
l
(

ti® Apple® AppleShare@
PC Developer's Guide
Apple Confidential
Final Draft 7 /15/88

ti APPLE COMPUTER, INC.

This manual is copyrighted, with all rights reserved. Under the copyright laws, this
manual may not be copied, in whole or part, without written consent of Apple.
Under the law, copying includes translating into another language or format.

©Apple Computer, Inc., 1988
20525 Mariani Ave.
Cupertino, California 95014 USA
1-(408) 996-1010

Apple, the Apple logo, AppleTalk, ImageWriter, LaserWriter, and Macintosh are
registered trademarks of Apple Computer, Inc.

AppleShare, A/UX, and LocalTalk are trademarks of Apple Computer, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

IBM is a registered trademark of IBM Corporation.

Postscript is a registered trademark of Adobe Systems Incorporated.

Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

Epson is a registered trademark of Seiko Epson Corporation.

I
t

•
AppleShare PC developer's guide - Apple Confidential

Contents

Figures and tables xii

Pref ace What you need to know ix

Related documents x
Organization xi

Chapter 1 AppleShare PC Overview

Requirements 3

Chapter 2 Access Privileges 5

How access privileges work 6

Final draft

How privilege violations appear to DOS programs 7
How to work with access privileges 8

Chapter 3 Network Awareness & Multi-User Considerations 9

Atomicity 10
Opening files 11

Sharing modes 11
Compatibility mode 12
Overlays 13

Byte range locking 14
Temporary files 14
Open file categories 15

iii

AppleShare PC developer's guide - Apple Ccntldentlal Final draft

lv Contents

Chapter 4 Directory Enumeration 17
Alphabetically ordered directories 18
Enumeration guidelines 19

Enumeration lifetime 19
Reappearing directory entries 20
Backing up 22

Chapter 5 DOS Enhancements 23

Large volumes 24
Moving directories 24
Enhanced file and directory information 25

Lowercase names 25
Modified bit 26
Checking access privileges 26

Chapter 6 Integration with Macintosh Applications 29

Common file formats 30
ASCII text 30
File extension mapping 33

Adding mappings 34
Saving files 35

Chapter 7 Print Access 37

BIOS-level support 38
DOS-level support 40

Printer calls 41
Printer critical errors 41

Epson mode 41
PostScript mode 42

•

AppleShare PC developer's guide - Apple Confidential Final draft

Appendix A Programming Examples 43

Standard start-up sequence 43
DOS version check 43
Checking for SHARE 44
Checking for AppleShare PC 45
Installing a critical error handler 47

Character handling 49
End-of-line delimiters 49
International uppercase routine 51

Multi-User I/0 53
Extending a file 53

File extension mapping 55

Appendix B Network and Mulfl·User Errors 57

Contents v

AppleShare PC developar's guide - Apple Confldentlal Flnal draft

•

vi Contents

"(
AppleShare PC developer's guide - Apple Confldentlal Final draft

Figures and tables

Chapter 1 AppleShare PC Overview 2

Figure 1-1 File sharing with AppleShare PC 2

Chapter 3 Network Awareness a Multi-User Considerations 9

Table 3-1
Table 3-2

Multiple compatibility mode opens 13
Open file categories 15

Chapter 4 Directory Enumeration 17

Chapters

Figure 4-1

Figure 4-2
Figure 4-3

DOS directory order versus AppleShare sorted
directory order 18
Reappearing files under DOS 21
Reappearing files under AppleShare PC 22

DOS Enhancements 23

Figure 5-1

Figure 5-2

Using the Rename a File call to rename and
move 25
Access privileges information field 27

Chapter 6 Integration with Macintosh Applications 29

Table 6-1 PC/Macintosh character mapping 32
Figure 6-1 Default icons 33
Table 6-2 File extension mappings - adding directly vs.

adding to DA.OTA 34

Chapter 7 Print Access 37

Figure 7-1 Printer status messages 39

Figures and tables vii

AppleShare PC developer's guide - Apple Confidential Final draft

viii Figures and tables

:f

c

AppleShare PC developer's guide - Apple Confidential Final draft

Preface

This manual provides guidelines for writing network-aware applications for personal
·computers running the MS-DOS operating system (hereinafter referred to as "PCs").
The AppleShare PC network environment is assumed, but many of the concepts are
applicable to any multi-processing environment, including other PC network
systems and PC multi-tasking systems. AppleShare PC specific concepts, such as
directory access privileges and file extension mappings, are covered in separate
sections. This manual is valuable reading for all developers interested in writing or
updating their existing PC applications to exploit the potential of a multi-user
networked environment, including the ability to transparently share data with
Macintosh systems.

What you need to know
To use this manual effectively, you should already understand the MS-DOS file
system, and how to create and use files and directories from within the programs
you write. Familiarity with the C language and the 8086 instruction set are useful, as
several program examples are given in these languages. This manual assumes that
you have already set up AppleShare PC and are familiar with its use. You do not
need to be a Macintosh programmer to use this manual, although some familiarity
with the Macintosh would be useful for understanding AppleShare PC's facilities for
PC/Macintosh data sharing.

ix

AppleShare PC developer's guide - Apple Confidential Final draft

Related documents
Here is a list of some additional books that you may find useful, and who publishes
them. (Note: APDA is the Apple Programmer's and Developer's Association.) The
last two are only useful if you are developing AppleTalk network programs; they do
not directly pertain to AppleShare PC.

o AppleShare PC User's Gutde Apple Computer, Inc.

Accompanies AppleShare PC. Describes how to install and use. Package also
includes the AppleShare PC Update, which describes the transparent printing
facility.

o DOS 3.3 Techntcal Reference IBM (part no. 62800059)

Authoritative reference for all the DOS function calls.

o Software Appltcattons tn a Shared Environment APDA

Similar in scope to this document; provides guidelines for Macintosh
programmers writing applications in today's network-shared and multi-tasking
world.

o Postscript Language Reference Manual Addison-Wesley

Authoritative reference for PostScript. Useful for programmers who want to add
Postscript support to their programs.

o AppleTalk Ftltng Protocol (AFP) Engineering Technical Notes APDA

Authoritative reference for AFP, the filing protocol used between AppleShare
servers and workstations.

o AppleTalk PC Card and Driver Preltminary Note Apple Computer, Inc.

Describes how to use the AppleTalk PC driver to communicate over an AppleTalk
network. May be obtained through Developer Services, until published through
APDA.

D Inside AppleTalk APDA

Authoritative reference for the AppleTalk network protocols.

x Preface

AppleShare PC developer's guide - Apple Confldentlal Final draft

Organization
The manual is structured as follows:

o Chapter 1 is a brief overview of AppleShare PC.

o Chapter 2 discusses AppleShare's privacy features and how they appear to MS
DOS programs.

o Chapter 3 discusses the general requirements for being "network aware.•

o Chapter 4 explains the AppleShare server's sorted directories and their impact
on programmers.

o Chapter 5 describes how to use several enhancements to the DOS environment
that AppleShare PC provides.

o Chapter 6 talks about sharing data between PC and Macintosh systems.

o Chapter 7 discusses the abilities and limitations of the printing facility.

o Appendix A provides programming examples.

o Appendix B discusses network and multi-user errors.

You can skip chapter 3 if you are an experienced author of multi-user programs and
only need to find out what additional features I constraints are imposed by
AppleShare PC.

Organization xi

AppleShare PC developer's guide - Apple Confldentlal Final draft

xii Preface

AppleShare PC developer's guide - Apple Confidential Final draft

(

Chapter 1

AppleShare PC Overview

Requirements 3

(

AppleShare PC developer's guide - Apple Confidential Final draft

AppleShare PC is a software package that gives IBM PC or compatible computers
transparent access to AppleTalk file and print services. Figure 1-1 shows a simple
example of file sharing with AppleShare PC.

MS·DOSPC

Figure 1-1
Fife sharing with AppleShare PC

2 Chapter 1 : AppleShare PC Overview

LaserWrlter II
Siared devtce

D
IITl111111 I e 1 e I

MS·DOSPC

(

(

AppleShare PC developer's guide - Apple Confidential Final draft

The file service is based on the Microsoft Networks model, but includes an
additional module for translating between the SMB protocol spoken by the DOS
redirector and the AFP protocol spoken by the AppleShare file server. All elements
of the DOS file system are supported by AFP, plus several additional features, such
as directory access privileges. Compatibility is at the DOS int Ox21 level - SMB and
NetBIOS protocols are not supported. The print facility allows any LPT device to be
redirected to a network printer (Apple LaserWriter, ImageWriter II, or ImageWriter
LQ). It offers two modes of operation: untranslated, for PostScript (and ImageWriter)
savvy applications; and Epson LQ2500 emulation, the de facto printing standard in
the PC world.

Two user interface programs are provided. The first is the AppleTalk PC Desk
Accessory, or simply DA. It is a menu driven pop-up that is used for locating and
connecting to network services, viewing and modifying directory access privileges,
~ntering file and directory comments, plus other network and DOS utility functions.
When possible, related windows are modeled after their Macintosh counterparts
(the Chooser and Access Privileges desk accessories, the Finder's Get Info window).
DA features include on-line help, display of asynchronous notifications from
servers, and the ability to save connection information to a configuration file that is
read at boot time.

