task storage index (page 2-17). You supply the task storage
index that the AllocateTaskStorageIndex function (page 2-33)
generated. Once deallocated, a subsequent call to the
AllocateTaskStorageIndex function may reassign this task
storage index to a new set of per-task static variables.

function result
A result code. The result code noErr indicates that
DeallocateTaskStorageIndex successfully deleted the specified
task storage index. See “Tasks Result Codes” (page 2-38) for a
description of other result codes that
DeallocateTaskStorageIndex may return.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-35
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

A library should call DeallocateTaskStorageIndex when it will not result in
synchronization problems.(Russell, care to elaborate?).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See the SetTaskStorageValue function (page 2-35) and the GetTaskStorageValue
function (page 2-37) for information on setting and getting the value of the
per-task static variable for a particular task.

SetTaskStorageValue 2

Assigns the specified task storage value to a per-task static variable for the
calling task.

OSStatus SetTaskStorageValue (
TaskStorageIndex theIndex,
TaskStorageValue newValue);

theIndex A task storage index (page 2-17). The calling task supplies the
task storage index that the AllocateTaskStorageIndex function
(page 2-33) generated. Typically, the library that allocated the
task storage index assigned it to a global static variable. The
task storage index identifies a separate static variable for each
calling task.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

2-36 Tasks Functions

Draft. Apple Computer, Inc. 4/19/96

newValue A task storage value (page 2-17). The calling task supplies the
value it wants to store in the per-task static variable identified
by the theIndex parameter. The calling task can read the value
by calling the GetTaskStorageValue function (page 2-37).

function result
A result code. The result code noErr indicates that
SetTaskStorageValue successfully set the specified task storage
value in the per-task static variable. See “Tasks Result Codes”
(page 2-38) for a description of other result codes that
SetTaskStorageValue may return.

DISCUSSION

Typically, a task uses its per-task static variable to store a reference to a larger
block of data allocated in a memory area.

The SetTaskStorageValue function is less expensive to use than a microkernel
call.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See the DeallocateTaskStorageIndex function (page 2-34) for information on
destroying a task storage index.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 2

Tasks Reference

Tasks Functions 2-37
Draft. Apple Computer, Inc. 4/19/96

GetTaskStorageValue 2

Reads the task storage value assigned to a per-task static variable for the calling
task.

TaskStorageValue GetTaskStorageValue (TaskStorageIndex theIndex);

theIndex A task storage index (page 2-17). The calling task supplies the
task storage index that the AllocateTaskStorageIndex function
(page 2-33) generated. Typically, the library that allocated the
task storage index assigned it to a global static variable. The
task storage index identifies a separate static variable for each
calling task.

function result
A task storage value (page 2-17). This function returns the value
stored in the per-task static variable identified by theIndex for
the calling task. This value will be null or it will be the value
assigned when the task most recently called the
SetTaskStorageValue function with the same task storage index.
A null result indicates that the calling task has not yet called
SetTaskStorageValue to initialize its per-task static variable.

DISCUSSION

Before calling the SetTaskStorageValue function, a task should call
GetTaskStorageValue and test the result. If the result is null, the task has not yet
initialized its per-task static variable. To initialize its per-task static variable, the
task should allocate a block of data and pass the address of the block to the
SetTaskStorageValue function.

The GetTaskStorageValue function is less expensive to use than a microkernel
call.

C H A P T E R 2

Tasks Reference

2-38 Tasks Result Codes

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See the DeallocateTaskStorageIndex function (page 2-34) for information on
destroying a task storage index.

Tasks Result Codes 2

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

noErr 0 No error
kernelPrivilegeErr -2404 Illegal attempt to create privileged task
memFullErr –108 Not enough memory
kernelIDErr –2419 Process ID or task ID does not exist

C H A P T E R 3

Contents 3-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 3-0
Listing 3-0
Table 3-0

3 Dynamic Storage Allocation
Service Reference

Constants and Data Types 3-3
Memory Allocators 3-3

Functions 3-4
Allocating Fixed-Size Pointers 3-4

MemNewFixed 3-4
MemNewFixedClear 3-6
MemDisposeFixed 3-7

Allocating Variable-Sized Pointers 3-8
MemNewVariable 3-9
MemNewVariableClear 3-10
MemSizeVariable 3-11
MemGetVariableSize 3-12
MemDisposeVariable 3-13

Allocating Handles 3-14
MemNewHandle 3-15
MemNewHandleClear 3-16
MemSizeHandle 3-17
MemGetHandleSize 3-18
MemDisposeHandle 3-19

Glossary 3-20

C H A P T E R 3

3-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 3

3-3
Draft. Apple Computer, Inc. 4/19/96

Dynamic Storage Allocation Service Reference 3

Dynamic Storage Allocation (DSA) service provides functions that you can use
to allocate fixed or variable sized memory blocks that are referenced by
pointers and variable-sized memory blocks that are referenced by handles.
DSA service guarantees at least 4-byte alignment for the allocated blocks.

Each function that you use to allocate memory requires that you specify a
memory allocator. Your choice of allocator determines where the memory is
allocated (global area or calling process’ area) and whether it is resident.

Constants and Data Types 3

This section describes your choice of memory allocators, which you use to
specify whether the memory you allocate is resident, global, or local.

Memory Allocators 3

When you call one of the DSA functions to allocate a block of memory and
initialize a pointer or handle that references this block, you must specify one of
the following memory allocators: xResidentAllocator,
xDefaultGlobalAllocator, or xDefaultAllocator. Each of these allocators is
defined to allocate memory that is characterized by different attributes:

xResidentAllocator
 Allocate memory that is resident. Use this type of allocator
if you need storage for data that must not be paged out of
memory. This type can be used only by privileged code
like a driver or by code that can be called at interrupt time.

xDefaultGlobalAllocator

Allocate memory from the system-wide global area. Use
this type of allocator if you need to store data that is visible
to all processes.

xDefaultAllocator Allocate memory from your process’ area. Use this type of
allocator if you need to store data that is visible only to
your process.

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-4
Draft. Apple Computer, Inc. 4/19/96

Functions 3

You use the functions described in the following sections

■ to allocate a block of memory and to initialize a handle or pointer that
references these blocks

■ to resize memory blocks that are referenced by variable pointers or by
handles

■ to dispose of the handles or pointers you have created

Allocating Fixed-Size Pointers 3

DSA Service offers two sets of functions that you can use to create and
manipulate pointers. You use the set of functions described in this section to
create and dispose of fixed size pointers. Fixed-size pointers reference blocks
of memory whose size you cannot change. If you used a fixed-size pointer to
allocate memory, you must specify the size of this memory block when you
dispose of the pointer referencing it. A variable-size pointer (page 3-8)
references a block of memory whose size you can change. You do not have to
specify the size of the referenced memory when you dispose of a variable-sized
pointer. Unless you need to resize blocks of memory or the size of the block is
not known at disposal time, it is recommended that you use fixed-size pointers.

MemNewFixed 3

Allocates a block of memory referenced by the specified pointer.

extern OSStatus MemNewFixed(MemAllocatorRef inAllocator,
ByteCount inSize,
void **outMemory);

inAllocator The name of the allocator (page 3-3) to be used in creating the
pointer.

inSize The size of the block of memory referenced by the pointer.

outMemory On input, a pointer to a block of memory whose size is
specified by the inSize parameter. If the function fails, this is set
to NULL.

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-5
Draft. Apple Computer, Inc. 4/19/96

function result If there is not enough memory to allocate the requested
amount, the function returns the result kFullMemError.

DISCUSSION

This function allocates a fixed-size block of memory in the calling program’s
area or in the global area, depending on the memory allocator specified. You
cannot change the size of a fixed-size pointer. Unless you need to resize blocks
of memory or the size of the block is not known at disposal time, it is
recommended that you use fixed-size pointers.

SPECIAL CONSIDERATIONS

When you dispose of the pointer, you must specify the size of memory which it
references (specified by the inSize parameter).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemDisposeFixed function (page 3-7) to dispose of memory allocated
with the MemNewFixed function.

Use the MemNewVariable function (page 3-9), to allocate a block of memory
whose size you can change.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-6
Draft. Apple Computer, Inc. 4/19/96

MemNewFixedClear 3

Allocates a block of memory referenced by the specified pointer and initializes
this block to 0.

extern OSStatus MemNewFixedClear(MemAllocatorRef inAllocator,
ByteCount inSize,
void **outMemory);

inAllocator The name of the allocator (page 3-3) to be used in creating the
pointer.

inSize The size of the block of memory referenced by the pointer.

outMemory On output, a pointer to a block of memory whose size is
specified by the inSize parameter. If the function fails, this is set
to NULL.

function result If there is not enough memory to allocate the requested amount
of memory, the function returns the result kFullMemError.

DISCUSSION

This function allocates a fixed-size block of memory in the calling program’s
area or in the global area, depending on the memory allocator specified. You
cannot change the size of a fixed-size pointer. Unless you need to resize blocks
of memory or the size of the block is not known at disposal time, it is
recommended that you use fixed-size pointers.

SPECIAL CONSIDERATIONS

You must specify the size of this memory block when you dispose of the
pointer referencing it.

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-7
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemDisposeFixed function (page 3-7) to dispose of a block of memory
created with the MemNewFixedClear function.

Use the MemNewVariable function (page 3-9), to allocate a block of memory
whose size you can change.

MemDisposeFixed 3

Frees a fixed-size block of memory and sets the pointer referencing it to NULL.

extern OSStatus MemDisposeFixed(
MemAllocatorRef inAllocator,
ByteCount inSize,
void **ioMemory);

inAllocator The name of the allocator (page 3-3) that was used to create the
pointer.

inSize The size of the block of memory to be disposed. This must be
the same size as that specified with the inSize parameter to the
MemNewFixed function or MemNewFixedClear function. If it is not,
the behavior of the function is undefined.

ioMemory On input, the pointer referencing the memory to be disposed.
On output, *ioMemory is set to NULL.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-8
Draft. Apple Computer, Inc. 4/19/96

function result If an error occurs, the block is still disposed and the pointer
referencing it is set to NULL.

DISCUSSION

Use this function to dispose of a block of memory allocated with the
MemNewFixed function or MemNewFixedClear function.

If the calling program terminates without explicitly disposing of the pointers it
has allocated, the following happens:

■ If the pointer is global, it is not disposed.

■ If the pointer is local, it is disposed as part of process termination.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To allocate a new block of memory that is fixed in size, use the MemNewFixed
function (page 3-4) or the MemNewFixedClear function (page 3-6).

Allocating Variable-Sized Pointers 3

You use the functions described in this section to allocate, manipulate, and
dispose of variable sized pointers. These are pointers that reference a block of
memory whose size you can change during program execution.

Unless you need to resize blocks of memory or the size of the block is not
known at disposal time, it is recommended that you use fixed-size pointers,
which are described in “Allocating Fixed-Size Pointers” (page 3-4).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-9
Draft. Apple Computer, Inc. 4/19/96

MemNewVariable 3

Allocates a block of memory that you can resize and returns a pointer that
references it.

extern OSStatus MemNewVariable(MemAllocatorRef inAllocator,
ByteCount inSize,
void **outMemory);

inAllocator The name of the allocator (page 3-3) to be used in creating the
pointer.

inSize The initial size of the memory block.

outMemory The pointer referencing the block of memory whose size is
specified by the inSize parameter. If the function fails, this
pointer is set to NULL.

function result If there is not enough memory to allocate the requested
amount, the function returns the result kFullMemError.

DISCUSSION

When you dispose of a block of memory allocated with this function, you do
not have to specify its size. You can change the size of the allocated memory
with the MemSizeVariable function.

Unless you need to resize blocks of memory or the size of the block is not
known at disposal time, it is recommended that you use fixed-size pointers

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-10
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

Use the MemSizeVariable function (page 3-11) to change the size of a block of
memory.

Use the MemDisposeVariable function (page 3-13) to dispose of a block of
memory allocated with the MemNewVariable function.

Use the MemNewFixed function (page 3-4) to allocate a fixed-size block of memory.

MemNewVariableClear 3

Allocates a block of memory that you can resize, initializes it to 0, and returns a
pointer that references it.

extern OSStatus MemNewVariableClear(MemAllocatorRef inAllocator,
ByteCount inSize,
void **outMemory);

inAllocator The name of the allocator (page 3-3) to be used in creating the
pointer.

inSize The initial size of the memory block.

outMemory The pointer referencing the block of memory whose size is
specified by the inSize parameter. If the function fails, this
pointer is set to NULL.

function result If there is not enough memory to allocate the requested
amount, the function returns the result kFullMemError.

DISCUSSION

When you dispose of a block of memory allocated with this function, you do
not have to specify its size. You can change the size of the allocated memory
with the MemSizeVariable function.

Unless you need to resize blocks of memory or the size of the block is not
known at disposal time, it is recommended that you use fixed-size pointers

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-11
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemSizeVariable function (page 3-11) to change the size of a block of
memory.

Use the MemDisposeVariable function (page 3-13) to dispose of a block of
memory allocated with the MemNewVariable function.

Use the MemNewFixed function (page 3-4) to allocate a fixed-size block of memory.

MemSizeVariable 3

Resizes a variable-sized block of memory.

extern OSStatus MemSizeVariable(MemAllocatorRef inAllocator,
ByteCount inSize,
void **ioMemory);

inAllocator The name of the allocator (page 3-3) used to create the pointer.

inSize The new size of the block of memory.

ioMemory On input, a pointer to the block of memory whose size you
want to change. On output, a pointer to the resized block of
memory. If the function fails, this pointer is left unchanged. The
block returned might be different than the block passed in.

function result If there is not enough memory to allocate a larger block of
memory, the function returns the result kMemFullErr.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-12
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

If you make the block of memory larger, the data that is added is undefined. If
you make the block of memory smaller, the data that lies beyond the boundary
specified by the inSize parameter is also undefined. Resizing the block might
cause it to be moved.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemGetVariableSize function (page 3-11) to obtain the current size of a
block of memory.

Use the MemNewFixed function (page 3-4) to allocate a fixed-size block of memory.

MemGetVariableSize 3

Returns the current size of a block of memory allocated using the
MemNewVariable function.

extern OSStatus MemGetVariableSize(MemAllocatorRef inAllocator,
void *inMemory,
ByteCount *outSize);

inAllocator The name of the allocator (page 3-3) used to create the pointer.

inMemory The pointer referencing the block of memory whose size you
want to obtain.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-13
Draft. Apple Computer, Inc. 4/19/96

outSize On return, the size of the block of memory referenced by the
inMemory parameter. If the function fails, this is set to 0.

function result If the function succeeds, it returns the result NoErr.

DISCUSSION

If the block whose size is sought is not a valid block—that is, if it is not a
variable block allocated using the allocator specified by the inAllocator
parameter, the behavior of this function is undefined.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemSizeVariable function (page 3-11) to change the size of a block
allocated with the MemNewVariable function

Use the MemDisposeVariable function (page 3-13) to dispose of a block of
memory allocated with the MemNewVariable function.

MemDisposeVariable 3

Disposes of a pointer that references a block of memory you have allocated
using the MemNewVariable function.

extern OSStatus MemDisposeVariable(MemAllocatorRef inAllocator,
void **ioMemory);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-14
Draft. Apple Computer, Inc. 4/19/96

inAllocator The name of the allocator (page 3-3) used to create the pointer

ioMemory A pointer to the block of memory you want to dispose of. On
output, whether or not the function succeeds, the pointer is set
to NULL and the block of memory is no longer considered valid.

function result To be provided.

DISCUSSION

When the MemDisposeVariable function returns, the contents of the block are
undefined. Note that memory referenced by the pointer you are disposing
might be reallocated before the function returns.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemNewVariable function (page 3-9) or MemNewVariableClear function
(page 3-10) to allocate a block of memory that you can resize.

Allocating Handles 3

You can use the functions described in this section to create, resize, and dispose
of handles. You can use the functions provided to manipulate handles whether
these handles were created using the System 7 Memory Manager or whether
they were created using the MemNewHandle function. Note, that the opposite is
not true: you cannot use a handle created by the MemNewHandle function to call
the System 7 Memory Manager.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-15
Draft. Apple Computer, Inc. 4/19/96

Handles are provided for the convenience of developers who are moving
existing code to applications that use the Dynamic Storage Allocation services.
In general, handle use is not recommended in Mac OS 8.

MemNewHandle 3

Allocates a block of memory and returns a handle that references that block.

extern OSStatus MemNewHandle(MemAllocatorRef inAllocator,
ByteCount inSize,
Handle *outHandle);

inAllocator The name of an allocator (page 3-3) to be used in creating the
handle.

inSize The size in bytes of the memory to be allocated.

outHandle On return, the handle referencing the new block of memory.

function result If there is not enough memory available to be allocated, the
function returns the result kMemFullErr. If the function fails for
any reason, the outHandle parameter is set to NULL.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemSizeHandle function (page 3-17) to grow or shrink the block of
memory referenced by this handle.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-16
Draft. Apple Computer, Inc. 4/19/96

Use the MemDisposeHandle function (page 3-19) to dispose of a handle.

Use the MemNewHandleClear function to allocate a block, initialize it to 0, and
create a handle that references it.

MemNewHandleClear 3

Allocates a block of memory, initializes it to 0, and returns a handle that
references that block.

extern OSStatus MemNewHandleClear(MemAllocatorRef inAllocator,
ByteCount inSize,
Handle *outHandle);

inAllocator The name of an allocator (page 3-3) to be used in creating the
handle.

inSize The size in bytes of the memory to be allocated.

outHandle On return, the handle referencing the new block of memory.

function result If there is not enough memory available to be allocated, the
function returns the result kMemFullErr. If the function fails for
any reason, the outHandle parameter is set to NULL.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-17
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

Use the MemSizeHandle function (page 3-17) to grow or shrink the block of
memory referenced by this handle.

Use the MemDisposeHandle function (page 3-19) to dispose of a handle.

MemSizeHandle 3

Increases or decreases the size of a memory block referenced by the specified
handle.

extern OSStatus MemSizeHandle (ByteCount inSize,
Handle inHandle);

inSize The new size in bytes of the block of memory referenced by the
handle specified by the inHandle parameter.

inHandle The handle to the block of memory to be resized.

function result The result kMemFullErr indicates that there is not enough
memory to resize the handle.

DISCUSSION

You use the MemSizeHandle function to resize a block of memory you allocated
using the MemNewHandle function or the MemNewHandleClear function.

If you make the block of memory larger, the data that is added is undefined. If
you make the block of memory smaller, the data that lies beyond the boundary
specified by the inSize parameter is also undefined.

It is possible that the block of memory referenced by inHandle is moved as a
result of its being resized.

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-18
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemGetHandleSize function (page 3-18) to obtain the current size of a
block of memory to which you have a handle.

Use the MemDisposeHandle function (page 3-19) to dispose of a handle.

MemGetHandleSize 3

Returns the size of a block of memory referenced by the specified handle.

extern OSStatus MemGetHandleSize (Handle inHandle,
ByteCount *outSize);

inHandle The handle referencing the block of memory whose size you
want to determine.

outSize The size in bytes of the block of memory referenced by the
handle specified by the inHandle parameter. If the function fails
it sets the outSize parameter to 0

function result To be provided.

DISCUSSION

If the value of the inHandle parameter is invalid, the behavior of the
MemGetHandleSize function is undefined.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-19
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemSizeHandle function (page 3-17) to resize the block of memory
referenced by a handle.

Use the MemDisposeHandle function (page 3-19) to dispose of a handle.

MemDisposeHandle 3

Disposes of an existing handle.

extern OSStatus MemDisposeHandle (Handle *ioHandle);

ioHandle On input, the name of the handle that you want to dispose of.
On output, the address stored in ioHandle is set to NULL.

function result To be provided.

DISCUSSION

If the handle specified by ioHandle is invalid, the behavior of MemDisposeHandle
is undefined.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 3

Dynamic Storage Allocation Service Reference

3-20 Glossary

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the MemNewHandle function (page 3-15) or the MemNewHandleClear function
(page 3-16) to create a new handle.

Glossary 3

Fixed-size pointer A pointer that references a block of memory whose size
you cannot change. If you use a fixed-size pointer to allocate memory, you
must specify the size of this memory block when you create or dispose of the
pointer.

Variable-size pointer A pointer that references a block of memory whose
size you can change. You do not have to specify the size of the referenced
memory when you dispose of a variable-sized pointer.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Contents 4-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 4-0
Listing 4-0
Table 4-0

4 Virtual Memory Services
Reference

Memory Management Constants and Data Types 4-3
Addresses 4-4
Backing Object Types 4-4
Address Space Management 4-5

The Address Space Information Structure 4-5
Area Management 4-6

Memory Access Level Enumeration 4-6
Area Usage Enumeration 4-7
Area Options Enumeration 4-7
The Area Information Structure 4-9

Page Management 4-11
Page State Information Enumeration 4-11
Page Control Operation Enumeration 4-12
The Page Information Structure 4-14

Memory Sharing 4-15
Interspace Copy Options Enumeration 4-15
Reservation Options Enumeration 4-15
The Reservation Information Structure 4-16

Processor Cache Mode Enumeration 4-17
Memory Preparation For I/O 4-18

I/O Preparation Options Enumeration 4-18
I/O Checkpoint Options Enumeration 4-20
The I/O Preparation Table Structure 4-21
The Address Range Structure 4-26
The Multiple Address Range Structure 4-26

Memory Management Functions 4-27
Managing Address Spaces 4-27

C H A P T E R 4

4-2 Contents

Draft. Apple Computer, Inc. 4/19/96

CreateAddressSpace 4-28
GetSpaceInformation 4-29
CurrentAddressSpaceID 4-30
GetAddressSpacesInSystem 4-31
DeleteAddressSpace 4-32

Managing Areas 4-33
CreateArea 4-33
SetAreaAccess 4-37
CheckUserAccess 4-39
DeleteArea 4-40

Obtaining Information About An Area 4-41
GetAreaInformation 4-41
GetAreasInAddressSpace 4-43
GetAreaFromAddress 4-44

Working With Backing Storage 4-45
SetAreaBackingBase 4-45
ReleaseData 4-46

Managing Pages 4-48
GetPageInformation 4-48
ControlPagingForRange 4-49

Sharing Memory 4-51
CreateAreaReservation 4-52
DeleteAreaReservation 4-53
GetReservationInformation 4-54
GetReservationsInAddressSpace 4-56
CreateAreaForRange 4-57
InterspaceBlockCopy 4-61

Working With Processor Caches 4-62
DataToCode 4-63
FlushRange 4-64
SetProcessorCacheMode 4-65

Preparing For I/O 4-66
PrepareMemoryForIO 4-67
CheckpointIO 4-69

Glossary 4-70

C H A P T E R 4

Memory Management Constants and Data Types 4-3
Draft. Apple Computer, Inc. 4/19/96

Virtual Memory Services Reference 4

Mac OS 8 provides a virtual memory system that associates logical addresses in
an address space to physical addresses in ROM or RAM and further extends
this mapping to physical locations in secondary storage. Virtual memory is
permanently enabled and its operations are transparent to most software.

However, because debuggers, client-server applications, and drivers often have
specialized memory usage needs, an API to the virtual memory services is
provided. This section describes these services, which enable you to

■ create and destroy an address space and get information about address
spaces

■ create areas, delete areas, obtain information about areas, and change an
area’s access level

■ map selected portions of a large backing store to logical memory

■ obtain information about the use of select memory ranges (pages) and
control the way in which select memory ranges are used

■ share memory across addressing spaces

■ work with processor caches

■ prepare memory for I/O operations

Because the virtual memory services API is fairly large and serves diverse
needs, this chapter organizes descriptions of data types and functions based on
the entities you are interested in manipulating (address spaces, areas, pages)
and on the operations you are interested in performing (sharing memory,
working with processor caches, preparing for I/O).

For information about functions used for dynamic storage allocation, see the
chapter “Dynamic Storage Allocation Reference.”

Memory Management Constants and Data Types 4

This section describes the constants and data types used by virtual memory
services. These include that data types used to specify the basic elements of
addressing as well as the more complex data structures used to return
information about address spaces, areas, pages, memory reservations, and I/O
preparation tables.

C H A P T E R 4

Virtual Memory Services Reference

4-4 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

Addresses 4

The basic memory element is the address space, identified by the following
opaque ID.

typedef struct OpaqueAddressSpaceID *AddressSpaceID;

An address space is the domain of addresses that can be directly referenced by
the processor at any given moment. You can identify the current address space
by using the CurrentAddressSpaceID function (page 4-30).

A logical address specifies location within an address space. Logical addresses
are unsigned; the lower bound of a logical address is zero; the upper bound is
the size of the address space minus one.

typedef void *LogicalAddress;

A physical address specifies a location in physical memory: RAM, or ROM.
You specify a physical address when preparing to transfer data with the
PrepareMemoryforIO function (page 4-67).

typedef void *PhysicalAddress;

Backing Object Types 4

Pages can be swapped out to a backing store, identified by a backing object ID.

typedef struct OpaqueBackingObjectID *BackingObjectID;

You create a backing object ID for a backing store by making the appropriate
call to the file system. Specifying a value of kNoBackingObjectID when creating
an area means that the area is a scratch area.

#define kNoBackingObjectID ((BackingObjectID) kInvalidID)

Backing addresses are 64-bit integer values in anticipation of file systems that
provide support for files larger then 4 GB.

typedef UInt64 BackingAddress; /* offset within a backing object */

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-5
Draft. Apple Computer, Inc. 4/19/96

Address Space Management 4

The address space information structure returns the number and type of pages
in a given address space.

The Address Space Information Structure 4

When you use the GetSpaceInformation function (page 4-29) to obtain
information about a specified address space, the function returns the
information in the address space information structure.

The address space information structure is defined by the SpaceInformation
data type.

struct SpaceInformation {
ItemCount numLogicalPages;
ItemCount numInMemoryPages;
ItemCount numResidentPages;

};
typedef struct SpaceInformation SpaceInformation, *SpaceInformationPtr;

Field descriptions
numLogicalPages The total number of logical pages in this address space,

excluding pages in global areas and pages in guard ranges.
This is the same as the sum of the size of all areas in the
address space.

numInMemoryPages The number of logical pages in this address space that are
currently in physical memory, excluding pages in global
areas.

numResidentPages The number of pages in this address space that are locked
in physical memory. This number includes resident areas
and pages locked with the ControlPagingForRange function
(page 4-49) and the PrepareMemoryForIO function
(page 4-67).

C H A P T E R 4

Virtual Memory Services Reference

4-6 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

Area Management 4

You use area management data types to specify how an area is created and
used: its memory accessibility, pageability, sparseness, location, and
addressability.

Memory Access Level Enumeration 4

A memory area’s accessibility depends on whether it’s being accessed by
privileged or user code and on the type of operation performed be this code.

To determine an area’s memory access level, you call the GetAreaInformation
function (page 4-41). This function stores the required information in the area
information structure (page 4-9). You use the SetAreaAccess function
(page 4-37) to change the access levels of existing areas.

You must specify the memory access level for user-mode or privileged code
when you create an area with the CreateArea function (page 4-33) or the
CreateAreaForRange function (page 4-37).

The memory access level enumeration specifies possible values for an area’s
memory access level.

typedef UInt32 MemoryAccessLevel;
enum { /* memory access levels */

kMemoryExcluded = 0, /* no access allowed */
kMemoryReadOnly = 1, /* read and fetch allowed */
kMemoryReadWrite = 2, /* read, write, fetch allowed*
kMemoryCopyOnWrite = 3, /* not supported */
kInheritUserAccess = 4, /* inherits user rights */
kInheritPrivilegedAccess = 5 /* inherits privileged rights */

};

Enumerator descriptions

kMemoryExcluded No accesses, including instruction fetches, are allowed.
kMemoryReadOnly Read and instruction fetch operations are allowed.
kMemoryReadWrite Read, write and instruction fetch operations are allowed.
kMemoryCopyOnWrite Not supported.
kInheritUserAccess

When using use the CreateAreaForRange function to create
an area, specifying this value means that the new area

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-7
Draft. Apple Computer, Inc. 4/19/96

inherits the user mode access rights of the area being
mapped.

kInheritPrivilegedAccess
When using use the CreateAreaForRange function to create
an area, specifying this value means that the new area
inherits the privileged mode access rights of the area being
mapped.

Area Usage Enumeration 4

A given area can be used in various ways. An area’s usage is set at boot time or
when an I/O device is configured and cannot be changed. To determine how
an area is being used, you must examine the usage field of the area information
structure, which is returned to you by the GetAreaInformation function.

The area usage enumeration defines the values that can be returned to you in
the usage field of the area information structure.

typedef UInt32 AreaUsage;
enum {

kUsageUnknown = 0,
kUsageRAM = 1,
kUsageROM = 2,
kUsageIO = 3,
kUsageVideoRAM = 4

};

Enumerator descriptions

kUsageUnknown The area’s usage is not known.
kUsageRAM The area is mapped to RAM.
kUsageROM The area is mapped to ROM.
kUsageIO The area is used for I/O.
kUsageVideoRAM

The area is used for video RAM.

Area Options Enumeration 4

When you create an area, you use the options parameter to the CreateArea
function (page 4-33) to specify additional attributes for the area. When you use

C H A P T E R 4

Virtual Memory Services Reference

4-8 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

the CreateAreaForRange function (page 4-37) to create a new area based on the
current area, the new area inherits all the options defined for the current area
except for the kGlobalArea and kPlacedArea options.

To obtain the current setting of an area’s attributes, you examine the area
information structure returned by the GetAreaInformation function (page 4-41).

Some options apply only to scratch areas or nonpageable areas. Scratch areas
are areas for which you specified kNoBackingObjectID for the backingObject
parameter of the CreateArea function (page 4-33). A nonpageable area is an area
for which you also specify the kResidentArea option.

The area options enumeration defines the values you can specify for the
options parameter of the CreateArea function.

typedef OptionBits AreaOptions;
enum {

kZeroFill = 0x00000001,
kResidentArea = 0x00000002,
kSparseArea = 0x00000004,
kPlacedArea = 0x00000008,
kGlobalArea = 0x00000010,
kPhysicallyContiguousArea = 0x00000020

};

Option descriptions

kZeroFill Memory in this area is initialized to zero. You can specify
this option only for scratch areas and nonpageable areas.
The initialization occurs when you first access the area.

kResidentArea Data for this area is always physically resident. Specifying
this option makes an area nonpageable: for such areas the
microkernel never pages between physical memory and
backing storage.

kSparseArea Resources for this area are allocated on-demand. This
option applies only to areas that are mapped to scratch
space and to areas that are resident.
If an area is mapped to scratch space, sparseness means
that disk space is allocated to the scratch file as needed
when you call the ControlPagingForRange function, rather
than all at once when you call the CreateArea function.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-9
Draft. Apple Computer, Inc. 4/19/96

For resident areas, sparseness means that the mapping
between logical and physical memory is made as needed
rather than when the area is created.

kPlacedArea This area begins at the location referenced by the areaBase
parameter of the CreateArea function.

▲ W A R N I N G

Be careful when you use the kPlacedArea option because
the specified location might be part of an unknown
memory reservation. To be safe, before creating the area,
first create a reservation for the range into which the area
is to be placed. See the CreateAreaReservation function
(page 4-52) for more information. ▲

kGlobalArea Data for this area is addressable from any address space.
Code in any address space can access this area in
accordance with the user and privileged access levels
specified for the area. The created area appears at the
address referenced by the parameter areaBase in every
address space. When you specify this option, the
addressSpace parameter has no effect; pass the current
address space ID instead.

kPhysicallyContiguousArea
The physical pages that make up the area is contiguous.
You can only specify this option if you also specify the
kResidentArea option.
You should use this option only for drivers of devices that
must perform multipage DMA transfers but do not handle
scatter-gather operations.
Specifying this option for the CreateArea function might
cause the function to fail with this option, it may fail even
when there is a great deal of available memory.

The Area Information Structure 4

When you use the GetAreaInformation function (page 4-41) to obtain
information about a specified area, the function returns the information in the
area information structure.

The area information structure is defined by the AreaInformation data type.

C H A P T E R 4

Virtual Memory Services Reference

4-10 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

struct AreaInformation {
AddressSpaceID addressSpace;
LogicalAddress base;
ByteCount length;
MemoryAccessLevel userAccessLevel;
MemoryAccessLevel privilegedAccessLevel;
AreaUsage usage;
BackingObjectID backingObject;
BackingAddress backingBase;
AreaOptions options;
KernelProcessID owningKernelProcess;

};
typedef struct AreaInformation AreaInformation;
typedef AreaInformation *AreaInformationPtr;

Field descriptions
addressSpace The address space that contains the area. This value is set

to the constant kGlobalAddressSpaceID if the area is global
to all address spaces.

base The logical address of the area.
length The size, in bytes, of the area.
userAccessLevel The kinds of references allowed by user mode access.

Reference kinds are specified by a memory access level
enumeration value (page 4-6).

privilegedAccessLevel
The kinds of references allowed by privileged mode
access. Reference kinds are specified by a memory access
level enumeration value (page 4-6).

usage The area’s use, such as RAM, I/O, or onboard video.
Usage values are specified by an area usage enumeration
value (page 4-7).

backingObject The ID of the object providing backing store for the area.
The value kNoBackingObjectID is returned if there is no
backing object or if the area is a scratch area.

backingBase The area’s base address within the backing object.
options The options that were specified when the area was created.

Option values are specified by the area options
enumeration (page 4-7).

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-11
Draft. Apple Computer, Inc. 4/19/96

owningKernelProcess
The ID of the kernel process that was specified when the
area was created. The area is automatically deleted when
this kernel process exists or when the address space is
deleted.

Page Management 4

Page management data types allow you to get information about pages in the
page information structure and to control how a page is mapped by backing
object providers, whether backing store or physical memory is allocated for it,
and whether it is eligible for replacement.

Page State Information Enumeration 4

When you use the GetPageInformation function (page 4-48) to get information
about a specified page, the function returns the information in the page
information structure. The information field in this structure contains page
state information bits for each logical page.

typedef UInt32 PageStateInformation;
enum {

kPageIsProtected = 0x00000001,
kPageIsProtectedPrivileged = 0x00000002,
kPageIsModified = 0x00000004,
kPageIsReferenced = 0x00000008,
kPageIsLockedResident = 0x00000010,
kPageIsInMemory = 0x00000020,
kPageIsShared = 0x00000040,
kPageIsWriteThroughCached = 0x00000080,
kPageIsCopyBackCached = 0x00000100

};

Enumerator descriptions

kPageIsProtected The page is protected against being written to by user
mode software.

kPageIsProtectedPrivileged
The page is protected against being written to by
privileged software.

C H A P T E R 4

Virtual Memory Services Reference

4-12 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

kPageIsModified Data has been written to the page since the last time it was
mapped in or its data has been released by the ReleaseData
function (page 4-46).

kPageIsReferenced The page has been referenced (either load or store) since
the last time the kernel’s aging operation checked the page.

kPageIsLockedResident
The page is ineligible for replacement (that is, it is
nonpageable) because it is part of a resident area or
because there is at least one outstanding call of the
ControlPagingForRange function (page 4-49) with the
kPagingModeResident option set or the PrepareMemoryForIO
function against it (page 4-67).

kPageIsInMemory The logical page is mapped to physical memory.
kPageIsShared The page’s underlying physical page is mapped into

additional logical pages.
kPageIsWriteThroughCached

Modifications to the page are written through the
processor cache to main memory.

kPageIsCopyBackCached
Modifications to the page may be cached by the processor
and not immediately reflected in main memory.

Page Control Operation Enumeration 4

You can control paging operations for a specified range of addresses by
supplying one of these constants to the operation parameter of the
ControlPagingForRange function. For example, programs that make sequential
references to an area of memory could use these constants to decrease the time
they spend waiting for paging operations and the amount of memory they use.
Such a program would use the kControlPageTouch operation for addresses it is
about to reference and the kControlPageReplace operation for addresses it has
finished referencing.

typedef UInt32 PageControlOperation;
enum {

kControlPageMakePageable = 1,
kControlPageMakeResident = 2,
kControlPageCommit = 3,
kControlPageTouch = 4,

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-13
Draft. Apple Computer, Inc. 4/19/96

kControlPageReplace = 5,
kControlPageFlush = 6,
kControlPageFlushAsync = 7

};

Enumerator descriptions

kControlPageMakePageable
The range is made eligible for page replacement. This only
works for a range that was originally pageable, and which
was made resident with a call to the
ControlPagingForRange function with the
kControlPageMakeResident enumerator. This enumerator
cannot make pageable a range that was originally resident.
Originally resident ranges do not benefit from this
operation although the function still completes successfully.
In effect, this enumerator “undoes” a previous call to the
ControlPagingForRange function making a pageable range
into a resident range. When all such calls have been
undone, the page is returned to the mode associated with
the area containing the range (that is, pages in backed
areas become eligible for replacement, but pages in
resident areas do not).

kControlPageMakeResident
The range is to be loaded and made ineligible for page
replacement. The calling task is blocked until the operation
is complete.

kControlPageCommit
The range is to have backing store allocated for its pages in
a sparse pageable area, or physical memory is to be
allocated for its pages in a sparse resident area. Ranges in
areas created without the kSparseArea option specified do
not benefit from this operation although the function still
completes successfully. The calling task is blocked until
this operation is complete.

kControlPageTouch The pages in the range are to be brought into physical
memory and the calling task is not blocked while this is
being done. Specifying this option does not cause the
range to be mapped into logical memory, it just loads it
into a cache. You can use this option to optimize

C H A P T E R 4

Virtual Memory Services Reference

4-14 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

performance by causing the system to read in pages that
will be needed in the future.

kControlPageReplace
The physical memory space occupied by the pages in the
range are to be made available for other uses, after writing
the page data to backing store if necessary. You are not
blocked while this is being done. The data in the page is
always preserved by this operation. You can use this to
optimize performance by giving the system information
about pages that will not be needed in the near future.

kControlPageFlush The pages in the range are forced to be written to backing
store and you are blocked while this is being done.

kControlPageFlushAsync
The pages in the range are forced to be written to backing
store and you are not blocked while this is being done.

The Page Information Structure 4

When you use the GetPageInformation function (page 4-48) to obtain
information about one or more logical pages in a specified range of addresses,
it returns information about each page in the page information structure. Its
buffer has room for multiple entries, one for each page.

The page information structure is defined by the PageInformation data type.

struct PageInformation {
AreaID area;
ItemCount count;
PageStateInformation information [kVariableLengthArray];

};
typedef struct PageInformation PageInformation;
typedef PageInformation *PageInformationPtr;

Field descriptions
area The ID of the area associated with the range.
count The number of page state information entries (page 4-11)

returned.
information An array that contains one page state information entry

(page 4-11) for each logical page.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-15
Draft. Apple Computer, Inc. 4/19/96

Memory Sharing 4

This section describes the constants and data types you use with the
InterspaceBlockCopy function (page 4-61) and with the functions used to
reserve memory. Memory reservation data types allow you to specify the
boundaries and scope of a memory reservation, and to get information about
established reservations in the reservation information structure.

Interspace Copy Options Enumeration 4

When you use the InterspaceBlockCopy function (page 4-61), you use the
options parameter to specify the access checks to apply to the copy operation.
The interspace copy options enumeration supplies the values you can use for
the options parameter.

typedef OptionBits InterspaceCopyOptions;
enum {
 kCheckSourceUserRights = 0x00000001,
 kCheckDestinationUserRights = 0x00000002
};

Option descriptions

kCheckSourceUserRights
The user (non-privileged) access rights to the source
address are to be checked. If not specified, the caller’s
execution mode’s access rights are checked.

kCheckDestinationUserRights
The user (non-privileged) access rights to the destination
address are to be checked. If not specified, the caller’s
execution mode’s access rights are checked.

Reservation Options Enumeration 4

When you use the CreateAreaReservation function (page 4-52), you can specify
some of the characteristics of the reservation being created by using one of the
following enumeration values for the function’s options parameter.

typedef OptionBits ReservationOptions;
enum {

kPlacedReservation = 0x00000001,

C H A P T E R 4

Virtual Memory Services Reference

4-16 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

kGlobalReservation = 0x00000002,
kGlobalAreaReservation = 0x00000004

};

Option descriptions

kPlacedReservation
The reservation is to be placed at a location specified by
the base parameter. The microkernel aligns both the base
and length values to page boundaries, which means that
the actual reservation may be larger than you specified.

kGlobalReservation
The reservation is to apply across all existing and future
address spaces. The reservation appears at the address
specified by the base parameter in every address space.
Note that although the reservation is available globally,
when you create an area within a reservation, the area is
actually located within the address space that you specify
when creating the area unless you also specify the
kGLobalAreaReservation option
Global reservations, like global areas, are automatically
added to new address spaces.

kGlobalAreaReservation
The areas created in the reservation are to be available
globally. When you specify this option, you must also
specify the kGlobalReservation option.

The Reservation Information Structure 4

The GetReservationInformation function (page 4-54) returns information about
the specified reservation in the reservation information structure.

The reservation information data structure is defined by the
ReservationInformation data type.

struct ReservationInformation {
AddressSpaceID addressSpace;
LogicalAddress base;
ByteCount length;
ReservationOptions options;

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-17
Draft. Apple Computer, Inc. 4/19/96

};
typedef struct ReservationInformation ReservationInformation;
typedef ReservationInformation *ReservationInformationPtr;

Field descriptions
addressSpace The ID of the address space in which the reservation exists.

This is the current address space ID if the reservation is
global to all address spaces.

base The logical base address of the reservation.
length The size, in bytes, of the reservation.
options The options specified when the reservation was created.

Possible values are defined by the reservation options
enumeration (page 4-15).

Processor Cache Mode Enumeration 4

You use the SetProcessorCacheMode function (page 4-65) to specify the processor
cache mode for a given range of addresses in an address space. Use one of the
following enumeration values for the function’s processorCacheMode parameter
to specify the cache mode.

typedef UInt32 ProcessorCacheMode;
enum {

kProcessorCacheModeDefault = 0,
kProcessorCacheModeInhibited = 1,
kProcessorCacheModeWriteThrough = 2,
kProcessorCacheModeCopyBack = 3

};

Enumerator descriptions

kProcessorCacheModeDefault
The cache mode defined for the range.

kProcessorCacheModeInhibited
Data and/or code caching are not available.

kProcessorCacheModeWriteThrough
Read operations use the cache, but write operations are
immediately apparent in physical memory.

C H A P T E R 4

Virtual Memory Services Reference

4-18 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

kProcessorCacheModeCopyBack
Both read and write operations use the cache, so write
operations may not be immediately apparent in physical
memory.

Memory Preparation For I/O 4

When you want to prepare memory for use in I/O transfers, you use the
PrepareMemoryForIO and the CheckpointIO functions in conjunction with the I/O
preparation table to define how and where the preparation is to take place. The
table includes two address range structures, and there are several sets of
options you can use to further define the data transfers for which you wish to
prepare.

I/O Preparation Options Enumeration 4

When you use the PrepareMemoryForIO function (page 4-67), you define some of
the characteristics of I/O preparation by specifying one or more of the I/O
preparation options enumeration values for the options field of the I/O
preparation table.

typedef OptionBits IOPreparationOptions;
enum {

kIOMultipleRanges = 0x00000001,
kIOLogicalRanges = 0x00000002,
kIOMinimalLogicalMapping = 0x00000004,
kIOShareMappingTables = 0x00000008,
kIOIsInput = 0x00000010,
kIOIsOutput = 0x00000020,
kIOCoherentDataPath = 0x00000040,
kIOClientIsUserMode = 0x00000080

};

Option descriptions

kIOMultipleRanges The rangeInfo field in the I/O preparation table refers to a
multiple address range, enabling a scatter-gather
specification.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-19
Draft. Apple Computer, Inc. 4/19/96

kIOLogicalRanges The base fields of the address range structures are logical
addresses. If you omit this option, the addresses are
treated as physical addresses.

kIOMinimalLogicalMapping
The logical mapping table is to be filled in with just the
first and last static logical mappings of each range,
arranged as pairs, instead of allocating a full-sized logical
mapping table.There are two entries per range although
the value of the second entry of the pair is undefined if the
range is contained within a single page. Minimal mapping
is useful for transfers where physical addresses are used
for the bulk of the transfer, but logical addresses must be
used to handle unaligned portions at the beginning and
end.

kIOShareMappingTables
The microkernel can use the caller’s mapping tables rather
than maintain its own copies of the tables. Normally the
PrepareMemoryForIO function keeps its own copy of the
mapping tables in addition to the tables the driver
allocates. You can reduce memory use if the driver shares
its mapping tables with the microkernel. Use this option to
specify that you want to share the tables.
You can only specify this option if the mapping tables are
located in a global resident area or a locked portion of a
pageable area, and remain in that location until the final
CheckpointIO function completes. Furthermore, the
mapping tables must remain allocated and the entries
unaltered until after the final CheckpointIO function
completes. It is not necessary for the driver to provide both
logical and physical tables.

kIOIsInput Data will be moved into main memory. You can specify
this option independently from the kIOIsOutput option:
You can specify either, both, or neither at preparation time.
Specifying neither is useful when the preparation must be
made long in advance of the transfer (that is, so the system
resources are allocated). You can then call the CheckPointIO
function just before the transfer to prepare the caches.

kIOIsOutput Data will be moved out of main memory. You can specify
this option independently from the kIOIsInput option: You
can specify either, both, or neither at preparation time.

C H A P T E R 4

Virtual Memory Services Reference

4-20 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

Specifying neither is useful when the preparation must be
made long in advance of the transfer (that is, so the system
resources are allocated). You can then call the CheckPointIO
function just before the transfer to prepare the caches.

kIOCoherentDataPath
The data path used to access memory during the I/O
operation is fully coherent with the main processor’s data
caches, obviating the need for data cache manipulations.
Coherency with the instruction cache is not implied,
however, so the appropriate instruction cache
manipulations are performed regardless.
This option is useful when the overall hardware
architecture is not coherent, but the driver knows that the
transfer will occur on a particular hardware path that is
coherent. (The PrepareMemoryforIO function operates
according to the overall architecture and has no detailed
knowledge of individual data paths.)
When in doubt, omit this option. Incorrectly omitting this
option merely slows the operation of the computer,
whereas incorrectly specifying this option can result in
erroneous behavior and crashes.

kIOClientIsUserMode
The PrepareMemoryForIO function is being called on behalf
of a user mode client. If you specify this option, the system
checks the memory range or ranges for user mode
accessibility. If you do not specify this option, the system
checks the memory range or ranges for privileged mode
accessibility. Drivers can obtain the client’s execution mode
through the Family Programming Interface (FPI). In
general, however, this information is available to message
recipients in the message header.

