AEGIS OUTLINE

PHILOSOPHY of AEGIS

Integrated System
Object orientation
Managers as Model for Data Abstraction

OVERVIEW of AEGIS CONCEPTS

Processes
Ob]ect—Based File System

- Naming |
Mapping / Address Space Management
Memory Management
Networking
Protection

OBJECTS

‘Storage and Disk Structures
pvol, Ivol, bat, vtoc
important bootstrapping information
in the lv_label
- UIDs, Attributes, Segmentatlon Locatmg
Locking (local)

NAMING

Directories
/, 1/, ‘Node_Data, WD, ND
Links (hard and soft) |

ACCESSING OBJECTS

Address Spaces (asids, global)
Mapping Objects (mst) |

- Active Objects (ast)
Paging/Purifier

NETWORK FILE SYSTEM

Remote vs. Local

Paging Server, Remote File Server
Asknode

INTERPROCESS COMMUNICATION

The Ring

Packets and Sockets

Major Clients of Sockets
- MBX

SECURITY

Acls, Registry, Protected Subsystems
Login, SIDs

PROCESS MANAGEMENT (Supervisor Mode)

Process Switching (dispatching)
- Interrupt Handling |
- Processor Scheduling

Synchronization (eventcounts)

Mutual Exclusion

Special CPU B Handling

O

Process Creation and Deletion
Clocks and Time—-Driven Events

* PROCESS MANAGEMENT (User Mode)

Program Management

Parsing | |

Program Levels, Procceses and Fork
Mapped Segment Manager (ms)
Storage Allocator (rws)

The Loader, KGT

Libraries; Global and Private

PROCESS MANAGEMENT

‘(Error and Fault Handling)

Kinds of Faults |
Supervisor Mode Fault Handling/Generation
User Mode Fault Generation
Fault Handlers

Dynamic Cleanup Handlers
Static Cleanup Handlers
Mark/Release Handlers

STREAMS

The Stream Table
Opening Streams
The Generic Switch Call

Some Special Switch Calls

The D_File Manager
Other Managers

FROM POWER-UP TO LOGIN
| Physical / Virtual Address Space Layout

MD |
SIO vs. Display KBD
Service / Normal
Boot Device Selection
Commands : Internal vs. External

~ (D,LO,EX)
SYSBOOT / NETBOOT

Aegis initialization | |
required directories and files
creating the first level 2 process

THE BOOT SHELL

ENV / Libraries , |
the basic idea (SH DM, SPM)
firmware (PEB and COLOR)
global libraries
startup—files (wWhere and why)

DISKLESS NODES
NETWORK SERVERS

SPM /CRP
SIOLOGIN

SF HELPER
ALARM SERVER

C,

THE APPLICATION LEVEL

PST

NETSTAT

HPC

NETLOG

DB

FST

TB
COMPILER/BINDER

GPIO

MULTIBUS Limits
Device Driver Considerations

R Philosophy & Overview
o of AEGIS

Philosphy: 3 perspectives
market |
hardware technology
system architecture technology

Overview: textbook OS taxonomy
processor management
address space management

. - memory management
O file system
network |
I/O device management

Apollo Computer

- The premier supplier of workstations

for the technical professional

Maximize the productivity of the technical
professnonal via:

1. ability to run large, mainframe class application
programs tailored to his profession

2, high user <—> computer bandwidth

3. network for cooperation and sharing with others

~ Implications:

1. a. Fast, 32 bit CPU
b. Virtual memory

2. a. Bit-mapped display

b. Window-oriented user environment

3. a. Distributed system
b. Net—wide access to files

AEGISis the operating system that
resulted to support these objectives.

Hardware Technology

1. VLSI CPU’s
2. 64k RAM
3. Winchester disks

Pioneered by the Alto at Xerox PARC, started
to see other systems: »

Nu Machine (MIT)

SUN Machine (Stanford)

This new, cheaper computing power was changing
the focus on how computing was done....

OF

MAINFRAME

CAPABILITY

PRODUCTIVITY

OPERATIONS

LOCAL AREA

PRODUCTIVITY
.OF

PEOPLE

DEDICATED

COMPUTING

INTERACTIVE

GRAPHICS

NETWORKS

- DOMAIN

System Architecture Technology

Operating systems 2 Dok
Multics (MIT) 6.vie stumpt
original implementation
restructuring studies
Hydra, Medusa (CMU)
System/38 (IBM) |

Distributed syStems
Pilot (Xerox PARC)
WFS (Xerox PARC)

Languages
Mesa (Xerox PARC)
- CLU (MIT)
~ Alphard (CMU)
Smalltalk (Xerox PARC)
Ada (DoD)

Key attributes of AEGIS |

AEGIS is a

— distributed

— Integrated

— local area network
— object-oriented
— personal workstation

O operatihg system.

Distributed Systems

‘Advantages:
robustness, reliability
when one node fails, system still runs
incremental expansion of computing power
just keep on adding nodes |
potential for higher performance
run computations in parallel

Problems:
‘ partial failures
‘ O if you need the node that failed...
\ “richer” set of errors |
not just “up” or “down”
replication needed for reliability
hard to do automatically
parallelism needs to be explicitly programmed
no automatic decomposition today
- sharing & cooperation N
can be hard to get back to timesharing level

~ Where does Aegis fit?

Lots of different kinds of distributed systems.

- VAXcluster: a distributed multi~-computer
— meant to act exactly like one big VAX
- — good sharing & cooperation
— all the problems of timesharing

— ARPAnet: communicating, autonomous hosts
— seperately owned and administered
| — limited sharing & cooperation
Q — remote login, file transfer, mail

Aegis falls somewhere in between.

Structural Implications

- distributed systems are naturally structured
differently than centralized ones

— Aegis was built from the ground up to be
distributed

“Local access is the special case” — PHL
“..but it still has to be fast”’ - — P

-10 -

Contrast to Post-Hoc
Distributed Systems

Application

Remote y
0S

Y Local
(013

A complete remote OS is layered on top of a
complete local OS; applications determine which is
being requested at each use.

- 11 -

Aegis Structure |

In Aegis, each component has a local and remote

part within it.

Application

Remote MBX
Local MBX

Remote Name
Local Name

Remote File
Local File

Remote Paging
Local Paging

-12 -

User
Supervisor
7 Server | : To Data r;m —
%@(@:_’;J, ;
s\\\fa\\
‘Pageable
Wired,
: Location
E Dependent
v_ l L 4

NS ES AST)JJJJJ*

| - Geive sesment 10| (77722777
Q pJ NETWORK L

-t S . Sur.Jur o g fur g g w4 E

2323 PNIAP22222 N Datagram |
ggJJﬂMJ‘i‘)Jjjﬁ :‘\\;\\Eﬁé\rz\?‘\\\K\—» PG | j

2
2 Page MAP) 555 SAA
32320300000)

e To Net Hardware
. Memory
P ok o o
o '}"fe-*-*-
Legend:
. V |OC o : Local OSs

Volume Table

of Contents -

| BAT

:) Biock Aliocation §
Table ‘

Cached Oss[;”

Location l'ndependent
[0

' Remote OSS ==

Single Level Store[F E E

‘Lock Manager[::ii

- Disk Hardware » Name Server[—_—]

O ~ File System Structure

Aegis Structure II:
Net-Wide Caching

Another example of “ground up” distribution:

Network-wide caching of objects would probably

not have been feasible without having desngned it
in from the start. |

The file locking operations were specifically
designed to allow cache control in addition to
concurrency control.

- 14 -

Personal Workstation Implications'

With a 'network of personal workstations:

— (potentially) can share what’s important
— information, programs
— expensive peripherals

— don’t share what’s not important
— CPU cycles: they're cheap

— you can decide how to use your node
— autonomy

Potential advantages:

— cooperation & sharing
— use network
— dedicated, controllable performance
— you allocate your node
— high user <—> computer bandwidth
— CPU is close to the display |
— highly interactive user environment
— simpler OS if only run one user

- 15 -

Simpler 0S

Protection
— all computation on a node is on behalf
of a single person
— don’t worry about maliciousness
— just worry about accidents

Fairness of resource allocation
- just do what the owner says

Accounting
—isin terms of the whole node

Structure
— can put software in user space
— easier to modify, debug, replace

Openness

— more facilities can be made accessible
if needn’t worry about above items

- 16 -

Problems with Personal
Workstation Model

- How to manage tension between autonomy and

cooperation.

— autonomy means independence
— cooperation means dependence

Solution: make cooperation voluntary; but how"

— need mechanisms
— usually, cooperation & autonomy go along
machine boundaries
— on same machine: cooperate
— on different machine: autonomy
— hot good enough for personal workstations

-17 -

Problems I

How to provide traditional system services:
- - identifying users to the system
~ printing |
- — backup
-~ mail
— storage of community information
— at project, department, organization and
corporate levels
— data integrity
— data privacy |
— communication gateways
- background computation (batch)

Partial solution: use ‘“servers” to provide them
— dedicated nodes running trusted applications

- 18 -

Cooperatien VS. Autonomy
Why are both needed?

Cooperation:
-~ heed to cooperate wnth colleagues to get
your job done »
— personal workstation didn’t change that!

Autonomy:
— need to control resources of own node
— in order to get controllable response
- need to control sharing
— to protect privacy of data
- — need to manage own data files
— to guarantee data integrity
— heed to operate when network is down
— need enough independence to do so

- 19 -

O _

Server Issues

Protection: |
- all programs on same server node trust each
other

-~ Fairness of resource allocation:

— they also trust each other to be reasonable
in their resource use |

Accountlng

~ is up to each server to do in an application
specific way

-20-

Local Area Network Implications

Local area networks are sufficiently different from

other kinds of networks that different techniques
heed to be used to take advantage of them.

BandW|dth -
~ typical networks are orders of magmtude
slower than the memory bus |
— LAN’s are faster: ours has 2/3 the bandwidth
of the memory bus of a DN400.

Error rates: |
— typical network error rates: 10**—4 or so.
— LAN error rates much lower

SO:
— minimize CPU time to “get on and off the
wire”
don’t spend it trying to optimally utilize
network bandwidth -
— don’t worry as much about errors
use simple retransmission techniques

—21-

'Prob|em Oriented Protocols

‘Don’t use the traditional OSI “layered” architecture

— make a very cheap datagram service.

— don’t use virtual circuits, sessions,
presentation layer. |

— take advantage of operation semantics to
cheaply do what those layers normally do.

— use “end-to-end” argument. oveid stkacuicigenents.
Examples: | |
— idempotent operations

— transaction IDs |
- “natural” State clon't S()u?a“j etkaye data, |

-22 -

O

P-O-P Examples

Idempotent operations

— has same effect if done twice in a row as /f
done once.
— example: read page N of a f/le

— use simple two message protocol
— RR: request/response
— retransmit on time out
— duplicate requests no problem

— saves an acknowledge message (RRA)

Transaction IDs
— eliminate duplicate replies
— tag each request with a unique number
— discard replies with duplicate TIDs

‘Natural state

— for non—-idempotent operations

— save request TID in a database that was

- heeded anyway |

— discard requests with duplicate TIDs; resend
old response |

— example: lock database

- 23 -

Integrated Distributed System

‘System provided, user selectable mechanisms
that:

— Preserve autonomy.
= Permit cooperation & sharing (when
desired). | o

Provide the user with a unified system:
-~ hame files, not hosts
— system wide user identification

Integrated Implications

Network wide file system:
~ to make sharing easy

Network transparency:
~ location transparency:
- all resources accessed |n same way,
regardless of their location
— easier software development
— Supports incremental changes to system
— easier to realize increased reliability
— simpler user model
— name transparency:

U CM.‘VIO\{] - ‘(ov\
~ name doesn’t imply location ot S
N

— allows relocation, substitution et
Control mechanisms:

— access control
— hetwork wide user identification

- 25 —

“Integrated Implications I

O

Reliability crlterlon
— must always be able to access information on
own node, even if network down
— if two nodes are up and want to cooperate,
then no single failure will stop them
— s0, third parties must be replicated

Functional integration: |
— each node has a complete set of OS facmtles
— SO can run when network down
— also for performance reasons -

- 26 -

DISK

CPU DISPLAY
%g%" KEYBOARD FULL USER
WORKSTATION
CPU
MEM COMPUTATION or
NET
1/0 SERVER
CPU
MEM FILE
NET . SERVER
CPU DISPLAY
- MEM |
NED KEYBOARD DISKLESS
USER
NODE
CPU DISPLAY
MEM KEYBOARD
NET

MODULAR WORKSTATION DESIGN

aupncmons

Object Orientation

| Object:

~ user level: some sealed data plus operations
- — OS level: a storage container for uninter—
preted data, plus a type tag that
— identifies the object’s manager

— tells how to interpret the data. et
- pn‘\j”j e

DY K
A ‘.
l\/\lﬂ bﬂ

Managers:
— each module is manager of some object.
— object is some meaningful (OS) entity
— disk block, process, file, directory, etc.
— manager handies all details of “its” objects
— interface to manager gives all permissable
- operations; completely defines object to
clients
— clients only manlpulate object through
the interface
~ manager is solely responsible for the
integrity of its objects |
— knowledge of representation (data
structures) confined to manager
— managers correctness depends only on
itself, managers of components

-27 -

o Objects I
O Why°
| — understandable semantics for modules;
a principle for OS decomposition into

~ modules e

— managers are orthogonal and independent
— can isolate bugs to one manager
— can find manager to change to make an

enhancement

o
.
O

- S0:

Protection

Need access control to allow you to choose with
whom to share and cooperate.

Can’t protect data on a node from the node owner:
— has physical access |

— allow each node to protect own data
against access from the network

-~ don’t try to protect data from deliberate
efforts of node owner

— try to make accidents improbable

-29 —

—

Aegis Interface

Mivpsee s

Single Level Store MST

Object Storage System FILE

LowLevel PC MSG
Naming Server NAME

Processes | PROC2, EC2

Faults FAULT, M~

Display ~~ COLOR, SMD, SMDU

10 MT, LPR, PBU,,

DISK, VOLX, TERM
Protection ACL

\\ V.

~Info | AS BAT ASKNODE,

PROC1, VTOC, CAL, NETWORK,
=08, PEB, TPAD, NETLOG,
GET _BUILD_TIME, OSINFO

Misc TIME, UID, VFMT

UID_LIST

Processes

independent, asynchronously exe'cuting’

33 total ¥ processes wsered for 05

- one is the Display Manager (<’
Shell windows are processes, edit pad

~ windows are not

Serarate address space per process

asid

* for protection »
* because the address space is too
- small (less than 10 MB min.)