The second user interface program is ANET, the AppleTalk PC Command Line
Interpreter. It provides a subset of DA's functions in a command line format, and is
useful for constructing batch files to automate certain network-related tasks.

Requirements
AppleShare PC requires an IBM PC or compatible with at least 384k of RAM running
DOS version 3.1 or higher. It also requires Apple's AppleTalk PC driver, which
provides AppleTalk protocol support, and a driver-supported network card, such as
Apple's LocalTalk PC Card.

Requirements 3

AppleShare PC developer's guide - Apple Confidential Final draft

4 Chapter 1 : AppleShore PC Overview

(

AppleShare PC developer's guide - Apple Confidential Final draft

Chapter 2

Access Privileges

How access prlvlleges work 6

How prlvllege vlolaHons appear to DOS programs 7

How to work with access prlvlleges 8

5

AppleShare PC developer's guide - Apple Confidential Final draft

AFP defines a rich set of directory-level access controls that allow users to finely
control who can access their information and in what manner. The access
restrictions imposed by the server pose a new concern for PC programmers, as
prior to AppleShare PC there were no access control mechanisms in MS-DOS,
except for the read-only attribute bit for files. In this chapter we will review the AFP
access rights information, and then show how privilege violations appear to DOS
programs and how to properly support that environment.

How access privileges work
To AFP, every directory has an owner. Initially, a directory's owner is the user who
created it, or the special designation <Any User>, if the directory was created by a
guest. A directory can also be associated with a group, a named set of users set up by
the AppleShare administrator. Every directory has associated with it three privilege
sets, one for the owner, one for the group members, and one for everybody. If a user
falls in more than one of the three categories (owner and everybody, for example)
his/her effective privileges will be the maximum of the privileges given to all the
categories to which he/she belongs.

There are three distinct privileges that can be assigned to each user category. In the
AppleShare user documentation they are referred to as See Files, See Directories
(See Folders for Macintosh users), and Make Changes. In the AFP specification they
are known as Read, Search, and Write, respectively. To perform an operation on an
object (file or directory), you usually must have the See Directories privilege for
every directory along the path to that object, from the root to the grandparent of
the object. In other words, you must be able to search along the path from the root
directory all the way to the directory containing the object. Then, you must have
sufficient access privileges to the parent directory, which naturally depends upon
the operation. For instance, opening a file for read requires Read (See Files) access,
deleting a file requires Write (Make Changes) access, and renaming a directory
requires both Write (Make Changes) and Search (See Directories). Refer to the AFP
documentation for the complete list of file operations and their required access
rights. Do not rely upon the "Network Access Rights" discussions in the DOS
Technical Reference-, they do not refer to the AFP privilege system.

6 Chapter 2: Access Privileges

•

(

AppleShare PC developer's guide - Apple Confidential Final draft

How privilege violations appear to DOS programs
In the interests of application transparency, no new error mechanisms were added
to DOS. Instead, privilege violations are mapped into existing DOS errors and
critical errors. Specifically, all DOS calls that fail due to a privilege violation return
an access denied error, AX = 5. The only exception is the Find First Matching File
call, AH = Ox4E. If you attempt to find files and/or subdirectories in a directory that
you do not have the required privileges to, you will receive a no more files error,
AX= 18. The FCB (File Control Block) version of Find First, AH== Oxll, returns OxFF
in AL to indicate no match. In other words, programs can't tell the difference
between an empty directory and one that they don't have the privileges to see into
(although they can obtain this information; see the "DOS Enhancementsn section).

In the area of file i/o, privilege errors occur at the time the file is opened. This
-means that you should not normally see an access denied error if you try to read or
write a file which you had opened in the appropriate mode. There is one exception,
however. The various create calls (Create File, Create Unique File, Create Temporary
File) are all defined to create the file and then open it in compatibility mode for
read and write access. This poses a problem if the directory where the file is created
is a drop box. (A "drop boxn for files is a directory for which you have the Make
Changes privilege but not the See Files privilege. This allows you to create files
within the directory, but not to read or see those files, or reopen them once they are
closed.) Drop boxes are very useful, but are unusable to DOS programs if the DOS
specification is followed strictly, since any create call will fail for lack of read access.
In order to allow files to be created in a drop box, the DOS create call specification
has been relaxed. If the newly created file can not be opened for read access, then it
is returned opened for write access only. It is therefore possible to receive an access
denied error upon the first attempt to read from a file opened via a create call.

•:• Note: Since temporary files are ultimately renamed or deleted, and since those
operations aren't allowed in a drop box, it is senseless to create temporary files
in a drop box. AppleShare PC versions 1.1 and higher will fail the Create
Temporary File call (with an access denied error) if you do not have both See
Files and Make Changes access to the specified directory. Therefore, this
exception does not apply to the Create Temporary File call.

How to work with access privileges 7

AppleShare PC developer's guide - Apple Confldentlal Fina! draft

How to work with access privileges
Without AppleShare PC, the only access violation programmers had to handle was
trying to write to or delete a read-only file. Now there are many more situations
where an access denied error can occur. The fundamental axiom to keep in mind in
order to properly operate in AppleShare's privilege environment is don't make
assumptions. Unlike DOS, AppleShare PC's privileges are non-hierarchical. Being
able to write to a file does not imply the ability to read it, being able to make
changes to a subdirectory implies nothing about the parent directory or any child
directories, being able to create a file or directory does not imply that they will be
visible in a directory listing. About the only thing you can be sure of is that if you
successfully open a file, you will be allowed to access the file in the manner
specified by the open mode (except for the drop box exception explained earlier).
Below are some of the consequences of the AFP privilege system, and how you
should write your applications to deal with them.

The current directory might not be readable or writable.

Since Search is decoupled from Read or Write, it is possible for users to CHDIR into
a directory to which they have no read or write access. To them, it appears to be an
empty directory. Therefore, you should not rely upon being able to create files in
the current directory. If your application needs to create temporary files, we suggest
that you use the directory specified by the TEMP environment variable, if it exists.
This is the same environment variable used by Microsoft Windows applications to
create their temporary files, and is usually set up by the user to point to a RAM disk
or other fast storage device. If the Create Temporary File call fails with an access
denied error, you can assume that you do not have sufficient access privileges to the
specified directory, and can take appropriate action (ask the user for a different
directory name, etc.).

Saving files

Not all the methods currently used for saving files will work properly. For example,
creating a temp file and then renaming it fails in a drop box; checking if a file
already exists by making a Find First Matching File or Change File Mode call may
tell you the file is not there even though it is, or fail with an access denied error
even though you are allowed to create the file. The file extension mapping section
in chapter six contains an algorithm for saving files that works correctly in the AFP
privilege environment

8 Chapter 2: Access Privileges

•

•

/, ..

'l

('

/

AppleShare PC developer's guide - Apple Confldentlal Final draft

Chapter 3

Network Awareness & Multi
user Considerations

Atomicity 10

Opening files 11

Sharing modes 12
Compatibility mode 12
Overlays 13

Byte range locking 14

Temporary flies 14

Open flle categories 15

9

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

In this chapter, we will discuss the issues that arise in any multi-access environment,
be it a network or a multi-tasking operating system. In general, there are three classes
of application program: network dumb, network aware, and multi-user.

o Network dumb applications were not written for the multi-access environment;
they and their data files can reside on a server, but they can only be run by one
user at a time. Network dumb applications ignore the problem of multiple access
to data files, resulting in possible corruption of data and/or user confusion.

o Network aware applications allow several users to run the application
simultaneously, but do not allow simultaneous access to shared data files. Unlike
network dumb applications, however, they actively prevent simultaneous access,
and therefore ensure data integrity.

o Multi-user applications allow several users to simultaneously access and modify
shared data files. An example would be a point-of-sale inventory system, where
several sales terminals all simultaneously query and update a central inventory
database.

As networks and multi-tasking become prevalent in today's computing
environments, network awareness is fast becoming a minimum requirement for
applications. Many developers are adopting a two-tiered approach, offering a single
user, network aware product, and a full-scaled multi-user version. With proper design,
both versions can share substantially the same source code. This chapter discusses
the requirements for being network aware and multi-user.

Atomicity
To be successful in migrating from the single-process environment to that of
multiple users and processes, developers must adopt a mind-set of caution and
vigilance against race conditions. This is especially true with the advent of large
internetworks. High network traffic can flood internetwork gateways and bridges,
causing them to drop packets. Retransmission delays are on the order of seconds, so
small timing windows between two back-to-back commands can be turned into
gaping holes. Appendix A gives an example of extending a file that illustrates the
additional work required to ensure proper access.

l O Chapter 3: Network Awareness & Multi-User Considerations

•

AppleShare PC developer's guide - Apple Confidential Final draft

There's one atomicity-related area where DOS 3.0 proved a great help - creating a
new file. You used to have to use the Find First Matching File or Change File Mode
calls to check whether the desired file already existed, then proceed with the Create
File call if the named file was not found. This method is not reliable over a network,
since someone else can create the file just after you've checked to your satisfaction
that it's not there. (Also, if you don't have See Files access, these two calls will tell
you that the file does not exist even though it might.) To create a file without any
chance of overwriting, use the Create New File call (AX = Ox5B). It is implemented
atomically by the server as a single command, and will either succeed, fail with a
file extsts error, or fail with an access denied error if you do not have write access
to the directory.