I/O Checkpoint Options Enumeration 4

When you use the CheckpointIO function (page 4-69), you can define
subsequent transfers by specifying one or more of the following I/O
checkpoint options enumeration values for the parameter theOptions.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-21
Draft. Apple Computer, Inc. 4/19/96

typedef OptionBits IOCheckpointOptions;
enum {

kNextIOIsInput = 0x00000001,
kNextIOIsOutput = 0x00000002,
kMoreIOTransfers = 0x00000004

};

Option descriptions

kNextIOIsInput In the next transfer, data will be copied into main memory.
You can specify this option independently from the
kNextIOIsOutput option: You can specify either, both, or
neither at preparation time. Specifying neither is useful for
finalizing the previous transfer when the next transfer is
not immediately pending.

kNextIOIsOutput In the next transfer, data will be copied out of main
memory. You can specify this option independently from
the kNextIOIsInput option: You can specify either, both, or
neither at preparation time. Specifying neither is useful for
finalizing the previous transfer when the next transfer is
not immediately pending.

kMoreIOTransfers Further I/O transfers are to occur to or from the buffer.
This option is especially useful when the caller is unable to
specify in which direction the next transfer will be (that is,
when neither the kNextIOIsInput nor kNextIOIsOutput
option is specified), and is required if the next transfer
direction is specified. If you do not specify the
kMoreIOTransfers option, all microkernel resources
associated with preparation are reclaimed, including any
kernel-allocated subsidiary structures and the
IOPreparationID identifier.

The I/O Preparation Table Structure 4

The PrepareMemoryForIO function (page 4-67) uses the I/O preparation table to
obtain the address ranges to be prepared and to return mapping information
about the ranges it has prepared.

The logical and physical mapping tables are where the function returns the
addresses that the driver can use to access the client’s buffer. The first entry of a
range’s mappings is the exact mapping of the first prepared address in that

C H A P T E R 4

Virtual Memory Services Reference

4-22 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

range, regardless of page alignment, while the remaining entries are page
aligned. If you specify multiple address ranges, the mapping table is a
concatenation, in order, of the mappings for each range.

There are no explicit length fields in the mapping tables. Instead, entry lengths
are implied by the entry's position in the table, the overall range length, and the
page size. In the general case, the length of the first entry is to the next page
boundary, the length of any intermediate entries is the page size, and the length
of the last element is what remains by subtracting the previous lengths from
the overall range length. If the prepared range fits within a single page, there is
only one prepared entry and its length is equal to the value in the
lengthPrepared field.

The I/O preparation table structure is defined by the IOPreparationTable data
type.

struct IOPreparationTable {
IOPreparationOptions options;
IOPreparationState state;
IOPreparationID preparationID;
AddressSpaceID addressSpace;
ByteCount granularity;
ByteCount firstPrepared;
ByteCount lengthPrepared;
ItemCount mappingEntryCount;
LogicalMappingTablePtr logicalMapping;
PhysicalMappingTablePtr physicalMapping;
union {

AddressRange range;
MultipleAddressRange multipleRanges;

} rangeInfo;
};

typedef struct IOPreparationTable IOPreparationTable;

Field descriptions
options The optional characteristics of the I/O preparation table

and the transfer. These values are defined by the I/O
preparation options enumeration (page 4-17).

state The state of the I/O preparation table. This value is filled
in by the PrepareMemoryForIO function. A value of
kIOStateDone indicates that the PrepareMemoryForIO

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-23
Draft. Apple Computer, Inc. 4/19/96

function successfully prepared up to the end of the
specified range or ranges.
If insufficient resources are available to prepare the
specified range of memory, the PrepareMemoryForIO
function prepares as much as possible, indicates to the
caller how much memory was prepared, and clears the
kIOStateDone bit to indicate a partial preparation.

preparationID The identifier that represents the I/O transaction. This
value is filled in by the PrepareMemoryForIO function. When
the I/O operation has been completed or aborted, the
CheckpointIO function uses this identifier to finalize the
transaction.

addressSpace The address space containing the logical range or ranges to
be prepared.

granularity A number of bytes. The PrepareMemoryForIO function uses
this value in the event of a partial preparation. It is useful
for transfers with devices that operate on fixed-length
buffers. The length prepared is zero or an integral multiple
of the value specified by the granularity field rounded up
to the next greatest page alignment. This prevents
preparing more memory than the caller is willing to use. A
value of zero for granularity specifies no granularity. The
system does not check whether the specified range length
or lengths are multiples of granularity.

firstPrepared The byte offset into the range or ranges at which to begin
preparation. Note that when a multiple address range is
specified, this offset is into the aggregate range. You can
use the firstPrepared and lengthPrepared fields to control
partial preparations. The first time you call the
PrepareMemoryForIO function, specify 0 for the
firstPrepared field. If the PrepareMemoryForIO function
does not return a state field value with kIOStateDone, a
partial preparation was performed.
After this data is transferred and the final call to the
CheckPointIO function is made against this preparation,
you can make another call to the PrepareMemoryForIO
function to prepare as much as possible of the range or
ranges that remain. This time, specify a value for
firstPrepared that is the sum of the current firstPrepared

C H A P T E R 4

Virtual Memory Services Reference

4-24 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

and lengthPrepared. You can repeat this sequence of
prepare-transfer-final checkpoint until the state field has a
value with kIOStateDone.

lengthPrepared The number of bytes, starting at the offset specified by the
firstPrepared field, that were prepared. This is filled in by
the PrepareMemoryForIO function whether the preparation
was partial or complete.

mappingEntryCount The number of entries in the tables referenced by the
logicalMapping or physicalMapping fields or both.
Normally the driver should allocate as many entries as
there are pages in the buffer. You can calculate the number
of pages in a memory range from the range’s base address
and length. If there are not enough entries, a partial
preparation is performed within the limit of the tables, and
the kIOStateDone state bit is returned as 0.
The logical mapping table is assumed to have two entries
per range if you specified the kIOMinimalLogicalMapping
option, regardless of the value in the mappingEntryCount
field.

logicalMapping The address of the logical mapping table. The table, which
is filled in by the PrepareMemoryForIO function, must have
as many entries as there are logical pages in the range or
ranges. This table is optional. A nil value specifies that
there is no table.
On return, the logical mapping table contains the static
logical addresses corresponding to the ranges’ physical
addresses. The table is a concatenation, in order, of the
mappings for each specified range. The first entry of each
range’s mappings is the exact static logical mapping of the
first prepared address in that range, regardless of page
alignment, while the remaining entries are page aligned.
However, if you specified the kIOMinimalLogicalMapping
option, on return this table contains just the first and last
static logical mappings of each range.
The structure of static logical mappings is guaranteed on a
per-page basis; a static logical mapping endures from the
time you call the PrepareMemoryForIO function through the
final call to CheckpointIO function.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Constants and Data Types 4-25
Draft. Apple Computer, Inc. 4/19/96

Specifying a logical mapping table implies that the transfer
is to be made through the main processor’s MMU and data
caches. Such transfers are performed with programmable
I/O devices, and the PrepareMemoryForIO and CheckpointIO
functions take this into account when determining which
cache operations are needed before and after the transfer.

physicalMapping The address of the physical mapping table. The table,
which is filled in by the PrepareMemoryForIO function, must
have as many entries as there are logical pages in the
range. This table is optional. A nil value specifies that
there is no table.
On return, the PhysicalMappingTable contains the physical
addresses that comprise the range or ranges. The table is a
concatenation, in order, of the mappings for each specified
range. The first entry of each range’s mappings is the exact
physical mapping of the first prepared address in that
range, regardless of page alignment, while the remaining
entries are page aligned.
Specifying a physical mapping table implies that the
transfer bypasses the main processor’s MMU and data
caches. Such transfers are performed with DMA I/O
devices, and the PrepareMemoryForIO and CheckpointIO
functions take this into account when determining which
cache operations are needed before and after the transfer.

rangeInfo The range or ranges to prepare.
If you specify a single range (the kIOMultipleRanges bit in
the options field is clear), this field is an address range
structure (page 4-26) specifying the base address and the
length of the range.
If you specify multiple ranges (by setting the
kIOMultipleRanges bit in the options field), the rangeInfo
field is a multiple address range structure (page 4-26)
specifying the number of ranges and the address of a table
containing an entry for an address range structure
identifying each range.
The firstPrepared field value determines the range table
entry at which to begin preparation. Any entries
positioned earlier in the table are not prepared and

C H A P T E R 4

Virtual Memory Services Reference

4-26 Memory Management Constants and Data Types

Draft. Apple Computer, Inc. 4/19/96

therefore do not need to have mapping table space
allocated for them.

The Address Range Structure 4

When you use the PrepareMemoryForIO function (page 4-67)without specifying
the kIOMultipleRanges option, the function uses the address range structure to
identify the address range being prepared.

The address range structure is defined by the AddressRange data type.

struct AddressRange {
 void *base;
 ByteCount length;
};
typedef struct AddressRange AddressRange;
typedef struct AddressRange *AddressRangeTablePtr;

Field descriptions
base The lowest address in the range. If you do not specify the

kIOLogicalRanges option, this is treated as a physical
address. If you specify the kIOLogicalRanges option, this is
treated as a logical address within the address space
specified in the I/O preparation table.

length The length of the range, in bytes.

The Multiple Address Range Structure 4

When you use the PrepareMemoryForIO function (page 4-67) and specify the
kIOMultipleRanges option, the function uses the multiple address range
structure to identify the array of address ranges being prepared.

A driver specifying a user buffer that consists of multiple ranges (scatter-gather
buffer) can use the multiple address range structure to identify the ranges.

The multiple address range structure is defined by the MultipleAddressRange
data type.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-27
Draft. Apple Computer, Inc. 4/19/96

struct MultipleAddressRange {
 ItemCount entryCount;
 AddressRangeTablePtr rangeTable;
};
typedef struct MultipleAddressRange MultipleAddressRange;

Field descriptions
entryCount The number of entries in the address range table

referenced in the rangeTable field.
rangeTable The address of an array of address range structures—that

is, an address range table. The specified ranges can overlap
either directly or indirectly by being located on the same
pages.

Memory Management Functions 4

You use the functions described in this section to manage address spaces, areas,
and pages, to share memory, to control caching operations and to prepare
memory for I/0.

Managing Address Spaces 4

The microkernel provides functions that you can use to create and destroy
address spaces. The contents of a newly created address space are based on a
template maintained by the mcirokernel. This template causes frame buffers,
ROM, and the microkernel to be mapped at the same location in each address
space, with appropriate access protection.

This section describes the functions you use to create an address space, to
obtain information about address spaces, and to destroy an address space.

C H A P T E R 4

Virtual Memory Services Reference

4-28 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

CreateAddressSpace 4

Creates an address spaces and returns an identifier for it.

OSStatus CreateAddressSpace (AddressSpaceID *theAddressSpace);

theAddressSpace
A pointer to the address space ID. On output, specifies the
address space identifier that you can use to obtain information
about the address space or to destroy the address space.If the
microkernel is unable to create an address space, it returns
kInvalidID for this parameter.

function result To be provided.

DISCUSSION

The CreateAddressSpace function builds a new address space and returns an ID
for it. A new address space automatically contains any existing global areas
and memory reservations.

An application that needed additional logical space could also use this function
to create another address space. It could then access that space by using the
CreateArea or CreateAreaForRange function and the InterspaceBlockCopy
function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-29
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

To create areas in an address space, you can use the CreateArea function
(page 4-33) or the CreateAreaForRange function (page 4-57).

To create a memory reservation, you can use the CreateAreaReservation
function (page 4-52).

To delete an address space, you can use the DeleteAddressSpace function
(page 4-45).

To obtain information about address spaces you can use the
GetSpaceInformation function (page 4-29), the CurrentAddressSpaceID function
(page 4-30), or the GetAddressSpacesInSystem function (page 4-31).

GetSpaceInformation 4

Returns information about a specified address space.

OSStatus GetSpaceInformation (AddressSpaceID theAddressSpace,
 PBVersion version,
 SpaceInformation *spaceInfo);

theAddressSpace
The address space for which to get the information.

version
The version number of the space information structure to be
returned. This provides backwards compatibility. The constant
kSpaceInformationVersion supplies the version of the space
information structure defined in the interface.

spaceInfo A pointer to the space information structure (page 4-5) in which
to return the information.

function results To be provided.

DISCUSSION

This function returns the following information:

C H A P T E R 4

Virtual Memory Services Reference

4-30 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

■ The number of logical pages in this address space, excluding pages in global
areas and pages in guard ranges. This is the same as summing the existing
area sizes.

■ The number of logical pages in this address space that are currently in
physical memory, excluding pages in global areas

■ The number of pages in this address space that are locked in physical
memory.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain additional information about address spaces you can use the
CurrentAddressSpaceID function (page 4-30), or the GetAddressSpacesInSystem
function (page 4-31).

CurrentAddressSpaceID 4

Returns the address space ID of the current address space.

AddressSpaceID CurrentAddressSpaceID (void);

function result The ID of the current address space.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-31
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To delete an address space, you can use the DeleteAddressSpace function
(page 4-45).

To obtain additional information about address spaces you can use the
GetSpaceInformation function (page 4-29) or the GetAddressSpacesInSystem
function (page 4-31).

GetAddressSpacesInSystem 4

Returns the address space ID of each existing address space in the system.

OSStatus GetAddressSpacesInSystem (ItemCount requestedAddressSpaces,
ItemCount *totalAddressSpaces,
AddressSpaceID *theAddressSpaces);

requestedAddressSpaces
The maximum number of address space IDs that are to be
returned. The function uses this value to provide adequate
space at the location referenced by the parameter
theAddressSpaces.

totalAddressSpaces
On output, a pointer to the total number of address spaces in
the system. If this is less than or equal to the value referenced
by the requestedAddressSpaces parameter, all address spaces

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-32 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

were returned; if this is greater than the value referenced by
requestedAddressSpaces parameter, insufficient space was
available to return all address space IDs.

theAddressSpaces
On output, a pointer to a buffer containing the IDs of all the
address spaces in the system.

function result To be provided.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain information about address spaces you can use the
GetSpaceInformation function (page 4-29) or the CurrentAddressSpaceID
function.

To delete an address space, you can use the DeleteAddressSpace function
(page 4-32).

DeleteAddressSpace 4

Destroys an address space.

OSStatus DeleteAddressSpace (AddressSpaceID theAddressSpace);

theAddressSpace
The ID of the address space to destroy.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-33
Draft. Apple Computer, Inc. 4/19/96

SPECIAL CONSIDERATIONS

The DeleteAddressSpace function also destroys all nonglobal areas mapped into
the specified address space.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To create areas in an address space, you can use the CreateArea function
(page 4-33).

To obtain information about address spaces you can use the
GetSpaceInformation function (page 4-29), the CurrentAddressSpaceID function
(page 4-30), or the GetAddressSpacesInSystem function (page 4-31).

Managing Areas 4

You use the functions described in this section to create areas within an address
space, to obtain information about areas, and to delete areas.

CreateArea 4

Creates an area and returns an identifier for it.

OSStatus CreateArea (KernelProcessID owningKernelProcess,
BackingObjectID backingObject,
Const BackingAddress *backingBase,

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-34 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

ByteCount backingLength,
MemoryAccessLevel userAccessLevel,
MemoryAccessLevel privilegedAccessLevel,
ByteCount guardLength,
AreaOptions options,
LogicalAddress *areaBase,
AreaID *theArea);

owningKernelProcess
The kernel process in whose address space to create the area.
Areas are automatically deleted when their owning kernel
process terminates.

backingObject
The ID of the backing store whose content is to be mapped.
Specifying a value of kNobackingObjectID for this parameter
specifies that a scratch backing store file is to be used. If you
specify kResidentArea for the options parameter or if all access
to the area is excluded, this parameter must have a value of
kNobackingObjectID.

You obtain a backing object ID from the file system function
you used to create the backing object.

backingBase A pointer to the offset within the backing store specified by the
backingObject parameter, which corresponds to the area’s base
address. To specify an offset of 0, specify nil for this parameter.

The range of possible BackingAddress values is not constrained
by the memory system. Backing objects themselves may place
restrictions (for example, on a block-oriented device, the base
might need to be a whole multiple of the block size).

If you specify kResidentArea in the options parameter, you must
use a value of nil for the backingBase parameter.

backingLength The number of bytes to map from the backing store, starting at
the offset referenced by the backingBase parameter. The
microkernel rounds this number up to a multiple of the logical
page size, which implies that more backing store than you
specified may be mapped in. The backingLength parameter
must have a value other than 0.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-35
Draft. Apple Computer, Inc. 4/19/96

userAccessLevel
The kinds of memory references that user mode software is
allowed to make in the area. Use the memory access level
enumeration (page 4-6) to specify a value for this parameter.
References made in violation of the access level result in
exceptions at the time of the access. There are
processor-dependent restrictions on the access level
combinations you can specify. Call the GetAreaInformation
function (page 4-41) to find out what is allowable.

To create an area that excludes any access, set both user and
privileged access to kMemoryExcluded and specify both the
kSparseArea and kResidentArea area options. Specifying these
options ensures that physical memory and disk space are not
assigned to the area. If you plan on changing the area’s access
level, you do not have to specify these options.

privilegedAccessLevel
The kinds of memory references that privileged mode software
is allowed to make in the area. Use the memory access level
enumeration (page 4-6) to specify a value for this parameter.
References made in violation of the access level result in
exceptions at the time of the access. There are
processor-dependent restrictions on the access level
combinations you can specify. Call the GetAreaInformation
function (page 4-41) to find out what is allowable.

If this parameter has a more restrictive value than that for the
userAccessLevel parameter, the microkernel sets the
privilegedAccessLevel parameter to the same value as that in
the userAccessLevel parameter.

To create an area that excludes any access, set both user and
privileged access to kMemoryExcluded and specify both the
kSparseArea and kResidentArea area options. Specifying these
options ensures that physical memory and disk space are not
assigned to the area. If you plan on changing the area’s access
level, you do not have to specify these options.

guardLength The size in bytes of the area’s guard range—that is, the
excluded logical address ranges to place adjacent to each end of
the area. The guard ranges exclude both privileged and user
mode software, and references to addresses in these ranges

C H A P T E R 4

Virtual Memory Services Reference

4-36 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

result in exceptions. The microkernel aligns guard ranges to
page boundaries, which means that the excluded ranges may be
larger than you specified.

options The desired characteristics of the area being created. Use the
area options enumeration (page 4-7) to specify values for this
parameter.

areaBase On output, a pointer to the beginning logical address of the
mapped memory.

If you specify the kPlacedArea option, the AreaBase parameter
also has a meaning as an input parameter: it is a pointer to the
location where you want the area to be positioned. Please note
that, for alignment reasons, the actual location of the area might
differ from the requested value. In accessing this location, you
should use the value returned in the areaBase parameter, not
simply use the saved requested value.

theArea On output, the area identifier to be used for subsequent
operations on the created area.

function result To be provided.

DISCUSSION

The CreateArea function creates a mapping between a portion of the specified
address space and the specified backing store. The function returns the ID of
the newly created area and the logical address of that area’s origin. The logical
address has meaning only within the context of the area’s own address space.

You use the options parameter to specify the attributes of the area to be created.
You can specify that

■ memory in the area be initialized to 0

■ the data for this area cannot be paged out

■ resources for the area be allocated on demand

■ the area be positioned at a specific logical address

■ data in the area be addressable from any address space

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-37
Draft. Apple Computer, Inc. 4/19/96

SPECIAL CONSIDERATIONS

Always use the address returned in the areaBase parameter as the area’s
starting address.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To change an area’s access levels, use the SetAreaAccess function (page 4-37).

To create areas that share ranges of addresses, use the CreateAreaForRange
function (page 4-37).

To delete an area use the DeleteArea function (page 4-45).

To obtain information about an area use the GetAreaInformation function
(page 4-41).

SetAreaAccess 4

Changes the access rights for an area.

OSStatus SetAreaAccess (AreaID theArea,
MemoryAccessLevel userAccessLevel,
MemoryAccessLevel privilegedAccessLevel);

theArea The ID of the area whose access you are changing.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-38 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

userAccessLevel
The kinds of memory references that user mode software is
allowed to make in the area. Reference kinds are defined by the
memory access level enumeration (page 4-6). References made
in violation of the access level result in exceptions at the time of
the access.

privilegedAccessLevel
The kinds of memory references that privileged mode software
is allowed to make in the area. Reference kinds are defined by
the memory access level enumeration (page 4-6). References
made in violation of the access level result in exceptions at the
time of the access. If this parameter has a more restrictive value
than that for user mode software, the privilegedAccessLevel
parameter is set to the same value as that specified by the
userAccessLevel parameter.

function results To be provided.

DISCUSSION

There are processor-dependent restrictions on the access level combinations
you can specify. Call the GetAreaInformation function (page 4-41) to find out
what is allowable.

To create an area that excludes any access, set both user and privileged access
to kMemoryExcluded and specify both the kSparseArea and kResidentArea area
options. Specifying these options ensures that physical memory and disk space
are not assigned to the area. If you plan on changing the area’s access level, you
do not have to specify these options.

It is sometimes useful to change the kind of access that is allowed to an area.
For example, a code loader might need to make an area read-write while
initializing it, then change it to read-only when the area is ready to use.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-39
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetAreaInformation function (page 4-41) to determine an area’s current
access levels.

CheckUserAccess 4

Checks the legality of different kinds of operations occurring within a specified
range of memory.

OSStatus CheckUserAccess (ConstLogicalAddress address,
ByteCount length,
MemoryReferenceKind referenceKind);

address The beginning address of the range you wish to check.

length The size in bytes of the range you want checked.

referenceKind
The kind of operation you wish to verify. Possible values for
this parameter are given in the chapter “Exception Handling.”

function result To be provided.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-40 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

The CheckUserAccess function, given an address, a length, and a kind of
reference, returns a status that specifies whether the proposed reference is valid
in user mode.

This CheckUserAccess function is useful in a situation like the following. A user
mode client calls a privileged server which, in turn, calls an accept function in
the client’s address space. You want the accept function to store data back in
the client’s buffer, but you do not want to override the client’s access mode. To
do this, you call the CheckUserAccess function to make sure that you will not
accidentally overwrite data that the client itself could not have done.

Note that validating the proposed access does not guarantee a successful
access; it might still fail because the access is not synchronized with the client.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To copy data safely, use the InterspaceBlockCopy function (page 4-61).

DeleteArea 4

Destroys an area.

OSStatus DeleteArea (AreaID theArea);

theArea The area to destroy.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-41
Draft. Apple Computer, Inc. 4/19/96

function result To be provided.

DISCUSSION

The DeleteArea function removes the specified area. Further references to the
logical addresses previously mapped to the deleted area result in memory
exceptions.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Obtaining Information About An Area 4

You use the functions described in this section to obtain the location, backing
store, and attributes of an area, to obtain the IDs of all areas in an address
space, or to obtain the ID of an area, given a logical address.

GetAreaInformation 4

Returns information about a specified area.

OSStatus GetAreaInformation (AreaID theArea,
PBVersion version,
AreaInformation *areaInfo);

theArea The ID of the area for which you seek information.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-42 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

version The version number of the area information structure to be
returned. This provides backwards compatibility. The constant
kAreaInformationVersion supplies the version of the area
information structure defined in the interface.

areaInfo A pointer to the area information structure (page 4-9) in which
the information is returned.

function result To be provided.

DISCUSSION

The area information structure referenced by the areaInfo parameter contains
the following information:

■ the ID of the address space containing the area,

■ the base address and size of the area

■ the kinds of references allowed to user-mode and privileged tasks accessing
data in the area,

■ the area’s usage

■ the ID of the object providing backing store for the area and the area’s base
address within the backing object,

■ the options specified when the area was created and

■ the ID of the kernel process specified when the area was created and whose
termination causes the area to be deleted.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-43
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

Use the function GetAreasInAddressSpace (page 4-43) to obtain the IDs of all
areas in an address space.

GetAreasInAddressSpace 4

Obtains the IDs of all areas in a specified address space

OSStatus GetAreasInAddressSpace (AddressSpaceID addressSpace,
ItemCount requestedAreas,
ItemCount *totalAreas,
AreaID *theAreas);

addressSpace The ID of the address space of interest.

requestedAreas
The maximum number of area IDs to be returned. This
indicates the number of entries available at the location
referenced by the parameter theAreas.

totalAreas On output, a pointer to the total number of areas within the
address space. If this is less than or equal to the value in the
requestedAreas parameter, all areas were returned; if this is
greater than the requestedAreas parameter, insufficient space
was available to return all area IDs; but as many as possible
were returned.

theAreas On output, the IDs of the areas within the address space.

function result The function returns the kernedIDErr status if the specified
address space does not exist.

C H A P T E R 4

Virtual Memory Services Reference

4-44 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain information about a single area, use the GetAreaInformation function
(page 4-41).

GetAreaFromAddress 4

Obtains the area ID of the area associated with the specified logical address.

OSStatus GetAreaFromAddress (AddressSpaceID addressSpace,
 ConstLogicalAddress address,
 AreaID *theArea);

addressSpace The address space containing the logical address specified by
the address parameter.

address The logical address to look up.

theArea On output, a pointer to the ID of the area in question.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-45
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To get information about an area call the GetAreaInformation function
(page 4-41).

Working With Backing Storage 4

This section describes two functions that you use to manage virtual memory
operations relating to backing storage. You use the SetAreaBackingBase function
to determine what portion of a backing store object is mapped to logical
memory in those cases where the backing store object is larger than the address
space. You use the ReleaseData function to let the microkernel know when it is
not necessary to copy data to the backing store.

SetAreaBackingBase 4

Sets the specified backing address as the base for the specified area.

OSStatus SetAreaBackingBase (AreaID theArea,
const BackingAddress *backingBase);

theArea The ID of the area in which to change the backing store base.

backingBase A pointer to the offset within the backing store that is to
correspond to the lowest address in the area.

Specifying nil for backingBase, means a backing address of 0.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-46 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

The range of possible BackingAddress values is not constrained
by the memory system. Backing objects themselves may place
restrictions (for example, on a block-oriented device, the base
might need to be a whole multiple of the block size).

DISCUSSION

Some backing store objects are too large to view in their entirety in the space
available to a single address space. A common way to deal with this limitation
is to create a limited-size mapping (area) and then adjust where in the backing
store that mapping corresponds.

The SetAreaBackingBase function sets the specified address as the base for the
specified area. An area’s base backing address and length determine which
portion of the backing object is mapped to the area.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

ReleaseData 4

OSStatus ReleaseData (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ByteCount length,
ReleaseDataOptions options);

addressSpace The ID of the address space containing the range to release.

base The base address of the range to release.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-47
Draft. Apple Computer, Inc. 4/19/96

length The number of bytes in the range to release.

The system adjusts the beginning and end of the range as
necessary so that the range released begins and ends on logical
page boundaries. This means that less memory than was
specified may be released.

options The options available for this function. In this case, there is only
the kReleaseBackingStore option to deallocate the backing store.

Specifying this option causes the backing store associated with
the range to be deallocated if appropriate (the backing store
won’t be deallocated if the backing object was opened with read
only access, for instance). Specifying this option frees backing
store space but increases the runtime cost of the operation and
possibly incurs future costs when the page is touched again and
backing store must be reallocated.

DISCUSSION

The ReleaseData function informs the memory system that the data values in
the specified range are no longer needed. It is an optimizing hint to prevent
writing the data to the backing store. The backing store, if any, remains
allocated to the range. This is useful, for example, when deallocating modified
memory that is no longer reflected in the backing store.

If the released range is subsequently accessed, the values in memory will be
unpredictable.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-48 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

Managing Pages 4

This sections describes the GetPageInformation function, which returns
information about each logical page in a range and the ControlPagingForRange
function, which you use to lock one or more logical pages in memory.

GetPageInformation 4

Obtains information for each logical page within a range of logical addresses.

OSStatus GetPageInformation (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ItemCount requestedPages,
PBVersion version,
PageInformation *thePageInfo);

addressSpace The ID of the address space containing the range of interest.

base The base logical address of interest.

requestedPages
The number of pages for which information is to be returned.

version The version number of the page information structure to be
returned. This provides backwards compatibility. The constant
kPageInformationVersion supplies the version of the page
information structure defined in the interface.

thePageInfo A pointer to a buffer containing a page information structure
(page 4-14) describing the information returned. The buffer
must be large enough to contain page state information
(page 4-11) for each page specified in the requestedPages
parameter.

function results To be provided.

DISCUSSION

This function returns a pointer to a buffer that contains the following entries:

■ The first field specifies the ID of the area associated with the range.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-49
Draft. Apple Computer, Inc. 4/19/96

■ The second field specifies the number of page state information entries
returned.

■ The third field is an array of page state information structures, one structure
for each logical page in the specified range, which specify whether

n the page protection for user mode and privileged software

n the page has been modified or referenced

n the page is locked and resident

n the page is present in physical memory

n the page is being shared

n modifications to the page are written through the processor cache to main
memory or whether modifications to the page may be cached by the
processor and not immediately reflected in main memory.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

ControlPagingForRange 4

Allows programmatic control of the paging operations on a specified range.

OSStatus ControlPagingForRange (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ByteCount length,
PageControlOperation operation);

addressSpace The ID of the address space containing the range to change.
base The base address of the range to change.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-50 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

length The number of bytes in the range.
The beginning and end of the range are adjusted, if
necessary, so that the range begins and ends on logical
page boundaries. This means that more memory than you
specified may be affected.

operation The paging operation. Values for this parameter are
defined by the page control operation enumeration
(page 4-12).

DISCUSSION

You can call the ControlPagingForRange function to perform the following
operations on the specified range:

■ lock and unlock the range

■ allocate backing store in a sparse pageable area or allocate physical memory
for a page in a sparse resident area

■ bring the range into physical memory asynchronously

■ free physical memory associated with this range after writing modified
pages to backing store. You can use this to optimize performance by giving
the system information about pages that will not be needed in the near
future.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-51
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

Call the GetPageInformation function to obtain information about pages in a
range of memory.

Sharing Memory 4

Device drivers, debuggers, and client-server applications must often share data
across address spaces. The underlying method for sharing memory is to create
areas that map the same backing store data into the various clients’ address
spaces. The microkernel provides various services to share memory using this
method:

■ To create a global area—that is, an area that appears in every address space
at the same location and with the same attributes, use the kGlobalArea
option when creating the area with the CreateArea function (page 4-33).

■ To create an area that can be shared between clients and servers, each having
different access rights to the shared data, use the CreateAreaForRange
function.

■ To reserve space that can then be accessed from different address spaces use
the CreateAreaReservation function.

This section describes the functions you use to reserve memory, to free a
reserved memory range, to obtain information about a memory reservation,
and to obtain the IDs of all memory reservations made in an address space.

■ To allow your application ongoing access to data in other address spaces use
the CreateAreaForRange function described in this section.

■ To enable your application to simply read data from or write data to other
address spaces, use the InterspaceBlockCopy function described in this
section.

C H A P T E R 4

Virtual Memory Services Reference

4-52 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

CreateAreaReservation 4

Reserves a logical address range.

OSStatus CreateAreaReservation (KernelProcessID owningKernelProcess,
LogicalAddress *reservationBase,
ByteCount length,
ReservationOptions options,
AreaReservationID *theReservation);

owningKernelProcess
The ID of the kernel process in whose address space to reserve
the range.

base On output, a pointer to the base logical address of the
reservation. If you specify the kPlacedReservation option, this
parameter is also an input specifying where to position the
reservation.

If the reservation cannot be placed at the requested location, the
CreateAreaReservation function fails and an error is returned. If
the reservation is made, the output and input values of the
reservation’s base address might not be the same because of
page alignment. You should always use the value returned in
the base parameter rather than saving your requested value and
using it.

length The number of bytes to reserve. Due to page alignment the
reservation may be larger than you specified.

options The optional characteristics of the reservation being created.
You specify values for this parameter using the reservation
options enumeration (page 4-15).

theReservation
On output, a pointer to the reservation identifier to be used for
subsequent operations on the reservation.

function results To be provided.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-53
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

The CreateAreaReservation function cordons off a logical address range such
that no areas can be created within that range unless they are specified to be
there by using the kPlacedArea option to the CreateArea or CreateAreaForRange
functions.

You use the options parameter to specify whether

■ the reservation is to occur at a particular location

■ the reservation is to apply across all existing and future address spaces—the
reservation is global

■ any areas created in the reserved range are also to be global

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the DeleteAreaReservation function (page 4-53) to make a reserved area
pageable.

Use the GetReservationInformation function (page 4-54) to obtain information
about a reservation.

Use the GetReservationsInAddressSpace function (page 4-56) to obtain the IDs
of all the reserved areas in an address space.

DeleteAreaReservation 4

Destroys a specified memory reservation.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-54 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

OSStatus DeleteAreaReservation (AreaReservationID theReservation);

theReservation
The reservation to delete.

function results To be provided.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetReservationInformation function (page 4-54) to obtain information
about a reservation.

Use the GetReservationsInAddressSpace function (page 4-56) to obtain the IDs
of all the reserved areas in an address space.

GetReservationInformation 4

Obtains information about a specified memory reservation.

OSStatus GetReservationInformation (AreaReservationID theReservation,
PBVersion version,
ReservationInformation *reservationInfo);

theReservation
The ID of the memory reservation for which to get the
information.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-55
Draft. Apple Computer, Inc. 4/19/96

version The version number of the memory reservation information
structure to be returned. This provides backwards
compatibility. The constant kReservationInformationVersion
defines the version of the memory reservation information
structure defined in the current interface.

reservationInfo
A pointer to the memory reservation information structure in
which to return the information.

function results To be provided.

DISCUSSION

The GetReservationInformation function returns the following information
about a reservation:

■ The ID of the address space in which the reservation is made.

■ the base logical address of the reservation

■ the size of the reservation

■ the options specified when the reservation was made: whether the
reservation was placed, whether it is global, and whether the areas it
includes are global.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetReservationsInAddressSpace function (page 4-56) to obtain the IDs
of all the reserved areas in an address space.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-56 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

GetReservationsInAddressSpace 4

Obtains the IDs of all memory reservations in a specified address space

OSStatus GetReservationsInAddressSpace (AddressSpaceID addressSpace,
ItemCount requestedReservations,
ItemCount *totalReservations,
AreaReservationID *theReservations);

addressSpace The ID of the address space of interest.

requestedReservations
The maximum number of reservation IDs to be returned. This
indicates the number of entries available at the location pointed
to by the parameter theReservations.

totalReservations
On output, a pointer to the total number of reservations within
the address space. If this is less than or equal to the value in the
requestedReservations parameter, all reservations were
returned; if this is greater than the value specified with the
requestedReservations parameter, insufficient space was
available to return all reservation IDs, but as many as possible
were returned.

theReservations
On output, a pointer to a buffer containing the IDs of the
reservations within the address space.

function results If the specified address space does not exist, the function
returns the kernelIDErr status.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-57
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the DeleteAreaReservation function (page 4-53) to make a reserved area
pageable.

Use the GetReservationInformation function (page 4-54) to obtain information
about a reservation.

CreateAreaForRange 4

Maps a logical address range from one address space into another.

OSStatus CreateAreaForRange (KernelProcessID owningKernelProcess,
AddressSpaceID otherSpace,
ConstLogicalAddress otherBase,
ByteCount length,
MemoryAccessLevel userAccessLevel,
MemoryAccessLevel privilegedAccessLevel,
ByteCount guardLength,
AreaOptions options,
LogicalAddress *areaBase,
AreaID *theArea);

owningKernelProcess
The kernel process in whose address space to create the area.
When the kernel process terminates, the area is automatically
deleted.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-58 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

otherSpace The address space containing the range to map.

otherBase The start of the range of memory that you want to map.
The system aligns the value you specify for the otherBase
parameter to a page boundary, which means that a larger range
than you specified may be mapped.

length The number of bytes in the range of memory you want to map.
The system aligns length values to a page boundary, which
means that a larger range than you specified may be mapped.

userAccessLevel
The kinds of memory references that user mode software is
allowed to make in the area. Use the memory access level
enumeration (page 4-6) to specify a value for this parameter.
References made in violation of the access level result in
exceptions at the time of the access. There are
processor-dependent restrictions on the access level
combinations you can specify. Call the GetAreaInformation
function (page 4-41) to find out what is allowable.

To create an area that excludes any access, set both user and
privileged access to kMemoryExcluded and specify both the
kSparseArea and kResidentArea area options. Specifying these
options ensures that physical memory and disk space are not
assigned to the area. If you plan on changing the area’s access
level, you do not have to specify these options.

You can specify that the user mode access rights in the area to
be created area inherit either the user or the privileged mode
access rights of the existing area. This is useful if the code
calling the CreateAreaForRange function might be running at a
different access level than the code that was accessing the
original area. For example, if a privileged server is servicing
requests from a user-mode client and the server must create an
area in response to a request, it would not want to augment the
client’s access rights to the area.

privilegedAccessLevel
The kinds of memory references that privileged mode software
is allowed to make in the area. Use the memory access level
enumeration (page 4-6) to specify a value for this parameter.
References made in violation of the access level result in
exceptions at the time of the access. There are

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-59
Draft. Apple Computer, Inc. 4/19/96

processor-dependent restrictions on the access level
combinations you can specify. Call the GetAreaInformation
function (page 4-41) to find out what is allowable.

If this parameter has a more restrictive value than that for the
userAccessLevel parameter, the microkernel sets the
privilegedAccessLevel parameter to the same value as that in
the userAccessLevel parameter.

You can specify that the privileged mode access rights in the
area to be created inherit either the user or the privileged mode
access rights of the existing area. This is useful if the code
calling the CreateAreaForRange function is running at a different
access level than the code that was accessing the original area.

guardLength The size in bytes of the area’s guard ranges—that is, the
excluded logical address range to place adjacent to each end of
the area. The guard ranges exclude both privileged and user
mode software, and references to addresses in these ranges
result in exceptions. The microkernel aligns guard ranges to
page boundaries, which means that the excluded ranges might
be larger than you specified.

options The desired characteristics of the area being created. Use the
area options enumeration (page 4-7) to specify values for this
parameter.

The area to be created inherits the following option values from
the existing area: kZeroFill, kResidentArea, and kSparseArea. If
you specify different values for these options, the
CreateAreaForRange function ignores them.

Specify the kPlacedArea option to position the area at the
address referenced by the areaBase parameter. The
CreateAreaForRange function fails if the area cannot be
positioned as specified.

The address corresponding to the beginning of the range is
returned in the areaBase parameter. Note that this is exactly as
specified only if areaBase and otherBase have the same byte
offset into their respective logical pages.

areaBase On output, a pointer to the beginning logical address of the
mapped memory.

C H A P T E R 4

Virtual Memory Services Reference

4-60 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

If you specify the kPlacedArea option, the areaBase parameter
also has a meaning as an input parameter: it is a pointer to the
location where you want the area to be positioned. Please note,
that the actual location of the area might differ from the
requested value. In accessing this location, you should use the
value returned in the areaBase parameter, not simply use the
saved requested value.

theArea On output, a pointer to the area identifier that you can use for
subsequent operations on the created area.

function results To be provided.

DISCUSSION

The CreateAreaForRange function creates a mapping between two address
spaces or between two spaces in one address space and it returns the ID of the
newly created area and its starting logical address.

It is sometimes useful to have on-going access to data in other address spaces.
Although you can do this by calling the GetAreaInformation function to obtain
information about an area and then using the CreateArea function to map the
same backing store to another area, this takes several calls and does not work if
an area is resident. Using the CreateAreaForRange function combines those
several steps into one and allows you to map a resident area to another address
space.

If you need to read data from or write data to another address space, you might
find it more efficient to use the InterspaceBlockCopy function (page 4-61) rather
than creating a mapping using the CreateAreaForRange function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-61
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

Use the functions described in the section “Obtaining Information About An
Area,” beginning on page 4-41 to get information about one or more areas.

Use the InterspaceBlockCopy function (page 4-61) to make a static copy of the
contents of a memory range.

InterspaceBlockCopy 4

Copies bytes from the specified source address space and range to the specified
destination address space and range.

OSStatus InterspaceBlockCopy (AddressSpaceID sourceAddressSpace,
AddressSpaceID targetAddressSpace,
LogicalAddress sourceBase,
LogicalAddress targetBase,
ByteCount length
InterspaceCopyOptions options);

sourceAddressSpace
The ID of the address space containing the source range.

targetAddressSpace
The ID of the address space containing the destination range.

sourceBase The start of the source range.

targetBase The start of the destination range.

length The number of bytes to copy from the source to the destination.

options The access checks to apply to the copy operation. Values for this
parameter are defined by the interspace copy options
enumeration (page 4-15).

function result To be provided.

DISCUSSION

It is sometimes useful to read data from or write data to another address space.
For example, a server might need to read or write client data, or a debugger
might need to display or set data in the debugged address space. The

C H A P T E R 4

Virtual Memory Services Reference

4-62 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

InterspaceBlockCopy function copies bytes from a specified source address
space and range to a specified destination address space and range without the
overhead of setting up a mapping and without the risk of encountering a
memory access exception. Note that neither address space needs to be the
current address space.

Calling the InterSpaceBlockCopy function is only economical when moving
data across address spaces. If you need to move a block of memory safely
within the same address space, it is recommended that you do not call this
function but that you install an exception handler to guard against changes in
access levels between the time you check for access rights and the time you
move memory.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the CreateAreaForRange function to create a mapping between two address
spaces.

Working With Processor Caches 4

The functions described in this section might be useful to compilers,
debuggers, and drivers.

If you are interested in maintaining cache coherency before or after an I/O
operation, you need only to use the functions PrepareMemoryforIO and
CheckpointI/O which ensure cache coherency when writing to or reading from
external devices.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-63
Draft. Apple Computer, Inc. 4/19/96

DataToCode 4

Enables execution of generated or copied instructions.

OSStatus DataToCode (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ByteCount length);

addressSpace The ID of the address space containing the range to be treated
as code. This must be the current address space.

base The start of the range to be treated as code.

length The number of bytes in the range to be treated as code.

function results To be provided.

DISCUSSION

The DataToCode functions performs the operations necessary for the specified
memory range to be treated as processor instructions instead of simple data.
This is required, for example, when reading instructions into scratch memory,
or when generating instructions on the fly.

Placing executable data in memory requires synchronization with the
processor’s data and instruction caches. The details are specific to the processor
and the internal operation of the memory system. Consequently, the virtual
memory system provides this service, which encapsulates the necessary
operations.

SPECIAL CONSIDERATIONS

The system adjusts the beginning and end of the range as necessary so that the
range begins and ends on logical page boundaries, which means that more
memory than was specified may be affected.

C H A P T E R 4

Virtual Memory Services Reference

4-64 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

FlushRange 4

Writes the specified data from the processor cache into main memory.

OSStatus FlushRange (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ByteCount length);

addressSpace The ID of address space containing the address range to be
flushed. This must have the value of the current address space.

base The start of the range of addresses to be written to memory.

length The number of bytes in the address range to memory.

function results To be provided.

SPECIAL CONSIDERATIONS

The system adjusts the beginning and end of the range as necessary so that the
range begins and ends on logical page boundaries, which means that more
memory than was specified may be affected.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-65
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SetProcessorCacheMode 4

Sets the memory hardware cache mode for the specified range.

OSStatus SetProcessorCacheMode (AddressSpaceID addressSpace,
ConstLogicalAddress base,
ByteCount length,
ProcessorCacheMode processorCacheMode);

addressSpace The address space containing the range to change.

base The start of the range.

length The number of bytes in the range.

processorCacheMode
The cache mode. Values for this parameter are defined by the
processor cache mode enumeration (page 4-17).

function results To be provided.

DISCUSSION

You use this function to specify whether

■ Data and/or code caching are available

■ Read and write operations use the cache

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-66 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

SPECIAL CONSIDERATIONS

The system adjusts the beginning and end of the range as necessary so that the
range begins and ends on logical page boundaries, which means that more
memory than was specified may be affected.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Preparing For I/O 4

Memory usage in a demand paged, multi-tasking system is both highly
dynamic and highly complex. When an I/O operation is performed between an
external device and a buffer in system memory, the main processor, cache
memory and the memory hardware must be coordinated.The microkernel
provides two functions that you use to achieve this coordination. The
PrepareMemoryForIO function assigns physical memory to the buffer, generates
an appropriate buffer specification, and performs all necessary cache
manipulation prior to each I/O operation. The CheckpointIO function cleans up
following the I/O operation: it assures cache coherency and either prepares for
further transfers or deallocates the resources associated with the buffer
preparation if no further transfers will be made.

IMPORTANT

Failure to use these I/O-related microkernel services
properly can result in data corruption or fatal system
errors, or both. Correct system behavior is the
responsibility of the microkernel and all I/O components
including drivers, managers, and hardware. ▲

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-67
Draft. Apple Computer, Inc. 4/19/96

PrepareMemoryForIO 4

Prepares memory for use in I/O operations.

OSStatus PrepareMemoryForIO (IOPreparationTable *theIOPreparationTable);

theIOPreparationTable
On input, a pointer to an I/O preparation table (page 4-21)
indicating the memory buffer to be prepared. On output, a
pointer to the same table, now also containing the mapping
information.

function result To be provided.

DISCUSSION

The PrepareMemoryForIO function ensures that device I/O on one or more
ranges is coordinated with the microkernel, the main processor caches, and
other data transfers. Preparation includes ensuring that physical memory is
assigned, and remains assigned, to the range at least until the final call to the
CheckpointIO function relinquishes it, and, for logical I/O operations, that
memory accesses do not page fault. Depending upon the I/O mode
(programmed I/O or DMA), the I/O direction, and the data path coherence
that you specify, the kernel manipulates the contents of the processor’s caches,
if any, and may make the underlying memory noncachable.

