
Advanced Development

. ·- ... -· ; .~ ' . ' . · ..

Classmom ot Tomorrow
lnterACTIVE Systems
E1:rJE
Systems Technology
Graphics & Sound
Object Oriented Systems

QuickScan
r 'Design Review

C\
;

CONFIDENTIAL

10 July 1986
Steve Perlman

ADG Computer Graphics

Advanced Development Gmup, App/ti Computer, Inc.

Agenda.

• Project Goals

• System Overview
- The Display Model
- The System Architecture
-The Line Buffer Architecture
- The Drawing Primitives
- Estimated Performance

• Implementation Strategies
- Outside Development
- Internal Hardware Development
- Internal Software Development
- Productization

• Future Directions
- Splinal Rasterization
- Smooth Shading
- Z-Buffering
- Anti-aliasing

CONFIDENTIAL Advanced.Development G10up. App/ti Computer, Inc.

; ('

------ -- -- - -------- . - -·-. -- . ·. ,• . ' ~ '· ·. ' .. . '

· Project Goals

•Develop display subsystem which supports real
time animation of bit-map images, 3-D models,
and cartoons.

•Support a 2-1/20 compositing model with as
much generality as possible.

• Provide architecture which allows for individual
displayed objects to be stored and handled
independently.

• Incorporate within the compositing model
mechanisms to reduce the spatial complexity of
objects in both storage space and drawing speed.

• Keep the display model simple.

•Support color resolution up to 24 bits/pixel.

•Provide easy interface for special-purpose
hardware to drive display subsystem.

• Have low-cost version.

• Maintain compatibility with existing and
forthcoming Mac software.

• Support QuickDraw primitives wherever possible.

• Provide for future expandability.

CONFIDENTIAL Advanced Development Group. Appltl Computer. Inc.

The 2- l /2D Model

y

z

Low
Priority

(Background)
High

Priority
(Foreground) Screen

The Software Model

The
User's
View

CRT
Screen

The User's View

0 SGP 0 216186

.
(Frame Buffer Bit Map Organization

(

The RAM Layout
(bit maps are stored corresponding

to their position on the screen)

" , , , ,
' ' ' ' ' , , , , ,
' ' ' ' , " , ,
' ' ' ' ,.
' '

•'• . " •'• •'• ... ". ...
~·

The Resulting Display
(the only possible display for

that RAM organization)

QuickScan Bit Map Organization

One Possible RAM Layout
(base addresses are arbitrary, but

each bit map is stored contiguously}

Object Attribute Data

One Possible Resulting Display
(bit map positions

are arbitrary)

t::
"'• ..

'• '• " '•

•sGP* 213/86

Apple Computer Confidential

A 4 Bit/pixel
Window

A 1 Bit/pixel
Window

-------..

,..._ _____________________ __ ~
7 ----------------A~ -8- BiU~i~~I

The Screen Border Window

Software Model for
Frame Buffer Windows

A 4 Bit/pixel
Window

A 1 Bit/pixel
Window

(No Frame Buffer)
·----------------------------'

, ,
' , , , , , , , ,

·7 · ---------------A~ -8 ew~ix~1
The Screen Border Window

Software Model for
QuickScan Windows

·sGP• 213/86

, --- - - - - -

~-.

...,.. ObjectBus (Privatel

...... ~
....

Dispatch Object Data
Addr/Control In

Out

Data 1'2.
Object SReg

Video RAM Out
- ..

(1 MByte typical)

Addr 4~

,
Data , ,

QuickScan In..,
, Frame ,

..... QuickScan SReg ' Data
, Data Buffer Dispatcher
, ,

Line Buffer Out
= r-4 ~-

Addr Video RAM I ,
(Olscretes or Jn .. (Full Custom)

,
Semtcustom) ... , (3 MByte)

,
, ,

, ...
NuBus i~

Data ,
uBus

, Frame In. , ,
N QuickScan SAeg
Data Addr/Control --,.. Data , Data Buffer

,

Line Buffer Out =~
Out ,

~~·
,,

.....

Addr Video RAM ~
,

, ,
J.n. (Full Custom) , ,

... , (3 MByte) ,
, , , , , , , , Nu Bus ... , J --...

QuickScan: System Block Diagram
9 July 1986 •sGP*

Apple Computer Confidential

CLUT/
DA Cs

I-+

~

~

R
G

B

1024 Cells

Write
Mode~~~~---__________________ c_L_U_T_/_R_G_B __ Fl_a~g_(_l_B_tt_) ________________ _,

Data
In 32

Left
10

Addr 6:
In 0.

nl
rn

10 ell

Right b Addr ~
In n

Red Plane (8 Bits)
•••• lo ••••••• I •• e I I'' ••• •.''".' I' t t'' I 't' e ' I t • et • e e ' t e ft t 't I t t' ' t I • I 'I t t t I It I' t t I I t • t I t t t t I ' e e et I t t t' I e I o I I I ' I t I o

Green Plane {8 Bits)

Blue/CLUT Plane (8 Bits)

RAM
'//,,,

Enable --Mask Plane { 1 Bit) Logic

~ Address Comparators

s Address Comparators

QuickScan: Conceptual Block Diagram
9 July 1986 •sop•

Apple Computer Confidential

('

\ (

Filler
Register

Filler
Register

... ,_

Line Buffer RAM (Segment)

lllWWWllW
Mask Plane (Segment)

I I· I I c. I I I I I g I.-. I', I . , j...- I.' ·I I .. I. I I . I. I I I I

Longo Long 1

Input Pixel Data

1 Bit/Pixel PixelMap Load

Line Buffer RAM (Segment)

lllMMMllM
Mask Plane (Segment)

Red
Plane

Green
Plane

Blue!CLUT
Plane

Red
Plane

Green
Plane

Blue/Cl.UT
Plane

l~!tit~F:::t?~::l::~::f::::::J::::::l:::'.::J:::~:f::::::f::::::f::~::l::::::l::,::::=f::::::f:;::l:::~J::::::l::::::f:::::l:::::l::::::J:::::J:::::f:::::J:;~:::l::::::J::::::f:=::::l:::::::l:::::l:·:l::::f::::::l::::::f::::::J::::::f:::;:::f::::::)
Longo L.ong1 Long2

Input Pixel Data

2 Bit/Pixel PixelMap Load

QulckScan: *SGP* 7 /9/86
Apple Computer Confidential

Filler
Register

Filler
Register

Line Buffer RAM (Segment)

II ll!MMM!IM II
Mask Plane (Segment)

1·:'r:f :\t''l':::':f ::::'i::':f :=\:'l::·:·I:: I '''t=:\.1:;::,1::=::1::::m::::J:i::1:·l'::::J::::mt:t::::::1::;::1:i·': 1:::::IIl::i,:1::::,:1:=::;1:1~:=1::::::1:::mlllil·''\:t::::f .:::f ,::.f ::-t-:·::I:-::-:
Long o Long 1 Long 2 Long 3 Long 4

Input Pixel Data

4 Bit/Pixel PixelMap Load

Red
Plane

Green
Plane

lclclclclclcl lclclclcl lei lei Icicle! lei lclclelelelcl Icicle CLUTIRGB

Line Buffer RAM (Segment)

I I I II lllMMMllM I I I I I
Mask Plane (Segment)

~0~1~2~3~4~5~6~7~8~9

Input Pixel Data

8 Bit/Pixel PixelMap Load

QuickScan: •soi>- 7 /9/86
Apple Computer Confidential

Blue/CLUT
Plane

(_

I I I

t
LeftAddr

<. . . • ~ -

32 Filler Registers

Un• Buffer RAM (Segment)

lllMMMllM
Mak Plane (Segment)

-~-----------

. -· .·

I II

t
Right Addr

Rad
Plana

Green
Plane

BluelCLUT
Plane

Modulo-8 Run Fill

QuicJcScan: *SGP* 7 /10/86
Apple Computer Confidential

35

30

25

20

15

10

5

0

QuiCkScan I Estimated
Performance

(no frame buffer back-end):

Windows:
Number of Arbitrary Rectangular Windows
Olaplayabla Slmultanaously by OulckScan I

33 32

2 4 8 12
Bi1a Par Pixel

Polygons:

24

• Regions On-Chip

II Regions Loaded

About 870 flat-shaded, convex polygons
with 640x480 @ 67 Hz refresh.

CONFIDENTIAL Advanced 0Bv9lopm9nt Group, Apple Comput9r, Inc.

(

QuickScan II Estimated
Performance

(double-buffered frame buffer back-end):

Windows:
Effectively unlimited number in real-time.

Polygons:

Number of Flat-shaded Randomly Placed Squares
In 1/15th Second

1,000,000--------------·---100,000 b ··-~.::----------

1
----0 ----.

1 o.ooo ::=--..o""'""' ---. • -•
• • o-...__~

1.000 I -=·~. -0 --.._0
100 . - ---. cc:::::::::: •

10 I I I

5 10 20 so 100 150 250
Length of Edge of Square

• .. OuickScan II

·O· CRAY X·MP/1

·•· IRIS 2400 Turbo

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc.

Outside Development

• Silicon Design Labs

• 1.5 micron double-metal CMOS
process with dynamic cell
characterization, probably Motorola

• Approx. 300 mil per side, < 100 pins

• 14 months to packaged prototypes

• 2 chips per system

CONFIDENTIAL Advanced Development Group, Apple Computer, inc.

(lritemal Hardware
Development

• The Dispatcher

• The QuickScan NuBus Card

• ObjectBus

• Polygonal Rasterization

(• Ikki to Cray Interlace

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc.

I. I /
L 32 pl I•• 32 pl I•• 32 pl ••• 32 p •••• 32 pl la• 32 pl ••• 32 pl ••• 32 Pl le• w mamoru cell• mamor11 cal le memoru ce 11 a •emoru cell• _...,,.u call• memoru call• ,...111or11 cal I• ,...1ROru cal I•

32 µ 10. 32, . . I 14, 36. .. I 18, 40, .. l (12, 44, .. l (16. 48, .. I 120. 62, .. l (24, 66 • . . I 128. 60, I . .
4- db ·-.c. _ -••·•••we.••,, "' _
Ul r• ... -•••· • r wne. I ,. ,. _. , , -····.

_ .. r- S9flll'al ,. ,,. , .. ,. ,.,. ,. ,,. L
~ t- L ... ~ ~ '" ~ '" ~ !'- ~ ~ Iii-~

......... Ill iL1... ~ w ~ , .-J' ~ I" ... t--725 + l .. t-L :I Lo r ~ ~ p. Lo l8e Le p. Le pa Lo pa
L .0 u
[)

..._, --. ·••1111• -·-· ••Ive, _..

1
...... ..,. ,.,. a , , -····. -····. v CMlret, ,. ,, ,. -····0 ,.

(]) / 32 32 pl ••• 32 pl le• 32 pl I•• 32 p 11•• 32 Pl lex 32 pl I•• 32 Pl I•• 32 Pl I•• 0
r- --.-u call• --31 cell• --.-u cell• --.-11 Cella __ ,.Lce11a __ ,.¥calla

--rK.calle --ru call• (2, 34, .. J ,.. • •• J ue. 42, . . J (14, 46, •. I (18, • • • J [22, 4, • • J (28, , .. I .---. (le. 82, .. I 96 a.
E v4 V'4 v4 11'4 V4 V4 11'4 v4 0

"1 / / / -1 / /j QJ u /j
TI - Ul LOB d e r 0 d l

.
0 0 ~ e 0 g 1 c t... ~

en ..,
µ ill u
c L

"'1V4 V4 "1V4 V4 "1V4 v.. ..jV4 ".'JV4 QJ
0 lJ /_ -". /

lJ TI u
IJ

32 pl lu 32 pl I•• 32 Pl I•• 32 pl II• sa Pll•• 32 pl ••• 32 Pl lex 32 Pl le• n --r11 cell• ,.,cell• ,.u cell• --.-u all•
__ ,..,cell• __ ,.I cell• --rr.,c•ll• --.-.cell•

(I, 33, . . J 15, 3 , •• I (8, 4l. .. J (13, 46, .. I (1'1, 46, •• J tat, 3, •• I (26, , •• I (28, • • • . J (()

..... 96 0
-··· _ --· -··· ... -.. -.... --· I -····. -···· . ,....., , ,. ,.

µµ L
~ jrie ., I'- ~ pie ~ j.. ~ j.. ~ ii- ~ Iii- ~ II-

f-
II L :::J :J l.t_ ~ l.LJ.

0 a. .. v" ~ I" ,. r"2s ~ ta ~ :I p ~ p. ~ ... Le ... Lo Lo t- Lo i.-
.0 .Jilt It. It. J/ 1 e>L-1 -·"· _ -·-· -....... _ ,. -··· _ -···· _, , ,. ,. ,. ..

'
address 32 p 11•• 32 pl I•• 32 Pl la• 32 pl b• 32 pl I•• 32 Pl I•• 32 pll•• 32 pl I••

~ ; ... logic mamoru ce 11 • --a cell• NNru call• 111•-r-11 al 11 - ... cal II --.-... call• --r¥ac•ll•
__ ,.X cell•

(S, 36, .. J l'1, , •• I u a' 43, .. I ll6. 4'1, •• I (18, I, •• J 12a, , •• 1 12'1, , • . I (SI, S, .. I

I r

L 1. J
71 1 eJ

(

I (

Internal Software
Development

• The Display Model

•Window/Color Manager Extensions

• Object/ Animation Manager

• Animation Applications

• QuickScan Simulation

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc.

· Productization

• Rev 0 QuickScan Product

• Rev 1 QuickScan Product

• External Graphics Cards

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc.

- -- -,

- Future Directions

• Splinal Rasterization

• Smooth Shading

• Z-Buffering

• Anti-aliasing

(

CONFIDENTIAL Advanced DIWMJpment Gtt>Up, Apple Computer. Inc.

RGB/CLUT Flag (1) ==============,,......~ ---
Ref Red (8)

Ref Green (8) 1-------------~ .,_ ________ ___.;. __ ~ Current
Pixel Addr
Counter CLUT/RGB

Ref Blue or CLUT (8)
____________ _..

Pipelined
ALU

Redx

Greenx
QuickScan Une Buffer A

{
Sign (1)

~ultiplier Exponent (3) 1---...-----------r-11...., Bluex or CLUT

Mantissa (11)

Ref Addr (10)

c

.,_ ___________ _,

QuickScan Line Buffer B ·
'

Block Diagram

D D

~m = (R1/RO -1)/(X1-XO)
Formula Computed

prior to Write
(XI is anyX)

CLUT/RGB UAP LIAP LIRP Current

Rx= RO ((X- XO)* ~m + 1)

Gx = GO {(X - XO) * ~m + 1)

Bx = 80 {(X - XO) * ~m + 1)
Mode Ref Color Ref Addr 4Multiplier Pixel Addr

(RO, GO, BO) (XO) . (Am) , (X)

Data Available each Pixel time Formulae Computed
in ALU

QuickScan LIRP System
. Block Diagram

7 /14/86 *SGP* Apple Computer Confidential
I

(

One Scan Line

A Display with 4 q~uraud Sl!aded Polygons

RO

GO

BO

Am

XO

1----1......-~~~

1----1~-..+~~~~~~~~~---1

Two QuickScan l.Jne Buffers Filled with
Data from the Indicated Scan Llne
(the result of 4 Write Operations)

QuickScan LIRP Line Buffer
Fill Example

7 /14/86 *SGP* Apple Computer Confidential

Computed Formulae
Rx = RO ((X - XO) * am + 1)
Gx = GO ((X - XO} * am + 1)
Bx = BO ((X - XO) * am + 1)

Operations Clock Cycles
am(float) (15 bits) -> am(fixed) (19 bits) 3 (Shifter)

1 (Negate)

- X - XO -> Xnorm 1 (Add} _

Xnorm * am -> m 1 o (Mult)

m + 1 -> m 1 (Add)

RO * m -> Rx GO * m -> Gx BO • m -> Bx 8 (Mult)

24 (Total)

QuickScan LIRP ALU Pipeline
Computation Sequence

7/14/86 *SGP* Apple Computer Confidential

0

0

(

To:
From:
Date:
Subject:
cc:

Abstract

Mike Potel
Steve Perlman x6248
27 August 1986

Applcation Technologies
ClasstOom of Tomonow
External R&D In Education
Graphics & Sound
Objfld-Oriented Systems
Systems Technology

Parallel Gouraud Shading with QuickScan
Graphics, North, Tesler, Marion, Kay

First Paragraph.

Background
The QuickScan Line Buffer chips which we are currently implementing in

VLSI incorporate a parallel write mechanism which allows us to fill with a single
color or a repeating pattern any contiguous range of a single line in a single write
cycle. By using this parallel write capability repeatedly we can fill large,
overlapping areas very rapidly, provided that each area filled has long horizontal
stretches of a single color or a repeating pattern (i.e. they are spatially coherent). If,
however, an area to be filled has differing color values across horizontal stretches,
then it is best filled using the sequential write mechanism with a bit map (or at best
with a sequencer if the data is not random) producing the color information to be
written to the QuickScan Line Buffer.

Although sequential writes allow us full generality of coloring varying
horizontal stretches, we achieve that generality at a cost of about 2 orders of
magnitude in speed. If there is no pattern at all to the colors being written (e.g. text
or a digitized image), then there is nothing much to be done. But, if there is some
regular progression to the data, then it is possible to construct a parallel computation
structure which determines a unique color value for each pixel in the line as a
function of its position (the approach used by Henry Fuchs at UNC for "Pixel
Planes").

While a parallel computation approach is quite possible, it unfortunately is
very expensive because, not even considering the parallel computation mechanism,
there ultimately must be a unique data path for each pixel cell in the line buffer. A
common data path, shared by groups of pixel cells, requires far less silicon real

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc.

estate, but unfonunately implies that any parallel writes to the pixel cells of a given
group must all be written with the same data. We opted for the common data path
approach with QuickScan because we simply could not fit its 1024 x 25 bits of 25
MHz RAM onto a reasonable die without such optimization. It would seem that we
are destined to support no more than parallel writes of single colors and repeating
patterns (i.e. one color to each pixel cell group) with QuickScan's architecture.

Such a limitation is regretable because there is a class of horizontal color
progressions which are extremely useful in computer graphics: color computations
which are a function of horizontal position (i.e. of x), and in particular, first-order
functions of x, called "Linear Interpolations" or LIRPs for short. LIRPs generate a
linear progression, or "ramp" of color intensity interpolated from a start intensity to
a end intensity, which models point light source illumination of a one line of a
perfectly matte surface (i.e. there is no specular reflection). This is useful for a
number of applications, most notably for applying Gouraud (or Smooth) Shading
to 3-D polygons (LIRPs are done both horizontally and vertically for this model).

Although most commercial 3-D systems support Gouraud Shading, none of
them that we know of support it in anywhere near real-time. Even a new system,
Renaissance, from Hewlett-Packard which has special hardware for smooth
shading and purports "real-time Gouraud shading", in practice can only handle
small, simple objects in real-time. Only Henry Fuch's experimental system at
UNC, a rack of boards for even a low-resolution display, can fly about 6000
smooth-shaded polygons in real-time.

Smooth shading adds a substantial degree of realism to polygon modeling,
and it is essential that we eventually provide such a capability for Apple 3-D
graphics products. It is unfortunate that we have to wait for the next generation of
our graphics hardware development in order to provide LIRPs in real-time ... or do
we?

Ten Bits of Data We All Forgot About
As far as I can tell, it is indeed the case that the current generation

QuickScan parallel write mechanism can only fill a horizontal stretch with a single
RGB data code or with a repeating pattern of RGB data codes. And, since a
particular data code stored in the line buffer will always generate a particular color
(e.g. R=255, G=255, B=O always generates bright yellow), a horizontal stretch of
the same data codes results in the same color or pattern being generated across that
stretch. This is because when the data is scanned out of the line buffer, pixel by
pixel, to be displayed on the monitor or written into a frame buffer, there is no other
data except for the RGB data code by which to determine a color to display but
is that really correct? Is that RGB data code the only meaningful data available
when the data is read out of the line buff er? Could it be that we forgot about some
extra data that's been there all along?

CONFIDENTIAL Advanced Development Group, Apple Computer. Inc. 2

(
When data is read out in serial order, as is the case when Quick:Scan's line

buff er is scanned-out, it is trivial to have a counter keep track of the number of
clocks, for QuickScan the number of pixels, which have passed since the data
stream began, for QuickScan the beginning of the horizontal line. This count
provides another piece of data, notably a piece of data which is unique for each
element of serial data. In the case of QuickScan the counter output is a 10 bit
number which identifies the x position of the pixel currently being scanned-out.
Coincidentally, we are concerned with computing a function of x! Perhaps there is
something here for us to work with.

When one has a function of only x, she has by definition a formula in which
x is the single variable, and all of the other elements are constants. Since a
horizontal LIRP is a function of only x, it can be computed from only constants and
x. QuickScan's parallel write mechanism can fill a horizontal stretch with constant
values. Our pixel counter provides us with x. So, in theory, we should be able to
apply a LIRP function based on x to the RGB constants as they are scanned-out of
QuickScan using the constant data that was written in parallel. This effectively
would give us smooth-shaded fills at the same rate that we get single color or
repeating pattern fills. But, can it be done in practice?

3. The Mathematics of Horizontal LffiPs in RGB Spacel

3.1. The Arithmetic
Since we are interpolating linearly from some color C0 to some color C1,

from some position x0 to some position x 1, then there must be some expression of
the form CM= C 0 + m!lX, where C 0 is the color at the start of the LIRP run, m is the
unit change in the intensity of the color, and tu is the unit distance from x00 m can
be derived from any tw:R locations of the LIRP run, x0 and J{iJ by computing the
slope, (C1 - C0) I (x1 -{9)· Since Ax= x - x0, where xis the \?urrent pixel position,
clearly C,, can be computed with the constants C09 x09 and m, and the variable x.

So, if we want to use the Quick:Scan parallel write mechanism to write
information which can generate a LIRP run, all we need do is write the three
constants, C0, x0, and m, across the length of a LIRP run in the line buffer, and
provide an ALU on the output of Quick:Scan which computes C,, from these
constants and the x provided by a counter.2 Since we have three colors, R, G, and
B, we need to duplicate C0 and m three times for each component, resulting in R°'

1 As they apply to Gouraud shading. This section may not apply LIRPs in RGB space generally (but then
again, it might!).

2AJthough it may seem ambitious to do a subtraction, a multiplication, and an add at the video rates that
QuickScan outputs data. we can quite practically build a pipelined ALU to accomplish this arithmetic with
effectively no more than a single addition per pixel clock cycle (more on this later).

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 3

G0, and B0 and mR, Tn(;, and mB. One X0 will suffice if R0, G°' and B0 all come
from the same pixel location. 3

In practice, LIRPs are primarily used to ramp between two intensities of the
same hue. If this is the case, then the slope for each of the components is usually
different, but the ratios between starting and ending values of each of the
components is the same. That is:

RI = GI = BJ
Ro Go Bo

even though mR 'i: ma 'i: ms.4 Maybe we can make use of the coherence between

the R, G, and B LIRPs to reduce the amount of constant data that must be stored
with each LIRP run.

To do this, we must first determine a way to derive the slope for each
component from a common constant, 13, since we must have the slope in order to
compute a component's value at any given x position. But, the only information
that we have at the time of the computation which is component-specific is C0, the

reference color. So, if it is possible to derive the slope of a component from the
common constant, 13, the formula must involve the component's reference color,
C0• And, since this same formula must result in three separate slopes for the three
components, 13 must include C 0 and C 1 only in a form which is invariant for all three
components, i.e., C/C00 As this necessitates an extra division in the formulation of
13, there must be an extra multiplication when 13 is expanded. Hence, it is a good
guess that the following formula can be used to compute each component's slope
from 13 and each component's reference color, C0:

m=C0(L

Now, let's solve for 13. If we substitute form, we get:

(C1 - C0) I (X1 - Xo) = Col3,

and after a little algebra, this becomes:

13 = (C/C0) - 1
(x1 -xo)

3Jn fact, nox0 is needed if we normalizeR0, G0, andB0 from a known pixel location (e.g. pixel 0), but if

they do not come from a pixel location within the extent of the LIRP, then we cannot guarantee that they
will have values representable in 8 bits. (Perhaps we should normalize them and then represent their values
in a different way. Under study.)

4For example, if we double the intensity of the RGB triple (1,2,4) across a stretch of 16 pixels, we get at
the end of the LIRP the triple (2,4,8), resulting in slopes of 1(16, 1/8, and 1/4, respectively. The slope of
the LIRP for each component is different, but the ratio between the starting and ending values of each of the
components, 2:1, 4:2, and 8:4, is dle same.

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 4

(
As we had hoped, the formulation of 13 indeed includes C0 and C1 only in a form
which is invariant for all three components, C,ICOt so when 13 is multiplied with
each component's C"' it should result in a unique slope for each component.

Now, if we put all of the pieces together, inserting the derived slope into
our original LIRP function, we get

Cds = C0 + c013ax , or more conveniently,

Cds = Co (13(.x - xo) + 1) •

And, here we have what we were looking for: a relative intensity function of
x and the constants C0, 13, and x0, applicable to all three components. Thus, in
order to use QuickScan's parallel write mechanism for filling a LIRP run of the
same hue, we need to store only 5 constants: R0, G"' B00 13, and.x0•

3.2. The Representation
The only question remaining is what numeric representation is appropriate

for each constant?
Since our color resolution is 8 bits, there is little advantage to storing R00

G 0, and B 0 as integers of more than 8 bits, provided that x0 is chosen to be at a
location where at least one of the components has its maximum value in the LIRP
(i.e. the last pixel at the bright end of the LIRP). The reason for this is that
numbers represented in fixed-point (in contrast to those represented in floating
point) can be represented more accurately (i.e. will have more bits of significance)
when they are large. If we always multiply the largest color by an (accurate)
fraction, the resulting color will never be off by more than 1n. of the least
significant bit, which is as good as we can hope to do.5

x0 is easy: there are 1024 pixels in a line, so x0 can be located at exactly
one of 1024 locations. We need a 10 bit integer.

13, however, presents a fairly complex numerical analysis. Its range extends
from about ln.56K to 1, so if we use fixed point numbers, we need at least 19 bits
of significance just to reach the extremes of range. Since we would like the
accuracy of the derived color at each pixel to be within 1n. of the least significant
bit, we may need yet another bit of significance because we are going from an 8 bit
color representation to effectively a 9 bit color representation. This gives us 20 bits
for 13's fixed-point representation.

5To see an illustration of this, consider the following example: We have a LIRP extending from 5% to
50% maximum intensity, and its hue is 30% red, 55% green, and 15% blue. The color at the bright end of
the LIRP is (1 l~~d the color at the dark end of the LIRP is (12, 21, 6). If we derive the dark
end color ~81:ilplyin__g,.dle bright end color by 10, we get (rounded) (12, 21, 6), which is accurate. If,
however, We-deffve-tlie bright end color by multiplying the dark end color by 10 we get (120, 210, 60),
which has 4% inaccuracy in red and 2% inaccuracy in blue.

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 5

Closer analysis of this fixed-point representation of~. however, suggests
that it is a pretty sparsely utilized code space. Specifically, it would seem that the
larger numbers need no more precision than the smaller numbers, i.e., the LSB's of
the larger numbers could be zero without any loss in precision. So, there would
appear to be a need for fewer bits of precision than for range. This points toward
investigating a floating-point representation.

Clearly, the exponent of the floating point representation should be 5 bits
since we need to represent numbers from 2-19 to 20. But how many bits of fraction
do we need? I'm certain that there is some correct analytical method of detennining
this, but after consulting with several sources, I could not get a consensus. So,
when in doubt, simulate the hell out of it: I wrote a program in C which
exhaustively goes through every possible LIRP which can be generated in a 1024-
pixel line with 8 bits each of R, G, and B. Unfortunately, this turned out be quite a
long simulation with so many cycles of floating point arithmetic. On "Apple", a
busy Vax 11nso with network responsibilities, it would have taken 1(2 year to
finish. On "BigMac", a relatively lightly loaded Vax 11nso, it would have taken
about 11 days (but I had to give it lower process priority in consideration of the
other users, bumping it up to about 1or2 months). But, on TMAl, a presently
lightly utilized Cray X-MP/48, using all 4 processors it took only 2-1{2 hours (they
tell me if the simulation had been written in a vectorizing Fortran it would have
finished in 15 minutes!). The end result was that it needed 9 bits of fraction, but
since in normalized floating point the most significant bit of the fraction is always
l, that bit can be considered 1 implicitly, resulting in only 8 bits of fraction stored.
This combined with the 5 bits of exponent results in 13 bits total for ~· 6

Actually, we probably could eliminate one more bit of exponent by using
non-normalized fractions with the smallest exponent code (0000). This technique
would extend the 4 bit exponent range of 2-1s - 20 down to the 2-19 we need at
small extreme for~· Unfortunately, it would also substantially complicate the
encoding and decoding of the floating point number, so it is unclear whether it is
worth saving 1 bit in the representation. Preliminary simulation indicates that the
loss of accuracy in the denormalized numbers would still produce results within 1(2
of the least-significant bit, but I will not go to the effon of exhaustive simulation
unless we find that we really need to save that one bit of storage.

Note that with either representation, we shall need some special code to
mean zero. One possible encoding which is not otherwised used in either
representation is all zeros in the exponent and the mantissa.

So, in summary, to accurately represent any LIRPs of constant hue across
1024 pixels accurate 1/2 of the least-significant bit of each of the color components
we need minimally:

6If Xo is known to always be located at the bright end of the LIRP, we can guarantee that ~ is always

positive, and hence does need a sign bit

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 6

(

(

•R"' G,,, and B0 stored as integers of 8 bits, containing the color at

the bright end of the LIRP.
• x0 stored as an integer of 10 bits, indicating the horizontal position

of R"' G0, and B0•

• ~ stored as an unsigned floating point number of 5 bits of
exponent and 8 bits of fraction with an implicit 1 in the MSB of
the fraction. The possibility exists to complexly encode the
floating point number with just 4 bits of exponent and 8 bits of
fraction.

As a caveat, remember that we have handily dismissed LIR.Ps which do not
have a constant hue. Although such LIR.Ps are not as common as the constant hue
variety, there are applications where they create useful effects (e.g. modeling with
multiple colored light sources). If we wanted to implement such LIRPs, we would
need an independent slope for each, R, G, and B instead of a common ~- Each of
these slopes could be represented accurately by an 11 bit signed, fixed-point
number. Note that for this LIRP model, there is no advantage to choosing the
bright end of the LIRP for x0 because C0 is never scaled and no accuracy is lost.

Furthermore, we cannot eliminate the sign bit in the slope representation by
establishing a convention for the placement of x0 because we cannot guarantee that

the three R, G, B LIRPs will be either all increasing or all decreasing. So, any
choice of position for x0 will do equally well.

4. The Implementation

4.1. Hue-invariant LIRPs

The QuickScan Line Buffer Chip we are currently developing (see Figure 3)
will store 25 bits for each of 1024 pixels, 8 bits each for red. green, and blue, and 1
bit to indicate if the information is RGB or an index (stored in the blue plane) for a
color lookup table (CLU1). Additionally, there are left and right address
comparators which select a range of the line to enable for a write operation, and
finally, there is a 1 bit wide mask plane which can prevent an enabled pixel from
being overwritten.

Since there is just enough RAM to support the 24 bits of R, G, and B per
pixel, we clearly need more RAM to hold the extra data, x0 and 13, for the LIRPs.

The easiest way to accomplish this is to simply use a second QuickScan Line Buffer
Chip (see Figure 4). Coordinating the addressing between the two Line· Buffers is
simple: just tie the address lines together. This way, whenever we are writing into
the first Line Buffer with R"' G0, and B0, we write to the very same locations in the
second Line Buffer with x0 and ~. which is exactly what we want. The implication

is, of course, that there is a separate data bus leading into the second Line Buffer,
and a separate data bus leading out with the pixel data.

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 7

This is fine for taking care of our LIRP objects, but what of the plain old
solid and pattern filled objects and bit map objects? As it turns out there is no trivial
way to reroute individual pixels around the hardware in the output stage of
QuickScan which computes the LIRPed value of R0, G0, and B0 since it means

cicumventing a long pipeline (to be explained below). So, if we load up R, G, and
Bin the first Line Buffer without considering what is stored in the second Line
Buffer, we'll get unpredictable results when the hardware considers a R, G, and B
pixel as R0, G °' and B0 and computes the LIRPed value from the random x0 and ~

which happened to be stored at the same pixel location. But, this can be easily
remedied by either storing zero for 13 or the current x position for x0• Then the
formula, c& =Co + CoJ3ax. reduces to C,u =Co + 0ifeither13 = 0 or Xo = x,
yielding R, G, and B from what the LIRP mechanism thinks is R°' G0, and B0•

With such a double Line Buffer arrangement, we get an output of R0, G0,

B0, x0 , and J3 for each pixel shifted out of the two Line Buffers. What do we do

with this data now that we have it? Since the QuickScan chips output data at a 50
Mhz clip (20 ns per pixel!), whatever we decide to do, it had better be fast Damn
fast Well, what does the formula call for? c &: =Co + CoJ3ax. ax= x - Xo· It

looks like we need an addition, a subtraction, two multiplies, and some floating
point to fixed-point conversions for each of the three color components in 20 ns.
To do that we'd have to build an ALU that is over 10 times faster than the Cray's.
Fat chance. Maybe we ought to approach this problem from a little different angle.