Address Space

* 256 (or 16) Megabyte
* objects mapped into it
* R/W with ordinary instructions

Object Types
- * programs, libraries, data
Aegis is in each address space

O

Processes 2

— Synchronization and Communication

* Shared Objects (communication)

same object in AS of > 1 proc.
both observe changes
restricted to 1 machine

* Eventcounts (synchronization)

~ processes can wait on an EC
processes can “advance” EC
to wake up waiters
also restricted to 1 machine

*IPC (MBX)
~ both comm. and synch.
sends data, wakes up receiver
network wide! | ‘
“local, too; exactly the same
semantics (but more efficient)

PrOcesses 3

Dispatching Scheduling
~ dynamic (recalculates)
— priority based

- — priority is inversely proportional to the

amount of CPU time used
* attempts to give interactivity priority
* paging is currently a problem

- — Priority boost

* delta added to the priority
computed above

* Dispaly Manager gets it *
* It is not user settable
— Process Layering

PM
PROC2
PROCH1

PROC1 SR

| P
-~ Synchronlzed with EC1 # ¥
~ — A finite number of them (32)

— Wired state

- State = registers
PSW
ASID
locks

— Runs only in global space
— Needed to implement Virtual Memory
¥ purifier
“paging server
* file server

Vv Somde addvess space,
0 Processes. neecico‘ to | WP&‘M% Kernel < use Seme clate bascs

2 MmASCGI

PROC2

O ,
- Synchronized with EC2
— Runs in its own address space
— Can use Virtual Mem‘ory
— Potentially unwired state
Q | - * eventually bind and unbind

¥ copies state in VM

ot :&V
ML
— Mutex Lock
— Uses EC1
- Deadlock detection
O

V/'ir'\ual addvess 5{)“66

) ' 256

| o 'SUPERVISOR ot

S GLOBAL eyt .

SUPERVISOR PRIVATE /i i
2 -)
~ USER GLOBAL .

0 (AGD

16

14

SUPERVISOR GLOBAL .
/ and /ICOM directories /_QSV‘S i

1

SUPERVISOR PRIVATE

‘ D)
WD and ND directories %7, 1 o ¢

256

USER PRIVATE
', ADDRESS SPACE
' |

MAPPED OBJECTS
RWS

SHELL

DM_MBX

GUARD gdﬁmn"L (saphum Pm-ﬂvﬁm: guacd fralt) ‘

STACK S"h“"l3 61‘4 oS g S'ejp’\-(fv\'!"s) 8\(6\‘55 ’l,'\ci(j\(fwliklj

GUARD

' STATIC DATA for GLOBAL LIBRARIES

GUARD

|USER GLOBAL o

GLOBAL LIBRARIES and DATA

puch Seyment T 32k

‘ . (
Gupe e gloet

VA Range Oby Start Pathname dont 5
8000 - FFFF 0 /sys/node data/global data
10000 - iFFFF 0 /lib/pmlib
20000 -~ 37FFF 0 /lib/syslib. 460
38000 - 3FFFF - 0 /1ib/vfmt_streams
40000 - 47FFF 8000 /sys/node_ data/global data
48000 - &7FFF -0 /lib/streams '
68000 - 7FFFF . 0 /lib/error .
80000 - 9FFFF ‘0 /lib/swtlib
AQOODO - A7FFF 0] /lib/pbulib
ABOOO - AFFFF 10000 /sys/node_ data/global data
BOOOO - BFFFF 0 /1lib/ftnlib
CO000 - E7FFF 0o /lib/gprlib
- EBOOO - FFFFF 0 /1lib/clib .
100000 - 117FFF 0 /1ib/shlib
118000 - 11FFFF 0 /lib/auxlib :
120000 - 127FFF 18000 /sys/node_ data/global data
128000 - 137FFF 0 /lib/tfp
138000 - 13FFFF 0 /1ib/x251ib
140000 - 147FFF 20000 /sys/node_data/global_data
148000 - 14FFFF 0 /sys/node_data/stream_$sfcbs
800000 - B97FFF 0 —- temporary file —— Stk
898000 - B9FFFF - 0 /sys/node_data/dm_mbx
BAOOOO — BA7FFF O /com/sh ,
- BAB0OOO - BAFFFF 0 —— temporary file —— Stack
8B0O0O0OO - BB7FFF : 0 /com/las
. 8B8000 - BDFFFF 98000 —— temporary file —— stuck
8EO0OO - BE7FFF -0 /¥/1las. big
F788000 - F797FFF 0 /¥ N
F798000 - F7A7FFF 0 //node_28B+4

2368 KB mapped.

Single Level Store

Direct access to objects via machine
instruotions

"Map” an object into a portlon of a

~ process’ address space

Only page in the needed pieces

Similar to Multics, IBM System/38 and
Xerox Pllot

Distributed over the whole network

OPERATING SYSTEM MAPPING

232

ADDRESS

GLOBAL : SPACE
. MAPPING

PER
PROCESS |

SUPERVISOR

PER
PROCESS
USER

0

. SINGLE NODE .
. PROCESS o "~ NETWORK

VIRTUAL ADDRESS . , GLOBAL
SPACE o » : OBJECT SPACE

ADDRESS I
SEAGE

MAPPING

o
LA
b

1

HODE

T i

BN

JLy e

k-2

FHYSICAL MEMOI

Q o | Libraries |
— the environment for programs

* all callable entry points not bound
with the program ety el i

o pregren s efevnce s ko

* most of the system services are " rs
made available through libraries
(nucleus calls are in a library)

~ dynamic linking to libraries
e we " symbolic references left in program

'NQ“"‘) /\'D‘(

) Wil (the name of the proc/subr/func)
QYN gt _ |
Qo * resolved by the loader when the

program is invoked
* uses the KGT (known global table)
— loading vs. installing |

programs are loaded -
(J

~* libraries are installed, entries are
kept in the KGT

!ffpo fhis one searched /P\‘vsjr bj Jeacle,.

fh»o kG«T)S , /))Er Préﬂ"'-’s _

Q | - Sjs)f% -wide

~ Global vs. Private Libraries

- Global
— inthe Address Space of all processes
— automatic

— don’t need to be loaded when each
process is created

— more efficeintsharing (hardware)’
- installed when the system comes up
(ENV)
Private
— inthe AS of processes that load it
~ installed after the system comes up
"~ not enough global space for all libraries

Qach precess does NGB .

— still Sharable, but more Cosﬂy (becanse of vir buel s FE

Fwse MST Pa‘..« lers = reséldt:’))

- INLIB command

Programs
a file system object
a kind of procedure (or set of ...)
special cohve_ntion for invocation
* args are an array of strings

redirection upon invocation

d not normally in AS, must be
mapped |

“resource management unit

* all resources a program acquires
are released when program exits

open streams are closed
mapped objects are unmapped
scratch space is released
database areas are cleaned up

* extensible

mark/release handlers
new managers install their own

Memory Management

Demand Paged Virtual Memory
— LRU replacement | -
— purifier (write-behind) ey 10 seconds go0 Throgh % o vy

ASTE’s
— hold disk addresses for “active” objects
- also object attributes

. J
05 iy ISTC's - 128)ASTE’s per megabyte - |
65 ceed i3 k——\) dehive 953‘"“ ot dable gatries (COG) ¢s of Vioc for e 0&3007‘) diskf/pehsork addes
- Sequential access N
O — touch~ahead (read aheac

— allocate for disk locality

Random access to very large files
adgeet = large: more than@ meg/meg of main memory
— causes 2 disk 1/O per page

— one for file map
SK}
3/‘* SR() =3 ;

— one for the page

Yo
){ \\a\ft = 2
s \n P\STQ‘JWGM C ol ar res 4 =
B e e T
ook R o "ol 10 undocomented optiun fo
. Mot © N\ o
pST s @ \3(3 ol thet leks Yo sed fle

- 30 -

paT step

O

File System Management

File system =
Object storage system
+ Naming server

+ Streams

- 31 -

| Streams

Traditional device independent sequential I/O, plus
- seek | .
- record structure
— locate mode

Operations:
— Open, Close, Read, erte
- ak.a. get_rec, put_rec
— “handle” is a stream ID (small integer)

Implementation:

— “switch”
— uses type UID
~ calls type dependent manager

— Files: . |
— map into the address space (window)
- slide the window over file
— access via “load/store”

meve mode — COpPIes data into caller’s buffer
— ho nucleus intervention

~ toueh ahead automatically set ciepz.cling on aceess
Tread

-32 -

Object Storage System ~ 55

— network transparent data access

— access files anywhere in the network
‘as if they were local

— port Fortran, C, Pascal programs
~ without change |

— preserve investment

~— only a 90% solution

***BUT a very important one | ***

Totally distributed systems are not builtin a
day! ‘

— object orientation

— all operations are operations on some
object | |

— a ’'natural’ way to distribute

Software Environment

S Aegis Operating System
— Objects
* named by UID
— Object attributes ‘
* UID of ACL
O ‘

* UID of type descriptor
* physical storag‘e descriptor

* misc. (DTM, DTU, etc.)

¥ Uﬂ\('/ﬂw@r é\r. hot ‘l"' Can bﬁ qupec{) I.Vrl’b SUJFQ’N:SLT 5Pac,eu

Supported Object Types

alphanumeric text
record structured data
IPC ”mailboxes”

IPC "pipes”
executable procedure
directories

ACLs

~serial I/O ports
magnetic tape drives

display bit maps

(reate own ébd’evl« %QLS ¥ managers ot SR T ¢
‘E’X-"ﬁms“\h[e S'{'YCC‘»'“S,

Internal/External Names

— External Name
- * user visible, human usable

* text string

— Internal name
- * computer convenient "handle”
~ for an object |
- — Choices for form of internal name
~ *UD |

? 9 e e (F - e weu
* "structured name” "o helf s

where i+ i stored |

— UID 7 Chece of /-\e,ﬁ‘."s

~ * just like a bit string that uniquely
identifies an object

* but doesn’t tell how to find it
* like a Social Security Number

NS — Structured name |
* multiple components
" gives location of, or route to,
object

* may or may not be reused

* may or may not be one-to—one
with object

UIDs

* 64 BIT UNIQUE NAME
* NEVER (EVER) REUSED
* CONCRETE REPRESENTATION

| ’ 16 BITS >
A — ;
CREATION TIME
4 WORDS | |
AVAILABLE
NODE ID
v
* OBJECTS ARE ACCESSED BY
MAPPING INTO THE VIRTUAL
MEMORY
* (OBJECT ACCESS IS NETWORK
TRANSPARENT
Cérm.\ﬂ MDSs Wil r;_g\,ef he treeted ¢ Y Canned WIDST

used o bring wp cerbein cmpme,\‘fs o fle O.S,
fﬂd/j o€]’)r'asmmwad v’mb Phe Bogf lor-c:mg‘

- WHY UIDs ?
location independence

absolute names with respect to
processes, hodes

simple nucleus interface

uniform naming for all objects; by most
levels

composite objects |

typed objects

‘LocatingObjects

- Make the task easner by restnctlng
locations

%* (i have

don’t let objects move 0.0 i

s ®) ¥ require objects to be on the same
s =)™ volume as the directory in which it

is cataloged

*

estabhsh equivalence classes
among volumes

|y
no restrictions; broadcast . ity
— Requirements

* removable volumes

* internet environment compatibility

e _locake coll

O — Use "hints”
~* from node ID in UID
* from "hint manager”: takes hints

from anywhere directory manager
-user .

— Improve algorithm over time
1. look local, then the node on which

the object was created.

2. local; hint manager; then the node
O - of creation

3. modify 2. to try remote first if the
node ID in the UID is remote

- Goncurrency Control
(ak.a. the stale cache problem)

4 3\@‘&\&‘5&

- SLS makes no consistency guarantee

| (property: purely local use is OK)
— Locking and timestamp techniques
" lock before use; unlock after

* tlmesteﬂp detects stale data

- — Lock (an object) MBX

%

send message to home node
(acts as a coordinator)
* get back version number
~ (timestamp)
* discard stale pages
(ones with older timestamps)

— Unlock

* send modified pages back to
home node
send message to release lock

*

(O = Pageln

* returns page’s version number

* check version number against
current one

* return error if no match

— Page Out

* bumps version number, returns it
* checks, rejects if not owner
requesting

O | — Client Protocols

* Possible because cache flushing
operations are exported

Uniform Name Space

— Same "absolute ” file name refers to
the same object anywhere in the
network

— Allows file names to be exchanged
without changing meaning

- Means data, programs are more easily

shared

'USER NAME SPACE

NETWORK
G
&
LOCAL ROOT -
DIRECTORY o,
®
0
5
(- :
k .
S, ‘\ CURRENT WORKING
© DIRECTORY
ve
SYNTAX

//ENG/JONES/PROG...NETWORK WIDE |
/JONES/PROG/SORT...LOCAL ROOT RELATIVE
SORT/V4..WORKING DIRECTORY RELATIVE

POINTS TO NEXT

DIRECTORY OBJECT DIRECTORY OR
L . TARGET OBUJECT
_ " UID
‘NAME. - OR
PATHNAME PATHNAME

l SUBSTITUTED
IN NAME (LINK)

Naming
Text string names

— hierarchical tree structure’

* "path name”

* made up of *component names”
* for example,‘/x/y/z

— directory objects

*

component name => UID

*

component name => path name /s

— absolute path name o
* starts at "root” directory
¥ leads to UID of an object
* valid network wide, like UID

Network Management

Sockets:
— datagram service
— IDs are small integers |
— services are at “well known” sockets
— reply sockets allocated as needed

MBX: ™plenenked on fop of J
— virtual circuit service
— IDs are UIDs, hames
- — “advertise” service in hame space
— is not in the nucleus

- 33 ~

f
e l\/\S""‘ nee

Sec ket Y s Hw
prgg sohet

I/lO Management

Barely any; all special cased

— disk |
— serial /O Al dose Y L st
— network ek o

— magtape manage’>:

— line printer

-34 -

Protection

| User identification
- registry

Access Control Lists (ACLSs)
Protected Subsyste»ms deto preteded fron wew |

bur not v\eéessaf;lj feom a
Pro;"‘mw\ Pt o uses [aveles.

- 35—

Registry

-~ System wide registry of people,
projects, and accounts

- ide_ntifies a user to the system, not
just a node

— replicated for reliability, availability

O — each node owner doesn’t have to be a
- system administrator.