You must do I/O preparation before trying to transfer data. For operations
with block oriented devices, the preparation might best be done just before
moving the data, typically by the driver. For operations upon buffers such as
memory shared between the main processor and a coprocessor, frame buffers,
or buffers internal to a driver, the preparation might best be performed when
the buffer is allocated.

You can specify values for the options field of the I/O preparation table that
allow you to

■ enable scatter gather memory operations

■ specify whether address range structures contain logical addresses

■ reduce memory usage when doing DMA transfers that require some logical
I/O

■ share mapping tables with the system, thus reducing memory requirements

C H A P T E R 4

Virtual Memory Services Reference

4-68 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

■ eliminating unnecessary cache manipulations

■ automatically check access rights if I/O is done on behalf of a nonprivileged
client

In the event that insufficient resources are available to prepare all of the
specified memory, the PrepareMemoryForIO function does a partial preparation—
that is, it prepares as much as possible and then returns a value indicating
which memory has been prepared. You can examine the kIOStateDone bit in the
state field of the I/O preparation table to check whether the preparation was
complete or partial, and, in either case, you can examine the firstPrepared and
lengthPrepared parameters to determine which part of the overall range or
ranges has been prepared.

You must prepare and finalize memory for the benefit of the system and other
users of the memory and backing store even if you don’t need any of the
information provided by PrepareMemoryForIO.

SPECIAL CONSIDERATIONS

The PrepareMemoryForIO function guarantees that the underlying physical
memory remains assigned to the range or ranges at least until the CheckpointIO
function relinquishes it. However, it does not guarantee that the original logical
address range or ranges remain mapped. In particular, the controlling area or
areas may be deleted before the CheckpointIO function completes. If the caller
cannot somehow guarantee that the area or areas will continue to exist, logical
address references to the underlying physical memory must be made through
the static logical addresses provided in the mapping table or tables.

You need to match calls to the PrepareMemoryForIO function with calls to the
CheckpointIO function, even if the I/O transfer is aborted.

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-69
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can be called only at task level from a driver’s DoDriverIO routine
or from a subroutine called by DoDriverIO.

SEE ALSO

To finalize preparing memory for I/O transfers, use the CheckpointIO function
(page 4-69).

For details of the data structure that the PrepareMemoryForIO function uses, see
the description of the I/O preparation table (page 4-21).

CheckpointIO 4

Finalizes the preparation of memory for use in I/O operations

OSStatus CheckpointIO (IOPreparationID thePreparationID,
IOCheckpointOptions theOptions);

thePreparationID
The I/O transaction ID returned by the PrepareMemoryForIO
function. This ID is invalid after calling the CheckpointIO
function without setting the kMoreIOTransfers option.

theOptions For multiple I/O operations, this parameter defines the
optional characteristics of subsequent transfers. Values for this
parameter are defined by the I/O checkpoint options
enumeration (page 4-20).

function results To be provided.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 4

Virtual Memory Services Reference

4-70 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

The CheckpointIO function performs the necessary follow-up operations for the
specified device I/O transfer, and optionally prepares for a new transfer or
deallocates kernel resources used in preparing the range.

Multiple concurrent preparations of memory ranges or portions of memory
ranges are supported.

SPECIAL CONSIDERATIONS

You must call the CheckpointIO function even if the I/O is aborted because the
kernel resources need to be reclaimed.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To begin preparing memory for I/O transfers, use the PrepareMemoryForIO
function (page 4-67).

Glossary 4

address space The domain of addresses that can be directly referenced by
the processor at any given moment.

logical address A location within an address space. Logical addresses are
unsigned; the lower bound of a logical address is zero; the upper bound is the
size of the address space minus one.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 4

Virtual Memory Services Reference

Memory Management Functions 4-71
Draft. Apple Computer, Inc. 4/19/96

physical address A location in physical memory: RAM, ROM, or cache.
nonpageable area An area which cannot be paged out.
sparse area An area in which memory is allocated as needed. If a resident
area is sparse, this means that the physical memory is allocated by page
faulting.

static logical address The logical address that can be used to access a physical
address that you supplied while preparation for I/O is active. The structure of
static logical mappings is guaranteed on a per-page basis; a static logical
mapping endures from the time you call the PrepareMemoryForIO function
through the final call to CheckpointIO function.

C H A P T E R 4

Virtual Memory Services Reference

4-72 Memory Management Functions

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 5

Contents 5-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 5-0
Listing 5-0
Table 5-0

5 Server Manager

Server Manager Constants and Data Types 5-3
Server Main Entry Point 5-3
Server ID 5-4

Server Manager Functions 5-4
Communicating With Servers 5-4

LookupServer 5-5
LookupServerAsync 5-7

Communicating With Clients 5-10
ServerCreated 5-10

Server Manager Resources 5-12
The Server Resource 5-12

Server Manager Result Codes 5-15

C H A P T E R 5

5-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 5

Server Manager Constants and Data Types 5-3
Draft. Apple Computer, Inc. 4/19/96

Server Manager 5

Server Manager Constants and Data Types 5

Server Main Entry Point 5

The Server Manager is responsible for launching, shutting down, and restarting
servers. Also, it is responsible for facilitating communication between servers
and their clients. The Server Manager identifies the available servers on the
system by searching for them within a special subfolder of the System Folder.

The Server Manager can launch a server when the system starts up or delay
launching it until the first time a client of the server wants to begin
communicating with the server. When the Server Manager launches a server, it
creates the main task of the server within a process and then the task begins
executing at its main entry point.

In general, when a server begins executing at its main entry point, it performs
some initialization and then receives communications from its clients. The
entry point of a server must conform to the declaration of a server main entry
point, which is a function that takes a server ID parameter (page 5-4) and
returns nothing. The server ID, which is supplied by the Server Manager when
it launches the server, is passed into the main entry point of the server when it
begins executing.

When a client wants to begin communicating with a server, it calls either the
LookupServer function (page 5-5) or the LookupServerAsync function (page 5-7)
to obtain a way to communicate with the server. If the server is not ready to
begin communicating with its clients, a caller of the LookupServer function may
block until the server is ready (whereas a caller of the LookupServerAsync
function, which operates asynchronously, receives notification when the server
is ready). Therefore, as soon as a server has initialized itself and is ready to
begin communicating with its clients, it should call the ServerCreated function
(page 5-10) to inform the Server Manager of its readiness and to enable the
Server Manager to unblock any callers of the LookupServer function or notify
any callers of the LookupServerAsync function as quickly as possible. When it
calls the ServerCreated function, the server must pass the same server ID that
the Server Manager previously passed into the server’s main entry point.

The ServerMainEntry data type defines a pointer to a server main entry point.

C H A P T E R 5

Server Manager

5-4 Server Manager Functions

Draft. Apple Computer, Inc. 4/19/96

typedef void (*ServerMainEntry)(ServerID server); /* entry point */

Server ID 5

The Server Manager uses a server ID to refer to a server. Although a client of a
server refers to the server by name rather than by its server ID, a server itself
must use this type when its calls the ServerCreated function (page 5-10) and
passes its own server ID (which it obtains from the parameter passed to its
server main entry point (page 5-3)) to inform the Server Manager that it is
ready to communicate with its clients.

The ServerID data type defines a server ID.

typedef struct OpaqueServerID* ServerID; /* server ID */

Server Manager Functions 5

Communicating With Servers 5

A client calls the LookupServer function (page 5-5) or the LookupServerAsync
function (page 5-7) when it needs a way to communicate with a particular
server. The communication information a client obtains by calling these
functions supports some previously established communication protocol that is
observed by the server and its clients.

C H A P T E R 5

Server Manager

Server Manager Functions 5-5
Draft. Apple Computer, Inc. 4/19/96

LookupServer 5

Supplies a way to communicate with the specified server.

OSStatus LookupServer(
ConstStr63Param serverName_t,
Duration timeout_i,
ServerID *server_o,
void **refcon_o);

serverName_t The name of the server (which is specified using the
ConstStr63Param data type). You should supply the well known
name of the server. The server specifies this name in its 'srvr'
resource (page 5-12). The LookupServer function returns result
code kernelIDErr and supplies no value in the refcon_o
parameter if the specified name does not correspond to a server
that is available for communication with clients.

timeout_i The maximum length of time to block if the server is not ready
to communicate with its clients. You must be prepared for the
possibility of blocking if the server is not ready to communicate
with its clients (call the LookupServerAsync function (page 5-7)
instead of LookupServer if you are not willing to block). If the
server is ready to communicate with its clients when you call
LookupServer, this parameter is ignored and LookupServer
returns immediately, without blocking. The Duration data type
is described in the chapter ‘Timing Services Reference.’

server_o A pointer to a server ID (page 5-4). On output, LookupServer
supplies an ID for the server. Rather than using this ID, you
usually refer to a server using a well known name that matches
the name specified by the 'srvr' resource of the server.

refcon_o A pointer to a 32-bit word of unspecified data. On output, if the
specified server is ready to communicate with its clients and the
duration specified by the timeout_i parameter did not expire,
then LookupServer supplies in this parameter information that
indicates the way your program should communicate with the
server. For example, the information might be the ID of a
message object to which your program can send a microkernel
message (described in the chapter ‘Messaging Service
Reference’) or it might be the dispatcher ID to which your

C H A P T E R 5

Server Manager

5-6 Server Manager Functions

Draft. Apple Computer, Inc. 4/19/96

program can send an AppleEvent (for information about
AppleEvents, see the accompanying document called Apple
Events in Mac OS 8). If the specified server is unavailable for
communication with clients or the duration specified by the
timeout_i parameter expires before the server becomes ready to
communicate with its clients, nothing is returned on output in
this parameter.

function result A result code. The result code noErr indicates that LookupServer
successfully returned a value in the refcon_o parameter. The
result code kernelTimeoutErr indicates that the duration
specified by the timeout_i parameter expired. The result code
kernelIDErr indicates that the specified server does not exist or
it was unavailable for communication with clients. See “Server
Manager Result Codes” (page 5-15) for a description of result
codes that LookupServer may return.

DISCUSSION

A client should call LookupServer when it wants to begin communicating with a
particular server. If the Server Manager has not launched the server already,
calling LookupServer may result in the Server Manager blocking the caller and
launching the server. If a client wants to begin communicating with a server,
but it wants to avoid blocking if the server is not currently ready to
communicate, it should call the LookupServerAsync function (page 5-7) instead
of LookupServer.

The Server Manager maintains a list of servers that want to be available for
communication with their clients. Typically, a server does want to be available
for communication with its clients and indicates this by specifying it in its
server resource (page 5-12). Any server that is not on the list cannot be
launched, even if a client indicates that it wants to communicate with it.
Consequently, the Server Manager supplies no value in the refcon_o parameter
and LookupServer returns result code kernelIDErr if the client calls LookupServer
for a server that is unavailable for communication with clients (the same
behavior applies if the client specifies a nonexistent server name).

Soon after the Server Manager launches a server, the server informs the Server
Manager that it is ready to begin communicating with its clients by calling the
ServerCreated function (page 5-10) and passing some information that
indicates how clients of the server should communicate with the server. This
information supports some previously established communication protocol

C H A P T E R 5

Server Manager

Server Manager Functions 5-7
Draft. Apple Computer, Inc. 4/19/96

that is observed by this server and its clients. Once the Server Manager has
obtained the server’s communication information, the Server Manager can
supply this same communication information to any blocked callers of
LookupServer for this server and then unblock them. Clients subsequently
calling LookupServer for the same server are not forced to block.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain communication information for a server asynchronously, call the
LookupServerAsync function (page 5-7). For information on how servers supply
communication information, see the ServerCreated function (page 5-10).

LookupServerAsync 5

Asynchronously supplies a way to communicate with the specified server.

OSStatus LookupServerAsync(
ConstStr63Param serverName_t,
const KernelNotification *asyncNotification_i,
ServerID *server_o,
void **refcon_o);

serverName_t The name of the server (which is specified using the
ConstStr63Param data type). You should supply the well known
name of the server. The server specifies this name in its 'srvr'
resource (page 5-12). This asynchronous service completes

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

Server Manager

5-8 Server Manager Functions

Draft. Apple Computer, Inc. 4/19/96

without supplying a value in the refcon_o parameter if the
specified name does not correspond to a server that is available
for communication with clients.

asyncNotification_i
A pointer to a microkernel notification structure (described in
the chapter ‘Microkernel Notification Reference’ to be provided
at a later date) that specifies the mechanism by which the caller
wants to be notified when this asynchronous service completes.
The caller can use communication information supplied in the
location it specified for the refcon_o parameter only if the
notification it receives indicates that the result of this
asynchronous service was noErr.

server_o A pointer to a server ID (page 5-4). On output,
LookupServerAsync supplies an ID for the server. Rather than
using this ID, you usually refer to a server using a well known
name that matches the name specified by the 'srvr' resource of
the server.

refcon_o A pointer to a 32-bit word of unspecified data. When this
asynchronous service completes (which is not when
LookupServerAsync returns), if the specified server is ready to
communicate with its clients, then information that indicates
the way your program should communicate with the server is
supplied in this location. For example, the information might be
the ID of a message object to which your program can send a
microkernel message (described in the chapter ‘Messaging
Service Reference’) or it might be the dispatcher ID to which
your program can send an AppleEvent (for information about
AppleEvents, see the accompanying document called Apple
Events in Mac OS 8). The caller should use the communication
information supplied in this location only if the notification it
receives indicates that this asynchronous service completed
with the result code noErr. If the specified server is unavailable
for communication with clients, no value is supplied in this
parameter.

function result A result code. See “Server Manager Result Codes” (page 5-15)
for a description of result codes that LookupServerAsync may
return.

C H A P T E R 5

Server Manager

Server Manager Functions 5-9
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

A client should call LookupServerAsync rather than the LookupServer function
(page 5-5) when it wants to avoid blocking if the server is not currently ready
to communicate. Callers of LookupServerAsync specify the mechanism by which
they want to be notified when this asynchronous service completes. If the
Server Manager has not launched the server already, calling LookupServerAsync
may result in the Server Manager launching the server.

Whereas a client calling the LookupServer function determines whether the
server is ready to begin communicating with it by inspecting the result
returned by the function, a client calling LookupServerAsync determines
whether the server is ready to begin communicating with it by inspecting the
completion result in the notification it receives.

The Server Manager maintains a list of servers that want to be available for
communication with their clients. Typically, a server does want to be available
for communication with its clients and indicates this by specifying it in its
server resource (page 5-12). Any server that is not on the list cannot be
launched, even if a client indicates that it wants to communicate with it.
Consequently, the Server Manager supplies no communication information to
the client calling LookupServerAsync for a server that is unavailable for
communication with clients (the same behavior applies if the client specifies a
nonexistent server name).

Soon after the Server Manager launches a server, the server informs the Server
Manager that it is ready to begin communicating with its clients by calling the
ServerCreated function (page 5-10) and passing some information that
indicates how clients of the server should communicate with the server. This
information supports some previously established communication protocol
that is observed by this server and its clients. Once the Server Manager has
obtained the server’s communication information, the Server Manager can
supply this same communication information and deliver notification to any
current or subsequent callers of LookupServerAsync for this server.

C H A P T E R 5

Server Manager

5-10 Server Manager Functions

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To obtain communication information for a server synchronously, call the
LookupServer function (page 5-5). For information on how servers supply
communication information, see the ServerCreated function(page 5-10).

Communicating With Clients 5

A server calls the ServerCreated function (page 5-10) once it is ready to begin
communicating with its clients.

ServerCreated 5

Informs the Server Manager that a server is ready to communicate with its
clients.

OSStatus ServerCreated(
ServerID server_t,
void *refcon_i);

server_t A server ID (page 5-4). Specify the server ID passed into the
server main entry point (page 5-3) when the server began
executing. Specifying a nonexistent server ID causes
ServerCreated to return the result code kernelIDErr.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

Server Manager

Server Manager Functions 5-11
Draft. Apple Computer, Inc. 4/19/96

refcon_i A 32-bit word of unspecified data. When the server calls
ServerCreated, it supplies in this parameter information that
indicates the way that its clients should communicate with it.
For example, it might supply the ID of a message object to
which its clients can send a microkernel message (described in
the chapter ‘Messaging Service Reference’) or it might supply
the dispatcher ID to which its clients can send an AppleEvent
(for information about AppleEvents, see the accompanying
document called Apple Events in Mac OS 8).

The Server Manager supplies this communication information
to previous and subsequent callers of the LookupServer function
(page 5-5) or the LookupServerAsync function (page 5-7) for this
server. Supplying this communication information allows any
clients who blocked calling the LookupServer function for this
server to unblock and allows delivery of a completion
notification to any clients who called the LookupServerAsync
function for this server. Once the server calls ServerCreated and
continues executing, clients calling the LookupServer function
subsequently will obtain this communication information from
the Server Manager immediately, without blocking.

function result A result code. The result code noErr indicates that
ServerCreated successfully passed its communication
information to the Server Manager. The result code kernelIDErr
indicates that the server specified the wrong server ID. See
“Server Manager Result Codes” (page 5-15) for a description of
the result codes that ServerCreated may return.

DISCUSSION

Once a server begins executing at its main entry point (page 5-3), it should call
ServerCreated as soon as it is ready to begin communicating with its clients.
Calling ServerCreated informs the Server Manager of the server’s readiness
and provides the Server Manager with information that indicates the way that
clients of the server should communicate with the server (this information
supports some previously established communication protocol that is observed
by this server and its clients). Once the Server Manager obtains this
communication information, it can unblock any callers of the LookupServer
function and notify any callers of the LookupServerAsync function who are
waiting to be supplied with this communication information. Furthermore, the
Server Manager can supply this communication information immediately in

C H A P T E R 5

Server Manager

5-12 Server Manager Resources

Draft. Apple Computer, Inc. 4/19/96

response to any subsequent calls to the LookupServer function or the
LookupServerAsync function by clients who want to communicate with this
server.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information on obtaining a way to communicate with a server, see the
LookupServer function (page 5-5) and the LookupServerAsync function (page 5-7).

Server Manager Resources 5

The Server Resource 5

When you define your own server, you store it as a resource with the resource
type 'srvr'. When the Server Manager is looking for servers among the files
within the server subfolder of the System Folder, it only recognizes a file as a
server if the file has a server resource of type 'srvr'.

A resource of resource type 'srvr' must have a resource ID of 0. The server
resource type is defined by the kCreateServerResType constant and the server
resource ID is defined by the kCreateServerResID.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 5

Server Manager

Server Manager Resources 5-13
Draft. Apple Computer, Inc. 4/19/96

enum {
kCreateServerResType = 'srvr', /* server resource type */
kCreateServerResID = 0 /* server resource ID */

};

When the Server Manager identifies a server within the server subfolder of the
System Folder, it opens the resource fork of the file and examines the
information in the server resource. The information you specify in the server
resource affects the Server Manager’s treatment of the server. For example, you
can specify the name by which clients of this server should refer to the server
and you can specify whether the Server Manager should launch the server
immediately or delay launching the server until the first time a client wants to
communicate with it.

The 'srvr' resource type defines a server resource. Figure 5-1 shows the format
of a server resource.

Figure 5-1 Format of a server resource

Listing 5-1 shows the Rez template for a server resource.

Bytes'srvr' resource type

Creation options

Server name

4

Name 4

Server priority 4

Stack size 4

variable

C H A P T E R 5

Server Manager

5-14 Server Manager Resources

Draft. Apple Computer, Inc. 4/19/96

Listing 5-1 The server resource

type 'srvr' {
unsigned longint kServerIsPrivileged = 2,

kCreateServerForLookup = 4,
kCreateServerAtStartup = 8; /* options */

unsigned longint name; /* task name */
unsigned longint kTaskLowServerPriority = 0x2006,

kTaskServerPriority = 0x2007,
kTaskHighServerPriority = 0x2008; /* priority */

unsigned longint stackSize; /* stack */
pstring; /* server name */
};

You define a server resource by specifying these elements in a resource with the
'srvr' resource type:

■ The server creation options. You can specify any combination of the
available constants.

n Specifying kServerIsPrivileged causes the Server Manager to create the
server within a process containing privileged tasks. In general, you
should avoid specifying this option, which allows the Server Manager to
create the server within a process containing nonprivileged tasks.

n Specifying kCreateServerForLookup causes the Server Manager to add the
server to a list of servers that want to be available for communication
with their clients. Typically, you do specify this option so that the Server
Manager can launch this server when necessary.

n Specifying kCreateServerAtStartup causes the Server Manager to launch
the server immediately when it identifies it in a special subfolder of the
System Folder. Typically, you do not specify this option, although you do
specify kCreateServerForLookup so that the Server Manager can delay
launching the server until the first time a client wants to communicate
with the server.

■ The name of the main task of the server. This name is used only for
debugging purposes. The name you specify is supplied when the main task
of the server is created. See the chapter ‘Tasks Reference’ for more
information on creating tasks.

C H A P T E R 5

Server Manager

Server Manager Result Codes 5-15
Draft. Apple Computer, Inc. 4/19/96

■ The priority of the main task of the server. You specify one of the available
constants. See the chapter ‘Tasks Reference’ for more information on task
priorities.

■ The size of the stack you want the microkernel to create for the server. If you
do not specify a size, the microkernel uses a default size.

■ The name of the server. This should be the well known name by which
clients should refer to this server.

Server Manager Result Codes 5

noErr 0 No error
memFullErr –108 Not enough memory
kernelIDErr –2419 Server does not exist
kernelTimeoutErr –2415 Duration expired

C H A P T E R 5

Server Manager

5-16 Server Manager Result Codes

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 6

Contents 6-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 6-0
Listing 6-0
Table 6-0

6 Microkernel Queues Reference

Microkernel Queues Constants and Data Types 6-3
Microkernel Queue Options 6-3
Microkernel Queue ID 6-3

Microkernel Queues Functions 6-4
Creating and Deleting Microkernel Queues 6-4

CreateKernelQueue 6-4
DeleteKernelQueue 6-6

Working With Microkernel Queues 6-7
WaitOnKernelQueue 6-7
NotifyKernelQueue 6-11

Microkernel Queues And Secondary Interrupt Handlers 6-13
AdjustKernelQueueSIHLimit 6-13

Microkernel Queues Result Codes 6-15

C H A P T E R 6

6-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 6

Microkernel Queues Constants and Data Types 6-3
Draft. Apple Computer, Inc. 4/19/96

Microkernel Queues Reference 6

Microkernel Queues Constants and Data Types 6

Microkernel Queue Options 6

You use microkernel queue options to specify how to create a microkernel
queue. The CreateKernelQueue function (page 6-4) requires you to specify
microkernel queue options. The kNilOptions enumerator is the only option
available at this time.

The KernelQueueOptions data type defines the microkernel queue options.

typedef OptionBits KernelQueueOptions; /* creation options */

Microkernel Queue ID 6

You use a microkernel queue ID to refer to a microkernel queue. You must use
an ID to refer to a microkernel queue because you cannot refer directly to the
underlying data structure of a microkernel queue.

When you create a microkernel queue using the CreateKernelQueue function
(page 6-4), it generates a microkernel queue ID for the newly created
microkernel queue. You must supply this ID when you wish to operate upon
this microkernel queue using the other functions described in this chapter.

The KernelQueueID data type defines a microkernel queue ID.

typedef struct OpaqueKernelQueueID* KernelQueueID; /* identifier */

C H A P T E R 6

Microkernel Queues Reference

6-4 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

Microkernel Queues Functions 6

Creating and Deleting Microkernel Queues 6

You can use the CreateKernelQueue function (page 6-4) to create a microkernel
queue and the DeleteKernelQueue function (page 6-6) to delete one. Once you
have created a microkernel queue, tasks can use it to communicate small
amounts of data or to synchronize their operations.

CreateKernelQueue 6

Creates a microkernel queue.

OSStatus CreateKernelQueue (
KernelQueueOptions options,
KernelQueueID *theQueue);

options The microkernel queue options that specify how to create the
microkernel queue. You must specify kNilOptions (page 6-3) for
this parameter.

theQueue A pointer to a microkernel queue ID (page 6-3). On output,
CreateKernelQueue supplies an ID for the newly created
microkernel queue. You use this ID to refer to this microkernel
queue in other microkernel queue functions.

function result
A result code. The result code noErr indicates that
CreateKernelQueue successfully created a microkernel queue.
See “Microkernel Queues Result Codes” (page 6-15) for a
description of other result codes that CreateKernelQueue may
return.

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Functions 6-5
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

A microkernel queue is contained by the process in which it is created.
Creating a microkernel queue generates an ID by which you can identify it.
Because you cannot access the underlying data of a microkernel queue, you
must refer to it by its ID in all functions that operate on existing microkernel
queues.

Once a microkernel queue has been created, it can be notified and waited upon.
When a task notifies a microkernel queue, it causes an entry containing three
words of data to be placed in the microkernel queue. A task waiting for entries
to arrive in the microkernel queue retrieves the data from the entry and
removes the entry from the microkernel queue.

A microkernel queue exists until the process in which it was created terminates
or until it is explicitly deleted by calling the DeleteKernelQueue function
(page 6-6).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information on placing entries in a microkernel queue, see the
NotifyKernelQueue function (page 6-11). For information on retrieving entries
from a microkernel queue, see the WaitOnKernelQueue function (page 6-7). For
information on notifying microkernel queues from secondary interrupt level,
see the AdjustKernelQueueSIHLimit function (page 6-13). For information on
freeing the resources associated with a microkernel queue that you are finished
using, see the DeleteKernelQueue function (page 6-6).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 6

Microkernel Queues Reference

6-6 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

DeleteKernelQueue 6

Deletes the specified microkernel queue.

OSStatus DeleteKernelQueue (KernelQueueID theQueue);

theQueue A microkernel queue ID (page 6-3). You must specify the
microkernel queue ID previously generated by the
CreateKernelQueue function (page 6-4). If you specify an invalid
microkernel queue ID, DeleteKernelQueue returns the result
code kernelIDErr.

function result
A result code. The result code noErr indicates that
DeleteKernelQueue successfully deleted the microkernel queue.
See “Microkernel Queues Result Codes” (page 6-15) for a
description of other result codes that DeleteKernelQueue may
return.

DISCUSSION

When a microkernel queue is deleted, any tasks waiting on that microkernel
queue become unblocked and return from the WaitOnKernelQueue function
(page 6-7) with the result code kernelIncompleteErr.

SPECIAL CONSIDERATIONS

When a process (described in the chapter ‘Process Manager Reference’ to be
provided at a later date) terminates, all microkernel queues created within that
process are deleted automatically.

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Functions 6-7
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Working With Microkernel Queues 6

A task can use a microkernel queue to communicate small amounts of data or
to synchronize its operations with another task. This is accomplished by having
one task (or secondary interrupt handler) place an entry containing some data
in a microkernel queue and having another task retrieve the data from the
entry when the entry arrives in the microkernel queue. The tasks establish in
advance which microkernel queue they will be using, what data each entry will
contain, and how to interpret the data.

The task (or secondary interrupt handler) that places data in the microkernel
queue uses the NotifyKernelQueue function (page 6-11). The task that retrieves
data from the microkernel queue uses the WaitOnKernelQueue function
(page 6-7).

WaitOnKernelQueue 6

Retrieves data from an entry in a microkernel queue or, if the microkernel
queue is empty, optionally blocks to wait for the arrival of an entry in the
microkernel queue.

OSStatus WaitOnKernelQueue (
KernelQueueID theQueue,
void **p1,
void **p2,
void **p3,
Duration timeOut);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 6

Microkernel Queues Reference

6-8 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

theQueue A microkernel queue ID (page 6-3). You must specify the
microkernel queue ID previously generated by the
CreateKernelQueue function (page 6-4). If you specify an invalid
microkernel queue ID, WaitOnKernelQueue returns the result
code kernelIDErr.

p1 A pointer to a 32-bit word of unspecified data or null. On
output, if WaitOnKernelQueue successfully retrieved an entry
from the microkernel queue, then WaitOnKernelQueue returns in
this parameter the first of three 32-bit words of data from the
entry. If WaitOnKernelQueue returns without retrieving an entry,
nothing is returned on output in this parameter. Specify null if
tasks using this microkernel queue have established a protocol
that does not make use of the first word of each entry placed in
the microkernel queue.

p2 A pointer to a 32-bit word of unspecified data or null. On
output, if WaitOnKernelQueue successfully retrieved an entry
from the microkernel queue, then WaitOnKernelQueue returns in
this parameter the second of three 32-bit words of data from the
entry. If WaitOnKernelQueue returns without retrieving an entry,
nothing is returned on output in this parameter. Specify null if
tasks using this microkernel queue have established a protocol
that does not make use of the second word of each entry placed
in the microkernel queue.

p3 A pointer to a 32-bit word of unspecified data or null. On
output, if WaitOnKernelQueue successfully retrieved an entry
from the microkernel queue, then WaitOnKernelQueue returns in
this parameter the third of three 32-bit words of data from the
entry. If WaitOnKernelQueue returns without retrieving an entry,
nothing is returned on output in this parameter. Specify null if
tasks using this microkernel queue have established a protocol
that does not make use of the third word of each entry placed in
the microkernel queue.

timeOut The maximum length of time to block while waiting to retrieve
data from the microkernel queue. Specifying kDurationNoWait
ensures your task will not block if there are no entries in the
microkernel queue. The Duration data type is described in the
chapter ‘Timing Services Reference.’

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Functions 6-9
Draft. Apple Computer, Inc. 4/19/96

If you want your task to retrieve data from the microkernel
queue only if it is possible to do so without blocking, specify
kDurationNoWait for this parameter. If you specify
kDurationNoWait for this parameter and the microkernel queue
is empty, WaitOnKernelQueue will return immediately with result
code kernelTimeoutErr, in which case you can either give up or
get ready to allow your task to block before calling
WaitOnKernelQueue again and specifying a value for this
parameter that is not kDurationNoWait.

When you wish to repeatedly retrieve data as it arrives in the
microkernel queue, call WaitOnKernelQueue in a loop and specify
a value for this parameter that is not kDurationNoWait (this
approach is preferable to polling).

function result
A result code. The result code noErr indicates that
WaitOnKernelQueue successfully retrieved data from an entry in
the microkernel queue. The result code kernelTimeoutErr
indicates that the time specified by the timeOut parameter
expired before WaitOnKernelQueue retrieved data from the
microkernel queue. The result code kernelIncompleteErr
indicates that the microkernel queue was deleted before
WaitOnKernelQueue retrieved data from the microkernel queue.
See “Microkernel Queues Result Codes” (page 6-15) for a
description of other result codes that WaitOnKernelQueue may
return.

DISCUSSION

When a task calls WaitOnKernelQueue for a microkernel queue that contains an
entry, the task retrieves the data from the entry and returns immediately,
without blocking. A task calling WaitOnKernelQueue also returns immediately,
without blocking, if it specifies a timeOut value of kDurationNoWait, although in
this case WaitOnKernelQueue returns the result code kernelTimeoutErr if it failed
to retrieve data.

If the microkernel queue is empty and the task calling WaitOnKernelQueue did
not specify a timeOut parameter of kDurationNoWait, the task will block and
remain blocked until it retrieves an entry (or until its timeOut parameter
expires). If multiple tasks are waiting on a microkernel queue when an entry
arrives, the task which has been waiting the longest retrieves the data and

C H A P T E R 6

Microkernel Queues Reference

6-10 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

returns from WaitOnKernelQueue, while any other tasks waiting on the
microkernel queue continue to wait for the arrival of another entry (unless their
timeOut parameters expire).

Each entry in a microkernel queue contains three 32-bit words of data. When
WaitOnKernelQueue retrieves data from a microkernel queue containing multiple
entries, it retrieves the three words of data from the entry which has been in the
microkernel queue the longest. After it retrieves the data from the entry,
WaitOnKernelQueue removes the entry from the microkernel queue and
deallocates the entry’s resources. Removing the entry ensures that another task
cannot retrieve that data again. The other entries remain in the microkernel
queue until other callers of WaitOnKernelQueue remove each one or the
microkernel queue is deleted.

The NotifyKernelQueue function (page 6-11) places an entry in a specified
microkernel queue. When the tasks using a microkernel queue have established
a protocol that does not make use of all three words in an entry, a task calling
the NotifyKernelQueue function specifies null on input for any of its p1, p2, and
p3 parameters that correspond to unused words in the entry. In this case,
WaitOnKernelQueue returns null on output in its corresponding p1, p2, and p3
parameters.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information on placing an entry in a microkernel queue, see the
NotifyKernelQueue function (page 6-11).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Functions 6-11
Draft. Apple Computer, Inc. 4/19/96

NotifyKernelQueue 6

Places an entry in a microkernel queue.

OSStatus NotifyKernelQueue (
KernelQueueID theQueue,
void *p1,
void *p2,
void *p3);

theQueue A microkernel queue ID (page 6-3). You must specify the
microkernel queue ID previously generated by the
CreateKernelQueue function (page 6-4). If you specify an invalid
microkernel queue ID, NotifyKernelQueue returns the result
code kernelIDErr.

p1 A 32-bit word of unspecified data or null. When
NotifyKernelQueue places an entry in the microkernel queue, it
copies this data into the first of three 32-bit words in the entry.
Specify null if tasks using this microkernel queue have
established a protocol that does not make use of the first word
of each entry placed in the microkernel queue.

p2 A 32-bit word of unspecified data or null. When
NotifyKernelQueue places an entry in the microkernel queue, it
copies this data into the second of three 32-bit words in the
entry. Specify null if tasks using this microkernel queue have
established a protocol that does not make use of the second
word of each entry placed in the microkernel queue.

p3 A 32-bit word of unspecified data or null. When
NotifyKernelQueue places an entry in the microkernel queue, it
copies this data into the third of three 32-bit words in the entry.
Specify null if tasks using this microkernel queue have
established a protocol that does not make use of the third word
of each entry placed in the microkernel queue.

function result
A result code. The result code noErr indicates that
NotifyKernelQueue successfully placed the entry in the
microkernel queue. A secondary interrupt handler may receive
the result code memFullErr if you neglected to preallocate
sufficient resources using the AdjustKernelQueueSIHLimit

C H A P T E R 6

Microkernel Queues Reference

6-12 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

function (page 6-13). See “Microkernel Queues Result Codes”
(page 6-15) for a description of other result codes that
NotifyKernelQueue may return.

DISCUSSION

NotifyKernelQueue returns immediately after placing an entry in the
microkernel queue. If no tasks are waiting on the microkernel queue, the entry
will remain in the microkernel queue until some task calls the
WaitOnKernelQueue function (page 6-7) to retrieve it or the microkernel queue is
deleted. If one or more tasks are waiting on the microkernel queue,
NotifyKernelQueue causes the task which has been waiting the longest to
retrieve the data from the entry, removes the entry from the microkernel queue,
deallocates the entry’s resources, and unblocks the task.

You can use NotifyKernelQueue to pass any three words of data to another task
that will call WaitOnKernelQueue on the same microkernel queue.

The asynchronous services provided by Mac OS 8 allow you to request
notification of their completion. You request notification and specify the
mechanism by which you want to be notified by supplying a microkernel
notification structure (described in the chapter ‘Microkernel Notification
Reference’ to be provided at a later date) when you call the service. Notification
of a particular microkernel queue is a mechanism you can request by supplying
the microkernel queue ID in a parameter of the microkernel notification
structure. Then, upon completion of the asynchronous operation, the
microkernel will call NotifyKernelQueue for the microkernel queue you
specified and pass the completion status returned by the asynchronous
operation in the p3 parameter (the p1 and p2 parameters of the microkernel
notification structure are passed through to the corresponding p1 and p2
parameters of NotifyKernelQueue).

▲ W A R N I N G

Placing an entry in a microkernel queue consumes
resources. Therefore, if you intend to call
NotifyKernelQueue at secondary interrupt level, you must
call AdjustKernelQueueSIHLimit (page 6-13) at task level
beforehand to preallocate resources. ▲

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Functions 6-13
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

SEE ALSO

For information on retrieving the data from an entry placed in a microkernel
queue, see the WaitOnKernelQueue function (page 6-7).

Microkernel Queues And Secondary Interrupt Handlers 6

A secondary interrupt handler may wish to notify a microkernel queue. Before
this can occur, a task must preallocate the microkernel queue resources that the
NotifyKernelQueue function (page 6-11) will consume when the secondary
interrupt handler calls it. The AdjustKernelQueueSIHLimit function (page 6-13)
is provided for this purpose.

AdjustKernelQueueSIHLimit 6

Preallocates (or deallocates) microkernel queue resources to allow secondary
interrupt handlers to notify microkernel queues.

OSStatus AdjustKernelQueueSIHLimit (
KernelQueueID theQueue,
SInt32 amount,
ItemCount *newLimit);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 6

Microkernel Queues Reference

6-14 Microkernel Queues Functions

Draft. Apple Computer, Inc. 4/19/96

theQueue A microkernel queue ID (page 6-3). You must specify the
microkernel queue ID previously generated by the
CreateKernelQueue function (page 6-4). If you specify an invalid
microkernel queue ID, AdjustKernelQueueSIHLimit returns the
result code kernelIDErr.

amount The amount by which to either increment or decrement a pool
of resources available to secondary interrupt handlers using the
microkernel queue. To sufficiently increment the limit, pass the
maximum number of entries that can be in the microkernel
queue simultaneously as a result of the secondary interrupt
handler calling the NotifyKernelQueue function(page 6-11). To
decrement the limit after the resources are no longer needed,
pass the negative of the amount by which you previously
incremented the limit.

newLimit A pointer to an item count or null. On output,
AdjustKernelQueueSIHLimit supplies the new limit for the
microkernel queue. Specify null if you have no interest in this
information.

function result
A result code. The result code noErr indicates that
AdjustKernelQueueSIHLimit successfully allocated or
deallocated the resources. See “Microkernel Queues Result
Codes” (page 6-15) for a description of other result codes that
AdjustKernelQueueSIHLimit may return.

DISCUSSION

The microkernel cannot allocate microkernel queue resources at secondary
interrupt level. Therefore, if a secondary interrupt handler is going to call the
NotifyKernelQueue function, you must call AdjustKernelQueueSIHLimit at task
level to preallocate a sufficient quantity of microkernel queue resources. If you
neglect to preallocate a sufficient quantity of resources, you may cause your
secondary interrupt handler or another secondary interrupt handler to return
from the NotifyKernelQueue function with the result code memFullErr.

Only drivers, which are the only type of software that executes at interrupt
level, need to call AdjustKernelQueueSIHLimit if they notify microkernel queues
at secondary interrupt level. Each driver that needs to call
AdjustKernelQueueSIHLimit should call it once during initialization and call it
again when the driver is removed (calling it prior to each notification of the

C H A P T E R 6

Microkernel Queues Reference

Microkernel Queues Result Codes 6-15
Draft. Apple Computer, Inc. 4/19/96

microkernel queue would increase a driver’s execution time unnecessarily).
The first call should increment the quantity of resources and the last call should
decrement the quantity by the same amount.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Microkernel Queues Result Codes 6

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

noErr 0 No error
memFullErr –108 Not enough memory
kernelIDErr –2419 Microkernel queue ID does not exist
kernelTimeoutErr –2415 Wait duration expired
kernelIncompleteErr –2401 Microkernel queue deleted
kernelOptionsErr –2403 Invalid microkernel queue options

C H A P T E R 6

Microkernel Queues Reference

6-16 Microkernel Queues Result Codes

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 7

Contents 7-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 7-0
Listing 7-0
Table 7-0

7 Interrupt Services Reference

Interrupt Services Reference 7-3
Functions 7-3

Controlling Software Interrupts 7-3
DisableSoftwareInterrupts 7-3
EnableSoftwareInterrupts 7-4

Creating a Software Interrupt 7-5
CreateSoftwareInterrupt 7-6

Sending Software Interrupts 7-8
SendSoftwareInterrupt 7-8

Querying the Level of Execution 7-9
InSoftwareInterruptHandler 7-10

Deleting a Software Interrupt 7-11
DeleteSoftwareInterrupt 7-11

Calling a Secondary Interrupt Handler 7-12
QueueSecondaryInterruptHandler 7-12
CallSecondaryInterruptHandler2 7-14

Adjusting the Limit of Secondary Interrupt Handlers 7-15
AdjustSecondaryInterruptHandlerLimit 7-16

User-Defined Functions 7-17
Software Interrupt Handlers 7-17
Secondary Interrupt Handler 7-19
Hardware Interrupt Handlers 7-21

C H A P T E R 7

7-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 7

Interrupt Services Reference 7-3
Draft. Apple Computer, Inc. 4/19/96

Interrupt Services Reference 7

Interrupt Services Reference 7

This chapter describes the functions you use to control software interrupts and
secondary interrupts, and discusses the function prototypes for software
interrupt handlers, secondary interrupt handlers, and hardware interrupt
handlers.

Functions 7

This section describes the functions you use to create and send software
interrupts, to determine whether a software interrupt is executing, to call a
secondary interrupt handler, and to ensure that the system has sufficient
resources to run your secondary interrupt handler.

Controlling Software Interrupts 7

You can enable and disable software interrupts for a given task, using the
EnableSoftwareInterrupts function and the DisableSoftwareInterrupts
function.

DisableSoftwareInterrupts 7

Disables software interrupts

void DisableSoftwareInterrupts (void)

DISCUSSION

By default, software interrupts are enabled. The DisableSoftwareInterrupts
function disables all pending software interrupts for the calling task. You
cannot use this function to disable an interrupt that is currently executing.

C H A P T E R 7

Interrupt Services Reference

7-4 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

Calls to the EnableSoftwareInterrupts and the DisableSoftwareInterrupts
functions nest automatically, so that you must match every call to the
DisableSoftwareInterrupts function with a call to the
EnableSoftwareInterrupts function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the EnableSoftwareInterrupts function (page 7-4) to enable software
interrupts.

The software interrupt handler is described on page 7-11.

EnableSoftwareInterrupts 7

Enables software interrupts.

void EnableSoftwareInterrupts (void);

DISCUSSION

The EnableSoftwareInterrupts function enables all pending software interrupts
for the calling task. Because software interrupts are enabled by default, you
need to call this function only if you have disabled software interrupts using
the DisableSoftwareInterrupts function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-5
Draft. Apple Computer, Inc. 4/19/96

Calls to the EnableSoftwareInterrupts and the DisableSoftwareInterrupts
functions nest automatically, so that you must match every call to the
DisableSoftwareInterrupts function with a call to the
EnableSoftwareInterrupts function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the DisableSoftwareInterrupts function (page 7-3) to disable software
interrupts.

The software interrupt handler is described on page 7-11.

Creating a Software Interrupt 7

You use the CreateSoftwareInterrupt function to create a software interrupt.
Creating a software interrupt assigns it a software interrupt ID, specifies
whether the ID is temporary or persistent, and defines additional information
that is associated with the interrupt request.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Interrupt Services Reference

7-6 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

CreateSoftwareInterrupt 7

Returns a software interrupt ID that specifies an instance of a software
interrupt request.

OSStatus CreateSoftwareInterrupt (SoftwareInterruptHandler handler,
TaskID task,
void * p1,
Boolean persistent,
SoftwareInterruptID * theSoftwareInterrrupt);

handler The address of the routine that is to execute when the software
interrupt specified by the parameter theSoftwareInterrupt is
activated. This address must be in the same address space as
the task to which you are sending it.

task The ID of the task to which you are going to send this software
interrupt. The task ID must identify a task that is in the same
process as the task sending the interrupt. Specifying NULL causes
the software interrupt to be sent to the task that created the
interrupt.

p1 A user-defined 32-bit value. The microkernel passes this value
to the software interrupt handler routine specified by the
handler parameter.

persistent A boolean specifying whether the software interrupt is
persistent or temporary.
A value of true means that the ID of the software interrupt is
valid until you delete the interrupt with the
DeleteSoftwareInterrupt function. You can send a persistent
interrupt more than once, but it must run before it can be
scheduled again.
A value of false means that the ID of the software interrupt is
valid until the microkernel starts to execute the interrupt. This
is some time after you send it.

theSoftwareInterrupt
On return, a pointer to a software interrupt ID.

function result

If the ID specified for the task parameter is invalid, the function
returns the result code kernelIDErr.

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-7
Draft. Apple Computer, Inc. 4/19/96

If the value specified for the parameter theSoftwareInterrupt is
not nil and is invalid, the function returns the result. paramErr.

If the microkernel does not have enough memory to create the
software interrupt, it returns the result memfullErr.

DISCUSSION

You use the CreateSoftwareInterrupt function to have the microkernel create a
software interrupt ID and to associate that ID with the following information:
the address of a software interrupt handler that executes when the microkernel
activates this software interrupt, the ID of the task to which you send the
interrupt, the duration of the software interrupt ID, and a user-defined value
that the microkernel passes to the interrupt handler when it calls it.

The sender and the recipient of a software interrupt must be in the same
process.

After you have created a software interrupt, you can cause its handler to
execute by calling the SendSoftwareInterrupt function. The handler may or
may not execute immediately, depending on the task’s priority. Note that
sending a software interrupt to a task does not change that task’s priority.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To send a software interrupt, you use the SendSoftwareInterrupt function
(page 7-8).

To delete a software interrupt, you use the DeleteSoftwareInterrupt function
(page 7-11).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Interrupt Services Reference

7-8 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

The software interrupt handler is described on page 7-11.

Sending Software Interrupts 7

After you create a software interrupt, you can send it to a specific task by
calling the SendSoftwareInterrupt function.

SendSoftwareInterrupt 7

Sends a software interrupt to a task.

OSStatus SendSoftwareInterrupt (SoftwareInterruptID theSoftwareInterrupt,
void * p2);

theSoftwareInterrupt
The ID of the software interrupt you want to send. This value is
returned by the CreateSoftwareInterrupt function in the
parameter theSoftwareInterrupt.

p2 A user-defined 32-bit value. The microkernel passes this value
to the software interrupt handler routine when it activates it.

function result
The function returns the result code noErr unless one of the
following occurs:

If the ID specified for the parameter theSoftwareInterrupt is
invalid, the function returns the result code kernelIDErr.

If a software interrupt is already in the process of being sent,
the function returns the result KernelInUseErr.