Actually, if one looks closely at the way the Cray does its arithmetic, she
finds that the Cray does not (and cannot) do a complex arithmetic operation such as
a multiply or divide in a single machine cycle. Rather, it breaks these operations
into stages and completes them in several cycles, but nonetheless, its average
throughput for such operations is one cycle per each. How can this be? The reason
is that its ALU is fully pipelined, which is to say that the next operation can be fed
into the ALU one cycle after the previous operation was fed in. So, while the
latency of complex ALU operations is several cycles long, the average throughput
is one operation per cycle. One can think of such an ALU as an assembly line of
workers, one at each stage of the production line. Each worker at any moment is
working on a different assembly unit, which he then hands to the next worker,
while he receives an assembly unit from the previous worker. The latency of the
assembly line is the time to go through all of the workers' hands, but the average
throughput is one assembled unit per the time to go through one worker's hands.

Thus, pipelined ALU's can be very effective because they take very
complex operations and break them down into manageable atoms without reducing
throughput. However, they are only effective when applied to steady streams of
data for which the same operations are to be applied repeatedly. Otherwise, the
pipeline gets empty stages (like a production line gets workers with empty hands),
and the throughput decreases. Fortunately, the stream of pixels which will be
output from the QuickScan Line Buffers and the operations needed to be applied to

CONFIDENTIAL Advanced Development Group, Apple Computer. inc. 8

(

them are ideal candidates for a pipelined ALU: the data stream is constant, and the
operation applied to each is identical. So, while we cannot hope to apply the full
complex LIRP computation in 20ns to each pixel, we nonetheless can achieve an
average throughput of 1 computed pixel per 20ns.

Before we look at the actual pipeline, we need to first understand how
certain complex operations are broken into pipeline atoms. To start with, at least
for our pipeline, the atomic operations are a single addition/subtraction or a single
data selection stage (i.e. selection of a bit of data from one of several sources).
Data paths which don't change are hardwired and take "no time", and any number
of independent atomic operations can occur simultaneously in one cycle.

A pipelined fixed-point multiply takes as many pipeline stages as bits in the
multiplier. Effectively, the multiplicand is multiplied by 2 at each stage, and if the
bit for that power of two is set in the multiplier, then the multiplicand is added to an
accumulated sum. The multiplication works by at each stage examining the next
most significant bit in the multiplier while it shifts the multiplicand another bit to the
left (shifting in zeros). If the multiplier bit at that stage is a one, then the shifted
multiplicand is added to an accumulated sum, if the multiplier bit at that stage is a
zero then the accumulated sum is unaffected. Note that while the multiplicand is
shifted by one at each stage, this is a hardwired shift and thus takes "no time" to
complete.

Converting floating-point to fixed-point representation simply involves
shifting the fraction part of the floating point number by the amount of the
exponent. This variable shifting function can realized in a barrel shifter. A
pipelined barrel-shift can be implemented with a input word and a shift amount
word by log n stages of banks of 2-to-1 multiplexers, where each stage has one
multiplexer for each bit of the input word and where n is the maximum number of
bits to be shifted. At each stage of the barrel-shift pipeline the bank of 2-to-l
multiplexers either shifts the data by a degree of a power of 2 or does not shift the
data at all, as controlled by the state of the bit for that power of two in the shift
amount word. In a similar way to how the pipelined multiplier determines whether
or not to accumulate for each power of 2 in the multiplier, the barrel-shifter
determines whether or not to shift for each power of 2 in the shift amount input. I
realize this is tenibly confusing in words, but it just doesn't merit a dia~ so
you'll have to trust me that it works.

Okay, the rest is easy. This is the pipeline to implement:

Cx = C0 ((3(x- Xo) + 1) (algebraically equivalent toCx = C0 + C0(3~)

for all three color components("<-" means "gets"):

CONFIDENTIAL

Operations
(3fix <- Float-to-Fix((3)

&x <-X-X0

Clock Cycles
5
1

Advanced Development Group, Appls Computer, Inc. 9

Temp 1 <- ~fix * 6x 10

Temp2 <-Tempi+ 1 1

R,. <-R0 * Temp2; G,.<-G0 * Temp2; B,.<-B0 * Temp2; 8

25

And that's it. After a 25 stage pipeline the correctly Gouraud shaded R, G,
B values are output.

4.1. General LIRPs

If we examine the general LIRP function in which R, G, and B vary
independently, it is not very hard to see how a system similar to the hue-invariant
system discussed above might be implemented which realizes that function.
Indeed, as it turns out, such a system is simpler, involving only one multiplication
in the pipeline and no floating-point to fixed point conversion. The only drawback
is that it requires more RAM in the Line Buffer.

If you recall, the formula for computing a LIRP for an independent color
component is simply:

C,u= C0 + m!u, where 6x = x - x0•

This formula is similar to the hue-invariant formula, with the major differences
being the lack of a second multiplication and a slope m instead of a complex
constant~- We had stored one J3 for all three color components, but since each

color component's slope is independent of the others', each one is stored
independently in the Line Buffer, as

mR, mG, and ms.

Also unlike J3 of the hue-invariant formula, these slopes can be compactly

represented as signed, fixed-point numbers, each of 11 bits. Thus, we will require
33 bits of Line Buffer storage for the slopes. And, exactly as in the hue-invariant
implementation, we will require 24 bits for R0, G"' and B00 10 bits for x0 , and 1 bit

for the CLUT/RGB flag (explained in section 4.1). This gives us a total of 68
bits/pixel stored in the Line Buffer.

In the currentQuickScan implementation this would require 3 QuickScan
Line Buffer chips of 25 bits apiece. A next generation QuickScan device could
feasibly, albeit awkwardly, support 34 bits/pixel providing 68 bits in 2 chips. And,
indeed, some day a single 68 bit/pixel QuickScan chip will also be feasible.

The arithmetic for the general LIRP representation is simpler, but there are
no common operations for the three color components. Thus, there are three
separate and independent ALU pipelines operating simultaneously. In fact, they are
so independent, the three pipelines could be implemented quite feasibly in three
identical chips.

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 10

The following is the ALU pipeline to implement C'Jl= C0 + m(x - x0). It is

one of three identical pipelines for R, G, and B ("<-" means "gets"):

O,perations Clock Cycles

L\x <-X -X0 1

ll.C <- m * ll.x
C 'Jl <- ll.C + ll.x

10
1

12

And, so we have it. A much simpler pipeline results than that of the hue
invariant implementation, but one which requires 68 bits of input data instead of 48.

CONFIDENTIAL Advanced Development Group, Apple Computer, Inc. 1 ,

. c.·: ..

5-B

......
. · ..

:~,.. ::;;.i:;:t~(ri Groop~'.
Diteat~:'" 21·Ftt>~Ui·~;f'1985 . · .. .,
Sub~'.1.Strawman Pr-oposal f or .. the.autckScan Display Sub~m

. . ~" . • .:. ' .· ., ;, ~"7-.' . ~ ·;' _:.:.. . • · ..

~ttactatis~~m~~Pt,pp~•l .f.or an obJ~t-o~eritet$.tP.P..tcs· display ~
sY,steai;;QU~siii\ T~i~;,lf the.first re lea~ of,t~e·do~ntaU~ f~r ~ht's
5Yst~1ind1t ts .s~!"e\\f~l q1~anized, but if you~a~le~St!ft•' tt- · ·
.thr·1~e intr~d~tton. .. ~~~· poke throug~Jhe te'chntcal~spCc>f- · ·.
inter.es~fyou can get a pretty. good feeling.for the char.acter1stics of the t"
system~-:,... · -: ·.~1 :.

. ,. '. . . . ' . . - .. ,;~.1 .,_:. ·": : ... ' ·~ .
.1'11-bi sdptitement1ng:;\t\1~ pickage with.additto~l-_d~it.icrn~t·;. - :

· part1eo1~1);. som:e qetihtci ~saipt~~ on '"°w ·~o Pdl up spedf tc: kindS·of · . • , r
grapnteiOtijects, but ."in the.meintime .. td·be most aPPMtCiatlve to get any ,
ftedbact~oumay haVe, ~ l'dt>e dei'tghtedto answer·any questions .

App le 11 Group Conf tdenttal and Private

(

(

QuickScan YRAM Bus Arbitration
9$P• Z/, 1 CJ/B5

Assumot1 ons:
1. NEC 2S6K VRAMs used.
2. CPU cycle time 12BOns.
3. VRAM SReg Tnmsfer Access l1me s.2BOns.
4. VRAM SReg Tnmsf er Cycle time s.400ns.

1. Bus Arb1tret1on for Object Oescr1pt1ons > 1 Word 1n Length

The L1ne Buffer w111 detect 1nterne11y when 1t 1s w1th1n 240ns of the end
of the Lest Commend on a Une. Th1s w111 e1ther occur because e s1ngle word
Commend hes 1ts D1spetch Next btt set, or because e mult1-word Commend hes
Hs D1spetch Next b1t set end 1t 1s w1th1n 240ns or 1ts end. eons erter th1s po1nt,
the Une Buffer w111 ect1vete 1ts D1spetch Next Flag. W1th1n 40ns the D1spetcher
w111 hold off any CPU bus requests (but or course w111 allow eny 1n progress
to complete). ''··

160ns after the Dispatch Next Fleg. the next object w111 be d1spetched w1ttrthe
01spatcher send1ng e Context Sw1tch command. 40ns efter th1s. the 01spetcher
w111 commence the VRAM object data Transfer to the Sh1ft Reg1ster.
The 01spetcher w111 then send 2 LRun Commands (to set the V1ewport)
followed by the F1rst Instruction for the object. The Sh1ft Reg1ster data
w111 be veltd at th1s po1nt, and the object load w111 commence. 120ns after
th1s point, the VRAM access cycle w111 be complete. end CPU bus reQuests
w111 be honored.

Data Bus:

Time:

1~ns
from end Oispetch
of Last Next

Command fleg

w'~

Next Object
Bevins

-40ns

eons
~t t t t

CPU Bus
Requests
Held Off

Be9in VRAM
Acea.a

SReg Oeta CPU Bus
Veltd Requests

N:cepted

Apple 11 Group ConftdenUel end Private

Data Bus:

2. VRAM Arbitration for Objects of 1 Word in Length

Objects of exactly 1 Word in length are started exactly like longer
objects, but 1nstead of re11nquish1ng control to the CPU after the VRAM
Transfer to the Shift Register cycle completes, the Dispatcher retains
bus control, and immediately begins the Transfer to the Shift Register.
for the following object.

This allows very small objects (e.g. icons, pointers, background
fills) to be processed efficiently.

Object
Begins

Cswtch LRLm LRun

I I I I I I

Begin YRAM
Arx::llss

-40ns
80ns

Next Object
Begins

SReo 1st Cmd Dilll Cswtch LR&m LR&m 1st Cmd SReg 01l1 ... SReg Dall •• :

I I I I I ,f I I I I I I I I I I I I I
t t t t

SReg Deta Begin VRAM SReg Deta CPU Bus
Valid Access Ve1id Requests

Accepted

Apple 11 Group Confidential and Private

0

G

(

(

QuickScan VRAM Refresh Generation
SOP 2/19/85

s1nce au1ckScan does not ronow a predictable row access pattern, 1t must
perlod1cal1y generate refresh cycles to keep the dynam1c RN11ntact. As
1t turns out, It 1s necessary to generate s11ght1y more than 4 refresh
cycles per 11ne 1n JOHz mode and s11ght1y more than 2 refresh cycles per
11ne 1n 60Hz mode. tr we wanted to be clever, we could have au1ckScan
generate just 4 or 2 cycles, respect1ve1y, eaeh line, then per1od1ca11y
1nsert an extra cycle, but 1ts really 11ttle overhead to generate 5 or 3
cycles every 11ne, so that's what I recommend.

The b1g Quest1on Is: where do these refresh cycles f1t 1n w1th the
hor1zonta1 t1m1ng?

wen, clearly we pref er to 1nterf ere with the CPU's throughput rather than
au1ckScan·s stnce we w111 be count1ng on the horizontal data load t1me to
be very precise. Furthermore, the refresh cycle ls tne same length as a
CPU memory cycle, yet dlff erent than a Shift Register Transfer cycle.
From a state machtne point of vtew, we'd agatn be better off lnterf er1ng
wt th the CPU.

There 1s st111, however, the Question of where. If a programmer chooses to
hog all of the memory cycles on a Hne for au1c1<Scan access, then she
should be allowed to do so. Presumably, she would set uP her code so that
the CPU can be asleep for that 11ne. Well, If that's possible, then where
k.ail. we st1ck In refreshes Clurtng that 11ne?

wen. the bOttom Hne ts: It's not possible. Let's construct the worst case
scenario. It's 1n 60Hz mode, and she's set up an 64 Objects so tnat they
are eaeh 1 word long, so as soon as the Dispatcher nas fetched one, tt
lmmed1ately fetches the next, w1thout letting the CPU get any cycles In
between Each of these Dispatch cycles Is 400ns long, and 64 of them one
after another amounts to 25.6 microseconds. The whole hor1zonta111ne ts
31.778 p.s In 60Hz mode, g1v1ng us 6.178p. left over. But, each refresh
cycle ts only 280 ns. and we need at worst 3 of them. Not only w111 we get
our refreSh, but we have 19 CPU cycles left overt Thus, OulckScan
allocates the f1rst 3 or 5 CPU cycles each line to refresh.

Apple 11 Group Conf tdenttal and Private

QuickScan Display Subsystem
Introduction

•SOP• 2/20/85

General Otscriptton and Sales P1tch
The QuickScan Display Subsystem is an object-oriented graphics

generation system designed to structure graphics image representation in
such a way as to relate an object's complexity to the amount of resources
the object consumes. This approach tai Jors graphics resources to the
exact needs of each object on the screen and saves us from accommodating
the most general case with monstrous blt-maps, or even more monstrous
graphics hacks

As a side-effect of this structuring process, QuickScan also provides
us with a neater way of organizing our ·frame buff er· by maintaining
independent blocks for each of our graphics objects. We have the
opportunity now to manage graphics memory as we do main memory,
a11ocating it for graphics object needs as we do now for data structure .
needs, balancing the memory resource for the particular application at
hand.

We also now have the capabi11ty to move large and complex images
around the screen with little more than a change of a pointer. Sequencing
through animation frames is accomplished instantly, with no redrawing or
·undrawing· whatsoever. Objects with large spaces of a single color need
not ever be uncompacted as Qu1ck5can displays Run-Length Encoqed (RLE)
directly, and in fact displays runs of arbitrary length faster than any other
display system avaHable today.

QuickScan's bus interface was set up to be extremely general. It ts
capable of addressing 4 Megabytes of display memory directly, and it has
hooks to be driven by graphics engines (like a 3-D polygon engine) while
sti11 displaying its conventional graphics. The nature of the system also
makes it much simpler to genlock to an external video source for graphics
overlays and underlays.

I have tried very hard to keep the system as general as possible so as r"i
to not lock programmers into a specific mode of generating graphics. I · ~

Apple II Group Confidential and Private Page 1

! (

regret that at thts potnt I haven't had the ttme to wrtte up tots and tots of
examples to demonstrate the f1ex1b111ty of the system. I bel1eve, however,
that as you ttnker wlth what you have in m1nd to display, you'll ftnd that
there are routes w1thtn thts system to get the image up, probably with
less memory and more control than you thought. And, 1f there tsn't a way
to display what you envision, then I want to near about it There's a
good chance there's something we can do about it.

Before we get tnto the nttty gritty of how this thing works, here's some
specifications you can use to put the OuickScan approach in context with
other graphtcs systems:

OuickScan General Spectflcattons

01splay Timing and Format:
640x484 60Hz non-inter1aced or
640x484 30Hz interlaced, NTSC compatible
Pixel clock independent of system clock
External gen-lock and video underlay/overlay/middlelay capability
Square pixels (with proper timing)

Output:
Analog RGB
NTSC Video
(Stored internally as 5-6-5 RGB and 4-4-4 RGB with 4 bit multiplier.>

Object Capability:
2-1 /2 D prtorlt tzatlon of 64 independent objects
Objects are of arbitrary size and shape, displayed through arbitrary

size and shape viewports
Objects described thro , g s, or any co llP ~ g bpf
Objects can be made f 5-6-5 RGB pixe , bit lookup table pixels

wlth a 4 bit multip1ier, or parts o each mo
Multiplier can be accessed independently to create luminance effects
Btt-map depths supported are 1,2,4,8, and 16 bits/pixel (BPP)

Bus Interface Charactertst1cs:
Usua11y only interferes with CPU RAM access when starting an object