Opening files
The most important factor in being network aware is to open files properly. MS-DOS
provides a variety of file open modes, which make it possible to control how you
access a file, as well as how others can access it. But in order to be effective, a
simple, oft-neglected rule must be followed: Keep data files open while working
with them! Most existing DOS programs open a file, read it into memory, and
then close it, only reopening the file later to write any changes back. Any such
application is network dumb, because while the memory copy of the file is being
worked on, other users/tasks can open the file and make changes to it. At best, those
changes will be overwritten without warning when the memory copy of the file is
written back to disk; at worst, the data file will become a garbled mix of the two
changed versions (if the application uses an incremental approach to saving).
Keeping data files open, in conjunction with the appropriate sharing modes, helps
ensure data integrity.

Sharing modes
All the DOS open calls take a parameter that indicate how you want to use the file.
This parameter is called the access mode, and may be either read, write, or
read/write. Starting with DOS 3.0, the Open a File call takes an additional parameter
which indicates how, if at all, you will allow others to access the file while you have it
open. This extra parameter is known as the sharing mode or as the deny mode. The
following four sharing modes are available.

•> Note: In order to use sharing modes, SHARE.EXE, the DOS file sharing support
module, must be loaded. Appendix A shows how to check if SHARE is loaded.

Deny Read/Write
Also known as exclusive mode, this completely blocks others from using the file
while you have it open.

Opening files 11

AppleShare PC developer's guide - Apple Confldentlal Final draft

Deny Write

This mode allows others to read the file while you have it open, but prohibits them
from making any changes.

Deny Read

Allows others to make changes to the file while you have it open, but prevents them
from reading the file. This mode is not very useful.

Deny None

Allows full read/write access to the file by others. This mode is used by multi-user
applications.

As a rule, use the least restrictive sharing and access mode possible. This gives
others a chance to access your files, and increases the probability that you will be
.able to successfully open them. For example, suppose that your program reads a
configuration file at start-up. You don't need to write the file, and there's no reason
to prohibit others from reading it, so you should open it for read access, deny write.
If you request read/write, the open will fail if anyone else has the file open for deny
write (or if you do not have the Make Changes access privilege in the file's
directory). Similarly, if you request deny read/write, the open will fail if anyone else
has the file open for read.

Compatibility mode
There is a special sharing mode used by network dumb applications called
compatibility mode. Files are in compatibility mode when opened via any of the
create function calls, any PCB function call, or if zero is specified in the sharing
mode field of the open (as it was in DOS 2.x). Compatibility mode is provided to
help old applications function in a network environment.

Compatibility mode files are opened in deny read/write sharing mode, unless the
file's read-only bit is set, in which case they are opened in deny write mode. One
implication of this is that you can allow a file to be read by multiple network dumb
applications if you set its read-only bit. One such application is COMMAND.COM,
which uses compatibility mode instead of deny write mode when loading files. This
yields an important point to remember: Even if an application ls network aware,
you must set its read-only bit to allow several users to load it
simultaneously.

12 Chapter 3: Network Awareness & Multi-User Considerations

•
(

(

AppleShare PC developer's guide - Apple Confldentlal Final draft

Another characteristic of compatibility mode is that even though the file is opened
in deny read/write (or deny write) mode, the opening process is allowed to open
the file as many times as it likes. This allows an application to obtain several
independent file handles to the same file, which violates the spirit of deny modes
and is not especially useful anyway. AppleShare PC supports multiple compatibility
mode opens in a limited manner only. The actual access mode for any open after
the first will be the minimum of the requested access mode and the access mode of
the first open; other access attempts will fail with an access denied error (see Table
3-1).

Table 3-1
Multiple compatibility mode opens

. Access mode of
first o~n

Read/Write

Read

Write

Overlays

Allowed access mode
ofsubsequento~ns

Any

Read

Write

If you use overlays, you must not deny read access when opening your overlay file;
otherwise multiple invocations of your application won't be able to run. If your
overlay loader opens files in compatibility mode, you can set the overlay file's read
only bit, which will allow multiple readers. Also remember that network speeds vary,
and in general are not as fast as a local hard disk, so you should plan your overlay
scheme accordingly.

Byte range locking 13

AppleShare PC developer's guide - Apple Confidential Final draft

Byte range locking
Sharing modes are necessary but not sufficient to properly implement a multi-user
application; file updates must be coordinated so as to maintain data consistency.
The DOS primitive for ensuring atomicity of updates is the byte range lock. When
you lock a byte range of a file with the Lock File Access call, AX = Ox5COO, you
prevent others from reading or writing anywhere within that range of the file until
you release the lock. In general, you should lock regions for short periods of time
only. DOS automatically attempts access to locked regions several times before
returning a lock violation error. You can set the number of retries with the IOCTL
Change Sharing Retry Count call, AX= Ox440B.

+ Note: In order to use byte range locking, SHARE.EXE, the DOS file sharing
support module, must be loaded. Appendix A shows how to check if SHARE is
loaded.

You should use byte range locks whenever you write to a file that does not deny
write to others. It is clearly necessary to lock a range while performing a read
modify-write operation, to prevent others from seeing inconsistent data before the
write has completed. But something less obvious is that you should byte range lock
while performing a write-only operation, such as appending to a data file. This is
because writes to a network drive are not atomic; they can be broken up into several
small writes. In between these writes, another user can lock part of the range you are
trying to write to, or start appending his or her own data, overwriting yours.

Proper use of byte range locking requires careful design, a paranoid programming
style, and thorough testing. Incorrect locking schemes are subject to timing
dependent race conditions that may seem to work in a given machine/network
configuration; but changing the speed of one of the machines, or the load factor on
the network, can bring problems to the surface. A good test method is to embed
variable timing loops in your applications, to simulate different CPU and network
speeds. The Multi-User VO section of Appendix A gives an example of byte range
locking.

Temporary files
Another network-awareness area of caution is the creation of temporary files.
Specifically, don't use fixed temporary file names, as another invocation of your
application may be running, using the same file name. You can use the •soft• create
call (AH • Ox5B) and generate your own unique temporary file names, but we
strongly recommend that you use the built-in Create Temporary File call (AH "'
Ox5A), as this call works correctly in the AFP access privilege environment Also, as
pointed out in the access privileges section, you should try to create your temporary
files in the directory pointed to by the TEMP environment variable, if it exists.

14 Chapter 3: Network Awareness & Multi-User Considerations

AppleShare PC developer's guide - Apple Confidential Final draft

Open file categories
The various open deny modes provide for the following four major categories of
file access:

o Exclusive (One reader/writer)

Only one process can have the file open. Useful for application temporary files.

o Browse (Multiple readers)

Good for shared read-only files, such as help files, configuration files, library files,
overlays, and templates.

o Single Writer (One writer, multiple readers)

A good first step towards multi-user behavior. Allows others to read, while one
makes changes. Good for log files, where writing action is append-only.

o Multi-User (Multiple readers/writers)

Good for databases and other shared centralized data applications.

Table 3-2 lists the access mechanisms required for each of these categories.

Table 3-2
Open file categor1es

Categories Acceu mode Deny mode Byte range

Exclusive

Browse

Single writer (writing to tile)

Slngle writer (reading only)

Multl-user

Read Wnte Read Write locks required

x x x x
x x
x x x x
x x
x x x

By following these guidelines for opening files, byte range locking, and creating
temporary files, your application will be network aware, and will operate correctly in
multitasking environments. If you then add sensitivity to access privilege violations
and follow the guidelines in the chapter on directory enumeration, you will be
• AppleShare aware.•

Open file categories 15

AppleShare PC developer's guide - Apple Confldentlal Final draft

16 Chapter 3: Network Awareness & Multi-User Considerations

AppleShare PC developer's guide - Apple Contldentlal Final draft

Chapter 4

Directory Enumeration

Alphabetically ordered directories 18

Enumeration guidelines 19

Enumeration lifetime 19
Reappearing directory entries 20
Backing up 22

17

AppleShare PC developer'• guide - Apple Confldentlal Final draft

Alphabetically ordered directories
One feature of the AppleShare server is that directories are always maintained in
alphabetical order. This is in sharp contrast with MS-DOS, which uses a creation
order directory storage mechanism. Files are placed in DOS directories in the order
of their creation. If a file is deleted, this leaves a "hole" and the next file that is
created will fill that hole. The following example illustrates the difference:

C: \> dir

Volume in drive C ia NORMAL DOS
Directory of C:\

XYZ
4:55p

free
1 File(a)

C:\> copy xyz a

3 2-12-88

246272 bytes

1 File(a) copied

C:\> del xyz

C: \> copy a c
1 File(a) copied

C:\> copy ab
1 File(s) copied

C: \> dir

Volume in drive C ia NORMAL DOS
Directory of C:\

c 3 2-12-88
4:55p
A 3 2-12-88
4:5Sp
B 3 2-12-88
4:5Sp

3 File (s) 245248 bytes
free

Figure 4·1

D:\> dir

Volume in drive D is AppleShare
Directory of D:\

XYZ
4:55p

3 2-12-88

l File(a) 11131904 bytes
free

D:\> copy xyz a
1 File(a) copied

D:\> del xyz

D:\> copy a c
l File (s) copied

D:\> copy a b
1 File(s) copied

D:\> dir

Volume in drive D ia AppleShare
Directory of D:\

A
4:5Sp
B
4:5Sp
c
4:5Sp

3 2-12-88

3 2-12-88

3 2-12-88

3 File(a) 11130880 bytes

DOS directory order versus AppleShare sorted directory order

18 Chapter 4: Directory Enumeration

•

AppleShar• PC developer's guide - Appl• Confldentlal Flnal draft

PC programmers never had to think about how DOS maintained its directories, but
the truth is that the DOS Find First/Find Next (or enumeratton) mechanism relies
upon the assumption of a creation order storage. Naively implementing the
enumeration mechanism on top of AppleShare's sorted directory structure would
result in operations such as wild card delete missing files - in fact, DEL•.• would
end up deleting every Q1hcr file.