If the target task is in the process of terminating, the function
returns the result KernelTerminatedErr.

DISCUSSION

You use the SendSoftwareInterrupt function to send a software interrupt
created with the CreateSoftwareInterrupt function. The interrupt specified by
the parameter theSoftwareInterrupt is sent to the task specified by the task

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-9
Draft. Apple Computer, Inc. 4/19/96

parameter. The sender of the software interrupt can be in a different process
than the creator or the target of the interrupt.

The microkernel queues software interrupts sent to a task and activates a
software interrupt when all of the following conditions are met: the task to
which it is sent becomes eligible for execution, software interrupts are enabled,
and all software interrupts previously sent to the task have been processed.
Note that a task is eligible for execution even if it is currently blocked. Thus a
software interrupt sent to a blocked task can execute even while the task is
blocked.

The system deletes the ID of a temporary software interrupt after it has been
activated. If you send a temporary interrupt more than once, the
SendSoftwareInterrupt function returns an error. You can send a persistent
interrupt more than once; however, it can be queued for execution only once. If
you send it more than once before it is activated, it only executes once. If you
send it again after it has run, it is queued again.

EXECUTION ENVIRONMENT

SEE ALSO

Use the CreateSoftwareInterrupt function (page 7-6) to obtain a software
interrupt ID, to specify the software interrupt handler that is to run, and to
specify the task to which the software interrupt is sent.

Use the InSoftwareInterruptHandler function (page 7-10) to determine whether
a task is executing at software interrupt level.

The software interrupt handler is described on page 7-11.

Querying the Level of Execution 7

You call the InSoftwareInterruptHandler function to determine whether the
current task is executing at software interrupt level.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Interrupt Services Reference

7-10 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

InSoftwareInterruptHandler 7

Determines whether the current task is running at software interrupt level.

Boolean InSoftwareInterruptHandler (void);

function result
The function returns true if the current task is running at
software interrupt level; otherwise, it returns false.

DISCUSSION

The InSoftwareInterruptHandler function is useful if you have code that can
run both at task level and at software interrupt level. You can use this function
with such code to trigger different behavior depending on whether the code
was running at task level or not.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To delete a software interrupt, use the DeleteSoftwareInterrupt function
(page 7-11).

To disable software interrupts, use the DisableSoftwareInterrupts function
(page 7-3).

The software interrupt handler is described on page 7-11.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-11
Draft. Apple Computer, Inc. 4/19/96

Deleting a Software Interrupt 7

You can delete a software interrupt by calling the DeleteSoftwareInterrupt
function.

DeleteSoftwareInterrupt 7

Deletes the specified software interrupt.

OSStatus DeleteSoftwareInterrupt (SoftwareInterruptID
theSoftwareInterrupt);

theSoftwareInterrupt
The ID of a software interrupt that has been created using the
CreateSoftwareInterrupt function.

function result
The function returns the result code noErr unless the ID
specified for the parameter theSoftwareInterrupt is invalid, in
which case it returns the result code kernelIDErr.

DISCUSSION

You can use the DeleteSoftwareInterrupt function to delete a software
interrupt that has been created or that has been sent. If the software interrupt is
queued and you delete it, it will not be activated.

You cannot use this function to abort a software interrupt handler that is
currently executing.

C H A P T E R 7

Interrupt Services Reference

7-12 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the DisableSoftwareInterrupts function to disable software interrupts
(page 7-3).

The software interrupt handler is described on page 7-11.

Calling a Secondary Interrupt Handler 7

You can invoke a secondary interrupt handler in one of two ways. To call a
secondary interrupt handler asynchronously, use the
QueueSecondaryInterruptHandler function. Normally you would make this type
of call from hardware interrupt level. To call a secondary interrupt handler
synchronously, use the CallSecondaryInterruptHandler2 function. You can
make this type of call from task level or secondary interrupt level.

QueueSecondaryInterruptHandler 7

Queues a secondary interrupt handler for execution.

OSStatus QueueSecondaryInterruptHandler
(SecondaryInterruptHandler2 theHandler,
ExceptionHandler theExceptionHandler,
void * p1,
void * p2);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-13
Draft. Apple Computer, Inc. 4/19/96

theHandler A pointer to a secondary interrupt handling routine that is to be
queued for execution.

theExceptionHandler
A pointer to an exception handler to which the system transfers
control should an exception arise. You can specify NIL if you do
not plan to provide an exception handler. If you do not provide
a handler, an exception will result in a system crash.

p1 A 32-bit user-defined value that the microkernel passes to the
handler when it executes.

p2 A 32-bit user-defined value that the microkernel passes to the
handler when it executes.

function result
If there is not enough memory available to queue the handler,
the function returns the result memfullErr. If the address
referenced by the parameter theHandler or the parameter
theExceptionHandler is invalid, the function returns the result
code paramErr.

DISCUSSION

You can queue secondary interrupt handlers during the processing of a
hardware interrupt or from secondary interrupt level. In the first case, the
secondary interrupt handler executes just before execution is transferred to task
level. In the second case, the secondary interrupt handler executes after all
other secondary handlers that have been queued before it have executed.

If you queue a secondary interrupt handler from hardware interrupt level, you
must first use the AdjustSecondaryInterruptHandlerLimit function to inform the
microkernel that it will need to allocate additional resources to handle the
queued handler. I/O plug-ins would normally call this function during their
initialization sequence.

If you do not provide a pointer to an exception handler and an exception
occurs, a system-fatal error is raised and the user is alerted.

C H A P T E R 7

Interrupt Services Reference

7-14 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can only be called by privileged software.

SEE ALSO

You use the AdjustSecondaryInterruptHandlerLimit function (page 7-16) to
increase or decrease the secondary interrupt limit that is used by the
microkernel to allocate resources.

If you are not calling a secondary interrupt handler from hardware interrupt
level, you can also use the function CallSecondaryInterruptHandler2
(page 7-14) to execute the handler.

CallSecondaryInterruptHandler2 7

Calls a secondary interrupt handler from task level or secondary interrupt level.

OSStatus CallSecondaryInterruptHandler2
(SecondaryInterruptHandler2 theHandler,
ExceptionHandler theExceptionHandler,
void * p1,
void * p2);

theHandler A pointer to a secondary interrupt handling routine that is to be
queued for execution.

theExceptionHandler
A pointer to an exception handler to which the system transfers
control should an exception arise. You can specify NIL if you do
not plan to provide an exception handler.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-15
Draft. Apple Computer, Inc. 4/19/96

p1 A 32-bit user-defined value that the microkernel passes to the
handler when it executes.

p2 A 32-bit user-defined value that the microkernel passes to the
handler when it executes.

function result
The function returns the result code noErr unless the address
referenced by the parameter theHandler or the parameter
theExceptionHandler is invalid, in which case it returns the
result code paramErr.

DISCUSSION

The secondary interrupt handler that you invoke using the function
CallSecondaryInterruptHandler2 is executed immediately; it is never queued.

If you do not provide a pointer to an exception handler and an exception
occurs, the system will crash.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function can only be called by privileged software. It cannot be called at
hardware interrupt level.

SEE ALSO

If you need to call a secondary interrupt handler from hardware interrupt level,
you must use the QueueSecondaryInterruptHandler2 function (page 7-12).

Adjusting the Limit of Secondary Interrupt Handlers 7

You use the AdjustSecondaryInterruptHandlerLimit function to inform the
microkernel that you plan to queue a secondary interrupt handler. This

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 7

Interrupt Services Reference

7-16 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

function sets aside microkernel memory for secondary interrupt handlers. I/O
plug-ins should call this function during initialization to reserve memory for
the maximum number of concurrently queued secondary interrupt handlers.

AdjustSecondaryInterruptHandlerLimit 7

Increases or decreases the limit known to the microkernel for queued
secondary interrupt handlers and returns the new value.

OSStatus AdjustSecondaryInterruptHandlerLimit (long amount, unsigned
long * newLimit);

amount The number of secondary interrupt handlers that you are
adding to or subtracting from the queue of secondary interrupt
handlers. Specify a positive number to increase the limit;
specify a negative number to decrease the limit.

newLimit A pointer. On return, it points to the number of secondary
interrupt handlers currently available for execution.

DISCUSSION]

Secondary interrupt handlers that are queued from hardware interrupt
handlers consume microkernel resources from the time they are queued until
the time they begin to execute. Because the microkernel can’t allocate the
needed resources dynamically at interrupt level, you must call the
AdjustSecondaryInterruptHandlerLimit function at task level to ensure that
there are sufficient resources. To allocate the necessary resources, figure out the
number of interrupt handlers that you plan to have queued at the same time
and call the AdjustSecondaryInterruptHandlerLimit function during your
software’s initialization to increase the limit by that amount.

You must call the AdjustSecondaryInterruptHandlerLimit function if you are
using or have used the function QueueSecondaryInterruptHandler2. For each
simultaneously queued secondary interrupt handler you call, you should
increment the queued limit by one. For example, if you queue a secondary
interrupt handler from your hardware interrupt handler and don’t queue any
additional secondary interrupt handlers until the first has finished executing,
you only need to increment the queued limit by one. Before the calling software

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-17
Draft. Apple Computer, Inc. 4/19/96

terminates or is removed, it should decrement the queued secondary interrupt
handler limit by as many elements as it has added.

If you fail to increment the queued software interrupt handler limit, your
software might run without any problems. However another process’ attempt
to queue a secondary interrupt handler might fail with a memFullErr result.
Because the limit manipulated by the AdjustSecondaryInterruptHandlerLimit
function is shared by all callers of QueueSecondaryInterrruptHandler, the
function that receives a bad result from the call might not necessarily be the
software that failed to adjust the queued limit.

SEE ALSO

You use the QueueSecondaryInterruptHandler2 function (page 7-12) to queue a
secondary interrupt handler for execution.

User-Defined Functions 7

This section describes the prototypes for and use of software interrupt
handlers, secondary interrupt handlers, and hardware interrupt handlers.

Software Interrupt Handlers 7

A software interrupt handler defines a function that the microkernel can run at
software interrupt time, within the context of a given task but asynchronously
to that task. A software interrupt can be sent to a task by another task, by a
secondary interrupt handler, or by the task itself.

When you create a software interrupt, you specify the address of a software
interrupt handler that the microkernel executes whenever the software
interrupt is activated. You write the software interrupt handling routine; the
declaration of the routine must conform to the following prototype

typedef void (*SoftwareInterruptHandler) (void * p1, void *p2);

p1 A 32-bit user-defined parameter that is passed to the interrupt
handler when the microkernel calls it. The value of p1 is defined
by the creator of the software interrupt using the p1 parameter
to the CreateSoftwareInterrupt function.

C H A P T E R 7

Interrupt Services Reference

7-18 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

p2 A 32-bit user-defined parameter that is passed to the interrupt
handler when the system calls it. The value of p2 is defined by
the sender of the software interrupt using the p2 parameter to
the SendSoftwareInterrupt function.

DISCUSSION

A software interrupt handler is a function that is invoked by the microkernel
when a software interrupt is sent to a task. The microkernel saves the
interrupted task’s state, executes the specified handler, and restores the task’s
state when the handler has finished executing. The software interrupt shares
the same context with the task to which it is sent; the software interrupt
handler is executed on that task’s stack and has the same addressing context as
that of the task. The software interrupt is asynchronous to the task to which it
is sent—that is, it interrupts the execution of that task as if an invisible call to
the handler were inserted into the task’s execution. Consequently, the software
interrupt handler can execute even when that task is blocked. When a software
interrupt handler completes, the task to which the interrupt is sent, resumes
execution at the point where it was interrupted. If the task was blocked when it
was interrupted, it remains blocked after the interrupt processing is complete,
waiting for the condition that has caused it to block to clear.

Software interrupt handlers can operate on a task’s private data area because
the task does not execute while the interrupt is executing.

Software interrupts are executed sequentially. If a task executing a software
interrupt function is sent another software interrupt, it finishes processing the
first interrupt before processing the second interrupts. This is true even if the
first software interrupt handler performs some blocking operation.

The presence of a pending software interrupt or the invocation of a software
interrupt handler does not affect the way in which the targeted task is
scheduled except that it might run the handler even in a task which is blocked.

SEE ALSO

You use the CreateSoftwareInterrupt function (page 7-6) to obtain a software
interrupt ID for a software interrupt. Once you have obtained the ID, you can
send the software interrupt to a specific task by calling the
SendSoftwareInterrupt function (page 7-8).

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-19
Draft. Apple Computer, Inc. 4/19/96

For information about the use of software interrupts for synchronization, see
the chapter “Software Interrupts.”

Secondary Interrupt Handler 7

A secondary interrupt handler is a user-defined function that the microkernel
executes at secondary interrupt time. You can queue a secondary interrupt
handler from hardware interrupt level to complete processing that you cannot
do at that level because of constraints on available time or on the functions you
can call. Or, you can call a secondary interrupt handler from task level or
secondary interrupt level when you need to synchronize with other secondary
interrupt level code. Depending on the function you use to invoke the
secondary interrupt handler, the handler either executes immediately or is
queued for execution.

No matter which function you use to execute the handler, the caller of a
secondary interrupt handler, specifies the address of the handler, the address of
an exception handling routine, and two additional user-defined parameters
that are passed to the routine when it executes.

The declaration of a secondary interrupt handler must conform to the
following prototype definition:

typedef OSStatus (*SecondaryInterruptHandler2) (void * p1, void *p2);

p1 A 32-bit user-defined parameter that is passed to the secondary
interrupt handler when the handler executes. The value of p1
can be passed either by the QueueSecondaryInterruptHandler
function or by the CallSecondaryInterruptHandler function.

p2 A 32-bit user-defined parameter that is passed to the secondary
interrupt handler when the handler executes. The value of p2
can be passed either by the QueueSecondaryInterruptHandler
function or by the CallSecondaryInterruptHandler function.

DISCUSSION

Secondary interrupt handlers must conform to the interrupt execution
environment rules. They may not cause page faults and they are restricted to
using a limited set of system services.

C H A P T E R 7

Interrupt Services Reference

7-20 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

Secondary interrupt handlers execute on a special interrupt stack and should
not make any assumptions about the task context in which they execute.

Secondary interrupt handlers can be called by hardware interrupts, by other
secondary interrupt handlers, or by privileged tasks. If a secondary interrupt
handler is queued from a hardware interrupt handler, it executes after the latter
has finished executing and right before the system goes back to task-level
execution. If a secondary interrupt handler is called from a secondary interrupt
or privileged task the timing of execution is determine by the function used to
invoke it. If you use the QueueSecondaryInterruptHandler function, it executes
after all other handlers queued before it have finished executing. It you use the
CallSecondaryInterruptHandler2 function, it executes immediately.

Because secondary interrupt handlers are guaranteed to be executed serially,
they are the primary synchronization mechanism used within the microkernel
and its extensions. You can also use them for this purpose. For example, if you
have a data structure that requires complex update operations and each of the
operations uses secondary interrupt handlers to access or update the data
structure, all access to the data structure is synchronized even though
hardware interrupts are enabled during the access.

You must take care not to rely on the use of secondary interrupt handling as a
means of achieving synchronization if this results in degraded system
performance. Although hardware interrupts are still processed during the
execution of secondary interrupts, task-level execution is entirely halted, which
can result in severely degraded system response. For this reason, you should
use secondary interrupt handlers only when absolutely necessary or when the
operations performed at secondary interrupt level are very brief. It is always
preferable to execute entirely at task level and use appropriate mechanisms to
obtain synchronization.

SPECIAL CONSIDERATIONS

When a secondary interrupt handler executes on a multiprocessor system, task
level execution continues on other processors. While the microkernel
guarantees that all secondary interrupt handlers are serialized, it does not
guarantee that no tasks run while a secondary interrupt handler runs. As a
result, any code that depends upon this behavior might not work correctly on
multiprocessor system.

C H A P T E R 7

Interrupt Services Reference

Interrupt Services Reference 7-21
Draft. Apple Computer, Inc. 4/19/96

SEE ALSO

You can use the QueueSecondaryInterruptHandler function or the
CallSecondaryInterruptHandler function to call a secondary interrupt handler.

For more information on secondary interrupts, see the chapter “Secondary
Interrupts” and additional related material in Modular I/O.

Hardware Interrupt Handlers 7

A hardware interrupt handler or primary interrupt handler is a user-defined
function that is invoked by the microkernel in response to a signal from an
external device.

The declaration of a hardware interrupt handler must conform to the following
prototype definition:

typedef void (*InterruptVectorHandler) (InterruptVector theVector,
void *parameter);

theVector A 32-bit value specifying a vector number that identifies the
source of the interrupt. This is the same value that is specified
when the hardware interrupt handler is installed. It allows a
single interrupt handler installed for multiple sources to
determine the source of the current invocation.

parameter A pointer to a value that is passed to the function used to install
the interrupt handler in the parameter theParameter.

DISCUSSION

A hardware interrupt causes all software execution (including the execution of
software and secondary interrupts) on the interrupted processor to stop until
the handler executes. Consequently, for best system performance, you should
write a hardware interrupt handler so that it performs only those actions that
must be synchronized with the external device that caused the interrupt. If you
need to do additional work, you should queue a secondary interrupt handler to
perform the remaining work. Of course, any hardware interrupt handler must
act to remove the cause of the interrupt before it returns.

Interrupt handlers execute on a special stack dedicated to interrupt processing.
Hardware interrupt handlers are invoked with the addressing context that was
current when they were installed. However, all data and code references

C H A P T E R 7

Interrupt Services Reference

7-22 Interrupt Services Reference

Draft. Apple Computer, Inc. 4/19/96

generated during the processing of a hardware interrupt must be to pages that
are physically resident. Attempting to access non-resident pages causes access
error exceptions.

Microkernel services pertaining to hardware interrupts are available only to
privileged clients. The microkernel services that can be called from hardware
interrupt level are limited to the following: SetEvents, ClearEvents,
SendSoftwareInterrupt, QueueSecondaryInterruptHandler, and
SetInterruptTimer. The primary client for these services is the I/O system,
which layers a hierarchical interrupt dispatcher upon the microkernel’s
services. I/O plug-ins should use this I/O system interrupt management layer
to install a hardware interrupt handler.

SPECIAL CONSIDERATIONS

In a multiprocessor system, only one hardware interrupt handler can execute at
one time.

SEE ALSO

Secondary interrupt handlers are described on (page 7-19). You use the
QueueSecondaryInterruptHandler2 function (page 7-12) to queue a secondary
interrupt handler for execution from a hardware interrupt handler.

You can find more information about the I/O system interrupt management
layer in Modular I/O.

C H A P T E R 8

Contents 8-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 8-0
Listing 8-0
Table 8-0

8 Exception Handling

Exception Handling Reference 8-3
Constants and Data Types 8-3

Exception Kind Enumeration 8-3
Memory Reference Enumeration 8-6
Exception Information Structure 8-6
Machine Information Structure 8-8
General Purpose Register Information Structure 8-9
Floating Point Information Structure 8-10
Memory Exception Information Structure 8-11

Functions 8-12
InstallExceptionHandler 8-12

User-Defined Routines 8-13
MyExceptionHandler 8-14

C H A P T E R 8

8-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 8

Exception Handling Reference 8-3
Draft. Apple Computer, Inc. 4/19/96

Exception Handling 8

Exception Handling Reference 8

This chapter describes the prototype for an exception handler and the function
you use to install the handler. The microkernel invokes this exception handler
whenever an exception occurs in the context of the code from which you
installed the handler. Exception handlers are used in Mac OS 8 to handle
exceptions that occur in every type of code: hardware interrupts, secondary
interrupts, debuggers, tasks, and software interrupts.

When the microkernel invokes your exception handler, it passes information to
it about the exception that has occurred and about the state of the cpu when the
exception was raised. This chapter also describes the data structures used to
specify this information.

Constants and Data Types 8

When an exception occurs, the microkernel returns information that describes
the state of the machine and the cause of the exception to the installed
exception handler or debugger.

This section describes the constants and data types used to specify exception
information.

Exception Kind Enumeration 8

When an exception occurs, the microkernel passes an exception information
structure (page 8-6) to an exception handler or debugger. The field theKind of
this structure contains a constant, defined by the exception kind enumeration,
that specifies the kind of exception that has occurred.

enum {
kUnknownException = 0,
kIllegalInstructionException = 1,
kTrapException = 2,
kAccessException = 3,
kUnmappedMemoryException = 4,
kExcludedMemoryException = 5,

C H A P T E R 8

Exception Handling

8-4 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

kReadOnlyMemoryException = 6,
kUnresolvablePageFaultException = 7,
kPrivilegeViolationException = 8,
kTraceException = 9,
kInstructionBreakpointException = 10,
kDataBreakpointException = 11,
kIntegerException = 12,
kFloatingPointException = 13,
kStackOverflowException = 14,
kTaskTerminationException = 15,
kTaskCreationException = 16

};

kUnknownException Unknown kind of exception. This exception code is
defined for completeness only; it is never actually passed
to an exception handler.

kIllegalInstructionException
Illegal instruction exception. The cpu attempted to decode
an instruction that is either illegal or unimplemented.

kTrapException Unknown trap type exception. The cpu decoded a trap
type instruction that is not used by the system software
but which might be used by a debugger.

kAccessException Memory access exception. A memory reference failed
because the physical address is not accessible either
because the hardware is bad or non-existent.

kUnmappedMemoryException
Unmapped memory exception. A memory reference was
made to an address that is unmapped. This might happen
because no area corresponds to the address, because the
address is in an area’s guard range, or because the address
is in an unmapped page of a sparse area. Sparse area pages
must be explicitly loaded by the ControlPagingForRange
function.

kExcludedMemoryException
Excluded memory exception. A memory reference was
made to an address in an area whose memory access level
is kMemoryExcluded for the mode (user or privileged) in
which an access was made.

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-5
Draft. Apple Computer, Inc. 4/19/96

kReadOnlyMemoryException
Read-only memory exception. A memory reference was
made to an address in an area whose memory access level
is kMemoryReadOnly for the mode (user or privileged) in
which a write access was made.

kUnresolvablePageFaultException
Unresolvable page fault exception. A memory reference
resulted in a page fault that could not be resolved. The
field theError of the memory exception structure contains
a status value indicating the reason for this unresolved
page fault. In general, either the error occurred at
secondary interrupt level or at hardware interrupt level
(theError == kernelExecutionLevelErr) or the fault could
not be processed because there were insufficient resources.
Disabling hardware interrupts and then attempting to
reference data that’s not in physical memory can also raise
this type of exception because all virtual memory
operations occur at hardware interrupt time.

kPrivilegeViolationException
Privilege violation exception. The cpu decoded a
privileged instruction but was not executing in privileged
mode.

kTraceException Trace exception. This exception is used by debuggers to
support single-step operations.

kInstructionBreakpointException
Instruction breakpoint exception. Not used.

kDataBreakpointException
Data breakpoint exception. This exception is used by
debuggers to support data breakpoint operations.

kIntegerException Integer exception. This exception is not used by PowerPC
processors.

kFloatingPointException
Floating-point arithmetic exception. The floating-point
processor has exceptions enabled and an exception has
occurred.

kStackOverflowException
Stack overflow exception. The stack limits have been
exceeded and the stack cannot be expanded.

C H A P T E R 8

Exception Handling

8-6 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

kTaskTerminationException
Termination exception. Not used.

kTaskCreationException

Creation exception. This exception is used to notify
debuggers of the creation of a new task. When the
debugger is notified, the PC points to the task’s entry
point. For additional information see the description of the
DSWaitForException function in the chapter “Debugger
Services Reference.”

If the exception kind indicates a problem with memory, you can examine the
memory exception structure (page 8-11) to determine the logical address
reference that caused the exception, the area containing that address, and the
type of operation (read, write, or fetch) being performed.

Memory Reference Enumeration 8

For memory related exceptions, the microkernel returns a memory exception
structure (page 8-11). The field theReference of this structure specifies the kind
of memory access operation that caused the exception.

enum {
kWriteReference = 0,
kReadReference = 1,
kFetchReference = 2,

};
typedef unsigned long MemoryReferenceKind;

Field descriptions
kWriteReference The exception occurred during a write operation.
kReadReference The exception occurred during a read operation.
kFetchReference The exception occurred during a fetch operation. (Not all

processors are able to distinguish read operations from
fetch operations. As a result, fetch operation failures might
be reported as failed read operations.)

Exception Information Structure 8

You examine the exception information structure to determine the state of the
cpu at the time an exception occurs. If you are writing an exception handler, it

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-7
Draft. Apple Computer, Inc. 4/19/96

will return the exception information structure to you in its parameter
theException. If you are writing a debugger, you can obtain the exception
information structure by calling the DSWaitForException function. The
exception information structure is a field of the exception structure returned by
this function. (The DSWaitForException function is described in “Debugging
Services Reference.”)

The ExceptionInformationPowerPC data type defines an exception information
structure.

struct ExceptionInformationPowerPC {
ExceptionKind theKind;
MachineInformationPowerPC *machineState;
RegisterInformationPowerPC *registerImage;
FPUInformationPowerPC *FPUImage;
ExceptionInfo info;

};
typedef struct ExceptionInformationPowerPC ExceptionInformationPowerPC;

Field descriptions
theKind One of the exception kind enumeration values (page 8-3),

specifying the kind of exception that has occurred.
machineState A pointer to a machine information structure (page 8-8).

This structure specifies the values stored in the machine’s
special purpose registers the time the exception occurred.

registerImage A pointer to a general purpose register information
structure (page 8-9) specifying the values stored in the
machine’s general purpose registers at the time the
exception occurred.

FPUImage A pointer to an FPU register information structure
(page 8-10) specifying the values stored in the machine’s
floating point registers at the time the exception occurred.

info Additional information about the memory access violation
if the value specified for the field theKind is a
memory-related exception. This information is specified by
a memory exception information structure (page 8-11).

C H A P T E R 8

Exception Handling

8-8 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

Machine Information Structure 8

You examine the machine information structure to determine the contents of
the cpu’s special registers at the time an exception occurs. The machine
information structure is a field of the exception information structure (page 8-6).

The MacineInformationPowerPC data type defines a machine information
structure.

structMachineInformationPowerPC {
UnsignedWide CTR;
UnsignedWide LR;
UnsignedWide PC;
unsigned long CR;
unsigned long XER;
unsigned long MSR;
unsigned long ExceptKind;
unsigned long DSISR;
UnsignedWide DAR;
UnsignedWide Reserved;

};

Field descriptions
CTR The contents of the Count Register.
LR The contents of the Link Register
PC The contents of the Program Counter Register
CR The contents of the Condition Register
XER The contents of the Fixed-Point Exception Register.
NSR The contents of the Machine State Register.
MQ The contents of the MQ register. This register is part of the

Power architecture (used by 601 processors only). It is used
by Power instructions that perform certain kinds of
arithmetic operations.

ExceptKind A constant specifying the type of exception that occurred.
Possible values are given by the exception kind
enumeration (page 8-3).

DSISR The contents of the Data Access Exception Source
Instruction Service Register. This register holds additional
information about memory-related exceptions.

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-9
Draft. Apple Computer, Inc. 4/19/96

DAR The contents of the Data Access Register. Normally, this is
the address that caused a data access exception.

Reserved Reserved for future use.

General Purpose Register Information Structure 8

You examine the registerImage field of the exception information structure
(page 8-6) to determine the contents of the general purpose registers at the time
that an exception occurs. The registerImage field points to a general purpose
register information structure.

The RegisterInformationPowerPC data type defines a general purpose register
information structure.

struct RegisterInformationPowerPC {
UnsignedWide R0;
UnsignedWide R1;
UnsignedWide R2;
UnsignedWide R3;
UnsignedWide R4;
UnsignedWide R5;
UnsignedWide R6;
UnsignedWide R7;
UnsignedWide R8;
UnsignedWide R9;
UnsignedWide R10;
UnsignedWide R11;
UnsignedWide R12;
UnsignedWide R13;
UnsignedWide R14;
UnsignedWide R15;
UnsignedWide R16;
UnsignedWide R17;
UnsignedWide R18;
UnsignedWide R19;
UnsignedWide R20;
UnsignedWide R21;
UnsignedWide R22;
UnsignedWide R23;
UnsignedWide R24;
UnsignedWide R25;

C H A P T E R 8

Exception Handling

8-10 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

UnsignedWide R26;
UnsignedWide R27;
UnsignedWide R28;
UnsignedWide R29;
UnsignedWide R30;
UnsignedWide R31;

};
typedef struct RegisterInformationPowerPC RegisterInformationPowerPC;

Field descriptions
R0 - R31 The contents of general-purpose registers GPR0 through

GPR31.

Floating Point Information Structure 8

You examine the FPUImage field of the exception information structure
(page 8-6) to determine the contents of the floating point registers and the
contents of the Floating-Point Status and Control Register at the time that an
exception occurs. The FPUImage field points to a floating point information
structure.

The FPUInformationPowerPC data type defines a floating point information
structure.

struct FPUInformationPowerPC {
UnsignedWide Registers [32];
unsigned long FPSCR;
unsigned long Reserved;

};
typedef struct FPUInformationPowerPC FPUInformationPowerPC;

Field descriptions
Registers A thirty-two element array. The contents of the nth floating

point (FPU) register is stored in the corresponding element
of the array.

FPSCR The contents of the Floating-Point Status and Control
Register (FPSCR).

Reserved Reserved for future use.

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-11
Draft. Apple Computer, Inc. 4/19/96

Memory Exception Information Structure 8

You examine the memory exception information structure to obtain more
detailed information about an exception caused by a memory violation

The info field of the exception information structure (page 8-6) points to a
memory exception information structure. The microkernel fills in the structure
referenced by the info field if the field theKind of the exception information
structure specifies a memory-related exception.

The MemoryExceptionInformation data type defines a memory exception
information structure.

struct MemoryExceptionInformation {
AreaID theArea;
LogicalAddress theAddress;
OSStatus theError;
MemoryReferenceKind theReference;

};
typedef struct MemoryExceptionInformation MemoryExceptionInformation;

Field descriptions
theArea The ID of the area that contains the address that caused the

memory-related exception. When the memory reference
that caused the exception is to an unmapped range of the
logical address space, this field contains the value
kNoAreaID.

theAddress The logical address that caused the memory-related
exception

theError A status value. When the exception kind is
unresolvablePageFaultException, this field contains a value
that indicates the reason the page fault could not be
resolved.

theReference One of the values specified by the memory reference
enumeration (page 8-6). This value indicates the type of
operation (read, write, or fetch) that was being performed
when the exception occurred.

C H A P T E R 8

Exception Handling

8-12 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

Functions 8

This section describes the prototype of a user-defined exception handler and
describes the function you use to install the handler for a task or accept
function.

InstallExceptionHandler 8

Installs a user-defined exception handler

ExceptionHandler InstallExceptionHandler (ExceptionHandler theHandler,
void * refcon);

theHandler The address of the exception handler to be installed. The
exception handler is a user-defined, native PowerPC function
whose prototype is described next.

refcon A 32-bit value that you want to pass to the exception handler
when it is invoked.

If you are implementing a long jump type of handler, you can
use this parameter to store the address of the jump buffer.

function result The address of any existing exception handler. If there is not an
exception handler installed for the current execution context,
the InstallExceptionHandler function returns nil.

DESCRIPTION

You use the InstallExceptionHandler function to install the exception handler
specified by the parameter theHandler. That handler replaces any existing
exception handler associated with the current execution context. The newly
installed handler remains active until you install some other handler or until
you remove the current handler by calling InstallExceptionHandler with
theHandler set to nil.

You use the InstallExceptionHandler function to install exception handlers for
tasks and accept functions. For hardware interrupts, secondary interrupts,
software interrupts, and debuggers, you specify the exception handler as a
parameter to the function you use to create the interrupt or install the
debugger. However, you can still use the InstallExceptionHandler function to

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-13
Draft. Apple Computer, Inc. 4/19/96

install an exception handler for this type of code if you are interested in passing
a refcon value to the exception handler.

Exception handlers installed by software interrupt handlers are in effect only
for the duration of that particular invocation of the software interrupt.

SPECIAL CONSIDERATIONS

The InstallExceptionHandler function is available to any code executing in the
PowerPC native environment. You do not need to call it if your application or
other software exists as 680x0 code and hence executes under the 68LC040
Emulator on PowerPC processor-based Macintosh computers.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function is reentrant and can be run in privileged mode. You can call this
function from any level.

User-Defined Routines 8

This section describes exception handlers, native PowerPC routines that you
write to handle specific types of exceptions that might occur during the
execution of your software.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 8

Exception Handling

8-14 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

MyExceptionHandler 8

An exception handler must consist of native PowerPC code and has the
following prototype:

OSStatus (*ExceptionHandler) (ExceptionInformationPowerPC *theException,
void * refcon);

theException A pointer to an exception information structure (page 8-6). On
return the microkernel fills in the fields of this structure with
information that describes the exception that caused the
handler to execute and the state of the cpu at the time the
exception occurred.

refcon A 32-bit value. This is a user-defined value that you pass as a
parameter to the InstallExceptionHandler function and that the
microkernel passes to your exception handler when it calls it.

function result If the handler returns NoErr, this means that it has resolved the
exception and that the task giving rise to the exception can
resume execution. If the handler returns any other result, the
microkernel terminates the task that caused the handler to be
invoked and, if this is a main task, the microkernel terminates
the process to which the task belongs.

DESCRIPTION

You pass the address of the function MyExceptionHandler to the
InstallExceptionHandler function. If the InstallExceptionHandler function
returns successfully, the microkernel calls your exception handler for all
exceptions that arise in your application’s context.

Your exception handler can take whatever steps are necessary to handle the
exception or to correct the error or special condition that caused the exception.
This includes changing the machine state, by changing the fields of the
exception information structure that is passed to it when the handler is invoked.

■ If your handler is successful, it should return the noErr result code. If you
pass back noErr, the microkernel restores the machine state to the state
contained in the exception information structure referenced by the
parameter theException and resumes execution.

C H A P T E R 8

Exception Handling

Exception Handling Reference 8-15
Draft. Apple Computer, Inc. 4/19/96

■ If your handler is not able to handle the exception, it should return some
other result code. However, if your handler returns a nonzero result code,
the current task is likely to be terminated. If it is a main task, the microkernel
process to which it belongs is also terminated.

The microkernel executes an exception handler on the same stack that was
active when the exception occurred. To ensure that no stack data is destroyed,
the microkernel advances the stack pointer prior to calling the exception
handler.

If an exception is raised as a result of stack overflow
(kStackOverflowException), the microkernel still needs to use the excepted stack
to run the exception handler. In this case, it will cut the stack back before
running the handler. Consequently handlers that are responding to stack
overflows cannot make any assumptions about the state of the stack when they
begin to execute or when they return control to the application.

SPECIAL CONSIDERATIONS

It is especially important that you provide exception handlers for secondary
interrupts and hardware interrupts. Failing to do so can result in a system
crash.

An exception handler must follow the same general guidelines as other kinds
of asynchronous software.

An exception handler must be reentrant if it can itself generate exceptions.

C H A P T E R 8

Exception Handling

8-16 Exception Handling Reference

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 9

Contents 9-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 9-0
Listing 9-0
Table 9-0

9 Messaging Service Reference

Messaging Service Reference 9-3
Constants and Data Types 9-4

Messaging Service Identifiers 9-4
Message Types 9-4
Message Definition 9-6
Message Information 9-8
Message Object Options 9-10
Port Information and Options 9-11
Send Options 9-14
Receive Options 9-18
Accept Options 9-18
Accept Function 9-19

Messaging Service Functions 9-19
Obtaining Information About Messages 9-19

GetMessageInformation 9-20
Creating and Deleting Message Objects 9-21

CreateObject 9-21
DeleteObject 9-22

Locking and Unlocking Message Objects 9-23
LockObject 9-23
UnlockObject 9-25

Getting and Setting Message Object Information 9-26
GetObjectInformation 9-26
SetObjectInformation 9-27
GetObjectsInPort 9-29

Creating and Deleting Message Ports 9-30
CreatePort 9-30

C H A P T E R 9

9-2 Contents

Draft. Apple Computer, Inc. 4/19/96

DeletePort 9-31
Obtaining Information about Ports 9-32

GetPortInformation 9-32
GetPortsInSystem 9-33

Sending a Message 9-34
SendMessageSync 9-35
SendMessageAsync 9-37
CancelAsyncSend 9-39

Receiving a Message 9-40
ReceiveMessageSync 9-41
ReceiveMessageAsync 9-43
CancelAsyncReceive 9-45
AcceptMessage 9-45

Replying to a Message 9-47
ReplyToMessage 9-48
ReplyToMessageAndReceive 9-49

Application-Defined Function 9-52
MyMessageAcceptProc 9-52

C H A P T E R 9

Messaging Service Reference 9-3
Draft. Apple Computer, Inc. 4/19/96

Messaging Service Reference 9

Messaging Service Reference 9

Messaging is an interprocess communications service that allows a message to
be sent from a task, the sender, to another piece of software (a task or an accept
function) the receiver. The message is a contiguous set of bytes (which can be
zero bytes) that is understood only by the sender and receiver; it is not
interpreted by the messaging service. A message is always associated with a
reply, which is a response (that might also be zero bytes long) from the receiver
to the sender. Thus, the message and its reply form a transaction between the
sender and receiver.

Messages are sent to message objects; they are received from ports. Thus, a
message object must be associated with a port. Typically, many objects are
associated with a port. Before you can send a message, the message object to
which you send the message and its port must exist. The receiver typically
creates the port and message objects to which messages are sent by senders.

A message object represents something to which a request can be made. For
example, a message object might represent a window or dialog box that can be
used to formulate a search of a database (and display the results of the search),
in which case the message contains the request, or a message object might
represent a file that can be read or written to, in which case the message
contains the instruction to read or write blocks on disk, and so on. Messages
sent from many different tasks can be sent to the same message object.

A port represents the place where a message is delivered after it is sent to a
message object. The receiver can retrieve a message from a port, take some
action, and then issue a reply. You can have multiple receivers waiting on
messages from the same port.

Messages arrive at message objects in chronological order; however, messages
are not guaranteed to arrive at a port in chronological order. This situation can
occur when messages are sent to different message objects associated with the
same port.

The following sections describe the constants, data types, and functions that
you can use to send, receive, and reply to messages and to manipulate
messages, message objects, and ports. For a conceptual overview of the
messaging service and examples of how to use it, see (To Be Provided)

C H A P T E R 9

Messaging Service Reference

9-4 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

Constants and Data Types 9

The following sections describe the constants and data types that can be used
with messaging service functions. These constants and data types define:

■ identifiers

■ message types

■ message content

■ message and port information

■ message object and port options

■ send, receive, and accept options

Messaging Service Identifiers 9

Identifiers used by messaging services have the same purpose and use as
identifiers used elsewhere within the microkernel and operating system—they
uniquely identify an object or entity within the system. The following
identifiers are used by messaging service functions:

typedef struct OpaqueMessageID* MessageID;
typedef struct OpaqueObjectID* ObjectID;
typedef struct OpaquePortID* PortID;
typedef struct OpaqueReceiveID* ReceiveID;

Identifier

MessageID Unique identifier for a message.
ObjectID Unique identifier for a message object.
PortID Unique identifier for a port.
ReceiveID Unique identifier for a request to receive a message.

Message Types 9

All messages are identified by a message type, which can be used to specify the
kind of message. For example, you could decide that an “open connection”
message is one type and a “retrieve data request” is another type. The sender of
the message can specify the message type. The receiver of the message (a task
or accept function) can use the message type to determine how to respond to

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-5
Draft. „ Apple Computer, Inc. 6/5/96

the message. You can also use multiple receivers, each set up to handle specific
types of messages.

A message type is a 32-bit mask:

typedef UInt32 MessageType;

Message types are specified in functions that send messages and in functions
that receive messages. You specify the message type of the message being sent
when you send the message. A receiver specifies the message types that it
wants to handle. The sender’s message type is bitwise ANDed with the
message type specified by the receiver. If the result is non-zero, the receiver is
allowed to receive the message. If the result is zero, another receiver is allowed
to respond to the message.

If the result is non-zero for several receivers, the following rules determine
which receiver will actually receive the message:

1. If any receiver is an accept function (page 9-52), the accept function receives
the message.

2. If none of the receivers are accept functions, the highest priority task receives
the message. If several tasks with the same priority are waiting, the task
waiting the longest receives the message.

If the result of the AND operation is zero for all receivers, the message is
queued.

Note
You can have at most one accept function associated with a
port. Only receivers waiting on the port are eligible to
receive a message delivered to the port. u

The first four bits in the mask specifies whether the message was sent by the
kernel. You should not set this bit when sending a message.

Mac OS 8 defines two message types for you. If you specify kAllMessages in
your function call to receive a message, it is eligible to receive every message
delivered to the port. If you specify kAllNonKernelMessageTypes, messages sent
by the kernel cannot be received; the receiver is eligible to receive all other
messages.

#define kAllNonKernelMessageTypes (SInt32)0x0FFFFFFF
#define kAllMessages (SInt32)0xFFFFFFFF

C H A P T E R 9

Messaging Service Reference

9-6 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

You should not use a message type of (SInt32)0x0000000, because a bitwise
AND of a zero always results in zero. A message with this message type can be
received by any receiver whose message type is kAllMessages, however,
because the kAllMessages message type specifies a match on all messages,
regardless of the message type.

Message Definition 9

The message contents and other information about a message are returned in a
message control block by functions that receive messages. The control block
specifies the complete contents of a message, which include the contents and
other information. If the receiver is a task, the control block is assembled in the
buffer specified by the function that receives the message. If the receiver is an
accept function, the control block is assembled in the microkernel’s memory.

The message format is defined as a MessageControlBlock structure, which can
be referenced by a MessageControlBlockPtr pointer. The definitions of the
structure and pointer are as follows:

struct MessageControlBlock {
MessageID message; /* message ID */
AddressSpaceID addressSpace; /* sender’s address space */
KernelProcessID sendingKernelProcess; /* sender’s process */
TaskID sendingTask; /* sending task */
void * refcon; /* msg. object’s ref. con. */
SendOptions options; /* send options */
MessageType theType; /* message type */
LogicalAddress messageContents; /* message buffer */
ByteCount messageContentsSize;/* message buffer size */
LogicalAddress replyBuffer; /* reply buffer */
ByteCount replyBufferSize; /* reply buffer size */
OSStatus currentStatus; /* message status */
UInt32 reserved[4]; /* reserved */

};
typedef struct MessageControlBlock MessageControlBlock;

typedef MessageControlBlock *MessageControlBlockPtr;

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-7
Draft. Apple Computer, Inc. 4/19/96

Field descriptions
message The message ID, which is created by the operating system

to uniquely define the message. Use this ID to reply to the
message, cancel a message sent asynchronously, or to
obtain information about the message.

addressSpace The address space of the task that sent the message. You
do not need to know the address space if you are only
interested in the contents of the message; however, you can
use this address space for other purposes, such as
accessing non-message data in the sending task’s address
space.

sendingKernelProcess
The process ID of the sending task’s process. You can use
this ID, for example, to verify that the sending process is
authorized to send the message.

sendingTask The task ID of the task that sent the message.
refcon The reference constant associated with the message object

to which the message was sent. For examples of using a
reference constant, see(To Be Provided)

theType The message type. For information about message types,
see “Message Types” (page 9-4).

messageContents The message data. You always reference the message data
with this logical address. The logical address may be the
address of the buffer that you specified in the function that
receives the message or it may be the address of the data in
the sender’s address space, depending on how the data
was transferred to the receiver. For information on how
data is transferred, see “Send Options” (page 9-14).

messageContentsSize
The size of the message data, in bytes.

replyBuffer The logical address of the sender’s reply buffer, or nil. A
nil value indicates that the sender either doesn’t have a
reply buffer or that the microkernel chose not to map the
buffer into the receiver’s address space. The reply data will
not be copied to the sender’s address space when you can
use the sender’s reply buffer, that is, when this field is not
nil. If the reply buffer exists (that is, if replyBufferSize is
not zero), data can be sent back as part of the reply.

C H A P T E R 9

Messaging Service Reference

9-8 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

replyBufferSize The size of the reply buffer or zero if the sender did not
specify a reply buffer. The receiver must also specify the
size of the reply buffer when calling ReplyToMessage
(page 9-48) or ReplyToMessageAndRecieve (page 9-49).

currentStatus Unused.
reserved[4] Reserved for future use.

Message Information 9

This section describes message information version and structure.

Message Information Version 9

The message information version specifies which version of the message
information structure is currently being used. The version information
provides backward compatibility for the message information structure—you
specify the version to match the information structure you use.

enum {
kMessageInformationVersion = 1

};

The message information version is specified as follows:

Enumeration

kMessageInformationVersion
The current version of the message information structure.

Message Information Structure 9

The message information structure is primarily useful for debugging, because
all information needed to handle a message is available when the message is
received. (See “Message Definition” (page 9-6).) You use the message
information structure when calling the GetMessageInformation function
(page 9-20) to return information about a message. Message information is
defined as a MessageInformation structure, which can be referenced by a
MessageInformationPtr:

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-9
Draft. Apple Computer, Inc. 4/19/96

struct MessageInformation {
ObjectID object; /* message object */
TaskID sendingTask; /* sender’s task */
KernelProcessID sendingKernelProcess;/* task’s process */

};

typedef struct MessageInformation MessageInformation;

typedef MessageInformation *MessageInformationPtr;

C H A P T E R 9

Messaging Service Reference

9-10 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

Field descriptions
object The message object to which the message was sent.
sendingTask The task ID of the task that sent the message.
sendingKernelProcess

The process ID of the process with which the sending task
is associated.

Message Object Options 9

You send message to a message object. A message object is associated with a
port. This section describes options you can specify when you:

■ create a message object

■ lock a message object

■ set a message object’s characteristics

Object Creation Options 9

Object creation options allow additional control over how objects are created.
They are set by the CreateObject function (page 9-21) that you call to create a
message object. The object options are type ObjectOptions, which are specified
as an OptionBits data type:

typedef OptionBits ObjectOptions; /* message object’s create options */

No object options are currently defined; you should specify kNilOptions for
object creation options.