description

Apple II Group Conf jdenttaJ and Private Page 2


~~~--. -:-~------'-·-·- --··--'-~-----~-----·-

Load1ng the object descr1pt1on occurs 1n full parallel wtth CPU access 
Manages bus arbttrat1on and dynamtc RAM refresh 
Uses NECJ,lP041264 256K Video RAMs 

Performance Parameters: 
Object dispatch overhead: 320 to 480ns/line of object 
Bit Map overhead: eons/line of bit map · 
Bit Map draw rate: 

1 BPP : 1 pixel each 2.Sns (400 Mill ton Pixels/second (MPS)) 
2 BPP: 1 pixel each 2.Sns (400 MPS) 
4 BPP: 1 pixel each 5 ns (200 MPS) 
8BPP: 1 pixel each 10 ns (100MPS) 

16 BPP: 1 pixel each 20 ns ( SO MPS) 
un Length overhead: eons/sequence of runs/line 

Run Length draw rate: 
80ns per run of arbitrary length at 16 BPP 
(This figure cannot be compared with other graphics systems 

since they figure their runs in pixels/second. So .. J 
12.5 MPS min at 16 BPP 
8000 MPS max at 16 BPP 
4006 MPS ave at 16 BPP (a Cray can't write to memory thls fast) 

In case_ you need a basis of comparison for the above performance figures, 
consider the fact that we recently had a visit from a high-end graphics 
board manufacturer who was certain we'd be blown away by the drawing 
speed of their awesome new display chip. In its run length mode in certain 
conditions it could hit almost 50 MPS at 8 BPP, and in its bit-map mode it 
could get up to around 12 MPS at 8 BPP. This device used Ill of the bus 
ttme. The processor could not run In display RN1 whatsoever. In addition, 
the device supported no objects. autckScan needs very little bus time, 
supports 64 independent objects, and ts significantly faster than their 
·state-of-the-art• engine. 

But, to be fair, their system was much ·smarter· than QuickScan. It could 
draw some simple figures as well as manage a display. (Even so, as Toby 
pointed out, our 68020 wHl blow their sntcon away in complex drawing 
speed anyway.) This does, however, underscore a point. Un11ke most of the 
recent display processors to hit the market, QuickScan does n21 have the Q 
ability to draw independently. It relies entirely on the CPU to give it 

Apple 11 Group Conf1dentta1 and Private Page 3 



( 
1nstructions effectively w111 be necessary tn order to use the device 
effectively.!t1 

The obJe'ct descr1pt1on is usually organized so that the instructions 
for a given Hne are tmmed1ately followed by the instructions for the next 
Hne which are followed by the instructions for the next 1tne, and so on 
untH the last line of the object (there are exceptions to this in advanced 
applications). Thus, the Start Address in VRAM pointer 1n the Object 
Dispatch Table (the ODT) should point to the instructions for the first line 
of the object, and instructions for each of the rest of the lines should 
follow in order. 

Let's consider a s1mple example: the sky. The sky in this picture 1s 
light blue all the way across the screen. It happens to be object zero 
because it is the background-most object. Well, 1t starts at the top of the 
screen, and continues down to 1ine 200 before it ts covered by the water. 
So, we specify the Start Une as O and the End Line as 200. Horizontally, 
the sky begins at pixel 0, so let's specify the Absolute Origin to be 0. Let's 
put our object description at address 100 tn RAM, so we set the Start 
Address parameter to the value of too. That takes care of the OOT. Now, 
let's prepare the object description. 

Since the sky is the same color (in thts simple example, anyway) all 
the way across the screen, it is the ideal situation for using a Run Length. 
So, our very first instruction is a Run Length of light blue from pixel Oto 
pixel 640. And, that's it for the first line. By setting a bit (the Dispatch 
Next bit) in the Run Instruction we let QuickScan know that we are all 
done for the line. We place the instruction for the next line immediately 
following the instruction we just put in, and sure enough it's the same 
exact instruction s_S the sky is light blue straight across on this line as/':? _ 
well.~ the firs,l,~we set the Dispatch Next bit so that QuickScan ~ 
realizes that it is at the last instruction in a line, and then we follow it 
with the Run instruction for the next 1tne, the next, and so on until we 
have enough instructions for every line in the object. We don't need to tell 
OuickScan that we have reached the end of an object description. It 
determines thts from the End Une value tn the ODT. 

s 1nce we have 201 Hnes 1n this object, we'll need 201 Run 
instructions to describe it. Each Run instruction takes 1 word (32 bit 
word), so the whole light blue sky object takes only 201 words, yet 1t 

Apple II Group Conf1denttal and Private Page 6 



contatns some 128,000 ptxels. Indeed, when you get more advanced tn 
ustng autckScan, you'll find there ts a way to draw the whole light blue sky 
wtth just 1 word tn the object descrtpUonf 

Let's now constder somethtng a Httle more trtcky, the sun. This 
particular sun object extends from Jtne 40 to ltne 180, so that tens us 
that Start Une and End Line in the ODT should be set to 40 and 180, 
respectively. Unltke the sky object, however, the sun 1s not aligned with 
the left s1de or the screen, its left-most rays extend only to pixel 400. 
That tells us that its Absolute Origin should be set to 400. From now on, 
an horizontal coordinates we specify in relation to this object wi11 be 
referenced to pixel 400. Let's have this object's description start at 
address 3000 in RAM, and we will set the Start Vram Pointer accordingly. 

Refer the following diagram as we discuss how we set up the object 
description. 

Start line 

End line 
Run 

Length 

Absolute Relat1ve Relative 
Oril)in Oril)in limit 

5 Short Runs 

One long Run 

(for the Long Run only) 

The Absolute Origin as a start position for all runs was sufficient for 
the sky object because an runs began at the same point on every line. 

0 

Let's consider just the ball part of the sun object for the moment. The 
first thing we see is that the Absolute Origin designation 1s insufficient 
for the runs (1.e. the horizontal Hnes) that make up the ball because each 
run on each line begins at a different point. To accommodate this 
characteristic QuickScan supports a second Origin local to each subunit on Q 

Apple II Group Conftdentta1 and Prtvate Page 7 



( 

dtrect1on. autckScan only provtdes a structured tmage space model for the 
CPU, and through this organtzation eliminates some space- and 
t1me-consum1ng operations otherwise necessary with a van111a btt-map. 

But we're jumping ahead. QuickScan can best be introduced with an 
example. 

A QuickScan Example 

Consider the following scene: 

Piintir19s b1.J 
lnf~us Artists 

Thts scene can be considered to be made up of 11 objects. These are, 
listed background to foreground: The sky, the sun, a cloud, a jet, water, 
waves, a fish, a ship, land, a llght house, and a text window. You could 
specify each of these objects as an independent entity to auickScan, and 
given the appropropriate instructions, it would generate a composite 
image just as you see above. Let's look into how we would do that. 

First of all, we have to present the object 11st to QuickScan in the 
order in which we'd like to see the objects prioritized, background to 
foreground (just as we listed the objects above). The order is significant 
because if we decided that we wanted to move an object we'd want it to 

Apple 11 Group Conf ldential and Private Page 4 



appear on top of the objects beh1nd 1t and behind the objects 1n front of 1t. 
(For example, we'd want the plane to appear in front of the Sun, but not 1n 
front of the text window.) The name of this ordered object 11st 1s the 
Object Dlspatch Table, and we may build this table at any address 1n the 
256K Video RN1 that 1s an even multiple of 1 K 

Each object 1s provided with a 4 word (32 bit word) entry in the o~ e.c-t" 
Dispatch table. The background-most object uses the first entry, the 
next-to background-most gets the second entry, and so on until the 
foreground-most object has been entered. OuickScan supports up to 64 
objects per frame, but you do not have to use them all. In thts case we 
specify only 11, and that 1s fine. 

Each Dispatch Table entry has enough information to tell OuickScan 
what it needs to know about the position and the characteristics of the 
object the entry refers to. If you want to jump ahead there is a diagram of 
the full entry format, but for our concerns right now 1'11 just discuss the 
basics. 

To begin with, there is a Start VRAM Address pointer whlch tells 
QuickScan where in RAM it can find the beginning of the object's 
description. Next there are 2 values, Start Line and End Line, which tell 
QuickScan between which lines of the screen the object is to be displayed. 
And finally (for our purposes) there is a value called the Absolute Origin 
whlch tells OuickScan what horizontal point 1n screen space it should use 
as a reference point for positioning this object left and right. 

The object description is a 1ine-by-Hne sequence of instructions that 
tells QuickScan how to draw the object. Don't worry! These aren't 
instructions like you've come to expect from a microprocessor or a high 
level language. They are just very simple primitives which instruct 
Qu1ckScan to draw either Bit-Maps or Run Lengths, nothing fancy. Also, 
don't think you need a sequence of instructions all of the time. If a11 you 
have to display is a p1a1n oJd rectangular btt map, or a regular sequence of 
runs, then you just have to store the data. You don't need to worry about 
instructions at alt Nonetheless, 1t 1s important to understand that 
Qu1ckScan ~an instruction-driven machine; the rectangular btt map 
happens to be a simple case where the instructions are effectively hidden. 
As you get into the more complex applications of OuickScan, utilizing the 

Apple II Group Confidential and Private Page 5 



( 

(_ 

-;·-.- .-

each ltne of an object descr1ptton, the Relattve Ortgtn. The Relattve Ortgtn 
shown in the dtagram is associated with~ the particular run of the sun 
htgh11ghted tn a thick black 11ne. The run above it, the run below it, and 
indeed every other run (or, as we'll see shortly, run sequence) in the object 
description has 1ts own particular Relative Origin. 

The Relative Origin is to object coordinates exactly as the Absolute 
Origin is to screen coordinates. That is to say, just as the Absolute Origin 
defines an offset from the left edge of the screen, the Relative Origin 
defines an offset from the left edge of the object (which is defined by the 
Absolute Origin). So, if at any time you need to know the screen position 
pointed to by a Relative Or1gin, you simply add 1t to the Absolute Origin 
and you'J1 get the exact pixel position on the screen. 

Now, that we've specified the start of the run, we need to specify lts 
end. There are 2 ways to do this: either specify its Run Length or specify 
tts Relative Limit. The Run Length says how long the run is, and the 
Relative limit says where the run ends (relative to the Absolute Origin). 
There are reasons for specifying runs in either of these ways, and as you 
get to Qu1ckScan nitty-gritties, you find there are a few other 
impHcations. But the end result, whichever way you specify it, is the 
same. 

So, if we are just drawing the ball part of the sun object, we find 
that we once again need only one instruction per line (the Relative Origin 
is specifie~~~~ncj!'~truction), only unHke the sky object's one 
instruction, "".,. tnstnlction is dUferent for each line, reflecting the 
varying shape of the object. But, we still are faced with the problem of 
the suns rays. How do we describe these strangely shaped things? 

The way to approach the problem is to consider how OuickScan sees 
the rays: it sees them each line-by-line, so it is only concerned with the 
individual pixel or pixels which appear from the rays on each Hne. Now, 
we could specify a small bit-map for each of the individual pixels that 
appear on each Hne, but that would be somewhat wasteful of RAM since 
the rays themselves have no internal details. We might as well use the run 
generation faci1ity to simply make short runs to draw the individual 
pixels, using the Relative Origin to position a run at the intersection of 
each ray with each line. 

Apple 11 Group Confidential and Private Page 8 

x 



-- .. ----------------- --

Now tt is perfectly reasonable to generate an Individual run 
1nstruct1on for each of these 11tt1e rays, but there ts another approach. It 
ts sort of a Run Length shorthand useful 1n descr1b1ng a sequence of runs 
Cth1s case 1sn't the greatest example, though -- 1t's especia11y handy wtth 
cartoons). In the diagram I've shown a sequence of S short runs. The ftrst 
run ts a teeny one to draw the first ray's 1ntersectton with the line, the 
second run ts a •transpareni- run which just skips over to the next ray, the 
third run draws the second ray, there is another •transparent• run, then 
fina11y, the last run draws the third ray. The short run sequences encode 
tn roughly half the memory space of the individual long runs (although they 
take just as long to draw), and they make 1t possible to tie adjacent areas 
of color together. For example, if I change the Relative Origin of the run 
sequence all 5 runs are affected, but their position relative to each other 

x 

stays the same. . 

Whatever approach we decide to use to encode the ray; w~ now g 
faced with the problem of combining the rays with the ba11 part of the sun.~ 
This can be handled in 2 ways. First, we could keep the ball runs and the 
ray runs independenv In this case each 11ne of the object descri~ti~~ -··/ 
would have first one run instruction, and then would end with th~ run 
instruction. If the rays require several run instructions for that line then 
these can be inserted in any order/ The key thing is make sure all 
instructions get in before the end of Hne bit (the Dispatch Next bit) is put 
in. Second, we could encode the entire line aMequence of runs, 
including the run def1ning the ball. Then, we'd have just one instruction 
per 11ne, and the description would be very neat (though not necessarlly 
optimally compact>. 

In any case you may have noted that we no longer have a uniform 
number of words per line of object description. If you are wondering, no, 
it's not a problem. QuickScan will simply count the words until the 
Dispatch Next flag is picked up, then will update its internal state 
accordingly. 

So, how.many words would the fu11 sun object description require? It 
is 140 lines tan, and considering how I drew it, I figure there's about an 
average of 3 runs per line. Encoding each of the runs individually, we'd use 
exactly 1 word per run. So, that's 3 words per Hne times 140 lines gives 
us about 420 words. Not too bad for an object that takes up about 1/6 of 

Apple II Group Conf1dent1a1 and Private Page 9 

"' l ' 



( 

the screen. 

Okay, suppose that after we'd defined the sun as above we wanted 1t 
to set. How would we go about 1t? No problem. If you recal1 we defined 
the sun to be way in the background; 1t moves in front of only the sky. So, 
tf we reposttion tt lower 1n the screen, 1t wi11 be overlapped by any 
objects which are positioned in front of it, in this case, by the water. 
Repositioning it vertically only requires changing its Start Line and End 
Line parameters in the ODT. The object description and everything else 
remains the same. If, for some reason we wanted to reposition the sun 
horizontally behind the cloud, then all we have to do is change its Absolute 
Origin to some lower value. Since the object has been described relative 
to this parameter, the various parts of the object will move to left along 
with the Absolute Origin, maintaining the same horizontal spacing among 
themse Jves. 

Okay, let's jump ahead and take a look at how we generated the Bit 
Map object (the text window) in the very foreground. To understand this 
we need to unveil 3 more parameters of the ODT, the Left View Port, the 
Right ViewPort, and the First Instruction. 

Refer to the diagram below for the following discussions. 

Start Ltne 

End Line 

Actual Extent of Bit Map 

P1~by ;!\I 

klfnous Artis1s II~ 
"SH Seen." by i!~ 

Son of Sam !I 
~.n ii! 

Len Vie\IPort 
and 

Absolute Orig; n 

Right Vie\IPort 

Although representing complex objects with instructions provides us 

App1e 11 Group Confidentia1 and Private Page 1 O 



with a useful organizat1on, represent1ng plain old b1t-maps with 
tnstructions could be very cumbersome. We want bit-maps to be stored 
ltnearty in memory, with the last word of one line being followed directly 
by the first word on the next line. The QuickScan system, as 1t's been so 
far described, minimally requires one instruction on each line. If we 
expect to have linear bit-maps as described above, imbedding an 
instruction prior to each line of bit-map is out of the question (besides 
that QuickOraw would have a bird). 

To get around th1s problem (and also help out in other ways) there 1s a 
U1rst Instruction parameter for each object in the OOT. This instruction is 

the first instruction executed at beginning of every Hne for the entire 
object description, regardless of what data or instructions are to follow 
on a particular line. Now, an obvious questlon is, what if you don't want 
the same first instruction on every line? Then, you'd make the First 
Instruction a NOP and there'd be no problem. 

For our concerns with bit-maps it so happens that the Bit Map 
instruction for every line of a linear bit-map is exactly the same. And the 
data for the Bit Map instruction is set up in such a way that its meets the 
linearity criteria set above in the way that 1t is organized in RAM. Thus, 
the plain 11near bit-map is a specific case that falls out of the OuickScan 
general object description format. 

/,\ 
/--' · The only constraint that QuickScan does impose upon bit-map 

_ ~ v-\ organization is that each 11ne of the blt-map must end evenly on a 32 bit 
~ ; \ word boundary. Now this doesn't mean that all bit-maps that QuickScan 
ft ~ displays must have horizontal dimensions in multiples of 32 bit words (as 
~ \

1 we'11 see in a minute). It simply means that if your horizontal dimension 
ends up with some fraction of a 32 bit word, then you have to waste the 

'.-J\ \ remaining number of bits in the word to even out the line. Presently, 
. QuickDraw stores bit-maps a11gned to 16 bit boundaries. I don't 1magine 

the change to 32 bits would be enormously difficult (famous last words). 

·..;.--· -- ·- --

\ ___.;considering the text window diagrammed above, we see that 1t bears 
I many sim11arlties to the sun object descrtpt1on. Uke the sun object, the 
Start Line and End Line parameters define the vertical Hmits of the 
object, the Absolute Origin parameter defines the left Hmit of the object, 
and (not diagrammed) the Start VRN1 Address parameter points to the 

Apple 11 Group Confidential and Private Page 11 



( 
start of the object description (tn this case tt points to the ftrst word of 
the linear btt-map stored in RAM). And, ltke the sky object, all lines begin 
at the same pixel so there ts no need to specify a Relative Or1g1n for each 
ltne. What d1st1nguishes the ODT entry for thts object from the others is 
its ViewPort parameters. 

ewPort i just what it sounds like it ts, a Hmited view tnto 
anot~~asrce. autckScan has an extremely general VtewPort facility 
which allows us to specify VtewPorts of arbitrary shape and size (the 
cloud, for example, could be a ViewPort into a Hve vtdeo image), but for 
the most part we only need rectangular ViewPorts. Folks at Apple call 
such things ·windows.· 

The rectangular ViewPort ts so common in Appleland that it seemed 
to me that 1t would be good marketing sense to include an automatic 
rectangular ViewPort facility as part of each object dispatch. Seriously, 
though, such a capability is fundamental when working with bit-map 
objects anyway. Which leads us back to the problem at hand: 

It so happens that this particular bit-map has a horizontal dimension 
of 230 pixels. It is a 1 bit/pixel bit map so it takes up 7 words and 6 bits 
for each line. As stated before QuickScan requires each horizontal line to 
end exactly on a 32 bit word boundary, so we can say that this object has 8 
words per line with the last 26 bits of the 8th word unused. 

If we simply draw this bit-map object with blind abandon we will 
find out that those 26 bits had~ va~UJ, and they wlll clobber whatever 
should have been directly to the right Of_;frue bit-map image. TMs is 
where the V1ewPort ftts in at tts most simple appltcation: it crops the 
unused bits off of bit-maps so that only the true bit-map data makes it to 
the display. Thus, by setting the Right ViewPort parameter in the ODT to 
230 (yes, it Is relative to the Absolute Origin), we will crop the unused 26 
bits off the bit-map, and we will see displayed only the data in the true 
bit-map. 

So, how do the Left, Top and Bottom ViewPorts fit in, and how do we 
specify the Top and Bottom if there is no direct parameter? Well, the Left 
ViewPort is not needed in this example so we tuck it away out of trouble 
at the Absolute Origin. It is used, as well as the Top and Bottom 

Apple II Group Conf1dent1al and Private Page 12 



----------------

V1ewPorts, but we'll have to watt ttll a little later to get tnto tt. To give 
you a hint at some of the posstbilities~ you get horizontal and vertical 
scrolling withtn the your rectangular (or any shape) ViewPort without 
having to move any data around. 

Okay, this is where I'm going to leave off describing QuickScan for 
this release. I realize there are many unanswered questions, but there is 
enough here to start on until I have time to get the rest out. 

Apple II Group Confidential and Private Page 13 

0 



(\ QuickScan Line Buffer Instruction Set 
Command Word Format -SP• 2/ 1 7 /85 

Bit Ma12JBMa.12,} 
31 24 ~~/ 16 1 s 8 7 0 

O O 0 Oeta Format (5) Re11tiw OriQi n ( 11 ) Deta Word Count ( 1 0) 

~+ ---~ ~ 
~11i& 

Long Run CLRYnl / 
31 24 23 16 15 8 7 0 

1 Run Data (7) Relative Origin ( 1 0) Relative limit ( 10) 

?~+- ~)\ 

~1 16 15 8 7 0 

(': 0 1 Deta Format ( 5) Relative OriQi n ( 11 ) Deta Word Count ( 1 0) 
- ., 

~~ ~~f"Xdo tch I 

*>ct 
\ ·'·;:\. 

'· 

' -(1) /: A ,..,. .. 

CQntext Switch JCS~itcbl 
31 24123 16r5 817 0 

I o 1 0 oj Absolute Origin ( 12) Constant Word ( 1 6) 

~plaee Constant CRCoostl 
31 24123 0 

I o 1 o 1 I Not Used c 1 2> Constant Word ( 16) 

No Operation CN.QR.l 
( "'•·. ' . 24 23 

' ----j/, 1 
16 15 

NDt Used (21) 

8 7 0 

Apple 11 Group Conftdenttel end Prtvete 



QuickScan Line Buffer Instruction Set 
Data Word Format -sGP• 21111as 

Bit Map Data Word Eormats 

1 Bit/Pjxe1 
31 24 23 16 15 8 7 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

2 BHs/Pixe1 
31 

I 1s I 14 I 13 

4 Bits/Pixel 
31 

I 1 

8 Bits/Pixel 
31 

I 3 

16 Bits/Pixel 
31 

31 
Run Date (8) 

6 

32 1-Bit Pixels 

24r3 
10 9 I 8161'57 I 6 12 11 

0 

o I 
16 2-Bit Pixels 

24r3 
5 4 

16r5 
3 2 

0 

8 4-Bit Pixels 

24r3 
2 

16r5 0 

0 

4 8-Bit Pixels 

24123 16r5 
1 

a 11 0 

0 

2 16-Bit Pixels 

Short Run Data Word Format 

2423 16 IS 0 

Run Length ( 8) Run Date ( 8) Run Length (8) 

2 Short Runs 

Apple 11 6roup ConttdenUal and Pnvate 



Pixe1 0 
Example Configuration 

Pixel 640 

+ Left Sid& of Screen Right Sid& of Screen + 
640 Cells 

B B B B B B B B B B B B B B B 
I I I ~ x x 

G G G G G G G ....... G G G G G G G G 

~ 

R R R R R 
L L L 

R R R 
L L 

R R R R R R R 

Mode I I I I I I I I I I I L I L I L I I I I I 
Masklolojototol l l l l 1 l l l t I 

II It IL II jI jI j1f1 j1 trl 
11111110lo11111110 to I 

Cell DescriJ;2tiODS 

B = 5 bits Blue ' . = 8 ltra bits, the lo~r 

(. x 4 bits of which hold 
r a multiplier applied to \ brf / ~ 

G = 6 bits Green ( r v l the Lookup Table output 
\ I 

R • 5 bits Red ) L 
• 8 bits Lookup Table value 

[!] • Image Mode [!] • Lookup Table mode 

@] =Writing Inhibited OJ •Writing Allowed 

QuickScan Line Buffer 
Programming Model *SGP• 2/ 19/85 

Apple II Group Confidential and Private 

MSB 

16 

LSB 



QuickScan Line Buffer Instruction Set 
Instruction Descriptions 

•SOP• 2/20/85 

The following are descr1ptions of the 6 instructions supported by the 
auickScan Line Buffer. All data access to the Ltne Buff er is carried out 
through these instructions, and understanding them 1s fundamental to 
understanding how Qu1ckScan objects are displayed. 

This document discusses the overall effect of each of the 
1nstruct1ons. Refer to the related Line Buffer Instruction Set documents, 
Command Word Format, Data Word Format, and Field Descriptions for 
diagrams and further detai Is. 

Instructions execute in the same time that they take to load, so only 
instruction load times are given. 

Context Switch 

CSwitch <Absolute Origin>, <Constant Word> 

The Context Swltch single word instruction redefines the Line Buffer 
Absolute Origin and Constant Word, genera 1 ly in preparation for a new 
object description (refer to the Field Description document for an 
explanation of the Absolute Origin and Constant Word). This instruction is 
automatically generated by the Dispatcher when dispatching a new object, 
but can also be specified within an object description for some other 
purpose. 

This instruction takes 80ns to load and cannot be the last instruction 
in an object description. 

Replace Constant 

RConst <Constant Word> 

This single-word instruction replaces the value of the Constant Word. 
It ts functionany equivalent to Context Switch except that it does not 
affect the Absolute Origin. 

Apple 11 Group Conftdent1al and Private 



( •1 ~(ljaG "'
This 1nstructton takes eons to load and cannot be the last .CemmaAd tn 

an object descrtptton. 

Btt Mao 

BMap <Data Format>, <Wrtte Mode>, <Dispatch Next>, <Relative Ortgtn>, 
<Data Word Count> 

This multtword tnstructton provides the means to display Bit Map 
tmages. A stngle Command Word describes the charactertstics of the Btt 
Map data (the Data Format), the ortgtn of the Btt Map relative to the 
Absolute Or1g1n (the Relative Ortgin), and the number of Data Words to 
follow (the Data Word Count). T~ Command Word ts then followed 
direct 1y by the specified numbetAData Words, and these words provide the -e
raw data necessary to generate tne Bit Map. A Btt Map instruction may be 
the final instruction for an object (t.e: by using its Dispatch Next btt>. 

QutckScan supports 5 different bit depths in its Bit Map displays. 
These are: I, 2, 4, 6, and 16 BPP (Btts/Ptxel). Although the Bit Map 
Command Word is the same for an depths, there are differences in the 
Data Words. First of all, pixels are packed in different densittes in the 
various formats. Secondly, the rate that Data Words load into the Line 
Buffer varies between the formats. The results are summarized below: 

~. 1 oad Time Cnsl 
Depth - Jiiieiii Command Data Words Last 
(BPP) D. Word Word except last Data Word 

1 
2 
4 
8 

16 

32 
16 
8 
4 
2 

80 
80 
80 
80 
80 

80 
40 
40 
40 
40 

80 
80 
80 
80 
80 

L -

(Note that it takes an equal amount of time to load a 2 BPP Bit Map as a 1 # ~ 
BPP Bit Map, even though 1d; twice as much data.) ~ 

Like all QulckScan ~ loads an Image for a single Hne only. -"C: 
If more than one line of Bit Map is desired, then e1ther a Bit M~ eum111arni ,(')_/' 

~:1c~--~ 
Apple II Group Conf tdenttal and Private 



-·- ----- - -------------------------- -------- ------ .. -···- - ---------~--~------~-~-------

~ 
must be spec1f1ed for each ltne, or the Btt Map-Cemmaftd must be the First 

. -CommaAd-1n the Object Dispatch Table Entry. 
~-

Long Bun 

LRun <Run Data>, <Wrtte Mode>, <Dispatch Next>, <Data Map>, <Relative 
Ortgin>, <Relat1ve Umtt> 

This single word tnstructton loads one run of a single input data value 
(the Bun Data>·tnto the Line Buffer. The run may be up to 1023 pixels long. 
All pixels from the begtming to the end of the run will be written with the 
given input data value at once, and no other pixels wi11 be affected. 

A run is specified by its left limit relattve to the Absolute Or1g1n (the 
Relative Origin), and its right Hmit-1 relattve to the Absolute Origin (the 
Relative Limi~f a run·s right limit ts specified to be to the left of it's 
left limit, then tt>~S'1Qnored. ~ 

This instruction takes 80ns to load, and tt can be the last instructi~ 

0 

in an object description. ,,~, 

Short Run 

SRun <Data Format>, <Write Mode>, <Dispatch Next>, <Relative Origin>, 
<Data Word Count> 

This multi-word instruction loads a sequence of consecutive runs into 
the Line Buff er. The first run begins at an ortgin specified relative to the 
Absolute Origin (the Relative Origin) and wrttes an input data value (the 
Run Data) at once to a number of pixels (the Run Length) to the right of the 
ortgtn. The second run begins at the phcel following the last pixel written 
by the first run and writes its tnput data value to a number of pixels to the 
right of that point, and the process continues until each of the runs has 
been loaded (the Data Word Count+2). Runs of zero length are ignored, and 
processing continues with the following run. 

Runs can be a maximum of 255 pixels long, and 2 runs are encoded in 
each Data Word. Ir an odd number of runs Is desired, then the second run of 
the last Data Word should have a length of zero. 

Buns can be •transparent• That is to say, a run can be specified 
which extends across a number of pixels but does not write anything to 
these pixels. This comes in very handy when there is a sequence of runs, a 

C: 
_/ 

Apple 11 Group Conf1dentta1 and Prtvate 



( 

( 

( 

gap, and then another sequence of runs. The gap can be crossed w1th a 
transparent run, cont1nutng the same Short Run tnstruct1on tnto the second 
sequence. Transparent 1s specif1ed by a Run Data value of 255. 

The Short Run Command Word takes eons to load, and each Data Word 
takes 160ns. It can be the last tnstructton in an object description 

No Ooerat ion 

NOp <Dispatch Next> 

Thls single word instruction is a place marker; it has no function. 
t«>p takes 80ns to load, and it can be the last instruction in an object 
description. 

Apple II Group Confidential and Private 



----·---··--··· ·-~··· -- ------- ---- --.~-------

QuickScan Line Buffer Instruction Set 
Field Descriptions 

••• 2/ 17 /85 

Absolute Origin 
Th1s 12 b1t word def1nes the hor1zontal display space origin from 

which a11 object positioning calculat1ons wnl be made. It ts a 2's 
complement number with the leftmost pixel (pixel 0) on the screen mapped 
to position 0, increasing with positive values to the right and decreasing 
with negative values to the left. Thus, objects can be positioned relative 
to a point up to 2048 pixels to the left of the screen and to a point up to 
1408 pixels (+2047 less 640 plus 1) to the right of the screen. 

There is more room provided on the left side of the screen because 
objects are alway! generated left-to-right, never extending further left 
than thep.t>solut(stigin, and thus, we need more room to move objects 
off-screen on the left than the right. The screen position is maintained 
internally in the line Buffer in such a way that an object extending past 
pixel +2047 will not wrap around to the left side. 

Relative Origin 
Th1s 1 O or 11 bit word deflnes the pixel offset from the Absolute 

Origi'\~O begin writing the forthcoming data. ln.~~tfJ~!J>f ~it 
Map~ dJf~h~ixel addressed by the firskBit tfap Data t 
Word, and in a Run COiRm1ftd, l\is defines the leftmost pix'efof the first 
run. The RelaUve Origin word is a positive integer, summed internally 
with the Absolute Origin to get the resulting pixel address. 

Note that the resulting pixel address from the sum of the~.JP..W!!.. / 
and Relative Origins nHd not actually be on-s_cre_mjor the CQfftm1ftcrtob~ 
executed appproprtately. If, for example, l'~specifies its · 
Relative Origin to be to the left of the screen, and part of its generated 
image is off-screen and part of tt is on-screen, the OU1ckScan Line Buffer 
w111 generate the on-screen part of the tmage appropriately, even though 
the screen border may fall right 1n the middle of a run or a Bit Map word. 
If, however, the resu1ttng pixel address ts off the right side of the screen, 
there ts no on~c"'-en part_ of the image, and QuickScan wi11 just skip the 

-eornmaAd. • ~ • -

Apple 11 Group Conftclentta1 and Prtvate 

0 

----.., 

C' , , 
_/ 



( ..• ) 
, _ _. .... 

• • • • I . 

Constant word 
<'u "When the L tne Buff er ts f ormtng a 16 btt word to write to a ptxel or a 
pett' of ptxels, tt has to provtde a full 16 btts for the wrtte operatton _r--_-_~-
even though the input data may provide less than 16 btts. The Constant 
Word provides these addtttonal bits. Its function ts best descrtbed by an 
example: ,,.t 

If the Ltne Buffer is loading In a 4 btVptxel Bit Map, then the input . ~"' .,.r· ./ 
data is providtng 4 btts to write to each 16 bit pixel. The Bit Map ~ 4 ~ 
attrtbute field ·oata Formai- lndtcates to the Line Buffer which 4 btts of ' At 
the 16 in each pixel ce11 the input data refers to, but it ts stt11 faced wit v ln "~ IY 
the problem of what values to asstgn to the remaining 12 bits. This is (fr JI'\ 
where the Constant Word comes in. Whtchever 12 bits happen to not be ./ r- ~ • 

specified by input data (after the data has been formatted) come directly ( 
from the corresponding 12 bits of the Constant Word. So, if the input data 
provides bits 0 through 3, then bits 4 through 15 would be provided by bits 
4 through t 5 of the Constant Word. 

The same applies analogously to input data widths of 1,2,7, and 8 
bits. Note, however, that at 16 bits/pixel, the Constant Word is not used 
at aH. 

pata Fonnat 
This field indicates the Input data wtdth and alignment tn the 16-bit 

pixel word. Available widths are 1,2,4,8, and 16 Bits/Pixel CBPP). An 
a11gnment value of O Indicates the data bits are aUgned flush with the LSB 
of the pixel word (Bit O of L-Byte), and increasing alignment values place 
these data bits 1ncrementa11y closer to flush alignment with the MSB of 
the pixel word. Input data can only be aligned on bits which are multiples 
of tts width (e.g. if the data width ts 4 BPP, then there are 4 a1ignment 
positions, but If the width is I BPP, then there are 16 a1igrvnent 
positions). Those bits of the pixel word not provided by the input data are 
provided from corresponding bits of the Constant Word. 

Width 
1 BPP 
2BPP 

. 4BPP 
8BPP 
16BPP 

Encoding 
1AAAA 
OtAAA 
001AA 
0 0 0 1 A 
00001 

Where AA .. is the alignment value . 

Apple 11 Group Conftdenttal and Private 



- .. • . .. . ......... ...... . . .. 

x 
Wr1teMode 

This field Indicates which secttons ~l~Rixel word are to be 
affected by the forthcoming data writes. ~irfl1ons not selected tn the ./2--. 
write mode will not be affected at all by the forthcoming writes. '---

When M write mode ts selecte~ tfor writing to the Mask and Mode 
bits), the Mask bit ts written b.· y b1Uj>of t~e resulU~ 16 bit pixel word ?-
and the Mode bit ts written by bit:I. Btt~ugh-ifl are ignored. If the<-c
data width ts 1 BPP, the data writes wnl affect only the Mask Btt; the 
Mode bit will be left as is. 

~ Encod1og 
M 00 
L 0 1 
x 10 
LX 1 1 

Sections Written 
Mask a~1ediA&He enJV 
L-Byte Only 
X-ByteOoly 
L- and X-Bytes Only 

pata Mao ~ (J tJ y; 
This f1eld of the Long R~~ Word provides a 11mited means of 

mapping the 7 bits of Run Data in the 16 bit internal pixel word. If the 
Write Mode is L, X, or LX, then when the Data Map bit is 0, it wi 11 map the 
Run Data to the lower 7 btts of the 16 bits, and when it is 1, to the upper 7 
bits. If the Write Mode is M, then when the Data Map bit 1~, it wlll limit 
the Run Data to I BPP with its LSB mapped to internal bit~(thereby 
restricting it to the Mask bit), a~~n the Map bit is '.·it will map the /2_ 
Run Data directly to the internal ]jjii 7 bits (thereby anowtng it to ~ 
affect the Mask Btt ta bit fl and the Mode Bit in bitdf). e 

ar l<.f 
-

Run Data 
n ..• ~teld provides an imbedded 7 or 8 btts of input data in a Run 
~ be used in generating a word for writing to the group of pixels 
addressed by the run. The use of this field varies between the Short and 
Long Run Commands. 

For Short Runs, this field ts 8 bits long. It 1s fonnatted Into the pixel 
word following the width and a11gnment rules given above in the ·Data 
Fonnat• paragraph -- with the following restriction: 16 BPP mode should 
not be used (the resulting pixel value ts indeterminate). If 1nput data 
widths of less than 8 bits are speclf ied, these are taken from the Run Data 

Apple II Group Confidential and Prtvate 

0 



r 
I 

a11gned to the LSB, and the upper b1ts of the Run Data are ignored. 

For Long Runs, the 7 data bits are mapped based on the value of the 
Map Data bit. The rema1n1ng 9 bits are provided by the cornsponding bits 
of the Constant Word. 

Belattye Ltm1t ~ 
This 10 bit field of a Long Run CommandWord indicates the pixel - C-

number-1, relative to the Absolute Origin, which ts the last pixel of a run. 
All pixels from the Absolute Or1gin•Relat1ve Origin to Absolute 
Or1gin•Belat1ve L1mit-t will be written in accordance with the Write Mode 
selected. 

Note that Relative Limit does D.Ql specify ·sun Length· but rather 
specifies a fixed pixel position. If a Run Length ts desired, then one or 
more Short Runs must be specified. 