AppleShare PC presents the illusion of a creation-order directory structure to DOS,
so that most wild card directory operations perform as expected. So long as a few
simple rules are followed, directory enumeration should look no different to a
program than it does on a DOS drive. Let's review the basics of enumerating a
directory; then we'll describe the additional rules imposed by AppleShare PC.

Enumeration guidelines
Directory enumeration is done via the Find First Matching File (AH = Ox4E) and
Find Next Matching File (AH "' Ox4F) calls (there are also PCB equivalents of these
calls; they work similarly). To start an enumeration, you call Find First, passing a wild
card file specification. DOS returns at the current disk transfer address (OTA) a
buffer containing information on the first matching file found, plus a reserved area
used by Find Next. To find subsequent files, you call Find Next, which finds the next
matching file (using information stored in the reserved area), and updates the
reserved area. This continues until there are no more matching files, at which time
DOS returns a no more files error, AX = 18.

It should go without saying that you should not change or rely upon the contents of
the reserved area. For one thing, it is different for AppleShare drives than for
normal DOS drives. The DOS program TREE modifies the reserved area instead of
using the published DOS interfaces. As a result, TREE does not work on AppleShare
drives.

Enumeration lifetime
An important observation is that the reserved area contains all the information
DOS needs to resume a directory enumeration. By saving and restoring the reserved
area, you can perform depth-first searches that span an entire subtree.
Unfortunately, the reserved area is not large enough to hold all the information
AppleShare PC requires to resume a directory search. As a consequence,
AppleShare PC must allocate memory to save the additional information it needs.
With DOS drives, you can save the reserved area to disk, restart the workstation
much later, and continue searching where you left off. With AppleShare drives, you
can not continue searching once the allocated memory holding the search
information has been freed, which occurs in the following situations:

Enumeration guidelines 19

AppleShare PC developer's guide - Apple Confidential Final draft

1. After no more files has been returned.

2 When the process that issued the Find First exits.

3. If the process that issued the Find First leaves enumerations dangling.

What does it mean to leave enumerations dangling? The best example is a control
c'd DIR command. COMMAND.COM will never complete the interrupted
enumeration, in other words, issue Find Nexts until no mon:1 files is returned.
Therefore, the memory associated with that Find First will not be reclaimed by
situation 1. To make matters worse, shell programs like COMMAND.COM never exit,
so the memory won't be reclaimed by situation 2. If a process performs a Find First,
and it already has several (default two) outstanding enumerations within that
directory, the process is presumed guilty of leaving enumerations dangling, and all
its enumeration data is flushed, meaning that any Find Next based upon a previously
saved reserved area will return no more files.

Reappearing directory entries
As we mentioned before, AppleShare PC creates the illusion of a creation-order
directory structure, so that wild card operations work correctly. However, you must
realize the dynamic nature of a directory that is being manipulated simultaneously
by several users. Files can come and go while you are enumerating, which gives rise
to another rule of enumeration: be prepared to cope with files that seemingly
reappear. For example, suppose you are enumerating a DOS directory, and come
across file X. Before you are finished enumerating, another application can delete X
and re-create it with the net result that it appears a second time during your
enumeration (assuming that the recreated X was placed at a later point in the
directory which can happen if a third application took the slot of the deleted X; see
Figure 4-2).

20 Chapter 4: Directory Enumeration

(

(

AppleShare PC developer's guide - Apple Confidential Flnal draft

Reading
Foll owing
have not
read yet

files
been

Deleted Ille
is recreated

Figure 4·2

Chocolate
Baker

Almond
Alpine
Roast

Chocolate

Vanilla

Almond
Alpine
Roast

Boker

Reappearing flies under DOS

Chocolate
Blank spa
by file be

ce created-+-
ing deleted

Reading

New file occupies
space le~by
deleted file

Almond

Alpine
Roast

il
Chocolate

J
J

With AppleShare drives, it's even easier to see X more than once; all that's
necessary is for another application to create files in the same directory that are
alphabetically less than X (see Figure 4-3).

Enumeration guidelines 21

AppleShare PC developer's guide - Apple Confidential

Reading
Following
have not
read yet.

flies
been

New file created ___.

File reappears -

Figure 4-3

Almond
Alpine

Baker
Chocolate

Ace
Almond

Alpine
Baker
Chocolate

Reoppearlng files under AppleShore PC

Final draft

If the directory changes enough becween Find Nexts, it is possible for the creation
order illusion to break down. We mentioned before that without the illusion of a
creation-order directory storage, certain wild card operations can end up missing
files. Since it's probably better to see some files twice than to not see some files at
all, and since network aware programs must be prepared to filter out reappearing
files anyway, AppleShare PC automatically restarts an enumeration whose creation
order broke down. In other words, the next Find Next returns the first matching file,
and the enumeration then proceeds normally from that point.

Backing up
There is one more proscribed enumeration activity: "backing up." Backing up
means replacing the reserved area with a saved reserved area from the same
enumeratjon. For example, let's say you retrieved 3 matching files, and then
replaced the reserved area with the reserved area returned with the first matching
file. On a DOS drive, this would cause the next Find Next to "back up" and return
the second matching file again. Backing up confuses the creation-order mechanism
and produces undetermined results; in the above example, the next Find Next might
return the second file, but it might not.

22 Chopter 4: Directory Enumerotlon

f

AppleShare PC developer's guide - Apple Confidential Final draft

Chapter 5

DOS Enhancements

Large volumes 24

Moving directories 24

Enhanced file and directory lnformaHon 25

Lo'1Vercase names 25
Modified bit 26
Checking access privileges 26

23

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

Although the primary design goals of AppleShare PC were transparency of use and
compatibility with existing applications, the following AFP features were made
available as DOS enhancements, without sacrificing compatibility or transparency:

o Support of large volumes

o Moving directories

o Enhanced file and directory information

Large volumes
AFP volumes are not limited to 35Mb like normal DOS drives. In fact, as optical
storage becomes available, we'll eventually see truly huge volumes. To prepare for
the future, make sure that you treat file sizes and disk space as unsigned quantities.

Moving directories
The Rename a File call (AH = Ox56) allows you to rename files and to move files to
another directory while renaming. It also allows directories to be renamed, but not
moved. AFP has no such restriction, so on AppleShare drives, you can use Rename a
File to rename and move a directory tree. For example, you can rename the
directory \A\ B to \ C, which would rename it from B to C, while at the same time
moving it from \A into the root directory (see Figure 5-1).

24 Chapter 5: DOS Enhancements

AppleShare PC developer's guide - Apple Confidential

Figure 5-1

> r-1---i
0 [!]

Using the Rename a File call to rename and move

Enhanced file and directory information

Final draft

AppleShare PC can return additional information about files and directories, such
as a directory's access privileges. This additional information is returned along with
the normal information in response to a Find First/Next call, but only if your
application first tells AppleShare PC that it is AppleShare aware. Appendix A
describes the special call needed to enable enhanced file and directory
information.

Lowercase names
DOS uppercases all file names, so files created or renamed from PCs are always
uppercase. Macintosh file names have no such restriction, and files created or
renamed from Macintosh computers will most likely be in lowercase or mixed case.
Normally, AppleShare PC uppercases all file names before returning them to DOS.
When enhanced information is enabled, file names returned will reflect their true
case as seen by Macintosh users. This means that AppleShare aware applications
must use case-insensitive comparisons for checking file names. Appendix A shows a
case-insensitive comparison that includes logic for handling international
characters.

Enhanced file and directory information 25

AppleShare PC developer's guide - Apple Confldentlal Final draft

Modified bit
Under AFP, each file and d.irectoiy has three dates associated with it: a creation
date, a modification date, and a backup date. The modified bit (IBM calls it an
archive bit, but the bit is set when the file has been modified, not when it has been
archived) is synthesized by comparing the modification date to the backup date.
Since directories have a modification date and backup date too (although they are
not accessible from DOS) AppleShare PC can return a meaningful setting of the
modified bit for directories. By default, AppleShare PC only sets the directoiy bit in
the attribute word, but it will also set the modified bit properly if enhanced
information is enabled. The same applies to the attribute word returned by the
Change File Mode call (AH = Ox43). AppleShare aware applications must check
whether an object is a file or directoiy by testing the d.irectoiy bit (OxlO) in the
attribute word, not by checking if the attribute word equals OxlO.

Checking access privileges
Normally, the only information applications get about privilege violations is the
generic access dented error. It would be helpful if applications could check their
access to a particular directoiy before attempting operations. Then they could warn,
for example, that writing a file to a drop box is irrevocable; the file can not be
changed, deleted, or read back. Programs with a window interface, such as the DA or
the Macintosh Finder, use access privilege information to dim or gray inaccessible
directories (folders).