Object Locking Options 9

The message object lock options are used by the LockObject function
(page 9-23). The message object lock options are type ObjectLockOptions, which
are specified as an OptionBits data type:

typedef OptionBits ObjectLockOptions; /* message object’s lock options */

The only message object lock option currently defined is specified as follows:

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-11
Draft. Apple Computer, Inc. 4/19/96

enum {
kLockObjectWithOneMessage = 0x00000001 /* allow locking while

 one message is outstanding */
};

Enumeration

kLockObjectWithOneMessage
Allow the message object to become locked even if a
message has been received from the message object’s port
but has not yet been replied to. If this option bit is not set,
the message object becomes locked only when all messages
that have been received have also been replied to. Thus, at
most one message can be outstanding when the lock is
acquired (when kLockObjectWithOneMessage is specified);
otherwise, no messages can be outstanding.

Object Setting Options 9

Object setting options specify which of the object’s properties are to be changed
when you call the SetObjectInformation function (page 9-27). These options
may be ORed together to specify changing more than one property in the same
function call. The object options are type SetObjectOptions, which are specified
as an OptionBits data type:

typedef OptionBits SetObjectOptions;

The object setting options are specified as follows:

enum {
kSetObjectPort = 0x00000002, /* set the port */
kSetObjectRefcon = 0x00000004 /* set the ref. constant */

};

Enumeration

kSetObjectPort Set the port with which the message object is associated.
kSetObjectRefcon Set the value of the message object’s reference constant.

Port Information and Options 9

This section describes port-related information and options:

C H A P T E R 9

Messaging Service Reference

9-12 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

■ options you specify when you create a port

■ version information

■ the port information structure

Port Creation Options 9

Port options allow additional control over how ports are created. You specify
them when you call the CreatePort function (page 9-30) to create a port. The
port creation options are type PortOptions, which are specified as an OptionBits
data type:

typedef OptionBits PortOptions; /* create port options */

No port options are currently defined; you should specify kNilOptions for port
options.

Port Information Version 9

The port information version specifies which version of the port information
structure is being used. The version information provides backward
compatibility for the port information structure—you can specify the version of
the structure you are using.

enum {
kPortInformationVersion = 1

};

The port information version is specified as follows:

Enumeration

kPortInformationVersion
The current version of the port information structure.

Port Information Structure 9

You use the port information structure when calling the GetPortInformation
function (page 9-32) to return information about the current state of a port, its
owning process, and transaction statistics. Port information is defined as a
PortInformation structure, which can be referenced by a PortInformationPtr
pointer.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-13
Draft. Apple Computer, Inc. 4/19/96

struct PortInformation {
KernelProcessID owningKernelProcess;/* creator process */
MessageAcceptProc acceptProc; /* accept function */
ExceptionHandler acceptHandler; /* accept function’s

 exception handler */
AcceptOptions theAcceptOptions; /* accept optios */
void * acceptRefcon; /* accept function’s

 reference constant */
ItemCount objectCount; /* count of message

 objects associtated
 with the port */

ItemCount pendingReceives; /* count of outstanding
 receive requests */

ItemCount pendingSends; /* count of outstanding
 messages (queue size) */

ItemCount pendingReplies; /* count of received but
 unreplied messages */

ItemCount transactionCount; /* count of replied to
 messages */

ItemCount blockedAsyncSenders;/* count of async senders
 waiting on resources */

ItemCount blockedAsyncReceivers; /* count of async
receivers waiting on resources */

};

typedef struct PortInformation PortInformation;

typedef PortInformation *PortInformationPtr;

C H A P T E R 9

Messaging Service Reference

9-14 Messaging Service Reference

Draft. „ Apple Computer, Inc. 6/5/96

Field descriptions
owningKernelProcess

The process ID of the process that created this port.
acceptProc The accept function that is currently registered for this port

or nil if an accept function is not currently registered.
acceptHandler The exception handler for the currently registered accept

function or nil if an exception handler is not currently
registered.

theAcceptOptions The options associated with the accept function.
acceptRefcon The reference constant associated with the accept function.
objectCount The number of message objects that are associated with the

port.
pendingReceives The number of receive requests that have not been

matched with a message.
pendingSends The number of messages that have been sent to the port’s

message objects but have not been matched with a receiver
(either a function call to receive a message or an accept
function).

pendingReplies The number of messages that have been received but not
yet replied to.

transactionCount The number of send-receive-reply sequences delivered
through the port since it was created.

blockedAsyncSenders
The number of asynchronous send requests that are
waiting for message system memory resources.

blockedAsyncReceivers
The number of asynchronous receive requests that are
waiting for message system memory resources.

Send Options 9

Send options specify how to send the message. They are set when calling a
function that sends a message and are available in the message control block
that is returned to the function that receives the message. Mac OS 8 may also
set options in the message control block being returned to specify additional
information about how a message was sent.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-15
Draft. „ Apple Computer, Inc. 6/5/96

The send options are type SendOptions, which are specified in an OptionBits
data structure:

typedef OptionBits SendOptions;

The option bits for send options are as follows:

enum {
kSendTransferKindMask = 0x00000003, /* Set by sender*/
kSendByChoice = 0x00000000, /* kernel choice */
kSendByReference = 0x00000001, /* by reference */
kSendByValue = 0x00000002, /* by value */
kSendIsBuffered = 0x00000003, /* buffer by kernel*/
kSendIsPrivileged = 0x00000008, /* Set by kernel*/
kSendIsAtomic = 0x00000010, /* Set by sender*/
kSendPtrsAddressable = 0x00000020, /* Set by kernel*/
kSendPtrsNeedAccessCheck = 0x00000040 /* Set by kernel*/

};

Enumeration

kSendTransferKindMask
The mask in the SendOptions structure that specifies how to
transfer the message. The mask may specify
kSendByChoice, kSendByReference, kSendByValue, or
kSendIsBuffered as described below.

kSendByChoice Allow Mac OS 8 to choose the fastest way to transfer a
message, which is either kSendByReference or kSendByValue.
This choice partially depends on the kind of receiver (task
or accept function), the message size, the mode (user or
supervisor), the address space of the sender and receiver,
as well as whether or not enough space is allocated for the
message in the receiver. You should use the kSendByChoice
option whenever possible, because it is not always possible
to determine best choice in advance unless you know the
environment in which the message is sent and received.

kSendByReference Send the message contents as a reference to its address in
the sender’s address space. When kSendByReference is
specified, the message contents holds the address of the
sender’s buffer that contains the data. If the message’s
receiver is in a different address space than that of the

C H A P T E R 9

Messaging Service Reference

9-16 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

sender, the microkernel maps the buffer that contains the
message into the address space of the receiver. The
kSendByReference option is especially useful when the
message contains a large data structure and the receiver
needs to read some values in the structure and update
other values in the structure.
If the microkernel maps the message buffer into the
receiver’s address space, data that resides on the same
page of physical memory as the buffer, either before the
start of the buffer or after the end of the buffer, is also
mapped into the receiver’s address space, thus, making
this data accessible to the receiver along with the buffer
itself.

kSendByValue Send the message by copying the message contents from
the sender’s buffer to the receiver’s buffer. The receiver’s
buffer must be large enough to receive the entire message;
otherwise, the sending function receives an error.

kSendIsBuffered Use a buffer in the microkernel to hold the message
contents until the message is received. This option is
allowed only when the message is sent asynchronously—
the sender can reuse the buffer specified in the function
that sends the message as soon as the function returns,
instead of requiring the sender to keep the buffer and its
contents until a reply is received. An error is reported if the
microkernel cannot buffer the message (for example, if the
message is too large or there are too many messages being
buffered in this way). An error is also reported if the buffer
size is larger than maxBufferedMessageSize. (Call
GetSystemInformation (page(To Be Provided)) to determine
the maximum buffered message size.)
You should only use the kSendIsBuffered option if you
cannot keep the buffer while waiting for a reply; for
example, when the buffer is created on the sending task’s
stack. The use of this option results in the data being
copied twice, once from the sender’s buffer to one
provided by the microkernel and once from the
microkernel’s buffer to the receiver’s buffer.

kSendIsPrivileged The microkernel sets this option bit if the sending task is
executing in supervisor mode when the message is sent. It
provides information to the receiver about the sender’s

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-17
Draft. Apple Computer, Inc. 4/19/96

mode. If the sending task is in user mode and this bit is
specified as an option, it is cleared.

kSendIsAtomic Make the send-receive-reply sequence atomic with respect
to the message object to which the message is sent. When
the message is sent to a message object, the object becomes
locked until the message is replied to. Thus, other
messages sent to the object while it is locked become
blocked until a reply is issued for the first message; if
another message is sent synchronously, its sending task
blocks.

kSendPtrsAddressable
The microkernel sets this option bit if the sending task’s
address space is directly addressable by the receiver. Thus,
this option bit is set when the sender and receiver are both
executing in the same address space (for example, two
user mode tasks in the same process), if they are both
supervisor-mode tasks, or if the receiver is an accept
function.

kSendPtrsNeedAccessCheck
The microkernel sets this option bit if the sending task's
address space is directly addressable by the receiver and
the sender has different access rights to that address space
than does the receiver. If this option bit is set, the receiver
must explicitly check the access rights of the message
buffer before accessing the data. This option bit is always
set if the sender and receiver are in different address
spaces. It is also set if the sender and receiver execute in
different modes; for example, when a user-mode task
sends a message that is received by an accept function. In
this case, the accept function can directly access the
sender’s buffer; however, it should perform an address
check because the buffer may contain a pointer to data that
is read/write accessible in supervisor mode (the mode in
which the accept function executes) yet is read-only in user
mode.

C H A P T E R 9

Messaging Service Reference

9-18 Messaging Service Reference

Draft. „ Apple Computer, Inc. 6/5/96

Receive Options 9

Receive options allow additional control over how messages are received. They
are set by the function that receives the message. The receive options are type
ReceiveOptions, which are specified in an OptionBits data structure:

typedef OptionBits ReceiveOptions;

The option bits for receive options are defined as follows:

enum {
kReceiveNoAddressTranslation = 0x00000002 /* not addr. mapping */

};

Enumeration

kReceiveNoAddressTranslation
Do not allow the message content buffer to be mapped into
the receiving task’s address space. This option prevents
Mac OS 8 from mapping the addresses that contain the
data in the sender’s address space to the receiving task’s
address space, which could happen if the sending options
are either kSendByReference or kSendByChoice. If you
specify this option, you cannot use the buffer if it is
mapped; however, you can pass the buffer to another task
which does allow the mapping.

Accept Options 9

Accept options allow additional control over how accept functions are
executed. They are set when you call the AcceptMessage function (page 9-45) to
register an accept function with a port. The accept options are type
AcceptOptions, which are specified in an OptionBits data structure:

typedef OptionBits AcceptOptions;

The option bits for accept options are defined as follows:

enum {
kAcceptFunctionIsResident= 0x00010000

};

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-19
Draft. Apple Computer, Inc. 4/19/96

Enumeration

kAcceptFunctionIsResident
Specify this option if you want to ensure that the accept
function is resident in memory.

Accept Function 9

You can use the MessageAcceptProc function to define an accept function. The
accept function is invoked when a message with the specified message type is
received by the port to which the accept function is associated. This function is
defined as follows:

typedef OSStatus (*MessageAcceptProc)
const MessageControlBlock *message,
void *acceptRefcon);

For information about creating your own accept function, see the description of
the MyMessageAcceptProc function (page 9-52).

Messaging Service Functions 9

Messaging Service functions allow you to implement messaging in your
application. These functions are grouped into the following categories:

■ obtaining information about messages

■ manipulating message objects

■ manipulating message ports

■ sending messages

■ receiving messages

■ replying to messages

■ canceling asynchronous messages

Obtaining Information About Messages 9

The GetMessageInformation function returns information about a message. To
retrieve the contents of a message, you must call a function that receives or

C H A P T E R 9

Messaging Service Reference

9-20 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

accepts messages. These functions are described in “Receiving a Message”
(page 9-40). For information about the structure of a message, see “Message
Definition” (page 9-6).

GetMessageInformation 9

Obtains information about a message.

OSStatus GetMessageInformation (
MessageID theMessage,
PBVersion version,
MessageInformation *messageInfo);

theMessage The message ID (page 9-6) of the message about which you
want to obtain information.

version The version number of the message information structure.

messageInfo A pointer to a message information structure (page 9-8). On
output, the structure contains information about the message.

function result (To Be Provided)

DISCUSSION

You specify the version number of the message information structure that you
want to use. The structure may change between versions of the operating
system. The GetMessageInformation function fills in the specified
MessageInformation structure with information about the message, including
the object to which the message was sent, the task that sent the message, and
the process that owns the sending task.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-21
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about message information versions and the message
information structure, see “Message Information” (page 9-8).

Creating and Deleting Message Objects 9

CreateObject 9

Creates a message object.

OSStatus CreateObject (
PortID port,
void *refcon,
ObjectOptions options,
ObjectID *theObject);

port The port with which the message object is to be associated.

refcon A pointer to a reference constant by which you can provide
information to the receiver.

options Message object options (page 9-10). Because no creation options
are currently defined, use kNilOptions for this parameter.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-22 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

theObject A pointer to a message object ID. On output, the parameter
points to the message object ID that you use to specify the
destination for a message.

function result To Be Provided

DISCUSSION

When you create a message object, you specify the port to associate with the
object and a reference constant. Messages sent to the message object are
received from the port and the reference constant is available for use by the
receiver. You can have more than one message object associated with a port.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can change the port or reference constant (or both) with the
SetObjectInformation function (page 9-27).

DeleteObject 9

Deletes a message object.

OSStatus DeleteObject (ObjectID theObject);

theObject The message object ID of the message object you want to delete.

function result To Be Provided

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-23
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

An attempt to send a message to a message object that has been deleted results
in an error return from functions used to send the message. If the message has
already been sent but not yet replied to, the message is canceled. If the message
object is locked when it is deleted, any task waiting to send a message to it is
unblocked and the function that sent the message returns an error.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For descriptions of functions that can send messages, see “Sending a Message”
(page 9-34).

For information about canceling a message, see “CancelAsyncReceive”
(page 9-45).

Locking and Unlocking Message Objects 9

LockObject 9

Locks a message object.

OSStatus LockObject (ObjectID theObject,
ObjectLockOptions options,
Duration timeout);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-24 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

theObject The ID of the message object that you want to lock.

options The message lock options. If there are messages that have been
received by the port but not replied to, the message object’s lock
options (page 9-10) control when the lock is granted. If
kNilOptions is specified, all replies must have been sent before
the lock is granted. If kLockObjectWithOneMessage is specified, a
single outstanding message is allowed. The task that calls the
LockObject function blocks until the lock is granted, meaning
that the messages have been replied to or until the lock is no
longer held by other tasks.

timeout A value that specifies the maximum amount of time to wait
when attempting to lock the message object.

function result To Be Provided

DISCUSSION

Locking a message object prevents messages sent to the message object from
being received by the message object’s port. Messages sent to the message
object while it is locked wait for the message object to become unlocked. This is
useful in a client-server model when the server wants to change the message
object’s characteristics (for example, its reference constant) upon receiving a
message. The server can receive the message and lock the message object,
which prevents messages from being received at the port. (The
kLockObjectWithOneMessage option must be specified.) It can then change the
characteristics and unlock the message object.

IMPORTANT

In the client-server scenario described above, you must use
the kLockObjectWithOneMessage option; otherwise, the task
that receives the message will deadlock waiting for the
lock because it has not replied to the message. You should
consider using the kSendIsAtomic option when sending the
message to achieve the same result. ▲

Multiple tasks may attempt to lock a message object; however, only one task
can acquire the lock at a time. Other tasks that attempt to lock the message
object are blocked in priority order while waiting for the message object to
become unlocked.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-25
Draft. Apple Computer, Inc. 4/19/96

Any messages previously sent to the message object but which have not yet
been received from the port are removed from the port’s queue and wait to be
queued on the port again when the message object becomes unlocked. Any
messages that already have been received from the port are not affected by the
attempt to lock a message object.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To unlock a message object, call the UnlockObject function (page 9-25).

For information about the kSendIsAtomic option, see “Send Options”
(page 9-14).

UnlockObject 9

Unlocks a message object.

OSStatus UnlockObject (ObjectID theObject);

theObject The ID of the message object that you want to unlock.

function result To Be Provided

DISCUSSION

When the UnlockObject function is called, waiting messages are sent to the
message object’s port, where they are queued for receipt. You should consider

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-26 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

using the kSendIsAtomic option when sending the message to achieve the same
result as locking and unlocking the message object.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about the kSendIsAtomic option, see “Send Options”
(page 9-14).

Getting and Setting Message Object Information 9

GetObjectInformation 9

Obtains information about the message object.

OSStatus GetObjectInformation(
ObjectID theObject,
PortID *port,
void **refcon);

theObject The ID of the message object whose characteristics you wish to
determine.

port On output, the port ID associated with the message object.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-27
Draft. Apple Computer, Inc. 4/19/96

refcon On output, the contents of the reference constant for this
message object.

function result To Be Provided

SEE ALSO

For information about changing the port ID and reference constant for a
message object, see the SetObjectInformation function (page 9-27).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SetObjectInformation 9

Changes the characteristics of a message object.

OSStatus SetObjectInformation(
ObjectID theObject,
SetObjectOptions options,
PortID port,
void *refcon);

theObject The ID of the message object whose characteristics you wish to
change.

options Message object options (page 9-10) that specify which
characteristics of the message object you wish to change.

port The port with which the message object is to be associated.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-28 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

refcon A pointer to a reference constant by which you can provide
information to the receiver.

function result To Be Provided

DISCUSSION

The characteristics for a message object are set initially by the CreateObject
function (page 9-21). The options parameter specifies the characteristics to
change. You can specify kSetObjectPort to change the port with which the
object is associated, kSetObjectRefcon to change the value of the object’s
reference constant, or kSetObjectPort | kSetObjectRefcon to change both of
them.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To determine the current characteristics for a message object, call the
GetObjectInformation function (page 9-26).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-29
Draft. Apple Computer, Inc. 4/19/96

GetObjectsInPort 9

Identifies message objects associated with a port.

OSStatus GetObjectsInPort(
PortID port,
ItemCount requestedObjects,
ItemCount *totalObjects,
ObjectID *theObjects);

port The port whose message objects you wish to identify.

requestedObjects
The maximum number of message objects you wish to identify.

totalObjects A pointer to an item count. On output, the item count contains
the total number of message objects associated with the port.

theObjects A pointer to an array of message object IDs. On output, the
array contains the message object IDs that are associated with
the port. Allocate enough space in the data structure pointed to
by the theObjects parameter to return the ID of each message
object that you request.

function result To Be Provided

DISCUSSION

The GetObjectsInPort function retrieves the message objects associated with
the specified port, up to the maximum specified in the requestedObjects
parameter. The total number of objects associated with the port is returned in
the totalObjects parameter. If the total number of objects is less than or equal
to the number of objects requested, all message object IDs are returned;
otherwise, only the requested number of message object IDs are returned.

C H A P T E R 9

Messaging Service Reference

9-30 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Creating and Deleting Message Ports 9

CreatePort 9

Creates a port.

OSStatus CreatePort (PortOptions options,
PortID *thePort);

options Port options (page 9-11). Because no creation options are
currently defined, use kNilOptions for this parameter.

thePort A pointer to a port ID. On output, the CreatePort function
returns the port ID of the newly created port.

function result To Be Provided

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-31
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

DeletePort 9

Deletes a port.

OSStatus DeletePort (PortID thePort);

thePort The port ID of the port you want to delete.

function result To Be Provided

DISCUSSION

The DeletePort function deletes the specified port and all message objects
associated with the port. Messages sent to any of these message objects are
canceled as a result of the message object being deleted. Receive requests on
the port are also canceled.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-32 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about canceling a message, see “CancelAsyncReceive”
(page 9-45).

Obtaining Information about Ports 9

GetPortInformation 9

Obtains information about a port.

OSStatus GetPortInformation(
PortID thePort,
PBVersion version,
PortInformation *portInfo);

thePort The ID of the port whose characteristics you wish to determine.

version The version of the port information structure that you are using.

portInfo A pointer to a port information structure (page 9-12). On
output, the structure contains the information about the port,
including statistics about the current state of the port and
information about its accept function.

function result To Be Provided

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-33
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

The port information structure may change between versions of the operating
system.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about port information versions and the port information
structure, see “Port Information and Options” (page 9-11).

GetPortsInSystem 9

Identifies all the ports that currently exist.

OSStatus GetPortsInSystem(
ItemCount requestedPorts,
ItemCount *totalPorts,
PortID *thePorts);

requestedPorts
The maximum number of ports you wish to identify.

totalPorts A pointer to an item count. On output, the item count contains
the total number of ports that currently exist.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-34 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

thePorts A pointer to an array of port IDs. On output, the array contains
the port IDs in the system. Allocate enough space in the data
structure pointed to by the thePorts parameter to return the ID
of each port that you request.

function result To Be Provided

DISCUSSION

The GetPortsInSystem function retrieves the port IDs of all ports systemwide,
up to the maximum specified in the requestedPorts parameter. The total
number of ports systemwide is returned in the totalPorts parameter. If the
total number of ports is less than or equal to the number of ports requested, all
port IDs are returned; otherwise, only the requested number of port IDs are
returned.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Sending a Message 9

Messages can be sent either synchronously, which causes the task that sends
the message to block until a reply is received, or asynchronously, which allows
task execution to continue and a notification to be delivered to the task when a
reply has been received.

Asynchronous messages can be canceled on a “per message” basis. You cannot
cancel synchronous messages. The operating system, however, may cancel both
synchronous and asynchronous sends. It cancels messages under the following
conditions:

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-35
Draft. Apple Computer, Inc. 4/19/96

■ when a timeout for a synchronous send expires before a message is received,
the operating system cancels the message.

■ when the message object is deleted, the operating system cancels messages
sent to the message object that have not yet been received.

■ when the message object’s port is deleted, the operating system cancels all
messages sent to the port (via a message object) that have not been received.

The following sections describe functions you can use to send messages and
cancel asynchronous messages.

SendMessageSync 9

Sends a message synchronously.

OSStatus SendMessageSync(
ObjectID object,
MessageType theType,
ConstLogicalAddress messageContents,
ByteCount messageContentsSize,
LogicalAddress replyBuffer,
ByteCount *replyBufferSize,
SendOptions options,
Duration timeout);

object The message object to which the message is sent.

theType The message type. For information about message types, see
“Message Types” (page 9-4).

messageContents
The logical address of the start of the data to send or nil if there
is no message data being sent.

messageContentsSize
The size of the message data, in bytes.

replyBuffer The logical address of the reply buffer or NULL if you do not
wish to receive reply data.

C H A P T E R 9

Messaging Service Reference

9-36 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

replyBufferSize
A pointer to a byte count. On input, specify the size of the reply
buffer, in bytes. On output, the byte count specifies the actual
number of bytes of data in the buffer.

options The send options. These options specify how a message is to be
sent, such as whether the contents are copied (passed by value)
or passed as an address (by reference), whether the message is
atomic, and so on. For information about send options, see
“Send Options” (page 9-14).

timeout A timeout value that specifies the maximum amount of time,
specified as a type Duration (page(To Be Provided)), to wait for
a the message to be received. You can specify a value of
kDurationForever to prevent the message from being canceled.
You can specify a value of kDurationImmediate when you want
to cancel the message immediately if no receiver is waiting for
the message.

function result To Be Provided

DISCUSSION

The SendMessageSync function sends a message to the specified message object
and waits for a reply. The task that calls SendMessageSync is blocked until either
a reply is received or a timeout occurs. If a timeout occurs, the message is
canceled and the task becomes unblocked.

Note
The operating system may map the reply buffer into the
receiver’s address space temporarily; however, it will be
unmapped when the message is replied to. ◆

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-37
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SendMessageAsync 9

Sends a message asynchronously.

OSStatus SendMessageAsync(
ObjectID object,
MessageType theType,
ConstLogicalAddress messageContents,
ByteCount messageContentsSize,
LogicalAddress replyBuffer,
ByteCount replyBufferSize,
SendOptions options,
const KernelNotification *notification,
ByteCount *replySize,
MessageID *theMessage);

object The message object that receives the message.

theType The message type. For information about message types, see
“Message Types” (page 9-4).

messageContents
The logical address of the start of the data to send or NULL if
there is no message data being sent.

messageContentsSize
The size of the message data, in bytes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-38 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

replyBuffer The logical address of the reply buffer or NULL if you do not
wish to receive reply data.

replyBufferSize
The size of the reply buffer, in bytes.

options The send options. The send options specify how a message is to
be sent, such as whether the contents are copied (passed by
value) or passed as an address (by reference), whether the
message is atomic, and so on. For information about send
options, see “Send Options” (page 9-14).

notification A pointer to a KernelNotification structure, which specifies
how to receive the notification.

replySize A pointer to a byte count. On output, the byte count contains
the actual number of bytes of data returned in the reply buffer.

theMessage A pointer to a message ID. On output, it contains the message
ID for this message. You can use the message ID for the
message to cancel the message. For more information about
canceling messages, see CancelAsyncReceive (page 9-45).

function result To Be Provided

DISCUSSION

The SendMessageAsync function sends a message to the specified message object
and returns immediately. The task that calls SendMessageAsync is not blocked.
The sender is notified that the message has been replied to (and thus, the
send-receive-reply sequence is complete) by a notification mechanism (either
by setting flags in an event group, issuing a software interrupt, or placing an
entry in a kernel queue). When the notification occurs, the reply data is
available in the reply buffer and the size of the reply data is in the variable
pointed to by the replySize parameter.

IMPORTANT

Do not reuse or delete the message buffer until being
notified that the send operation has completed, unless you
specify the kSendIsBuffered option. ▲

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-39
Draft. Apple Computer, Inc. 4/19/96

Note
The operating system may map the reply buffer into the
receiver’s address space temporarily; however, it will be
unmapped when the message is replied to. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about the KernelNotification structure, see(To Be Provided)

For information about event groups and flags, see(To Be Provided)

For information about kernel queues, see(To Be Provided)

For information about software interrupts, see(To Be Provided)

CancelAsyncSend 9

Cancels a message sent asynchronously.

OSStatus CancelAsyncSend (MessageID theMessage);

theMessage The message you want to cancel.

function result To Be Provided

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-40 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

If the message has not yet been received from the port, it is removed from the
port and cannot be received. If the message has been received but not yet
replied to, the message is not canceled and the function returns an error.

IMPORTANT

Canceling a message can result in a race condition if the
request to cancel is sent just as the message is replied to. It
is also possible for the receiver to ignore a request to cancel
a message. Thus, a request to cancel may result in the
message being replied to anyway; you should anticipate
this condition occurring. ▲

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Receiving a Message 9

Messages can be received by tasks, either synchronously, which causes the task
that requests a message to block until a message of the appropriate type is
received, or asynchronously, which allows task execution to continue and a
notification to be delivered to the task when a message of the appropriate type
has been received.

Messages can also be received by an accept functions, which is a function
associated with a port that allows efficient transfer of a message from a sending
task’s address space to the kernel’s address space.

You can cancel asynchronous receives. The operating system can cancel both
synchronous and asynchronous receives. It cancels all receives that are waiting
when the port they are waiting on is deleted. It cancels synchronous receives
when the receive request’s timeout value expires.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-41
Draft. Apple Computer, Inc. 4/19/96

The following sections describe functions you can use to receive messages.

ReceiveMessageSync 9

Receives a message synchronously.

OSStatus ReceiveMessageSync(
PortID port,
MessageType theTypes,
MessageControlBlock *theControlBlock,
LogicalAddress buffer,
ByteCount bufferSize,
ReceiveOptions options,
Duration timeout);

port The port from which you wish to receive a message.

theTypes The message types of the messages you are willing to receive.
For information about message types, see “Message Types”
(page 9-4).

theControlBlock
A pointer to a message control block. For information about
message control blocks, see “Message Definition” (page 9-6).

buffer The logical address of a buffer. On output, the buffer contains
the message contents if the message was sent by value. If the
message was sent by reference, the buffer is not modified.

bufferSize The size of the buffer you allow for the message content data.

options The receive options. For information about receive options, see
“Receive Options” (page 9-18).

timeout A timeout value that specifies the maximum amout of time to
wait, specified as a type Duration (page(To Be Provided)), to
receive a message of the appropriate type. You can specify a
value of kDurationForever to prevent the receive request from
being canceled. You can specify a value of durationImmediate if
you want to cancel the receive request immediately when no
message of the appropriate type is waiting.

C H A P T E R 9

Messaging Service Reference

9-42 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

function result To Be Provided

DISCUSSION

The ReceiveMessageSync function attempts to receive a message that matches
the specified message type from the specified port. The task that calls
ReceiveMessageSync is blocked until either the appropriate message is received
or a timeout occurs. If a timeout occurs, the receive request is canceled and the
task becomes unblocked.

Messages are not guaranteed to be queued on a port in chronological order.
This situation can occur when messages are sent to different message objects
associated with the same port. Additionally, the message type controls which
message is received, not the message’s position within the queue.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can also use the ReplyToMessageAndReceive function (page 9-49) to reply to
a message and receive the next one.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-43
Draft. Apple Computer, Inc. 4/19/96

ReceiveMessageAsync 9

Receives a message asynchronously.

OSStatus ReceiveMessageAsync(
PortID port,
MessageType theTypes,
MessageControlBlock *theControlBlock,
LogicalAddress buffer,
ByteCount bufferSize,
ReceiveOptions options,
const KernelNotification *notification,
ReceiveID *theReceive);

port The port from which you wish to receive a message.

theTypes The message types of the messages you are willing to receive.
For information about message types, see “Message Types”
(page 9-4).

theControlBlock
A pointer to a message control block. For information about
message control blocks, see “Message Definition” (page 9-6).

buffer The logical address of a buffer. On output, the buffer contains
the message contents if the message was sent by value. If the
message was sent by reference, the buffer is not modified.

bufferSize The size of the buffer you allow for the message content data.

options The receive options. For information about receive options, see
“Receive Options” (page 9-18).

notification A pointer to a KernelNotification structure, which specifies
how to receive the notification.

theReceive A pointer to a receive ID for this receive. You can use the
receive ID to cancel the receive request. (See CancelAsyncReceive
(page 9-45) for more information.)

function result To Be Provided

C H A P T E R 9

Messaging Service Reference

9-44 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

The ReceiveMessageAsync function requests a message of the specified message
type from the specified port. A task that calls ReceiveMessageAsync is not
blocked. The availability of an appropriate message is delivered by a
notification mechanism (either by setting flags in an event group, issuing a
software interrupt, or placing an entry in a kernel queue). When the
notification occurs, the message control block contains information about the
message and the buffer contains the message contents.

Messages are not guaranteed to be queued on a port in chronological order.
This situation can occur when messages are sent to different message objects
associated with the same port. Additionally, the message type controls which
message is received, not the message’s position within the queue.

Note
The operating system may map the reply buffer into the
receiver’s address space temporarily; however, it will be
unmapped when the message is replied to. ◆

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about the KernelNotification structure, see(To Be Provided)

For information about event groups and flags, see(To Be Provided)

For information about kernel queues, see(To Be Provided)

For information about software interrupts, see(To Be Provided)

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-45
Draft. Apple Computer, Inc. 4/19/96

CancelAsyncReceive 9

Cancels an asynchronous receive request.

OSStatus CancelAsyncReceive (ReceiveID theReceive);

theReceive The receive request you want to cancel.

function result To Be Provided

DISCUSSION

The receive request is canceled. Messages are not affected by cancelling a
receive request.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

AcceptMessage 9

Registers an accept function for the port.

OSStatus AcceptMessage(
PortID port,
MessageType theTypes,
MessageAcceptProc acceptProc,
ExceptionHandler theExceptionHandler,
AcceptOptions options,
void *acceptRefcon);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-46 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

port The port associated with the accept function.

theTypes The message types of the messages you are willing to receive.
For information about message types, see “Message Types”
(page 9-4).

acceptProc An accept function. For the definition of an accept function, see
“MyMessageAcceptProc” (page 9-52).

ExceptionHandler
The accept function’s exception handler. For information about
exception handlers, see(To Be Provided)

options Options associated with the accept function. Specify
kAcceptFunctionIsResident if you want the accept function to
remain resident or kNilOptions if you do not require it to be
resident. For more information about accept options, see
“Accept Options” (page 9-18).

acceptRefcon A pointer to the reference constant associated with the accept
function.

function result To Be Provided

DISCUSSION

After registering the accept function specified by the acceptProc parameter, all
messages sent to the specified port with the appropriate message types will be
received by the accept function, regardless of whether there are any other
receive requests on the port for the same message type.

Messages sent to the port before the accept function is registered are not
handled by the accept function. For this reason, you should call the
AcceptMessage function before messages are allowed to be sent to the port; for
example, after you create the port but before you create the port’s message
objects.

Only one accept function can be associated with a port at a time. If an accept
function is already registered for the port and you call the AcceptMessage
function again, the current one is deregistered and is replaced by the one
specified in the function call. You can set the acceptProc parameter to nil and
call the AcceptMessage function to deregister the current accept function
without installing another one.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-47
Draft. Apple Computer, Inc. 4/19/96

If an exception arises while executing the accept function, the specified
exception handler handles the exception, not the exception handler associated
with the sending task. If an exception arises and no exception handler is
installed, the sender of the message is notified of the error.

Messages are not guaranteed to be queued on a port in chronological order.
This situation can occur when messages are sent to different message objects
associated with the same port. Additionally, the message type controls which
message is received, not the message’s position within the queue.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

Replying to a Message 9

All messages that are received from a port must be replied to. The reply
consists of at least a status code of type OSStatus; it may contain other data as
well. Accept functions may implicitly reply to a message—the operating
system generates a reply based on the return value from the accept function.
Other tasks that receive messages must explicitly reply to them. The following
sections describe functions you can use to explicitly reply to messages.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-48 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

ReplyToMessage 9

Replies to a message.

OSStatus ReplyToMessage(
MessageID theMessage,
OSStatus status,
ConstLogicalAddress replyBuffer,
ByteCount replyBufferSize);

theMessage The message ID of the message you want to reply to.

status The status you wish to indicate to the sender. If the message
was sent by calling SendMessageSync (page 9-35), the status is
delivered as its return value. If the message was sent by calling
SendMessageAsync (page 9-37), the status is delivered by calling
DeliverKernelNotification (…).

replyBuffer The logical address of the reply buffer, or nil. A nil value
indicates that there is no reply data.

replyBufferSize
The size of the reply buffer.

function result To Be Provided

DISCUSSION

The ReplyToMessage function replies to the message specified by its message ID.
Delivery of the status value completes the send-receive-reply transaction. You
may supply additional information in a reply buffer and specify its address
and size. If the sender specified a reply buffer, you can specify its address as the
location of your reply buffer; otherwise you can specify the location of your
reply buffer. If the reply buffer size is greater than the value specified by the
sender, the reply data is truncated to fit in the smaller buffer.

If the sender specified a non-nil reply buffer, using that buffer avoids the cost
of copying the reply data from the receiver to the sender. The address of
sender’s reply buffer is in the message control block. For information about the
message control block, see “Message Definition” (page 9-6).

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-49
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

SEE ALSO

The ReplyToMessageAndReceive function (page 9-49) can also be used to reply to
a message.

ReplyToMessageAndReceive 9

Replies to a message and receives another message synchronously.

OSStatus ReplyToMessageAndReceive(
MessageID theMessage,
OSStatus status,
ConstLogicalAddress replyBuffer,
ByteCount replyBufferSize,
PortID port,
MessageType theTypes,
MessageControlBlock *theControlBlock,
LogicalAddress receiveBuffer,
ByteCount receiveBufferSize,
ReceiveOptions options,
Duration timeout);

theMessage The message ID of the message you want to reply to.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 9

Messaging Service Reference

9-50 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

status The status you wish to indicate to the sender. If the message
was sent by calling SendMessageSync (page 9-35), the status is
delivered as its return value. If the message was sent by calling
SendMessageAsync (page 9-37), the status is delivered by calling
DeliverKernelNotification (…).

replyBuffer The logical address of the reply buffer, or nil. A nil value
indicates that there is no reply data.

replyBufferSize
The size of the reply buffer.

port The port from which you wish to receive a message.

theTypes The message types of the messages you are willing to receive.
For information about message types, see “Message Types”
(page 9-4).

theControlBlock
A pointer to a message control block that receives enough
information to retrieve the message.

receiveBuffer The buffer to receive the message contents. If the message was
sent by value, the buffer receives the message contents. If the
message was sent by reference, the buffer is not modified.

receiveBufferSize
The size of the buffer you allow for the message content data.

options The receive options. For information about receive options, see
“Receive Options” (page 9-18).

timeout A timeout value that specifies the maximum amout of time to
wait, specified as a type Duration (page(To Be Provided)), to
receive a message of the appropriate type.

DISCUSSION

The ReplyToMessageAndReceive function is equivalent to calling ReplyToMessage
(page 9-48) followed immediately by calling ReceiveMessageSync (page 9-41).

The ReplyToMessageAndReceive function replies to the message specified by its
message ID, which completes a send-receive-reply transaction, and initiates a
new receive operation on the specified port. If you specify kInvalidID for the
message ID, the reply is skipped and the receive begins immediately.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-51
Draft. Apple Computer, Inc. 4/19/96

When replying to a message, you may supply additional information in a reply
buffer and specify its address and size. If the sender specified a reply buffer,
you can specify its address as the location of your reply buffer; otherwise, you
can specify the location of your reply buffer. If the reply buffer size is greater
than the value specified by the sender, the reply data is truncated to fit in the
smaller buffer.

The ReplyToMessageAndReceive function then attempts to receive a message that
matches the specified message type from the specified port. The task that calls
ReplyToMessageAndReceive is blocked until either the appropriate message is
received or a timeout occurs. If a timeout occurs, the receive request is canceled
and the task becomes unblocked. You can specify a value of kDurationForever
in the timeout parameter to prevent the receive request from being canceled.
You can specify a value of kDurationImmediate if you want to cancel the receive
request immediately if no message of the appropriate type is waiting.

If the sender specified a non-nil reply buffer, using that buffer avoids the cost
of copying the reply data from the receiver to the sender. The address of
sender’s reply buffer is in the message control block. For information about the
message control block, see “Message Definition” (page 9-6).

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use the ReplyToMessage function (page 9-48) to reply to a message
without receiving another one.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-52 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

Application-Defined Function 9

MyMessageAcceptProc 9

Defines an accept function.

typedef OSStatus MyMessageAcceptProc(
const MessageControlBlock *message,
void *acceptRefcon);

message A pointer to a message control block. For information about
message control blocks, see “Message Definition” (page 9-6).

acceptRefcon A pointer to the accept function’s reference constant.

function result To Be Provided

DISCUSSION

An accept function defines the function to execute when a message with the
appropriate message type arrives at the port to which the accept function is
registered. Each time an accept function executes, the message parameter
contains the pointer to the message control block for the received message and
the acceptRefcon parameter contains a pointer to the accept function’s reference
constant.

The accept function executes in supervisor mode, therefore, all code it executes
and memory it accesses must be accessible from supervisor mode.

An accept function can explicitly call the ReplyToMessage function (page 9-48) to
reply to the message received, or it may allow a reply to be generated by the
operating system. These implicit replies are generated by returning an OSStatus
value from the function with any status other than kernelIncompleteErr.

C H A P T E R 9

Messaging Service Reference

Messaging Service Reference 9-53
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

For information about registering an accept function, see “AcceptMessage”
(page 9-45).

For information about the definition of an accept function, see “Accept
Function” (page 9-19).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 9

Messaging Service Reference

9-54 Messaging Service Reference

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 1 0

Contents 10-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 10-0
Listing 10-0
Table 10-0

10 Timing Services Reference

Constants and Data Types 10-3
Duration Enumeration 10-3
The Absolute Time Data Type 10-4
The Nanoseconds Data Type 10-5
The Duration Data Type 10-6
Timer ID 10-6

Timing Functions 10-7
Obtaining the Current Absolute Time 10-7

UpTime 10-7
TaskCPUTime 10-9

Synchronous Timers 10-10
DelayUntil 10-10
DelayFor 10-12

Asynchronous and Interrupt Timers 10-14
SetTimer 10-14
SetInterruptTimer 10-16
ResetTimer 10-18
AdjustInterruptTimerSIHLimit 10-20
CancelTimer 10-22

Getting Time Base Information 10-23
GetTimeBaseInfo 10-23

Timing Conversion Functions 10-25
AbsoluteToNanoseconds 10-25
AbsoluteToDuration 10-26
AbsoluteToTicks 10-27
NanosecondsToAbsolute 10-28
DurationToAbsolute 10-29

C H A P T E R 1 0

10-2 Contents

Draft. Apple Computer, Inc. 4/19/96

DurationToNanoseconds 10-30
NanosecondsToDuration 10-31
TicksToAbsolute 10-33

AbsoluteTime Arithmetic Functions 10-33
AddAbsoluteToAbsolute 10-34
SubAbsoluteFromAbsolute 10-35
AddNanosecondsToAbsolute 10-36
AddDurationToAbsolute 10-37
SubNanosecondsFromAbsolute 10-38
SubDurationFromAbsolute 10-39

Timing Delta Functions 10-40
AbsoluteDeltaToNanoseconds 10-40
AbsoluteDeltaToDuration 10-41

Result Codes 10-42
Glossary 10-43

C H A P T E R 1 0

10-3
Draft. Apple Computer, Inc. 4/19/96

Timing Services Reference 10

This chapter documents the constants, data types, and functions that you use to
implement timers that are for your program’s internal use in timing hardware
or software events.

If your program manipulates times that are displayed to the user, you should
use the data types and functions describe in the chapter To Be Provided.

You use the functions described in this chapter to

■ obtain the current time

■ determine how much processor time a task has consumed

■ set and clear a synchronous timer

■ set and clear an asynchronous timer

■ set and clear an interrupt timer

■ convert time units

■ perform arithmetic operations with time units

Constants and Data Types 10

This section describes the constants and data types you use to represent time
when using the microkernel’s timing services.

Duration Enumeration 10

You can use the constant names provided by the duration enumeration to
specify values of type duration. You use this type to specify the delayDuration
parameter to the DelayFor function (page 10-12) or to specify a time-out value
required by any System 7 function or data structure field of type duration.

You can combine these enumerated values into expressions to specify a
duration that cannot be expressed by a single symbolic constant. For example,
you can specify a duration of 2 hours and 12 minutes as

2*kDurationHour + 12*kDurationMinute

Possible duration units are given by the following enumeration:

C H A P T E R 1 0

Timing Services Reference

10-4
Draft. Apple Computer, Inc. 4/19/96

typedef long Duration;

enum {
kDurationMicrosecond = -1L, // Microseconds are negative
kDurationMillisecond = 1L, // Milliseconds are positive
kDurationSecond = 1000L, // 1000 * durationMillisecond
kDurationMinute = 60000L, // 60 * durationSecond,
kDurationHour = 3600000L, // 60 * durationMinute,
kDurationDay = 86400000L, // 24 * durationHour,
kDurationNoWait = 0L, // don't block
kDurationForever = 0x7FFFFFFF // no time limit

};

Enumerator descriptions

kDurationMicrosecond
Wait one microsecond.

kDurationMillisecond
Wait one millisecond.

kDurationSecond Wait one second.
kDurationMinute Wait one minute.
kDurationHour Wait one hour.
kDurationDay Wait one day.
kDurationNoWait Do not wait: schedule for execution immediately.
kDurationForever Wait indefinitely.

The Absolute Time Data Type 10

Both the rate at which timer hardware is clocked and the representation of time
in the time base register vary with each processor family. Absolute time is a
means of representing time that makes these differences transparent to your
application. In addition, the use of absolute time permits you to specify very
small amounts of time and supports reliable drift-free timing services.

At system startup, the microkernel sets the absolute time to zero and
continually increments the value throughout the life of the system. While
absolute time is linear—one unit of absolute time is equal to another unit of
absolute time for the boot of a machine, absolute time units are not guaranteed
to be equal between two tasks running over a network. You can determine the

C H A P T E R 1 0

Timing Services Reference

10-5
Draft. Apple Computer, Inc. 4/19/96

rate at which absolute time is incremented by calling the GetBaseTimeInfo
function (page 10-23).

Most of the timing functions described in this chapter take a parameter that
you must specify in absolute time units. An absolute time value is defined by
the absolute time data type.

typedef UnsignedWide AbsoluteTime;

The timing services shared library provides time conversion routines
(page 10-25) that you can use to convert times expressed in conventional time
units (nanoseconds, microseconds, milliseconds) into absolute time units.
Because absolute time is stored as a 64-bit value and the C language does not
include arithmetic functions that can manipulate integers of this size, the
timing services library also provides arithmetic routines (page 10-33) that you
can use to add and subtract absolute times. If you need to perform operations
that are not supplied by this library, you should use the functions included in
the Math64 library.

Absolute time units are roughly of the same magnitude as nanoseconds.

The Nanoseconds Data Type 10

A time value in nanoseconds is defined as an unsigned 64-bit integer of type
nanoseconds.

typedef UnsignedWide Nanoseconds;

Most timing services functions take parameters that you must specify using
absolute time values (page 10-4). The timing services shared library provides
time conversion routines (page 10-25) that you can use to convert nanoseconds
into absolute time units.

Because a nanosecond value is stored as a 64-bit value and the C language does
not include arithmetic functions that can manipulate integers of this size, the
timing services library also provides arithmetic routines (page 10-33) that you
can use to perform arithmetic operations on nanosecond values and other time
unit values.

C H A P T E R 1 0

Timing Services Reference

10-6
Draft. Apple Computer, Inc. 4/19/96

The Duration Data Type 10

A positive value of type duration designates the specified number of
milliseconds; a negative value of type duration designates the specified
number of microseconds. For example, a duration value of 100 is 100
milliseconds and a value of –100 is 100 microseconds.

If you are calling System 7 functions that require input in the form of
microseconds or milliseconds, you must supply a 32-bit value of type duration.
The DelayFor function (page 10-12) also requires an input parameter of type
duration.

typedef long Duration;

You can use values of type duration to express time-out values that are as small
as one microsecond or as large as 24 days. When setting and interpreting
duration values, keep in mind that you can express these in two different ways.
For example, 1000 and –1000000 both represent exactly one second.Two
representations that have equal value are interchangeable; neither is preferred
nor is inherently more accurate.