Run Length 
This field, as its name impHes, specifies the length of a run. Or, 

more precisely, it determines the right limit of a Short Run relative to the 
Run Start, an internal register initially loaded with the sum of the 
Absolute and Relative Origins. By summing the Run Length with the Run 
Start value, the Line Buff er calculates th1s right Jfmit. After the run has 
been written to the pixel cells (using the Run Start value as the left 
limit), the Run Start register ts loaded with the right 11m1t value, and this 

.· .v1-1~comes the Run Start for the next run in the same Short Run 
~ Note that Run Lengths of zero are degenerate and neither write 

anything to the Hne buff er nor change the value of the Run Start register. 
Subsequent runs do nS21 overlap even though the right limit of the first 

becomes the left Hm1t of the second. This is because the left llmit points 
to the pixel of its value, and the right llmit points to the pixel of its 
value-I. 

Disoatch Next 
_ Th~\t_when set in a Command Word, not1f ies the Une Buff er that ~ _ 
t~ the last on this Hne for the currently loading object, and 

_ t~~j_Q!spatcher should b~ signJ)ep Jo dispatch the next object. If the r.Z.--7 
~15 a single word~ the Line Buft:er will signal the '----

( .. .. ~ Dispatcher Immediately, but If It Is a multl~:::._~the ~ -
. Dispatcher will be signaled 240ns before th~ * r:=:=> 

Apple II Group Conftdenttal and Private 



,, ~--------------~-··-·-------

When the Dispatch Next bit ts set In a single w~ ts 
a 160ns delay before the next object ts dtspatched, wt th multiple word 
~(except 2 or 3 word ones> there ts no delay. 

Data Wont Coyot 
Thts va1ue tncitcates the number of Data Words less one to follow the ~ 

Command~rd. Thus, O 1nd1cates 1 Data Word shall follow, and 255 ~ 
Indicates 256 Data Words shall follow. 

Apple II Group Conftdentta1 and Private 



l .. . 
' . . 

Data 
ln 

('32) 

Dispatch 
Next 

Clock 
Rate 

Dita 
Clock 

---
--~ 

~ 
~ 
~ 
~ 
~ 
~ .... 

~ 
..... 

~ 

~ 
~ 

~ 
~ ...... hi.. 

~ 
... 

~ 
~ 

Control 

@] [!] II] l1J lIJ ~ 0 0 [!] [!] [!QJ [ill @] [!!) [ill ~ 
Memory Cells of Une Butter ! 

~[!2]IT!Jl!!J~lill~~~~~~~@!]~(ill 
Len Limit or BM Vrite Addr 

Riaht Limit 
Vrlte Data 

Constant Vord 

Write Control 

ReadAddr 

Read Data 

@] [!] II] l1J lIJ ~ 0 0 [!] [!] [!QJ [ill @] [!!) [ill ~ 
Memory Cells of Line Butrer B 

~[!2]IT!Jl!!J~lill~~~~~~~l!!]~(ill 

QuickScan Line Buffer 
Block Diagram 

*SGP* 2/ 18/85 

Apple II Group Confldentlel and Private 

Data 
OUl 
(17) 



Dete 

------~-~------ ·-- -------·-------·--·--· --·--- --------------·---·~-

ADso1ute ong1n Run Sten PoeiUon 
Counter 

+ 

+ 
Left L1m1t 

BM Write Addr 

Left Limlt 
or BM Write 
Address 

1-------4a---------_...Right Umit 

Write 
·A---.-..-----------------------~Dete --Bus In 

(32) 

D1spotch 
Next 

Clock 
Rete 

Doto 
Clock 

Instruct 1 on 
Decode 

Word 
Counter 

Dispatch 
Next 

Ftnlte 
State 

Control 

_____ _.._ __ _.,. Constont 

Word 
Cons tent 

Word 

De to 
Format 

Line Buffer 
Read Address 

Counter 

Write 
Mode 

Write 
Control 

Reed 
Address 

QuickScan Line Buffer Control 
') • Multi pie Source "OR. 

Junction 

e • Si nQle Source 
Junctton· 

Block Diagram 
-SP• 2/18/85 

Apple 11 &roup Conf1dantial and Private 



( 

( 

P1xe1 o 
Pixel 32 
Pixel 64 
Pixel 96 
P1xel 128 
P1xel 160 
P1xeJ 192 

P1xe 1 512 
Pixel 544 
P1xe1 576 
Phcel 608 

(Memory 

Left L1mtt 
or 

BM Wrtte 
Ai:tt-ess 

·~ 
iO 
{32 
{64 
{96 
{ 128 
{ 160 
092 

R1~t l1mtt 

1r 
& >O 
& >32 
& >64 
& >96 
& > 128 
& > 160 
& ) 192 

Address 
Comparators 

~512 & >512 
s544 & >544 
s576 & >576 
{608 & >608 

~ 
Ce 11 O 1 s shown.) 

- • .... ..... • .. . ..... ,.J •• ,., 

Constant Word Wrtte Data 

Read Addr ,. ,, 
Data Meroe and Al tgnment Laotc T ..... Wrtte Contro r-

1 r;-.'te;..:..Q: .. ~~, . 
, 

., ~· 1f ~· 
,, _i,. 7 &. • 

& • ~ . . ,r 

& • 
(,..)(, \p 'j 

,- x t=:r-O.:~:'. 
& I I • CD CD 
& "< "< • ~ ~ 

& 
(1) (1) • 

& • 

:I :::I 
]> j C» 0 

(I) c. c. 
"JI: CD c. 
t1J t1J 

.., 
CD - - (I) ,... - (I) Ptxel Storage 
0 

i 
CD 

1 1 8 8 n 
0 - - ..... .... ..... ... Cl. - - -- • -- .. CD I .., 

& = 
...... 
& -
& • 
& • 

l -,- c ~ .1 

~~\e 7 3 -""':: ""' .-c J r:.._-,_ [7 
Vo ~'v r ... \'".1\ ~ En 

~· 
I ts ,, 

~· ~ 
· Read Data 

QuickScan Line Buffer Memory Cell 
Block Diagram 

*seP* 2/ 18/85 

Apple II Group ConftdentlaJ and Private 



--------------·------

QuickScan Object Dispatch Table 

Object. 
Object 
Object 

Word2 

0 
1 
2 

62 

' 

Dispatch Table Format "SGP• 2/ 18/85 

WordO Word 1 Word 2 Word 3 
WordO Word 1 Word2 Word 3 l 
Word o Word 1 Word2 Word 3 Closer to ~ck.ground 

Object Dispatch Table 
I I I 

64 Objects = 1 VRAM ~w = 1 K Bytes 
Closer to Foreground 

Word o Word 1 Word2 Word 3 
WordO Word 1 Word2 Word 3 i 

Dispatch Tab1e Entry Format 

16 15 8 7 

Stert VRAM Address (20) 

24 3 
Stert Line (9) 

0 

0 

8 7 0 

Constent Word (Lower 12 bits) 

Word3 
31 24,23 16115 . 8 1 7 ( 

I First Instruction (32) 
--------------------------------------------------~--

App 1 e II Group ConftdenUal end Priv~) $,' (: 
. JJM»>fJ~ 



(_ 

( 

. . ~ ·,... . . . 

Reed/Wrtte Select 
Clear Addr'd Btt Set An Eneble Wrtte 

Object 0 

Object 1 

Object 2 

Object 62 

Object 63 

VRAM 

Bus 
Control 

U> ,. 
::l 

I .., 

b ect Dtspotc 
et 

Old 
Addl"'e33 

Ref rah 
Address 

0 -i' 
i'; --. .. 
'l n 
::r 

+ 

-
0 -C\ ,. 
c 
CD 
n 
0 a. 
CD ., 

Address 
Increment 

Word 
Counter 

H19hest 
Priontv ,......._ __ ...... ....., __ ...... __ -----

& 2S Lt•&£ f Lt• .,_....,.. 

-I 
S! -

& .lS LI•&£ f Lt• .....--.. 
& .lS Lt•&££ Line .,_....,.. 

~ 

64 
Pere11e1 

Comporotors 

-• 
& .l S Line&" E Une .....-....... 

& .l S Line& i E Line .,__...,.. 

I.west 
Prtor1tg 

C\ ,. 
~ 
'C 
c ,... ,, ., -0 ., -,... -N 
CD ., 

Line 
Counter 

Horiz 
Counter 

Finite 
Stete 

Control 

Date Output Buffer Dete Input Buffer 

Q • Multiple Source -oR· 
Junctton 

• • Single source 
Junction Deta Bus 

1/0 

QuickScan Dispatcher 
Block Diagram 

Apple 11 &roup confidential and Private 

L1ne Buffer 
control 

-SOP• 2/ 18/85 



lntroductfon 

QuickScan Dispatcher 
Functional Description 

••• 2/20/85 

The Qu1ckScan Dispatcher's primary functfon ts to start up object 
descr1ptions object-by-object in a Hne and line-by-line in a frame. To 
accomplish thts function, it must determine: 

a) which object 1s the next one to load on the current Hne, 
b) where in the Graphics memory that 11ne of the object 1s stored, 

and c) when it can access that memory and not 1nterf ere with the CPU. 

Th1s accompHshed, 1t must access the data, send the appropriate 
1n1tta1121ng information to the L1ne Buffer, then commence loading the 
object description. Each startup operation Hke th1s is termed a ·dispatch·. 

The Object Qfsoatch Table 
The Dispatcher is configured at the end of each Vertical Blanking 

Interval. First it accesses a fixed address and loads tn a few words of 
contro11nformation (e.g. 30Hz/60Hz mode select, extemal genlock select, 
etc.) as well as the row address of the Object Dispatch Table (the OOT). 
Then it accesses the ODT ro~l.the q_QJJ1m_up exactly one row), and 
loads in the all 256 words. ~this~tfhe Dtspatcher has all of the 
information it needs to dispatch all 64 objects in the ODT for the entire 
forthcoming frame. 

Please ref er to the Dispatcher Block Diagram and the OOT Dispatch Table 
Format diagram during the fo11owtng discussions. 

The data in an ODJi:!~t is of~st to the Dispatcher is the 
Start VRAM Address, JAddr s lncremen the Count Words Flag, the 
Start Line, and the End Line. The rest of the information ts simply stored 
by the 01spatcher, and sent d1rect1y to the Line Buffer during a 
dispatch,virtually w1thout evaluat1ng Us content whatsoever. The flve 
operating data fields 11sted above are d1vtded tnto two groups, the address 
1nf ormation, and the Une information. 

Apple 11 Group Confldenttal and Prtvate 



( 

() 

-- ---- -----------~---~-------__,_,__] -~-

Detenn1n1ng the Next Object to Dtsoatch 
The Une Information group (Start Line and End Line) tell the 

Dispatcher those Jines on which an object 1s displayed. These two values 
are stored tn spec1al memory cells which are actually land i comparators 
respectively w1th the current line number fed In continuously (see Block 
Diagram>. Thus, the Start L1ne value for every entry tn the ODT ts 
constantly tested to be l the current ltne value, and the End line value for 
every entry In the ODT ts constantly tested to be i the current line value. 
The AND C&> or these two tests ts generated, and_ so, on the output of each 
ODT line information entry we effectively have a b1t that says whether or 
not the object for that entry appears on the current Jtne. 

f:-1 

Before these logical values are carried out of the structure they are 
also each AND_ed with• special~ 1 bit cell1 These special 1 bit cells C:: -
have unique access properties: a single common input sets all cells to J 
logic 1 state, and another single common input causes any individual ce11 . 
that is selected to go to a logic O state. The ce11s are selected by the ~~~~ 
same address decoder which selects the entries in the ODT Cother than the ~~~ 
line information). Thus, we have the capability to set all cells to logic 1, 
then clear the individual cell which corresponds to the currently addressed 
ODT entry. 

As stated above, ~s ANOed with the result of the line 
comparators for each entry. The resulting outputs feed into a 64 input 
prioritizer with entry O having the highest priority and entry 63 the 
lowest. The output of th1s prioritizer Ca number between o and 63) ts fed 
into the address decoder which selects the ODT entries and the I bit cells. 
So, the highest priority input running into the prioritizer determines the 
entry selected by the address decoder (e.g. 1f the prioritizer input from 
line comparators of entry 23 fs the highest priority input, then ODT entry 
23 wi11 be selected by the address decoder). 

The system works tn the f ollowtng way: 

At the beginning of a Hoe the Dispatcher state machine sets all of the 
special bit cells to logic one, and the new current line is fed into t~~ f1_,;/L- <(:= 
comparators. Since none of the bit cells affect the AND evaluations, the U/~ 
llne comparators output their logical result to the prioritizer without 

Apple 11 Group Confidential and Private 



1nterference. Clearly, the prtor1ttzer wtll output the entry number of the 
highest pr1or1ty object which appears on the current line. This number 
wtll go to the address decoder, so the highest pr1ortty ODT entry whtch 
appears on the current Hne wtll be selected. 

Well, that's convenien~. 115 so happens that th1s 1s the first ~ 
object we want to dispatc~r;8ie-OOT entry already selected, the ~ 
Dispatcher state machine reads this data and deals with tt accordingly 
(discussed below). 

Then, the entry st111 selected, the state machine acttvates the control 
signal which clears the selected special bit cel1 to logtc 0. Now, the Jlne 
comparator entry which had just been selected by the prioritizer is turned 

'1· 
! 

off: the b1t cell forces the AND result to logic o. But, al1 of the other line~ 
comparators are sttll enabled, and the prtorittzer outputs the entry number . ~ 
of the next highest priority object which appears on the cUTTent Jine. ~~ 

. Cirlously, this is exactly the next object that we want to dispatch! ~:;; vff:L 
Tht<ilbject ts then dispatched at the appropriate time, its corresponding ~ ',"~/ 
special btt cell ts set to zero, and the next highest priority object which oAtv 

appears on the current Hne is selected. And, so on until all of the objects v· · 
on the current I ine have been dispatched. At this point the Dispatcher 
state machine waits untll the next 11ne starts to begin the process again. 

Hand11ng Object Start Addresses 
The address information group (the VRAM Start Address, the Address 

Increment, and the Count Words Flag) holds the info ati he Dispatcher 
needs to determine the start address of each objec one c lme. ~ 

The Dispatcher wortcs from the paradigm that the Start Address 
currently stored in the ODT for a given object holds the address that 
should be accessed when the object ts next dispatched. This wortcs f tne 
for the first dispatch of a frame; the ODT Start Address sU11 holds the 
value loaded in during Vertical Blanking which points to the first line of 
the object description The problem 1s, how can we make sure that the 
Start Address holds the correct address for the second and subsequent 
lines of the object description when those Hnes of the object are 
dispatched? Well, there are two ways, depending on the nature of the 
object. 

Apple 11 Group Conftdenttal and Private 



( 

( 

The f1rst W'iff 1s opted 1f the Count Words Flag tn the ODT entry ts O 
(negat 1ve ly asserted). Thts means that the address increment from one 
ltne's start to the next 11ne's start tn the object descrtpt1on ts a ftxed 
amount. Thts amount ts contatned tn the Address Increment. When the 
object ts dtspatched, the Start ~ddress goe.U!lto the Old Address register 
Csee Block Dtagram), and t e Address Increment es tnto a regtster of the 
same name. These 2 value , while the ODT entry ts still 
selected (prior to clearing the special btt), the sum ts wrttten back to the 
Start Address fteld, replactng the old Start Address. Thus, when the next 
ltne comes along.and the object ts dispatched again, the Start Address <e::: 
field wtll potnt to the proper address for the next Jlne's data. 

The second way is opted tf the Count Words Flag tn the ODT entry ts 1 
(positively asserted). Thfs means that the address increment from one 
ltne's start to the next line's start is a variable amount (often the case in 
run-length descriptions). As in the first W'iff the ODT Start Address is put . 
in the 01~ ~~r~~wegister. But tn this case the Address Increment is .. ~ 
ignored, iil8 cdWlter clocked by the Shift Register clock ~ 
~s clear,tt!l_~~ ~the data load for the object description ~ 
is carried out;lt'Ki~ of how many words are actually loaded into 
the line Buffer. When the Line Buffer signals that it wants the Dlspatcher 
to dispatch the next object, the word count is summed with the Old 
Address, and the result is placed in the Start Address field in the ODT. 
(Then, the special bit is cleared, and the next object is dispatched.) Thus, 
when the next Hne comes around, and the object is dispatched again, the 
Start Address in the ODT wi11 be exactly the address following the last 
address loaded tnto the Line Buffer, regardless of what the increment was 
from the address at the beginning of the previous 1 ine. 

Now that we have gone through each way independently, we have the 
perpect1ve to see that both ways are identtcal~t in state machine ~ 
execution except for one register transfer. It works like thls: Upon object 
dispatch the Old Address Register is loaded with the Start Address, the 
Address Increment Register 1s loaded w1th the Address Increment, and the 
Word Counter is cleared to zero. Then, nothing haooens (except for the 
Word Counter counting) unt11 the Ltne Buffer sends a Dispatch Next signal 
to indicate the object description's completion. Then, either the Address 
Increment register m: the Word Counter is selected to sum with the Old 

Apple II Group Confidential and Private 

/ 



/ 

Address dependtng on the Count Words Flag, and In a stngle cycle both the 
sum (the new Start Address) ts wrttten and the spectal btt ts cleared. The 
very next cycle the dtspatch data for the next object ts read from the ODT, 
and the next object ts dispatched. 

/ There ts one unresolved issue in this address increment process: 
~when the Dispatch Next Flag ts received from the Line Buffer, there may be 

0, 1,2,3,4 or 5 words fo11owing, depending on the particular 1nstructton 
that the object description ends on. One approach would be to wait untn 
the object descriptton ends before updating the ODT, but thts ts 
problematic because we rea11y need the time to complete the sum, update 
the Start Address, and let the Prioritizer and Decoder settle in their new 
state. Another approach would be to have the Line Buffer tell the 
Dtspatcher how many words are left, but this means pins. Another way is 
to have the instructions partia11y decoded in the Dispatcher so it knows 
what is going on and can figure out the number of words. But, I think the 
simplest approach is to put the burden on the 68020 and require that an 
variable length object descriptions end 11nes 1n such a way that there are 
5 words after the word at which Line Buffer wt11 send Dispatch Next untH 
the first word of the next llne in the object description. This will waste a 
little RAM tf the object descriptions are not planned we11, but presumably 
the variable length objects are pretty compact anyway. 

VRAM Bys Arbttratton and Refresh 
VRAM Bus Arbitration and VRAM Refresh Generation are each 

discussed in separate individual documents. It would be redundant to 
discuss them here. 

ptspatchtng an Object 
After what 1t takes to get up to dispatching an object this part is 

very simple. Essentially, an object ts dispatched by sending four normal 
instructions to the Line Buff er that happen to prepare it for the 
forthcoming object load. The Line Buffer actually does not ·know· that 
these instructions are not part of an object description, and indeed, 1t 
contains no special logic to support the dispatch process. 

The four instructions that dispatch an object are as follows: 

1. CSwttch Absolute Ortgin,Constant Word 
2. LRun O,M,0,0,0,641 

Apple II Group Confidential and Private 



( 

( 

J. LRun 1,M,0,0,Left V1ewPort, Right VlewPort 
4. First lnstructton 

Immediately followtng the First lnstructton, the first word from VRN1 
wtll load in, and the object descr1pt1on w111 continue loading unttl a 
Dispatch Next b1t ts set 1n an instruction. 

The explanatton of the four Instructions goes as follows: Instruction 
1 deftnes the horizontal reference potnt and the default tnput data, the 
Absolute Or1g1n and the Constant Word, respectively. lnstruct1on 2 clears 
the Mask b1t tn every ptxe1ceH1n the Une Buffer, then Instruction 3 sets 
the Mask bit 1n those cells between the Left VtewPort and the Right 
VtewPort. This has the net effect of a11ow1ng wrltes to only those cells 
withtn the VtewPort. Then, finally, the First Instruction ts just that, the 
first instruction of the object description. It can be anythtng. 

There is an exception to thts dispatch process worth mentioning. If 
the object description requires a ViewPort more complex than the simple 
one provided by thts mechanism, the user can set up her own ViewPort in a 
higher priority object description, then disable the automatic ViewPort 
mechanism from clobbering the one she just set up. This is accomplished 
by setting the Right ViewPort value to -1. The Dispatcher, upon detecting 
this value will send NOp's instead of LRun·s for instructions 2 and 3. 

Handling Row Crossing Conditions 
The Video RAMs specifled for the OuickScan system are set up in such 

a way that data is only rapidly accessible if 1t happens to be sequential 
and all in one row. If a line of an object description is entirely contained 
in one row, then managing the VRAM ts no more complex than as It ts 
already described here. If, however, an object description of a line does 
cross a row boundary, then a) a performance penalty will be appHed, and b) 
the Dispatcher will have to load 1n the next row. 

If you are familiar with the NEC VRN1 devices, you will know that if 
you anticipate crossing over the end of a row, you can start a Transfer to 
Shift Register cycle early and seamlessly switch from the end of one row 
to the beg1m1ng of the next. With Ou1ckScan this can't quite be achieved. 
First of all, the Shift Register is often being pushed to its maximum 
speed; a seamless switch at that clock rate is virtuaHy impossible. And, 
second of an. the Dispatcher can't always anticipate that an object 
description is gotng to cross a row boundary; it doesn't know the extent of 

Apple 11 Group ConftdenUal and Private 



a vartab1e tncrement object descr1pUon untn the last tnstruct1on ts 
loaded. 

As a straightforward so1ut1on to this problem I recommend that the 
Dtspatcher monitor the position in the row through some function 
comected w1th 1ts Word Counter. If the row boundary ts actua11y crossed, 
the Dispatcher wt11 only then tntttate the Transfer to the shift register. 
Considering worst cases for OMA latency, we have to allow 560ns to get 
the VRN1 ·back on 1tne· with the next row's data. I've considered at least 
a half dozen approaches to make this row transition less painful, but this 
ts by far the simplest, neatest, and most consistent tn timtng. It also is 
nice because it follows the same timing chain that ts used when the 
Dispatch Next Flag is detected. I recommend that we just·wam off 
programmers from crossing row boundaries, and Jet them know it'll cost 
them 560ns every time they do. 

Apple II Group Confidential and Private 

0 -

0 



• 

( 

3-b 

To: Jonathan Architecture Committee, et al 
From: Steve Per 
Date: 318185 
Subject: QuickScan Programming Manual 

Attached is a copy of the QuickScan Programming Manual. This document 
throughly describes the details of programming QuickScan without going 
into any hardware implementation issues. Eicept for a few minor details 
the functional specification of QuickScan is complete in this document, and 
the system is ready for critical evaluation. 

Although the functional specification is complete, I haven't quite finished 
the Applications Chapter, but believe me, there's plenty here to go through! 
Moreover, what is here really covers the core of QuickScan applications, 
and I wanted to get these ideas into people's thinking as soon as possible. 
I'll be getting the last few pages covering the esoteric stuff out as soon as I 
can. 

Apple II Group Confidential and Private 



S-6 (Supplement) 
QuickScan Display Subsystem 

Programming Manual 
... 3/6/86 

Bevtston History 
First Draft - Missing 

some Appl1cauons and Appendix B 3/8/85 Steve Perlman 

Abstract 
Although a detailed hardware descrlpUon of QutckScan ts the best 

way to estab11sh 1ts reas1btl1ty, a detanea software ciescrtpt1on or the 
subsystem's operation ts tile best way to estabUsh 1ts usefulness. The 
f1rst Strawman release or CUlckScan had an 1ntrodUCt1on that went Into 
some of tile salient reattres of tile system and gave a few examples of 
oow to program tt, but tne bulk of the CSOC\Jnent package focussed on tile 
tmplementauon detans. This dOC\ITlent 1s a ·Not for Programmers on1y· 
aescr1pt1on of autckScan·s aperatlon and software model. AA extensive 
App11cattons chapter shows practical Implementations with toorough 
dtscusstons of CPU ovemead, OU1ckScan loading, and RN1 utlltzatton, but 
from a programmer's point or vJew. This ooct.ment Is Intended to serve not 
only as a programmtng gu1de, but, espectally at this early stage, as a 
means or evaluatton. 

Apple 11 Group Conf tdent1a1 and Prtvate 



( 

( 

.......... 

Jonathan ltee I et a1 
rom: St.eve Perl9ft-~ 

Date: 3/16185 
SUbJect.:OWctScan Programming Manual SUpptement 

Attached ts sect1on 7.2 of the QutckScan Programmtng Manual as wen as 
an updated Table of Contents. Please replace your Table of Contents page 
u wtth the updated one, and then tnsert the text pages after page 67. 
Some of the people who recetved double-sided coptes of the Programmtng 
Manual are missing pages 29, 30, and JI. I've Included these pages at the 
end of th1s packet for those of you who fa JI In this category. 

This sectton covers appUcattons of QuickScan's fully parallel l'U\ 

generauon mechanism tncludtng real-time cartoons, backgrooods, and 
real-time 3-D soltd polygon modeling. The capabtltttes of thts mechanism, 
more than any other parttcular feature, d1sttngu1sh QulckScan from any 
other d1splay subsystem that extsts commerctally, at any price. If you're 
interested In graphics, please take a moment to look thrOugh tt. 

Apple II Group Confidential and Private 



Apple II Group Confidential and Private 



It 

6.1.7. Dtsp1ay Mode 
6.1.8. Embedded Mask Polarity 
6.1.9. Ftrst Word 
6. 1. 1 O. Bus..Access 

6.2. Object 01spatch Overhead 
6.3. Row Boundary Overhead 
6.4. CPU Bus Overhead 

7. Appl1cattons 
7.1. Rectangular Bit-Maps 

7. 1. 1. The Baste Rectangular Bit-Map 
7.1.2. Horizontal Pos1t1oning 
7.1.3. Vertical Positioning 
7.1.4. Horizontal Viewports 
7. I .5. Horizontal Scro Hing 
7.1.6. Vert1ca1 Vtewports 
7.1.7. Verttcal ScrolHng 
7.1.8. Arbttrartly Shaped Vtewports 
7.1.9. Embedded Masks 

7.2. Runs 
7.2. I. Backgrounds 
7.2.2. Masks 
7.2.3. Cartoons 
7.2.4. 3-0 Polygon ModeHng 

7.3. Mult1plter Applications 
7.3.1. Interlace Defltckering 
7.3.2. Illumination Modeling 
7.3.3. Anti-aHastng 

A Word Formats 
A 1. Command Word Format 
A2. Data Word Format 
A3. Dispatch Table Word Format 

B. Graphics Engines 

• Farttmntng 'lr£1udl!ld, but not numbered 

39 
39 
39 
«> 
«> 
42 
42 

45 
45 
46 
52 
54 
56 
57 
59 
61 
62 
64 
68 
72 
84 
84 
93 

* 
* 
* 
* 
t 

t 

t 

t 

* 

Apple II Group Confldenttal and Private 



1. Introduction 
This document is a detailed description of how one goes about 

programming OuickScan. It pretty much goes through the translation of 
OuickScan·s hardware functionality into software capabHity. I've avoided . 
as much as possible the discussing of actual issues in the si1icon, 
addressing any such constraints rather as fixed limitations of the 
architecture. Thus, thls document 1s a "how-to" guide to QuickScan. For a 
"why-it-worts" guide refer to the add1ttonal documentation. 

Although this document can be used as a reference and thumbed
through in any order, I recommend that you read 1t at first starting from 
the beginning and working your way to the end. I have been careful not to 
use terms and concepts before they are defined, and if you don't skip any 
sections, then you should be able to understand each new section as it is 
discussed. · 

0 

To keep us in a 68020 frame of mind, I refer to a 32 bit long word ~ 
when I say ·word" unless I qualify 1t as 16 bits. Also, when I qualify a (~ 
statement with the phrase, "in general," then I mean that the statement 
holds true for uses by normal people, but beware: there are hooks for hacks 
to mess around with things so that the statement might not be true. 

Information contained tn this document supersedes information 
contained in the documentation packet released 2/21 /85. An updated 
hardware specification is forthcomin·g. 

*SGP* 8 March 1985 

Apple 11 Group Cont idenUal and Private Page 1 

c 



( 
2. Objects 

2.1 Object Descrjpttons 
The f ol1ow1ng figure shows an example of a QuickScan display: 

Off-Screen 
Above 

On-Screen 

OuickScon Display ExtJmple 1 

Off-Screen 
RIOht 

AH Ou1ckScan displays are made up a collection of objects. Each 
1ndtvfdua1 object tn Example 1 is identified by a pattern. Note that objects 
can be of any shape and size and need not even be contiguous. Objects may 
be ent1rely visible on the display screen (objects 3 and 4 above), they may 
be partially visible on the display screen (objects 0, I, and 2 above), or 
they may be entirely off the display screen. Any part of an object which is 
Off-Screen is automat ica 1 ly cropped by OutckScan. 

we assign to each object a priority level The priority level tells 

Apple II Group Conftdent1a1 and Private Page 2 



OuickScan which object to put tn front of another when 2 or more objects 
overlap. Priority levels are from Oto 63: the higher the prtortty 
level, the closer to foreground OuickScan will place the object. The 
number on each of the objects in the above diagram indicates its 
respective priority level. There may be only one object to a prtority 
level. (But, in advanced applications, there may be more than one 
priority level to an object.) Prtortty levels also serve as 
identification for objects in the text of this document. Thus, Object 2 
refers to the object at priority level 2. 

All objects are made up of a contiguous sequence of words of 
arbitrary length plus 4 words of control data. The former data is called 
the object description, and the latter is ca11ed the dispatch table 
entry. An object description can be placed anywhere in RAM (sorry, not 
in ROM), although there are some areas in RAM which are best avoided to 
optimize performance. And, if it serves some hacker's end, object 
descriptions can even overlap. 

0 

,/''\ 

The dispatch table entries for all of the objects to appear in a \J 
given video frame are collected in the Object Dispatch Table (the ODT>. 11 ... qft"-
Up to 64 entries may be sequenced, one after another for each frame. J ~~ 
Each entry identlfies a particular object, and the order of the entries ~ . 
indicates the priority levels assigned to the objects. The first entry in . ~-ff'~ 
the ODT is priority level 0, the second is priority I, and so on, until the "ti(' 
last entry is priority level 63. The 4 words of a dispatch table entry 'l',, 

contain the attribute information for an object as well as a pointer to the 
beginning of the object description. (Note that the same object 
description can be referred to by more than one dispatch table entry 
if multiple copies of the same object 1s desired.) The ODT may begin in 
RAM at any address that ts a multiple of I 024, and 1t need extend only so 
far as there are dispatch table entries. Note that there ·is only 2nt ODT 
for each frame displayed by OuickScan. 

The configuration data is a contiguous sequence of words at a 
fixed address in RAM which contains fundamental control information for 
the Qu1ck5can chip set. Most of the contents of this data are not very 
relevant at this point in our discussions, but 1t is important to note that a) 

Apple 11 Group Cont tdenttal and Private Page 3 

0 



( 
th1s ts the only data at a ftxed address tn RAM used by Ouicl<Scan, and b) 
thts data contains the pointer to the Object Dispatch Table. 

Thts could be a memory map of what we've dtscussed thus far: 
High RAM 

Configuration Deta 

Object Dispatch Table 

Low RAM 

Memory Mop for Exomol e 1 

2.2 Line DescriDtions 
When OuickScan displays objects, it processes them each llne-by

llne. (I use the word "line" here Cand throughout this document> to ref er 
spec1f1ca11y to a I pixel tall horizontal row of pixels extending from the 
far left s1de of an object to the far right side. Note that each line of an 
object 1s coincident with a line on the monitor or TV screen when the 
object 1s On-Screen.) More specifically, OuickScan processes each object 
from its top Hne to its bottom Hne. 

Looking closer at the object descriptions, we find that they are 
each a sequence of independent line descriptionsto accommodate the 
nature of this line-by-Hne processing. The first data in an object 
description is the line description for the top line Oine 0), it is 

Apple II Group Confidential and Private Page 4 



d1rectly followed (generally) by the data for the next 11ne Cline 1 ), and so 
on, untll the very last data is the line description for the bottom Jlne 
(linen). We end up with an object description memory map that looks 
I ike this: 

High RAM 

Object 
Dispatch 

Table 

Ob ·ect 4 
Object 3 
Ob ect 2 
Ob ect 1 
Object 0 

LOW RAM 

Htgh RAM 

Object 
Description 

Lint Description 

Low RAM 

Lint 4 
Line 3 
Line 2 
Line I 
line 0 

Start Address 
Pointers 

line I 
Line O 

Line n 

line 4 
Line 3 
Line 2 
Line 1 
Line O 

Line n 

Line 4 

line 3 
line 2 

Lint I Line I 
line o line o 

Apple II Group Confidential and Private Page 5 



{ 

(. 

Each 11ne c:lescr1pt1on or an object description Is Independent or 
the other line c:tescr1pt1ons In that ob Ject descr1ptlon; what ts 
happening on one line of an object has no effect on what ts happening on 
any other ltne or the object. Indeed, It Is Quite correct to say that 
Oulcl<Scan·s fundamental Independent dtsplay enttty ts an object ltne, and 
that an object ts simply an ordered collection of ltnes. Remember this 
concept - the OutckScan archttectyre reyo!yes around tt 

An object's line descr1pt1ons may e1tner De all or the same length 
or an or variable length, and tn both cases the chosen lengths are 
arbitrary. Fixed or var1able length mode Is specified In the dispatch 
table entry for each object, and tf the lines are or fixed length, then tne 
line length ts specified tn the entry as well. 

2.J OulckScan Plsolay Soace 
Consider the followtng rtgure: 

(-2048.0) 

(-2048,483) 

Off-Screen Len 
(2().18 IC 484) 

(0.0) (639.0) 

On-Screen 
(64() IC 484) 

(0.4'3) (639.483) 
_A_ ., 

Off-Screen Delow 
(4096 x 28) 

OuickScon Disolpy Sooce 

(2<M7.0) 

00-Scrnn Right 
(1406 IC 484) 

(2047.463) 

The above figure diagrams the display space managed by Ou1ck5can. 
The area labeled ·on-Screen· tdent1f1es the region of the dtsplay space 
which actually appears on the monitor d1splay screen Ca centered subset of 
this area, about 512><210, 1s v1s1b le on a television screen). The 
Off-Screen reg1ons, although processed internally exactly like the 
On-Screen regions, do not result 1n any vtstble display. Any object 
descriptions whlch begin with1n the defined Ou1ckScan display space, yet 
extend outs1de of this space wtll be truncated at the dtsplay space 11mlts. 

Apple II Group Conf1dentlal and Pr1vate Page 6 



They w111 w ·wrap around" to the other side. 

Since Ou1ckScan object descriptions always progress to the right 
and downward, by far the most 1mportant Off-Screen region is Off-Screen 
Left. It a11ows an object description to begin far to the left of 
On-Screen and extend into the visible display space. This capability is 
fundamental for panning large backgrounds and for moving objects 
gradually in from the left of the screen. 

It is also vital to be able to move in objects from above the screen, 
but this can be accomp11shed by the 68020 flnding the address of the first 
line description which is On-Screen, and replacing the start address 
(of the object description) in the dispatch table entry with this 
value. It is a simple problem for the 68020 to crop the top 1ines off of an 
object in this way, but the same operation is a difficult problem for 
OuickScan. Conversely, cropping the left pixels off of an object is a 
trivial problem for OuickScan, yet a potentially monstrous problem for the 
68020 (as you shall see). Hence, we have OuickScan manage Off-Screen 
Left and the 68020 manage Off-Screen Above. 

Notice also that Off-Screen Right and Off-Screen Below are rea11y not 
very useful regions of the display space; their inclusion in the OuickScan 
display space is more or less vestigial. Although it is valid to specify an 
object description which starts in one of these regions, an object so 
described wlll not result in any visible display. These regions exist 
because a) we get them for free, and b) they might simplify the coding of 
objects which are frequently moved On- and Off-Screen. 

2.4 The Line Buffer 
As noted above, OuickScan processes object descriptions 

line-by-Hne. To be more precise, OuickScan processes a given line 
description whlle the line directly above it is being displayed. That is to 
say, OuickScan·s line processing is always one line ahead; it has one line's 
time to prepare a line before it is displayed. This function is known as 
single line buffering, and can be seen pictorially in the fol1owing 
diagram: 

Apple 11 Group Confjdenttal and Private Page 7 



( 

u 

) 
c_ 
~£.D 

} 

~· 

ISP 

While this 
line is being 

prepared 

8 
c 
D 
E 
F 

mes 

This 
1 ine is being 

displayed 

A 
8 
c 
0 
E 

The Conceot of Single-Line Buffering 

4 

, 

In order to accomplish single line buffering, we need a temporary 
place to store the line being prepared, holding it unt11 the next line time 
when it will be displayed. This temporary storage area is cal1ed the line 
buffer, and it is in this subsystem that all Ouicl<Scan video is generated. 

The I ine buff er is 640 pixels long, maintaining 1 pixel storage 
eel I for each pixel in a horizontal 1 ine across the On-Screen region. Each 
pixel contains 18 bits, arranged in the following manner: 

Apple II Group Confidential and Private Page 8 



MS6 

LSB 

X-Byte 

'),'.\'. 
}6 Bits of Color Data 

L-Byte 

D 1 Mode Bit 
D 1 Mask Bit 

A Pixel Storage Cell in the Line Buffer ( 1 of 6401 

The 16 Bits of color data hold the information that, in one of two 
ways, represents the particular color for that pixel. The mode bit 
indicates whlch of these two representations sha11 be used for that pixel. 
And, finally, the mask bit controls whether the color data and mode bit 
can be overwritten or not. 

Considering the mask bit in detan we have: 

QJ = Writes to this 
P1xe1 Accepted 

@J = Writes to this 
Pixel Ignored 

The Mask Bit 

It operates exactly as stated: If an attempt is made to write to the 
color data (and consequently the mode bit) and the mask bit's value is 
1, then the existing color data and mode bit shall be replaced with the 
data being written. If the same write is attempted and the mode bit"s 
value is 0, then the color data and mode bit shall remain as they are. As 

Apple 11 Group Confidential and Private Page 9 



( 
we shall soon see, the mask bit ts vttally important in the display of 
bit-maps and complexly-shaped objects. 