Can't hevt acl's

o owt acoown by (f‘ej;shfp

- Why not just OSS and SLS ?

good if data << computing

* user pays computing cost |
* automatic caching

not so good if computing << data

*

cost of moving data high

not so good: ‘exposes representation
of data % the whole network:

“good when one process is computing

on distributed data

not so good when many , distributed
processes are working on distributed
data

*

more processes =>
~more reliability
more processes =>
more performance
‘need synchronization

*

*

O

General Distributed Computing Tools
Rémote procedure calls
Concurrent programming
Replicated objects
Consistency control
“Yellow Pages”

Remote process invocation
and migration |

Debugging

Basic AEGIS Vocabulary
UD |
¥ TUnique Identifier
Object |

* Anything where existence is associated with
a UID (e.g. Files, Volumes, Processes)

File |
| * Disk Resident ObJect oSG ijl’ﬁs (itz era'd'eJ) P clisk
(048 .« gecret Fer nefosed

Page

* Smallest spearable unit of Memory, Disk,
Object (1024 bytes for us)

Segment

* 32—-page grouping of Virtual Memory of
object——smallest MAP-ABLE unit

Mapping

* Associates Vlrtual Memory Segment with
Object Segment

Disk Glossary

— Physical Volume

* A disk

- — Disk Block

* 1056 byte section on a disk
(32 byte header/1024 byte data)

— Logical Volume

* A section of a physical volume that is

completely self—describing and contained
(Usually one L. V. per P. V.)

— Physical-Volume Label

* Single disk block that describes the
Physical Volume

— Logical-Volume Label

* Single disk block that describes the
Logical Volume |

— Disk Address (DADDR)

* Disk block number as an offset from the
start of Logical-Volume (usually)

6) Disk Block HEADER

— Reliability
— Recoverability

32 bytes in addition to 1024 data bytes
1056 total |

o UID of object to which | -
g™ block belongs

O oo Page# in file
[0 e AL . . '

, Time written el g

\\Q;‘e'r ” %

o |

Checksum of Data
Disk Address

- Anatomy of a UID

Time Since 1/1/1980

e . MBZ Node ID
16 millisecond units |

36 bits 8 20

34.8 Years worth of
Uniqueness
(2014 1)

1 million nodes

+. We’re not worried yet !

o “Canned” UID’s
O |
- — Hand constructed by R & D
— To identify “SPECIAL” objects
* Examples:

“Canned” ACLs—
9%.9%0.%.%
FNDWRX
0001800F0 e

* Disk Structures

o PHYS_VOL_LABEL b ‘&oe o
~00000200,0 chovet et W

chang €
* “Canned” People (!)

- USER 00000500,0

i
]

g
H b

auanf

13
FR
SRR

ATl CEEIUR —M._.ﬂr;..

d

aun,n.»ﬂ.x& .CHA:
steck Shrge
Syste~~

2 :

.c,_?%, (_1 pee ﬁguﬂos_ bleck ¢ J.ﬁ.iﬁ?z&

(EIAT

+ \muw \uum.\:&@&p*of

O

PHYSICAL VOLUME LABEL

VERSION NUMBER

“APOLLO”

'PHYSICAL VOLUME
NAME

PHYSICAL VOLUME
UID

- BLOCK COUNT

BLOCKS PER TRACK

TRACKS PER CYLINDER

DISK ADDRESS (DADDR)
OF LOGICAL VOLUME 1

DISK ADDRESS (DADDR)
OF LOGICAL VOLUME 2

Describes the
DISK

Locates Logical
Volumes
(up to 10 per Physical
Volume)

plus Alternate Logical
Volume Labels

LOGICAL VOLUME LABEL

VERSION #

LV NAME

LV UID

BAT HEADER

 VTOC HEADER

TIME MOUNTED
TIME DISMOUNTED

TIME SALVAGED
NODE MOUNTED ON
TIME ZONE

BAD SPOT
LIST

g s fo opfmze @pf

FREE BLOCK
MANAGEMENT

'VOLUME TABLE

OF CONTENTS

VOLUME
MAINTENANCE

o afron s

BAT HEADER

NUMBER OF BLOCKS Jeld to Tavel
REPRESENTED |

NUMBER OF FREE BLOCKS lvolfe

DISK ADDRESS OF FIRST
BAT BLOCK

BLOCK NUMBER REPRESENTED
BY THE FIRST BIT IN THE BAT

NEEDS SALVAGING FLAG

P

O

VTOC HEADER

\/TOC, ' deres
ok tovec &Y

NUMBER OF HASH BUCKETS

NUMBER OF BLOCKS USED

)

VTOCX OF NETWORK ROOT
DIRECTORY

VTOCX OF LOGICAL VOLUME
- ENTRY DIRECTORY

VTOCX OF OS PAGING FILE

VTOCX OF SYSBOOT BOOT FILE

VTOC MAP

Jhr Pajias'-ﬁk
(S always coahguer
Used a} best fime
os P“d'\‘f& QLQ s
the huclq'ng sfee fr
3 221 meads of e
0.5. (Gl af qddeess
but hse of fhem g

afu.lajs weed

VOLUME TABLE OF CONTENTS

VTOC
LOGICAL
VOLUME LABEL
BLOCK 1| 2| 3| 4 B11] 2| 44
VIoCc ' 7
BLock 10| 1] 2] 3| 4 | VTOC ;ﬁr(}:agSION
mock 3 [0 1] 2| 34 5 (0~4) VTOCEs
per VTOC BLOCK

‘ hashed
o yTOCK (vToc nde)
\\7 ,
\/‘T/O CE (COY\{YL:\\S ?{L@/ I‘/\QP ?L'f Ob\]ec{_)
N fle -
C(,,mlus‘.-x5 Mfans; o chrechey

oodn
Y\OM(U‘D P objcd’,

USING THE VTOC

VTOC HEADER

Voo

HASH FIND START
FUNCTION—-@% OF HASH
THREAD
HASH
RESULTS | |
«| vToc BLOoCK
7 | DISK ADDRESS
USE “THREAD” ,
EXTENSION Y Te T
EXTEX SEARCH VTOC
BLOCK ENTRIES
FAIL | FOR MATCH
WIN !
N/

VTOCK

O

o e

.
A

VTOC ENTRY

VTCOE (vee-toe—chee)

e

DATA BLOCK POINTERS Li 15113
FOR SEGMENT #0 1771
ICXASS
2 07
mu\\\e\wb ; ‘(\&\0%3 onned
SYS IQER M UIK/}M UID TYPE |CURR | BLKS
TYPE UID |LEN |USED
Vot Vo LRI IO
ekt
ACL DIRP el | REF [ah
: Lrle vession hows meny files
Using Iklf chiect
LOCK [laks acen't
KEY "i;b objects)/}}\zg‘ni
O'V\Lj el S |
VTOC HEADER
O +4Yt\3;~.-¥€s ol e o
e 3 NeT 36 cuch®
\Toc

o~

VTOC ENTRY
"VTCOE (vee-toe—chee)

HDR

DATA BLOCK POINTERS |
- FOR SEGMENT #0

LEVEL 1 FILE MAP
256 Disk Addresses

'~ 256 data blocks (32-287)
— segments #1 — #8

32

\2

VTOC ENTRY

VTCOE (vee-toe—chee)

DATA BLOCK POINTERS

HDR | FOR SEGMENT #0

LEVEL 2 FILE MAP

256 DISK ADDRESSES

- - 256 LEVEL 1
O FILE MAPS

\4

11

— SUPPORTS 2048
SEGMENTS

W

L1

A\ 4

L1

VTOC ENTRY
- VTCOE (vee-toe—chee)

DATA BLOCK POINTERS

HDR | EOR SEGMENT #0
I EVEL 3 FILE | ~
MAP —>| L2 —— | L1
256 DISK \ L1
ADDRESSES | 5[1,
~ 256 LEVEL 2 -
~ "FILE MAPS
— SUPPORTS |—>
524288 L2 -
SEGMENTS 1
—>| 1.2 —— | L1
o \ L1
o
. []
b ; \ 53‘°°k P(g(<
\ﬂ QD; Silvg %’D ﬁe“ K(J%L lv\"*}“ P,j/> ‘Wc&%}

Jr
\/\“j (M‘W(j(j 2)

. Example L{‘ﬁC?L@ b&C/Cm ﬁ!\(ﬂ m ()(/_SK
Q k |) AN
' - FILE_CREATE (LOC_UID, UID, ST)

1. Find the volume that holds
LOC UID

2. Call UID_$GEN to get a UID

3. Build a VTOCE-heagder for the
- new file. |

o 4. Add the VTOCE to the VTOC

- DONE!

~ Allocating Blocks on Disk

— Strategy

* Nearest available block to last
allocated block

Aaking inte aecount e

* “BAT” step

— Mechanism

" Read the appropriate part of
the “BAT” into memory

* Find FREE blocks and change in
‘memory copy of BAT (erte it
back later . . .) Vi memong nast of The Fim

Note: SALVOL’s biggest job is to fix
- the BAT, since the ON-DISK
copy is almost always out—of-
date! |
CE's
Salvel et ?Lﬂéﬁfiﬁf‘f“ 40
Jo updeft

- Apollo Virtual Memory

- — The Idea

* Lots of processes with
independent address spaces
(256 MB or 16 MB) |

* Some stuff GLOBAL to all
processes

* Divide A. S into 32 Kbyte
segments

O * Divide objects into 32 Kbyte
‘ | segments |

* Some processes will live only in
the nucleus and won’t need |
private space. . .only GLOBAL!

PROCESS ADDRESS SPACE

FFFFFF
F00000

E00000

C00000

BC0000

(PROTECTION
BOUNDARY)

200000

000000

: FFFFFFF
I/O
AEGIS
F800000
UNUSED
SUUPERVISOR PRIVATE | F788000
PER
PROCESS
PRIVATE
ADDRESS
SPACE
0800000
GLOBAL
LIBRARIES | |
k\‘ 0000000
.,}\ »

\1

\
env nstils
o canned Vit oF namRS.

O

MAPPING

- Virtual Memdry Glossary

ASID: Address Space Identifier

O is deg®

L g pm or SP

* Binding V.A. Segments with
OBJECT Segments

MST: Mapped Segment Table @ per process)

Active Segments

* Object segments whose
information and data are cached
in physical memory.

AST: Active Segment Table

PMAP

* Disk Address & Physical Address
(if resident) of each page in an
- object segment

O

O

VIRTUAL MEMORY

The Main Players

Virtual Address

MST AST

Object Address .
to
Physical Address

to
Object Address

Virtual Address
to

Physical Address
(!\\ Gan MLm Orj\

MMU

—

96 Bit Address

System Global Name UID Object Address
Space. Names Unique L ,
for all Time - 64 bits 32 bits
Object Address Space Segment# | Page# Byte#
o 17 bits 5, 10
7 D aphes g P es [69
OBJECT ADDRESS A 97 o vt fpt
VIRTUAL ADDRESS
S(e\%rr?fgg# Page# Byte#
17 bits 10
Byte# |
PageZ | Object
=]\25 Object UID 5> Address
o ASID Object Segment# _|
MST indexed by
Virtual Address Segment#
and Current ASID 1 Per ASID

MST

——

@,

-

TERN (DNX60) Virtual Addressing
- —> Virtual Addressing differs slightly

Region# Segment# Pagett Byte#

5 12 5 10

Why: 1) Simplifies table organization for big
address space
2) Simplifies hardware/microcode

it’s transparent to everyone but
BUT: AEGIS memory management
| code

Finding the RIGHT MST

CURRENT ’
| ASID» GLOBAL A
PRIVATE
| UNUSED
VIRTUAL ——
ADDRESS T
IN : NO IN NO IT’S v
GLOBAL A 7 GLOBAL B 7 PRIVATE !
\l/YES YES
USE SPECIAL B -
AT S=VA/32KB
PART OF |
MST MSTE MST [ASID, S]

O

MAPPED SEGMENT TABLE ENTRY

(MSTE)
OBJECT UID of the Object
UID | |
OBJECT T
SEGMENT Segment within the
NUMBER Object
EXTEND OK | Can the File be
FLAG Extended ? :
ACCESS Access Righk
GUARD Is this a Guard
- Segment ?
HINT |
ASTE ‘ Performance
IN@(ED Enhancement

- LOCATION Disk or Network

YTOC Y,

— Now improved with “Touch Ahead
Count” —

THE ACTIVE SEGMENT TABLE

.

— An Array of AST Entries (ASTES)

— Each ASTE is a cache entry over the
VTOC

, A |
HESATI])EER OBJECT SEGMENT PAGE MAP (PMAP)

— ASTE Header

* Object UID

O * Object Segment Number
| * ACL UID
- * Location borewte,

* DTM e

rEmoft ’4 ST

— Object Segment Page Map

* 32 PMAP Entries (PMAPE:);
one per page in the segment

* Current PPN puscdt guge mote

* Disk Address (DADDR)

- Object Address —> Physical Address

(UID, SEG#, PAGE#, BYTE#)

. Find ASTE for (UID, SEG#). If not
in AST, read VTOC and fill in an
ASTE.

Look in PMAP for the ASTE to get
the disk address for page “PAGE#”.

. Find a free physical memory page.
Read the disk.
Update the PMAP.

Load the MMU (so it can succeed
next time!).

Memory Management Unit (MMU)

(Virtual Address, ASID, Operation)

Protection Violation

MMU
Physical Address
(MMU Hit) \V/
~ Not Found

(MMU Miss) page Fau 't

/

On to the MST

Operations Are:
Read, Write,
| Execute

VIRTUAL ADDRESS
o
OBJECT ADDRESS

Any ObjeCt Segment may be:
. ‘ » . \
— MAPPED BUT NOT ACTIVE . «isfied
— ACTIVE BUT NOT MAPPED - o%a:*:;:“f:;‘j{i‘ff}:::

— MAPPED TO MORE THAN
ONE ADDRESS SPACE
SEGMENT WITHIN A SINGLE
ADDRESS SPACE |

— MAPPED TO DIFFERENT
- ADDRESS SPACE SEGMENTS "
IN DIFFERENT PROCESSES >~

MST

Virtual |
Address UID segment# location access
300000 | Ugh 0 Node - 2 rw
308000 | U, 1 | Node-2 | rw ASllD
301000 | Uy 0 Node — 2 r
300000 Ub 0 Node — 2 T _
308000 ASID
- 2
I1AST
UID segment # attribs page map
Ua 1 | (32 daddrs & ppns)
Up 0 | . (32 daddrs & ppns)
U, 0 | ..