The four byte field that returns file size is normally set to zero for directories. When
enhanced information is enabled, AppleShare PC returns access privilege
information in those four bytes. The format of the four bytes is shown in Figure 5-2
and is described next.

26 Chapter 5: DOS Enhancements

AppleShare PC developer's guide - Apple Confldentlal Final draft

User ls owner Privileges

Write Read Search

3 x x x User

2 x x x Everybody Access
x x x Group categories

0 x x x Owner

7 6 5 " 3 2 0

Figure 5-2
Access prlvlleges Information tleld

Byte 3 is typically the byte of interest - it shows the rights granted to the user. If bit 7
is set, then the user is also the directory's owner, and can therefore change the
directory's access privileges (with DA or ANE1) if necessary. If all four bytes are
zero, that would indicate a directory that no one, not even the owner, could access.
You can therefore use the same routine for all drives and assume that a zero byte
indicates a non-AppleShare drive.

Enhanced tlle and directory information 27

AppleShare PC developer's guide - Apple Confidential Final draft

28 Chapter 5: DOS Enhancements

..

AppleShar• PC developer's guide - Apple Confldentlal Flnal draft

Chapter 6

Integration with Macintosh
Applications

Common file formats 30

ASCII text 30

Fii• extension mapping 33

Adding mappings 34
Saving files 35

29

AppleShare PC developer's guide - Apple Confldentlal Final draft

Perhaps the most exciting aspect of AppleShare is the potential for heterogeneous
computers to directly share data. This chapter discusses building applications that
can share data with Macintosh systems, via the AppleShare server.

Common file formats
The ideal data file is one that can be read and manipulated by both PCs and
Macintosh Computers without any translation. That way, the file can be used equally
by users of either machine, without regard as to which machine created it. So the
most important rule for Macintosh/PC integration is to use common file formats.
This will allow you to make optimal use of the file extension mapping feature,
explained later. Another good idea is to support standard file formats whenever
possible, such as PICT format for picture data and WKl format for spreadsheets, to
name only a few. This will allow your application to read a data file without regard
as to what application created it.

When designing a common file format, remember to agree upon one
representation for numeric and other data. Since the byte ordering of the 680x0 and
80x86 microprocessor families are different, you will probably have to modify or
provide your own standard i/o libraries, to ensure that a uniform byte ordering is
used in your files.

ASCII text
The lowest common denominator standard format is plain ASCII text. It is very
useful to support some form of ASCII input and output, so that text data from other
applications can be assimilated. Unfortunately, text representations are not as
universal as one might hope. The key difference lies in the choice of end-of-line
marker. The Macintosh OS uses carriage return (OxD), A/UX uses line feed (OxA)
and MS-DOS uses a carriage return line feed pair. With the advent of AppleShare
PC, MS-DOS coprocessors and emulators, and other Macintosh/MS-DOS
integration facilities, it would be very desirable to write your i/o routines so that
they properly handle any standard end-of-line delimiter combination. The
additional work is small, and is well worth the effort. Appendix A includes an
example of the C gets () function that accepts any form of delimited text.

A second issue confronting developers that wish to sell internationally is that of
foreign character sets. Both IBM and Apple have extended ASCII to 8 bits, using the
characters from 128-255 for graphics and foreign characters. Unfortunately, the two
extensions are not the same: some characters present in one are not available in the
other, and some characters that are available in both extended character sets are
represented by different codes.

30 Chapter 6: Integration wtth Macintosh Applications

(

AppleShare PC developer's guide - Apple Confidential Final draft

Although AppleShare PC is a connectivity product, and does not address issues of
data content, it does provide support for international characters in file names,
which can be used as a model for application developers. AppleShare PC versions
1.1 and higher map all PC file names into the Macintosh extended character set,
and perform the inverse mapping on file names returned from enumeration calls.
That way, the file names are displayed correctly on both systems, and Macintosh file
names also appear normally to DOS users. For consistency with this approach, it is
suggested that developers use the Macintosh character set for their common file
format, and perform the required conversions in their PC applications. Table 6-1
shows the PC/Macintosh character mapping used by AppleShare PC, along with the
lowercase/uppercase mapping used by DOS.

ASCII text 31

..
AppleShare PC developer's guide - Apple Confidential Final draft

Table 6-1 - PC I Macintosh character mapping

.c.b.il t::l.:1'2'2£ld. I.!'2~a~ed. .chil t::ia'2'2£ld. il'2~Ued. Cl.ll :::1.:i'2'2!:ld. I.!'2~a~ed.
128 c 130 <;: 171 % 219 Cl 214 rr 227 "
129 ti 159 ii 154 ti' 172 ~ 221 > 215 ~~ 228 !.-..
130 e 142 e 69 E 173 I 193 j 216 * 229 A
131 a 137 a 65 A 174 c 199 « 217 J 230 t
132 a 138 a 142 A. 175 :t 200 » 218 r 231 A
133 a 136 a 65 A 176 m 160 t 219 I 232 E
134 A 140 a 143 A 177 I 164 § 220 • 233 E
135 <; 141 <;: 128 c 178 I 251 . 221 I 234 f
136 ~ 144 e 69 E 179 I 166 'JI 222 I 235 !
137 e 145 e 69 E 180 ~ 168 ® 223 • 236 I
138 e 143 e 69 E 181 ~ 169 © 224 a 237 :t
1.39 i 149 'i 73 I 182 ~I 170 TM 225 ~ 167 ~
140 1 148 1 73 I 183 11 171 226 r 238 6
141 1 147 i 73 I 184 'I

172 .. 227 11' 185 1t
142 A 128 A 185 ~I 173 ~ 228 I: 183 I
143 A 129 J.. 186 II 175 "' 229 rr 239 0
144 E 131 E 187 ii 246 A 230 µ 181

~ 145 ae 190 Cl! 146 If. 188 :!J 247 - 231 T 240
146 If. 174 /£ 18 9 .u 184 n 232 t 241 0
147 0 153 0 79 0 190 :d 186 I 233 9 242 (J
148 0 154 6 153 6 191 l 198 ii 234 n 189 n
149 0 152 0 79 0 192 201 ... 235 6 182 a
150 0. 158 Q 85 u 193 .L 202 236 - 176 00

151 u 157 u 85 u 194 T 203 A 237 ~ 191 "' 152 y 216 y 89 y 195 I- 204 A 238 E 243 'O
153 6 133 0 196 205 0 239 n 244 u
154 ti 134 u 197 + 206 CE 240 • 245 l.

155 ¢ 162 ¢ 198 I= 207 Cl! 241 ± 177 ±
156 £ 163 £ 199 I~ 208 - 242 ;t 179 <!:
157 y 180 y 200 I!: 209 - 243 $ 178 s
158 I\ 139 a 201 rr 210 " 244 r 248 -
159 f 196 f 202 :!!: 211 ,, 245 J 249 w

160 a. 135 a 65 A 203 ii' 212 246 + 214 +
161 i 146 i 73 I 204 I~ 213 247 • 197 -
162 6 151 6 79 0 205 = 215 0 248 • 161 °
163 u 156 u 85 u 206 ~~ 217 y 249 • 250
164 f1 150 i\ 165 R 207 ::!: 218 ,., 250 . 165 •
165 R 132 a 208 Jl 220 < 251 ./ 195 .J
166 • 187 I 209 ;= 222 fi 252 n 252
167 g 188 Q 210 'Ir 223 fl 253 • 253 .
168 l 192 (. 211 IL 224 * 254 • 254
169 ,.. 155 0 212 225 255 255 w

170 ... 194 ..., 213 226 ,

32 Chapter 6: Integration with Macintosh Applico11ons

AppleShare PC developer's guide - Apple Confidential Final draft

File extension mapping
Ideally, if a data file created by a PC is file format compatible with a Macintosh
application, Macintosh users should be able to double click on the document icon
to run the correct application and work with the file. AppleShare PC has a very
powerful file extension mapping mechanism. With the appropriate mapping, all
data files created by a PC application can be immediately opened by its Macintosh
counterpart by double-clicking the icon. Here is how file extension mapping works:

Associated with every Macintosh file are two fields, called the creator and type. The
creator field is a four byte id that tells the Macintosh Finder what application to run
if the file's icon is double clicked. The type field is a four byte id that identifies what
kind of document the file represents. The type field allows applications to present
users with a list of files that they can open, even though those files may not have
been created by that application. For instance, a word processor that can read plain
ASCII text files in addition to its own files will show in its open dialog box all files
with type "TEXT", regardless of their creator. The combination of the creator and
type determine what icon will be displayed by the Finder for that file.

AppleShare PC assigns a creator and type to every file it creates, based upon the
file's file extension. The default creator/type pair is the creator "mdos" and the type
"BINA", which represents a generic MS-DOS binary file. File extensions that are
known to represent ASCII files (such as .TXT, .BAD are assigned the creator "mdos"
and the type "crlf", which represents a carriage-return line-feed delimited MS-DOS
text file (as opposed to Macintosh text files, which are delimited by carriage returns
only). Macintosh applications that want to read and write MS-DOS text files should
look for and use the "crlf" file type.

When AppleShare PC mounts a volume, it adds the two icons shown in Figure 6-1 to
the volume's desktop database, so that an icon is always displayed for the
mdos/BINA and mdos/crlf pairs.