There are two modes in which a ptxel's color may be represented by 
the 16 bits of color data. The first is image mode. Here the color 
data is divided into 3 fields: 5 Bits for R, 6 Bits for G, and 5 Bits for B, as 
shown below: 

MSB 

5 btts Blue 

6 bits Green 

5 bits Red 
LSB 

D lmageMode 
D Masked as desired 

A Line Butter Pixel in Image Mode 

The RGB value contained in the color data represents exactly the 
color to be displayed on the monitor at this ptxe1; it is a direct mapping. 
The mode bit is automatically set to image mode when the 16 bits of 
color data are written in this mode, and the mask bit may be set to 
what ever value is needed. 

The second mode of representation is lookup table mode. Here only 
the lower 12 bits of the color data are used, the lower 8 bits 
representing an index to a 256-color Lookup Table, and the upper 4 bits 
representing a multlplier value to apply to the color selected by the 
index: 

Apple ti Group Confidential and Private Page 1 O 



MS8 
4 Bits Not Used 

4 B1t Mutt1p11er 

8 Bit Lookup Table Index 

A Pixel in Lookup Table Mode 

The Lookup Table holds 256 colors represented as 4 bits R, 4 bits G, 
and 4 bits B, and it is loaded from a table in RN1 prior to the start of each 
video frame. The 4 bit multiplier is appHed independently to each R, G, 
and B of the table entry selected by the index, multiplying each by a value 
between 0 and 15. This has the effect of accordingly brightening or 
darkening the nominal color, an effect very useful in 3-D shading models, 
anti-aliasing, and interlace de-flickering. 

Unlike in image mode, the color data in lookup table mode 
represents colors indirectly: first by selecting a nominal color with the 
index, and second by altering that nominal color with the multiplier. 
The mode bit is automatica11y set to lookup table mode when the color 
data is written in this mode, and the mask bit can be set as needed. The 
upper 4 bits of the color data are not used, but should be set to zeros. 

Now, as we noted before, QuickScan objects are processed Hne-by
Hne, from top to bottom. What is perhaps not obvious from this, however, 
is that the processing of all of the objects is interleaved, such that each 
object which appears on a given line loads its line description for that 
line into the line buffer before the line is displayed. While this is 
occurring, the line just above this line is being displayed. Furthermore, 
the processing of the objects' ltne descriptions is done in the order that 

Apple II Group Confidential and Private Page 11 

0 



( 

( 

the dispatch table entries appear in the ODT. Thts serves to prioritize 
the objects just as we expect by overwriting those objects of lower 
priority where there is an overlap. 

To clarify the previous paragraph, flip back to page 3 and the 
QuickScan Display Example 1. Consider for a moment the line dead center 
in the On-Screen region. Objects 1, 2, 3, and 4 a11 appear on this llne, and 
we expect them to be prioritized as shown in the picture. How would thls 
work? Well, first a line descr1ptton of object 1 is loaded into the line 
buffer, then one for objects 2 and 3. Then, th~ line description object 
4 is loaded, and it overwrites some pixels which were written into the 
line buffer by objects I and 3 at pixels of overlap, the prioritization 
desired. A conceptual diagram follows: 

Pixel O 

Ltne Oescrtpttons for all Objects on Une 

Lookup 
Table 
4-4-4 
R-G-8 

Line Buffer 

Color Data 
and Mcxie Bit 

Lookup 
Tabl~----Mme 
Index B1t 

Mu1Up11er 

ReB 
Data 

A 
8 Select ..... -.....l 

Out 

Une of Video to Monitor or TV 

Line Buff er Conceptual BJ ock Di ogrom 

Pixel 639 

Apple II Group Cont idential and Private Page 12 



-- ·----·--· --.----··-- --- ·-------------------

As shown above, a 11ne of 640 pixels ts prepared by the line 
descripUons for all of the objects appearing on that line. Then, the 
preparation complete, the color data ts output as a Jine of video. The 
color data can either follow a direct path to the video output if It is in 
1mage mode, or it follows an indirect path, through the Lookup Table and 
the Multip11ers, if it ts in lookup table mode. Note that a line can 
switch between image and lookup table modes at any pixel; there are 
no restrictions in this regard. So, image mode objects and lookup table 
mode objects can be intermixed on a line as is desired. 

Apple II Group Confidential and Private Page 13 

(-~

"'---) 



( 

( 

( '\ 

/ 

J_ptxels 

l..L ptxeJ Data Write Formats 
When we write pixel data to the line buffer from a line 

descrtption , we generally don't specify all 16 b1ts of data to write. We 
can, of course, specify 16 bits for each pixel if we want, but the amount of 
RAM and CPU overhead necessary to support such 11ne descr1pUons is 
extraordinary, and as a result we avoid such large line descriptions 
whenever possible. 

The folloyling diagr~w the various · ment permutations 
available f9r' each oJ~ pii1xell de ata w1dth . n e h 16 bi~data 
word sho n, theJ:rfts written rom the/ne de r1pti9JY, pixel ta are shade9~d /UH{bits writte. from ~consta t w9Pd are lef~ite. The 
data;to~rnat code is lis}id be,~ each 16 it ~or data word. (In the 7 
bittptxel width the ~~own is actua ~special data alignment 

Apple II Group Confidential and Private Page 14 

yl-tU>ChJ I 

'ik 5 Cl.MM

~"~~(A.+~ 



code, to be explained 1n the lnstructton Set sectton.) 
MSB 

LSB 
11 000 11 00 1 1 1 0 1 0 1 1 0 11 111 00 1 11 0 1 1111 0 1111 1 

1 B1t/Pixel Data Formats 

MSB 

LSB 

0 1 000 0 1 00 1 0 1 0 t 0 0 1 0 t 1 0 11 00 0 11 0 1 0 111 0 0 t 111 

2 Bits/Pixel Data Formats 

Apple II Group Confidential and Private Page 15 



( 

. ·.' .. ·· ' .··' ..... 

MSB 

LSB 

00100 00101 00110 0011 t 

4 Btts/PtxeJ Data Formats 

MSB 

LSB 

0 (data alignment axie) 

7 Btts/Pixel Data Formats 

MSB 

LSB 
00010 0001 t 

8 Bits/Ptxe1 Data Formats 

Apple II Group Confidential and Private Page 16 



- --- - -- - - ---- - -- - _'" ____ ,__, __ -----.. ------- ··-----~- ·----·--·----- .. -------------

MSB 

LSB 

00001 

16 Bits/Pixel Data Format 

Note that at 16 b1ts/plxel data width the constant word ts not 
used as all t 6 btts of color data are provtded by the 11ne description 
p1xe1 data. 

J..2._p1xeJ Write Modes 
Stnce the upper and lower bytes of the color data word have 

dtfferent meanings tn lookup table mode, sometimes it ts desirable to 
write to one byte, but not to the other. Also, since the mask bit needs to 
be set up by the lfne descrtpt1on before it 1s used, It is necessary to 
have some way to access It. These pixel cell access paths are 
called write modes and are selected 1n the line description by a 2 bit 
wr1te mode parameter. The encoding or the bits is as r ollows: 

t10!1e Eocodjog pixel Sectjoos Wr1tteo 
M 0 0 Mask Bft Only 
L o 1 L-Byte (Color Data LS. Byte> and Mode Bit Only 
x 1 o X-Byte (Color Data M.S. Byte> and Mode Bit Only 
LX 1 t L- and X-Bytes (Color Data word) and Mode Bit Only 

The prevtous section defined how to map the Jtne descr1pt1on data 
to the color data word, but so far we haven·t discussed how to map 11ne 
descrtpt1on data to the mode and mask bits. The dtsplay mode of a 
given object descript1on is specified tn its dtspatch table entry in 
the ODT. Whenever write modes L, X, or LX are specified and data ts 
written to a ptxel (1.e. the pixel ts not masked), then the pixel's mode btt 

Apple 11 Group Confidential and Private Page I 7 



( 

( 

1s automat1ca11y set to the object's display mode. (If you're a real hack, 
there 1s even a way to change an object's dtsplay mode inside a line 
descrtptton ). 

Whenever wr1te mode M ts selected, the least significant bit of the 
line descr1pt1on pixel data is wr1tten to the mask bit unless the write 
1s masked by an embedded mask (to be explained in the next section). 
Note that the prior state of the mask btt has no effect on this operation; 
the mask bit cannot mask itself. However, 1t can be masked by an 
embedded mask, and in such a case the write would not occur. Note also 
that the data alignment and the constant word are irrelevant to this 
write operation, and further, all bits of the line description data except 
for the LSB (and possibly the embedded mask bit) are ignored as well. 

The erT\b ded mask functiorf1Si~nt of the pixel data wri~e 
functionrexcept insofar as to determine the qixel data width. The l 
embed~!'"ask bit is a particular bit of tHU_ine description pixe . 

Apple 11 Group Confidential and Private Page 18 



data for each d1fferent data width~ in a ftxed position in the 
p1xel data for each data widt ardless of the alignment , the write 
mode, or the dtsplay e of the data. The particular bit for each data 
wtdth ts shown ow (7 bits/pixel width cannot have an embedded 
mask blt): 

EE 
1 BPP 2BPP 4BPP 

MSB 

LSB 

8BPP 16 BPP 

Embedded Mask Bit Placement in line Description Data 

This characteristic must be accounted for in the organization of the 
Color Lookup Table in lookup tab1e mode and in the assignment of color 
values in image mode. The particular bit positions in the pixel data for 
the embedded mask bits were chosen with cognizance of the fact that 1, 
2, 4, and 8 bits/pixel widths will primarily be used in lookup table 
mode, and the 16 bits/pixel width wi11 primarily be used in image 
mode. Remember that the color data that is written for an object in 
embed mask mode shall have the embedded mask bit set to a constant. 
If the most significant bit of the lookup table index holds a constant 
value, then the group of colors selectable by the rest of the bits w111 be 
contiguous (assuming alignment = 0), a useful organization. If the least 
significant bit of Green in a 5-6-5 RGB designation is held to a constant, 
then we effectively reduced the RGB designation to 5-5-5, still quite 

App1e II Group Confidential and Private Page 19 



( 

( 

usable. Hence, the rationale for the embedded mask bit positions 
selected for the pixel data. 

Apple 11 Group Confidential and Private Page 20 



~pos1t1ontog 

~Horizontal Object Pos1tion1ng 

A OuickScan object's object description , in general, is independent 
of the object's absolute position in display space. However, an object's 
line descriptions are, in general, dependent upon being positioned a 
certain way in display space relative to each other. Stated simply, when 
an object is repositioned, 1t should look the same except for regions of 
interaction with other overlapping objects. The characteristic of an 
object's subparts to maintain consistent positioning relative to each other 
despite the repositioning of the object as a whole I cal1 coherence . 

Maintaining vertical coherence is easy because OuickScan draws each 
object 11ne-by-11ne without ever skipping or repeating any lines, no matter 
where an object is positioned. (Vertical positioning techniques will be 
discussed present lyJ 

Maintaining horizontal coherence, however, is another story. Line 
descriptions can become exceedingly complex, often beginning at varying 
horizontal positions within the same object. Positioning Jine 
descriptions correctly requires a more powerful model that simply a 
fixed horizontal position for each object. OuickScan has two horizontal 
position descriptors to accommodate this requirement: the absolute 
origin and the relative origin. 

The absolute origin is horizontal reference point in display space 
to which all horizontal positioning in the object description shall be 
referenced. If the absolute origin of an object is changed then the 
entire object shall move left or right without the Joss of any coherence 
(except by dellberate hacks). The absolute origin of an object is 
specified in its dispatch table entry and holds for every line in the 
object (although it can be altered within a line description - the 
deliberate hack parenthetica11y referred to in the last sentence). 

Having the same absolute origin for every line in an object is fine 
for a restricted class of objects (Mac windows fall in this class), but is 
insufficient for many useful object shapes. To accommodate variable 
horizontal positioning of each line in an object, yet maintain a global 
horizontal position for the object as a whole, we augment the object's 

Apple II Group Confidential and Private Page 21 



(' 

- '' ... .. .' ,' 

absolute or1gtn with a relative origin for each line of the object. 

A relative or1g1n is spectfied tn the 11ne descrtpt1on for each 
ltne, and defines an offset to the right of the absolute ortgtn at which to 
place the forthcomtng line description data. Note that the absolute 
ortgtn may be positive or negative and ts referenced to the leftmost 
On-Screen ptxel, but the relative origin may be only positive and is 
referenced to the absolute origin. Thus, objects may be posit toned 
anywhere ts dtsplay space, but an object's line descriptions must all lie 
al1gned to or to the right of tts absolute ortgtn. The fo11owing diagram 
maps typical absolute and relative origins for the objects of Example 
I: 

t 0 2 '4 3 

41 I I I I 
-eo 60 100 160 280 

Pixels at the Relative Origins of each 
object are outltned with thtek Unes 

Object 

Absolute 
Origin 

Off-Screen 
Above 

On-Screen 

Example 1 Absolute and Relative Origjns 

• 

Off-SCreen 
Ri~t 

Apple II Group Confidential and Private Page 22 



Note that the relative ortg1ns for the rectangular objects, 0, 1, and 
3, all have zero value; the absolute origin is suff1ctent for such objects. 
Objects 2 and 3, however, .have different relative ortgtns for just about 
every line. The following diagram explicitly shows some of the rel.ative 
ortgtns 1n object 2: 

Some 
Semplesof 

Relative 
Origins 

Object Relattve 
Line Origin 

380 

356 

2 

I 
100 Absolute 

Orvnn ·w· Off-Screen 
NxNe 

On-Screen 

Relative Origjns for Object 2 

Although in general, each line description of an object has a single 
relative origin, in a complex Une description each subpart of the line 
description has its own relative origin. Each of these relative 
origins are 1ndependently relative to the absolute origin, not to each 
other. 

Note also, there is no rule requiring an object's absolute origin to 

Apple II Group Confidentta1 and Private Page 23 



( 

( 

be a11gned wlth the object's leftmost displayable pixel. The above 
diagrams show this situation to reduce confusion, but the only 
requirement on the location of an object's absolute origjn ts that it is 
allgned to or to the left of the leftmost pixel of the object. There could 
very well be a signtftcant gap between the absolute origin and the 
leftmost pixel in the object. 

A2._ Vert1cal Object positionjog 
QutckScan objects are positioned by an absolute offset from the top 

of display space. The parameter for this spectftcat1on, the start line, ts 
a non-negative number and identifies the line number in display space at 
which the first line of the object shall be displayed. This start line 
parameter is specified in a field 1n the djspatch table entry for the 
object. The start line, and other, values for Example I are shown below: 

<l>jecl line No. 

559 

Off-Screen 
AtxNe 

On-Screen 

- • strtune Example 1 Objects Start rmd End Lines 
- • End Lint 

Off-Screen 
R1Qht 

Un11ke the horizontal extent of an object, the verttcal extent of an 

Apple 11 Group Confidential and Private Page 24 



object Is not 1mpHc1t tn the object descr1pt1on . Consequently, an 
addlt1onal parameter must be specif1ed tn the object's dispatch table 
entry whtch tdenttHes the last ltne of an object. Although we could 
spectfy the ·end l1ne· of an object (see the end lines of Example 1 in the 
above diagram), we would then have to change both the start 1 ine and the 
end Hne when the object moved vert1ca11y. Thus, the parameter specified 
ts the object height (actually the object height less I), a non-negative 
number which indicates the number of 11nes 1n an object (-1 ). To move an 
object verttcally we need only change its start 11ne parameter; the 
object height wi11 stay the same. 

You may have noticed in the diagram above that object O starts 80 
llnes before the first llne of the screen, yet lts start line parameter 
points to 11ne 0. This is because no object may start before the first Jjoe 
of djsplay space What is not shown in this diagram is the fact that the 
start address parameter (to be covered shortly) in object o·s dispatch 
table entry has been changed by the 68020 to indicate the object 
description for this object begins at the 81 st line of the actual object 
description , thereby ·pulling a fast one· on QuickScan so that the proper 
image is displayed. Note that autckScan now knows of only the lower 
portion of the object, and as such, the object height parameter has been 
adjusted accordingly. 

Although this vertical cropping procedure appears to be an onerous 
burden for the 68020, bear in mind two things. Firstly, a window tn 
Appleland cannot extend above the first line of the screen; indeed it can't 
even go above the menu bar. So, we never face this problem when our 
objects are w1ndows or fully conta1ned in windows. Secondly, line 
descriptions , by definition, are stored in independent, successive regions 
of memory. Finding the nth line description when we want to crop n-1 
lines 1s at worst a linear search, assuming we have no higher leve1 
information obout the object description's organization (as you'll see 
shortly, the search is often as simple as one multipllcation). 

Apple II Group ConfldenttaJ and Private Page 25 



( 

S.J nstrucU ans 

s..LlnstrucUpns and...Execution ~ 
A Ou1ck5can ltne description 1s a contiguous seQuence of one or 

more instructions. Each instruction is either exactly one word long (a 
single-word instruction ), or one or more words long Ca multi-word 
1nstructton) . Single-word instructions have only a command word 
(i.e. the instruct ion .iS the command word), but multt-word 
1nstructtons have a command word and zero or more data words 
following the command word. 

If you recall from the section on line descriptions , OuickScan 
employs a single-line buffering mechanism which loads a line into the 
line buffer while a prev1ously loaded line is being displayed {see page 8). 
ConseQuently, OuickScan has exactly one display hne's time to load each 
line into the Jlne buffer. The next tine cannot wait if a given line takes 
too long. 

One djspl~ Hoe's time js OuickScan's fundamental Hmjtatjon in its 
abUjty to display objects Thls constant is 31.778 microseconds {although 
it can be doubled for special TV-only displays). All instructions of all 
line descriptions which need to be displayed in a given line mus!. 
complete their execution, with a11 associated overhead, within this time 
limit. Otherwise, not only will some foreground.objects disappear for that 
line, but their display on Hoes below will be shifted down by one hne. 

Calculating the execution time of a 1ine description is fairly 
straightforward. Each word of an instruction completes execution 
before the next word is loaded in, and every word in an instruction takes 
a determinate amount of tlme to execute. Each instruction in a line 
description completes execution before the next Instruction is loaded 
in. Then, there is a certain overhead associated with ending one object's 
line descr1ption and starting up the line descr1ption of the next 
object to be loaded (Le. the object of the next priority which is displayed 
on that line). Additionally, there is also some overhead incurred if the 
line description crosses a IK byte boundary in RAM. Adding up these 
various times for a11 of the line descriptions on a line, we get the total 
execution time to load that line into the Hne buffer. Thls amount Ill1.lS1 
be less than 31.778 µsec. 

Apple 11 Group Confidential and Private Page 26 



In the following sections, I will present the time overhead associated 
with each operation I am relating. Once we get through these sections we 
will be in a position to directly calculate exactly what OuickScan·s object 
display ltmitations are. I think you'll be impressed. 

5..2....I.be_lnstruction Sil . 
This section describes the 6 instructions and 1 pseudo-instruction 

supported by QuickScan. The word formats can be found in Appendix A 

5 2 1, Context Switch 

CSwltch a...orlgin, ~2. d...mode, ~ty 
where: 

a_origin is the 12 bit, 2·s complement absolute origin 
c...:wercL12 1s the lower 12 Otts or the constant word' 
cL.mode is the one bit display mode ( 1 • image mode, 

O• lookup table mode> 
.e4elaFity ;s the one bit embedded mask polarity C 1 • 1 permits' 

_writes and o inh1b;ts, o = 1 inhibits wr1tes and O permits) 

The Context Switch single-word instruction redefines the 
abso1ute origin, the constant word, the display mode, and the 

--embedaee mask ~olar-ity, generally in preparation for a forthcoming 1ine 
description . Ooly the lower 12 ~lts of the ceAsteAt word can be. 
specified with this instruction The ~p~er ~bits are automattcatty-set 
to zeros. 

Thi.s instruction may DQ1 be the last instruction in a line 
description . It takes eons (nanoseconds= 10-9 seconds> to execute. 

5 2 2 Replace Constant 

RConst c_wor ,<Lmode,e;.,pe1erity-

where: 
_word is the 16 bit-constant word 

<Lmode and e__po rity are as in the witch instruction 

~ II Group Confl entlal and Prlva Page 27 
I I 



that an 16 bits of the c~ wor~fled and th abSolute 
ortgtn is not aff ecte Thls instruction all s you to cha ge the ,,, 
constant word wi 1n a 1in7 description without know· g 'ha{th 
object's absolute rtgt~ currently se o/Vou can al o ss aro d 
with the the dtspl de and embedd mask polar· if you so desire. 

Th1s instruct ton may DQ1 be the last tnstruct1on in a line 
descr1pt ton . It takes 80ns to execute. 

BMap cLformat,w...mode,r _origin,dw_count,e...mode,en<Lline 

where 
cLf ormat is the 5 bit data format 
w...mode is the 2 bit write mode- } ~'f 
r _origin is the 1 o b1t non-negative relative origin 
dw_count is the 1 o bit data word count 
e mode is tt:\e I bit embedded l'ft8ik mode select ( 1 a embed 

masks , o· derf t embed masks ) 
encLline is the I bit end of line description flag (I• last 

instruction in the line description , O= not the last> 

This multi-word instruction causes a bit-map to be loaded into 
the line buffer. The data words (see Appendix A for formats) fallowing 
the command word actually contain the data that makes up the bit-map, 
and the dw_count parameter indicates how many of these words shall 
follow. If the dw_count parameter is zero, then the instruction will be 
ignored. If the encL1ine bit is 1, then after all of the data words have 
been loaded, QuickScan w111 initiate loading the next Hne description on 
the line. 

The cLformat parameter indicates the data width of the pixel data 
in the data words and the altgnment of thts pixel data in the color 
data of the pixel storage cells (see the section Pixel Data Write 
Formats for details). The encoding is as follows: 

Apple II Group Confidential and Private Page 28 



Width 
1BPP 
2BPP 
4BPP 
8BPP 
16BPP 

Encpd1og 
1AAAA 
OIAAA 
001AA 
OOOIA 
00001 

A's indicate alignment code - see diagrams on pages 15-17. 
Code 00000 is reserved. 

The w..mode parameter determines to which part or parts of the 
pixel ce11 the pixel data will be written. It ·ts encoded as follows: 

~ Encodjog 
M 00 
L 01 
x 1 0 
LX I 1 

Pixel Sectjons Written 
Mask Bit Only 
L-Byte (Color Data LS. Byte) and Mode Bit Only 
X-Byte (Color Data M.S. Byte) and Mode Bit Only 
L- and X-Bytes (Color Data Word) and Mode Bit Only 

The r _origin parameter specifies the offset to the right of the 
current absolute origin at which to begin writing to pixel storage 
ce11s. Each subsequent write of pixel data shall be one pixel cell to the 
right of the cell just written. Thus, bit-maps are loaded into the line 
buff er left-to-right starting at r _origin . 

C· 

& 
~ 

;~ 

be loaded Into the line buff er. Hence, all Bit Map l structlons clfy ~ ~ 
bit-maps which are made up of an integral number o rds. If you r ,./1 ~ 
require a bit-map which ends or begins with less than a full 32 bit word, rtt1' ~;X 
you must provide masking for the undesired bits. ~ 

The execution time for the Bit Map instruction varies from a number 
of conditions. The command word has a fixed execution time, then each 
data word has a execution time determined by a) the data width, and b) 
whether the data word ts the last word in the line description . The 
various permutations with executions times are shown in the fo11owing 

Apple 11 Group Conf1dent1a1 and Private Page 29 



c· 

table: 

___ Execution Time (ns), __ _ 

Depth Pixels Command Each Data Last 
(BPP) per Word Word Except Data Word 

Data Word Last of Line of Line 

----------------------------------------------------
1 
2 
4 
8 

16 

s 2 s Bun 

32 
16 
8 
4 
2 

80 
80 
80 
80 
80 

80 
40 
40 
40 
40 

80 
80 
80 
80 
80 

Run w_mode,~ign,r _origin,r _1imit,data_7,en<Lllne 

where 
( 

w_mode is thefiit write mode 
,,--<LaHgn is a I bit d!ta align~ code ( 1 =align to X-Byte, O= align 

1QJ.. -Syte) _-
r _origin is the 1 Obit non-negative relative origin 
r _Jimit is the 1 Obit non-negative relative limit 
data_7 is the 7 bit run data 
encLJine is the 1 bit end of line description flag (I• last 

instruction in the line description , O= not the last) 

Th1s single-word instruction specifies a contiguous seQuence of 
pixel cells whlch are to be written to with the same pixel data. The 
extent of thfs multi-pixel write is called a run. Formally, as Bennet so 
astutely observed, a run is O bft/pixel bit-map c2° colors= 1 color), and 
this instruction provides a short-hand means to specify that 1 color and 
the limits of the Obit/pixel bit-map. The Run instruction is invaluable 
in efficiently laying down large expanses of a single color and in setting 
up large masks. There is no other display subsystem commercially 
available that acheives this function nearly as fast as OuickScan. 

AppJe II Group Confidential and Private Page 30 



Since so much information is packed into this 1nstrucUon·s single 
word, we have to compromise some of the data format flexibility we have 
with the other tnstruct1ons . The Sequential Runs and Run Screen 

. instructions provides runs without Joss of data generaltty. 

When the end.Jine flag is set1 QuickScan wi11 end the current line 
description and initiate the loading of the next Hne description in the 
1ine buffer immediately after completing the run. 

The data_7 parameter provides 7 bits to be used as the pixel data for · 
all pixel ce11s affected by the run. This data is called the run data and 
ts handled very much like 8 bit/pixel pixel data except that the most 
significant t»t-&H11e 8 b1ts written to the pixel ce11s is provided by the 
constant _.Vtord, not the p1xeJ data. 

The w....mode parameter determines to which part or parts of the 
pixel cells the run data shall be written. It follows the same coding as 
in the Bit Map instruction . 

The cLalign parameter is a 1 bit data alignment code that provides 
a means to align the run data in the pixel cells. See the diagram on 
Page 16 for detans. 

The r _origin parameter specifies the relative origin 1 an offset to 
the right of the current absolute origin at which to begin the run. 

The r _Jimit parameter specifies the relative limit, an ofJset plus 
one to the right of the current absolute origin, at which to end the run. 
If r · Umit is less than or egual tor origin, then no pixel .clllii wjJJ be 
written This is because QuickScan can only generate runs from 
left-to-right. Also note that r _Jimlt is nm. relative to the relative 
origin, but rather to the absolute origin. Hence, if the relative origin 
1s changed, the run·s length will change accordingly. 

Embeddep ma s m n.Q1. be specifie · un instruc · n (such a 
capability 1s ~ot u ful in a slngle run). Run instruc 1on takes 8 n 
execute. \ -

''-" 

Apple II Group Confidential and Private Page 31 



( 

( 

5 2 5. Seguenttal B.wls 

SRuns cLf ormat;w..Jnode,r _origin,dw_count,e..Jnode,encL1 tne 

where 
cLformat is the 5 bit data format 
w_mode is the~bit write mode 
r _or1g1n is tt<e 1 Obit non-negative relative origin 
dw_count is the IO bit data word CuUJ..i..i.---

e e mask mode select Cl• embed 
---.;m,..aDosrb-k-s ___,, 01"\o.,•:-:a;lf;o-..n:-ri-· t-;e~m:.b~e::.d-:m==as:-tkS > 

encL1ine is the 1 bit end of line description flag ( 1 • last 
tnstructton in the line descriptton , O= not the last> 

This multi-word instruction provides a means to efficiently 
specify a contiguous sequence of runs. It also allows full data format 
and embedded mask capability with runs (except 16 bits/pixel data 
width). Sequential Runs are very useful for efficiently describing 
adjacent regions of color, complex masks, and cartoons. 

The Sequential Runs command word sets up the forthcoming run 
sequence almost exactly as the Bit Map command word sets up the 
forthcoming bit-map. The only difference is the relative origin 
indicates the first pixel of the run sequence rather than the first pixel of 
the bit-map, and the forthcoming data words contain run descriptions 
rather than bit-map descriptions. 

So, for the details of the Sequential Run parameters, see the Bit Map 
instruction. The only restriction is that you may not specify 16 bits/pixel 
data width in the data format. If you do, the resulting writes to the 
pixel ce11s are indeterminate. When the encLHne bit is set, this line 
description will end, and the next Hne description will be initiated to 
begin loading as soon as the last run specified in this instruction has 
completed. 

Each data word holds 2 16 bit r(Jn descriptions. Each run 
description is made up of an 8 blt run data field called data._8, and an 
8 bit run length field whlch specifies the length of the run (see Appendix 
A for a word format diagram). Runs are sequenced in order of the data 
words, and then within each data word, first the low-order run 

Apple t I Group Confidential and Private Page 32 



descr1ptton and second the h1gh-order run descrtptton . 

The very first run begtns at the relative origin and extends to the 
right the number of pixels of its run length. Then, the second run begins 
at the pixel directly fo the right of the last pixel of the first run and 
extends the number of pixels of its run length. The third run starts 
tmmedtately to the right of the second run, and so on, unt11 all of the data 
words specified in the dw_count have been loaded. If we specify a run 
with a run length of zero, then no pixels will be written with its run 
data. and the succeeding run will begin at the pixel where the run would 
have begun If we &pe;+ty e 1011 wheA embed mask fAOde~cted ane-' 
.-t:M embedded f!!ISk bil-io...1he-.run's..ryn.. data- is sei to tAe write 1nn1b1t 
s~hemff> p1xels will be ~at the succeeding run wilU>egtn' 
where the"f'Un weul~ave endttt_ 

0 

The run data of all runs tn the run seQuence will be adjusted for the 
pixel ce11s by the data format and write mode specifications exactly 
the same as Bit Map pixel data is adjusted. Although runs are formally O 
bit/pixel bit-maps, the width specified in the data format shall be used 
to determine how many bits of the run data shall be used and how many C:, 
shall be be provided by the constant word. If not all 8 bits of the run 
data are used (i.e. in 4 BPP mode), then the least significant btts of the 
run data shall be used as the pixel data and the most significant bits wlll 
be ignored. 

SeQuential Runs always specifies an even number of runs. If an odd 
number is desired, then the last run should be either masked or given a 
length of zero. If dw_count is zero then the instruction wttlbe 
ignored. A SeQuential Run command word takes 80ns to execute, and 
each data word takes I 60ns to execute. 

s 2 6 ·aun..screen 

RScreen cLformat,w..mode,data_ 16,e_mode,encLline 

where 
cLf ormat is the S blt data format 
w_mode is the i bit write mode 
dat&-16 is a 16 bitrun data 
e.:::::nioae is the 1 bit embedded mask-modeSeiect C 1 • einbeo 

Apple 11 Group Confidential and Private Page 33 

0 



( 

masks, O· don't embed masks ) 
encLl tne is the I b1t end of 1 tne descr1pt ton flag Cl• last 

tnstructton 1n the ltne descrtptton , O• not the last> 

Thls tnstructton generates a run across the enttre On-Screen region 
of display space. It ts useful for setting the background color or 
initiallzing a11 of the mask btts. Note that this run·s position is fixed 
from pixel Oto pixel 639, regardless of the value of the absolute origin. 

The parameters cLformat, w_rnode, e_rnode, and encLline 
function exactly as they do in the Sequential Runs instruction except for 
the fact that they apply to this single run, and that the 16 bit/pixel width 
is allowed. The data_16 field provides 16 bits of run data, utilized by 
the same rules as the Sequential Runs instruction . 

A Run Screen instruction takes eons to execute. 

5. 2 7 Hg_Operat j on 

NOp encLline 

where 
encLline is the 1 blt end of line description flag (I• last 

instruction in the line description , O• not the last) 

This single-word instruction serves as a place holder in a line 
description . It is coded as either a Bit Map or Sequential Runs 
instruction with zero data words, so the only useful parameter is the 
en<Lline parameter for if you want the No Operation as the last 
instruction in a line description . 

No Operation, no matter how it is coded, takes eons to execute. 

Apple 11 Group Confidential and Private Page 34 



6._Dispatchtng 

illb.t..Dispatch Table Entry 
As ment toned in the early parts of this document, each object has 

associated with it a 4 word dispatch table entry which defines the 
attributes of the object and identifies where the object may be found in 
RAM. This section discusses the content of these 4 words in detail. A 
word format diagram may be found in Appendix A 

Each dispatch table entry contains the following fields: 

Eielc came a.us 
start address 20 
line mode 1 
Hne length 10 -
start line 9 -
object height 9 -
absolute origin 12 
constant word 12 
viewport origin 10 
viewport 1 imit 10 
display mode 1 

first word 32 
bus_access 1 

6 1 1 Start Address 
This parameter is a pointer to the word (32 bit) in RAM (generally) 

which is the beginning of the first line description of the object 
description . The rest of the words in the object description follow 
forth from this address. 

<The reason I qualified the term ·RAM" in the above paragraph is 
because when we add graphics engines to the display subsystem, the start 
address pointer can point to syntnet le objects generated by the engines 
as well as actval objects specified by object descriptions in RAM. 
Just as we address 1/0 ports in 110 devices as well as bytes in RAM in a 
microprocessor's address space, we address synthetic objects in 
graphics engines as well as actual objects in RAM in auickScan·s address 
space. For the purposes of learning QuickScan assume ail objects are 

Apple 11 Group Confidential and Private Page 35 



c: 

( 

actual and restde 1n RAM. See the dtscussion of synthetic objects in 
Appendix B. > 

6 1 2 LI.ne.. Mode arul.LlwL Length 
The line mode btt spec1fles how QuickScan shall determine at what 

address tn RAM to ftnd each successive line description after the 
preceding 11ne descrtpt1on ends. If this bit ts 0, then the 11ne mode 
shall be variable lengtn, and a succeeding line description shall begin 
at the word following the last word of the preceding Jtne description . If 
this bit is l, then the line mode shall be fixed length, and a succeeding 
line description sha11 begin at the address determined by the sum of the 
address of the start of the preceding line description plus the line 
length. In variable length mode the line length parameter is ignored. 

The following diagram shows a comparison between the two line 
modes. Note that while variable length mode uses RAM more 
efficiently, fixed length mode structures the line descriptions so that 
they are easier to locate by the 68020 (e.g. for vertical cropping). 

Vari ab le Length Line Mode 
Higher Aasresses 

Line Length 

ko ,,;~ jo:, 1 ,,j j,:;:,:2 '( f 3 '''°""''' ,, 5,,,i IH ' '6 \:I 
F1xed Length L 1ne Mode 

lml!lml~I • 1 Line ~iption • start ot Line D=ription 

D =Unused RAM 

Line Mode Comoari son 

Note that the 11ne length parameter 1s 1ndependent of the en<Lltne 
bit spectf1ed 1n an Instruction . The ena of a line description 1s 
spectf1ed by the en<L11ne btt, and the address tncremeot to the next line 

Apple II Group Confidential and Private Page 36 



I 

! 

descr1pt1on 1s specified by the 11ne length bit. But by fiddling with the 
relationship between these two parameters we can get some interesting 
effects <see Applications, below). 

6 J 3 Start ~mut.Object Height 
The start llne parameter is a non-negative integer which specifies 

the line of display space on which the object's first 11ne description is 
to be displayed. The object height 1s a non-negative integer which, when 
summed with the value of start line specifies the line of display space 
on which the object's last line is to be displayed. Note that object 
height specifies the object's actual height in lines minus 1. Note also 
that there are only 484 displayable lines, so if you specify start line to 
be 484 or greater, then the object will not be displayed at all. (This is, in 
fact, the recommended technique for blanking an object.) 

6 J 4 Absolute Origin 