(32 daddrs & ppns)

- EXAMPLE: MST & AST in a running system

T
REMFILE |

|
+ -~ +

ll‘)C’lll'lll'lllllllllllll.lllll'(l+w

G we em em s e v ve e v we e wm v e

!
+ .-

N
s S 1

I
]
|
1
|
1
-+

-, W w. we we e we

. we we on wa wn - wm wm we we wn wa o

H
|
it

N S -
MST
N S

@ we e e we wn wn

FRR—

“ .o ve -n
I
!
I
) !
“n wn wn we we we

-
e -

1
"
4
1]
L]
1]
{
)

-t

1
L
.
H
]
]

]
]
e

L—lll

is

1 3

+ -+

]
“+ .-

(user space)

[}

1

[}

1

¢

]

4

13

[

]

4

'
—t—t4
y ACL
N

4 -
T
4
’

e
AST
e

s

.8
T

N
BA]J
e

T "'

e Y

1
’

.o o

$mmm et
e

e S

]
'
i
L
1
1]

‘NAME
e

- wn wm we we - o

1
'
e

- - wn we wm wn wn we w

- oo we e . wn -, eE e we e We WA WE we e We W - we we - e e w. v wm wnm o

$—t—t—t—t—+
i+

W WE e WR e W WR WG B VR W YR e WE WG W WE W W WE WR W W WA WA We VR WA W WE W WA WA WA We wE W W W ..‘7

"E We we WE me WS WR WS W WS e WE W W W WG WE WEe WER W W WK WS WR W WS W BN W BE @R WT W WE WE WE We we we we -

-+
|
]
I
-+
I
]
I
+

R I LI T R A I L]

e we

B S S

e —

bt

e

e s S

T

[}
$

SOCK
gt

H
]
L}
4
1
N
PKT

]
]
e
e 't

[}
L}
+

L3
1}

- —m e wa we

et
s o

[3
’

., we we wm va va o

!

!
|
|
d e e -e

e i e S S S Y

» WIN |

P SM

' FLP

N

s T e T Ses——

wﬁi_ﬁ a1 ; =N .n.h?

14
MH..'ﬁ m E.x.m .”“MW. m...,._: “.H”m

smad st n_::..

?:m

.,f Fal W
Y

: :H.Mr m'.. w_na. _._Tc.;ﬂ
sfeiet

|
Loy

_q ey T

LEED
Type
D mz o (Eo)

UiD
Page | -

K=

Hala

~,

‘1

FETTR Y o0

.Em A W_Mttf. mm

1 e §

2

T

[-cier=yd

'

ST

R

2¢)

a
]

.

rﬁmo{{
6'»3\

(9
(m}.\’. mum §ize 50>

h(’,‘ffova —P

j Server 'Poo\. S

TNVOL =10

Lirtual fddress

Tra

NETWORK FILE SYSTEM

~ Remote-file server

~ handles file level operations
lock, unlock, directory—lookup,
-get-attributes, create, delete

Arguments are passed from the
client to the server, the server
executes the call and passes back
the answer. -

Remote paging server
handles paging operations
page—in, page-out, attributes

based on unique object addresses
(uid, segment #, page #)

FILE SERVER

N,

LD -51

“ Menu of Services
File Services Node Information
Services
m VOLUME
LOCK FREE SPACE
m UNLOCK '
| ‘?gglc;{aEss
|
CREATE INFORMATION
©~ | DELETE 1/0
R ~ STATISTICS
TRUNCATE TIME
INFORMATION HELP WITH
| LCNODE
NAME LOOKUP o

LOCK REQUEST

LOCK MANAGER
Lock 1l s local | Handle It
USER | Reduest d | ,
remotel “Rem_file”
‘ (LkoB
NETWORK /O | uds e 1K
_ MANAGER ' dedn base ¢ ‘
NETWORK I/O
MANAGER
A4
FILE
SERVER

L.OCK MANAGER

A LOCKING OBJECTS

'CONCURRENCY CONTROL (2 models)
(1) n readers XOR 1 writer
any nhumber of readers,
or exactly one writer.
(2) cowriters
| any number of readers,

5\“’“ :

A : ; . :
o or any number of writers all from -
, | ANz o\D ek Aof2" N _ede
O the same node. NG
| | Lo e Wi

- LOCKING MODES (3 kinds)
(1) READ ONLY
(2) READ & WRITE
(3) READ — INTENDING - WRITE
(warning that I'll change to
. READ & WRITE before I'm done)

THE ROLE OF THE LOCK MANAGER

Enforce con'c’urrency rules at lock time
Control all LOCAL files
Cooperate on REMOTE files
Maintain the LOCK TABLE

Support the distributed system -
Help manage the object caches
 (flushing when needed) |
Pass authorization information
to paging system through
the object’s lock key.

o " Lock Managers Tools
— Lock Table: Database

— Authorization Control
 * Set Object Lock—key
ZERO means read—only
NODE_ID means only that
node may write
0 — V. M. Cache Control
* Get object DTM
* Flush cache if needed

* Purify
send changes home

O AL Node 2 Node3 BOB”

C D

Node 1 AL gets us rolling.

/ | Ferx - B

AL locks X for reading
and touches the page

&l

gk | Then AL unlocks X.

Note that Node 2 keeps it's
STEP 1 copy of X in case it's needed
| again soon.

O AL Node 2 Node 3 BOB’

- BOB gets in on the fun!
Node 1 .
| | X starts out as
O Q/ | BOB locks X for writing
— touches the page, and
| | changes it to:
X BOB unlocks X, forcing
— the modified page back
to Node 1.
Note that Node 2 doesn’t know.
STEP 2 - | Note that the disk doesn’t get
‘ updated nght away.

®

AL Node 2

&

Node 3 ’ BOB”'

AL’s back for more!

X starts out a

AL locks X for reading and
finds out that his copy of the|
page is out—of-date. He
flushes his cache and gets
a hew copy.

Note that if X hadn’t changed, AL
wouldn’t have needed a new copy.

Note that AL’s bad copy of the page
isn’t flushed until AL locks X again.

(Pa%’ Pw?%‘ér

Wr\.._as mod:&%e()\ ?ag&s«}-o ctglk -
i puees’ dhe page
‘ Cquig‘rtg’t obk‘)”“h art “‘\mpweﬂ

O

ORPHAN LOCKS

SHADOW ENTRY

AL |X]AL| R| JOE

——

X ALl R

1) AL LOCKS “X” FOR READ
(LOCK TABLE ENTRY MADE)

2) THE NETWORK “BEREAKS”

LOCK TABLE ENTRY

| 3) AL IS UNABLE TO COMPLETE

THE UNLOCK WHEN FINISHED
4) JOE WANTS TO MODIFY “X”

“X??

IS «“X” IN USE ?

LLko® -N
oby nod(...(ld
\-X“ . AL
LD JAL
AL DV'}'vPU"V\(‘I

ULkop “X" -F

ULko® -FoRrCe

4 :
alne . | *
[|
- i .\w
; 1 ¥
m Sarvay Ta ,
_ gy yraven gt goenes - ,
e : Fz i L | farsrn | e
i L : s SRR el mw
. — Clisnt :
| + —

ildiredl

e AL TN
METWORK . S

Cliznt

I .)

oLty po,
I

S

Har dhwe

.r.w.r

S

Naming Vocabulary

Naming Server

* Set of routines that store and
retrive (NAME, UID) mapping.

Directories

* The file storage database used by
the naming server.

“Resolve”

- * The Naming Server operation
- that takes a name and returns a

UID.
“GPATH” (get—path)

* The Naming Server operation
that takes a UID and returns a
name.

o)

NAMING VOCABULARY 2

— Soft Links : A Naming Server facility
that allows text substitution i In names
. AV 9,
durlng ‘name resolve L‘\‘i?’é 7 ok

— Hard Links : A facility supported by "«
the Naming Server that allows more
than one name to be paired with a
single UID (needed to support AUX)

 — Entry Directory : The directory cétated

by INVOL to be the root of all named
objects on a Logical Volume — wes®’ v

A Qﬁ“ ° \\C(Q
poker

VOLUME ENTRY

| ™ opmecrory

OK | NEVER

- Naming Vocabulary (Cont’d)

- I (lwavs /> yow Can I,\a\,& u()‘—o [0
Node entry directory (alwey W joucor b gl [0

[me Can ‘3{

* The entry directory of the boot wonled as e
volume. beck wlane.

— N etwork Root

* The special directory created by
INVOL to hold the node entry
directory (NAME, UID) pairs
for nodes in the network. ““//”’
ALWAYS refers to the network
root directory “hidden” on the
BOOT VOLUME.

— Initial ACL’s

* The Naming Server facility to
allow newly created files to inherit
their ACL based on the directory
that holds their name.

NAME RESOLUTION

BOOT VOLUME

e

: ENTRY DIRECTORY
object @ JAL/DOC/NAM_SVR
UID » ¢ AL 1 & ;
| _ @ .
directory®| 99 BOB 2
. | TT[@]Cooe
STUFF 3 0 Z SRC 5
| | AMES “/BOB/FUN"|
2 FUN 11
0 WORK 12 |
(®> | AM_SRV 6

O - | | (D / NETWORKS 7

PROJ PLAN 8

11 PETAL 13 ®
2 LUNAR 14

6 ‘
13 6,,(,,[05}:\3
11‘ ivectony 0D 1 »

used by G PATH cperafion
Cfob associates «
) ») a noam W \H/» o U(D
Q , Chﬁa"e ov CUPj - R‘l*’- ¥

Ob:jécA' s (,nzceh’/cf an fojicd Vo(ué«x@ {? ‘. "
. ‘ : urky A bbde(,{z live e same
0’&: eﬁClOSu’\S dlf‘CC‘}'D*"j § } (OJ cal VO(M.W 65 ,'/}\e‘,- eno{og A_j

0'\(‘66 *’OFJ,

‘V AN

)
object
UID »

N directory#
UID

NAME RESOLUTION

BOOT VOLUME |
ENTRY DIRECTORY @ Find: /AL/GAMES/PETAL
0 —
> | 1 "~ DOC 4
/ STUFF 3 5 - ,
? GAMES “/BOB/FUN’
N Vg ’

FUN 11

2 Name becomes: /BOB/F UN/PETAL
0 / WORK 12
® 4 NAM_SRV 6
1 NETWORKS 7
PROJ PLAN 8
11 PETAL 13
2 / LUNAR 14
® 6
4 text file
13
11

ancL o7 ()h ans ¢
{’b 'P\’y» cl wn (;ﬁ‘f’ﬁléﬁeﬁe

(/:)Y\ D'P‘!Cm ob\jgb~l' :5 & (D
an Umnamecl p@rm;ne,ﬁ' 101',6 , w",'f’hm*‘!' «~ hé-""ﬁ,>

uids |
’H'\,(’, OS pa,\(j:\ns' ‘p\“e ;5

o

DIRECTORY STRUCTURE e

r
AT el
et

Entry Blocks Cﬂ‘fﬁ
/—,YY\
r »

g b

22 \93&63)

Linear
List pf
Entries

“Hash
Threads |

/
~—~—

N A A

one disk aceess dur (livectores [of diechry sweeis
w\“},\(\ ,8 O6r {655 ’%'C%. 25350\,@.;4'5 — NV /300 inanes

ADVANCED NAMING TOPICS

Why SALD (salvage-directory)
internal directory structure contains
hash threads that can be damaged
when the system crashes.

'COLOCATION OF NAME and OBJECT

un-necessary for correct operation
but necessary for sanity! |

HARD LINKS (needed for AUX)
UNIX allows a file to have many
names, as long as all of the nhames
live on the same disk volume. |

galu;c(/je LP,mmauclS‘; |

Scw,\lcl
| Snl(C/ |
Salat ' o
SD(,‘»{%) \(Consol,‘z(u}fs ACL olu(gc/s)

> Cupdates vegisties)

MTVOL AND CTNODE

| Q Background:
When a logical volume is created with INVOL, it is given 5 things:
1) A Network Root 7 + VTOL 4 RAT

2) An entry directory for the volume ~
3) A SYSBOOT file entry

4) /SYS directory

5) ‘NODE_DATA directory

Each of these has a UID, let us say UID1, UID2, UID3, UID4 and
UID5, respectively. The initial state of the network root is to
contain the pair (NODE_nnnn, UID2). The initial state of the
entry directory is to contain the pairs (SYSBOOT, UID3),

(SYS, UD4) and /SYS contains (‘NODE_DATA, UID5).

Network Root directory Logical Volume
Entry directory
O NODE_nnnn . :
SYS . v
SYSBOOT | e NODE_DATA|

SYSBOOT blocks

When a system is running, its network root is accessed through the
naming convention of “//”. “//” ALWAYS refers to the network root
directory on the BOOT LOGICAL VOLUME. The node entry directory
is accessed through the naming convention “/”. “/” ALWAYS refers
to the logical volume entry directory on the BOOT LOGICAL VOLUME.

I i5 o catelagpd anywhe —its He ity elintchey fhats pof catoteged. i
O Eack node fasibs o local 7/ diceclory.” R
| e
~ ()an+ c[@ & afwle IOCaﬁe m o (Cananed umn L@sw\u

becauwse N code o id e n ¢ CCan’lCo(),

'\.‘ .

W |c1&~rd'¥\3 et // leel s d gcpﬁm
dhun an g hert else « »

MTVOL

MTVOL F 1 /FLOPS/FLP_1

LOCAL | e >

| v |
SYSBOOT | e

LOCAL P

v
SYSBOOT | e
'FLOPS | o

Aisk tontslits fable entry

Winchester Logical Volume One

and
Boot Logical Volume

CTNODE

| “//”

JACK NODE: 1A4

O

SAM »
JANE \4
| TACK SYSBOOT
CTNODE JACK 1A4 Y |
Q SAM NODE: 53
v ,
’ X o Y «
JACK | o——» JANE | *T——»
SAM |Z v SAM |Z v
JANE |Y .- JACK x| 1 e

“//”

JANE NODE: 12C

Co—locating Names & Objects

— System architecture does NOT
require it. |

— SANITY DEMANDS IT!

~ So.. Released utilities ENFORCE IT!

Naming Issues Today (1/85)

. Set of Legal Characters

. Case Sensitivity' »

. Character “Conflicts”
e)

. Component name length |

. Directory size limit

' AUX/UNIX compatibility issue.