Figure 6·1
Default Icons

MS-DOS Binary File MS-DOS Text File

File extension mapping 33

AppleShare PC developer's guide - Apple Confldentlal Final draft

AppleShare PC is shipped to users with several built-in mappings, and several other
creator/type pairs that users can select from. For example, there are several
Macintosh programs that can read Lotus 1-2-3 spreadsheets; one of them is set up as
the default for the .WKl file extension, and users can instead select one of the others
with DA or ANET. Users never see the actual creators and types; each pair has a
name that is used to identify it in DA's Change Extension Mapping menu. For
example, the name "DOS-Text" refers to the mdos/crlf creator/type pair.

Adding mappings
If your program produces data files that can be read by a Macintosh application,
you should set the appropriate file extension mapping so that your PC-created data
files become "double clickable". There are two methods of doing this. One is to add
your mapping information dynamically. This is done by making a special call to
AppleShare PC, specifying a file extension and creator/type to map to. Appendix A
shows how to make this special call. The second method is to add a new named
creator/type pair (for example, DOS-Text = mdos/crU) to DA.OTA, AppleShare
PC's configuration file. This adds your pair to the list in DA's Change Extension
Mapping menu, allowing users to choose what file extensions map to your pair. You
can also add new mapping defaults to DA.OTA, specifying what file extensions map
to your new creator/type pair. Table 6-2 contrasts the two methods.

Table 6-2
File extension mappings - adding directly vs. adding to DA.OTA

Add directly Add to DA.DTA

Mappings take effect Immediately Upon reboot

Cod• supplied by Developer Apple Computer

Duration of mapping Untll reboot Until changed
or untll changed

User can select from DA/ANET No Yes

The format of DA.OTA is proprietary and subjea to change. Developers can
contact Apple's Developer Services group to receive code that they can incorporate
into an installation program that will add new creator/type mappings to DA.DTA.
You can also speak to Developer Services about the possibility of pre-configuring
your mappings into future releases of AppleShare PC.

34 Chapter 6: Integration with Macintosh Appllcattons

•

AppleShare PC developer's guide - Apple Confldentlal Final draft

Most likely you will only be interested in modifying DA.OTA if you are the supplier
of the associated Macintosh application and your mapping information is not
already in the DA.OTA shipped with AppleShare PC. In this case, you'll usually
perform the modification as part of the installation process. For other developers,
it's probably sufficient to set mapping info on the fly. You can send your file
extension mapping information to AppleShare PC as part of your application start
up procedure. Another method is to set file extension mappings as part of the
saving process. Just prior to saving a file, set the mapping of the file's extension to
the desired creator/type. By doing this, all saved files will have the correct
creator/type, regardless of their file extension. Of course, since you may be
overriding the user's default setting, you should restore the original creator/type
after saving. Likewise, if using the start-up method, you should restore the previous
creator/type settings when your application exits. Going one step further, you should
prompt the user before changing the mapping of any file extension that doesn't
map to mdos/BINA or mdos/crlf (the default mappings).

If you are developing a new PC application, you should choose unique file
extensions for your data files, if at all possible. That way, your files can be easily
distinguished from those of other applications, making the file extension mapping
unambiguous.

Saving files
AppleShare PC assigns a creator/type when a file is created and not when it is
renamed. This poses a problem for programs that save files by writing a temp file
and then renaming the temp file to the destination file name, instead of the easier
but less robust method of simply overwriting any existing file. The problem is that
the saved files would have an icon based upon the extension of the temp file, not
the final file name. To remedy this situation, AppleShare PC makes the following
special case to handle the above method of file saving:

If a rename call ts made where the source ts the last file that was created by
AppleShare PC and the dest1natton name ts the same as the source of the last
delete or rename, tben the source will be renamed, and its creator/type wt// be
changed to that of the dest1natton file extension.

File extension mapping 35

AppleShare PC developer's guide - Apple Confldentlal Final draft

Given this special case, developers should use the following algorithm for saving
files:

If the destination does not exist
write the file to the destination.1

else
write the file to a temporary file
if backup (.BAK) files are desired

delete any existing .BAK file
rename the destination to .BAK2

else
delete the destination

endif
rename the temporary file to the destination2

endif

Multi-User Reminders:

1

2

36

Use DOS function OxSB (Create New File) so that the test for
existence and the subsequent create are an atomic operation.

Be prepared for the rename to fail, as another user could
create a file of the same target name just prior to your
performing this operation.

Chapter 6: Integration with Macintosh Applications

..

•

(

AppleShare PC developer's guide - Apple Confidential

Chapter 7

Print Access

BIOS-level support 38

DOS-level support 40

Printer calls 41
Printer critical errors 41

Epson mode 41

Postscript mode 42

Final draft

37

AppleShare PC developer's guide - Apple Confidential Final draft

AppleShare PC provides transparent print access to networked LaserWriters and
ImageWriters. Network printers look to applications like an Epson LQ2500 printer
attached to one of the LPTn ports; AppleShare PC provides the required
translations to the target printer. Users can also disable translation, allowing
applications to send PostScript (or ImageWriter) commands directly to printers.

BIOS-level support
AppleShare PC intercepts printer requests at the BIOS (int Oxl 7) level because many
applications use the BIOS for printer i/o instead of DOS. This means that
applications using both BIOS and DOS calls to the printer are supported by
AppleShare PC. Applications that directly write to the printer ports without going
through the BIOS are not supported. In other words, the printer output will not be
redirected over the network. Intercepting at the BIOS level has the following
ramifications for developers:

o BIOS supports more printers than DOS
DOS supports only printers designated by LPTl (or its synonym, PRN), LPT2, and
LPT3; the BIOS allows more than three printers (the printer's ID number is just
an argument in the DX register). AppleShare PC allows users to specify printer
names from LPT1-LPT9; applications that print by means of the BIOS should
therefore support these additional printers. In other words, with AppleShare PC's
nine printer choices, developers should not assume the absence of an LPTS just
because DOS stops support at LPT3.

o Requesting printer status is supported (and is recommended)

All the status bits defined for local printers (except the acknowledge bit), are
supported on network printers. These bits allow you to determine when the
printer is busy, out of paper, and other status situations. Figure 7-1 shows the
printer status messages associated with the bit settings.

38 Chapter 7: Print Access

AppleShare PC developer's guide - Apple Confidential

Bits Write foolt

$08

$01

$10

$20

$80

Figure 7·1

Print S8$SIOn
timeout

(0x18)

x

x

Printer status me1tage1

Printer
selected

(Oxl 1)

x
x

Printer out
of paper

(0x38)

x

x
x

Printer not
busy

(Ox<Xl)

x

x

Printer status messages

1/0 error
(0x08)

x

Final draft

With PostScript, much of the computation involved with imaging is performed by
the printer, not the workstation. Therefore, delays can occur while the printer is
drawing a complex graphic, or loading a new font. If you try to send a character
to the printer when it is busy, your program will be suspended while AppleShare
PC waits for the printer. If you want your program to go on running (in other
words, your application performs background printing), you should use the BIOS
to request printer status before sending each character. AppleShare PC will clear
the high bit of the status byte if the printer is not ready to accept more
characters. In this case, do not let your program send a character to the printer.
Instead, design your program to wait and retry the print function later (but no
later than 4 seconds, as described further on). Also, you should allow a generous
period of time for a busy printer to complete a task before reporting an error
back to the user. Better still, leave wait-related decisions up to the user by having
your program continue trying to print, while providing the user with the option to
Cancel.

BIOS-level support 39

AppleShare PC developer's guide - Apple Confidential Final draft

o There is no OPEN command at the BIOS level

Network printing requires opening a session with the specified printer. Since the
BIOS has no 'open' command, a printer session is established when the first
character is sent to the printer. If a session hasn't been established yet, status calls
made to a redirected printer port will return that the printer is ready, even
though it may not. The only way to check if the printer is truly available is to send
the first character of your document. At that time, AppleShare PC will try to open
a session with the printer (which can take as long as a minute). If no error is
returned from sending the first character, then you can proceed. Otherwise,
assume that the printer is temporarily unavailable (it's probably printing another
job), and allow the user to retry or abort. If you are printing from DOS, you will
receive a critical error if the session could not be opened (for more information,
refer to the DOS-level Support section later in this chapter).

o There is no CLOSE command at the BIOS level

Just as the BIOS provides no notice of when to open a printer session, it similarly
has no mechanism for an application to tell when it is through with the printer.
AppleShare PC uses two mechanisms to determine when an application is done
printing: timeout and user notification. There is a "user-settable" timeout
(default=5 seconds). If AppleShare PC does not receive a request to print a
character or a status request for the printer within this amount of time, it will
assume that the print session is over and close the print session. For those
applications which print slowly or sporadically (such as the DOS PRINT
program), the user can set a much higher timeout value Cup to infinity) and
manually terminate printing by pressing <ctrl-alt-FlO>. It is much better to not
require user intervention to close a print session because 1) users shouldn't be
bothered with these things, and 2) if they forget to press <ctrl-alt-FlO>, the printer
can be tied up for a long time, preventing others on the network from using it.
Therefore, when printing, you should make sure to send a character or request
printer status at least every 3 or 4 seconds, so that you work properly with the
normal 5-second session timeout value.

DOS-level support
Printing from DOS is virtually identical to printing from the BIOS, and the same
issues apply. This section describes the DOS calls and critical errors for printers.

40 Chapter 7: Print Access

..