The absolute origin parameter is a 12 bit 2's complement value 

which specifies the absolute origin for the object. See the section, 
Horizontal Object Positioning, for detans on the absolute origin. 

In almost all object descriptions that I can envision, we would not 
want to change the absolute origin within the object description ; the 
dispatch table entry specification will be sufficient. But, if you like to 
hack, the facility exists to change 1t with the CSwitch instruction . Note, 
however, that the absolute origin wm revert back to the value specified 
in this dispatch table entry parameter before executing each 
successive line description . 

6 1 5 Constant :ti.Qn1 
The constant word parameter specifies the lower 12 bits of the 

constant word for the object. The upper 4 bits are automatically forced 
to zeros. If you wish to change the constant word within a 1ine 
description or if you want to give a value to all 16 bits, then you must 
use the RConst jnstruction . Note, however, that the constant word 
will revert back to the value specified in this parameter before executing 
each successive line description . See the section, Pixel Data Write 
Formats, for details on the constant word. 

6 J 6 Vjewport Origin .a.rulLimit 
The viewport origin and limit parameters are each IO bit 

Apple II Group Confidential and Private Page 37 



non-negat1ve 1ntegers and specify an automatic viewport for every line of 
the object. A viewport is a region in display space wherein an object may 
be displayed. Any parts of the object outside of the viewport wil1 not 
displayed. Viewports are created by clearing all mask bits on the screen 
(dtab11ng writes to all pixels), then selecttvely setting those mask bits 
within the region where the viewport 1s desired. 

The automatic viewport provided by OuickScan ts simply a rectangular 
area of the same height and vertical position as the object with a width 
and horizontal posit ton defined by the viewport origin and limit. The 
following diagram shows an example of such an automatic viewport: 

Almlute Viewport 
Parameter: Origin Origin 

• I I 
Parameter Value: 100 100 
Screen Position: 1 00 200 

Off-Screen 
left 

Outline of 
Viewport 

Region 

Viewpart 
Limit 

I 
311 
440 · Off-Screen 

Nx:Ne 

On-Screen 

An Automatic Yiewport Applied to Object 2 

Off-Screen 
R1Qht 

Note in this diagram that a viewport may extend into Off-Screen area, 
and only the portton of the viewport that is On-Screen wlll result in a 

Apple II Group Confidential and Private Page 38 



displayable image. 

The viewport origin is an offset to the absolute or1gin that 
specifies the leftmost edge of the viewport. The viewport limit is an 
offset to the absolute origin that specifies the rightmost edge plus I of 
the viewport. If the viewport limit has the va1ue of zero, then the 
automatic viewport will not be activated, and the pixel mask bits in the 
llne buffer wi11 retain the value they had at the end of the preceding line 
description . If the viewport limit is less than or eQual to the 
viewport origin, but not eQual to zero, then a11 pixel mask bits will be 
cleared and writing to all pixel color words will be inhibited. 

6.1 7. Ojspla~ ~ 
The display mode bit specifies whether the object is an image 

mode (set to I> or lookup mode (set to 0) object. The display mode 
can be changed within an object description , but it wlll revert back to 
this value at the beginning of each line description . 

6 1 8 Embedded Mask PoJ arity 
The e_polarity bit specifies the polarity of the embedded mask 

bits if embed mask mode is selected in the object description . The 
coding is shown in the foil owing table: 

[_polarity 
State 

I 
0 

f mask fil1 State 
Inhibit Permit 
wrjtes 

0 
1 

writes 
1 
0 

The e_polarity may be changed at any time in an object 
description with the CSwitch or RConst 1nstructions , but note that it 
will revert back to the state defined by this parameter at the beginning of 
each line description . 

6 1 9 fjrst ~ 
The first word parameter provides the first word of the first 

instruction of each line description in the object description . Only 
the second and subsequent words of each line description are stored in 
non-dispatch table entry part of RAM, as the first word of all line 
descriptions is kept in common in this first word parameter. 

Apple 11 Group Confidential and Private Page 39 



( 

( 

This parameter provides the means to specify a common initial 
command word for all line descriptions , thereby reducing storage 
requirements for objects whose lines are similar in structure. It also 
allows us to do large backgrounds with just using the 4 words in RAM 
needed for the dispatch table entry. See Applications for details. 

If the line descriptions for the object have each only a single 
instruction (as is very often the case>, then the en<Lline bit should be 
set in the command word specified by the first word. Then the line 
description will end with the completion of this single instruction , and 
it will be the only instruction executed in the line description . 

As you can see, Quick.Scan may not get in the last word, but it always 
gets in the first. .. 

6 1 1 O Bus Access 
The bus_access parameter indicates that this object description 

is completely contained in the dispatch table entry, and no RAM bus 
access is necessary to load the line descriptions . The impllcation here 
is, of course, that the first word is a single-word instruction and 
happens to be the only instruction on every Hne (such is the case when 
an object draws a background). The reason this bit exists is because 
Quick.Scan can minimize the overhead in switching between a no 
bus_access object and the line descriptions of a yes bus_access 
object and also minimize interrupting the 68020's access to RAM. 

If bus_access is 1, then bus access is necessary, if bus_access is 
o, then no bus access is necessary. 

n.2_0bject Dispatch Overhead 
As alluded to previously, there is a certain execution time overhead 

associated with ending one line description and starting the next. This 
overhead is a function of how the ending line description terminates and 
somewhat how the start1ngline description begins. The process of 
ending one llne description and starting the next is called an object 
dispatc/J, the object whose line description is about to start is called 
the dispatc/Jing object, and the one whose line description has just 
ended is called the terminating object. The time lost in dispatching 
an object is called the object dispatc/J over/Jead. 

Apple 11 Group Confidential and Private Page 40 



There is a minimum object dispatch overhead of 320ns, and the 
following "IF statement" adds various amounts of time to this base: 

IF the dispatching object is a no bus_access object (i.e. its 
bus_access bit is set to 0) THEN there is no additional overhead. 

ELSE 

IF the terminating object has exactly O words (after the first 
word> in its line description THEN the additional overhead will be 
60ns. 

ELSE 

IF the terminating object has exactly 1 word (after the first 
word> in its line description THEN there wll 1 be no additional 
overhead. 

ELSE 

IF the terminating object has as its last instruction : 
- Run 
- Run Screen 
- No Operation 

THEN the addlttonal overhead shall be 240ns. 

ELSE 

IF the terminating object has as lts last instruction Bit Map 
THEN 
BEGIN 

If the data width is 1 bit/pixel THEN the additional overhead 
shall be: 

dw_count Additional 
ya Jue 

0 
1 
2 

23 

averhead Cos) 
240 
160 
80 

0 

Apple II Group Confidential and Private Page 41 

0 

0 



( 

ELSE 

If the data width is 2,4,8, or 16 bits/pixel THEN the additional 
overhead sha 11 be: 

dw_count 
ya Jue 

0 
I 
2 
3 
4 
5 
~6 

END 

ELSE 

Additional 
oyerhead <ns) 

240 
200 
160 
120 
80 
40 

0 

IF the terminating object has as its last instruction Sequential 
Runs THEN the additional overhead shall be: 

dw_count 
value 

0 

Additional 
overhead <ns) 

240 
80 

0 

fU._B.Qw...Boundary Overhead 
Ouicl<Scan·s RAM is organized into rows of 1 K bytes each, and there is 

an overhead associated with a line description which crosses a row 
boundary. It is 560ns. Needless to say, you should plan your objects to not 
cross these boundaries. 

~tE.U...B.us..Overhead 

Since OuickScan shares the same RAM array as the 68020 CPU, 
OuickScan ·steals· a certain number of memory bus cycles from the CPU. 
If the CPU is running out of ROM, or out of another memory array when 
these bus cycles are stolen, then its performance will not be affected. 
But, if, however, it wanted to get to the RAM array when OuickScan is 
using the RAM, then it will enter a wait state until Ouicl<Scan completes 

Apple 11 Group Confidential and Private Page 42 



its memory access. 

It is difficult to assess precisely how OuickScan w111 affect the 
CPU's performance since we as yet don't have any hard specifications on 
the CPU board architecture. But, we can get some feeling of the 
percentage of available CPU bus cycles that will be stolen for a given 
collection of OuickScan objects. 

For each object dispatch (that is a bus-access object) OuickScan 
steals the bus for 400ns. Addltiona11y, there are 3 memory refresh cycles 
each line @280ns apiece (although the 68020 has this overhead anyway). 
And, finally there is a 400ns cycle stolen whenever a line description 
crosses a row boundary. 

Each line is 31.778 µsec long, and each field is 16.66 ms long. There 
are 484 active lines, and there are 525 total lines. During inactive lines, 
memory refresh still continues, but OuickScan only does 3 memory 
accesses (@400ns apiece) for the Configuration Data, The Color Lookup 
Table, and the Object Dispatch Table during thls time. 

We'll make the conservative assumption that a CPU memory cycle is 
280ns. 

There are 59286 possible CPU memory cycles each frame time. Of 
these, 1575 cycles, or 2.7% go to memory refresh. 3 cycles, or .005% go 
for Ouick5can configuration. 

Each object dispatch (if the object is a bus_access object) takes 
1.4 cycles so we can determine the total number of cycles for an object by 
multiplying its number of lines (except those Off-Screen Below) by 1.4. 
An object which is half the height of the screen (242 lines} takes 338.8 
cycles, or .57%, an object which is the full height of the screen (and this 
is the worst case) takes 677.6 cycles, or 1.141'. Of course, we have to 
include row boundary crossings, but these shouldn't artse much in practice, 
and even if they did, they would happen only every few lines ( 1 K bytes is a 
lot of line d.escr1ptlons ). 

So let's take an absolutely worst case: Assume 64 objects, each 
bus_access and 484 hnes tall. Assume that every row boundary is 
crossed (there are 256 in the memory array). Then we have 1575 cycles 

AppJe II Group Confidential and Private Page 43 



( for refresh, 3 cycles for Ouicl<Scan configuration, 43366.4 (677.6 * 64) 
cycles for objects, and 358.4 cycles (256 * 1.4) for row crossings. That 
gives us a grand total of 45302.8 cycles per frame or 761 of the available 
CPU cycles. 

Now, if 76" seems like a monstrous number, consider that we have 64 
484-line objects gobbling up an entire 256K RAM array, and the CPU still 
gets in there almost I /4 of the time. It can stlll run out of ROM or another 
RAM array at full tilt. Or, if you consider that our 68020 will be running 
about 6 times the speed of the Mac without cycle-stealing, then it would 
still be running about 1.5 times the speed of the Mac in this absolutely 
worst-case scenario if it were running solely out of the shared RAM array. 

For any practical display that I've thrown together, the total CPU 
cycles stolen rarely go beyond 15 or 20~. (Note that the Mac itself loses 
about 25~ of lts CPU cycles to its 1 bit/pixel vanilla graphics display.) In 
comparison to any shared-memory display device that I've seen, OuickScan 
is extraordinarily efficient for what 1t puts up on the screen. 

App1e 11 Group Confidentia1 and Private Page 44 



L AppU cat j ODS 

Now that you know all about programming OuickScan~ it will help 
cement your knowledge to consider a few examples. The following 
sections show how to generate and manipulate some simple objects with 
Quick.Scan. Hopefully, some of the more obscure modes and functions 
we've discussed in the preceding chapters w111 show their usefulness here, 
and you'll get an idea of what I had in mind when I dreamed them up. 

l...LRectangular Bjt-Maos 
QuickScan has been especial1y optimized to support rectangular bit

maps, providing convenient, linear RAM organization and manipulation 
primitives with as little regard to the phys1ca1 position of the bit-map as 
possible. At the same time Quick.Scan supports bit-maps with full 
generality to allow their inclusion as sub-units of complex object 
descriptions . 

The tricky thing about maintaining both a nice linear bit-map array 
and full generality for complex object descriptions is that the former 
requires that the bit-map image in memory be entirely of data packed 
llne-by-line, yet the latter requires that the bit-map image in memory be 
one or more instructions , thereby allowing the bit-map to be separated 
from other sub-units of the object description when it is decoded. 
Clearly, each representation has its place: we want the linear array when 
we have Mac-like windows with text and presentation graphics, we want 
the complex object description when we have a "freeze-dried" object 
downloaded from an application because of its compactness and ease of 
manipulation. How can we resolve this philosophical discrepancy and still 
maintain consistency? 

To the rescue comes the first word of the dispatch table entry. 
The deal is: all bit-maps, like all Quick.Scan graphics primitives, are 
specified with Instructions . When a bit-map is needed, then a Bit Map 
instruction is specified in a line description , precisely as it has been 
described in Chapter 5. This, of course, takes care of the complex object 
description requirement; now you can put a bit-map within an object as 
desired. And, it takes care of the linear array requirement because such a 
data structure results when the first :ttJ2.Cd. is a Bit Map instructjoo 
command wm:.Q. Let's take a closer look at exactly how this is so by 
working through an example. 

Apple 11 Group Confidential and Private Page 45 



( 7 J J Illit.Basjc Rectangular Bit-Map 
The figure below shows a simple I bit/pixel bit-map with dimensions 

of 240 horizontal and 160 vertical. The content of the bit-map happens to 
be a text message of black letters on a white background. A memory map 
is also shown detailing where memory is RAM is used to support this 
display: 

Pixel 0 Pixel 239 

L1ne0 

Line 159 

Object 0 

C.Onf ig. Data ( <64) 

Object 0 ( t 280) 

CLUT ( 128) 

OOT(4) 

Upper Helf 
of RAM Arrft{ 
Shown Here 

16x160 
Region of 

·Excess· pixels 

High RAM 
r--

I-

Low RAM 

• 

On-Screen 

38000H 

t- 30000H 

t- 28000H 

20000H 

• 256 Words ( 32 bits) 

128 Rows 

Note: RAM array proportions are realistic: one line ( - ) is one row thick. 

Apple II Group Confidential and Private Page 46 



First of all notice that we are looking at the upper half of a 256K RAM 
area, and that the memory is divided into rows of 256 32-bit words ( 128 
rows are shown, 256 rows are available). Notice also that the black area 
allocated for each block of data is pretty accurate, so you can think about 
how much RAM is takes to store things as you work through this example 
(but the ODT is longer than it should be so as to make it visible). 

Some terms: the ODT is the Object Dispatch Table (see sections 2.1, 
2.2, and 6. 1) and the CLUT is the Color Lookup Table (see section 2.4). The 
Configuration Data is not yet completely defined, but for our purposes, we 
shall say that it contains pointers to the ODT and the CLUT. 

In setting up this display, first we decide where we want to put the 
CLUT and the ODT. The CLUT is 128 words long, and can be placed at any 
place in RAM provided that it does not cross a row boundary. We place it 
here at 28000H (note that OuickScan measures data in 32-bit words, yet I 
specify byte addresses). The ODT must begin at a multiple of 1024 bytes 
in RAM, so we see it here placed at 26000H. 

Next we allocate some space for the bit-map. I claim that the 
bit-map can be set up as a linear array, one line following the next in 
memory, each line rounded up to an integral number of words. Since the 
horizontal dimension is 240 pixels, and we have l bit/pixel, then we need 
240+32 • 7.5 words to hold each line. We must round up to a whole word, 
so we need 8 words to hold each line. There are 160 I ines, so the total 
RAM requirement for thls bit-map is 160*8"' 1280 words. Let's place this 
data at 38000H. It extends to 384FFH. 

Now we need to set up the dispatch table entry for the object. 
This is essentially the defjnjtjon of the object. Let's go through each 
parameter (reference section 6.1 ). · 

Start Address 
This parameter points to the beginning of the object 

description : address 38000H. Notice, however, that the number 
coded is DOOOH (38000H+4) because we are specifying a word 
address, not a byte address. 

Lint..~ 
This parameter specifies whether the line descriptions are 

Apple 11 Group Confidential and Private Page 47 



( 

( 

( 

fixed length or variable length. In this case, either mode wt 11 
work because the bit-map line descriptions are of fixed length, so 
we could specify the length inf txed length mode, or let Quick Scan 
figure out the length by specifying variable length· mode. But, why 
bother specifying the length? Well, this first part of the example 
doesn't show why, but you'll see why it's important in a little bit. 
Thus, for thls example we'll specify· 1 • ror fixed length mode. 

Urut. Length 
The length of each line description in RAM is 8 words. We need 

to specify this parameter because we are in fixed length 1 ine mode. 
Notice that this parameter does IlQ1 include the first word as part of 
the length. 

Start Line 
This object begins at the first line of the On-Screen area, 1 ine O 

(see diagram). 

Object Height 
The vertical dimension of this object is 160, so that is its height. 

But, OuickScan requires that when this parameter is summed with the 
start line that the result is the end line, line 159. So, the amount 
coded for this parameter is the height minus 1, or 159. 

Absolute Origin 
This object's leftmost pixels are at pixel O of display space. We 

could specify the absolute origin to be any value that is 0 or 
smaller, but for the sake of simplicity we shall specify 0 . 

• 

Constant .wnCJ1 
Since we only have 2 colors in this example, black and white, we 

might as well put them at the beginning of the CLUT. Let's plan on 
aligning the I bit of the pixel data with the LSB of the color data 
word. So, setting the lower 8 bits of the constant word to O wi 11 
cause the pixel data to select between the first and second CLUT 
entries. 

The next 4 bits of the constant word will hold the multiplier 
we plan to apply to the output of the CLUT (see diagram on page 12) 
because at 1 bit/pixel, we haven't enough data to specify this value 
for every pixel individually. So, we'll assign each pixel the same 

Apple II Group Confidential and Private Page 48 



~ 

value for its multiplier by putting the desired value in the constant ~_) 
word. Now, this is jumping ahead to the Multiplier Applications 
section, but just understand that the 4 bit multiplier of the color 
data word will affect the valve, or brightness, of the CLUT output. 
This doesn't bother our black CLUT entry, because black is black no 
matter how bright, but it will affect the intensity of our white 
backdrop, determining whether we have black, hot white, or one of 14 
grey levels in between. Let's opt for average value, so Jet's specify 8 
for the multiplier . This we place in the least significant nibble 
(LSN) of the upper byte of the constant word, and every pixel 
written will be given this same brightness. 

The MSN of the constant word cannot be specified in this 
parameter, it will be set to O - whlch is just as well since those 4 
bits have no meaning in a lookup table mode pixe I. So, the 
constant word parameter is set to 800H. 

Vlewport Origin and_Limit 
These parameters specify what horizontal region of the bit-map 

pixel data will actually be displayed. If you recall, this bit-map 
was actually 240 pixels horizontally, yet we had to round up to the 
nearest whole word, as if the bit-map was 256 pixels horizontally. 
As it turns out, QuickScan cannot tell where the real pixels of the 
last data word of a Bit Map command end, and where the "excess" 
pixels begin, so we must prevent OuickScan from displaying these
excess pixels. This can be accomplished with these viewport 
parameters. 

The viewport origin identifies the pixel where the real bit-map 
begins, relative to the absolute origin. That pixel is O and the 1 · 
absolute origin is 0, so the viewport origin is o-o = 0. The 
viewport limit identifies the pixel where the real bit-map ends, 
re1at1ve to the absolute origin, plus 1. That ptxel is 239 and the '{ 
absolute origin is 0, so the viewport I imit is 239-0+ 1 • 240. ~ 
The excess pixe 1 region (see the diagram above> from pixe I 240 to 255 
now is masked sincethe viewport extends only between ptxel o and. 
239. Our desired horizontal dimension of 240 is now achieved.· 

Display t1Qde 

We are in lookup table mode since we have only 1 bit to provide 
for each pixel. This bit is 0. 

Apple 11 Group Conf identtal and Pr1vate Page 49 



( Embedded Mask Polarity 
We are not using the embedded mask funct1on now, so the value 

of this bit doesn't matter. 

f jrst ~ 
Th1s word holds the Bit Map instruct1on and makes the hnear 

bit-map array possible. When Ouicl<Scan is about to load a line 
description from RAM into the line buff er, first tt wlil configure 
the line buffer with the relevant parameters listed above, and then 
it will load this first word as the command word of the first 
instruction of the Hne description . Only after that wlll 
QuickScan begin loading in the rest of the line description from 
RAM. In this example the first word contains a Bit Map instruct ion 
command word, and of course, a Bit Map command word is 
followed by data words containing the pixel data of the bit-map. 
These data words will be found, in this case, starting with the 
beginning of the portion of the line description in RAM ... which is 
where our linear bit-map array is stored! Could the data word 
format expected by the Bit Map command word and the data format 
of a linear bit-map array be one and the same? 

Well, it just so happens, that th1s is exactly the case. To see this 
let's look at the Bit Map command word and see how it fits together. 
We specify 1 bit/pixel mode with alignment to the color word LSB, 
or <Lformat 10000 (see page 15). We specify wJnode LX ( 11) 
because we wish to write the multiplier as well as the index. We 
have no offset from the absolute origin, so our r _origin is 0. Our 
horizontal dimension is 240 pixels, which rounds up to 8 data words 
each llne at 1 bit/pixel, so our dw_count ls 8. We do not have 
embedded masks, so the eJnode bit is o. This .is the last 
instruction for this line description (it ts the only instruction ) 
so the en<Ll ine bit 1s I. 

So, starting with the first line of the object what happens? The 
object ts dispatched at line 0, and the line buffer is configured in 
accordance with the dispatch table entry parameters. Then, the 
first word, the Bit Map command word de tat led in the preceding 
paragraph, is taken and executed. OuickScan prepares the 1 ine 

·buffer for a bit-map and expects 8 data words to be fed in to 
describe the bit-map. The start address points to the first of these 
data words, indeed the first word of data for our llnear bit-map 
array, and it and the following 7 words are loaded in to make up the 

Apple II Group Confidential and Private Page 50 



first displayed ltne for the object (note that the last 16 pixels are 
masked). Well, so far so good. Those 8 words corresponded to the 
f1rst d1splayed line of the linear bit-map array. 

On the second ltne, OuickScan again configures the line buff er, 
and again executes the same first word, and again expects 8 words 
of b1t-map data. Only this time, the start address parameter is 
potnttng to the 9th data word. It was automatically incremented by 
the value in the line length parameter: 8. So, it 1oads in data 
words 9·through16 (assuming we numbered them from I), which then 
provides the data for the second displayed Hne of the object. Well, 
that's fine because the 9th through 16th words of the 1 inear bit-map 
array happen to correspond exactly to the second line of the bit-map. 

I think you can see how this process continues, disp1aying each 
successive line, sucking in each successive line of bit-map data until 
the end line of the object is reached, and the last line of data is 
loaded in. All the time the very same Bit Map instruction in the 
first word is used, and a11 we have stored in RAM is a nice, neat, 
convenient, 1 inear bit-map array. 

B.us.. Access 
Since we must get to RAM to load the bit-map in, we must allow 

OuickScan to access the RAM bus. Bus_access is 1. 

Now that we have our object completely defined, all we have to do ts 
"turn it on.M This is simply accomplished by taking our just prepared 
dispatch table entry and placing it as the first entry of 4 words in the 
ODT. We must also, of course, set up the CLUT with our two colors, black 
and white, in the first 2 CLUT entries, but I shall leave that explanation 
until the section on Mu1tipl1er Applications. 

And, so, if you flip back a few pages to the diagram we started wtth, 
you can see the end result. 

Let's get an idea how much execution time this example takes and how 
many CPU bus cycles it consumes: As far as execution time goes, we have 
one object, 1t ts a I bit/pixel, bus..access, bit-map with 8 data words 
per 11ne. Since th1s object is the first object on the line, it Qua1ifies for 
the minimum object dispatch overhead of 320ns. Furthermore, any 
object following this one will also have minimum object dispatch 
overhead (see section 6.2). The Bit Map command word ts in the first 

Apple II Group Confidential and Private Page St 



' {\' 

word so 1ts execution time ts 1ncluded in the object dtspatch 
overhead, and we have 8 1 bit/pixel data words, so we use 80*8•640ns 
to load the pixel data <see section 5.2.3) for each 11ne. Notice that no 
line description crosses a row boundary although the object 
descr1pt1on takes up some 5 rows (thts ts due to the fact that 256 <the 
words tn a row> is a mult1ple of 8, our line length), so we have no row 
boundary overhead. Thus, we have a total object execution time of 
320ns•640ns • 960ns, or just under 1 microsecond. To put that in 
perspective, we have 31.778 ~sec available on each line for object 
execution <see section 5.1 ), so OuickScan is fast enough to display 
(31.778x10-6+960x10-9• 33.102) 33 objects just 1ike this on each line if 
we wanted it to Ca11 qualify for minimum object dispatch overhead). 

As far as stolen CPU bus cycles, we have a fixed overhead per 60Hz 
frame for the Configuration Data, the CLUT, the ODT, and RAM refresh of 
1578 cycles, out of an available 59286 cycles, leaving us a remaining 
57690 (see section 6.4). 59286 cycles is 1 OOX efficiency: the CPU can 
access memory with no wait states whenever it wants to, but because of 
RAM refresh, 97~ efficiency is about the best we achieve in practice. 
Let's see how much our object cuts into that figure. As noted about, the 
object is bus_access, and it has no row boundary crossings. Therefore, its 
total bus overhead is one object dispatch per displayed line. Each 
object dispatch takes 1.4 CPU bus eye les, and there are 160 1 ines, so we 
have 1.4* 160 • 224 CPU cycles stolen. Adding that with the fixed 
overhead of 1578 cycles we have 1802 total cycles stolen, or the CPU is 
still running at about 97% efficiency! We haven't decreased performance 
by even 1 whole percentage point. If, as suggested in the previous 
paragraph, we put up 33 such objects at once, we'd have a total of 7392 
CPU cycles stolen plus fixed overhead giving us still about 85~ efficiency. 

Now, seriously, you ought to be impressed. There is no other djsplay 
processor I haye heard of whjch cpmes near to these performance figures. 
liooe can put up 33 independent objects on one line, rume can put more than 
a few large bit-maps such as the one in this example on one line, and rum.e. 
can put up half so many objects with such high resolution without bringing 
the CPU to its knees with cycle stealing. As you'll see as we work through 
more examples, OuickScan·s performance is extraordinary. 

7 I 2 Horjzontal posjtioning 
Now that we've defined our object, let's consider what it takes to 

Apple II Group Confidential and Private Page 52 



manipulate 1t. A fundamental manipulation is positioning the object in 
display space. Positioning is divided into two separate steps with 
OuickScan, horizontal and vertical. Let's look at horizontal first. If we 
wanted to take our example object and reposition it 160 pixels to the right 
it would look like this: 

Pixel 160 

LtneO 

Object O 

Pixel 399 

16x160 
ReQ1on of 

·Excess· pixels 

On-Screen 

Notice that the memory map is identical to that of the object fn its 

Apple 11 Group Confjdential and Prtvate Page 53 



f 

( 

. : ... 

orig1na1 pos1t1on. We don't haye to moye object descrtptjoos jo order to 
moye objects. But, clearly something must be changed so QuickScan knows 
to move the object. That something is the absolute ortgin parameter in 
the dtspatch table entry. 

Whereas the absolute ortgtn was set too tn section 7. I .1, it is set 
to 160 here. Now, the horizontal positioning within the object 
descr1pt1on is all referenced to t 60 rather than to O and everything 
accordingly shifts 160 pixels to the right. 

Notice that the viewport defined by the viewport origin and 
viewport limit has shifted along wlth the rest of the object, so the 
excess pixels are still appropriately masked. This is because these 
parameters are referenced to the absolute origin and are now offset by 
160 as well. Notice, however, that we now have a region to the left of the 
object which is masked. It doesn't affect us in this example because 
nothing can be written to the left of the absolute origin anyway, but it 
comes into play in an example below. 

If we actually moved this object from its original position to this 
new position as shown here, note that we could effect the change at any 
llrllf., yet the display transit ion would occur between frames. That is to 
say, if OuickScan happens to halfway through displaying thls object when ~?· 
the 68020 changes its absolute origin parameter, the rest of the object 
in that frame w111 st111 be drawn with the old absolute origin parameter. 
With many display processors, parameter changes take effect 
immediately, and consequently displayed objects may be changed partway 
through a single frame with an unsightly display aberration as a result. 
With OuickScan you are guaranteed coherence within each frame, 
regardless of when a parameter is changed. There is, however, a slight 
related restr1ction which I'll point out below. 

Stnce the memory layout and access characteristics are the same as 
that of the example in section 7. t .1, the execution time and CPU efficiency 
are the same. 

7 1 3. vertjcal posjtionjog 
To reposition the object vertically, we need only change the start 

line parameter. If we wanted the object's first 1ine to be line 80, then 
we'd simply change the start line parameter to 80 from its current value 

Apple 11 Group Confidential and Private Page 54 



of O. Quick Scan would then load the first line description at hne 80, 
and each successive Hne description would be loaded with each 
successive ltne. The resulting image would look like this: 

Pixel t 60 

Object 0 

Config. Dote ( <641) -

Pixel 399 

16x 160 . 
ReQ1on of 

·rx~" pixels 

On-Screen 

High RAM 

Object 0 ( 1280) 38000H 

CLUT ( 128) 
ODT( 4) t-

.._ 30000H 

1- 28000H 

Upper Half 
of RAMArrB-1 
Shown Here 

~------........_ 20000H 
Low RAM 

• • 256 Words (32 bits) 

128 Rows 

Note: RAM errB'{ proportions are relistic: one line (-) is onerow thick. 

Notice that the memory layout remains exactly the same. Notice also 
that the previous horizontal positioning is not at an affected by this 
vertical change. 

Apple II Group Confidential and Private Page 55 



(~ 

As with the horizontal change, no matter when the start line 
parameter ts changed, the vertical shift will occur cleanly between 
frames. Also, the execution time and the CPU efficiency remain the same. 

7 1 4 HorjzpntaJ Vjewports 
The Quick Scan view port mechanism can be used for more than just 

masking excess pixels. Consider the following display: 
Pixel 200 Pixel 359 

Ptxel 160 txel 399 

Obje::t 0 

On-Screen 

High RAM 
Config. Data ( <64) r--

Obj~ 0 ( 1280) 38000H 

~ 30000H 
128 Rows 

Cl.UT ( 128) t- 28000H 
OOT(4) t-

20000H 
. Upper Helf Low RAM 
of RAM Arrfff • • Shown Here 256 Words ( 32 btts) 

Note: RAM arrfff proportions are relistic: one 1ine (-) is onerow thick. 

Apple II Group Confidential and Private Page 56 



Here we are diltberately masking off some of the real pixels of the 
bit-map. This ts logically what happens when a Mac window is sized down 
horizontally so that it is smaller horizontally than bit-map that it ·holds", 
and you use the horizontal elevator to vtew different parts of the bit-map. 

Notice that once again, the memory layout 1s unchanged. The whole 
effect is controlled by the d1spatch table entries, viewport origin, 
and v1ewport limit. As I aJJuded to before, the left mask region would 
have some use, and indeed it does. Just as we saw the right mask ·region 
masking off the excess pixels, we now have the left mask region masking 
off some real pixels. Furthermore, the r1ght mask region has been brought 
a bit to the left to mask some real pixels as well as the excess pixels. 
The viewport position and size is controlled just as you might expect: the 
viewport origin points to the pixels on the left edge of the viewport, 
relative to the absolute origin, and the viewport limit points to the 
pixels on the right edge of the viewport, plus I and relative to the 
absolute origin. It this case the viewport origin is 200-160=40, and 
the viewport limit is 359-160+ 1 =200. 

As tn changing position, QuickScan guarantees that regardless of 
when the parameter change occurs, the object change occur between 
frames. B.ut. t t w i 11 not guarantee that both parameter changes will be 
applied before a frame is displayed. This is because of the fact that there 
is the extremely small possibihty (I chance in 59286) that QuickScan will 
load the ODT .af.t.eI: the first parameter {viewport origin) is changed, but 
before the second parameter (viewport 1 imlt) is loaded. Then, one frame 
will be displayed with the new viewport origin, but the old viewport 
limit. Now, I realize that in this particular example it is no big deal, but 
it could be a significant problem given the right circumstances. I am 
considering incorporating a semaphore mechanism of some sort to hold off 
the ODT load if multiple parameters are being changed. The other possible 
solution is to prepare a second ODT in RAM with the changes, then in one 
write, change the ODT pointer to point to this new table. We'll think up 
something, but just be aware of this circumstance. 

7 1 5 Horizontal ScroJJjng 
If this bit-map were indeed a Mac window, then we would need some 

way to support the horizontal elevator, or rather we would need to support 
horizontal scrolJing within the horizontal viewport. This effect is easny 

Apple II Group Confidential and Private Page 57 



achieved by just th1nk1ng carefully about what we are dotng. We are not 
moving the viewport, we are moving the object. Hence, alJ that we have to 
do is change the relative ortgtn of the Bit Map Instruction in the first 
word, and the bit-map wlJJ move without d\sturbing the viewport. If we 
change this relative origin from o to 20, we get the following display: 

Pixel 200 Pixel 359 

Ptxel '419 

Object 0 

On-Screen 

High RAM 
Conf1a. Data < <64) I--""'" 

Object 0 ( 1280) 38000H 

1- 30000H 
128 Rows 

Cl.UT ( 128) .._ 28000H 
OOT(4) I-

20000H Upper Half 
of RAM ArrtJy Low RAM 
Shawn Here 4 .. 

256 Words ( 32 bits) 

Note: RAM array proportions ere reelisUc: one line ( - ) Is ooe row thtck. 

Apple II Group Confidential and Private Page 58 



Note that we cannot scrol 1 to the left of the absolute origin, so tf 
you anticipate large horizontal scrolls to the Jeft, then you ought to 
posttion your absolute origin wel1 to the left of the object. 

7 1.6 .Vertical Yiewports 
Consider the following diagram: 

Pixel 200 Pixel 359 

Pixel 160 Ptxet 399 

Lines cropped by CPU 
Line 80 _..,.,...,...._...,._ __ _,,...,._.....,. _________ _. 
line loo-+',·, '~'·"·-.',..,..'·,~·,·~:eif .... tt-Mtl~~*"~~~~ 

Line 199~~~~~rtni~'inllEilnf:i~~m+.:-+-E-~f-':I 
Line 239 _._~.....;....;,...._....._~....:...;...p..;,..~~~~~~~~ ..... 

Lines cropped by CPU 

Object O 

On-Scn!en 

Apple 11 Group Conf tdential and Private Page 59 



( 