VM Performance Issues

— Disk through-put |
| Ordered secks as of SRY

* File layout

o ((‘,‘P(}ef o ‘m@ ow cc/wfj S 3(1*
* Touch—ahead J) Y

| Four Paﬁe» Minmue
— Network through-put - ¥=:
* Touch-ahead
| el B

* Paging server queuing " eomence. degredet
* Expoliting overlap |

— Page replacement
* Purifier
“ LRU

— ASTE Replacement '{'l\fff:;‘v“g“ ﬁi Z,g;fh‘ib
* LRU .

o A Networking at Apollo

1. The Ring
. . o /”»‘» 0‘&’,&3“,:\ Seivice
- 2. Packets & Sockets o sy
’ o o | “. \m?
3. Clients of Sockets o ;:,bww‘:; 3 "W:\,
. . ’ OQ N‘\S'G, \Z:EL.J’(A OE
— Paging Server e
1 » (r(frc’cc\
— File Server P
S ; — NETMAN
- - MBX

The Apollo Ring Network

— Ours IS a TOKEN—PASSING RING
) network

* TOKEN PASSING

- A special bit—pattern circulates
through the network
(“passing” from |
node-to—node). In order to
transmit a message, a node

must have control of this
TOKEN.

* RING

The nodes are connected in a
circle.

a(]/"w of Indovmeton is Counterclockwise

L,] ‘}\Jpeg of Sj'ﬁ(l ‘Ql\ara(/«fe,/s

Why a ring like ours?

Token—passing for distributed control
of communications hardware.

Graceful degradation under heavy
traffic bursts.

Automatic acknowledge of

' . e Chnpoledge s halt info
successful transmission. dekenoiecge

e Mingmissisn "LGC"\“:(("& ‘

Allows different “WIRING” -
technologies.

* e.g. Fiber, microwave

THE APOLLO RING NETWORK

— Every message goes “through”;eifery |
node (ring hardware)

- = Only targeted receiver “processes” the
message (DMA into memory, change
the ACK byte) |

— The transmitter “removes” the message
after one full circle

— The transmitter examines the ACK
- byte to see if the intended receiver got
the message (altered the ACK byte)

-, THEAPOLLO RING NETWORK

A ring
interface

ring C
interface

MEMORY MEMORY

O

ring
interface

MEMORY

(&)

THE APOLLO RING NETWORK

“A” Disconnected

A ring - ' . ring C
interface interface

1/ |
| N OUT J |
MEMORY — l MEMORY
|
| ouT IN I I
IN ouT
| ¢ {tllrtlgrface
MEMORY

®)

'THE APOLLO RING NETWORK

IDLE - no node wants to TRANSMIT

O K|E
T N
@ ring ring @
interface interface
-
| [
ouT |
MEMORY - | MEMORY
' ' !
IN
IN ouT
Iy rin
¢ integrface
MEMORY
&
&»50« .
W)
Mot e
{\61/ » 1% o
, ‘e P ‘\“gw* 2!
B (‘Q/\O‘{’ vy Le
: Loy N\
o \ AL
U\QJ\CM\X onc_&k '\he/ . \Lq‘w
O N 9’" \)/.\»0
’ do@“ ‘JOb
WY

aetoht Fells yes
it delay e s bten

SW(\)(O\\Q/A 'H\ 1

THE APOLLO RING NETWORK

“B” sends to “C” and watches
for the ACK fields

A ring ring C
interface interface.

MEMORY MEMORY

—5| FIFO

) u ring
| bucket

MEMORY

PACKETS
&

SOCKETS

LD =U gives You dhe U of files Tn dlircctony

%,

%
i

l

3

mﬂ HES

m_“..—.. itin,

pit

:uu-_
at)

..:.,..
PRI
L & aan LB

s

mu:
[+

THE TYPE FIELD

BROADCAST
SOFTWARE | To receive a packet :
DIAGNOSTIC _
HARDWARE | 1) The “To Node”
DIAGNOSTIC | must match or
| BROADCAST
PLEASE must be set
THANKS ~AND
USER 2) The “To Node”
| must be willing
- to accept packets
PAGING of this TYPE
extra

C{n(leal. widh AT}GQ maske .
JW:)Q@ mosk 1 set bﬂ |\€,4's~/c s

o Y
TV (DMA 1s Pregre
Loy goek o s | bw* e hfanQ

Apollo NetWork Sockets

'~ Queues of received packets

| LL\k ?e{ bd‘ VQ\ b 5
. o o . INZ @ ‘M()ll CS;
— Identified by “simple” numbers ro?,. o
| 113 ‘” Y EL _ e b ke
(e.g. 1 ' 4) wt;;jll\'ﬁs :::33 ;\)U(Z{d“}
e 4 e

— Numbers unique within a node, but
not unique across nodes

~ Two “kinds”— Well-known and Reply
* Well-known | |

O Used by System Services (e.g.
Paging Server uses Socket #1 in
every Apollo node)

* Reply
Noe s bt Used by clients of well-known sty
0~ top o AskNedt Kk | ke et Ja{;‘; 'Legcggf/.
 Magger sockets | | e e L S

numbr J

- Allocated as needed from a pool

R Provide a “return address” to
., be sent with service requests. =

RN o \-
: R 3 ‘7\05“ ‘ : v . K&Qr \g\u,
O & o e
. Qe Y L5 \(\,\J
NG | BT R ARG TS
ko\° b /bﬂi Q‘” @\\9\5 ((/\u L X
N0t ¥ e NGNS
VU et SO AN
Q-'J G @QNUPB k : . 6\\%" ‘

O - Clients of “Socket”

1 Paging Server
2. File Server/Information Server

3. Netman

4. MBX

— Each of these servers is assigned a
O well-known socket number. To
| obtain service, a client must address
a packet containing the REQUEST to
a (NODE, SOCKET) pair. (Paging
server on node 1BA can receive

paging requests on Socket #1 at
node 1BA.

()

G

PAGING
SERVER

SOCKETS

FILE
SERVER

incoming
packets

v

NETMAN

USER
REPLY

P, ,_.;:.
e
SRR

RING

RECEIVE
INTERRUPT

'HANDLER

‘To decline incoming packets, the Interrupt Handler
examines the Packet Software Header for the Target
Socket Number

5 To oot
(o039

hadpe

DN\A o w\-td buql’l:(/

l
A O«v\J W ‘\(‘"d

‘Socket Service

. DATAGRAM

. Unreliable |

— Can lose/discard packets

— Can arrive out of sequence

— Can deliver duplicates

. The ONLY Apollo packet delivery
mechanism. |

. Available to user space through the
(unreleased/undocumented) “MSG”
interface. | |

User Available IPC
MBX

Interprocess
Intra— and Inter— node
User callable
Fully documented
Full-duplex virtual circuits
* Flow control
* Guaranteed delivery

Identified by pathnames

A MAILBOX

MBX FILE HEADER AND
SERVER INFORMATION

CHANNEL 1 HEADER

Client to Server Queue Header

Server to Client Queue Header |
CHANNEL 2 HEADER
Client to Server Queue Header

Server to Client Queue Header

Client to Server DATA
Server to Client DATA

Client to Server DATA
Server to Client DATA

* “Owned” by the SERVER

* SERVER specifies the number ofchannels
and the size of the DATA area

+ Shared memory (co—writers)

whole clofh objects heee

bohet b W\du\\\w\’~ ——

-

no ba(‘/kiw\f) Storcd
5 At : tThey con never bt Pﬂgcél,
’ ‘ (permdnfﬂ"l"j w\.d’,LD-

SERVER AND CLIENT CO-RESIDENT

MBX

Shared memery

. cwin S
MBX file et oo

get_rec

CLIENT

put_rec
<

&_’ Wi

bachs

SERVER to CLIENT
DATA

put_rec

CLIENT to SERVER

get_rec

DATA

SERVER

pers pusF

e ne

e .

SERVER AND CLIENT ON DIFFERENT NODES

DATA

SYSMBX file
get_rec ’ put_rec
SERVER to CLIENT ° | CLIENT
DATA NODE
CLIENT put_rec MBX
> HELPER
NODE A ; /
NODE B ,
| MBX file
Y
SERVER|
M ERI—=°° | CLIENT to SERVER| %"

SERVER HANDLE and FLAGS

SERVER OPEN TIME

e

MBX LOCK s & ¥ e
™

ANY CHANNEL EVENTCOUNT

ANY ROOM EVENTCOUNT

QUEUE SIZE

NUMBER OF CHANNELS

SET OF OPEN CHANNELS

SET OF CHANNELS WITH DATA

SWEEP INDEX

MAILBOX SERVER INFORMATION

' A QUEUE DESCRIPTOR

- USAGE AND FLAGS

BYTES IN EVENTCOUNT

BYTES OUT EVENTCOUNT

REMOTE BYTES NEEDED

QUEUE START OFFSET

QUEUE END OFFSET

QUEUE IN OFFSET

QUEUE OUT OFFSET

' QUEUE OUT REMAINING

IN FRAGMENTED PUT

FRAGMENTED START

FRAGMENTED LENGTH

UNUSED
LOCAL
REMOTE
EOF_PENDING

\§Q+ b3 (whl/z
of C[,\avm(?f

or @a d

CIRCULAR QUEUES

]

FREE | | FREE
AREA DATA AREA
2 | 1
| ~ |
OUT IN
| |]

DATA | FREE | DATA
5 | AREA | 1
| ~ |
IN OuUT

IN
T)
| ALL FREE
OR
l ALL EMPTY ?
|
OUT

FREE IFF BYTES IN = BYTES OUT

MESSAGES

NORMAL CASE

DATA

N\
7

MBX
HELPER

mbx_$put_rec

< OK status_ok

'FRAGMENTED CASE

DATA3| |DATA2| |DATAl> MBX
HELPER

(UP TO X FRAGMENTS)
7

OK

p
N\

mbx_$put_frag

last fragment ?

status_ok

AEGIS Process Management

— Topics:

*

*

*

Process Switching (dispatching) g

fost

Interrupt Handling

Processor Scheduling

Synchronization‘ (eventcounts) ¢
Mutual Exclusion e

Special CPU B Handling e
Process Creation & Deletion =~
Asynchronous Fault Delivery

Clocks & Time-Driven Events

O AEGIS Process Management (Cont’d)

PmCCSS ma '\ctgvéw\en +

— Managers: | anages

*
*

*

Level One Processes (PROC 1)
Level Two Processes (PROC 2)
Level One Eventcounts (EO

Level Two Eventcounts (EC2)

Mutex Locks (ML) o

Timers (Timé)

WHY TWO LEVELS ?

PROCESS 2 e pegatte

unbounded number

- named by UID

can create and delete
mainly user processes

MST, etc.

VIRTUAL MEMORY |

PROCESS 1

fixed numbr 2°

named by PID - sl inkegers
no creation or deletion
some special virtual memory processs

eSoarcts wild
(/i«trin\r) 0S imt

£S

What is a Level One Pr'o’ces's?

— Processor State B L

o o Weot
g (WX Q

* Stack Pointers (SSP, USP)
* Address Space ID (ASID) 8 bt o
* Virtual Time Clock e ¥ o Lfiﬁ”‘f "

proc
* “Resource LQck”v Set

Scheduling Information
Lock @

: S T “egeowret T
* Scheduling Priority « ™"

~* Resource Lock Set

* Remaining Time Slice
* Time Since Last Wait

* State:
bound s ¢
waiting o we s
“suspended ussedebie 3
suspend PEenAing ;e suspd «preess sifha rsosre lock.
TSE with resource lock |

H.m shiee gad

s o -scheduted

Resource Locks

— Not really locks at PROC1 level
— Control deadlock detection
— Control scheduling priority

* A process with a resource lock
has proirity over a process with
none | |

* A process with an “important”
resource lock has proirity over a
less important one

Resource Locks (Cont’d)

— Control ability to turn on CPU B

" A process with an lock higher
than OK_ON_B can run on
CPU B Sigael +o A‘s()mu P 0930 " bo fuke

[P&je | FIL ("
* A process witn no locks or whose

highest lock is less than
OK ON_B cannot run on B

— Prevent process suspension

— User-mode code never holds a
- resource lock

Example : A Disk Driver

— needs exclusive access to the device

— must be runnable on CPU B

P1

P2 .

wants high priority

a time line :

holds disk lock

}‘P ,\b:)'

v OCCUr
lock ce B

M"’}b\’e’ o

Jeod

\I'\}

use disk return

o process
. o interrupt
leait }——
| page fault
v | wait
Thotds15F,
- onb lock lock
I <4 CPU A » | <

CPU B

from
fault

hma“ﬂswrw
‘ ' TE Y mal‘fsflw
N2 wedet ¥ om
Resource Locks e T actie, 5
. neo”> feed ot
e uaﬂam’ﬁ‘“‘
op
network $server lock {001}
mt_$lock {01 2}
ml_$free3 {024}
ml_$freed {03 8}
ml_$free5 {04 10 }
file_$lock lock { 05 20 }
ec2_$lock { 06 40 }
smd_$respond_lock { 07 80 }
smd_S$request_lock { 08 100 }
disk_$mnt_lock { 09 200 }
term_$lock { 10 400 } :
procl_$create lock { 11 800 } Jev) o
onb_$lock { 12 1000 faulted to CPUB } - ‘{“f.‘“ o
bok_$lock { 13 2000 runnable on B } o7
vtuid_$lock { 14 4000 } ©
vtoc_$lock { 15 8000 }
bat_$lock - { 16 10000 }.
ast_$lock { 17 20000 } o T N P
pag_$lock { 18 40000 } o T
ml_$free6 { 19 80000 } oY
flp_$lock { 20 100000 } |
win_$lock { 21 200000 }
ring_$xmit_lock { 22 400000 }
ml_$free7 { 23 800000 }
{ the next two locks are the
highest } o
time_$proc_lock { 24 1000000 -clock process
only }
time_$lock { 25 2000000 clock process
" database } .
o 64
¢ (W ¥) (O U \%\ " -
\ot\- sobe”” \X ot \o(‘,\'f \ WL 5‘5,\;. C\Q’Kiw
A’O \pove & . Qo \e - Wit \N)\Oio\“wh
Ws 0 N A (O 5

- The PROC1 Database

— The Process Control Block (PCB)

* Stores processor state &
scheduling information

* One per level one process
— The PCB Array | -
* Array [pid_t] of peb t
* pid t=1.32
— The CUrrently Running Process
* PROC1_$CURRENT
— The Ready List
* A linked list of PCBs

* Ordered by CPU scheduling
priority »