You can express duration as a numeric value or you can use symbolic constants
defined by the duration enumeration (page 10-3). You use timeout or duration
values for synchronous operations. Two duration values have special meaning:
The value 0 (kDurationNoWait) means that you do not want to wait for the
operation. If it cannot be executed immediately, it should not be done at all.
The value 0x7FFFFFFF (kDurationForever) specifies that a task can block
indefinitely.

The timing services function UpTime returns the current time in absolute time.
You can use the functions provided in the timing services shared library
(page 10-25) to convert differences between absolute times into values of type
duration. The timing services library also provides arithmetic routines that you
can use to add values of type duration to absolute time values.

Timer ID 10

When you create a new timer using the SetTimer function (page 10-14) or the
SetInterruptTimer (page 10-16) function, the microkernel returns a timer ID
that identifies that timer.

typedef Ref TimerID;

C H A P T E R 1 0

Timing Services Reference

10-7
Draft. Apple Computer, Inc. 4/19/96

You use this ID value to identify the timer when calling the CancelTimer
function (page 10-22) or the ResetTimer function (page 10-18). The ID of a timer
becomes invalid when the timer expires or when you cancel the timer by
calling the CancelTimer function.

Timing Functions 10

You use the functions described in this chapter to obtain the current time, to
determine how much time a task has consumed, to set and clear timers, and to
manipulate time units.

Obtaining the Current Absolute Time 10

You use the two functions described in this section to obtain the current time.
The time returned by the UpTime function returns the time (in absolute time
units) since the machine was booted. The time returned by the TaskCPUTime
function returns the time (in absolute time units) since the calling task began
execution.

UpTime 10

Returns the current absolute time value.

AbsoluteTime UpTime (void);

function result The current absolute time value (page 10-4) maintained by the
microkernel.

DISCUSSION

You can use the UpTime function to return the current absolute time value
maintained by the microkernel. The timing services use this absolute time
value as their reference to the current time.

You typically use the UpTime function as part of any timing operation that you
want to execute periodically without incurring any drift in measuring elapsed

C H A P T E R 1 0

Timing Services Reference

10-8
Draft. Apple Computer, Inc. 4/19/96

time. The following example shows how you schedule an operation to execute
every second:

OSStatus DriftFreeWorker (void * work)
{

AbsoluteTime nextWorkTime;
&nextWorkTime = UpTime ;
do

{DoTheWork (work)
nextWorkTime = AddDurationToAbsolute(kDurationSecond,

&NextWorkTime);
DelayUntil (&nextWorkTime);
} while (True);

}

You also need to use the current time when specifying the absolute expiration
time of an asynchronous timer created by the SetTimer function or by the
SetInterruptTimer function (page 10-16).

EXECUTION ENVIRONMENT

SEE ALSO

You can use the timing conversion functions beginning on page 10-25 to
convert between AbsoluteTime, Nanoseconds, and Duration values.

You can use the absolute time arithmetic functions beginning on page 10-33 to
add and subtract various combinations of absolute time, nanoseconds, and
duration values and obtain the results in absolute time.

You can use the AbsoluteDeltaToNanoseconds function (page 10-25) to obtain the
time that elapsed between two absolut time values and represent the result in
terms of nanoseconds. You can also use the AbsoluteDeltaToDuration function
(page 10-26) to obtain the time that elapsed between two absolute time values
and represent the result as a duration value.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-9
Draft. Apple Computer, Inc. 4/19/96

TaskCPUTime 10

Returns the absolute time since the calling task began to execute.

AbsoluteTime TaskCPUTime (void);

function result The current absolute time (page 10-4) since the calling task
began to execute.

DISCUSSION

The absolute time returned by the TaskCPUTime function does not include any
time that was allotted to other concurrent tasks since the calling task began
execution, but it does include time given to interrupts.

This function is useful for code profilers, which keep account of how time is
shared between the system, other tasks, and the calling task.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use the timing conversion functions described beginning on
page 10-25 to convert between absolute time, nanoseconds, and duration
values.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-10
Draft. Apple Computer, Inc. 4/19/96

Synchronous Timers 10

Synchronous timers cause the calling task to stop executing for a specified
period of time. The timing services provide synchronous timers you can use to
specify time in both absolute and relative terms.

The DelayUntil function blocks the calling task until a specific absolute time is
reached. This type of delay is useful to prevent drift when this function is
invoked successively. The DelayFor function blocks the task for a period of time
that is relative to when the DelayFor function is called.

DelayUntil 10

Blocks the calling task until an absolute time is reached.

OSStatus DelayUntil (const AbsoluteTime *expirationTime);

expirationTime
On input, a reference to an absolute time (page 10-4) that
specifies when the delayed task is eligible to resume execution.
If the time you specify has already occurred, your task is
eligible for execution immediately.

function result See “Result Codes” (page 10-42) for a list of the result codes
that can be returned.

DISCUSSION

The DelayUntil function blocks the calling task until the absolute time specified
by expirationTime is reached, after which the task is again made eligible for
execution. The task might not be scheduled immediately. Use this function
rather than the DelayFor function if you require drift-free timing service.

Each time you call the DelayUntil function, you specify the time when the task
is to execute. What makes this future time absolute is that it is not relative to any
previous invocation of the DelayUntil function. Any variations in the delay
period are thus isolated to a single DelayUntil call and do not compound into
long-term drift between the time when you expect the task to execute and the
time it actually executes. The following example shows how you schedule a
task to execute every second:

C H A P T E R 1 0

Timing Services Reference

10-11
Draft. Apple Computer, Inc. 4/19/96

OSStatus DriftFreeWorker (void * work)
{

AbsoluteTime nextWorkTime;
 &nextWorkTime = UpTime;
do

{DoTheWork (work)
nextWorkTime = AddDurationToAbsolute(kDurationSecond,

&nextWorkTime);
DelayUntil (&nextWorkTime);
} while (True);

}

In contrast, the DelayFor function (page 10-12) is used to delay the execution of
a task for a period of time that is relative to when you call the DelayFor function.

SPECIAL CONSIDERATIONS

Your task can continue to receive software interrupts while it is delayed unless
you disable software interrupts before calling the DelayUntil function or unless
you call the DelayUntil function from within a software interrupt handler.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

When long-term drift is not an issue, you can use the DelayFor function
(page 10-12) to delay your task for a relative period of time.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-12
Draft. Apple Computer, Inc. 4/19/96

You can use the timing conversion functions described beginning on
page 10-25 to convert between absolute time, nanoseconds, and duration
values.

You can use the absolute time arithmetic functions described beginning on
page 10-33 to add and subtract various combinations of absolute time,
nanoseconds, and duration values and obtain the results in absolute time.

DelayFor 10

Blocks the calling task for a time period that is relative to the time when this
function executes.

OSStatus DelayFor (Duration delayDuration);

delayDuration
The duration of time the task is to be blocked. You can express
this duration in units as small as microseconds and as large as
days. See the description of the Duration type (page 10-6) for
details. If you specify a delay duration time of 0, your task does
not block but yields execution to any other tasks with the same
priority level. If there are no other tasks at the same priority,
your task continues to execute without delay.

function result See “Result Codes” (page 10-42) for a list of the result codes
that can be returned.

DISCUSSION

The DelayFor function blocks the calling task for the time duration specified by
the parameter delayDuration. This function allows the caller to delay for a time
relative to when the service is called. You cannot achieve drift-free timing by
using repeated calls to DelayFor, as you can using the DelayUntil function
(page 10-10).

The problem with using a relative time value in situations that require the
timing between tasks to occur at precise intervals, is that any timing latency
incurred by interrupts, page faults, or the execution of higher priority tasks can
slightly offset the time at which the blocked task resumes execution. For
example, if you call the DelayFor function to delay your task for 1000

C H A P T E R 1 0

Timing Services Reference

10-13
Draft. Apple Computer, Inc. 4/19/96

microseconds, the task might not be executed until 1002 microseconds from
when the function was called. While such small variations may not be critical
by themselves, when a task is repeatedly blocked and executed using the
DelayFor function, slight differences in each individual delay period can
compound into large drifts over the long term.

SPECIAL CONSIDERATIONS

You can continue to receive software interrupts while your task is delayed
unless you disable software interrupts prior to calling the DelayFor function, or
unless you call the DelayFor function from within the software interrupt
handler.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You can use the DelayUntil function (page 10-10) to delay your task until an
absolute time has been reached. This function is useful to prevent long-term
drift when calling the delaying function successively.

You can use the timing conversion functions described beginning on
page 10-25 to convert between absolute time, nanoseconds, and duration
values.

You can use the absolute time arithmetic functions described beginning on
page 10-33 to add and subtract various combinations of absolute time,
nanoseconds, and duration values and obtain the results in absolute time.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-14
Draft. Apple Computer, Inc. 4/19/96

Asynchronous and Interrupt Timers 10

You can create a timer that executes asynchronously to the calling task and that
uses a kernel notification structure to notify your task when it expires. This
section describes the function you use to create an asynchronous timer that you
can call from task level, as well as the functions you use to reset or cancel the
timer.

This section also describes how you create an interrupt timer, which is used to
execute a secondary interrupt handler. You can create an interrupt timer from a
privileged task or from a secondary interrupt handler.

SetTimer 10

Creates an asynchronous timer to deliver a kernel notification upon expiration.

OSStatus SetTimer (const AbsoluteTime *expirationTime,
const KernelNotification *notification,
TimerOptions options,
TimerID *theTimer);

expirationTime
On input, a pointer to an absolute time (page 10-4) when the
specified notification is to be delivered. If you specify a time
that has already occurred, your timer may expire instantly or
within a short period of time, so you should not depend on the
exact behavior of the timer under these circumstances.

notification
On input, a pointer to a kernel notification structure that
specifies the manner in which your notification is to be
delivered when the time specified by the expirationTime
parameter is reached. Depending on how you set up the kernel
notification structure, your notification can take the form of one
or more event flags, a software interrupt, a kernel queue
notification, or any combination of the three. A value of nil
indicates that you do not want a notification to be delivered to
the calling task.

options Timer options. Reserved for future use.

C H A P T E R 1 0

Timing Services Reference

10-15
Draft. Apple Computer, Inc. 4/19/96

theTimer On output, a pointer to the ID (page 10-6) of the timer created
by the SetTimer function. You can use this ID to reset or cancel
the timer prior to its expiration. The timer ID becomes invalid
when you call a CancelTimer function (page 10-22) specifying
this ID, or when the timer expires.

function result The result code memFullErr indicates the system memory is
exhausted and cannot create the timer. The result code paramErr
means that the kernel notification structure you specified for
the notification parameter is not found or is invalid. See
“Result Codes” (page 10-42) for a list of other result codes that
can be returned.

DISCUSSION

You can use the SetTimer function to create an asynchronous timer. After
creating the timer, the calling task continues to execute. Upon expiration, the
timer delivers a kernel notification, as described by the kernel notification
structure referenced by the notification parameter.

If the kernel notification structure referenced by the notification parameter is
set to deliver a notification using a software interrupt, the SetTimer function
saves the current value of the program counter when the timer expires and
passes it as the p2 parameter to the software interrupt handler. If at this time
the program counter is in an address space that is different from the address
space of the calling task, the SetTimer function sets the p2 parameter to 0, which
means that the value has no meaning in the current address space.

If the kernel notification structure referenced by the notification parameter is
set to use a kernel queue notification, the SetTimer function sets the queueP3
field of the kernel notification structure to the current value of the program
counter when the timer expires.

SPECIAL CONSIDERATIONS

When you call the SetTimer function, the microkernel makes a copy of the
kernel notification structure referenced by the notification parameter. Thus
you can dispose of that structure without affecting the operation of the timer or
the delivery of the specified kernel notification.

C H A P T E R 1 0

Timing Services Reference

10-16
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

See the AddAbsoluteToAbsolute function (page 10-34) for information on how
you would use the UpTime function (page 10-7) and AddAbsoluteToAbsolute to
calculate a future expiration time that is relative to the present absolute time.

The ResetTimer function (page 10-18) allows you to change time and
notification parameters for an existing timer.

The CancelTimer function (page 10-22) allows you to cancel an existing timer.

You can use the DelayUntil (page 10-10) and DelayFor (page 10-12) functions as
synchronous timers to block a task for either absolute or relative time periods.

You can create an interrupt timer to run a secondary interrupt handler using
the SetInterruptTimer function (page 10-16).

SetInterruptTimer 10

Creates an interrupt timer to run a secondary interrupt handler upon
expiration.

OSStatus SetInterruptTimer (const AbsoluteTime *expirationTime,
SecondaryInterruptHandler2 handler,
void *p1,
TimerID *theTimer);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-17
Draft. Apple Computer, Inc. 4/19/96

expirationTime
On input, a reference to the absolute time (page 10-4) when the
timer is to expire. If you specify a time that has already
occurred, your timer might expire instantly or within a short
period of time, so you should not depend on the exact behavior
of the timer under these circumstances.

handler The address of a secondary interrupt handler routine that is to
be run when the expiration time is reached. See “Interrupt
Services Reference” for more information on secondary
interrupt handlers.

p1 On input, a pointer to the value that will be passed as the first
parameter to the secondary interrupt handler when the timer
expires. The second parameter, p2, passed to the secondary
interrupt handler is set to the current value of the program
counter when the timer expires.

theTimer On output, a pointer to the ID (page 10-6) of the timer created
by the SetInterruptTimer function. You can use this ID to cancel
the timer prior to its expiration. The timer ID becomes invalid
when you call the CancelTimer function (page 10-22) or when
the timer expires.

function result The result code memFullErr indicates that there is not enough
memory allocated to accommodate your interrupt timer. The
result code paramErr is returned if the address of the secondary
interrupt handler routine you specified for the handler
parameter is not found or is invalid. See “Result Codes”
(page 10-42) for a list of other result codes that can be returned.

DISCUSSION

You use the SetInterruptTimer function to create an interrupt timer. When the
timer expires, the secondary interrupt handler specified by the handler
parameter is queued for execution. The secondary interrupt handler executes
almost immediately after being queued. The value you specify for the p1
parameter to the SetInterruptTimer function is passed to the secondary
interrupt handler. The p2 parameter passed to the handler contains the value
stored in the program register (PC) when the timer expired.

Secondary interrupt handlers run with hardware interrupts enabled and task
switching disabled, so you generally use the SetInterruptTimer function when

C H A P T E R 1 0

Timing Services Reference

10-18
Draft. Apple Computer, Inc. 4/19/96

coding device drivers and other system-level software that require timers with
less latency than the task-level timers described in this section. Interrupt timers
run asynchronously from the caller, which can be a secondary interrupt
handler or a privileged task.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

SEE ALSO

Use the AdjustInterrrupTimerSIHLimit function (page 10-20) to adjust the
number of concurrently running interrupt timers that are known to the system.

The CancelTimer function (page 10-22) allows you to cancel an existing timer.

You can use the SetTimer to create asynchronous timers for use by task-level
software.

For more information on secondary interrupt handlers, see “Interrupt Services
Reference.”

ResetTimer 10

Resets an existing asynchronous timer with a new expiration time and
notification.

OSStatus ResetTimer (TimerID theTimer,
const AbsoluteTime *expirationTime,
const KernelNotification *notification,
TimerOptions options);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 1 0

Timing Services Reference

10-19
Draft. Apple Computer, Inc. 4/19/96

theTimer The ID (page 10-6) of the timer to be reset. The timer ID is
returned by the SetTimer function (page 10-14).

expirationTime
On input, a pointer to an absolute time value (page 10-4) that
specifies the new time when the specified notification is to be
delivered. If you specify a value of nil, the previously set
expiration time does not change. If you specify an absolute time
that has already occurred, your timer might expire instantly or
within a short period of time.

notification
On input, a pointer to a kernel notification structure that
specifies how your notification is to be delivered when the
absolute time specified by the expirationTime parameter is
reached. Depending on how you set up the kernel notification
structure, your notification can take the form of one or more
event flags, a software interrupt, a kernel queue notification
operation, or any combination of the three. A value of nil
indicates that the notification is to be delivered as you specified
the last time you set the timer.

options Timer options. Reserved for future use.

function result The result code kernelIDerr indicates that the timer has already
expired and the timer reset did not take place. The result code
paramErr is returned if the kernel notification structure you
specified for the notification parameter is not found or is
invalid. See “Result Codes” (page 10-42) for a list of other result
codes that can be returned.

DISCUSSION

You can use the ResetTimer function to modify the characteristics of an
asynchronous timer created by the SetTimer function.You can call this function
any number of times to reset a timer. All other usage information is the same as
described for the SetTimer function.

C H A P T E R 1 0

Timing Services Reference

10-20
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

The SetTimer function (page 10-14) allows you to create a new asynchronous
timer.

The CancelTimer function (page 10-22) allows you to cancel an existing timer.

You can use the DelayUntil (page 10-10) and DelayFor (page 10-12) functions as
synchronous timers to block a task for either absolute or relative time periods.

AdjustInterruptTimerSIHLimit 10

Adjusts the number of interrupt timers for which the system must allocate
resources.

extern OSStatus AdjustInterruptTimerSIHLimit(SInt32 amount,
ItemCount *newLimit);

amount The number of interrupt timers that you are adding or
subtracting from the current total.

newLimit A pointer. On return, it references the number of interrupt
timers for which resources are currently allocated.

function result The result code memFullErr indicates that there is not enough
memory available to allocate for another interrupt timer. See
“Result Codes” (page 10-42) for a list of other result codes that
can be returned

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-21
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

Interrupt timers consume microkernel resources from the time they are set until
the time they complete execution. It is your responsibility to inform the
microkernel of the amount of resources you will need by calling the
AdjustInterruptTimerSIHLimit function. You need to provide this information
to the microkernel whether you set an interrupt timer from task level or from
secondary interrupt level.

You need to call the AdjustInterruptSIHLimit function from task level during
your software’s initialization. To increase the limit, specify the number of
simultaneously active timers you are adding. If you set an interrupt timer and
don’t set any additional timers until the first timer has executed, you need only
increment the limit by one. You need to call the function again to decrement the
limit when your software is terminating.

Adjusting the limit of interrupt timers does not guarantee your exclusive use of
the new allocated memory. If other concurrently running software creates
interrupt timers without adjusting the limit, it might enjoy use of the memory
you allocated for your own use.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by secondary interrupt handlers or by hardware
interrupt handlers.

SEE ALSO

The CancelTimer function (page 10-22) allows you to cancel an existing timer.

You can use the SetTimer function to create asynchronous timers for use by
task-level software.

For more information on secondary interrupt handlers, see “Interrupt Services
Reference.”

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 0

Timing Services Reference

10-22
Draft. Apple Computer, Inc. 4/19/96

CancelTimer 10

Cancels a previously created timer.

OSStatus CancelTimer (TimerID theTimer,
AbsoluteTime *timeRemaining);

theTimer The ID (page 10-6) of the asynchronous or interrupt timer to be
canceled. This value is returned by either the function you used
to create the timer the SetTimer function(page 10-14) or the
SetInterruptTimer function (page 10-16).

timeRemaining On output, a pointer to an absolute time value (page 10-4)
indicating the time remaining before the timer would have
expired. This value is the difference between the expiration time
set for the timer and the absolute time when the timer was
cancelled by the CancelTimer function.

function result The result code kernelIDerr indicates that the timer has either
expired or has already been canceled. See “Result Codes”
(page 10-42) for a list of other result codes that can be returned.

DISCUSSION

You use the CancelTimer function to cancel an outstanding asynchronous timer
or interrupt timer. Any kernel notification or secondary interrupt handler
designated to run when the timer expires does not execute if the CancelTimer
operation occurs before the expiration time of the timer.

SPECIAL CONSIDERATIONS

When you attempt to cancel an asynchronous timer, a race condition begins
between your cancellation request and the expiration time of the timer. For
example, you might test to see whether the timer has expired and if it has not,
you cancel the timer. However, the timer might actually expire and cause a
handler to execute between the time you perform the test and the time you
cancel the timer.

C H A P T E R 1 0

Timing Services Reference

10-23
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

SEE ALSO

You can use the SetTimer function (page 10-14) to create an asynchronous timer
to deliver a kernel notification upon expiration.

You can change the expiration time of the timer created by the SetTimer
function or the kernel notification to be delivered by calling the ResetTimer
function (page 10-18).

You can call the SetInterruptTimer function (page 10-16) to create interrupt
timers to run secondary interrupt handler routines upon expiration.

Getting Time Base Information 10

GetTimeBaseInfo 10

Returns the rate at which the absolute time is incremented.

void GetTimeBaseInfo (
UInt32 *theMinAbsoluteTimeDelta,
UInt32 *theAbsoluteTimeToNanosecondNumerator,
UInt32 *theAbsoluteTimeToNanosecondDenominator,
UInt32 *theProcessorToAbsoluteTimeNumerator,
UInt32 *theProcessorToAbsoluteTimeDenominator);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 1 0

Timing Services Reference

10-24
Draft. Apple Computer, Inc. 4/19/96

theMinAbsoluteTimeDelta
On output, a pointer to a value that indicates the minimum
number of absolute time units that can change at any given
time. For example, if the Power Macintosh hardware
increments the time in absolute time units of 128, then the value
returned in the minAbsoluteTimeDelta parameter would be 128.

theAbsoluteTimeToNanosecondNumerator
On output, a pointer to a returned value that represents the
numerator portion of the fraction used to convert an absolute
time value into nanoseconds.

theAbsoluteTimeToNanosecondDenominator
On output, a pointer to a value that represents the denominator
portion of the fraction used to convert an absolute time value
into nanoseconds.

theProcessorToAbsoluteTimeNumerator
On output, a pointer to a value that is part of the information
required to convert a time base register value to an absolute
time value.

theProcessorToAbsoluteTimeDenominator
On output, a pointer to a value that is part of the information
required to convert a time base register value to an absolute
time value.

function result See “Result Codes” (page 10-42) for a list of the result codes that
can be returned.

DISCUSSSION

Most of the values returned by the GetTimeBaseInfo function are for use by the
system software and the functions described under “Timing Conversion
Functions,” beginning on page 10-25.

The one value returned by the GetTimeBaseInfo function that is of direct use to
you is that returned in the parameter theMinAbsoluteTimeDelta. This value
specifies the minimum number of absolute time units by which the time is
incremented. In effect, this represents the limit of accuracy in measuring times.

The remaining values returned by the GetTimeBaseInfo function are used to
compute the value referenced by the parameter theMinAbsoluteTimeDelta and

C H A P T E R 1 0

Timing Services Reference

10-25
Draft. Apple Computer, Inc. 4/19/96

to allow the time conversion functions to convert a time base register value to
nanoseconds.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers.

SEE ALSO

See the timing conversion functions described beginning on page 10-25 for a
list of routines that you can use to convert between various units of time.

Timing Conversion Functions 10

You use the conversion routines described in this section to convert between
nanoseconds, durations, absolute time, and ticks.

AbsoluteToNanoseconds 10

Converts absolute time to nanoseconds.

Nanoseconds AbsoluteToNanoseconds (AbsoluteTime theAbsoluteTime);

theAbsoluteTime
The absolute time (page 10-4) value to be converted into
nanoseconds (page 10-5).

function result The value of the specified absolute time converted into
nanoseconds. The margin of error due to rounding is .5
nanoseconds.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes No

C H A P T E R 1 0

Timing Services Reference

10-26
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

You may find it necessary to convert an absolute time value to nanoseconds
when using System 7 and earlier Time Manager functions that do not accept
absolute time values as input.

SPECIAL CONSIDERATIONS

The conversion from absolute time to nanoseconds can result in rounding
errors, which are typically limited to not more than .5 nanoseconds.

EXECUTION ENVIRONMENT

SEE ALSO

You can obtain the current absolute time by calling the UpTime function
(page 10-7).

You use the NanosecondsToAbsolute function (page 10-28) to convert from
nanoseconds to an absolute time value.

AbsoluteToDuration 10

Converts absolute time to a duration value.

Duration AbsoluteToDuration (AbsoluteTime theAbsoluteTime);

theAbsoluteTime
The absolute time value (page 10-4) to be converted to a
duration value (page 10-6).

function result The duration value to which the absolute time value is
converted. A negative number designates microseconds; a
positive number designates milliseconds. If an absolute time
value is too large to be expressed in units of microseconds, the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-27
Draft. Apple Computer, Inc. 4/19/96

result is rounded up into the less-precise units of milliseconds.
If the result is too large to be expressed in milliseconds then the
value of 7FFFFFFE is returned to indicate an overflow condition.

DISCUSSION

You might find it necessary to convert from an absolute time value to a
duration value prior to calling the DelayFor function (page 10-12), or when
using System 7 and earlier Time Manager functions that require time to be
expressed in terms of microseconds or milliseconds.

SPECIAL CONSIDERATIONS

The conversion from absolute time to a duration value can result in rounding
errors, which are typically limited to not more than .5 microseconds.

EXECUTION ENVIRONMENT

SEE ALSO

You can obtain the current absolute time by calling the UpTime function
(page 10-7).

Use the DurationToAbsolute function (page 10-29) to convert a duration value
to an absolute time value.

AbsoluteToTicks 10

Returns the number of ticks for the specified absolute time value.

extern Ticks AbsoluteToTicks(AbsoluteTime theAbsoluteTime);

theAbsoluteTimeThe absolute time value to be converted to ticks.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-28
Draft. Apple Computer, Inc. 4/19/96

function result The ticks to which the absolute time value has been converted.
One tick equals 1/60 of a second.

DISCUSSION

Some existing software uses ticks to measure time. If you are writing new code
that needs to interface with such software, you can use this routine to convert
absolute time to ticks.

EXECUTION ENVIRONMENT

SEE ALSO

Use the TicksToAbsolute function (page 10-33) to convert from ticks to absolute
time value.

NanosecondsToAbsolute 10

Converts nanoseconds into absolute time.

AbsoluteTime NanosecondsToAbsolute (Nanoseconds theNanoseconds);

theNanoseconds
The nanoseconds (page 10-5) value to be converted to an
absolute time (page 10-4) value.

function result The absolute time value to which the nanoseconds are
converted.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-29
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

Most timing services functions require that you specify expiration times in
absolute time. To use these functions, you must convert any values that are
expressed in your application as nanoseconds into absolute time.

SPECIAL CONSIDERATIONS

The conversion from nanoseconds into absolute time can result in rounding
errors, which are typically limited to not more than .5 of an absolute time unit.

EXECUTION ENVIRONMENT

SEE ALSO

Use the AbsoluteToNanoseconds function (page 10-25) to convert from absolute
time to nanoseconds.

Use the absolute time arithmetic functions, described beginning on page 10-33,
to obtain absolute time values by adding and subtracting various combinations
of absolute time, nanoseconds, and duration values.

DurationToAbsolute 10

Converts a duration value into absolute time.

AbsoluteTime DurationToAbsolute (Duration theDuration);

theDuration The 32-bit Duration (page 10-6) value to be converted to a 64-bit
AbsoluteTime (page 10-4) value.

function result The value of theDuration converted into AbsoluteTime. If you
specify kDurationForever for the value to be converted, the
function returns the largest signed 64-bit value:
0x7FFFFFFF:FFFFFFFF.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-30
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

You can use the DurationToAbsolute function to convert a Duration value
expressed as microseconds or milliseconds into an AbsoluteTime value.

You must convert any values that are of type Duration into an AbsoluteTime
value before using any of the Timing Services functions that require
AbsoluteTime as input.

SPECIAL CONSIDERATIONS

The conversion from a Duration value into AbsoluteTime can result in rounding
errors, which are typically limited to not more than one half a unit of absolute
time.

EXECUTION ENVIRONMENT

SEE ALSO

See the AbsoluteToDuration function (page 10-26) for information on how to
convert from AbsoluteTime to a Duration value.

See the absolute time arithmetic functions, described beginning on page 10-33,
for information on functions that allow you to obtain absolute time values by
adding and subtracting various combinations of absolute time, nanoseconds,
and duration values.

DurationToNanoseconds 10

Converts a duration value into nanoseconds.

Nanoseconds DurationToNanoseconds (Duration theDuration);

theDuration The 32-bit Duration value (page 10-6) to be converted to a 64-bit
Nanoseconds value (page 10-5).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-31
Draft. Apple Computer, Inc. 4/19/96

function result The value of theDuration converted into nanoseconds. If you
specify kDurationForever for the value to be converted, the
function returns the largest signed 64-bit value:
0x7FFFFFFF:FFFFFFFF.

SPECIAL CONSIDERATIONS

The conversion from a time Duration value to Nanoseconds can result in
rounding errors, which are typically limited to not more than .5 nanoseconds.

EXECUTION ENVIRONMENT

SEE ALSO

See the NanosecondsToDuration function (described next) for information on
how to convert from Nanoseconds to a Duration value.

See the absolute time arithmetic functions, described beginning on page 10-33,
for information on functions that allow you to obtain absolute time values by
adding and subtracting various combinations of absolute time, nanoseconds,
and duration values.

NanosecondsToDuration 10

Converts nanoseconds into a duration value.

Duration NanosecondsToDuration (Nanoseconds theNanoseconds);

theNanoseconds
The 64-bit Nanoseconds value (page 10-5) to be converted to a
32-bit Duration value (page 10-6).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-32
Draft. Apple Computer, Inc. 4/19/96

function result The 32-bit enumerated Duration value to which the Nanoseconds
value is converted. Results in microseconds are returned as
negative numbers; milliseconds are returned as positive
numbers. If a 64-bit Nanoseconds value is too large to be
expressed in units of kDurationMicrosecond, then the result is
rounded up into less-precise units of kDurationMillisecond. If
the result is too large to be expressed in 32-bit units of
kDurationMillisecond, then an overflow value of 7FFFFFFE (the
largest non-infinite number that can be expressed in 32 bits) is
returned.

DISCUSSION

You can use the NanosecondsToDuration function to convert a 64-bit Nanoseconds
value into a 32-bit Duration value.

You may find it necessary to convert from an Nanoseconds value to a Duration
value prior to calling the DelayFor function (page 10-12), or when using System
7.x and earlier Time Manager functions that require time to be expressed in
terms of microseconds or milliseconds.

SPECIAL CONSIDERATIONS

The conversion from Nanoseconds to a time Duration value can result in
rounding errors, which are typically limited to not more than 1 microsecond if
the resulting duration is negative or 1 millisecond if the duration is positive.

EXECUTION ENVIRONMENT

SEE ALSO

See the DurationToNanoseconds function (page 10-30) for information on how to
convert a Duration value into Nanoseconds.

See the absolute time arithmetic functions, described beginning on page 10-33,
for information on functions that allow you to obtain absolute time values by

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-33
Draft. Apple Computer, Inc. 4/19/96

adding and subtracting various combinations of absolute time, nanoseconds,
and duration values.

TicksToAbsolute 10

Converts ticks into absolute time.

extern AbsoluteTime TicksToAbsolute(Ticks theTicks);

theTicks The number of ticks to be converted into an absolute time
value. One tick equals 1/60 of a second.

function result The absolute time value that is equivalent to the tick value
specified for the parameter theTicks.

DISCUSSION

Some existing software uses ticks to measure time. If you are writing new code
that needs to interface with such software, you can use this routine to convert
ticks to absolute time.

EXECUTION ENVIRONMENT

SEE ALSO

Use the AbsoluteToTicks function (page 10-27) to convert from absolute time to
ticks.

AbsoluteTime Arithmetic Functions 10

Because absolute time and nanosecond values are stored as a 64-bit values and
the C language does not include arithmetic functions that can manipulate
integers of this size, the timing services library provides the following

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-34
Draft. Apple Computer, Inc. 4/19/96

functions that you can use to perform additions and subtractions involving
these 64-bit time units.

If you need additional arithmetic operations that manipulate 64-bit values,
please use the functions declared in the file Math64.h.

AddAbsoluteToAbsolute 10

Returns the sum of two absolute time values.

AbsoluteTime AddAbsoluteToAbsolute (AbsoluteTime theAbsoluteTime1,
AbsoluteTime theAbsoluteTime2);

theAbsoluteTime1
An absolute time value (page 10-4) to be added to the time
specified by the parameter theAbsoluteTime2.

theAbsoluteTime2
An absolute time value (page 10-4) to be added to the time
specified by the parameter theAbsoluteTime1.

function result The absolute time resulting from the addition of the values
specified by the parameters AbsoluteTime1 and
theAbsoluteTime2.

DISCUSSION

Use the AddAbsoluteToAbsolute function to add two absolute time values.
Please note that one of these values must be obtained by finding the difference
between two absolute time values. That is, you are finding the result of adding
an absolute time delta to an absolute time.

C H A P T E R 1 0

Timing Services Reference

10-35
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

SEE ALSO

See the SubAbsoluteFromAbsolute function (page 10-35) for details on
subtracting two AbsoluteTime values.

SubAbsoluteFromAbsolute 10

Returns the difference between two absolute time values.

AbsoluteTime SubAbsoluteFromAbsolute (
AbsoluteTime theLeftAbsoluteTime,
AbsoluteTime theRightAbsoluteTime);

theLeftAbsoluteTime
The absolute time value (page 10-4) from which the value
specified by the parameter theRightAbsoluteTime is to be
subtracted.

theRightAbsoluteTime
The absolute time value to be subtracted from the value
specified by the parameter theLeftAbsoluteTime.

function result The difference in absolute time obtained from subtracting the
value specified by the parameter theRightAbsoluteTime value
from the value specified by the parameter theLeftAbsoluteTime
value.

DISCUSSION

The difference between to absolute time values is called the absolute time delta.
You can use the SubAbsoluteFromAbsolute function to calculate an absolute time
delta. This function is useful when determining how much time has passed

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-36
Draft. Apple Computer, Inc. 4/19/96

between two absolute time values, such you can obtain from invoking the
UpTime function (page 10-7) at two different times.

EXECUTION ENVIRONMENT

SEE ALSO

Use the AddAbsoluteToAbsolute function (page 10-34) to add two absolute time
values.

If you need to convert the result returned by the SubAbsoluteFromAbsolute
function to a value of type duration or nanoseconds, you should use the
function AbsoluteDeltaToNanoseconds (page 10-40) or the function
AbsoluteDeltaToDuration (page 10-41) instead. These functions find the
difference between two absolute time values and return the difference in the
units of your choice, thus combining two function calls into one.

AddNanosecondsToAbsolute 10

Returns the sum (in absolute time) of a nanosecond value and an absolute time
value.

AbsoluteTime AddNanosecondsToAbsolute (Nanoseconds theNanoseconds,
AbsoluteTime theAbsoluteTime);

theNanoseconds
The value in nanoseconds (page 10-5) to be added to the
absolute time specified by the parameter theAbsoluteTime.

theAbsoluteTime
The absolute time value (page 10-4) to be added to the value
specified by the parameter theNanoseconds.

function result The sum (in absolute time) of the values specified by the
parameters theNanoseconds and theAbsoluteTime.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-37
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

You can use this function to compute some future time when you want a task
to execute. You can then specify the result as the expirationTime parameter to
the DelayUntil function or to one of the functions the defines an asynchronous
timer.

EXECUTION ENVIRONMENT

SEE ALSO

Use the DelayUntil function (page 10-10) to set up a synchronous timer.

Use the functions described beginning on page 10-14 to define asynchronous
and interrupt timers.

AddDurationToAbsolute 10

Returns the sum (in absolute time) of a duration value and an absolute time
value.

AbsoluteTime AddDurationToAbsolute (Duration theDuration,
AbsoluteTime theAbsoluteTime);

theDuration The duration value (page 10-6) to be added to the absolute time
value specified by the parameter theAbsoluteTime.

theAbsoluteTime
The absolute time value (page 10-4) to be added to value
specified by the parameter theDuration.

function result The sum (in absolute time) of the values specified by the
parameters theDuration and theAbsoluteTime.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-38
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

SEE ALSO

Use the function SubDurationFromAbsolute (page 10-39) to subtract a duration
from an absolute time value.

Use the timing conversion functions, described beginning on page 10-25, to
convert absolute time values to nanoseconds, microseconds, milliseconds, or
ticks.

SubNanosecondsFromAbsolute 10

Subtracts a value in nanoseconds from an absolute time value.

AbsoluteTime SubNanosecondsFromAbsolute (Nanoseconds theNanoseconds,
AbsoluteTime theAbsoluteTime);

theNanoseconds
The nanosecond value (page 10-5) to be subtracted from the
absolute time value specified by the parameter theAbsoluteTime.

theAbsoluteTime
The absolute time value (page 10-4) from which the value
specified by the parameter theNanoseconds is to be subtracted.

function result The absolute time value obtained from subtracting the value
specified by the parameter theNanoseconds value from the value
specified by the parameter theAbsoluteTime.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-39
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

SEE ALSO

Use the AddNanosecondsToAbsolute function (page 10-36) to add nanoseconds to
an absolute time value.

Use the timing conversion functions, described beginning on page 10-25, to
convert absolute time values to nanoseconds, microseconds, milliseconds, or
ticks.

SubDurationFromAbsolute 10

Subtracts a duration value from an absolute time value.

AbsoluteTime SubDurationFromAbsolute (Duration theDuration,
AbsoluteTime theAbsoluteTime);

theDuration The duration value (page 10-6) to be subtracted from the value
specified by the parameter theAbsoluteTime.

theAbsoluteTime
The absolute time value (page 10-4) from which the value
specified by the parameter theDuration is to be subtracted.

function result The absolute time value obtained by subtracting the value
specified by the parameter theDuration from the value specified
by the parameter theAbsoluteTime.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-40
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

SEE ALSO

Use the AddDurationToAbsolute function (page 10-37) to add a duration value to
an absolute time value.

Use the timing conversion functions, described beginning on page 10-25, to
convert absolute time values to nanoseconds, microseconds, milliseconds, or
ticks.

Timing Delta Functions 10

The functions described in this section find the difference between two
absolute time values and convert the result to nanoseconds or duration values.

AbsoluteDeltaToNanoseconds 10

Subtracts one absolute time from another and returns the difference in
nanoseconds.

Nanoseconds AbsoluteDeltaToNanoseconds (
AbsoluteTime theLeftAbsoluteTime,
AbsoluteTime theRightAbsoluteTime);

theLeftAbsoluteTime
The absolute time value (page 10-4) from which the value
specified by the parameter theRightAbsoluteTime is to be
subtracted.

theRightAbsoluteTime
The absolute time value to be subtracted from the value
specified by the parameter theLeftAbsoluteTime

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-41
Draft. Apple Computer, Inc. 4/19/96

function result The difference (expressed in nanoseconds) resulting from
subtracting the value specified by the parameter
theRightAbsoluteTime from the value specified by the parameter
theLeftAbsoluteTime. Because there is no concept of negative
time in this system, if the difference is negative, the function
returns 0.

DISCUSSION

Use this function to combine the action of the functions
SubAbsoluteFromAbsolute and AbsoluteToNanoseconds into one.

EXECUTION ENVIRONMENT

SEE ALSO

Use the AbsoluteDeltaToDuration function (page 10-41) to find the difference
between two absolute time values and to convert it to microseconds or
milliseconds.

AbsoluteDeltaToDuration 10

Subtracts one absolute time from another and returns the difference as a
duration value.

Duration AbsoluteDeltaToDuration (AbsoluteTime theLeftAbsoluteTime,
AbsoluteTime theRightAbsoluteTime);

theLeftAbsoluteTime
The absolute time value (page 10-4) from which the value
specified by the parameter theRightAbsoluteTime is to be
subtracted.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

C H A P T E R 1 0

Timing Services Reference

10-42
Draft. Apple Computer, Inc. 4/19/96

theRightAbsoluteTime
The absolute time value to be subtracted from the value
specified by the parameter theLeftAbsoluteTime

function result The difference (expressed as a duration value) resulting from
subtracting the value specified by the parameter
theRightAbsoluteTime from the value specified by the parameter
theLeftAbsoluteTime. Because there is no concept of negative
time in this system, if the difference is negative, the function
returns 0.

DISCUSSION

Use this function to combine the action of the functions
SubAbsoluteFromAbsolute and AbsoluteToDuration into one.

EXECUTION ENVIRONMENT

SEE ALSO

Use the AbsoluteDeltaToNanoseconds function (page 10-40) to find the
difference between two absolute time values and to convert it to nanoseconds.

Result Codes 10
Many of the Timing Services return the result codes listed below.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes Yes Yes

noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Out of memory
kernelIDerr –2419 You specified an ID that was

never created or that has been
destroyed

C H A P T E R 1 0

Timing Services Reference

10-43
Draft. Apple Computer, Inc. 4/19/96

Glossary 10

absolute time delta A 64-bit value resulting from subtracting one absolute
time value from another.

C H A P T E R 1 0

Timing Services Reference

10-44
Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 1 1

Contents 11-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 11-0
Listing 11-0
Table 11-0

11 Debugger Services

Debugger Services Reference 11-3
Constants and Data Types 11-3

Kernel State Enumeration 11-3
Data Breakpoint Option Enumeration 11-5
Exception Structure 11-6
Task State Structure 11-7
Kernel State Structure 11-8
Data Breakpoint Information Structure 11-8

Functions 11-10
Registering and Unregistering a Debugger 11-10

DSRegisterDebugger 11-10
DSUnregisterDebugger 11-12

Handling Exceptions 11-13
DSWaitForException 11-13
DSResumeFromException 11-15

Controlling Task Scheduling 11-16
DSGetTaskState 11-17
DSHoldTasks 11-18
DSReleaseTasks 11-19

Reading and Modifying Task Memory 11-20
DSReadMemory 11-21
DSCreateMemoryAccess 11-22
DSWriteMemory 11-24
DSDeleteMemoryAccess 11-25

Supporting Data Breakpoints 11-26
DSGetDataBreakpointInformation 11-26
DSSetDataBreakpoint 11-28

C H A P T E R 1 1

11-2 Contents

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 1 1

Debugger Services Reference 11-3
Draft. Apple Computer, Inc. 4/19/96

Debugger Services 11

Debugger Services Reference 11

This chapter describes data structures and functions that are declared in the file
DebuggerSupport.h. You use these functions and structures to

■ register a debugger

■ receive an exception

■ examine and modify the machine state

■ examine and control task execution

■ examine and modify memory

■ obtain information about data breakpoint support

■ set and clear data breakpoints

■ unregister a debugger

The registered debugger can only handle exceptions that occur in normal tasks
and software interrupts.

▲ W A R N I N G

There is no special attempt to protect the system against
debuggers. Please make judicious use of the calls provided
to change the state of the processor and of memory. ▲

Constants and Data Types 11

The constants and data types described in this section describe the state of the
currently executing task and kernel process, specify the precise nature of a data
breakpoint operation, and provide state information associated with the
current exception.

Kernel State Enumeration 11

The function DSGetTaskState (page 11-17) returns a kernel state enumeration
value in the kernelState field of the kernel state structure (page 11-8). This

C H A P T E R 1 1

Debugger Services

11-4 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

value describes the execution state of a task or of its associated software
interrupt if any.

enum {
kInactiveState = ' ',
kPageFaultState = 'PFLT',
kMessageSendState = 'MSND',
kMessageReceiveState = 'MRCV',
kHeldState = 'HELD',
kEventFlagState = 'EFLG',
kTerminatingOtherProcessState = 'OTRM',
kTerminatingCurrentProcessState = 'CTRM',
kTimerDelayState = 'DLYQ',
kKernelQueueState = 'QBLK',
kRunState = 'RUN ',
kSemaphoreReadState = 'MSRD',
kSemaphoreWriteState = 'MSWR',
kTaskStartingState = 'STRT',
kTaskTerminatingState = 'TERM’

};

Enumeration descriptions

kInactiveState The software interrupt is inactive; it might be queued, but
it is not yet eligible for execution.

kPageFaultState The task or software interrupt is blocked and waiting for a
page fault to be processed.

kMessageSendState The task or software interrupt is blocked, waiting for a
message to be sent.

kMessageReceiveState
The task or software interrupt is blocked, waiting for a
message to be received.

kHeldState The task or software interrupt is blocked as a result of a
call to the function DSHoldTasks (page 11-18).

kEventFlagState The task or software interrupt is blocked, waiting for an
event flag.

kTerminatingOtherProcessState
The task or software interrupt is blocked, waiting for
another process to terminate.

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-5
Draft. Apple Computer, Inc. 4/19/96

kTerminatingCurrentProcessState
The task or software interrupt is blocked, waiting for the
current process to terminate.

kTimerDelayState The task or software interrupt is blocked, waiting for a
timer to expire.

kKernelQueueState The task or software interrupt is blocked, waiting in a
kernel queue.

kRunState The task or software interrupt is running or it is eligible to
be run.

kSemaphoreReadState
The task or software interrupt is blocked, waiting for a
semaphore to be read.

kSemaphoreWriteState
The task or software interrupt is blocked, waiting for a
semaphore to be written to.

kTaskStartingState The task or software interrupt is blocked, waiting for a task
to be started.

kTaskTerminatingState
The task or software interrupt is blocked, waiting for a task
to be terminated.

Data Breakpoint Option Enumeration 11

You use the options parameter of the DSSetDataBreakpointInformation function
(page 11-28) to clear a data breakpoint or to specify the type of operation (read
or write) on which the data breakpoint should be set.

The data breakpoint option enumeration species the possible values you can
specify for the options parameter.

typedef OptionBits DSDataBreakpointOptions;
enum {

kDSBreakDIsable = 0x00000000,
kDSBreakOnReadAccess = 0x00000001,
KDSBreakOnWriteAccess = 0x00000002

};

C H A P T E R 1 1

Debugger Services

11-6 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

Enumeration descriptions

kDSBreakDIsable Set this bit to clear a data breakpoint. See the description of
the DSSetDataBreakpoint function (page 11-28) to find out
how you specify the address of the breakpoint to be
cleared.

kDSBreakOnReadAccess
Set this bit to raise an exception when the address specified
for the data breakpoint is accessed during a read operation.
Not all implementations are able to distinguish between
read and write operations. As a result, the debugger might
have to do additional work to determine whether the
address reference that raised the exception did indeed
occur during a read operation.