What is shown here is an object which is masked vertically as well as 

horizontally. It has a vertical viewport as well as a horizontal one. Unlike 
horizontal viewports, however, Quicl<Scan does not provide direct support: 
the vertical viewports must be generated by the 68020. 

The way this is achieved 1s by the 68020 changing the object 
description so that 1t describes only the lines of the object that we wish 
OuickScan to display. That is to say, since our vertical viewport in the 
diagram above extends from line 100 to line 199, then our object 
description will only contain those lines of the object. Then, QuickScan 
simply will not d;splay those lines "masked" by the viewport and we wi11 
get the des1red effect. 

In this example, we see that the visible lines of the object are from 
its 20th line to its I 19th line, since 20 lines from the top and 40 lines 
from the bottom are masked by the viewport. We start by changing the 
start address parameter to point to the line description for the 20th 
line, since this is where our new object will start. Then, we change the 
start line parameter to hne 100, the first line in display space of the 
new object. And, finally we change the object height parameter to 99 to 
reflect the new height of the object. The result is the displayed region 
shown in the center of the diagram above. 

There a few fine points worthy of note. First of all we have the same 
problem of the smal 1 possibihty of multiple parameter changes being 
partially complete when the OOT 1s loaded, and the resulting display 
having a minor aberration as we discused in section 7.1.4. Second of all, 
notice that we have not changed the RAM utilization of the object even 
though we are only using part of the object description . You could, of 
course, use thls RAM for someth1ng else if you knew that the vertical 
vtewport would never be changed and that the object would never be 
scrolled verticalJy. But, tf this ts not true, as you shall see tn the next 
example, you ought to leave the rest of the object description intact. 
And, finally, notice that the CPU effictency increases slightly with a 
vertical viewport, although the horizontal execution time remains the 
same. The CPU efficiency is a function of the lines of an object displayed, 
and with 60 less lines displayed we have consequently less CPU cycles 
stolen. The horizontal execution time is still the same because those 
lines which are displayed take the same amount of time to load as they did 

Apple 11 Group Confidential and Private Page 60 

----------- ~~~~-



before. 

7 J 7 yertjcal ScroJJjog 
Just as the hor1zonta1 elevators in the Mac display caused horizontal 

scrolling, the vertical elevators cause vertical scrolling. The effect of a 
vert i ca 1 scro 11 20 lines up is shown here: 

Pixel 200 Pixel 359 

P1xe1 t 60 1xel 399 

Lines cropped by CPU 

Line 60 ..... - ........ ~-~--~-------------
Une 101o-i~,:.,.;...;;.,.;.,.;.....,....-...,..;-;....__-....;...;.;;:.:~~.:.,.;...;~~..-..~ 

Ltne 219 

Lines cropped by CPU 

Object O 

On-Screen 

High RAM 
Config. Data ( <64} r---

Object o ( 1280) 38000H 

1- 30000H 
128 Rows 

CLUi ( 128) 1- 28000H 
OOT(4) I-

20000H 
Upper Helf Low RAM 

·of RAM Arrft./ • • Shown Here 256 worm C 32 btts) 

Note: RAM errft( proportions ere relistic: one line (-) isonerow thick. 

Apple 11 Group Confidential and Private Page 61 



Just as a horizontal scroll entailed moving the object and holding the 
viewport constant, a verttcal scroll entalls the same procedure. So, we 
position the object vertically at the desired new position, starting at line 
60. Then, we bulld a new vertical viewport just as we did before, except 
this one starts at the 40th 11ne of the object and ends at the I 99th llne. 

7 J 8. ArbitrarUy Shaped Viewports 
Consider the following diagram: 

Line 80 ---------------------

Object 0 

Mask Bit 
Cleer 

On-Screen 

COnf1g. Data ( <64) 

Old Object 0 ( 1280) 

New Object 0 ( 160) 

CLUT ( 128) 

OOT( '4) 

Upper Helf 
of RAM Arr8'{ 
Shown Here 

HiQh RAM -
.... 

I-

.... 

Low RAM 

• • 256 WordS ( 32 bits) 

38000H 

30000H 

28000H 

20000H 

128 Rows 

Note: RAM errflf proportions ere relistic: one line(-) is onerow thick. 

Apple II Group Confidential and Prtvate Page 62 



Sometimes we want a viewport which 1s not rectangular at all. For 
this application we have a mechanism for arbitrarily shaped viewports. 
The way it works is you define a 1 bit/pixel object that you wish to use as 
your mask. This object (which I shall call object 0) must be directly 
behind (1.e. at the next lower priority) than the object to which you wish to 
apply a viewport (which I shall cal1 object 1 ). Then, you specify the write 
mode of object Oto be M so that it writes to the mask bit of the pixel 
storage cell. Where you wish object 1 to be masked, write Oto the 
mask btt, and where you wish it to show through, write 1. Then, in the 
dispatch table entry of the object 1, set its view port limit to 0. This 
disables the automatic viewport mechanism from clobbering your custom 
viewport when object 1 is dispatched. 

·Object O was created in the following way: I used its automatic 
view port to mask all pixels on the screen (see first paragraph on page 39). 
Then, I specified a single Run instruction on each llne to clear the mask 
bits from the left to the right side of the el1ipse for that line. Note that 
each line's run is different so I couldn't use the first word for the Run 
instruction , but rather specified a NOp for the first word and put the 
Run as the first (and only) word of each line description in RAM. For 
those lines above and below the ellipse, I specified a NOp for that word. 

Thus, the object description requires 160 words, 1 word for each 
line in RAM. As the first object in each line, object O wlll be displatched 
with minimal object dispatch overhead. The Bit Map instruction 
takes 80ns to execute, and since object O's line description in RAM is 
exactly 1 word long, object 1 w111 also be dispatched with minimal object 
dispatch overhead (see section 6.2) as well. So, the total execution 
time for the 2 objects is 320ns+80ns+320ns+640ns= 1360ns. 

The resulting display is shown below: 

Apple II Group Confidential and Private Page 63 



Pixel 160 Pixel 399 

Object 0 Object 1 

Confi9. Date ( <64) 

Object 1 ( 1280) 

Object 0 ( 160) 

CLUT ( 128) 

OOT(8) 

Upper Helf 
of RAM Array 
ShoYn Here 

High RAM 
i--

I-

~ 

I-

lwRAM 
4 .. 

256 Words (32 bib) 

on-Screen 

38000H 

30000H 128 Ro'w'S 

28000H 

20000H 

NDie: RAM arralJ proportions are realistic: one line(-) is one rw thick. 

7 1 9. Emliftdded Masks 
" _..---

We mtght Wt.sh to overlay a backgroll\d object with otr text b1t-map 
object and have tht~ckground-!how through between the letters. We 
could ach1eve th1s by IOadtng down the backgroood object, then by 1oad1ng a 
custom mask object which ~sponds to the text's pattern, and f1nally by 
loading the text object on top of ~ mask. But, there ts .a s1mp1er way: 
embedded mas,~. "~ 

(=~· The tex~.®ject 1n this example ts a~lxel bit-map, and tt so 

Apple II Group Confldenttal and Private Page 64 



happens tha~e were going to make a custom mask, we need a 1 (J 
bit/pixel bit-map-~ith exact)y the same pattern. Using this fact, we can 
combine the bit-map~rite and the masking operation with the same text 
bit•map and save ourse~ an object description . 

'--.....,, 
To see this, let's first make"&Ur background object. Th1s object is 

240 by I 60 and 4 bits/pixel. It is shown below: 
~ 

Pixel 160 Pixel 399 
l l 

Une80 -

Line 239~ 

Canfig. Data ( <64) 

Old Object 0 ( 1280) 

New Object 0 ( 4800) 

CLUT ( 128) 

OOT(4) 

Upper Helf 
of RAM Arrt11 

Object 0 
(4BPP) 

4 

High RAM 

Low RAM 

On-Screen 

38000H 

30000H 

28000H 

20000H 

~ 
Shown Here 256 Words ( 32 bits) 

128 Rows 

Note: RAM arrt11 praporttons ere res1tst1c: one Une (-) Is one row thick . 

. Apple 11 Group Confidential and Private Page 65 



( Not tee that is ha7no horizontal mask. This is so because at 4 
bits/pixel with a h9f'1Zontal dimension of 240 we have ,e~actly 30 words 
per line with nn,e-xcess pixels. I've disabled the horizontal vtewport for 
convenience. Notice also that we might like the 16' colors mapped by this 
bit map to be separate from the 2 colors of the,text b1t-map. To do thts 
we need only change the lower byte of the constant word so that when it 
is combined with the 4 bits of the pixel ~ata the resulting index ends up 
to point to a convenient place in the CLUT. Th1s object shall be object 0. 

Now, using the text bit-map from the previous examp1es:-£nere is very 
little we have to do to activate the embedded mask function/ First of 
an, we must make it so the whlte background masks (doesn't write) and 
the bJack letters don't mask (do write). Thfs is determine-d by the 
e_polarity bit in the dispatch table entry. Let's say that black is 1 
and white is 0, then we want 1 to permit writes, so we set e_polarity to 
1 (see section 6.1.7J. Next, we have to change the Bit Map instruction in 
the first word ~o that it isAn embedded mask mode by setting the 
e_mode bit tol. And, ~tlat's it. 

I 
I 

Notice that th! fact that we are,using embedde~_ masRS'does not 
obviate the ne'ecf to have a horizontal vtewport to,mask off the- excess bits 
of this object. This masking function worl<_s,.,,with the mask/bit in the 
pixel storage cell and is independent of the embedded· mask function. 
If either or both masks are inhibiting writes at a given pixel, then the 
write will be inhibited (see section 3.3). 

Well, after all is satd-and done, the resulting display is shown below: 

Apple II Group Confidential and Private Page 66 



Pixel 160 

Object 0 
('48PP) 

Config. Data ( <64) 

Object 1 ( 1280) 

Pixel 399 

Object 1 
( 1 BPP) 

High RAM 

On-Screen 

38000H 

Object 0 ( 4800} 128 Rows 
30000H 

CLUT ( 128) 28000H 
001(8) 

20000H 

Upper Helf 
low RAM 

of RAM Arrey 4 .. 
Shown Here 256 Words ( 32 bits) 

Note: RAM array proporttons ere rmllst1c: one line (-) ts onerow thtck. 
- ··-·-------------

~------
And, so ~is completes the ~-~~tion-eFH)ectangular bit-map 

appllcationS'. Using the examp1es shown t)ete and the information in the 
preceding,,chapters, you should be abl~X6 set up your own rectangular 
bit-maps_~~tomlzed for your ow~articular display needs. 

L----

Apple II Group Confidential and Private Page 67 

----



1.2..Auns Afl4.Complcx Objects 
This section shows examples of spec1al case objects whose object 

descr1pttons can be spec1f1ed In ways which economize memory, time, 
or both. It Is 1mportant that you understand that all objects shown In th1s 
section can be specified using the rectangular bit-maps discussed tn the 
previous section with precisely that same resulting displayed Image. But, 
these special case objects occur commonly enough and the savings are 
substantial enough that I feel It Is worthwhile to give OUtckScan special 
capabilities to support them. Note that the autckScan mechanisms 
directly used here are Indirectly used In generating rectangular btt-maps, 
so there ts rea11y no additional hardware cost directly attributable to 
support tng these objects. 

AH of the special case objects considered tn th1s section are largely 
made up of runs, and I refer to such objects as run-class objects. The 
main capability that really makes considering run-class objects 
worthwhile Is that of the fully parallel nn While a few display 
processors that I know of have supported runs (although none have yet 
made It to market>, an of them Implemented runs by Iteratively writing 4 
the pixels that make up the run 1n a ltne buffer. That ts to say, if you '*9' \ 
specified a run that was 400 pixels long, then the display processor would Y 
go and write 400 pixels, one after another, or at best would write the /JI 
pixels in groups of 4, 8, or t 6. QutckScan. implements runs by having all , '!I . 
pixels that make up the run written simultaneously to the ltne buffer. 1' jJ 
So, if 400 pixels are specified in a run, 400 pixels will be written at once. / \i 

Or, In hardware terminology, we'd say that the runs are written fu11y in 
parallel. 

The key advantage of the fully parallel run capabiltty is in ·getting 
the jump· on spatial complexity. To understand th1s concept we have to 
make O\r way thrOUgh a little mathematics. You computer-types out there 
are familiar with use of the term computational complexity In regard 
to iterative algorittvns like sorts and searches. We might say that the 
complexity factor 1denttfles the facets, or dimensions of an algorithm so 
that we can compare the algorittvn's efficiency with that of others. For 
example, an O(n2) (read ·order n-squared•) algorithm ts Jess efficient than 
an O(n) c·order n·> algorithm because we can expect for every n operands 
submitted to each algorittvn the algorithm wnl go througn n2 iterations In 
the former case and n iterations in the latter. 

Apple 11 Group Conf1denUa1 and Private Page 68 



Spattal complexity, as I use it here, 1s an analogous concept whtch 
identtf1es the dimensions of an object tn regard to the amount of memory 
necessary to represent the object per the object's stze. Thus,. an object of 
O(n) spatial complexity would require twice as much memory for 1ts 
representation tf It were made twice as large, but an object of ocn2> 
complexity would require 4 times as much memory for the same doubling 
of size. Consider the following example objects: A point ts O( 1 ), a simple 
Hne ts O(n), and a bit-map is OCn2>. We can derive these numbers 
analogously to derivmg computational complexity numbers: by changing the 
size of each object (like changing the number of operands submitted to the 
algorithm), and seeing how much memory it takes to represent the object, 
proportional to the change in its stze (like seeing the number of iterations 
of the algorithm, proportional to the change in the number of operands). 

A point is represented by 1 pixel, and as it has no dimensions, scaling 
it by a scale factor n stt11 results tn the same size of 1 phce1. So, the 
memory representation increases proporttonal to n°. A potnt ts 0( 1 ). 

If we have a mtnimum width 11ne x pixels in length, it can be 
represented by approximately x pixels. If we scale the line by scale factor 
n, then it w111 now be about nx pixels long. So, the memory representation 
increases proportional to n1• A Hne is O(n). 

If we have a rectangular bit-map h by v (horizontal by vertical) ptxels 
in size, it can be represented by h*v pixels. If we scale the bit-map by 
scale factor n, then 1t will now be about nh*nv pixels in size. So, the 
memory representation increases proportional to n2. A rectangular 
bit-map is ocn2>. Coming to the same conclusion about non-rectangular 
btt-maps is a little more tricky, but I'm sure you can see intuitively that 
the result 1s the same. 

Consequently, given two objects of the same size, one represented by 
lines, and the other represented by bit-maps (e.g. a 3-0 wire-frame model 
vs. a J-D sol1d model), we can expect that as we increase the stze of the 
objects, the memory required to represent the Hne object win increase 
Hnearly, and the memory required to represent the bit-map object will 
increase exponent1a11y. For small objects, the exponential growth is not 
that dlff erent from the linear growth, especially considering we normally 
have several 11nes to symbo11ze the region represented by a single bit map, 
and there ts a fixed overhead for each line in any practtca11mplementaUon. 

Apple II Group Conf tdenttal and Prtvate Page 69 



( But, for large objects, the exponent1al growth far outpaces the 11near 
growth, and we soon ftnd ourselves needtng huge amounts of memory to 
represent such large btt-maps (thank goodness it's only n-squaredl). 

Then, forgett1ng the cost of all of the memory to hold large btt-maps, 
constder the overhead 1n manipulattng such large bit-maps. Whether the 
objects are software-based or hardware-based, the exponential growth 
quickly outpaces our hardware, and we find that interactivity 1s shot to 
hell. Notice how you don't move Mac windows, you move their outlines. 
The Mac operating system deals with the exponential explosion by dropping 
the w1ndow object from an O(n2) bit-map representation to an O(n) line 
representation when you need interact tvity tn tts manipulat ton. The 
manipulation complete, it redraws and gives you back the o<n2> bit-map 
representation required for the object to be visually useful. 

Myone who has worked wtth interactive animation systems is 
cogntzant of the property of ·inertia· associated with lugging around large 
bit-maps. Not1ce that any people who do commercial 3-D animation Cltke 
Pacific Data) always run through sequences with ·w1re-frames· to get the 
motion right, then render the final sol1d objects off-line, letting their 
computer munge away, computing the btg btt-maps. They can manage the 
O(n) complexity of Hnes (Jess the light models, too) in real time, but not 
the O(n2) complexity of bit-maps. Nottce that video games with bit-map 
objects either have a very few, simple, large bit-maps (Pole Position, 
Karate Champ), or have lots of little ·sprue·-stzed bit maps (Galaxian, 
Defender, Dig Dug). They may have many large, complex objects made of 
lines {Star Wars, Battlezone), but you oeyer see a video game with many 
large, complex bit-maps; there ts just no way to handle them in real time. 

Just as we endeavor to reduce computational complexity in algorithm 
development so as to increase program execution speed, we endeavor to 
reduce spatial complexity 1n object representat1on so as to 1ncrease 
object manipulation speed. As we have seen 1n the video game world, this 
applies not just to software manipulations, but also to display processor 
man1pulat1ons. And, as fast as autckScan runs, it too can be brought to its 
knees by large O<n2) object representations. It ts especially vulnerable to 
objects with large horizontal dimensions, since its ft.lldamental speed 
11mttat1on ts how many pixels for one line it can load in one Hne's time. 
For many bit-map objects, there is simply nothing that can be done - we 
have to face the fact that they are O<n2> and Uve with it. But, wouldn't 1t 

Apple II Group Confidential and Private Page 70 



be nice if we could find a useful class of bit-map objects that could be 
represented by some lower order of spatial complextty ... 

Well, there just so happens to be a large class of useful btt-map 
objects whtch can be represented largely or entirely by runs. These are 
the run-class objects whtch I Introduced at the begtmtng of this section, 
and as we sha11 see, they are O(n). Objects of th1s class are f orma11y 
characterized by havtng a low frequency of hortzonta1 color modulation 
relative to thetr hortzontal stze, whtch means the number of ptxels tn each 
horizontal Une ts much greater than the number of color changes. Objects 
whtch fall into thts class tnclude backgrounds, cartoons, bar and pie 
charts, certain types of 3-0 models, certain CAD/CAM objects, and many 
others. These objects can be specified efficiently 1n tenns of a few 
horizontal runs because only 1 run ts needed per color change and thus the 
nllllber of runs tn a line ts much smaller than the number of ptxels tn a 
ltne. 

So, a run-class object can be represented 1n memory by about r*v 
runs (r ts the average number of runs per Hne, v ts the number of lines). If 
we scale the object by a scale factor n, then we find that representation 
in memory has changed to r*nv, because at any scale the object has 
the same number of runs horizontally, but the scaling factor 
tncreases the number of 11nes. Thus, the memory representation tncreases 
proportional to n1, and the object ts O(n). 

Vtrtually every graphics display system I have seen Cincludtng the SGI 
IRIS) ultimately treats run-class objects as O<n2> bit-maps, solving the 
exponential complexity explosion by throwing fast, expensive processing 
muscle at It. Even 1f they store the objects in terms of runs and therefore 
enjoy O(n) complex1ty In their memory consumption, they Iteratively write 
out each pixel of eaeh run to a line buffer, effectively expanding the object 
back Into an O<n2> bit-map as far as manipulation speed goes. OuickScan 
solves the problem with brains rather than brawn and 1nstead of writing 
out the h Individual pixels of a run iteratively at high speeds it simply 
writes all h pixels at once at a reasonable speed, maintaining O(n) 
complexity both tn memory consumption, and in manipulation overhead. 

The result 1s that as objects get larger, the processing of the objects 
increases linearly wtth QuickScan1 whereas with everyone else's graphics 
display system the processing 1ncreases exponentially. FurthermoreJ 

Apple II Group Conf tdenttal and Prtvate Paoe 71 



( Qu1ckScan's Hnear growth 1s 11m1ted to the vertical dlmens1on where tt 
has plenty of ttme, whereas their growth ts tn both the horizontal and 
verttcal dimensions. So, all else being equal, anything that they can do 
wtth wtre-frame models, we can do with .s.oJ.U1 models (they're O(n), we're 
O(n)). If they can manipulate a run-class object tn real-time that ts n 
by n, we can manipulate IDQ (approaching n) such objects at once (they're 
O(n2), we're O<n2». 

Now, I'm sure you can appreciate that we are gaining a phenomenal 
advantage over conventional graphics displays by having fu11y parallel 
runs. When tt comes to run-class objects, THE OTHERS CANNOT KEEP UP. 
I don't care tr they have a CRAY-X/MP hooked up to an ultrafast frame 
buffer. We have 640 processing elements working at once. They have one. 
Current technology cannot Iteratively write 640 pixels as fast as the 80ns 
tt takes us to paraJlel write one 640-pixel run, at any cost In fact, tt 
doesn't even come close. We have the opportunity here to chart new 
territory tn real time computer graphics - and we're talking about a 
consumer productt Just think about the awesome interactive applications 
that can come out of this capability. It rea11y blows me away. 

Of course, this capability does not directly help us in speeding up 
non-run-class bit-map objects, but remember, QuickScan st111 is an 
extraordinarily fast btt-map display processor. Its efficient handHng of 
run-class objects augments this blt-map capabiHty at the programmer's 
discretion, and indeed, an tndivtdual object can very well be part runs and 
part bit-maps, and stHl close enough to a pure run object to be 
interactively manipulated. (Such objects are ca11ed complex objects, 
and I show examples of such objects in the forthcoming subsections.) 

So, as you read the following subsect1ons and constder the worth of 
the parallel run capability, remember: this is reany new technology in 
computer graphics. Everyone's been talking about applying large-scale 
parallelism to computer graphics for years - it's the only direction left 
for more speed - but no one's ever been able to do 1t in a commercial 
product. If this thing flies, we'll be leading the way into a new era. 

7 2 1 Backgrounds 
One application area in which runs immediately show their worth is 

that of the generation of backgrounds. Backgrounds that are all of one 
color that would otherwise be represented by a large 1 bit/pixel bit-map, 

Apple II Group Confidential and Private Page 72 



now can be drawn wtth a single run per each 11ne. Large backgrounds wnh 
stattc objects (e.g. trees, mountains, clouds, sky) can be specifted with a 
handful of runs per each line, requiring orders of magnttude Jess memory 
and Une buffer write Ume than a comparable bit-map representatton. In 
fact, backgrounds even larger than the screen can be efficiently stored and 
mantpulated to give the 111usion of the screen being a vtewport Into 
another world. 

autckScan ts parttcularly opttm1zed to generate rectangular, 
single-color backgrounds. It can generate such backgrC>\J'\dS without using 
~ RN1, without stea11ng ~CPU cycles, and taking only 320ns to 
execute for each line of the background, regardless of the background's 
size. (Indeed, this type of background is handled so efficiently, that 1t 
actually qualifies to be of O( 1) complexity in memory consumption.) The 
way we specify such a background is very stratghtf orward: 

You make a dispatch table entry at the priority at which you want 
the background. 

Load start line with the first Hne of background; object height with 
1ts height-1; absolute origin to the background's left border; 
bus...access to O; viewport origin and limit both to O; constant 
word and display mode as you wish; and start address, e_polar1ty, 
llne....mode, and ltne_Jength to any value. 

Load the first word with a Run Instruction , setting r _or1g1n to O; 
r _Jimlt to the horizontal dimension of the background; end-Hne to 1; 
and data_7 , w....mode , and d....allgn as you wish. 

And that's it. On each line of the object, the one Run tnstrucUon in the 
f1rst word wi11 execute, generating a run from the left side of the 
backgroood to the right, and that's ll You can choose the color and the · 
display mode. Since it's a no bus...access object, you are guaranteed that 
tts dispatch overhead Is minimal (see section 6.2). An example of 5 
such backgrooods is shown below (each pattern represents a single color). 
Note that there is M space 1n RN1 allocated to each object at all, except 
of course, for the 4 words in the dispatch table entry. 

Apple II Group ConftdenUal and Prtvate Page 73 



( 

{: 

• • o o I • o • 0 o 0 o o o o o o 0 I I I I o o o o • o 0 o 0 o 0 0 o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
: : : : : : 0: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . ............................. . 

. . . . . . . . . . . .. . . . . . . . . . . . . . . . . ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . ............. . . . . . . . . . . . . . . . . . . . . . . . . .................... . . . . . . . . . . . . . . . . . . . . . 

Config. Oeta ( <64) r-

Cl.UT ( 128) 

ODT(20) t-

Htf\RN1 

~ 38000H 

~ 30000H 

~ 28000H 

--------- 20000H 
Upper Helf 

afRN1ArNI( 
Shown Here 

LowRN1 
4 • 

256 Words ( 32 btts) 

128 Rows 

Nata: RN1 tJrNlf proportions are realistic: ane line (-) ts one rw thick. 

Generat1ng baekgrounds more complex than just a single color, 
however, ts a 1ttt1e more involved. Since we would then have various 
shapes tn the background, we couldn't rely on each 11ne having just the 
same single run. Indeed, we couldn't even guarantee that each 11ne would 
have the same number of runs! 

Such background objects are usually made up of a collectton of 

Apple 11 Group Conftdentta1 and Prtvate Page 74 



1nd1vtdua1 prtm1ttve objects. These prtm1t1ve objects are ca11ed 
svbobjects because each could be an object 1n 1ts own r1ght. An object 
wh1ch contains 2 or more subobjects ts called a complex object, and a 
complex object's object descrtptlon ts made up of the unton of 1ts 
subobjects' object descr1pt1ons . A complex object Ca forest scene) 
1s shown below, with each subobject 1dent1fted wtth a letter: 

Pixel 
- 100 0 80 160 240 320 400 480 560 640 720 840 
0 

Q) 

c: ·-...J 

320 

'400 

'480 

A 

8 E c J 
K 

On-Screen 

Nate: RAM PrNlf proparttons are realistic: one ltne (-) ts one NM thick. 

Apple II Group Conf1dentla1 and Pr1vate Page 75 



( 
A subob ject may be made up of bit-maps, runs, or both, and there 

may be any number of subobjects 1n an object. In the forest scene 
complex object shown 1n the above diagram, there are 13 subobjects , 
each a soltd region of one color represented by runs. Subobjects may 
also overlap, and in fact, tn the above dtagram subobject A ts a simple 
rectangle - the complex region which we see 1n the diagram for 
subobject A results from the overlaps of the subobjects 1n front of A. 

Note that part1ttontng a complex object 1nto subobjects serves us 
only as a conceptual tool to help us f1nd a way to represent an object 
eff1c1ently. autckScan understands an object only tn terms of what it ts 
told to display by tts dispatch table entry and Hne descr1pUons ; it ts 
unaware of how the object has been partitioned. Thus, the criterion we 
use to partition an object into subobjects ts completely arbitrary, and 
we can def1ne th1s crtter1on however tt is convenient. The criterion I used 
tn thts example was to isolate a subobject wherever there was an 
individual region of color, but tt could just as wen have been to Isolate 
the house as a s1ngle subobject and each tree as a single subobject. As 
we shall see 1n a moment, my choice was informed and by choosing the 
former criterion t saved a little more memory than I would have with the 
latter. But, there may very welt be an even more efficient cr1ter1on to 
partition this complex object that I haven't thought of. 

To generate the object description for the forest scene, we first 
order each of the subobjects by subpriority, background to foreground. 
Subpriority is to an object as priority is to display space: it indicates 
who is in front of who. I assigned a Jetter to each of the subob jects in 
order of tts prtortty such that A ts the background-most and M ts the 
foreground-most. 

Next, for each subobject we generate an object descript1on , its 
11ne descriptions referenced to the single absolute origin of the 
complex object. Stnce the left border of the complex object ts at 
pixel -100, we might as well set its absolute ortgtn to -100. And, since 
each subobject 1n th1s complex object 1s a contiguous region of a one 
color, each subobject line descript1on is a single Run tnstru~tion . 

Subobjects A, B, C, D, E, J, K, and Lare an rectangles, so for each 
one's line descrtpttons , we specify the same Run instrucUon (starting 

Apple 11 Group Confidential and Private Page 76 



at the rectangJe's left edge and ending at tts right edge). For example, 
Subobject B ts 40 pixels wtde, 220 lines tan, and has its left edge at 
pixel -60. It ts described by 220 Run tnstruct1ons , each wtth the 
relattve ortgtn setto40(-60-(-IOO))andtherelat1ve ltmtt setto 
80 (-21 - (-100) +I). 

Subobjects F, G, H, and I are a11 ctrcles, so these take a Httle more 
work to describe. We first observe that a circle ts vertica11y symmetric 
across its center, so when we figure out the set of runs for the line 
descriptions of the top half of the circle, we need only reverse the order 
of the set to get the line descriptions for the bottom half. To determine 
the top half's set of runs, you can figure out the left and right edge of the 
circle on each line by using some simple geometry, and then set up a Run 
tnstruct1on for each line with the relative origin at the left edge and 
the relative Hmtt at the right. So, qu1te unlike the Run Instructions 
for the rectangular subobjects , all of the Run instructions in each half 
of the circle have different relative origins and d1fferent relative 
limits, and must be computed 1ndividua11y for each 1ine. 

Subobject Mis a triangle, and as with the circle subobjects , you 
need to apply a 11ttle geometry to determine the left and right edges of 
each line, then use that information for the relative origin and relative 
Um it of the Run Instructions for its Une descriptions . 

Now, to assemble these various subobject's object descriptions 
into the one complex object's object description for the entire forest 
scene, we have to interleave the various subobject Une descriptions , 
line-by-Hne, with the lowest subpriortty subobject"s line 
description on each Hne first, and the Mghest subpriortty subob ject's 
11ne description last. Th1s may be a 11ttle diff1cult envision, so on the 
next page you'll find a diagram which shows the interleaving process in 
two steps. Above, you'll see the forest scene, this Ume with each 
subobject ident1fted with a pattern. Then, on the lower left, you'll see a 
diagram of all of the subobjects' individual object descriptions , 
interleaved with each object description restricted to a slot 
correspondtng to the subobject's subprtortty . To see how this works, 
compare the 480 lines of this diagram to the 480 Unes of the forest scene. 
NoUce that the vertical size and posttton of the patterned bar representing 
the object descrtpUon for each subobject corresponds with the 
vert1cal stze and position of the subobject Itself in the forest scene. 

Apple II Group Confidential and Private Paae 77 



' () 

() 

3 

Hortzontal Pos1tlon Relat1ve to Absolute Origin 
0 80 160 240 320 4'00 480 660 640 720 800 880 94'0 

0 :·:.: ·: ·:·: ·: ·: ·'.· :·: ·:·:.:.:.: ·: ·:.: ·:.:.: ·:·: ·:·:.: ·: ·:·: ·:·: ·: ·: ·:·:.: ·: ·'.· :·: ·: ·: ·: ·:. :·:·:.: ·: ·: ·:.: .................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :- :-: . :- :- :-:-:-:-:-:-:-:.:-:->A:-:-:-:-:.:-:.. . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 
·.·.·.·.·.·~··.·.·.·.·.·.·.·.·.·.·.· :- :._:.. . . ~ ... -: -: . :-: . . . . . . 
.· .. ~.·.·. . ,. .. 

......... . . . . . . . . . .. . . . . . . . . . . . ................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
480 

. . . . . 
. 4aO ABC DEF G H I J K.L M 

Slot 

St.mot>ject Object Descrlpt1ons 
(Slotted) 

.. 

. . 
o 1 2 J 4 s 6 1 a 9 10 

Word 

SUbobject Object Descriptions 
(Packed) 

Thts ls because the object descrtptton of each subobject only exists 
on those Unes where the subobject exists. Thus, each line of a slot (see 

Apple 11 Group Conftdenttal and Private Page 78 



Hne number1ng to the left) holds the line descrtptton corresponding to 
the same ltne of the slot's subobject 1n the forest scene (two sample 
subob ject line descr1ptions are highlighted tn the diagram). 

Since each slot corresponds to a subprlorlty level, the line 
descriptions on each line are In proper order for 1nterleav1ng, left to 
right, Into a line description of the complex object - you just have to 
eltmtnate the empty slots. The diagram on the lower r1ght shows what we 
get when we eliminate these empty slots, and pack everything to the left 
(you can use a straight edge held hortzonta11y to compare the two 
diagrams). This ts an exact representat1on of how the interleaved 
subob ject line descriptions make up the 11ne descriptions for the 
complex object. If you scan left to right across a given Hne in this 
diagram, the subobject line descrtpttons you'JJ cross wtn exactly 
make up, in that order, the Une descriptton for the complex object for 
that 11ne of the forest scene (2 sample complex object Hne 
descriptions are highlighted tn the diagram). And, 1f you put a11 of the 
complex object line descriptions from 11ne Oto Hne 479 one after 
another tn RAM, you'11 have the object description for the full complex 
object. Thus, we have the complex object's object description 
formed from the union of the subobjects' object descriptions . 

For example, at 11ne o, the 11ne description of the complex object 
is made up of just subobject A's line descript1on since no other 
subobjects are on that line, but about 80 lines down, we find that the 
complex object's Hne descriptton is made up of subobject A's line 
description followed by F's, G's, H's, and l's. At around line 160 the 
complex object's line descriptton gets very Jong, being made up of 
every subobject's Une description except for J's and K's. Then by line 
479, once again the only subobject on the line is A and the complex 
object's Une description ts just made up of A's line description. 

Since each subobject 1ine descrtptton in the forest scene is just a 
single Run instruction (which is a single-word Instruction ), the 
width of each of the patterned bars in the diagram on the right is one 
word. If you count the number of bars hortzonta11y on any line, you'll find 
out the number of Instructions , hence the number of words, for the 
complex object's 11ne description on that Hne. Notice that, unlike the 
previous examples I've shown you. these Hne descriptions are of 
variable length, and variable length line mode must be selected tn the 



( 

. .. ~" . . . 

dispatch table entry for the complex object. 

QutckScan has no way of determining by itself where each line 
descr1ptton ends, so the last 1nstruct1on on each 11ne of the complex 
object must have 1ts encLUne bit set to let QutckScan know. Of course, 
the last 1nstruct1on on each 11ne may belong to any subobject, so you 
must inspect the object descrtptton 11ne-by-1ine and set the encLllne 
b1t tn whichever subobject's Roo 1nstruct1on 1t is appropriate. Note 
that encLllne b1t ts nm. set at the end of each tndtvtdual subob ject's 
line description unless It happens to be the last subobject 11ne 
description in the resulting complex object's line description . The 
encLline bit ts the only way autckScan has of finding the divisions 
between line descr1pttons 1n an object description , so tt ts truly 
unaware of subob ject line description Interleaving, or as I stated 
before, the way we choose to partition an object into subobjects is 
purely a conceptual tool for us humans, and QuickScan is unaware of it. 

Notice that subpr1ortty ts handled by autckScan very simply by just 
overwriting as each subobject line description ts loaded tnto the line 
buffer. The lower subpriority subobjects are written to the Hne 
buffer first (since they are first tn the complex object line 
descriptions ), and they are overwritten by the htgher subpriority 
subobjects that overlap them. So, in the forest scene we get a concave 
curve at the top of the tree trunks and an angle at the base of the chimney 