— All PROCI1 data is wired -

N PROCI OperatiOns
. U | | ‘ |
— Scheduling |
| * PROC1_$CHG_PRI

(pid, priority_increment)

increment/decremént CPU
priority

assigns new time slice

returns old priority

| | | * PROC1_$SET TS
o (pid, new_time _slice),

used only internally and by
clock process

O

PROC1 Operations (Cont’d)
— Resource Locks

- * PROCI1_$SET LOCK
- (lock_no)

crash system if higher lock
already held

* PROCI_$CLR_LOCK
| (lock_no)

crash if not held or not highest
lock held

*PROC1_$SPECIAL_CLR_LOCK
used for CPU B-A transition

| More PROC1 Operations
— SUSPEND/RESUME
* PROCI_$SUSPEND (pid)

returns boolean — success

set SUSPEND PENDING
otherwise:

* PROC1_$SUSPEND_EC
advanced when actually
suspended | |

* PROC1_$SUSPENDP (pid)

- returns boolean —> process
now suspended o

* PROC1_$RESUME (pid)

More PROC1 Operatlons

- Inqulry
* PROC1_$GET CPUT
(virtual tlme)

" Y\“(12
* PROCI_SGET_INFO ¥, 5"
(pid, mfo_record)

— Bind/Unbind

* PROC1_$BIND
(start_pc, stack_ptr, stack_base)

allocate PCB

build call frame on stack
make ready

returns new pid

* PROC1_$UNBIND (pid)
| suspend process

- make PCB available
(unbound)

——
Q

— Allocate Supervisor Stack

* PROCI_$ALLOC STACK
(size_needed) fotecrred

 returns STACK_PTR
wires pages of new stack

* PROC1_$FREE_STACK
~ (stack ptr), | |
* PROC1_$CREATE (start, vt
stack_size)

not really create—just a

combination of ;
ALLOC STACK and BIND

used only for special nucleus
processes

: b;v\C(

0O Implementing PROC1 Calls

— Rule: Ready = Current . he
* Except when interrupts are
disabled inside PROC1

" — Procedure
1. Check validity of call
2. Disable interrupts |
3. Modify PCB
o 4. Reorder ready list
5

. Dispatch

O Dispatching
— Procedure o |
* IF ready < > current THEN

save CPU state of current
- establish CPU state of ready

* Enable interrupts
* Return
- — Only hard part is,maintaining
O - time slice/virtual clock

* Special timer chp holds remaining
time slice

— Null process
* pid =2 |
* Always ready

weaas 1} can't have

* Always lowest priority (@ L&k

* Just loops loeks «t rewdy st
£ B out of srder = crash Ha sysfem
(p lomiBes eyt wnot in [ineecr ftlir)

— What if hlghest priority process not

readable on CPU B?
* Determmed by resource locks

* Just run null process

)

Interrupt Handling

— Interrupts vector directly to driver—
- no special interrupt queueing or
dispatching mechanism inftsgh octus,
' | MP‘ oyl page ¢
— Most interrupt handlers are very

simple—just advance an eventcount
and return—actual interrupt processing
done by driver in requesting process

(0 } o tee o da
: , o ‘ N3 pr el les el
— PROC1_$INT_ADVANCE has beea Ye,;{ VHe~
. _ S Assembler,
* Jump to here to advance an
eventcount and return from an
‘interrupt
. | o
* Push all registers on stack, plus wﬂji‘?, 5
eventcount address | ey
Keep ()66‘"
) R 1‘.*“’”
* Must be done in assembly
language

* INT_ADVANCE simply calls a
spec:1al version of

EC_$ADVANCE that doesn’t
- dispatch or enable interrups, then
calls dispatch if this interrupt is
returning to level 0

~ PROCI_S$INT _EXIT

* Use to simply return from
interrupt

~* Jump here with all rregisters intact

* Calls dispatch if necesseiry, then
RTE |

SCHEDULING ALGORITHM

READY LIST IS ORDERED BY THE FOLLOWING 48 BIT
QUANTIY (VIEWED AS A SINGLE INTEGER) |

=16

32 BIT RESOURCE LOCK SET 16 BIT PRIORITY

PRIORI’I;Y VARIES FROM 1 TO 16 WITH 16 BEING THE
HIGHEST

NULL PROCESS HAS PRIORITY ZERO
'THE PRIORITY OF A NEW PROCESS IS 16

PRIORITY IS DECREMENTED BY ONE AT EACH TIME
SLICE END

PRIORITY IS INCREMENTED BY ONE FOR‘ EACH 1/4

- SECOND OF WAIT TIME WHEN A PROCESS FINISHES

EC $WAIT J(wcsﬁﬁ“‘bf”—hu \\J an {a%{_’

A PROCESS IS ADDED TO THE READY LIST AT THE
END OF ITS PRIORITY CLASS. THIS IMPLEMENTS
ROUND-ROBIN SCHEDULING FOR PRIORITY ONE.

IF A TIME SLICE END OCCURS WHILE A PROCESS
HOLDS A RESOURCE LOCK, IT IS MOVED TO THE END
OF ITS PRIORITY CLASS WHEN THE LAST RESOURCE
LOCK IS CLEARED (TSE_ONB IN THE PCB)
SCHEDULING STATE)

THE TIME SLICE VALUES ARE LARGER FOR LOW
PRIORITY PROCESSES AND SMALLER FOR HIGH
PRIORITY PROCESSES. PRIORITY 16 GETS 1/10 SEC. ,
PRIORITY 1 GETS 1/2 SEC. (MAX. IN 16 BITS)

~ THE DISPLAY MANAGER ALWAYS HAS PRIORITY 16

O

- Level One Eventcounts

— Operations

- * EC_$WAIT (ecl, ec2, ec3,
valuel, value 2, value 3,)

* EC_$SWAITN (ec_ptr_list,
value_list, count)

~ these both return ordinal of
- first EC in list which is
O | satisfied |
* EC_$SADVANCE (ec)
- * EC_SREAD (ec)
returns current Value

normally done by inline code
for speed

* EC_$INIT (ec)

- Initializes an eventcount

Level One Eventcounts (Implementation)

O

— Format

- Integrated with PROC1

Value
Waiters list head
Waiters list tail

— Waiters list nodes allocated in process

stack

* wait value
* PCB pointer |
* forward/backward waiters list

, P1 . '
. wait _(ecl, ec2N%2, ec3)
wvl T P2 wv4

wvZz

s ~ links

P3

wait (ec2)
wv3 e wv5

dispatch
frame

P1 STACK

wv6

dispatch
frame

dispatch
frame

P2 STACK

P3 STACK

Mutual Exclusion
~ Operations

* ML_$LOCK (resource_lock)

obtain exclusive use of
resource

crash if 4
RESOURCE _LOCK < =
highest currently held lock
(enforced by

PROC _$SET LOCK)

* ML_$SUNLOCK (resource lock)
release exclusion -

crash if RESOURSE_LOCK
- <> highest currently held lock

Mutual Exclusion (ImplementatiOn)

— Data

*

- ML_
1.

One eventcount and one lock byte
for each of the 32 resource locks

$LOCK
Call PROC1_$SET LOCK—

" must be done flI'St

Try to set lock bit (BSET
- instruction) return in successful

. Get a “ticket” (eventcount Value

to wait for)
* Must be done disabled

* QGuarantees FIFO ordering

Q Mutual Exclusion (Cont’d)
- ML _$UNLOCK
1. Clear lock byte

2. If ticket value = EC value there
are no waiters —> return

3. Advance eventcount

—Reality

| * Because these calls are very
O - heavily used, they have been
merged with PROCI, refer to
PCBs directly, and are carefully
coded in assembly language

| ‘Svpecial Considerations For
@ 2 CPU (68000)Systems
— 3 B-A Returns
* Normal
CPU A proceeds ’ normally.
* Error

- Cause bus error on A.
Usually generates user mode
fault. |

O * Interrupt

- Cause interrupt on A. Used
when process returning to A
is not the highest priority.

Vectors directly to
PROC1_SINT EXIT.

O | - Special Considerations For
2 CPU (68000) Systems

— Multiple Faults in Same Instruction

* It can happen on B-A return that
- an interrupt is desired because
ready <> current. However, it
may not happen due to second
page fault in some instruction.
"PROC_$SET LOCK detects this
and fixes the ready list.
O -
| — Force Dispatch
* It may happen on CPU B that
ready = current but current
cannot run on B. A special
version of dispatch is used by
PROC1_$CLR LOCK to force
a process switch.

Timer Hardware

— Battery operated “digital watch”

* Retains date and time
Used only at node boot

* Updated by standalone
calendar utility

Not as accurate as real digital — 1"
watch (- 1 part in 10%) |

The Real Time Clock

— Two generally accessible external
variables

* TIME_$CLOCKH—The high
32 bits of the 48 bit system time.
Incremented by 1 at each
- interrupt from 4 usec timer (every
1/4 sec).

* TIME_$CLOCKH_EC—An
eventcount which is advanced
everytlme TIME $CLOCKH

‘is incremented.
— One procedure call
* TIME $CLOCK (real time)

Returns the full 48 bit system
by reading the 4 usec timer.

Real-Time Events

— Operations |
* TIME_$SWAIT (rel _abs,
expiration_time) |
~ Blocks caller until a relative
~or absolute expiration time.
~* TIME_WAIT2 (rel_abs,
exp_time, eventcount)

Waits for expiration time, or
for one arbitrary eventcount.

Returns boolean — event—
count went off, no timer.

* TIME_$ADVANCE (rel_abs,
exp_time, eventcount)

Advances eventcount when
EXP_TIME is reached.

Virtual Time Events

— Handled by_ interrupt routine for
 Susec timer

~— Per—process virtual time queue

- H’andles repeating events, like time—
slice—end

— Future virtual-time events

* UNIX signals

* Working set memory management

| The Clock Process

A special high priority, wired, system
process (pid #3)

Handles real-time events and time-
slice ends |

One big loop waiting on a single clock ’
process EC

Real-time event processing

* List of all real-time events,

ordered by absolute expriation
time |

* 32 usec timer loaded with next
event | o

* Interrupt from this timer
advances clock process EC

* Clock process discovers expired
events, advances associated EC,
and dequeues them.

Level Two Process Manager
— Creates and deletes user prOCesses
— Manages UID process name space
— Passes through some PROCI calls
— Allocatés user stack files

— Maintains level 2 process stack
* user stack UID

*

UNIX process ID information

* whether a process is an “orphan”

* whether a process should be

stopped at logout

B
process group UID % gulier

— Implements asynchronous faults

-, LEVELTWO PROCESS MANAGER

User Stack Allocation

— Maintains a pool of used user Stack,files to avoid
file_$create / file_$delete overhead

—~ PROC2_$ALLOC_STACK_FILE
— PROC2_$FREE_STACK_FILE
—~ PROC2 _CLEANUP STACKS (subject_id)

Pass Through Operations

— PROC2_$SUSPEND (puid)
O | Waits for successful suspension if necessary

~ PROC2_$RESUME (puid)

Inquiry Operations

— PROC2_S$LIST (puid_list, list_size, process_count) ®s7¢"
- returns a list of active level 2 processes

— PROC2_$GET INFO(p2_uid, info_buf, buf_size)
- —PROC2_$WHO_AM I (p2_uid) |

- PROC2_$MY_PID |
return level 2 and level 1 names of current process

Miscellaneous
— PROC2_$MAKE_SERVER (p2_uid)

make given process a “server”
server processes are not stopped at logout

‘Create / Delete Operations

PROC2_SCREATE
(stack_uid, start_pc, is_orphan, new_uid)
allocate a new address space and map the user
stack (stack_uid); allocate a supervisor stack and
bind all to a level one process; process will execute
starting at start_pc in user mode; allocate new
process group UID of orphan o

PROC2_$FORK (satck_uid, start_pc, new_uid)

like PROC2_$CREATE but different treatment
of new address space for UNIX; a forked process
is never an orphan

PROC2 S$MAKE_ORPHAN (p2_uid)
make the given process an orphan

PROC2_$DELETE

~ delete the calling process and release all the
- resources; calls almost all nucleus managers to

cleanup their per—process data; if orphan, frees the
user stack; otherwise advances the process |
termination eventcount; cannot currently delete
other processes

O LEVEL TWO EVENTCOUNTS

— Like level one except that eventcounts
are unwired and can be anywhere in
Virtual Memory

— Level two calls can also wait on level
one eventcounts — they are recognized
by their special addresses, obtained
from manager specific calls that return

them

O — Level two eventcount calls do not
work over the network

— Operations are almost identical to
level one; manager name is EC2
Documented in System Programmer
manual |

LEVEL TWO EVENTCOUNT
IMPLEMENTATION

Data Structures

— One level 1 ec per process; all EC2_SWAIT
calls wait ong this

— Each level two ec heads a linked list of

WAITERS NODES:
| VALUE
EVENTCOUNT Waiters List
Head
WAIT VALUE
WAITERS NODE o | LK
~ EC2_SWAIT

For level 2 ec : allocate and chain a waiters node
For level 1 ec: include in ec_$waitn call

- EC2_SADVANCE
Runs in user mode for speed if no waiters;

Increment value; if waiters list is not null, call
EC2_$WAKEUP (an SVC)

- EC2_$WAKEUP
Search waiters list for any satisfied wait values
If found, remove from list and advance the level
one ec of the corresponding process

User Mode Process/Program Management
o ’Program Lévels, Processes, and Fork
¢ The Stack File
¢ Mapped Segment Manager (MS)
& Storage allocator (RWS)
¢ The loader, KGT, etc.

¢ Libraries, global and‘ private

The User Program Environment
¢ Contains:
o A storage (virtual memory) allocator
e A mapped file manager
e A stream manager
e Some "standard” streams
e Some program arguments

e Exception handling mechanisms

¢ Semi-isolated
e Parent affects child only by

o passing arguments
v o passing streams
O . o inherited state
o pre-arranged sharing
° Child affects parent.only by
o returned status '
o "permanent” side-effects

o pre_arranged sharing

¢ Design Trade-offs
e What state to inherif automatically

e What system calls should have "permanent” side-effects (e.g. gpr_S$init,
stream_S$create, pad_S$def pfk) '

New Process vs. Same Process

Q ¢ Goal: make them identical except for

e performance (
. ‘C)‘v\,_ $ bdﬂi;'

Ne Conlur r{/f\(/j i’(‘ t)(;v\ clo P

e potential concurrency

e address space available

- & Reality:
e Substantial performance penalty for new process
e New process can’t use private libraries

e Complex export-import operations required to use most resources in new

process — most managers (e.g. gpr, smd, gpio, magtape) don’t
implement. '
. . A el st o
e pgm_Sinvoke for new process not documented ,P 5 M-—.-Erlﬂ\/ol’{[_] ,, gy
| maftes H &
Q ¢ Result: customer use of multiple processes is very limited chsid precess

Program Environment Tree

Process 1

- Level 0

A\ 4

1

2

Level 0

1

A 4

Process 3

Level 0

2 .