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

Printer calls
You can send a character to the printer (usually LPTl) with DOS function 5. The
printer is also accessible from the handle i/o calls by means of the handle stdprn ..
4. The normal handle i/o calls, specifying either LPTl, LPT2, or LPT3 as the printer
name to the OPEN call can also be used as a more generic method of accessing the
printer. To request printer status from DOS, use the Get Output Status IOCTI. call
(AX = Ox4407).

Printer critical errors
The following two DOS critical errors are associated with printing:

o Printer not ready (AL• Ox15)

This error is produced for the user after DOS repeatedly fails to print a character.

+ Note-. The actual error signalled is Drive not ready, but this error can be
distinguished from a disk-drive problem by the locus value returned by Get
Extended Error: for printers the locus will be 4 (serial device) and for disks it will
be 2 (block device). Also, the high bit of AH upon entry to the int Ox24 handler
will be set for serial devices, and clear for block devices. Since normal printer
delays can and do exceed DOS's timeout value, you should retry the operation in
response to this error several times before reponing an error to the user. Better
still, continue retrying while providing the user with the option to Cancel.

o Printer out of paper (AL • OxlC)

LaserWriter printers notify AppleShare PC when they are out of paper or the paper
trays are removed. (ImageWriter printers do not provide this information on paper
status.) The proper response to this error is to provide users with a message
indicating that the printer is out of paper and offer an option to Cancel. But design
your program to keep retrying the operation until it succeeds or the user intervenes.
This will keep AppleShare PC from closing the printer session (due to the inactivity
timeout) while the user refills the paper tray.

Epson mode
When in Epson emulation mode, AppleShare PC supports all of the Epson LQ2500
command set, except for color, proportional mode fonts, and downloadable
character sets.

Epson mode 41

AppleShare PC developer's guide - Apple Confidential Final draft

•> Note: AppleShare PC does not support the notion of dip switches that can be set
by users. If you want a feature or character set normally chosen by a dip switch,
send the escape sequence to override the dip switch setting, or AppleShare PC's
default, which is undefined, will automatically be selected.

Postscript mode
Most PC applications that support PostScript printing were designed for printers
directly connected to the workstation (usually by means of COMl). This led
developers to make some design decisions that do not port well to a shared printer
environment. Developers writing PostScript applications need to be aware of the
following two facts:

-o The printer is not necessarily directly connected through COMl.

This fact presents the following two important guidelines:

1) Allow any LPT port to be specified as a PostScript printer.

2) Do not a priori put the printer in hardware-handshaking mode; this does not
work with network printers.

o The printer is a shared resource, within an environment of mixed personal
computers.

When several systems make changes to the LaserWriter printer's permanent
memory, those changes are likely to conflict. Therefore, do not modify the
permanent memory of a shared LaserWriter, except to add a new font. The largest
users of LaserWriters are Macintosh workstations. The workstations rely upon the
modifications to the LaserWriter printer's permanent memory made by Laser Prep,
part of the Macintosh system software.

When global changes are made to the LaserWriter printer's memory (in other
words, use the ExitServer construct), the developer risks destroying Laser Prep. If
destroyed, the next Macintosh to print to the LaserWriter must reload Laser Prep, a
disruptive process. A more serious consequence can occur if the Macintosh does
not detect that Laser Prep was reloaded; this causes undefined print problems. Laser
Prep is subject to change with each new release of Macintosh system software, so
don't assume that your system is functioning properly as long as you don't destroy
the current version. A new version of Laser Prep can still be destroyed by your
application. AppleShare PC never modifies the permanent memory of the
LaserWriter, but it cannot stop a PostScript application from doing so.

42 Chapter 7: Print Access

(~

AppleShare PC developer's guide - Apple Confidential Flnal draft

Appendix A

Programming Examples

This appendix gives examples of some operations common to most AppleShare
aware applications. The examples are shown in Microsoft C, version 4.0, and
Microsoft Macro Assembler, version 4.0.

Standard start-up sequence
At start-up, an application should do the following things:

1. Ensure the proper version of DOS is running.

2 Ensure that SHARE is loaded (if using deny modes and byte-range locking).

3. If AppleShare PC is loaded, enable enhanced file and directory information
(AppleShare aware applications only).

4. Install a critical error handler for network and printer errors, if desired.

DOS version check
You may not need to check your version of DOS if you require SHARE to be loaded,
since SHARE is only present on DOS versions 3.0 and higher. Similarly, if you've
determined that AppleShare PC is present, you can assume that you are running
DOS version 3.1 or higher. However, if you are building a network-aware application
that opens files in compatibility mode only but still want to use the Create Temp
File call and any other DOS 3.0 enhancement, you should perform a DOS version
check. This is done by making the Get DOS Version Number call (AH = Ox30). From
Microsoft C, the version number is already available in the variables _osmajor and
_osminor.

43

AppleShcre PC developer's guide - Apple Confldentlcl Final draft

Checking for SHARE

The following assembly routine shows how to check for the presence of SHARE.

int share_loaded()

Returns non-zero in AX if SHARE.EXE is loaded; else zero.

- share - loaded proc

public - share_loaded

mov ax,lOOOH ;SHARE: Get Installed State

int 2fh

cmp al,Offh ;AL FF means SHARE is loaded

je xshare

sub ax, ax

xshare: ret

- share - loaded endp

44 Appendix A: Programming Examples

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

Checking for AppleShare PC
If you want to make file extension mapping calls, confirm that AppleShare PC is
loaded. The following assembly routine checks if AppleShare is loaded; if loaded,
then the routine enables enhanced file and directory information (since the
application is presumably AppleShare aware).

int hello_appleshare()

If AppleShare PC is loaded, enables enhanced file and directory

information and returns the version number of AppleShare PC.

Otherwise, returns zero.

_hello_appleshare proc

public _hello_appleshare

AppleShare PC lives at the int Sc vector. The four bytes

preceding the vector contain the signature "ASPC", and the

word before that contains the ASHARE version number, with the

major version in the high byte and the minor version in the

low byte.

mov ax,3SSch ;get the int Sc vector in ES:BX

int 2lh

sub ax, ax

cmp es: [bx-4], S34lh ;check the signature

jne xashare

crnp es: [bx-2], 43SOh

jne xashare

Standard start-up sequence 45

AppleShare PC developer's guide - Apple Confldentlal Final draft

xashare:

AppleShare PC is there. Enable enhanced file and directory

info for this process.

push

mov

int

mov

sub

mov

mov

mov

int

pop

ret

es: [bx-6)

ah,62h

21h

cx,bx

bx, bx

es,bx

ax,701h

dl,1

Sch

ax

;save the version number

;if AX not O, the call failed (no mem)

;get saved version number

_hello_appleshare endp

46 Appendix A: Programming Examples

("
AppleShare PC developer's guide - Apple Confidential Flnal draft

Installing a criHcal error handler
The following assembly routine installs a critical error handler that detects when a
file server session has terminated. There are other critical errors that your
application will be required to handle; this example demonstrates the general
technique.

void install_crit_handler{)

Installs an int 24 handler for network critical errors.

oldvec dd

srvdead db

db

1 dup (?) ;storage for the original int 24 vector

13,10,10,"!! File server session has unexpectedly"

"closed, aborting ... ! !",13,10,10,7,7,"$"

install crit handler proc near - - -
public

mov

mov

mov

mov

push

. push

pop

mov

int

pop

ret

install crit handler - - -

ax,3524h ;save current int 24 vector

word ptr oldvec,bx

word ptr oldvec+2,es

dx,offset handler ;install our new handler

ds

cs

ds

ax,2524h

2lh

ds

Standard start-up sequence 47

AppleShare PC developer's guide - Apple Confidential Flnal draft

handler:

; Here's the handler:

push ax

push bx

push ex

push dx

push si

push di

push ds

push es

mov ah,59h

sub bx, bx

int 21h

cmp

jne

push

ax,55

xhandler

cs

pop ds

;push the world

;(Get Extended Error nukes all but BP)

;call Get Extended Error

;network device no longer exists?

;nope, chain to normal int 24 handler

;yes, print fatal error msg

mov dx,offset srvdead

mov ah,9

int 21h

sub al,al ;set zero flag

48 Appendix A: Programming Examples

(

AppleShare PC developer's guide - Apple Confldentlal Final draft

xhandler: pop es ;pop the world

pop ds

pop di

pop si

pop dx

pop ex

pop bx

pop ax

jne chain ;fatal error?

mov al,2 ;yes, tell DOS to abort program

iret

chain: jmp oldvec ;no, call normal int 24 handler

install crit handler - - - endp

Character handling
This section provides two sample programs (End of line de/imtters and
International uppercase routine) that assist developers in building PC programs
that can share data directly with Macintosh systems through the AppleShare server.

End-of-line delimiters
This C routine demonstrates how to input a line irrespective of the end-of-line
delimiter sequence used (be it er, If, or er/./). This allows your application to read
text files generated by DOS, Macintosh, and A/UX programs.

Character handling 49

AppleShare PC developer's guide - Apple Confidential Final draft

I* This is a replacement for the standard C gets() function that

* correctly deals with any er, lf, crlf, or lfcr line delimiters.