even though each of these subobjects is a simple rectangle. And although 
our very background subobject, A, appears to be of an extremely complex 
shape, it also is just a simple rectangle. Since the subobjects are 
specified by runs, it costs us nothing to waste the portion of a subobject 
that ts covered up by another subobject, so we m1ght as well describe 
these background-most subob jects in whatever way is convenient. 

QutckScan object descriptions have the first word of each line 
description stored in common for an Unes of the object in the dispatch 
table entry. So, if every line description of an object description 
starts with the same instructton command word, then we can put that 
word 1n the first word and thereby avoid having to store 1t individually 
tn RAM for every line of the object descript1on . Can we use thts feature 
with our forest scene complex object? Well, looking at the packed 
dtagram and the forest scene above, we see that on every Hne, the first 
word ts indeed the same: tt ts the stngle word of a subobject A's Run 

Apple II Group Confidential and Private Page 80 



------- .. ---··-------- ····-~·-· . ---~~~------·- ·-·- .. 

tnstruct1on I On every line of the complex object we have subobject A 
generated by a Run instruction wtth Its relative origin at o and 1ts 
relative limit at 940. So, by putt1ng thts tnstruct1on tn the first 
word, we can directly shave 480 words C 1 word for each line) off the 
complex object's RN1 consumpt1on. Although this may seem 
coincidental, It really Isn't. Complex objects commonly have a 
rectangular ·backdrop· upon wh1ch all of the foreground detan Is 
overlapped. This characteristic 1s one of the mot1vat1ng Influences in 
QutckScan·s des1gn for the 1nc1us1on of the first word as a parameter tn 
the dispatch table entry. 

So, we've ·put away- subob ject A, but how much RAM wj 11 the rest of 
thts object consume? The figure is 1isted tn the init1a1 forest scene 
diagram's memory map, 6900 bytes. Not too bad for a 13 color object that 
ts 940 by 4801 For comparison's sake the RAM comsumption of an 
equiva1ently sized 1 bit/pixel bit-map is shown in the memory map as 
wen. Despite this bit-map's consumption of 56.41< bytes, we only get 2 
colors to choose fromt If we wanted to have a bit-map w1th all 13 colors, 
·then we'd need 225.6K bytes. Note also, that we cou1d, wtth the same 
6900 bytes of memory consumed, have each run of a subob ject have a 
different color. So, you might put a horizon in subobject A, and perhaps 
stripes on the wan and roof of the house (subobjects J and M) to make it 
look Jike a cabin. Then, we'd have wen over 16 colors tn the complex 
object and the cost of an equivalent b1t-map would be 451.2K Bytes. I 
think you get the point. 

Let's now consider the execution time for each line of the forest 
scene. Since the forest scene would probably be the lowest priority 
object displayed Cs1nce It 1s a background), then Its dispatch overhead 
will be mtntma1, 32ons. Since the lines are variable length, some will 
take longer than others to execute. To get a worst case fig\A, let's look 
at the longest Jines in the object, those around Jtne 160, which each have 
11 Roo instructions . Now, since subobject A's Run instruction is in 
the first word, 1ts execution time is included in the dispatch overhead. 
For the other 10 Run instructions , the execution time ts 80ns apiece, for 
a total of 800ns. Thus, the worst-case execution time for any line of the 
forest scene ts 32ons • 800ns • 112ons. Now, tt's not quite fair to leave 
it at that because If you look tn section 6.2 on page 41, you·n find that we 
add 240ns to the dispatch overhead of the object next higher tn 
priority (unless Its a no bus...access object> because our last 

ADD 1 e 11 Grnun rnnf i ttont i ~ 1 ~r\lt Dr4u'!ll+ a n ...... a A ' 



I ( 

ic 
~/ 

1nstruct1on on every line of this object 1s a Run tnstrucUon . It's really 
ra1r to constder th1s extra dtspatch overhead as part of our executton 
ttme, so then our worst case executton ttme ts rea11y 1120ns • 240ns • 
1360ns, with the next h1gher prtority object dtspatch1ng wtth DQ 
overhead. Also, because this 1s a variable length object, we have to be 
very careful tn plamtng Us placement In RN1 If we want to ensure that no 
11ne description crosses a row bo\lldary. If we don't plan for this case, 
then we should also Include 1n the worst case the execution time added tn 
case of a row boundary crosstng, 560ns (see section 6.3). So, now our 
absolute, most horribly worst case execution Ume is 1360ns • 560ns • 
1920ns. Since we have about 32 µsec total in each line, that means this 
forest scene, In the very worst case, takes up 61 of the avanable time for 
writing line descrtpttons to the line buffer. If we guarantee there are 
no row crosstngs, then 1t ts 4.251. 

Bear tn m1nd that only a few of the lines of the forest scene take 
anywhere this amount of Ume to execute since most are very short. 
Notice also, that 1f added more subobjects to the forest scene to make 
the picture more detailed and interesting, the execution time would not 
increase by much. This is because most of the execution time for this 
particular object comes from the fixed overhead of dispatching and row 
crossing, a penalty we pay once. Of the 1920ns ltsted for the very worst 
case, 320ns+240ns+560ns • 1120ns, 1s fixed overhead. If, for example, 
our worst case line of the forest scene had 22 runs instead of 11, our very 
worst case execution time would only increase to I 920ns•(22-11 )*80ns = 
2800ns, or 8.751 instead of 61 of the total line time. 

Now, let's take a look at the CPU cycles stolen. We steal 1.4 CPU 
cycles for each 11ne of the object, or 480*1.4 • 672 cycles. Let's assume 
that some ltne descrtpttons are going to cross row boundaries. 51nce 
the object description 1s 6900 bytes long, it 1s 6900+4 • 1725 words 
long. There are 256 words 1n a row, so there are 1725+256 • 6. 7 rows in 
the object descrtptton. In the very worst case, it w111cross7 row 
boundaries total, resulting in 7*1.4 • 10 CPU cycles. So, in very worst 
case, the forest scene will steal a total of 672+ 10 • 682 CPU cycles total. 
Now, f1guring that with the fixed overhead of 1578 cycles (see section 
7.1.1) out of 59286 total ava11able cycles, and we have the CPU rum1ng 
with 59286-1578-682•57026 CPU cycles or at about 961 eff1ctency 
(compared to 971 Ideal efficiency). There's virtua11y no loss tn CPU 
performance attr1butab1e to this object. 

Apple II Group Conftdenttal and Prtvate Page 82 



we I first 1ntroduced the concept of complex objects t stated that 
tt was more efftctent to parUtton the forest scene tnto its color regions 
tnstead of tnto tts conceptual objects, the house and the trees. Thts comes 
from the fact that we are ustng subobject overlaps to make complex 
regions. For example, tf wanted to represent the front wan and door of the 
house without overlaps, then we'd need to specify a run for the wan to the 
left of the door, a run for the door, and a run for the wall to the right of 
the door. Using overlaps, we specify a run for the wan, and then a run for 
the door on top of the wan. We get our left wa11-door-rtght wall at the 
cost of 2 runs tnstead of 3. Similarly, with the 1o11y-pop trees, the ball 
on top makes a small concavity into the rectangle trunk. With overlaps we 
just need 1 run for the trunk and 1 run for the ball over the trunk. Without 
overlaps we need a Httle run to the left of the ball, a run for the ball, then 
a little run to the right of the ball. Thus, by partitioning this object into 
its color regions instead of its conceptual objects we save memory and 
execut ton t tme. 

Wh11e this partition criterion works well for th1s particular complex 
object, it may not work as we11 for other complex objects. You just 
have to look closely at what you want to display, and then try a few ways 
of partitioning it. Just 11ke anything else, with a little practice you can 
get to the point where you can eyeball it and immediately know how to 
deal with tt. I am confident that we can make a paint program for an 
authoring system which automatically generates reasonably optimal 
complex object partition criter1a, so Qu1ckScan users don't have to 
concern themselves overly much with this sort of dec1ston making. 

The previous examples have all used the Run tnstrucUon for 
generating NlS. If you flip back to section 5.2, you·n notice that there are 
two other run generating tnstruct1ons , Screen Run and Sequential Runs. 
Screen Run ts independent from object dependencies in that it always 
generates a run from the left edge of the screen to the right edge, 
regardless of the current absolute origin. This function plays a crucial 
role in QuickScan·s internal control functions, but for the most part is not 
very useful from the user's point of view. Sequential Runs, however, 1s 
extremely useful in complex objects where there are several adjacent 
regions of color in a Hne. In a suitable complex object 1t uses about 
half the amount of memory as an equivalent number of Run tnstrucUons , 
and it plays a central role in generating the objects tn the next sections. 



( 
722 Masks 

Runs find another appUcat1on 1n the generatton of large masks. One of 
the most common uses of masks 1s for the purpose of 1mplement1ng 
vtewports. Inside the viewport the mask btt of all pixel storage cells 
1s set to 1, thereby allowing them to be written by the forthcoming object, 
and outside the v1ewport the mask bit of all pixel storage cells 1s set 
to 0, thereby tnhtbittng them from being wrttten by the forthcoming 
object. Vtewports can be very large, in theory even larger than the entire 
screen, and 1t 1s very expensive, in RAM and 1n ttme, to generate them with 
even a I btt/ptxe1 btt-map. But, ts an ocn2> btt-map necessary? If you 
th1nk about tt, v1ewports are large contiguous areas of ·color,· the color 
being the mask bit state. They quaHfy beautlfu11y as run-class objects, 
and can be generated in O(n) with runs. 

In fact, the OuickScan automatic horizontal vtewport mechanism 
works in just thls way. If you specify a horizontal viewport for an object 
in its dispatch table entry (see sections 6.1.6 and 7.1.4), the way 
OuickScan actuaHy generates the viewport ts as follows: First, 1t 
generates a Run Screen instrucUon , clearing the mask bit of every 
pixel storage cell tn the line buffer. Second, tt generates a Run 
Instruction , using the viewport origin for its relative origin and the 
viewport limtt for its relative Hmit, setting the mask bit of every 
pixel storage ceH between the viewport origin and the viewport 
Hmit. Because of the parallel run capability, thls mechanism is 
guaranteed to take exactly 160ns to execute, regardless of the size of the 
horizontal viewport. 

Arbitrarily shaped viewports can be eas11y specified as well, and an 
example of one is given in section 7.1.8. 

There are also applications where a complex object needs a 
transparent region within it for which runs can be used to generate a 
mask. If, for example, you wanted to display a large wheel-shaped space 
statton, you might want to use runs to mask out the regions between the 
spokes of the wheel so that when you draw the space station with 
bit-maps, you won't cover up these openings. 

7 2 J Cartoons 
Representing cartoons efficiently and antmating them in real-time is 

perhaps the most exc1t1ng appHcaUon for fu11y parallel runs. Since 

Apple II Group Conftdenttal and Private Page 84 



______L.~-----~---- --

r, 
cartoon characters are made up of large, contiguous regions of color they 0 
usually meet the criteria for run-class objects, and compress readily 
from ocn2> btt-maps 1nto O(n) run-generated objects. As we can store 
these cartoons characters eff1c1ently, we can store~ frames of each 
character at once, and then, by swttchtng between these frames rapidly, 
we can get animation. In fact by storing a great deal of frames we can 
actually store enough for a number of possible animation sequences, 
thereby allowtng Interactive animation, so the user of the system can 
contro I a cartoon character 1 Ike a puppet. 

Now, these ideas are not new; people have had dreams of antmatton 
machines since the dawn of computer graphics. Indeed, you can ftnd 
scaled-down versions of these 1deas implemented currently in video game 
and home computers. These systems are just too simple and too crude to 
be interesting or very useful, and as such, they have not received much 
notice. 

Becayse of QutckScan's speed and Its fu11¥ paraJJel runs, it 1s able to 
animate several D1sney-QUalit.)' cartoon objects to real-time And, with 
reasonable data compression in the CD ROM, we can supply the data for 
such animation continuously. This section will explain how an aliased 
cartoon (i.e. one with ·jaggies·> can be displayed by QuickScan, and section 
7.3.3 will explain how an anti-aliased (I.e. smoothed) cartoon can be 
displayed 

Before we get into the actual cartoons, we need to get a better 
understanding of the Sequential Runs instruction , since it is used 
extensively in cartoon representation. The Sequenttal Runs instruction 
generates a sequence of adjacent runs, left-to-right, starting from as 
relative ortgin Csee section 5.2.5). In has certain advantages over the 
Run tnstroct1on, and certain disadvantages. Its key advantages are that 
it stores 2 runs to a 32-bit word, it provides full data format flexibility 
in wrtting to the pixel storage cells, and 1t can permit 1ow dispatch 
overhead for the next higher pr1e>rtty object. Its key disadvantages are 
that the runs are limtted to 256 pixels or less, there is the overhead of 1 
word and eons for each run sequence, and that run sequence always has an 
even number of runs (if there's an odd number needed, the last run is made 
null). Both tnstrocttons take eons per run (although SequenUal Runs has 
the additional overhead of sons per sequence), so the real issue is how 
much RAM we can save. 

Apple 11 Group Conftdent1a1 and Private Page 85 



( ..• 
/ 

The following diagram shows an object effictentty represented by 
Sequential Runs: 

0 80 160 240 320 400 480 560 640 

160 

320 

COnf 1g. Deta ( <6'4) 

Runs ( 1120) 

Sequential Runs ( 6'40) 

a.UT ( 128) 

OOT(4) 

Upper Half 
of RAM Arrtl( 
Shawn Here 

On-Screen 

Hi~RAM -
I- 38000H 

I- 30000H 

.... 28000H 
I-

20000H 
Law RAM 

• • 256 Wards ( 32 bits) 

128 Rows 

Note: RAM rrrt( proportions ere realistic: one line (-) is one NI# thick. 

The seven slanted bars (each pattern represents a solfd color) can be 
just as well represented with Run 1nstructlons as with Sequenttal Runs 
Instructions . Let's see how we'd do this tn each case. 

Apple II Group Conftdenttal and Private Page 86 



Using the Run tnstrucUon , on each Hne we'd have to spectfy a Run 
tnstruct1on for each bar. Since the first bar is slanted, the re1at1ve 
origin of the f1rst run on each 11ne ts different. Thus, we cannot put the 
f trst Run instruction tnto the f trst word and must instead waste the 
first word with a NOp instruction . W1th 7 Run instructions per ltne, 
we have 7 words per line description , and with a total of 160 lines, we 
have 7*160 • 1120 words to store this object. Its execution ttme, 
assuming minimal dispatch overhead for itself ts 320ns+ 7*80ns• 
880ns, but since the last instruction on every line is a Run instruction , 
we have to add 240ns of additional overhead to the next higher priority 
object's dispatch overhead (see section 6.2), and tt is fair to consider 
880ns+240ns • 1120ns as the total execution time. 

Using the Sequential Runs instruction , we'd have to specify just one 
Sequential Runs instruction for each Hne. Now, 1t would be to our great 
advantage tf we could make use of the first word. The problem with 
using the first word for this object ts the relative origin of the first 
run is different on every Hne due to the slant. Notice, however, that the 
command word of the Sequential Runs instruction does not contain the 
actual run data for the instruction : thts is specified in the subsequent 
data words (see section 5.2.5). Notice also, that we can specify a 
•transparent run,· a run which spans a number of pixels but is masked, as 
one of the runs in the sequence. So, utilizing this information, we can 
place the command word tn the first word with its relative origin 
set to the very leftmost point of the first slanted bar. Then, we can 
specify a transparent run on each line to make up the difference between 
that relative origin and the actual position of the left edge of the first 
slanted bar for that line (I drew a wedge in the diagram showing the area 
spamed by these transparent runs). Thus, we can get the desired image, 
yet also make use of the f1rst word. 

Since the command word for each line is contained in the f1rst 
word, we need only store the data words. Since we have 8 runs on each 
line (counting the transparent run), we need 4 data words for each line. 
There are 160 lines, so we need 4*160 • 640 words to store this object, 
only 57~ of the RAM needed to store the Run instructions . Assuming 
minimal dispatch overhead for itself, the exect1on time for each Hne of 
this object ts 320ns + 4*160ns • 960ns. Since the last instruction on 
each line ts a Sequential Runs 1nstruction with 4 data words, then we 

Apple II Group Conftdent1a1 and Private Page 87 



( 

( \ 
/ 

( '· .. 

_,/ 

know that the next higher prtortty object wH1 be dispatched wtth 
mtntmal overhead (see section 6.2), so the 960ns ts truly the total 
executton ttme. Thus, by using Sequential Runs, we have slightly shorter 
execution time than wlth the Run tnstruct1on . 

Note that despite thts particular example, many run-class objects 
are represented more efftctently by using Run instructions than by using 
Sequential Runs tnstruct1ons . The forest scene example of section 7.2.1 
ts a case tn potnt. If you try to use Sequential Runs to represent thts 
object, you find that the tndtvtdual regions of color are for the most part 
separated from each other, so you end up wasttng one transparent run 
getttng from one color region to the next. So, effectively, you spend 2 runs 
to get I displayed run, and you lose the memory savings over the Run 
tnstruct1on . Also, some of the color regions are longer than 256 pixels 
(like subobject A), so we need up to 4 runs one after anot~er just to span 
the whole region. Needless to say, Sequential Runs are not suitable for 
representing this object. 

Okay, let's consider an example of a cartoon object. On the following 
page you'll find a frame from the Disney feature, Dumbo. In this example, 
I represent just Dumbo, himself, less the mouse in his hat. The 
rectangular outline I've drawn around Dumbo is the smallest rectangle we 
can make around the object, and is the region necessary for a comparable 
bit-map representation. 

You'll notice that, unlike the other run-class objects we've 
considered previoiusly, Dumbo is composed of more than just large regions 
of color. He also has black lines which serve to both border these regions 
and provide additional details. We could represent these black Jtnes by 
very short runs if we'd like, but it ts more efficient 1n this case to break 
Dumbo tnto 2 subobjects , a color region subobject, and a black llnes 
subobject, with the black lines overlapping the color regions. Then, we 
can efficiently represent the color regions with Sequential Runs, and 
represent the black Hnes efficiently with 1 bit/pixel bit-map (using 
embedded masks - see section 7.1.9). 

If we fo11ow this approach, we end up with about 750 words for the 
color region subobject"s object description and about 1680 words for 

Apple II Group Conftdent1a1 and Prtvate Page 88 



... 

A Frame from Disney's Dumbo. 

Apple II Group Conf tdentta1 and Private Page 69 



( the btt-map subobject's for a total of around 2430 words, or 9720 bytes. 
If we were Instead to spectfy Dumbo wtth a large 4 bits/pixel bit-map, he 
would requtre 13230 words, or some 52.9K bytes. So, even with a 
deta11ed, Disney-qualtty object, we are ustng only 181 of the memory we 
need with a bit-map. See the diagram and memory map below: 

H~RAM 
Conf ig. Oeta ( <64) 

DumboBtt-Mep( 13230) 38000H 

30000H 
128 Rows 

Dumbo Complex ( 2430) 

a..UT ( 128) 28000H 
OOT(4) 

20000H 
Upper Half LowRN1 

of'RN1Arrtlf • ... 
Shown Here 256 Words ( 32 bits) 

Note: RAM trrrt{ proportions 1re realistic: one line (-) is one NNt thick. 

There are few charactertsttcs about the Dumbo image worthy of note. 

Apple II Group Conf1dent1a1 and Pr1vate Page 90 



Ftrst, th1s object 1s effect1ve1y masked tn all regions surrounding Dumbo. 
That ts to say, tf we had a object or 1ower prtor1ty than Dumbo, then we'd 
be able to see thts object tn all of the 11ttle crevices around Dumbo (e.g. 
between h1s ears and his head, between h1s legs), just as we would expect 
tr we had built a custom mask for exactly Dumbo's shape. Second, Dumbo 
ts not ant1-aliased, or rather h1s edges and ltnes are all going to be jaggy. 
Since he 1s so large 1n th1s particular image (he takes up 341 of the whole 
On-Screen area), these jaggtes won't be all that noticeable, but 
nonetheless, 1t won't be quite Disney quality. This 1ssue will be addressed 
in section 7.3.3. 

Animat1on of Dumbo can be accomplished by storing the object 
descriptions for hts various animation states in different places in R.N1 
and changing the start address parameter in the dispatch table entry 
for the Dumbo object to po1nt to the approriate animation state for each 
new frame of animation The resu1t1ng effect 1s we'll see Dumbo smoothly 
flapping his ears and soaring around, and we'll be appropriately seeing the 
background around Dumbo's exact outline at all times. If this sounds like 
no big deal since that is what you'd expect to see, bear in mind that 
sustaining such animation in real-time with a smoothly shaped object this 
large cannot be done by any but the most expensive graphics display 
systems available. Wtth autckScan tt's child's play. 

If we wanted to animate Dumbo with very good quality animation, 
we'd need to sustain a rate of about 15 frames/sec. Assuming that each 
frame has roughly the same amount of data, then we wou1d need 9360* 15 • 
140400 bytes of data per second. Even if we appHed no additional 
compression of.Dumbo's representation than what we have already done 
with the run and bit-map subobjects (and we certainly could compress tt 
significantly more), the CD ROM could sustain this data rate with enough 
t1me left over for some simple branching. So Dumbo's flying around with 
excellent quality animation under a ch1ld's interactive control can be a 
reality with QutckScan 

And, if we did compress cartoon character representations further on 
the CD ROM, and then expanded them back upon reading them off, we could 
have several independent objects being animated in real time 
simultaneously. We'd Implement this by loading up a few frames of one 
object at once, then jumping to another track on the CD ROM and loading up 
a few frames of another object, jumping and loading a few frames of 

Apple II Group Conf1denUa1 and Private Page 91 



( 

' (· .. ·.·. I '\ 

__ ,/ 

another object, and so on unt11 we'd loaded frames for all the objects. 
Then, we'd jump back to the first object to load 1ts next few frames, and 
continue through the cycle again. Meanwhile, we'd sequence through the 
frames that had been loaded by changing the start address of each object 
at each animation state to point to the appropriate frame, and the objects 
would animate smoothly, each independent of the others. 

What's extraordinary about th1s capability is that each object, with1n 
Hmtts, is in its own time continuum. What I mean by th1s, is the various 
objects on the screen do not have to be synchronized with each other tn 
time. So, if Dumbo ts flapping his ears to fly, and there ts Mickey Mouse on 
the ground waving his hand, the two actions of flapping and waving don't 
have to be in sync. In fact, if Mjckey wanted to stop waving his hand, and 
walk away, he could do so without Dumbo's motion being affected. The 
possible applications for multi-object interactive animation are just 
amazing. 

You may be wondering where I dug up the estimates for the amount of 
RN1 needed to represent Dumbo. My method was to xerox the cartoon 
image onto a piece of 1 ;a· square graph paper. Then I defined each square 
of the graph paper to be a 1 O by 1 O pixe 1 block, and proceeded to count the 
number of runs and the number of words of bit-map needed to render one· 
line out of every 1 O lines of the image with an accuracy of 1 o pixels 
horizontally, being conservative in any rounding off. I then multiplied my 
results times 10, working from the assumption that the other 9 ltnes tn 
each 1 Oline group required roughly the same representation as the Hne I 
measured. I am confident that the precise memory requirements wi11 be 
somewhat less than my estimates, because not being able to work with 
each line individually, I had to take a detan occurring tn one line of the 
object and pay for tts representation tn 10 lines to be sure it was 
accoooted for. 

I won't belabor you with the detans of the breakdown of the object 
description , but the worst case ltne description has 8 sequential runs, 
and 6 words of 1 bit/pixel bit-map. The Sequential Runs 1nstructlon 1s 
in the first word, as in the previous example, so we have 80ns for each 
run, 80ns for the Bit Map instruction, and sons for each bit-map data 
word, for a total of 8*80ns•80ns•6*8ons • 1200ns. Assuming m1ntmal 
dispatch overhead , we have 1200ns• 320ns • 1520ns worst case 
execution time (since the line description ends with 6 1 bit/pixel 

Apple II Group Confidential and Prtvate Page 92 



b1t-map data words there 1s no add1t1ona1 d1spatch overhead for the 
next h1gher priority object). Out of the available 32µsec, Dumbo takes up 
4.751. The CPU overhead ts mtnima1. So, we could very wen have 20 
cartoon characters of Dumbo's stze and complex1ty flytng around on the 
screen at once. If you flip back a couple of pages and take another Jook at 
just how big Dumbo ts, nottce that no one has ever before seen such a 
capabtJtty tn reaJ-time computer graphics. It's only possible because of 
the fu11y parallel runs. I really thtnk that kids (of all ages) are going to go 
wtld. 

7 2 4 .J=ll... Polygon Model tog 
Fully parallel runs are extremely useful tn eff1c1ent1y representing 

fi11ed polygon regions. Since a filled polygon is a single color region, tt ts 
the quintessential run-class object and can be readily and 
detenninisUca11y converted into a set of runs. In fact, there is a large and 
useful class of polygons which can be represented by a single run for each 
line. And, within that set are the convex polygons (polygons for which no 2 
interior points exist with a segment between them that crosses into the 
exterior) which in any orientation can be represented with exactly one run · 
for each line of the polygon's height. Examples of convex and non-convex 
polygons are shown below. 

Convex Polygons 

Non-convex Polygons 
(with segment dtsprovtng convexity) 

Apple 11 Group Confidential and Private Page 93 

"----~ / 



( 
The convex polygon subset ts of great Interest 1n 3-0 modeling 

app11catlons. Gtven the vertices of a convex polygon, we can compute the 
11nes between these vertices that form the per1meter of the polygon. 
Then, by seaming the polygon from top to bottom, Jtne-by-Hne, we can 
easily generate a run for each 11ne extendtng from the leftmost perimeter 
of the polygon to the rightmost perimeter. (Since the polygon ts convex, 
we know that one run for each Hne wtll be necessary and sufftctent.) The 
runs for all of the l1nes, once submitted to QutckScan as an object 
descrtptton , wnl generate an tmage of the convex polygon specified by 
the vertices. This process ts known as scan-converting and diagram of 
the process ts shown below: 

• 

• • 

• 
Start with Vertices Compute L tnes of Perimeter 

Compute a Run for Each L tne 
From the Left Edge to the Right Edge 

Scan-converting a Convex Polygon 

If now we perform 3-0 coordinate transformations Ctranslatton, 
scaHng, rotation, or perspective) on these vertices, we will compute a 
new set of vertices reflecUng the transformed position of the polygon. By 
scan-converting these verUces we wHl deterministically generate a new 
set of runs descr1btng the transformed polygon, and QutckScan will display 
an image of the transformed polygon. 

A polyhedron ts a soHd object wh1ch has a polygon for each face. 

Apple II Group Conf tdent1a1 and Private Page 94 



Examples of polyhedra are cubes, boxes, and pyramtds, but they can, of 
course, be very complex. If the faces of a polyhedron are convex, they we 
can easily generate the polyhedron from the un1on of convex polygons. In 
effect, the polyhedron ts a complex object, and each polygon face 1s a 
subobject. A rectangular solid polyhedron composed wtth 6 subobjects 
for 1ts faces ts shown below w1th a pattern 1dent1fy1ng each v1s1ble face 
(the hidden ltnes showing through would not be vts1bJe tn the real display): 
I 

Subobject 0 

Subabject 1 

On-5c:reen 

H1~RAM 
Conf ig. Data ( <64) r--

t- 38000H 

Complex Object ( 800) 128 Ra«s 
30000H 

a.UT ( 128) t- 28000H 
001(24) I-

20000H 

Upper H81f 
LCM RAM 

of RAM Arrrt{ • ~ 

Shawn Here 256 Words ( 32 bits) 

Note: RAM S'rflf proportions are realistic: one line (-) is one""' thick. 

Apple 11 Group Conf1dent1al and Pr1vate Page 95 



To generate thts polyhedron complex object, each of the polygon 
subobjects was scan-converted and assigned a subpriortty based on tts 
z-coord1nate (z ts perpendicular to th1s page of paper). Then, the 
tndtv1dual subobject's object descrtpttons were tnterleaved (just as 
we dtd tn section 7.2.1 ), and that was it. 

If we wish to apply a 3-D transformation to thts polyhedron we just 
apply the transf ormat1on to the vertices of each of subobjects , 
scan-convert them, and tnterleave them again. The only extra work we 
have to do beyond what we had to do to transform the polygons Individually 
is to determine the correct subprtortt1es . Without going into the 
detans, this means at worst one more vertex transformation per polygon 
and a sort of the computed z-coordinates. 

If this seems simple and straightforward, then you're right. It ts. So 
why don't we see more 3-D polygon graphics displayed on personal 
computers and video games? Well, for one thing, computing a great many 
vertices can take a fair amount of time, and as objects get complex, 
computers without special hardware slow to a crawl. But, certainly 
simple objects like cubes and pyramids don't require much computational 
effort. Why don't we see cubes spinning around in space for neat effects in 
video games? Ah, now we're getting to the crux of the problem. It's not 
11m1ts in computational speed which is the first roadblock. It's limits in 
display speed - large objects just take too long to draw to the screen. 

We dQ see examples of real-time 3-D graphics. The Battlezone and 
Star Wars video games are two excellent 3-0 games, but they have no solid 
objects: every polygon is represented with out11nes. Although they can do 
the coordinate transformations in real-time, they can't update the frame 
buffer fast enough. I have a demo disk for the Macintosh (come and see me 
tf you want a copy) which has a 3-0 image of a Macintosh Computer 
tumbling in space. The Mac has no trouble keeping up the coordinate 
transformations in real-time, and since it is just drawing the outlines of 
the shape, 1t has no trouble keeping up with the display update. Pacific 
Data Images told us that when they wanted to run through the motion of a 
3-D scene 1n real-time, they just generated the outlines of the objects. 
They found themselves in the same situation as the Atari video game 
programmer and the Macintosh programmer: just can't update the display 
of those soHd polygons fast enough. 

Apple 11 Group Conf1dentta1 and Prtvate Page 96 



We11, fortunately for us, wtth OuickScan we don't have to update the 
d1splay; tt does 1t for us. And, 1t can keep up because 1t generates runs 
fully 1n parallel. In fact, 1t takes just as long to generate the soHd faced 
polyhedron above as 1t takes to display the out11ned polyhedron shown 
below (except for the subpriority sort): 

/ 7 

~ v 
7 

Border of 1 BtVPixel 
Btt-Mep 

Config. Data (<64) 

Btt-Mep (2200) 

a.UT ( 128) 
OOT('4) 

Upper Helf 
ofRAMN-Nlf 
Shown Here 

On-Screen 

Hicja RAM 
t--

.... 38000H 

.... 30000H 

I- 28000H 
I-

20000H 
low RAM 

4 .. 
256 Words ( 32 bits) 

128 Rows 

Note: RAM trNtf proportions tre rmlist1c: one line ( - ) is one row thick. 

Instead of drawing a left and r1ght pixel for the Hnes on each edge of 

Apple II Group Conftdent1a1 and Private Page 97 



(' 
the polygons for th1s dtagram·s d1splay, we just spectfted a run with a left 
and rtght ltmlt for the first dtagram·s display. In fact, the run ts really 
easier than the outline because we don't have to worry about setting one 
btt in the middle of a 32-btt word for the one pixel of the Jtne. 

We already know that we have the computational muscle to do the 
coordinate transforms and outl1ne drawtng (seriously, I'd love to show you 
the Mac dtsk), so with QuickScan we can definitely manipulate solid 3-D 
polygons and polyhedra in rea1-t1me Throw in a floating potnt 
co-processor, and we'll really crutse! 

One of the beautiful things about these fully para11e1 runs is that each 
run takes the same amount of time to draw, 80ns, regardless of how long 
1t ts. So, no matter how btg the polygons get (1f for example, we get very 
close to them), 1t will take the same amount of ttme to display them: 
80ns/polygon. We have a fixed and determjnjstic execution time for each 
polygon with OuickScan. Period. The horrendous problem of determining 
what you have time to display after the polygons have been transformed 
with which you have to wrestle in any other graphics system environment, · 
is trivial with OuickScan. 

The other nice th1ng is that the hidden surfaces are automatically 
removed by the prioritization of the subobjects . You don't have to be the 
least bit concerned about whlch part of which polygon ts obscured and 
which isn't. You can forget about those backfactng algorlthms that try to 
reduce the amount of updating required by identifying completely hidden 
polygons. It doesn't matter anymore, OuickScan takes care of it all. 

But, of course there has to be limit of how many polygons OuickScan 
can put up. This limit is of course dependent on dtspatch overhead , row 
crossings. and other factors, but to get a rough idea, we just need to 
divide the time to execute a Run instruction , aons, into the total ltne 
time 32p.sec: 32p.sec+80ns • 400. So, 1f you wanted to, you could put up 
an object made up of almost 400 filled convex polygons, regardless of 
their size or shape. And, if you got the computational power (or special 
hardware - see Appendix B) to transform the vertices, you could 
manipulate this gargantuan object tn real-time. Pretty awesome. 

Now, it would be nice if we could apply a lighting model and shade the 
faces of the polyhedra rea11sttca11y. I'll show you how in section 7.3.2.0 

Apple 11 Group Conf1denUa1 and Private Page 98 



A. 1 . Command Word Format 
*SOP* 3/4/85 

( · ·,it MaRJ~P-.l 
.31 16 15 8 7 0 

O O O Lformet ( 5) r _ortg;n ( 10) dw_count ( 1 0) 

end.Jine e~# 
(1) ~· 1'1 

I 

RunCRun1 
3t 16 15 8 7 0 

datL7 (7)11 r...or1g1n(10) r_limit ( 10) 

0 .~ ~'? end.Jin• <Llit' n 
~· J./' ( 1) w...mode ) 

~~ <i2> 
f 

Seguential Runs (SRuns >. 
31 24 23 16 15 8 7 0 

O O 1 Lf or mat ( 5) r -Origin ( 10) dw_count ( 1 O) 

end.Jine etd• 
( 1) w....mode ( ) 

c7) 
(\ \ 
· l:ootext Switch <c;Switch l 
31 24 23 8 7 

' 0 1 0 a...ortgtn ( 12) c_worct_ 12 ( 12) 

\ 

0 

0 

data....16 ( 16) 



A .2. Data Word Format *SGP* 3/4/85 

Bit Map Data Word Fonnats 

1 6it/Pixe1 
31 24 23 16 15 ( 

31 30 29 28 27 26 25 24 23 22 21 20 19 t 8 17 16 15 14 13 12 11 10 9 6 5 4 3 2 1 ( 

32 1-Bit Pfxels 
2 6its/Pixe l 

31 24123 81611\ 48173 ( 

I 15 I 14 I 13 10 9 I I 6 5 I 2 I 1 I 0 12 11 

16 2-Bit Pixels 
4 Bits/Pixel 

31 24123 16r5 817 c 

I 7 6 5 4 3 2 I . 0 

8 4-Bit Pixels 
3 Bits/Pixel 

31 24123 16r5 817 r 
\. 

I 3 2 0 

4 8-Bit Pixels 
16 Bits/Pfxel 

31 24123 16,15 817 ( 

I 1 0 

2 16-Bit Pfxels 

~uential Runs Data Word Format 

31 24 23 16 15 8 7 0 

dat8-8 (8) run length ( 8) data...8 (8) run length ( 8) 

second run 2 Short Runs 

Apple II Group Confidential and Private 



{', 

Object 63 
Object 62 

Object 2 
Object 1 
Object O 

WordO 
31 

A .3. Dispatch Table Word Format 

Dispatch Table Format *SGP* 3/4/85 

High RAM 

Word O Word 1 Word 2 Word 3 
Word 0 Word 1 Word 2 Word 3 i 

Object Dispatch Table 
aoser to Foreground 

I I I 
64 Objects = 1 RAM Row = 1 K Bytes 

Word O Word 1 Word 2 Word 3 Closer to Background 
Word O Word 1 Word 2 Word 3 
Word O Word 1 Word 2 Word 3 i 

Low RAM 

Dispatch Table Entry Format 

24 23 16 15 8 7 

absolute origin ( 12) start address ( 20) 

Word 1 
e...pol ity 

0 

31 24 23 

bus...access ) 
16 \5 (1) 8 7 c 

start ltne (9) 

Word2 
st 24 23 

viewport origin ( 10) 

Word 3. 
; 1 24123 

display mode 

16 15 

v1ewport 11m1t ( 10) 

( 1) line mode 
(t) 

lV\strvc.~of\ 

Apple 11 Group Confidentia1 and Private 

0 