Level 0

3

Process 2

Process 4

| 1

.

Level 0

Process 5

Each small box is a separate program environment
Within a process, program levels form a stack

Calls That Create Program Environments

Q <© pgm_$invoke_s(name, name_len, argc, argyv, sidc, sidyv,
flags, ecp, statusl, status2)

e makes a new process if

o pgm_$wait NOT in flags
— creation record left mapped in parent
— parent can wait for termination and check status

o pgm_S$background in flags
~ creation record unmapped
— process disappears when done

o program is a protected subsystem
~ caller waits for termination

¢ pgm_Sexec(name, namelen, argc, argv, env, status)

e like pgm_S$invoke, except A

O o never makes a new process
o first exits current level with partial cleanup

o doesn’t rearrange streams

Miscellaneous Process-related Calls

O

¢ pm_$finish(ecp, status)

Waits for process termination

Returns its status

Unmaps creation record

Releases stack file

Note: this call should be made even if ec2_S$wait is used

& pm_$make_orphan(ecp, p2uid, ‘statu’s') .
e Makes process an orphan |

e Returns process UID (all subsequent references must use this instead of
ecp)

e This operation cannot be undone

Process Names

¢ Processes are initially unnamed
¢ Name can be assigned by creator or by process itself

¢ Names are just process UIDs, cataloged in
‘node_data/proc_dir

<& Name can only be set once (because there is no way to tell
DM to change name in banner)

¢ Several PM_$' calls to set/inquire process names

Fork

\) - o pm_$fork(is_vfork, parent_SP, child_puid, child_suid, ecp,
status) | |

¢ Makes a new process
e copies the parent’s stack file

e copies the parent’s address space, except that references to parent’s
stack are replaced with references to child’s stack

¢ Managers with global state (e.g. streams) must be
informed

e streams pre-fork/post—fork

) pfm_$staﬁc_fork

O

Vfork
¢ Push a program level

- & Make a new process

e Address space is an EXACT duplicate of parent

¢ Parent waits untilA child executes PGM_$EXEC

e Child’s activity during this time limited mainly to streams operations

© When child executes PGM_$EXEC

e Address Space is cleared

- o Equivalent of new process pgm_$invoke is done, using already created
process)

e New stack file is initialized at this point

¢ Parent resumes execution, and pops a program level to
recover streams state /

Sta_ck File Allocation

Holds ALL per-process read—-write data

File offset ‘ | Virtual Address

; O Creation record

. termination eventcount
. termination status

. arguments

. exported streams

. program to execute

. login info

. UNIX context

8000
| Per process static data for global libraries
30000 guard segment
38000 _
User mode execution stack
78000 guard segment
80000 ~

Storage managed by RWS

200000

208000
230000
238000

278000

various

Mapped Storage Manager (MS)

maps objects into the private address

space

handles object locking and unlocking

objects are automatically unmapped

- and unlocked at level exit

based on kernel FILE and MST
managers |

used by EVERYBODY, including
other PM services
(read / write storage manager)

MS_$MAPL (name, len, start, length, conc, access,
extend_ok, length_mapped, status):
univ_ptr

- maps the area of the file ‘name’ (‘len’ chars)
starting at offset ‘start’ for ‘length’ bytes

— returns the virtual address of the first byte mapped
(function value), and the number of bytes mapped
(‘length_mapped’) |

— locks the file according to (conc, access); ‘conc’
specifies the desired concurrency control:
ms_$nr xor_1w N readers XOR 1 writer
ms_ $cowriters N readers and N writers™
ms_$none ~ no locking

— *cowriters must be on the same node

— ‘access’ specifies the desired access to the file:

ms_S$r read

“ms_$rx read, execute
ms_$wr write, read
ms_$wrx | write, read, execute

ms_$riw read intend to write

— allows file growth if extend_ok is true

)

MS_$SMAPL_UID (uid, start, length, conc, access,
extend ok, length mapped,
status): univ _ptr

— similar to MS_$MAPL, except ‘uid’ is spemfled in
lieu of ‘name’ and ‘len’

| MS $CRMAPL (name, len, start, length, conc,

status): univ_ptr

— similar to MS_$MAPL, but creates the object and
catalogs it under ‘name’, ‘len’

- ’object is mapped for read / write
— extend_ok is true (it MUST be!)

— obiject is made permanent

MS $CRMAPL _UID (uid, start, length, conc,
status): univ_ptr

— similar to MS_$SMAPIL._UID except that an
object is created and its uid is returned

— object is NOT made permanent

7
\U" nu,l\f'«b

b @:H oS pegns e

MS $CRTEMP (location len, start, length, conc,
status): univ_ptr

— like MS_$CRMAPL but creates a temporary,
unnamed object

— ‘location’, ‘len’ descibe the volume on which the
temporary object is to be created
MS _SREMAP (va, start, length, length_mapped,

status): univ _ptr

— unmaps a portion of the object at ‘va’ and maps a
new section (‘start’, ‘length’) |

— object stays locked as before

MS_SADDMAP (va, start, length, length mapped,
status): univ_ptr

— maps an additional part of object mapped at ‘va’

— object at ‘va’ is not unmapped

— object remains locked as before

— object is unlocked when the oldest part is
unmapped

—

O

ON

MS_SUNMAP (va, length_mapped, status)

— unmaps the object specified by ‘va’ and
‘length_mapped’

— unlocks the object if this ‘va’ was returned from
from a procedure other than MS_SADDMAP
MS_S$UNMAP PARTIAL astd Dy lowdes

— unmaps part of a mapping done by one of the
MS_§xxMAPxx procedures

— does not unlock the object

MS SRELOCK (va, access, status)
— changes the lock on an object

— access must be ‘ms_$r’ or ‘ms_$rw’

MS_SATTRIBUTES (Va attributes, actlen maxlen,
status)

— returns the attributes of the object mapped at ‘va’

— attributes include:

permanent flag

immutable flag

current length

disk blocks used

date/time used, modified, created
MS_$TRUNCATE (va, length, status)
— truncates object mapped at ‘va’ to ‘length’ bytes
MS_$SMK _ PERMANENT (va, opts, name, len,

status)

— makes a temporary object (created with
MS_$CRTEMP) permanent and names it

— optionally creates a backup file if an ob]ect
with an identical name exists

MS_$MK_TEMPORARY (va, status)

~ makes a permanent file (mapped at ‘va’)
temporary

— drops its name

O

MS_$MK_IMMUTABLE (va, status)

— makes the object mapped at ‘va’ immutable

MS_$NEIGHBORS (val, va2, status): boolean

— determine if the objects mapped at ‘val’ and
‘va?2’ reside on the same disk volume

MS_$FW_FILE (va, status)

— causes the file mapped at ‘va’ to be force—written
to disk

— doesn’t return until the forced write completes

MS_$FW_PARTIAL (va, length, status)
— force writes part of the object mapped at ‘va’
— ‘length’ bytes are force—written

— doesn’t return until the force write is complete

MS_$STREAMS_FLAG (va, flag, status)

— sets an internal flag saying, ”the mapping at this
virtual address is owned by a STREAMS type
manager”’

— needed because of UNIX ‘exec’ primitive

~ required because of mangers orientation to
‘Mark/Release’ instead of ‘Resouces’

Storage Allocation (RWS)

Q) | ¢ Basic call:

e p :=rws_$alloc_rw __pool(size, {rws_$std_pool | rws_8$streams_tm_pool})

Allocates non-returnable vanilla virtual memory

Recovered at program termination

e rws_$streams_tm_pool used to avoid recovery at pgm_S$exec (because

streams are supposed to stay open across EXEC.

¢ Implementation

0

Maintain high Water mark in stack file
Allocate and ms_$mapl in multiples of a segment

Maintain VM high water mark within a given stack allocation

Just push and pop high water marks- at program level transitions.

cleanup takes care of the rest

¢ Heap allocation

rws_$alloc_heap_pool and rws_§$release_heap
Layered on rws_$alloc_rw_pool

Maintains special free-lists for sniall blocks

16 bytes overhead precedes each allocated block

Not notably fast

MS

Coup (flah
{

s®

(nv’_ more u\nociw(es7 fle mere ﬁlciﬁiu‘:\j
with s&h\:\ﬂ up data bdse,s)enf‘rj Conbre

Object Module |

32 byte stream header (obs.) T’

32 byte object module header ~

Pure | pmcec'tv*gi Jts
. - . - § \ n:.l’""
Sections Debvy™

(y,,zdl‘?SS mgl’i«“g

Impure data e varichic

Priags Mot haet |2 chundl)

e solved by dinder

Global Symbol Data .. . ceci

Dn?,b wg h.bu;

Relocation Data ‘Em- (et daja

ms_$unmap_
partial

More impure data ~peat
)

v

— (0");(’5 p(a'{l(;/\{'D

rws_$alloc, A

copy,
resolve ext.

More global symbols

More relocation data

and relocate

 fke londed y 11T
un w\apptol pé‘-’h‘d’l “{)b
’(Le Pvlrfr S£LHO¢\S, '

(iw'A\ Ste bn

care of unloading

¢ o Pm:,j(éwvn)

| t
wm,\ on Coecw
) ged 6\°b“l)

U_,\(\isol

wee fhe KGT fo 7

S ‘Dymm:c ini

Ve data Strysin mEnovy bteaust yom

¢ Note that normal cleanup of MS and RWS managers takes

[blectss fla ’0«3& fie ’cdd(wj Pmccﬁj,

' &r
r - S WANt
O,\\ [pad fon pu)“s ¥ j

{-{ahza';n'm (s Mucln)muck vpaskr,

Touch .

ot 255

o P
anate Libraries (INLIB)

¢ Start with normal load

¢ Enter marked global symbols into private KGT

e e e

M { { (;L'hb' kerez
@" main progr@do kel hon

< Persists only until termination of current program level

¢ Hence INLIB is an internal shell command

—

V‘M\Y\ v

e C
&\)&\\: b\\.h \1 b

Unresolved Globals

¢ Never terminate any loading process

¢ Generate TRAP instruction, followed by symbol name, in
"DATA$ ‘

¢ When trap occurs at run time, KGT is tried again Second ‘l‘g‘ Sl
' : n
e if successful, TRAP is replaced by IMP
. I 05;‘*3’ was CLS
o otherwise fault handling proceeds no Sulher a'HCMp"’
ok pesolwbion

s alg
N g
\(Q‘((\Ov b\%ﬁ/("/'/ /y\o"“> //
B A\ £ \\w& Y ;\é\w\ O
QO‘ \b /iy e \/\()(
(\("“)\
5\33 » - Y \‘LG/\
V”v" Q‘ \Q‘JL\
9(03(‘”
m‘w)tﬁ)

(’\QQ | ‘\\ \’)\)'
LS s
Global Libraries R
v \V\"'\‘m \“Jq’“_\,‘ﬁ L‘\S
<o I:oadeeLby ENV in response to DM SH, SPM, or GO
RTEEN \w“‘Q ‘
S0t el NS
<> Use mst $map global mstead of ms $mapl o e ; Y ¥
(;7 (o"’b ‘A’Gé \L(“/\ '
. " .
¢ Use globrws_$alloc_rw for DATAS section \\\oa S
¢ Use privrws_8$alloc_rw for impure sections other than
DATA X :
$,\\:\6 U‘g:\sx QI\’OLQL,S"
o Skip initializationy » "
*\Uv 3,,‘..
o Map stack file mto appropriate range of private address space in

pm Sinit

¢ Make DATAS read-only after loading is compiete

e Shared storage managers initialized first

¢ Main program called in every new process / 9858(“5,{);:“(le

e Hence should be avoided if library is not always needed

“Dynamlc lmkmg” not possible btcause you can'$
J ‘ . write "H\Jvf{

{obals linkg st Up in 3mpuo& area

Error and Fault Handling

¢ Kinds of faults

¢ Supervisor mode fault handling/generation
¢ User mode fault generation

¢ Fault handlers -

< Dynainic Cleanup Handlers

¢ Static Cleanup Handlers

o Mark/Release

Error and Fault Handlin‘gv
~ ¢ Kinds of faults |

< Supervisor mpde fault_handling/gen_eration
¢ User mode fau]t generation

¢ Fault handlers

¢ Dynamic Cleanup'Handlers

¢ Static Cleanup Handlers

- © Mark/Release

Kinds of Faults

{
O ¢ Program error
e Unimplemented instruction
e Odd address error 2
- g ged T o
e Reference to invalid address nov th oy
e Access violation ot et gD
e Reference to unresolved global
e Guard fault (stack overflow)
¢ System error
e Network failure (e.g. too many transmit retries)
e Disk full
s e Disk error
O
o Asynchronous
e Quit
e Stop
e UNIX signal (e.g. child death)
. gl
: 4%
\GaS¥ 7
{ TS
Q | BOF g 0

Supervisor Mode Fault Handling (synchronous) |

_—
L) ¢ Address-related faults

e These are all page faults that cannot be resolved, either because of a user
program error, or due to system failure

e Assign appropriate status code
e On 68000 systems, return to CPU A with a bus error

e If fault occurred in supervisor mode:

o If address in supervisor range, crash system

o Otherwise, reportAboth supervisor and user mode state

e Go to fim_$com to report fault to user mode

¢ CPU-detected faults N
. . VAT 'a‘u
. %{r"'\'\‘“\L o~

e Just set the status code, and go to fim_$com

Q . <& Common fault handling

e Push a fault frame on the user mode stack

e If this causes anothér fault, process dies
e Fault frame contains registers, PC, status, etc.
e Fault frame flagged with 16#DFDR

e Force supervisor stack to contain a simple exception frame with PC set to
the user mode fim (set by fim_$install)

e RTE

le

Asynchronous Fault Generation

© Set desired fault status in fim_S$trace_status

¢ Set trace—trap bit in supervisor stack of process to receive
fault

¢ Advance fim_S$quit_ec to get process out of nucleus if
necessary — long waiters also wait on this and
fim_$quit_value |

¢ When trace-trap occurs, use fim_$trace_status, and go to
fim_$com to complete fault handling normally

< Disabling handled in user mode support

¢ User mode must acknowledge fault (using
fim_S$acknowledge) before further asynchronous faults can
occur

Multiple Asynchronous Faults

U ¢ proc2_Strace_fault(p2_uid, fault_status, status)

e FError if a fault is pending which has not yet been acknowledged by
fim_S$acknowledge

e DM says "another fault is pending for this process”