KDSBreakOnWriteAccess
Set this bit to raise an exception when the address specified
for the data breakpoint is accessed during a write
operation.
Not all implementations are able to distinguish between
read and write operations. As a result, the debugger might
have to do additional work to determine whether the
address reference that raised the exception did indeed
occur during a write operation.

Exception Structure 11

The DSWaitForException function (page 11-13) returns information about the
current exception in an exception structure. Your debugger can use this
information to display current state information to the user using memory
display windows, register display windows, and so on.

The DSExceptionRecord data type defines an exception structure.

struct DSExceptionRecord {
Task ID exceptedTaskID;
KernelProcessID exceptedKernelProcessID;
AddressSpaceID exceptedAddressSpaceID;
MessageID exceptionID;
ExceptionInformation exception;

};

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-7
Draft. Apple Computer, Inc. 4/19/96

Field descriptions

exceptedTaskID The ID of the task that caused the exception. If the
exception is generated by an interrupt handler, this field
specifies the ID of the task that is currently executing and
which was interrupted.

exceptedKernelProcessID
The ID of the process containing the task that caused the
exception.

exceptedAddressSpaceID
The ID of the address space belonging to the task that
caused the exception.

exceptionID The ID of the exception.
exception An exception information structure that describes the state

of the processor at the time the exception occurred. The
exception information structure is described in the chapter
“Exception Handling Reference”

Task State Structure 11

The DSGetTaskState function (page 11-17) returns information in a task state
structure about the execution state of a task.

The DSTaskState data type defines a task sate structure.

struct DSTaskState {
DSKernelState taskState;
DSKernelState swiState;

};

Field descriptions
taskState A kernel state structure (page 11-8) describing the

execution state for the task whose state is being queried.
swiState A kernel state structure (page 11-8) describing the

execution state for the software interrupt targeted at the
task whose state is being queried.

C H A P T E R 1 1

Debugger Services

11-8 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

Kernel State Structure 11

The DSGetTaskState function (page 11-17) returns a task state structure
(page 11-7) that contains two kernel state structures: one of the structures
describes the execution state of the task and the other describes the execution
state of the software interrupt currently targeted at that task.

The DSKernelState data type defines a kernel state structure.

struct DSKernelState {
SchedulerState kernelState;
LogicalAddress PC;
LogicalAddress SP;

};

Field descriptions
kernelState A value specified by the kernel state enumeration

(page 11-3) that describes the execution state of a task or of
a software interrupt.

PC The value stored in the Program Counter register at the
time that the DSGetTaskState function executes.

SP The value stored in the Stack Pointer register at the time
that the DSGetTaskState function executes.

The values returned in the PC and SP fields depend on the state of the task or its
associated software interrupt. If the state is kRunState or kInactiveState, the
contents of the Program Counter and Stack Pointer are 0. This means that the
values are either impossible to determine or that if they could be determined,
they would be without meaning. For example, if the task whose state you are
querying is currently running, the contents of the PC would be continually
changing.

If the task or software interrupt is blocked—that is, if it is in any state other
than kRunState or kInactiveState, the values stored in the PC and SP registers
are the values that were current when the function that caused the task or
software interrupt to block was called.

Data Breakpoint Information Structure 11

The DSGetDataBreakpointInformation function (page 11-26) returns a pointer to
a data breakpoint information structure that you can examine to determine
whether the current microkernel implementation supports data breakpoints

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-9
Draft. Apple Computer, Inc. 4/19/96

and, if it does, the maximum number of such breakpoints that it supports and
the resolution (margin of error) for any given exception that is raised.

The DSDataBreakpointInformation data type defines a data breakpoint
information structure.

struct DSDataBreakpointInformation {
ItemCount maxBreakpoints;
ByteCount breakpointResolution;

};

Field descriptions
maxBreakpoints On output, the maximum number of breakpoints that this

implementation of the microkernel supports. A value of 0
means that data breakpoints are not supported.

breakpointResolution
On output, the memory range within which the
microkernel will raise a data breakpoint exception for a
given address reference. See the discussion that follows for
additional information.

DISCUSSION

In the worst case, for some breakpoint address addr, the range of addresses to
which a data breakpoint applies is given by the following formula

[(addr & ~ (breakpointResolution -1))..
(addr & ~ (breakpointResolution -1)) + breakpointResolution -1]

Depending on the implementation, the resolution might range from 8 bytes to 1
page. (Pages vary in size; use the GetSystemInformation function to determine
the size of a page.) It is up to the debugger to do additional filtering to
determine whether the exception that is raised corresponds to the data
breakpoint that was set or whether it was raised simply because it occurred
within the memory range specified by the breakpointResolution field.

C H A P T E R 1 1

Debugger Services

11-10 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

Functions 11

You use the functions described in this section to register and unregister a
debugger, and to ease the debugger’s ability to handle exceptions, control task
scheduling. change the state of the machine, and manage data breakpoints.

Registering and Unregistering a Debugger 11

You use the functions described in this section to register and unregister a
debugger. In order for the microkernel to pass exceptions to the debugger and
to provide services to the debuggers, the debugger must register itself. When
you no longer want the debugger to receive exceptions, you can explicitly
unregister it or you can allow the operating system to do it when the process
associated with the debugger terminates. It is recommended that you
unregister the debugger yourself.

DSRegisterDebugger 11

Registers the calling task as a debugger.

OSStatus DSRegisterDebugger (void);

function result If another debugger is already registered, the function returns
the result kernelIDErr.

Once a task is registered as a debugger, any call made to the
microkernel debugger services by a task not belonging to the
registered debugger’s task family also returns the result
kernelIDErr.

DISCUSSION

The microkernel allows at most one debugger to register itself at any one time.
The microkernel passes exceptions to the currently registered debugger and
allows it access to debugger services.

The microkernel passes all exceptions to the registered debugger except for
exceptions that occur

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-11
Draft. Apple Computer, Inc. 4/19/96

■ in kernel tasks or in microkernel code running on behalf of user tasks

■ in privileged tasks with hardware interrupts disabled

■ during execution at secondary interrupt level

■ while running message system accept functions

■ in the 68K emulator

■ in the debugger itself

Once you use this function to register a debugger, the microkernel associates
the calling task and all other tasks in the task’s family with the debugger. As a
result, the microkernel does not pass any exception occurring in these tasks
back to the debugger. To handle these exceptions, the debugger must install an
exception handler using the InstallExceptionHandler function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Call the DSUnregisterDebugger function (page 11-12) to unregister the debugger.

After registering the debugger, call the DSWaitForException function
(page 11-13) to receive an exception.

To install an exception handler for exceptions that occur in the debugger use
the InstallExceptionHandler function described in “Exception Handling
Reference.”

For additional information about tasks and a task’s family, see the chapter
“Tasks, Processes, and Scheduling.”

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

11-12 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

DSUnregisterDebugger 11

Unregisters a debugger.

OSStatus DSUnregisterDebugger (void);

function result If the caller is not a task belonging to the family of the
registered debugger, the function returns the result kernelIDErr.

DISCUSSION

The microkernel unregisters the currently installed debugger automatically
when the debugger terminates and it does this whether or not the debugger
terminates normally. However, it is recommended that you call the
DSUnregisterDebugger function explicitly to unregister the debugger. If you call
this function and another debugger is available, the microkernel installs it
immediately once your debugger has unregistered itself and, in that case, it is
less likely that any exceptions are lost by the time the new debugger is installed.

If any tasks are blocked, waiting for exceptions to be processed, they are
resumed when the debugger unregisters.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Call the DSRegisterDebugger function (page 11-10) to register the debugger.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-13
Draft. Apple Computer, Inc. 4/19/96

Handling Exceptions 11

You use the functions described in this section to obtain information about an
exception and to resume execution after responding to the exception.

DSWaitForException 11

Waits a specified amount of time to receive an exception.

OSStatus DSWaitForException (DSExceptionRecord * exceptionRecord,
Duration timeLimit);

exceptionRecord
A pointer to an exception structure (page 11-6) that identifies
the exception, the task, the process, and the memory space in
which the exception occurred and that passes additional
information about the state of the machine when the exception
occurred.

timeLimit An integer specifying the amount of time this function should
wait to receive an exception. To specify the time limit value in
milliseconds, use a positive number; to specify the time limit
value in microseconds, use a negative number. You can specify
kDurationForever to wait indefinitely.

function result If the caller is not a task belonging to the family of the
registered debugger, the function returns the result kernelIDErr.

DISCUSSION

The DSWaitForException function waits for an exception to occur. It is
recommended that your debugger dedicate one task to receiving exceptions.
This task can call the DSWaitForException function with the timeLimit
parameter set to kDurationForever. When it receives an exception the waiting
task can place it on a queue, from where another task can retrieve it and
process it. In the meanwhile the receiving task can continue to receive
exceptions.

C H A P T E R 1 1

Debugger Services

11-14 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

The exceptionRecord parameter passes complete information about the
exception that caused the debugger to be invoked and the state of the machine
when the exception occurred. This information includes:

■ The ID of the task that caused the exception

■ The ID of the process containing the task that caused the exception

■ The ID of the address space belonging to the task that caused the exception

■ The ID of the exception

■ The type of exception (memory, illegal instruction, and so on)

■ The contents of the CPU’s general purpose registers, floating point registers,
and special registers when the exception occurred

■ The type of memory access operation that caused the exception if the
exception was a memory access type

SPECIAL CONSIDERATIONS

The exception kTaskCreationException is only seen by the debugger. When this
exception is raised, the task is ready to execute, all libraries are loaded, and the
Program Counter points to the task’s entry point.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

After an exception has caused a task to be halted, you use the
DSResumeFromException function (page 11-15) to resume execution of the task or
to propagate the exception to an exception handler.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-15
Draft. Apple Computer, Inc. 4/19/96

See the “Timing Services” chapter for a description of the duration data type.

DSResumeFromException 11

Resumes the execution of a task that has been halted in order to process an
exception or propagates the exception to another exception handler.

OSStatus DSResumeFromException (MessageID exceptionID, OSStatus
exceptionReturnStatus);

exceptionID The ID of the exception that has been received using the
DSWaitForException function.

exceptionReturnStatus
A value that indicates whether the microkernel should resume
task execution or whether it should propagate the exception to
the installed exception handler. Specify noErr to resume task
execution. Specify any nonzero error code to propagate the
exception.

This parameter is ignored for task creation exceptions.

function result To be provided.

DISCUSSION

The setting of the exceptionReturnStatus parameter allows you to determine
whether the debugger handles an exception first or last—that is, before or after
the installed exception handler.

■ If you set the parameter exceptionReturnStatus to noErr, the microkernel
assumes that the debugger has handled the exception and it resumes
execution of the excepted task using whatever state information is current
for that task. If the debugger has changed the state of the processor while the
task was halted, the microkernel attempts to resume task execution with the
new state setting.

■ If you set the parameter exceptionReturnStatus to kernelUnrecoverableErr,
the microkernel terminates the excepted task without running any task
exception handler. The microkernel also terminates the process to which the
task belongs if the task is the main task.

C H A P T E R 1 1

Debugger Services

11-16 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

■ If you set the exceptionReturnStatus parameter to a nonzero value other
than kernelUnrecoverableErr), the microkernel passes the exception to the
installed exception handler for that task, if any. If there is no installed
handler or if the handler fails to resolve the exception, the microkernel
presents the exception to the debugger a second time. This second instance
of the exception has a different exception number than the first instance. If
the debugger chooses to propagate the exception again, the microkernel
terminates the excepted task. The microkernel also terminates the process to
which the task belongs if the task is the main task.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You use the DSWaitForException function (page 11-13) to receive an exception.

You use the InstallExceptionHandler function described in “Exception
Handling Reference” to install an exception handler for a task.

Controlling Task Scheduling 11

You use the functions described in this section to obtain information about a
task’s execution, to hold a task, and to resume task execution after holding.
Controlling task scheduling can help you debug synchronization problems.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-17
Draft. Apple Computer, Inc. 4/19/96

DSGetTaskState 11

Returns information about the execution state of a task.

OSStatus DSGetTaskState (TaskID taskID, DSTaskState * state);

taskID The ID of the task whose execution state you are querying.

state A pointer to a task state structure (page 11-7) that describes the
execution state for the task specified by the taskID parameter.
On return, the microkernel places information about the task in
this structure.

function result If you specify an invalid task ID, this function returns the result
code kernelIDErr.

DISCUSSION

The state parameter points to a task state structure that contains two kernel
state structures, one that describes the execution state of the task and one that
describes the execution state of the software interrupt currently targeted at that
task. The possible combinations of execution states are as follows:

■ The task is eligible for execution or is executing and there are no software
interrupts pending for the task (taskState.kernelState is kRunState;
swiState.kernelState is kInactiveState.)

■ The task is eligible for execution and the software interrupt is either
executing or it is eligible for execution (taskState.kernelState and
swiState.kernelState are kRunState.)

■ The task is blocked; the software interrupt is eligible for execution or
executing (taskState.kernelState is one of the blocked values;
swiState.kernelState is kRunState.

■ Both the task and the software interrupt are blocked. In this case
taskState.kernelState and swiState.kernelState both contain blocked
values.

You must exercise caution when using this function to hold a privileged task.
All privileged tasks belong to the microkernel process. Consequently, if you use
this function to hold a privileged task and specify kTaskFamily or
kTaskKernelProcess for the task’s scope, you will cause all tasks belonging to
the microkernel process to be held.

C H A P T E R 1 1

Debugger Services

11-18 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You use the DSHoldTasks function (page 11-18) to make a task ineligible for
execution.

You use the DSReleaseTasks function (page 11-19) to make a task eligible for
execution.

DSHoldTasks 11

Makes a task or set of tasks ineligible for execution.

OSStatus DSHoldTasks (TaskID taskID, TaskRelationship scope);

taskID The ID of the task that you want the microkernel to hold.

scope A constant specifying the scope of the task you want held. This
scope indicates whether you want the microkernel to hold the
task only, the task and its children, the task family, or the
process to which the task belongs.

function result If you specify an invalid task ID, this function returns the result
code kernelIDErr.

DISCUSSION

The microkernel holds the specified task or tasks until you call the
DSReleaseTasks function.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-19
Draft. Apple Computer, Inc. 4/19/96

If a task being held is already blocked, for example, because of a page fault, I/
O operation, or message send, it remains ineligible for execution even after it is
unblocked.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You use the DSReleaseTasks function (page 11-19) to make a held task eligible
for execution.

You use the DSGetTaskState function (page 11-17) to obtain information about
the execution state of a task.

Possible values for a task’s scope are given by the task scope enumeration in
XREF.

DSReleaseTasks 11

Makes a task or tasks that have been held, eligible for execution.

OSStatus DSReleaseTasks (TaskID taskID, TaskRelationship scope);

taskID The ID of the task that you want the microkernel to release.

scope A constant specifying the scope of the task you want released.
This scope indicates whether you want the microkernel to
release the task only, the task and its children, the task family, or
the task team.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

11-20 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

function result If you specify an invalid task ID, this function returns the result
code kernelIDErr.

DISCUSSION

The value that you specify for the scope parameter for this function does not
have to be the same as that of the scope parameter for the DSHoldTasks function.
For example, if you chose to hold a task’s team, you can release the hierarchical
components of the team using several calls to the DSReleaseTasks function, each
call releasing another level.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You use the DSHoldTasks function (page 11-18) to make a task ineligible for
execution.

You use the DSGetTaskState function (page 11-17) to obtain information about
the execution state of a task.

Possible values for a task’s scope are given by the task scope enumeration in
XREF.

Reading and Modifying Task Memory 11

You use the functions described in this section to read or modify task memory.
Use the DSCreateMemoryAccess function to obtain permission to write to
memory; use the DSWriteMemory function to write to memory, and use the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-21
Draft. Apple Computer, Inc. 4/19/96

DSDeleteMemoryAccess function to inform the microkernel that you no longer
need to write to a given area in memory.

DSReadMemory 11

Reads memory within the specified address space.

OSStatus DSReadMemory (AddressSpaceID addrSpaceID,
LogicalAddress srcAddr, void * dstDataPtr,
ByteCount numBytes);

addrSpaceID The ID of the address space that contains the range of memory
to be read.

srcAddr The beginning address of the range of memory to be read.

dstDataPtr A pointer to a buffer that you create. On return, the microkernel
copies the contents of the memory being read into this buffer.

numBytes An integer specifying the number of bytes you want to read.

function result If the function succeeds it returns the result code noErr. If the
value specified for the addrSpaceID parameter is invalid, it
returns the result kernelIDErr. If there is a problem with
reading from the address specified by the srcAddr parameter or
writing to the address referenced by the dstDataPtr parameter,
the function returns a memory system error.

DISCUSSION

You can obtain the address space belonging to a task either by examining the
exceptedAddressSpaceID field of the exception structure (page 11-6) or by calling
the GetKernelProcessInformation function for the task’s process.

C H A P T E R 1 1

Debugger Services

11-22 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

SPECIAL CONSIDERATIONS

This function is reentrant and can be run in privileged mode. You can call this
function from task level.

SEE ALSO

The GetKernelProcessInformation function is described in (XREF).

DSCreateMemoryAccess 11

Obtains permission to write to the specified range of memory.

OSStatus DSCreateMemoryAccess (AddressSpaceID addrSpaceID,
LogicalAddress dstAddr,
DSMemoryAccessID * memAccessID);

addrSpaceID The ID of the address space to which you want to write.

dstAddr The logical address to which you want to write.

memAccessID A pointer to a memory access ID. On return, this points to an ID
used to specify the write access right to a particular page in
memory. You specify this value as the memAccessID parameter to
the DSWriteMemory function.

function result If the function succeeds it returns the result code noErr. If the
value specified for the addrSpaceID parameter is invalid, it
returns the result kernelIDErr. If there is a problem with
accessing the address specified by the dstDataPtr parameter, the
function returns a memory system error.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-23
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

You must call the DSCreateMemoryAcces function before you can call the
DSWriteMemory function. By explicitly obtaining the right to access memory,
your debugger can make sure that modifications made to code in memory are
coordinated with backing storage. Thus, for example, if the user modifies code
using the memory display or if the debugger modifies code in the process of
setting a breakpoint, these changes are not lost during paging activity nor
written back to the file to which the code is mapped.

After the debugger obtains a memory access ID, the page containing the logical
address specified by the dstAddr parameter becomes physically resident. This
prevents subsequent reads or writes of the page from or to backing storage.

You can obtain the address space belonging to a task either be examining the
exceptedAddressSpaceID field of the exception structure (page 11-6) or by calling
the GetKernelProcessInformation function for the task’s process.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

The GetKernelProcessInformation function is described in (XREF).

To delete a memory access ID use the DSDeleteMemoryAccess function
(page 11-25).

To write to memory use the DSWriteMemory function (page 11-24).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

11-24 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

DSWriteMemory 11

Modifies memory to which you have obtained an access right.

OSStatus DSWriteMemory (DSMemoryAccessID memAccessID,
LogicalAddress dstAddr,
void * srcDataPtr, BYteCount numBytes);

memAccessID A memory access ID obtained using the DSCreateMemoryAccess
function.

dstAddr The beginning address where the data is to be written.

srcDataPtr A pointer to the data that is to be written.

numBytes An integer specifying the number of bytes to be written.

function result If the function succeeds, it returns the result code noErr. If the
value specified for the memAccessID parameter is invalid, it
returns the result kernelIDErr. If there is a problem with
accessing the address referenced by the srcDataPtr parameter
or specified by the dstAddr parameter, the function returns a
memory system error.

DISCUSSION

The range specified by

dstAddr...dstAddr + numBytes - 1

must lie entirely within the page specified by the access right. Use the
GetSystemInformation function to obtain the current page size. To modify
memory that spans more than a single page, you need to perform multiple
operations.

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-25
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You must call the DSCreateMemoryAccess function (page 11-22) to obtain
permission to write to memory before you call the DSWriteMemory function.

When you are finished writing you should call the DSDeleteMemoryAccess
function (page 11-25) to inform the microkernel that it can release the page that
has been made resident using the DSMemoryAccess function.

DSDeleteMemoryAccess 11

Deletes an access right and resumes normal backing storage activity for a given
page.

OSStatus DSDeleteMemoryAcces (DSMemoryAccessID memAcessID);

memAccessID A value returned by the DSCreateMemoryAcces function.

function result If the function succeeds, it returns the result code noErr. If the
value specified for the memAccessID parameter is invalid, it
returns the result kernelIDErr.

DISCUSSION

Before writing to memory, you call the DSCreateMemoryAccess function, which
returns a memory access ID. Associated with that ID is a page that the
microkernel makes physically resident in order to prevent normal backing
storage activity for that page. When you are done writing, you should call the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

11-26 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

DSDeleteMemoryAccess function to inform the microkernel that it is now safe to
resume normal paging activity. Changes that you have made to memory up to
the time that you call the DSDeleteMemoryAccess function are not written to
backing storage. Consequently, the changes that you make never become
permanent.

When the debugger unregisters itself or terminates, the microkernel deletes all
outstanding memory access rights.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You call the DSCreateMemoryAccess function (page 11-22) to obtain permission to
write to memory.

Supporting Data Breakpoints 11

You use the functions described in this section to determine the type of support
provided by the current processor and microkernel implementation for data
breakpoints and to set and clear such breakpoints.

DSGetDataBreakpointInformation 11

Returns information about the current support provided for data breakpoints.

OSStatus DSGetDataBreakpointInformation (PBVersion version,
DSDataBreakpointInformation * info);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-27
Draft. Apple Computer, Inc. 4/19/96

version The constant kDataBreakpointInformationVersion.

info A pointer to a data breakpoint information structure (page 11-8).

function result If the function succeeds, it returns the result NoErr. If the pointer
specified for the info parameter is invalid, the function fails and
returns the result paramErr.

DISCUSSION

The DSGetDataBreakpointInformation function fills in a data breakpoint
information structure that you provide and that you can examine to determine
whether data breakpoints are supported and, if they are, the extent of such
support. One or more of the following conditions are possible:

■ data breakpoints are not supported. The maxBreakpoints field of the data
breakpoint information structure is set to 0 to indicate this.

■ the memory exception raised by the data breakpoint might be within a
certain range of the breakpoint address but might not be at the address you
specify. For example, if you set a breakpoint at address X, an exception
might be raised by an instruction attempting to access address x + 7. The
possible range of memory is indicated by the breakpointResolution field of
the data breakpoint information structure.

■ the memory exception raised by the data breakpoint might return an
instruction referencing the breakpoint address, but this address might lie in
the wrong address space.

Before alerting the user that the data breakpoint has been reached, the
debugger might have to do additional work to determine that it is the correct
reference. This additional processing is described beginning on page 11-28.

C H A P T E R 1 1

Debugger Services

11-28 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

You call the DSSetDataBreakpoint function (page 11-28) to set or clear a data
breakpoint.

DSSetDataBreakpoint 11

Sets or clears a data breakpoint.

OSStatus DSSetDataBreakpoint (AddressSpaceID addrSpaceID,
LogicalAddress breakAddr, ByteCount numBytes,
DSDataBreakpointOptions options);

addrSpaceID The ID of the address space in which the data reference is made.

breakAddr The logical address of the data being referenced.

numBytes The size of the data that is being referenced. This value should
not exceed the value returned in the breakpointResolution field
of the data breakpoint information structure (page 11-8).

options One of the values specified by the data breakpoint options
enumeration (page 11-5).

function result If the function succeeds, it returns the result NoErr. Otherwise, it
returns one of the following result codes.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-29
Draft. Apple Computer, Inc. 4/19/96

If data breakpoints are not supported by this particular
implementation or cpu, the function returns the result
kernelUnsupportedErr.

If you use this function to clear a data breakpoint when none is
set, the function returns the result kernelAlreadyFreeErr.

If you attempt to disable a data breakpoint for which you
specify an bad address or address space ID, the function returns
the result paramErr.

If there is not enough memory available for the microkernel to
allocate internal data structures used to manage the data
breakpoint, the function returns the result memFullErr.

If you specify a value for the breakAddr parameter that is not
allowed, the function returns the result kernelAttributeErr.

DISCUSSION

To clear a data breakpoint specify the location of the data reference that you
have previously set a data breakpoint for, and then specify kDSBreakDisable for
the options parameter.

To set a data breakpoint, specify the location and size of the data reference you
are interested in, and then specify either kDSBreakOnReadAccess or
kDSBreakOnWriteAccess for the options parameter. Not all implementations are
able to distinguish between the two types of access, and it is possible that the
debugger might have to do additional work to determine whether the memory
reference that raised the exception did indeed occur as the result of the
specified operation.

If the current implementation supports data breakpoints, the microkernel will
raise an exception of the type kDataBreakpointException whenever it
encounters an instruction referencing a memory location that is within a certain
range of the address specified for the data breakpoint. In the worst case, for
some breakpoint address addr, the range of addresses to which a data
breakpoint applies is given by the following formula

[(addr & ~ (breakpointResolution -1))..
(addr & ~ (breakpointResolution -1)) + breakpointResolution -1]

Before alerting the user that the breakpoint has been reached, the debugger
must examine the exception information structure returned by the

C H A P T E R 1 1

Debugger Services

11-30 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

DSWaitForException function and determine whether the correct reference has
raised the current exception. Possible discrepancies might arise because the
reference is in the wrong address space, because it is not the exact address
sought, or because it did not occur as a result of the type of operation specified
by the options parameter of the DSSetDataBreakpoint function.

If the correct address reference has been found, the debugger can present it to
the user. If the correct address reference has not been found the debugger must
do the following

3. Emulate the instruction currently referenced by the PC (Program Counter).

This is the instruction whose memory access raised the data breakpoint
exception.

n If this was a load instruction, the debugger must use the DSReadMemory
function (page 11-21) to emulate the read operation and then it must place
the data read into the appropriate processor register value field of the
exception information structure.

n If this was a store instruction, the debugger must examine the instruction
to determine from which register it must read the data. It can then
examine the exception information structure to find the correct value and
use the DSCreateMemoryAccess function (page 11-22) and the DSWriteMemory
function (page 11-24) to write that value to memory.

4. Advance the program counter to the next instruction.

5. Use the DSResumeFromException function to resume task execution.

This procedure is the only way to resume task execution that does not result in
the same (erroneous) exception being raised. It is especially important to use
the DSReadMemory and DSWriteMemory functions to emulate the instruction that
caused the break, because these functions are implemented in way that will not
cause the debugger’s memory access to trigger another data breakpoint
exception.

SEE ALSO

The exception information structure is described in the chapter “Exception
Handling Services.”

Use the DSWaitForException function (page 11-13) to obtain information about
an exception.

C H A P T E R 1 1

Debugger Services

Debugger Services Reference 11-31
Draft. Apple Computer, Inc. 4/19/96

Use the DSGetDataBreakpointInformation function (page 11-26) to determine
what support the current implementation provides for data breakpoints.

Use the DSResumeFromException function (page 11-15) to resume task execution.

C H A P T E R 1 1

Debugger Services

11-32 Debugger Services Reference

Draft. Apple Computer, Inc. 4/19/96

C H A P T E R 1 2

Contents 12-1
Draft. Apple Computer, Inc. 4/19/96

Contents

Figure 12-0
Listing 12-0
Table 12-0

12 The Patch Manager

About Patching and the Patch Manager 12-4
Programmatic and Data-Driven Patching 12-5
Patch Scope 12-6
Data-Driven Patching 12-7

The Patch Description Fragment 12-9
Applying Several Patches to the Same Routine 12-10
The Structure of Patch Code 12-12
Order Requirements 12-13
Limitations on Patching 12-14

Compatibility 12-15
Using the Patch Manager 12-16

Creating a Patch 12-16
The Patch Description Header 12-17
The Patch Description Structure 12-18
Specifying Order Requirements 12-22

Creating a Local Patch 12-25
Creating a Global-Effect Patch 12-25
Creating a Patchable Shared Library 12-25
Obtaining Information About Patches 12-26
Using Programmatic Patching 12-27

Patch Manager Reference 12-28
Constants and Data Types 12-28

Option Bits Mask Enumeration 12-28
Wildcard Enumeration 12-29
Ordered Item Enumeration 12-30
Patch Header Flags Enumeration 12-31
Patch Header Tag Enumeration 12-32

C H A P T E R 1 2

12-2 Contents

Draft. Apple Computer, Inc. 4/19/96

Patch Header Structure 12-32
Patch Description Structure 12-33
Ordered Item Name Structure 12-34
Order Requirements Structure 12-35
Patch Information Structure 12-36
Patch Chain Information Structure 12-36

Functions 12-37
Enabling and Disabling Patches 12-37

EnablePatch 12-37
DisablePatch 12-38

Obtaining Information About Patch Chains 12-39
GetPatchChainsInKernelProcess 12-40
GetPatchChainInformation 12-41

Determining Whether a Routine is a Patch 12-42
GetPatchChainFromProcPtr 12-42
GetPatchFromProcPtr 12-44

Obtaining Information About a Patch 12-45
GetPatchesInPatchChain 12-45
GetPatchInformation 12-46

Glossary 12-48

C H A P T E R 1 2

12-3
Draft. Apple Computer, Inc. 4/19/96

The Patch Manager 12

This chapter describes the Patch Manager and explains data-driven patching, a
new patching model that you should use if you are writing patching code that
is meant to run in Mac OS 8 or in any subsequent Mac OS release.

A patch is a piece of code that intercepts the transaction between a client and a
service. You can use a patch to monitor the use of this service or to modify or
replace the service. The Patch Manager is a shared library containing routines
that return information about existing patches and that enable and disable
patches. You should read this chapter if you are writing a program that must
monitor, modify, or replace a routine residing in another fragment and if you
cannot find any means to do so other than by patching that routine.

The Patch Manager is a new component of the Macintosh OS. It is intended to
replace the routines used to install patches documented in the Trap Manager
chapter of Inside Macintosh: Operating System Utilities. The programmatic
patching model, referred to throughout this chapter, is based on the use of
these older routines. The Patch Manager is based on a new data-driven
patching model that offers many advantages over the programmatic patching
model used in System 7. Creating patches using the new model allows you to

■ use a single patching model for head, tail, and surround patching

■ patch any imported routine, not just operating system and toolbox routines

■ create patches that have local or global effect

■ enable and disable existing patches

■ control the order in which patches execute

■ obtain information about currently installed patches

Data-driven patching is designed to work for applications and server programs
that rely on being prepared and launched automatically by the system. You
cannot use data-driven patching if you are using low-level calls to the Code
Fragment Manager to launch your program.

Mac OS 8 also supports the patching API documented in the Trap Manager
chapter of InsideMacintosh:Operating System Utilities. Note however, that this
API will not be supported in future versions of the Mac OS. Thus, if you are
certain that you need to patch, you might want to modify your patching code
using the model described in this chapter to ensure compatibility with future
operating system releases.

Although this chapter describes patching in some depth, you should rarely, if
ever, need to use patches in a program. Historically, Apple has used patches to

C H A P T E R 1 2

The Patch Manager

12-4 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

fix problems and augment routines in ROM code. The packaging of system
services as a set of updatable shared libraries has eliminated this need for
patching. Application developers have also used patching to get information
about system activity, to schedule services, or to customize the behavior of the
system. Mac OS 8 includes widely expanded notification services, new
scheduling services, and many additional routines that you can use to
customize the behavior of the system. Inasmuch as patching a routine is less
economical and less dependable than using these newer services, you should
seriously consider using these rather than patching system routines. However,
because it is impossible to anticipate every need, the patching mechanism
described in this chapter has been provided for your use.

About Patching and the Patch Manager 12

Patching a routine allows you to assume control every time the routine is called
from any task within a particular process. If you assume control in order to do
some preparatory processing before the routine executes, the patch is called a
head patch. If you want to do additional processing after the routine executes,
the patch is called a tail patch. If you want to do both, the patch is called a
surround patch. It is also possible, though it is strongly discouraged, to write a
replacement patch, which is executed instead of the routine being called.

When several fragments patch the same routine, the result is a daisy chain of
patches, or patch chain, with each patch in the chain executing in turn before
the patched routine is called. Each patch in the chain can do some
preprocessing and then call the patched routine, which, depending on the
patch’s position in the chain, might result in the next patch executing or might
call the patched routine. After the patched routine executes, control is returned
successively back through the patch chain so that each patch in the chain can
do any needed postprocessing. Using the data-driven patching model defined
for the Patch Manager, you can create every type of patch, specify when you
want your patch to execute (relative to other patches in the patch chain), and
have these patches automatically installed when the fragment owning the
patches is instantiated. In addition, you can use Patch Manager functions

■ to obtain information about all currently installed patches

■ to determine which routines are being patched

■ to enable or to disable patches

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-5
Draft. Apple Computer, Inc. 4/19/96

The following sections summarize the differences between programmatic and
data-driven patching models, explains the special problems posed by patches
with global effect, and examines the data-driven patching model in greater
detail.

Programmatic and Data-Driven Patching 12

The patching model used in Mac OS 8 differs markedly from the model used in
System 7. This section describes these differences and examines the patching
model used in Mac OS 8 in greater detail.

The programmatic patching model defined for System 7 allows you to patch a
system routine by replacing its address in the trap dispatch table with the
address of your patch routine. If you need to call the patched routine from your
patch, you are required to save the original address and then, in most
instances, to write assembly language code that sets up the stack properly and
then jumps to the saved address. Programmatic patching is in many ways
limiting and costly to the programmer: It is limited to patching system
software, it is difficult to implement, and it provides no control over the order
in which patches execute. In addition, using this method it is not possible to
examine the patch chain, which makes it next to impossible to identify and
resolve patching conflicts.

The data-driven patching model defined for Mac OS 8 and future Mac OS
releases differs markedly from the programmatic model. In Mac OS 8 any
fragment (application or shared library) can define a patch by using a patch
description fragment which is stored in the same file with that fragment. A
fragment defining a patch in this way is said to own the patch and is called the
patch’s owning fragment. When the owning fragment is prepared for
execution, the system looks for and installs the patches owned by the fragment
as part of the fragment’s launch process. (Because patches are installed at
launch time, an import library brought in later, for example to support a plug
in, will not have its patches installed.)

The patch description fragment contains a patch description structure for each
patch that you want to install. The patch description structure specifies a
reference to the patch, a reference to the patched routine, the name of the patch,
and other information used to control the execution of the patch. You can store
the patch routines in the fragment containing the patch description structures,
but you are not required to do so.

C H A P T E R 1 2

The Patch Manager

12-6 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Note
Programmatic patching takes place at the trap vector level.
Because there are more system calls than trap vectors,
many traps are dispatched, so that you were forced to
patch many system routines when you only wanted to
patch one. Data driven patching eliminates this problem
by using shared library entry points in place of the more
limited trap vectors. ◆

The main advantage of the data-driven patching model is that it gives you
more control over the execution of your patches at the same time that it does
more of the programming work: Once you write the patch routine and create
the patch descriptions, you have no additional programming to do. The system
assumes all responsibility for installing your patches in the patch chain in the
order that you specify, for advising you about any conflicting patches, and for
maintaining information about the patches in a chain. In addition, the Patch
Manager provides routines that you can use to obtain information about all
installed patches for all processes on a machine and to enable or disable any
patch.

Patch Scope 12

A patch can have local or global scope. If you want to assume control only
when a routine is called by your program (directly or indirectly), you need to
create a patch that has local effect. This kind of patch is called a local patch. If
you want to assume control when the routine is called by any process, you
need to create a patch that has global effect. This kind of patch is called a
global patch.

True global patching requires that a patch be installed at system boot time.
Under Mac OS 8, all patches are local patches that are installed within a
particular process. Because the Patch Manager installs a patch when it launches
the patch’s owning fragment, it is only possible to achieve global-effect
patching by having the operating system install a different instance of a local
patch in all processes as they are created. Any program that is launched before
you install the global-effect patch is not affected by the patch.

Under System 7, a patch that has global scope is installed by INIT-type code
and loaded in the system heap at boot time: the same instance of the patch and
of any data initialized by the patch are visible and accessible to all processes
that call the patched routine. The Mac OS 8 runtime architecture cannot
support INIT-type code and does not support global programmatic patches.

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-7
Draft. Apple Computer, Inc. 4/19/96

To install a patch that has global effect in Mac OS 8, you must create a shared
library fragment that uses per-process instantiation and a patch description
fragment that contains the patch description structure. The patch code can
reside in either fragment. Then you must place the shared library and the patch
description fragment in a special folder in the Mac OS folder. The operating
system instantiates such a library for each program, and the iteration of the
local patch across all processes that are launched after the patch is so placed
creates a patch with global effect. Each process contains its own copy of the
patch and of any data initialized by that patch. For more information, see
“Creating a Global-Effect Patch” on page 12-25.

Because data-driven global-effect patches are actually iterated local patches, if
you create a patch that needs to share data or communicate with other
instances of the patch, you must explicitly use standard Mac OS 8 mechanisms
for sharing data and synchronization.

Data-Driven Patching 12

This section describes the data-driven patching model in greater detail. It
describes the data structure used to define a patch, explains the structure of the
special fragment containing these structures, and discusses the ordering and
execution of patches when multiple patches are applied to a single routine.

You use a data structure like the one shown in Figure 12-1 to describe each
patch that you want to install.

C H A P T E R 1 2

The Patch Manager

12-8 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Figure 12-1 The patch description structure

You initialize the patch description structure to contain the address of the patch
and of the patched routine, the name of the patch, and any order requirements
and options you specify for the patch. You use the order requirements field to
describe the order in which you would like the patch to execute relative to
other patches. You use the options field to specify whether the patch is initially
enabled or disabled and whether the patch must be successfully installed in
order for the program to be launched.

Every patch must have a name that you assign to it when you create the patch.
A patch name is composed of two parts: its signature and its type expressed as
four-character literals. For example, 'SRFW' 'SpCh'. The signature should be the
same as the registered creator code for the program or shared library installing
the patch. The type part of the name is a four-character literal of your choice.

You specify the order in which you want patches to execute by using the patch
name: one of the fields of the patch description structure can specify the name
of a patch you want to execute before or after your patch. By using wildcard
characters to specify either part of the patch name when specifying ordering
requirements, you can cause the execution of your patch to be ordered relative
to sets of patches. For example, you can ask that your patch execute before all
patches installed by a given program, or you can ask that your patch execute
after all patches of a specific type.

Patch reference

Reference to patched routine

Patch name

Order requirements

Options

Installation result

Patch ID

Reference to Patch Manager
call-through routine

ID of conflicting patch if any

Patch Manager
returns this information

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-9
Draft. Apple Computer, Inc. 4/19/96

When your program or shared library is prepared for execution, the Code
Fragment Manager also prepares any associated patch description fragment.
The Code Fragment Manager performs any required relocations and fills in
actual addresses for the patch address and the patched routine address. The
Patch Manager examines the ordering requirements you specified for each
patch and attempts to place the patch in a patch chain according to those
requirements. If it is able to do so, it returns a unique patch ID to identify the
patch. If it is not able to do so, it returns an error code in the installation result
field of the patch description structure and it also returns the ID of the patch
that caused the installation of your patch to fail if the failure was due to an
ordering conflict.

The Patch Description Fragment 12

In order to install a patch, you must create a special patch description fragment
and store this fragment in the same file as that of the owning fragment. The
patch description fragment’s 'cfrg' resource should have the same name and
usage code as that of the owning fragment, but it must have the update level
255. If any of these conditions are not met, the system will be unable to
recognize and to install your patch.

The patch description fragment includes a patch header and one or more patch
description structures. Figure 12-2 shows the structure of a patch description
fragment that contains two patch description structures.

C H A P T E R 1 2

The Patch Manager

12-10 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Figure 12-2 Patch description fragment.

The patch header specifies the number of patch description structures in the
fragment and points to an array containing the address of each structure. This
array is called the patch description reference array. Referencing the patch
descriptions by means of this array allows each patch description structure to
have a proper variable name, thus helping to avoid programming mistakes.

The Code Fragment Manager and Patch Manager use the information provided
by the patch header to locate all patch description structures in the
fragment.The order in which patch description structures appear in the patch
fragment affects the order in which the patches are installed but does not affect
the order in which they execute. The order of execution is affected only by the
values you specify for a patch’s ordering requirements.

Applying Several Patches to the Same Routine 12

If several fragments patch the same routine, each patch is successively applied
to the routine. Figure 12-3 shows two patches being applied to the routine
SysBeep.

Flags

Number of patch descriptions

Pointer to array of patch
description addresses

Patch description
fragment

Patch
header

Pointer to patch description 1

Pointer to patch description 2

patch description 2

patch description 1

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-11
Draft. Apple Computer, Inc. 4/19/96

Figure 12-3 A patch chain

A patch chain is an ordered list of patches, all on the same instance of the same
entry point. Figure 12-3 shows a patch chain for SysBeep. A patch chain
includes a root, which is an instance of the routine being patched, and one or
more patches. In Figure 12-3, the root of the patch chain is an instance of the
routine SysBeep. The patch chain shown includes two patches: one named
'MyLb' 'GlbP' and the other named 'MyAp' 'LclP'.The smallest patch chain
contains one patch and the patch root.

Each patch chain is identified by a patch chain ID. This identifier is a
system-wide identifier. If two or more patch chains patch a different instance of
the same routine, the patch chain that executes is the patch chain that is current
for a given process.

Because the system does not differentiate between local-effect and global-effect
patches, it is not possible to distinguish them in a patch chain, nor is it possible
to obtain the IDs of all instances of a global-effect patch.

The order in which patches execute is determined by the ordering
requirements you specify in the patch description structure used to describe
the patch. Otherwise, no ordering hierarchy exists. Once the system has
installed a patch in a patch chain, you can cause a patch not to execute by
disabling it, but you cannot change its ordering requirements.

The Patch Manager provides routines that you can use to enable or disable a
patch in a patch chain. It is important to understand that enabling a patch does
not cause it to be added to the chain and that disabling a patch does not cause
it to be removed from a chain. Enabling or disabling a patch simply determines
whether the patch is executed when the patched routine is called. For this
reason, it is not possible to remove an ordering conflict simply by disabling the
offending patch. The Patch Manager must honor the ordering requirements of
all patches, whether or not they are enabled.

'MyLb'
'GlbP'

'MyAp'
'LclP'

SysBeep

Patch ID = 100
patch chain ID = 231

Patch ID = 2972

C H A P T E R 1 2

The Patch Manager

12-12 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

The Structure of Patch Code 12

The structure of patch code used with data-driven patching is that of the
surround patch. This type of patch

■ does some preprocessing

■ calls the patched routine

■ does some post processing

Using the programmatic patching model, the call to the patched routine was
the most difficult to implement. It involved saving the original address of the
patched routine and then, in most cases, writing assembly-language code by
means of which the stack and registers were properly set up, and then a jump
or branch was effected to the saved routine address.

The data-driven patching model replaces the troublesome second step with a
simple standard runtime call to the Patch Manager that you write in a
high-level language. This call tells the Patch Manager to call the next link in the
patch chain and supplies the information it needs (return result type, routine
parameters) to make the call. If the next link in the chain is a patch, the Patch
Manager passes control to that patch. If the next link is the chain root, the
patched routine actually executes.

The structure of data-driven patching code is shown in Figure 12-4.

Figure 12-4 The structure of a patch

As mentioned before, the patch code does not need to include any assembly
code. It need only call the routine that handles the chaining. This routine
ensures that the runtime environment is set up properly and that control passes
smoothly to the next link in the chain. The Patch Manager returns the address
of a call-through procedure that handles the chaining in the patch description

Do any preprocessing here.

Call the next link in the chain
by calling runtime routine that

handles chaining.

Do any postprocessing here

Omit for tail patch

Omit for replacement patch

Omit for head patch

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-13
Draft. Apple Computer, Inc. 4/19/96

structure. It is extremely important that each patch use the address returned to
it during its installation and that patches do not share the address for this
call-through procedure.

A replacement patch is a patch that does not include a call to the chaining
routine. To implement such a patch, you define a patch description structure
for it, but you never call the chaining routine. When the system launches your
program, the Patch Manager automatically installs the patch by placing it in
the patch chain for the patched routine. It is important to understand that
because a replacement patch does not call the chaining routine, no patch
following the replacement patch in the chain executes, including the routine
being patched. For example, if 'MyAp' 'CPRS' in Figure 12-3, is a replacement
patch, neither 'WApp' 'spel' nor 'DApp' 'graf', nor SysBeep are ever
executed.

Order Requirements 12

You use the order requirements field of the patch description structure to
specify when your patch should execute. You use this field to specify the name
of the patch after which you want your patch to execute and to specify the
name of the patch before which you want your patch to execute.

The Patch Manager allows you to specify ordering requirements relative only
to other patches, not relative to the patched routine. For example, you can
specify that your patch execute

■ any time before one patch and after another patch

■ immediately before one patch and any time after another patch

■ any time before one patch and immediately after another patch

Because you can use wildcard characters to specify a patch name or type, it is
also possible to order your patch relative to a set of other patches.

It is possible (though not recommended) to specify order requirements that
cause a replacement patch to be placed last in the chain (right before the
patched routine). In this way all other patches in the patch chain execute before
the replacement patch. However, in general, it is not a good idea to impose
order requirements unless they are crucial to the performance of your code. If
the Patch Manager cannot resolve conflicting order requirements, it is unable to
install your patch or that of another program. This might result in
unpredictable behavior and poor user experience.

C H A P T E R 1 2

The Patch Manager

12-14 About Patching and the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

IMPORTANT

You cannot cause your patch to be installed by disabling
the patch whose order requirements conflict with yours.
The Patch Manager must honor the ordering requirements
of a patch even when that patch is disabled. Thus, the only
way to eliminate ordering conflicts is to change your own
ordering requirements. ▲

Limitations on Patching 12

If you use data-driven patching, you must observe the following restrictions:

■ Patch code must be native.

■ A library that owns a patch description fragment must use per-process
instantiation.

■ You can use only the generic routine that calls the next link in a patch chain
to call patch code. That is, you can only call patch code as part of a patch
chain.

■ You must call the procedure that handles the chaining from the main patch
routine, not from a subroutine.

■ You cannot use the same patch code to patch two different routines.

■ A fragment can have only one patch fragment associated with it.

■ You must place the patch fragment and owning fragment in the same file.