*/

#include <stdio.h>

char *gets(buffer)

signed char *buffer; /* buffer to return string in */

signed char c;

register i;

for (i = 0; ; ++i)

switch (buffer[i] getchar ())

case EOF:

if (i == 0 I I ferror(stdin))

return NULL;

else

goto got_it;

case '\r': case '\n':

/* error, or EOF and string is null */

/* return what we've got so far */

/*We've read a er (or lf), if the next char is lf (or er),

* eat it.

*/

if (c ... getchar()) != (buffer[i] == '\r''? '\n' : '\r'))

ungetc(c, stdin); /*not an lf (er), un-eat the char*/

got_it:

buffer[i] = 0;

return buffer;

SO Appendix A: Programming Examples

(

:f

AppleShare PC developer's guide - Apple Confidential Final draft

International uppercase routine
When comparing a file name that a user has typed to a name stored on disk, you
must employ a case-insensitive comparison. Likewise, if you have enabled enhanced
file and directory information, file names returned from enumeration calls on
AppleShare volumes will not be uppercased, and you must be sure to use a case
insignificant comparison when comparing two names. The following assembly
routine uppercases a character, using the international uppercase routine supplied
by DOS for characters greater than 127. With this routine, you can build an
international case-insensitive string comparison function.

toupper(c)

char c;

This is a replacement for the standard C toupper() function that

employs the DOS international upcase routine for characters above 7f.

dosupr dd getup ;vector to DOS uppercase routine

_toupper proc

public _toupper

c 2

mov bx,sp

mov al,c(bx] ; (note: assuming SS DS)

cmp al,80h ;below 80?

jb to_up ;yes, do normal toupper

call dosupr

jrnp short xtoupr

Character handling 51

AppleShare PC developer's guide - Apple Confidential Final draft

to_up: cmp al,' a' ;come here for regular chars

jb xtoupr

cmp al, I Z I

ja xtoupr

add al, 'A' - 'a'

xtoupr: sub ah, ah

ret

_toupper endp

This routine is pointed to by the dosupr vector. It loads the vector

with the DOS uppercase routine address and then jumps to it. With

this method, no specific initialization routine is needed to load

dosupr; it's done automatically the first time toupper is called. If

your application has a throw-away initialization segment, call toupper

and then toss this routine.

getup proc far

push ax ;save char to upcase

sub sp,34 ;get DOS info for current country

mov dx,sp ; (note: assuming SS = DS)

mov ax,3800h

int 2lh

add sp,18

.pop word ptr dosupr ;save DOS uppercase routine

pop word ptr dosupr+2

add sp,12

pop ax ; retrieve char

jmp dosupr ;go upcase it

getup endp

52 Appendix A: Programming Examples

AppleShare PC developer's guide - Apple Confidential Final draft

Multi-user 1/0
The following example, Extending a file, is an example (written in C) that
highlights some of the intricacies of multi-user i/o. It demonstrates byte-range
locking, and the need to be mindful of race conditions.

Extending a file

#include <io.h>

#include <sys/locking.h>/* constants for locking() */

#include <stdio.h> /* constants for lseek() */

/* This function appends data to a shared data file, and returns the

* off set to where the data was written, or -1 if the data was not

* written.

*/

long append(handle, buf, count)

int handle; /* handle to shared data file */

char *buf; /* buffer containing data to be written ;*/

int count; /* number of bytes to write */

long eof;

int success;

for (;;)

eof = lseek(handle, 0, SEEK_END); /* position to end of file */

if (locking(handle, LK_NBLCK, count) !• 0)

/* The region is locked, meaning someone is currently

* appending. Start over.

*I

continue;

Mulf1-user 1/0 53

AppleShare PC developer's guide - Apple Confidential Final draft

/* The above check is only 95% accurate: given a large network

* delay, it is possible that another process locked, wrote, and

* unlocked a new record between the time we seeked to the end of

* the file and the time we issued our lock. For the extra 5%,

* let's try seeking to the end of the file again, and check that

* the end of file hasn't changed.

*/

if (lseek(handle, 0, SEEK_END) != eof)

/* The position has changed, i.e. a new record was slipped in

* while we weren't looking. Release our lock and start over.

*/

locking(handle, LK_UNLCK, count);

continue;

/* Now we have a lock on the true end of file. Write the data.

* If the write is unsuccessful, truncate the file back to the

* original eof, to remove any partially written data.

*I

if (!(success• write(handle, buf, count) ==count));

chsize(handle, eof); /*the write failed, reset the file len */

locking(handle, LK_UNLCK, count); /*release the lock*/

return success? eof : -lL;

54 Appendix A: Programming Examples

AppleShare PC developer's guide - Apple Confidential Final draft

File extension mapping
The following assembly routine allows an application to get and set file extension
mappings. AppleShare PC must be loaded to make this call; the first section of this
appendix shows how to check if AppleShare PC is loaded.

int mapext(mapbuf, set)

struct {char ext[4], type[4], creator[4)} *mapbuf;

int set; /* 1 to set mapping, 0 to get mapping */

mapbuf->ext is a null-terminated file extension (the leading dot is

not included) . If set is zero, the type and creator for the given

extension is returned in the mapbuf; if set is one, the type and

creator are set from the mapbuf. When setting, mapext returns zero

for success, or one for failure (out of memory) .

_mapext proc

public _mapext

mapbuf 2

set 4

mov bx,sp

mov dx,mapbuf[bx] ; (note: assuming SS DS)

mov al,set[bx] ; (note: assuming SS DS)

rnov ah,O

sub bx, bx

rnov es,bx

int Sch

ret

_rnapext endp

File extension mapping 55

AppleShare PC developer's guide - Apple Confidential Final draft

/

56 Appendix A: Programming Examples

AppleShare PC developer's guide - Apple Confidential Final draft

Appendix B

Network and Multi-User Errors

Several additional error codes relating to the network environment were introduced
with DOS versions 3.0 and above. Some of these errors are returned from system
calls, while others are signalled as int Ox24 critical errors, and can only be obtained
by issuing the Get Extended Error call (AH .. Ox59) from within the int Ox24 critical
error handler. Note that you can not use a dummy critical error handler that fails all
critical errors, and then call Get Extended Error after every system call, since the
error code returned will be Fatl on INT 24 instead of the actual extended error
code. Appendix A shows an example critical error handler. Not all the new errors
can occur under AppleShare PC; some of those that can are discussed in this
appendix.

Network device no longer exists (AL = Ox37)

This is a critical error that can occur on most any i/o call. It indicates that the file
server session has been lost. This usually is a result of network outage, but can also
indicate server failure, scheduled server downtime, or a fatal error in the AppleTalk
hardware and/or software. Retrying this error is futile.

Unexpected network enor CAL • Ox38)

This is a critical error that is a catchall for many types of NetBIOS errors. For
AppleShare PC, it usually is the result of the AppleTalk driver having run out of
dynamic memory. This can occur during Find Firsts and file opens, as both these
operations allocate memory from the driver memory pool. Although retrying will
generally be unsuccessful, an orderly recovery can be attempted, since files already
opened can probably still be accessed.

57

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

Network data fault (AL • Ox58)

This critical error occurs when the redirector gets a disk full error while trying to
flush a buffer. It is different than the normal disk full error mechanism, where the
Write Byte Block call (AH = Ox40) returns a number of bytes written that is less than
the number requested. Network data fault not only indicates that the requested
operation has failed, but also that one or more preyjous write operations, which
were now being sent to the server, have failed. Network data faults should be retried
several times, since other server users might free up some disk space. If the retries
fail, then you must attempt recovery, understanding that some of the data you
thought was successfully written to the server actually never made it. To avoid this
uncertainty, you can use the Commit File call (DOS 3.3 only, AH= Ox68), or the Disk
Reset call (AH= OxD) to force a file buffer flush, ensuring that all previously written
data has been committed to disk. These calls also ensure that the server has flushed
any write data from its internal buffers, and thus are a useful checkpointing tool.
Network data faults can only occur if you have files open for write access, deny write,
because DOS does not buffer writes to files that do not deny write.

Sharing violation CAL • Ox20)

This error is returned when you try to open a file that is already open in a manner
that is incompatible with the open file's deny modes. If you are trying to open in
compatibility mode, sharing violation is signalled as a critical error; for non
compatibility mode opens, access denied is returned, and sharing violation is
returned from the Get Extended Error call. Sharing violation is also returned from
Get Extended Error when trying to open a file in non-compatibility mode and the
sharing file name buffer has overflowed (see Sharing buffer overflow next).

Sharing buffer overflow CAL • Ox24)

The DOS file sharing support module saves the names of all open files in a buffer. If
you attempt to open a file in compatibility mode and there is no room for the file
name in the buffer, this critical error is signalled. This error is not signalled for non
compatibility mode opens; instead, a Sharing violation error is returned (this is a
bug in DOS). Other than reducing the number of open files, the only remedy for
this error is to tell the user to increase the IF parameter given to SHARE. Sharing
buffer overflow can also be returned from a Lock File Access call; this occurs when
SHARE has run out of locks. Here, the remedy is to have the user increase the IL
parameter to SHARE.

58 Appendix B: Network and Multi-User Errors

AppleShare PC developer's guide - Apple Confldentlal Flnal draft

Lock violation CAL • Ox21)

When an attempt is made to read or write a locked region, access denied is
returned, and lock violation is returned from the Get Extended Error call. Lock
violation is also returned from the Lock File Access call if you try co lock an already
locked region or unlock a region char is not locked or is nor locked by you.

Appendix B: Network and Multi-User Errors 59