¢ May be inhibited in user mode by pfm_ $inhibit, due to user program or
system library error in missing a re-enable

e May be hung in nucleus in a call (network retry is typical) that doesn’t
wait on fim_$quit_ec ' |

e User fim may be trashed and getting faults in the fault handler before
- previous fault can be acknowledged

o procz_$trace_fault_enq(p2_uid, fault_status, status)

e Enqueues multiple faults
D e Subsequent féults delivered after fim_8$acknowledge

e Used by UNIX signal mechanism to avoid losing faults

Process Groups

© This mechanism supports AUX

o It only affects asynchronous fault delivery

¢ A parent and its child (either pm_$fork or pgm_S$invoke)
are in the same process group

¢ A background process (pgm_$background to pgm_Sinvoke,
or pgm_$make_orphan) starts a new process group

© A process may decree itself to be in a new process group

o A process group is denoted by a UID

o proc2_$trace_fault_pgroup and
proc2_Strace_fault_pgroup_enq

e Deliver faults to all members of process group
e Process UID may ;ﬁ% used to denote the process group it is in

e The DM uses this form of the call for quits

User Mode Fault Layering

continue
execution

'fault

pfm_$fault handlers

pfm_S$enable

pgm_Sexit

pfm_Serror_
trap

W e ' dynamic
Ak s - pfm_8$signal ‘cleanup
54 o handlers
W
supervisor \/

‘\;\‘ .‘C"’
\ '\'V(,U\Q‘ cq ot 5()“

o e

Fault Handlers

P seal Py / ' (
] I “ an €x erw“
o Always »’static” (i.e. not related to call stack) b be
m tull
et ia hcrmwl ovdtr on Y over stacle 'F(‘Gwmé,-.' ot

¢ Established by pfm_$establish_fault_handler(func_ptr)

e Returns handle for later'felease

e Func_ptr is a Pascal (or C) functiori_pointer whose single argument is the
fault frame constructed in the nucleus

¢ Called in inverse ordér of establishment, by pfm_$fault
¢ Not called on asynchronous faults if inhibited

<o Return value from fault handler can cause_ fault to be
ignored, if restart is possible ’

e restartability is recorded in the fault frame by the nucleus, depending on
the nature of the fault — addressing faults are usually not restartable

e if a fault handler says to ignore the fault, no further fault handlers are
called, and the program is restarted

¢ if no fault handler says to ignore the fault, then proceed to pfm_S$signal,

and dynamic cleanup handlers

O~

) - 4\()*\[“& L
Dynamic Cleanup Handl ol
‘ ynamlc eanup ranaiers . o»\‘"”/js
¢ Associated with active call frames on stack
cleanup list SP .__.»‘ ‘E-:-:-:-:-:-:-:-:-:-:-:-:-:::-:-:Z* 7
i | |

A5-A7 - g
PC '

cleanup record
A5-A7
PC

stack

< Activated (not called) by pfm_$signal

e thus includes all program termination except return from main program

o Return to exceptibn handling only by resignal

¢ Cleanup handler automatically released when activated.

¢ pfm_S8inhibit done automatically

A

Dynamic Cleanup Handlers (page 2)

¢ Consistency checking

e cleanup list scanned for handler with SP >= current SP
e cleanup record checked for overwriting due to reuse of stack frame

exited without pfm_Srelease_cleanup

¢ These cleanup handlers are moderately expensive in
relation to a simple procedure call. We are working on a
cheaper mechanism '

© We should really have language support for this, but...

o | Typical Cleanup Handler Usage
U var -
cleanup_rec: pfm_S$cleanup_rec;

BEGIN

status := pfm_S$cleanup(cleanup_rec);
IF status.all = pfm_$cleanup_set THEN
BEGIN
{ normal operation }
pfm_Srelease_cleanup(cleanup_rec);
END ‘
ELSE BEGIN |
{ cleanup the mess we started }

{ depending on the operation we desire, either: }

PFM_$ENABLE;

RETURN; { turns fault into normal bad status from

Q this procedure }
{ OR } -
pfm_S$signal(status); { resignal other cleanup
, handlers }
END;
END;

Disabling Asynchronous Faults

< pfm_$inhibit
e Increment inhibit counter
¢ pfm_$fault

e If fault is asynchronous (recorded in fault frame by nucledf fim) and
inhibit count is not zerok)record' status and ignore fault.

¢ pfm_$enable

o Decrement inhibit counter

e If zero, and status recorded by pfm_$fault, then pfm_S$error_trap

¢ Many system calls (e.g. ec2_$wait_svc, but not é02_$wait)
will return error status if asynchronous faults are inhibited
and one occurs '

<& Note: these calls ONLY inhibit asynchronous faults. Since
it is very difficult to preventasynchronous faults altogether,
it is best to use a cleanup handler if you need to be robust
and can afford the cost. |

Program Initiation/Termination
O ¢ A. K. A. Mark/Release

¢ pm_$proc_mark

o called by pgm_8invoke after program is loaded and streams switched
e pm_S$level <- pm_$leve1 +1

e call mark/release handlers

. establish normal cleanup handler

e set status/severity td status_$OK

e if not cleanup, call main program

e call pm_S$release

© pm_$proc_release
O e call static cleanup handlers
e pm_S$level <- pm_Slevel - 1
e call mark/release handlers
¢ pgm_$set_severity

e Set status.code (used in pm_S$mark) to the severity value

. Les
. . \Q(&v(‘ w""
i v\u“j’urj o ¥¢ A,\O e
I/‘ &\:\/’ Vl . D e g‘/’% Y\a" qgcb\
\(L . e I W €
? ,Mvv

e
Static Cleanup Handlers W 1 e e

¢ Executed (calléd) at program termination, from the level
at which handler was established

¢ Established via pfm_$static_cleanup(ecb_addr, status)
¢ Called in inverse order of establishment

¢ Calling sequence is

e handler(false, new_level_number, termination_status, is_exec)

¢ No actual relation to fault handling

¢ Preferred method of cleanup for managers in global or
‘private libraries (better than a mark/release handler)

¢ Try to avoid depending on managers other than MS, RWS,
STREAMS in your static cleanup handler, since other
managers’ cleanup routines may be called before yours (we
should fix this, but are not sure how)

Mark/Release Handlers

&) ¢ Like static fault handlers except:

e called on all level transition, both up and down

¢ Use when

e you need to keep client status at each level
e you need to initialize default state for new programs

e you have to "init” call where you could conveniently establish a static
cleanup handler

e almost all programs will use your services (e.g. streams)

¢ Otherwise use a static cleanup handler, established in your
?init” call, and released in your ”terminate’ call.

¢ pfm_Strace_info \p & “_&bv,

Fault State and Traceback Recording

¢ Information reported by FST and TB commands

i

¢ At the end of pfm_$fault, and before pfm_S$signal, the
registers, etc., in the fault frame are copied to a global
buffer for later use. Alsok the stack is scanned (if possible)
and routine names and line numbers are put in another
- global buffer ‘

¢ Traceback collection sometimes gets a second fault

Ouuf
o pfm_$fault_info . Qi
o5 Y
(857
(4%

. 9
(‘7)\&“‘ N Yroe®
- o N
W \ 29

g R

A SE el
e "’.g; ¢
b'y"“}y W Fo
0’ (1;70 C’L(i‘b"'&
47 i 00
\,)l

o THE STREAM MANAGER
_ DeVice Independent I/O
N .

' o, . el bOX T
- — ABig Switch s Vﬁgﬂv

USER PROGRAMS

/1 1\

D _FILE

VIR_TERMINAL MAGTAPE

TYPE MANAGER

[,

@

o

Topics
The Stream Table
Opening Streams
The Generic Switch Call
Some Special Switch Calls

The D_FILE Manager

Other Managers

‘THE STREAM TABLE

g

- The Database of the Switch itself -
» | Qe
— Array [0...127] of stream_table entry —

comivo bloc ke

roces

— Each entry is :

UID
HANDLE

MANAGER TYPE
O o OPEN PM_LEVEL
| | SOME UNIX BITS :

* close_on_exec
* ndelay

o

OPENING A STREAM |

PATHNAME

\l/ name_Sresolve

ALLOCATE A
STREAM TABLE
ENTRY |

\

A4

ulD ——
file_Sattributes
/
VTOCE |
\L TYPE UID
CONVERT TO
MANAGER
TYPE
\LMGR_TYPE
CALL TYPE
MANAGER’S
OPEN HANDLE

STREAM TABLE

S A TYPICAL CALL
O

- stream_$get_rec

6 stream_id

| stream_get rec

\l/ handle

Type Manager

WITH stream_table[stream_id] DO
CASE manager_type OF

d_file: dfile_$get_rec(handle,args...)
vir_term: vt_$get rec(handle,args...)

END ‘Q‘,r-m\ Jerminst

O

~Stream Table Operations

— STREAM_$SWITCH

* Move stream table entry to a
different stream 1d.

* Caller can specify new sid —
otherwise allocate downward
from 127 | et e,
(/W\»ea (lto :::HG; pef\ -
— STREAM $REPLICATE and |
STREAM _$DUP _ mm e |

Pt 547
* Copy stream table entry to a v“‘“ ﬁon
different sid w

Two resulting streams are |
indistinguishable by type manager

* PM_OPEN_LEVEL and some
other STREAM TABLE Values
may differ

* MGR_SREPLICATE is called to
increment replication count

- * DUP & REPLICATE differ in order
- of allocating new sid

Inquire/Redefine

Mixture of switch attributes and

- manager specific attributes—
manager called only if switch can’t

do operation itself.

Pathname operations done in switch,
since manager is pathname
independent.

Best to operate on only one attribute
per call, so sensible errors can be
reported. | -

Growing number of inquires that
manager must answer makes
manager implementation tedious.

MGR_S$INQUIRE must be able to
open object temporarily, for inquire by
name.

IMPORT/EXPORT

— Like replicate, except new stream is in
a different process.

— Used to pass standard streams to a new
process. |

— Both manager data and stream table
data, which are not shared, must be
- packed for export.

M""

@ - STREAM_$GET_XP_BUF

* Call MGR_$EXPORT to
package data

* Add STREAM _TABLE data

* Caller provides buffer (in creation
record for PGM_$INVOKE) |

* Also called by
PAD $CREATE[WINDOW]

IMPORT/EXPORT (Cont’d)

- - STREAM_$SOPEN_ XP_BUF

* Allocate and fill
STREAM_TABLE entry

* Call MGR_$IMPORT
* Called by PM_$INIT in new,
| process
- - STREAM_$FORK

* Just call MGR $FORK—data
already cop1ed ‘

Manager Specific Functions

‘Operations that are not common to all
types of streams | |

* eg. PAD $USE FONT,
SIO_$CONTROL

They take a STREAM_ID as

argument, however

These entries must look in the stream
table to find their handles, and to
check that the stream is open and has
the right type. |

MGR_SCREATE is a manager
specific function because there is no
open stream involved, and no object
from which to derive the type.

STREAM_$CREATE is mis—named.
It should be/D_FILE3_CREATE.

\ o WASC

po—

The D_FILE Manager

- — The file structure

* VTOCE, stream header
— The open stream structure
* PFCB, SFCB

. . . Y\\ LN\) \\
- “Windowing” myzjw @wfg parie T

— Data Organization
* D_FILE1
Counted Records (REC)
* D_FILE2 L
- Byte Stream (UN DgF)
* D_FILE3 e

Byte Stream (UASC) >

— Locking and Concurrency

THE FILE STRUCTURE

32 BYTE BLOCK

HEADER
+ LENGTH .§ b\jlfﬂa- c§ I
+ RECORD TYPE
VTOCE CONTROL
TYPE UID + ASCII/BINARY
+ HEADER
T CHECKSUM
TEMP/PERM N
OS STUFF 4
DATA
024 BYTES-OF
PATA—
Lo
. \00\/"{” \\2, . Cl\{)u} , ; - Lo*{
wol 0\0 e PAW'(’ Lo L?“ ot “WZ‘O\L
O T e @

THE OPEN STREAM STRUCTURE

PRIVATE TO EACH

SHARED AMONG ALL

L

PROCESS PROCESSES ON A NODE
Handle | |
| PFCB SFCB
UID > UID, TYPE
Replication Count | Usé Counts °
Mapping Information 4 users
| # writers

| Open Attributes

¥ opos e y
*oconc e

Redefmed Attributes

&move*/ locate
*force locate Ly
* append |

Private Seek Key
‘Seek Key Shared ?

no_concurrent_write
opens

Lock Bit

| Header Cache

if TRUE

> Shared Seek Key

'ONE TO MANY RELATIONSHIP

PFCB

o psz W‘:D
bt S ot
2T (e
SSK PFCB - PFCB
/

-~ PFCB

SFCB /

SSK

PFCB

WINDOWING

— The d_file managers do “I/O” by

mapping files

- l6i1</IB may be too small to map a

whole file

— So, we move a window over the file
VA := stream_window(PFCB, offset, lenth)

0
_ _ Segment boundary = |
map_info in, PFCB
| 7 AT
offs_et/ A% ;ff/ 777
: spgment Heanda /
% 27771
VIRTUAL ADDRESS{ j
| O\ M IKTICTK
| | | 77
| _ _segment boundary _
* OPTIMIZATION:
potential callers of stream_$window

check and use map info first

FILE

‘Data Organization

— Byte Stream

* UNDEF : D_FILE2

* UASC: D_FILE3
— File (except header) is “pure data”
— Seek key is 4-byte file offset

— No “record” seek
- GETREC/GETBUF

* UNDEF | |
Return the number of bytes
requested, up to EOF

* UASC

GETREC: return # of bytes
requested, up to EOF/newline.
Say how many bytes would be
returned if the buffer were big

enough.
GETBUF: same as UNDEF

DATA ORGANIZATION
- Countéd Records : (REC=d_filel)

* 4 byte count followed by data

* The count (hence data) always
word aligned

* 8 byte seek key o c?jéld,\ "
| \O“Gw w\w?s
Record Offset Bytifl (f)ﬂféfset
- 2 Subtypes :

* V: Variable Length

* F2 : Fixed Length
allows record seeks

if set by Redefine, causes
error on Putrec if length is
wrong

Data Operation (Cont’d)

— Creation
. D. fle?

* STREAM_$CREATE makes
UASC/ASCII

D el

* STREAM_$CREATE_BINARY
- makes REC/binary

* All others must be made by
redefine.

'Locking & Concurrency

‘— Files locked only once per node

— SFCB reflects actual concurrent use
on the node

— Special lock call (FILE_$LOCK_

STREAM) used to support the
following sequence:

* Process 1 — open F
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>