C H A P T E R 1 2

The Patch Manager

About Patching and the Patch Manager 12-15
Draft. Apple Computer, Inc. 4/19/96

Compatibility 12

The Patch Manager ensures that the trap patching API defined with System
software 7 is supported in Mac OS 8. Support is limited to local patching. Table
12-1 lists the names of the functions that continue to be supported in Mac OS 8.

These functions are fully described in the Trap Manager chapter of Inside
Macintosh: Operating System Utilities.

If you use these functions to install a programmatic patch, you can still use all
the functions described in this chapter to obtain information about patches
(including the programmatic patch) and to enable or disable a patch.

Table 12-1 Programmatic patching calls supported under Mac OS 8

Function

GetTrapAddress

SetTrapAddress

NGetTrapAddress

NSetTrapAddress

GetOSTrapAddress

SetOSTrapAddress

GetToolTrapAddress

SetToolTrapAddress

GetToolboxTrapAddress

SetToolboxTrapAddress

C H A P T E R 1 2

The Patch Manager

12-16 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Using the Patch Manager 12

The Patch Manager provides data structures that you use to describe your
patch and the order in which you would like it to execute. The Patch Manager
also provides functions that you can use to

■ obtain a list of all the patches in a patch chain

■ obtain information about any patch in a chain

■ obtain a list of all the patch chains associated with a process

■ determine the process to which a patch chain belongs

■ determine the root of a patch chain

■ determine the patch chain to which a routine belongs (if any)

■ enable or disable any patch in a chain

This section explains how you use Patch Manager data structures and
functions to create a patch, to control its execution, and to obtain information
about currently installed patches.

Creating a Patch 12

This section explains the steps required to create a patch. Creating a patch
involves

■ Creating the source for the patch description fragment

The source includes initializing a patch description header and one patch
description for each patch.
The patch description header specifies the number of patch descriptions you
are going to include in the patch description file and provides a pointer to
the array referencing the patch description structures.
The patch description specifies the patch, the patched routine, the patch
name, and other options that govern the installation and execution of the
patch.

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-17
Draft. Apple Computer, Inc. 4/19/96

■ Writing the patch routine and placing it either in the patch description
fragment or in any fragment that you are going to link with the patch
description fragment.

■ Compiling and linking the source files containing the patch description
header and the patch descriptions into a patch description fragment.

In order for the patch to be recognized and installed, the patch description
fragment’s 'cfrg' resource must have the same values for the name and
usage type fields as those in the owning fragment’s 'cfrg' resource, but the
update level field of the patch description fragment’s 'cfrg' resource must
be 255.

■ Add the patch fragment to the owning fragment’s file.

The following two sections explain how you write a patch header and a patch
description.

The Patch Description Header 12

The patch description header specifies the number and location of patch
description structures. The patch description header must be the main symbol
of the patch description fragment.You use the PatchHeader data type
(page 12-32) to define a patch description header structure. The Patch Manager
uses the first two fields of the structure for version control. You use the count
field to specify the maximum number of patch description structures in the
fragment. This number can exceed the actual number of patch descriptions; the
Patch Manager strips trailing null pointers. You use the patches field to
reference the patch descriptions.

Listing 12-1 shows a sample patch header. It uses the constant kMyPatchCount to
specify the number of patch descriptions and the pointer
&gPatchDescriptionList[0] to reference the array containing the addresses of
the patch description structures.

Listing 12-1 Sample patch header

PatchHeader gPatchData = {
kPatchHeaderTag,
kPatchHeaderVersion,
kNilOptions,

C H A P T E R 1 2

The Patch Manager

12-18 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

kMyPatchCount,
&gPatchDescriptionList[0]
};

The system uses the flags field of the patch header to let you know whether it
has failed to install any of your required or optional patches. If you are
installing many patches, knowing that all your patches have been successfully
installed can save you the trouble of examining each patch description
structure to obtain the same information.

The Patch Description Structure 12

You must create a patch description structure for each patch that you want to
install. The PatchDescription data type (page 12-33) defines a patch description
structure. You use the first five fields of the structure to describe your patch:
you provide a reference to the patched routine, a reference to the patch, a name
for the patch, a constant value indicating the order in which you want the
patch to execute relative to other patches, and a constant value indicating
whether the patch should be initially enabled or disabled. The section “Order
Requirements,” beginning on page 12-13 explains how you specify a value for
the field thisPatchOrdering.

The Patch Manager uses the last four fields of the patch description structure to
return information about the installation of the patch. It tells you whether the
installation succeeded, it returns the ID of the patch, it returns a pointer to the
Patch Manager routine that handles the chaining, and, if your patch could not
be installed because its ordering requirements conflicted with those of another
patch, it returns the ID of the conflicting patch. A good time to check for these
returned values would be in the beginning of the owning fragment’s
initializing routine. Listing 12-2 shows a sample patch description. It specifies
the name of the patch to be 'wild',demo'; it specifies that the patch can be
placed anywhere in the patch chain and that it should be initially enabled.

Listing 12-2 Sample patch description

PatchDescription gSysBeepPatchDescription = {
&SysBeep,
&MySysBeepPatch,
{ 'wild',

'demo'},

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-19
Draft. Apple Computer, Inc. 4/19/96

{ kNilOptions,
{ kDoNotMatchAnyOrderedItemService,

kDoNotMatchAnyOrderedItemSignature},
{ kDoNotMatchAnyOrderedItemService,

kDoNotMatchAnyOrderedItemSignature}
},
kPatchEnabledMask,
paramErr, /* install result returned here */
kInvalidID, /* ID of patch returned here */
NULL, /* pointer to call through proc returned here */
kInvalidID /* conflicting patch ID returned here */

};

The initial values of the four output fields are not critical; however, using the
ones shown in Listing 12-2 can help ensure that errors are detected.

Listing 12-3 shows a sample surround patch for the routine SysBeep.

Listing 12-3 Sample patch code

void MySysBeepPatch(SInt16 duration)
{ DoSomePreprocessing();

/* Call through */
(* (SysBeepPatchProcPtr)

gSysBeepPatchDescription.thisCallThroughProc) (duration);

DoSomePostprocessing();
return;

}

Listing 12-4 shows the contents of a patch description fragment: the patch
description, patch description header, and the patch code that has already been
described in the previous listings. In addition, it contains an initialization
routine that halts processing if the patch cannot be installed.

C H A P T E R 1 2

The Patch Manager

12-20 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Listing 12-4 Patch Description Fragment

#include <Types.h>
#include <Patches.h>
#include <CodeFragments.h>
#include <Sound.h>

void MySysBeepPatch(SInt16 duration);
void DoSomePreprocessing(void);
void DoSomePostprocessing(void);

enum {
kMyPatchCount=1 /* Number of patches in my list */

};

/* One patch description per patch */
PatchDescription gSysBeepPatchDescription = {

&SysBeep,
&MySysBeepPatch,
{'wild',

'demo'},
{

kNilOptions,
{ kDoNotMatchAnyOrderedItemService,

 kDoNotMatchAnyOrderedItemSignature},
{ kDoNotMatchAnyOrderedItemService,

 kDoNotMatchAnyOrderedItemSignature}
},

kPatchEnabledMask,
paramErr,
kInvalidID,
NULL,
kInvalidID

};

/* The table with the list of patch descriptions; this one includes
only one patch */

PatchDescription * gPatchDescriptionList[kMyPatchCount] = {
&gSysBeepPatchDescription};

/* The Patch header. This is exported as the patch fragment's main entry

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-21
Draft. Apple Computer, Inc. 4/19/96

point. */
PatchHeader gPatchData =

{
kPatchHeaderTag,
kPatchHeaderVersion,
kNilOptions,
kMyPatchCount,
&gPatchDescriptionList[0]

};

/* Do some preprocessing here */
void DoSomePreprocessing(void)
{
/* Put preprocessing code here */

Debugger();
}

void DoSomePostprocessing(void)
{
/* Put postprocessing code here */

Debugger();
}

typedef void (*SysBeepPatchProcPtr)(SInt16 duration);

/* The patch itself.
Does some preprocessing,
calls through the rest of the patch chain, and
then does some postprocessing. */

void MySysBeepPatch(SInt16 duration)
{ DoSomePreprocessing();

/* Call the routine that handles the chaining*/
(* (SysBeepPatchProcPtr)

gSysBeepPatchDescription.thisCallThroughProc) (duration);

DoSomePostprocessing();

return;

C H A P T E R 1 2

The Patch Manager

12-22 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

}

/* CFM init routine.
Do not proceed if the patch could not be installed. */

OSErr InitMyPatch(const CFragInitBlock *initBlock)
{

return (gSysBeepPatchDescription.installResult);
}

Specifying Order Requirements 12

You specify the order in which you want your patch to execute relative to the
name of other patches in the same patch chain. You use the field
thisPatchOrdering in the patch description structure to specify the order in
which you want your patch to execute. It is easiest to explain how you use this
structure by referring to a sample patch chain like the one shown in Figure 12-5.

Figure 12-5 Sample patch chain

The figure shows a set of five patches, in positions P1 through P5, being
applied to a routine. The structure you use to control the placement of your
patch in that chain is shown in Figure 12-6.

P1
Routine

XP2 P3 P4 P5

Order of execution

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-23
Draft. Apple Computer, Inc. 4/19/96

Figure 12-6 Patch order requirements structure

The structure contains three fields. You use the field itemBefore to specify the
name of the patch after which you want your patch to execute; for example, if
you want your patch to execute after the patch in position P1, you can specify
the name of the patch in position P1 in the itemBefore field when you create the
patch. You use the field itemAfter to specify the name of the patch before which
you want your patch to execute. For example, if you want your patch to
execute before the patch in position P4, you can specify the name of the patch
in position P4 in the itemAfter field when you create the patch.

If you specify that your patch should execute relative to a patch that does not
exist, the Patch Manager still executes your patch. Thus, requiring that your
patch execute after patch X is the same as requiring that if patch X exists, your
patch should execute after it. It is not the same as requiring that patch X exist.

You use the options field of the order requirements structure to make the
selection specified with either of the other two fields more precise:

■ If you want the patch specified in the itemBefore field to execute
immediately before your patch, specify the constant
kOrderedItemIsRightBefore in the options field.

■ If you want the patch specified in the itemAfter field to execute
immediately after your patch, specify the constant
kOrderedItemIsRightAfter in the options field.

options

itemBefore

itemAfter

kOrderedItemIsRightBefore/kOrderedItemIsRightAfter/NIL

service

signature

service

signature

C H A P T E R 1 2

The Patch Manager

12-24 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

Note that this scheme allows you to order your patch immediately after or
immediately before another patch, but not both. It is best, however, unless
the execution of your patch absolutely requires you to specify one of these
options, that you set the options field to NIL. This results in a looser ordering
requirement and, consequently, in fewer ordering conflicts when the system
installs your patch or other patches in the same patch chain.
You can also use the constant names listed in Table 12-2 in the itemBefore or
itemAfter fields to specify your location relative to a set of patches.

The following examples illustrate the use of the constant names shown in
Table 12-2.

■ To have your patch execute right before the patched routine, specify
kMatchAnyOrderedItemService and kMatchAnyOrderedItemSignature in the
itemBefore field. Specify kDoNotMatchAnyOrderedItemService and
kDoNotMatchAnyOrderedItemSignature for the itemAfter field.

■ To have your patch execute first, specify kMatchAnyOrderedItemService and
kMatchAnyOrderedItemSignature in the itemAfter field. Specify
kDoNotMatchAnyOrderedItemService and kDoNotMatchAnyOrderedItemSignature
for the itemBefore field.

Table 12-2 Wildcard specifiers

Constant name Meaning

kMatchAnyOrderedItemService Place my patch before/after every
patch name whose signature field
matches my signature field.

kMatchAnyOrderedItemSignature Place my patch before/after every
patch name whose service field
matches that specified in my service
field.

kDoNotMatchAnyOrderedItemService I don’t care where you place my
patch.

kDoNotMatchAnyOrderedItemSignature I don’t care where you place my
patch.

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-25
Draft. Apple Computer, Inc. 4/19/96

■ To have your patch execute before a patch installed by another program,
specify that program’s creator code in the signature field of the itemAfter
field, and set the service field to kDoNotMatchAnyOrderedItemService.

IMPORTANT

The more restrictive you make the order requirements for
your patch, the more likely they are to conflict with the
order requirements of other patches. As a result, it will not
be possible to install your patch or other conflicting
patches. ▲

Creating a Local Patch 12

The steps required to create a local patch are listed in “Creating a Patch,”
beginning on page 12-16. The owning fragment can be an application, a shared
library, or any other kind of fragment except an update library.

Creating a Global-Effect Patch 12

The steps required to create a global-effect patch are exactly the same as those
for creating a local patch except that the owning fragment must be a shared
library using per-process instantiation (rather than an application). If the patch
code resides in the patch description fragment, the shared library fragment can
be empty.

To have the Patch Manager install the patch for all programs referencing the
patched routine, you must place the shared library and the patch description
fragment in the Co-operative Extension Libraries folder, which resides in the
Extension Libraries folder, which resides in the Mac OS folder. Any programs
that are launched after the shared library and patch description fragment are so
placed, will see the patch.

Creating a Patchable Shared Library 12

If you want to create a patchable shared library, it is important to make sure
that your development system generates all internal calls to your exported
routines as indirect calls. Some compilers and linkers do not call through
transition vectors for routines in the same compilation unit. The data-driven
patching mechanism depends upon patchable routines being accessed through
transition vectors. If your compiler and linker do not call through a transition

C H A P T E R 1 2

The Patch Manager

12-26 Using the Patch Manager

Draft. Apple Computer, Inc. 4/19/96

vector for an internally referenced routine and such a routine is patched, the
direct internal calls to the routine will not see the patch.

Obtaining Information About Patches 12

The Patch Manager supports a variety of functions that return information
about installed patches. This section explains how these functions relate to one
another and provides a more detailed discussion of the GetPatchInformation
function, which returns information about a patch. In general, you should not
do anything with patches that you don’t own, except to look at them.

Table 12-3 shows the input and output parameters of the Patch Manager
functions that return information.

As you can see, given any single piece of information, you can use these
functions to determine how that piece fits into the current patching scheme for
all installed patches. For example, for any given process, you can determine the
IDs of the patch chains associated with it and consequently the IDs of all the
patches in the patch chains. For any given routine, you can determine whether
it is included in a patch chain and, if so, the process to which the patch chain
belongs.

Table 12-3 Patch Manager functions that return information

Function Input Output

GetPatchChainsInKernelProcess Process ID Patch chain IDs

GetPatchChainInformation Patch chain ID Process ID
Chain root

GetPatchChainFromProcPtr Routine Patch chain ID

GetPatchFromProcPtr Routine Patch ID

GetPatchesInPatchChain Patch chain ID List of patch IDs

GetPatchInformation Patch ID Patch chain ID
Patch address
Options
Patch name

C H A P T E R 1 2

The Patch Manager

Using the Patch Manager 12-27
Draft. Apple Computer, Inc. 4/19/96

You use the GetPatchInformation function to obtain information about a single
patch; the function returns this information in a patch information structure.
This includes the ID of the patch chain to which the patch belongs, the address
of the patch, the name of the patch, its order requirements, and the options that
are currently set for the patch. Current option settings are returned in the
patchOptions field; these determine whether

■ the patch is optional or required

An optional patch is a patch that does not have to be installed in order for
the program that references the patched routine to be launched. A required
patch is a patch that has to be installed in order for the program to be
launched.

■ the patch is a data-driven patch or a programmatic patch

In Mac OS 8, some programs might call routines that are patched
programmatically. Such patches are included in the patch chain and you can
use Patch Manager functions to obtain information about these patches, but
you should not try to manipulate them in any other way.

■ the patch is currently enabled or disabled

You can examine the installOptions field of the patch description structure
to determine whether the patch is initially enabled or disabled.

Using Programmatic Patching 12

In Mac OS 8, the trap patching API defined for System 7 is implemented using
data driven patching. This is why it is possible to obtain information about
programmatic patches using the Patch Manager GetPatchInformation function.

If you are using programmatic patching, keep the following in mind:

■ Mac OS 8 cannot support global programmatic patching because it does not
support INIT type code.

■ Optimizing compilers might assume that the contents of transition vectors
are constant within a function and might prefetch their contents into
nonvolatile registers. Because patching involves modification of the code
address in a transition vector, installing a programmatic patch might
invalidate the prefetched code address. To avoid such problems, you should
not reference the patched routine from any routine that is active when the
patch is installed, or you should make use of appropriate compilation
pragmas, or you should compile the calling routines with reduced

C H A P T E R 1 2

The Patch Manager

12-28 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

optimizations. Data driven patches do not have this problem because your
code is not running when the patch is installed.

Patch Manager Reference 12

This section describes the data types and functions you use to install, enable,
disable, and obtain information about patches.

Constants and Data Types 12

You use the constants and data types described in this section to define the
patch description header and the patch descriptions, which are contained in the
patch description fragment.

Option Bits Mask Enumeration 12

The option bits mask enumeration specifies possible values for the
installOptions field of the patch description structure (page 12-33) and for the
patchOptions field of the patch information structure (page 12-36). When you
install a patch, you use the patch description structure to describe the patch.
After the patch is installed, the Patch Manager returns information about its
current state in a patch information structure.

You can use the bit OR operator to combine two or more of the following
values.

enum {
kPatchEnabledMask = (1L << kPatchEnabledBit),
kPatchCompatibilityMask = (1L << kPatchCompatibilityBit),
kPatchOptionalMask = (1L << kPatchOptionalBit)

};

Enumerator descriptions

kPatchEnabledMask Before installing a patch, you use this bit in the
installOptions field of the patch description structure to
specify whether the patch is initially enabled. After
installing the patch, you can use the EnablePatch function

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-29
Draft. Apple Computer, Inc. 4/19/96

(page 12-37) and DisablePatch function (page 12-38) to
enable and disable the patch.
When you examine the patchOptions field of the patch
description structure, the setting of this bit indicates the
initial state of the patch: The bit is set if the patch was
enabled; the bit is clear if the patch was disabled. To obtain
the current state of the patch, you must call the
GetPatchInformation function (page 12-46).

kPatchCompatibilityMask
Do not use this bit in the installOptions field of the patch
description structure.
If this bit is set in the patchOptions field of the patch
information structure, it means that this is a programmatic
patch. If this bit is clear, it means that this is a data-driven
patch.

kPatchOptionalMask The setting of this bit in the patchOptions field of the patch
description structure, tells the Code Fragment Manager
how to proceed if it cannot install a patch. If this bit is set,
it means the Code Fragment Manager should launch your
program anyway. If this bit is clear, the Code Fragment
Manager should not launch your program.

Wildcard Enumeration 12

You use the wildcard enumeration to specify values for the service and
signature fields of the ordered item name structure (page 12-34). You use the
ordered item name structure to specify values for the itemBefore and itemAfter
fields of the order requirements structure (page 12-35). The effect of using
wildcard order specifiers is explained in “Specifying Order Requirements” on
page 12-22.

enum {
kMatchAnyOrderedItemService = (OrderedItemService)'****',
kMatchAnyOrderedItemSignature = (OrderedItemSignature)'****',
kDoNotMatchAnyOrderedItemService = (OrderedItemService)'----',
kDoNotMatchAnyOrderedItemSignature = (OrderedItemSignature)'----'

};

C H A P T E R 1 2

The Patch Manager

12-30 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

kMatchAnyOrderedItemService
In the service field of the itemBefore field, this value
causes your patch to execute after all other patches whose
signature matches that specified in the signature field of
the itemBefore field.
In the service field of the itemAfter field, this value causes
your patch to execute before all other patches whose
signature matches that specified in the signature field of
the itemAfter field.

kMatchAnyOrderedItemSignature
In the signature field of the itemBefore field, this value
causes your patch to execute after all other patches whose
service matches that specified in the service field of the
itemBefore field.
In the signature field of the itemAfter file, this value
causes your patch to execute before all other patches
whose service field matches that specified in the service
field of the itemAfter field.

kDoNotMatchAnyOrderedItemService
In the service field of the itemBefore field, this value
means that you don’t care if any patch executes before
your patch.
In the signature field of the itemAfter field, this value
means that you don’t care if any patch executes after your
patch.

kDoNotMatchAnyOrderedItemSignature
In the service field of the itemBefore field, this value
means that you don’t care if any patch executes before
your patch.
In the signature field of the itemAfter field, this value
means that you don’t care if any patch executes after your
patch.

Ordered Item Enumeration 12

You use the ordered item enumeration to specify a value for the options field of
the order requirements structure (page 12-35). This value determines whether
your patch is executed immediately before or immediately after another patch.

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-31
Draft. Apple Computer, Inc. 4/19/96

Set this field to kNilOptions, to indicate that the patch does not have execute
right before or right after another patch.

enum {
kOrderedItemIsRightBefore = 0x00000001,
kOrderedItemIsRightAfter = 0x00000002

};

kOrderedItemIsRightBefore
The itemBefore field of the order requirements structure
specifies the name of the patch that should execute before
your patch. If you want that patch to execute immediately
before your patch, specify this constant name for the
options field of the order requirements structure.

kOrderedItemIsRightAfter
The itemAfter field of the order requirements structure
specifies the name of the patch that should execute after
your patch. If you want that patch to execute immediately
after your patch, specify this constant name for the options
field of the order requirements structure.

Patch Header Flags Enumeration 12

The patch header flags enumeration is used by the Patch Manager to specify a
value for the flags field of the patch header structure (page 12-32).

After the Code Fragment Manager has loaded your code fragment and patch
fragment, and has installed your patches, it uses the installResult field of the
patch description structure to let you know whether a particular patch was
installed. At the same time, the Code Fragment Manager sets a bit in the flags
field of the patch header structure to let you know whether any required or
optional patch in a given patch chain set has failed. Thus, if you examine the
flags field first and find either or both bits clear, you can save yourself the
trouble of looking at the installResult field for each patch you have installed.

typedef OptionBits PatchHeaderOptions;
enum {

kRequiredPatchErrorsMask = 0x00000001,
kOptionalPatchErrorsMask = 0x00000002

};

C H A P T E R 1 2

The Patch Manager

12-32 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

Enumeration descriptions

kRequiredPatchErrorsMask
If this bit is set, the system has failed to install one or more
required patches.

kOptionalPatchErrorsMask
If this bit is set, the system has failed to install one or more
optional patches.

Patch Header Tag Enumeration 12

You use the patch header tag enumeration to specify values for the tag field
and the version field of the patch header structure (page 12-32).

enum {
kPatchHeaderTag = 'Ptch'
kPatchHeaderVersion = 1

};

Enumeration descriptions

kPatchHeaderTag Value for the tag field of the patch header structure.
kPatchHeaderVersion

Value for the version field of the patch header structure.

Patch Header Structure 12

You use the patch header structure to specify the address and size of the array
containing references to the patch descriptions for your patches.

The PatchHeader data type defines a patch header structure.

struct PatchHeader {
OSType tag;
UInt32 version;
PatchHeaderOptions flags;
ItemCount count;
PatchDescriptionPtr * patches;

};
typedef struct PatchHeader PatchHeader;

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-33
Draft. Apple Computer, Inc. 4/19/96

Field descriptions
tag The constant name kPatchHeaderTag.
version The constant name kPatchHeaderVersion.
flags This field is set by the Code Fragment Manager to one of

the values defined by the patch header flags enumeration
(page 12-31).

count The number of entries in the patch reference array whose
address is stored in the patches field, described next. This
value should be the same as the dimension of the array,
but the Patch Manager will gracefully deal with nulls
anywhere in the array.

patches A pointer to an array of pointers to patch description
structures that specify the patches that you want to install.

Patch Description Structure 12

You use the patch description structure to specify a reference to your patch
routine, a reference to the routine you want to patch, the name of your patch,
and additional information about how you want the Patch Manager to execute
your patch. The Patch Manager uses some fields in this structure to return
information about the patch if it was successfully installed or to let you know
about possible sources of conflict if it could not install the patch.

You must include one patch description structure for each patch you want to
install. The PatchDescription data type defines a patch description structure.

struct PatchDescription {
PatchableProcPtr originalRoutine;
PatchableProcPtr patchRoutine;
PatchName thisPatchName;
PatchOrderRequirements thisPatchOrdering;
PatchOptions installOptions;
OSStatus installResult;
PatchID thisPatchID;
PatchableProcPtr thisCallThroughProc;
PatchID rejectingPatchID;

};
typedef struct PatchDescription PatchDescription;

C H A P T E R 1 2

The Patch Manager

12-34 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

Field descriptions
originalRoutine A pointer to the routine you want to patch.
patchRoutine A pointer to the patch routine.
thisPatchName The name of your patch routine. You use the ordered item

name structure (page 12-34) to specify the name of your
patch.

thisPatchOrdering The order in which you want your patch to execute.
You use the order requirements structure (page 12-35) to
specify whether your patch should execute before or after
some other named patch.
You can specify NULL if you do not care when the pach
executes.

installOptions A value given by the option bits mask enumeration
(page 12-28) specifying whether the patch is initially
enabled and whether the Code Fragment Manager should
load your program if it is unable to install your patch.

installResult The Patch Manager returns 0 in this field if the patch was
successfully installed, or a nonzero result if it was not.

thisPatchID The Patch Manager returns the patch ID in this field if the
patch was successfully installed.

thisCallThroughProc
The Patch Manager sets this field to the address of the
routine you use to transfer control to the next routine in
the patch chain.

rejectingPatchID The Patch Manager sets this field to the ID of a patch
whose ordering requirements conflict with those you have
specified for your patch. Disabling the conflicting patch
does not solve ordering conflicts, but changing your
ordering requirements might resolve the conflict.
If there are no conflicts, the Patch Manager sets this field to
the constant value kInvalidID.

Ordered Item Name Structure 12

You use the ordered item name structure to specify values for the itemBefore
and itemAfter fields of the order requirements structure (page 12-35). A patch
must be uniquely named within a patch chain.

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-35
Draft. Apple Computer, Inc. 4/19/96

The OrderedItemName data type defines an ordered item name structure.

struct OrderedItemName {
OrderedItemService service;
OrderedItemSignature signature;

};
typedef struct OrderedItemName OrderedItemName, *OrderedItemNamePtr;

service A four-character literal that you define to identify a patch
or one of the wildcard service enumerators (page 12-29).

signature A four-character literal that specifies the program’s creator
or one of the wildcard signature enumerators (page 12-29).

Order Requirements Structure 12

You use the order requirements structure to specify a value for the field
thisPatchOrdering of the patch description structure (page 12-33). This field
defines the relative order in which you want your patch to execute.

The use of this structure is explained in “Specifying Order Requirements” on
page 12-22. The OrderRequirements data type defines the order requirements
structure.

struct OrderRequirements {
OrderedItemOptions options;
OrderedItemName itemBefore;
OrderedItemName itemAfter;

};
typedef struct OrderRequirements OrderRequirements, *OrderRequirementsPtr;

options The value you specify for this field determines whether the
item specified in the itemBefore field should come
immediately before your patch or whether the item
specified in the itemAfter field should come immediately
after your patch. You specify one of these two values using
the ordered item enumeration (page 12-30). If you do not
need to specify either, use kNilOptions.

itemBefore The ordered item name structure (page 12-34) for the patch
that should execute before your patch.

C H A P T E R 1 2

The Patch Manager

12-36 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

itemAfter The ordered item name structure (page 12-34) for the patch
that should execute after your patch.

Patch Information Structure 12

The Patch Manager uses the patch information structure to return information
to you about a patch specified by the PatchID parameter to the
GetPatchInformation function (page 12-46).

The PatchInformation data type defines a patch information structure.

struct PatchInformation {
PatchChainID patchChain;
PatchableProcPtr patchingRoutine;
PatchOptions patchOptions;
PatchName patchName;
PatchOrderRequirements patchOrder;

};
typedef struct PatchInformation PatchInformation, *PatchInformationPtr;

Field descriptions
patchChain The patch chain ID of the patch chain to which the patch

belongs.
patchingRoutine The address of the patch routine.
PatchOptions A value given by the option bits enumeration (page 12-28)

specifying whether the patch is currently enabled, whether
it is a programmatic or data-driven patch, and whether the
code fragment loader can launch a program even when it
cannot install the patch.

patchName The name of the patch. If this is a programmatic patch, the
name is one assigned by the Patch Manager.

patchOrder An order requirements structure (page 12-35) specifying
the names of patches whose execution must precede or
follow that of this patch.

Patch Chain Information Structure 12

You call the GetPatchChainInformation function (page 12-41) to determine the
address of the routine that is being patched and the process ID of the process

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-37
Draft. Apple Computer, Inc. 4/19/96

that is associated with the patch chain. The GetPatchChainInformation function
returns this information in a patch chain information structure.

The PatchChainInformation data type defines a patch chain information
structure.

struct PatchChainInformation {
KernelProcessID kernelProcess;
PatchableProcPtr chainRoot;

};
typedef struct PatchChainInformation PatchChainInformation,

*PatchChainInformationPtr;

Field descriptions
kernelProcess The ID of the process that is associated with the patch

chain.
chainRoot A reference to the routine being patched.

Functions 12

This section describes the function you use to enable, to disable patches and to
obtain information about patches.

Enabling and Disabling Patches 12

When you define a patch using the patch description structure (page 12-33),
you use the installOptions field to specify whether the patch should be
enabled or disabled by default. You use the functions described in this section
to change that default setting.

EnablePatch 12

Enables a patch.

OSStatus EnablePatch (PatchID thePatch);

thePatch The ID of the patch being enabled.

C H A P T E R 1 2

The Patch Manager

12-38 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

Enabling a patch causes the Patch Manager to execute the patch when the
routine being patched is called. The order in which the patch executes depends
upon ordering constraints specified by the field thisPatchOrdering of the patch
description structure for this patch.

Any client that can obtain a patch ID can enable or disable a patch.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the DisablePatch function (page 12-38) to disable a patch.

Use the GetPatchInformation function (page 12-46) to determine whether a
patch is enabled or disabled.

You use the patch description structure (page 12-33) to specify any ordering
requirements for a patch.

DisablePatch 12

Disables a patch.

OSStatus DisablePatch (PatchID thePatch);

thePatch The ID of the patch being disabled.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-39
Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

Disabling a patch causes the Patch Manager not to execute the patch when the
routine being patched is called.

Disabling a patch is not the same as removing a patch from the patch chain. For
example, if any ordering conflicts exist, they remain even though the patch
causing the conflict is disabled.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the EnablePatch function (page 12-37) to enable a patch.

Use the GetPatchInformation function (page 12-46) to determine whether a
patch is enabled or disabled.

Obtaining Information About Patch Chains 12

You use the functions described in this section to obtain a list of patch chains
associated with a process and to obtain information about a particular patch
chain.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

12-40 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

GetPatchChainsInKernelProcess 12

Returns a list of all patch chains associated with a process.

OSStatus GetPatchChainsInKernelProcess(KernelProcessID theKernelProcess,
ItemCount requestedPatchChains,
ItemCount *totalPatchChains,
PatchChainID *thePatchChains);

theKernelProcess
The ID of the process with which the patch chains are
associated. Specify kCurrentKernelProcessID to indicate the
current process.

requestedPatchChains
An integer specifying the size of the array in which this
function stores patch chain information when it returns.

totalPatchChains
A pointer to the total number of patch chains associated with
the specified process.

thePatchChains
A pointer to an array of patch chain IDs. On return, the
GetPatchChainsInKernelProcess function stores the patch chain
IDs in the specified process in this array.

DISCUSSION

The patch chain IDs in the array referenced by thePatchChains parameter are
not listed in any particular order.

If you call this function and the value specified by the requestedPatchChains
parameter is smaller than the value specified by the totalPatchChains
parameter, this means that the array you have allocated for the patch chain IDs
is too small. If you want to obtain more information, you must set the
requestedPatchChains parameter to the desired value and then call the function
again.

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-41
Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetPatchChainInformation function (page 12-41) to get information
about a specific patch chain.

You use the GetPatchesInPatchChain function (page 12-45) to obtain a list of all
the patches in a patch chain.

GetPatchChainInformation 12

Returns information about a patch chain.

OSStatus GetPatchChainInformation (PatchChainID thePatchChain,
PBVersion version,
PatchChainInformation *patchChainInfo);

thePatchChain The ID of the patch chain about which information is sought.

version The constant kPatchChainInformationVersion.

patchChainInfo
A pointer to a patch chain information structure (page 12-36)
that the GetPatchChainInformation function fills in when it
returns.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

12-42 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

DISCUSSION

For a given patch chain ID, the GetPatchChainInformation function returns a
patch chain information structure that specifies the ID of the process with
which the patch chain is associated and the address of the routine that is being
patched.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetPatchChainsInKernelProcess function (page 12-40) to find out what
other patch chains are associated with the process to which this patch chain
belongs.

Determining Whether a Routine is a Patch 12

You use the functions described in this section to determine whether a routine
belongs to a patch chain and whether it is a patch or the routine being patched.

GetPatchChainFromProcPtr 12

Determines whether a routine belongs to a patch chain.

OSStatus GetPatchChainFromProcPtr (KernelProcessID theKernelProcess,
PatchableProcPtr theRoutine,
PatchChainID *thePatchChain);

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-43
Draft. Apple Computer, Inc. 4/19/96

theKernelProcess
The process ID of the process to which the routine belongs.

theRoutine The address of the routine.

thePatchChain A pointer to the ID of the patch chain to which the routine
belongs either because it is a patch or because it is the routine
being patched (the root of the chain).

DISCUSSION

If the parameter theRoutine specifies a routine that is either a patch in a patch
chain or the root of a patch chain, the GetPatchChainFromProcPtr function
returns the ID of the patch chain to which the routine belongs. Otherwise, the
function returns an error.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

To determine whether the routine is a patch or a root, use the
GetPatchFromProcPtr function (page 12-44).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

12-44 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

GetPatchFromProcPtr 12

Determines whether a routine is a patch and returns its ID if it is.

OSStatus GetPatchFromProcPtr(KernelProcessID theKernelProcess,
PatchableProcPtr theRoutine,
PatchID *thePatch);

theKernelProcess
The ID of the process to which the routine belongs.

theRoutine The address of the routine.

thePatch A pointer to the ID of the patch. If the routine is a patch, the
GetPatchFromProcPtr function sets this field when it returns.

DISCUSSION

If the specified routine is a patch, this function references the ID of the patch in
the parameter thePatch. If the routine is a root or cannot be found in a patch
chain, the function returns an error.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

If the routine is a patch, you can obtain additional information about the patch
by calling the GetPatchInformation function(page 12-46).

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-45
Draft. Apple Computer, Inc. 4/19/96

Obtaining Information About a Patch 12

You use the functions described in this section to obtain a list of all the patches
in a patch chain and to obtain information about a particular patch in a chain.

GetPatchesInPatchChain 12

Returns a list of patches in a patch chain.

OSStatus GetPatchesInPatchChain (PatchChainID thePatchChain,
ItemCountrequestedPatches,
ItemCount * totalPatches,
PatchID * thePatches);

thePatchChain The ID of the patch chain.

requestedPatches
An integer specifying the size of the array in which this
function stores patch IDs when it returns.

totalPatches A pointer to the total number of patch IDs in the patch chain.

thePatches A pointer to an array of patch IDs. On return, the
GetPatchesInPatchChain function stores the patch IDs in the
specified patch chain in this array.

DISCUSSION

The patches in the array referenced by the parameter thePatches are not listed
in any particular order. The function returns the names of all the patches in the
patch chain, whether they are enabled or not.

If you call this function and the value specified by the requestedPatches
parameter is smaller than the value returned in the totalPatches parameter,
this means that the array you have allocated for the patch ID information is too
small. If you want to obtain more information, you must set the
requestedPatchChains parameter to the desired value and then call the function
again.

C H A P T E R 1 2

The Patch Manager

12-46 Patch Manager Reference

Draft. Apple Computer, Inc. 4/19/96

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetPatchInformation function (page 12-46) to get information about a
particular patch in a patch chain.

Use the GetPatchChainInformation function (page 12-41) to find out the name of
the routine being patched and the ID of the process that contains the patched
routine.

GetPatchInformation 12

Returns information about a patch.

OSStatus GetPatchInformation (PatchID thePatchID,
PBVersion version,
PatchInformation *patchInfo);

thePatchID The ID of the patch.

version The value kPatchInformationVersion.

patchInfo A pointer to a patch information structure. On return, the
GetPatchInformation function fills in the fields of this structure.

DISCUSSION

The GetPatchInformation function returns the following information about a
patch: the ID of the patch chain to which the patch belongs, the address of the

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

Patch Manager Reference 12-47
Draft. Apple Computer, Inc. 4/19/96

patch routine, the name of the patch, the ordering constraints specified for the
patch, and any options for the patch. Once a patch has been installed by the
Patch Manager, any client that knows the ID of the patch can obtain patch
information by calling the GetPatchInformation function.

EXECUTION ENVIRONMENT

CALLING RESTRICTIONS

This function cannot be called by hardware interrupt handlers or secondary
interrupt handlers.

SEE ALSO

Use the GetPatchChainsInKernelProcess function (page 12-40) to obtain the IDs
of all patch chains associated with a process. Then you can use the
GetPatchesInChain function (page 12-45) to obtain the IDs of all patches in a
chain.

Reentrant?
Call at secondary
interrupt level?

Call at hardware
interrupt level?

Yes No No

C H A P T E R 1 2

The Patch Manager

12-48 Glossary

Draft. „ Apple Computer, Inc. 6/5/96

Glossary 12

data-driven patching A method of patching according to which you create
data structures specifying the address of your patch and of the patched routine,
the name of your patch, and any other information required to execute your
patch. Using this model, the task of installing a patch and ensuring the order in
which it executes relative to other patches is taken over by the Code Fragment
Manager and the Patch Manager. This is the preferred patching method in
Mac OS 8. See also programmatic patching.

head patch A patch that does some processing before it calls the patched
routine.

local patch A patch that executes only within a program’s process. You create
a local patch by including a patch description structure for it in a special
fragment associated with your program’s fragment.

global patch A patch that is called by every application referencing the
patched routine. To create a global patch, you create a shared library that calls
the patch and a special shared library fragment that contains the patch
description structure for that patch. The shared library must use per-process
instantiation.

owning fragment A fragment that defines a patch by using a patch
description fragment. When the owning fragment is prepared for execution,
the system looks for and installs the patches owned by the fragment as part of
the fragment’s launch process.

patch A piece of code that intercepts the transaction between a client and a
service that is implemented by a single routine. You can assume control in
order to monitor the use of that service, to modify the service, or to replace the
service. A patch is uniquely identified by a patch ID.

patch chain An ordered list of patches on the same instance of the same
entry point. A patch chain is uniquely identified by a patch chain ID.

patch chain ID A unique identifier that specifies a patch chain. The Patch
Manager uses this identifier to distinguish among patch chains belonging to
the same patch chain set.

patch chain set The set of patch chains associated with a single process .

C H A P T E R 1 2

The Patch Manager

Glossary 12-49
Draft. „ Apple Computer, Inc. 6/5/96

patch description structure A data structure you create to describe a patch. It
specifies the address of the patch, the address of the patched routine, the name
of the patch, and options related to the execution of the patch. You store patch
description structures in a special fragment that is associated either with the
application (for local patching) or a shared library (for global patching).

patch ID A unique identifier that specifies a patch in a patch chain. The Patch
Manager returns this ID to you after it installs a patch.

programmatic patching A method of patching used with System 7 according
to which you replace the address of an existing operating system routine in the
trap dispatch table with the address of a patch routine. This method is
supported in Mac OS 8 but not in any Mac OS release following that. Compare
with data-driven patching.

replacement patch A patch that never calls the routine it is patching; it
simply replaces it.

surround patch A patch that performs some processing, calls the patched
routine, and then performs some additional processing. See also head patch
and tail patch.

tail patch A patch that does some processing after calling the patched routine

C H A P T E R 1 2

The Patch Manager

12-50 Glossary

Draft. Apple Computer, Inc. 4/19/96

	Microkernel and Core System Services
	Contents
	About Mac�OS�8
	Mac�OS�8 Architecture
	Tasks, Processes, and Multithreading
	Program Scheduling and Preemption
	Preemptive Multitasking
	Cooperative Scheduling

	Applications and Server Programs
	Virtual Memory
	Memory Organization and Protection
	Multiple Address Spaces
	Memory Efficiency
	Memory Areas
	Guard Pages

	Synchronization of Tasks and Coordination of Proce...
	Synchronizing Access to Code or Data
	Coordinating Tasks and Processes

	Notification Services
	Microkernel Notification and Asynchronous Executio...
	System Notification Service
	User Notification Services

	IPC Services
	Microkernel Messages
	Apple Events

	Glossary

	Tasks Reference
	Tasks Constants and Data Types
	Task Priority
	Set Task Priority Options
	Task Relationship
	Task Options
	Task Name
	Task ID
	The Task Information Structure
	Task Main Entry Point
	Task Storage Index
	Task Storage Value

	Tasks Functions
	Creating and Terminating Tasks
	Getting Information About Tasks
	Changing the Priority of a Task
	Working With Per-Task Static Data

	Tasks Result Codes

	Dynamic Storage Allocation Service Reference
	Constants and Data Types
	Memory Allocators

	Functions
	Allocating Fixed-Size Pointers
	Allocating Variable-Sized Pointers
	Allocating Handles

	Glossary

	Virtual Memory Services Reference
	Memory Management Constants and Data Types
	Addresses
	Backing Object Types
	Address Space Management
	The Address Space Information Structure

	Area Management
	Memory Access Level Enumeration
	Area Usage Enumeration
	Area Options Enumeration
	The Area Information Structure

	Page Management
	Page State Information Enumeration
	Page Control Operation Enumeration
	The Page Information Structure

	Memory Sharing
	Interspace Copy Options Enumeration
	Reservation Options Enumeration
	The Reservation Information Structure

	Processor Cache Mode Enumeration
	Memory Preparation For I/O
	I/O Preparation Options Enumeration
	I/O Checkpoint Options Enumeration
	The I/O Preparation Table Structure
	The Address Range Structure
	The Multiple Address Range Structure

	Memory Management Functions
	Managing Address Spaces
	Managing Areas
	Obtaining Information About An Area
	Working With Backing Storage
	Managing Pages
	Sharing Memory
	Working With Processor Caches
	Preparing For I/O
	Glossary

	Server Manager
	Server Manager Constants and Data Types
	Server Main Entry Point
	Server ID

	Server Manager Functions
	Communicating With Servers
	Communicating With Clients

	Server Manager Resources
	The Server Resource

	Server Manager Result Codes

	Microkernel Queues Reference
	Microkernel Queues Constants and Data Types
	Microkernel Queue Options
	Microkernel Queue ID

	Microkernel Queues Functions
	Creating and Deleting Microkernel Queues
	Working With Microkernel Queues
	Microkernel Queues And Secondary Interrupt Handler...

	Microkernel Queues Result Codes

	Interrupt Services Reference
	Interrupt Services Reference
	Functions
	Controlling Software Interrupts
	Creating a Software Interrupt
	Sending Software Interrupts
	Querying the Level of Execution
	Deleting a Software Interrupt
	Calling a Secondary Interrupt Handler
	Adjusting the Limit of Secondary Interrupt Handler...

	User-Defined Functions
	Software Interrupt Handlers
	Secondary Interrupt Handler
	Hardware Interrupt Handlers

	Exception Handling
	Exception Handling Reference
	Constants and Data Types
	Exception Kind Enumeration
	Memory Reference Enumeration
	Exception Information Structure
	Machine Information Structure
	General Purpose Register Information Structure
	Floating Point Information Structure
	Memory Exception Information Structure

	Functions
	User-Defined Routines

	Messaging Service Reference
	Messaging Service Reference
	Constants and Data Types
	Messaging Service Identifiers
	Message Types
	Message Definition
	Message Information
	Message Object Options
	Port Information and Options
	Send Options
	Receive Options
	Accept Options
	Accept Function

	Messaging Service Functions
	Obtaining Information About Messages
	Creating and Deleting Message Objects
	Locking and Unlocking Message Objects
	Getting and Setting Message Object Information
	Creating and Deleting Message Ports
	Obtaining Information about Ports
	Sending a Message
	Receiving a Message
	Replying to a Message
	Application-Defined Function

	Timing Services Reference
	Constants and Data Types
	Duration Enumeration
	The Absolute Time Data Type
	The Nanoseconds Data Type
	The Duration Data Type
	Timer ID

	Timing Functions
	Obtaining the Current Absolute Time
	Synchronous Timers
	Asynchronous and Interrupt Timers
	Getting Time Base Information
	Timing Conversion Functions
	AbsoluteTime Arithmetic Functions
	Timing Delta Functions

	Result Codes
	Glossary

	Debugger Services
	Debugger Services Reference
	Constants and Data Types
	Kernel State Enumeration
	Data Breakpoint Option Enumeration
	Exception Structure
	Task State Structure
	Kernel State Structure
	Data Breakpoint Information Structure

	Functions
	Registering and Unregistering a Debugger
	Handling Exceptions
	Controlling Task Scheduling
	Reading and Modifying Task Memory
	Supporting Data Breakpoints

	The Patch Manager
	About Patching and the Patch Manager
	Programmatic and Data-Driven Patching
	Patch Scope
	Data-Driven Patching
	The Patch Description Fragment
	Applying Several Patches to the Same Routine
	The Structure of Patch Code
	Order Requirements
	Limitations on Patching

	Compatibility

	Using the Patch Manager
	Creating a Patch
	The Patch Description Header
	The Patch Description Structure
	Specifying Order Requirements

	Creating a Local Patch
	Creating a Global-Effect Patch
	Creating a Patchable Shared Library
	Obtaining Information About Patches
	Using Programmatic Patching

	Patch Manager Reference
	Constants and Data Types
	Option Bits Mask Enumeration
	Wildcard Enumeration
	Ordered Item Enumeration
	Patch Header Flags Enumeration
	Patch Header Tag Enumeration
	Patch Header Structure
	Patch Description Structure
	Ordered Item Name Structure
	Order Requirements Structure
	Patch Information Structure
	Patch Chain Information Structure

	Functions
	Enabling and Disabling Patches
	Obtaining Information About Patch Chains
	Determining Whether a Routine is a Patch
	Obtaining Information About a Patch

	Glossary

